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Abstract 
 
This thesis discusses a minimized number of concepts necessary for creating stateful, 
asynchronous, and scalable software applications that implement a subject domain. It is 
shown how domain driven design can be implemented using a minimized set of 
interfaces and architecture patterns.  Further, it is shown how high-level business logic 
can be exposed as an HTTP service. This is achieved by reviewing requirements, 
design, and implementation details for shared control of an organizational data structure 
- a tree. Tree data specific as well as general business logic such as synchronization is 
identified and testing results are explored. Extensibility design is proposed.  
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1 Introduction 
Today’s Internet of Things and Software as a Service communities face common goals 
such as sharing a set of resources in an accessible way. Current software usually 
consists of being able to model some business domain rules into a system that performs 
those rules upon an existing information storage. Database systems are easy to take for 
granted, and thus business domain logic gets trivially modeled calls to such a database. 
The current paper discusses the minimal concepts necessary to create clean, testable 
logic, its pitfalls and benefits, and how this architecture can be used to create and extend 
such business domain logic. Further, it shows a converged implementation that exposes 
business logic as HTTP request invocations to a web server, wrapping and exposing the 
database as a representational state transfer(REST) service with the atomicity, 
consistency, isolation, durability(ACID) properties. Specifically, the example implements 
a basic, more abstract tree data business logic example. Further, testing and 
extensibility design is proposed. 
 
(Riel, 1996) describes the techniques for designing object types and (Evans, 2004) 
describes how to design a domain service. These resources were important for 
transforming the given problem requirements into scalable service design. 
 
This work’s main goals were to review the necessary tools for designing a basic 
business domain. It builds an architecture that allows for the logic’s scalable use, its 
accurate upgrading, and its readiness for extension. The architecture is detailed and 
measured against a baseline. The baseline is timing database transactions only. 

1.1 Requirements 
Requirements with perspectives or viewpoints capture the essence of the interactions 
between a system and its environment. (Wiegers & Beatty, 2013) states “The goal of 
requirements development is to accumulate a set of requirements that are good enough 
to allow your team to proceed with design and construction of the next portion of the 
product at an acceptable level of risk.”.  

1.2 Design 
Describes the chosen interfaces and high-level concepts necessary for solving the 
problem outlined in the example.  

8 



 

1.3 Implementation 
Specific low-level details of how to implement the design are discussed. The resulting 
implementation is measured and compared to a baseline. 

1.4 Verification and Extensibility 
One of the main requirements that inspire the design and implementation is accuracy 
and scalability. A comparison of testing methodologies is given. An extensions review is 
also presented based on the implemented example. 

2 Example 
An problem is given to illustrate the use of the technology. The technology is somewhat 
more flexible than just solving this problem, yet it showcases the functionality necessary. 
 
It is required to know at any one time what country and state or province a user is in. 
Users or applications can report this information using a list of state identification 
numbers. Full location data needs to be normalized, State or province cannot be stored 
with the city in order to save memory space. 
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Image 1: a logical view of the system in action. 
 
 
An HTTP POST web request can be sent by applications or the expert user to the 
service to update this information. (Berners-Lee, Fielding, & Frystyk, 1996) describe 
POST methods are useful for “[e]xtending a database through an append operation.” 
which covers most cases. ("Introducing JSON") describes JSON format. An example: 
 
{"command":{"node":{"id":7,"name":"Bob’s 
Node","parent_id":5,"active":true},"method":"set","methodType":"checkout"}} 
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There may be multiple users or applications updating Bob’s Node. Especially at political 
borders, multiple  location updates can be occurring concurrently. As long as the 
transactions occur accurately, the latest location state posted is assumed as the correct 
location. 

3 Requirements 
Requirements will be given under standard headings. Stakeholders will be shown in 
brackets after a section. Engineering is concerned with learning requirements and 
providing systems to meet them. 

2.1 Functional (Users) 
What the software is supposed to do. The example describes a tree node storage. 
Methods are: Get, Add, Set, Delete.Do this accurately for concurrent updates. 

2.2 Quantitative (Users) 
The following two measures describe the external properties necessary to provide any 
service: 
 
Reliability - number of errors / total requests 
Response rate - time / request 
 
Other quantitative measures are possible, like memory used are important, but because 
they are not externally-facing, they were not a priority. 

2.3 Scalability (Users) 
Ability to share access to modify the tree structure between many users. Scalability 
refers to this number of users in a given moment,at specific levels of sharing such as 
entity level or type level. 
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2.4 Experience (Users) 
This is where regular user experience expertise goes.  Describes different view on user 
experience. In summary, (Lallemand, Gronier, & Koenig, 2015, p. 41) shows that the 
definition given in (Hassenzahl & Tractinsky, 2006) is the most popular one: 

 
“A consequence of a user’s internal state (predispositions, expectations, needs, 
motivation, mood, etc.) the characteristics of the designed system (e.g. 
complexity, purpose, usability, functionality, etc.) and the context (or the 
environment) within which the interaction occurs (e.g. organizational/social 
setting, meaningfulness of the activity, voluntariness of use, etc.)” 

2.5 Maintenance (Owners) 
How easy it is to keep the product up to date and add new versions. How much 
duplicated logic exists drives up maintenance. 
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3 Design 

3.1 Overall Design

 
Picture 2: Architectural diagram of the application server. 

3.2 Detailed Design 

3.2.1 Interface 
Node Data type provides the following information: 

- Id 
- active : whether the node is active 
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- Name: a name for the node 
Get, Add, Set, Delete command:  

- a search object that looks like a tree data node, but certain properties can be 
omitted and the name accepts wildcard characters for the Get method. 

Command behaviours: 
Node Data service supports the following commands interface: 

- Get command: all properties allowed 
- Add, set, delete - must have id 
- Add, set - can have all non-id properties populated. Defaults are provided in add 

case. Set case provides existing consistent data.  
The node data service comes with one pre-existing default root node. 
 
HTTP POST is chosen as the request type the service will accept. JSON is used as the 
data format for the requests. These were chosen for the flexibility in size and 
composability respectively. 
 
The user would receive their prepared transaction after performing a command: 
 
{“command”:{ 

“method”: “set”, 
“methodType”: “checkout”, 
“node”: :{"id":7,"name":"Bob’s Node","parent_id":5,"active":true} 

}, “checkout”: { 
“get”: { 

“nodes”: [{"id":7,"name":"Bob’s Original Node 
Name","parent_id":2,"active":true}], 

“events”:[]  
}, 
“result”: { 

“nodes”: [], 
“events”:  [{"id":7, “active”: false, "node_id":7,"node_name":"Bob’s 

Node","node_parent_id":5,"node_active":true}]  
} 

}} 
 
The user would change the methodType to “checkin” to tell the service to commit the 
transaction, and then perform the HTTP request. The result would be: 
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{“command”:{ 
“method”: “set”, 
“methodType”: “check in”, 
“node”: :{"id":7,"name":"Bob’s Node","parent_id":5,"active":true} 

}, “checkout”: { 
“get”: { 

“nodes”: [{"id":7,"name":"Bob’s Original Node 
Name","parent_id":2,"active":true}], 

“events”:[]  
}, 
“result”: { 

“nodes”: [], 
“events”:  [{"id":7, “active”: false, "node_id":7,"node_name":"Bob’s 

Node","node_parent_id":5,"node_active":true}]  
} 

}, “checkin”: { 
“get”: { 

“nodes”: [{"id":7,"name":"Bob’s Original Node 
Name","parent_id":2,"active":true}], 

“events”:[{"id":7, “active”: false, "node_id":7,"node_name":"Bob’s 
Node","node_parent_id":5,"node_active":true}]  
}, 
“result”: { 

“nodes”: [{"id":7,"name":"Bob’s Node","parent_id":5,"active":true}], 
“events”:  [{"id":7, “active”: true, "node_id":7,"node_name":"Bob’s 

Node","node_parent_id":5,"node_active":true}]  
} 

}} 

3.2.1 Tree Node Data Layer 
This is a logical separator that allows for code reuse when serving a standard interface. 
This is repository architecture, achieved by overloading a back-end to the front-end 
implementation and making operations idempotent. Idempotency is necessary for 
independent client verification of server operations, and very important when performing 
updates to logic. 
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For example, if the service returns the following result: 
{“command”:{ 

“method”: “add”, 
“methodType”: “checkout”, 
“node”: { 

 
} 

}, “checkout”: { 
“get”: { 

“nodes”: [{id = null}], 
“events”: [{id = 10}]  

}, 
“result”: { 

“nodes”: [{id = 1}], 
“events”: [{id = 10}]  

} 
}} 
 
Then a client can run the service and logic layers on top of an HTTP request backed, 
achieving remote verification. The way to do this is to revert the last step of the logic 
postcondition that copies results to the checkout section. The server result would look 
like this after creating the idempotent argument: 
{“command”:{ 

“method”: “add”, 
“methodType”: “checkout”, 
“node”: { 

 
} 

}, “read”: { 
“nodes”: [{id = null}], 
“events”: [{id = 10}]  

}, 
“result”: { 

“nodes”: [{id = 1}], 
“events”: [{id = 10}]  

}} 
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A debugging flag could be set to enable intermediary read values to be passed through 
the interface. Now, the read condition can also be run on the client and tested against 
client logic. The only parts that cannot verified by the user is what the domain returns to 
the read and save queries.  

3.2.2 Repository Implementation Layer 
Since current-day databases provide 2-step transactions as a means of achieving 
consistency, that model must be extended and exposed through the service. The first 
step in achieving this is recognizing that logic can wrap each back-end operation at the 
following stages: Pre - before the back-end transaction, read - at the stage where data is 
read, and post - after the write or change is executed. It also needs to have standard 
storage location ie.: read and result sections dedicated to read and written data after 
each of the last two stages. 
 
This layer has its own special interface to the logic. Important examples: 

- It runs its pre-read - logic - write-post operation in one transaction 
- It takes the service input and save sections for arguments at the first two stages 
- It updates read and result sections after the read and write operations. 
- When performing get, set, or delete operations, process the argument and 

retrieve the nodes of interest. 
- When adding a node, it must populate the event with the node_Id 
- When saving events, update with transaction id 

This layer produces deadlock errors if two events on the same entity are trying to 
activate at the same time as a result of concurrency. 

3.2.4 Asynchronous Transaction Layer 
Since the current web is asynchronous for many good reasons, commands are best kept 
asynchronous as well. This solves the issue of consistency checking by incorporating the 
asynchronicity of usage by domain users into the design. This repository architecture 
implies that transactions have two stages - checkout or prepare and check in or commit. 
Further, it implies some accounting for the order to the commands that dictate when 
deadlocks are triggered. 
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3.2.5 Event Sourcing Layer 
In order to compute the order of transactions as they apply to entities in the domain, a 
separate event class is dealt with by the logic: 
Node Data Event 

- Id 
- Active - whether the event is active. Events can only be activated once and they 

are not touched after that 
- Method - command performed on this tree node 
- Node_id: tree node id  
- Node_active: tree node active 
- Node_parent_id: tree node parent id 
- Node_parent_name: tree node name 

3.2.6 Logic Layer 
At the top of the abstraction model sits the core logic of the application. It needs to 
incorporate all the architectural layers’ concerns into code that only is called at the right 
time, it performs the correct computation, and satisfies the properties of the other layers 
in a scalable way. 
 
The tree node example is below. You can assume the methodType, Method, and Stage 
checks: 

3.2.6.1 Checkout: methodType == “checkout” 
Applies to all methods stages: 

- Pre: Stage == “pre” 
- Read: Stage == “read” 

- If there were any nodes or events read, they all must have Id 
- All node events read have an id 
- Command entity is created if method is not “get”, if command is forced, or 

there is a command id provided. 
- Post: Stage == “post” 

- All written nodes must have id 
- All written events must have id, and active=false 
- Put the read and result section in the checkout section 
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3.2.6.1.1 Get: method == “get” 

Stages: 
- Pre: None 
- Read: If there is a command provided in the input, create an event in the save 

location for every retrieved node in the read location. 
- Post: If there is a command provided in the input, check there is an event in the 

result for every node in the result. 

3.2.6.1.2 Add 

Stages: 
- Pre: The input node has no id and is not active. 
- Read: put the input node in the save location, and also put a method=“add” node 

event in the save location 
- Post: The input node is included in the result, and its method=add event. 

3.2.6.1.3 Set 

Stages: 
- Pre: The input node has an id. The input parent id is provided . The input parent 

id is not equal to the node id. The node id cannot be equal to the root node id. 
- Read: The read must return an active node and its events. Add a method=”set” 

event for that node. Add the node to the result. 
- Post: An event that includes the input node. 

3.2.6.1.4 Delete 

Stages: 
- Pre:  The input node has an id. The node id cannot be equal to the root node id. 
- Read: The read must return an active node and its events. Update the save 

location with the read node, then set the active property to false. Add a 
method=”delete” event for that node into the save location. 

- Post: An event that includes the input node id and node.active=false 

3.2.6.2 Checkin 
Stages: 

- Pre: checkout section is populated 
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- Read: Checkout result active events must be equal to checkin read section. Also 
check nodes. Otherwise, logic deadlock is detected.  Copy all checkout section 
events to the save section and set them to be active.event.active = true 

- Post: All updated nodes and events in the result section have an id. All updated 
events are active. Read and result section is put in the checkin section. 

3.2.6.2.1 Get 

Stages: 
- Pre: None 
- Read:If a transaction is provided, copy read nodes to the save location.  
- Post: None 

3.2.6.2.2 Add 

Stages: 
- Pre: None 
- Read: The first read node is made active. Its corresponding method=”Add” event 

is also activated. Both are put in the save section. 
- Post: The first result node is active. The first node “add” event is also active. 

3.2.6.2.3 Set 

Stages: 
- Pre: None 
- Read: The first read node is put in the save section, then the input node 

information is updated. The method=”set” event is activated. 
- Post: The result.node includes the input.node, corresponding event is active 

3.2.6.2.4 Delete 

Stages: 
- Pre: None 
- Read: The first read node is put in the save section, then made inactive. The 

method=”delete” event is activated. 
- Post: the result.node is not active, corresponding event is active 
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3.3 Example Integration 
The example problem is implemented by the design in a demonstrably transparent 
fashion. First of all, a node id list is provided for all the locations that the vehicle can be 
reported in. The design provided, it is not possible to prevent cycles in the tree if there 
are arbitrary node to parent moves. The example does not need this, provided an 
external process for such an error is followed. An example would be a positive result in a 
VLOOKUP function on the prospective parent location node in Microsoft Excel.  
 
Second, the user is able to add and move the vehicle node around by running 
commands against the tree node data service. Third, current vehicle parent location 
node can be queried by supervisors. Thus, the example problem can use the given 
design to perform its basic requirements. The example is used to show how different 
concurrency scenarios engage different layers of the architecture to achieve the desired 
command collision detection and logic verification.  
 
Last, current status of Bob’s location can be retrieved using a set of get commands to 
the system, specifically requesting the node pointed to by parent_id until the root node is 
reached. 

3.4 Similar Solutions 
According to (Castro, Melnik, & Adya, p. 1070), “Interaction with the data [in ADO.NET] 
can take place using a SQL- based data manipulation language and iterator APIs, or 
through an object-based domain model in the spirit of object-to-relational mappers.” 
 
The highest-level framework for data are simple database socket to HTTP socket 
converters or object-to-relational mappers. Otherwise, abstract logic frameworks were 
found such as (Bonner,A. J.,  & Kife, 1995) that deal with the core abstract concepts. 
There were also examples of domain driven design frameworks in (H., 2017). In 
contrast, the framework presented here minimizes the concepts of the design in order to 
analyze tradeoffs to the architectural modules and provide alternatives and arguments 
for scalability and extensibility. It doesn’t prescribe the how necessarily, it uses the 
concepts presented in current literature to build the basic measurements for a trusted, 
maintainable logic fabric based on information. 
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3.5 Requirements matrix 
The framework for evaluating the requirements is set up and expectations are stated. 
First, it is important to say the experimental setup will compare the given design to a 
bare-bones SQL transaction only implementation. In the SQL transaction only 
implementation, locks are used to manage data only in the database, even though 
usually memory would also be locked for caching purposes -transparent or not- and 
verification logic would run after the read stage of the transaction. The state 
management architecture described also suffers from having to provide cache and 
database-specific business logic, while the architecture described here relies only on 
query caching. This difference is not measured here, and neither is the testability 
between this architecture and the non-transparent cache architecture alternative that is 
mentioned. In conclusion, the SQL transaction only implementation shows a baseline 
that approximates a best case of a full cache-managed domain-implementing 
architecture as well as the domain driven design shown here. 

3.5.1 Accuracy 
Good functional requirements are tested continuously, as the commands are run. The 
test code is inspected manually, by tracing through its execution. The end accuracy 
errors are aggregated for each test. There are no accuracy errors expected. 
 
Twenty target nodes are used to reduce the probability of a false positive command to 
5%. Ie.: that moves node B from parent node A to parent node A. 

3.5.2 Quantitative 
Reliability of the testing is measured by aggregating client-side errors. There are no 
expected reliability issues. Reliability is tested by running multiple concurrent 
modifications on the same nodes. Deadlocks are measured at this time. 
 
Response time is recorded as total time taken for a test that serves a specific number of 
requests. Response time is expected to be between two and five times slower than just 
SQL transaction only. 
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3.5.3 Scalability 
Scalability is tested by running concurrent updates over same or different nodes. The 
scalability of the system will come from a few factors: 
 
First, there is an invariant that under contention, the work on one node will be linearized, 
and this should still be visible in the baseline. Second, scalability of the SQL-only 
baseline should be the scalability of this system.Third, as long as for each checkout, 
check in command there are only two SQL transactions, a finite event-chain length to 
analyze, and no other resources used between the checkout and check in phases, the 
system should scale constantly compared to a SQL-only baseline. 

3.5.4 Experience 
In order to simulate a passable user experience, the design must be improved with event 
cleanup logic that updates entities’ event chains based on usage. In lieu of this, the 
current design is tested with limited event chains, by creating a new node when such an 
event limit is reached. 

3.5.5 Maintenance 
Object design and domain driven design principles are great for maintenance, isolating 
layer concerns to specific classes. As well, the event sourcing logic helps with updating 
logic. Duplication and mis-categorizing of logic is reported. 

4 Implementation 
Once the design is understood, the implementation becomes a task of serving up the 
application interface. Since javascript is the language of the web and very interoperable, 
all the code implementing this example is in Javascript. The hosting technology is 
docker. 
The database is PostgreSQL, the basics of which are described by (Momjian, 2001). The 
testing is done locally through NodeJs, which is acting as the application server as well. 
(Cantelon, et. al., 2014) describes the basics of Node Js. 
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4.1 Results 

 4.1.1 Accuracy 
The test code was verified manually. Every time a request runs, it is checked that the 
desired outcome is achieved. There were no errors during the test runs, thus no data 
races were detected where the result was different than expected at the beginning of the 
operation. 

4.1.2 Reliability 
The reliability of the test results was monitored, and no errors occurred. 

4.1.3 Response Time and Ineffectiveness Under Contention 
Distributes events for the same node across the number of threads. 

Nodes Eve
nts 

Total 
Event
s 

Thread
s 

Sleep 
Ms 

Time Ineffectiveness 
= Failed events / 
total events 

100 10 1000 1  49.5 sec  

100 10 1000 2 200 2.3 min 21 % 

100 10 1000 5 ~1000 5.4 min 43.0 % 

100 100 10000 1  8 min  

100 100 10000 2 200 28.6 min 23.2 % 

100 100 10000 5 ~1000 38.4 min 40.0 % 

The sleep time argument is determined by evaluating an upper limit of 50% for ratio of 
failed events to successful events. A +-500 millisecond random value is used to avoid 
starvation and other contention issues. 
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4.1.3.1 Response Time and Ineffectiveness Under Contention Baseline 

Nodes Eve
nts 

Total 
Event
s 

Thread
s 

Sleep 
Ms 

Time Ineffectiveness 
= Failed events / 
total events 

100 10 1000 1  5.1 sec  

100 10 1000 2 200 16.3 sec 0 

100 10 1000 5 200 32.7 sec 0 

100 100 10000 1  10.1 sec  

100 100 10000 2 200 25.8 sec 0 

100 100 10000 5 200 38.9 sec 0 

4.1.4 Sleep Time Versus Response Time and Ineffectiveness 

Node
s 

Ev
en
ts 

Total 
Even
ts 

Threa
ds 

Sleep Ms Sleep 
Varianc
e Ms 

Time Ineffectivenes
s = Failed 
events / total 
events 

100 10 1000 2 ~25 12 2.1 min 41.2 % 

100 10 1000 2 ~50 25 2.4 min 37.0 % 

100 10 1000 2 ~100 50 2.0 min 21.8 % 

100 10 1000 2 ~200 50 2.0 min 25 % 

100 10 1000 2 200 0 2.3 min 21 % 

100 10 1000 5 ~200 50 Inf Inf 

100 10 1000 5 ~500 50 6.1 min 61.9 % 

100 10 1000 5 ~700 50 4.7 min 45.7 % 

100 10 1000 5 ~1000 500 5.4 min 43.0 % 
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The infinite value occurs as a result of a race condition that pushes the event chains to 
unbounded length. 

4.1.5 Response Time, no Contention 
Distributes nodes to threads and then set events are done in isolation. 

Events Nodes Total Sets Threads Time 

10 100 1000 10 16 sec 

10 100 1000 20 16.8 sec 

10 200 2000 10 13.6 sec 

10 200 2000 20 13.5 sec 

10 500 5000 10 11.8 sec 

10 500 5000 20 20.1 sec 

4.1.5.1 Response Time, no Contention Baseline 

Events Nodes Total Events Threads Time 

10 100 1000 10 10.6 sec 

10 100 1000 20 15.7 sec 

10 200 2000 10 10.4 sec 

10 200 2000 20 14.9 sec 

10 500 5000 10 10.8 sec 

10 500 5000 20 15.8 Sec 

4.1.6 Experience 
If a post-condition fails, the transaction is committed, so corrective steps must be further 
be taken. An improvement would be when automatically detecting the postcondition 
failure, to not just issue an error but create a new checkout result for restoring the node 
to its initial state. 

26 



 

 

Events associated with nodes can grow and slow down transaction times. The testing 
procedure tries to alleviate this problem by creating an upper limit to the number of 
events that occur on any one tree node. An improvement would be to clean up the 
events table regularly or using a table partition to separate current and old events. 
Another improvement would be to issue a new checkout when checking in if a deadlock 
is detected. Last, inactive events should be investigated to be omitted from the interface, 
which will definitely help optimize the communication. 
 
Logic needs to be added to the current implementation to verify the assumed 
implementation properties - such as external environmental argument refinement to 
internal arguments.  Further, the “read prepare” and “save” section, for running read 
logic verification on the client was found to be missing, ie.: server runs: prepare logic, get 
from storage, read logic, write to storage, after logic, client then runs on the result from 
the server: prepare verify logic on arguments and “read prepare” section, read verify 
logic on “read” and “save” sections, and post-transaction verification on the “result” 
section. 

4.1.7 Maintenance 
Code has minimal duplication and well defined boundaries. This allowed for 
straightforward debugging, and errors are propagated to the client for further analysis. 
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4.2 Discussion 

4.2.1 Response Time, Scalability, and Ineffectiveness Under 
Contention 
Distributes events for the same node across the number of threads. 

Nod
es 

Ev
ent
s 

Total 
Event
s 

Th
re
ad
s 

Sleep 
Ms 

Time Ineffective
ness = 
failed 
events / 
total 
events 

Events per 
Thread 

Response 
Time per 
event 

100 10 1000 1  49.5 
sec 

 1000 5.1 ms 

100 10 1000 2 200 2.3 min 21 % 500 138 ms 

100 10 1000 5 ~1000 5.4 min 43.0 % 200 324 ms 

100 100 10000 1  8 min  10000 48 ms 

100 100 10000 2 200 28.6 
min 

23.2 % 5000 172 ms 

100 100 10000 5 ~1000 38.4 
min 

40.0 % 2000 230 ms 
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4.2.1.1  Response Time, Scalability, and Ineffectiveness Under Contention 
Baseline 

No
de
s 

Ev
ent
s 

Total 
Events 

Thre
ads 

Sle
ep 
Ms 

Time Ineffectivenes
s = Failed 
events / total 
events 

Events 
per 
Thread 

Response 
Time per 
event 

100 10 1000 1  5.1 sec  1000 50 ms 

100 10 1000 2 200 16.3 
sec 

0 500 16 ms 

100 10 1000 5 200 32.7 
sec 

0 200 33 ms 

100 100 10000 1  10.1 
sec 

 10000 1 ms 

100 100 10000 2 200 25.8 
sec 

0 5000 3 ms 

100 100 10000 5 200 38.9 
sec 

0 2000 4 ms 

 
First, as a result of separate events both trying to lock the parent entity for writing when 
being activated, this is used to accurately detect command collisions. In addition, active 
and inactive events are used to detect concurrent event activations. The fact that all 
postconditions were satisfies shows this was successfully accomplished. 
 
Second, the response time and scalability results show that there is a finite overhead to 
avoiding stateful algorithms in the service logic. The reliability and maintainability 
observed is a testament to the appropriateness of the design presented here. Compared 
to only SQL transaction only, it is shown how contention is serialized and thus a large 
difference is the time taken between the two systems. Non-contention is the usual case, 
and it is shown here a consistent scalability as with the database transactions only 
baseline. Given the asynchronous nature of the system, it should be possible to create 
an out-of transaction merge service that merges conflicts between temporary separate 
values observed by the system. See section 5.2 Asynchronous Complete Set Logic next 
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for more details. This technique is exemplified by (Vernon, 2013, p. 297), yet it wouldn’t 
fix the issue, just shift it to other parts of the architecture. Better, scheduling theory could 
also be used to avoid contention before it occurs and allow for prioritization of changes 
in the case of resource-free locks where instead of locking resources, any operation 
interrupts previously unfinished commands. This linearization timing optimization change 
should bring the performance in line with a SQL-only implementation, which also does 
not scale under contention conditions on the same node. 
 
Last, reordering by a synchronized start time would further solve the race issue suffered 
by the policy taken in the testing of saving the last command’s outcome to the domain. 

4.2.2 Scalability, no Contention 
Distributes nodes to threads and then set events are done in isolation. 

Eve
nts 

Nod
es 

Total 
Events 

Threads Time Nodes / 
Thread 

Response Time per 
Events 

10 100 1000 10 16.0 sec 10 16 ms 

10 100 1000 20 16.8 sec 5 17 ms 

10 200 2000 10 13.6 sec 20 7 ms 

10 200 2000 20 13.5 sec 10 7 ms 

10 500 5000 10 11.8 sec 50 2 ms 

10 500 5000 20 20.1 sec 25 4 ms 
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4.2.2.1 Scalability, no Contention Baseline 

Events Nodes Total 
Events 

Threa
ds 

Time Nodes / 
Thread 

Response TIme per 
Events 

10 100 1000 10 10.6 sec 10 11 ms 

10 100 1000 20 15.7 sec 5 16 ms 

10 200 2000 10 10.4 sec 20 5 ms 

10 200 2000 20 14.9 sec 10 7ms 

10 500 5000 10 10.8 sec 50 2 ms 

10 500 5000 20 15.8 sec 25 3ms 

 
From this perspective, it would seem that while locking alone is much more scalable in 
contention on single entities, measures need to be taken to avoid the issue. Ultimately, it 
seems that the contention case and the expectation that a command may be conflicting. 
Assuming that commands finish quickly may yield better results for the contention pitfall 
as well as the event chain length pitfall, shifting the onus of the programmer to cleaning 
up uncharacteristically long time between a checkout and a check in. 

5 Extensions 

5.1 Logic Testing Options 
Testing has come a long way from test driven development  that is described by (Beck, 
2014, p. ix) 

● “Write new code only if tan automated test has failed” 
● “Eliminate duplication” 

These simple rules are stated to create complex behaviour, but they put the onus on the 
team instead of achieving the systematic elimination of bugs. If there is no test created 
for some edge case behaviour, that requirement would go untested.  
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(McFarland, 2017) shows how to use the JsVerify framework to perform property-testing 
on Javascript code. This is an extension of the test driven development discovers edge 
cases by testing properties of code and giving the minimum counter-example to break 
that code property. This seems like the most appropriate testing based on complexity. 
 
(Sen, 2007, p.571) describes that concolic testing can use symbolic execution of the 
logic to dynamically augment this counter-example search. 
 
Statically, logic development could also use the help of dependent types. Developing 
with ranges of values and their properties promises to create a much more well-verified 
environment. For example, (Brady & Hammond, 2010) shows how to use the Idris 
language to create a concurrent resource sharing protocol. 

5.2 Asynchronous Complete Set Logic 
Since commands can be replayed using events, another commands check logic may be 
implemented separately that looks at results from the first service, negates 
preconditions, and makes sure that the sets of those negated preconditions and the 
nodes that were not returned are the exact same set. The complete set can be used with 
other queries like asynchronous aggregate updating, where the commands replay is 
used to update aggregates as the commands are replayed. 

5.3 Superclass Membership 
Obviously this small example of distributed logic design only deals with the data. What if 
there are logical constraints on the nodes, like a node and its parent cannot end up with 
a cycle in the parent_id field? In this case, another type of logic service  - Tree Node 
Logic is created using the previous Node Data Logic. Using the idempotency of pre, 
read, and post now that the database dependency is abstracted away by Node Data 
Logic, these stages can be made recursive.  
 
For example, if there is a node event on any node, then the nodes from the updated 
node to the leafs of the tree should also receive an event. This could be implemented on 
the Tree Node logic Checkout Get for example: 
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Pre: Starting at the target node recurse until no more nodes with parents that currently 
exist in the read section. Add the intended parent to the read section. Create a new Get 
request for all the subnodes of the read section. 
Read: None 
Post: None 
 
This works because for every Set or Add operation, the parent and all its new children 
nodes have to be locked, meaning that another transaction cannot change the parent’s 
parents(closer to the root) to belong to any of its existing descendants. The nodes use 
this minimal locking structure to maintain this non-cyclic invariant across all nodes. 
 
The same could be done for growing other parts of the command domain. The read logic 
can then recursively transform the read data into write or range logic interface calls to 
Node Data Logic objects. The post-condition can follow the same recursive pattern if 
necessary.  
 
Implementation-wise, there are two possible configurations for the Tree Node Service. 
The Tree Node service can be served from the server or serve Node Data Service from 
the server and deliver the Tree Node service only from the client. The possibilities grow 
again if the double-check interface is enabled or not between service and client, or 
whether transactional back-ends are necessary. 
 
It’s interesting that a tree is the perfect example for domain driven design because the 
union of the nodes’ forests represents the aggregate root that is necessary for tree 
structure modifications operations between the two nodes. The above extension shows 
how this is achieved at the Tree Node logic level. 

5.4 Storage Trust 
The fact that the data is stored by one entity could in some circumstances not provide 
enough trust to the data, meaning that unilateral changes can be made by the business 
domain service host. A blockchain back-end in the database layer could be the answer 
to this. 
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Conclusion 
At it is shown here, there is a minimal, well defined set of patterns that are helpful in 
developing scalable software services. It is rare that software developers receive the 
right software to work on, and a redesign for usability will not always mean an easy 
refactor. Open closed principle shows that sometimes it’s better to design a separate 
new system to replace an SQL transaction only workflow. By abstracting away the time 
and data constraints, it is possible to build up very lean logic, meaning that testing is not 
only encouraged by the stateless model’s interface, it’s also applied to much less 
complex code. By focusing on standard and scalable logic, services can be created, 
maintained, and reused with ease in today’s Internet of Things. The long-term goal is to 
establish a software community standard where logic is treated as a contract and 
published alongside implementations with a commonly shared business domain stored 
on a blockchain. 
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