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Abstract

There is a need for the development of models that are able to account for discrete-

ness in data, along with its time series properties and correlation. A review of the

application of thinning operators to adapt the ARMA recursion to the integer-valued

case is first discussed. A class of integer-valued ARMA (INARMA) models arises

from this application. Our focus falls on INteger-valued AutoRegressive (INAR) type

models. The INAR type models can be used in conjunction with existing model-

based clustering techniques to cluster discrete valued time series data. This approach

is then illustrated with the addition of autocorrelations. With the use of a finite

mixture model, several existing techniques such as the selection of the number of

clusters, estimation using expectation-maximization and model selection are applica-

ble. The proposed model is then demonstrated on real data to illustrate its clustering

applications.
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Chapter 1

Introduction

In recent years, new types of research problems have presented themselves in the

form of data. The type of data being referred to includes seismic activity counts,

monitoring system behaviour to detect abnormalities, epileptic seizure data, alcohol

drinking patterns, and daily purchases of consumers. These are just a few examples

of data that all involve time series of counts. There have been limited ideas discussed

in the literature to date that are able to analyze this type of data.

Models are needed to analyze this type of data because normal approximations

tend to fail to adequately model time series data with discrete outcomes. Other

problems present in this type of data are low count values creating small means,

high number of zeros, no symmetry present in the data, and difficult probabilities to

compute and interpret.

In this thesis, a new model-based approach to cluster discrete valued time series

via a mixture of INAR models is presented. The approach is developed within the

framework of model-based clustering by making use of finite mixture models, allowing

several existing model-based clustering techniques to be applicable.
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In Chapter 2, a review of the previous work that has appeared in current literature

is given. This includes background information on mixture models, model-based

cluster, and modeling time series of counts which will all be used to develop our

methodology in Chapter 3.

In Chapter 3, the framework of our methodology for clustering discrete valued

time series via a mixture of INAR models is presented. The implementation of the

EM algorithm for parameter estimation, convergence, initialization, model selection,

and performance assessment will be covered.

In Chapter 4, our methodology is applied to both simulated and real data sets,

and the results of the application are discussed.

In Chapter 5, a summary of the work presented throughout this thesis is given.

Thoughts on the direction of future work are considered.
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Chapter 2

Background

2.1 Mixture Models and Model-Based Clustering

Model-based clustering is a technique for estimating group memberships, in which no

observations are a priori labeled, based on parametric finite mixture models. Finite

mixture models are based on the assumption that a population is a convex combi-

nation of a finite number of densities. A random vector X is said to arise from a

parametric finite mixture distribution if, for all x ⊂ X, its density can be written

f(x | ϑ) =
G∑
g=1

πgfg(x | θg),

where πg > 0, such that
∑G

g=1 πg = 1, is called the gth mixing proportion, fg(x | θg)

is the gth component density, and ϑ = (π1, . . . , πg,θ1, . . . ,θG) is the vector of pa-

rameters. The component densities f1(x | θ1), f2(x | θ2), . . . , fG(x | θG) are usually

taken to be of the same type. A more in depth review of finite mixture models can

be found in McNicholas (2016a,b).

3
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Next, existing methods for clustering longitudinal data will be discussed. The

Cholesky decomposition (Benôıt, 1924) is a method used to decompose a matrix into

the product of a lower triangular matrix and its transpose. A modified Cholesky

decomposition was applied by Pourahmadi (1999, 2000) to the covariance matrix Σ

of a random variable to obtain,

TΣT′ = D⇔ Σ−1 = T′D−1T,

where T is a unique unit lower triangular matrix and D is a unique diagonal matrix

with strictly positive diagonal entries. A unit lower triangular matrix refers to a

lower triangular matrix in which the diagonal elements are all 1. The values of T can

be interpreted as generalized autoregressive parameters, while the values of D can

be interpreted as innovation variances (Pourahmadi, 1999). Further details on the

(modified) Cholesky decomposition can be found in McNicholas (2016a, Ch. 8).

McNicholas and Murphy (2010) used a Gaussian mixture model with a modified

Cholesky-decomposed covariance structure for each component to model longitudinal

data. The gth component density, written for a p-dimensional random variable X,

can be found in McNicholas (2016a, Ch. 8). The option of constraining Tg and/or

Dg to be equal across components together with the option to impose the isotropic

constraint Dg = δgIg has given way to a family of eight Gaussian mixtures mod-

els, called the Cholesky-decomposed Gaussian mixture model (CDGMM; McNicholas

and Murphy, 2010) family. Tg is a p × p unit lower triangular matrix and Dg

is a p × p diagonal matrix, as illustrated previously, following from the modified

Cholesky decomposition of Σg. The models of the CDGMM family can be fit with the

expectation-maximization (EM) algorithm (Dempster et al., 1977). McNicholas and

4
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Murphy (2010) also considered the cases where elements below a given sub-diagonal

of Tg are equal to zero, thereby, removing autocorrelation over large time lags. Ex-

tensive details on the CDGMM family and model fitting can be found in McNicholas

(2016a). Moreover, the methodology of McNicholas and Murphy (2010) has recently

been extended by Anderlucci and Viroli (2015) to the case where there are multiple

responses for each individual at each time point.

A linear model for the component means was considered by McNicholas and

Subedi (2012) in which they also use the covariance structures of the CDGMM family.

This is done by applying the aforementioned constraints of Tg and/or Dg along with

the option to impose the isotropic constraint Dg = δgIg. The EM algorithm can once

again be used for parameter estimation here. McNicholas and Subedi (2012) also con-

sidered a t-analogue of the CDGMM family. They develop mixtures of multivariate

t-distributions with component scale matrices decomposed as in the CDGMM family,

the option of a linear model for the mean, and the option to constrain degrees of

freedom to be equal across groups. As with the CDGMM family, the EM algorithm

can again be used for parameter estimation. Further details on the use of t-mixtures

can be found in McNicholas and Subedi (2012).

2.1.1 EM Algorithm for Model-Based Clustering

The EM algorithm is an iterative procedure used to find maximum likelihood esti-

mates in the case of missing or incomplete data. Each iteration of the EM algorithm

involves two steps, the expectation (E) step and the maximization (M) step. The

E-step involves computing the expected value(s) of the complete-data log-likelihood,

while the M-step maximizes the expected value of the complete-data log-likelihood

5
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with respect to the model parameters. Complete-data refers to the combination of the

observed and unobserved data. The iterations of these two steps are repeated until

convergence is reached. It is worth noting that Titterington et al. (1985) cite similar

approaches to the EM algorithm that were used by Baum et al. (1970), Orchard and

Woodbury (1972), and Sundberg (1974).

In a clustering paradigm, the complete-data is comprised of the observed data

x1, . . . ,xn along with the unknown labels z1, . . . , zn, where zi = (zi1, . . . , ziG). Here

zi denotes the group memberships of observation i, where zig is an indicator variable

used to represent whether observation xi belongs to group g. The indicator variable

can formally be written as

zig =


1 if xi belongs to component g

0 otherwise,

for i = 1, . . . , n and g = 1, . . . , G. The estimation of zig is the primary objective in

terms of model-based clustering.

A well known approach for determining if the EM algorithm has converged is by

the use of Aitken’s acceleration (Aitken, 1926). The Aitken acceleration procedure

estimates the asymptotic maximum log-likelihood at each iteration of the EM algo-

rithm and makes a decision about whether it has converged or not. At iteration k

the Aitken acceleration is given by

a(k) =
`(k+1) − `(k)

`(k) − `(k−1)
,

where `(k+1), `(k), and `(k−1) are the log-likelihood values from iterations k+ 1, k, and

6
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k − 1, respectively. The asymptotic estimate of the log-likelihood (Böhning et al.,

1994) at iteration k + 1 is given by

`(k+1)
∞ = `(k) +

1

1− a(k)
(`(k+1) − `(k)),

where each value is as previously defined. The stopping criterion proposed by Lindsay

(1995) suggests that the EM algorithm had converged when

`(k)∞ − `(k) < ε, (2.1)

where ε is a small value. An alternative stopping criterion was proposed by McNi-

cholas et al. (2010), which suggests that the algorithm had converged when

`(k+1)
∞ − `(k) < ε, (2.2)

for a small value of ε, provided this difference is positive. The only case in which the

difference can achieve a negative value is for a(k) > 1 which would not be a reasonable

place to stop (McNicholas, 2016a). It was shown by McNicholas et al. (2010) that

the criterion in (2.2) is equally as strict as (2.1) since `(k+1) ≥ `(k). It was also shown

that the criterion in (2.2) is at least as strict as the lack of progress criterion

`(k+1) − `(k) < ε,

given by Fraley and Raftery (1998).

7
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2.2 Modeling Time Series of Counts

Time series of counts can be seen as when a number of events or objects per time

period are observed over time. There exists cases where the discrete-value of a time

series may be large and easily analyzed using a continuous-valued model. Although,

this is not always the case as in some counting processes the values of the time series

are small numbers. If the latter is the case, then models for stationary real-valued

processes such as the autoregressive moving average (ARMA) models will result in the

multiplication of an integer by a real number, which commonly results in a noninteger

value. The ARMA models are defined by the recursion

Xt = α1Xt−1 + · · ·+ αpXt−p + εt + β1εt−1 + · · ·+ βqεt−q, (2.3)

where αi, i = 1, . . . , p, are the coefficients of the autoregressive model of order p,

βj, j = 1, . . . , q, are the coefficients of the moving average model of order q, and {εt}

is a sequence of independent and identically distributed (i.i.d.) random variables, with

zero mean and variance σ2. If (2.3) results in the multiplication of an integer by a

real number, then it is prevented from being applied to the integer-valued case. To

fix this problem, a new operation, called a thinning operation (Steutel and van Harn,

1979) is proposed. Thinning operations are probabilistic operations and are used to

replace the scalar multiplication of equations. Applying the thinning operation to

(2.3) would thereby ensure the right hand side to be integer-valued.

The first and most popular (Weiß, 2008) form of thinning operations is known as

binomial thinning (Steutel and van Harn, 1979). Binomial thinning was introduced by

Steutel and van Harn (1979) to accommodate the terms of “self-decomposability” and

8
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“stability” for integer-valued time series. This becomes important in regards to the

INAR(1) process to be discussed following thinning operators. Let “◦” represent the

binomial thinning operator defined in Definition 1. Additionally, let µX = E[X] and

σ2
X = Var[X], then some basic properties of binomial thinning with proofs provided

by Freeland (1998) and da Silva (2005) are as follows:

• E[α ◦X] = αµX

• Var[α ◦X] = α2σ2
X + α(1− α)µX

• Cov[α ◦X,X] = ασ2
X

Definition 1. Let X be a non-negative integer-valued random variable and let α ∈

[0, 1]. Define the random variable

α ◦X :=
X∑
i=1

Yi,

where the Yi are i.i.d. Bernoulli indicators according to B(1, α), which are also inde-

pendent of X. It can then be said that α ◦X arises from X by binomial thinning.

Binomial thinning can be applied to model autocorrelated processes with several

types of marginal distributions. The concept of binomial thinning has since been

adapted for other processes. Notable modifications to binomial thinning have resulted

in generalized thinning (Latour, 1998), where Yi are now i.i.d. random variables that

have full range {0, 1, . . .} with mean α and variance β. It is worth noting that binomial

thinning is a special case of generalized thinning when β = α(1 − α). Another

modification of binomial thinning, called signed binomial thinning (Kim and Park,

2004), allows for the inclusion of negative integers within the range where Yi are i.i.d.

9
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coming from B(1, |α|). There also exists extended thinning (Zhu and Joe, 2003), where

in comparison to binomial thinning Yi are now independent count variables that are

also independent of X. Binomial thinning is also a special case of extended thinning.

There have also been a number of larger extensions to binomial thinning, some of

which even utilize the operation itself. Some of these extensions include random

coefficient thinning (e.g., Joe, 1996; Zheng et al., 2007), a prime example in which

binomial thinning is utilized. Random coefficient thinning is essentially binomial

thinning where α is allowed to be random. Special cases of random coefficient thinning

include beta-binomial thinning (McKenzie, 1985, 1986; Joe, 1996) where α follows a

beta(α, β) distribution and binomial thinning in the case of one-point distribution.

Another extension is iterated thinning (Al-Osh and Aly, 1992), which is interpreted

as two nested thinning operators. Iterated thinning also reduces to binomial thinning

in the case of one-point distribution. Binomial thinning was also extended with the

use of the quasi-binomial distribution (Consul and Mittal, 1975; Shenton, 1986). The

three parameter quasi-binomial distribution is defined by

P(X = x) =

(
n

x

)
1− p+ nψ

1− nψ
p(p+ xψ)x−1(1− p− xψ)n−x−1, (2.4)

for 0 < p < 1, p + nψ < 1, and x = 0, 1, . . . , n. The distribution is similar to that

of the binomial distribution, but introduces an extra parameter, ψ, that attempts

to describe additional variance. A primary benefit of the quasi-binomial distribution

is that it approaches the generalized Poisson (GP) distribution as a limit (Consul

and Mittal, 1975). The distribution defined in (2.4) is used to define a generalized

thinning operation called quasi-binomial thinning (Alzaid and Al-Osh, 1993). For an

elegant and extensive summary of the aforementioned thinning operations see Weiß

10
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(2008).

Consider the application of thinning operators to time series with an infinite range

of counts. Several models for count data have been proposed based on the application

of a thinning operation. Many of these models are obtained as discrete analogues of

the usual linear time series models. In particular, replacing the scalar multiplication

in the ARMA recursion (2.3) by a binomial thinning operation leads to a family of

integer-valued ARMA (INARMA) models. The first proposed INARMA model was

the first-order integer-valued autoregressive, INAR(1), process which was proposed

by McKenzie (1985, 1988) and Al-Osh and Alzaid (1987) for modeling and generating

sequences of dependent counting processes. The INAR model in general mimics the

structure and correlation of the linear AR model.

Definition 2. A discrete time non-negative integer-valued process {Xt}Z is said to

be a INAR(1) process if it satisfies the following recursion

Xt = α ◦Xt−1 + εt,

where α ∈ [0, 1], “◦” represents the binomial thinning operator and {εt}Z is a sequence

of non-negative i.i.d. integer-valued random variables with mean µε and variance σ2
ε .

All thinning operations are performed independently of each other and of {εt}Z, and

the thinning operations at each time t and εt are independent of {Xs}s<t.

The marginal distribution of Xt can be written in terms of the innovations, εt

(Al-Osh and Alzaid, 1987). The INAR(1) process {Xt}Z is known to be stationary.

Let px(z) and pε(z) denote the marginal probability generating functions (pgf) of Xt

and εt, respectively. Then, using the proof provided by Alzaid and Al-Osh (1988), it

11
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can be shown that the stationary marginal distribution of Xt can be determined from

the following equation,

px(z)
!

= px(1− α + αz) · pε(z)⇔ pε(z) =
px(z)

px(1− α + αz)
. (2.5)

It suffices to say that the pgf of the INAR(1) process satisfies the definition of a

discrete self-decomposable distribution (Steutel and van Harn, 1979). From (2.5),

the marginal distribution of an INAR(1) process can be any distribution belonging to

the discrete self-decomposable (DSD) family. The DSD family includes the Poisson,

GP, and negative binomial (NB) distribution. If the INAR(1) process is used for

a stationary process with Poisson marginals it is referred to as Poisson INAR(1).

Properties of the Poisson INAR(1) were provided by Freeland (1998), Freeland and

McCabe (2004) and Weiß (2007b). It is known that the INAR(1) process is best suited

for the case of Poisson marginals, see Weiß (2008). Several other distributions have

been considered for the innovations such as binomial, negative binomial, geometric

or generalized Poisson (McKenzie, 1986; Alzaid and Al-Osh, 1993; Brännäs, 1993;

Berglund and Brännäs, 1999). These models were considered because the innovation

distribution drives the properties of the model, such as the allowance of under- and/or

overdispersion. Expressions for third-order moments can be found in da Silva and

Oliveira (2004, 2005). Extensive details of the stationary INAR(1) process can be

found in Al-Osh and Alzaid (1987) and Alzaid and Al-Osh (1988). Some of the more

basic properties and proofs provided by Al-Osh and Alzaid (1987) and Alzaid and

Al-Osh (1988) are as follows:

• µX =
µε

1− α

12
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• σ2
X =

(αµε + σ2
ε )

(1− α2)

• ρX(k) = αk

• P(Xt = k|Xt−1 = l) =
∑min(k,l)

j=0

(
l
j

)
αj(1− α)l−jP (εt = k − j)

• E[Xt|Xt−1] = αXt−1 + µXε

There exists three main approaches to model estimation for a time series where

an INAR(1) process is deemed appropriate. Model parameters can be estimated

using method of moments or conditional least squares which has been used for the

case of the Poisson INAR(1) process. The asymptotic distributions of the previous

two estimators for the Poisson case can be found in Freeland and McCabe (2005).

The final type of estimation used are maximum likelihood estimates, which can be

used because the likelihood function is easily derivable. Extensive details on these

approaches can be found in Al-Osh and Alzaid (1987) and Jung et al. (2005) who

also provided a comparison of the aforementioned approaches.

The INAR(1) process using the binomial thinning operation was later extended to

the p order, known as the INAR(p) process, by Du and Li (1991). The INAR(p) pro-

cess was also considered using generalized thinning by Gauthier and Latour (1994) and

Latour (1998). Du and Li (1991) show the stationarity condition of this INAR(p) pro-

cess as well as prove that the process is ergodic. The previously mentioned INAR(p)

process mimics the second order structure of the well known AR(p) process as men-

tioned earlier. This INAR(p) process is not the same as the INAR(p) process con-

sidered by Alzaid and Al-Osh (1990) in which the second-order structure resembles

that of an ARMA(p, p − 1) process. It is worth noting that a separate portrayal of

13
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the INAR(p) process as a p-dimensional INAR(1) process was obtained using vector

thinning by Franke and Subba Rao (1995).

Definition 3. A discrete time non-negative integer-valued process {Xt}Z is said to

be a INAR(p) process if it satisfies the following recursion

Xt =

p∑
i=1

αi •Xt−i + εt, where αi ≥ 0 for i = 1, . . . , p− 1 and αp > 0,

where “•” represents the generalized thinning operator and {εt}Z is a non-negative

sequence of i.i.d. integer-valued random variables with mean µε and variance σ2
ε . The

count series, {Yj,i}, of thinning operations αi • Xt−i =
∑Xt−i

j=0 Yj,i, i = 1, . . . , p, are

mutually independent, and independent of {εt}Z.

The INAR model has since been extended, and in more recent years, it has been

generalized. Generalizations of the INAR model include the generalized INAR(1)

process proposed by Zheng et al. (2007) using random coefficient thinning and the

corresponding generalization of the INAR(p) process, called the RCINAR(p) process,

considered by Zheng et al. (2006). There have also been two proposed cases for the

multivariate INAR(p) process. The first case proposed by Franke and Seligmann

(1993) for p = 1 and the second by Latour (1997) for p ≥ 1. Extensions of the INAR

model will be discussed in the following. It was stated earlier that the INAR(1)

process is best suited for the case of Poisson marginals. However, other members of

the DSD family were also mentioned, being the cases of NB and GP marginals. While

a complex expression for the distribution of the innovations is possible in the case of

NB marginals (see Weiß, 2008), it is not possible to obtain in the case of GP marginals.

Two cases have been proposed that can be used in the modeling of processes with

14
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NB marginals. The first being the case where α follows a beta distribution, the

RCINAR(1) process is easily used to model processes with NB marginals (McKenzie,

1986). The second being the case where Al-Osh and Aly (1992) used iterated thinning

in combination with processes having NB marginals. From this, the idea for the

iterated thinning INAR(1), known as IINAR(1), process arose. For properties of the

IINAR(1) process see Al-Osh and Aly (1992). There also exists a case which is well

suited for count variables with a GP distribution. Alzaid and Al-Osh (1993) used

quasi-binomial thinning to define a stationary AR(1)-like process with GP marginals.

This is where the quasi-binomial INAR(1), known as QINAR(1), process arises from.

For properties of the QINAR(1) process see Al-Osh and Aly (1992). Further details

on all three of these cases can be found in Weiß (2008).

Consider the application of thinning operators to time series with a finite range

of counts. All first-order models that have previously been mentioned can not be ap-

plied in this case. To model a process of binomial counts, McKenzie (1985) proposed

a modification to the INAR(1) recursion that would still utilize binomial thinning,

called the Binomial AR(1) model. A complete explanation along with the interpre-

tation of the binomial AR(1) model can be found in Weiß (2008). Properties of the

model can be found in McKenzie (1985) and Weiß (2007a). A separate approach

utilizing a new form of thinning, called hypergeometric thinning (Al-Osh and Alzaid,

1991), was also proposed. Al-Osh and Alzaid (1991) applied hypergeometric thinning

to defined autocorrelated processes with binomial marginals, leading to the BARMA

processes. The original BARMA model was the first-order binomial autoregressive

(BAR(1)) process. Properties of the BAR(1) process can be found in Al-Osh and

Alzaid (1991) and Weiß (2008).
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The ideas discussed here cover only a limited area of the field. Models such as the

replicated INAR(p) process, known as the RINAR(p) process (see da Silva, 2005),

have also been proposed. Higher order members of the INARMA family also exist,

see Jung and Tremayne (2006) for a recent review. Other approaches for modeling

time series of count data can be found in Jung et al. (2006).
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Chapter 3

Methodology

3.1 The Model

It was previously mentioned that the likelihood of the standard INAR(1) function

is easily derivable. This is due to the standard INAR(1) process being a stationary

Markov chain. The conditional likelihood of such a model can be written as

L(Θ) =
T∏
t=2

P (Xt|xt−1,Θ), (3.1)

where Θ = (α,θ) refers to the vector of parameters. Here, α refers to the probability

of success for binomial thinning and θ = (λ, φ) are the parameters associated with

the distribution of the innovation terms. The parameters λ and φ refer to the mean

and dispersion of the innovations, respectively. Note that t = 1 is excluded from the

conditional likelihood as it refers to the distribution of the innovations. Considering

the previously given definition of binomial thinning, the conditional distribution of

the model can be seen to be a convolution between the binomial distribution and
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that of the distribution of the innovation terms. The conditional likelihoods for

INAR processes where the observations are related at higher-order lags are similar

to that of equation (3.1). The general conditional likelihood where the observations

are related at higher-order lag times, assuming the same structure as the INAR(1)

process, can be written as

L(Θ) =
s∏
t=1

P (Xt)
T∏

t=s+1

P (Xt|xt−s,Θ), (3.2)

where the first product of (3.2) corresponds to the distribution of the innovation terms

only.

To make the likelihoods of the INAR processes comparable, a finite mixture of

them are taken. Although the observations are assumed to have come from an INAR

process, they may come from any finite mixture of INAR processes with equal or

different orders. The case where each observation may come from a different process is

not considered, as this would become computationally cumbersome. The observations

are said to have come from a mixture of INAR processes included in the model with

a specific probability. That is to say that each individual belongs to a specific INAR

process which does not change over time, but the process may have different orders.

The finite mixture of likelihoods for the INAR model can be written as

Li(Θ) =
G∑
g=1

πgLig(Θ), (3.3)

where πg > 0, such that
∑G

g=1 πg = 1, are the mixing proportions. In the model,

Li(Θ) refers to the likelihood of the ith individual and Lig(Θ) refers to the likelihood

of the ith individual coming from the gth process. The likelihood for each individual
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is found over time from t = 1 to Ti. It is assumed that each INAR process is allowed

to differ in terms of order and parameter values. The number of components G is

considered to be unknown and will be estimated using the observations. The finite

mixture of likelihoods in (3.3) can then be seen to follow a similar structure to the

standard definition of a mixture model given previously.

3.2 Model Fitting

Considering that the model follows a similar structure to that of the definition of a

finite mixture model, estimation via the EM algorithm is considered. As the focus of

this method is for model-based clustering purposes, the scenario in which there are n

observations, none of which have known group memberships, is also considered.

At each E-step, until convergence, the component indicator variables are updated

using their conditional expected values

ẑig =
πgLig(Θ)∑G
g=1 πgLig(Θ)

=
πgLig(Θ)

Li(Θ)
. (3.4)

In the succeeding M-step, the expected complete-data log-likelihood is maximized

with respect to the model parameters. The mixing proportions are first updated

π̂g =
ng
n
,

for g = 1, . . . , G, where ng =
∑n

i=1 ẑig. The M-step here is not a closed form expression

meaning that the model specific parameters can not be calculated in a finite number
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of operations. To obtain the model specific parameters, the weighted likelihood

Lg(Θ) =
n∑
i=1

zigLig(Θ),

can be maximized via the optim function in R. At each successive iteration of the

above steps, the likelihood is increased until a set convergence condition is met. To

determined if the EM algorithm has converged, Aitken’s acceleration is used with the

stopping criterion proposed by McNicholas et al. (2010).

3.3 Initialization

For each number of components, G, there must be G initial values given for the

parameters of Θ. The objective is to obtain the true values of the model parameters

in order to optimize ẑig. The ability to accurately predict starting values for the

parameters proves to be heavily dependent on the distribution of the innovations. In

the case of equal-dispersion, herein referred to as equidispersion, the innovations are

assumed to follow a Poisson distribution. Equidispersion is the result of the parameter

φ from

E[Xi] = φV ar[Xi],

being found to equal 1. Estimation proves to be much faster and more accurate in

the case of Poisson distributed innovations as there is one less parameter to consider.

In the case of overdispersion, where φ > 1, the innovations are thought to follow

a negative binomial distribution. Overdispersion is the result of the variance being

larger than the expectation (see Figure 4.6). In negative binomial regression, the

distribution tends to be given in terms of its mean, allowing the variance to be
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written as

V ar[Xi] = E[Xi] +
(E[Xi])

2

φ
,

where φ denotes the dispersion parameter. It is clear from this that the variance must

be larger than the expectation. Note that it is also appropriate to use a gamma-

Poisson mixture in which the mean of the Poisson distribution can be thought of

as a gamma distributed random variable. Both cases are appropriate as they both

introduce an additional free parameter, the dispersion parameter. It is worth noting

that the weighted likelihood, Lg(Θ), frequently fails to be optimized if dispersion is

not accounted for and Poisson innovations are used. Although very rare, the case of

under-dispersion is handled similarly.

In all cases, starting values are obtained with the use of k-means clustering. The

initial values of the means, λg, are thought to be similar to the first group of centers

found by k-means. The mixing proportions, πg, come from the respective cluster sizes

which are turned into proportions. For φ = 1, the probability of success, αg, for the

binomial distribution is estimated by minimizing the average of the absolute difference

of sums between simulated data and that of the observed data for the clusters found by

k-means. This is done using the previously estimated values of λg and πg, respectively.

The simulated data that the observed data is compared to is created using the most

influential lag time. A similar approach is used in the case of φ 6= 1, although both

φg and αg must be estimated here. Minimizing the absolute mean of the difference

between the observed data and simulated data provides moderately accurate starting

values for both. The model proves to be more accurate when used as an iterative

approach, meaning that initialization must only be done for the smallest number

of components fitted. Subsequent number of components, G, use the maximized
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parameter values found when G−1 components were fitted and add a new component

centered at the mean with a small probability. Agglomerative hierarchical clustering

may also be used in a similar fashion for initialization, but has shown to be sensitive

depending on the data.

3.4 Model Selection and Performance Assessment

The models for this method are considered to be the possible mixtures of INAR

processes. The INAR processes to be included in the mixtures are decided by their

respective autocorrelations. For example, in Figure 4.1 the two most influential au-

tocorrelations are of order five and order ten. If these were the only two desired

autocorrelations to be included in the model, then any mixture of these two autocor-

relations may be used. This means that the possible models are mixtures of the form

G−H INAR(5) and H INAR(10), where G is the number of components and H ≤ G.

It is obvious that H is restricted by G as a negative number of INAR processes can

not be fitted, but as G increases so does the total possible number of mixtures.

With the use of mixture models, an objective criterion is needed to select the

‘best’ model. Bayes factors are known to have desirable properties for model selection,

but are not evaluated with ease. Instead, the Bayesian information criterion (BIC;

Schwarz, 1978) is a crude approximation for the Bayes factor and will be used to select

the best model. When comparing two models, the difference in the BIC gives a rough

approximation to the logarithm of the Bayes factor assuming equal priors (Kass and

Raftery, 1995). Given a model with parameters Θ, the Bayesian information criterion

is given by

BIC = 2`(Θ̂)− ρ log n,
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where `(Θ̂) is the maximized log-likelihood, Θ̂ is the maximum likelihood estimate

of Θ, ρ is the number of free parameters, and n is the number of observations. The

use of the BIC for model selection is a well known idea in model-based clustering.

Justifications for its use can be found in Leroux (1992), Kass and Wasserman (1995),

Kass and Raftery (1995), and Keribin (2000).

Although in a real clustering scenario the true group memberships are not known,

the effectiveness of the model will still be evaluated through simulated data and data

with known group memberships. The model is evaluated using a cross tabulation of

the maximum a posteriori (MAP) classification of the predicted group memberships

and that of the true group memberships. Using the results of the cross tabulation,

the performance can be quantified numerically though the use of the adjusted Rand

index (ARI; Hubert and Arabie, 1985). The Rand index (Rand, 1971) is based on

pairwise agreement, written as

number of pairwise agreements

number of pairs
,

where a value on [0, 1] is obtained, 1 being perfect class agreement. The Rand index

alone does not account for agreement by chance, meaning when predicted group

memberships are obtained there is a chance they would be classified correctly by

chance. The ARI is used as it corrects the Rand index for agreement by chance and

has an expected value of 0 under random classification while still having a value of 1

for perfect classification.
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Chapter 4

Illustrations

4.1 Overview

In this chapter, the model developed in Chapter 3 will be applied to both real and

simulated data sets. Two simulated data analyses and one real data analysis will be

carried out. The two simulated data reflect the different aspects covered throughout

Chapter 3 in regards to equidispersion and overdispersion. For simplicity in the

analyses, only the two most influential INAR processes will be considered in the

models. The INAR processes to be included in the model will be decided by the

most influential autocorrelations at a multitude of different lag times. We will also

only consider three possible models in each analysis. Due to two INAR processes and

three models being considered, G = 1 components will not be fitted. This is done for

consistency purposes while following the iterative approach mentioned previously.

The simulated analyses will be carried out with multiple trials of increasing dif-

ficulty. To increase the difficulty in clustering, the parameters of the simulated data

will converge together in order to bring the clusters closer and create more overlay.
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Both simulated data analyses will be done in a clustering fashion such that the true

group memberships of the data will be taken as unknown. This allows us to assess

the performance and classification accuracy using the ARI.

4.2 Simulated Data Analyses

4.2.1 Poisson Innovation Simulated Data

INAR data with Poisson distributed innovations are simulated with increasing diffi-

culty. The difficulty is increased in each of three simulations by allowing the parame-

ters to converge and create more overlay between clusters. The true parameters along

with the mixing proportions of the three components in each simulation can be found

in Table 4.1. In this case, 15, 000 three-component observations are simulated. The

dimensions of the simulated data are for 300 individuals over times t = 1, . . . , 50.

Exploring the simulated data, it can be seen from Figure 4.1 that the autocor-

relations of all three simulated data are very similar. From the box plots of the

autocorrelations only INAR processes of order five and order ten will be considered

in the model. Because the data have been simulated for Poisson distributed innova-

tions, it can be seen from Figure 4.2 that the dispersion of the data follow along the

Poisson line, where φ = 1. Figure 4.3 shows the simulated data as it would be known

in a true clustering scenario along with the true group memberships of the respective

clustering difficulty to provide a comparison for Figure 4.4.

For each of three cluster difficulties, G = 2, . . . , 5 components are fit using k-means

starting values. The results of each trial can be seen in Table 4.1 along with corre-

sponding MAP classifications. The BIC correctly selects G = 3 components using
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a mixture of three INAR(5) and zero INAR(10) as the best model for all clustering

difficulties. Figure 4.4 shows the estimated group memberships of each clustering

scenario and the cluster profiles of the estimated group memberships. The estimated

parameters appear to be very close to the true parameters with all clustering difficul-

ties (Table 4.1). In the most difficult clustering scenario an ARI of 0.882 is achieved

with a misclassification rate of 5.00% which are both extremely good values for such

a difficult problem.

Table 4.1: Clustering results for the easy, moderate, and difficult simulated INAR
data with Poisson distributed innovations.

Clustering
Difficulty

True
Parameters

Estimated
Parameters

ARI Classification Table

Easy

(α1, π1, λ1, φ1) =
(0.40, 0.333, 7.00, 1)
(α2, π2, λ2, φ2) =
(0.50, 0.250, 4.00, 1)
(α3, π3, λ3, φ3) =
(0.70, 0.417, 0.50, 1)

(α̂1, π̂1, λ̂1, φ̂1) =
(0.4, 0.336, 6.98, 1)
(α̂2, π̂2, λ̂2, φ̂2) =
(0.54, 0.247, 3.78, 1)
(α̂3, π̂3, λ̂3, φ̂3) =
(0.68, 0.417, 0.58, 1)

0.991

1 2 3
1 100 0 0
2 1 74 0
3 0 0 125

Moderate

(α1, π1, λ1, φ1) =
(0.40, 0.333, 6.00, 1)
(α2, π2, λ2, φ2) =
(0.50, 0.250, 4.00, 1)
(α3, π3, λ3, φ3) =
(0.60, 0.417, 2.00, 1)

(α̂1, π̂1, λ̂1, φ̂1) =
(0.40, 0.336, 5.99, 1)
(α̂2, π̂2, λ̂2, φ̂2) =
(0.50, 0.245, 4.01, 1)
(α̂3, π̂3, λ̂3, φ̂3) =
(0.60, 0.418, 2.00, 1)

0.949

1 2 3
1 98 2 0
2 3 71 1
3 0 0 125

Difficult

(α1, π1, λ1, φ1) =
(0.40, 0.333, 5.50, 1)
(α2, π2, λ2, φ2) =
(0.50, 0.250, 4.00, 1)
(α3, π3, λ3, φ3) =
(0.60, 0.417, 2.00, 1)

(α̂1, π̂1, λ̂1, φ̂1) =
(0.40, 0.336, 5.51, 1)
(α̂2, π̂2, λ̂2, φ̂2) =
(0.50, 0.250, 4.00, 1)
(α̂3, π̂3, λ̂3, φ̂3) =
(0.6, 0.417, 1.98, 1)

0.882

1 2 3
1 94 6 0
2 9 66 0
3 0 0 125
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Figure 4.1: Box plots of the autocorrelation at multiple lag times for the easy, moder-
ate, and difficult simulated INAR data with Poisson distributed innovations, respec-
tively.
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Figure 4.2: Dispersion of the easy, moderate, and difficult simulated INAR data with
Poisson distributed innovations, respectively.
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Figure 4.3: Plots of the data with unknown group memberships and the true group
memberships for the easy, moderate, and difficult simulated INAR data with Poisson
distributed innovations, respectively.
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Figure 4.4: Plots of the estimated group memberships and cluster profiles for the easy,
moderate, and difficult simulated INAR data with Poisson distributed innovations,
respectively.
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4.2.2 Negative Binomial Innovation Simulated Data

Following in a similar fashion to the previous section, INAR data with negative bi-

nomial distributed innovations are simulated with increasing difficulty. The difficulty

is increased in each of three simulations by allowing the parameters to converge and

create more overlay between clusters. The true parameters along with the mixing

proportions of the three components in each simulation can be found in Table 4.2. In

this case, 12, 000 two-component observations are simulated. The dimensions of the

simulated data are for 400 individuals over times t = 1, . . . , 30.

Exploring the simulated data, it can be seen from Figure 4.5 that the autocor-

relations of all three simulated data are very similar. From the box plots of the

autocorrelations only INAR processes of order two and order four will be considered

in the model. Because the data have been simulated for negative binomial distributed

innovations, it can be seen from Figure 4.6 that the dispersion of the data mainly

lies above the Poisson line, thus simulating overdispersion. Figure 4.7 shows the sim-

ulated data as it would be known in a true clustering scenario along with the true

group memberships of the respective clustering difficulty to provide a comparison for

Figure 4.8.

For each of three clustering difficulties, G = 2, . . . , 4 components are fit using

k-means starting values. The results of each trial can be seen in Table 4.2 along with

corresponding MAP classifications. The BIC correctly selects G = 2 components

using a mixture of two INAR(2) and zero INAR(4) as the best model for all clustering

difficulties. Figure 4.8 shows the estimated group memberships of each clustering

scenario and the cluster profiles of the estimated group memberships. The estimated

parameters appear to be very close to the values of the true parameters with all
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clustering difficulties (Table 4.2). In the most difficult clustering scenario an ARI of

0.730 is achieved with a misclassification rate of 7.25% which are both very reasonable

values for such a difficult problem.
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ate, and difficult simulated INAR data with negative binomial distributed innovations,
respectively.
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Figure 4.6: Dispersion of the easy, moderate, and difficult simulated INAR data with
negative binomial distributed innovations, respectively.
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Figure 4.7: Plots of the data with unknown group memberships and the true group
memberships for the easy, moderate, and difficult simulated INAR data with negative
binomial distributed innovations, respectively.
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Figure 4.8: Plots of the estimated group memberships and cluster profiles for the
easy, moderate, and difficult simulated INAR data with negative binomial distributed
innovations, respectively.
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Table 4.2: Clustering results for the easy, moderate, and difficult simulated INAR
data with negative binomial distributed innovations.

Clustering
Difficulty

True
Parameters

Estimated
Parameters

ARI Classification Table

Easy
(α1, π1, λ1, φ1) =
(0.60, 0.375, 3.00, 4)
(α2, π2, λ2, φ2) =
(0.20, 0.625, 6.00, 2)

(α̂1, π̂1, λ̂1, φ̂1) =
(0.59, 0.375, 3.03, 3.96)
(α̂2, π̂2, λ̂2, φ̂2) =
(0.21, 0.625, 5.87, 1.92)

0.970
1 2

1 149 1
2 2 248

Moderate
(α1, π1, λ1, φ1) =
(0.60, 0.375, 4.00, 4)
(α2, π2, λ2, φ2) =
(0.30, 0.625, 6.00, 2)

(α̂1, π̂1, λ̂1, φ̂1) =
(0.59, 0.395, 4.00, 3.73)
(α̂2, π̂2, λ̂2, φ̂2) =
(0.31, 0.605, 5.99, 1.89)

0.883
1 2

1 149 1
2 11 239

Difficult
(α1, π1, λ1, φ1) =
(0.50, 0.375, 4.00, 4)
(α2, π2, λ2, φ2) =
(0.40, 0.625, 6.00, 2)

(α̂1, π̂1, λ̂1, φ̂1) =
(0.51, 0.385, 3.96, 3.64)
(α̂2, π̂2, λ̂2, φ̂2) =
(0.41, 0.615, 5.95, 1.88)

0.730
1 2

1 138 12
2 17 233

4.3 Real Data Analyses

4.3.1 Alcohol Timeline Followback Data

The timeline followback (TLFB; Sobell et al., 1986) method is a tool used to assess

subjects’ daily alcohol consumption. The alcohol TLFB data being considered was

presented in Atkins et al. (2013) and comes from a larger study aimed at event spe-

cific prevention. The event specific prevention here refers to intensive daily drinking

habits around a number of people’s twenty-first birthdays. This data also includes

extreme drinking events relative to a random sample of students’ drinking (Neighbors

et al., 2010). Estimates of daily drinking were evaluated for clinical and nonclinical

populations; e.g., adolescents, adults, college students, alcoholics of different severity,

and normal male and female drinkers in the general population. Using a calendar,

subjects provided retrospective estimates of their daily drinking over a specified time
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period. The original focus of the assessment was to study the gender, greek status

being that the subject is in a fraternity/sorority or neither, and period of the week

in which the drinking occurred. Our focus will fall sheerly on the number of drinks

and what can be inferred about the clusters found.

The data is composed of 980 individuals who listed their respective number of

drinks over a 30 day period. There were 269 individuals who did not finish the study,

due to this reason we will only consider the 711 individuals for which the data was

fully recorded. Taking a closer look at the data, Figure 4.9a shows box plots of

the autocorrelations. From these box plots, only INAR processes of order one and

order seven will be considered in the model. It can be seen from Figure 4.9b that

overdispersion is present in the TLFB data. Figure 4.9c shows the simulated data as

it would be known in a true clustering scenario.

For the alcohol TLFB data, G = 2, . . . , 8 components are fit using k-means start-

ing values. The BIC selects G = 6 components using a mixture of four INAR(1)

and two INAR(7). Figure 4.9d shows the estimated group memberships of the TLFB

data and Figure 4.9e shows the respective cluster profiles of the estimated group

memberships. From the six cluster profiles present in Figure 4.9e, there seems to

be individuals on very extreme ends of the spectrum. The red profile appears to be

individuals who drank at a specific event and returned to not drinking throughout

the remainder of the study. The light blue profile, although very similar to the red

profile, appears to be individuals who continued drinking lightly after the specified

event. The black, blue, magenta, and green profiles appear to be individuals with

heavier drinking habits, but at a variety of different quantities. This could perhaps

have to do with the individuals alcohol tolerance level or other social gatherings.
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Figure 4.9: Plots of the: a) autocorrelation at multiple lag times, b) dispersion in
the data, c) unknown group memberships, d) estimated group memberships, and e)
cluster profiles of the estimated group memberships for the alcohol TLFB data.
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Chapter 5

Summary and Future Work

5.1 Summary

The current literature on mixture models, model-based clustering, and modeling time

series of counts was reviewed. A new model-based approach for clustering discrete

valued time series has been introduced. The parameters of the model were estimated

using the EM algorithm and a stopping criterion based on Aitken acceleration was

used to determine if the model had converged. Model selection was done using the BIC

and a performance assessment was carried out using the ARI and misclassification

rate in the case of simulated data. The new model-based technique was applied to

both simulated and real data to illustrate its clustering capabilities. In the application

to simulated data, the technique performed well for a variety of difficulties with both

equidispersion and overdispersion present in the data. In the application to real data,

a true clustering scenario in which no group memberships were known was analyzed.

The technique performed appropriately and reasonable clusters were found for the

obscure relationships in the data.
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5.2 Future Work

The newly discovered model-based approach for clustering discrete valued time series

presents many different directions that could be taken in future work. Some of the

more relevant directions to be taken include extending the INAR model to include

multivariate time series of counts. Other directions include expanding the model-

based approach to include other integer-valued models, e.g., a mixture of INARCH

models, and the improvement of computational aspects, e.g., the EM algorithms time

consuming maximization step.
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