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Abstract 

This thesis presents a new approach to blind deconvolution algorithms. The 

proposed method is a combination of a classical blind deconvolution subspace 

method and a marginalized particle filter. It is shown that the new method 

provides better performance than just a marginalized particle filter, and better 

robustness than the classical subspace method. The properties of the new 

method make it a candidate for further exploration of its potential application 

in acoustic blind dereverberation. 
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Notation 

x Lowercase letters in bold depict vectors 

V Uppercase letters in bold depict matrices 

OMxN The matrix of all zeros of dimension M x N 

diag(a1 , a2 , a3 ) A matrix of containing a1 , a2 , a3 along the diagonal 

Xt x at timet 

Xp,t x for particle p, at time t 

q(z) q is a function of z 

y(n) y corresponding to observation channel n 

x The estimate of x 

p( x) The probability of x 

p(xiy) The probability of x given y 

N(J-l, a) The Gaussian (normal) distribution, with mean J-l and variance a 

E[x] The expected value of x 

* The convolution operator 
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Chapter 1 

Introduction 

This thesis explores the use of a particle filter based estimator for solving the 
acoustic blind deconvolution problem. Acoustic blind deconvolution, discussed 
in more detail in the next section, is a complex estimation problem that suffers 
from a number of factors that make good solutions difficult. It is the assertion 
of this thesis that a particle filter based formulation of the problem can resolve 
some of the difficulties. 

Particle filters can provide a very flexible framework for model based esti­
mation problems. This can be exploited to solve problems where incorporating 
prior knowledge of a model for the system can be useful. Thus a model which 
can incorporate as much prior information as possible can be very beneficial 
to generating a good estimate. 

1.1 Problem Description 

Blind deconvolution, is the estimation of an unknown signal source based on 
observations obtained through unknown convolutive channels. The problem is 
seen in a number of areas, including acoustics, which will be the focus of this 
work. 

• In acoustics, blind deconvolution, or blind dereverberation, deals with 
the recovery of a sound source, such as a person speaking, based on ob­
servations by a microphone or multiple microphones situated throughout 
the room. A microphone will record the sound, plus the cumulative effect 
of the sound reflecting off the walls and other surface in the room, the re­
verberation. Recovering the source is desirable for hands free telephones 
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and the professional audio field as part of the process of enhancing the 
quality of the sound. 

Other areas include seismology, biomedical signal processing and image pro­
cessing. 

• In seismology, a technique for estimating the composition of a geologi­
cal formation involves applying a disturbance, such as an explosion, at 
several points, and listening with seismographs at various points for the 
disturbance signal to return. Estimating the channel between the distur­
bance and the seismograph can provide information about the geological 
structure of the area [33]. 

• In medical applications, an electro-encephalography (EEG) recording is 
made by a number of sensors around a patients head. Events in the 
brain generate electrical signals that are received after convolutatively 
mixing with the environment [11]. The aim is to recover the original 
event transmissions to make inferences about activity in the brain. 

• Blind deconvolution extends beyond time domain signals to also encom­
pass areas such as image restoration. An image may be distorted due to 
an unknown point spread function of an imaging system and enhance­
ment to restore the original is desired [31]. This problem comes up in 
many image processing applications, notably astronomical image pro­
cessing and microscopy. 

This thesis will consider only deconvolution of time domain signals from a 
single source with multiple receivers observing through convolutive channels: a 
single input, multiple out process (SIMO). Related problems are single channel 
blind deconvolution, where a single sensor records the source after it has passed 
through a channel; a single input, single output (SISO) problem. And also 
multiple inputs with multiple outputs (MIMO), where the sources must be 
separated from each other and the channels that distort them; blind source 
separation combined with blind deconvolution. These types of systems are 
pictured in figure 1.1. 

From a conceptual point of view, acoustic blind deconvolution in a SIMO 
system is simple to consider. The single source is received at each microphone 
with a time delay and a change in amplitude corresponding to the distance 
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Figure 1.1: Single Input, Single Output (SISO), Single Input Multiple Output 
(SIMO) and Multiple Input Multiple Output (MIMO) Systems. 

traveled. The remaining reverberative echo component received at each mi­
crophone should be different, provided the microphones are spaced sufficiently 
far apart. More details about blind deconvolution are presented in section 2.1. 

1.1.1 Acoustic Reverberation 

From a psychoacoustic point of view, an echo presents a challenging scenario. 
Human hearing can discern a speaker's voice when listening in a reverberant 
environment, because of the signal processing capability of the brain. However, 
when listening to a recording of a source in a reverberant environment, the 
brain has no spacial reference and the source simply comes through as poor 
sounding audio. Moreover, the reverberation is naturally highly correlated 
with the source, making it a type of noise which human hearing is especially 
sensitive to. Thus it is highly desirable to reduce the echo as much as possible. 

The physics of room acoustics contribute significantly to the difficulty of 
blind deconvolution of speech. There are two key factors that complicate the 
typical acoustic impulse response. First, the space is typically small, such as 
an office or a conference room. This reduces the opportunity for the sound 
intensity to dissipate due to inverse square law fading before the sound is 
reflected and re-received at the receiver. Secondly, typical office walls are 
highly reflective. In the range of speech frequencies, reflection coefficients can 
be above 95% for brick and plaster wall materials and ceiling materials are 
around 70-80% [21][24]. 

The combined result of these two factors is that initial reflections are fairly 
strong, but the tail end of the impulse response continues for quite a while. 

3 
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Figure 1.2 depicts a typical measured room acoustic impulse response. The 
most important feature is the exponentially decaying envelope of the response. 
In the figure , noticeable portions of the echo persist beyond 120ms. 

0.5 

~.5 

-1L-----~----~------~-----L------~----~----~ 
0 20 40 60 80 100 120 140 

Delay(ms) 

Figure 1.2: A typical acoustic impulse response measured in a small room. 

1.1.2 Implications for Blind Deconvolution 

The long decaying tail of an acoustic impulse response has significant implica­
tions for blind deconvolution. It creates the following key complications that a 
blind deconvolution algorithm must deal with. It is worth noting that some of 
these apply not only to blind deconvolution, but also channel identification in 
an acoustic environment , where the source, but not the channel is known, and 
non-blind deconvolution, where the channel is known and must be inverted to 
recover the source. 

1. Long length- The long length makes solutions to the problem computa­
tionally intensive. It also affects the rate of convergence of continuously 
adaptive algorithms. 

2. Non-minimum phase- The majority of multichannel blind deconvo­
lution methods model the channel as an FIR filter. Acoustic impulse 
responses are typically not minimum phase, implying that even with 
the channels identified exactly, methods cannot rely on applying an IIR 
inverse filter since it will not be stable. 
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3. Ill defined length - The long decaying tail makes the exact length of 
the channel difficult to define. A number of blind deconvolution methods 
rely on knowing the length of the channel exactly. The end of the tail of 
an Acoustic channel is difficult to distinguish from any noise floor and 
any method used to recover the source must be robust against incorrectly 
estimated channel length. 

4. Effects difficult to distinguish in noise - A related issue to the 
previous item, is that the small contribution of the individual elements 
in the tail may be hard to identify in a noisy environment. 

5. Possibility of common zeros or near common zeros - The impli­
cations of the observation channels having common zeros are discussed 
in section 2.1. It suffices to say at this point that channels with zeros 
in common or situations where there are nearly common zeros cause 
difficulties with many blind deconvolution algorithms. 

6. Possibly non-stationary - In a realistic environment, the source may 
be moving or the environment may otherwise be changing. This makes 
the channels time varying. Any method used must be capable of tracking 
a changing source adaptively or assume a block-stationary approach. 

The combined effect of these complications makes acoustic blind dereverber­
ation a challenging problem for which not all methods are suited. There are 
however some well known solutions to the first two items. Item 1 can be par­
tially resolved through the use of filter banks to decompose the problem into 
subbands. This is known to improve the rate of convergence of some adaptive 
algorithms, and can also be used to reduce the computational complexity [38]. 
To resolve item 2, almost all multichannel blind deconvolution methods rely 
on methods that do not invert individual channels to recover the source. There 
are a variety of methods for this, references for which are given in section 2.1. 

1.2 Problem Definition 

With this background information the multichannel blind deconvolution prob­
lem is formally defined as follows: given a series of observations from N re­
ceivers over time 1 toT, 

{ 
(1) (1) (2) (2) (N) (N)} 

Y1 , · · · , Yr , Y1 , · · · , Yr , · · · , Y1 , · · · , Yr (1.1) 
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estimate s11 · · · , St, · · · , sT, where 

Y?) = h(1) * St + wi1) 

Yi2) = h (n) * St + wi2) 

(1.2) 

The operator * represents convolution, h(i) are FIR filters representing the 
channel from the common source to the i-th microphone, with properties sim­
ilar to the acoustic im~ulse response of a room and w(i) is white Gaussian 
noise with variance a-~ 2

. The source signal s is assumed to be representa­
tive of speech. The possibility of a non-stationary environment, where h is a 
function of time, will also be considered. 

The specific variation of this problem that will be examined is identify-
. . { (1) (1) (2) (2) (N) (N)} . mg St given y1 , · · · , Yt , y1 , · · · , Yt , · · · , y1 , · · · , Yt , for t sequentially 
varying from 1 to T. 

1.3 Contribution 

This thesis accomplishes a number of tasks in demonstrating a particle filter 
solution to the blind deconvolution problem. Most notably, 

• Formulation of the multichannel blind deconvolution problem as a non­
linear, joint state-parameter estimation problem. 

• Transformation of the problem into a non-linear state estimation problem 
and formulation of a particle filter solution to that problem. 

• Reformulation of the solution to take advantage of linear-Gaussian sub­
structure in the problem using a marginalized particle filter. 

• Integration of a classical blind deconvolution method into the marginal­
ized particle filter to increase the quality of the estimate. 

• The estimator is demonstrated to address some of the challenges to 
acoustic blind dereverberation identified in section 1.1.2. 

6 
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1.4 Organization 

The remaining chapters of this thesis will provide more background informa­
tion, describe the formulation of the problem and solution, and show experi­
mental results for the algorithm that is developed. 

Chapter 2 provides background information on the problem. It contains 
a brief literature review of multichannel blind deconvolution methods, along 
with an explanation of the necessary criteria for blind deconvolution. There 
is a brief review of speech modeling as it is necessary for the development 
of the algorithm in chapter 3. Also, recursive Bayesian estimation methods, 
including particle filters are described. 

Chapter 3 describes the buildup of a blind deconvolution algorithm based 
on particle filtering. An initial algorithm is described, and then improved 
upon. 

Chapter 4 presents the details of initializing and configuring the algorithm. 
Experimental results are then presented, with reference to the challenges of 
blind dereverberation as discussed in sectionl.l.2. 

Chapter 5 summarizes the conclusions drawn from this work. Potential 
areas for future work are also discussed. 

7 



Chapter 2 

Background 

2.1 Blind Deconvolution 

As discussed in chapter 1, blind deconvolution is the estimation of a source, 
given only observations through a channel, with no knowledge of the channel 
or source. The source can be identified within a scaling ambiguity, resulting 
from the indistinguishability of a scaling factor on the source from its inverse 
applied to the channel. 

A subset of blind deconvolution is methods dealing strictly with deconvo­
lution of time domain signals (as opposed to images, etc.) and within that is 
a further subset dealing with single sources observed through multiple chan­
nels. The most significant property of multichannel blind deconvolution is 
that, under conditions that are discussed later in this chapter, it is possible to 
perfectly recover a source using multichannel deconvolution, something that 
is not possible in single channel methods. 

There are a number of methods for multichannel blind deconvolution that 
have been developed. These methods include a great deal of variety in the 
relationships that are exploited and the algorithms used. Some of the most 
widely cited approaches range from stochastic gradient descent [2], methods 
based on second order statistics [35] and methods based on direct algebraic 
relationships such as [49]. An overview of the most common approaches can 
be found in the survey papers [32], [44] and [1]. Of particular note are the 
particle filter method of [13] and the cross relation method of [49] upon which 
the work in this thesis is partially based. 

8 
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2.1.1 Multichannel Deconvolution 

An interesting result that forms the basis of multichannel blind deconvolution 
is that a SIMO system with FIR channels can be inverted perfectly with FIR 
filters. This is regardless of whether the channel responses are minimum phase 
or individually have FIR inverses. The only condition needed for this result 
is that the channels have no common zeros. This result was first observed in 
[34]. 

In a single FIR channel system, inversion of the system, even with the 
channel impulse response known perfectly is difficult. The natural inverse of 
an FIR channel is an all pole, IIR filter; an FIR inverse may exist but not 
generally. The IIR inverse suffers from the numerical stability problems for 
long IIR filters. More importantly, acoustic impulse responses are generally 
not minimum phase, implying that the inverse filter is not causal and stable. 
The inverse IIR filter may be approximated with an FIR filter, but this not 
perfect reconstruction and the filter will not be able to recover the frequencies 
lost to the zeros of the channel response. Thus single channel deconvolution 
cannot generally recover a source from observations through a channel. 

Bezout Identity For multichannel systems, inversion can be accomplished 
using FIR filters using the Bezout Identity. The Bezout identity is the result 
for two polynomials p(z) and q(z) of length M and N respectively that there 
exist two unique polynomials, p(z) of length M- 1 and ij(z) of length N- 1, 
such that 

p(z)p(z) + q(z)ij(z) = 1. (2.1) 

This is true if p(z) and q(z) have no common zeros [27]. The result can also 
be generalized to any number of polynomials. Additionally, the identity holds 
for p(z) and ij(z) of longer lengths, but the solution is no longer unique. 

When considered in terms of polynomials in z-1 representing FIR filters, 
the Bezout identity implies that perfect reconstruction of the original is possi­
ble by using FIR filters. This is done by identifying the equalizing filters p(z) 
and ij(z) and applying them to the observed outputs as shown in figure 2.3. 

Details of how to identify the inverting filters are given in Appendix 1. It 
should be noted that neither p(z) nor ij(z) are true inverting filters for p(z) and 
q(z) individually, only the combination inverts the system. More importantly, 
the inversion is independent of whether the channel responses are minimum 
phase or individually have meaningful FIR inverses. 

9 
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Figure 2.3: Bezout identity based multichannel equalization 

2.1.2 Necessary Conditions 

No Common Zeros 

The Bezout identity gives rise to one of the necessary conditions for multi­
channel blind deconvolution. The requirement of no common zeros between 
channels is derived in a variety of ways in the blind deconvolution literature, 
for example in [49] and [41]. It is worth noting a simple physical explanation 
for the requirement here. In the noise free case, over a window of length N, 
the output of the convolution can be written in vector-matrix form as follows: 

(1) 
Yt 

hF) h (1) h(1) (1) 0 0 
Yt-1 2 L 

0 
(1) 

Yt-N 
h~1) h(1) h(1) St 0 0 2 L 

(2) h(2) h(2) h(2) 0 0 
St-1 

Yt 1 2 L St-2 (2.2) (2) 
Yt-1 0 

(2) 
St-N 

Yt-N 0 0 h (2) h(2) h(2) 
1 2 L 

h(3) h(3) h(3) 0 0 
(3) 1 2 L 

Yt 

y* = H*s. (2.3) 

10 
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The structure of the matrix H* is known as a generalized Sylvester matrix or 
composite channel matrix[5]. Assuming a perfect knowledge of the channel 
impulse responses and the output y*, it is clear that the input can only be 
perfectly reconstructed if H* is invertible. 

Besides its use in expressing convolution, the Sylvester matrix has a long 
established property for testing polynomials for common zeros. If the coef­
ficients of multiple polynomials are placed in a Sylvester matrix form, then 
all the polynomials have no common zeros if and only if the matrix has full 
rank. Since impulse responses are simply polynomials in z-1

, this and previous 
assertion implies that blind deconvolution is only possible if and only if the 
channels have no common zeros. 

Moreover, as will become apparent in this thesis, a common zero becomes 
an unresolvable ambiguity, similar to the amplitude ambiguity in blind de­
convolution. It cannot be distinguished between belonging to the source or 
belonging to the channels. In the case of an all-pole source, the common zero 
can encounter pole-zero cancellation between the source and the channels that 
results in the source being unidentifiable based on the observations. 

Source Diversity 

An additional requirement is that the channel can only be identified perfectly 
if the source has a sufficiently high level of complexity. The physical interpre­
tation is that the source must stimulate the entire range of frequency com­
ponents of the channel for the channel to be identified. This results in the 
commonly cited requirement of a linear complexity of two times the channel 
length or that the source have at least as many unique modes as the length of 
the channel[44] [49]. This requirement is only necessary for blind deconvolution 
methods that require complete identification of the channel response. 

Qualification of the Necessary Conditions 

It is important to note that these necessary conditions are only imposed if 
the source is to be identified perfectly using a deterministic approach. For 
statistical methods more akin to single channel blind deconvolution methods, 
these necessary conditions are relaxed [44]. 

11 
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2.2 Acoustic Impulse Response Properties 

The complications for acoustic blind dereverberation caused by acoustic im­
pulse responses (section 1.1.2) have an explanation in terms of the Sylvester 
matrix discussed earlier. 

The near common zeros and the exponential decay, specifically the large 
number of small values at the end of the impulse response relative to the large 
values at the start , has an adverse effect on condition the Sylvester matrix. 
Figure 2.4 shows the singular values of the Sylvester matrix for a pair of 
measured acoustic channels. In this example a number of the smallest singular 
values are significantly below the largest singular, the condition number of the 
Sylvester matrix is 1.8 x 106 . While not singular, the matrix is ill conditioned, 
and the impulse responses would be difficult to identify or invert in the presence 
of noise. 

10~ 

Figure 2.4: Singular values of the Sylvester matrix of two room acoustic im­
pulse responses. 

Thus typical reverberant acoustic environments such as small rooms fail to 
meet the necessary criteria for deterministic blind deconvolution. 

12 
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2.3 Speech Modeling 

In the estimator that is developed later in this work, a model for the source is 
required. With that intent in mind, the following review of speech modeling 
is presented. 

Speech is the result of resonance of airflow through the vocal tract. The 
form of the driving air excitation is the basis of the main subdivisions of speech 
sounds [14]. 

• Unvoiced sounds are created by a constriction of the vocal tract causing 
the air to become turbulent. The resulting driving air into the reso­
nant structures is similar to Gaussian noise. Examples of voiced sounds 
include the sh sound in "shade" and th in "thus." 

• Voiced sounds are the result of the glottis, a portion of the vocal chords, 
vibrating. This creates excitation similar to a pulse train. When this 
resonates in the vocal tract, the result is sounds such as the m in "him" 
and a in "arm." 

The transition between silence, voiced and unvoiced sounds can be gradual as 
in the word "she," or abrupt. In latter case, plosive sounds can be considered 
another form of excitation. They are quickly are followed by voiced or unvoiced 
sounds, but begin as a buildup of air that is suddenly released. The buildup 
can be within the mouth as in pin "put," or the throat as in gin "get." This 
sudden change requires that any model be able to quickly adapt to changing 
parameters. Waveforms corresponding to voiced and unvoiced speech signals 
are shown in figure 2. 5. 

The resonant behaviour can be modeled over short periods of time as an 
autoregressive (AR) process. Most methods of speech modeling rely on some 
form of AR model; from linear prediction modeling [21] to AR based noise 
enhancement methods [45] [37]. The AR coefficients are typically modeled as 
either block-stationary, as in the case of linear prediction, or continuously time 
varying [37][46]. 

Thus speech can be modeled as a driving source, either a pulse train or 
Gaussian noise, followed by a continuously time varying or block-stationary 
AR process. 
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Time (ms) Time (ms) 

Figure 2.5: Voiced speech ou as in "your" (left) and unvoiced speech sh as in 
"she" (right) [19]. 

2.4 Sequential State Estimation 

The state estimation problem is defined as identifying the distribution of the 
changing state x given a set of related observations y : p(xly). Once the density 
is available, any number of useful estimates can be taken by calculating 

E[h(x)] = J h(x)p(xiy)dx. (2.4) 

More specifically, the density of interest is usually based on a time series of 
past observations. Let Y1:t = {Yt> Yt-1> · · · , yi} , the set of observations from 
time 1 tot. 

In this thesis, the problem will be formulated in the form of a sequential 
estimation problem. Of interest will be the estimate of the state at time 
t , Xt , having already calculated the estimate of Xt-l· Then the problem of 
estimating p(xtiYI:t) is known as filtering , and estimating p(xt+1 IYu) is known 
as prediction. There is also the related problem of p(xti IYu) , where ti < t , this 
is known as smoothing [6] . Within the scope of this work, the focus will be on 
the filtering problem. This is of interest in online systems where the estimate 
of the current state is desired, given the most recent observation. 

The discussion is restricted to first order Markov systems. This allows 
certain algebraic simplifications, but is still a general enough assumption to 
encompass models of interest. Additionally, the system is expressed in terms 
of a generalized state space model. Thus the model follows the following two 
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equations 

Xt+1 = ft(Xt, Vt) 

Yt = 9t(Xt, Wt) 

State transition p(xt+1lxt) 

Observation P(Ytlxt) 

(2.5) 
(2.6) 

where Vt and Wt are random variables representing the process noise and ob­
servation noise respectively. 

This type of estimation is usually based around manipulations of the prob­
abilities based on Bayes rule. Hence the name, Bayesian estiamtion. Details 
on Bayesian estimation methods for linear-Gaussian systems can be found in 
[6]. This reference also covers some nonlinear and non-Gaussian methods. 
Thorough surveys of popular methods of Bayesian estimation for nonlinear 
and non-Gaussian systems can be found in [23] and [10]. 

The state estimation problem can be formulated in an iterative form. Ex­
panding and applying Bayes rule, p(xtiYt) can be written as 

( I ) _ P(YI:tlxt)p(xt) 
P Xt Y1:t - ( ) 

p Yl:t 

-

-

P(Yt, Y1:t-1lxt)p(xt) 

P(Yt, YI:t-1) 

P(YtiYl:t-1, Xt)P(YI:t-1, Xt) 

P(Yt, Y1:t-1) 

P(YtiYt-b Xt)P(Yt-1, Xt) 

P(Yt 1Yt-1)P(YI:t-1) 

( I ) _ P(Ytlxt)p(xtiYI:t-1) 
p Xt Yl:t - ( I ) . 

P Yt Y1:t-1 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

The last step stems from the Markov property. In the last line, the distri­
bution of interest p( Xt I Yl:t) is known as the posterior distribution (after the 
observation has been made). The factor P(Ytlxt) is known as the likelihood 
(the likelihood of seeing a particular observation, given the state). p(xtiYI:t-1) 
is known as the prior (before the observation was made. In this case it is 
a forward prediction of the distribution of x, later on it is reformulated as 
p(xt-1IYI:t-1). Finally, the denominator P(YtiYI:t-1), known as the evidence, is 
just a normalizing constant and can be obtained by integrating the numerator. 

From this factorization and the Chapman-Kolmogorov equation, to give 
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the prediction density p(xtiY1:t-1), the following recursion can be formed 

p(xtiY1:t-1) = J p(xtiXt-1)P(Xt-1IY1:t-1)dxt-1 Prediction (2.12) 

( I ) 
P(YtiXt)p(xtiY1:t-1) 

p Xt YH = · J P(Ytlxt)p(xtiY1:t-1)dxt 
Correction (2.13) 

The recursion is initiated by an initial prior p(x0 ). From the distribution 
p(xtiY1:t), any estimates of interest can be taken: 

(2.14) 

This method, recursive Bayesian estimation, is exact; however, the terms 
are difficult to calculate analytically and exact solutions are limited to a hand­
ful of special cases. 

2.4.1 Kalman Filter 

A well known exact analytical solution to equations 2.12 and 2.13 exists if the 
system to be estimated is a linear-Gaussian state space model, i.e. it can be 
expressed in the following form: 

Xt+1 = AtXt + Vt, 

Yt = CtXt + Wt, 

Vt rv N(O, :Ev,t) 

Wt rv N(O, :Ew,t) 

(2.15) 

(2.16) 

where the gain matrices A and C, and covariance matrices :Ev and :Ew are 
known and v and w are uncorrelated. The solution, developed in 1960 by 
Rudolf Kalman [28], is known as the Kalman filter. It provides the minimum 
MMSE estimate of the filtering and prediction distribution for linear-Gaussian 
systems. 

For the following discussion, the following notation is introduced: Xt-11t-1 
implies the estimate of Xt-1 given the observation Yt-1. Similarly Xtlt-1 is 
the prediction of Xt given Yt-1. The following steps are relatively simple to 
derive; an explanation of the process can be found [6]. As described for general 
recursive Bayesian state estimation in the previous section, the estimator has a 
prediction and correction step. First, the prediction step answers the problem 
of calculating the MMSE error estimate of p(xtiXt-1? Yt-1). Given an initial 

16 



M.A.Sc. Thesis - Krzysztof S. Maryan McMaster - Electrical Engineering 

estimate, with Gaussian probability distribution with mean Xt-llt-1 and with 
covariance Pt-11t-1? the one time step forward estimate is 

Xtlt-1 = At-1Xt-11t-1 

Ptlt-1 = At-1Pt-11t-1Af_1 + :Ev,t-1? 

thus 

(2.17) 

(2.18) 

(2.19) 

This is equivalent to propagating the Gaussian pdf of Xt-11t-1 through equation 
(2.15). 

The correction step combines the forward estimate from above with the 
observation Yt· First, two factors are calculated, the innovation covariance 

and the Kalman gain 
Kt = Ptlt-1 cfs;-1

. 

Then the filtering distribution is described by 

Xtlt = Xtlt-1 - Kt(Yt- CtXtlt-1) 

Ptlt = Ptlt-1- KtCtPtlt-1 

p(xt!Xt-1? Yt) = N(xtlt, Ptlt)· 

(2.20) 

(2.21) 

(2.22) 
(2.23) 

(2.24) 

The analytical solution provided by the Kalman filter is possible because 
linear transformations of Gaussian distributions yield other Gaussian distri­
butions. Other examples where this is possible are limited. 

Non-linear Extensions 

Although the Kalman filter is limited to linear-Gaussian systems, there are a 
number of variations of the Kalman filter than provide good approximations 
in certain nonlinear cases. 

The extended Kalman filter (EKF) assumes that the state transition and 
observation equations are differentiable functions. It then linearizes the equa­
tions and uses the Kalman filter to produce estimates based on the linearization 
[48]. 

Another option is the unscented Kalman filter (UKF), first presented in 
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[26]. This variation propagates a pattern of points through the nonlinear­
ity, which allows for a more accurate Gaussian approximation to the state 
distribution[4 7]. 

Despite these and other extensions, Kalman filter based methods are often 
a poor approximation in highly non-linear and non-Gaussian cases. 

2.4.2 Particle Filter 

Particle filtering, also known as sequential Monte Carlo methods, are an ap­
proximate solution to the recursive estimation problem. It has been described 
as a "randomized adaptive grid approximation" [20] solution to the problem. 
The basic forms of particle filters were developed in the 1950s, but the modern 
incarnation is generally attributed to [40]. 

The basis of particle filters is to create a discrete approximation of the 
posterior by sampling the distribution 

Npart 

p(xt!YI:t) ;.:::j L wp8(xt- Xp,t) (2.25) 
p=l 

Where Npart is the number of discrete approximations, known as particles. 
Each particle has a state sample Xp,t and a weight wP associated with it. The 
states are spread over the domain of p(xt!YL..t) and the weights proportional 
to p(xp,tiYL..t), normalized such that E Wp = 1. The weight is calculated to 
represent the likelihood that the particle state is the true state. 

The estimate of the state can then be calculated based on the weights 
assigned to the particles by application of the comb property of the delta 
function to equation (2.14) 

Npart 

E[xt!Yu] ;.:::j L WpXp,t· (2.26) 
p=l 

Since drawing directly from p(xt!YL..t) is difficult, a recursive solution can 
be formed where calculation of the weights is done iteratively [17]. Similar to 
equations (2.12) and (2.13), a different recursion for p(xt!YL..t) can be formed 

18 



M.A.Sc. Thesis - Krzysztof S. Maryan McMaster - Electrical Engineering 

by factoring it as 

(2.27) 

In general, this is no more analytically tractable than (2.12) and (2.13). How­
ever, the density p(Xt-1 IY1:t-1) can be represented by a set of particles, p, from 
the discrete approximation: equation (2.25). Then the posterior density then 
can be updated by sampling particle states from Xp,t rv p(xp,tlxp,t-1), which 
stems from (2.5), for each discrete state Xp,t, and modifying the particle weights 
through 

P(Ytlxp,t) 
Wp,t = Wp,t-1 ( I ) ' 

P Yt Y1:t-1 
(2.28) 

where P(Ytlxp,t) is derived from equation (2.6). The denominator can be elim­
inated by normalizing the particles 

Wpt 
w t = , 

p, "'Npart ' 
L...Jp Wp,t 

(2.29) 

leaving the update equation 

(2.30) 

The recursion is initiated by setting all the weights equal to NP~;t and sam­
pling the states Xp from an initial distribution p(x0 ) corresponding to the 
initial estimate of the particle states. Thus the weights propagate the particle 
likelihood, resulting in the discrete approximation bypassing the intractable 
analytical calculations in (2.12) and (2.13). This propagation of the weights 
is the fundamental principle of particle filters. 

Equation (2.30) can be generalized further by introducing the idea of im­
portance sampling. The distribution p(xtiXt-1) may be difficult or inefficient 
to draw from, more significantly, it may be possible to draw from other distri­
butions that provide more information. An arbitrary probability distribution, 
known as the importance function, n(x), can be introduced into (2.28) by 
sampling from it, and modifying the update to 

P(Yt lxp,t)P( Xp,t lxp,t-1) 
Wp,t = Wp,t-1 n(x ) . 

p,t 
(2.31) 
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This is valid provided that the support of 1r(x) includes the support of p(xt!Yt) 
[15]. 

The resulting algorithm is known as Sequential Importance Sampling and 
is summarized in algorithm 1 [4]. 

Algorithm 1: Sequential Importance Sampling (SIS) [4] 

begin 
II Initialize 
foreach particle p = 1 to P do 
I Draw Xp from an initial prior distribution p(x0); 

end 
for t +-- 1 to T do 

foreach particle p = 1 to Npart do 
II Correct 
W +-- W P(YtiXp,t)p(xp,tiXp,t-1). 

p,t p,t-1 1r(Xp,t) l 

end 
foreach particle p = 1 to Npart do 
I Wp +-- wpfL.::p wp} -\ 

end 
x(t) +-- L.::P WpXp; 
foreach particle p = 1 to Npart do 

I 
I I Predict 
Xp,t "-' 7r(Xt); 

end 
end 

end 

II Normalize 

II Estimate 

The choice of importance function can vary depending on ease of compu­
tation or analytical tractability of certain distributions, a discussion of some 
options is in [17]. In this regard, equation (2.30) is a special case of (2.31), 
where 1r(x) = p(xt\Xt-1). The next section will also identify a choice of impor­
tance function that can improve the stability of the estimator. 

Particle filter estimates based on equation (2.26) will converge to the 
Bayesian (MMSE) estimate as Npart -> oo. With a limited number of parti­
cles the estimate is biased, however in practice moderate numbers of particles 
produce good estimates. The exact number necessary is largely dependent on 
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the specific model to be estimated, especially on the size of the state vari­
able. The number of particles needed to achieve a given estimation variance 
increases approximately exponentially with the dimension of the state, limit­
ing application of particle filters in high dimensional problems. Proof of the 
convergence of particle filter is analyzed in detail in [12]. A simpler discussion 
based on convergence of importance sampling estimates is in [15]. 

Degeneracy and the Optimal Importance Function 

As a particle filter algorithm progresses, the particle states generally spread out 
progressing recursively through the importance function, while the likelihood 
distribution remains comparatively narrow. Thus the particle states will tend 
to enter regions that have a very low likelihood. As a result, the importance 
weights of many these particles will tend to zero, while only the small number 
that remain in high likelihood regions will have significant weights. Proof that 
this is largely unavoidable is outlined in [17]. This phenomenon is known 
as degeneracy. It generally leads to poor estimation since the areas of high 
likelihood will be poorly sampled by the particles. 

Particle filter degeneracy is pictured in figure 2.6. In the figure, the circle 
positions represent particle states, with the diameter representing the particle 
weight. When the states are propagated through 7r(xtlxt_1), they spread out 
to the point that the particles no longer have significant weights. 

Typically the metric known as the effective sample size, related to the vari­
ance of the particle weights is used to quantify degeneracy. With normalized 
particle weights, the effective sample size is 

1 
Neff= · 

""'Nparticles 2 
L..,p=I wP 

(2.32) 

Nominally, the particles will have approximately equal non zero weights, im­
plying that the above value will be equal to the number of particles. In the 
degenerate case, most of the particles will have near zero values and the met­
ric will fall to a small level indicating that less than 100% of the particles are 
providing useful information. 

The degeneracy problem can be decreased to some extent by the choice of 
importance function. Use of 7r(x) = p(xtlXt_1 , Yt) can be shown to be optimal 
in that it minimizes the variance of the importance weights [17]. Use of the 
optimal importance function can reduce the number of particles required to 
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Weight (likelihood) 
function 

Figure 2.6: Degeneracy of a particle filter. The weights of most of the particles 
tend to zero. 

achieve a given estimation variance. However, it does not solve the degeneracy 
problem, as the variance of the importance weights will still increase over time. 

Resampling The solution to the degeneracy problem is to resample the par­
ticle distribution at each time step to better distribute the particle sampled 
states. There are a number of algorithms available, a number of which are 
discussed in [25], and each offers certain tradeoffs. Systematic resampling is 
recommended by some sources [25] [4] because it is an intuitive and computa­
tionally simple algorithm. The method, detailed in algorithm 2, is to construct 
the cumulative density funciton (CDF) of the particle weights and then step 
through it with uniform steps, generating new particles corresponding to the 
current position in the CDF [4]. The result is that particles with high weights 
are duplicated, while those with low weights are discarded. The process is 
illustrated in figure 2.7. In the figure, the particles with low weights are elim­
inated, while the particles with high weights are duplicated proportionally to 
their weight. The weights of all the particles are then set to be equal. 

Sequential importance sampling (algorithm 1) becomes the sampling - im­
portance- resampling (SIR) algorithm with the addition of a resampling step 
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Resample 

Figure 2. 7: Resampling to eliminate degeneracy. 

after the normalization of the particle weights. The traditional SIR algorithm 
[17] resamples only when the effective number of samples falls below a thresh­
old, however the relatively low computational cost of the procedure means 
that it can be included at every iteration with little effect on the computa­
tional load. 

In algorithm descriptions later in this work, the resampling step will be 
denoted as Xp,t ~ R(wp, Xp,t)· 

Resampling and Estimation From an estimation point of view, the resam­
pled distribution is only an approximation of the original. Provided a sufficient 
number of particles, the estimate will still converge to the true distribution [7]. 
However it is advantageous to calculate the state estimate (equation (2.26)) 
for a given time step before the resampling step in the algorithm. 
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Algorithm 2: Systematic Resampling 
Input: particles with weights Wi and state Xi, i = 1 ... Npart 
Output: new particle weights wi and state ~ 
begin 

II Calculate the CDF of the weights 

Set c such that c(i) = L:~=l wk; 
II Set an initial offset 
Set u1 r-v U(O, 1); 
i +-1; 
II Iterate for all new particles 
for j +- 1 to Npart do 

u +- u1 + (j- 1)/Npar6 
while u > c(i) do i +- i + 1; 
Xj +-Xi; 
Wj f- 1/Npart; 

end 
end 

Resampling and Parallel Computing Finally, resampling forces all of the 
particles to interact at the same time. As is, the particle filter is more compu­
tationally expensive than the Kalman filter and its variants. The necessity of 
resampling prevents the possibility of distributing particles amongst parallel 
processors [17], thus limiting the possibilities for realtime application of par­
ticle filters. That said, there is some research into parallel approximations of 
resampling algorithms [8]. 

Diversity Resampling is necessary, however it has drawbacks. If the particle 
state changes relatively little from one step to the next, or the importance 
density does not track the likelihood well, the same particle states will be 
constantly duplicated by the resampling algorithm and the state range will 
not be sampled well. This leads to a lack of diverse samples known as sample 
impoverishment, illustrated in figure 2.8. The figure shows that the proposed 
importance density 7r(xtlxt_1 ) does not vary the particle states enough to place 
them where they would accurately cover the comparatively rapidly changing 
likelihood P(Ytlxt)· 
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Figure 2.8: Sample impoverishment. 

There are two solutions to this problem. The first is to estimate a continu­
ous function to fit the discrete particle distribution and resample by sampling 
from the continuous distribution, this known as regularization [36]. If the 
model permits it , a simpler solution is to ensure that the importance distri­
bution is such that the particles produce sufficient diversity when drawn to 
prevent impoverishment. 

Further Reading More detailed descriptions of aspects of particle filters 
can be found in [15] , [10] and [50]. 
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With this background discussed, this thesis now continues with the application 
of this theory to the blind deconvolution problem. In the next chapter a par­
ticle filter formulation of the solution to the multichannel blind deconvolution 
problem is developed. 
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Chapter 3 

Multichannel Blind 
Deconvolution using Particle 
Filters 

In this chapter, the blind deconvolution problem is first expressed in terms of 
an observation model. This is coupled with a model for the source and the 
system is formulated as nonlinear state-space model. The blind deconvolution 
problem is expressed as a joint parameter-state estimation problem for the 
model, which is then transformed to a state estimation problem. A recursive 
filtering estimator for the system is then formulated using particle filtering. 

The particle filter estimator is modified to take advantage of the structure of 
the model and a variation of the estimator is developed based on a marginalized 
particle filter. This is further improved upon by integrating a classical subspace 
based blind deconvolution method. 
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3.1 Observation Model 

As described in chapter 1, the single input, multiple output system with FIR 
channels can be written as follows: 

y(l) = h(l) * s + w(l) 

y(2) = h(2) * s + w(2) 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

where y(n) are the received signals, h(n) are the channel impulse responses, s is 
the source signal and w(n) is the observation noise at each channel. Each of the 
noise sources is Gaussian, white noise, independent between the channels, with 
zero mean and variance O"(n)2 . It is worthwhile to note that this can be equally 
extended to a MIMO formulation (multiple sources) with channels from each 
source to each output, a description of that formulation can be found in [13]. 

In discrete time this can be expressed in vector-matrix form. First, the 
following definitions are made: the observation Yt is the vector of observations 
from all sensors at time t 

Y = [y(l) y(2) . . . y(N)]T 
t t ' t ' ' t 

(3.5) 

the impulse response of channel i is the vector 

(3.6) 

the state s(M),t to be the history of source samples from time t to t - M 

(3.7) 

and the noise at time t for all channels is the vector 

(3.8) 

Wt is then Gaussian random variable with covariance matrix 

:E = diag(0"(1)2 0"(2)2 . . . O"(N)2) 
w ' ' ' . 

(3.9) 
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The convolution operation at time t can then be expressed as 

(1) h(1) h(1) h (1) (1) 
Yt 1 2 M St Wt 

(2) h(2) h (1) h(2) 
St-1 

(2) 
Yt 1 2 M + 

Wt 
(3.10) 

(N) h(N) h(N) h(N) St-M (N) 
Yt 1 2 M Wt 

or simply as 
Yt = Hs(M)t + Wt, w rv N(O, :Ew)· (3.11) 

This is the vector-matrix form of a SIMO system with FIR observation chan­
nels that will be used throughout this chapter. 

3.2 Source Model 

Imparting prior knowledge based on the physical structure of the system to an 
estimator can have a very beneficial effect on the output [42]. Thus, applying 
a model to the source imparts a constraint on any estimate of the source that 
can improve the estimate. As discussed in section 2.3, speech can be described 
over short periods as being an autoregressive process driven by white noise or 
a pulse train. 

It is proposed in this thesis that the pulse train assumption, though phys­
ically accurate for voiced speech, can be replaced with white noise. In the 
results presented in [46], voiced speech is accurately estimated by an AR pro­
cess driven by white noise. 

Thus the source is modeled as an AR process driven by white noise even if 
the speech is quasi-periodic. In discrete time, for an AR process of length K, 
this can be written as: 

K-1 

st+1 = L akSt-k + Vt, 

k=O 
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where Vt is the driving noise; white, Gaussian which is assumed to be dis­
tributed with variance a-v; and a1, a 2 , · · · , aK are the AR coefficients. Alter­
natively, in vector-matrix form, this can be written as follows: 

a1 a2 aK 
1 St+1 1 0 0 0 St 

St St-1 0 
0 1 0 + Vt. (3.13) 

St-K-2 
0 0 0 0 

St-K-1 0 
0 0 1 0 

More concisely, defining a= [a1 , a 2 , · · · , aKJT and S(K)t similarly to 3.7 yields 

S(K)t+1 = As(K)t + Vt (3.14) 

where 

v ""N(O, a-v)· (3.15) 

In this form, the first row of A performs the autoregressive dot product, while 
the remaining rows shift the source vector contents up by one. 

3.3 System Model 

Combining the source and observation models gives an overall model that is 
the basis of the blind estimation process 

st+1 = Ast + Vt 

Yt = Hst +wt. 

(3.16) 

(3.17) 

Minor modifications to the original models are necessary to accommodate the 
mixed vector-matrix dimensions. The vector St is of length L = max(M, K), 
containing the longer of S(M)t (see equation (3.11)) or s(K)t (see equation 
(3.14)). Correspondingly, the AR and MA coefficients in A and H are zero 
padded to the longer length as necessary, depending on whether the AR coef­
ficients or the MA coefficients are a longer sequence. Finally, the driving noise 
vector Vt is zero padded to the longer length as necessary. This makes St and 
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Vt now vectors of length£, the matrix A is an L x L matrix and His N x L. 
This model is complete in the sense that it defines the relationship between 

the observed variable y and the state variable s and provides a description of 
the behaviour of the state variable. 

3.4 Blind Deconvolution from a State Space 
Model 

The goal is to calculate an estimate of the source s. Based on the proposed 
model, this involves simultaneously estimating s along with the parameters 
A, H, ~w and (J'v· In the present form, this known as a joint state-space and 
parameter estimation problem. 

The problem is well explored in literature. Older methods such as [29] rely 
on sampling the parameters from a prior distribution, then utilizing a particle 
filter to calculate the likelihood of a state estimate, conditional on the sampled 
parameter. However, these methods did not explore the parameter space after 
the initial sampling. Most of the recent approaches rely on forming an initial 
estimate of the parameters, using that to estimate the state, then modifying 
the parameters based on the observation likelihood, and then repeating the 
cycle. The authors in [3] demonstrated recursive maximum likelihood based 
on the expectation maximization (EM) algorithm. In [18] a recursive max­
imum likelihood method is developed around the particle filter. [30] uses a 
more conventional particle filter approach, but introduces a dynamic model to 
the sampled parameters to provide diversity and allow the parameters to be 
estimated as part of an extended state. This latter approach is the basis for 
the method that will be developed. 

3.4.1 Model Redefinition 

To apply the proposed method, the model is redefined as follows. 

• Add a dynamic model to the AR coefficients, a. This reflects the non­
stationary nature of the AR coefficients of speech. It also provides varia­
tion from one time step to the next that creates diversity for the particle 
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filter. The chosen model is a random walk, forming a time varying au­
toregressive (TVAR) process as described in [46]: 

11a "'N(o, a a)· (3.18) 

The parameter Ca is a constant generally equal to 1, but left here for 
generality. The variance of Ua, O'a is effectively a step size parameter, 
controlling the variance in the AR coefficients between each time step. 

• Guarantee the stability of the AR portion by limiting the poles to be 
inside the unit circle. This is a more stringent requirement than what 
is necessary for stability, but it is a sufficient condition and is used suc­
cessfully in [46]. The specific algorithm is defined in algorithm 3. 

Algorithm 3: Constraining AR coefficients to ensure a stablity 
Algorithm:Constrain AR Poles 

Input: AR Coefficents at= [a1,t, a2,t, · · · , aK,t] 
begin 

P(z) +- 1- 2::~=1 an(z-n); 
Factor P(z) = ll~=1 (z-1 + Pn); 
foreach pole Pn n E 1, · · ·, K do 

I if iPnl > 1 then Pn +- Pn/IPni; 
else Pn +- Pn; 

end 
P(z) +- ll~=1 (z-1 +fin); 

- N 
Expand P(z) = 1- En=1 an(z-n); 
at +- [a1,t, a2,t, · · · , aK,t]; 

end 

• Add a dynamic model to the MA coefficients, h(i). The time constant 
for changing the channel is generally slower than for the AR coefficients, 
however, change is still present. The random walk model is used again, 
it proved to be a useful model in [13] for this type of estimation: 

i E {1, .. ·, N}, 
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• Add a dynamic model to the driving noise variance a;. Speech gener­
ally involves very large amplitude changes, typically over 40dB from the 
quietest tones to the loudest [22], thus applying a random walk model 
to the logarithm of the driving noise variance is appropriate. This also 
ensures that the variance is positive. This method is used in [46]. 

<Pv,t = ln( a;,t) 

</Jv,t+l = C¢v<Pv,t + U¢v,h 

• A similar model is given to the observation noise 

i E {1, · · · , N} 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

By adding dynamic behaviour to the parameters, they can now be esti­
mated as extended state variables. This also serves to provide the necessary 
diversity between time steps as discussed in section 2.4.2. 

The constants in the model are now design parameters that can be esti­
mated offline. ·They quantify measurable properties of acoustic systems that 
are relatively invariant for large classes of environments. It will also be shown 
that some act as estimator tuning parameters. In either case, the model pa­
rameters have been reduced to fixed quantities, while the parameters of the 
earlier model, the AR, MA parameters and noise variances, have been incor­
porated into the model state. Thus the joint state and parameter estimation 
problem has been transformed to a state estimation problem that can be tack­
led by conventional state estimation algorithms. 

With this redefinition of the model, the state to be estimated is 

X - {s h a -~, .-T -~,(1) • . . -~,(N) .-T(l) . . . .-T(N)} 
- ' ' ' 'f'v' v v' 'f' w ' ' 'f' w ' v w ' ' v w ' (3.24) 

which is perturbed by the random variables 

(3.25) 
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The model can be generalized to a non-linear state space model, with a con­
ditionally linear observation 

Xt+l = f(xt, et) 

{Ht, St, :Ew,t} {:::: Xt 

Yt = HtSt + Wt, Wt rv (0, :Ew,t)· 

(3.26) 

(3.27) 

(3.28) 

Recursive estimation of this type of system can be handled by a particle filter. 

3.4.2 Bootstrap Particle Filter 

The Sampling Importance Resampling particle filter algorithm requires the 
ability to evaluate and draw particles from a proposal distribution 1r(xt)· As 
discussed in section 2.4.2, the optimal choice to minimize the particle weight 
variance is p(xt!Xt_1, Yt), however, this is difficult to obtain in this model. One 
alternative is to approximate the optimal importance function: [17] and [13] 
propose approximating it with a Gaussian distribution based on a linearization 
of the state equations using a method similar to the extended or unscented 
Kalman filter. As an alternative, the bootstrap approximation [4] is used where 
the importance density 7r(xt!Xt-b Yt) is set to the prior density p(xt!Xt-1). The 
importance weight update then reduces to 

(3.29) 

Or, by resampling the particles at every iteration, the particle weights are 
forced to be equal. Thus 

Wp,t = P(Yt!Xp,t), (3.30) 

which can be derived explicitly from the observation likelihood 

(3.31) 

Drawing from the prior distribution is then a matter of propagating the 
previous estimate Xp,t-1 from each particle through the state evolution model 
(3.26). In this process, the propagation of each particle state includes a sam­
pled realization of the process noise for all of the random variables in the model 
equations. The resulting distribution of particle states is then a discrete ap­
proximation to p(xt!Xt-1)· 
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The complete bootstrap particle filter algorithm is summarized in algo­
rithm 4. 

Algorithm 4: Bootstrap Particle Filter 

begin 
II Initialize 
foreach particle p = 1 to Npart do 
I Draw Xp,o from an initial prior distribution; 

end 
for t +---- 1 to T do 

foreach particle p = 1 to Npart do 

I 
I I Correct 
Wp +---- N(Hpsp, :Ew,p); 

end 
Wp +---- Wp{Lp Wp}-\ 
x(t) +---- Lp wpXp; 
Xp +---- R(wp,xp); 
foreach particle p = 1 to Npart do 

II Predict 
I I Sample Xp,t "'p(xtlxp,t-1) 
Propagate Xp = f ( Xp, et); 

end 
end 

end 

II Normalize 
II Estimate 
II Resample 

The bootstrap particle filter provides an estimator for the system and works 
well provided sufficient particles are used. However, the required number of 
particles grows exponentially with the number of dimensions in the estimated 
state. While the AR coefficients are relatively low dimensional, as are all of 
the parameters, the number of MA coefficients can be very large. To handle 
this, an alternative method is devised. 
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3.4.3 Marginalized Particle Filter 

Before continuing this discussion, a change is made to the model. The output 
equation can be written equivalently as (since convolution is commutative): 

Yt = HtSt + Wt 

= Stht +wt 

(3.32) 

(3.33) 

where S is defined to provide the convolution product with h, the column 
vector of the channel impulse responses 

ST OlxL OlxL h(l) 

OlxL ST h(2) 
S= h= (3.34) 

OlxL OlxL 

OlxL 
ST h(N) 

Returning to the design of the estimator, up to this point the substructure 
of the model has not been exploited. The state variable x can be partitioned 
into two portions: 

h and Z - {s a "' rT A-..(1) . . . A..(N) rT(l) . . . rT(N)} 
- ' ' 'f'v' v v' 'f' w ' ' 'f' w ' v w . ' v w . (3.35) 

Likewise the random vector e can be partitioned into 

Uh and r = { V, Uq,w, Uq,v, Ua}· (3.36) 

Then the system equations can be partitioned as follows (for ease of notation, 
the matrices S and :Ev are redefined to he functions of the state variables): 

Zt+l = g(zt, rt) 

ht+1 = chht + uh,t, 

Yt = S(zt)ht + Wt, 

uh,t "'N(O, :Eh) 

Wt rv N(o, :Ew(zt)). 

(3.37) 

(3.38) 

(3.39) 

Thus, conditional on z (the nonlinear state variables), equations (3.38) and 
(3.39) form a linear Gaussian system that can be solved with the Kalman 
filter. The nonlinear portion continues to be estimated using a particle filter. 
This approach is known as a marginalized particle filter or Rao-Blackwellized 
particle filter [39] [16]. The method reduces the dimensionality of the space 
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that must be sampled with the particle filter, improving the estimate. 
The derivation of the method for the blind deconvolution system is de­

scribed below and stems directly from [39]. 

Prediction Beginning with an initial estimate for the nonlinear state at time 
t, sampled by each particle p, Zp,t. and linear state hp,t. with covariance Pp,t· 

The one time step ahead prediction of the nonlinear state can be sampled 
by drawing from p(zt+llzt), which is equivalent to evaluating equation (3.37) 
including a realization of the process noise rt for each particle: 

(3.40) 

This is an identical process to the bootstrap particle filter, but with only 
the nonlinear portion of the state. The linear portion of the state, can be 
analytically estimated for each particle as 

(3.41) 

with covariance 
P p,t+llt = c~P p,t + :Eh. (3.42) 

Correction Similarly, the correction portion of the estimator can be calcu­
lated as part Kalman filter and part particle filter. Because the prior density 
was sampled in the prediction step, given a new observation Yt+I. the particle 
weight calculation, from equation (3.30), is 

(3.43) 

where P(Yt+llzp,t+l[t, hp,t+l[t) is a Gaussian distribution with mean 

(3.44) 

and covariance 

(3.45) 

The mean and covariance stem directly from the propagation of the linear pre­
diction hp,t+llt through the observation equation, conditional on the nonlinear 
prediction zp,t+l[t· The linear portion is estimated with the Kalman filter, first 
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calculating the innovation covariance and the Kalman gain 

E = S(zp,t+11t)P p,t+lltS(zp,t+1ltf + :Ew(zp,t+1lt) 

K = P p,t+11tS(zp,t+1ltfE-
1
. 

Then the particle estimate of the linear state is 

with covariance 

(3.46) 

(3.47) 

(3.48) 

(3.49) 

For MMSE estimation, the estimate of the linear portion of the state is calcu­
lated using the normal particle filter weighted sum method 

Npart 

ht+1lt+1 = L Wphp,t+11t· 
p=1 

(3.50) 

By marginalizing out the linear portion, the state estimate requires fewer 
particles to accurately sample the state distribution. 

Amplitude Ambiguity 

The amplitude ambiguity of blind deconvolution cannot be resolved explicitly, 
in that the true source amplitude cannot be known without knowing the gain 
of the channel. However, it is possible to resolve the ambiguity such that 
relative changes in the source amplitude are estimated properly. This is done 
by constraining the gain of the channel. The exact gain is difficult to judge 
and varies with frequency, but it is approximately proportional to the norm of 
the channel impulse response. 

In this algorithm, the composite channel vector h is constrained to have a 
£ 2 norm of 1. The 2-norm was chosen on the basis of producing the highest 
quality results of the alternative £ 1 and £ 00 norms. This results in inserting 
a normalization step following the Kalman prediction step of the algorithm: 

(3.51) 
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The complete marginalized particle filter algorithm for this system is de­
scribed in algorithm 5. 

3.4.4 Subspace Projection 

To further improve the quality of the estimate, knowledge of a subspace known 
to contain the system impulse response can be used. The impulse response 
estimate produced by the Kalman filter can be projected onto this subspace. 
The blind deconvolution method described in [49] can provide such a subspace. 

Subspace Method for Blind Deconvolution 

The authors in [49] discuss a method of blind deconvolution based on solving 
a cross relation between received signals. In the noise free case we have 

y(i) = h(i) * s 

y(j) = h(j) * s 

Convolving the both sides of the first equation with h(i) yields 

y(i) * h(i) = (h(i) * s) * h(i) 

y(i) * h(i) = h(i) * (s * h(j)) 

y<i) * h(j) = h(i) * y(j) 

y(i) * h(j) - h(i) * y(j) = 0 

(3.52) 

(3.53) 

(3.54) 

This relationship can be expressed in matrix form. Note that the following is 
differs slightly from [49], but is equivalent. Define the matrix Y~Q) to be the 
(T- L- 1) x L matrix 

( i) 
YL 

(i) 
YL-1 

(i) 
Y2 

(i) 
Y1 

( i) 
YL+l 

(i) 
YL 

(i) 
Y3 

(i) 
Y2 

y(i) -
( i) ( i) (i) ( i) (3.55) (L)-

Yt-L Yt-L-1 Yt+l Yt 

( i) 
Yr 

(i) 1 
Yr-

(i) 
YT-L+2 

( i) 
YT-L+l 
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Algorithm 5: Marginalized Particle Filter 

begin 
II Initialize 
foreach particle p = 1 to P do 

I 
Zp,O '"'"'p(zo); 
hp,o '"'"'p(ho); 

end 
for t = 1 to T do 

foreach particle p = 1 to Npart do 
II Correct -Particle Filter 
I I calculate P(Yt+IIzp,t+Iit, hp,t+Iit) 
Wp +--- p(y) y---+ N(S(zp)hp, S(zp)PpS(zp? + :Ew(zp)); 
Wp +--- wpfL::p wp}-1; I I Normalize 

II Correct -Kalman Filter 
E +--- S(zp)P PS(zp? + :Ew ; 
K +--- P pS(zp?E-\ 
Pp +--- Pp- KS(zp)Pp; 
hp +--- hp + K(y- S(zp)hp) ; 

end 

St +--- L::p WpSp; 
Zp +--- R(wp,zp); 

II Innovation Covariance 
II Kalman Gain 

II Covariance Estimate 
II State Estimate 

II Estimate 
II Resample 

foreach particle p = 1 to Npart do 
II Predict -Particle Filter 
I I propagate Zp,t through p(zt+llzp,t) 
Zp,....., g(zp, r); 

II Predict -Kalman Filter 
hp +--- chhp; 
Pp +--- c~PP + :Eh; 

hp +--- hpllhpll21 
; 

end 

II State Prediction 
II State Covariance Prediction 

II Amplitude Constraint 

end 
end 
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then equation (3.54) can be written in the form 

[ 
(i) (j)] [h(j)] -

y(L) - y(L) h(i) - 02Lxl· (3.56) 

Thus, the impulse response vector is the nullspace of the matrix in equation 
(3.56). Like any blind channel estimate, this is within a constant of propor­
tionality, as discussed in section 2.1. 

Furthermore, the relationship can be extended to simultaneously express 
the cross relation for all combinations of receiver pairs. In this general case, 
the matrix equation is formed as follows: 

y(2) 
(L) 

y(3) 
(L) 

y(N) 
(L) 

OLxl 

OLxl 

_y(1) 
(L) 

0Lx1 

OLxl 

y(3) 
(L) 

y(4) 
(L) 

y(N) 
(L) 

or concisely 

0Lx1 

_y(l) 
(L) 

0Lx1 

_y(2) 
(L) 

0Lx1 

0Lx1 

OLxl 

OLxl 

_y(2) 
(L) 

OLxl 

0Lx1 

0Lx1 

y(N) 
(L) 

0Lx1 
_y(1) 

(L) 

OLxl 
_y(2) 

(L) 

_ y(N-1) 
(L) 

Yh=O. 

= Q (NLN)(T-L-1) 
1 2 X 

(3.57) 

(3.58) 

The impulse response vector is then the nullspace of this large ~ ( N 2 
-

N)(T- L- 1) x NL matrix Y. The solution can be obtained by solving 
I?inli IIYh\\ subject to some constraint on \\hll that prevents the trivial solution 
h=O. 

A convenient and computationally efficient solution to this equation, specif­
ically 

m.in \\Yh\\ 2 s.t. \\h\\2 = 1 (3.59) 
h 
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can be obtained by the singular value decomposition (SVD). 

Y=U~VT 

~ = diag(0'1, 0'2, ... , O'NL), 

(3.60) 

(3.61) 

Here 0'1 , 0'2 , ... , 0'£ are the singular values, and U and V are orthonormal ma­
trices. Then the last j columns of V, corresponding to the singular values 
O'Nf:-i+1 = · · · = O'N£-1 = O'NL = 0 form an orthonormal basis for the nullspace 
ofY. 

The method would ordinarily continue by using the estimated impulse re­
sponse to form Bezout identity based inverse filters and subsequently recover­
ing s as described in section 2.1.1. 

Noise Free- No Common Zeros In an noise free environment, a unique 
solution is guaranteed provided that the channels meet the criterion of having 
no common zeros and the requirement on the complexity of the source is met 
(see section 2.1). Then the nullspace has a well defined dimension of one. This 
is evident upon calculating the SVD in that one singular value will be zero. 
In this scenario the method works well and his the last column of V. This is 
pictured in figure 3.9, only one singular value is zero. The right graph in the 
figure provides a means of observing the contribution th~t the columns of V 
corresponding to the smallest j singular values make to h. The plot is of the 
projection residual: 

llh-Phjj 
llhll 

(3.62) 

where P is formed from the last j columns of V, for varying values of j. 
Of interest is the smallest value of j for which the residual is negl~gible, i.e. 
identifying the j columns of V which form a subspace containing h .. In this 
case, j = 1, i.e. the last column of V defines a subspace containing h. This 
will be referred to as the well conditioned case. 

However, in the presence of additive noise, common zeros or if the system 
is otherwise degenerate, the nullspace becomes ill defined as described below. 

Common Zeros or Insufficient Source Diversity Multiple singular val­
ues will be zero if the channels have common zeros or if the source fails to 
meet the source complexity requirement discussed in section 2.1.2. Then the 
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Figure 3.9: Singular values of Y for a well conditioned, noise free case, with 
two channels, each of length 4 (total of 8 singular values) (left) . Normalized 

projection residual: 11 110~11 11, where P is formed from the last j columns of V 
(right) . 

impulse response vector will be in the larger nullspace, but it will not be pos­
sible to uniquely identify h. That is , if O"NL-i+I = · · · = O"N L - I = O"NL = 0, 
and v(i ) is the i-th column of V then 

a.1v(NL- j + 1) + · · · + Ci.j _1v(NL- 1) + Ci.jv(NL) = h (3.63) 

and the contribution coefficients a.1 · · · Ci.j can not be determined. A case with 
a single common zero is shown in 3.10. The singular values clearly show two 
near zero singular values, and the projection residuals show that the last two 
columns of V form a basis for a subspace containing the channel response. 

N oise In the case where there noise is present, the smallest singular values 
will be proportional to the observation noise variance. In this case, there will 
be no zero singular values, but rather a multiplicity of small singular values 
with similar values related to the standard deviation of the noise. 

This is scenario is pictured in figure 3.11. The singular values are shown 
with and without noise. The case where noise is added shows that the formerly 
zero singular value is difficult to distinguish from the neighboring three. More­
over, it is difficult to identify a set of column vectors from V that form a ·basis 
for a nullspace containing the impulse response. Thus, moderate amounts of 
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Figure 3.10: Singular values of Y with common zeros, noise free case, with 
two channels, each of length 4 (total of 8 singular values) (left). Normalized 

projection residual: 1160~611 , where P is formed from the last j columns of V 
(right). 

noise will make the nullspace difficult to identify and the column of V cor­
responding to the smallest singular value will not be equal to the channel 
vector. 

These two cases define two modes of degeneracy relative to the case where 
the nullspace has a dimension of 1 and is well defined. In the degenerate case 
the nullspace or approximate nullspace of Y has more than one dimension and 
is defined by multiple basis vectors. 

Identification of Approximate N ullspace 

At this point , the method in [49] fails as there is no way to identify the true 
nullspace. However a larger approximate nullspace can still be identified, cor­
responding to singular vectors associated with a selected number of the small­
est singular values. The span of these singular vectors defines a subspace S 
which will contain the correct solution for the impulse response vector. The 
dimension of S is typically substantially smaller than the N L , the dimension 
the original particle filter estimate. Thus, an estimate can be improved by 
projecting into S , effectively making the estimate variance zero in directions 
orthogonal to the subspace. A discussion of this in [42] shows that a constraint 
projected estimate is guaranteed to produce an error less than or equal to an 
unconstrained estimate. 
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Figure 3.11: Singular values of Yin the presence of noise, with two channels, 
each of length 4 (total of 8 singular values) (left). Normalized projection 

residual: 116J!~h l! , where P is formed from the last j columns of V (right). 

The subspace is chosen based on the smallest singular values obtained from 
the SVD. An appropriate size (number of dimensions) of this subspace must 
be chosen to ensure that his in the subspace. 

This can be done on the basis of the singular values of Y from equation 
(3.60). In low noise cases, it suffices to inspect the singular values to identify 
the smallest singular values. For example, in the case shown in figure 3.10 
there are clearly two near zero singular values, thus it is appropriate to choose 
the two columns of V corresponding to those two singular values as the basis 
for the subspace. 

In cases with significant noise or ones where the smallest singular values 
are otherwise hard to distinguish, a conservative estimate can be used. In the 
extreme example shown in figure 3.11 , it would be appropriate to include the 
entire space spanned by the columns of V since the magnitudes of the singular 
values are essentially indistinguishable. 

P rojection 

With the subspace identified, the estimated solution can be projected onto the 
subspace. Orthogonal projection of a vector onto a subspace described by a 
number of vectors is accomplished by multiplying the vector by a projection 
matrix, formed as described below. 

Consider a set of vectors A = {a 1, · · · , aN} that form a basis for a vector 
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space. Form a matrix A whose columns are the basis vectors 

(3.64) 

Then the orthogonal projection matrix for the subspace spanned by A is de­
fined as 

P = A(AT A)-1Ar. (3.65) 

In the case where the basis vectors are orthonormal, this reduces to 

P =AAr. (3.66) 

Then 
x=Px (3.67) 

is the orthogonal projection of x onto the subspace spanned by A. 

Application of Projection to Marginalized Particle Filter 

Appying this to the estimator developed up to this point is relatively straight 
forward. The subspace is extracted from Y before the particle filter and the 
resulting estimated nullspace is used to form a projection matrix. 

In the marginalized particle filter, algorithm 5, the value of ht+1 given by 
the Kalman filter for each particle is projected onto the known subspace from 
the SVD. If the estimated subspace consists of the last j columns of V, then 
form V NL-j+l:NL, as the matrix of orthonormal basis vectors for the subspace. 
The projection matrix is then 

p = V NL-j+l:NL V~L-j+l:NL' (3.68) 

and the projection step is 
(3.69) 

This method of constraining a Kalman filter to improve estimates is ex­
plored in detail, along with more complex constraints, in [42] and [43]. 

3.4.5 Computational Complexity 

The asymptotic computational complexity of the proposed estimator is domi­
nated by the following factors. 

46 



M.A.Sc. Thesis - Krzysztof S. Maryan McMaster - Electrical Engineering 

The first is calculation of the weight update in the marginalized parti­
cle filter algorithm. This involves calculating the a probability from an N­
dimensional multivariate Gaussian. Calculating a multivariate Gaussian prob­
ability involves Cholesky decomposition of the covariance matrix as the domi­
nant factor in the computational complexity, an O(N3 ) operation. The second 
factor is the complexity of testing the roots of the AR process for stability. 
This is accomplished by factoring the process polynomial, which is in turn done 
through the calculating the eigenvalues of the companion matrix, an O(K3

) 

operation. 
Each of the two calculations discussed above must be completed for each 

particle, thus the complexity of the marginalized particle filter portion of the 
estimator, for each time step, can be written as: 

(3.70) 

The number of particles in the preceding equation can be approximately ex­
pressed in terms of the other dimensions of the problem. Although the re­
lationship is not exact due to a high level of dependence between the state 
variables, an upper bound on the number of particles needed grows exponen­
tially with the total number of dimensions in the state variables that must 
be sampled. In this estimator the number of sampled dimensions is the size 
of z: max(K, M) + K + 2N + 2. Thus, an upper bound on the asymptotic 
computational complexity of the estimator for each time step is 

(3.71) 

for some unknown constant a. 
The singular value decomposition in the projection algorithm contributes 

an additive O(M3 ) term to the complexity, but it is only calculated once at 
the beginning of the algorithm. Accordingly, this term is not significant in the 
asymptotic complexity of the overall estimator. 

In this chapter a marginalized particle filter algorithm was developed for the 
blind deconvolution problem. It incorporated a classical method of blind de­
convolution with the intent of making a more robust estimator. 
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In the next chapter, details of the initialization of the algorithm will be 
discussed along with a discussion of experimental results using the estimator. 
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Chapter 4 

Application Details and 
Experimental Results 

This chapter describes the application of the developed algorithm. First, the 
setup of the algorithm's parameters will be discussed. This will be followed 
by an analysis of the performance of the algorithm, including tests under the 
types of degeneracy inherent in acoustic scenarios as discussed in section 1.1.2. 

4.1 Initialization and Parameter Settings 

The algorithm has a number of control parameters that must be configured 
for good operation. Additionally, the initial states of 

Parameters 

• Ca, ch- The coefficients affecting whether the previous estimate of the AR 
or MA coefficients (respectively) is scaled. In [13], 0.9999 is suggested. 
However, there is nothing to indicate that anything other than 1 should 
be used. The expectation is that, once converged, the random walk 
process should be on average stationary. Using a value other than 1 
would tend to push the estimate in a particular direction and potentially 
bias the estimate. 

• a a - The variance of the step size for the AR coefficients guides how 
quickly the estimate converges. It is also inversely proportional to the 
final accuracy of the estimator. 
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The first factor determining this step is the rate of change of the AR 
process being estimated. This can be estimated from observing similar 
cases and is assumed known. In the case of a slowly varying or stationary 
AR process a value of 0.01 was used. Empirically, it was determined that 
a value approximately equal to 1% of the typical AR coefficient value 
provided good results. In cases of typical speech explored, AR coefficients 
typically ranged from -1 to 1. Sensitivity to this parameter was mild and 
any value within 0.05 and 0.005 provided comparable results. 

• :Eh - The covariance matrix for the step size of the channel MA coeffi­
cients has similar properties to those discussed for CJ a above. Although 
it is a full covariance matrix, it is difficult to make assumptions or deter­
mine experimentally whether there is any consistent correlation between 
changes in coefficients at any given time step. Thus :Eh was assigned to 
be a diagonal matrix. The diagonal elements are chosen to be propor­
tional to the expected shape of the impulse response: constant in the 
synthetic trials presented here and exponentially decaying when used 
with acoustic impulse responses. 

• CJ c/>v - The covaraince of the step size of the log of the driving noise. This 
is configured experimentally to match the typical amplitude changes in 
the source, and the desired adaptation rate for the driving noise estimate. 
In the cases tested, this was set to 0 .1. 

• CJ c/>wi - Similar to the previous parameter, the covariances of the observa­
tion noise was set experimentally based on the expected rate of change 
and the desired adaptation rate. For all channels, this was set to 0.2. 

Any of the random walk step size variances influence the steady state ac­
curacy of the estimator and the ability to track non-stationary elements of 
the model. Small step size variances converge to a smaller steady state error, 
but are unable to adapt to fast changes in the associated state variables. Con­
versely, large step size variances can track fast changes, result in a high level of 
steady state variance. This tradeoff must be considered when choosing these 
parameters. 
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Initial Values 

As discussed in section 2.4.2, the particle states must be initialized from an 
appropriate initial distribution p(x0 ). This distribution reflects any prior in­
formation and any physical constraints. The initial distribution for the ele­
ments of the state is described below. Most elements are initialized with a 
non-informative prior [13]. This is a broad distribution that only reflects the 
physical constraints, but is otherwise representative of the fact that there is 
no prior knowledge available. 

• a- For the AR coefficients, a non-informative prior was used representing 
the approximate distribution of coefficients in speech samples tested. 
A Gaussian distribution with mean 0 and variance 1 was used for all 
coefficients. 

• ¢v - The initial distribution of the log of the driving noise covariance is 
approximately proportional to the magnitude of the source. Thus, this 
can be known within an order of magnitude form observing the output. 
A broad Gaussian prior with variance 5 is used, with a mean of 10. 
This is approximately the center of the results for a wide range of tests 
conducted. 

• s- For the source, a number of options were tested: a non-informative 
prior, using the initial observations, and simply setting the initial values 
to a vector of zeros. It was found that there was no measurable differ­
ence between the options. Initializing the source to zeros is used in the 
examples below. 

• h- The initial channel estimate was a non-informative prior. Each co­
efficient was drawn from a Gaussian distribution with variance 0.2 and 
mean of zero. This represented the approximate typical scale of the 
channel coefficients in the examples. 

• ¢v- In a real environment, the observation noise can be estimated from 
during pauses in the speech. It is assumed that an estimate is avail­
able, thus a Gaussian distribution centered at the true value, but with a 
variance of 2 is used. 
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4.2 Post Processing 

The amplitude ambiguity, although constrained by the algorithm, will still 
be present relative to the original source signal. This can be resolved by 
normalizing the mean of the absolute value of the estimate to the mean of the 
absolute value of the source. This mean is calculated after the estimator has 
settled to a steady state, in the examples below, over the last 100 samples of 
the estimate. This is the method used in [13] to normalize for the amplitude 
ambiguity. 

All source estimation error figures presented in the following sections are 
mean square error in the case of ensemble calculations, and absolute error 
in the case of single runs. To facilitate comparison between different source 
amplitudes, the error is normalized relative to the RMS amplitude of the source 
signal. For the absolute error, this is calculated as 

1st - stl 
errt = . 

V~ Ef=l s; 
(4.1) 

For error data presented from single runs, a 10 sample window running 
average is shown to improve readability by showing the performance without 
spurious spikes in the results. 

4.3 Tests 

In this section, the results of tests conducted on the estimator are described. 
First the basic performance of the estimator will be established, then a number 
of difficult cases will be shown to demonstrate the robustness of the algorithm. 

4.3.1 Basic Test 

Baseline Test 

The first test is designed to test the recovery of only the AR process from 
the channel outputs, effectively to test whether the algorithm can perform 
multichannel deconvolution. The purpose is to validate that the algorithm 
works before subjecting it to more strenuous tests. 
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A synthetic AR process of length 4 is mixed with two channels of length 4, 
with no common zeros. The position of the poles and zeros is depicted in figure 
4.12. Except moderate observation noise, the system is free from any kind of 
potential degeneracy. From the singular values of the matrix Y, shown in 
figure 4.13, it is evident that one singular value is substantially smaller than 
all others, implying a clearly defined one dimensional nullspace. Thus the 
channel response can be estimated well with the subspace method described 
in section 3.4.4, and the size of the projection space is one dimension. This 
leaves everything in the estimator fully constrained, except the AR coefficients 
and the power of the driving noise for the AR process and observation noise. 
This test will serve as the benchmark for comparison to see how degenerate 
situations affect the quality of the estimate. 

0.5 

-<l.5 

-1 

-1 .5 -1 -<l.5 0 0.5 1.5 
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Figure 4.12: Pole and zero locations of the AR process and channels for the 
base case experiment. 

Results for 15dB average signal to noise ratio, using 1000 particles are 
shown in figure 4.14. The results presented are from 100 trials of the estimator, 
of which 90 are presented, and the remaining 10 failed to track the source, for 
reasons described in the next paragraph. The mean square error of the source 
estimate converges to -42dB. It should be noted each trial had a substantially 
different learning curve and the composite curve only represents the average. 
Some runs converged almost instantly, while others took up to approximately 
600 samples to reach steady-state. This is the cause of the shape of the mean 
learning curve displayed. 

After the estimator converged, the AR process is well estimated, the esti­
mated roots of the AR process coincide well with the true roots. This is shown 
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Figure 4.13: Normalized singular values of Y for the basic test case. 
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Figure 4.14: A typical case at 15dB SNR observation noise. Adaptation curve 
converging to -42dB MSE (left) and closeup of a single run showing the original 
signal and estimate (right). 

Two issues became evident during the testing. First , the estimator would 
become numerically unstable with greater probability as the system observa­
tion noise level became lower. This would manifest itself as all particle weights 
approaching zero, leading to normalization of the particle weights failing. 

The cause of the failure is the narrow likelihood of any state relative to 
the spread of the particle density. As the observation noise decreases, it takes 
more particles to cover the given range of the state. The outcome is similar 
to the effect of using a particle filter without resampling, only in this case 
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Figure 4.15: Actual and estimated roots of the source (left) , and actual and 
estimated AR process driving noise variance (right). 

resampling was not sufficient to prevent degeneracy. The only solution was to 
increase the number of particles. Using 1000 particles, the estimator was only 
usable to an observation signal to noise ratio of approximately 30dB. 

Secondly, a number of the runs of the estimator did not track all of the 
zeros of the AR model. The mode of failure is almost exclusively manifested as 
two of the four poles being identified accurately, but the remaining two would 
be manifested as two poles along the real axis, rather than their true location. 
This would tend to suggest that the convergence is not towards a unique global 
minimum, but rather that local minima exist and can cause problems for the 
estimator. 

At 15dB SNR, with 1000 particles, the two modes of failure occurred in 
20% of runs. 

Performance Comparison 

In figure 4.16 the projection constrained method is compared to a marginalized 
particle filter without projection constraints and to the cross relation method 
on which the projection is based. The figure presents a single run of each esti­
mator under the same conditions as the previous experiment. For clarity, the 
data is presented after passing through a 10 sample window running average. 

The proposed estimator is a significant improvement over the -22dB. error 
which results from using a marginalized particle filter alone, without nullspace 
projection. However, the estimator did not improve upon the cross relation 
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method as expected, which produced an error level of only -73dB. 
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Figure 4.16: Error performance comparison of different blind deconvolution 
methods. 

Error performance in absolute terms was not explored. A Cramer-Rao 
lower bound for the variance of a general nonlinear estimator for the filtering 
problem is discussed in [13]. The proposed estimation method utilizes a fil­
tering estimator: the marginalized particle filter , and a non-filtering estimator 
component: the cross relation subspace algorithm, which has a substantially 
different lower bound. Accordingly, it is difficult to identify if the estimator is 
reaching a theoretical bound for the steady state variance. 

Algorithm Speed 

The algorithm is written efficiently, however, it is inherently slow, due in part 
to the exponential growth computational complexity described in the previous 
chapter. In the conditions of the previous test, approximately 10 samples 
per second were processed. This makes the algorithm infeasible for real time 
implementation, however , it may serve some value as an offline post processing 
step. 

4.3.2 Tests Under Degenerate Conditions 

The estimator is designed to provide good blind deconvolution performance in 
degenerate conditions. This section will explore how the algorithm performs 
in cases that exhibit the conditions of acoustic blind dereverberation described 
in section 1.1.2. 
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Non Minimum Phase 

The algorithm does not explicitly invert the FIR channels, as such, it does not 
have any issues with non minimum phase channels. Direct estimation of the 
source is an alternative to Bezout identity based inversion of non minimum 
phase channels. A sample case illustrating the scenario is depicted in figure 
4.17, note that the error graph in the figure uses a length 10 window running 
average filter for clarity. The test conditions are the same as those in section 
4.3.1, but a number of poles of the channels have been moved outside the unit 
circle. The learning curve shows good performance, converging to -35dB MSE, 
similar to the minimum phase case, demonstrating that non minimum phase 
channels have no significant effect on the estimate. 
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Figure 4.17: Non minimum phase channels. The poles of the channels (left) 
and the learning curve for a typical run of estimator converging to -35dB MSE 
(right). 

Incorrectly Estimated Length 

As discussed in section 1.1.2, one of the requirements of working with acous­
tic impulse responses is that the estimator must degrade gracefully with an 
incorrectly estimated channel length. In this experiment, the channel length 
is overestimated. The true channels have a length of 4, but the length used 
by the estimator is 6. The cross relation based estimator used for obtaining 
the projection space fails in this case. However, one can observe that the 
projection space provided by this algorithm can include the true channel re­
sponse (zero padded to appropriate length) by extending the dimension of the 
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subspace. The residual of the projection of the zero extended true channel 
response vector onto the approximate nullspace of increasing size as per equa­
tion (3.62) is shown in figure 4.18. It shows that if the projection space is 
set to 3 dimensions , the error in the projection is limited to the noise floor. 
Thus the projection method can be used in cases where the channel length 
may be overestimated. In this case, the singular values of Y clearly show 
that the length is overestimated, however if the situation were not as clear, a 
conservative estimate could be used which would yield similar results. 

10 12 

Figure 4.18: Overestimated channel length: projection residual for varying 
number of dimensions of the projection space. 

Figure 4.19 shows that with the channel length overestimated, the proposed 
algorithm provides substantially better performance than the cross relation 
approach. The error figure uses a length 10 window running average filter 
for clarity. The projection constrained marginalized particle filter estimator 
converges to -12dB MSE, which tracks the source reasonably well. In contrast , 
the cross relation estimate is largely meaningless. Thus it can be said that the 
proposed algorithm is robust to incorrectly estimated channel length because 
it degrades gracefully in such a case. 

Near Common Zeros 

As discussed in section 2.1.2, a necessary criterion for multichannel blind de­
convolution is that the channels have no common zeros. Not meeting tills cri­
terion causes deterministic blind deconvolution methods to fail. However, near 
common zeros are one of the challenges presented by acoustic environments. 
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Figure 4.19: Overestimated channel length test results. 

1000 

In this section the effect of near common zeros on the proposed estimator is 
explored. 

The test conditions are the same as those in the previous section. The 
zeros of the channels will be moved to test how the error performance changes 
as zeros are brought together. Two of the zeros of one of the channels are 
rotated towards zeros of the other channel as pictured in figure 4.20. 
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Figure 4.20: Approaching common zeros. 

The results of the error once converged, versus the angle between the poles, 
() , is shown in figure 4.21. The cross relation method decays logarithmically as 
the angle between the zeros approaches zero while the proposed method decays 
much more gradually. The log plot shows the results as() approached zero. As 
the angle gets small, the proposed method shows better error performance than 
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the cross relation method . Additionally, extending the size of the projection 
space improves the estimate slightly. 
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Figure 4.21: Near common zeros results. Linear scale, compared to cross 
relation method (left) . Log scale for small values of() , proposed method with 
1D, 2D and 3D projection subspace, compared to cross relation method (right). 

Thus the proposed can handle near common zeros. There is one exception, 
if the common zero were to be near or overlapping a pole of the AR process, it 
would be impossible to identify the effects of that pole and the estimate would 
be relatively poor. 

Time Varying Parameters 

To test if the estimator can track the time varying parameters of speech, the 
same channels were used as in the base case example, but a sample of speech 
[19] was used as the source. The length of the AR process was increased to 8 
to accommodate the speech. Results for 50 runs , shown in figure 4.22, shows 
the MSE converging to an average of -41dB, comparable to the performance 
of the base. 

To evaluate the effects of changing the channels, the same speech was 
used, but the zeros for both channels were changed mid way through the test. 
The size of the projection subspace to use was determined by looking at the 
singular values of Y . These are shown in figure 4.23. Based on this, graph, 
two singular values are substantially smaller than the others, implying that 
the corresponding two dimensional projection subspace be used. 
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Figure 4.22: Speech estimate at 15dB SNR observation noise. Adaptation 
curve converging to -41dB MSE (left) and closeup of a single run showing the 
original signal and estimate (right). 

The results are shown in figure 4.24. They have been filtered with a length 
10 window running average for clarity. The figure shows that the proposed 
method performs significantly better than the cross relation method. The 
marginalized particle filter with projection constraints produced an mean error 
of-24dB, compared to -13dB for the cross relation method. 

Overall the proposed estimator degrades gracefully in the presence of the chal­
lenges posed by an acoustic environment. It is an improvement on the con­
ventional marginalized particle filter in terms of error performance and an 
improvement on the cross relation method in terms of robustness. 

61 



M.A.Sc. Thesis - Krzysztof S. Maryan McMaster - Electrical Engineering 

Figure 4.23: Singular values of Y for a small change in channel coefficients. 
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Figure 4.24: Adaptation curve for a estimating a speech source in changing 
channels. 
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Chapter 5 

Summary 

5.1 Contribution 

In this thesis a multichannel deconvolution method was developed. The blind 
deconvolution problem was formulated as a joint state and parameter esti­
mation problem and subsequently transformed to a recursive state estimation 
problem. A solution was then formulated on the basis of a marginalized par­
ticle filter. The method included integration of a conventional blind decon­
volution method to produce a hybrid. The cross relation method was run on 
the data initially, and the results were used to generate a subspace onto which 
the particle filter solution was projected. The result was a method that out­
performs a purely particle filter approach and in some cases the classical cross 
relation approach of [49]. 

5. 2 Conclusions 

The proposed method performed well on a number of test cases representative 
of the acoustic environments. The following list outlines how the estimator 
handles the challenges discussed in section 1.1.2. 

1. Long length - This was the only challenge that was not explored. Sub­
band approaches may be possible, but may be limited by the slow speed 
of the estimator. 

2. Non-minimum phase - The estimator did not have any issues with 
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non-minimum phase channels since it does not rely on directly inverting 
the channels. 

3. Ill defined length - In the experiments conducted, the estimator de­
cayed gracefully in the case of overestimated channel length. 

4. Noise - High noise levels proved to not be a significant issue for the 
estimator. The algorithm worked well in the tested cases at moderate 
SNR. 

5. Possibility of common zeros or near common zeros - In tests 
involving common zeros the algorithm provided a useful estimate and an 
improvement over the classical cross relation approach. 

6. Possibly non-stationary - The algorithm was able to track changing 
source and channel parameters. 

Despite this good performance, the proposed method did not outperform 
the cross relation method in non-degenerate cases. After the estimator had 
adapted, the steady state error was still considerably higher than that pro­
vided by the reference cross relation method. Additionally, the computational 
complexity makes the method impractical for audio in the foreseeable future. 

The marginalized particle filter can however be viewed as a good solution 
to a general nonlinear estimation problem. In areas such as industrial control 
and finance, these estimation methods may be usable despite their slow speed. 

5.3 Future Research 

As a result of researching blind deconvolution methods, a number of areas for 
potential exploration were identified. 

Separating the Decaying Tail 

One of the original intents of this research was to explore modeling the effect 
of the decaying tail of the acoustic impulse response separately from modeling 
it as conventional convolution. The following model was proposed for the 
observation as an alternative to equation (3.17): 

(5.1) 
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In this model the impulse responses in H is expected to be formed from a 
truncated set of impulse responses. Then E>t represents the contribution of 
the decaying tail to the observation. 

It is hypothesized that E>t can be modeled statistically, by estimating the 
distribution 

(5.2) 

from a training set of impulse responses and sources. Then E>t can be estimated 
along with St in a blind deconvolution estimator. Thus the effects of the 
impulse response tail can be captured separate of the deconvolution element. 
This may resolve some of the blind deconvolution difficulties imposed by the 
long decaying tail of acoustic impulse responses. 

This approach was integrated with the marginalized particle filter devel­
oped in this thesis. However, the results did not prove fruitful in this frame­
work. This is in part due to the extra dimensionality imposed by E>, which 
has a negative effect on the performance of the particle filter. Futhermore, the 
distribution of E>t that was estimated from training data was a heavy tailed 
multivariate Laplace distribution, which is difficult to sample meaningfully 
since the samples are very widely distributed. This difficulty was caused by 
the large amplitude changes in speech. When amplitude compressed speech 
was used (normalized by a low pass envelope), the distribution could be rea­
sonably modeled by multivariate Gaussian distribution. 

The method may still have merit outside of particle filtering. However, 
there was no opportunity to study this further. 

Modeling the Estimation Error 

A variation on modeling the decaying tail as discussed above is to explic­
itly model the error in the solution from an arbitrary blind deconvolution 
algorithm. The suggestion is that the estimation error of St consists of an 
uncorrelated portion and a correlated portion: 

(5.3) 

where ()t is correlated to St and past instances of (), and et is uncorrelated. If 
the distribution of Bt can be modeled as p(BtiBt-1 , • · · , Bt-k, Bt, · · · , Bt-k) on the 
basis of a training set, then Bt can be estimated from St. This can then be used 
to improve the quality of the estimate by subtracting the estimated () directly 
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or by shaping a whitening filter to the estimate, to eliminate the correlation. 
Uncorrelated noise sounds better to a listener than correlated noise, this is one 
of the significant problems with acoustic reverberation. 

This method was not tried within the scope of this research, however it 
may have some merit as a post processing step for a wide range of blind 
deconvolution algorithms. 

Reconsideration of the L2 Norm 

Throughout blind deconvolution literature, there are numerous places where 
over constrained systems of linear equations are solved 

min I lAx- bll, (5.4) 
X 

often with a simple constraint on the solution to resolve a one dimensional 
ambiguity 

s.t. llxll = 1. (5.5) 

This can be seen in this thesis in solving for the nullspace, equation 3.59; and 
solving for the inverse filters in the Bezout identity, equation (A.7). 

Almost universally, this formulated in terms of minimizing the L 2 norm, 
for reasons of simple analytical tractability. The unconstrained solution can be 
solved by Moore-Penrose pseudoinverse and the constrained solution by SVD 
(as in equation (3.60)). This may provide fast analytical solutions, but whether 
this provides good perceived sound quality in acoustic blind dereverberation 
is not an explored area. In [49], the general solution is noted, but then the 
final algorithm is formulated for the L 2 norm. 

Using the L1 and Dx' norms may provide improved sound quality and 
solutions can still be arrived at reasonably quickly through convex optimization 
[9]. Moreover, analytical solutions exist to certain problems, most notably 
min IIAx- hll2 s.t. llxll1 = 1. This was explored in the process of researching 
this thesis, when working with the method of [49] it was noted to produce 
better sounding results in simulated acoustic scenarios. 

Ultimately in acoustic scenarios the choice of the norm or other aspects of 
the algorithm must be explored in not just analytical terms, but also in terms 
of the perceived sound quality. 
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Appendix A 

Bezout ldentiy Inverse Filters 

The Bezout identity allows the perfect inversion of a system composed of two 
or more FIR channels through the use of an equal number of FIR filters. Given 
channel responses, expressed as polynomials 

(A.1) 

of length £(1), £(2), · · · , £(N) respectively. Then there exists a set of filter 
polynomials 

p(1)(z),p(2)(z), ... ,p(N)(z) (A.2) 

of length £(1) - 1, £(2) - 1, · · · , £(N) - 1 respectively such that 

This is true if and only if h(1)(z), h(2)(z), · · · , h(N)(z) are relatively coprime, 
they have no common zeros [27]. The lengths of p(1)(z),pC2l(z),. · · ,p(N)(z) 
can be longer, but then the solution is no longer unique. 

The inverting set p(l) (z), p(2) (z), · · · , p(N) (z) can be found by expressing A.3 
as convolution in vector matrix form. For each channel i, form a 2£-1 x L- 1 
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convolution matrix from the coefficients of h ( i) ( z): 

(i) 

H (i) -- h£(i)_l 
( i) 

hL(i) 

0 

0 

0 

( i) 
hL(i) 

0 

0 

0 
0 

0 
h(i) 

2 
h (i) 

1 
h(i) 

3 
h (i) 

2 

( i) ( i) 
hL(i) hL(i)_I 

( i) 
0 hL(i) 

Then equation (A.3) can be written 

or concisely as 

Hp= 

(1) 
PI 

(1) 
PL<ll 

N) 
£(N) 

[ 1 l 
02L-2xl . 

1 
0 

(A.4) 

(A.5) 

(A.6) 

The inverting filters can then be identified by solving the linear equation. 

Note In practice, the h(i)(z) has been estimated and is not known exactly. 
In this case, it has been suggested that acoustically more pleasing results 
can be obtained by moving the 1 in the right hand vector of equation (A.5) 
further down the vector and otherwise filling with zeros. Effectively, any of 
the elementary vectors e. There is no known research about this, but enough 
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anecdotal evidence has been shown that it warrants mentioning. 
If hCil(z) has been estimated multiple times, equation (A.6) can be ex­

tended to an over constrained system by including several estimates of hCil(z) 
in H sequentially. The solution can then come about through solution of the 
minimization problem 

min I!Hp -ell· (A.7) 
p 

SIMO Inversion With the filters p(ll(z),p(2l(z), · · · ,p(N)(z) identified, the 
SIMO system can be inverted using the inverting set of filters using the linear 
system depicted in figure A.25. 

: ........... SIMO System ....... : 
• I • : w : 

:~·:~:2y.: 
: w 
~s~Yl 

'~~! 
~. ---.-----. ----.--- ... ----.--------------- -· 

Figure A.25: Bezout identity based inversion of a SIMO system. 
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