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Abstract 

We consider the design of the precoders for a multi-input multi-output (MIMO) 

communication system equipped with a decision feedback equalizer (DFE) receiver. 

For such design problems, perfect knowledge of the channel state information ( CSI) at 

both the transmitter and the receiver is usually required. However, in the environment 

of wireless communications, it is often difficult to provide sufficiently timely and 

accurate feedback of CSI from the receiver to the transmitter for such designs to be 

practically viable. 

In this thesis, we consider the optimum precoder designs for a wireless commu­

nication link having M transmitter antennas and N receiver antennas (M < N), in 

which the channels are assumed to be fiat fading and may be correlated. We assume 

that full knowledge of CSI is available at the receiver. At the transmitter, however, 

only the first- and second-order statistics of the channels are available. Our first goal 

is to come up with an efficient design of the optimal precoder for such a MIMO sys­

tem by minimizing the average arithmetic mean-squared error (MSE) of zero-forcing 

(ZF) decision feedback detection subject to a constraint on the total transmission 

power. Applying some of the properties of the matrix parameters, this non-convex 

optimization problem can be transformed into a convex geometrical programming 

problem which can then be efficiently solved using an interior point method. The 

performance of the MIMO system equipped with this optimum precoder and a ZF­

DFE has also been found to be comparable, and in some cases, superior to that of 

V-BLAST which necessitates optimally ordered successive interference cancellation 

lV 
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based on the largest post-detection signal-to-noise ratio (SNR). In terms of trade-off 

between performance and implementation simplicity, the proposed system is certainly 

an attractive alternative. 

In addition, we also utilize these important properties of our system parameters 

to investigate an "inverse problem" of our first design. That is, we design another 

precoding matrix by minimizing the total transmission power of the MIMO com­

munication system subject to a constraint on the average MSE. Also, a closed-form 

solution is derived when the channels are uncorrelated while simulation results for 

the minimum power precoder designs is given at the end of this thesis. 

v 
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Chapter 1 

Introduction 

1.1 MIMO Communications and Precoding 

Wireless technology is one of the most important breakthroughs in modern commu­

nications since it enables many applications such as wireless mobile phone, wireless 

internet access, wireless local area networks, wireless sensor networks and so on. The 

explosive expansion in wireless communications in recent years has given rise to se­

vere technical challenges which include the demand of transmitting multimedia data 

at high rates in an environment rich of scattering. 

Multi-input multi-output (MIMO) wireless links are important recent develop­

ments in wireless communications due to their enormous potential in meeting the 

challenges caused by fading channels as well as power and bandwidth limitations. 

MIMO communication systems rely on the use of M transmitter antennas and N 

receiver antennas which enables the exploitation of the high performance provided 

by the space diversity available, and the high data rate provided by the capacity 

obtainable in the MIMO channels [1][2]. One approach which attempts to achieve 

high data rate is the Vertical Bell Labs Layered Space-Time (V-BLAST) scheme [3] 

in which data streams are transmitted from each transmitter antenna, and detected 

at the receiver using nulling and successive interference cancellation. To minimize the 
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probability of error, the order of detection in V-BLAST is based on the post-detection 

signal-to-noise ratio (SNR) the calculation of which renders the reception procedure 

computationally demanding. 

To ease off the complexity demanded at the receiver, proper design of the precoder 

at the transmitter has received intensive attention in current digital communication 

system due to its ability to improve the system performance. An important aspect in 

the design of the precoder for prescribed receivers is the availability of channel state 

information ( CSI) at the transmission and reception ends. When perfect CSI is avail­

able at the transmitter, there exist solutions to various precoder design problems [4], 

including maximization of information rate [5], maximization of SNR [6], minimiza­

tion of the mean squared error [6] and minimization of the bit error probability for 

zero-forcing (ZF) [7] and minimum mean square error (MMSE) equalization [4] [8], as 

well as the optimum joint design of transmitter-receiver for the ZF-DF and MMSE-DF 

detectors [9, 10, 11, 12, 13, 14, 15, 16, 17]. 

It is reasonable to assume that CSI is available at the receiver via training. While 

having CSI at the transmitter allows for better performance, this may not be possible 

in practice, due to rapid variations and limited feedback bandwidth such as in the 

case of frequency division duplex (FDD) systems in which user mobility is high [18]. 

Nevertheless, it is reasonable to assume that the channel statistics are known at the 

transmitter since these statistics change over much larger time scales than the chan­

nel gains. Therefore, designing optimal transmitters based on statistical information 

of channels is well motivated. When only channel statistical information is available 

at the transmitter, designs of precoders that minimize an upper bound of the aver­

age symbol error probability (SEP) based on a maximum ratio combining receiver 

has been developed [19] for a MISO communication system. Also, for the correlated 

VBLAST systems, optimal precoders minimizing the SEP for linear ZF and MMSE 

receivers have been proposed [18]. These "statistical prefilters", however, are de­

signed only for the relatively simple linear equalization which may cause a significant 

2 
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performance loss. For more sophisticated receivers, when only the statistics of the 

channels are known at the transmitter, optimal precoder designs are mainly based on 

a capacity criterion [20, 21, 22, 23, 24]. However, the advantage of such precoders 

can usually be exploited only if a maximum likelihood detector (MLD) is employed. 

Indeed, it is well known that the MLD is universally optimal in detection, yielding 

the minimum detection error probability among all receivers. Unfortunately, it is 

also computationally demanding which, to a certain extent, restricts its applications 

in practice. In terms of trade-off between system performance and implementation 

complexity, the decision feedback (DF) receiver is known to be an attractive alterna­

tive detection scheme [25]. Optimal designs of diagonal precoders that minimizes an 

approximate bit error rate (BER) of the DF detector based on channel information 

feedback have been obtained in [26] and [27]. 

1.2 Thesis Contribution 

In this thesis, our focus will also be on the use of the DF receiver in a MIMO commu­

nication system. Specifically, our goal is to design two optimum precoders for ZF-DF 

receivers, one of which minimizes the average arithmetic MSE of the ZF-DFE over 

random channel coefficients subject to a constraint of the total transmission power. 

The other one is to minimize the total transmission power of the system subject to a 

constraint on the average MSE. Throughout this thesis, we will assume that perfect 

CSI is available at the receiver, but only the first- and second-order statistics of the 

channel is known at the transmitter. 

As for modelling the transmission channel, we note that a popular channel model 

for many precoding matrix design proposed in literature is one in which the channels 

are independent and identically distributed (IID) zero-mean Gaussian variables. This 

is an idealized model representing rich uniform scattering and its analysis is relatively 

straightforward. In practice, however, transmission channels are often correlated. 

3 
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In this thesis, we examine both models and come up with optimum transmission 

precoders for both cases. 

The main contributions of this thesis include: 

• For ZF-DFE, a statistical precoder matrix has been designed based on the 

minimization of the average MSE while the total transmission power of the 

MIMO communication system is bounded. 

• Theoretical analysis of the important properties of systems matrices is provided. 

With the aid of these properties, the original non-convex optimization problem 

has been transformed to a convex one. 

• For the uncorrelated channels, a closed-form solution to the precoder design 

problem is derived. For correlated channel, the problem has been solved by 

using a numerical convex optimization method and the exact structure of the 

optimum precoding matrix is given. 

• The SER performance of the MIMO system, which shows its superiority to most 

of existing systems, has been demonstrated by simulation studies. 

• As an extension of the optimum precoder design, another precoder design prob­

lem that minimizes the total transmission power subject to a constraint on the 

average MSE has also been considered in this thesis. 

• The second design problem has also been transformed to a convex optimization 

problem by utilizing the same system properties and solved by the interior point 

method. When the MIMO channels are uncorrelated, a closed-form solution is 

derived. 

1.3 Structure of the Thesis 

The thesis is structured as follows: 

4 
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• In Chapter 2, we first give a brief introduction on the MIMO wireless com­

munication, followed by its properties. After that, the transmission model and 

assumptions of our design in the whole thesis have been given. Finally, we will 

discuss various detection schemes for MIMO transmissions. 

• In Chapter 3, an optimal precoder that produces a minimal average MSE is 

designed. After the problem formulation, the convex transformation of the 

optimization problem is derived. We also derive an analytical solutions for our 

design problem. 

• In Chapter 4, we investigate an "inverse" design problem: mm1mum power 

precoder for ZF-DF receivers. We also solve this problem both numerically and 

analytically according to the channel correlation. 

• In Chapter 5, simulations have been studied for different scenarios. 

• Conclusion on this thesis and suggestion for future work are discussed in Chap­

ter 6 

5 



Chapter 2 

Multi-Input Multi-Output 

Wireless Communications 

In this chapter, we will give an overview of MIMO communication system. We first 

introduce the MIMO architecture and establish the channel model of our designs. 

After that, a detailed discussion of different MIMO detection schemes, including the 

maximum likelihood detection, linear receivers, decision feedback receivers and the 

V-BLAST detection algorithm, is given. 

2.1 MIMO Systems 

A traditional wireless communication system usually employs a Single-Input Single­

Output (SISO) system in which a single transmitter antenna is used for transmission 

information to a single receiver antenna. However, the most significant disadvantage 

of SISO transmission is its low transmission data rate. In the past decade, this 

scenario has been greatly changed with the advent of Multiple-Input Multiple-Output 

(MIMO) communication systems. Information theoretic results conclude that MIMO 

systems can offer significant capacity gains and a higher transmission rate than SISO 

systems [2]. 
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Figure 2.1: A MIMO Communication System 

Over the past decade, MIMO has evolved in significance from an academic research 

to industrial implementation such as the next generation wireless standards, including 

UMTS (Universal Mobile Telecommunications System) and the IEEE802 standards 

family. For instance, the IEEE 802.16e standard incorporates MIMO-OFDMA and 

the IEEE 802.11n standard recommends the MIMO-OFDM. MIMO is also planned 

to be used in mobile radio telephone standards such as the 3GPP and 3GPP2 stan­

dards. All upcoming 4G systems will also employ the MIMO technology. All these 

applications make MIMO architecture a very attractive scheme for current wireless 

communications [28]. 

Fig. 2.1 shows a basic structure of a MIMO wireless system. There are M anten­

nas at the transmitter, and N antennas at the receiver. Each transmitter antenna 

sends a symbol at each time instance. All the transmitter antennas are working 

synchronously. Each receiver antenna receives a combination of signals from all M 

transmitter antennas plus noise. When the channel is modeled as a flat fading chan­

nel, which means there is no interference from the previous transmitted symbols, on 

the receiver side, the received signal vector can be expressed as: 

y=Hx+w (2.1) 

7 
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where: 

• x is the transmitted M x 1 vector, with xi, the ith component of x, being 

transmitted from transmitter antenna i. 

• H is an N x M complex channel matrix. The ijth element hij of this matrix is 

the channel gain from the jth transmitter antenna to the ith receiver antenna. 

• y is an N x 1 received vector. 

• w is an N x 1 noise vector. The components of w are zero mean circularly 

symmetric complex Gaussian variables. If we assume there is no correlation 

between components of w, the covariance matrix of the noise vector is 

MIMO communications can increase the system capacity by means of spatial mul­

tiplexing and improve transmission quality by taking advantage of spatial diversity. 

In fact, the MIMO transmission schemes can be mainly categorized as the capacity 

(or rate) maximization schemes and the diversity maximization schemes [29]. The 

system capacity or the transmission data rate over MIMO channels can be maximized 

by means of spatial multiplexing, where independent data streams are transmitted at 

the same time over multiple transmitter antennas. An example of spatial multiplex­

ing is the Bell Labs BLAST architecture [3]. In this scheme, different symbol streams 

are simultaneously transmitted from all the transmitter antennas while the receiver 

antennas receive the superposition of all symbol streams and recover them by using 

advanced signal processing. On the other hand, the goal of diversity maximization is 

to reduce the error rate of the received signal. Space time coding (STC) is used for 

such diversity maximization. In STC systems, the same information symbol stream is 

transmitted from different transmitter antennas in a proper manner so as to improve 

the data transmission reliability. Therefore, the advantage of a MIMO channel can be 

utilized in two main approaches. First, to increase the number of transmitted symbols 

8 
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per unit time. Second, to increase the diversity of the wireless communication system. 

Although there are some researchers working on exploiting both the diversity gain 

and multiplexing gain, the tradeoff between the two gains is still a crucial research 

topic in MIMO communications. In our designs, we consider the MIMO channel that 

guarantee a higher data rate, the transmission model of which is given by the next 

section. 

2.2 Transmission Model 

In this thesis, we consider a precoded MIMO [3] communication system as shown 

in Fig. 2.2 having M antennas at the transmitter and N antennas at the receiver 

(N > M) such that the signal transmission can be modelled as 

y = HTx+w, (2.2) 

where y is an N x 1 received signal vector, H is an N x M channel matrix, T is 

an M x M precoding matrix, x is an M x 1 transmitting signal vector and w is an 

N x 1 complex noise vector. We make the usual assumptions that the transmitted 

symbols in x are uncorrelated with each other and uncorrelated with the circularly­

symmetric complex Gaussian channel noise, the covariance of which is Rww = 0"21N. 

The channel matrix H contains the channels hnm linking the mth transmitter antenna 

to the nth receiver antenna. Each of the hnm is a zero-mean, circularly-symmetric 

complex Gaussian distributed random variable with unit variance. Let the nth row 

of H be h;: = [ hnl . . . hnM ]. We assume that 

(2.3) 

In other words, we assume that the channels leading the signals to the nth receiver 

antenna are correlated among themselves, but are uncorrelated with the channel 

leading the signals to the £th receiver antenna if .e -I- n. It is well-known [30] that 

9 
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Figure 2.2: Transmission Model 

Received 
Data 

HHH is of Wishart distribution, of N degrees of freedom and with covariance matrix 

~' denoted by WM(N, ~). If we consider the precoder matrix T as a part of the 

channel such that H' = HT, then we have 

f=n 
(2.4) 

f=Jn 

Also, H'HH' = (HT)HHT is of Wishart distribution denoted by WM(N, TH~T). 

The quantity TH~T is of fundamental importance in our application and we will 

examine its properties in greater details in the ensuing chapter. 

2.3 Detection Schemes 

The goal of the detector is to obtain an estimate of x from the given data in y and 

H. In this section, we discuss different receivers for MIMO systems. 

2.3.1 Maximum Likelihood Detection 

The maximum likelihood Detection (MLD) is an optimum receiver for MIMO com­

munication systems. In MLD, the probability of error is minimized such as 

10 
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min Pe ~ P(x =/=:X) (2.5) 

where :X is the estimated symbol vector. 

Indeed, minimizing the probability of error is equivalent to maximizing the prob­

ability of correctly estimating x given y and H, i.e., 

maxP(x = xly,H) (2.6) 

Note that this probability is equal to: 

P(x = xly H) = P(x =:X) Pylx,H(Yix =:X, H) 
' PyiH(YIH) 

(2.7) 

where Pylx,H and PyiH are the conditional probability density functions of y given 

x, H and H respectively. Since neither P(x = :X) nor PyiH(YIH) depends on :X, our 

objective is further equivalent to maximizing Pylx,H(ylx =:X, H). 

Thus, the criterion of MLD is given by: 

X= argm~XPylx,H(Yix =X:, H) (2.8) 

Eq. (2.8) can be further simplified by applying the system equation in Eq. (2.1) 

to obtain 

Pylx,H(ylx = x, H) = Pw(Y- Hx) (2.9) 

where the probability density function of the white Gaussian noise w is given by 

(2.10) 

Therefore, the likelihood of :X is obtained by substituting w with y - Hx in 

Eq. (2.10). Since Pylx,H(ylx = :X, H) = Pw(Y - Hx) is maximized by minimizing 

IIY - Hxll, the ML estimate of x is given by 

11 
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x = arg min IIY- Hxll 2 (2.11) 
X 

The MLD searches through all the vector constellation for the most probable 

transmitted signal vector, which is a very difficult task. Its computational complexity 

is prohibitive especially when the number of channels is large. Hence, these receivers 

are difficult to implement in practical situations. 

It is desirable to find other detection schemes which is sub-optimal but has much 

lower computation complexity. 

2.3.2 Linear Equalization 

Linear receivers are the class of receivers for which the output symbol estimate x is 
given by quantizing a linearly transformed version of the received vector y 

x Q [x'] 

Q [Gy] 

Q [G(Hx+w)] 

where G is a matrix that may depend on Hand Q [·] is an element-wise quanti­

zation operation that maps each element of its argument to the nearest signal point 

in the constellation (using Euclidian distance). x' is the equalized signal. Hereby, 

we introduce both the zero-forcing (ZF) equalization and the minimize mean square 

error (MMSE) equalization. 

• Zero-faring Equalization 

Zero-foring Equalization scheme behaves like a linear filter to separate the data 

streams and thereafter independently detects each stream. It can be applied 

to the system where the channel matrix H is invertible. We first multiply 

y = Hx+w by 

12 
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(2.12) 

where Ht denotes the Moore-Penrose pseudo inverse of H. Thus, 

x+w' (2.13) 

where w' = Htw = (HHH)-1Hw, and the estimation :X is the quantization of 

x'. 

However, the problem of ZF equalization is in the covariance matrix of w' given 

by: 

(HHH)-1HE[wwH]HH (HHH)-H 

o-2(HHH)-1 HHH (HHH)-1 

172(HHH)-1 

When the channel matrix H is poorly conditioned, the variance of some element 

in the vector w' may be too high owing to the inverse of HHH. This drawback 

of enhancing the noise power will degrade the error rate performance especially 

at lower SNRs. 

• MMSE Equalization 

Now, we examine another widely used linear receiver: the MMSE equalization. 

We want to choose a matrix G that minimizes the mean square error between 

the equalized signal denoted by x' and the transmitted signal x. Since the first 

operation of linear receiver is multiplying Eq. (2.1) by G forming 

x' Gy = GHx+ Gw (2.14) 

13 
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then the error vector between between x' and x can be written as 

e (GH- I)x+ Gw (2.15) 

The MSE is given by 

(2.16) 

From [31], we know that the minimum value of the MSE is reached when the 

following equation holds. 

Substituting Eq. (2.15) into Eq. (2.17), we have 

E [ ( ( G H - I) x + Gw) (Hx + w) H] 
GHHH - HH + 0"2G 

0 

Hence, the optimal matrix G for MMSE linear receiver is given by 

(2.17) 

(2.18) 

(2.19) 

The ZF receiver can separate the co-channels' signal at the cost of noise enhance­

ment. The MMSE equalization, on the other hand, has ability to minimize the overall 

mean square error caused by noise and mutual interference between the co-channel 

signals, but this is at the cost of separation quality of the signals [32]. In addition, 

the MMSE receiver needs the noise variance which may not be easily estimated in 

some situations. But the ZF receiver does not need such information. Therefore, the 

ZF receiver and the MMSE receiver can be used in different scenarios. 

14 
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Figure 2.3: A Decision Feedback Receiver 

2.3.3 Zero-forcing (ZF) Decision Feedback Receivers 

While the ML receiver yields optimum performance but suffers from high complexity 

and while the linear receiver is simple to implement but suffers from loss of per­

formance, the Decision Feedback (DF) receiver enjoys having a desirable trade-off 

between good performance and implementation complexity [33]. We therefore focus 

on the use of DF receiver in this thesis. In particular, we concentrate on the DF 

receiver which employs the zero-forcing (ZF) strategy, i.e., a ZF-DF receiver. 

In the following, a detailed review of decision feedback detection is given as well 

as its equivalence with the QR-decomposition. 

For the detection of block data, the DF receiver (Fig. 2.3) employs a feed-forward 

filter F to process the received data vector forming z = Fy. The estimated symbol 

vector x' is given by this processed data vector z subtracting the output x of a 

feedback filter B. The detected symbol vector :X is then the quantized version of the 

estimated symbol vector. The detection of the mth symbol, Xm, of the transmitted 

vector x proceeds sequentially, starting from the last symbol, as follows: 

1. Starting from m = M, we make x~ = zM; 

2. Let Xm = L~m+l bmde be the output of the feedback filter B, with bme being 

its coefficients. The states of this filter, xe, are the previously detected symbols 

in the block and the filter coefficients are different for each element of the block 

(indexed by m). 

3. Let X~= Zm- Xm, m = M- 1, M- 2, ... ' 1. 

15 
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Once a given block has been detected, the states of the feedback filter are reset to 

zero, so that error propagation between blocks is avoided. 

Hence, we can write the detection procedure as: 

x' = z - Bx = FHx + Fw - Bx (2.20) 

Since the detection starts from the last symbol x M, and the symbol Xm to be 

cancelled is a linear combination of the previous detected symbols, the filter B is a 

strictly upper triangular matrix such that 

0 b12 b13 

0 0 b23 

B= 

0 0 0 

0 0 0 

b(M-l)M 

0 

where all its elements bm£, m = 1, · · · , M- 1; Jl, = m + 1, · · · , Mare non-zero. 

Assuming that the detected symbols are all correct, i.e., x = x, then 

x = Q[x'] = Q[(FHT- B)x + Fw] (2.21) 

Therefore, if we denote the error of detection bye= x'- x, then from Eq. (2.20), 

the error of the DF receiver can be written as: 

e = (FH - I)x + Fw - Bx (2.22) 

Assuming that the previously detected symbols are all correct, 1.e., x = x, we 

have: 

e = (FH - I - B )x + Fw 

16 



M.A.Sc: Tingting Liu McMaster- Electrical and Computer Engineering 

The covariance matrix of this error is: 

Ree = (FH- I- B)(FH- I- B)H + FRwwFH (2.23) 

The arithmetic mean square error (MSE) of the detector input is 

1 H 
M tr (E [ee] ) 

1 
M tr (E [(x'- x)(x'- x)H]) 

1 
M tr (Ree) 

For zero-forcing criterion (ZF-DFE), in Eq. (2.23), we have 

FH- I- B = 0 (2.24) 

Hence, we can obtain the ZF feedforward matrix FzF such that 

(2.25) 

where Ht denotes the Moore-Penrose pseudo inverse of H. 

And the arithmetic MSE of ZD-DF receiver can be written as: 

(2.26) 

The mathematical operation of the DF receiver is best described by the QR­

decomposition [34] of HT in Eq. (2.2) such that 

HT=QR (2.27) 

17 
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where Q is an N x M orthonormal matrix and R is an M x M upper triangular 

matrix with rii > 0. Then, left-multiplying Eq. (2.2) by QH yields 

where w1 = QHw. 

Eq. (2.28) can be equivalently written as: 

M 

TJm=rmmXm+ L rmkXk+w~, m=1,···,M 
k=m+l 

(2.28) 

(2.29) 

Now, we employ Eq. (2.28) to estimate the mth transmitted symbol Xm, starting from 

the last received symbol ( m = M), such that 

1 
( TJm- l:~m+l rmkXk) - W~ 

xm = , m = M, · · · , 1 
rmm 

(2.30) 

The detected symbol Xm is the quantized version of x~, i.e., Xm = Q[x~J. 

The ZF strategy demands that the term inside the parentheses in the numerator 

of Eq. (2.30) be zero. Comparing Eq. (2.30) with the operation of the DF receiver in 

Fig. 2.3, and assuming no error in the previous detections, we have 

F d · ( -1 -1 -1 ) QH Iag r 11 ' r 22 ' . . . ' r M M (2.31a) 

Xm ( t r=,xk) jrmm (2.31b) 
k=m+l 

bmk rmk/rmm, for m i= k (2.31c) 

where bmk are the non-zero off-diagonal elements of the upper triangular matrix feed­

back filter B. 

Because of the equivalence of ZF-DF receiver and the QR decomposition, under 

the assumption that the previous symbols have been perfectly detected, the error can 

be further written as: 

I d' ( -1 -1 -1 )QH e = x - x = 1ag r 11 , r 22 , · · · , r M M w (2.32) 

18 
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Therefore, the arithmetic MSE of the ZF-DF detector, denoted by c2 as in Eq. (2.26), 

is further written as 
- CJ2 CJ2 M 
c2 = - tr (FFH) = - """"'r-2 

M M ~ mm 
(2.33) 

m=l 

where r 11 , r 22 , · · · , rMM are diagonal elements of the R matrix in the QR-decomposition 

ofHT. 

2.3.4 MMSE Decision Feedback Receivers 

In the previous section, we have discussed the DF receiver using ZF schemes. In this 

section, we consider DF detection based on the minimum mean square error criterion. 

To determine a condition for the MMSE-DF receiver, the orthogonality principle is 

employed. Let us first introduce the orthogonality principle. Since the error between 

x' and xis given by Eq. (2.22), which is further equal toe= Fy- (B + I)x . Then, 

the arithmetic average mean square error (MSE) of the detector input is given by 

1 H 
M tr (E [ee] ) 

~ tr ( E[(Fy- (B + I)x)(Fy- (B + I)x)H]) 

~ ( tr(F E[yyH] FH) - 2tr( (B +I) E[xyH] FH) 

+ tr( (B +I) E[xxH] (B +I) H)) (2.34) 

Given the feedback matrix B, the feedforward filter F is determined by minimizing 

Eq. (2.34). 

Since the first order derivative of Eq. (2.34) with respect to F is given by 

(2.35) 

For the minimum value of the MSE, the first order derivative (or the gradient 

matrix) Vc2 must be set to a zero vector, i.e., 

(2.36) 

19 
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Indeed, the orthogonality principle is the necessary and sufficient condition for the 

minimized MSE as given by Eq. (2.36). Therefore, the DFE is optimal in the MSE 

sense when the errore is orthogonal toy, the input signal of the DFE. 

As showed in Fig. 2.3, the received vector of DF receiver is y = Hx + w. Hence, 

the covariance matrix of y is 

Ryy E [yyH] 

E [(Hx + w)(Hx + ~)H] 

HHH + Rww 

and the cross correlation matrix of x and y is 

and Rxy = R:X 

Thus, 

Rxy E [xyH] 

E [x(Hx + w )H] 

HH 

E [(Fy- (B + I)x)yH] 

FRyy - (B + I)Rxy 

0 

Therefore, the feedforward matrix of the MMSE-DFE (FMMSE) is given by: 

(B + I)RxyR;Y1 

(B + I)HH (HHH + Rwwt1 

Substituting Eq. (2.40) into Eq. (2.23), we have 

20 
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Ree ((B + I)HH(HHH + Rww)-1H- I- B)((B + I)HH(HHH + Rww)-1H- I- B)H 

+ (B + I)HH (HHH + Rww)-1Rww(HHH + Rww)-1H(B + I)H 

(B +I) [HH (HHH + Rww)-1HHH(HHH + Rww)-1H- 2HH(HHH + Rww)-1H 

+ I+ HH (HHH + Rww)-1Rww(HHH + Rww)-1H] (B + I)H 

(B +I) [I- HH (HHH + Rww)-1H] (B + I)H (2.41) 

Using the Matrix Inversion Lemma in [35], we can rewrite Ree of MMSE-DF 

rece1ver as: 

(B + I)(I + HHR;:~Ht1 (B + I)H 

(B + I)(I + -;.HHHt1(B + I)H 
(J 

(2.42) 

Now, we perform QR decomposition to the matrix of (I+ 0\HHH)~ such that 

(2.43) 

where Q is also an N x M orthonormal matrix and R is an M x M upper triangular 

matrix with diagonal elements fmm > 0 form= 1, · · · , M. 

Therefore, 

(QR)H(QR) 

JlHJl (2.44) 

If we extract the diagonal elements of R matrix as a diagonal matrix such that 

1 :Ell f1M 
fn fn 

0 1 fzM 

:R diag (fn, f22, · · · , f'MM) fzz 

0 0 1 
t; 

diag(ru, f22, · · · , f'MM )LH (2.45) 

21 
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with f.H being the upper triangular matrix with all diagonal elements being unity as 

defined in Eq. (2.45). 

Now, substituting Eq. (2.45) into Eq. (2.44), we have 

:JlH:Jl 

L- d" ( -2 -2 -2 ) L-H mg rn, r22' · · · 'rMM (2.46) 

Thus, if we let B +I = L -l, the error covariance matrix of MMSE-DF receiver 

becomes 

Ree (B + I)(I + ~HHH)-1 (B + I)H 
(J 

diag(r\12
, f 222

, · · · , r;;ii) (2.47) 

Hence, the MSE of the MMSE-DF receiver is given by 

(2.48) 

where fu, 7'22 , · · · , f'MM are diagonal elements of the R matrix in the QR-decomposition 

of (I+ 
0
\HHH)!. 

2.3.5 V-BLAST Receiver 

Successive processing usually leads to the problem of error propagation. If we assume 

that all the previously detected symbol vectors of the DF receivers are correct, then 

there is no error propagation, in which case the error rate performance of the DF re-

ceiver is dominated by the weakest data stream. To minimize the risk of this problem, 

the ordered DFE was introduced. This ordered successive interference cancellation 

scheme is generally called V-BLAST detection algorithm [3]. 

22 
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The optimal ordering in V-BLAST is a method of minimizing the unavoidable 

error propagation by sorting out the order of the data streams being detected. Ba­

sically, from the knowledge of the channel matrix, the V-BLAST scheme decides on 

the order of detecting the symbols by first selecting the one which associates with 

the channel vector having the highest SNR. Since the vector with the higher post 

detection SNR may have lower error probabilities, thus processing these vectors at 

earlier stages leads to less error. 

After threshold detection of the selected symbol, the associated channel vector 

is eliminated from the original channel matrix forming a diminished matrix. The 

symbol having the next highest reception SNR is then selected for detection and 

the procedure of elimination of the corresponding channel vector continues until the 

sequential detection of all the symbols is complete. This ordering of symbol detection 

of V-BLAST based on the received symbol SNR yields superior error rate performance 

compared to that of a similar scheme without the ordering. 

Now, we discuss two different V-BLAST (ordered DFE) algorithms [3] [36]: the 

Zero-forcing V-BLAST algorithm and the MMSE V-BLAST algorithm. 

23 
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• ZF V-BLAST 

McMaster - Electrical and Computer Engineering 

Initialization : 

~ ~ 1 

Ht 

argmin ll(gi)JII 2 

J 

Recursion: 

~ ~ i + 1 

(2.49a) 

(2.49b) 

(2.49c) 

(2.49d) 

(2.49e) 

(2.49f) 

(2.49g) 

(2.49h) 

(2.49i) 

(2.49j) 

(2.49k) 

where Hfi denotes the matrix obtained by setting columns k 1 , · · · , ki of H to 

zero columns. And t denotes the Morre-Penrose pseudo inverse of a matrix. Gi 

is the ith iteration of G and (gi)J denotes the jth row of Gi. 

In the recursive procedure of ZF V-BLAST, Eq. (2.49d) determines the optimal 

row of G 1 = Ht with the strongest SNR. Eq. (2.49e) to Eq. (2.49g) compute the 

ZF nulling vector, the decision statistic rk; and the estimated value of x, respec­

tively. And Eq. (2.49h) performs the cacellation of the effect of the detected 

signal vector from the received signal vector to reduce the detection complexity 

for the remaining signals. Eq. (2.49i) calculates the new pseudo inverse for the 

next iteration. This new pseudo inverse is based on the matrix obtained by 

zeroing columns k1 , · · · , ki of H. This is because these columns correspond to 

components of x, which have already been estimated and canceled [36]. 
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• MMSE V-BLAST 

The V-BLAST combined with the MMSE algorithm is the same as that of ZF 

V-BLAST but with 

(2.50) 

The MMSE V-BLAST suppresses both the interference and noise components, 

whereas the ZF V-BLAST only removes the interference components. 

We will also compare the performance of our optimally precoded system using 

the unordered ZF-DF receiver with that of the ZF V-BLAST detection scheme which 

employs an additional optimal ordering procedure. 
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Chapter 3 

Minimum MSE Precoder for 

ZF-DF Receivers 

3.1 Problem Description 

Our purpose in this chapter is to propose an efficient technique for designing a pre­

coder matrix T that minimizes the average arithmetic MSE of ZF-DF receiver. We 

assume that the transmitter only knows the first- and second-order statistics of the 

channel. Referring to Eq. (2.33) for the MSE of the ZF-DF receiver, our problem can 

be formally stated as: 

Problem 3.1. Design a precoding matrix T such that 

M 

T opt = arg mJn EH ( L r;;,;,) (3.1) 
m=l 

subject to the total transmitting power constraint 

tr(TH T) :s; Po 

where p0 is the total transmitting power and the notation EH ( ·) denotes the ex­

pectation taken over all random channel realizations. 
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3.2 Analytic Properties of the System Matrices 

Since the channel matrix H and the transmission precoder T are central to the solu­

tion of Problem 3.1, we will examine some properties of these system matrices. First, 

let us visit the mathematical concept of majorization and Schur convexity [37] [38]. 

3.2.1 Majorization and Schur Convexity 

Majorization theory is a powerful tool that allows us to transform the original problem 

into a convex problem. In this section, we introduce the basic notions of majorization 

and state some useful results. 

Let a= [a1 , a 2 , · · · , aMJT and b = [b1 , b2 , · · · , bM]T be two M-dimensional real­

valued sequences satisfying a[l] 2:: a[2J 2:: · · · 2:: a[MJ and b[l] 2:: b[2J 2:: · · · 2:: b[MJ· 

Definition 3.1. The sequence a is said to be additively majorized by sequence b, 

denoted by a -< + b, if 

K K 

La[m] < Lb[m], 1~K<M (3.2a) 
m=l m=l 

M M 

La[m] Lb[m] (3.2b) 
m=l m=l 

Parallel to the definition of additive majorization is the concept of multiplicative 

majorization. 

Definition 3.2. If a1, a2, · · · , aM and b1, b2, · · · , bM are positive numbers. The se­

quence a is said to be multiplicatively majorized by sequence b, denoted by a -<x b, 

if 

K K 

II a[m] < II b[m], 1 ~K<M (3.3a) 
m=l m=l 

M M 

II a[m] II b[m] (3.3b) 
m=l m=l 

27 



M.A.Sc: Tingting Liu McMaster- Electrical and Computer Engineering 

There is also a simple relationship between additive majorization and multiplica­

tive majorization such that 

a--<+ b if and only if exp(a) --<x exp(b) (3.4) 

Majorization is a partial ordering among vectors that have the same sum or product. 

It is a measure of the degree of similarity between the vector elements. 

Definition 3.3. A real-valued function ¢ defined on a set A ~ 1Rn is said to be 

Schur-convex on A if 

a--<+ b on A ::::;. ¢(a)::;; ¢(b) (3.5a) 

If strict inequality holds such that ¢(a) < ¢(b) whenever a --<+ b but a is not a 

permutation of b, then ¢ is said to be strictly Schur-convex on A. 

Similarly, ¢ is said to be Schur-concave on A if 

on A::::;. ¢(a) ~¢(b) (3.5b) 

and ¢ is strictly Schur- concave on A if¢( a) > ¢(b), for a not being a permutation 

of b. 

For¢ being Schur-convex or Schur-concave, equality holds in Eqs. (3.5a) or (3.5b) if 

a = b. For¢ being strictly Schur-convex or Schur- concave, equality in Eqs. (3. 5a) 

or (3.5b) holds if and only if a= b. 

Obviously, if¢ is Schur convex on A, then -¢ is Schur concave on A and vice 

versa. 

3.2.2 QR Decomposition 

We first examine the QR decomposition of the matrix product HT such that 

H'~HT=QR (3.6) 
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Then, 

(3.7) 

Now, extracting the diagonal elements {rmm} for m = 1, 2, · · · , M as a diagonal 

matrix such that 

1 Tl2 TIM 

Tll Tll 

0 1 T2M 

R diag (rn,r22,··· ,rMM) r22 

0 0 1 
_b. diag(rn,r22,·· · ,rMM)LH (3.8) 

with LH being the upper triangular matrix with all diagonal elements being unity as 

defined in Eq. (3.8), we obtain 

(3.9) 

from which we can write 
M 

det(H'HH') = II r~m (3.10) 
m=1 

In order to compute r!m, m = 1, 2, · · · , M, we recall that H~k denotes the matrix 

consisting of the first k rows and columns of H'. We note that removing the Mth row 

and column of H', the resulting matrix H(M-1)(M-1) is equal to product of the matrix 

Q with the Mth row removed and the matrix R with the Mth column removed, i.e., 

H(M-1)(M-1) = Q(M-1)MRM(M-1), therefore, 

M-1 

det(H'fM-1)(M-1)H(M-1)(M-1)) = II r~m 
m=1 

From Eqs. (3.10) and (3.11) we have 

M ~M-1 
1Ir~m li r~m 

det(H'frMH~M) 
det(H'~-1)(M-l)H(M-1)(M-1)) 

29 
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Continuing the above process, we obtain a general formula for the evaluation of r;,m 

such that 

2 det(H'~mH~m) 
T" mm- det(H'~-1)(m-l)H(m-1 )(m-1)) 

(3.13) 

Now, let us define H .£ :E~T, where :E is the covariance matrix of the Wishart 

distributed HHH. If we apply QR-decomposition to H, then we have 

and following similar steps leading to Eq. (3.13), we obtain 

-2 
rmm 

det ( H!;;m Hmm) 

det(H~-1)(m-1)H(m-1)(m-1)) 

3.2.3 Cholesky Decomposition 

(3.14) 

(3.15) 

Since TH:ET is a positive definite matrix, we can apply the Cholesky decomposi­

tion [34] such that 

(3.16) 

where L' is a lower triangular matrix having unity diagonal elements, and D = 

diag(d1,d2,··· ,dM)· 

Comparing Eq. (3.14) with Eq. (3.16) and using Eq. (3.15), we have 

(
- H - ) - _2 det Hmm Hmm 

dm = T"mm = - H -
det(H(m-1)(m-1)H(m-1)(m-1)) 

(3.17) 

form= 1, 2, · · · , M. The sequence { dm} is called the Cholesky values. 

Furthermore, we have the following Theorem. 

Theorem 3.1. {37, 38} Let {.Am} and {dm} form= 1, 2, · · · , M be the eigenvalue 

sequence and the Cholesky value sequence of a positive definite M x M matrix A, 

respectively. Then, { Am};;:;=1 majorizes { dm };;:;=1 in the multiplicative sense. Con­

versely, if { Am};;:;=1 majorizes { dm};;:;=1 multiplicatively, then, for an arbitrarily given 
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desired permutation of { dm}t!m, dj 1 , dj 2 , • • • , dJM, there exists a matrix A such that 

{Am }t!m and { dJm }~=1 are the eigenvalues and the Cholesky values of A, respectively. 

At this point, we present three important properties about the Cholesky values of 

TH:ET. 

Property 3.1. Let {.),m}, m = 1, 2, · · · , M be the eigenvalues of TH:ET, because of 

Theorem 3.1, we have 
- -
d -<x A (3.18) 

Property 3.2. {15}{38]{39} For .X and d given in Property 3.1, there exist unitary 
A A 

matrices S and Q such that 

- 1/2 A A A 

A S=QR (3.19) 

-1/2 ~ ~ A 

where A = diag( y A[1], · · · , y A[MJ), R is an upper triangular matrix having fmm = 

Jd"::,. S and Q can be obtained by the QRS algorithm (Appendix A). 

Property 3.3. {30} If we let 

det([THHHHT]mm) 

det([THHHHT](m-1)(m-1)) 
2 -

rmm/dm 

det([TH:ETJ(m-l)(m-1)) 

det( [TH:ETJmm) 

then, the probability density function (pdf) of ~m is given by 

(m > 0 

(3.20) 

(3.21) 

form = 1, · · · , M, i.e., 6, ~2 , • · · , ~M are independent x2 distributed with 2( N- m + 
1) degrees of freedom. 

We also have the following theorem [37] and corollaries. 
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Theorem 3.2. Let {>.m}, {P,m}, and {zlm}, where m = 1, 2, · · · , M, be the eigenvalues 

of the positive definite matrices TH:ET, THT and :E respectively, then 

k k 

II ~(m] < II P,[m] V[m], for 1S:k<M (3.22a) 
m=l i=l 

M M 

II ~[m] II P,[m]V[m] (3.22b) 
m=l m=l 

Proof: See Appendix B. 

Corollary 3.1. Combining Property 3.1 and Theorem 3.2, by transitivity, we have 

k k 

II d[m] < II P,[m] V[m], for 1S:k<M (3.23a) 
m=l i=l 

M M 

II d[m] II P,[m]V[m] (3.23b) 
m=l m=l 

Corollary 3.2. If the product sequence of {P,mzlm}~=l maJorzzes { dm}~=l m the 

multiplicative sense as in Corollary 3.1, then, for an arbitrarily given desired per­

mutation of { dm}~=l' dju dh, · · · , djM, there exists a positive definite matrix TH:ET 

such that {P,mzlm}~=l and { dm}~=l are the eigenvalues and the Cholesky values of 

TH :ET, respectively. 

Proof: See Appendix C. 

3.3 Reformulation of the Problem 

With the mathematical concepts established in the last section, we are now in a 

position to reformulate Design Problem 3.1 in Section 3.1 into one that can be more 

efficiently solved: 

From Eq. (3.1) in Problem 3.1, our design objective is to minimize EH( L:;:;=l r;;,;J 
subject to the power constraint, where r mm is the mth diagonal element of R in 

the QR-decomposition of HT. Now, H is a random matrix, and thus, rmm is a 
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random variable. From Property 3.3, we see that ~m = r~m/dm form = 1, · · · , M 

are independent and x2 distributed with 2( N- m + 1) degrees of freedom. Therefore, 

M 1oo 1 """"'J,-1 c-1 cN-me-l;=dt 
L m '>m r(N - m + 1) '>m '>m 
m=1 ° 

M J-1 1oo 
""""' m ~N-m-1e-("'d~ 
L (N- m)! 0 m m 
m=1 

M J 1 ( 1oo ) L m _ ~~-m-1de-(m 
(N- m)! 0 m=1 

Hence, the original design Problem 3.1 becomes: 

Problem 3.2. 

Topt 

s.t. 

M J-1 
= argmin L N : m 

m=1 
tr(THT) :::; Po 

N>M (3.25a) 

(3.25b) 

The formulation of Problem 3.2 simplifies the objective function from its original 

form. Now, examination of the objective function in Eq. (3.25a) reveals the following 

two characteristics: 

1. The objective function in Eq. (3.25a) is of the form f = 2:;;:=1 a(m)d;;,l where 

{ a(m)} is an increasing sequence. 

2. If we arrange the sequence {dm} in ascending order {d(m)} such that d(l) < 
- - - 1 
d(2) :::; · · · :::; d(M), then { d(m)} is a decreasing sequence. 

The above observations lead to the following property of the objective function of 

Eq. (3.25a) essential to the further reformulation of our design problem: 
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Property 3.4. Let 

If we interchange the position of d(i) with d(j) in fo to form 

then, 

(3.26) 

Proof: Eq. (3.26) can be shown by simply taking the difference between fo and fij 

such that 

--1 --1 --1 --1 
a(i)d(i) - a(i)d(j) + a(j)d(j) - au)d(i) 

--1 --1 --1 --1 
a(i)(d(i) - d(j))- auJ(d(i) - d(j)) 

( a(i) - a(j)) ( d~) - d(j~) :::; 0 

This completes the proof of Property 3.4. 0 
M -

Property 3.4 shows us that for any sum of sequence of the form f = L.':m=1 a(m)d;;,l, 

the minimum value fo is reached if { dm} is arranged in an ascending order. Thus, 

for Problem 3.2, to achieve the minimum of the objective function, we must keep the 

sequence { dm} in an ascending order of { d(m)} such that d(1) :::; d(2) :::; · · · :::; d(M)· 

A Convex Optimization Problem: 

We now transform Problem 3.2 into a convex optimization problem. First, we 

apply the eigen-decomposition to :E such that 
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Then we let 

O:m ln d[m] = ln d(M-m+l) 

such that e-CXM-rn+l J-1 
(m) (3.27a) 

f3m ln il[m] (3.27b) 

/m ln V[m] (3.27c) 

where iL[mJ and V[m] are the mth largest eigenvalues of THT and~ respectively. Using 

Corollary 3.1, Corollary 3.2 and Property 3.4, we can now rewrite the design as the 

following optimization problem, which is equivalent to Problem 3.2. 

Problem 3.3. 

argmm 
{am} 

k k k 

s.t. I: am::::; Lf3m+ Lim 1::::; k < M 
m=l m=l m=l 

m=l m=l m=l 

(31 ~ (32 ~ . . . ~ (3M 
M 

L ef3=::::; Po (power constraint) 
m=l 

(3.28a) 

(3.28b) 

(3.28c) 

(3.28d) 

(3.28e) 

Eq. (3.28a) is the objective function written in terms of o:M-m+l, Constraints (3.28b) 

and (3.28c) result from taking logarithm of the majorization property in Corollary 3.1, 

Constraint (3.28d) follows the order of j1, for majorization, and Constraint (3.28e) is 

the power constraint written in terms of f3m· The design problem written in the 

form of Problem 3.3 is called Geometric Programming and is a convex optimization 

problem that can be efficiently solved using an interior point method [40]. 
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3.4 Optimum Precoders 

The design problem described in Problem 3.3 very much depends on the channel 

matrix H and the covariance matrix of the channels leading to each receiver antenna 

~which is positive definite. From the formulation of Problem 3.3, we can now obtain 

the optimum precoder designs for the following two cases: 

1. The channels leading to each receiver antenna are known to be uncorrelated, 

i.e., ~ = I since each path coefficient hnm is assumed to have unit variance. 

2. The channels leading to each receiver antenna are correlated with known co­

variance matrix ~ but are uncorrelated with those leading to another receiver 

antenna as depicted in Eq. (2.3). 

3.4.1 For U ncorrelated Channels 

When the channel gains are independent and identically-distributed complex Gaus­

sian random variables, the objective function Eq. (3.28a) and the power constraint 

of Eq. (3.28e) remains unchanged. The constraint of Eq. (3.28d) is no longer needed 

since with~= I, {d[mJ} and {il[mJ} are parameters from the same matrix THT and 

the majorization Eqs. (3.29a) and (3.29b) ensures their ordering. The constraints of 

Eqs. (3.28c) and (3.28b), however, simplify to: 

k k 

I>~m < LfJm 1-5, k < M (3.29a) 
m=l m=l 

M M 

Lam LfJm (3.29b) 
m=l m=l 

Replacing Eqs. (3.28b) and (3.28c) by Eqs. (3.29a) and (3.29b) in Problem 3.3, we 

can obtain a closed form solution for the optimum MSE precoder for this case as 

shown in the following: 
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Theorem 3.3. For the transmission channels being uncorrelated, the minimum MSE 

precoder design is a diagonal matrix with the mth diagonal element given by 

These diagonal elements are in an ascending order. The corresponding optimum 

mean-square error at the decision feedback receiver is given by 

2 (M 1 )
2 

- (J 
c2 ---

opt - M Po ~ J ( N - m) 
(3.31) 

Proof: The Lagrangian corresponding to the constrained optimization problem 

IS 

L(a,{3, q) 

where q1 , q2 , · · · , qM and q0 are the Lagrange multipliers. The Karush-Kuhn-Tucker 

(KKT) optimality conditions [40] are given by: 

and 

oL e-"'1 
-oa-l = ql + q2 + q3 + ... + qM - -N---M-

oL e-~ 

-oa-2 = q2 + q3 + ... + qM - -::-N-::--_---cM:-::-+-1 

oL 
-- = -qM + qoef3M 
of3M 
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Taking the sum of these equations in pairs such that Eq. (3.32a) sums with (3.33a), 

Eq. (3.32b) sums with (3.33b), etc., yields the following general relationship between 

e"'= and ef3= such that 

-a,. 
e - q ef3= 

(N- M + m- 1) - 0 
' 

m= 1,2,··· ,M (3.34) 

Summing up all the M equations in Eq. (3.34) and noting the power constraints in 

Eq. (3.28e), we have: 

(3.35) 

We note that the left side of Eq. (3.35) is the objective function of our reformulated 

design as shown in Eq. (3.28a). Since the total transmitting power p0 is fixed, the 

minimized value of the objective function is obtained when the Lagrangian multiplier 

q0 reaches its minimal value, i.e., 

M e-"'M-m+l 
min"""' CJ.oPo ~ N-m 

m=l 

where q0 is the minimum value of the Lagrange multiplier q0 . 

To obtain q0 (and therefore, the minimum value of the MSE), we note that with 

Vm = 1 form = 1, · · · , M, Corollary 3.1 becomes d -<x j1, which then results in the 

following majorization relationship, 

k k 

II e"'m < II ef3m, 1 ~ k < M (3.36a) 
m=l m=l 

M M 

II e"'m II ef3m (3.36b) 
m=l m=l 

Substituting e"'= from Eq. (3.34), m = 1, 2, · · · , M, into Eqs. (3.36) gives 

k k II 1 < II ef3m, 1 ~ k < M (3.37a) 
m=l J(N- M + m- 1)qo m=l 

M M II 1 II ef3m (3.37b) 
m=l J(N- M + m- 1)q0 m=l 
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Taking logarithm of both sides of Eqs. (3.37), and writing Bm = ln -j(N-~+m- 1 )qo, we 

have (} --<+ {3. 

We note that the function g(x) = 2::~= 1 exm is strictly convex with respect to 

x1 , x2 , · · · , x M, having the Hessian matrix being positive definite (see Appendix D for 

proof). Therefore g(f3) = 2::~= 1 ef3m is Schur-convex with respect to (31 ,(32 , ···,/3M· 

Consequently, g(f3) 2:: g( 8) which, when both sides are multiplied by the Lagrangian 

multiplier q0 (qo 2:: 0), results in 

M M 

qo 2::: ef3m :::::: qo 2::: eem (3.38) 
m=1 m=1 

Le.' 

M M 
1 

M 
1 

qo Po 2 qo L eem = qo L J(N- M m- 1) = ..fiiQ L J(N- m) (3.39) 
m=1 m=1 + qo m=1 

This yields, 

1 M 1 

( ) 

2 

qo 2: P6 ~ J ( N - m) 
(3.40) 

Hence, the minimum value of the objective function is 

1 M 1 

( 

2 

iio Po~ Po ~ J(N- m)) (3.41) 

From Definition 3.3 of Schur-convexity, this minimum value is reached if and only if 

the inequalities in Eqs. (3.36) become equalities, i.e., am = f3m· In other words, for 

the optimum precoder product T!Top, the Cholesky values {dm} are equal to the 

eigenvalues {Mm}· This results in 

(3.42) 

where L is a lower triangular matrix with unit diagonal elements such that Rmm = 1, 

and Uop is the eigen-vector matrix of T!Top· Eq. (3.42) shows that Lis also the 

eigen-vector matrix ofT! Top· Hence, 
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1 0 

1 

0 

0 

1 

1 + £i2 + ... + fiM £12 + £13£23 + ... + £1M£2M £1M 

£12 + £13£23 + ... + £1M£2M 1 + £~3 + ... + f~M £2M 

1 0 0 

0 1 0 

0 0 1 

However, this is impossible unless fkm = 0 for k i- m. Since the diagonal elemnts 
- -

of L are all equal to unity, thus, L = I, and thus Top is diagonal such that Top = 

diag( yliW, ~' · · · , ~). 
The values of the mth diagonal element can be obtained by substituting q0 , the 

minimum values of q0 , in Eq. (3.40) into the mth term ofEq. (3.39), arranging them in 

acending order and taking the square root, Eq. (3.30) then follows. The corresponding 

optimum arithmetic MSE can be obtained by substituting Eq. (3.41) into Eq. (2.33), 

and Eq. (3.31) follows. D 

The result of Theorem 3.3 is not surpnsmg. Since the transmission channels 

are uncorrelated, each having unity variance, the optimum precoder, being diagonal, 

allocates power to each symbols individually according to the order of detection, with 

the last symbol having the highest power since the last symbol is detected first at 

the decision-feedback receiver. The allocated power gradually decreases to the lowest 

value for the first symbol which is received last. The amount of allocated power for 
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each symbol decreases in a way such that the mean-square error is evened out among 

all the symbols. Indeed, this structure results from the fact that ~m = r?nm/ dm 
for m = 1, · · · , M are x2 distributed with decreasing values of degrees of freedoms. 

Consequently, detecting Xm-1 becomes more reliable than that of Xm for 1 < m ::; M. 

Thus, for the ZF-DF receiver with a fixed detection order, to obtain a good overall 

performance, more power should be allocated to Xm than to Xm_1 and increasingly so 

to x M leading to this diagonal precoder having diagonal elements with an ascending 

order. 

3.4.2 For Correlated Channels 

We now turn to the case when the channels leading to the receiver antenna are 

correlated. The optimization problem of Eqs. (3.28) is known to be convex (Geometric 

Programming) and can be efficiently solved by interior point methods. The solution 

of the problem yields numerically the optimum values of {om} and {tJm}· Therefore, 

from the optimum values of {om}, using Eq. (3.27a), we can obtain the optimum 

{d(m)}, the Cholesky values of (TH:ET) and thus, {f[mm)}, since {d(m)} = {f[mm)}. 

Also, from the optimum values of {tJm}, we can obtain the optimum {iL[mJ} which are 

the eigenvalues of (THT). The following are the steps by which we can arrive at an 

optimum precoder using the optimum values of { d(m)} and {iL[mJ}: 

1. Perform an eigen-decomposition on the known channel covariance matrix such 

that :E = U ~E U H where U is the eigenvector matrix of :E and we have written 

the eigenvalue matrix as ~E = diag(z/[1], · · · , V[MJ)· 

2. With the eigenvector matrix U and the optimum eigenvalues {il[mj}, a possible 

form of the optimum precoder is given by 

T _ u- d. (-1/2 -1/2) 8 _ u- A 112 8 op - lag f.1[1] ' ... 'f.L[M] op - u.T op (3.43) 

h S . t b ltd dA1/2 d" (-1/2 -1/2) w ere op 1s o e eva ua e , an u.T = 1ag f.1[1] , · · · , f.L[MJ . This yields 

(3.44) 
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0 - 1/2 1/2 where we have wntten A = .dr .dE.dr . 

3. To solve for Sop, recall that, using the QRS decomposition algorithm (Appendix 
~ ~ - 1/2 ~ ~ ~ 

A), we can construct unitary matrices S and Q such that A S = QR with 

the upper triangular matrix R having diagonal elements {fmm} arranged in 

any permutation. We apply the QRS decomposition algorithm to A 112
, then, by 

Property 3.2, fmm = Jd::,. Keeping fmm in ascending order (so that {d(~)} is in 

descending order to minimize the objective function as shown in Property 3.4), 

we can obtain Sop· From this, together with the eigenvector matrix U of :E, 

and the optimum eigenvalue matrix .dr of THT, we can obtain the optimum 

precoder Top as shown in Eq. (3.43). 

For a system equipped with a ZF-DF detector, when perfect CSI is available at both 

transmitter and receiver, the optimal precoder is a QRS decomposition of H' ~ HT 

having equal diagonal element in the R-factor [11, 13]. However, in the case when 

CSI is available only at the receiver and channel statistics known at the transmitter, 

we can see from the above design that the optimal precoder structure is the QRS 
- 1 

decomposition of H ~ :E2T for which the diagonal entries of the R-factor is a non-

decreasing sequence. 
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Chapter 4 

Minimum Power Precoder for 

ZF-DF Receivers 

In this Chapter, we investigate an "inverse" problem of Chapter 3, i.e., designing 

the precoder that minimizes total transmission power subject to a constraint on the 

average arithmetic MSE of a ZF-DF receiver. We also make the same assumption that 

perfect CSI is available at the receiver, and only the first- and second-order statistics 

of the channel is known at the transmitter. 

4.1 Problem Description 

The minimum power precoder design problem can be stated as: 

Problem 4.1. Design a precoding matrix T such that 

s.t. 

= arg min tr(TH T) 
T 

2 M 

~ EH ( L r~~) ~ c 
m=l 

(4.1a) 

( 4.1 b) 

where c is a bound on the MSE of ZF-DF receiver and EH(-) denotes the expec­

tation taken over all random channel realizations. 
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4.2 Reformulation of the Problem 

Using the same mathematical concepts in Section 3.2 and also let 

O:m ln d[m] = ln d(M -m+ 1) (4.2a) 

=} J-1 
(m) 

e-C>M-m+l (4.2b) 

Pm ln P[m] (4.2c) 

lm ln V[m] (4.2d) 

where /L[m] and V[m] are the mth largest eigenvalues of THT and 'E respectively, and 

d[m] is the mth largest Cholesky value of TH'ET. 

Then, Design Problem 4.1 can be reformulated to the following convex optimiza­

tion prblem. 

Problem 4.2. 

f3op = arg min 
{/3m} 

m=1 
k k k 

s.t. LO:m:::; LPm+ Lim 1:::; k < M 
m=1 m=1 m=1 

M M M 

LO:m = LPm+ Lim 
m=1 m=1 m=1 

(T2 M e-aM-m+l 

- "" :::; E (MSE constraint) 
M L N-m 

m=1 

(4.3a) 

( 4.3b) 

(4.3c) 

(4.3d) 

(4.3e) 

The problem in Design Problem 4.2 is also a convex Geometric Programming, and 

can be efficiently solved using an interior point method [40]. 

4.3 Optimum Precoders 

Similar to the minimum MSE precoder design problem, we also have two situations 

depending on different channel correlation conditions: 
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1. The channels leading to each receiver antenna are known to be uncorrelated, 

i.e., ~=I. 

2. The channels leading to each receiver antenna are correlated with known co­

variance matrix ~ but are uncorrelated with those leading to another receiver 

antenna as depicted in Eq. (2.3). 

Now, we will analyze the two cases respectively. 

4.3.1 For Uncorrelated Channels 

When the channel gains are independent and identically-distributed complex Gaus­

sian random variables, the design problem for minimum power precoder becomes: 

Problem 4.3. 

where c:' = M2s. 
(J 

f3op = arg min 
{,Brn} 

k k 

m=l 

s.t. Lam~ L,6m 1 ~ k < M 
m=l m=l 

M M 

Lam= L,6m 
m=l m=l 

M e-<>M-rn+l 
"' = c:' (MSE constraint) 
L N-m 
m=l 

(4.4a) 

( 4.4b) 

( 4.4c) 

(4.4d) 

We can also obtain a closed form solution to Design Problem 4.3. The optimum 

minimum power precoder and the optimal power are stated in the following Theorem. 

Theorem 4.1. For the transmission channels being uncorrelated, the minimum power 

precoder design is a diagonal matrix with the mth diagonal element given by 

topmm = (]" L 2 ' 
[ 

2 ( M 1 )] l 

Mc:vN -m m=l vN -m 
m = 1,2,·· · ,M (4.5) 
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These diagonal elements are in an ascending order. 

In addition, the corresponding optimum power at the decision feedback receiver is 

given by 

CJ2 ( M 1 ) 2 

Popt = ME ~ J N - m (4.6) 

Proof: The Lagrangian corresponding to the constrained optimization problem 

lS 

M 

L( o:, /3, q') L ef3= + q~ (o:1 - {31) + q~(o:1 + 0:2- fJ1- fJ2) + · · · 
m=1 

+ q~(o:1 + 0:2 + .. · + IYM- {31- fJ2- · ·"- f3M) 

+ q; (i; e~·:~~' _ t') (4.7) 

where q~, q~, · · · , q~ and qb are the Lagrange multipliers. The Karush-Kuhn-Tucker 

(KKT) optimality conditions [40] are given by: 

0 (4.8a) 

0 (4.8b) 

0 ( 4.8c) 

and 0 (4.9a) 

0 (4.9b) 

0 ( 4.9c) 

Taking the sum of these equations in pairs such that Eq. (4.8a) sums with (4.9a), 

Eq. ( 4.8b) sums with ( 4.9b), etc., yields the following general relationship between 
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earn and ef3rn such that 

q' e-arn 
0 = ef3rn 

N-M+m-1 ' 
m=1,2,···,M (4.10) 

Summing up all the M equations in Eq. (4.10) and noting the MSE constraints, we 

have: 

(4.11) 

(4.12) 

The left side of Eq. (4.11) is the objective function of our minimum power precoder 

design problem. Since the MSE bound c: is fixed, the minimized value of the objective 

function is obtained when the Lagrangian multiplier qb reaches its minimal value, i.e., 

M 

min L ef3rn = q' 0 c:' ( 4.13) 
m=1 

where q' 0 is the minimum value of the Lagrange multiplier qb. 
To obtain q' 0 and the minimum total transmitting power, we again mention the 

majorization relationship under the condition of uncorrelated channels, 

k k 

II e<>m < II ef3rn, 1 ~ k < M ( 4.14a) 
m=1 m=1 

M M 

II e<>rn II ef3rn (4.14b) 
m=1 m=1 

Substituting e<>rn from Eq. (4.10), m = 1, 2, · · · , M, into Eqs. (4.14) gives 

IT V N - M qi m - 1 

k 

< II ef3rn, 1 ~ k < M ( 4.15a) 
m=1 m=1 

IT V N - M qi m - 1 

M 

II ef3rn (4.15b) 
m=1 m=1 

Taking logarithm of both sides of Eqs. (4.15), and writing ()'m = ln V N-;Jim_1, we 

have 8' -<+ {3. We note that the function g(x) = "2:~= 1 exrn is strictly convex with 
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respect to x1 , x 2 , · · · , x M, having the Hessian matrix being positive definite. Therefore 

g(f3) = L,~=l ef3= is Schur-convex with respect to {31 ,{32 , ···,{3M, giving 

g(f3) ~ g( (}I) ( 4.16) 

Substitute Eq. ( 4.13) into Eq. ( 4.16) for the objective function, we have: 

I u 

q E:
1 > q1 c1 

0 - 0 

m=l 

m=l 

( 4.17) 

This yields, 

1 (M 1 )
2 

qb ~ c12 ~ J N - m 
( 4.18) 

Hence, the minimum value of the objective function is 

u 1 1 ( M 1 ) 
2 

(]'2 ( M 1 ) 
2 

q
1

oc=c1 ~JN-m =Me ~JN-m ( 4.19) 

Then, Eq. ( 4.6) follows. 

From Definition 3.3 of Schur-convexity and similar analysis of Subsection 3.4.1, 

the optimum power precoder is also a diagonal matrix having diagonal entries showed 

in Eq. (4.5) 

This completes the proof. 0 

4.3.2 For Correlated Channels 

When the channels leading to the receiver antenna are correlated, Design Problem 4.2 

is convex and can then be efficiently solved by numerical method. We first obtain 

48 



M.A.Sc: Tingting Liu McMaster - Electrical and Computer Engineering 

the optimum values of {am} and {,6m}, and thus the optimum sequences of {r[mm)} 

and {P,[m]} can be computed. Employing the same method in Subsection 3.4.2 and 

the QRS decomposition algorithm, we can also arrive at an optimum precoder for 

correlated channels as stated in Eq. (3.43). 
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Chapter 5 

Numerical Experiments 

In this Chacpter, we first compare the performance of the optimally MSE precoded 

system employing a ZF-DF receiver developed in Chapter 3 with the performance 

of other schemes which can also be applied to the scenario in which CSI is not fully 

available at the transmitter. These include the optimally precoded system using linear 

receivers [18] and the unprecoded system using ZF-DF receiver. However, our main 

focus is on the comparison with the celebrated V-BLAST scheme [3]. 

We also present the simulation results for the minimum power precoder and the 

relationship between the total transmission power and the MSE of our transmission 

model. 

5.1 Minimum MSE Precoder 

In this section, we present simulation results for the minimum MSE precoder designs. 

We compare the performance of our optimally precoded system with the following 

systems: 

1. The unprecoded system (T =I) employing the same detection scheme: ZF-DF 

receiver. 

2. Another optimal precoded system designed for ZF linear receiver in [18]. 
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3. The V-BLAST detection scheme (ordered ZF-DF receiver). 

4. A combined system equipped with both our optimum precoder and the optimal 

ordering procedure of V-BLAST 

As introduced in Chapter 2, V-BLAST is a MIMO system that employs M 

(M ::::; N) transmitter antennas and transmits one symbol per antenna per time 

slot. Furthermore, V-BLAST utilizes a zero-forcing and symbol cancellation scheme 

equipped with optimal symbol detection ordering based on the post-detection SNR. 

V-BLAST does not use a precoder (T = 1). While its optimal detection order 

scheme is an important feature and optimizes the detection performance, it increases 

the complexity of the detection procedure. This is because at each stage, the Moore­

Penrose inverse, Hi, of the diminished channel matrix at the stage has to be obtained 

and its row with the minimum norm has to be searched for before the ith symbol is 

detected. Hence, for simplicity in implementation of the receiver, the ZF-DF detection 

scheme following the reversed natural order of symbol transmission and successive 

interference cancellation detection described in Section 2.3.3 is much simpler and 

preferred. Furthermore, under the condition of high correlation between transmission 

channels, the sorting out of the post-detection SNR may not be accurate and may 

lead to the deterioration of the performance of the V-BLAST scheme. It is under 

these considerations that we compare the performance of the various schemes in the 

following examples. Also, as a point of interest, we also compare the scheme which 

combines the optimal precoder for the ZF-DF receiver with an optimally ordered 

detector. This scheme of course, will have the advantages of both the optimum 

precoder design as well as the optimum ordering of the V-BLAST detection. However, 

it also increases the implementation complexity compared to that of the Optimum 

precoder equipped with the ZF-DF detection scheme following the reversed natural 

order of symbol transmission. 

In the following examples, simulations were carried out for a MIMO system with 

6 transmitter antennas and 10 receiver antennas transmitting symbols from a 4-QAM 
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constellation. For each randomly generated channel matrix H, the experiment was 

carried out for different SNR, and, for each SNR, was repeated 104 times with different 

noise realizations. The average symbol error rates (SER) was then computed for the 

various values of SNR. To study the effect of antenna correlations, random realiza­

tions of correlated channels were generated according to the exponential correlation 

model [41] such that the mnth element of~ is given by: 

{ 

Pn-m, m::::; n 
Clmn = 

CJ~m m > n 
m,n= 1,2,··· ,M (5.1) 

where p is the correlation coefficient between any two neighboring antennas and "*" 

denotes complex conjugate. 

For instance, when the correlation coefficient is set to p = 0.5e0
·
5i, the correlation 

matrix becomes: 

1 0.5e0·5i 

0.5e-0·5i 1 
~= 

(0.5eo.5j)2 

0.5e0·5i 

(0.5eo.5j)M-1 

(0.5eo.5j)M-2 

1 

(5.2) 

This correlation model is suitable for our experiments since, in practice, we expect 

the correlation between neighboring channels to be higher than that between more 

distant channels. In the following, we examine the performance of the above MIMO 

systems with various values of p such that IPI = 0, 0.3, 0.5, 0. 7, and 0.9. 

5.1.1 Example 1 Uncorrelated Channels 

We first examine the SER performances of different MIMO systems in uncorrelated 

channel, i.e., p = 0. Under this condition, we can use the closed-form solution 

in Section 3.4.1 to come up with the optimum precoding matrix Top for the ZF­

DF receiver. Fig. 5.1 shows the SER performance of all the schemes for which the 

comparison has been carried out. From this figure, it can be observed that the optimal 
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Figure 5.1: Simulation Results when p = 0 
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Figure 5.2: Simulation Results when p = 0.3e0·5i 
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precoder developed here for the natural order ZF-DF receiver scheme not only has 

better performance than the unprecoded system using the same ZF-DF receiver, but 

it also has superior performance compared to that of the optimum precoder in [18] 

which is developed for the specific linear ZF receiver. When there is no correlation 

among the channels, the V-BLAST detection algorithm performs considerably better 

than the precoded system developed here, having almost a relative gain of 2 dB 

at the SER of 10-5
. This, as pointed out earlier, is accomplished at the expense 

of substantial increase in detection complexity. An additional important observation 

from the simulation results is that even though the scheme which combines the optimal 

precoder with the optimal ordering detection shows the best performance, it only 

offers marginally better error rate than the V-BLAST scheme at higher SNR, and has 

virtually the same performance as V-BLAST at lower SNR. Thus, we can conclude 

that under the condition of uncorrelated channels, the new optimal precoder does 

not offer any performance advantage over the V-BLAST detection scheme, except for 

lower implementation complexity. 

5.1.2 Example 2 Low Channel Correlation 

In this example, we consider the scenario in which the random channels are generated 

basing on a lower level of fading correlation. We let p equal to 0.3e0·5J. 

The comparison results are illustrated in Fig. 5.2. We can come to the similar 

observations as those in Example 1, except that the gap between the combination 

of optimal precoding and optimal ordering and pure VBLAST detection algorithm 

becomes larger. To achieve the same SER at 10-5 , the traditional VB LAST system 

needs almost 1dB more power than the optimal combination. It is also noticeable 

that the curve of our precoded system employing only ZF-DF receiver without the 

computational demanding ordering technique becomes closer and closer to VBLAST 

as the correlation level grows from 0 to 0.3e0·5i. 

54 



M.A.Sc: Tingting Liu 

a:: 
w 
(/) 

McMaster - Electrical and Computer Engineering 

Figure 5.3: Simulation Results when p = 0.5e0·5J 

5.1.3 Example 3 Moderate Channel Correlation 

In this example, we investigate the performance of the above MIMO systems under 

a moderately correlated channel fading environment in which p = 0.5e0·5J. Fig. 5.3 

shows the performance of the various schemes under consideration. It can be ob­

served that there is a considerable deterioration of performance in all schemes in 

comparison to those in Example 1. However, it is observed that the performance of 

the two schemes equipped with the optimum precoder design developed in Chapter 3 

are both less sensitive to the correlation of the channels. Indeed, the performance of 

the scheme with optimum precoder and ZF-DF receiver (no re-ordering) matches and 

surpasses that of the V-BLAST scheme while also having the advantage of substan­

tially lower computational complexity. The combination scheme of optimum precoder 

and optimally-ordered detection, on the other hand, while suffering from performance 

deterioration, maintains its performance superiority over the other schemes. 
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Figure 5.4: Simulation Results when p = 0.7e0·51 
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Figure 5.5: Simulation Results when p = 0.9e0·5J 
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5.1.4 Example 4 High Channel Correlation 

To complete our investigation, in this example, we examine the case of fading channels 

having higher correlations. Here, the channel correlation coefficients are set to p = 

0.7e0·5J and p = 0.9e0·5J respectively. Fig. 5.4 and 5.5 show the performance of 

the various schemes under these correlation coefficients respectively. Comparing the 

performance of the various schemes in the two figures with Figs. 5.2 and 5.3, there 

is severe deterioration as the correlation coefficient increases. However, as observed 

in Fig. 5.4 and 5.5, the schemes utilizing the optimum precoder outperform all the 

other systems, making them the most robust against severe channel correlation. 

From both Fig. 5.4 and Fig. 5.5, it is observed that at SER of 10-5
, the scheme 

equipped with the optimum precoder and a ZF-DF receiver has respective SNR gains 

of approximately 1 dB and 2 dB over V-BLAST for IPI = 0.7 and IPI = 0.9 while 

having the advantage of simplicity in implementation. The gains resulted from the 

use of the optimum precoder and the optimum ordering of received symbols are even 

more significant. 

5.2 Minimum Power Precoder 

In this section, we give simulation results for the other design in this thesis: the 

minimum power precoder. In particular, we focus on investigating the relationship 

between the total system transmission power and the MSE of ZF-DFE. 

The simulation results in Fig. 5.6 show the total transmission power versus the 

MSE bound E for MIMO communication systems with different numbers of transmit­

ter and receiver antennas. It can be observed that the required power decreases with 

increasing average arithmetic MSE of the ZF-DF receiver. For fixed MSE bound, we 

can see that the total transmission power increases as the number of transmitter an­

tenna increases. Conversely, the required transmission power decreases as the number 

of receiver antenna increases. 
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Figure 5.6: Total Transmission Power v.s. MSE Bound E for Minimum Power Design 

We have also shown in Fig. 5.7 the relationship between the SNR, the definition 

of which is SNR = !:z, and the MSE bound E for the different MIMO scenarios. 

From Fig. 5.6, which reveals the relationship between the system transmission 

power and the MSE, we notice that the transmission power is an injective function 

(one-to-one function) of the MSE. That is, given a distinct MSE, we can compute a 

distinct transmission power value. Conversely, given a distinct transmission power, we 

can then obtain a distinct MSE. This observation can also be proved by our developed 

closed-form solution for these two precoders and the corresponding optimum objective 

functions. 

First, let us fix a bound on the total transmission power on the first design (Design 

Problem 3.1) as j5. Because of the closed-form solution in Section 3.4.1, the optimum 

MSE is 

2 * (J 1 
2 

( M )

2 

E = Mp ~ J(N- m) 
(5.3) 

Having obtained c2 *,we can further compute the closed-form solutions for our sec­

ond design (Design Problem 4.1). The corresponding optimum power at the decision 
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Figure 5. 7: SNR v.s. MSE Bound E for Minimum Power Design 

feedback receiver is given by 

2 ( M 1 )2 
p* = :e2 * ~ V N - m 

(5.4) 

Substituting Eq. (5.3) into Eq. (5.4) and canceling all the like-terms on both the 

denominator and the numerator, we have 

* -p =p (5.5) 

In other words, if we first solve the minimum MSE problem with a fixed power 

constraint and obtain the minimum MSE value, then solve the minimum power design 

problem by letting this MSE value be the MSE constraint, thus, the solution of 

transmission power will be exactly the same as the previously fixed value of the 

power constraint of the first design problem. This conclusion further reveals the one­

to-one mapping relationship of the MSE and the total transmission power and shows 

that the two design problems are "inverse problems". This is also true for correlated 

channels, but for analysis simplicity, we only utilize the closed-form solution under 

uncorrelated channel conditions to derive this relationship. 
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Chapter 6 

Conclusion and Future Work 

6.1 Conclusion 

In this thesis, we have presented an efficient technique for the design of two optimal 

precoders. The first one is to minimize the arithmetic MSE of ZF-DFE subject to 

a constraint on the total transmission power, while the second one, as an "inverse" 

design problem, is to minimize the total system transmission power and subject to a 

constraint on the average MSE. Both of the two optimal precoders are designed for 

a MIMO system in which full knowledge of CSI is available at the receiver, but only 

the first- and second-order statistical knowledge is available at the transmitter. 

From the analysis of some parameters of the system matrices, and with the aid 

of the recently developed algorithm of QRS decomposition of a matrix, we have been 

able to transform these two non-convex optimization problems into convex geomet­

rical programming problems respectively. The interior point method is employed to 

efficiently solve these two convex optimization problems. 

For the MIMO channels, we consider both correlated and uncorrelated situations. 

For correlated channels, we first use numerical method to obtain the optimal solution 

of the design problem, and then form the structure of the optimum precoding ma­

trices by using the QRS algorithm. For the case when the transmission channels are 
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uncorrelated, a closed-form solution of the optimum precoders has been obtained by 

using the Lagrange multipliers method and properties of Schur convexity. 

Simulation experiments showed that when the fading channels are independent, 

the SER performance of the optimum MSE precoder shows marked improvement 

from that of the unprecoded scheme, while being outperformed by V-BLAST. When 

channel correlation increases, the performance of scheme equipped with the optimum 

MSE precoder catches up with and surpasses that of the V-BLAST scheme. For 

practical applications in which correlated transmission channels are common, the 

relatively low cost and the superior performance of the optimum MSE precoder with 

the ZF-DF receiver renders it a particularly attractive alternative to the V-BLAST 

algorithm. 

6.2 Future Work 

Based on the studies in this thesis, some interesting research issues arise: 

• In this thesis, we proposed two optimal precoders for the ZF-DF receivers. Since 

MMSE criterion is another strategy for the decision feedback detection. We may 

apply the properties and theorems developed in this thesis to design precoding 

matrix for MMSE-DFE. For MMSE criterion, however, the probability density 

function is no longer as simple as that in Eq. (3.21). 

• In the design of the optimum MSE precoder, the criterion of our objective func­

tion is the average MSE for ZF-DFE. Our assumption is that the transmitters 

only have the channel statistics knowledge which leads to an expectation on the 

objective function. We may therefore extend our design to other criteria, such 

as minimizing the symbol error rate of the ZF-DF receivers. In fact, the SER 

expression is very complicated for DFE, especially when we take expectation 

on it. But using the statistical properties of our system parameters, one may 

61 



M.A.Sc: Tingting Liu McMaster- Electrical and Computer Engineering 

obtain an upper bound or even an exact expression for the result of the expec­

tation. A new objective function will lead to new precoder designs, which may 

further offers better error rate performance. 
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Appendix A 

QRS Decompositions 

QRS decomposition is a collection of algorithms which facilitates the decomposition 

of an M x N matrix A such that AS = QR, where Q and S are unitary matrices 

and R has the following structure: 

( 

RKxK 
R= 

O(M-K)xK 

OKx(N-K) ) 

O(M-K)x(N-K) 

(A.1) 

with RKxK being a K x K upper triangular matrix. Authors in [9, 10, 11, 12, 42] 

have developed algorithms of decomposition such that the R-factor has its diagonal 

entries all equal to ( f1~1 Ai) 112
K. Recently, this equal diagonal QRS decomposition 

has been extended to a general case in which the diagonal entries of the R-factor are 

not necessarily identical [39]. For this generalized decomposition, a low-complexity 

quadratic recursive algorithm which systematically characterizes and constructs all 

feasible S-factors has been developed [15]. 

A.l Generalized QRS Decomposition 

We first present the generalized QRS decomposition. 

Theorem A.l. (QRS decomposition) Let the singular value decomposition {43] of 
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matrix A be given by 

( 

A112 
A=U 

Q(M-K)xK 

OKx(N-K) 

O(M-K)x(N-K) 
(A.2) 

where U and V are unitary matrices, and A= diag(>.1, >.2, · · · , AK) with >.1 ::::: >.2 ::::: 

· · · ::::: AK > 0. Let di fori = 1, 2, · · · , K be an arbitrarily given positive numbers, 

p = [j1, j 2, · · · , j K] being an arbitrarily given desired permutation of 1, 2, · · · , K, and 

matrix Dp = diag( dj1 , d12 , · · · , d]r). Then, the following three statements are equiva­

lent. 

1. { Ai }~1 majorities { di }~1 in the product sense. 

2. For an arbitrarily given desired permutation of { di}~1 , dh, d12 , · · · , dJK, there 

exists a unitary matrix S such that AS = QR, where Q is an M x K column­

wise orthonormal matrix and R = [ RKxK OKx(N-K) ] with RKxK being a 

K x K upper triangular matrix and [RKxK]i = y7fj; fori= 1, · · · , K 

3. There exist a unitary matrix W and a vector sequence zi fori= 1, 2, · · · , K -I 

such that the canonical information distribution equation (CIDE) generated by 

A and DP holds as follows, 

(a) Initialization. The first column vector w 1 of W satisfies 

1. 

(b) Recursion. There exists zi such that Wi+1 = W fzi and 

z{l C(i)zi 

H 
zi Zi 
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In particular, the equal diagonal QRS decomposition always exists; i.e., there exists a 

unitary matrix S such that AS = QR, where Q is an M x K column-wise orthonormal 

matrix and R = [ RKxK OKx(N-K) ] with RKxK being a K X K upper triangular 

matrix and [RKxK]i = (A1A2 · · · AK )1/2K fori= 1, · · · , K. 

Proof: See [15]. 

The canonical information distribution equations stated in Eq. (A.3) essentially 

describes a process for successively distributing the total information quantity D = 

det(A) in the whole K-dimensional space over each one dimensional subspace (or sub­

channel), which holds a key to characterize all matrices with the prescribed singular 

values and the R-factor values. 

Theorem A.1 not only provides a criterion to judge if a positive sequence is the 

diagonal elements of the R-factor in the QR decomposition of a given matrix, but also 

provides a quadratic recursive algorithm to systematically characterize and construct 

all unitary matrices with a given R-factor values. This recursive algorithm is obtained 

by successively constructing the vectors w 1 , w 2 , · · · , Wr to satisfy equations (A.3a) -

(A.3d). 

A.2 Construction of the S-factor 

The key to obtaining the QRS decomposition is to find the unitary matrix S. Once 

we have had S, we can apply the QR decomposition [43] to matrix AS so as to obtain 

the generalized QRS decomposition. The following recursive algorithm is to find the 

S-factor of the QRS decomposition AS= QR. 

Algorithm 1 Construction of the S-factor: 

1. SVD: Perform the SVD (A.2) of A. 
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2. Initialization: Determine the first column of S such that 

1 

(A.4a) 

(A.4b) 

3. Recursion (reduce the dimension and decouple constraints): Set si+l = Sfzi+1 ,where 

Sf is the orthonormal complement of si and Zi+l is any vector that satisfies 

where C(i) = ((Sf )H A -lsf-) -
1
. 

4. Complete the S-factor: S = [VKS,Vl,.--,Kl· 

We would like to make the following comments. 

1 

(A.4c) 

(A.4d) 

• Algorithm 1 tells us that a problem of finding the S-factor for a matrix A is 

essentially reduced to a problem of finding the S-factor for its singular value 

diagonal matrix A 1/
2

. 

• Information decomposition. Actually, the quadratic recursive algorithm is the 

Schur's decomposition that the determinant of a positive definite matrix is equal 

to the product of the determinant of an arbitrarily given principal submatrix 

and the determinant of its Schur complement [43]. Therefore, the algorithm es­

sentially describes a process for successively distributing the total information 

quantity D = det(A) in the whole r-dimensional space over each one dimen­

sional subspace (orR-factor values subchannel). 

• Characterization of the S-factor. The quadratic recursive algorithm (A.4a)­

(A.4d) characterizes all S-factors such that the resulting matrices AS possess 

the prescribed diagonal R-factors. By properly choosing a particular solutions 

for each recursion one can significantly simplify the complexity of computing a 

specific S-factor, which we show in the ensuring subsection. 
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• Characterization of the Q-factor. Notice that if Q, R and S are the Q-R-S 

factors of an invertible matrix A, then, S, R-1 and Q are the Q-R-S factors of 

its inverse A - 1
. This observation implies that there is a companion algorithm 

for A - 1 which has the same structure as Algorithm 1 This inverse algorithm 

actually characterizes the Q-factor in the QRS decomposition of matrix A, 

which leads to an efficient algorithm for finding the S and Q factors. 

A.3 Specific Closed-form QRS Decompositions 

In particular [15], a pair of closed-form QRS decompositions for both a matrix and 

its inverse can be obtained. This specific closed-form decomposition is stated and 

proved in the following theorem: 

Theorem A.2. (Closed-form QRS decomposition) Let A 1/
2 = diag( ~' y~X;', · · · , ..;>:}() 

with A1 ~ A2 ~ · · · ~ AK > 0. Also, let di, i = 1, 2, · · · , K, be an arbitrarily given 

positive numbers such that { ~ }~1 majorizes { v'd: }~1 in the product sense. Then, 

for an arbitrarily given desired permutation of { di}~1 , dJu d12, · · · , dJK, there exists 

a pair of unitary matrices Svw and Svw such that A 1/
2 Svw = Svc;,R. where R is an 

upper triangular matrix having diagonal elements rii = ..j({;; fori = 1, 2, · · · , K and 

Svw = fl~~1 
Sv;R;w; with each Sv;l!;w; be determined by the following algorithm. 

Algorithm 2 (Construction of a pair of closed-form Q- and S-factors): 

1. Construction of a canonical eigen-diagonal matrix sequence { £'i, A (i) }~1 1 : Ini­

tialize A~ 1 ) = Ai for i = 1, 2, · · · , K. Let £'i be a maximum positive integer 

h th t ,(i) > d· > ,(i) w d fi di+1)- ,(i) ,(i+1)- di) ... di+1)-sue a /\£; _ Ji _ /\1';+1 . e e ne /\1 - /\1 , /\2 - /\2 , , /\1';-1 -

A (i) A (i+1) _ >·tl >-~:~1 A (i+1) _ A (i) ... A (i+1) _A (i) 
R;-1' R; - di; ' £;+1- £;+2' ' K-i- K-i+1· 

2. Construction of basic rotation sequences: A basic rotation sequence {vi, wi}~1 1 

and its inverse basic rotation sequence {vi, wi}~1 are well defined [15], respec-
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tively, by 

(A.5) 

and 

(A.6) 

where, for notation simplicity and structural symmetry, we denote >..)il = p,yl)-1 

- -1 
and dJi = (d]i) . 

3. Construction of the Q- and S-factors: Let Svw = f1~~1 
Svif!iw, where 

li-1 o(i-1)x1 o(i-1)x(£i-1) o(i-1)x1 Q(i-1)x(K-Ri-i) 

0(1'-1)x(i-1) o(£i-1)x1 lei-1 o(£i-1)x1 Q(f!i-1)x(K-f!i-i) 

SviCiwi == 01x(i-1) Vi 01x(f';-1) -Wi 01x(K-1'i-i) 

01x(i-1) Wi 01x(£i-1) Vi 01x(K-f!i-i) 

Q(K-f!i-i)x(i-1) 0(K-f!i-i)x1 Q(K-f!i-i)x(f!i-1) Q(K-f!i-i)x1 IK-Ci-i 

The same results hold for Svw by replacing the basic rotation sequences {vi, wi}~11 

in Svw by its inverse basic rotation sequences {ui,wi}~11 . 

Proof: Since each Svif!iwi is unitary, so does Svw· Therefore, in the following 

we only need to prove that S:fwA 112 Svw is an upper triangular matrix with a given 

diagonal entries. To this end, we first prove the following statement using induction 

on J : 1 ~ J ~ K - 1. 

( 

RJxJ 

O(r-J)xJ 

RJx(r-J) ) 

J A(J+1l 
(A.7) 

Since {vi, wi}~1 and {vi, wi}~1 have structures defined as Eq. (A.5) and Eq. (A.6), 
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then they satisfy 

1 

dji 

1 

Jji 

= Wi 

Therefore, when J = 1, it can be verified by computation that 

R1x(K-1) ) 

Vl\(2) 

(A.8a) 

(A.8b) 

(A.8c) 

(A.8d) 

(A.8e) 

(A.9) 

Now we assume that Eq. (A.7) is true for J = L. For J = L + 1, exploiting the 

induction assumption, we have 

( 

RLxL RLx1 RLx(K-L-1) 

01x£ ~ R1x(K-L-1) 

o(K-L-1)xL o(K-L-1)x1 v' A(£+2) 

( 

R(L+1)x(L+1) R(L+1)x(K-L-1) ) 

o(K-L-1)x(L+1) v' A(£+2) 

This shows that Eq. (A. 7) is also true for J = L + 1. 0 
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Appendix B 

Proof of Theorem 3.2 

Let Am(A) denotes the mth largest eigenvalue of matrix A for m = 1, 2, · · · , M, 

where M is the rank of A. 

Consider the following two lemmas [37] [43]: 

Lemma B.l. Let P1 and P2 are M x M positive definite Hermitian matrices. Then 

k k 

< II Am(Pl) II Am(P2), k = 1, ... ,M -1, (B.1) 
m=l m=l m=l 

M M 

II Am(Pl) II Am(P2)· (B.2) 
m=l m=l 

Lemma B.2. Let C be an L x M matrix and D be aM x L matrix. Then, Am (CD) = 

.Am(DC). 

Proof: By Lemma B.2, we have Am(TH~T) = Am(~TTH) for i = 1, 2, · · · , M. 

Now, utilizing Lemma B.1 with P 1 =~and P 2 = TTH, we obtain 

k k 

II Am(TH~T) = II Am(~TTH) < 
m=l m=l m=l 

k 

II Am(THT).Am(~) (B.3) 
m=l 
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for 1:::; k < M. 

And 

M M 

II Am(TH~T) = II Am(~TTH) 
m=l m=l m=l 

M 

II Am(THT)Am(~) (B.4) 
m=l 

Since we let {5.m}, {Jim}, and {zlm}, form= 1, 2, · · · , M, be the eigenvalues of the 

positive definite matrices TH~T, THT and ~ respectively, then, 

A[mJ Am(TH~T) 

/'L[m] Am(THT) 

V[m] Am(~) 

Thus, equations (B.3) and (B.4) is equivalent to: 

k k 

II ).[m] < II M[m] V[m], for 1:::; k < M (B.5a) 
m=l i=l 

M M 

II ).[m] II M[m] V[m] (B.5b) 
m=l m=l 

This completes the the proof of Theorem 3.2. 
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Appendix C 

Proof of Corollary 3.2 

From Theorem 3.1, we know that if Corollary 3.1 holds, there exists a positive definite 

matrix A such that {flmzlm};;;=l and { dm};;;=l are the eigenvalues and the Cholesky 

values of A, respectively. Now, we will show that matrix A can be further written as 

a matrix product form such that A= 'f'H.ET. 

Given the sequences of {P[mJ} and {zl[mJ} form= 1, · · · , M, we can form a new se­

quence {P[m]V[mJ} and further construct a diagonal matrix diag(fl[1Jzl[1], · · · ,Jl[M]V[MJ)· 

Also, we let the eigenvalue decomposition of .E be .E = U diag(z/[1], · · · , z/[MJ) iJH 
where U is the eigenvector matrix of .E such that iJHiJ =I. 

If we let matrix diag(Jl[1Jz/[1], · · · , P[M]V[MJ) be the eigenvalue matrix of A, then 

the positive definite matrix A can be decomposed as 

A V diag(Jl[l]z/[1], · · · ,Jl[M]V[MJ) yH 

V- d' (-1/2 -l/2)U-HU- d' (- - )U-HU- d' (-1/2 -l/2)V-H lag 11[l] , · · · , 11[M] 1ag 11[1], · · · , ZI[M] Iag 11[l] , · · · , 11[M] 

'f'H.ET 

where T = U diag(JL~~2 , · · · , JL~) V H and V is a unitary matrix. D 
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Appendix D 

Proof of the Convexity of g(x) 

Since g( x) = L:~=l ex=, then the gradient of g( x) with respect to x1 , x2 , · · · , x M is 

given by 

ex1 

ex2 

\lg(x) = (D.l) 

eXM 

then, the Hessian matrix of g(x) is 

ex1 0 0 

H(x) = \l2g(x) = 
0 ex2 0 

(D.2) 

0 0 0 eXM 

Because all ex 1 , • • • , exM are positive, which means the Hessian matrix is positive 

definite. Therefore, g( x) is strictly convex with respect to x1 , x2 , · · · , x M. 
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