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ABSTRACT 

The simulation of soft tissue deformations has many practical uses in the medical field 

such as diagnosing medical conditions, training medical professionals and surgical 

planning. While there are many good computational models that are used in these 

simulations, carrying out the simulations is time consuming especially for large systems. 

This is because most simulators are based on software, which are run on general-purpose 

computers (GPC) that are not optimized to carry out the operations needed for simulation. 

In order to improve the performance of these simulators, field-programmable-gate-arrays 

(FPGA) based accelerators for carrying out Matrix-by-Vector multiplications (MVM) 

have been implemented by Ramachandran in 1998 and Zhuo et. al. in 2005. Zhuo et. al. 

also looked at the best ways to store a matrix in memory, and how this is affected by 

certain properties of the matrix. 

A better approach is to implement an accelerator for carrying out all operations required 

for simulation on hardware. In this study we propose a hardware accelerator for 

simulating soft-tissue deformation using finite-difference approximation of 

elastodynamics equations based on conjugate-gradient inversion of sparse matrices. We 

designed and implemented the accelerator, which is optimized for use with sparse 

matrices, on FPGA. We also conducted performance and resource requirements analysis 

for the accelerator. Our results show this approach is capable of achieving sufficiently 

high computational rate for carrying out real-time simulation; even with large grids or 
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meshes. Finally, we developed computational models for carrying out real-time 

simulation of tissue deformation. 
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NOMENCLATURE 

u 

d 
ui+l,j+m,k+n 

ki+l,j+m,k+n 

-d z . . k 
l,j, 

f.d 
i,j,k 

K 

c 
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Q 

FDM 

CGM 

Change in Length of a spring or tissue. 

Change in Length of a spring or tissue in direction d. 

Spring or Tissue Elasticity. 

Displacement in direction d. 

Load acting at a point in direction d. 

Change in Length of the spring connecting nodes i,j,k and 

i+l,j+m,k+n in direction d. 

Elasticity of the spring connecting nodes i,j,k and 

i+l,j+m,k+n . 

Displacement of node i,j,k in direction d. 

Load at node i,j,k in direction d. 

Vector of nodal Displacements in direction d. 

Vector of Loads in direction d. 

Stiffness Matrix. 

Finite-Difference Operator. 

Condition Number of a Matrix. 

Lame constant 

Elastic Modulus. 

Shear Modulus. 

Finite Difference Method. 

Conjugate Gradient Method. 
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1 INTRODUCTION 

Some of the most common procedures in clinical practice involve the insertion of 

subcutaneous needles into tissue for biopsy of deep-seated tumors. These procedures are 

extremely sensitive to path (trajectory) planning and initial placement of the needle. 

The initial placement and path of the needle are usually chosen so as to set up a straight­

line intercept with the target tumors. If a needle fails to reach its target, it must be retracted 

and the procedure is repeated. It may require several attempts to achieve a precise needle 

placement [DiMaio3]. One of the current trends in the training of medical professionals 

on these procedures is the development, and use, of simulators for tissue deformation 

[DiMaio2]. These simulators have also become important tools in surgical planning. 

Realistic simulation of tissue deformation undergoing these procedures is the bottleneck 

of all simulators. 

The deformation of soft tissue is determined by elastodynamic partial differential 

equations (PDEs) [Fung2], defined over irregular domains (human organs). Due to the 

irregular shapes of these domains, a solution cannot be obtained analytically. In order to 

solve these equations we need discretization techniques such as the finite-difference 

method (FDM) and the finite-element method (FEM). In both methods, the domain of 

interest is discretized and the corresponding PDEs are transformed into a new set of 

equations, usually linear equation. This set of equations can be represented using a matrix 

("stiffness" matrix), a load vector, and a vector of unknowns. The resulting system is then 

solved using numerical algorithms such as Newton's method, conjugate-gradient method 

(CGM) etc. These numerical algorithms are usually run on a GPC. The main difficulty 
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with this approach is the size oftissue/organ of interest since desired accuracy may 

require a large grid (number of nodes). Consequently the size of the corresponding 

"stiffness" matrices describing the resulting system may make obtaining a solution very 

computationally expensive. Since the GPCs are not optimized to carry out most 

operations that are used in the numerical methods, solving the model also becomes time 

consuming for large grids. A possible solution to this problem is to develop hardware that 

is optimized to perform the tasks needed in numerical algorithm. In this thesis we 

propose FPGA platform for solving elastodynamic systems using FDM approximation 

and CGM for solving corresponding linear system. We exploit the fact that the "stiffness" 

matrix that describes the resulting system is sparse and band-limited, and develop 

hardware that executes CGM. 

1.1 Related Work 

Most of the previous work done in speeding up numerical methods, using hardware, 

focused on the implementation of efficient matrix-by-vector multiplier units (MVU) on 

FPGA. In Ramachandran, 1998, the author investigated the performance effects of using 

an FPGA based MVU to carry out an MVM. The MVU implemented a column-based 

SAXPY (Scalar Alpha X Plus Y) multiplication. In other words, a linear combination of 

the column of the matrix was done. The MVU communicated with a host computer, 

which used its results in solving a linear system that was generated from the Finite­

Element method with a performance of 36 MFLOPS. 

In Zhuo et. al., 2005, the authors also developed an MVU for MVMs that involved sparse 
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matrices. Their method involved storing only the nonzero elements of a matrix in FPGA 

memory. The column index of the nonzero element and the number of nonzero elements 

in each row of the matrix were also stored in memory. This information was used to 

determine the position of the nonzero elements of the matrix and to make sure that the 

correct values are used in the multiplications. Their design in attained a performance of 

350 MFLOPS for all their test cases. This is a 900% increase in performance when 

compared with results in Ramachandran, 1998. Possible factors for such an improvement 

by Zhuo et. al. may include the higher clock frequencies of FPGAs as of 2005 and the 

elimination ofunnecessary multiplications involving zeros in their design. 

1.2 Research Objectives 

The objectives of our research are outlined below 

1. Implement an FPGA based accelerator that executes a full iterative method, in 

this case the CGM, using parallel computing for carrying out MVMs. 

2. Further, we determine the performance and resource requirements of the 

implementation, and the feasibility and limitation of this approach to solving 

computational models. 

1.3 Research Approach 

We carried out our study using the following steps: 

1. Develop 3D computational models, for tissue deformation using the Finite­

Difference method. 
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2. Look at the properties of the stiffness matrix generated from the 3D 

computational models. 

3. Test for the rates of convergence of the computational models from 1 using a 

numerical example. 

4. Design and implement a CGM accelerator that takes advantage of the 

properties in 2 on an FPGA. 

5. Finally, measure the performance and resource requirements of this design. 

1.4 Thesis Layout 

This thesis consists of 6 chapters. In Chapter 2 we will introduce the constitutive 

equations that describe the physical properties of deformable materials and numerical 

techniques that are used generate and solve the FDM computational models for tissue 

deformation. We also generate FDM computational models for the modeling of tissue 

deformation, look at the properties of these computational models, and perform a 

convergence analysis using MATLAB and a numerical example. In Chapter 3, we focus 

on the inverse models for estimating the elasticity of a tissue. Then we estimate the 

elasticity of a homogeneous tissue using a numerical example and MA TLAB. The design 

and implementation of the CGM accelerator are discussed in Chapter 4. In Chapter 5 we 

look at the resource requirements, and performance analysis of the CGM accelerator. In 

Chapter 6 we conclude by discussing the limitations, and possible future work that can be 

done for improvement. 
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2 FORWARD MODEL 

In this Chapter, we introduce equations that govern the deformation of tissues and give a 

brief description of the numerical tools used in this study, namely the finite difference 

method and the conjugate gradient method. Then we generate computational models, 

which are suitable for hardware use. We use the FDM because it produces a very sparse 

stiffness matrix. Solving the linear systems generated from the FDM usually involves the 

calculation of a matrix inverse. The calculation of this matrix inverse requires arithmetic 

operations of the order 2n for a system of size n. This value gets very large for large n, 

thus rather than computing matrix inverse, numerical algorithms such as CGM, Newton's 

method, method of steepest descent, and others are used to solve the system. We use the 

CGM because it has certain properties that suit its application on an FPGA (see Section 

2.4). 

2.1 Constitutive Equations for Tissue Deformation 

A deformable material can be described as a collection of a very large number of 

particles and as such, it is often considered as a continuum. The real number system in 

mathematics is a continuum. In this system, there is another real number between any two 

real numbers [Fung2]. Extending the same concept to a material continuum, between any 

two particles there is another particle. The constitutive equations that describe the 

physical properties of a material must be satisfied by each particle of the materials 

continuum. While there are as many constitutive equations that describe as many 

different materials, they all give stress-strain relationships. Thus, physical properties 
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such as the deformation of a material can be described by the relationship between the 

external forces acting on the tissue and the resulting strain in the tissue. 

Strain: The deformation of an elastic material is characterized by the change in its 

lengths, which in tum can be characterized by strain. Strain, and consequently 

deformation, has two components: axial strain and shear strain. The shear strain in a 

material is a result of twisting, while stretching causes axial strain. Consider a sample of 

3-dimensional elastic material with lengths Ld in each dimension d. When this material is 

deformed, it lengths change by ud in each dimension d. The axial and shear strains in 

each dimension are given by (1). 

Axial Strains : 

(1) 

Stress: Stress is a result of forces acting on a deformable material. By definition, stress is 

a measure of the force per unit surface area. Like strain, stress can also be divided into 

two components: axial stress and shear stress, which cause corresponding axial and shear 

strains. The equations describing the relationship between stress and strain in a 3-

dimensional material for stress values that do not exceed the elastic limit of the material 

are given in (2). 

0 11 = P(fu + f22 + f33) + 2Qfu 

Axial Stresses: a 22 = p(c11 + f 22 + f 33 ) + 2Qc22 

a33 = P(fu + f22 + f33) + 2Qc33 

E Ev 
V=--l,p=-----

2Q (1 + v)(l- 2v) 
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Where E is the elastic modulus, Q is the shear modulus, p is a Lame constant, and v is 

Poisson's ratio. 

These stresses must also satisfy the laws of conservation of mass and momentum in each 

element along with the required constraints and boundary conditions. These requirements 

are met when the stresses satisfy the set of equations in (3). 

aall + aalz + aa13 + b = o 
a/J aL2 aL3 1 

aa21 + aa22 + aa23 + b = 0 
a/J aL2 aL3 2 (3) 

aa3i + aa32 + aa33 + b = 0 
a/J aL2 aL3 3 

Where b1, b2 , and b3 are the body forces per unit volume in the first, second, and third 

dimensions. For more detailed explanation on this subject matter the reader is referred to 

[Fung2]. 

While equations ( 1 ), (2), and (3) apply to most deformable materials, they do not 

accurately describe the deformation of soft tissues. Most soft tissues exhibit both elastic 

and viscous behavior, thus they are considered viscoelastic materials [Delingette]. A 

tissue can be described as a collection of particles (nodes) with adjacent nodes connected 

together by a spring and a damper. The Newtonian motion of any two connected nodes 

causes a change in the length of the connecting spring and consequently strain in the 

spring. Recall that the deformation of a tissue can be described by the relationship 

between the strain in the tissue and the forces acting on the tissue. Note that the strain of 

the tissue is now, given by the strain in the system of springs. 
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The force of interaction, fs, between two connected nodes is given by (4), the sum of the 

forces in the spring and damper connecting the two nodes. 

au -f ={3-+ku 
s at (4) 

Where u is the change in length of the spring, k is elasticity of the spring, and {3 is the 

damping constant of the damper. The Newtonian motion of each node can be expressed 

in terms of its nodal acceleration, external forces, interaction forces between the 

connected nodes, the change in length of the connecting spring, and the rate at which the 

length of the connecting spring changes with respect to time, as seen in (5). 

f =rna+ fs 

au -f =rna+ {3-+ k u at 
(5) 

Where m is the nodal mass value, a nodal acceleration, and f is the external load acting 

at a node. Since each node will have more than one connected adjacent node, the 

Newtonian motion of each node is given by (6), which takes into account the sum of 

interaction forces with all the connected nodes. 

f =rna+ }:fs
1 

f = ma + ""'({3. aui + k. u.) 
,Li I at I I 

(6) 
I 

Consider the node with mass m1 in the system shown in Figure 2-1. The motion of this 

node, relative to the second node and the wall, is described by (7). 

(7) 
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Figure 2-1: Spring-Damper System Model 

When an external axial force acts on a node, it causes a change in the position of the 

node. This change in position in tum causes an opposing (restoration) force in the springs 

connected to the node, which attempts to restore the node to its original position. This 

change in position, due to the external force, continues until an equal restoration force is 

generated by the springs, thus keeping the system in equilibrium. At this point, (5), (6) 

and (7) are reduced to the hookean equations shown in (8), (9) and (1 0). Thus, at 

f=ku 

j = l:k; U; 

(8) 

(9) 

(10) 

equilibrium, a tissue can be described as a collection of nodes with adjacent nodes 

connected together by a spring. Consequently, at equilibrium the system in Figure 2-1 

can be replaced by the system in Figure 2-2. 

jl\_l~' .. ,/'-J 
kl 

Figure 2-2: Spring-Damper System Model at Equlibrium 

2.2 Finite-Difference Method 

..,...._..., l 

The Finite-Difference method is a very popular numerical tool that is used to create 

computational models for many large systems. The technique is used to discretize the 
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constitutive equations that describe the physical properties of the system in question. As 

seen in the previous section, these equations are either polynomials or partial-differential 

equations. The finite-difference method involves dividing the solution domain into a grid 

of discrete points. The constitutive equations are then rewritten at each of these nodes, 

such that the terms of the constitutive equations are replaced with the equivalent finite­

difference or finite-divided difference equations. Each node has global indexes, which 

identifies its position within the grid. 

i-lj 

Figure 2-3: Finite Difference Node Grid 

We use the three dimensional grid in Figure 2-3 to illustrate an example of global node 

indexing. Note that the nodes have an equal spacing of d.x = r, dy = s, and dz = h in the x-, 

y -, and z- dimensions (or directions) respectively. 

Using this indexing, a functionfofthree independent variables is evaluated at a point P 

as follows: 

(11 ) 

Using the notation in (11); (12)- (14) show the three forms of obtaining difference 

equations. These finite-differences are taken with respect to x at point P. 

Forward Difference: N (xP ,yp ,zp ) , = j (xp + r, yP,zP ) - j(xp ,yP ,zP ) = /;.,J" - /;J" ( 12) 
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Backward Difference: Af(xp,y P'zpt = f(xp,yp,zp)- f(xp- r,yp,zp) = !;,11<- J;_,JJ< (13) 

Central Difference: Af(xP ,y P ,zp)x = f(xP + r,yP ,zp)- f(xP- r,y P ,zp) = J;+i,JJ<- J;_,,JJ< (14) 

Where 11 is the difference operator. The nth order difference equations have the general 

forms given in (15), (16), and (17). 

n 

Forward Difference: 11n f(xp,yp,zp)x = :L ncm(-l)m f+n-m,j,k (15) 
m 

n 

Backward Difference: 11n f(xp,yp,zp)x = 2 ncm(-1)m fi-m,j,k (16) 
m 

n-1 

Central Difference: 11n f(xp,yp,zp)x = 2 ncm(-1)m(fi+n-m,j,k- fi-m,j,k) (17) 
m 

The nth partial derivative, with respect to x, of function/ at point Pis calculated by using 

the nth finite difference as shown in ( 18) and ( 19). These equations are called finite 

divided difference. The central difference, forward difference, and backward difference 

forms in ( 15), ( 16), and ( 17) are used to calculate the central divided-difference, forward 

divided-difference, and backward divided-difference respectively. This process can be 

an j(x ,y ,Z ) f1n f(x ,y ,Z t 
Forward and Backward Difference: P P P = P P P (18) 

axn rn 

carried out for each direction of the problem as needed. Based on the discretization 

described above, the nodal equation at node P expresses the unknown nodal value at node 

Ji,j,k = 2 2 2 C n,m,Jn,m,l (20) 
n m I 

c n,m,l = 0 when n = i, m = j, and l = k 

P as a linear combination of other unknown nodal values. These nodal equations are then 

assembled to give a linear system that can be easily solved algebraically. Furthermore, 
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the boundary conditions and other constraints must be specified so as to get a unique 

solution to the system. Note that the number of nodes used in the grid affects both the 

accuracy and computation time of the solution. 

2.3 Conjugate-Gradient Method 

The CGM is an iterative numerical algorithm commonly used to solve linear systems. 

Unlike some other numerical methods, the starting point (initial solution) of the CGM 

does not need to be close to the actual solution to guarantee or gain convergence. 

(21) 

The condition number c (the ratio of the largest to smallest eigenvalue of a matrix) also 

affects the rate of convergence of any numerical method to the final solution. For a badly 

conditioned matrix (i.e. cis very large or ).min is very close to zero) convergence to a 

solution is very slow and not always guaranteed for most numerical methods. For a badly 

conditioned matrix, the CGM will reach a solution in at most n steps for a system of order 

n. By preconditioning the matrix, we can reduce the number of steps required to get to the 

final solution. 

r0 = b- Kx0 Residual error based on initial guess x = x 0 

Po = r0 Initial Direction 

for n = 1 :N 

a= rL1r11_Jp~_1Kp11 _1 Calculate New Step Size for x and r 

x/1 = xn-1 +a *Pn-1 Calculate New X 

r" = r
11

_ 1 -a* Kp
11

_ 1 Calculate New Residual r 

f3 = r,; r" /r,;_1r11 _ 1 Calculate New Step Size for p 

Pn = r" + f3 * Pn-1 Calculate New Search direction p 

end 

x = xN Final Result 
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A numerical method usually consists of a series of one or more MVM, vector-inner 

products (VIP), vector-scalar products (VSP), and scalar operations (SO). For simplicity 

VIP, VSP, and SO will be referred to as vector-scalar operation (VSO). Since MVMs are 

more computationally intensive than VSOs, the effective bottleneck of a numerical 

method is the MVMs. Most numerical methods have two or more MVMs, however, as 

can be seen above, the COM has only one MVM. Since the other operations are VSOs, 

this makes the MVM the single computational bottleneck of the COM. Speeding up the 

MVM effectively speeds the COM. 

log(# of flops) for n <50 

-en 2 .5 a. 
0 

; 20 -0 
~ I S -CJ) 10 
0 

5 

oL-----------~~~--~------------~ 
0 10 I S 20 25 30 35 ~ 45 50 

#of nodes n 
log(# of flops) for n < 500 

350 ---

F COM I 
Matrix lnvtlf'&8 1 

:100 -(/) 250 a. 
0 
~ 200 -0 
=t:t:: ISO -Cl loo 
0 

50 

0~============~ 0 50 100 ISO 200 250 :100 350 400 450 500 

#of nodes n 
Figure 2-4: Number of flops for CGM and K-1 
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As mentioned earlier, convergence of the CGM does not depend on the initial guess or 

solution. This eliminates the computational requirement for choosing a suitable starting 

point, as would have been the case for orne other methods. In the worst-case scenario, 

the CGM will require 2n3 flops. This is very small when compared with the 2n flops 

required for calculating a matrix inverse for large n (see Figure 2-4). 

2.4 Computational Model 

Solving constitutive equations over irregularly shaped materials usually requires the 

utilization of discretization techniques like the FEM and FDM. Though the FEM is very 

accurate, it is rather computationally expensive. The FDM on the other hand, is not as 

accurate but may still give the desired accuracy. In addition to producing a sparser 

stiffness matrix than the FEM, the FDM is also not as computationally expensive as the 

FEM. For these reasons we utilize the FDM to generate computational models for the 

model.ing of tissue deformation. 

Axial Model (A) 

Figure 2-5: Connection Models 

Axial-Shear Model (B) 

We modeled the tissue as a uniform 30 grid of nodes connected together by a system of 

springs. The connection among the nodes was modeled with two connection models, 

which are both shown in Figure 2-5. The first connection model accounts for axial forces 
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and strains, while the second accounts for both axial and shear forces and strains. Recall 

from Section 2.1 that when an external force acts on a certain node, it causes a change in 

the length of the springs connected to that node. This in tum creates opposing forces in 

these springs, which keeps the system of connected springs in equilibrium. 

Using (9), the equation governing the relationship among this system of springs, for a 

given dimension (direction) d, is given in (22). 

I I I 

fi~j,k = ~ ~ ~ ki+l,j+m,k+n u~+l,j+m,k+n 
n--lm--11--1 

(22) 

Where ki+L,j+m,k+n is the elasticity of the spring connecting nodes i,j,k and i+l,j+m,k+n, 

u;~L.j+m,k+n is the change in length of the connecting spring, and Jt;.k is load acting at 

node i, j, k in direction d. By replacing u;~L,j+m,k+n with the equivalent finite-difference 

equations, shown in (23), which is the difference between displacements of node i,j,k and 

node i+l,j+m,k+n, in direction d, (22) can now be written as shown in (24). 

d -d -d -d 
u. I . k = /).[. I . k = [. I . k -f .. k z+ ,J+m, +n z+ ,J+m, +n 1+ ,J+m, +n l,J, 

(23) 

(24) 

Following from (24), (25) and (26) show the nodal equations for connection models A 

and B in Figure 2-5. 

Mode/A 
I I I 

d ~~~- -d 
J;,j,k = .L., .L., .L., ki+l,j+m,k+n/lf;+l,j+m,k+n 

n--lm--11--1 
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(25) 



ModelB 

(26) 

l,m,n ~o 

Both (25) and (26) can be written in a simpler form as the inner product of two vectors, 

ki,j,k and ~~d, shown in (27). Assembling these nodal equations for every node yields 

(27) 

a set of linear simultaneous equations that describes the system in direction d. These 

equations can be represented in matrix form as shown in (28). 

Ki.j.k = [k.t.l,t,k2.1.1,k3.1,1'k4.1.1' .... ,kN.l.l'k1.2.1'k2.2.1,k3.2.1'· ... r 
rd = [ .t;1.1 ,f2~1.1 ,f3~.~ ,f4~1.1' .... ,f :.1.1' .t;~.~ J2~2,1 ,f3~2.1' ..... r 

(28) 

-d -d -d 
We can write 11(+1,j+m,k+n as the inner product of two vectors pi+l,j+m,k+n and I , where I 

is the displacement vector and Z;~j.k and Z;:l.j+m,k+n are elements of id that correspond to 

nodes i,j,k and node i+l,j+m,k+n respectively. Vector pi+l,j+m,k+n consists of the 

coefficients required to determine ~zi:Z.j+m,k+n for the spring connecting nodes i,j,k and 

node i+l,j+m,k+n. 
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(29) 

- d [- d - d - d - d - d - d - d - d ]T 
I = 4.'·" 12.1.1, 13·'·', 14·'·" .. , 1N·'·" 1,.2." 12.2,1' 13,2,1' .. 

P = [P,,,,,,P2.1,1'P3,1,,,P4.1,,, .... ,pN.l.l'P'.2.1'P2,2,,,P3,2,,, .... r 
The combination of these inner products for the system of springs will yield a system of 

linear equations that can be represented in matrix form as shown in (29). 

fd =K :P id 

=Kid (30) 

The combination of (28) and (29) produces the equation shown in (30), where K is the 

stiffness matrix that describes the system of connected nodes and springs. For a 

homogeneous tissue, the same elasticity k is used for the springs in the connection 

models A and B. Note that (27), (28) and (30) can be written as (31), (32) and (33) 

respectively. 

d - T -d f ·k = k(v . . k) ~I 1,], 1,], 
(31) 

k .. k=kv .. k l,J, l,j, 

(32) 

(33) 
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2.4.1 Linear Model 

In this section, we look at a computational model to determine the deformation of a tissue 

with known elasticity, when a load is acting on it. The deformation of a tissue is a 

measure of the change in the position, or displacements ld, of the nodes in the grid used 

to model the tissue. Thus, given the required boundary conditions, the deformation of the 

tissue in question is given by the displacement values that solve the system in (30) in 

each direction d. In other words Id that minimizes ITd, in (34), must be determined in 

(34) 

each direction d, for specified constraints and boundary conditions, in order to get the 

required deformations for the whole system. The required minimization can be carried 

out using the CGM. 

2.4.2 Time Dependent Model 

In this section, we develop a time dependent computational model for carrying out real­

time modeling for the deformation of a tissue with known elasticity. To do this, we use a 

quasi-static approach in combination with a variation of the system shown in (34), while 

fd changes over time. In the quasi-static approach, we take a sample, f
1
d, of fd at certain 

time intervals (or time-steps), then use this sampled value to solve for the corresponding 

displacement values, I1d. This process is repeated at every time step. 

Recall that the stiffness matrix K depends on the elasticities of the springs used to model 

the tissue. As such, K will depend on I d when these elasticities are dependent on the I d 

(displacement dependent model). Obviously this not the case when the spring elasticities 

are constant (displacement independent model). This difference also extends to the time 

18 



dependent computational models developed from both models. 

Displacement Dependent Model 

When K depends on i d, the dependence means that K changes at each time step, thus 

the computational models that is used must update K at each time step using the most 

recent displacement values I,~1 (i.e. the solution to the previous time step). The 

computational model, in this case, is to minimize rr; given in (35) at each time step 

(35) 

for a given set of constraints and boundary conditions, provided the relationship between 

K and I d is known. Note that ~i,d and ~f,d, the changes in i d and fd from values at the 

previous step, along with the updated stiffness matrix, K,, are used in (35). Rewriting 

(36) 

(35) in the expanded form seen in (36) shows that the sampled value f,~1 and solution 1,~1 

at the previous time step need to be stored. 

Displacement Independent Model 

When K does not depend on I d, the independence eliminates the need to update K as it 

is constant. Given the required set of constraints and boundary conditions, the 

computational model in this case is to minimize (36) at each time step using the new 

value, f,d, of fd and a constant stiffness matrix. In other words, K, never changes. 

Further, the solution, l1~P at the previous time step is used as the initial solution for the 

current time step. 
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Of the two models described above, the later is a more efficient way of carrying out real-

time modeling. For example, take the updating of K in solving (35). Though K may be a 

very sparse matrix, the required update of K is inefficient given that the computational 

model based on (34) will not require any update of K. In addition to this, the use of, l1~~' 

the solution to the previous time step by the second model as the initial solution to the 

current time step reduces the time and number of iterations needed to converge to the 

new solution, as l1~1 is the closest known value to the solution, i,d, at timet. For these 

reasons the displacement independent model, in combination with the CGM, is the better 

choice for carrying out the real-time modeling of tissue deformation in each direction 

given the necessary boundary conditions. 

t=1 
-d -d 
ION = 1/ 

while t;;:: 1 
-d -d 
11,0 = 11-I,N 

d -d -d 
r 0 = h1 - K 1,,0 Residual error based on initial guess 110 

Po = r0 Initial Direction 

for n = 1: N 

a= r,;_1rn_jp~_1KPn-l Calculate New Step Size ford and r 
-d -d -d 
II n = II n-1 +a* Pn-1 Calculate New Displacement I 

rn = rn_1 -a* Kp"_1 Calculate New Residual r 

[3 = r: r)rL1rn_1 Calculate New Step Size for p 

Pn = rn + [3 * Pn-1 Calculate New Search direction p 

end 
-d -d 
I = 11 N Final Result at time step t 

t=t+1 

end 

This combination gives the algorithm, a modified version of the CGM, shown above. 

Note that the feasibility of this algorithm, for its real-time modeling purpose, requires that 
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the CGM must be executed fast enough to meet the time requirements. In order to meet 

the time requirements for real-time modeling, the CGM must be accelerated. Our 

approach to CGM acceleration is discussed in Chapter 4. 

2.5 Properties of the Stiffness Matrix 

In section 2.4, we generated a linear model and a time-dependent model for modeling 

tissue deformation, using a system with constant stiffness matrix K. The properties of 

K are discussed in this section. These properties are as follows: 

i) The stiffness matrix generated from the method above is always a sparse 

square band diagonal matrix, as shown below in Figure 2-6A. 

ii) The Band of K changes with the connection model in Figure 2-5 that is used. 

iii) The model being used also determines the number of nodes that are connected 

together and the sparsity of the stiffness matrix K. The sparsity of K defines 

the number of zero elements in K. It is calculated as a percentage of the total 

number elements in matrix K. This value decreases as the number of nodes, 

n, increases since the models that are used limits and fixes the maximum 

Spar(K) = 1- (total #of non -zero elements I total #of elements in K) 

... 1- (maximum #of non- zero elements per row I# of columns inK) 

... 1- (maximum #of non- zero elements per row In) (37) 

number of nonzero elements per row (via the connection between nodes). On 

the other hand, the sparcity of K will decrease by changing from model A 

to model B. For example, ifn = 500 the sparcity of K will decrease from 

98.6% to 94.6%. This is simply because more adjacent nodes are connected 

together while the total number of nodes is fixed. 
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iv) Recall from section 2.4, when the same elasticity value is used for all the 

springs, in the connection models, the stiffness matrix, K, can be factorized as 

shown in (38). Therefore, properties i) to iv) are effectively those of matrix A 

(see (33)). 

(38) 

v) Also, K that describe an isotropic system is a symmetric matrix 

vi) When a uniform grid with an even number of nodes is used, the stiffness 

matrix K for a homogeneous system is not only symmetric; it also has the 

structure shown in figure 2-6B. Matrix B is a non-square-symmetric band 

diagonal matrix, while B* is the resulting matrix from rotating B 180 degrees. 

We call this conjugate symmetry. 

A 

Figure 2-6: Stiffness Matrix Structure 

2.6 Convergence Analysis 

0o 
0~ 

B 

The ability to carry out real-time modeling is also affected by the rate of convergence of 

the computational model being used. A computational model with a fast rate of 

convergence will require fewer iterations to converge to a solution, thus improving the 

ability to meet the time requirements for real-time modeling. In this section, we focus on 

the computational models that require the minimization of(34). We use a numerical 
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example to show the rate of convergence of these computational models. We use the 

CGM to minimize (34) in order to determine the deformation of a cube of tissue. We 

assume that the eight corners of the tissue do not move. The elasticity values in the x-, y-, 

and z- directions are set to 1 N/m, 2 N/m, and 0.5 N/m respectively. A force of IN is then 

applied to center of the y-z surface ofthe tissue. The force is applied perpendicularly to 

this surface (x-direction). We used MATLAB to so lve for the nodal disp lacements in x-

direction for systems generated from connection models A and B in Figure 2-5. 

Undeformed tissue 

Figure 2-7: Deformed Tissue 

Deformed tissue 

Figure 2-8: Displacements of boundary nodes on y-z plane 
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Figure 2-7 shows the deformation of a tissue before and after the force is applied. Figure 

2-8 shows the displacements in the x-direction for the boundary nodes on the y-z plane 

where the force is applied. 

1.4 

1.2 

... o.s e 
~ 0.6 

0.4 

0.2 

1.4 

1.2 

0 
10 

... 0.8 

E m o.s 

0.4 

0.2 

0 
10 

# of nodes 

# of nodes 

2 0 
# of cycles 

Model A 

2 0 
# of cycles 

Model B 
Figure 2-9: CGM Error for connection Models A and B 
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We took the deviation of the solution from the actual displacement values in the x-

direction at each node. The error in the solution is then calculated by taking the oo-norm 

of the resulting deviation vector. The graph of error vs. system size vs. number of CGM 

cycles was plotted for both connection models (see Figure 2-9). As seen in Figure 2-9, 
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model B converges faster than model A. Recall from Section 2.3 that the rate of 

convergence of the CGM depends on K. Thus, a better rate of convergence is also 

achieved by model B in the y-, and z-directions. 
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3 INVERSE MODEL 

In Chapter 2, we derived computational models for determining the deformation of a 

tissue with known elasticity. In reality, the tissue elasticity is not always known. Thus an 

estimated value, calculated using estimation techniques such as least-squares (LS) 

estimate or maximum-likelihood (ML) estimate, is usually used. In this Chapter, we look 

at parametric and non-parametric computational models for estimating the elasticity of a 

tissue using a LS estimate. In each case, we look for elasticity values that provide the best 

fit for to a set of observed deformation and load values, which are measured using a 

uniform grid of sensors placed at certain nodes on the tissue. 

3.1 Least-Squares Estimate 

This is a very popular estimation technique that uses a set of observed physical quantity 

q to estimate a set of parameters 8, which in turn are used by a predicting model ij(x,8) 

to predict q. The LS estimate attempts to minimizing the distance between these 

observed values of q and its model predicted values, as these observed values have 

certain errors attached to them. In other words, the LS estimate provides the parameter 

estimate that best fits the observed values of q. Unlike most estimation techniques where 

information, usually assumptions, about the distribution family of q is needed, the LS 

estimate does not require any information about the distribution family of q. 

Let q; and X; denote the ith observation of q and observation point respectively. Also, let 

iJ;(8) represent the model predicted value at observation point X;· In other words, iJ/8) is 
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equivalent to ij(x;,(J). Let q and q(O) be the corresponding set (vectors) of observed and 

model predicted values q; and iJ;(B) respectively. The LS estimate, e, minimizes the 

squared 2-norm of the difference (or error) between the vectors q and q(O) as shown in 

(39). To minimize llq- q(B)II~, its derivative is taken with respect to e, the set of 

e = arg minllq- q(e)ll~ 
(} 

(39) 

parameters that are to be estimated, and equated to 0 as shown in ( 40). This gives a set of 

equations, one for each element of e, that can be solved through the use of numerical 

techniques such as Newton's method, conjugate gradient method, or others. 

a11q- q(B)II~ = a((q- q(O))T (q- q(B))) = 
0 

ae ae 
(40) 

A 

The LS estimate, e, discussed so far is based on one set of observed values. In the 

A 

general case, where there are n sets of observed values, for n ~ 1, e is gotten by 

minimizing the summation of the squared 2-norm of the difference between the vectors 

qk and q(O). qk is the corresponding vector to the kth set of observed values q;. Hence, 

A 

e is given by the solution to ( 41 ). 

n n 

a 2: llqk - q( B) II~ a L ((qk- q(O)/ (qk- q(O))) 
k-! 

ae ae 
=! a((qk- q(O)/ (qk- q(O))) 

k=l ae 
(41) 
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3.2 Estimating Elasticity of a Homogeneous Tissue 

In this section, we discuss computational models for estimating tissue elasticity. Recall 

that the tissue is modeled as a grid of nodes connected together by a system of springs. 

3.2.1 Non-Parametric Model 

In the case where all the springs in connection models A and B have the same elasticity 

value, the problem is to estimate the scalar quantity k, which best fit the set of observed 

deformations and load values. 

3 

n = }]rd -kA Id11: (42) 
d~l 

Recall from section 2.4 that the deformation is a measure of nodal displacements due to 

an acting load. Therefore, the displacement and load values are observed at each node in 

each direction. These values, for a direction d, are given by displacement and load 

vectors Id and fd respectively. The LS estimate k, is the value of k that minimizes (42). 

d=l 

3 

= 22llk-2]d 
d=l 

il=ldTArAld 

Jd =fdT AId 
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3 

Hence, equating (43) to zero gives the required estimate, k (see (44)). L represents the 
d~i 

summation of values in the x-, y-, and z-directions, where the values 1, 2, and 3, ford, 

represent values in the x-, y-, and z-directions respectively. 

(44) 

3.2.2 Parametric Model 

In Section 3.2.1, we assumed that the elasticity values of the spring are constant. In this 

Section, we discuss a computational model that describes the relationship between 

deformation and elasticity of a spring. The elasticity of each spring, in the connection 

computational model that can be used to determine the elasticity parameters a 0 ,a1, and 

a 2 from deformation values. 

(45) 

The elasticity of each spring can be written as the inner product of two vectors as shown 

in ( 45). Further, the elasticity values of the system of springs can be represented in the 

matrix form shown in (46). 
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k=Wa 

k = [ kl,l,l J2,1,1' k3,1,1 ,k 4,1,1' ·" ·' k N,l,l' kl,2,1 J2,2,1' k3,2,1' "" J 
w = [ Wl,l,l' W2,1,1' W 3,1,1' W 4,1,1'""' W N,l,l' W1,2,1' W 2,2,1' W 3,2,l'"""r 

(46) 

We can rewrite ki,j,k (from (27)) as the matrix-by-vector product between a square-

symmetric matrix B;,j,k and vector k. Substituting this product into (27), along with (29), 

yields (47). 

f/j,k = (Bi,j,kk)T L\l" 
= (B;,j,kk)rP i" 
=kTBT. Pi" 

l,j,k 

- T -C.k=B.kP l,j, l,j, 

(47) 

While (46) gives the relationship between a and k, (47) gives the relationship between 

/;~j,k and k. The combination of ( 46) and ( 4 7) yields ( 48), which gives the relationship 

between a and f/j.k . 

d T -d J,. ·k =a C . . k I l,j, l,j, 
(48) 

c .k = wrc . . k 
l,j, l,j, 

The operands, !;~j,k, C;,j,k and i", are observed or calculated directly from the observed 

values, thus making a the only unknown in (48). We get the LS estimate, a, for a, by 

minimizing ( 49) with respect to a. 

(49) 
d=! k j i 
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The CGM can be used to obtain the solution to (50), thereby yielding the parameters a 

that describe the relationship between deformation and elasticity of the springs used in 

modeling the tissue. Recall that i" and f" are displacement and load vectors of observed 

displacement and load values at each node in direction d. 

d-1 k j i 

aa 

3 

aLLLLCf~j,k)2 -2CaTci,j,k i")l~j,k + caTci,j,k i")z 
d-1 k j i 

aa 
3 

a~~~~( .r_dk)2- 2(aTgd .k) -r.dk + aTgd 'kg<ka LJ LJ LJ LJ J 1,], 1,], J 1,], 1,], 1,], 

d-1 k j i 

aa 
3 

= ~~~~2g".kg<ka-2g~.kf..dk LJ LJ LJ LJ 1,], 1,], 1,], 1,], 

d-1 k j i 

3 

= L2G"G"T a- 2G" f" 
d-1 

=Ha- f (50) 

d c -. d G" [ d d d d d d d d ]T gi,j,k = i,j,k ' = gl,l,l'g2,1,1'g3,1,1'g4,1,1'""""'gN,I,l'gl,2,1'g2,2,1'g3,2,1'""""" 

3 3 

f = }:2G"f", H = }:2G"G"T 

Recall from section 3.2.1 that the values 1, 2, and 3, ford, represent values in the x-, y-, 

and z-directions respectively. Using the LS estimate a, the elasticity values of the system 

of springs are now given by the system in (51) or the parametric model in (52). 

k = wa (51) 

3 3 

ki+l,j+m,k+n = ao + 2: al!:::.l;~,,j+m,k+n + 2: a2!:::.(li~l,j+m,k+n )2 
(52) 

d-1 d-1 
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3.3 Estimating Elasticity of a Non-Homogeneous Tissue 

The springs used in the connection models may not necessarily have the same elasticity 

values. In other to estimate these elasticity values, we use a computational model that is 

generated from (47). The aim is to estimate the values of k, which provide the best fit to 

a set of observed deformation and load values by minimizing (53) with respect to k. 

3 

2:2:2:2: d r- -d 2 
II = (f. . k - k C .. k I ) l,.J, l,j, (53) 

Where f/~.k, c;,J,k and i d, can be observed or calculated from the observed values. The 

LS estimate, k, are the values of k that minimizes (53). 

The solution to (54) gives the required LS estimate, k 's that describe the elasticity values 

of the system of springs. Recall that i d and fd are displacement and load vectors 

3 3 
~~~~ d r- -d 2 

a LJ LJ LJ LJ (f.1.k- k ci,j,k 1 ) 
~ ~ ~ ~ d 2 T- -d d T- -d 2 

a LJLJLJLJ(Ji,j,k) -2(k ci,j,k I )Ji,j,k+(k ci,j,k I) 

ak 
d=l k j i 

ak 
3 

a~~~~( .r,dk)2 -2(kTg-d 'k) F.dk + kTg-d .kg-<kk LJ LJ LJ LJ J l,j, l,j, J l,J, l,j, I,J, 

d=l k j i 

d=l k j i 

3 

= }:2GdGdrk-2Gd fd 
d=l 

3 

= }:2flk-2fd 
d=l 

ak 

(54) 

-d c- -1d G-d [-d -d -d -d -d -d -d -d ]T 
gi,j,k = i,j,k ' = gl,l,l'g2,1,1'g3,1,1'g4,1,1'""'gN,l,l'gl,2,1'g2,2,1'g3,2,1''"" 

3 3 

f= }:2Gd fd, H= }:2GdGdr 
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of observed displacement and load values at each node in direction d. Again, the values 1, 

2, and 3, ford, represent values in the x-, y-, and z-directions respectively. 

3.4 Numerical Example 

In this section, we use a set of simulated measured nodal displacement values to estimate 

the elasticity of a cube of homogeneous tissue with stationary comers. These 

measurements, like any other measured quantity, include noise components. In this 

example, we assume white noise .. We use MATLAB to generate a set of 1000 

measurements at each node for a system of 1000 nodes when a force of IN is applied 

perpendicularly to the center node on the y-z surface of the tissue. We solve for the 

required elasticity using these measurement values at each node. We repeat the process 

using different variances for the noise component in the nodal displacement 

measurements. As seen in Table 3-1, the accuracy of the solution increases with a 

decrease in the variance. This is not unexpected, as better more accurate measurements 

will yield a more accurate estimate for k. 

Variance 
Actual k 0.0001 0.001 0.01 0.1 

1 1.0001 1.0004 1.0007 0.9970 

Table 3-1: Tissue Elasticity Estimates 
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4 HARDWARE IMPLEMENTATION 

In this Chapter, we discuss the hardware that executes and accelerates the CGM. The 

acceleration of the CGM involves designing hardware optimized for carrying out 

operations needed by the CGM and the speeding up of MVMs. We discuss both of these 

here, starting with the speeding up MVMs. We later introduce the CGM accelerator. 

4.1 MVM Speed-Up 

As discussed in section 2.3, speeding up the MVM will effectively speed up the CGM. 

The approach used to achieve the increase in speed of completing a MVM was to divide 

the multiplying matrix and vector into smaller appropriately dimensioned sub-matrices 

and sub-vector. Each ofthese sub-matrices and sub-vectors are used by a series ofMVUs 

working in parallel to carry out the required MVM. Given a stiffness matrix K for a 

homogeneous system, generated using the models discussed in previous Chapters, the 

conjugate symmetry of the matrix can be used to divide it in two smaller sub-matrices B 

and B*. As B contains all the information needed to generate K, the memory required to 

store K is reduced by 50% by storing only B. 

v, Mull 
Vt : 

~ Vn/2 

B K 
v. ~ : ... Mul2 

Vn/2 +I 

Figure 4-1: MVM using Conjugate Symmetry ofK 
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Only one memory fetch will be needed to access two element of Kat the same time. Thi 

in turn means that two MVUs can be used in parallel, as shown in Figure 4-1 to complete 

an MVM of K and v by using sub-matrix B and vector v. One thing of note is that the 

ordering of the elements in the vector used by Mul2 is inverted. The ordering of the 

elements of Mul2 's results is inverted to get the bottom half of the fmal result. There i 

also an overlap between the vectors assigned to the multipliers. Additional peed up can 

be achieved by further dividing matrix 8 and the two corresponding vectors in Figure 4-1 

into smaller sub-matrices and sub-vector. The two approaches we looked at for carrying 

out MVMs are discussed below. 

4.1.1 MVM using Overlapping Sub-Matrices 

The matrix is divided into maller matrices that overlap each other as shown in Figure 

4-2. Figure 4-2 shows a 6x6 matrix being divided into three 4x4 matrices. The nonzero 

e lements of the original larger matrix are distributed as evenly as possible among these 

smaller sub-matrices. This distribution is, however, done such that, 

i. Any shared nonzero elements among the sub-matrices appears in one, and 

only one, of the possible sub-matrices that it can possibly belong to. 

ii.The position of this element in the original matrix is not compromised 

(i.e. must not change). 

- -
a b 0 c 0 0 
d e £ _0 La 0 

I ~ 

0 h i 0 0 J 
k 0 0 I m 0 
u n u p q r 
0 0 s 0 t u 

-
Figure 4-2: Matrix Division using Overlapping Sub-Matrices 
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Matrix A and its corresponding vector are given by the elements within the orange lines 
Matrix B and its corresponding vector are given by the elements within the blue lines 
Matrix C and its corresponding vector are given by the elements within the green lines 

A MVM is carried, using these sub-matrices, as follows, 

a b 0 c 
d 0 0 0 
0 0 0 0 
k o o I 

e f 0 g 
0 0 0 0 
0 0 0 m 
n 0 p q 

h 0 J 
0 0 0 0 
0 0 0 r 
s 0 t u 

A 

a3 

B 

c 

Figure 4-3: MVM using Overlapping Sub-Matrices 

bl 1 
I 

b2 H Cl 

I I 
b3 I~ C2 

I I 
I b4 t+i C3 

u C4 

The elements of each of the smaller MVM results are matched to the corresponding 

element in the larger MVM result. In the case of an overlap, the sum of the corresponding 

overlapping elements (elements in the yellow boxes) is used. 

4.1.2 MVM using Non-Overlapping Sub-Matrices 

A better and more efficient way is to divide B into smaller matrices as shown in Figure 

4-4. The nonzero elements of the original larger matrix are also distributed as evenly as 

possible among these smaller sub-matrices and vector v into smaller overlapping vectors 

as shown below. This is a special case of the approach discussed in section 4.1.1 , where 

the nonzero e lements of the original larger matrix are distributed among the smaller sub-

matrices, with no overlap between any two sub-matrices. Due to the elimination of 
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Figure 4-4: Matrix Division using Non-Overlapping Sub-Matrices 

these overlaps, the elements of each of the smaller MVM results are matched to the 

corresponding element in the larger MVM result as shown in Figure 4-5 . 

Figure 4-5: MVM using Non-Overlapping Sub-Matrices 

In both approaches to MVM, the band of these sub-matrices is the same as that of B. 

Further, the completion time for a MVM will be 3 times faster forB and 6 times faster 

forK, since B was divided into 3 smaller sub-matrices in the examples above. In the 

general case, if B is divided into M smaller sub-matrices the MVM involving K will be 

completed 2M times faster. One point of note is that only one memory fetch' can be done 
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at any time. Earlier, we described the case when one memory fetch was used to feed two 

MVUs at the same time. The use of one memory fetch to feed two MVUs is mainly 

possible because of the conjugate symmetry of matrix K. This is, however, not the case 

for matrix B, thus each of the sub-matrices generated using the matrix division techniques 

discussed earlier must be stored in separate memory blocks, one for each of the MVUs 

that will be working in parallel. In systems where conjugate symmetry is not applicable, 

the matrix division techniques must be applied directly to K. 

4.2 CGM Accelerator 

The CGM accelerator consists of a series ofMVU for carrying out MVMs and a Scalar-

Vector Unit (SVU) for carrying out the remaining VSOs in the CGM. 

4.2.1 Matrix-by-Vector Multiplier Unit 

This MVU is designed for MVMs, of the form Kp and pTKp, which may involve sparse 

matrices. The design, shown in Figure 4-6, requires only the nonzero elements of the 

matrix to be stored in the memory. The nonzero elements are stored in memory as part of 

a simple 32-bit instruction format, shown below, that was designed for the MVU. 

Further, these nonzero elements are stored in memory using a fixed-point format. 

I a(tbit) I b(tbit) I c(9bits) d(2lbits) 

a bit 31 determines end of matrix. 
b bit 30 determines end of current row. 
c bits 29 to 21 determine the column of the nonzero value. 
d last 21 bits give the nonzero value. 
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Figure 4-6: MVU Implementation 
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The MVU datapath is pipelined and divided into three modules 

1. Instuction Fetch (module !Fetch) 

2. Instruction Decode (module !Decode) 

3. Execute (module !Execute) 

.\1:Vtl 
Data~Patb 

Module IFetch: This module fetches the next instruction from memory and forwards it 

to module !Decode through register F/D Reg. The instructions are read sequentially with 

addresses gotten from a sequential counter. 

Module !Decode: The instruction is decoded here using the format above. It is 

determined here if the end of the current row or (ER) or the end of matrix (EM) has been 

reached. These are determined by the first two bits. It also determines the matrix element 

and the address of the vector element needed for the next multiplication. 

Module !Execute: This module performs the traditional MVM (i.e. taking the inner 

product of each row and the multiplying vector, starting with the first row) using a set of 

multipliers and an accumulator. The accumulator is reset to zero at the end of every row. 

The appropriate value in the accumulator is stored in the required location of the Final 
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Result register. The ER and EM bits are also forwarded to the appropriate registers. One 

thing of note is that the first element of the result of Kp, is available after the first inner 

product is completed, and the second is available after the second inner product is 

completed and so on. The availability of these values means that the calculation ofpTKp 

can be done concurrently with the calculation ofKp. 

The MVU-Controller controls the flow of information among the registers and modules 

in the MVU data-path. There are three registers used to pass information between the 

MVU and the SVU, one for the vector used in the MVM (multiplying vector), while the 

others are for the MVU results. The multiplying vector register g Reg is used for 

receiving the direction vector from the SVU, while the result registers, pTKp Reg and Kp 

Reg, are used for passing the MVU results (pTKp and Kp) to the SVU. All three registers 

are updated once every iteration of the CGM. When the MVU has finished a MVM, it 

notifies the SVU. The SVU then becomes active and begins its operations. The time to 

complete an MVM depends solely on the number of nonzero elements of the matrix used 

in the operation. In other words, the time it takes the MVU to complete an MVM varies 

with matrix size and sparcity. 

4.2.2 Scalar-Vector Unit 

As mentioned earlier, the SVU carries out all the required VSOs in the CGM except for 

the MVM. Figure 4-7 shows the set-up that carries out these operations. The design 

provides some ease and flexibility in carrying out the initialization of the required 

parameter used in the CGM. Most of the operations in the CGMs main loop, shown 

below, are dependent on each other; hence they must be carried out sequentially in the 
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order of dependence. For example a must be updated before x orr is updated, and r must 

be updated before f3 is updated. 

for n =l:N 

a= r:_trn_jp~-tKPn-1 
XII= xn-1 +a *Pn-1 

rn = rn-t- a* Kpn-1 

f3 = r~ r)rLtrn-t 

Pn = rn + f3 * Pn-t 
end 

Calculate New Step Size for x and r 

Calculate New x 

Calculate New Residual r 

Calculate New Step Size for p 

Calculate New Search direction p 

On the other hand, the updating of x and r are independent of one another, so they can be 

updated simultaneously. However, updating x and r simultaneously is not necessary 

because the time that is saved, 1 clock cycle, is not justified when considering that the 

amount of resources that is required to update x and r will be doubled. Note that the use 

of a for loop keeps the completion time for the SVU fixed. 
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Figure 4-7: SVU Implementation 
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As seen in Figure 4-7, the three main modules used in the SVU data-path are a Divider, a 

Vector ALU (VecALU), and an Accumulator. The operations performed by these 

modules are described below. 

Divider: This module is used to calculate a and~' which in turn are used by VecALU. 

VecALU: This is an arithmetic logic unit (ALU) that specifically carries out vector­

vector or vector-scalar operations. The new values of the residual r, direction g and 

variable x are calculated here. The module uses these values along with a and ~ to 

calculate the required values in the next iteration. The new value of r2 Reg, also 

calculated here, is passed to the Accumulator. 

Accumulator: This module sums the elements of the register r2 Reg. The result of this 

summation is the 2-norm of vector r. Hence, each element of register r2 Reg is the 

square of the corresponding element of register r Reg. The Divider uses this 2-norm 

value in the calculation of a and ~· 

Like the MVU-Control, SVU-Control also controls the flow of information among the 

registers and modules in the SVU data-path. As discussed earlier, in section 4.2.1, the 

MVU result registers, and multiplying vector register are used for passing information 

between the SVU and MVU. Furthermore, when the SVU has finished its operations, it 

notifies each of the MVU to start the next MVM. 

Our CGM accelerator has just one SVU and several MVUs, hence each of these MVUs 

must communicate with the SVU and vice-versa. This CGM accelerator is a simple 

example of how two or more processors can be used in the speed up of numerical 
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algorithms, as the SVU and MVUs are essentially separate application specific 

processors. Figure 4-8 shows a CGM accelerator set-up when 5 MVUs work in parallel. 

svu 

r - --1 KpReg 
I 
I 
I 

t pTKp Reg I 
I . .. I _____ ... - - - J: - - -.- - - 1- - -. -

lmtrudon 
.\lei'OOry 1 

~~~~~1-."~~· 

Figure 4-8: CGM Accelerator Set-Up using 5 MVUs 

lmtrution 
.\l~mury5 

The CGM Controller determines when to start and stop the execution of the CGM. The 

CGM Controller also controls the number of iterations used in the CGM. 
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5 RESOURCE USAGE AND PERFORMANCE ANALYSIS 

5.1 Resource Usage 

FPGAs contains three main resources namely, multipliers, logic elements and regi ters. 

Of these three, the multipliers are of least abundance. This makes them the bottle-neck of 

any design for applications that are heavily dependent on the usage of multipliers. For 

1/) 250 .... 
CD 
'a_ 200 
E 

~ 1~ 1 
'*"' 100 

~ 
5 

#of MVU 

Figure 5-l: Multiplier Usage 
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this reason, the multiplier usage is the primary measure of our designs resource usage 

quantifier because it is the deciding factor in the maximum size of the system that can be 

solved on one FPGA. Figure 5-1 shows the multiplier usage of our CGM accelerators 

implementation for different number ofMVUs and grid sizes n (number of nodes). We 

implemented the CGM accelerator on Altera 's DE2 development board using the Quartus 

II software. The implementation can be clocked at speeds up to 133MHz. 
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5.2 Performance Analysis 

We used a two-pronged approach to carry out the performance analysis on the CGM 

accelerator. Firstly, we use Altera ' s simulation software to carry out a timing analysis on 

the CGM accelerator so as to determine it ' s timing performance. Secondly, we determine 

the MFLOPs performance of our CGM accelerator implementation. We repeated the both 

analyses for different grid sizes. These tests are done at 1 OOMHz. 

5.2.1 Timing Performance 

The completion time, T , for one iteration of the CGM, given by (55), is the urn of the 

completion times for the SVU and MVU. We use T as a measure of timing performance 

for our CGM accelerator. Since the implementation of the SVU keeps Tsvu constant, this 

(55) 
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Figure S-2: Computation Time for connection Models A and B 

makes TMvu the only time that can be changed. TMvu can be improved by using the 

techniques described in 4.1. Further, minimizing TMvu effectively reduces the to time to 

carry out the CGM. ln Figure 5-2 we show the computation time for one iteration of the 

CGM as a function of number of MVUs and grid size, for connection models A and B in 

Figure 2-5. 

As seen in Figure 5-2, the computation time of systems generated from connection model 

A is less than that of systems generated from connection model B. This is not unexpected 

as the stiffness matrix generated using model A is sparser than the stiffness matrix 

generated using model B. Based on the values in Figure 5-2, in the worst case scenario, a 

solution to a system with a grid of 500 nodes can be arrived at in 16.6ms and 56.1 ms for 
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connection models A and B respectively when one MVU is used. Increasing the number 

of MVUs working in parallel will reduce computation time. However, the use of one or 

more MVUs in parallel means that fewer multipliers are available for use by the SVU, as 

the number of multipliers is fixed . 

5.2.2 MFLOPS Performance 

MFLOPS performance, given by (56), is a measure of the number of fixed-point 

operations (flops) per second. 

MFLOPS =Total# of flops/iter. 
compute time/iter. 

2mn+6n+2 

T 
(56) 

Where n is the size of the system and m is the average number of nonzero elements per 

row. In Figure 5-3 we show the MFLOPS performance of the CGM as a function of 

number ofMVUs and grid size, for connection models A and Bin Figure 2-5. 
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Figure 5-3: MFLOPS Performance for connection Models A and B 

Our CGM accelerator is able to achieve more than 1400 MFLOPS and 1100 MFLOPS 

for systems based on connection models A and 8 respectively. Both values are achieved 

with 5 MVUs working in parallel. 

As you can see in Figure 5-3, the performance of the system plateaus as n gets very large. 

Figure 5-3 also shows a performance increase with an increase in the number of MVUs 

used in parallel. Hence, to further improve performance, we can use more MVUs in 

parallel. Further more, the amount of resources available determines the number of 

MVUs that can be used in parallel. Also note that while the computation times of systems 

generated from connection model A are less than those of systems generated from 

connection model B, the MFLOPS performance are in reverse order. In other words, the 

MFLOPS performance of systems generated from connection model A are higher than 
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those of systems generated from connection model B. This can also be attributed to the 

same reason in 5.2.1, that is, the stiffness matrix generated using model A is sparser than 

the stiffness matrix generated using connection model B. 
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6 CONCLUSION 

We proposed and implemented an FPGA based CGM accelerator for carrying out real­

time simulation of tissue deformation. Our design takes the sparsity of the stiffness 

matrix into account. Further more, we discussed methods of improving the speed of 

MVMs using parallel computing. We then looked at the resource requirements and the 

performance of the CGM accelerator. Our work shows that developing FPGA based 

accelerators for use in real-time simulation is feasible. Furthermore, our results provide a 

benchmark for more complex, specific, and realistic models. 

The convergence analysis, discussed in Section 2.6, showed that computational models 

generated using connection model B converges faster, while the timing analysis, 

discussed in Section 5.2.1 shows that computational models generated using connection 

model A have faster computation times. Further study may be carried out on the trade off 

between the convergence and timing properties of a computational model in relation to 

the connection model used in its generation. For example convergence and timing 

analysis may be done on computational models generated using of a combination of 

connection models A and B. Future work may also include using more specific and 

realistic computational models, as our CGM accelerator allows for the use of matrices 

with different sizes and sparsity. For example, a more specific and realistic computational 

model for needle insertion into a soft tissue may account for bending and force 

distribution along the needle shaft. These computational models may also be generated 

using a more accurate discretization technique like the finite-element method. 
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