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Abstract 

Although the consistency, low cost, and high speed of machine vision systems 

make them suitable for many areas of manufacturing, there exist challenges for online 

inspection using machine vision systems due to the presence of variations in lighting, part 

position/orientation and part finish. In this thesis, a novel adaptive machine vision system 

based on pixel-by-pixel analysis and a neural network based vision system are presented 

to solve two challenging industrial inspection problems. Both of the vision systems stem 

from the idea of adaptive image processing to analyze an image with respect to its local 

properties. 

In the first part of the thesis, a pixel-by-pixel analysis based adaptive vision 

system is designed for an automotive water pump housing surface inspection problem. 

This vision system is used to inspect the machined surface of a die-cast part. The defects 

on this part may include pores, dents and scratches. This problem is challenging for 

several reasons. First, non-uniform surface finish on the parts produces large brightness 

variations that must be reduced using a controlled lighting work cell and adaptive camera 

control. Second, the defects can be subtle and less than lmm in diameter, while the 

surface is roughly 180mm by llOmm. Third, the surface often includes machining marks 

that appear similar to defects in the image, but are not considered defects. Finally, due to 

the manufacturing and fixturing variations, the size and location of the area to be 

inspected varies considerably, so that a simple fixed mask cannot be used to separate this 

area from the rest of the image. These challenges have been overcome by developing an 

adaptive machine vision system. This system includes custom-designed controlled 

lighting, and several software algorithms for adapting to the variations in surface quality 

and geometry. The system can detect defects as small as 0.15 mm. It has been tested with 

over 1,700 images that were collected at the factory. The majority of the defects were 

pores. These pores were correctly classified in 93% of the cases. 

In the second part of the thesis, a neural network-based vision system is 

developed for an automotive beam clip present/absent inspection problem. In this 
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inspection problem, it is difficult to obtain the theoretical expression for the conditions of 

'clip present', 'clip absent' and also for the clip orientation. Furthermore, there exist strong 

variations in this inspection problem, such as changing lighting conditions, environmental 

disturbances, clip locations and clip orientations. A CMAC neural network-based vision 

algorithm is developed to overcome these challenges. The CMAC neural network has the 

ability to learn fast and is suitable for real-time inspection applications. This vision 

system is demonstrated to correctly classify 100% of the cases, for the given automotive 

part images, after being trained for 151 seconds. 
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Chapter 1 

Introduction 

1.1 Preface 

McMaster Mechanical Engineering 

Machine vision systems are applied in many manufacturing operations. They have 

the advantages of consistency, low cost, high speed, safety, and ease of maintenance. 

However, the online inspection of manufactured parts by machine vision remains a 

difficult and largely unsolved problem. 

Strong variations exist in industrial inspection problems, such as changing 

lighting conditions, part position/orientation variations and part finish variations. With 

automotive parts another difficulty is finding small and sometimes subtle defects on large 

surfaces. The presence of these challenges requires that machine vision systems have the 

ability to adapt in order to perform well. 

Research on adaptive machine vision systems has been ongoing for decades. A 

typical adaptive machine vision system includes an image acquisition unit and related 

adaptive image processing software algorithms and hardware. High quality cameras and 

lens are now available; and many adaptive image-processing algorithms have been 

developed. The recent availability of low-cost high performance computers enables the 

implementation of increasingly complicated image processing algorithms for real-time 

applications. It is an ideal time to make advances on challenging industrial inspection 

problems. 

There are two main adaptive machine vision systems: pixel-by-pixel analysis 

based adaptive machine vision systems and neural network based machine vision systems, 

which are suitable for different vision problems. Both vision systems analyze the local 

properties of the current processed image. The pixel-by-pixel analysis based vision 

system is fit for vision problems that can be defined by parametric models while the 

neural network based technique works well for problems that are nonparametric. Both 

types of systems will be investigated in this thesis. 
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1.2 Objective and Organization of the Thesis 

The objective of this thesis is to develop two different adaptive machine vision 

systems (including the required algorithms) for different automotive component 

inspection problems. First, a pixel-by-pixel analysis based adaptive machine vision 

system will be developed in detail, including the hardware design and the software design. 

Next, a neural network based machine vision system will be developed. Both adaptive 

machine vision systems will be tested experimentally. 

The organization of the thesis is as follows. In Chapter 2 the literature related to 

adaptive machine vision is reviewed. The pixel-by-pixel analysis based adaptive machine 

vision system for inspecting a machined surface is described in Chapters 3 - 5. In 

Chapter 3, the hardware and software for the image acquisition procedure to obtain 

images with high quality is discussed, including the design of a controlled lighting work 

cell, the selection of a digital camera, and a novel adaptive camera control algorithm. In 

Chapter 4, an image masking technique is developed to segment the region of interest 

(ROI) from the remainder of the image to prevent unimportant areas of the surface from 

being inspected. The algorithms to size, locate and classify the defects are presented in 

Chapter 5. In Chapter 6, a neural network based machine vision system is developed for 

an automotive clip present/absent inspection problem. The algorithm details and 

experimental results are included in this chapter. The achievements of this research are 

summarized in Chapter 7. Recommendations for future work are also presented in this 

final chapter. 

2 



Master's Thesis - Kai Yang McMaster Mechanical Engineering 

Chapter2 

Literature Review 

2.1 Introduction 

In this chapter the research literature related to the adaptive machine vision 

systems for inspection problems will be reviewed. This field has been developing for 

decades and the literature is quite rich. The following aspects will be reviewed: machine 

vision based surface inspection techniques for manufactured parts, image acquisition, and 

related machine vision techniques. 

2.2 Machine Vision Based Inspection Techniques 

Product inspection is very important in industry and manufacturing. There are a 

lot of techniques used for inspection problems, such as ultrasonic [1], laser beam [3], 

eddy current [4], x-ray [13], machine vision, and hybrid techniques [8][12][14]. Within 

the applied techniques, machine vision based inspection systems have the advantages of 

being fast, accurate, non-contact, safe and low cost. With the development of improved 

computer hardware and software, vision based inspection systems are becoming more and 

more popular in industry and manufacturing. 

In 1984, Okawa systematically described the design of a vision based inspection 

system for cast pulleys [2]. In [2], several important problems that should be considered 

in the vision system design were summarized, including: multiple views from different 

angles, software execution time, noise removal, and defect classification rules. The 

proposed inspection process was analogous to that of human judgment. To detect the 

pores on the surface, the local image parameters were calculated to generate a parameter 

for separating defective and non-defective areas. The five candidate parameters were the 

standard deviation, the average of the difference between the ideal surface and the actual 

surface, the average of the smoothed difference, the ratio of the averages of the peaks and 

valleys in a gray level profile, and the ratio of the maximum and minimum of the 
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smoothed gray level. These parameters were used to obtain the optimized set-up of the 

system hardware and make the defects and non-defective areas more distinguishable. In 

his proposed vision system, the method to adaptively adjust the hardware was not 

mentioned. The images used in this inspection system were also very small (192 by 192 

pixels2
). So the computational burden was not a significant problem for his system. 

In [5], Fernandez et al. described the hardware design for an automated vision 

inspection system. The vision system was used for on-line detection and analysis of 

surface defects in a continuous flat metallic production manufacturing process. They 

modeled the roughness of the surface as a zero mean normal distribution. With this model, 

different lighting patterns were analyzed and the rules to choose the light source were 

proposed. Furthermore, they also proposed a criterion to choose the image acquiring 

equipment. The algorithms to process the acquired images were only introduced briefly. 

The detected defects were classified by a rule-based approach. 

In [6], the defects were detected by analyzing the textures on the surface. Instead 

of a single camera, a camera matrix was applied to acquire high-resolution images over a 

large area in the vision system proposed by Zeichen, Hufnagl, and Berger. To reduce the 

inspection time, two techniques were applied. One was to preprocess the obtained images. 

The feature vectors were extracted during the image preprocessing procedure. The 

trainable textures were described by the extracted feature vectors, which were used to 

train the classifier. The second technique was to apply a transputer system with a high 

performance transfer bus to analyze the data in parallel. They showed example inspection 

results for a cast aluminium valve lid. 

In [7], Platero et al. described the artificial intelligence based vision inspection 

techniques used with the hardware presented in [5]. In this paper, more complicated and 

accurate algorithms were applied to extract the feature vectors of the acquired images. 

The feature vectors were classified by means of rule-based systems along with data-based 

classifiers. At the end of this paper, a hybrid system was recommended to achieve better 

inspection results. They claimed to achieve 99.7% success rate. 

4 



Master's Thesis - Kai Yang McMaster Mechanical Engineering 

In [9] and [11], Tsai et al. applied Fourier transforms to analyze the obtained 

images for defective textures. In [9], a two-dimensional Fourier transform first was 

computed for the input image. Then the features derived in the spatial-frequency domain 

were input to a classifier for further processing. Two kinds of classifiers were used in the 

proposed vision system: Bayes classifier and neural network based classifier. The 

reported results demonstrated high performance (100%) in classification accuracy rates. 

In [11], Tsai and Huang applied the Fourier transform and inverse Fourier transform to 

extract the statistical features of the inspected surface. This allowed them to simplify the 

vision based inspection problem into a simple thresholding problem. They included 

example results for various textured surfaces with and without defects. 

Recently, Mery et al. proposed a novel inspection algorithm for aluminium 

castings in [10] and [17] that was named automated multiple view inspection. With 

comparison to the traditional methods, the proposed inspection algorithm utilized images 

of the same area from multiple views for inspection. This imitates the natural human 

inspection procedure. When a human being inspects objects, he always changes the views 

to detect the region of interests. In these papers, images from different views were 

analyzed to detect the potential defects. After processing the individual images, all the 

images were registered. Only the defects that were detected in all views were reported as 

real defects. The redundant images from different views improved the inspection 

accuracy. However, the accuracy of the image registration is critical for the final 

inspection results and the computational cost appears to be very high. 

In [15], Steiner and Katz proposed a 2.50 model of porosity flaws on machined 

surfaces. This 2.50 model was based on the contour lines from binary images obtained 

using different thresholds. They assumed that the contour obtained with a threshold close 

to black measures the pore at a greater depth than a threshold close to white. They 

described two methods to detect pores close to the edges of the surface. The first method 

used curve analysis to locate the pores. The second method applied basic morphological 

operations to determine the relationship between the pores and the edges. The images of 

the pores were taken with an overhead camera. A second camera was used to distinguish 
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the pores and the stains or scratches on the surface. Steiner and Katz claimed their 

algorithms improved the accuracy of porosity size measurement, but no quantitative 

evaluation was provided. 

In [16], Gamage and Xie proposed a real-time vision system for defect inspection. 

The vision system was applied to inspect the surface produced by a cast extrusion 

manufacturing process. The difficulty of the inspection problem is the small size of the 

defects (diameter as small as 480J..Lm); and the large size and fast motion of the inspected 

surface (2m in width moving at the speed of 50rnls). A custom designed light source was 

applied to highlight the possible defects. The utilized light source was referred to as Mie 

light scattering. With a series of image processing instructions such as image smoothing, 

histogram based image thresholding, noise removal, object labelling, image classification, 

the image was categorized as non-defective or defective. Furthermore, the area inspection 

method and the line inspection method were compared in this paper. They concluded that 

a vision system with a stationary area inspection camera has a better inspection accuracy 

than the one with a traversing line camera (80% vs. 76% ). 

2.3 Image Acquisition 

A machine vision system is based on the analysis of images. So obtaining images 

with high quality is a key problem for a machine vision system. Two key factors for 

image acquisition are the digital camera (including the lens) and lighting. 

2.3.1 Camera Calibration 

Camera calibration is an essential component of most machine vision systems. 

Many calibration algorithms have been developed in machine vision recently [18] - [24]. 

All these techniques can be classified roughly into two categories: photogrammetric 

calibration [18][20][24] and self-calibration [19][21][22][23]. The photogrammetric 

calibration category is the traditional one. The camera is calibrated by observing a 

calibration object with precise 3D geometry. The approaches using the photogrammetric 

calibration can be very effective, but can also require an expensive calibration apparatus 

and a complicated setup. 
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No calibration object with precise 3D geometry is needed with the self-calibration 

methods. When using self-calibration methods to calibrate the camera, the camera moves 

in a static scene. Two constraints are utilized: the fixed internal parameters of the camera 

and the rigidity of the scene. Both the internal and external parameters of the camera 

parameters can be recovered by applying the detected correspondence between images. 

While this approach is very flexible, it is not robust. The obtained results are often 

unreliable with many parameters to be estimated and the calibration is very sensitive to 

the image noise. 

2.3.2 Lighting Condition and Camera Control 

Besides the digital camera, the lighting condition is a fundamental factor in image 

acquisition. With image acquisition the sensor in the digital camera senses the light 

reflected by the objects. Different images are obtained under different lighting conditions. 

In the other words, an image is a description for a certain lighting condition. Based on this 

idea, a novel technique named computational photography was developed recently. The 

term computational photography was first used by Mann in [27]. In contrast with digital 

imaging, computational imaging integrates sensing and data processing to output an 

image with greatly improved quality. This technique has great potential in image 

processing, computer graphics, applied optics and machine vision. 

Computational photography covers the subject areas: computational illumination 

[25][26][28], computational optics [29][30][31], computational processing, and 

computational sensors. Since only the first two topics are related to this research, only the 

literature about them will be reviewed. 

When using computational illumination, the photographic illumination is 

controlled in a custom structure. A number of images are obtained under different lighting 

conditions. By processing the captured images, mappings between the illuminations and 

the images can be acquired. Finally, an image with improved quality will be generated 

from the images and the mappings. The techniques can be applied in image-based 

relighting, image enhancement, geometry/material recovery and so on. 
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There were a number of mappings developed. In 1978, Blinn proposed a mapping 

named bump mapping (BM) [25][26]. This mapping tries to describe the relationship 

between the illumination and the surface normals of the local reflecting surface when the 

light is moved around the object. It is easy to use with a low computational cost. But it is 

very difficult to generate BMs for manufactured parts since their surfaces contain both 

dull and shiny patches. This approach is more popular in computer graphics. 

Malbender proposed the polynomial texture maps (PTM) in 2000 [28]. In contrast 

with the BM method, the light was fixed in the PTM method. The light was composed by 

a number of bulbs that are fixed in a specific structure fashion. The bulbs were turned on 

and off one by one to change the illumination. A group of images were obtained under the 

different lighting conditions. The images were analyzed to obtain the PTMs. Finally, an 

enhanced image was generated from the images and the acquired PTMs. The 

disadvantage of this method is an elaborate experimental set-up is needed. 

It is well known that a different aperture size changes the quantity of light sensed 

by the digital camera. If the coded aperture is used in the image acquisition procedure, the 

images obtained will have improved quality. In [29], the shape of the aperture was 

changed by inserting a encoded mask between the lens and the aperture. By applying the 

relative decoding and image processing algorithms, the quality of the image was greatly 

improved. In [30], the aperture was designed in the specific encoded shape in contrast 

with the conventional aperture. 

Similarly, different exposure or shutter time will generate different effects in the 

obtained image. There also are many approaches about improving image quality by 

changing the shutter time. These approaches are widely applied in image deblurring. In 

[31], a technology based on the idea mentioned above was developed. By controlling the 

shutter time, the motion blur caused by the camera motion or object motion was reduced 

and the image was improved significantly. 

2.4 Related Machine Vision Techniques 

Machine vision is the application of computer vision in industry. Besides 

processing the digital images, machine vision involves interfacing with other industrial or 
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manufacturing equipment such as robots. There is extensive literature about the topic of 

machine vision. In this thesis, only the literature related to the surface inspection 

problems is reviewed, including edge detection, image segmentation, image registration, 

and image classification. 

2.4.1 Adaptive Thresholding 

Image segmentation is an important topic in image processing. There are four 

main ways to segment the image into objects and background: threshold techniques, 

boundary-based techniques, region-based methods and hybrid techniques. Thresholding is 

the simplest and most fundamental method in image segmentation. Conventionally, a 

fixed threshold is applied to segment the whole image. In practice, a global threshold is 

often not suitable for most images. As a result, many adaptive thresholding methods have 

been proposed. The main approaches employed in adaptive thresholding techniques are: 

Chow and Kaneko's approach [32][33]; and local thresholding methods 

[34][35][36][37][39]. 

In 1972, Chow and Kaneko proposed their famous adaptive thresholding 

algorithm [32]. When applying this technique, the image is divided into an array of 

overlapped sub-images. For each sub-image, the histogram is calculated. By fitting the 

histograms to bimodal ones the thresholds can be determined. This method can choose the 

thresholds dynamically and acquire good segmentation results for bimodal histograms. 

But the computational burden of this approach is heavy since it requires a histogram 

fitting procedure. The generation of the sub-image array also makes this method 

inflexible. 

In 1979, Nakagawa and Rosenfeld further developed Chow and Kaneko's method 

[33]. They extended the algorithm to allow the histogram to be trimodal. This makes it 

possible to develop algorithms about segmenting the image in multiple scales. But their 

improved algorithm was also sensitive to the shadows in an image. 

Local thresholding is a method to choose the threshold pixel by pixel with respect 

to its neighbours. References [34][35][36][37][39] described several different ways to 

choose the local thresholds. In [34], the average of the gray scale values in some 
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neighbourhood around the checked pixel is considered as the threshold. The validation of 

this method was demonstrated by Venkateswarluh and Boyle [37]. Bernsen used another 

method to choose the threshold pixel by pixel [36]. The mean of the minimum and the 

maximum gray scale values was applied as the threshold. In [35], the methods in 

described in [34] and [36] were combined together to improve the results by introducing 

an ad-hoc parameter. The adjustment of the ad-hoc parameter made this threshold choice 

flexible to meet different problems. Methods based on the median, combination of mean 

and standard deviation value were introduced in [39]. A survey of adaptive thresholding 

algorithms was presented in [38], where many approaches were discussed and evaluated. 

2.4.2 Edge Detection 

Segmenting objects via their edges is a widely used technique in machine vision 

since edges always exist as features of the objects and the data to describe the edges are 

always less than the original image data. For edge detection, the Sobel operator is a well­

known edge detector [41]. It is a discrete differential operator. The Prewitt operator, 

which is also a differential operator, is also commonly applied as an edge detector [40]. 

These operators are very sensitive to the noise. Canny proposed a multi-stage algorithm to 

detect the edges in an image, the Canny edge detector [42]. In the Canny edge detector, 

the idea of optimization was introduced to satisfy the defined edge detection criterions, 

which is very important in image processing. 

2.4.3 Region Growing 

Region growing is another important method to segment images into objects and 

background. Actually, region growing is an extension of image thresholding. Not only the 

brightness of the pixels but also the connectivity between pixels are considered in the 

segmentation procedure. In [43], Adams and Bischof modeled region growing 

mathematically. In their algorithm, a set of points, or "seeds", were needed. They also 

proposed methods to choose the required seeds and threshold. They applied both semi­

automated and automated methods to choose the seeds and the thresholds, and obtained 

satisfactory results. 
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In [44], a hybrid method by combining threshold technique and region growing 

method was proposed to detect the abnormalities in images of the sun. The image 

thresholding was applied as the seed detector in this approach. The image first was 

roughly segmented. Then the seeded region growing technique was used to cluster the 

segmented objects. 

2.4.4 Image Registration 

Image registration is another important topic in image processing. It is widely 

used in medical, remote sensing, industrial, and manufacturing applications. There are 

four main steps in image registration: feature detection, feature matching, mapping 

functions, resampling. The integrated literature was introduced in [45]. Many approaches 

about these four areas were discussed and evaluated. Sinha and Wu proposed a fast image 

registration algorithm in 2007 [46]. In their algorithms, the images were registered by 

translating and rotating first. Next they considered the edges in the images as the features. 

Then the features were applied to refine an affine model to estimate the motion between 

images. When solving the optimization problem, the gradient descent algorithm was used 

for fast convergence. 

2.4.5 Image Classification 

There are two main kinds of classification methods applied in machine vision 

inspection systems: rule-based classification and texture-based classification. If the 

precise definition of the classification rules is easy to obtain, a rule-based classifier is 

suitable for the inspection system, e.g. [5][7][10][11][16][17]. Otherwise, the texture­

based classifier is a good choice, e.g. [2][6][7][9][56][57][59][61]. 

In machine vision, neural networks are often used as texture-based classifiers. 

Neural networks (NN), also known as artificial neural networks (ANN) are widely 

applied in control, signal processing, image processing, and computer vision. They are 

based on the biological neural networks and are used to analyze complicated nonlinear 

problems. A comprehensive introduction to NN is presented in [58]. There are many 

types of NN, such as Multiple Layer Perceptron (MLP) [48], Cerebella Model 
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Articulation Controller (CMAC) [49], Radial Basis Function (RBF) [53], Extended 

Kalman Filter (EKF)[55], and Echo State Network (ESN)[60]. 

Most of the NNs have complicated structures and the computational burden is 

very heavy. In the 1970s', Albus proposed a simple and fast NN structure he termed 

CMAC [49]. The CMAC neural network is based on the table look-up technique. It has 

the abilities to learn fast and to generalize. By building a hashing table [50], the space to 

store the weights is reduced to an acceptable and practical number. Miller further 

developed Albus's approach and applied it to robotic control [52]. Miller summarized the 

detailed theory of CMAC in [54]. 

CMAC neural networks have also been used for computer vision applications 

[56][57][59][61]. They were applied as classifiers in these four papers. In [59], a practical 

way to design CMAC based classifiers was described. Because of the limitation of the 

input dimension, images needed to be preprocessed before being input into the CMAC. 

Different image preprocessing methods were used to extract the features of the images. 

Of these methods, converting a high-resolution image to a low-resolution one, also known 

as image down-sampling, is an effective and computationally efficient one. In an image, 

the neighbouring pixels have high correlation. That means some information of the image 

is redundant. This makes it possible to keep most of the features in a low-resolution 

version. Gaussian pyramid decomposition (GPD) [51] is often used to down-sample 

images. In [57], edge detector and GPD are used to extract the features. In [59], a 

Karhunen-Loeve (K-L) transformation [47] worked as a feature extractor. A feature 

vector was generated as the input to the CMAC. In [61], images whose size was within 

the CMAC input limitation were input to the network. In this paper, the experimental 

results exhibited an error rate of 8.5%. 
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2.5 Summary 

More and more adaptive machine vision techniques are being developed to 

improve the inspection results in industry and manufacturing. The idea of adjusting 

parameters adaptively with respect to the image properties enters a lot of areas in 

computer and machine vision, including image acquisition, image processing and image 

classification. The development of improved computer hardware and software algorithms 

makes it possible to design fast, robust, reliable and low cost machine vision systems. 
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Chapter 3 

Adaptive Machine Vision System for Surface Inspection: 

Image Acquisition 

3.1 Introduction 

This chapter and the following two chapters describe the design of an adaptive 

machine vision system for the surface inspection of machined cast parts. The chosen part 

is an automotive water pump housing manufactured by Orlick Industries. This chapter 

focuses on the image acquisition procedure for the surface inspection system. The 

algorithms to process the acquired images will be discussed in Chapters 4 and 5. 

This chapter begins with an overview of the automotive water pump housing part 

surface inspection problem. This is followed by the design of the controlled lighting work 

cell, the selection of the digital camera, and an explanation of the camera calibration 

algorithm. Next, an adaptive camera control algorithm is presented. Finally, the chapter 

closes with some experimental results and conclusions. 

3.2 Problem Description 

Surface inspection is very important in automotive manufacturing. Even a very 

small defect on an automotive surface may cause a car to fail or a customer to be unhappy. 

Therefore, for each car part provider the surface inspection is critical. Traditionally, 

automotive parts are inspected manually. However, it is very difficult for human beings to 

inspect parts consistently. Many factors may exert influence on the manual inspection, for 

example: fatigue, mood, and illness. With a computer vision system the consistency of the 

inspection process is greatly improved. Furthermore, thanks to the availability of 

inexpensive and powerful computers, a computer vision system can inspect an automotive 

part in several seconds, similar to the speed of a human being. 

In this thes~s· we specifically study the surface inspection problem for the 

machined surfaces of cast parts. Figure 3.1 illustrates the particular automotive water 
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porosity on Surface #1. Finally, in Figure 3.5, we can observe pores and a subtle dent on 

the surface. 

As can be seen from the figures, the defects are irregularly shaped. So we cannot 

match their shapes with a database and can only detect the defects by the changes 

brightness of the pixels of the part images. However, besides the defects, there are some 

other areas on Surface #1 where the brightness changes obviously. These areas are caused 

by machining marks, which are also apparent in Figures 3.2 to 3.5. These obvious 

machining marks exist in most of the parts. Another factor that may affect the detection of 

the defects is the view of the part. While a person can check the part from different views 

of the surface, our system will be limited to acquiring the image of the surface with a 

fixed view. All of these factors make the discrimination of the defects from the non­

defective regions a challenging problem. 

Figure 3.2 An example of a good part. 
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Obvious Defect Machining Marks 

Figure 3.3 A defective part with an obvious defect and machining marks. 

17 



Master's Thesis - Kai Yang McMaster Mechanical Engineering 

Obvious Defect Machining Marks 

Figure 3.3 A defective part with an obvious defect and machining marks. 
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Porosity Machining Marks 

Figure 3.4 A defective part with porosity and machining marks. 

18 



Master's Thesis - Kai Yang McMaster Mechanical Engineering 

Porisity Subtle Dent 

Figure 3.5 A defective part with pores and a subtle dent. 
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3.3 Digital Camera Selection 

For a computer vision system a key problem is to obtain high quality images. 

Better images make the processing steps easier and the final results more reliable. First of 

aJl , we need to choose a camera as the imaging device. Since the automotive water pump 

housing parts are made of aluminium, colour images are not better than gray scale ones in 

the image processing procedure. Therefore, a monochrome camera is well suited for this 

surface inspection problem. We choose a PGR Scorpion SCOR-14SOM lEEE-1394 

monochrome digital camera as the imaging device, which is shown in Figure 3.6. 

Adjustable CICS 
Lens Holder Ring 

Imaging Sensor 

12-pin Interlace 
forGPIO 

Status Indicator 
LED 

IEEE-1394 
Connector 

Figure 3.6 Picture of the selected PGR Scorpion SCOR-14SOM monochrome 

camera. [63] 

The Scorpion SCOR-14SOM digital camera uses a monochrome, SONY 112" 

CCD sensor based imaging device, and the lEEE-1394 bus for rapid data transfer. The 

CCD sensor is a SONY ICX267 AL. It is a progressive scan image sensor with a square 

pixel array and 1.45 miJlion effective pixels. The ICX267 AL has the following desirable 

features: [64] 

• Images with 1280 x 960 pixel2 can be read at a frame rate of 30Hz; 

• Progressive scan allows individual readout of the ima.ge signals from all 

pixels; 
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• High sensitivity, and low dark current; 

• Low smear, and excellent anti-blooming characteristics; and 

• Continuously variable speed shutter. 

The size of the Surface #1 is approximately 180mm (horizontal) x 110mm 

(vertical). If we use the Scorpion SCOR-14SOM IEEE-1394 mono digital camera to take 

images with the resolution of 1280 (horizontal) x 960 (vertical), we can estimate the 

corresponding resolution on Surface #1 as: 

Horizontal: 180mm/1280 = 0.14mm 

Vertical: 110mm I 960 = O.llmm 

One of the objectives of our computer vision system is that it should have the 

ability to detect defects with a diameter of 0.5mm. Since 0.14 < 0.5, the Scorpion 

SCOR-14SOM digital camera has sufficient resolution to be applied as the imaging 

device for this surface inspection problem. The resolution of the camera will be analyzed 

in section 3.5. 

3.4 Controlled Lighting Work Cell 

The goal is to inspect the machined Surface #1 of an automotive water pump 

housing part. Compared with a coarse surface, a machined surface reflects more light into 

the camera. For a gray scale image, more light reflection produces a brighter area. It was 

expected that the machined surface would be brighter than other areas in the acquired 

image. Unfortunately, under the ambient lighting condition, it was very difficult to 

distinguish the machined surface to be inspected from the irrelevant areas in the acquired 

image. As an example, Figure 3.7 shows an image taken under the ambient lighting 

condition. To enhance the contrast of the image, we built a work cell with controlled 

lighting. The work cell is shown in Figures 3.8 and 3.9. 
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Figure 3.7 Image taken under ambient lighting condition. 

LED Clusters 
I to 4 

Figure 3.8 Controlled lighting work cell. 

Enclosure 

Autmnotive 
Part 

As indicated in Figure 3.8 , the work cell is covered by foam board "walls" and a 

special designed roof. The inner side of the wall is black, which reduces light reflection 
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onto the machined surface to avoid camera saturation. The roof is designed to prevent 

light out of the work cell from entering the camera and to work as a reflecting area in the 

work cell. The light source of the work cell is composed of four LED clusters. Each 

cluster consists of 24 SSL-LX5093SRC/E red LEDs. The LED clusters can be slid along 

the tracks to change their positions. Also, they can be turned to adjust the light reflecting 

angles. 

Beam 

Figure 3.9 Controlled li ghting work cell frame. 

Part 
Fixture 

As illustrated in Figure 3.9, there are five beams framing the work cell: one is 

used to fix the camera; and the other four are used to support the walls and as tracks for 

the LED clusters. At the bottom of the work cell there is a part fixtvre to guarantee the 

patts stay at a fixed location when taking pictures. There are two main reasons to install 
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this part fixture. One is that the machined surface should be as large as possible in the 

acquired image in order to get better results. This part fixture can guarantee that the entire 

surface appears in the acquired images. Another reason is that the measured size of the 

detected defects is related to the distance between the imaging plane and the camera. 

Since it is not practical to calibrate the camera for each part, this part fixture is installed to 

keep the machined surfaces of the different parts in the same plane when taking pictures. 

We chose the PENT AX 25mm 1: 1.4 C-mount lens for the digital camera. The 

parameters of the lens are listed in Table 3.1 [65]. Based on the parameters of the lens and 

the digital camera, we can estimate the distance between the lens and the Surface #1 when 

setting up the work cell. Assume the lens is a thin lens, we use the following thin lens 

formula [62]: 

1 1 1 
-=--+-
! dobject V 

(3.1) 

where f is the focal length of the lens, dobiect is the distance from the lens to the object, 

and v is the distance from the image to the lens. 

From Table 3.1, the minimum object distance is 0.3m, which is larger than ten 

times of the focal length of the lens: 25mm. By applying (3.1), the maximum image 

distance will be 27.3mm. So we can simply consider the image distance the same as the 

focal length of the lens. The diagram of the imaging geometry is shown in Figure 3.10. 
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Table 3.1 Lens parameters. 

Format Size 1 

Focal Length 25mm 

Max. Aperture Ratio 1: 1.4 

Iris Range F1.4 22 

Horizontal 114 8.23 

Angle of View 1/3 10.97 

(Degrees) 112 14.62 

Min. Object Distance 0.3m 

Back Focal Length 14.98mm 

Filter Size 27mm, P=0.5mm 

Mount (Flange Back) C (17.526mm) 

Weight 76g 

Remarks Lock Screw Extra 

Object 

l Image 

~---- dobject f 

Figure 3.10 Diagram of the imaging geometry. 
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From Figure 3.10, we can obtain the equation to estimate the distance between the 

object and the lens as 

l! f 
dobject =zx 

2 

(3.2) 

where dobject is the distance between the object and the lens; f is the focal length of the 

lens; and 11 and 12 are the sizes of the object and the image respectively. In this surface 

inspection problem, 

{

/=25mm 

11 =175mm 

12 = 1280x4.65J.Lm = 5.925mm 

(3.3) 

Based on these parameters, dobiect can be estimated as 738mm. In practice, we 

manually adjusted this distance. After careful adjustment, the distance between Surface 

#1 and the lens that gave the desired field of view was set as 760mm, close to the 

estimated value. 

When taking pictures, the light comes from the LED clusters and is reflected by 

the ceiling of the work cell. By adjusting the location and the orientation of the LED 

clusters, we could obtain different images. After carefully adjusting the configuration of 

the work cell, high quality images were obtained. The same work cell configuration was 

used to obtain all of the images of Surface #1. 

3.5 Camera Calibration 

Camera calibration must be done after setting up the work cell because of the 

following two reasons. First, we need to know the resolution of the camera. The camera 

resolution determines the minimum displacement that can be measured by the camera. 

The second reason is the conversion of measurement units. The object size is measured in 

mm in industrial applications while the size is measured in pixels in image processing. By 

calibrating the camera we can acquire the mapping that describes the relationship between 

the real world coordinates and the image coordinates. 
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We apply a standard least mean square (LMS) based optimization method to 

calibrate the camera. The main idea of the algorithm is to obtain the transformation 

matrices (also tetmed extrinsic matrices) of the camera calibration through the 

coordinates of the feature points measured in both the real world and the image space. 

A standard chessboard is used as the reference object in the calibration, which is 

illustrated in Figure 3.11. Before calibrating the camera, we measure the size of the 

black/white blocks in the chessboard. The unit of the block size is mm. Then we assign an 

origin of the chessboard and set up a coordinate system in mm for the chessboard. With 

this coordinate system, we can obtain the coordinates of the corners in the chessboard in 

the real world coordinate system. 

Figure 3.1llmage of the chessboard used for the camera calibration. 

Now we need to find out the coordinates of the corners in the image plane. By 

applying the function of cvFindChessboardCorners() in the OpenCV library [66], we can 

detect the corners of the chessboard in the image. The result is shown as Figure 3.12. 

With aid of function cvFindCornerSubPix(), we can find out the coordinates of the 

corners measured in pixels. The accuracy of this function is sub-pixel. With the obtained 
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coordinates of the chessboard comers both in real world and in image coordinate systems, 

we can calculate the transformation matrix (extrinsic matrix) between the two coordinate 

systems. 

Figure 3.12 Result produced by the function cvFindChessboardComers(). 

Assumjng we detect n chessboard comers by usmg OpenCV function 

cvFindChessboardComers(), we define (x;, Y;) and (x;, y;) as the coordinates of the 

chessboard comers in the real world coordinate system and in the image coordinate 

system, respectively. Same as in [66], we define the camera extrinsic matrix as 

l
~l 

H= h.zt 

~1 

(3.4) 

In the LMS based algorithm, the optimal extrinsic matrix H is the one whjch 

minimize the back-projection error. The back-projection error is defined as 

(3.5) 
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Appying function cvFindHomography() of the OpenCV library, we can obtain the 

extrinsic matrix H. With our work cell, the extrinsic matrices of the camera are: 

[ 7.23 0.01 101.99] 
H 1 = -Q.01 7.26 194.33 (3.6) 

0.0 0.0 1.0 

and 

[0.14 -n.o -14.08] 
H 2 = 0.0 0.14 -26.77 (3.7) 

0.0 0.0 1.0 

where H 1 is transformation matrix from the real world coordinate system to the image 

coordinate system, and H 2 is the transformation matrix from the image coordinate system 

to the real world coordinate system. 

After obtaining the extrinsic matrix of the camera, we can test its real world 

resolution. We need to calculate the minimum displacement that can be measured by the 

camera. The minimum displacement is the minimum of the distance between the 

neighbour pixels in the same row and in the same column. The distance between the 

neighbour pixels in the same row is: 

a_~= H,x[~] =0.13mm (3.8) 

The distance between the neighbour pixels in the same column is: 

(3.9) 

So the resolution of the camera is 0.14mm. Since the minimum defective size of 

this project is 0.5mm, this camera has sufficient resolution for our application. 

The calibration errors in mm were also calculated. First we numbered the 24 

detected chessboard comers from left to right and from top to bottom. Next, the 

transformation matrix H 2 in (3.6) was used to convert the coordinates of these comers in 
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the image space to the coordinates in the real world. The differences between these 

calculated coordinates and the corresponding real coordinates were calculated as the 

calibration errors. These errors are listed in Table 3.2. It should be noted that the local 

errors, for example when determining the size of a defect, will be much smaller than the 

maximum value listed in this table. 
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Table 3.2 Typical calibration errors 

Real Coordinates Calculated Coordinates Error(mm) Comer 
(mm) (mm) 

No. ~(x0 -x~Y +(Yo- YtY 
(xo, Yo) (XJ, YJ) 

1 (0.0, 0.0) (0.06, 0.08) 0.1 

2 (28.5, 0.0) (28.48, 0.04) 0.05 

3 (57.0, 0.0) (57.05, -0.02) 0.05 

4 (85.5, 0.0) (85.57' -0.02) 0.07 

5 (114.0, 0.0) (114.15, 0.02) 0.15 

6 (142.5, 0.0) (142.56, -0.03) 0.07 

7 (0.0, 28.5) (0.02, 28.50) 0.02 

8 (28.5, 28.5) (28.38, 28.44) 0.13 

9 (57.0, 28.5) (57.07, 28.46) 0.08 

10 (85.5, 28.5) (85.51, 28.48) 0.03 

11 (114.0, 28.5) (114.23, 28.46) 0.23 

12 (142.5, 28.5) (142.58, 28.50) 0.08 

13 (0.0, 57.0) ( -0.04, 56.92) 0.09 

14 (28.5, 57.0) (28.34, 57 .05) 0.17 

15 (57.0, 57.0) (57.01, 57.08) 0.09 

16 (85.5, 57.0) (85.50, 57.11) 0.11 

17 (114.0, 57.0) (114.23, 57.13) 0.26 

18 (142.5, 57.0) (142.559, 57.019) 0.06 

19 (0.0, 85.5) (0.09, 85.31) 0.21 

20 (28.5, 85.5) (28.45, 85.43) 0.09 

21 (57.0, 85.5) (57.02, 85.56) 0.06 

22 (85.5, 85.5) (85.51, 85.58) 0.08 

23 (114.0, 85.5) (114.14, 85.53) 0.14 

24 (142.5, 85.5) (142.45, 85.49) 0.05 
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3.6 Adaptive Camera Control 

It is very difficult to obtain high quality images for different parts if fixed camera 

parameters are used during the image acquisition. In general, there are two main methods 

to improve the image quality for different parts: one is to adjust the parameters of the 

camera for each part; and the second way is to change the lighting condition of the work 

cell adaptively. Since the controlled lighting work cell we built cannot be adjusted 

automatically at present, adjusting the camera parameters via software is a good choice to 

acquire images of high quality. 

In this section, an adaptive camera control algorithm is discussed. The main idea 

of this algorithm is to adjust the camera parameters according to the acquired images. 

Compared with the images under the fixed camera parameters, images taken by using the 

adaptive algorithm should have better contrast and be easier to analyze. 

3.6.1 Algorithm Overview 

For a given digital camera, the exposure time is an important parameter. The 

exposure time is defined as the interval when the shutter is open to allow a certain amount 

of light (also related with the opening of the lens diaphragm) to pass through and expose 

the CCD sensor. Different values of exposure time will yield different kinds of visual 

effects in an image. Generally, longer exposure times will allow more light to reach the 

sensor and make the images brighter. On the other hand, longer exposure times will blur 

the image while shorter exposure time can freeze the action and enhance the contrast of 

the image. Therefore, by adjusting the exposure time, we can adjust the brightness, 

saturation, and contrast of the image. 

At present, we are only interested in Surface #1, which is defined as the region of 

interest (ROI). Our objective is to obtain high quality for the ROI images. Therefore, we 

can evaluate the quality of the ROI for each image and adjust the exposure time 

adaptively. However, the evaluation of the image quality of ROI is influenced by the 

pixels outside the ROI. To solve this problem, we first segment the ROI from the whole 

image using a ROI mask. The introduction of this mask provides the benefits of lower 
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computational cost and eliminates the pixels outside the ROI from the camera control 

algorithm. The method for generating this mask will be discussed in Chapter 4. 

In order to apply the ROI mask to different images, we need to keep the different 

parts in the same location of the images. Although we designed the part fixture to try to 

keep the location of the parts unchanged, there still exists slight motion among the images 

of the different parts and even the different images of the same part. As a result, there 

exists a slight deviation between the generated mask and every automotive part image. To 

compensate for this deviation, the mask has to be registered before being used. The image 

registration algorithms will be discussed in the next chapter. 

After registration of the ROI mask, we segment the ROI from each image and 

calculate the statistical information of the ROI. The exposure time can be adjusted 

adaptively according to the acquired statistical information to achieve the desired quality. 

The diagram of this adaptive camera control algorithm is shown in Figure 3.13. 

Desired 
Feature 
Value of 
Ima ge + Error Ima 

Controller Camera 
ge 

j -

Calculate Simplified 
Feature - Image ~ 
Value Registration 

Figure 3.13 Diagram of the adaptive camera control. 
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3.6.2 Assumptions 

We assume the following: 

1. Surface #1 of the inspected part is well machined; 

2. Holes used for the mask registration are drilled; 

3. The initial values of the camera parameters are suitable for finding the 

features easily and accurately enough; 

4. Surface #1 is approximately perpendicular to the axis of lens; 

5. The image fully covers Surface #1; 

6. The mask can be matched to the part without altering its scale; 

7. The coordinates of the hole centres in the mask image are known; 

8. The desired feature value of the image is given. 

The first two assumptions are satisfied by most of the automotive water pump 

housing parts. Initializing the camera with proper exposure time satisfies the third 

assumption. This makes the image brightness and contrast sufficient. 

The simplified registration algorithm (described in Chapter 4, Section 4.3.8) 

satisfies the sixth assumption. Under this assumption, we can model the motion between 

the mask image and the part image by translation and rotation only. Therefore, only two 

hole centres are needed for the image registration. 

The remaining four assumptions were satisfied by initial manual setting up of the 

work cell. Satisfying assumption four and seven was straightforward. We adjusted the 

locations of the part fixtures and the focal length of the digital camera to make the part 

image contain all of Surface #1 (assumption five). The last assumption involves the inputs 

to the algorithm. To acquire this feature value, we first adjust the camera manually and 

take images under different exposure times. The manual adjustment procedure continues 

until a high quality image is acquired. Finally, we calculate the feature value of the image 

and use it as the desired value of the adaptive camera control algorithm. Note that this 

task is performed only once. 
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3.6.3 Algorithm 

Algorithm 3.1 Adaptive Camera Control 

An image is taken by the following procedure: 

Step 1: Initialize the camera with the parameters needed to take a bright 

image; 

Step 2: Acquire an image; 

Step 3: If this is the first image, use the simplified registration algorithm to 

match the mask image up with the acquired image. Else, continue. 

Step 4: Calculate the feature value of the acquired image; 

Step 5: Compare the feature value of the acquired image with the desired 

feature value; 

Step 6: If the magnitude of the error is larger than a predefined threshold, 

calculate the new value camera parameter based on the error. Change the 

camera parameter and go to step 2. Else, output the image and stop. 

First, the camera should be initialized with the parameters to acquire bright 

images. We chose the exposure time as the adjustable camera parameter. The initial value 

of the exposure time needed to obtain bright images of the parts must be manually 

determined once. The bright image should satisfy two conditions: the area of Surface #1 

is bright enough to be identified easily and the contrasts of the areas close to the six holes 

are strong enough to be segmented. This makes it possible to locate the holes and obtain 

the centres of the holes more accurately and more reliably for use in the mask registration. 

After the first image is acquired, we apply the simplified image registration 

algorithm (described in detail in Chapter 4) to match the mask image up with the current 

image approximately. To reduce the computing cost, we move the mask image only once. 

Since the part does not move significantly during the whole image acquisition procedure, 

it is unnecessary to re-register the mask image for every shot. 
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The feature value is calculated for the registered image. In this thesis, we use the 

average intensity of the pixels in the mask area as the feature value. The average intensity 

is calculated as: 

(3.10) 

where N mask is the total number of pixels with binary value of 1 in the mask image, and Pk 

is the gray scale value of a masked pixel in part image. The average intensity is compared 

with the desired value. If the error is smaller than a pre-set threshold, the exposure time is 

considered acceptable and the taken image is used to inspect the part. Otherwise, we 

adjust the exposure time with respected to the error and re-take the image for checking. 

The control strategy to adjust the camera exposure time is simple. If the error is 

positive then the exposure time is increased by a fixed increment. Similarly, if the error is 

negative the exposure time is decreased by the same amount. This adjustment procedure 

continues until the error magnitude is smaller than the threshold. It should be noted that 

this iterative approach can be slow. It can take several seconds to acquire an acceptable 

image of the part. 

3. 7 Experimental Results 

We used the controlled lighting work cell and the adaptive camera control 

algorithm to acquire more than 1,700 images of different automotive water pump housing 

parts. A few examples that demonstrate the camera control algorithm will be discussed in 

this section. A comparison between Figure 3.14 and Figure 3.15 shows that the brightness 

distribution is different for different parts under fixed camera parameters. Comparing 

Figure 3.14 with Figure 3.16, and Figure 3.15 with Figure 3.17, we can observe that by 

using the adaptive camera control algorithm, the contrast of the image is enhanced, which 

is very important for the further image processing. 
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Figure 3.14 Image of Part A taken using fixed camera parameters. 

Figure 3.15 Image of Part B taken using fixed camera parameters. 
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Figure 3.16 Image of Part A taken using adaptive camera control. 

Figure 3.17 Image of Part B taken using adaptive camera control. 
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3.8 Summary 

In this chapter, we presented the image acquisition procedure for the surface 

inspection problem. A controlled lighting work cell was designed to acquire part images. 

A camera calibration algorithm was used to obtain the transformation matrices between 

the image coordinate system and the real world coordinate system. In order to acquire 

high quality images, we developed a camera control algorithm to adaptively adjust the 

brightness and contrast of the acquired images. Experimental results showed that high 

quality images were acquired with the custom designed control lighting work cell and the 

proposed adaptive camera control algorithm. 
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Chapter4 

Adaptive Machine Vision System for Surface Inspection: 

Region of Interest Masking 

4.1 Introduction 

By employing the work cell and the adaptive camera control algorithm described 

in the last chapter, high quality images are available for further processing. As introduced 

briefly in the last chapter, we apply an image masking technique to segment the ROI 

before detecting and measuring the defects on Surface #1. This masking technique will be 

described in detail in this chapter. 

This chapter is organized as follows. First, a seeded region growing based 

algorithm is developed to generate the ROI mask from one acquired image. Second, an 

accurate image registration algorithm is introduced to compensate the global motion 

between the ROI mask and the surface to be inspected. Third, a simplified image 

registration algorithm developed for matching the ROI mask up with the surface 

approximately during image acquisition is presented. 
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4.2 Generating the ROI Mask using Seeded Region Growing 

Many machine vision algorithms process a ROI instead of the whole image. For 

the current inspection problem, Surface #1 is the ROI. Therefore, we must segment it 

from the whole image using an ROI mask. By applying this masking technique, we can 

avoid the possible negative affect of the background in both the image acquisition 

procedure and the inspection process. Furthermore, since the ROI area is always smaller 

than the entire image, we can reduce the computational cost greatly by only processing 

the pixels inside the ROI. 

In this section, a seeded region growing based algorithm is proposed to generate 

the ROI mask. The proposed method is compared with the method available in the 

OpenCV library to evaluate its performance. Experimental results are shown in the end of 

this section. 

4.2.1 Algorithm Overview 

A mask image is defined as a binary image with pixel values of 0 or 1. The pixels 

with a value of 1 are inside the ROI. The remainder are outside of the ROI. Generally, 

there are two ways to generate an ROI mask: thresholding and region growing. The 

thresholding technique has the advantages of simplicity and small computational cost. 

However, it has two main drawbacks. First, the performance of the thresholding 

technique largely depends on the choice of the threshold. If there exists no prior 

knowledge of the ROI and the image, a good threshold is very difficult to obtain. Second, 

due to the noise existing in almost every natural image, the ROI mask generated by the 

thresholding technique cannot be guaranteed to be a connected area. The region growing 

technique overcomes the above two drawbacks. However, compared to the thresholding 

technique, it is much more complicated and the computational cost is higher. 

For the automotive water pump housing part surface inspection problem, the parts 

to be inspected are standard parts and they all have similar shape and size. Also, the part 

fixture designed in the work cell can fix the location of the parts while taking images. 

Therefore, it's not necessary to generate the ROI mask for each acquired image. Instead, 
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we only generate one ROI mask and then match the mask up to every surface image. 

Since only one ROI mask needs to be generated, we care more about the quality of the 

mask than the computational cost. Based on this analysis, we developed the seeded region 

growing technique to generate the ROI mask. 

4.2.2 Assumptions 

We generate the mask under the following assumptions: 

1. Surface #1 (ROI) is a connected area. That is, there exists at least one path 

between any two pixels inside the area; 

2. There is a distinctive closed border between the ROI and other areas of the 

image; 

Satisfying these assumptions will guarantee that the algorithm converges and 

generates a mask image covering the whole area of Surface #1. 

The first assumption is true since the Surface #1 is an un-broken surface. The 

second assumption will be true when the lightning condition is well adjusted so that the 

contrast of the acquired image is sufficient. 

4.2.3 Mask Generation by Seeded Region Growing Algorithm 

Algorithm 4.1 Mask generation by seeded region growing 

A mask image is generated by the following procedure: 

Step 1: Initialize the data buffer used to store the categorized pixels of the part 

image and set all the pixels as UNCHECKED_PIXEL; 

Step 2: Set the original seed as NEW _SEED and push it onto the stack; 

Step 3: Pop the next seed from the stack, and check if it is 8-connected. If any 

of its neighbouring pixels is classified as UNCHECKED_PIXEL, 

categorize it according to the following rules. If the absolute value of the 

difference between the value of the UNCHECKED _PIXEL neighbour 

pixel and the value of the original seed is less than a threshold of 120, set 

the pixel as NEW _SEED and push it onto the stack; Otherwise, set the 
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checked pixel as CHECKED _PIXEL; 

Step 4: Repeat Step 3 until no more pixels are pushed onto the stack; 

Step 5: Check the data buffer storing the categorized pixels. If the pixel is set 

as NEW _SEED, set the value of the corresponding pixel (in the same 

location) in the mask image equal to 1. Otherwise, set the value of the 

corresponding pixel in the mask image equal to 0. 

Step 6: Stop. 

This algorithm is based on the work of Adams and Bischof [43]. At the very 

beginning, we allocate a data buffer to store the categorized pixels of the image. The size 

of the data buffer is the same as the image: 1280 elements by 960 elements. Every 

element in the data buffer is composed of two parts: one part is used to store the index of 

the responding pixel in the original image; another part is used to store its classification 

value. All the classification values in the data buffer are initialized as 

UNCHECKED_PIXEL. 

The region growing procedure starts with the original seed we predefined 

manually. The original seed is classified as NEW _SEED and pushed onto a stack. The 

stack is used to store the seeds generated while the program is running. Then the seed is 

popped out of the stack and its 8-connected neighbour pixels are checked. For these 

neighbouring pixels, only those classified as UNCHECKED_PIXEL are processed to 

reduce the program running time and guarantee that the code converges. We compare the 

value of the checked pixel with the value of the original seed to classify whether the pixel 

is a new seed. Once the pixel is classified, the classification value will not be changed. If 

the neighbour pixel has been checked it is unnecessary to check it again. We only push 

the newly generated seeds onto the stack to avoid storing all the seeds in one operation 

cycle. Generally, the original seed can be chosen from some feature points extracted from 

the image. To make the program run faster, we manually chose a pixel in the central area 

of Surface #1 as the original seed. 
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According to the above growing procedure, it is expected that the number of the 

new seeds will increase rapidly. For example, after the first iteration, there may be eight 

new seeds being pushed onto the stack. The number of new seeds increases to 16 after the 

second iteration, 24 after the third iteration, and 32 after the fourth iteration, etc. 

Fortunately, the number of new seeds will decrease when the region growing procedure 

reaches the edge of Surface #1. The region growing procedure will end when no new seed 

has been pushed onto the stack. 

After the region growing finishes, we generate the binary mask image 

corresponding to the seeds stored in the stack. For every stored seed, we set the value of 

the corresponding pixel in the mask image as 1. Note that all the pixels in the mask image 

must be initialized with a value of zero. 

To evaluate the performance of the proposed seeded region-growing algorithm, 

we compared it with the method provided in the OpenCV library [66]. The masks 

generated by our proposed method and by calling the function cvFloodFill() are shown in 

Figure 4.1 and Figure 4.2 respectively. The reverse images are displayed for convenience. 

That is, the dark area is the ROI. From the figures, we can observe the invalid pixels 

existing in the mask generated by the OpenCV function. These pixels will introduce 

errors into the subsequent image processing. The mask generated by the proposed seeded 

region-growing method completely covers the Surface #1 without introducing any invalid 

pixels. 
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Invalid pixels 

Invalid ____ , 

pixels 

Figure 4.1 Mask image generated by using the OpenCV library. 

Figure 4.2 Mask image generated by using the proposed seeded region 

growing algorithm. 
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4.3 Image Registration 

By applying Algorithm 4.1, we obtained a mask for use in the upcoming image 

processing procedures. When applying the mask to the images of the different automotive 

parts, there is an important problem to be solved: matching the mask up with these images. 

Consequently, an image registration algorithm is required. In order to detect the defects 

on Surface #1 and reduce the negative affects of the background as much as possible, it is 

required that the mask should match up with each image accurately. In this thesis, we will 

use two registration algorithms: an accurate algorithm, and a simplified algorithm. 

This section is organized as the follows. First, we present an overview of both 

algorithms. Second, we describe the accurate image registration algorithm. The algorithm 

includes a pattern-matching algorithm to detect the coarse features, an adaptive seeded 

region growing algorithm to refine the feature points, and a least mean square (LMS) 

based method to find an accurate global motion model. Finally, we will present the 

simplified image registration algorithm used during the image acquisition. 
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4.3.1 Overview of Both Image Registration Algorithms 

As discussed in the previous section, in our system an ROI mask is generated 

from one image and applied to every other image in both the image acquisition procedure 

and the inspection procedure. Although we apply the part fixture in the work cell to fix 

the automotive parts, there still exists slight global motion among the images of different 

parts and among different images of the same part. Therefore, we need to register the 

mask with the images to be processed. 

Our image registration process includes the following four main steps: 

• Feature detection: detecting and locating the features on the image to be 

processed; 

• Feature matching: matching the detected features between the mask image 

and the image to be processed; 

• Motion estimation: estimating the motion model parameters according to 

the detected and matched features; and 

• Mask registration: transforming and resampling the mask image to register 

it with the image to be processed. 

The accuracy of the estimated motion largely depends on the accuracy of the 

feature detection. In general, features are always chosen as some distinctive and easily 

detectable objects, such as edges, comers, line intersections, etc. By analyzing the 

automotive water pump housing parts we can observe that there are six cleanly drilled 

holes on Surface #1, which are labelled in Figure 4.3. In every image, these six holes 

appear as six circle circular regions with good contrast. We chose these six holes as the 

features for our image registration algorithms. 
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Figure 4.3 Hole #1 - Hole #6 are features used in image registration. 

In the feature detection step, these six holes are first segmented from the whole 

image. An adaptive seeded region-growing algorithm is applied to the six sub-images to 

locate the centres of these holes. These six holes are then matched with the six holes in 

the mask image in the feature-matching step. 

After locating the feature points, the motion estimation problem with the accurate 

registration algorithm converts to an optimization problem to find the optimal parameters 

of the motion model, which turns out to be a typical LMS based optimization problem. 

Several motion models can be applied in image registration, including translation model, 

affine model, perspective model, etc [69]. Since we use part fixtures to locate the parts, 

the affine model is satisfactory to describe the small global motion between the standard 

mask and the images. 

With the estimated motion model parameters, the mask can be registered with the 

image to be processed by transforming and resampling. Since the estimated motion has 

sub-pixel precision, image interpolation may be involved in the resampling process. 
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The affine motion model can describe translation, rotation and scaling motion. 

However, in the image acquisition procedure, since we only require the statistical 

information of the ROI for the camera control algorithm, the mask does not have to match 

Surface #1 very accurately. Furthermore, a simplified image registration algorithm will 

help to speed up the image acquisition. As a result, we use a simpler algorithm that 

ignores the possible scaling motion between the standard mask and the images to be taken. 

Since now only translation and rotation motion is considered, we only use two instead of 

six feature points to estimate the motion. The centres of the two holes with the best 

contrast were chosen as these two feature points. By observing many acquired images, 

Hole #1 and Hole #4 were the two holes that satisfied this requirement in most cases, and 

were selected. 

4.3.2 Assumptions 

We assume that: 

1. Surface #1 of the inspected part is well machined; 

2. Holes used as the features in Surface #1 are drilled; 

3. The image fully covers Surface #1; 

4. The histograms of the sub-images of the holes are bimodal; 

5. The sub-images of the holes are connective. 

The first three assumptions are same as for the adaptive camera control algorithm 

discussed in Chapter 3. The fourth assumption holds when suitable lighting is used, and is 

true for the controlled lighting work cell. The last assumption holds when these two 

conditions hold: 

1. The dimensions of the sub-image are larger than the maximum diameter of 

the six holes; 

2. The holes are not at the edges of the sub-images. 

These two conditions will be made true by applying the proposed feature 

detection algorithm. 
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4.3.3 Feature Detection 

The objective of the feature detection part is to locate the six holes in the image of 

an automotive water pump housing part and segment these six sub-images from the whole 

image. The contours of these six holes appear as circles in the images. A popular 

technique to detect circles in images is using the Hough transform[67]. We conducted 

experiments to detect circles in the part images with the software implemented by 

Papamarkos [71]. This software detects edges and generates a binary image from the 

input image, and the circles within the given diameter range are detected in the binary 

image using Hough transform. 

Figures 4.4 and 4.5 show two examples of the results using this software. The 

detected circles are illustrated in red. The maximum diameter of the circles to be detected 

was set equal as 70 pixels and the minimum diameter was set as 40 pixels. Totally 16 

circles and 14 circles were detected in Figure 4.4 and Figure 4.5, respectively. This is 

clearly a problem since there are only six holes in each image. The software assigned 

multiple distinct circles to each hole. Furthermore, there exists one circle falsely detected 

in both of these results. The false detection may be caused by several reasons. First, the 

Hough transform is applied on the binary image generated by edge detection and 

thresholding, the edge detection algorithms and the choice of the threshold will affect the 

final detection results. Second, both the edge detection and the Hough transform are 

sensitive to the noise existing in the part images, such as the machining marks. Third, the 

choice of the diameter range is also critical. Another fact that prevents the using Hough 

transform in our surface inspection problem is its high computation complexity. The 

running time of the software for each part image is around 20 seconds that is too long for 

real-time inspection. For these reasons we developed an alternate approach for feature 

detection. 
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Figure 4.4 Example result 1 using Hough transform 

Figure 4.5 Example result 2 using Hough transform 

Since the holes to be segmented all have similar shape and all have very high 

contrast, we developed a feature detection algorithm based on a pattern matching 
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technique. The pattern is a pre-generated binary image illustrating the shape of the hole, 

and is presented in Figure 4.6. 

Figure 4.6 Hole pattern used for image registration. 

For any sub-image of pixels with top-left corner location (i0 , }o) in the image, the 

cost function is defined as the difference between the pattern and the sub-image: 

N ,w N co{ 

c . = ""Ch. . -I . . . . ) 2 
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(4.1) 
i=l j=l 

where N row, N eal are the numbers of the rows and the columns of the hole pattern image 

and also the size of the sub-image; hand I are pixels from the grayscale image of the hole 

pattern image and the image to be processed respectively; a d the subscripts of h and I 

indicate the row index and column index of a pixel. Our objective is to find the sub-image 

that minimizes c,. 
1 
. . 

0 ' 0 

The remaining question is how to generate the pattern image, that is, how to 

determine the size of the hole to use in the pattern image. Since we need to find the 

centres of the six holes afterward, we require that the holes not be at the edges of the sub­

images. Therefore, the s.ize of the hole in the pattern image should have the same size as 
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the real holes in the images to be processed. Otherwise, the cost function in (4.1) may 

have multiple minimum values. This fact is illustrated in Figures 4.7 and 4.8. Figure 4.7 

(A) shows the pattern and Figure 4.7(B) shows an image to be processed. Here we 

assume both the pattern and the image are binary images. 

(A) (B) 

Figure 4.7 Binary images to demonstrate the searching procedure. (A) Hole 

pattern; (B) An image to be processed. 

Figure 4.8 illustrates several cases in the pattern matching procedure. In case (A), 

since the two holes have no intersection, the cost function achieves its maximum value. 

The cost function decreases in cases (B) and (C), and reaches the minimum in case (D). 

However, since the sizes of the holes are different in the pattern and the image, the values 

of the cost function are same for case (D) and (E). Actually, the cost function remains the 

same if the hole in the image is inside the hole in the pattern, no matter the relationship 

between the two holes. Therefore, if the size of the hole in the pattern is not the same as 

the size in the image, the pattern matching cannot guarantee that the detected hole is 

located in the centre of the sub-image. 

53 



Master's Thesis - Kai Yang 

,---.... 
,~ ',, 

/ ' I \ 
I I 
l I 
I I 
\ I 
' I ' " ' ........ __ ,...,, ,., .... - .... ' 

I \ 

t ~'~--------~ 
I I 
\ I 
' I ' , ........ _ ........ 

(A) 

,---.... ,.... ...,, 

("~~~~ ) 
\ ~ I ' ' " ' ' ," ........ _ .... ---

(C) 

~ 
I \ 

I \ 
I I 
: I 
\ I 
\ I 
\ I 

'' ...... __ ,..,"'' 

(E) 

McMaster Mechanical Engineering 

(B) 

(D) 

Figure 4.8 Several cases in pattern matching procedure when the hole in the 
pattern image is larger than the hole in the image to be processed. The cost 

function reaches its minimum in both case (D) and case (E). 
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Experiments on real acquired images also revealed this fact. Figures 4.9 to 4.11 

depict the pattern matching results with different sizes of the hole in the pattern image. 

When the size of the hole in the pattern image is very close to the actual size of the holes 

in the image, the detected hole is located in the centre of the sub-image, which is 

illustrated in Figure 4.9. Figures 4.10 and 4.11 show the results where the hole in the 

pattern image is larger and smaller than the actual holes, respectively. We can see that not 

all the holes in Figures 4.10 and 4.11 locate in the centre of the segmented sub-images. 

This offset will make the holes in the sub-images not connective, and will introduce 

significant error in the subsequent calculation of the centres of the holes. 

Figure 4.9 Pattern matching results when the size of the hole in the pattern 
image is close to the actual holes in the image. 
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Figure 4.10 Pattern matching results when the size of the hole in the pattern 
image is larger than the actual holes in the image. 

Figure 4.11 Pattern matching results when the size of the hole in the pattern 
image is smaller than the actual holes in the image. 

56 



Master's Thesis - Kai Yang McMaster Mechanical Engineering 

According to the above analysis, we generate the pattern image as follows: First, 

we determine the diameter of the hole in the pattern image. The diameter of the six holes 

on Surface #1 is 7.5mm. After calibrating the camera, we obtain the transformation 

matrix from the real world coordinate system to the image coordinate system depicted in 

Chapter 3. So we can calculate the diameter of the hole in pixels as: 

[

7.5J 
dhole = H 1 X ~ ==53 pixels (4.2) 

Now we generate the pattern image as a binary image with the size of 64 by 64 

pixels2
• We initialize the pattern image with all zeros. Then for each pixel in the image, 

which is larger than 26 pixels away from the centre of the pattern image, we set its binary 

value as 1. The generated pattern image is shown in Figure 4.6. 

In order to segment the six sub-images, we need to find the six locations where 

the cost function achieves its minimum. The computation burden will be tremendously 

heavy if we search for these minima inside the whole image. In order to save computation 

time, we locate the holes approximately first, and refine the locations afterward. 

To locate the holes approximately and quickly, we apply the Gaussian pyramid 

decomposition [51]. The details of the decomposition procedure will be explained in 

Chapter 6. By using the Gaussian pyramid decomposition, we down-sample the image of 

the automotive part surface and the pattern image in the same scale. The 4-level pyramids 

of the surface image and the pattern image are shown in Figure 4.12 and Figure 4.13 

respectively. 
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Figure 4.12 Four-level pyramid of an example surface image 
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Figure 4.13 Four-level pyramid of the pattern image. 
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If the down-sampling order is Nd, the running time of the program will be reduced 

by a factor of T 2
Nd. But the downsampling order cannot be too large. Otherwise, the 

down-sampled image will be too small to retain the feature of the original image. In our 

experiments we set Nd as 3 and applied the pattern matching to the top level of the 

pyramid. This reduced the pattern to 8 by 8 pixels2
, the image to 160 by 120 pixels2 and 

the processing time by a factor of 2-6
• 

By applying the pattern matching to the down-sampled surface image with the 

down-sampled pattern image, we can find the holes approximately. Then another pattern 

matching procedure is applied inside six small search areas to locate the holes accurately. 

The size of each search area is 100 by 100 pixels2 in our experiments, centred at the 

approximately detected location. 

To further reduce the computation complexity of the program, we apply an 

alternative cost function for the searching procedure as: 

NrowNco/ 

c . . =""(h. . u ]. +" . +.) 'o·lo L..J L..J t,J 'o t,Jo J 
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where the operator U is an "or" operator which is defined as: 

{

255, 
h .. ] . ... = 

t,J U to+t,Jo+ J J. . . . 
to+t,Jo+ J' 

if h. . = 1 
!,] 

if h .. =0 l,J 

(4.3) 

(4.4) 

The application of the alternative cost function reduces the operations of 

multiplication and subtraction, which largely reduces the running time. However, it is 

worthy to mention that the alternative cost function can only be used in the search area 

where there is no dark area with size larger than the size of the pattern image (64 by 64). 

Otherwise, the cost function in (4.3) fails. No failures occurred with the water pump 

images. 

After segmenting the six sub-images from the whole surface image, we need to 

determine the centre points of the holes because these centre points are the feature points 

we are looking for. The main idea to determine the centre points of the holes is to convert 

the sub-images to binary images so that the pixels in the area of the hole all have zero 

value. The centres of the holes will be calculated from these binary sub-images. 
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One simple way to convert the gray scale sub-images to binary images is using 

the thresholding technique. That is, all the pixels that have value larger than the threshold 

are assigned the value 1; otherwise, the value is set as 0. However, there are always bright 

spots existing in the hole due to the shape of the part and sensor noise. These bright spots 

will severely affect the accuracy of the calculated coordinates of the centre points of the 

holes. Therefore, we apply a seeded region-growing algorithm similar to Algorithm 4.1 to 

convert the gray scale sub-images to binary images. An original seed is chosen inside the 

area surrounding the hole in a sub-image. Since the hole is an area with a closed contour 

inside the sub-image, after region growing, the hole is segmented from the background. 

This method requires that the area outside of the hole is a connected area. Therefore, we 

require that the area of the hole be completely inside the sub-image. As previously shown, 

this requirement can be satisfied if the size of the hole in the pattern image is close to the 

size of the actual holes in the pattern matching procedure. 

The performance of Algorithm 4.1 depends on the choice of the original seed and 

the threshold between the pixel value and the original seed. Since the brightness varies 

among the images of the different water pump housing parts, it is very difficult to choose 

an original seed and a threshold suitable for all of the images. To solve this problem, we 

developed an adaptive seeded region growing method, which adaptively chooses the 

original seed and the threshold based on the histograms of the sub-images. 

The histogram of the sub-image is filtered first to avoid the effect of the noise. We 

apply a triangle filter to smooth the histogram [33], which is described as 

f(k )= :, { ~[(n -i)xf,(k- i)+ (n -i)xf,(k +i)]+ nf0 (k )} (4.5) 

where k is the index of the bins of the histogram , f(k) is the smoothed number of pixels 

falling in the kth bin, fo(k) is the original number of pixels falling in the kth bin, and n is 

the order of the triangle filter. The choice of n depends on the noise level. Large n will 

smooth the histogram more than small n, but small n can keep the histogram in the 

original shape. In our experiments, we found n = 3 was an effective choice. 
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Figure 4.14 presents an un-smoothed and a smoothed histogram of a sub-image. 

As shown in the figure, the smoothed histogram of the image is bimodal, which means 

that there are two distinct peaks in the histogram. This bimodal shape corresponds to a 

sub-image including a hole with good contrast, and the two peaks correspond to the area 

inside and outside the hole respectively. Therefore, a value from the valley between these 

two peaks is a good choice of the threshold. Specifically the threshold was empirically set 

equal to 0. 7 times the mean of the left mode plus 0.3 times the mean of right model. A 

pixel that has a value close to the threshold and is located outside of the hole is chosen as 

the original seed. The pattern image illustrated in Figure 4.6 is used as the mask to 

indicate the area outside of the hole. 
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Figure 4.14 Histograms of the sub-image: (A) Un-smoothed histogram; and 

(B) Smoothed histogram. 
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The adaptive seeded region growing method was tested on more than 100 images 

with different water pump housing parts. To evaluate the performance, the proposed 

method was compared with an adaptive thresholding method and region growing method 

with fixed original seed and threshold. Figure 4.15 shows the comparison on two 

examples. In every case, the proposed adaptive seeded region growing performed best. 

(A) 

(E) 

(B) 

~F} 

. . 

(C) {D} 

(0} (H) 

Figure 4.15 Comparison of three methods to convert the sub-images to binary 

sub-images: (A), (E) Example gray scale sub-images; (B), (F) Results from 

adaptive thresholding method; (C), (G) Results from seeded region growing 

algorithm with fixed seed and threshold; (D), (H) Results from proposed 

adaptive seeded region growing algorithm. 

After the binary sub-images are obtained, the centre pixel of the hole can be 

located accurately by locating the centres of mass in pixels. Assuming the object pixels 

all have the unit mass, we have [70]: 

1 NmwNrol 

x = "" jl . N N L..L.. '·1 
row X col i=l j=l 

(4.6) 
1 Nmw Nrof 

y= ""il . N xN L..L.. '· 1 
row col i= l j=l 
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where .X and y are the calculated coordinates of the centre of mass in pixels, Nrow and 

Ncol are the numbers of the rows and the columns of the sub-image respectively, and liJ is 

the value of the pixel at the ith row and jth column in the sub-image. The detected feature 

point is I x.:Y located at the coordinate of (.X, y). 

4.3.4 Feature Matching 

After locating and segmenting the six holes, we need to match the detected holes 

with the holes on Surface #1 of the automotive part. To distinguish these six holes, we 

defined them as Hole #1 to Hole #6 as shown in Figure 4.3. Therefore, the objective of 

the feature matching process is to number the six detected holes from 1 to 6. The process 

is described as follows. 

First, we sort based on the horizontal coordinates (i.e. columns) of the centres of 

the six holes. The most left hole is numbered as #1, while the most right hole is numbered 

as#4. 

Next, we will number the remaining four holes. According to the obtained 

coordinates of the centres of the holes, we number the upper left one as #2, the upper 

right one as #3, the bottom left one as #6, and the bottom right one as #5. 

4.3.5 Motion Estimation 

With the detected and matched feature points (i.e. centre points of the six holes), 

we can estimate the motion between the standard mask and the surface image. In this 

thesis, we choose the affine model as the motion model, which can describe the 

translation, rotation, and scaling motion. The affine model is defined as [69]: 

(4.7) 

where {x, y), (x', y') are the coordinates of the pixel in the reference image and the target 

image respectively. ai(i = 1, .. ·,6) are the parameters of the affine model. 

When applying the affine model, the objective of the motion estimation process is 

to estimate the six model parameters. We use the six pairs of matched feature points to 
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estimate the six model parameters. It theoretically doesn't matter whether the standard 

mask image is the reference image or target image in this step, however, it will make the 

mask registration easier if choosing the standard mask image as the target image. This 

will be discussed in the following section. 

We denote the coordinates of these six feature points in the reference image and 

target image as (xi' Y;), and (x;, y;), (i=1,···,6), respectively. By applying the motion 

model in (4.7), we have the following equations: 

I I 

x3 = a,x3 + a2y3 +as 
I I 

Y3 = a3x3 + a4y3 + a6 
I I 

x4 =a,x4 +a2y4 +as 
(4.8) 

I I 

Y4 =a3x4 +a4y4 +a6 

I I 

x6 = a,x6 + a2y6 +as 
I · I 

Y6 = a3x6 + a4y6 + a6 

In matrix form, (4.8) may be rewritten as, 
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I I 0 0 1 0 XI YI XI 
0 0 

I I 
0 1 xl Y1 Yt 

I I 0 0 1 0 Xz Yz Xz 
0 0 I I 0 1 Xz Yz a I Yz 

I I 0 0 1 0 x3 Y3 az x3 
0 0 I I 0 1 x3 Y3 a3 Y3 

X = (4.9) 
I I 0 0 1 0 x4 Y4 a4 x4 

0 0 I I 0 1 x4 Y4 as Y4 
I I 0 0 1 0 Xs Ys a6 Xs 

0 0 I I 0 1 Xs Ys Ys 
I I 0 0 1 0 x6 Y6 x6 

0 0 I I 0 1 x6 Y6 Y6 

If we define 

I I 0 0 1 0 ~ YI 
0 0 I I 0 1 ~ Yt 

I I 0 0 1 0 Xz Yz 
0 0 I I 0 1 Xz Yz 

I I 0 0 1 0 x3 Y3 
0 0 I I 0 1 ~ Y3 A= I I 

(4.10) 
x4 Y4 0 0 1 0 

0 0 I I 0 1 x4 Y4 
I I 0 0 1 0 Xs Ys 

0 0 I I 0 1 Xs Ys 
I I 0 0 1 0 x6 Y6 

0 0 I I 0 1 x6 Y6 

X=[~ az ~ a4 as a6r (4.11) 

and 

B=[~ Yt Xz Yz x3 y3 x4 Y4 Xs Ys x6 y6r (4.12) 

then ( 4.9) may be rewritten as 

AX=B (4.13) 
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Now the problem is changed to a typical problem to find the solution of a group 

of linear equations. Since the number of the linear equations is larger than the number of 

the variables, the solution based on least mean square criteria is [68] 

(4.14) 

where A+ is the pseudo inverse matrix of matrix A . 

The best way to calculate A+ is to use singular value decomposition (SVD) [68]. 

The matrix A can be decomposed as 

A=USVr (4.15) 

where U and V are orthogonal matrices, and S is a diagonal matrix with real non­

negative singular values of A . The pseudo inverse matrix A+ is calculated as following: 

(4.16) 

Example motion estimation results are listed in Table 4.1. We can see that the 

error of the motion estimation is less than half a pixel. This precision was considered 

sufficient for use in the next processing procedure. 
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Table 4.1 Example results for motion estimation 

Coordinates 
Registered 

Error 
Coordinates in Coordinates 

Feature in Reference 
Target Image in Reference (pixels) 

Points 
Image 

(pixels) Image 
(pixels) (x', y') (pixels) ~(xR -xY +(yR- YY (x, y) (xR, YR) 
(64.41, (54.15, (64.26, 

0.17 1 
805.14) 804.15) 805.21) 

2 
(355.34, (345.13, (355.37, 

0.03 
452.22) 450.96) 452.22) 

3 
(896.86, (886.53, (896.90, 

0.08 
164.26) 162.69) 164.19) 

4 
(1221.02, (1210.63, (1220.89, 

0.23 
606.66) 605.40) 606.85) 

5 
(880.32, (870.21, (880.38, 

0.22 
836.88) 835.39) 836.67) 

6 
(477.97, (468.00, (478.13, 

0.16 
851.62) 850.47) 851.64) 

4.3.6 Mask Registration 

After estimating the motion between the standard mask image and the surface 

image to be processed, we need to register the mask image with the surface image to 

create a "current mask image" for further processing. As mentioned in last section, for 

easier processing, we define the standard mask image as the target image and the current 

mask image as the reference image. To reduce the computational cost, we preset the 

current mask image as all zeros and only process the pixels whose value equals 1 on the 

standard mask image. Let P;,j represent such a pixel located in the ith row and jth 

column on the standard mask image. Applying the affine motion model, we have: 
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(4.17) 

where (x, y) is the registered coordinates in the current mask image. Unlike with regular 

images, the coordinates are floating point numbers. Assume p m n is a pixel of the moved 

mask image in mth row and nth column and satisfies: 

{
m:5y<m+1 

n:5x<n+1 

then the pixel (x, y) is located in the area shown as Figure 4.16. 

0 0 0 0 

0 PmnO 0 Pm,n+l 0 
X(x,y) 

0 0 0 0 
Pm+l,n Pm+I,n+l 

0 0 0 0 
Figure 4.16 Spatial relationship between the registered pixel and the pixels on 

the current mask image. 

(4.18) 

Since (x, y) does not lie on the integer grid, its gray scale value is obtained by 

traditionally some interpolation method. However, in our application, the interpolation is 

unnecessary since the mask image is defined as a binary image. Instead, we simply set the 

surrounding pixels Pmn, Pm,n+I, Pm+I,n, and Pm+l,n+I equal to 1 on the current mask image. 

One problem is that this method will cause the current mask image to be larger than the 

original mask, which may result in a wrong decision during the latter defect inspection. 

Fortunately, this problem can be solved by a technique that will be described in the next 

chapter. 
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4.3. 7 Summary of the Accurate Image Registration Algorithm 

The accurate image registration algorithm is summarized below. 

Algorithm 4.2 Accurate Image Registration 

Step 1: Apply Gaussian pyramid decomposition to down-sample the 

pattern image and the surface image with Nv = 3; 

Step 2: Apply the pattern matching method to the down-sampled 

pattern image and the down-sampled surface image to obtain the 

approximate positions of the holes in the surface image; 

Step 3: Generate the search areas with respect to the approximate 

hole locations in the surface image; 

Step 4: Accurately search inside the search areas to locate the holes; 

Step 5: Segment the sub-images of the holes; 

Step 6: Calculate the histograms of the segmented sub-images; 

Step 7: Smooth the histograms; 

Step 8: Determine the threshold used for the seeded region growing 

algorithm according to the smoothed histograms; 

Step 9: Find the original seed used for the seeded region growing 

algorithm according to the threshold; 

Step 10: Apply Algorithm 4.1 to convert the sub-images to binary 

images; 

Step 11: Calculate the coordinates of the centres of the six holes 

on the surface image; 

Step 12: Number the detected holes matching with those in the 

standard mask image; 

Step 13: Estimate the parameters of the affine model with the 

obtained coordinates of the centres of the six holes; 

Step 14: Apply the affine model to every pixel of the mask image 

to generate the current mask image. 
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Example experimental results are shown in Figures 4.17 and 4.18, where the mask 

image is shown in the red channel of the colour image, and the surface image is shown in 

the green channel. As a result, the overlapped area appears as a yellow colour. 

Figure 4.17 Result with unregistered standard mask. 

Figure 4.18 Result with registered current mask. . 
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Figure 4.17 shows the result by using the unregistered standard mask. From the 

figure, we can see that the mask and the surface image are mismatched along the edges of 

Surface #1 in the image. Therefore, some pixels outside of Surface #1 will be included 

and some information within the ROI will be missed if using this unregistered mask 

directly. This mismatch will introduce very large error in the subsequent inspection 

procedure. As can be seen from Figure 4.18, by using the current registered mask the 

mismatch is removed. 

4.3.8 Simplified Image Registration Algorithm 

As mentioned above, during the image acquisition procedure we only require the 

statistical information of the ROI in the surface image as the feature value for the 

adaptive camera control algorithm. It is not necessary to very accurately match the mask 

up with the surface image. Also, the computation of the accurate image registration 

algorithm described in the previous section is too heavy for the image acquisition 

procedure. Therefore, we developed a faster simplified image registration algorithm for 

use in the image acquisition procedure. 

The main simplification involves the motion model. As previously discussed, it is 

assumed that there only exists translation and rotation between different images. 

Therefore, only two feature points need to be detected to estimate the motion. The key 

idea of the simplified algorithm is shown in Figure 4.19 in which two images are 

registered by translation and rotation. 
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Figure 4.19 Simplified image registration. (A) Original images. (B) Images 

after translation. (C) Images after rotation. 

Let A, A' and B, B' be the two pairs of feature points; and (xA,yA), (xA'•YA'), 

(xn,Yn) and (x.B',y.B') are coordinates of A, A', Band B', respectively. Then we have: 

Llx=xA -xA. 

ll.y = YA- YA· 

!18 =arctan( YA- Yn )-arctan( YA·- Yn·) 
XA -XB XA' -XB' 

(4.19) 

The registration with such a motion model is very simple and fast. Specifically, 

with a pixel (x0 , y0 ) in the standard mask image, we first translate the coordinates to 
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{
xi = Xo + /).x 

Yt =Yo +~y 

Then we rotate the image and get the registered coordinates as 

{
x = x1 cos(ilB)- y1 sin(ilB) 

y = y1 cos(~B)+ x1 sin(ilB) 

(4.20) 

(4.21) 

Comparing to the accurate image registration algorithm developed in the previous 

section, the motion estimation process is faster since we does not need to calculate a 

pseudo inverse of a matrix. Instead, we obtain the parameters of the motion model 

through (4.19). 

The simplified image algorithm can be summarized as follows. 

Algorithm 4.3 Simplified Image Registration 

Step 1: Search for two holes (Hole #1 and Hole #4) as the features by 

applying the same method described in Algorithm 4.2; 

Step 2: Calculate the histograms of the two segmented sub-images; 

Step 3: Smooth the histograms; 

Step 4: Convert the sub-images to binary images according to the smoothed 

histograms; 

Step 5: Find the coordinates of the centres of the holes; 

Step 6: Estimate the parameters of the motion model using (4.19); 

Step 7: Register the standard mask image and generate the current mask 

image in the same manner as in Section 4.3.6. 

An example result obtained using Algorithm 4.3 is shown in Figure 4.20. 

Comparing this with Figures 4.17 and 4.18, by using the simplified image registration 

algorithm the mask is approximately registered with the surface image. Although the 

performance is inferior to the accurate image registration algorithm, the processing speed 

is almost 3 times faster than the accurate image registration algorithm, and the matching 

precision meets the need of the image acquisition procedure. Detailed timing results will 

be presented in the next chapter. 

75 



Master's Thesis - Kai Yang McMaster Mechanical Engineering 

Figure 4.20 Result using simplified image registration algorithm. 

4.4 Summary 

In this chapter, we presented a seeded region growing based algorithm to generate 

the ROI mask from one acquired image. An accurate image registration algorithm was 

proposed to compensate the global motion between the ROI mask and the surface to be 

inspected. We also developed a simplified image registration algorithm for use during the 

image acquisition. Experiments showed that the accurate image registration algorithm had 

higher accuracy but longer program running time, while the accuracy of the simplified 

one satisfied the requirements of the image acquisition. 
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ChapterS 

Adaptive Machine Vision System for Surface Inspection: 

Part Classification 

5.1 Introduction 

By applying the registered mask, Surface #1 has been segmented from the 

automotive part image. Next, we will inspect the segmented Surface #1 to classify the 

automotive parts into acceptable or unacceptable categories according to the size and 

location of the defect(s). This chapter discusses the algorithms for inspecting Surface #1. 

This chapter is organized as follows. First, the algorithm to detect the defective 

pixels on Surface #1 is described. Second, we describe an algorithm for removing falsely 

classified pixels outside the edges of Surface #1. Third, the algorithm to measure the size 

of the defect is discussed. Next, the sealing area identification and part classification 

algorithm is presented. Finally, the chapter closes with extensive experimental results and 

conclusions. 
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5.2 Detection of Defective Pixels 

5.2.1 Overview 

By applying the accurate image registration algorithm, we can match the mask up 

with Surface #1 of the automotive part image accurately. Then Surface #1, the ROI in this 

inspection problem, is segmented from the image to prevent unimportant areas of the 

surface from being inspected. An example of a segmented ROI is shown in Figure 5.1. 

Figure 5.1 Example of an ROI to be inspected. 

Next we need to detect the defective pixels in the segmented ROI. First of all, we 

need to find a way to describe the defects on Surface #1. By manually analyzing the 

automotive water pump housing parts, we found that the defects on the Surface #1 do not 

have regular shapes. The irregular shapes of the defects make it impossible to detect them 

by applying methods like pattern matching. Also, the images of different automotive parts 

change over a very large range. So it is difficult to detect the defects by comparing with a 

reference version of Surface #1. From the part images, we found that there are always 

sudden changes in the brightness between the defective areas and the smooth areas of 
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ROI. So we will analyze the variance of the pixel gray scale values to find the potential 

defects. 

In this inspection problem, there always are machining marks on the Surface #Is 

for most of the images. The machining marks display obvious brightness change in the 

acquired images that should be ignored during the inspection procedure. Distinguishing 

the brightness variation for the defects from the variation for the machining marks makes 

this inspection problem a challenging one. 

The following approaches were evaluated: 

• Gradient operator followed by global thresholding; 

• Adaptive local thresholding of the original image; 

• Local standard deviation followed by global thresholding; 

• Local standard deviation followed by adaptive global thresholding. 

Details of the algorithms and sample experimental results will be provided in the 

next four sections. Note that these algorithms assume that the mask matches up with 

Surface #1 perfectly. The correction for mismatches at the edges will be addressed in 

Section 5.3. 

5.2.2 Gradient Operator Followed by Global Thresholding 

In this surface inspection problem, we have observed that the variation of the gray 

level in the automotive part image can describe the defects on Surface #1. So the most 

obvious methods to try first are the gradient operators and edge detectors. We tried using 

the Sobel gradient operator, Laplace differential operator and the Canny edge detection 

algorithm followed by global thresholding to detect the defective pixels. 

The Sobel gradient operator is applied to calculate the first, second, third or mixed 

image derivatives by convolving the image with the appropriate kernels [66]: 

dNx+Ny src(x, y) 
dst(x, y) = N. N 

dxx·dyy 
(5.1) 

where (x, y) is the location of the pixel in the images, dst(x, y) is the gray scale value of 

the pixel in the result image, src(x, y) is the gray scale value of the pixel in the source 
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image, Nx, Ny are the orders of the differential operation in horizontal direction and 

vertical direction, respectively. Most often, the Sobel gradient operator is used to 

calculate the first order horizontal or vertical image derivative. The horizontal and 

vertical kernels are [70]: 

l-1 -2 

~1] Mh= ~ 0 (5.2) 

2 

and 

[-1 0 1] 
Mv = -2 0 2 (5.3) 

-1 0 1 

The Laplace differential operator calculates the Laplacian of the image. The 

Laplacian of an image is defined as: [66] 

L( )
_d2src(x,y) d 2src(x,y) 

x,y - 2 + 2 
dx dy 

(5.4) 

where (x, y) is the location of the pixel in the images and src(x, y) is the gray scale 

value of the pixel in the source image. 

The operation of the Laplace differential operator is to convolve the image with 

the following kernel: 

l 0 -1 0] 
M 1 = -1 4 -1 

0 -1 0 

(5.5) 

The Canny edge detection algorithm was developed in 1986 [42]. It uses a multi­

stage algorithm to detect a wide range of edges in images. 

The experimental results by applying the Sobel gradient operator, Laplace 

differential operator and the Canny edge detection algorithm to the ROI from Figure 5.1 

are shown in Figures 5.2, 5.3, and 5.4, respectively. For convenience, these figures show 

the negative images. 
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Figure 5.2 Result by applying Sobel gradient operator. 

Figure 5.3 Result by applying Laplace differential operator. 
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Figure 5.4 Result by applying Canny edge detector. 

From Figures 5.2 and 5.3, we can observe that after applying the Sobel gradient 

operator or Laplace differential operator, the defects and the machining marks have 

similar gray levels. We tried to distinguish the defects and machining marks using global 

thresholding with a manually chosen threshold. Unfortunately, a threshold could not be 

found that separated the defects and machining marks for all of the part images. 

By using the Canny edge detector, both strong and fine edges are detected, which 

can be seen in Figure 5.4. However, the machining marks and the defects are still not 

separated. Therefore, no gradient operators or the edge detectors could both detect the 

defective pixels on the Surface #1 and ignore the machining marks. 

5.2.3 Adaptive Local Thresholding of the Original Image 

Thresholding is a technique that is commonly applied to segment an image by 

setting all pixels whose intensity values are larger (or in some cases smaller) than the 

given threshold as an object value and all the remaining pixels as a background value. 

Conventionally, the thresholding operator uses a global threshold fe>r all pixels in an 

image. However, the distributions of the intensity values of the pixels in different images 
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are different. Furthermore, for each image, the distributions of the intensity values vary in 

different areas. Therefore, it is impractical to use a fixed global threshold for every image. 

We need to adaptively select the threshold for our defect detection problem. Note that for 

our problem the defects appear darker than the rest of the surface. 

There are two main approaches to adaptively determining the threshold: (i) Chow 

and Kaneko's approach [32] and (ii) local thresholding. Both methods are based on the 

following assumptions: 

1. Smaller image regions are more likely to have approximately uniform 

illumination; 

2. There are no significant brightness changes in the smooth areas of the 

image under even illumination. 

With Chow and Kaneko's adaptive thresholding approach, an image is divided 

into an array of overlapping sub-images and the optimum threshold for each sub-image is 

determined by investigating its histogram. This approach is expensive in computation 

unless the ROI is small. Since Surface #1 contains about 257,558 pixels it is inappropriate 

to use Chow and Kaneko's approach for our defect detection problem. 

The local thresholding method determines a local threshold for every pixel in the 

image. We applied this method to detect defective pixels on Surface #1. The local 

threshold for each pixel is chosen as a statistical value from its neighbourhood in a local 

window. In our experiments, we tried the mean, the sum of 0.7 times the minimum plus 

0.3 times the maximum, and the median of the pixels as the local threshold.[39] The local 

window was 3x3 pixels2
. These results are shown in Figures 5.5 to 5.7. From these 

figures, we can see that although the defects are detected and even a little enhanced, they 

are still indistinguishable from the machining marks. 
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Figure 5.5 Result by local thresholding using a threshold equal to the local mean. 

Figure 5.6 Result by local thresholding using a threshold equal to a weighted sum of 

the local minimum and maximum. 
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Figure 5.7 Result by local thresholding using a threshold equal to the local median. 

5.2.4 Local Standard Deviation Followed by Global Thresholding 

The previous two approaches failed to distinguish the defects from the machining 

marks because the brightness changes for both of them. However, we observed that most 

machining marks display as regular textures and have a relatively large area. Based on 

this observation, we tried generating a local standard deviation image from each part 

image to enlarge the gap between the defects and the machining marks. 

The standard deviation of a group of data describes their variation. We use the 

standard deviation of the neighbouring pixels in a local window of a pixel to depict the 

local variation of the brightness. We have observed that the brightness variation of the 

machining marks for most automotive part images is not as sharp as that of the defects . 

So we should be able to use the standard deviation to detect the potential defects and 

ignore the machining marks on Surface #1. 

We will generate a standard deviation image for the automotive part image using 

a method similar to [75]. The gray scale value of every pixel in the .standard deviation 

image is equal to the standard deviation value of a small window whose centre is the 
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relative pixel in the original image. The generated standard deviation image varies with 

the different size of the window used. We experimentally determined that a 3x3 pixel2 

window produces the best inspection results. 

For a pixel in the acquired image, the pixel and its 8 neighbours compose the 3 by 

3 window. This is illustrated in Figure 5.8. For every 3 by 3 window, we first calculate 

the mean value as [72]: 

mean =.!.(±xi+ YJ 
9 i=l 

(5.6) 

where y is the gray scale value of the current pixel in the part image, X; (i = 1, · · ·, 8) are the 

gray levels of the 8 neighbours of the current pixel. Next, we compute the variance of the 

image window as [72]: 

1 [ 
8 2 2] var =- I(x; -mean) +(y-mean) 

8 i=l 

Then we can obtain the standard deviation value as: 

std _ dev = ..[;;;;. 

X 
y 

Figure 5.8 Diagram of a 3 by 3local window [74]. 

(5.7) 

(5.8) 

Figure 5.9 shows an example of a calculated standard deviation image. We can 

see that the defects have the highest gray values, the smooth areas have the lowest gray 

values, and the values due to the machining marks are in the middle. So we should be 
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able to detect the defects on Surface #1 while ignoring the machining marks usmg 

standard deviation images. 

Figure 5.9 Standard deviation image. 

Next, we tried to segment the defects on Surface #1 based on the obtained 

standard deviation image. Global thresholding with a fixed threshold was tested first as it 

is the most computationally efficient approach . The results varied with the selected 

threshold. Figures 5.10 and 5.11 show two segmentation results with different thresholds 

(negative images are shown in the figures). In Figure 5.10, a small threshold of 25 was 

selected to segment the defective and non-defective pixels on Surface #1. We can see that 

all the defects are detected. However, some of the machining marks are also detected. In 

Figure 5.11 , a larger threshold of 55 was applied. The machining marks are ignored in the 

image result, but some defects are also missed. Therefore, a properly chosen threshold is 

very important for our inspection problem. A method to adaptively choose a global 

threshold will be introduced in the next section. 
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Figure 5.10 Thresholded standard deviation image using a small global 

threshold. 

0 

Figure 5.11 Thresholded standard deviation image using a large global 

threshold. 
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5.2.5 Local Standard Deviation Followed by Adaptive Global Thresholding 

In order to detect the defects and ignore the machining marks at the same time, we 

wi11 use adaptive global thresholding to segment the defective pixels from the standard 

deviation image. By applying the histogram-based thresholding method employed in the 

simplified image registration algorithm we can segment the standard deviation image to 

detect the potential defects on Surface #1 adaptively. Specifically the threshold was 

empirically set equal to 0.77 times the mean of the left mode plus 0.23 times the mean of 

right mode. The algorithm is presented at the end of this section. The segmentation result 

for the ROI shown in Figure 5.1 is shown in Figure 5.12. 

Figure 5.12 Segmented ROI obtained by local standard deviation fo1lowed by 

adaptive global thresholding method. 

In Figure 5.12, the machining marks are ignored while the defective pixels are 

detected. Unfortunately, the edge contours of Surface #1 are also detected and the pixels 

depicting the contours are wrongly detected as defective. This is because the mask 

generated by applying the seeded region growing algorithm is larger than Surface #1. An 

algorithm to remove the falsely classified pixels outside the edges. of Surface #1 is 

presented in the following section. 
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Algorithm 5.1 

Thresholding 

Local Standard Deviation followed by Adaptive Global 

Step 1: Initialize the standard deviation image with zeros; 

Step 2: For every pixel in the acquired image, check the corresponding 

pixel in the mask image: If the grayscale value of the pixel in the 

mask image equals 0, start again with the next pixel. Else, 

calculate the standard deviation of the 3 by 3 local window of the 

pixel, and save the local standard deviation value in the standard 

deviation image; 

Step 3: Calculate the smoothed histogram for the generated standard 

deviation image and calculate the threshold from the smoothed 

histogram by applying the method described in the simplified 

registration algorithm; and 

Step 4: Segment the standard deviation image into defective and non­

defective pixels by applying the obtained global threshold. The 

thresholded pixels with the binary values equal to 1 indicate the 

location of defective pixels. The non-defective pixels are set equal 

to zero. 
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5.3 Removal of Falsely Classified Edge Pixels 

5.3.1 Algorithm Overview 

We applied a mask to eliminate the unimportant areas outside of Surface #1 to 

reduce the computation cost. However, the mask generated using Algorithm 4.1 is 

slightly larger than Surface #1. As a result, the pixels outside the edges of Surface #1 are 

wrongly classified as defective by Algorithm 5.1. To remove the falsely classified edge 

pixels from the segmented ROI image we use the contours of the mask image as 

approximations of the edges of Surface #1. The algorithm to remove the pixels at the 

edges is presented in this section. 

Since the mask is a binary image and the ROI image is a gray scale image, it is 

easier to obtain the contours of the mask. Also, by using Algorithm 4.2, the mask matches 

Surface #1 accurately. It is therefore reasonable to take the contours of the mask as a 

good approximation of the edges of Surface #1. We check the neighbourhood of every 

defective pixel to determine whether the defective pixel is on the edge of Surface #1 or 

not. If the pixel does not belong to Surface #1 then it has been wrongly classified as 

defective and reclassified as non-defective. 

5.3.2 Assumptions 

The algorithms in this section assume the following: 

1. The window size used to check the edge pixels is defined; 

2. The contours of the mask are closed. 

The first assumption was satisfied by setting the window size manually using 

images of the 23 parts that were available during the software development. 

Since the algorithm to detect the contours of the mask ends when the searching 

procedure reaches the first pixel for the second time, we require that each contour of the 

mask be closed. Properly adjusting the camera and the automotive part fixture when 

setting up the work cell such that a high contrast image is available to generate the mask 

and the field of view includes all of Surface #1 satisfies this assumption. 
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5.3.3 Algorithm 

We used the left-right search algorithm from [73] to find these contours. An 

example of the mask contours is shown in Figure 5.13. In Figure 5.13, the contours of the 

mask are shown in red while Surface #1 is shown in gray scale. We can observe that the 

registered mask contours are very good approximations for the edges of Surface # 1. 

Figure 5.13 Mask contours shown in red, overlaid on a gray scale image of 

Surface #1. 

After computing the contours of the mask, we need to remove pixels outside the 

edges of Surface #1 that have been wrongly classified as defective. They cannot belong to 

defects, since they do not belong to Surface #I. The algorithm is given below. 

Algorithm 5.2 Removal of Wrongly Classified Edge Pixels 

Step 1: Push the defective pixels onto the stack and count the total number of 

the defective pixels; 

Step 2: Set the number of the correctly classified defective pixels equal to 0; 

Step 3: Set the number of popped defective pixels equal to 1; 

Step 4: Pop one of the defective pixels out of the stack; 
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Step 5: Check the local neighbourhood of the defective pixel with a 9 by 9 

window size. If there is no neighbourhood belonging to one of pixels of 

the mask contours, set the class of the pixel as non-defective and continue. 

Else, increase the number of correctly classified defective pixels by 1 and 

continue; 

Step 6: Update the number of popped defective pixels; and 

Step 7: If the number of defective pixels is less than the total number of the 

defective pixels, go to Step 4. Else, stop. 

Since the mask is accurately matched to Surface #1 by applying 

Algorithm 4.2, the pixels along the edges of Surface #1 are very close to the 

corresponding pixels on the contours of the mask. To determine whether a pixel in the 

segmented image produced by Algorithm 5.1 is an edge pixel of Surface #1, we need to 

calculate the closest distance between the pixel and the pixels of the mask contours. 

However, the computational cost to calculate this distance is very large and impractical. 

We use a practical method to estimate the closest distance between a pixel and the pixels 

of the mask contours. 

It is very convenient to process pixels in a rectangular or square window in an 

image. In particular, the size of the window can be used to indicate the displacement 

between two pixels. For these reasons, we apply a window with a predefined size to every 

pixel to estimate the closest distance between it and the contours of the mask in Step 5. 

We determined the appropriate size of the window manually using the 23 part images 

available during software development. The window should be sized to remove wrongly 

classified pixels at the edges as much as possible. No window size worked correctly with 

all 23 images. A size of 9 by 9 pixels2 was found to be the most effective, working with 

22 of the 23 images. The experimental results before and after applying Algorithm 5.2 are 

shown in Figures 5.14 and 5.15. Pixels classified as defective are shown in red and non­

defective pixels are shown in green in these and subsequent figures of experimental 

results. 
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Figure 5.14 Segmented image with wrongly classified pixels. 

Figure 5.15 Segmented image after applying Algorithm 5.2. 

In Figure 5.14, not only the pixels belonging to the defects but also the pixels 

outside the edges of Surface #1 have been classified as defective pixels. After applying 

Algorithm 5 .2, only the pixels belonging to the defects remain, as shown in Figure 5.15. 
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5.4 Defect Size Measurement 

5.4.1 Algorithm Overview 

For the automotive water pump housing part surface inspection problem, the 

classification of the parts is according to the size and location of the potential defects on 

Surface #1. By using Algorithm 5.1, we can detect the defective pixels on Surface #1. 

However, very small surface imperfections, e.g. appearing as an isolated defective pixels, 

are not considered defects according to the manufacturer's quality control specifications. 

Therefore, we need to measure the size of the defects. 

First of all, we need to cluster the defective pixels belonging to individual defects. 

After clustering the defective pixels, we need to calculate the size of the defects. In 

industrial applications the size of the defect is measured in mm. But in image processing 

the object is measured in pixels. So the transformation between the real world coordinate 

system and the image coordinate system must be determined. In Chapter 3, we obtained 

the transformation matrices between the image coordinate system and the real world 

coordinate system. By using the transformation matrix H2 , we can obtain the coordinates 

of the defective pixels in mm. Then we can figure out the size of the potential defects in 

mm. 

5.4.2 Assumptions 

To determine the size of the potential defects on Surface #1, we assume that: 

1. The pixels depicting the potential defects on Surface #1 are known; 

2. The maximum gap among the pixels depicting the same potential defect is 

known; 

3. The transformation matrix from the image coordinate system to the rea] 

world coordinate system is known. 

The first assumption is satisfied by applying Algorithms 5.1 and 5.2. To 

determine the size of the potential defects on Surface #1, we need to cluster the defective 

pixels into distinct clusters describing individual defects. Since the pixels belonging to 
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one defect are very close to each other and their binary values are different from the 

binary values of the non-defective pixels, we can use a type of seeded region growing to 

cluster the defective pixels. Ideally, the defective pixels belonging to one defect should be 

connected. Unfortunately, there often exist gaps among the defective pixels describing the 

same defect. It is not sufficient to use only the 8-connected neighbours in the seeded 

region growing algorithm. We need to apply a larger neighbourhood window to cluster 

the pixels. The size of the neighbourhood window should be determined according to the 

maximum gap among the pixels depicting the same potential defect. A larger window is 

the more conservative choice since it will cause more pixels to be clustered in the same 

defect and a large defect will result in the part being classified as defective. We chose a 9 

by 9 pixel window which corresponds a maximum gap of about 0.8 mm between 

defective pixels. The third assumption was satisfied using the camera calibration 

technique described in Chapter 3. 

5.4.3 Algorithms 

The algorithm for clustering the defective pixels belonging to individual defects is 

presented below. 

Algorithm 5.3 Clustering of Defective Pixels 

Step 1: Set all the cluster numbers of the defective pixels equal to 0 and push 

all the defective pixels into the stack; 

Step 2: Pop the first defective pixel out of the stack and set the cluster number 

of the pixel equal to 1; 

Step 3: Check the neighbour pixels in the 9x9 window. If there is no 

defective pixel in the window, continue. Else, set the cluster numbers of 

the defective pixels with a cluster number of zero equal to the cluster 

number of the popped defective pixel. Check the neighbour pixels of the 

newly numbered defective pixels until all defective pixels in the 

neighbourhood windows have been numbered; 

Step 4: If there are no more defective pixels in the stack then stop. Else, pop a 
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defective pixel out of the stack; 

Step 5: If the cluster number of the popped defect pixel is not equal to zero, go 

to step 4. Else, increase the cluster number by 1, and go to step 3; 

Using Algorithm 5.3, we can find the potential defects on Surface #1. The 

clustering result for the ROI shown in Figure 5.1 is shown in Figure 5.16. In this figure, 

the red numbers indicate the labels of the four detected defects. The pixels belonging to 

the same defect are surrounded by a red rectangle. 

Figure 5.16 Clustering result obtained using Algorithm 5.3. 

After the individual defects are found we can calculate the size of each one. The 

size of the potential defects is calculated using the algorithm given below. 
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Algorithm 5.4 Defect Size Measurement 

Step 1: Apply Algorithm 5.3 to cluster the defective pixels and get the 

total number of potential defects; 

Step 2: Set the counter equal to 1; 

Step 3: Apply transformation matrix H2 to the defective pixels whose 

cluster number equals the counter. Save these transformed pixels 

for use in Algorithm 5.5; 

Step 4: Calculate the maximum distance in mm between any pair of 

points from the set produced by Step 3. Save this as the size of the 

potential defect; 

Step 5: Increase the counter by 1; 

Step 6: If the counter is smaller than the total number of the clusters of 

defective pixels, go to Step 3. Else stop. 

By applying the transformation matrix from the image coordinate system to the 

real world coordinate system in Step 3, we can convert the displacement in pixels into 

mm. The transformation matrix is named H2 in Chapter 3. Given a pixel in an image, the 

coordinates of the pixel in the real world coordinate system are calculated as 

(5.9) 

where the pixel is at the ith row and the jth column of the image, and (x, y) is the 

coordinates of the pixel in the real world coordinate system. 

We calculate the size of every potential defect on Surface #1 in Step 4. First, we 

need to create a definition of the size of a defect. Since the potential defects are irregular 

in shape, we define the maximum distance between any pair of pixels belonging to the 

same potential defect as the size of the defect. We apply the Euclidean distance as the 

distance between two pixels. The Euclidean distance is calculated as: 
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(5.10) 

where dE is the Euclidean distance between two points in a plane, (x~>yJ , (x2 ,y2 ) are 

the coordinates of the two points in mm, respectively. The size of the defect is then set 

equal to maximum of the dE values. 

Potential defects larger than a specific size will be classified as defects and the 

remainder will be ignored. The sizing results for the defects shown in 

Figure 5.16 are presented in Figure 5.17. 

Figure 5.17 Result with measured sizes of the potential defects. 
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5.5 Sealing Area Identification and Defect Classification 

For the automotive water pump housing surface inspection problem, Surface #1 is 

categorized into two areas: the sealing area (also known as the critical area) and the non­

critical area. According to the manufacturer's quality control specifications, the 

definitions of defects in the sealing area and the non-critical area are different. So the 

sealing area on Surface #1 must be identified in each image before the potential defects 

can be classified as actual defects or non-defects. 

In this section, an algorithm to identify the sealing area and classify the defects of 

Surface #1 is developed. After describing the basic idea of the algorithm, a 

computationally efficient version is described. 

5.5.1 Algorithm Overview 

According to the manufacturer of the parts, if the distance between a defect and 

the inner edge of Surface #1 is smaller than 5mm, the minimum size of a defect is 0.5mm. 

Secondly, if the distance between the defect and the inner edge of Surface #1 is larger 

than 5mm, the minimum size of a defect is 1mm. The inner edge of Surface #1 is defined 

as a sealing edge, which is shown in red in Figure 5.18. The sealing area of Surface #1 is 

defined as follows: 

Assuming A is a point on Surface #1, if A satisfies the condition that the distance 

between A and the sealing edge is less than or equal to 5 mm, then A is a point in 

the sealing area of Surface #1. 
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Figure 5.18 Sealing edge shown in red. 

As mentioned above, a potential defect is represented by a cluster of defective 

pixels in an image. We define the distance between a potential defect and the sealing edge 

of Surface # 1 in an image as the minimum of the distances between every pixel belonging 

to the potential defect and every pixel describing the sealing edge. As we can see in 

Figure 5 .18, the sealing edge is not a regular shape. It is impossible to describe the 

minimum distance between a pixel to the sealing edge using a simple equation. We need 

to find another way to defme the distance. 

An obvious approach would be to first calculate the distance between every pixel 

belonging to the potential defect and every pixel of the sealing edge. Then pick the 

minimum distance as the distance between the potential defect and the sealing edge. 

However, the computational cost to calculate the distance by applying this approach is 

very high. Timing results will be given in Section 5.6.1. To reduce the running time ofthe 

program, it was necessary for us to develop a more computationally efficient algorithm. 
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5.5.2 Assumptions 

To identify the sealing area and classify the defects of Surface #1, the following 

assumptions must hold: 

1. The size of the potential defect is known; 

2. The points of the sealing edge are known; 

3. The transformation matrix of the camera parameters, H 2 , is known; 

4. The relevant quality control specifications are known. 

The first and second assumptions were satisfied by applying 

Algorithm 5.4 and the left-right search algorithm, respectively. The third assumption was 

satisfied using the camera calibration technique from Chapter 3. The last assumption was 

satisfied by consulting the manufacturer of the parts. 

5.5.3 Algorithm 

We developed an efficient algorithm to identify the sealing area and classify the 

defects of Surface #1 of the automotive water pump housing part. The algorithm is 

presented below. 

Algorithm 5.5 Sealing Area Identification and Defect Classification 

Step 1: Set the counter equal to 1; 

Step 2: Load the transformed pixels and defect size corresponding to the 

counter; 

Step 3: If the size of the potential defect is less than 0.5mm go to Step 7; else 

continue; 

Step 4: For each pixel belonging to the potential defect, check the 72-pixel 

diameter circle of pixels around it. If there are pixel(s) depicting the 

sealing edge then the potential defect is classified as a defect in the sealing 

area; else, the potential defect is in the non-critical area and go to Step 6; 

Step 5: Go to Step 7; 

Step 6: If the size of the potential defect is greater than or equal to 1mm then 

classify it as a defect, else classify it as non-defect; and 
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Step 7: If the counter is smaller than the total number of potential defects then 

increase the counter by 1 and go to Step 2, else stop. 

As previously mentioned, we must know whether a potential defect is inside the 

sealing area or not before we can classify it. It is inside the sealing area if the minimum 

distance between it and the sealing edge is less than or equal to 5mm. The challenge is to 

efficiently calculate the minimum distance for each pixel belonging to a potential defect. 

The efficient and accurate method we propose is to check the lOmm diameter circle of 

pixels centred at each defective pixel for intersections with the sealing edge. It is 

necessary to convert the diameter to pixels, using the H1 matrix calculated in Chapter 3, 

as follows: 

(5.11) 

where Dimage is the diameter in pixels. The corresponding circle contains 236 pixels. Only 

these pixel locations need to be checked in the image of the sealing edge to determine if a 

pixel belonging to a potential defect is inside the sealing area. The experimental result for 

the ROI shown in Figure 5.1 is shown in Figure 5.19. The characters inside the brackets 

indicate whether the defect locates in the sealing area (critical area). The character "C" 

means the possible defect is in the critical area while the character "N" means it is out of 

the sealing area. Note that since all of the potential defects are inside the critical area and 

are larger than 0.5mm they were all classified as defects. A part with one or more defects 

is classified as bad or defective. 
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Figure 5.19 Sealing area identification and defect classification result 
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5.6 Experimental Results 

5.6.1 Timing Results 

The software designed for the automotive water pump housing part surface 

inspection problem was developed in C under Visual Studio 6.0. The software was tested 

on a computer with the processor of AMD Athlon (TM) xp 1800 +, 1.5 GHz and 512Mb 

RAM. The detailed timing results are listed in Table 5.1. 
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Table 5.1 Timing Results 

Algorithm Running Time 

Generate mask using Algorithm 4.1 62ms 

Generate mask using OpenCV library 16ms 

Search for the six holes in the entire image 18656ms 

Search for the six holes using method in Algorithm 4.2 140ms 

Algorithm 4.2: Accurate image registration 188ms 

Algorithm 4.3: Simplified image registration 55ms 

Algorithm 5.1: Local standard deviation followed by adaptive 
125ms 

global thresholding 

Find contours using left-right search technique Less than 1ms 

Algorithm 5.2: Removal of Wrongly Classified Edge Pixels 
19.22ms 

(Average time for the 23 parts available) 

Algorithm 5.3: Clustering of Defective Pixels (Average time for 
17.96ms 

the 23 parts available) 

Algorithm 5.4: Defect Size Measurement (Average time for the 23 
48.96ms 

parts available) 

Algorithm 5.5: Sealing area identification and defect classification Less than 1ms 

Sealing area identification by checking distance between every 
2578ms 

defective pixel and every sealing edge pixel 

Average inspection time 1 (for the 23 parts available) 688.23ms 

1 Not including the image acquisition time. 
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From Table 5.1, we can have several observations. First, it took a longer time to 

generate the mask using Algorithm 4.1 than using the function in OpenCV library. Since 

we only generate one mask for the entire surface inspection procedure, we concern more 

about the quality of the mask. So the running time is not critical in the mask generation 

process. Second, the search speed using the method in Algorithm 4.2 is much faster than 

searching the entire image. This makes the proposed method a computationally efficient 

one. Third, it is very easy to conclude that the simplified image registration algorithm 

runs three times faster than the accurate image registration algorithm. Fourth, the running 

time for the method in Algorithm 5.5 is less than 1ms, which is fast enough for the 

manufacturing application. Finally, by applying the software to the 23 automotive water 

pump housing part images available during the software development, the average 

inspection time (not including the image acquisition time) is less than 1 second, making it 

fast enough for use in the automotive manufacturing industry. 

5.6.2 Inspection Results 

Totally 1,713 images were obtained and inspected using the adaptive machine 

vision system developed in this thesis. The definition and source of the measured 

quantities are presented in Table 5.2. The inspection results for the 1,713 images are 

listed in Table 5.3. 
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Table 5.2 Definition and source of measured quantities listed in Table 5.3 

Parameter Parameter Definition Source of Parameter 

NTotal Total number of inspected parts Manually counted 

No Number of good parts Manually inspected 

No Number of defective parts Manually inspected 

Np Number of parts with pores Manually inspected 

Npo 
Number of parts with detected Adaptive machine vision system and 

pores manual judgement 

NPM 
Number of parts with missing Adaptive machine vision system and 

pores manual judgement 

No 
Number of parts with other 

Manually inspected 
defects 

Noo 
Number of parts with detected Adaptive machine vision system and 

other defects manual judgement 

NoM 
Number of parts with missing Adaptive machine vision system and 

other defects manual judgement 

NT Truely classified part number Adaptive machine vision system 

Np Falsely classified part number Adaptive machine vision system 

NFR Falsely rejected part number Adaptive machine vision system 

NFA Falsely accepted part number Adaptive machine vision system 

NTM 
Number of truely classified parts Adaptive machine vision system and 

with missing defects manual judgement 
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Table 5.3 Inspection results 

Category Number Percentage 

Total Number NTotal = 1713 100% 

Good No=653 NofNTotal = 38.12% 

Defective No= 1060 NofNTotal = 61.88% 

Defective (Pores) Np= 806 Np/No = 76.04% 

Pores Detected Npo = 749 NpofNp = 92.93% 

Pore Missed NpM=57 NpM/NP = 7.07% 

Defective (Other) No= 254 No/No = 23.96% 

Other Detected Noo = 105 Noo!No = 41.34% 

Other Missed NoM= 149 NoM/No = 58.66% 

True Classification NT= 1447 NT/NTotal = 84.47% 

False Classification Np=266 Np/NTotal = 15.53% 

False Rejection NFR = 97 NFRINTotal = 5.55% 

False Acception NFA = 169 NpA/NTotal = 9.87% 

True Classification with 

Missed Defects 
NTM=37 NTM I NTotal = 2.16% 

In this surface inspection problem, the majority of the defects were pores. From 

Table 5.3, the pores were correctly classified in 92.93% of the images. There were some 

wrong inspection results. Figures 5.20 to 5.25 show several difficult cases that sometimes 

generated wrong results. 
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(A) (B) 

Figure 5.20 Inspection results for defects close to the edge of Surface #1. (A) Edge 

pixels are wrongly classified as defective (Shown in red). (B) Defects close to edge are 

correctly detected (Shown in red). 

(A) (B) 

Figure 5.21 Inspection results for the same automotive parts shown in Figure 5.20. (A) 

Edge effect is removed. (B) Defects close to edge are missed. 

One difficult case is to detect defects close to the boundary contour. Figure 5.20 

shows two examples. In Figure 5.20 (B), the defects close to the sealing edge are 

correctly detected. However, by applying the same parameters, the edge pixels are 
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wrongly classified as defective in Figure 5.20 (A). Such wrong detection is caused by 

different sizes of Surface #1s for the two parts in these images. Recall that Surface #1 is 

roughly 180 mm by 110 mm, while the defects can be less than 1mm in diameter. The 

difference between the large inspection area and the small defect size makes it difficult to 

correctly classify all the automotive part images. 

By adjusting the window size used in Algorithm 5.2 from 9 by 9 to 13 by 13, we 

can remove the edge effect and obtain correct result for the case shown in 

Figure 5.20 (A). The corresponding result is shown in Figure 5.21 (A). However, under 

the same parameters, the detected defects in Figure 5.20 (B) are missed, which is shown 

in Figure 5.21 (B). Actually, the edge effect is the main reason to cause the wrong 

inspection for the other defects in this inspection problem. There are two possible ways to 

solve this problem. One way is to apply more complicated motion estimation models and 

develop more complicated image registration algorithms to make the mask match up with 

every Surface #1 more accurately. Another way is to adjust some software parameters 

adaptively with respect to the inspected surface. Both of these methods can be developed 

as future work. 

Machining marks are also a challenging problem for the inspection problem. For 

some automotive water pump housing parts, the machining marks on the well-machined 

surface are very similar in appearance to the defects and are very hard to distinguish. 

Figure 5.22 shows a Surface #1 with obvious machining marks. In this figure, the 

machining marks are wrongly detected as defects. After increasing the weight used in 

Algorithm 5.1 from 0.77 to 3.43, the machining marks are removed in the inspection 

result shown in Figure 5.23. Unfortunately, some defects on Surface #1 are missed by 

applying the same modified parameter. One possible way to solve this problem in future 

would be to apply texture-based inspection techniques, which are much more complicated 

and slower to compute. 

The final challenging problem is to detect the very subtle defects, such as subtle 

dents or scratches, which are difficult to detect even for human beings. Figure 5.24 shows 

one example. Although we partially detected the subtle dent on the Surface #1, we also 
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wrongly classified the machining marks as defective. Figure 5.25 shows the result for the 

same part but increasing the weight used in Algorithm 5.1 from 0.77 to 2.14. 

Unfortunately, the subtle dent and some porosity were not detected. Since we only use 

one image of the automotive part to inspect the defects, we cannot change the viewing 

angle like a human being does. Using a multiple-image based method with adjustable 

lighting may improve the inspection results in future. 
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Figure 5.22 Result where obvious machining marks are wrongly detected as defects. 

The obvious machining marks are shown in red in the top close-up sub-image. The left 

close-up sub-image at the bottom shows a detected defect (in red). The bottom right 

one shows a detected defect that is similar in appearance to the machining marks (in 

red). 
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Figure 5.23 Result where obvious machining marks are ignored. The top 

close-up sub-image shows the ignored machining marks (no red pixel). The left 

sub-image at the bottom shows the detected defect (in red). The bottom right 

one shows the detected defect that is similar in appearance to the machining 

marks (no red pixel). 
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Figure 5.24 Result where subtle dent is partially detected. The top zoomed in 

sub-image shows the wrongly detected machining marks (in red). The left sub­

image at the bottom shows the detected porosity (in red). The bottom right one 

shows the partially detected subtle dent (in red). 
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Figure 5.25 Result where subtle dent and pores are missed. The top zoomed in 

sub-image shows the ignored machining marks (no red pixel). The left sub­

image at the bottom shows the missed porosity (no red pixel). The bottom right 

one shows the missed subtle dent (no red pixel). 
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5.7 Summary 

In this chapter, we presented a local standard deviation followed by adaptive 

global thresholding algorithm to detect the defective pixels on Surface #1. An algorithm 

using the contours of the mask was proposed to remove wrongly classified pixels outside 

the edge of Surface #1. We also presented the algorithm to measure the size of the defects. 

Then the algorithm to identify the sealing area and classify the automotive parts was 

discussed. We tested the adaptive machine vision system described in chapters 3 to 5 on 

1,713 images and obtained an accuracy of 93% in the porosity classification. 
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Chapter 6 

CMAC Neural Network Based Machine Vision System 

6.1 Introduction 

A neural network is well known as a powerful tool for machine vision. During the 

past several decades, more and more neural networks were used in machine vision 

systems to solve the complexity and nonlinearity of the vision problems. Based on our 

review of the literature, the CMAC neural network was selected for this thesis. The 

CMAC neural network is based on the table look-up technique, which makes it fast 

enough to use in a real-time machine vision system for inspecting manufactured parts. In 

this chapter, a CMAC based machine vision system is designed for an automotive beam 

clip present/absent inspection problem. 

We organize the chapter as follows. First, the clip present/abscent problem is 

described briefly. Second, the basic idea of the CMAC neural networks is introduced. 

After that, the machine vision system based on CMAC neural network is discussed. The 

chapter closes with a discussion of the experimental results, and conclusions. 

In this context, "real-time" means that the inspection of a part should require less 

time than it takes to manufacture that part in order to maintain the production rate. Since 

the typical production rate is roughly one part per minute and each part can include 

several inspection problems, the time to perform an inspection problem should be less 

than 10 seconds. 

6.2 Problem Description 

In Chapters 3-5, we described the development of an adaptive machine vision 

system for the automotive water pump housing part surface inspection problem. In this 

surface inspection problem, the rules to categorize the defects of the automotive parts 

were well defined. The computer vision algorithms based on the pixel-by-pixel image 

processing were successfully applied to this problem. But if the inspection problems 
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possess strong nonlinearity and complexity, or the categorization rules are difficult to 

obtain manually, the computer vision algorithms based on pixel analysis are unsuitable. 

Neural networks are powerful tools for this class of inspection problems. The 

automotive beam clip present/absent problem is a problem that belongs to this class. The 

clip present/absent problem is illustrated in figures 6.1 and 6.2. 

In the automotive beam clip present/absent problem, we need to determine 

whether there is a clip present with the correct position and orientation. One hundred and 

forty five images of parts with the clip present and another 55 images of parts with the 

clip absent were provided by the manufacturer, Van-Rob. The position and the orientation 

of the clips change in different images. Furthermore, the background of the images is 

complex, changing and is not always distinct from the appearance of the clips. So there 

exists strong nonlinearity and complexity in this machine vision problem. As a result, we 

developed a neural network based machine vision algorithm to solve it. 

Figure 6.1 Automotive beam with clip present. 
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Figure 6.2 Automotive beam with clip absent. 

For an industrial inspection application, the computer vision algorithm should be 

suitable for the real-time implementation. CMAC is a neural network based on the table 

look-up technique for representing complex, nonlinear functions. As a result, a CMAC 

neural network is capable of learning and executing with the required speed. 

A manually defined ROI containing the location of the clip will be used to 

eliminate most of the unimportant areas of the image from further processing. This will 

have the benefits of making the inspection system perform faster and more reliably. After 

being preprocessed, the pixels inside the ROis are input into the CMAC neural network. 

In the automotive beam clip present/absent problem, the CMAC neural network works as 

a classifier. The output of the network will describe whether there is a clip present in the 

image or not. 

6.3 CMAC Neural Network 

6.3.1 Basic CMAC Module 

Basically, CMAC uses a table look-up technique for representing a complex, 

nonlinear function . It also employs the concept of sensory encoding using local receptive 
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fields, which imitates some functions of the human brain. The basic computational 

scheme of a CMAC neural network is shown in Figure 6.3. 

A 

Figure 6.3 Diagram of the basic CMAC mapping. The mapping of three state 

vectors is shown [52]. 

As shown in the figure, each point in the input state space S maps to a certain 

number of locations in theN-dimensional memory A. Each point is a state vector. The 

value of the complex nonlinear function is then determined by the average of the 

addressed weights [54]: 

1 c 
f(s)=- LW(A) c i=l 

(6.1) 
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where f ( •) represents the complex nonlinear function, s is the state vector in the input 

state space, C is the number of memory addresses corresponding to s , ~ is the ith 

memory address, and W(~)is the weight stored at address ~. 

Define D as the summed absolute difference between the components of two 

input state vectors: 

(6.2) 

where 11•11 is the L2-norm of the vector. If Dis greater than C, there will be no overlap 

between the two corresponding sets of memory locations in A. Otherwise, the number of 

shared memory locations in A will be approximately D-C. As a result of the shared 

memory locations, the output of the network will exhibit generalization between points 

close to each other in the input state space S, and no generalization between distant points. 

The extent of generalization within the state space is determined by the parameter C . 

Thus, it is easily concluded from the prior discussions and Figure 6.3 that the CMAC 

neural network is a non-fully-connected neural network, which makes it different from a 

typical neural network. The unique structure makes the CMAC converge very fast when 

learning. 

[54]: 

After training, the online implementation of the basic CMAC proceeds as follows 

1. Identify the C memory addresses excited by the input state; 

2. Load the C adjustable weights for those addresses from the pool of stored 

weights; 

3. Compute the average of the C adjustable weights. 

6.3.2 Complete CMAC Module 

In last section, we discussed the mapping from the input state space S to the 

CMAC memory A. The mapping will result in the memory A that contains on the order of 

R to the power N memory locations, where each of the N variables in S can take on any 

one of R discrete values. It is obvious that the size of memory A can be unreasonably 

large for practical values of N and R. For example if S contains 100 8-bit integers then the 
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size of A will be 256100
• As a result, the management of the memory becomes an 

important problem for a CMAC neural network. In fact, while the theoretical size of the 

input state space S and the resulting memory A can be very large, the number of different 

states that are encountered in solving a practical problem is typically much smaller. So 

the number of memory locations that will actually be addressed is much smaller. 

Based on this, it is reasonable to perform a uniform, random mapping of the large 

memory A into a smaller memory A'. The idea of this mapping is shown in Figure 6.4. As 

a result of the random mapping from the larger memory A to the smaller memory A', 

distant input states have a finite probability of sharing one or more location in A' (i.e. 

mapping collisions), producing an undesirable generalization between distant input states. 

Most implementations of CMAC neural networks use some form of pseudo-random 

hashing to transform the given state vector to a scalar address of the corresponding weight 

storage. 

At the beginning of the learning procedure, the memory A' is set equal to zero. 

The locations in the memory A' are used randomly and labelled. If all the locations are 

used then mapping collisions will occur that will degrade the classification performance. 

Pseudo-random hashing is used to make it the fewest mapping collision happen. Even 

with hashing, using more memory will reduce the occurrence of collisions. As a result, 

enlarging the memory size will typically improve the classification performance. 
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s2 •e 

s A' 

A 

Figure 6.4 Diagram of the complete CMAC mapping [52]. 

6.3.3 Adjustment of the Weights 

The weights stored in the CMAC neural network are adjusted by using the error 

correction strategy when the network is training. For one state vector s in input state 

spaceS, the output of the CMAC f(s) can be computed using (6.1). The adjustment of 

the weights in the network is dependent on the difference between the average of the C 

adjustable weights and the desired response fd ( s) for the state vector: 

~W = fix[fd (s)- f(s)] (6.3) 

where Pis a constant training gain in the range of [0,1]. If P is 1.0, the weights are 

adjusted to force the output of the network to be exactly the same as the desired response. 

If P equals 0.5, the CMAC output is adjusted to fall halfway between the old output 
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value and the desired response. If P is zero, the weights will not be changed. Note that 

the same value !l. W is added to each of the C memory locations accessed in the 

computation of f(s) [77]. 

The output of the CMAC neural network is the average over C adjustable weights. 

The adjustment of the weights is calculated to reduce the errors between the real network 

output and the desired network response. If we add the adjustment calculated by using 

(6.3), we cannot control the individual contribution for each of the C weights. As a result, 

some adjustable weights could reach an unreasonable value that will degrade the network 

performance. To fix this problem, a penalty factor is introduced to the adjustment of the 

network weights. The equation (6.3) is then replaced by 

sw; = A x [ fd ( s)- f ( s)] + P2 x [ f ( s)-w [A;']] (6.4) 

where the individual weight adjustment value !l. W; is added to W [A;'], the ith weight 

stored in the memory A' that is accessed during the network training. Therefore, the 

weight adjustment is different for individual weight. The contribution of the individual 

weight is calculated as a penalty factor to prevent the weight from reaching unreasonable 

values [77]. 
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6.4 CMAC Based Machine Vision System 

6.4.1 Overview 

As previously discussed, in the automotive beam clip present/absent problem, we 

need to detect whether there is a clip on the automotive beam in the current image. After 

manually analyzing the 200 images we have, we Iound that: 

1. The lighting condition of the image always changes in different images; 

2. The colour of the automotive beam clips is different in different images; 

3. The position and orientation of the clips are always changing; 

4. Strong environmental disturbances exist in the working environment, such 

as people walking, assembly devices moving, etc. 

So there exists strong complexity in this automotive beam clip present/absent 

problem. It is very difficult to manually define rules for classifying the images. The 

CMAC neural network was adopted as a potential solution. 

To use the CMAC neural network as the classifier in the neural network based 

machine vision system, the checked image should be converted to the desired format for 

the CMAC. So the image should be preprocessed before being input to the network. 

When an image in the desired format is input to the CMAC neural network, the weights 

of the network will be adjusted by applying a feedback mechanism. Also, the CMAC 

weights will be trained by being supervised offline. This is known as supervised training. 

Specifically, 50 images with clips and 50 images without clips were merged to form as set 

of 100 images. These images were manually classified. Pseudo-random sequences of 

these images will be used to train the CMAC. After being well trained, the weights stored 

in the CMAC will be used to classify the good parts (i.e. parts with clip present) and bad 

parts (i.e. parts with clip absent) online. Since the output of the CMAC is the summation 

of the related weights stored in the network, the classification speed should be very fast. 

A block diagram of the CMAC based machine vision system is shown in Figure 6.5. As 

shown in the figure, the CMAC based machine vision algorithm includes three main parts: 

the image preprocessing unit, the CMAC training unit and the CMAC classifier unit. The 
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image-preprocessing unit converts the original images to the desired input images for 

CMAC. The CMAC training unit is used to adjust the network weights by applying the 

feedback mechanism. The training procedure is supervised offline. The structure of the 

CMAC classifier unit is same as the CMAC training unit. The classifier applies the 

weights trained in the training unit and is used to categorize the unused part images. 

Desired Response 

Training 

Training Image Preprocess 
Data Image 

Testing 

Testing Image Preprocess 
Images 

~ 

Image 

+ 

~-
CMAC 

Training 

)7 
CMAC 

Network 

Training 
Response 

Testing 
Response 

Figure 6.5 Block diagram of the CMAC based machine vision system. 

6.4.2 Assumptions 

The CMAC based machine vision system is based on these assumptions: 

1. The position of the clip in the image does not change over a large range; 

2. The size of the clip in the image does not change over a large range; 

3. The size of the ROI is predefined; 

4. The dimension of the CMAC neural network input fits the available memory 

and is predefined; 

5. The images used as the training data are correctly classified. 

A manual analysis confirmed that the first and second assumptions are true for the 

200 images. The reason is that the camera's position is fixed and the parts are positioned 

using a robot. 

After the first and the second assumptions are satisfied, we can define the size of 

the ROI for the images. By adjusting the ROI size manually, we can uniformly apply it to 

segment all the automotive part images we have. 
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The fourth assumption can be satisfied by correctly choosing the parameters for 

the CMAC software (see Section 6.5). The fifth assumption was satisfied by manually 

classifying the images. 

6.4.3 Image Preprocessing 

If a large dimension input vector is used with the CMAC then the speed of 

training will be slow and the number of input vectors required for the training to properly 

converge will be large. Therefore a low dimension input vector is highly desirable. With 

computer vision one approach to reduce the dimension would be to replace a large image 

with a small vector of its features. Unfortunately no consistent features were observed in 

the images. For this reason, we decided to use a condensed version of the image as the 

input vector. 

As previously mentioned, an ROI containing the location of the clip was manually 

defined. The ROI is 128 by 128 pixels2
, centred at the expected location for the clip. 

Keeping only the pixels within the ROI will reduce the data from the 

640 x 480 = 307, 200 pixels in the original image to 16,3 84 pixels. This image format is 

still too large to be used as the input vector. We decided to use Gaussian pyramid 

decomposition (GPD) [51] to further reduce the data dimension. 

It is well known that neighbouring pixels are highly correlated in an image. 

Therefore, it is inefficient to represent the image directly in terms of the pixel values since 

most of the encoded information is redundant. That means it is possible to represent the 

important information from the given image using a smaller image. By using the GPD 

algorithm, we should be able to reduce the size of the segmented sub-image while 

keeping needed to solve the inspection problem. 

GPD is a procedure of image down-sampling. We first apply a low-pass filter to 

the original image and then down-sample it. The resulting image is a condensed version 

of the original one in both resolution and sample density. The next, more condensed 

image is generated by repeating the filtering and down-sampling, and so on. The low-pass 

filtering is performed by a procedure similar to convolution with one of a family of local, 

symmetric weighting functions. Since the 2-D Gaussian probability distribution is an 

128 



Master's Thesis - Kai Yang McMaster Mechanical Engineering 

important member of this family, the sequence of down sampled images is termed the 

Gaussian pyramid. 

Suppose the original image is represented by the array I 0 with c columns and r 

rows of pixels. We define this image as the bottom or zero level of the Gaussian pyramid. 

The condensed version of I0 , I, is defined as the level 1 of the pyramid and will have c/2 

columns and r/2 rows. Each down-sampled pixel value of I 1 is calculated as a filtered 

value of 10 within a 5 by 5 window. By using the same method, we generate the upper 

levels of the Gaussian pyramid. 

Assume the Gaussian pyramid is composed of Na levels. We define the level-to­

level filtering and down-sampling process as a function R : 

(6.5) 

For each pixel of Ik , the function R can be described as: 

2 2 

Ik(i,j)= L Lg(m,n)Ik_,(2i+m,2j+n) V1<i~rTk,1<j~c2-k (6.6) 
m=-2n=-2 

where Ik (i, j) is the pixel in the ith row and jth column of the kth level within the 

pyramid. g( •) is the function of 2-D Gaussian probability distribution, which is defined 

as [76]: 

xz+yz 

g(x,y)=-
1
-e ~ 

27la 2 
(5.7) 

where a is the standard deviation of the distribution. For the automotive beam clip 

present/absent problem, we will apply a Gaussian filter with the standard deviation value 

of 0.5. The shape of the Gaussian probability distribution (with a = 0.5 ) is shown in 

Figure 6.6. 
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Figure 6.6 The shape of Gaussian distribution used for filtering. 
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We applied GPD with N G = 3 to reduce the size of each ROI image from 

128x128 pixels2 to 16x16 pixels2
. An example of the four level Gaussian pyramid is 

given in Figure 6.7. 

16x16 pixel2 

32x32 pixel2 

64x64 pixee 

128x128 pixel2 

Figure 6. 7 Four level Gaussian pyramid 
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To further reduce the amount of input data the images were binarized from 8-bit 

gray scale using a manually chosen threshold of 100. The final size of the input vectors 

equalled 16x16x1 bit/pixel = 256 bits. Examples of original and condensed images are 

compared in Figure 6.8. It can be observed that sufficient information remains for 

classifying the two cases. 

Clip present 

ns 
I I 

Clip absent 

Original Images Condensed Images 

Figure 6.8 Comparison between the original and condensed images. 

6.4.4 System Training 

The CMAC based machine vision training algorithm is summarized below. 

Algorithm 6.1 CMAC Based Machine Vision Training Algorithm 

Step 1: Randomly choose a number between 1 and 100 as the index of the 

image to be checked; 

Step 2: Segment the ROI from the selected image; 

Step 3: Down sample and then binarize the ROI to convert the ROI into the 

desired input format; 

Step 4: Input the image to the CMAC neural network and calculate the error 

between the network output and the desired classification value; 

Step 5: Adjust the network weights with respect to the error;· 
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Step 6: If the number of the training cycles is larger than the predefined limit 

then continue; Else go to step 1 to run a new training cycle; 

Step 7: Save the weights of the CMAC neural network, and stop. 

After preprocessing the original automotive part images, we input the condensed 

images into the CMAC neural network to train it. In this application the CMAC neural 

network functions as a classifier, and the network will be trained under supervision. 

Before training the network, we needed to classify the original images manually. The 

CMAC software, described further in section 6.5, uses integers for the weights and the 

network output for faster processing so the manual classification (or desired response) 

should use integers. Images with clips were assigned a value of 1000 while images 

without clips were assigned a value of -1000. 

After manually classifying the training images, we input them and the 

classification values into the neural network. The training images should be learned in a 

random order. If the training images are input in a certain sequence, the sequence of the 

images will also be learned and the classification performance will be worse. To ignore 

the order of the sequence, we need to train the network by applying the training images in 

a random sequence. Note that every training image will appear multiple times in this 

sequence. To generate the random image sequence, we applied the standard C function 

rand() to obtain a pseudo-random sequence for the image indices. Then we trained the 

network using the pseudo-random ordered training images. 

By observing the mean absolute error between the actual output value and the 

desired output value of the network, we could monitor the training procedure. The mean 

absolute training errors are shown in Figure 6.9. Figure 6.9 is also termed the training 

curve. We can observe that the training error converges very quickly. 
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Figure 6.9 Training curve. 

In order to monitor the network training procedure, we use an image that does not 

belong to the training image set as the testing image to test the trained network step by 

step. After one training image is input into the network and the adjustable weights are 

adjusted, the test image is input into the CMAC to test the network trained by one step. 

The absolute error between the CMAC output and the desired response is recorded. The 

absolute testing errors for each step are shown in Figure 6.10. The shape of the absolute 

testing error curve is similar to the training curve. It converges very fast. The absolute 

testing errors are larger than the training errors since the testing image is not in the 

training set. 
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Figure 6.10 Testing curve. 

For a neural network, over-training is an important problem to be mentioned. It is 

very easy to understand the over-training problem. If a neural network is trained by 

applying the training data set too many times, the output of the neural network will more 

and more accurately represent the training data. However, if the neural network learns the 

given features too accurately, larger errors will be generated when new features appear in 

the testing data. As the result, the generalization ability of the neural network will be 

degraded by over-training and this can produce more classification errors. It is important 

to avoid this over-training. In this thesis, the over-training problem was not significant 

since the images were preprocessed before they were input to the CMAC neural network 

for training and testing. The preprocessed images are binary ones and a fixed threshold 

was used to binarize them. As a result, the difference between the images for training and 

the ones for testing is so slight that fewer new features will appear in the testing images. 

So the over-training problem is very difficult to be observed. We can also draw this 

conclusion from Figure 6.10. 
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6.5 CMAC Software and Testing Procedure 

In this thesis, we used the CMAC neural network training and testing software 

implemented in C language by Miller [77]. In this software, there are several main input 

parameters as follows: 

• NUM_CMACS: the maximum number of independent CMACs used in 

the software. The default value of this parameter is set as eight. In this 

thesis, we only use one CMAC to classify the images. So this parameter is 

set as the default value; 

• MAX_STATE_SIZE: the maximum number of input dimensions for the 

input state space. In this thesis, the size of the original ROI is 128 by 128. 

So we set this parameter with the value of 16,384; 

• MAX_RESPONSE_SIZE: This parameter determines the maximum 

number of output dimensions. In this thesis, the output of the CMAC is the 

classification number of the image that is a scalar. We set this parameter 

as 1; 

• MAX_GEN_SIZE: This parameter describes the maximum number of the 

memories connected to one input state vector. We set this parameter with a 

large value (65,536) to observe the relationship between the CMAC 

network performance and the number of the memories connected to one 

input; 

• num_state: the number of input dimensions for the input state space. Since 

the size of preprocessed ROI that is input to the network is 16 by 16, we 

set this parameter with a value of 256; 

• num_response: the number of the dimensions of the CMAC output. The 

output of the network is the classification number of the image, which is a 

scalar. So the parameter num_response is set equal to 1; 

• num_cell: the number of memory cells connected to one input state vector. 

A small value for this parameter makes the CMAC training procedure fast 

with less accurate output. A large value for this parameter makes the 
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network more accurate but the training procedure is slow. By manually 

adjust the parameter, we assign the parameter num_cell with the value of 

1,024 to obtain satisfactory experimental results; 

• memory: the maximum number of the memory cells can be used in the 

CMAC software. In this thesis, we care more about the software 

performance than the physical hardware specifications, so we set this 

parameter a large value {10,000); 

• field_shape: This parameter sets the design of the CMAC receptive fields, 

using predefined constants. Different designs will make different training 

and classification results. After making experiments on different values of 

the parameter field_shape, we chose RECTANGULAR to obtain the best 

performance. By using the parameter equal RECTANGULAR, the on-off 

receptive fields in the CMAC are created in a uniform arrangement; 

• collide_flag: This parameter is set TRUE or FALSE to indicate whether or 

not to allow hashing collisions. If the hashing collisions are allowed, less 

memory cells will be occupied. But the performance of the network is 

worse than the network without hashing collision. Since we are concerned 

more about the CMAC performance, the parameter collide_flage is set 

FALSE in this thesis; 

• beta1 and beta2: These two parameters are used to control the adjustment 

of the CMAC weights. Their meanings were described in section 6.3.3. In 

this software, beta1 and beta2 are right shift factors (beta1 = 1 means 

P1 = 0.5 , beta2 = 2 means P2 = 0.25 , etc). As discussed before, a large A 

forces the CMAC output close to the desired response and a large P2 

makes the CMAC performance more stable. At the same time, it will take 

longer time to train the network when a large fi2 is used. With tradeoff 

between the CMAC performance and the software running time, we chose 
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a large P1 ( P1 = 0.5 ) and a relative small P2 ( P2 = 2-10 
) in the 

experiments. 

Note that the data type used in this CMAC software is integer in order to make the 

software run faster. So proper gains must be multiplied to reach the desired accuracy. 

After training the CMAC neural network, we use the trained network as the image 

classifier for the automotive beam clip present/absent problem. We apply the trained 

weights stored in the network to test the unused images. Actually, the testing procedure of 

the CMAC neural network is almost the same as the training procedure without 

adjustment of the weights. 
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6.6 Experimental Results 

The CMAC based machine vision system was developed and tested on a 

computer with the processor of Intel P4 2.8GHz and 512Mb RAM. The software to 

preprocess the images was developed under Matlab 6.5 and the average time to 

preprocess an image is 65 ms. 

In this automotive beam clip present/absent inspection problem, we apply 100 

images as the training data set. In the training images, there are 50 images with the clips 

and 50 images without the clips. From this set of 100 images we generated pseudo­

random sequences with lengths up to 50,000. We apply the 100 unused images to test the 

network when the length of the pseudo-random sequence equal 1,000, 5,000, 10,000 and 

50,000, respectively. The softwares to train and test the network were developed under 

Microsoft Visual C ++ 6.0. The average time to classify a preprocessed image using the 

trained network is llms. The CMAC network has the parameters described in Section 6.5. 

The training results and the test results are listed in Table 6.1. 

Table 6.1 Experimental results 

Length of False 

Random 
Training Time 

Classification Uncertain No. 
Used Memory 

(Sec.) (Cells) 
Sequence No. 

1,000 16 3 3 1,218 

5,000 74 0 3 1,218 

10,000 151 0 0 1,218 

50,000 759 0 1 1,218 

From Table 6.1, we can observe that with the increment of the length of the 

random sequence, the training time increases linearly, and the number of the false 

classification on the testing data decreases. However, the number of the uncertain 

classification is increased a little bit when the length of the testing data increases to 

50,000. This increment is due to the occurance of slight overtraining since we trained the 
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neural network by applying the same training data set for too many times. Table 6.1 also 

shows that the number of the memory cells used to store the weights in the CMAC neural 

network is unchanged for the listed four cases. The used memory curve for the whole 

training procedure is shown in Figure 6.11. In the figure, we can see that the number of 

the used memory increases sharply from the beginning of the network training, and it 

reaches a constant number very quickly. This also demonstrates the fast learning speed of 

the CMAC neural network. After training the network in 151 seconds, the classification 

accuracy can reach 100%. However, in our training and testing set, the manufacturer only 

provided us with 55 images without the clips. Further experiments should be done on a 

larger set of images to better test the performance of this inspection system. 
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Figure 6.11 Used memory curve. 
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6.7 Summary 

In this chapter, we developed a CMAC neural network based machine vision 

system for the automotive beam clip present/absent inspection problem. A preprocessing 

procedure was introduced to convert the images to down-sampled binary images. These 

condensed images were used as the input to the CMAC neural network for training and 

testing. Experiments showed that after training in 151 seconds, the classification accuracy 

of the network reached 100% for the current testing set provided by the manufacturer. 

And the average time to classify an image was found to be 11ms, which is fast enough for 

real-time manufacturing applications. 
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Chapter7 

Conclusions and Recommendations 

7.1 Summary 

In this research the developments of a pixel-by-pixel analysis based adaptive 

machine vision system and a neural network based machine vision system were presented. 

The pixel-by-pixel analysis based adaptive machine vision system was created for an 

automotive water pump housing part surface inspection problem and the neural network 

based vision system was created for an automotive clip present/absent inspection problem. 

The pixel-by-pixel analysis based vision system is suitable for the inspection problems 

where the inspection rules can be expressed mathematically. The neural network based 

vision system is suitable for inspection problems whose rules are difficult to define and 

can be solved using down-sampled images. The experimental results demonstrated the 

performance of both machine vision systems. 

7.2 Achievements 

The main achievements of this thesis are summarized as follows. 

(1) This research studied the adaptive image acquisition. By applying a controlled 

lighting work cell and a novel adaptive camera control algorithm images with 

higher quality than possible with fixed camera parameters were acquired. 

(2) A novel adaptive seeded region growing method was presented. The histogram 

based seeded region growing algorithm was shown to segment the pixels 

belonging to the holes better than the adaptive thresholding method and the fixed 

seeded region growing method. 

(3) An LMS based image registration algorithm was demonstrated to match up the 

mask with the ROI accurately. The accurately registered mask was used to remove 

the areas outside of the ROI, resulting in faster processing. 
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(4) A novel local standard deviation followed by adaptive global thresholding 

algorithm was demonstrated to detect defects on the inspected surface. It was also 

able to separate the machining marks from the defects in the majority of cases. 

(5) With the automotive water pump housing part surface inspection problem, the 

defects can be less than 1mm in diameter while the surface is roughly 180mm by 

llOmm. The proposed vision system can find detects as small as 0.15mm. In 

experiments, the system has been tested with over 1,700 images. The majority of 

the defects were pores. These pores were correctly classified in 93% of the cases. 

(6) The surface inspection system can inspect the ROI in less than 1 second, making it 

fast enough for use in the automotive manufacturing industry. 

(7) A CMAC neural network based vision system was demonstrated to be well suited 

to an automotive clip present/absent inspection problem. The system was able to 

correctly classify 100% of the 100 test images after training for only 151 seconds. 

However, it should be tested with more images to better evaluate its performance. 

(8) The clip present/absent inspection system can inspect a part in less than 

80ms, making it fast enough for use in the automotive manufacturing industry. 

7.3 Recommendations for Future Work 

(1) The quality of the image has a big impact on the inspection accuracy. With the 

controlled lighting work cell, we fixed the position and orientation of the lighting 

sources. A dynamically adjustable lighting source should be investigated to 

improve the image quality. The combination of several images obtained under 

different lighting conditions for one automotive part should improve the image 

quality. 

(2) The accuracy of the image registration has a significant effect on the inspection 

accuracy of the surface inspection problem. The ROI mask is not only applied to 

segment the inspected surface, but also as a reference for the surface contour and 

the sealing contour. The accuracy of the image registration is critical when 

classifying defects near the edges and when identifying the sealing area. A more 
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accurate image registration algorithm should be developed to improve the 

performance of the surface inspection system. 

(3) In the surface inspection problem, the vision system was able to correctly find the 

defects, while ignoring the machining marks, in the majority of cases. If the 

machining marks are very obvious they confuse the system. Texture based 

inspection algorithms should be studied as a potential solution to this problem. 

(4) The fixed increment used with the adaptive camera control algorithm made its 

performance slow. A better algorithm should be developed to speed up the image 

acquisition process. 

(5) Larger sets of training and testing images should be used to better train and 

validate the neural network based vision system. 
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