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Abstract

We study the spontaneous edge current of chiral superconductors with high chi-

rality both in the absence and presence of Meissner screening. We compute the edge

current from a self-consistent solution to a set of coupled equations: quasiclassical

Eilenberger equation, superconducting gap equation, and Maxwell equation. We find

that the spatial dependent chiral edge current is largely suppressed and has more

nodes for higher chirality pairings. In the absence of Meissner screening, the inte-

grated current at T = 0 is zero for all higher chirality pairings; while it is substantial

for chiral p-wave. This conclusion is consistent with previous studies. In contrast, at

finite T , the integrated current is non-zero even for higher chiral pairings. It turns

out that the spatial varying order parameter is crucial to understand this finite T

behavior of the edge current. When Meissner screening is included, the magnitude

of the edge currents is reduced for all chiral pairings; however, the reduction is much

weaker in higher chirality cases. We conclude that the Meissner effect is not that

important for higher chiral pairings. We also consider the effect of the rough surface

on the edge current. The edge current of even chiral pairings is inverted by the strong

surface roughness; however, that of the odd chiral pairings is not. The sub-dominant

order parameters, induced by the surface, are the key to understanding this current

inversion.

iii



Acknowledgements

I owe my deepest gratitude to my advisor Prof. Catherine Kallin for her numerous

support and encouragement. She has always been patient to provide guidance on my

research as well as my studies. Beyond this, she offers me a lot of opportunities

outside McMaster. I have always been impressed by her deep physical insight and

meticulous pursuit. I feel honored and privileged to be her student.

I am indebted to the other two committee members, Prof. John Berlinsky and

Prof. Erik Sorensen, for their useful suggestions on my research. I would also like to

thank Prof. Peter Gordon Sutherland, Prof. Bruce Gaulin and Prof. Sung-Sik Lee

for their wonderful classes which influence me beyond the thesis.

It is my honor to thank Prof. Jinshan Wu, who brought me into the world of

physics. He encouraged and carefully protected my interests. His support lasts till

this day.

I am grateful to Dr. Wen Huang and Dr. Zhiqiang Wang for countless discussions.

They have given me many suggestions and helped me in many aspects that related

to my studies. I would also like to thank Laimei Nie and Soshi Mizutani for their

helpful discussions during my early stage.

I feel lucky to have a group of friends and schoolmates here to share my life

and interests with: Ke Meng, Xuejiao Liu, Lili Zhang, Huifang Pang, Wenjing Hua,

iv



Haizhao Zhi, Yipeng Cai, Qianli Ma, Sean Takahashi, Anton Borissov, Ryan Plestid

and so on. I would also like to thank friends in China, Peng Zhang, Qian Zhuang,

Ying Zhuang, Tianxiao Qi, Yichen Zhou, Jingwen Li, Zhesi Shen, He Li and so on,

for their encouragement. Besides, I would like to thank Leo’s home for the happiness

they have brought me.

Lastly but most importantly, I wish to thank my parents, Xiaoguo Wang and

Xiuyan Ma, for their unconditional support and love.

v



Contents

Abstract iii

Acknowledgements iv

1 Introduction 1

1.1 Chiral Superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Spontaneous edge current . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Plan of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Quasiclassical Formulation 6

2.1 Quasiclassical Approximation . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Numerical Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Uniform Order Parameter Analysis . . . . . . . . . . . . . . . . . . . 15

3 Self-consistent Edge Current Without Screening 20

3.1 Spatial profiles of the current density . . . . . . . . . . . . . . . . . . 21

3.2 Temperature dependence of the integrated current . . . . . . . . . . . 26

4 Self-consistent Edge Current With Screening 30

vi



5 Rough Surface Effect 36

6 Conclusions 42

A Gor’kov Equation for Matsubara Green’s Functions 45

A.1 Matsubara Green’s Functions . . . . . . . . . . . . . . . . . . . . . . 45

A.2 Gor’kov Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vii



List of Figures

2.1 Classical trajectory of a Bogoliubov quasiparticle. . . . . . . . . . . . 12

3.1 Spatial profiles of the unscreened chiral order parameter components 21

3.2 Spatial profiles of the unscreened chiral edge current . . . . . . . . . . 23

3.3 Schematic edge dispersion for higher chirality superconductors . . . . 24

3.4 Current channels (unscreened) in higher chirality superconductors . . 25

3.5 Temperature dependence of Iy for chiral p-wave superconductors . . . 27

3.6 Temperature dependence of Iy for higher chirality superconductors . . 28

4.1 Spatial profiles of the screened chiral order parameter components . . 31

4.2 Spatial profiles of the screened chiral edge current . . . . . . . . . . . 32

4.3 Angular dependence of the screened chiral p-wave edge current . . . . 34

5.1 Effects of the weak surface roughness on the unscreened edge current 38

5.2 Effects of the strong surface roughness on the unscreened edge current 39

5.3 Effects of the strong surface roughness on the screened edge current . 40

viii



Chapter 1

Introduction

Superconductivity is a quantum mechanical phenomenon that has attracted con-

siderable interest from condensed matter physicists since its discovery in 1911. By the

1960s, the discovered superconductors seemed to be fully understood by the micro-

scopic Bardeen-Schrieffer-Cooper (BCS) theory[1] together with the phenomenologi-

cal Ginzburg-Landau theory[2]. However, in 1985 the discovery of high TC supercon-

ductivity [3] opened an age of unconventional superconductivity beyond the original

BCS theory and brought attention to the role of the electron-electron interaction.

Since then, more and more unconventional superconductors have been discovered,

chiral superconductors among them.

While the interaction between electrons, the Coulomb interaction, is repulsive, in

solids it can give rise to an effective attractive interaction at longer distances while

remaining repulsive at the shortest distances. Cooper pairing can exist in a higher

angular momentum channel, such as the p-, d- and f - channel, as the higher angular

momentum pairing wave functions vanish at short distance.[4] This thesis will focus

on chiral superconductivity, a particular type of higher angular momentum pairing.
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In this chapter, we briefly summarize some main properties of chiral superconduc-

tors. For a detailed review, one can refer to Ref.[5].

1.1 Chiral Superconductivity

In the continuum limit, for a 2D chiral superconductor with Cooper pair angular

momentum m, the superconducting gap function is described as

∆(θk) = ∆0

(
k

kF

)|m|
eimθk , (1.1)

where θk is the azimuthal angle of wavevector k with respect to the x-axis, kF is the

Fermi wave vector, and m = ±1, ±2, ±3 for chiral p-, d-, f -wave superconductors,

respectively. Chiral superconductors have topological order and can be characterized

by a Chern number C which is a topological invariant[6, 7] defined as

C =
1

4π

∫
d2k ĥ ·

(
∂kxĥ× ∂ky ĥ

)
(1.2)

where, ĥ = h/|h| and h = {Re[∆k], Im[∆k], ε(k)− µ}; ε(k) − µ is the single particle

dispersion. In the continuum limit, the Cooper pair angular momentum m is equal

to the Chern number C. For the simplest chiral p-wave pairing, the chiral order

parameter is ∆(θk) = ∆0(kx ± iky)/kF according to Eq.(1.1). The corresponding

Chern number is ±1. These two chiralities, C = ±1, are degenerate and break time-

reversal symmetry. Thus, spontaneous currents are expected at the surfaces or at

defects.
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The edges and vortices of chiral superconductors can support Majorana zero en-

ergy bound states[8, 9], protected by the topology. Majorana zero energy modes carry

no electric charge and are represented by a real operator, such that the annihilation

and creation operators are identical. These bound states can be potentially used to

build a topological quantum computer[10] due to the non-abelian mutual statistics

between different vortices carrying the bound states[11].

Several materials are thought to be chiral superconductors in part because exper-

iments suggest a time reversal symmetry broken superconducting phase. Sr2RuO4 is

a strong candidate for a chiral p-wave superconductor and UPt3 is thought to have

chiral f -wave pairing. SrPtAs and URu2Si2 are possible candidates for chiral d-wave

superconductors. Among these candidates, Sr2RuO4 is the most studied material.

The most important evidence for time reversal symmetry breaking comes from µSR

[12] and Kerr effect[13] measurements.

1.2 Spontaneous edge current

Another consequence of the time reversal symmetry breaking is the spontaneous

edge current. The current is carried by both edge and bulk modes[8]. For chiral

superconductors, the edge modes are chiral Majorana-Weyl modes[8, 5]. The number

of edge branches is determined by the Chern number defined in Eq.(1.2), which is a

manifestation of the bulk-boundary correspondence[14].

The edge current, as well as the related spontaneous angular momentum, in chiral

p-wave superconductors/superfluids has been studied extensively[15, 8, 16, 17, 18, 19],

partially due to the fact the chiral p-wave is experimentally realized in 3He[20]. In

contrast, similar studies for higher angular momentum chiral superconductors, such

3
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as chiral d-wave[21, 22] and f -wave, are relatively rare. Some of these studies can

be found in Ref.[17, 18]. Interestingly, in these studies, the authors have found that

the edge current in higher chirality superconductors behaves quite differently from

that in chiral p-wave superconductors. However, the conclusions are obtained in the

absence of Meissner screening effects.

The Meissner screening effect on the chiral p-wave edge current has been calculated

on a half-infinite geometry with a specular surface in Ref.[23]. This study found that

the surface magnetic field is largely reduced by the screening effect. However, the

effect of screening on higher chirality edge currents has only been studied on a small

disk1 in Ref.[24] recently. Large finite size effects could be induced by the studied

geometry. Therefore the question of how the Meissner screening affects the edge

current in higher chirality superconductors still needs to be further investigated, i.e.,

on a half-infinite geometry.

Even though the screened surface magnetic field is reduced by a factor of 10 for

the chiral p-wave pairing with parameters appropriate for Sr2RuO4, theoretically it

is predicted to be of the order of 10 Gauss[23], which should be observable. However,

searches for the expected spontaneous currents in Sr2RuO4 have so far yielded null

results[25, 26, 27]. One possible reason for the null surface current results is the effect

of surface disorder. Experimentally, a specular surface scattering is hard to realize as

it requires the superconductor sample surface to be atomically smooth.

Effects of different types of non-specular surfaces, including rough surface, pair

breaking surface and metallic surface, has been discussed extensively for chiral p-wave

pairing[28, 29, 30, 31, 32, 24, 33]. Only recent studies in Ref.[24] investigated this

1The geometry studied in Ref.[24] is an infinite cylinder with a small radius comparable to the
coherence length.
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problem for higher chiral pairings on a small disk. Interestingly, the authors found

that the direction of the chiral d-wave edge current is flipped by the surface roughness.

Again, this conclusion may suffer from the large finite size effects. Thus, the effects

of surface roughness on both the unscreened and screened spontaneous edge current

for different chiral pairings are still unclear.

1.3 Plan of this thesis

The goal of this thesis is to investigate the behavior of the spontaneous edge

current of higher chirality superconductors. We will study this problem in the quasi-

classical limit of the continuum model.

We will first briefly derive the quasiclassical Eilenberger equation from the Gor’kov

equation and introduce the framework of the Eilenberger equation in Chapter 2. The

uniform order parameter analytical solutions to the Eilenberger equation will also

be calculated in this chapter. We then discuss the behavior of the self-consistent

edge current for different chiral pairings in the absence of the Meissner effect in

Chapter 3. We will focus on two features: the spatial profiles of the edge current

and the temperature dependence of the integrated current. In Chapter 4, we will

address the effects of Meissner screening on the spontaneous edge current. Finally, in

Chapter 5, we will add the roughness near the surface and explain its effects on both

the unscreened and screened edge current. Conclusions will be given in Chapter 6. A

few of the more mathematical details on the Gor’kov equation are left to Appendix A.

5



Chapter 2

Quasiclassical Formulation

The response of chiral superconductors to inhomogeneity, of which an edge is

one important example, can be studied using standard techniques. From the BCS

Hamiltonian and its equation of motion, the Gor’kov equation for the Matsubara

Green’s functions[34], which is often used to study inhomogeneity in superconductors,

can be derived with the mean field approximation and Wick-decomposition. One

approach is to solve the Gor’kov equation, supplemented with the gap equation and

Maxwell equations, self-consistently and then calculate physical quantities using the

Matsubara Green’s functions. However, the Gor’kov equation is too complex to solve

directly.

The quasiclassical formulation greatly simplifies the Gor’kov equation. The Gor’kov

equation is associated with two characteristic length scales: k−1
F and the coherence

length, ξ ∼ h̄vF/∆, where ∆ here is the bulk superconducting gap, vF is the Fermi

velocity and kF is the Fermi wave vector. By integrating out energies related to k−1
F ,

which are unimportant for superconductivity, the Eilenberger equation for the qua-

siclassical Green’s functions[35, 36] can be derived. One can then solve the simpler

6
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Eilenberger equation instead of the Gor’kov equation. Boundary conditions[37] are

also needed, as the Eilenberger equation does not contain the physics at very small

length scales, related to k−1
F .

A large number of studies have been done using this framework [38, 39, 40, 41, 23].

In this chapter, we will give a brief description of this framework starting from the

Gor’kov equation. A short derivation of the Gor’kov equation, as well as the definition

of the Matsubara Green’s Functions, is given in Appendix A. For full mathematical

details, one can refer to Ref.[42, 43, 44].

2.1 Quasiclassical Approximation

In Appendix A, we derive the Gor’kov equation, Eq.(A.30), which we reproduce

here:  −iωn +H −∆(r1)

∆∗(r1) iωn +H∗

 Ĝ(r1, r2;ωn) = δ(r1 − r2)1̂, (2.1a)

Ĝ(r1, r2;ωn)

 −iωn +H∗ −∆(r2)

∆∗(r2) +iωn +H

 = δ(r1 − r2)1̂. (2.1b)

Where, Ĝ(r1, r2;ωn) is the matrix form of the Matsubara Green’s functions,

Ĝ(r1, r2;ωn) =

 G(r1, r2;ωn) F (r1, r2;ωn)

−F †(r1, r2;ωn) Ḡ(r1, r2;ωn)

 . (2.2)

As discussed above, Eq.(2.1) can be simplified by using the quasiclassical approx-

imation. Physical quantities, such as the charge current, are defined by the Green’s

7
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functions in the limit of r1 → r2. Doing a Fourier transform so that functions of

r = r1 − r2 become functions of momentum p, we can parameterize the momentum-

space integral as:

d3p

(2π)3
=
dξp
vF

dSF
(2π)3

, (2.3)

where dξp/vF is the integral element perpendicular to the Fermi surface and dSF is

the Fermi surface area element. Note that, the first term on the right hand side of

Eq.(2.3) is only associated with the fast oscillations ∼ k−1
F , which are unimportant

for superconductivity.

The quasiclassical Green’s functions are obtained by integrating out ξp near the

surface and are defined as:

f(p̂F ,k;ωn) =

∫
dξp
iπ

F (p,k;ωn) =

∮
dξp
iπ

F (p,k;ωn), (2.4a)

f †(p̂F ,k;ωn) =

∫
dξp
iπ

F †(p,k;ωn) =

∮
dξp
iπ

F †(p,k;ωn), (2.4b)

g(p̂F ,k;ωn) =

∫
dξp
iπ

G(p,k;ωn) =

∮
dξp
iπ

G(p,k;ωn), (2.4c)

ḡ(p̂F ,k;ωn) =

∫
dξp
iπ

Ḡ(p,k;ωn) =

∮
dξp
iπ

Ḡ(p,k;ωn). (2.4d)

Where we have also done a Fourier transform from the variable R = (r1 + r2)/2 to

the momentum variable k.
∮

shows that we take the contributions from poles close

to the Fermi surface. p̂F is the unit vector of particle momentum at (or close to) the

Fermi surface.

The mixed coordinate quasiclassical Green’s functions in a matrix form can be

8
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expressed as:

ĝ(p̂F ,R;ωn) =

 g(p̂F ,R;ωn) f(p̂F ,R;ωn)

−f †(p̂F ,R;ωn) ḡ(p̂F ,R;ωn)

 , (2.5)

with the Fourier transformation:

ĝ(p̂F ,R;ωn) =

∫
d3k

(2π)3
eikRĝ(p̂F ,k;ωn). (2.6)

The quasiclassical Green’s functions obey particle-hole symmetry in equilibrium and

the normalisation condition:

g(p̂F ,R;ωn) + ḡ(p̂F ,R;ωn) = 0; (2.7)

ĝ(p̂F ,R;ωn) · ĝ(p̂F ,R;ωn) = −π21̂. (2.8)

With above definitions, the quasiclassical Eilenberger equation can be derived

from Eq.(2.1). First, we transform the coordinate variables r1 and r2 to variables r

and R and only keep the terms with gradients in r,

∇r1,r2 =
1

2
∇R ±∇r = ±∇r, (2.9a)

∇2
r1,r2

=
1

4
∇2

R ±∇R∇r +∇2
r = ±∇R∇r +∇2

r. (2.9b)

9
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The Hamiltonian and order parameter can be expressed as:

Hr1,r2 = −∇
2
r

2m
∓ ∇r

2m
∇R − µ∓ i

e∇r

mc
A(R); (2.10a)

∆(r1, r2). = ∆(R) (2.10b)

The Gor’kov equation can be rewritten in mixed coordinate:


 −iωn + evF

c
A(R) −∆(R)

∆∗(R) iωn − evF
c

A(R)

+
(
ξp − i

vF

2
∇R

)
1̂

 Ĝ(p,R;ωn) = 1̂,

(2.11a)

Ĝ(p,R;ωn)


 −iωn + evF

c
A(R) −∆(R)

∆∗(R) iωn − evF
c

A(R)

+
(
ξp + i

vF

2
∇R

)
1̂

 = 1̂.

(2.11b)

Where, ξp = p2/2m− µ and the Fourier transformation:

Ĝ(p,R;ωn) =

∫
d3reip·rĜ(r,R;ωn) (2.12)

Subtracting Eq.(2.11a) and Eq.(2.11b), we can get:

−ivF∇RĜ(p,R;ωn) =


 iωn − evF

c
A(R) ∆(R)

−∆∗(R) −iωn + evF
c

A(R)

 , Ĝ(p,R;ωn)

 .
(2.13)

Note that, in Eq.(2.13), the fast oscillations only exist in G. Integrating out the

10
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dξp in G, we can get the Eilenberger equation:

−ivF∇Rĝ(p̂F ,R;ωn) =


 iωn − evF

c
A(R) ∆(R)

−∆∗(R) −iωn + evF
c

A(R)

 , ĝ(p̂F ,R;ωn)

 .
(2.14)

2.2 Numerical Procedure

Consider a semi-infinite geometry with a specular surface perpendicular to the

x-direction and superconducting at x ≥ 0. The classical trajectory of a Bogoliubov

quasiparticle is shown in Fig. 2.1. The chiral p-wave pairing in this geometry has

been calculated in Ref.[23]. In this thesis, we follow the same numerical procedure.

As the system is translationally invariant perpendicular to the x-axis, the corre-

sponding Eilenberger equation can be expressed as:

− ivFx
d

dx
g(kF , x;ωn) = ∆∗(k, x)f(kF , x;ωn)−∆(kF , x)f †(k, x;ωn), (2.15a)

iω̃nf(kF , x;ωn) + i
1

2
vFx

d

dx
f(kF , x;ωn) = ∆(kF , x)g(kF , x;ωn), (2.15b)

iω̃nf
†(kF , x;ωn)− i1

2
vFx

d

dx
f †(kF , x;ωn) = ∆†(kF , x)g(kF , x;ωn), (2.15c)

where ω̃n = ωn + i
evFy
c
Ay(x).

As we see in Eq.(2.15), the equations for g, f and f † are coupled with each

other, which is difficult to solve directly. Riccati parameterization can decouple the

Eilenberger equation into scalar differential equations which are much easier to solve

numerically.[38, 45]

11
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Figure 2.1: Classical trajectory of a Bogoliubov quasiparticle. Adapted from Ref.[23]

The Riccati transformation of the quasiclassical Green’s function is defined as:

ĝ =
−πi

1 + ab

 1− ab 2ia

−2ib −1 + ab

 . (2.16)

Substituting Eq.(2.16) into the Eilenberger equation Eq.(2.15), we get two differential

equations for a and b, respectively:

vFx
d

dx
a(kF , x;ωn) = ∆(kF , x)−∆†(kF , x)a2(kF , x;ωn)− 2ω̃na(kF , x;ωn), (2.17a)

vFx
d

dx
b(kF , x;ωn) = −∆†(kF , x) + ∆(kF , x)b2(kF , x;ωn) + 2ω̃nb(kF , x;ωn). (2.17b)

Note that the differential equations for a and b are no longer coupled to each other

and can be solved separately with proper initial values. For iωn situated in the upper

half of the complex plane, a can be found by integrating Eq.(2.17a) as an initial value

problem along trajectory A→ B → C, while b can be found by integrating Eq.(2.17b)

12
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along trajectory C → B → A.[45] The initial values for a and b are

a(kF1,∞;ωn) =
∆(kF1,∞)√

ω2
n + |∆(kF1,∞)|2 + ωn

, (2.18a)

b(kF2,∞;ωn) =
∆†(kF2,∞)√

ω2
n + |∆(kF2,∞)|2 + ωn

, (2.18b)

where kF1 and kF2 are the Fermi wave vectors of the incident and reflected quasipar-

icles as shown in Fig. 2.1. The momentum of the incident and reflected quasiparticles

along the surface is conserved and boundary conditions at x = 0 are given by:

a(kF1, 0;ωn) = a(kF2, 0;ωn), (2.19a)

b(kF1, 0;ωn) = b(kF2, 0;ωn). (2.19b)

For a chiral superconductor with angular momentum m, the order parameter can

be separated into two components:

∆(kF , x) = ∆x(x) cos(mθk) + i∆y(x) sin(mθk). (2.20)

The spatial dependent order parameter components can be calculated with the gap

equation,

∆x(x) = πTN(0)V
∑
|ωn|<ωC

1

2π

∫ π

−π
dθk2 cos(mθk)f(θk, x;ωm), (2.21a)

∆y(x) = πTN(0)V
∑
|ωn|<ωC

1

2π

∫ π

−π
dθk2 sin(mθk)f(θk, x;ωm). (2.21b)

13
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Where N(0) is the normal density of states per unit volume at the Fermi energy and

N(0)V is the coupling constant determined by:

N(0)V =
1

ln T
TC

+
∑

0<m<ωC/2πT
1

m−1/2

. (2.22)

Here, TC is the superconducting transition temperature and ωC is the cutoff energy.

The spatial dependent current density along y direction can be calculated as,

Jy(x) = −evFN(0)T
∑
|ωn|<ωC

1

2π

∫ π

−π
dθk sin(θk)(−iπ)g(θk, x;ωm). (2.23)

The Meissner screening is taken into account through the self-consistent vector po-

tential which can be calculated using the Maxwell equations,

Bz(x) = −µ
∫ x

0

dx′Jy(x
′), (2.24)

Ay(x) = −
∫ ∞
x

dx′Bz(x
′), (2.25)

where µ is the permeability and related to the penetration depth, λL =
√
m/e2µn,

with the density of electrons n.

In summary, for the geometry of Fig. 2.1, the corresponding Eilenberger equa-

tion Eq.(2.15) or Riccati equation Eq.(2.17) can be calculated self-consistently using

the initial conditions Eq.(2.18), boundary conditions Eq.(2.19), superconducting gap

equation Eq.(2.21) and Maxwell equations Eq.(2.25).
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2.3 Uniform Order Parameter Analysis

Before we discuss the self-consistent numerical results, we first consider simple

cases with uniform order parameter and ignore the vector potential. Quasi-classical

Green’s function can be calculated analytically in such cases[46, 47, 48, 23, 16, 19].

The quasi-classical Green’s function can be rewritten as:

ĝ = g1τ̂1 + g2τ̂2 + g3τ̂3, (2.26)

where, τ̂i (i = 1, 2, 3) is the Pauli matrix:

τ̂1 =

 0 1

1 0

 , τ̂2 =

 0 −i

i 0

 , τ̂3 =

 1 0

0 −1

 . (2.27)

Comparing with the definition of the quasi-classical Green’s function Eq.(2.5), we

find Im(∆) ∝ g1, Re(∆) ∝ g2 and Jy ∝ Im(g3). The Eilenberger equation, Eq.(2.14),

can be rewriten as:

d

dx


g1

g2

g3

 =
2

vFx


0 iωn −i∆x

−iωn 0 i∆y

i∆x −i∆y 0



g1

g2

g3

 , (2.28)

where, ∆(T ) = ∆x + i∆y, i.e., for a chiral p-wave superconductor, ∆x = ∆(T ) cos θk

and ∆y = ∆(T ) sin θk.

15
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Supplemented with the boundary conditions, ĝ(kF , 0;ωn) = ĝ(−kF , 0;ωn), a gen-

eral solution to Eq.(2.28) can be calculated:

g+(kF , x;ωn) =
−π∆2

λ

(
1 +

∆2
1

ω2
n + ∆2

2

e
−2 λ

|vFx |x
)
− iπ ωns∆1

ω2
n + ∆2

2

e
−2 λ

|vFx |x, (2.29a)

g−(kF , x;ωn) =
−π∆1

λ

(
1− e−2 λ

|vFx |x
)
, (2.29b)

g3(kF , x;ωn) =
πωn
λ

+
π

λ

ωn∆2
1

ω2
n + ∆2

2

e
−2 λ

|vFx |x − iπ s∆1∆2

ω2
n + ∆2

2

e
−2 λ

|vFx |x, (2.29c)

where, λ =
√
ω2
n + ∆2(T ), s = sgn(∆1). Here, we use ∆1, ∆2, g− and g+ instead

of ∆x, ∆y, g1 and g2. ∆1 and ∆2 represent the components of the order parameter

perpendicular and parallel to the surface (i.e., the suppressed and enhanced compo-

nents); g− and g+ represent the suppressed and enhanced Green’s function. Take

the chiral p-wave superconductor as an example, ∆1 = ∆x, ∆2 = ∆y, g+ = g1 and

g− = g2.

The spatial dependent current density can be calculated from the imaginary part

of g3:

Jy(x) =
2T

(2π)d

∑
ωn

∮
F.S.

dk

|vF |
vFyIm(g3(k, x;ωn)). (2.30)

The temperature dependent integrated current Iy(T ) can be computed with Eq.(2.30)

16
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as:

Iy(T ) =

∫ ∞
0

dxJy(x)

=− 1

2(2π)d

∮
F.S.

dk

|vF |
vFyvFx∆1∆22πT

∑
ωn

1

λ

1

ω2
n + ∆2

2

=
1

(2π)d

∮
F.S.

dk

|vF |
vFyvFx∆1∆2 ×

π2 1

|∆1||∆2|
tanh

( |∆2|
2T

)
︸ ︷︷ ︸

A

−
∫ ∞

0

dy
1

∆2
2 sinh2 y + ∆2

1 cosh2 y
tanh

( |∆(T )|
2T

cosh y

)
︸ ︷︷ ︸

B

 . (2.31)

As is shown in Eq.(2.31), Iy(T ) can be separated into two terms denoted as A and

B. The integral associated with term A represents the integrated current carried by

the edge states and that associated with term B accounts for the integrated current

carried by bulk states.

For a chiral p-wave superconductor, the temperature dependent integrated current

can be expressed as:

Iy,p-wave(T ) =
2mv2

F

(2π)2

∫ π

−π
dθk sin2 θk cos2 θk ×

 π

2| sin θk|| cos θk|
tanh

(
∆2| sin θk|

2T

)
︸ ︷︷ ︸

A

−
∫ ∞

0

dy
1

sin2 θk sinh2 y + cos2 θk cosh2 y
tanh

(
∆(T )

2T
cosh y

)
︸ ︷︷ ︸

B

 .
(2.32)
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When T = 0, the integrated current can be calculated,

Iy(0) =
2mv2

F

(2π)2

∫ π

−π
dθk sin θk cos θk

(
π

2
− arctan

(
sin θk
cos θk

))
=
εF
4π
, (2.33)

where εF is the Fermi energy. What’s more, when T = 0, the integral associated

with A is twice that associated with B, indicating the edge states contribution to

the integrated current is twice the bulk states contribution. The minus sign indicates

the opposite directions of these two contributions. These results, obtained from the

uniform order parameter Eilenberger theory, are consistent with that calculated by

Stone and Roy using the BdG theory in Ref.[8].

For chiral d- and f -wave superconductors, the temperature dependent integrated

currents are:

Iy,d-wave(T ) =
2mv2

F

(2π)2

∫ π

−π
dθk sin θk cos θk sin 2θk cos 2θk ×

π2 tanh
(

∆(T )| cos 2θk|
2T

)
| sin 2θk|| cos 2θk|︸ ︷︷ ︸

A

−
∫ ∞

0

dy
1

cos 2θk sinh2 y + sin 2θk cosh2 y
tanh

(
∆(T )

2T
cosh y

)
︸ ︷︷ ︸

B

 (2.34)

=0
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Iy,f -wave(T ) =
2mv2

F

(2π)2

∫ π

−π
dθk sin θk cos θk sin 3θk cos 3θk ×

π2 tanh
(

∆(T )| sin 3θk|
2T

)
| sin 3θk|| cos 3θk|︸ ︷︷ ︸

A

−
∫ ∞

0

dy
1

sin 3θk sinh2 y + cos 3θk cosh2 y
tanh

(
∆(T )

2T
cosh y

)
︸ ︷︷ ︸

B


(2.35)

=0

Iy is zero at all T for chiral d- and f -wave superconductors, as well as for other

higher chirality superconductors. What’s more, both the edge states contribution and

the bulk states contribution are zero, as the integrals associated with A and B are

zero. These results are consistent with the zero temperature BdG analysis in Ref.[17].

In summary, the uniform order parameter Eilenberger theory shows zero inte-

grated current for higher chiral superconductors at all T , and non-zero integrated

current only for chiral p-wave superconductors.

19



Chapter 3

Self-consistent Edge Current

Without Screening

In this chapter, we discuss the self-consistent edge current for chiral p-, d- and

f -wave superconductors without Meissner screening, i.e., we ignore the vector poten-

tial. This would be appropriate for a neutral chiral superfluid (although the units

would be different and would describe a mass current rather than a charge current).

For the superconducting case, understanding the currents without screening provides

key insights into the differences between chiral p-wave and higher chirality. We are

interested in two features: the spatial profiles of the current density Jy(x) and the

temperature dependence of the integrated current, Iy(T ), which are calculated using

self-consistent numerical solutions to the Eilenberger or Riccati equations as described

in Chapter 2.
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3.1 Spatial profiles of the current density

We start with the spatial profiles of Jy(x) of chiral p-, d- and f -wave pairing in

the limit of T → 0 (T = 0.02TC). This problem has been studied recently in Ref.[24]

at T = 0.20TC . However, the geometry studied there is a small disk which has large

finite size effects.

0

0.4
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1.2

(1) chiral p-wave

0

0.4

0.8

1.2

(2) chiral d-wave

0

0.4

0.8

1.2

0 5 10 15 20 25
x/ξ0

(3) chiral f -wave

|∆x|
|∆y|

|∆x|
|∆y|

|∆x|
|∆y|

Figure 3.1: Spatial dependence of the self-consistent order parameter components,
|∆x(x)| and |∆y(x)|, in chiral p- (1), d- (2) and f - (3) wave superconductors with-
out Meissner screening. The x coordinate is scaled by ξ0 = vF/π∆0 , where
∆0 = 2ωCe

−1/N(0)V is the magnitude of the bulk order parameter at T = 0. The
order parameters are scaled by their bulk values. T = 0.02TC . Other parameters
used are: the grid size for the θk integration is Nθk = 400 for θk ∈ [0, π); the x-
integration grid size is Nx = 2500; ωC = 10TC is the Matsubara frequency cutoff.
This set of parameters will be used throughout the whole thesis, unless specified
otherwise.
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Fig. 3.1 shows the spatial profiles of the chiral order parameter components with

a specular surface. As can be seen, for all cases, the order parameter components

exhibit similar behavior at the edge, i.e., one component drops to zero while the other

is slightly enhanced. The component that falls to zero is the one that switches sign

under a reflection about the edge. Take the chiral p-wave as an example. Under

the reflection (kx, ky) → (−kx, ky), the ∆x-component changes sign, while the ∆y-

component is invariant. As a consequence, the specular reflection at the edge imposes

an effective destructive interference on ∆x, causing it to vanish at the boundary. The

behavior of the other component, which is enhanced, can be understood from the

quartic order couplings between the two components.[23]

Fig. 3.2 presents the spatial profiles of the current density, Jy(x), and induced

magnetic field, Bz(x), for the three chiral pairings. For chiral p-wave, Jy(x) decays

to zero monotonically, inducing a large magnetic field in the bulk, Bz(x =∞), which

indicates a substantial integrated edge current. Nevertheless, Bz(x = ∞) will van-

ish once the Meissner screening is included, as will be shown in the next chapter.

Note that our edge current distribution does not exhibit the characteristic Friedel

oscillations generally seen in lattice BdG calculations.[17] This is because the short

length scale (∼ k−1
F ) oscillations have already been integrated out in the Eilenberger

formalism.

On the other hand, in agreement with the previous studies[17, 18], the local current

density is strongly suppressed for chiral d- and f -wave, as well as for other higher

angular momentum chiral pairings (not shown). Furthermore, Jy(x) changes sign from

the edge to the bulk. These sign changes lead to the bulk magnetic field, Bz(x =∞),

which is basically zero in Fig. 3.2 (T = 0.02Tc), in contrast to the large Bz(x = ∞)
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Figure 3.2: Spatial dependence of the current density, Jy(x), and induced mag-
netic field, Bz(x), in chiral p- (1), d- (2) and f - (3) wave superconductors with-
out Meissner screening. Jy(x) is scaled by J0 = evFN(0)TC and Bz(x) is scaled by
BC = Φ0/2

√
2πeξ0λL. T = 0.02TC .

in the p-wave case. At T = 0, Bz(x = ∞) should be exactly zero for the chiral

d- and f -wave, in accord with our previous analytical integrated current results in

Section 2.3.

The suppression and spatial profile of Jy for higher chirality superconductors can

be understood from different current channels. In a chiral superconductor, the number

of edge branches per edge is determined by the chirality. The current carried by an

edge state is proportional to ky. Thus, the direction, the magnitude and the the decay

length (in units of the coherence length) of the current density carried by a branch

of edge states only depend on the wavevectors. For example, in the chiral d-wave
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Figure 3.3: Schematic edge dispersion for chiral d- (1) and f - (2) wave superconductor
with one edge.

case, there are two edge branches, as is shown in Fig.3.3 (1). The left branch carries

negative current and the right branch carries positive current. The current density

carried by each branch for T ≈ 0 is shown in Fig.3.4 (a.1) and (a.2). The negative

current channel with |ky/kF | <
√

2/2 has a longer decay length; while the positive one

with |ky/kF | ≥
√

2/2 has a shorter decay length. Because of the cancelation between

the two branches the total local current density is largely reduced. Also due to the

different length scales of the two channels the local current has a node. Note that in

each edge mode branch in Fig.3.3, a Bogoliubov quasiparticle state with momentum

ky is an equal weight combination of normal state electron with momentum ky and

hole with momentum −ky. As a consequence, the current density carried by the ky

edge state in Fig. 3.3 is split into two parts in the Eilenberger formalism: Jy(ky)

(electron like) and Jy(−ky) (hole like), which explains why in Fig.3.4 the positive

current branch is nonzero for both ky > 0 and ky < 0. Similarly, in a chiral f -wave

superconductor with one edge, three current channels carrying current density on

three different length scales account for the suppression and the spatial profiles of the
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Figure 3.4: Angular dependence of Jy(θ) at several positions and spatial dependence
of Jy(x) in different channels for chiral d- (a) and f - (b) wave superconductors without
screening. In (a.1) and (b.1), the solid lines represent positive current density and
dash lines represent negative current density. T = 0.02TC .

25



MSc Thesis - Xin Wang McMaster University - Physics & Astronomy

local current density.

It is important to note that, on the basis of a phenomenological Ginzburg-Landau

argument, Ref.[17] predicts vanishing local edge current for non-p-wave chiral su-

perconductors. However, both Ref.[24] and our calculations indicate finite, albeit

small, local current distribution. This need not constitute a serious inconsistency as

the Gingzburg-Landau analysis in Ref.[17] only takes into account the lowest order

contributions, namely,

Jy ∝ k3Im[(∂x∆
∗
x)∆y −∆∗x(∂x∆y)] (3.1)

There, the expectation of vanishing local current stems from the symmetry of the

phenomenological coefficient k3, which vanishes for non-p-wave chiral pairings. How-

ever, higher order contributions, such as (∂3
x∆
∗
x)∆y , may not vanish, thus leading to

non-zero local current distribution.

3.2 Temperature dependence of the integrated cur-

rent

As discussed in Sec.2.3, when the order parameter is uniform, Iy(T ) is zero for

higher chirality pairings at all T ; however, it is substantial for chiral p-wave at T = 0.

Here we discuss the self-consistent Iy(T ) for different chiral pairings.

For the chiral p-wave pairing, the uniform order parameter analysis predicts

Iy,analytical(0) = εF/4π. For the convenience of comparison with the numerical results,

we scale the integrated current by I0 = J0ξ0 = evFN(0)TCξ0 and get Iy,analytical(0)/I0 =
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0.722. The numerical results, with both uniform order parameter and self-consistent

spatial varying order parameter, are in agreement with the analytical solution in the

limit of T → 0, Nx →∞ and ωC →∞1. Fig. 3.5 shows the self-consistent Iy(T )/Iy(0)

compared with the uniform non-self-consistent numerical results and the uniform ana-

lytical solutions. As can be seen, the non-self-consistent results are in agreement with

the analytical solutions at all temperatures, as expected. However, Iy(T ) is sensitive

to the details of the order parameter at the edge (i.e., to self-consistency) at finite

temperature.
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Figure 3.5: Temperature dependence of the self-consistent Iy(T )/Iy(0) (open circles)
for chiral p-wave pairing compared with the uniform non-self-consistent numerical
results (solid circles) and the uniform analytical solution (line). As we don’t have the
numerical results at T = 0, we use Iy(T )/Iy(0.02TC) instead. ωC = 20TC

For the chiral d- and f -wave pairing, the numerical results, both with and without

1With parameters chosen as Nx = 2500 and ωC = 20TC , Iy,self(0.02TC)/I0 = 0.691.
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self-consistency, are in agreement with the analytical solution in the limit of T → 0,

Nx →∞ and ωC →∞, that is Iy,analytical(0) = Iy,self(0) = Iy,non-self(0) = 0. As shown

in Fig. 3.6, both the uniform non-self-consistent numerical results and the analytical

solutions give Iy = 0 at all temperatures. However, with self-consistency, Iy(T ) is

non-zero at T > 0.
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Figure 3.6: Temperature dependence of the self-consistent current Iy(T ) (open circles)
compared with the uniform non-self-consistent numerical results (solid circles) for
chiral d-wave (a) and chiral f -wave (b). The Nx = ∞ data is obtained from results
of finite Nx by extrapolation to reduce the finite size effects. ωC = 20TC .

The difference between the self-consistent and the uniform or non-self-consistent

Iy(T ) at T > 0 for the three chiral pairings can be understood as resulting from the

change in the edge dispersions with self-conistency.. As mentioned earlier and from

the analytical analysis in Ref.[49], the current carried by an edge state is proportional

to ky and the current from edge states between ky to ky + dky is proportional to

kydky. Self-consistency slightly modifies the edge dispersion; however Eky = 0 points

are protected by the pairing symmetry: for chiral p-wave, Eky = 0 at ky = 0, while

for chiral d-wave, Eky = 0 at ky = ±
√

2/2. As a consequence, in the ground state of
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chiral superconductors, the self-consistent Iy(0) is equal to the uniform Iy(0), since

the same ky-states are occupied in the two cases and the current carried by a state

only depends on ky and not the energy of the state (i.e., there is no dependence on

the dispersion). However, when T > 0, some states with Eky > 0 will be occupied

while some states with Eky < 0 will be empty and the thermal occupation of any

state depends on its energy, i.e., is dependent on the dispersion which is affected by

self-consistency. Consequently, Iy(T ) depends on the details of the edge dispersion.

In summary, the multiple current channels in higher chirality superconductors

result in the suppression of the local current density and the presence of nodes in

the current spatial profiles. Self-consistency induces spatial varying order parameters

which slightly modifies the Ek 6= 0 edge dispersion. As a result, the integrated current

at T > 0 is affected and becomes non-zero in the case of higher chirality.
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Chapter 4

Self-consistent Edge Current With

Screening

In this chapter, we discuss the Meissner screening effect on the edge current for

chiral p-, d- and f -wave pairings, i.e., including the self-consistent vector potential

Ay induced by the edge current. The chiral p-wave case has been well studied in

Ref.[23] and we present the results for the sake of comparison between chiral p-wave

and higher chirality cases.

According to Eq.(2.14), iω is replaced by iω − evFy
c
Ay, when Ay is included in

the theory. Quasiparticles moving parallel to the surface are strongly affected by Ay

due to the factor vFy ; by contrast, quasiparticles moving perpendicular to the surface

are hardly affected. The spatial varying profiles of the chiral order parameter com-

ponents near the edge are caused by the quasiparticles moving almost perpendicular

to the surface which are weakly affected by the Meissner screening. Consequently,

as is shown in Fig. 4.1, the self-consistent order parameters with screening exhibit

qualitatively the same spatial profiles as the unscreened results in Fig. 3.1.
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Figure 4.1: Spatial dependence of the self-consistent order parameter components,
|∆x(x)| and |∆y(x)|, in chiral p- (1), d- (2) and f - (3) wave superconductors with
Meissner screening. T = 0.02TC .

The total current density with Meissner screening consists of two terms: param-

agnetic current density, Jy,para(x), and diamagnetic current density, Jy,dia(x):

Jy(x) = Jy,para(x) + Jy,dia(x), (4.1)

satisfying Iy,para + Iy,dia = 0. Jy,para(x) is basically the edge current calculated in

Chapter 3; however, small changes are expected due to the effect of Ay on the bound

states. Jy,dia(x) can be expressed as:

Jy,dia(x) = −e
2ns
mc

Ay(x). (4.2)
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Eq.(4.2) shows that the induced Jy,dia(x) essentially depends only on the self-consistent

Ay(x) because the superfluid density, ns, is basically position independent for the spec-

ular surface case. Recalling the Maxwell equations, Eq.(2.25), Ay(x) can be expressed

as:

Ay(x) =
m

e2nλ2
L

∫ ∞
x

dx′
∫ x′

0

dx′′Jy(x
′′). (4.3)
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Figure 4.2: Spatial dependence of the self-consistent current density, Jy(x), magnetic
field, Bz(x), and vector potential, Ay(x), for chiral p- (1), d- (2) and f - (3) wave
superconductors. T = 0.02TC .

Fig. 4.2 shows the spatial dependence of the self-consistent current density, Jy(x),

magnetic field, Bz(x), and vector potential, Ay(x), for the three chiral pairings. As

can be seen, Jy(x) is reduced by the induced diamagnetic current compared to the un-

screened results. As a consequence, the bulk magnetic field, Bz(x =∞), is screened;
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the surface magnetic field is somewhat reduced. What’s more, Jy(x), Bz(x) and Ay(x)

vary on a longer length, than in the unscreened case, in units of the penetration depth

λL.

The effect of Meissner screening on higher angular momentum pairings is not

as significant as on chiral p-wave case. For chiral p-wave pairing, the unscreened

Bz(x =∞) is large, indicating a large unscreened Iy,para. The induced Iy,dia needs to

be large as well to compensate Iy,para. As a consequence, the surface magnetic field

is largely reduced, i.e., |Bz(x)|max is reduced by 80%. For higher angular momentum

pairings, the unscreened Bz(x = ∞) is tiny and, in fact, vanishes at T = 0, as

discussed in Chapter 3. For chiral d-wave pairing at T = 0.02TC , |Bz(x)|max is reduced

by 30%. Furthermore, the more sign changes in the spatial profiles of Jy, the smaller

Ay is (from the double integral in Eq 4.3), resulting in an even smaller reduction; i.e.,

|Bz(x)|max is reduced by only 15% for chiral f -wave pairing at T = 0.02TC . Notice,

the surface magnetic field is somewhat reduced even in the limit of T → 0 for higher

chiral pairings where the unscreened Bz(x =∞) = 0. The magnitude of the reduction

is also affected by λL, that is, when λL is smaller, the magnitude of the reduction will

be larger for all three pairings.

In addition, Jy,para and Jy,dia decay on two different lengths, resulting in an ad-

ditional sign change in the spatial profiles of the screened Jy(x) for the three chiral

pairings. As can be seen when comparing Fig. 4.2 to Fig. 3.2, the difference be-

tween the screened and unscreened Jy(x) spatial profiles is significant for the chiral

p-wave case. By contrast the additional sign change is barely seen for higher angular

momentum cases.

In Fig. 4.3, we show the angular dependence of the total current density Jy(θ)
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Figure 4.3: Angular dependence of Jy(θ) at several different positions for chiral p-
wave without (1) and with screening (2). The solid lines represent positive current
density and dash lines represent negative current density. T = 0.02TC .

for chiral p-wave pairing both without, Fig. 4.3 (1), and with, Fig. 4.3 (2), screening.

The solid lines represent positive current density and dash lines represent negative

current density. Comparing with the unscreened Jy(θ) in Fig. 4.3 (1), we see that

the negative current density near large |ky| angles, is primarily from the diamagnetic

current density, and the positive current near small |ky| angles in Fig. 4.3 (2) is

basically the paramagnetic current density. However, Jy,papa(θ) and Jy,dia(θ) overlap

and cancel with each other, especially near |ky| =
√

2/2. The induced diamagnetic

current density in chiral d- and f -wave is tiny compared with the magnitude of the

paramagnetic current density of each channel (not shown).

In summary, unlike in the case of chiral p-wave superconductors, Meissner screen-

ing is of less importance in higher chirality superconductors with a specular surface,

except for cancelling a small a residual bulk field at T > 0. It is reasonable to use the
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unscreened current as an approximation for chiral d- and f -wave superconductors.
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Chapter 5

Rough Surface Effect

As no spontaneous chiral edge currents have been observed experimentally and

the edge currents are affected by surface disorder, in this chapter, we study the effect

of a rough surface on the edge current for different chiral pairings. To begin, we

discuss the unscreened case. A similar calculation has been studied for chiral p-wave

pairing in Ref.[33]. We present the chiral p-wave results for comparison. Then we

include the Meissner screening and discuss the rough surface effect on the screened

edge currents.

We model the rough surface by adding a self-energy due to impurities[50, 24] in

the rough surface regime,

Σ̂(x;ωn) =
i

2τ0

∫
dθk
2π

ĝ(θk, x;ωn), (5.1)

to the Hamiltonian in the Eilenberger equation formalism. τ0 is the mean free time.

The mean free path is l = vF τ0. The strength of roughness is characterized by ξ0/l.

The simplest way to properly model the rough surface is to assume a constant τ0
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within the regime from x = 0 to x = W close to the surface and terminate the rough

regime abruptly at x = W [24]. However, this would induce artificial effects near the

sharp interface. To avoid this artificial effect we consider a spatial dependent mean

free time τ(x) that varies smoothly from the edge to the bulk. τ(x) is defined as:

1

τ(x)
=

1

τ(0)
×
(

1− tanh(x−W )

2

)
. (5.2)

The corresponding Eilenberger equation can be expressed as:

−ivFx
d

dx
ĝ(kF , x;ωn) =

[
Ĥ(kF , x;ωn) + Σ̂(x;ωn), ĝ(kF , x;ωn)

]
, (5.3)

where, Ĥ(kF , x;ωn) =

 iωn − evFy
c
Ay(x) ∆(x)

−∆∗(x) −iωn +
evFy
c
Ay(x))

.

To start with, a weak roughness, ξ0/l = 0.1, is considered and the Meissner screen-

ing is ignored. The spatial profiles of the self-consistent order parameters and Jy(x),

compared with the specular surface results (black lines), are shown in Fig. 5.1. As

can be seen, both of the chiral order parameter components and Jy(x) are somewhat

reduced by the disorder for the three pairings. However, the effects on Iy for different

chiralities are different. For chiral p-wave pairing, the suppressed Jy(x) results in a

smaller Iy. For higher angular momentum pairings, the current density consists of

multiple current channels and the channels carrying current density that vary on a

shorter length are more sensitive to the surface effect. For chiral d-wave pairing, the

positive current channel is more sensitive to the surface disorder due to the shorter

decay length, while, the negative current channel is less sensitive. As a consequence,

the positive current channel is suppressed more significantly, resulting in a negative
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Figure 5.1: (a) Spatial dependence of self-consistent order parameters for chiral p-
(a.1), d- (a.2) and f - (a.3) wave pairing with a rough surface. (b) Spatial dependence
of self-consistent Jy(x) and Bz(x) for different chiral pairings with a rough surface.
W = 5ξ0, ξ0/l = 0.1, T = 0.02TC . The numerical results for the specular surface
(black lines) are shown for comparison.

Iy. Similarly, for chiral f -wave pairing, Iy is negative as the current channel that

varies on the shortest length carries positive current density.

Superconductivity is largely suppressed in the rough surface regime when stronger

surface roughness, ξ0/l = 1.0, is present. As can be seen in Fig. 5.2, the two order

parameter components are suppressed to zero at the edge. However, the spatial

profiles of Jy(x) exhibit different properties for different pairings. For chiral p-wave

pairing, the strong surface roughness further suppresses the edge current, i.e., |Jy|max

is reduced by 35%. For chiral d-wave pairing, the strong roughness inverts the edge

current, i.e., Jy(W ) < 0. What’s more, |Jy|max is larger than the specular surface

result. In addition, |Jy(x > W )| decays from the interface to the bulk monotonically,

indicating only one current channel exists, instead of two. For chiral f -wave pairing,
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Figure 5.2: (a) Spatial dependence of the self-consistent order parameters for chiral p-
(a.1), d- (a.2) and f - (a.3) wave pairing with a rough surface. (b) Spatial dependence
of self-consistent Jy(x) and Bz(x) for different chiral pairings with a rough surface.
W = 5ξ0, ξ0/l = 1.0, T = 0.02TC .

the edge current is reduced, and no current inversion happens; however, it consists of

two current channels instead of three.

The behaviors of the edge current for higher chirality superconductors can be

understood with the effects of sub-dominant order parameters. For chiral supercon-

ductors, the surface breaks the inversion symmetry and induces sub-dominant order

parameters. For example, in a d-wave superconductor, the surface induces an s-wave

component which is less sensitive to the disorder. Furthermore, the s-wave component

combined with the idxy component, s + idxy pairing, breaks time reversal symmetry

and supports edge currents[46, 47, 48, 21, 22]. When a strong rough surface is in-

duced, the chiral order parameter components are largely suppressed, especially the

dx2−y2 component; however, the s-wave component isn’t. As a consequence, the edge
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current of s+ idxy pairing dominates. Specifically, this current is negative in our case

as we get a positive s-wave component and a positive idxy component. Similarly, for a

chiral f -wave superconductor, the edge current of fx3−3xy2 + ipy pairing dominates as

the sub-dominant order parameter ipy, induced by the surface, is less sensitive to the

disorder. In general, higher chirality superconductors with odd pairing symmetries

are mostly affected by an ipy component and those with even pairing symmetries are

affected by an s-wave component. The effects of sub-dominant order parameters are

unimportant in chiral p-wave superconductors.
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Figure 5.3: Spatial dependence of the self-consistent Jy(x), Bz(x) and Ay(x) for chiral
p- (1), d- (2) and f - (3) wave pairing with screening. W = 5ξ0, ξ0/l = 1.0, T = 0.02TC .

We now include the Meissner screening. As we can see in Fig. 5.3, Jy(x) exhibits

similar spatial profiles for all three chiral pairings; that is: |Jy(x)| decays to zero
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with a sign change form the interface into the bulk. However, Jy(W ) is negative for

chiral d-wave case, as well as for other even angular momentum chiral pairings (not

shown). The universal behavior of Jy(x) is due to the sub-dominant order parameters,

specifically, an s-wave component in even angular momentum chiral pairings and an

ipy component in odd angular momentum chiral pairings.

In summary, both the chiral order parameter components and the spontaneous

edge current are suppressed by the rough surface when the roughness is weak. How-

ever, the sub-dominant order parameters become important for higher chirality su-

perconductors when the roughness is strong enough to suppress both chiral order

parameter components to zero.
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Chapter 6

Conclusions

To summarize, in this thesis, we have studied the spontaneous edge currents in

higher chirality superconductors.

We first investigated the spontaneous edge current in the absence of the Meissner

screening. Consistent with Ref.[17, 18], we found that the edge currents of higher

chirality pairings are much smaller than for chiral p-wave. In a chiral superconductor

with chirality m, the edge current consists of m different channels. The currents

carried by different channels have different signs and decay lengths. When m 6= 1,

they tend to cancel each other, resulting in nodes in the spatial profiles; while in

the m = 1 case, the cancellations and nodes do not exist. The total integrated

current is substantial for chiral p-wave superconductors at T = 0 while it vanishes for

higher chirality cases at all T when the order parameter is taken to be uniform. This

numerical conclusion is exactly in agreement with the non-self-consistent (uniform

order parameter) Eilenberger results and also previous studies[17, 18].

Interestingly, when the order parameter is calculated self-consistently and varies

near the edge, these conclusions still hold at T = 0. However, the integrated current
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is non-zero even for higher chirality superconductors at finite T (0 < T < Tc). These

results can be understood with the the self-consistent edge state energy dispersions.

The dispersions with energy Eky 6= 0 are slightly modified by the self-consistency

compared with the uniform order parameter case. This change affects the behavior

of the edge current at finite T . However, the Eky = 0 points, which determine the

quasiparticle ground state occupations and therefore the integrated current at T = 0,

are protected by the pairing symmetry and remain invariant.

We then studied the Meissner effect on the spontaneous edge current. The spatial

profiles of the screened edge currents have an additional node compared with the

unscreened cases, as the diamagnetic current is governed by the penetration depth,

which is taken to be longer than the coherence length. The magnetic field due to

the spontaneous edge current is screened to zero in the bulk; the magnetic field near

the surface is somewhat reduced for all three chiral pairings. However, the Meissner

effects in the higher chirality cases are much weaker than in the chiral p-wave case.

As a result, the unscreened edge current is a good approximation to the screened one

for higher chirality cases.

Finally, we have discussed the effect of surface roughness. The edge currents are

reduced by weak surface roughness for all three chiral pairings in a similar way. How-

ever, for stronger roughness, the behaviors of the even chiral pairing edge currents are

different from the odd cases for both unscreened and screened cases. The direction

of the spontaneous edge current of even chirality pairings is inverted by the strong

roughness due to effects of sub-dominant order parameters. Surfaces can break the

inversion symmetry and induce sub-dominant order parameters. In higher chirality

superconductors, the sub-dominant orders are less sensitive to the disorder and can
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survive with the strong roughness; however, the two chiral order parameter compo-

nents are substantially suppressed, especially the component that is enhanced in the

specular surface case. Specifically, the edge current of all odd angular momentum

chiral pairings is affected by an ipy component and all the even pairings are impacted

by an s-wave component.

The effects of a strong surface roughness are obtained by considering the surface

disorder as a simple 1D self-energy, which is in an approximation to isotropic elastic

scattering. Future studies with more realistic disorder models are needed to fully

understand of rough surface effects. However, such disorders are difficult to model in

the quasiclassical limit. Instead of quasiclassical Eilenberger equations, Bogoliubov-

de Gennes equations for a lattice model is a good formalism for studying a system with

impurities, although the system sizes one can study is limited. A similar calculation on

a 2D square lattice with a metallic surface for chiral p-wave pairing has been studied

in Ref.[32]. Rough surface effects on the edge current of higher angular momentum

chiral pairings, such as chiral d- and f -wave pairings, can be calculated on a triangular

lattice with impurities near the edge.
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Appendix A

Gor’kov Equation for Matsubara

Green’s Functions

For a full description of the quasiclassical approach, we briefly derive the Gor’kov

equation in this appendix.

A.1 Matsubara Green’s Functions

The Matsubara Green’s function is defined for imaginary time t = iτ within the

interval −1/T < τ1 − τ2 < 1/T .

Heisenberg particle operators depending on time τ are defined as:

ψ̃α(r, τ) = e(Ĥ−µN̂)τψα(r)e−(Ĥ−µN̂)τ , (A.1a)

ψ̃†α(r, τ) = e(Ĥ−µN̂)τψ†α(r)e−(Ĥ−µN̂)τ . (A.1b)
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These operators obey the normal Fermionic relations,

{
ψ̃α(r1, τ), ψ̃†β(r2, τ)

}
= δαβδ(r1 − r2), (A.2a){

ψ̃α(r1, τ), ψ̃β(r2, τ)
}

=
{
ψ̃†α(r1, τ), ψ̃†β(r2, τ)

}
= 0, (A.2b)

where, commutation of operator A and B is defined as [A,B] = AB − BA and

anticommutation is defined as {A,B} = AB +BA.

The equations of motion of the Heisenberg particle operators are:

∂ψ̃α
∂τ

= [Ĥ − µN̂, ψ̃α], (A.3a)

∂ψ̃†α
∂τ

= [Ĥ − µN̂, ψ̃†α]. (A.3b)

With above definitions, we can define a single particle Green’s function as:

Gαβ(r1, τ1; r2, τ2) ≡
〈
Tτ

(
ψ̃α(r1, τ1)ψ̃†β(r2, τ2)

)〉
,

= −〈ψ̃α(r1, τ1)ψ̃†β(r2, τ2)〉Θ(τ1 − τ2) + 〈ψ̃†β(r2, τ2)ψ̃α(r1, τ1)〉Θ(τ2 − τ1).

(A.4)

Where, Tτ means ordering operators ψ̃(τ) from left to right in order of decreasing

τ . For example, Tτ

(
ψ̃1ψ̃

†
2

)
=


ψ̃1ψ̃

†
2

−ψ̃†2ψ̃1

for τ1 > τ2,

for τ1 < τ2.

. The operator 〈· · · 〉 is the

Gibbs statistical average, defined as 〈· · · 〉 ≡ ∑[
exp
(

Ω+µN̂−Ĥ
T

)
· · ·
]
. Ω = F − µN

and F = −T ln
∑

n e
−En/T .
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Important features of G with time difference τ = τ1 − τ2 include:

Gαβ(r1, τ1; r2, τ2) = Gαβ(r1, r2; τ), (A.5)

Gαβ(r1, r2; τ < 0) = −Gαβ(r1, r2; τ + 1/T ), (A.6)

(Gαβ(r1, r2; τ)−Gαβ(r1, r2;−τ))τ→0+ = δαβδ(r1 − r2). (A.7)

The Fourier transformation of G in τ or ωn goes to:

Gαβ(r1, r2; τ) = T
∞∑

n=−∞

eiωnτGαβ(r1, r2;ωn); (A.8)

Gαβ(r1, r2;ωn) =
1

2

∫ 1/T

−1/T

dτeiωnτGαβ(r1, r2; τ). (A.9)

As τ is defined within a finite range, the ωn should be discrete: ωn = nπT . The

discrete frequencies are called Matsubara frequencies.

With relation Eq.(A.6), we can get:

Gαβ(r1, r2;ωn) =
1

2

∫ 1/T

0

dτeiωnτGαβ(r1, r2; τ) +
1

2

∫ 0

−1/T

dτeiωnτGαβ(r1, r2; τ)

=

∫ 1/T

0

dτeiωnτGαβ(r1, r2; τ), (A.10)

with Matsubara frequencies ωn = (2n+ 1)πT for Fermions.
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A.2 Gor’kov Equation

The BCS Hamiltonian is:

ĤBCS =

∫
d3r

[
−ψ†α

∇2

2m
ψα +

g

2
ψ†βψ

†
αψαψβ

]
. (A.11)

The equation of motion of operators ψ̃ are:

∂ψ̃α(r, τ)

∂τ
=

(∇2

2m
+ µ

)
ψ̃α(r, τ)− gψ̃†γ(r, τ)ψ̃γ(r, τ)ψ̃α(r, τ), (A.12a)

∂ψ̃†α(r, τ)

∂τ
=

(∇2

2m
+ µ

)
ψ̃†α(r, τ)− gψ̃†α(r, τ)ψ̃†γ(r, τ)ψ̃γ(r, τ). (A.12b)

With the particle number operator definded as: N̂ =
∫
dr3ψ†αψα.

The time-derivative of G can be expressed as:

∂Gαβ(r1, τ1; r2, τ2)

∂τ1

=− δ(τ1 − τ2)
(〈
ψ̃α(r1, τ1)ψ̃†β(r2, τ2) + ψ̃†β(r2, τ2)ψ̃α(r1, τ1)

〉)
−
〈
Tτ
∂ψ̃α(r1, τ1)

∂τ1

ψ̃†β(r2, τ2)

〉

=δαβδ(r1 − r2)δ(τ1 − τ2) +

(∇2

2m
+ µ

)
Gαβ(r1, τ1; r2, τ2)

− g
〈
Tτ ψ̃

†
γ(r1, τ1)ψ̃γ(r1, τ1)ψ̃α(r1, τ1)ψ̃†β(r2, τ2)

〉
. (A.13)

We can apply the Wick theorem1 to decompose the four-operator average 〈ψ̃†ψ̃ψ̃ψ̃†〉
1〈
Tτ ψ̃

†
γ(r1, τ1)ψ̃γ(r1, τ1)ψ̃α(r1, τ1)ψ̃†

β(r2, τ2)
〉

=−
〈
ψ̃γ(r1, τ1)ψ̃†

γ(r1, τ1)
〉〈

Tτ ψ̃α(r1, τ1)ψ̃†
β(r2, τ2)

〉
+
〈
ψ̃α(r1, τ1)ψ̃†

γ(r1, τ1)
〉〈

Tτ ψ̃γ(r1, τ1)ψ̃†
β(r2, τ2)

〉
−
〈
ψ̃α(r1, τ1)ψ̃γ(r1, τ1)

〉〈
Tτ ψ̃

†
γ(r1, τ1)ψ̃†

β(r2, τ2)
〉

48



MSc Thesis - Xin Wang McMaster University - Physics & Astronomy

in Eq.A.13 in terms of products of operator pairs 〈ψ̃†ψ̃†〉, 〈ψ̃ψ̃〉 and 〈ψ̃ψ̃†〉. The

terms only associated with ψ̃ψ̃† can be neglected, as they won’t contribute to the

superconductivity. Finally, we get:

(
∂

∂τ1

− ∇
2

2m
− µ

)
Gαβ(r1, τ1; r2, τ2)−g

〈
ψ̃α(r1, τ1)ψ̃γ(r1, τ1)

〉〈
Tτ ψ̃

†
γ(r1, τ1)ψ̃†β(r2, τ2)

〉
= δαβδ(r1 − r2)δ(τ1 − τ2). (A.14)

Anomalous Green’s functions can be introduced here and defined as:

Fαβ(r1, τ1; r2, τ2) =
〈
Tτ

(
ψ̃α(r1, τ1)ψ̃β(r2, τ2)

)〉
, (A.15a)

F †αβ(r1, τ1; r2, τ2) =
〈
Tτ

(
ψ̃†α(r1, τ1)ψ̃†β(r2, τ2)

)〉
. (A.15b)

The superconducting order parameter can be expressed in terms of the anomalous

Green’s functions F and F † as,

∆αβ(r) = |g|Fαβ(r, τ ; r, τ), (A.16a)

∆†αβ(r) = |g|F †αβ(r, τ ; r, τ), (A.16b)

where g < 0 represent attractive interaction.

The equation for the Green’s functions, Eq.(A.14), can be rewritten as:

(
∂

∂τ1

− ∇
2

2m
− µ

)
Gαβ(r1, τ1; r2, τ2) + ∆αγ(r1, τ1)F †γβ(r1, τ1; r2, τ2)

= δαβδ(r1 − r2)δ(τ1 − τ2). (A.17)
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Switching the spin labels in G, ∆ and F , we can get:

Gαβ(r1, τ1; r2, τ2) = δαβG(r1, τ1; r2, τ2); (A.18)

∆αβ(r, τ) =


−∆βα(r, τ) = iσ̂

(2)
αβ∆(r, τ)

∆βα(r, τ) = σ̂
(1)
αβ∆(r, τ)

for a spin-singlet,

for a spin-triplet;

(A.19)

Fαβ(r1, τ1; r2, τ2) =


iσ̂

(2)
αβF (r1, τ1; r2, τ2)

σ̂
(1)
αβF (r1, τ1; r2, τ2)

for a spin-singlet,

for a spin-triplet;

(A.20)

where, σ̂
(1)
αβ and σ̂

(2)
αβ are Pauli matrices,

σ̂
(1)
αβ =

 0 1

1 0

 , σ̂
(2)
αβ =

 0 −i

i 0

 . (A.21)

Eq.(A.17) can be simplified to the spinless case from for both spin-singlet and

spin-triplet cases:

(
∂

∂τ1

− ∇
2

2m
− µ

)
G(r1, τ1; r2, τ2) + ∆(r1, τ1)F †(r1, τ1; r2, τ2) = δ(r1 − r2)δ(τ1 − τ2).

(A.22)

Note that equations for F and F † are required to calculate G and these equations
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can be obtained using the same process,

(
− ∂

∂τ1

+
∇2

2m
+ µ

)
F (r1, τ1; r2, τ2) + ∆(r1, τ1)Ḡ(r1, τ1; r2, τ2) = 0, (A.23)(

∂

∂τ1

+
∇2

2m
+ µ

)
F †(r1, τ1; r2, τ2) + ∆∗(r1, τ1)G(r1, τ1; r2, τ2) = 0, (A.24)

−
(
∂

∂τ1

+
∇2

2m
+ µ

)
Ḡ(r1, τ1; r2, τ2) + ∆∗(r1, τ1)F (r1, τ1; r2, τ2) = δ(r1 − r2)δ(τ1 − τ2).

(A.25)

Where, Ḡ(r1, τ1; r2, τ2) = G(r2, τ2; r1, τ1) describes a hole moving from r2 to r1.

Eq.(A.22)-A.25 are known as the Gor’kov equations.

We can introduce the matrix Green’s function,

Ĝ(r1, τ1; r2, τ2) =

 G(r1, τ1; r2, τ2) F (r1, τ1; r2, τ2)

−F †(r1, τ1; r2, τ2) Ḡ(r1, τ1; r2, τ2)

 , (A.26)

and rewrite the Gor’kov equations, in the matrix form, as:

 ∂
∂τ1
− ∇2

2m
− µ −∆(r1, τ1)

∆∗(r1, τ1) − ∂
∂τ1
− ∇2

2m
− µ

 Ĝ(r1, τ1; r2, τ2) = δ(r1 − r2)δ(τ1 − τ2)1̂, (A.27)

where 1̂ =

 1 0

0 1

.

Repeating the whole procedure for τ2, we get:

Ĝ(r1, τ1; r2, τ2)

 − ∂
∂τ2
− ∇2

2m
− µ −∆(r2, τ2)

∆∗(r2, τ2) ∂
∂τ2
− ∇2

2m
− µ

 = δ(r1 − r2)δ(τ1 − τ2)1̂. (A.28)
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In the presence of a magnetic field, the Gor’kov equation can be rewritten as,

 ∂
∂τ1

+H −∆(r1, τ1)

∆∗(r1, τ1) − ∂
∂τ1

+H∗

 Ĝ(r1, τ1; r2, τ2) = δ(r1 − r2)δ(τ1 − τ2)1̂, (A.29a)

Ĝ(r1, τ1; r2, τ2)

 − ∂
∂τ2

+H∗ −∆(r2, τ2)

∆∗(r2, τ2) ∂
∂τ2

+H

 = δ(r1 − r2)δ(τ1 − τ2)1̂, (A.29b)

where, H =
(
−i∇+ e

c
A
)2
/2m− µ.

Applying the Fourier Transform (Eq.(A.9)), we get the Gor’kov equation in the

frequency representation,

 −iωn +H −∆(r1)

∆∗(r1) iωn +H∗

 Ĝ(r1, r2;ωn) = δ(r1 − r2)1̂, (A.30a)

Ĝ(r1, r2;ωn)

 −iωn +H∗ −∆(r2)

∆∗(r2) +iωn +H

 = δ(r1 − r2)1̂. (A.30b)
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