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Abstract

Biological models of predator-prey interaction have been shown to have high

sensitivity to the functional form of the predator response (see [3]). Chemo-

stat models with competition have been shown to be robust under various

forms of response function (see [15]). The fcus here is restricted to a simple

chemostat model with predator-prey dynamics. Several functional responses

of Holling Type II form are considered. The sensitivity of dynamics to our

choice of functional form is demonstrated by way of bifurcation theory. These

results should be a warning to modelers, since by data collection and curve-

fitting alone it is impossible to determine the exact functional form of the

predator response function.
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Chapter 1

Introduction

1.1 Motivation

Predator-prey models have been widely used in ecology, epidemiology, and

economics. These models are often based on the classical Lotka-Volterra

equations (see, for example, [9]) or their extension in the Rosenzweig-MacArthur

models [11]. In the Rosenzweig-MacArthur models the prey nullcline has at

most one local extremum in the first quadrant. In any biological model there

are parameters that correspond to biological properties of the particular sys-

tems being described. A standard procedure in analysing these models is

to describe the qualitative changes in predictions elicited by quantitative

changes in parameter values.

These predator-prey models all share a function called the predator-

response function which describes the intake rate the predator adopts in

response to the prey density. Typically the analytical form of this function

is determined by taking any number of standard functions and fitting this

function to experimental data in a least-squares problem. In a recent paper

by Fussman and Blasius [3] it was shown that an extension of the predator-

prey model due to Rosenzweig and MacArthur [11] is highly susceptible to
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choice of response function. The authors of [3] demonstrate that under var-

ious response functions the predator-prey model may elicit a prey nullcline

with two local extrema in the first quadrant. The main result of [3] demon-

strates that two predator response functions that both describe the same

shape can predict qualitatively different behaviour in the model (see Figure

1.1). This particular sensitivity was later described from a bifurcation theory

perspective in a subsequent paper by Wolkowicz and Seo [13].

In practice, a modeler applying a particular predator-prey model will need

to determine numerical values of multiple parameters related to the response

of the predator to density of the prey population. To do so, a modeler may

experimentally obtain multiple data points and fit some standard curve –

via a least-squares procedure, or something similar – to these data points. If

there is no biological motivation for a particular functional form of the preda-

tor response function external to the shape of the data, then any number of

particular functional forms can be chosen. When considering experimental

error, the fit of any particular functional form to the data may be indistin-

guishable from the fit of another. In Figure 1.1 this can be pictured. The

figure focuses on four particular functional forms (that are precisely defined

in Section 1.4) that have the same qualitative shape and perform comparably

well under least-squares fitting to the simulated data. The plot of Monod

and Arctan most closely fit the data. In Chapter 4, it will be demonstrated

that these two functional forms will predict an entirely different sequence of

bifurcations in the model and, as a result, a model where Arctan is used as

a predator response function may make drastically different predictions than

a model that uses Monod as the predator response function.

These results raise a natural question: is the sensitivity to response func-

tion choice a result specific to the generalised Rosenzweig-MacArthur models

studied by [3] or does it apply to other predator-prey models as well? It is

natural to ask if a more robust predator-prey model can be produced that

2



Figure 1.1: This plot was generated by sampling 10 uniformly distributed x

values between 0 and S0 −D. The y values were obtained by applying the

map x → x
1+x

and perturbing the result by a uniformly distributed random

number between −0.025 and 0.025 (to simulate measurement error). The

plots are then the Monod, Ivlev, Hyperbolic Tangent, and Arctan functions

fit via least-squares in the parameters a and b, with the residuals recorded

in the legend.

will be less sensitive to response function choice.

1.2 The Chemostat

The chemostat is a laboratory apparatus frequently used in microbial biology

and lake ecology. It is a useful model for describing microbial growth under

limited nutrient uptake in a highly controlled environment. These simple

models are robust enough to make meaningful predictions, to a degree, about

some of the population interactions present in complicated systems such as

a lake.

The simpler forms of these models consider three chambers: a nutrient
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reservoir, a growth chamber, and a discharge chamber. The fluid from the

nutrient reservoir is pumped into the growth chamber at a constant rate

where it is mixed well. The fluid from the growth chamber, along with

any nutrients or microorganisms, is pumped out at the same rate into the

discharge chamber.

Many articles have studied the chemostat from a modeling perspective.

Wolkowicz and Lu [15] considered a chemostat model where various microor-

ganisms competed in the growth chamber amongst each other for the limiting

nutrient. The authors demonstrated the robustness of their model to various

choice of response function in the competitive chemostat.

We consider a system where a population lives in the growth chamber

that feeds on the nutrient being pumped in. We also consider a predator

population in the same growth chamber that feeds off the prey. We investi-

gate whether this model is just as structurally sensitive as the Rosenzweig-

MacArthur model to choice of predator response functions, as in [3].

1.3 The Model

Let s(t) denote the concentration of the nutrient in the growth chamber

at time t and let x(t) and y(t) denote the density of prey and predator

populations in the growth chamber at time t, respectively. The interactions of

these three quantities are described by the following autonomous differential

equations: 
ṡ = D (S0 − s)− x p(s)

ẋ = x (γp(s)−D)− y a q(bx)

ẏ = y (−D + δa q(bx))

(1.1)

where D and S0 are positive constants representing dilution and saturation of

the limiting nutrient, respectively. The function p(s) describes the benefit for

a prey-organism to consume the nutrient and γ > 0 is the yield constant for
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this nutrient uptake. Similarly, q(x) represents the response of the predator

to prey density and δ > 0 is a yield constant. The positive parameters a

and b are used in least-squares fitting to fit the functional form of q(x) to

experimentally obtained data (see Figure 1.1).

System (1.2) is a highly simplified system. In particular, notice that the

model assumes that the species specific death rates are all the same.

Many different forms of p and q could be chosen. For the purpose of

this thesis we take p to be described by mass-action, p(s) = ms so that the

benefit for a prey-organism to consume the limiting nutrient grows linearly

with the amount of nutrient they consume. The exact functional form of

q(x) will be discussed in Section 1.4.

System (1.1) has seven unknown parameters all corresponding to some

biological quantity. However, for the ease of analysis, we can change the

units of our four dimensions (time (t), nutrient (s), prey organism (x), and

predator organism (y)) to scale out four of the parameters in the model.

Consider the following change of variables

t̃ = m
b
t, s̃ = bγs, x̃ = bx, ỹ = b

δ
y

and the following rescaling of parameters

S̃0 = bγS0, D̃ = b
m
D, ã = bδ

m
a.

A simple application of the chain rule yields

ds̃

dt̃
=

ds̃

ds

ds

dt

dt

dt̃
=
γb2

m
ṡ(t̃)

=
b

m
D
(
bγS0 − bγs

)
− bxbγs

= D̃
(
S̃0 − S̃

)
− x̃s̃.

Similarly, for x and y.
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dx̃

dt̃
=

dx̃

dx

dx

dt

dt

dt̃
=
b2

m
ẋ(t̃)

=
b2

m
(x(γms−D)− y a′, q(bx))

= bx

(
bγs− b

m
D

)
− bδy b

mδ
a q(bx)

= x̃
(
s̃− D̃

)
− ỹãq(x̃)

dỹ

dt̃
=

dỹ

ds

dy

dt

dt

dt̃
=

b2

mδ
ẏ(t̃)

=
b2

mδ
y (δaq(bx)−D)

=
b

δ
y

(
b

m
δaq(bx)− b

m
D

)
= ỹ

(
ãq(x̃)− D̃

)
For convenience, henceforth we drop the tildes in the notation of s, x, y, t

and a,D, S0.

Hence, System (1.1) is equivalent to the following non-dimensionalised

system: 
ṡ = D (S0 − s)− xs

ẋ = x (s−D)− a y q(x)

ẏ = y (a q(x)−D)

(1.2)

where the three parameters S0, D, and a are all positive. While this change

of units has resulted in a more parsimonious model that will be easier to

analyse, the parameters S0 and D are now only proportional to their original

biological interpretation.
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1.4 Predator Response Function

Following the work of Holling [7], modelers have used three main forms to

describe response functions in predator-prey models. Holling Type I refers

to a mass-action response function like p(s) in System 1.2. Previously, many

authors have referred to the function

a x

1 + b x
(1.3)

as the Holling Type II response. We consider multiple functions that have

the same qualitative shape as (1.3). The next definition captures the key

properties of (1.3) that we concern ourselves with.

Definition 1.4.1. A function q(x) is called Holling Type II if

1. q(x) ∈ C2([0,∞]),

2. q(0) = 0,

3. q′(x) > 0 for all x > 0,

4. q′′(x) < 0 for all x > 0,

5. and limx→∞ q(x) <∞.

For the purpose of this thesis, we consider four main forms of the predator-

response function q(x), all of which are “Holling Type II”, in the sense that

they satisfy Definition 1.4.1.

qM(x) ,
x

1 + x
,

qI(x) , 1− e−x,

qA(x) ,
2

π
arctan(x), and

qH(x) , tanh(x).
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We refer to these functions as Monod (qM), Ivlev (qI), Arctan (qA), and

Hyperbolic Tangent (qH). Any function that satisfies Definition 1.4.1 has a

horizontal asymptote. For convenience, henceforth we will consider, without

loss of generality, all response functions q to be scaled so that

lim
x→∞

q(x) = 1.

The following Lemma follows directly from Definition 1.4.1, but will be

useful in later analysis of System (1.2).

Lemma 1.4.1. Let q satisfy the conditions of Definition 1.4.1, then q(x)−
xq′(x) > 0 for all x > 0.

Proof. Let q satisfy the conditions of Definition 1.4.1 and define P (x) ,

q(x) − xq′(x). By Definition 1.4.1, q(0) = 0 and q′′(x) < 0 for all x > 0.

Hence, P (0) = 0 and P ′(x) = −xq′′(x) > 0 for all x > 0 and the Lemma

follows.
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Chapter 2

Preliminary Results

In this chapter we will discuss the biological wellposedness of System (1.2),

derivation and local stability analysis of the equilibria, and some preliminary

analysis of the qualitative shape of the nullclines under various response

functions.

Theorem 2.0.1. There exists a unique solution (s(t), x(t), y(t)) that satisfies

the vector field of System (1.2) under the initial conditions (s(0), x(0), y(0)) =

(s0, x0, y0) ∈ R3.

Since the vector field described in System (1.2) is C1, the theorem follows

immediately.

For biological systems it is important to ensure that solution curves of the

differential equations stay biologically relevant. In the case of System (1.2)

this amounts to ensuring the solutions are bounded above and contained

within the first octant.

9



2.1 Nonnegativity and Boundedness of Solu-

tions

First let u = s+ x+ y, then it is a straightforward calculation to see that

u̇ = ṡ+ ẋ+ ẏ = −D (u− S0). (2.1)

Lemma 2.1.1. Given non-negative initial data, the solutions of System (2.1)

remain non-negative and bounded for all positive t and u(t) converges to S0

as t→∞.

Proof. Assume u(0) = u0 ≥ 0. System (2.1) is a separable linear differential

equation and can be integrated immediately to obtain

u(t) =
(
u0 − S0

)
e−Dt + S0.

Now,

u′(t) = D(S0 − u0)e−Dt and u′′(t) = −D2(S0 − u0)e−Dt

hence, if u0 = S0, then u(t) = S0 for all t ≥ 0. Likewise, if u0 < S0, then

u(t) increases to S0 for all t ≥ 0 and for u0 > S0, then u(t) decreases to S0

for all t ≥ 0.

Lemma 2.1.1 demonstrates that given non-negative initial conditions s(0),

x(0), and y(0), the System (1.2) converges to the plane s(t)+x(t)+y(t) = S0.

The sum of these three quantities (s, x, y) remains non-negative. Since these

three variables each correspond to a biological quantity, we must show that

individually they all remain non-negative.

Theorem 2.1.1. Given s(0) > 0, x(0) > 0, and y(0) > 0 the solutions of

the System (1.2) remain non-negative and bounded for all positive t.

10



Proof. Assume s(0) > 0, x(0) > 0, and y(0) > 0 and let (s(t), x(t), y(t))

be solutions to System (1.2). The (s, 0, y)-plane (and the (s, x, 0)-plane) is

invariant with respect to System (1.2), hence, by Theorem 2.0.1, any solution

with x(0) > 0 (respectively y(0) > 0), cannot reach the plane in finite time.

Therefore, given x(0) > 0 (respectively y(0) > 0), x(t) > 0 (respectively

y(t) > 0) for all positive t. Furthermore, suppose there exists some t∗ > 0

such that s(t∗) = 0. Then ṡ(t∗) = S0D > 0, a contradiction. Hence, given

s(0) > 0, s(t) is always positive. By Lemma 2.1.1, the sum of the solutions

is non-negative and finite, moreover, (s(t), x(t), y(t)) individually are non-

negative, and so the theorem follows.

Theorem 2.1.1 allows us to consider a reduced system of differential equa-

tions. This theorem suggests that any solution curves to System (1.2) even-

tually converge to the simplex governed by s+x+ y = S0 contained entirely

in the first octant. Hence, we can reformulate this three-dimensional system

as a two dimensional system in x, y space.

Evaluating the time derivative of x from System (1.2), we observe.

ẋ = x (s−D)− a y q(x)
∣∣
s=S0−x−y

= x (S0 − x− y −D)− a y q(x)

Hence, we are left with the following system, which is equivalent to System

(1.2) evaluated on the simplex s+ x+ y = S0 contained in the first octant.{
ẋ = x (S0 −D − x)− y (a q(x) + x)

ẏ = y (a q(x)−D)
(2.2)

See Figure 2.1 for an example of two trajectories, one for the 3D System

(1.2) and one for the 2D System (2.2). Note that the qualitative behaviour of

each trajectory is the same and how quickly the trajectory in the 3D system

converges to the simplex s+ x+ y = S0. Any solution (x(t), y(t)) of the two

dimensional System (2.2) corresponds to solutions of the three dimensional

11



System (1.2) that lie on the simplex s + x + y = S0 embedded in (s, x, y)-

space. By Lemma 2.1.1, any solution of System (1.2) converges exponentially

to this simplex. The omega limit set of any trajectory of System (1.2) lies

on this simplex. Hence, there is a bijective correspondence between equilib-

ria of each system. Assume (x̄, ȳ) is an equilibrium of System (2.4). Then

(S0 − x̄ − ȳ, x̄, ȳ) is an equilibrium of System (1.2) (moreover, if (s̃, x̃, ỹ) is

an equilibrium of System (1.2), then (x̃, ỹ) is an equilibrium of System (2.2)

and, by Lemma 2.1.1, s̃+ x̃+ ỹ = S0). Any equilibrium of System (2.2) has

the same local stability as the corresponding equilibrium of System (1.2).

This follows since solution curves of System (1.2) converge exponentially to

the s+x+y = S0 simplex, by Lemma 2.1.1, hence, the additional eigenvalue

in the three dimensional case is necessarily negative. Since the boundary of

the simplex is either invariant (x = 0 or y = 0) or repelling into the interior

of the simplex (s = 0), those points in the omega limit set of a trajectory of

System 1.2 that lie on the boundary of the simplex and the positive octant

cannot belong to a periodic orbit. Hence, any periodic orbit of System 1.2

is contained entirely in the interior of the simplex s + x + y = S0. All that

is left to justify is that the global dynamics of the systems are equivalent.

To do so we show that System (1.2) satisfies all the hypotheses of the con-

vergence theorem in [14]. This proves that when an equilibrium is globally

asymptotically stable in System (2.2), it is also globally asymptotically sta-

ble in System (1.2). This theorem and its proof are left until Appendix A in

Theorem A.1.

The preceding theorems have allowed us to eliminate a dimension from

System (1.2). This is an important result, since planar systems are signifi-

cantly less complex than higher dimensional systems (in particular, familiar

theorems like Poincaré-Bendixson are now applicable for the reduced, planar

system). The choice to eliminate the s dimension may seem arbitrary, but we

are primarily concerned with investigating the sensitivity of predator-prey

12



Figure 2.1: Figure illustrating trajectories in the 3D system (1.2) compared

to those in the 2D system (2.2). The filled circle represents the starting point

of the trajectory. In both systems the trajectory converges to a large periodic

orbit.

systems in the chemostat under Holling Type II response function choice

and comparing this to the previously observed sensitivity in Rosenzweig-

MacArthur predator-prey systems. For this exact reason, eliminating s (the

nutrient) and keeping x (the prey) and y (the predator) in the model is

entirely natural.

A consequence of the above theorems allows us to state the following

theorem that follows immediately from Theorem 2.1.1.

Theorem 2.1.2. The solutions of System (2.2) with non-negative initial data

are bounded and remain non-negative for all positive time.

13



2.2 Preliminary Analysis of the Prey Null-

cline

The first equation in System (2.2) yields two nullclines. The first corresponds

to prey extinction, x = 0. The second is given by

y = F (x) , x
S0 −D − x
x+ a q(x)

. (2.3)

This second nullcline is the only one with any hope of eliciting an equilibrium

point interior to the first quadrant. For this reason we often refer to it as the

prey nullcline.

This formulation allows us to rewrite System (2.2) more compactly.{
ẋ = (F (x)− y)(a q(x) + x)

ẏ = y(a q(x)−D)
(2.4)

The prey nullcline and its qualitative shape will end up being a very im-

portant component for evaluating the sensitivity of these models to response

function choice. For that very reason we will now take the time to make

some preliminary analysis of the prey nullcline.

We extend the definition of F (x) to include F (0) in the standard way. A

simple application of L’Hôpital’s Rule yields:

F (0) , lim
x→0

F (x) =
S0 −D

1 + a q′(0)
.

Similarly, two applications of L’Hôpital’s Rule yields:

F ′(0) , lim
x→0

F ′(x) = −a q
′′(0)(S0 −D) + 2a q′(0) + 2

2(1 + q′(0))2
.

Now F (S0 − D) = 0. For this reason we may often make use of the

shorthand K = S0 −D (hence, F (K) = 0).

The prey nullcline F (x) depends on three parameters, S0, D, and a. How-

ever, as we will see in Chapter 4 the parameter S0 is an important parameter
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in observing dynamical changes. For this reason, we may refer to F (x;S0)

to refer to the function F (x) parameterised by some particular S0. Note

that in these cases, primes should always be interpreted as x-derivatives (i.e.

F ′(x;S0) , ∂xF (x;S0)).

The derivative of the prey nullcline, F ′(x;S0), is linear in S0. Hence, it

is possible to find an expression S0(x) such that F ′(x;S0(x)) = 0 for all x.

In particular,

F ′(x;S0) =
a x(d+ x)q′(x)− a (d+ 2x)q(x)− x2 + a (q(x)− xq′(x))S0

(a q(x) + x)2

Hence,

S0(x) ,
(1 + a q′(x))x2 + aD(q(x)− xq′(x)) + 2xa q(x)

a(q(x)− xq′(x))
(2.5)

Notice that by Lemma 1.4.1 we have that S0(x) > 0 for all x > 0.

This formulation of S0(x) allows us to choose an S0 for some fixed value

of x, say x̄, where

F ′(x̄;S0(x̄)) = 0.

Note that (2.5) guarantees that for any predator response function q(x)

we can fix our parameter S0 to guarantee at least one positive local extremum

of the prey nullcline for positive x. Later on we will see that counting the

number of positive extrema for the prey nullcline is very important for de-

termining all possible dynamics.

These basic properties lead us to the following obvious remarks about the

qualitative shape of the prey nullcline.

Remark 2.2.1. If S0 < D, then F (x) < 0 for all positive x.

This observation is due to the fact that F (x) has one root at x = S0−D,

and the sign of F (0) is entirely determined by the sign of S0 −D. A trivial

application of the intermediate value theorem achieves the remark.
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(a) Monod (b) Ivlev

(c) Hyperbolic Tangent (d) Arctan

Figure 2.2: Plots demonstrating the qualitative shape of the prey nullcline

under various response functions. The solid curve indicates the prey nullcline

with the maximum number of local extrema, the dotted curve indicates when

the prey nullcline is strictly non-increasing, and the dash-dot curve when the

prey nullcline is strictly decreasing.
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Remark 2.2.2. If S0 > D, then F ′(S0 −D) < 0.

Remark 2.2.3. If S0 > D, then F (x) has one positive root and F (x) > 0

for 0 ≤ x < S0 −D.

We have already observed the importance of S0 − D as the root of the

prey nullcline, but now we are characterising more carefully the intervals

of potential interest. Any biologically relevant equilibrium point involving

the prey nullcline must take place on this finite interval 0 ≤ x ≤ S0 − D.

Therefore, any equilibrium in the interior of the first quadrant must lie in

this interval.

Remark 2.2.4. If q(x) = qA(x) or q(x) = qT (x), then F ′(0) < 0.

Remark 2.2.4 is true for all Holling Type II functions for which q′′(0) = 0

(of which Arctan and Hyperbolic Tangent are, but two examples). This is

particularly interesting to observe since it is not always true in the Monod

and Ivlev cases. Both the Monod and Ivlev response functions can induce a

prey nullcline with arbitrarily signed slope at x = 0. This is the first main

difference between the qualitative shapes of the prey nullcline for various

Holling Type II response functions. Moreover, Remark 2.2.4 and Remark

2.2.2 characterise the behaviour of the slope of the prey nullcline at the

boundaries of the biologically relevant x values.

2.3 Local Stability Analysis

Similarly, we can investigate the two nullclines yielded by the second equation

in System (2.4). Namely, y = 0 and x∗ , q−1(D/a). Since q(x) increases

from 0 asymptotically to 1, the existence of x∗ is guaranteed if, and only if,

a > D.
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Thus System (2.4) has at most three biologically relevant equilibrium

points:

EME = (0, 0), EI = (x∗, F (x∗)), EE = (S0 −D, 0)

(where EME is mutual extinction of both the predator and prey, EI is an

interior equilibrium corresponding to coexistence of the predator and prey,

and EE is the extinction of the predator).

Linearising System (2.4) about each equilibrium point yields the following

Jacobian matrices:

JME =

[
F (0)(aq′(0) + 1) 0

0 −D

]

JI =

[
F ′(x∗)(D + x∗) −(D + x∗)

aF (x∗)q′(x∗) 0

]

JE =

[
F ′(K)(a q(K) +K) −(a q(K) +K)

0 a q(K)−D

]

with eigenvalues that determine the local stability of each equilibrium point.

All these eigenvalues depend on the parameters S0, a,D. We will consider

all of the possible cases.

If S0 < D then, as seen in Remark 2.2.1, this implies F (x) < 0 for all

x > 0. In this case the only equilibrium point in the first quadrant is EME.

Since JME is diagonal, and F (0) < 0 for S0 < D, we see that EME is locally

stable for S0 < D. From standard phase plane analysis it follows that EME

is globally asymptotically stable for System (1.2).

If S0 > D we consider three sub-cases. Suppose a ≤ D. Then the

equilibrium point EI does not exist and the only equilibrium points in the

first quadrant are EME and EE. In this case JME has two real eigenvalues

of opposite sign and hence, EME is an unstable (saddle) equilibrium. The

matrix JE is upper-triangular and hence, its eigenvalues lie on the main
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diagonal. Now a ≤ D implies that a q(x) < D and hence, JE has two

negative eigenvalues. Thus EE is a local asymptotically stable equilibrium

point. Again from standard phase plane analysis it follows that EME is

globally asymptotically stable for System (1.2).

Assume S0 > D, a > D, and x∗ > K. Again we see that EI does not

exist in the first quadrant. As in the previous case, one can see that JME has

two eigenvalues of opposite sign and JE has two negative eigenvalues (since

K < x∗ and q′(x) > 0 for positive x implies that a q(K) < a q(x∗) = D).

Hence, in this case as well we observe that EME is unstable (saddle) and EE

is locally asymptotically stable.

Lastly, assume S0 > D, a > D, and 0 < x∗ < K. Now all three equilibria

exist in the first quadrant. As in the previous cases with S0 > D, we observe

that JME has two eigenvalues of opposite sign, hence, EME is an unstable

(saddle) equilibrium point. Since x∗ < K and q′(x) > 0 for positive x,

we have that a q(K) > D. Hence, JE also has two eigenvalues of opposite

sign. Therefore, EE is an unstable (saddle) equilibrium point as well. The

coexistence equilibrium point proves more interesting. JI has eigenvalues

λI+,− =
(D + x∗)

2

(
F ′(x∗)±

√
F ′(x∗)2 − 4aF (x∗)q′(x∗)

D + x∗

)
. (2.6)

Note that (D + x∗) > 0 and 4aF (x∗)q′(x∗) > 0, since x∗ < K and S0 > D.

Hence, F ′(x∗)2− (4aF (x∗)q′(x∗))/(D+ x∗) < F ′(x∗)2. Therefore, the sign of

the real part of either eigenvalue depends entirely on the sign of F ′(x∗). If

F ′(x∗) < 0, then both eigenvalues have negative real part and EI is a local

asymptotically stable equilibrium point. If F ′(x∗) > 0, then both eigenvalues

have positive real part and EI is an unstable equilibrium point.
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Chapter 3

Nullcline Analysis

In Chapter 2 we investigated the shape of the prey nullcline and determined

the local stability of each equilibrium point. We observed that the stability

of the interior equilibrium point depends on the slope of the prey nullcline

at that point. In this chapter we will investigate the response function in

more detail providing a condition for the exact number of extrema a response

function can elicit in the prey nullcline (Section 3.1), we will characterise the

number of inflection points in the prey nullcline (Section 3.2), and finally

we will demonstrate how the locations of these extrema depend upon the

bifurcation parameter S0 (Section 3.3). By the end of this chapter the plot

in Figure 2.2 will be justified as demonstrating all the qualitative shapes of

the nullclines for Monod, Ivlev, Arctan, and Hyperbolic Tangent predator

response functions.

Throughout this chapter, unless explicitly stated otherwise, it is assumed

that a > D, S0 > D, and x∗ < K. In other words, it is assumed that the

interior equilibrium exists in the first quadrant.
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3.1 Response Function Stratification

In this Section we will establish conditions that determine the number of

local extrema the prey nullcline can have in System (2.4) for various response

functions.

Figure 3.1 depicts contour plots of the derivative of the prey nullcline in

System (2.4) with the Arctan response function. One of the key realisations

from Figure 3.1 is the recognition that varying a does not fundamentally

change the shape of the plot. In fact, K = S0−D is the only parameter that

seems to influence the qualitative shape of the contour plot.

In Figure 3.1 the number of times the black curve crosses any horizontal

line K = K̃ represents the number of positive zeros of F ′(x; K̃). Similar to

(2.5), we now derive an expression K̂(x) such that F ′(x; K̂(x)) = 0.

F ′(x;K) =
aK (q(x)− xq′(x)) + ax2q′(x)− 2axq(x)− x2

(x+ aq(x))2

The above equation demonstrates that F ′(x;K) is linear in K, so we can

solve F ′(x; K̂) = 0 for K̂ to obtain the expression

K̂(x) ,
x (2aq(x)− axq′(x) + x)

a (q(x)− xq′(x))
.

In Figure 3.1, K̂(x) describes the solid black curve. We are concerned

with the fundamental shape of K̂(x), in particular we are concerned with the

maximum number of times any horizontal line can cross the curve for any

particular choice of response-function q(x); this represents the maximum

number of local extrema in the prey nullcline. To this end, we investigate

the first derivative of K̂(x) for the purpose of finding its critical points.

K̂ ′(x) =
(x2q′′(x) + 2(q(x)− xq′(x))) (aq(x) + x)

a (q(x)− xq′(x))2 (3.1)

Since we only are concerned with the positive critical points of K̂(x) we can

ignore the positive denominator and the positive factor (aq(x) + x) in the
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(a) a = 1 (b) a = 4

(c) a = 7 (d) a = 10

Figure 3.1: Contour plots of F ′(x;K) for the Arctan response function under

various values of a with 0 ≤ x ≤ 10 and x < K ≤ 10. The black curve repre-

sents F ′(x;K) = 0 (i.e. the function K̂(x)), the light grey region represents

negative F ′(x;K), and the dark grey region represents positive F ′(x;K).
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numerator of equation (3.1).

H(x) , x2q′′(x) + 2(q(x)− xq′(x)) (3.2)

In effect, we have derived that K̂(x) has a positive critical point if, and only

if, H(x) has a positive root. This motivates the following theorem.

Theorem 3.1.1. Consider the prey nullcline F (x;K) obtained using some

particular Holling Type II predator response function q(x). If H(x) has k

positive roots, then F (x) has at most k + 1 positive local extrema.

Proof. By definition of H(x), K̂(x) has as many positive critical points as

H(x) has roots. Furthermore, by definition of K̂(x), every time K̂(x) crosses

a horizontal line K = K̃ the function F ′(x; K̃) has a zero.

It follows from the mean value theorem and mathematical induction that

if there exists (k + 1) numbers (x1, . . . , xk+1) such that K̂(xi) = K̃ for all

1 ≤ i ≤ (k+1), then there must be at least k critical points of K̂(x) between

x1 and xk+1. The statement of the theorem follows.

This theorem easily lends itself to determining the qualitative shape of

the prey nullcline under various predator-response functions. For instance,

consider the following example.

Corollary 3.1.1. The prey nullcline (2.3) with Arctan predator response

function has at most two local extrema.

Proof. Consider expression H(x) (from (3.2)) parameterised by q(x) = qA(x).

Now H ′(x) = x2q′′′(x), hence

H ′′(x) = 2xq′′′(x) + x2q(iv)(x)

H ′′′(x) = 2q′′′(x) + 4xq(iv)(x) + x2q(v)(x).

(where q(iv)(x) and q(v)(x) are the fourth and fifth derivatives of q, respec-

tively).
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Hence, H ′(0) = H ′′(0) = 0 and H ′′′(0) = 2q′′′(0) = − 8
π
. Hence, H initially

decreases. Now H(1) = π−3
π
> 0. Furthermore,

H ′(x) =
4x2

π

(
3x2 − 1

(x2 + 1)3

)
which has a unique positive root at x = 1√

3
. Hence, H(x) has exactly one

positive root, so by Theorem 3.1.1, the corollary follows.

Similar proofs can show that the prey nullcline with q = qH has at most

two local extrema. Similarly, when considering q = qM or q = qA, the prey

nullcline has at most one local extremum. The proofs of these corollaries are

left until Appendix B, though they follow the same structure as Corollary

3.1.1.

Corollary 3.1.2. The prey nullcline (2.3) with Hyperbolic Tangent response

function has at most two local extrema.

Corollary 3.1.3. The prey nullcline (2.3) with Monod response function has

at most one local extremum.

Corollary 3.1.4. The prey nullcline (2.3) with Ivlev response function has

at most one local extremum.

The important power of Theorem 3.1.1 is that the expression H(x) is

entirely parameter-free. So while for any particular function q(x) it may be

difficult to analytically count the number of roots of H(x), in practice it is

easy to just plot H(x) and count the number of roots. Moreover, since the

prey nullcline F (x;K) is only non-negative for 0 ≤ x ≤ K, one needs only

to plot H(x) over the finite domain 0 ≤ x ≤ K.

Furthermore, this result dictates that the possible shapes of the prey

nullcline for System (2.4) are entirely limited by the response function and not

any of the parameters of the system. Those parameters merely transition the
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prey nullcline through the possible number of local extrema, as determined by

Theorem 3.1.1, but it is truly the choice of response function that dictates the

possible forms the prey nullcline can take given certain parameter conditions.

3.2 Number of Inflection Points of the Prey

Nullcline

The following lemma and theorem demonstrate that, for any particular re-

sponse function, to determine the number of inflection points of the prey

nullcline one must count the roots of the following, parameter free condition:

η(x) , x(q(x)− xq′(x))q′′′(x) +
3

2
q′′(x)(2(q(x)− xq′(x)) + x2q′′(x)).

Lemma 3.2.1. If η(x) has no roots, then F (x) has at most one inflection

point.

Proof. To investigate the inflection points, we consider the second derivative

of the prey nullcline

F ′′(x) = a
2(q(x)− xq′(x))(aq(x) + S0 −D + a(S0 −D − x)q′(x))

(a q(x) + x)3

− ax(aq(x) + x)(S0 −D − x)q′′(x)

(q(x) + x)3

which is linear in S0. Hence, the equation F ′′(x) = 0 can be easily solved to

produce a function S̃0(x) such that F ′′(x; S̃0(x)) = 0 for all x.

In a contour plot of F ′′(x;S0) with S0 on the vertical axis and x on the

horizontal axis, S̃0(x) describes the null-contour. If S̃0(x) is always increasing

(respectively, decreasing) then for any particular S0 value there is at most

one x value for which F ′′(x;S0) = 0. Furthermore,

d

dx
S̃0(x) =

2(x+ aq(x))2η(x)

(x(x+ aq(x))q′′(x) + 2(q(x)− xq′(x))(1 + aq′(x)))2
.
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Therefore, d
dx
S̃0(x) = 0 for x > 0 if, and only if, η(x) = 0 and the statement

of the Lemma follows.

Theorem 3.2.1.

i. F (x) parameterised by q(x) = qI(x) has at most one inflection point

ii. F (x) parameterised by q(x) = qA(x) has at most one inflection point

iii. F (x) parameterised by q(x) = qH(x) has at most one inflection point

Proof. ii. In the case of q(x) = qA(x),

η(x) =
8x

π2(x2 + 1)4
p(x) with p(x) , 3x3 − 4x2 arctan(x)− 4 arctan(x) + 4x.

For positive x the function η(x) = 0 if, and only if, p(x) = 0 for some x > 0.

Firstly, p(0) = 0 and p′(x) = x(9x − 8 arctan(x)). Since arctan(x) is sub-

linear (i.e. arctan(x) < x for all x > 0), p′(x) > 0. Hence, p(x) > 0 for all

x > 0 so, by Lemma 3.2.1, the theorem follows.

The proofs for the other two cases are similar and have been left until

Appendix C.

For the response function qM(x) the prey nullcline has a different shape.

In particular, when parameterised by q(x) = qM(x),

F ′′(x) = −2a
a−D + S0 + 1

(a+ 1 + x)3
< 0

and hence, the prey nullcline has no inflection points and is concave down

for all positive x.

3.3 Dependence of the Extrema Location on

Parameters

It will be useful to understand how the qualitative shape of the prey nullcline

changes as S0 changes. In this section we determine the direction the local
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extrema drift as S0 increases. This drift is illustrated in Figure 3.2.

Theorem 3.3.1. The pair (xM , F (xM)) corresponding to a local maximum

of F (x;S0) moves up and to the right as S0 increases. The pair (xm, F (xm))

corresponding to a local minimum of F (x;S0) moves up and to the left as S0

increases.

Proof. First let xM and xm be the locations of the local maximum and min-

imum of the prey nullcline (if they exist). Now,

∂S0F (x;S0) =
x

x+ aq(x)

which is positive for all positive x. Furthermore,

∂2
x,S0F (x;S0) , ∂x (∂S0F (x)) = ∂x

(
x

x+ aq(x)

)
= a

q(x)− xq′(x)

(x+ aq(x))2

which, by Lemma 1.4.1, is also positive for all positive x.

Therefore, F ′(x;S0) is an increasing function of S0. In a neighbourhood

of xM , F (x;S0) is concave down and F ′(xM ;S0) = 0. Hence, if S0 is slightly

increased then F ′(xM ;S0) > 0 and, since F (x;S0) is concave down, the new

maximum is slightly larger than xM . Therefore, a local maximum (if one

exists) moves to the right. Similarly, a local minimum (if one exists) moves

to the left.

Also, F is an increasing function of S0 for each fixed x > 0. Hence,

the value of F (x;S0) at a local maximum (if one exists) moves up as S0

increases. Let ε > 0 and let x1 and x2 be the local minima of F (x;S0) and

F (x;S0 + ε) respectively. Then F (x1;S0) < F (x2;S0), since x1 is the local

minimum of F (x;S0). Moreover, F (x2;S0) < F (x2;S0 + ε), since ∂S0F > 0.

Hence, F (x1;S0) < F (x2;S0 + ε). Therefore, the local minimum moves up

as S0 increases.
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Figure 3.2: Figure illustrating the movement of the extrema as the parameter

S0 is increased. The figure was created by taking q(x) = qH(x). In each plot

(a,D) = (2, 1) and S0 increases from 3 to 8.5. A hollow circle represents

the position of the local minimum, a filled circle represents the position of

the local maximum, and the diamond represents where the critical point and

inflection point coincide.
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Chapter 4

Bifurcation Analysis

In Section 2.3 we observed the existence of three equilibria, the mutual-

extinction, prey extinction, and co-existence equilibria (denoted EME, EE,

and EI respectively).

EME = (0, 0), EE = (S0 −D, 0), EI = (x∗, F (x∗))

We now describe the sequence of bifurcations that System (2.4) undergoes

as S0 is increased from 0. This process involves considering parameter ranges

that are not biologically relevant. The local stability of equilibria examined

in Section 2.3 was not considered for these biologically irrelevant parameter

spaces. Hence, we will also need to determine the stability of the equilibria

for these parameter spaces in order to fully classify the bifurcations that

occur. Before we begin we first highlight the following remarks:

• If a ≤ D, then EI does not exist.

• If a > D, then EI does exist. However, x∗ may be bigger than S0−D.

If this is the case, then F (x∗) < 0 and so EI is in the interior of the

first quadrant (see Remark 2.2.2 and Remark 2.2.3).
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• If a > D, then S0 can be taken sufficiently large so as to ensure S0−D >

x∗. Hence, if a > D, then S0 can be taken large enough to ensure that

EI is in the interior of the first quadrant.

Figure 4.1 illustrates the following discussion in the case that a = 2, D = 0.5,

and q = qA.

Figure 4.1: One-parameter bifurcation diagram of System (2.4) where q = qA,

a = 2, and D = 0.5. Solid lines and dash-dot lines represent stable and unsta-

ble equilibria, respectively. The dotted curves and long-dash curves represent

unstable and stable limit cycles, respectively. A grey colouring indicates bi-

ologically irrelevant parameter space. These portions of the plot are still

included to demonstrate the interchanging of stability. An open circle, filled

diamond, and asterisk represent a transcritical bifurcation, subcritical Hopf

bifurcation, and saddle node bifurcation of limit cycles, respectively.
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Fix a > 0 and D > 0. Consider varying S0. First we demonstrate that

a transcritical bifurcation occurs at S0 = D where EE and EME interchange

stability. As this bifurcation does not involve EI , we do not immediately

concern ourselves with the relative ordering of parameters a and D. Assume

S0 is initially 0, but is increased so that S0 < D and |S0 −D| is arbitrarily

small. Hence, EME is locally stable. Moreover, EE and EI do not exist in

the first quadrant. However,

F ′(K) = − K

K + aq(K)

where K is negative, but arbitrarily close to zero. Now q′(0) > 0 and q

is continuous, hence, q(K) < 0. Therefore, F ′(K) > 0 and so JE has two

negative terms on its main diagonal. JE is upper triangular, hence, has

two negative eigenvalues. Therefore, EE is locally asymptotically stable for

S0 < D. If S0 is increased further so that S0 = D, then evidently EME

and EE temporarily coalesce. Assume S0 is increased further still so that

S0 > D. Then both EE and EME exist in the first quadrant. EI , if it exists,

is also in the first quadrant. In either case, x∗ > S0 − D, since S0 − D is

arbitrarily small, but positive. In Section 2.3 it was already demonstrated

that in this case EE is locally asymptotically stable and EME is unstable.

Hence, at S0 = D a transcritical bifurcation occurs where equilibria EE and

EME interchange stability.

Now we demonstrate that a transcritical bifurcation occurs when S0 =

x∗ + D where EE and EI interchange stability. Assume a > D > 0 so

as to ensure the existence of EI . If S0 − D is still an arbitrarily small,

positive number, then x∗ > S0−D. Consider increasing S0 so that S0−D is

smaller than x∗, but only by an arbitrarily small amount. By Remark 2.2.2

F ′(K) < 0, hence, since x∗ and K are arbitrarily close together and F ′ is

continuous, F ′(x∗) < 0. Moreover, F (x∗) < 0, since x∗ > K. Therefore, by

equation (2.6), JI has two real eigenvalues of opposing sign. Hence, EI is
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locally unstable. If we increase S0 more so that x∗ = S0 −D, then EE and

EI temporarily coalesce. If S0 is increased yet again, so that S0 −D > x∗,

but |S0−D−x∗| is arbitrarily small, then, as seen in Section 2.3, EE is now

unstable. Since F ′(K) < 0, then F ′(x∗) < 0. Moreover, F (x∗) is positive, but

arbitrarily close to zero. Hence, by equation (2.6), JI has two negative real

eigenvalues. Therefore, EI is locally stable and so a transcritical bifurcation

occurs at S0 = x∗ +D where EE and EI interchange stability.

Next we demonstrate that System (2.4) undergoes a Hopf bifurcation

when the interior equilibrium occurs at a local extremum of the prey null-

cline. Let x̃ be a local maximum (respectively, minimum) value of the prey

nullcline. By Theorem 3.3.1, the location of the extrema of the prey nullcline

can be influenced by varying S0. Assume S0 is chosen so that |x∗− x̃| is arbi-

trarily small. Further assume x∗ > x̃ (respectively, x∗ < x̃). Then F ′(x∗) is

negative, but arbitrarily small. Hence, by equation (2.6), JI has two complex

eigenvalues with negative real part. As S0 is increased, then, by Theorem

3.3.1, x̃ increases (respectively, decreases). Therefore, if we continue to in-

crease S0, eventually x̃ will equal x∗ and F ′(x∗) will vanish. When x∗ = x̃

equation (2.6) determines that JI has two purely imaginary eigenvalues. As

S0 is increased so that |x∗− x̃| is arbitrarily small while x∗ < x̃ (respectively,

x∗ > x̃), then F ′(x∗) is positive and equation (2.6) determines that JI has

two eigenvalues with positive real parts. Hence, a Hopf bifurcation occurs

when x∗ coincides with a local extrema of the prey nullcline.

The existence of the Hopf bifurcation indicates the existence of periodic

orbits in the phase-space of System (2.4). In Section 4.1 we consider the

criticality of the Hopf bifurcation. If the Hopf bifurcation is subcritical, then

there can exist an unstable periodic orbit surrounding an equilibrium point.

Likewise, if the Hopf bifurcation is supercritical, then there can exist a stable

periodic orbit surrounding an equilibrium point. We will first demonstrate

two facts about the positioning of any periodic orbits.

32



Lemma 4.0.1. Any periodic orbit of System (2.4) surrounds EI .

Proof. Any periodic orbit of the system must enclose one of the equilibria

points. By Theorem 2.1.1, solutions remain non-negative. Hence, the peri-

odic orbit cannot enclose either EE or EME and so the lemma follows.

Lemma 4.0.2. Let Γ be any periodic orbit of System (2.4). Then∮
Γ

div(ẋ, ẏ) dt =

∮
Γ

(x+ a q(x))F ′(x) dt

Proof.∮
Γ

div(ẋ, ẏ) dt =

∮
Γ

[(a q(x) + x)F ′(x)+

(a q′(x) + 1)(F (x)− y) + a q(x)−D] dt

=

∮
Γ

[
(a q(x) + x)F ′(x) +

a q′(x) + 1

a q(x) + x
ẋ+

ẏ

y

]
dt

=

∮
Γ

[
(a q(x) + x)F ′(x) +

d

dt
ln (a q(x) + x) +

d

dt
ln (y)

]
dt

=

∮
Γ

(x+ a q(x))F ′(x) dt

Theorem 4.0.1. Any periodic orbit of System (2.4) surrounds a local ex-

treme value of the prey-isocline F (x).

Proof. Let Γ be a periodic orbit of System (2.4). Suppose F ′(x) is of a single

sign for all x along Γ. Suppose F ′(x) > 0 (respectively, F ′(x) < 0). Then, by

Lemma 4.0.2, the contour integral of the divergence of the vector field along Γ

is positive (respectively, negative). Hence, by the Poincaré criterion [4], Γ is

an unstable (respectively, stable) periodic orbit. By Lemma 4.0.1 the periodic

orbit surrounds EI , hence, F ′(x∗) > 0 (respectively, F ′(x∗) < 0). Therefore,

as seen in Section 2.3, EI is unstable (respectively, stable). However, EI and

Γ cannot both simultaneously be unstable (respectively, stable). Therefore,

F ′(x) cannot be of one sign along all of Γ.
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4.1 Criticality of the Hopf bifurcation

In this section we will demonstrate that in the case of an Ivlev or Monod

response function the Hopf bifurcation is supercritical, but in the case of a

Arctan or Hyperbolic Tangent response function the Hopf bifurcation can

be super-critical or sub-critical, depending on if the extremum is a local

minimum or a local maximum.

In Appendix D the vague-attractor condition Ω was derived. In particu-

lar, if Ω < 0 then the Hopf bifurcation is supercritical and if Ω > 0 then the

Hopf bifurcation is subcritical. If Ω = 0, then a Bautin bifurcation occurs at

the equilibrium point.

Ω , (x∗ +D)F ′′′(x∗)− (x∗ +D)F ′′(x∗)
q′′(x∗)

q′(x∗)
+ 2(aq′(x∗) + 1)F ′′(x∗)

As we have seen in Section 2.2 equation (2.5), when S0 = S0(x∗), then

the equilibrium point (x∗, F (x∗)) coincides with a local extremum of the prey

nullcline.

Hence, we define

Ŝ0 , S0(x∗) = (D + x∗)
x∗ +D − ax∗q′(x)

D − ax∗q′(x∗)
. (4.1)

Now, Ŝ0 is entirely determined by choice of (a,D). Furthermore, x∗ ,

q−1
(
D
a

)
, and as such x∗ is also completely determined by choice of (a,D).

Therefore, the vague-attractor condition of the Hopf bifurcation is a function

entirely of (a,D).

It is a straightforward calculation to see that the vague-attractor condi-

tion at the Hopf bifurcation is

Ω̂ ,
(ax∗2q′′(x∗) + 2D − 2ax∗q′(x∗))((D + x∗)q′′(x∗) + aq′(x∗)2 + q′(x∗))

q′(x∗)(D + x∗)(D − ax∗q′(x∗))

− ax∗2q′(x∗)q′′′(x∗)(D + x∗)

q′(x∗)(D + x∗)(D − ax∗q′(x∗))
. (4.2)
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Moreover, Theorem 4.1.1 will demonstrate the importance of the type of

extremum the equilibrium point coincides with, so for convenience we also

present here the second derivative of the prey nullcline at the equilibrium

point

F ′′(x∗; Ŝ0) = −ax
∗2q′′(x∗) + 2d− 2ax∗q′(x∗)

(D + x∗)(D − ax∗q′(x∗))
. (4.3)

When an Ivlev or Monod response function is used in System (2.4), the

prey nullcline can only have a local-maximum. However, when a Hyperbolic

Tangent or Arctan response function is used, then the prey nullcline can have

a local-maximum and a local-minimum. In this second case, the Hopf bifur-

cation can occur at either extremum. Consider using a Hyperbolic Tangent

response function in System (2.4). In this situation we have many examples

of the Hopf bifurcation occurring at the local minimum as a supercritical

Hopf bifurcation (see (a,D) = (7, 5)) or a subcritical Hopf bifurcation (see

(a,D) = (7, 3)). For the Arctan case take (a,D) = (7, 3) and (a,D) = (7, 1)

for a supercritical and subcritical Hopf bifurcation, respectively. However,

we have only observed a supercritical Hopf bifurcation at a local maximum,

i.e. (a,D) = (7, 6) for Hyperbolic Tangent and (a,D) = (7, 5) for Arctan.

This next theorem shows that at a local maximum, there can only be a

supercritical Hopf bifurcation.

Theorem 4.1.1. Assume either q = qA or q = qH and the Hopf bifurcation

of System (2.4) occurs at a local maximum of the prey nullcline. The Hopf bi-

furcation is then supercritical. If the Hopf bifurcation of System (2.4) instead

occurs at a local minimum of the prey nullcline, then the Hopf bifurcation can

be supercritical or subcritical.

Proof. Assume q = qA or q = qH and that the Hopf bifurcation of System

(2.4) occurs at a local maximum of the prey nullcline. The proof proceeds

in two parts. First, we demonstrate that Ω̂ increases as F ′′(x∗; Ŝ0) increases.

Secondly, we demonstrate that when F ′′(x∗; Ŝ0) = 0, the vague attractor
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condition, Ω̂, is negative. Thus, in order for Ω̂ to be non-negative, F ′′(x∗; Ŝ0)

has to be positive. As a result, if Ω̂ > 0, then F ′′(x∗; Ŝ0) > 0; from which

the theorem follows.

By definition,

Ω̂ , (x∗ +D)F ′′′(x∗; Ŝ0) +

(
2(aq′(x∗) + 1)− (x∗ +D)

q′′(x∗)

q′(xs)

)
F ′′(x∗; Ŝ0).

Since q′(x∗) > 0, a > D > 0, x∗ > 0, and q′′(x∗) < 0, the coefficient of

F ′′(x∗; Ŝ0) is positive. Hence, Ω̂ is an increasing function of F ′′(x∗; Ŝ0).

We begin by taking a > D > 0, in order to ensure the existence of EI .

Since D, x∗, and q(x) − xq′(x) are always positive (by Lemma 1.4.1), the

denominator of F ′′(x∗; Ŝ0) is always positive. Hence, F ′′(x∗; Ŝ0) = 0 if, and

only if,

ax∗2q′′(x∗) + 2D − 2ax∗q′(x∗) = 0. (4.4)

Assume F ′′(x∗; Ŝ0) = 0. Then, as a consequence of Equation 4.4,

Ω̂ = − ax∗2q′(x∗)q′′′(x∗)(D + x∗)

q′(x∗)(D + x∗)(D − ax∗q′(x∗))
.

Since q′(x∗) > 0 and a > 0, sgn(Ω̂) = − sgn(q′′′(x∗)). We now focus on the

two cases based on the choice of response function.

1. Let q = qH . Then q′′′(x∗) = −2a−4(a2 −D2)(a2 − 3D2). If a <
√

3D,

then Ω̂ < 0 and the lemma follows. All that is left to show is that

F ′′(x∗; Ŝ0) 6= 0 for a >
√

3D.

The numerator of F ′′(x∗; Ŝ0) is −ax∗2q′′(x∗)+2ax∗q′(x∗)−2D. Taking

q = qH and D = ua for some 0 < u < 3−1/2, then the numerator of

F ′′(x∗; Ŝ0) is

p(u) , −2a(u(u2 − 1) arctanh(u)2 + (u2 − 1) arctanh(u) + u).
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Now, p(0) = p′(0) = p′′(0) = 0 and p′′′(0) = 4a. Hence, p(u) is initially

zero, but increasing. Moreover, p′(u) = 2a(1− 3u2) arctanh(u)2 which

is positive for all 0 < u < 3−1/2.

The denominator of F ′′(x∗; Ŝ0) is always positive and the numerator

is positive for all D < a <
√

3D, hence, F ′′(x∗; Ŝ0) is positive for all

D < a <
√

3D, which is contrary to the initial supposition.

2. Assume q = qA. Then

q′′′(x∗) =
4(3x∗2 − 1)

π(x∗2 + 1)3

Hence, if x∗ > 1√
3
, then the lemma follows. All that is left is to show

that F ′′(x∗; Ŝ0) 6= 0 for x∗ < 1√
3
. Assume x∗ < 1√

3
. Then

tan

(
πD

2a

)2

<
1√
3

hence, 3D < a. We proceed similarly as in the proof of the case where

q = qH . The numerator of F ′′(x∗; Ŝ0) when q = qA and D = ua for

some 0 < u < 3−1 is 2 a p(u) tan (1/2uπ)−2 π−1 where p(u) is defined

as

u− π tan
(uπ

2

)4

+ 4 tan
(uπ

2

)3

− 2uπ tan
(uπ

2

)2

+ 2 tan
(uπ

2

)
− uπ.

It is a straightforward calculation to see that p(0) = p′(0) = p′′(0) = 0,

but p′′′(u) = 1
2
π3. So p(u) is initially zero and increasing. Consider

p′(u) = 2π tan
(uπ

2

)(
tan
(uπ

2

)2

+ 1

)
r(u)

where

r(u) , −uπ tan
(uπ

2

)2

− uπ +
5

2
tan
(uπ

2

)
.

Now r(0) = 0 and r′(0) = 1/4π. The second derivative of r is:

−π
2

4

(
1 + tan

(uπ
2

)2
)(

6uπ tan
(uπ

2

)2

+ 2uπ + 3 tan
(uπ

2

))
.
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Therefore, r is initially zero and initially increasing, but r′′(u) < 0 for

all 0 < u < 3−1. Hence, p′(u) may change sign at most once. Since p

is also initially zero and initially increasing, p may also change sign at

most once. Now 0 < u < 1
3

and

p

(
1

3

)
=

4

27

(
15
√

3− 8π
)
>

4

27
(15 · 1.7− 8 · 3.15) =

2

45
> 0.

Hence, p(u) > 0 for all 0 < u < 1
3
, and so the numerator of F ′′(x∗; Ŝ0)

is positive for all D < a < 3D.

The denominator of F ′′(x∗; Ŝ0) is always positive, the numerator is

positive for all D < a < 3D, hence, F ′′(x∗; Ŝ0) is positive for all D <

a < 3D, which is contrary to the initial supposition.

When F ′′(x∗; Ŝ0) = 0 we have Ω̂ < 0 and as F ′′(x∗; Ŝ0) increases so too

does Ω̂. Hence, if Ω̂ > 0, then F ′′(x∗; Ŝ0) > 0. Therefore, if F ′′(x∗; Ŝ0) < 0,

then Ω̂ < 0. This concludes the proof that any Hopf bifurcation of System

(2.4) that occurs at a local maximum of the prey nullcline is necessarily

supercritical.

To demonstrate the criticality of a Hopf bifurcation of System (2.4) that

occurs at a local minimum of the prey nullcline, in the cases that q ∈ {qA, qH},
we provide parameter sets that yield appropriate values of Ω̂ and F ′′(x∗; Ŝ0).

In all of these examples, it is assumed that S0 = Ŝ0 and so a and D are the

only free parameters.

Assume q = qA. For a supercritical Hopf bifurcation take (a,D) =

(7, 3). Note that, by (4.3), F ′′(x∗; Ŝ0) = 0.0106 . . . > 0 and, by (4.2),

Ω̂ = −1.4202 . . . < 0. Similarly, for a subcritical Hopf bifurcation take

(a,D) = (7, 3). Note that, by (4.3), F ′′(x∗; Ŝ0) = 0.1998 . . . > 0 and, by

(4.2), Ω̂ = 2.0697 . . . > 0.

Finally, assume q = qH . For a supercritical Hopf bifurcation take (a,D) =

(7, 3). Note that, by (4.3), F ′′(x∗; Ŝ0) = 0.0106 . . . > 0 and, by (4.2), Ω̂ =
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−1.4202 . . . < 0. Similarly, for a subcritical Hopf bifurcation take (a,D) =

(7, 1). Note that, by (4.3), F ′′(x∗; Ŝ0) = 0.7171 . . . > 0 and, by (4.2), Ω̂ =

6.7492 . . . > 0.

Corollary 4.1.1. Assume q = qM or q = qI . The only Hopf bifurcation is

supercritical.

Proof. Let q = qM or q = qI, then by Theorem 3.1.1, there is only one local

extrema of the prey isocline. Since F ′(0) > 0 and F (K) = 0 for either q = qI

or q = qM , this local extrema corresponds to a local maximum. Supose

F ′′(x∗; Ŝ0) = 0. Then, as seen in the proof of Theorem 4.1.1, sgn(Ω̂) =

− sgn(q′′′(x∗)).

1. Assume q = qM . Then q′′′(x∗) = 6a−4(a− d)4 > 0, hence, Ω̂ < 0.

2. Assume q = qI . Then q′′′(x∗) = a−1(a− d) > 0, hence, Ω̂ < 0.

Therefore, as in the proof of Theorem 4.1.1, Ω̂ increases as F ′′(x∗; Ŝ0)

increases and if F ′′(x∗; Ŝ0) = 0, then Ω̂ < 0. Hence, Ω̂ < 0 for F ′′(x∗; Ŝ0) <

0.

4.2 Two-Parameter Bifurcation Diagrams

In the following section we present two-parameter bifurcation diagrams. These

diagrams were numerically calculated using XPPAUT [2] and plotted in Maple

[1].

In Figure 4.2, the dotted line represents the transcritical bifurcation

at S0 = D, the dashed curve represents the transcritical bifurcation at

S0 = D + x∗, the solid curve represents the Hopf bifurcation, and the dash-

dotted curve represents the saddle node bifurcation of limit cycles (cyclic

fold bifurcation). The supercritical Hopf is the bold solid curve and the sub-

critical Hopf is the regular solid curve. The Bautin bifurcation (where the
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Figure 4.2: Two-parameter bifurcation diagram of System (2.4) with q = qA.

The diagram for q = qH is similar (See Figure 4.4). The dotted line is

the transcritical bifurcation S0 = D, the dashed curve is the transcritical

bifurcation S0 = D + x∗, the solid curve is the Hopf bifurcation given by

Ŝ0 = 0, and the dash-dot curve is the saddle-node bifurcation of limit cycles.

supercritical and subcritical Hopf bifurcations meet) is labeled by a diamond.

In particular, the diagram partitions the (S0, D) space into five regions based

on the number and type of equilibria. We now consider the dynamics of the

system as we vary parameters throughout (S0, D) space. In region R1, only

the mutual extinction equilibrium (EME) exists in the first quadrant. As

we leave R1 by passing over the transcritical bifurcation S0 = D into R2

the prey-extinction equilibrium (EE) enters the first quadrant. If we pass

over the next transcritical bifurcation S0 = D + x∗ into region R3, the in-
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terior, co-existence equilibrium (EI) enters the first quadrant. Passing over

the super-critical Hopf into R4 a stable periodic orbit appears around EI

(Lemma 4.0.1) If we continue clockwise around the Bautin bifurcation, we

enter into region R5 by passing over the subcritical Hopf bifurcation and

a new, unstable periodic orbit appears. Now multiple nested periodic or-

bits surround EI (Lemma 4.0.1). Continuing clockwise pivoting around the

Bautin bifurcation, we cross the saddle node bifurcation of limit cycles back

into R3 where the two stable and unstable periodic orbits annihilate. Typ-

ical examples of the phase-space for (S0, D) in each region are presented in

Figure 4.3.

In Figure 4.3 (a), we take (S0, D) ∈ R1 and so only the stable EME equi-

librium exists in the first quadrant. In (b), we take (S0, D) ∈ R2 and so the

stable EE equilibrium now enters the first quadrant, moreover, equilibrium

EME now becomes unstable. In (c), we take (S0, D) ∈ R3 where the stable

EI equilibrium exists in the first quadrant. The two extinction equilibria, EE

and EME, are now unstable. In (d), the predator nullcline x∗ has moved to

the left, past the local maximum of the prey nullcline, and a stable periodic

orbit enters the first quadrant. In this case EI , EE, and EME are unstable. In

(e), the predator nullcline x∗ has moved left of the local minimum of the prey

nullcline, an unstable periodic orbit is now nested inside the outer, stable,

periodic orbit. The coexistence equilibrium EI is now locally stable while the

extinction equilibria, EE and EME, remain unstable. These figures were gen-

erated with (S0, D, a) ∈ {(1, 3, 1), (5, 3, 1), (10, 3, 3.001), (10, 3, 4), (10, 3, 19)}
and q = qH .

4.3 Bifurcation Diagram Comparison

Assume we are modeling a biological system for some fixed S0 and D.

We have chosen our response functions q(x) to be one of the four options
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(a) (S0, D) ∈ R1 (b) (S0, D) ∈ R2

(c) (S0, D) ∈ R3 (d) (S0, D) ∈ R4

(e) (S0, D) ∈ R5

Figure 4.3: Phase space plots for various values of (S0, D). The solid curve

is the prey-nullcine F (x), the dash-dot line is the predator nullcline x∗, and

dashed and dotted curves are unstable and stable periodic orbits, respec-

tively. Circles and diamonds mark stable and unstable equilibria, respec-

tively.
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qM , qI , qA, qH where the parameter a has been fit via least-squares methods,

as previously. In this case we have four different models, we have already

seen the qualitative differences in the phase-space between the models. For

instance, the models parameterised by Monod or Ivlev response functions

only attain one Hopf bifurcation (as a result of Theorem 3.1.1) where as

those models parameterised by Hyperbolic Tangent or Arctan attain two

Hopf bifurcations. Moreover, the second class of models can attain Hopf bi-

furcations of either criticality (as a result of Theorem 4.1.1) – and hence, a

Bautin bifurcation – whereas the former class of models can only attain a su-

percritical Hopf bifurcation. Hence, we have partitioned our four models into

two classes, based on the qualitative structure of their phase-space (moreover,

this partitioning is entirely determined by Theorem 4.1.1 for these response

functions). However, all four models produce quantitatively different results,

as well.
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Figure 4.4: Two-parameter bifurcation diagram for Hyperbolic Tangent

(black) overlaid by the two-parameter bifurcation diagram for Arctan (grey).

Two points in (S0, D) space are marked by empty and filled circles. The dot-

ted line is the transcritical bifurcation S0 = D, the dashed curve is the

transcritical bifurcation S0 = D + x∗, the solid curve is the Hopf bifurca-

tion given by Ŝ0 = 0 from (4.1), and the dash-dot curve is the saddle-node

bifurcation of limit cycles.

While S0 and D are fixed for all four models, the parameter a differs

depending on choice of response function. As a result, since x∗ is implicitly

a function of a, the transcritical bifurcation S0 = D + x∗ and the Hopf

bifurcation (occurring at F ′(x∗) = 0) are quantitatively different among the

four models. This is illustrated by the two points in Figure 4.4. The first

point, marked by an empty circle, is in R3 for Hyperbolic Tangent, but in
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Figure 4.5: An example demonstrating trajectories for each of the two (S0, D)

pairs from Figure 4.4, (S0, D) = (5.5, 1.8) [left] and (S0, D) = (9.5, 1.8)

[right], using the same initial conditions x(0) = y(0) = 2. The solid curve

represents trajectories of the system with q = qH and the dotted curve tra-

jectories of the system with q = qA. The filled circle represents the starting

point for each trajectory.

R2 for Arctan. Similarly, the second point, marked by a filled circle, is in

R4 for Hyperbolic Tangent, but in R3 for Arctan. The trajectories of these

two points are illustrated in Figure 4.5, but the bifurcation analysis has

already determined the result: for the first point, the Hyperbolic Tangent

system predicts convergence to a coexistence equilibrium whereas the Arctan

system predicts extinction of the predator and persistence of the prey; for the

second point, the Hyperbolic Tangent system predicts convergence to a stable

periodic orbit and the Arctan system predicts convergence to a coexistence

equilibrium. Figure 4.4 and the analysis of the regions suggest other possible

confounded predictions.

Suppose one wishes to model some predator-prey interaction. They gather

data and find the predator-response function shape to be decidedly Holling

Type II. The modeler may choose any two response functions that behave

45



comparably well under best least-squares fitting to the data. Given these

conditions, for a large portion of (S0, D) space the predictions of the dif-

ferent models that result could be qualitatively different depending on the

exact functional form of the response function. As discussed previously, one

model may predict coexistence of the predator and prey while another model

might predict rapid extinction of the predator; it is impossible, by data col-

lection and curve fitting alone, for the modeler to distinguish between either

prediction with any confidence.
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Chapter 5

Global Behaviour

The local dynamics of each equilibrium point have been determined in Section

2.3. Here we lay the groundwork for extending these results to claims about

the global stability of the equilibria. We utilise a result of Harrison [5] to

demonstrate that the interior equilibrium is globally asymptotically stable

whenever a certain geometric condition of the location of EI relative to the

local extrema of the prey nullcline is met.

5.1 Globally Stable EI

In [5] a generalised predator-prey system (5.1) is analysed (we have made the

notational substitution H = x and P = y for convenience).

ẋ = a(x)− f(x)b(y)

ẏ = n(x)g(y) + c(y)
(5.1)

The authors assume the existence of an equilibrium (x∗, y∗) interior to

the first quadrant and propose the following Lyapunov function.

V (x, y) ,
∫ x

x∗

n(r)− n(x∗)

f(r)
dr +

∫ y

y∗

b(r)− b(y∗)
g(r)

dr (5.2)
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Let

I1 , {x ∈ [0, S0 −D] |F (x) > F (x̃) for all x̃ > x}

and

I2 , {x ∈ [0, S0 −D] |F (x) < F (x̃) for all x̃ < x}.

We make a couple brief notes about the two sets. Immediately from the

definition we see that if x̄ ∈ (I1 ∪ I2), then F ′(x̄) < 0. If F ′(0) > 0 and F

decreases somewhere on the interval (0, S0−D), then F has a local maximum.

Moreover, since F initially increases and F ′(K) < 0 (Remark 2.2.2), there

is a local maximum of F that is global on the interval [0, S0 −D]. Hence, if

F ′(0) > 0, then I1 = ∅. The set I2, however, is always non-empty. Since,

by Remark 2.2.2, F ′(S0 −D) < 0, (S0 −D) ∈ I2. Since F is continuous, I2

contains some interval of [0, S0 −D]. See Figure 5.1 for an illustration of I1

and I2 for the prey nullcline of System (2.4) with Arctan response function.

Theorem 5.1.1. The interior equilibrium point EI of System (2.4) is globally

asymptotically stable if x∗ ∈ I1 ∪ I2

Proof. First we note that System (2.4) is just a special case of System (5.1)

under the following substitutions:

a(x) = F (x)(aq(x) + x) f(x) = aq(x) + x b(y) = y

n(x) = aq(x)−D c(y) = 0 g(y) = y

Hence, for System (2.4), and equilibrium point EI , the Lyapunov function

from equation (5.2) becomes

V (x, y) =

∫ x

x∗

a q(r)−D
a q(r) + r

dr +

∫ y

F (x∗)

r − F (x∗)

r
dr

=

∫ x

x∗

a q(r)−D
a q(r) + r

dr + y − F (x∗) + F (x∗) ln

(
F (x∗)

y

)
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Figure 5.1: A plot demonstrating the x intervals I1 and I2.

Moreover, the trajectory derivative of V is

V̇ (x, y) = ∂xV ẋ+ ∂yV ẏ

=
aq(x)−D
aq(x) + x

(F (x)− y)(aq(x) + x) + (y − F (x∗))(aq(x)−D)

= (aq(x)−D)(F (x)− F (x∗)).

By definition of I1 and I2, F (x) − F (x∗) is negative for all x > x∗ and

positive for all x < x∗. Since q(x) is increasing for all x > 0 and aq(x∗) = D

we also have that a q(x) − D is positive for all x > x∗ and negative for all

x < x∗. Hence, V̇ (x, y) ≤ 0 for all (x, y) in the first quadrant with equality if,

and only if, x = x∗. Hence, by LaSalle’s invariance principle (see, for example
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[8]), all bounded trajectories converge to the largest invariant subset of

{(x, y) |x = x∗ and y ≥ 0} = {(x∗, F (x∗))}.

Therefore, EI is globally asymptotically stable and the theorem follows.

If the predator nullcline is positioned high enough up on the initial downs-

lope (or far enough down on the final downslope) of the prey nullcline, then

the equilibrium is a global attractor. In Chapter 4, it was observed that

a saddle node of limit cycles occurs where the predator nullcline is on the

initial downslope of F (x). In this case two nested limit cycles can appear

(see, for instance, Figure 4.3 (e)). Therefore, the restriction of x∗ to this

small portion of the initial downslope seems justified. Figure 4.3 (e) gives an

example of a stable EI that is not globally asymptotically stable. Note that

restricting x∗ to I1 ∪ I2 is not a necessary condition, there are examples of

x∗ far enough down the initial down slope that appear to be globally asymp-

totically stable. The following corollary covers the corner case where F (x) is

always non-increasing.

Corollary 5.1.1. Assume F (x) is always non-increasing and there is at most

one point, x̄, where F ′(x̄) = 0. Further, assume EI exists in the interior of

the first quadrant. Then, EI is globally asymptotically stable.

Proof. If F (x) is always decreasing then I1 = I2 = [0, S0 − D] and the

corollary follows immediately from Theorem 5.1.1. Assume there exists a

point x̄ where F ′(x̄) = 0. Then, I1 ∪ I2 = [0, x̄) ∪ (x̄, I2]. If x∗ ∈ (I1 ∪ I2),

then the corollary follows immediately from Theorem 5.1.1. Assume x∗ 6∈
(I1 ∪ I2). Then x∗ = x̄. The trajectory derivative of V is still V̇ (x, y) =

(a q(x) − D)(F (x) − F (x∗)) ≤ 0 with equality if, and only if, x = x∗ = x̄.

Hence, the proof proceeds identically as in Theorem 5.1.1 and the corollary

follows.
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Notice that both Theorem 5.1.1 and Corollary 5.1.1 give conditions for

when the equilibrium EI = (x∗, y∗) in System (2.4) is globally asymptotically

stable. Assume EI is globally asymptotically stable. By Theorem A.1, the

equilibrium (S0−x∗−y∗, x∗, y∗) in System (1.2) is also globally asymptotically

stable.

Consider the two predator response functions qA and qH . When x∗ is

positioned far enough down the initial downslope of F (x) or when x∗ is on

a portion of F (x) where F is increasing, then there is no hope of proving

global asymptotic stability as we have already demonstrated the existence of

periodic orbits for certain parameter sets in these cases. It is natural to ask

what happens if x∗ is positioned high-enough up on the final downslope of

F . In Chapter 4 no saddle node bifurcation of limit cycles was observed for

x∗ in that region of the prey nullcline. In fact, there are examples where x∗

in that region appears to be globally asymptotically stable.

In [12], the authors use an argument based on the Dulac criterion to

demonstrate that in a Rosenzweig-MacArthur predator-prey system where

the isocline takes on a similar shape to F (x) (when parameterised by qA or

qH), that their interior equilibrium is globally asymptotically stable for the

entire final downslope of the prey nullcline. We conjecture that this is also

true in System (2.4), but leave it as a future avenue of discovery.
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Chapter 6

Conclusions and Future Work

We analysed a system of ODEs modeling predator-prey interactions in a

chemostat. We demonstrated the sensitivity of this model to the choice of

predator response function – even when these predator response functions

have the same qualitative shape. In particular, it was shown that while

the corresponding systems undergo the same transcritical bifurcations for

these Holling Type II response functions, the systems can obtain differing

numbers of Hopf bifurcations. When a Monod response function is used

in System (2.4), a unique periodic orbit is observed (see [6]). In this thesis

examples were given where Hyperbolic Tangent or Arctan response functions

can instead result in non-uniqueness of the periodic orbit, i.e. two coexisting

periodic orbits.

Biological relevance of solutions of systems (1.2) and (2.4) was determined

by demonstrating that solutions of the system with positive initial conditions

remain positive and bounded for all positive time. Moreover, we demon-

strated that the original three dimensional system (1.1) is asymptotically

equivalent to the limiting two dimensional system (2.4) with fewer parame-

ters. We derived the three equilibrium points of System (2.4) corresponding

to mutual extinction, predator extinction, and predator-prey coexistence.
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We analysed the local stability of each of these equilibria points. A param-

eter free condition to determine the number of local extrema of the prey

nullcline was derived. This is particularly useful as we demonstrated that a

Hopf bifurcation always occurs at a local extremum of this prey nullcline. In

particular, we show that Hyperbolic Tangent or Arctan response functions

result in a prey-nullcline with a local maximum and a local minimum, while

Monod and Ivlev response functions result in a prey-nullcline with only a

local maximum. We demonstrated that a Hopf bifurcation occurring at a

local minimum of the prey-nullcline can be either supercritical or subcritical

in the case of Hyperbolic Tangent or Arctan response functions. Moreover,

for these systems a Bautin bifurcation can occur. If the Hopf bifurcation

occurs at a local maximum of the prey-nullcline for System (2.4) with Hy-

perbolic Tangent, Arctan, Monod, or Ivlev response functions, then the Hopf

bifurcation is always supercritical. The dependence of these extrema on pa-

rameters was investigated and it was demonstrated that as S0 increases, local

maxima move up and to the right while local minima move up and to the

left. Another parameter free condition was presented that demonstrates that

System (2.4) for Arctan, Hyperbolic Tangent, or Ivlev response function has

a prey nullcline with at most one inflection point. The prey nullcline of sys-

tem (2.4) for the Monod response function was directly shown to have no

inflection points.

We were able to demonstrate the global stability of the coexistence equi-

librium for a section of parameter space and provide motivation to extend

this result. Moreover, a bifurcation theory approach led to characterising the

number of periodic orbits under various partitions of parameter space, but

the exact number of coexisting periodic orbits was not analytically demon-

strated. However, we conjecture that System (2.4) with Arctan or Hyperbolic

Tangent response function can have at most two periodic orbits.

The two dimensional system (2.4) is just the three dimensional system
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(1.2) evaluated on the simplex s + x + y = S0. Trajectories of System (1.2)

converge exponentially to the simplex. We demonstrated that globally stable

equilibria in the two dimensional system (2.4) have corresponding global

equilibria on the simplex in the three dimensional system (1.2). Hence, the

results determining the criticality of the Hopf bifurcation, the local stability

of equilibria, and the number of periodic orbits all have equivalent results on

the simplex s+ x+ y = S0 in the three dimensional system (1.2).

Analysis of the four response functions considered suggests topological

equivalence of models based on the number of extrema, as determined by

the parameter-free condition of Theorem 3.1.1. It would be interesting to see

if this equivalence could be rigorously shown to be true, either in the case

of the chemostat predator-prey system considered here or the Rosenzweig-

MacArthur predator-prey system considered elsewhere (see [11, 13] for in-

stance).

It was also observed, by way of bifurcation theory, that differing numbers

of local extrema in the prey nullcline lead to differing sets of possible qual-

itative dynamics. However, even in the case of two response functions that

produce the same number of local extrema in the prey nullcline, by overlay-

ing two-parameter bifurcation diagrams one can see that the same choice of

parameters and initial conditions can produce qualitatively different individ-

ual predictions (see Figure 4.4). This should be a real warning for modelers.

By least-squares curve fitting the two functions may look entirely the same,

and fit experimental data just as well, but for particular nutrient saturations

(S0) and flow-rates (D) the model with one response function may predict

coexistence of predator and prey while another may predict rapid extinction

of the predator.

Under Theorem 3.1.1 it is demonstrated that the Monod and Ivlev re-

sponse functions can have at most one local extremum in the prey nullcline

and Hyperbolic Tangent and Arctan can have at most two local extrema
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in the prey nullcline. It is natural to ask how many total roots the H(x)

condition from Theorem 3.1.1 can have for Holling Type II q(x) satisfying

Definition 1.4.1. We conclude with the following intriguing, though admit-

tedly not the most biologically relevant, example.

Example 6.0.1. Consider q3(x) , qM(x) + 2qH(x). Then, as demonstrated

in Figure 6.1, the H(x) condition from Theorem 3.1.1 has two roots. Hence,

F (x) parameterised by q = q3 can have at most three local extrema (see

Figure 6.2).

Figure 6.1: A plot of H(x) with q(x) = q3(x) , qM(x) + 2qH(x). The plot

illustrates that H(x) has two positive roots, hence, the prey isocline under

q3 has at most three local extrema.

Let x1 and x2 be the two positive roots of H(x) under q3 (numerically,

x1 = 0.1724313 . . . and x2 = 0.6204676 . . .). Then K̂(x1) is a critical point
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of K̂. Hence, for any value between K̂(x1) and K̂(x2) a horizontal line

will have the maximum number of intersections with the K̂(x) curve (three,

in this case). Hence, we define K3 , 1
2

(
K̂(x1) + K̂(x2)

)
. Consider the

plot of F (x;K3) with q = q3, as shown in Figure 6.2. The prey nullcline

has three local extrema, hence, the system can undergo three different Hopf

bifurcations (by (2.6)).

This raises a natural question, is there an upper limit on the possible

number of roots of H(x) for a response function q(x) satisfying Definition

1.4.1?

Figure 6.2: A plot of the prey nullcline of F (x;K3) where q = q3, as predicted

by Figure 6.1, the prey nullcline exhibits three local extrema. In this plot

a = 0.8 and K = S0 −D = K3 ≈ 4.35875306.
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Appendix A

Smith and Waltman

Convergence Theorem

A theorem from [14] is used to demonstrate that a globally attractive equi-

librium (x∗, y∗) interior to the first quadrant of the limiting system (2.4) is a

globally attractive equilibrium (S0− x∗− y∗, x∗, y∗) in the first octant of the

original system (1.2)

Theorem A.1. (Smith and Waltman, 1995, [14]) Consider the two systems

of ODEs of the form

z′ = Az, y′ = f(y, z), (A.1)

and

x′ = f(x, 0) (A.2)

where z ∈ Rm, (y, z) ∈ D ⊂ (Rn × Rm), and x ∈ Ω = {x : (x, 0) ∈ D} ⊂ Rn.

Assume that D is positively invariant for (A.1), and (A.1) is dissipative. Let

(y(t), z(t)) be a solution of (A.1), and assume the following hypotheses are

satisfied:

1. All of the eigenvalues of A have negative real parts
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2. Equation (A.2) has a finite number of equilibria in Ω, each of which is

hyperbolic for (A.1). Denote these equilibria by E1, . . . , Ep.

3. The dimension of the stable manifold of Ei, denoted M+(Ei), is n for

1 ≤ i ≤ r, and the dimension of the stable manifold of Ej is less than

n for (r + 1) ≤ j ≤ p.

4. Ω = ∪pi=1M
+(Ei).

5. Equation (A.2) does not possess a cycle of equilibria.

Then, for some i, limt→∞(y(t), z(t)) = (Ei, 0).

Proof. Assume EI = (x∗, y∗) in System (2.4) exists in the interior of the first

quadrant. Further, assume EI is a globally asymptotically stable equilibrium

point. We demonstrate that (S0−x∗−y∗, x∗, y∗) is a globally asymptotically

stable equilibrium point in System (1.2).

Let z = S0 − (s + x + y). Then, System (1.2) is then just a special case

of System (A.1):

ż = −Dz
ẋ = (−D + S0 − z − x− y)x− a y q(x)

ẏ = y (a q(x)−D)

(A.3)

z(0) ≤ S0, x(0) ≥ 0, y(0) ≥ 0.

A closed form for z can immediately be obtained, demonstrating that

System (A.3) is dissipative and when z = 0 trajectories satisfy System 2.4.

In the notation of the theorem statement from [14], n = 2 and m = 1.

Hence, 1. is trivially satisfied as A is the 1× 1 matrix [−D] with D > 0 (and

so has one real, strictly negative eigenvalue).

System 2.4 has three equilibria. For notational ease, define E1, E2, E3 =

EI , EE, EME, respectively. In Section 2.3 it was demonstrated that when EI
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exists in the interior of the first quadrant all equilibria are hyperbolic, hence,

2. is satisfied.

Equilibrium E1 is a global attractor for System (2.4), so the dimension

of its stable manifold is 2 = n. The other two equilibria, E2 and E3, are

locally unstable saddles, hence, the dimension of their stable manifolds are

both 1 < n = 2. Therefore, 3. is satisfied.

Hypothesis 4. is satisfied, since any trajectories on Ω converge to one of

the three equilibria E1, E2, E3.

Finally, the stable manifold of E2 is the line {(x, y) | y = 0 and x ≥ 0}.
Moreover, the stable manifold of E3 is the line {(x, y) | y ≥ 0 and x = 0}.
Hence, E2 and E3 cannot form a chain of equilibria. Since E1 is locally

asymptotically stable, it also is not a part of any chain of equilibria. Hence,

5. is satisfied.
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Appendix B

Counting Prey Nullcline

Extrema

This appendix contains the proofs of the Corollaries from Section 3.1. In

particular, these corollaries use Theorem 3.1.1 to determine the number of

local extrema the prey nullcline exhibits under various predator response

functions (Monod, Ivlev, and Hyperbolic Tangent are all shown here, a proof

for Arctan is presented in Section 3.1). Equation (3.2) is repeated here for

convenience.

H(x) , x2q′′(x) + 2(q(x)− xq′(x))

Corollary B.1. The prey nullcline (2.3) with Monod response function has

at most one local extremum.

Proof. Let q = qM . Taking H(x) as defined in (3.2) gives

H(x) =
2x3

(1 + x)3
.

Recognising H(0) = 0. Now H ′(x) = 6x2

(x+1)4
> 0 hence, by Theorem 3.1.1,

the corollary follows.
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Corollary B.2. The prey nullcline (2.3) with Ivlev response function has at

most one local extremum.

Proof. Let q = qI . Taking H(x) as defined in (3.2) gives

H(x) = 2− e−x
(
x2 + 2x+ 2

)
.

Again we can see that H(0) = 0. Now H ′(x) = x2e−x > 0. Hence, by

Theorem 3.1.1, the corollary follows.

Corollary B.3. The prey nullcline (2.3) with Hyperbolic Tangent response

function has at most two local extrema.

Proof. Let q = qH . Taking H(x) as defined in (3.2) gives

H(x) = 2x2 tanh(x)3 + 2x tanh(x)2 + 2(1− x2) tanh(x)− 2x.

As in the proof of Corollary 3.1.1 we see that H ′(0) = H ′′(0) = 0 and

H ′′′(0) = −2 < 0. Now,

H ′(x) = −2x2
(
3 tanh(x)4 − 4 tanh(x)2 + 1

)
which has one positive root at arctanh

(
1√
3

)
(since the second factor in H ′(x)

is quadratic in tanh(x)2). Furthermore H(x) is eventually positive, since

H(ln(9)) =
134480− 13284 ln(3)− 25920 ln(3)2

68921

>
56720− 13284

√
3

68921
(Since ln(x) <

√
x)

>
30152

68921
(Since

√
3 < 2)

Hence, H(x) initially decreases, has at most one extremum for positive

x, and is eventually positive for positive x. Therefore, H(x) has exactly one

positive root, and so by Theorem 3.1.1 the corollary follows.
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Appendix C

Counting Prey Nullcline

Inflection Points

This appendix contains proofs for the number of inflection points that the

prey nullcline has when parameterised by Ivlev and Hyperbolic Tangent re-

sponse functions. Proofs for when the prey nullcline is parameterised by

Monod and Arctan response functions were given in Section 3.2.

The definition of η(x) is repeated here for convenience.

η(x) , x(q(x)− xq′(x))q′′′(x) +
3

2
q′′(x)(2(q(x)− xq′(x)) + x2q′′(x)).

Theorem C.1.

i. F (x) parameterised by q(x) = qI(x) has at most one inflection point

iii. F (x) parameterised by q(x) = qH(x) has at most one inflection point

Proof. i. η(x) = 1
2
e−xp(x) where p(x) , (x2 + 4x + 6)e−x + 2x − 6). Since

e−x > 0, η(x) = 0 if, and only if, p(x) = 0. It is straightforward to check

that p(0) = p′(0) = 0. Furthermore, p′′(x) = x2e−x > 0, hence, p(x) > 0 for

all x > 0. So, by Lemma 3.2.1, the theorem follows.
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iii. In the case of q(x) = qH(x),

η(x) =
2p(x)(tanh(x) + 1)(1− tanh(x))

e4x + 2e2x + 1

where p(x) , 2xe4x−3e4x+4x2e2x+6e2x−2x−3. Hence, η(x) = 0 if, and only

if, p(x) = 0. Now p(0) = p′(0) = 0 and p′′(x) = 16e2x(x2+2x+2+2e2x(x−1)).

So p′′(x) is positive if, and only if, that second factor

h(x) , x2 + 2x+ 2 + 2e2x(x− 1)

is positive. Similarly, we see that h(0) = h′(0) = 0. Hence, η(x) > 0 if,

and only if, h′′(x) > 0. Furthermore, h′′(x) = 8xe2x + 2 which is evidently

positive for all x > 0. Hence, by Lemma 3.2.1, the theorem follows.

63



Appendix D

Deriving the Vague Attractor

Condition

In this appendix we derive the “vague attractor condition” Ω. In particular,

if ω < 0, then the Hopf bifurcation is supercritical and if ω > 0, then the

Hopf bifurcation is subcritical. This lengthy calculation follows the formula

of [10] and results in a vague attractor condition identical to that derived in

[13] for a similar predator-prey model.

Lemma D.1. Let A be a matrix with complex eigenvalues α± iβ with corre-

sponding eigenvectors P< ± iP=. Then P = [P< | P=] is an invertible matrix

with

P−1AP =

[
α β

−β α

]
Proof. Assume A and P are defined as in the lemma statement. Then

I = P−1P = [P−1P< | P−1P=].

Hence, P−1P< = [1, 0]T and P−1P= = [0, 1]T . Furthermore, A(P< + iP=) =

(α + iβ)(P< + iP=), hence, by collecting real and imaginary parts of either
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side: AP< = αP< − βP= and AP= = βP< + αP=. Hence,

P−1AP = [P−1AP< | P−1AP=]

= [P−1(αP< − βP=) | P−1(βP< + αP=)]

=

[
α

[
1

0

]
− β

[
0

1

] ∣∣∣∣∣ β
[

1

0

]
+ α

[
0

1

]]

=

[
α β

−β α

]

Let S0 be in a neighbourhood of Ŝ0, then F ′(x∗) is sufficiently smaller

in magnitude than the positive quantity 4aF (x∗)q′(x∗)/(D + x∗). By equa-

tion (2.6), the eigenvalues of the Jacobian Matrix JI corresponding to the

coexistence equilibrium EI for S0 in such a neighbourhood are

λI+,− =
D + x∗

2

(
F ′(x∗)± i

√
4aF (x∗)q′(x∗)

D + x∗
− F ′(x∗)2

)
with corresponding eigenvectors

VI+,− =

[
D + x∗

λI−,+

]
.

Hence, by Lemma D.1, the similarity transform P can be constructed by

taking real and imaginary parts of the eigenvector corresponding to λI+ .

This allows us to linearise System (2.4) so that the linear part is in real

Jordan canonical form:[
ẋ

ẏ

]
= JI

[
x

y

]
+NL

= P

[
α β

−β α

]
P−1

[
x

y

]
+NL

P−1

[
ẋ

ẏ

]
=

[
α β

−β α

]
P−1

[
x

y

]
+ P−1NL
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where

α =
F ′(x∗)(D + x∗)

2
, β =

D + x∗

2

√
4aF (x∗) q′(x∗)

D + x∗
− F ′(x∗)2,

(the real and imaginary parts of λI+), NL is the collection of non-linear

(super-linear) terms, and the transition matrix

P =

[
D + x∗ 0

α −β

]
.

Under the change of variables [u | v]T = P−1[x | y]T the linearisation of

System (2.4) becomes [
u̇

v̇

]
=

[
α β

−β α

][
u

v

]
.

Under the same change of variables the vector field from System (2.4)

becomes

ẋ
∣∣
[x|y]T =P [u|v]T

= (F (u (D + x∗))− αu+ βv)·

(a q(u (D + x∗)) + (D + x∗)u) , f(u, v)

ẏ
∣∣
[x|y]T =P [u|v]T

= (αu− βv) (a q(u (D + x∗))−D) , g(u, v)

Therefore, by [10] Formula 4.2 the vague attractor condition can be com-

puted as

W ′′′ ,
3π

4|β|
(
∂3
uuuf + ∂3

uvvf + ∂3
uuvg + ∂3

vvvg
)

+
3π

4|β|2
(
−∂2

uvf
(
∂2
uuf + ∂2

vvf
)

+ ∂2
uvg
(
∂2
uug + ∂2

vvg
))

+
3π

4|β|2
(
∂2
uuf∂

2
uug − ∂2

vvf ∂
2
vvg
)
.

evaluated at [u|v]T = P−1[x∗|F (x∗)].
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This calculation yields W ′′′ = 3π
4|β|

x∗+D
aF (x∗)q′(x∗)

Ω where

Ω , (x∗ +D)F ′′′(x∗)− (x∗ +D)F ′′(x∗)
q′′(x∗)

q′(x∗)
+ 2(aq′(x∗) + 1)F ′′(x∗)

which agrees with (up to a change in notation) the quantity derived in

Wolkowicz [13] under a similar system to System (2.4).
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