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Lay Abstract 

 

The dystrophin-associated protein complex (DAPC) connects the interior and 

exterior of muscle cells. Activation of AMP-activated protein kinase (AMPK) 

increases the expression of the DAPC in skeletal muscle. We sought to determine 

whether AMPK was necessary for DAPC expression in skeletal muscle. Fast and 

slow muscles from normal mice, as well as from those deficient in skeletal muscle 

AMPK (MKO) were analyzed. We found DAPC levels and localization were 

similar between both groups, with the exception of nNOS, which was enriched at 

the muscle membrane in MKO muscles. Regulators of the DAPC were also not 

affected by the loss of AMPK. However, genes important for the production of 

muscle were significantly diminished in MKO muscles. Furthermore, we 

observed decrements in utrophin at the muscle membrane selectively in slow 

MKO muscles. Our work indicates that AMPK is not essential for the DAPC 

expression in skeletal muscle, however it is required for preserving utrophin 

levels in slow, oxidative muscles. 
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Abstract 

  

The dystrophin-associated protein complex (DAPC) provides a mechanical link 

between the intracellular cytoskeleton and extracellular matrix, serving as a 

mechanosensor and signal transducer across the sarcolemma. Pharmacological 

stimulation of AMP-activated protein kinase (AMPK) induces the expression of 

DAPC components in skeletal muscle, whereas physiological reductions in 

AMPK are associated with DAPC dysfunction. We sought to determine whether 

AMPK was necessary for the maintenance of DAPC expression in skeletal muscle. 

Fast glycolytic extensor digitorum longus (EDL) and slow oxidative soleus (SOL) 

muscles from wild-type (WT) mice, as well as from littermates deficient in both 

isoforms of the AMPK-β subunit in skeletal muscle (MKO) were analyzed. 

DAPC mRNA levels, as well as protein expression and localization were similar 

between genotypes, with the exception of nNOS, which displayed a compensatory 

sarcolemmal enrichment in MKO muscles. The content of transcriptional and 

post-transcriptional regulators of the DAPC, such as PGC-1α and KSRP, were 

also not affected by the loss of AMPK. However, MyoD and myogenin 

expression was significantly diminished in MKO muscles, which is consistent 

with previous reports of myopathy in these animals. Furthermore, we observed 

decrements in extrasynaptic utrophin expression selectively in MKO SOL 

muscles, despite an adaptive accumulation of PGC-1α at the sarcolemmal 
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compartment. Collectively the evidence indicates that AMPK is sufficient, but not 

essential for the maintenance of DAPC expression in skeletal muscle. However, 

AMPK is required for preserving extrasynaptic utrophin levels in slow, oxidative 

muscles, which underscores the role of AMPK in the gene expression of this 

disease modifying protein. 
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1. Introduction to Skeletal Muscle 

i) Structure and function 

Skeletal muscle is one of the largest organ systems in our body, and 

constitutes approximately 40% of human body mass
1
. Muscle is responsible for 

posture and locomotion, as well as other important functions in health and 

disease, such as glucose and fat metabolism
2
. This organ is composed of 

multinucleated cells called myofibers or myocytes. Within the myofibers are 

sarcomeres, the basic functional units in the cell, which provide the apparatus for 

contraction. Sarcomeres consist of the contractile filaments actin and myosin, 

which are interwoven most densely towards the center and less densely towards 

the ends of each sarcomere, giving the appearance of dark and light striations, 

respectively. The border at each end of the sarcomere is called the z-line, and 

contains structural intermediate filaments that run perpendicular to the contractile 

filaments to provide stability for the unit. The intermediate filaments extend 

beyond the sarcomere towards the sarcolemma in a chain of proteins containing 

desmin, filamentous actin (F-actin), and dystrophin, finally terminating at the 

dystrophin- and integrin-associated protein complexes. These dynamic structural 

chains create a means of lateral force transmission and stability for the myofiber
3
,  

ii) Skeletal muscle fiber types 

There are two major versions of the myosin heavy chain (MHC) isoform 

contained in myofibers, which are characterized by their speed of contractility. 
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They are the slow-twitch type I, and the fast-twitch type II. Fast-twitch fibers can 

further be classified into type IIA and IIX fibers in humans, and type IIA, IIX and 

IIB in rodents
2
.  There are many additional components that contribute to the 

unique characteristics of each fiber type. Type I fibers have an oxidative profile, 

possessing high mitochondrial content, capillary density and sensitivity to 

insulin
4,5

. Type IIA fibers are fast-twitch, but contain a similar oxidative profile to 

type I fibers. Meanwhile, IIX/B fibers are fast-twitch and contain a glycolytic 

profile, with less mitochondrial content and capillary density. Skeletal muscles 

possess varying proportions of these fiber types. For example, in mice the 

distribution of type I, IIA, IIX and IIB in the extensor digitorum longus (EDL) 

muscle is < 1% type I, ~8% IIA, ~22% IIX and ~66% IIB, while the soleus (SOL) 

muscle is ~37% I, ~56% IIA, ~6% IIX and 0% IIB
6
. 

iii) Benefits of the slow, oxidative myofiber program 

Skeletal muscle fiber type can influence the resistance to certain 

neuromuscular diseases and myodegenerative disorders. For example, patients 

with Duchenne muscular dystrophy (DMD) exhibit quicker myofiber 

degeneration and death in type II fibers, while type I fibers are more resistant to 

the dystrophic pathology
7,8

. Similarly, myotonic dystrophy type 2 (DM2) patients 

demonstrate exacerbated atrophy in type II fibers
9
. Likewise, the loss of skeletal 

muscle mass and strength due to aging is characterized by greater atrophy of type 

II muscle fibers
10

. In contrast, patients with myotonic dystrophy type I (DM1) 
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display greater myofiber atrophy in type I, as compared to type II muscle fibers
9
. 

Additionally, muscle disuse in humans has been reported to cause more 

pronounced muscle wasting in type I muscle fibers
11,12

. The precise mechanism 

that creates resilience to the dystrophic pathology in slower, more oxidative 

muscles is unknown. However, numerous factors that are disparate between fiber 

types, such as the differences in intracellular calcium dynamics, sarcolemmal 

protein composition, contractile apparatus, molecular signalling infrastructure, as 

well as oxygen utilization and redox characteristics could all contribute to this 

physiological paradigm
13–17

.  

2. The Dystrophin-Associated Protein Complex 

The dystrophin-associated protein complex (DAPC) is a scaffold of 

proteins along the sarcolemma of muscle cells. The DAPC links the intracellular 

cytoskeleton with the extracellular matrix, thus making the complex integral to 

structural stability and integrity, signalling and mechanotransduction, and force 

transmission
18,19

. The DAPC can be subdivided into multiple subcomplexes and 

components on the subsarcolemmal, transmembrane and extramembrane aspects 

of skeletal muscle. 
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Figure 1. The dystrophin-associated protein complex (DAPC). Dystrophin 

binds to the dystrophin-associated protein complex (DAPC) at the sarcolemma 

through its C terminus. The DAPC is comprised of sarcoplasmic transmembrane 

and extracellular proteins. The N terminus of dystrophin binds to the cytoskeleton 

through F-actin. Therefore, the DAPC provides a strong mechanical link between 

the intracellular cytoskeleton and the extracellular matrix, acting also as a 

mechanosensor and signal transducer across the sarcolemma. Figure adapted from 

Davies K. E. & Nowak K. J. Nat. Rev. Mol. Cell Bio. (7), 762-773 (2006)  
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i) Structure and function of the DAPC 

 Dystrophin is a cytoskeletal protein transcribed by the DMD gene, which 

is defective in Duchenne Muscular Dystrophy (DMD). Dystrophin has several 

tissue specific promoters, including in the brain , muscle , and purkinje  cells, 

reflecting the tissue distribution of dystrophin expression
20

. The muscle promoter 

drives high levels of expression of the largest dystrophin isoform (427 kDa) in 

striated and cardiac muscle
21

. Dystrophin contains a N-terminal acting binding 

domain, adjacent to a central rod domain containing spectrin-like repeats, and a  

cysteine rich C-terminus that allows for assembly of the DAPC
22

. Interestingly, 

most of the 24 rod-like repeat regions appear to be dispensable, as a dystrophin 

molecule with as little as 8 repeats maintains normal function
23

. The structure of 

these repeat regions in concert with the N-terminal actin binding sites allow 

dystrophin to act as a “molecular shock abosorber”
24

 and is responsible for 

properly transmitting forces between the cytoskeleton and the sarcolemma during 

muscle contraction
3,25

. 

 Along with dystrophin, the core of the DAPC is made up by the heavily 

glycosylated dystroglycans (DG). Together, the transmembrane β-DG and 

extrasarcolemmal α-DG are able to link dystrophin to laminin-2 (α2,β1,γ1), and 

thus connect the complex to the basement membrane. Both DGs are produced 

from the same post-translationally modified peptide, the removal of which is 
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embryonically-lethal
26

. Indeed, the lack of any naturally occurring mutations 

suggests that DG function is indispensable for survival.  

The sarcoglycan (SG) subcomplex is adjacent to the dystroglycans and 

consists of five members: α-, β-, γ-, δ-, and ϵ-SG. γ- and δ-SG appear to be linked 

most closely to dystrophin and β-DG, respectively
27

. Mutations causing removal 

of one sarcoglycan causes loss of the others and results in a dystrophic phenotype 

known as limb girdle muscular dystrophy (LGMD). The four types of LGMD 

correspond to mutations of one of α-, β-, γ-, or δ-SG
28,29

. 

 Also on the subsarcolemmal aspect of the DAPC is neuronal nitric oxide 

synthase (nNOS). nNOS exists in 4 protein variants, nNOSα , nNOSβ, nNOSγ, 

and nNOSμ, in non-vascular tissue
30

. nNOSα and nNOSμ contain a PDZ 

(postsynaptic density-95/discs large/zona occludens-1 homology) domain which 

allows binding of the enzyme to the cell membrane, allowing for quick activation 

due to calcium influx. These two variants exhibit the highest catalytic activity. 

However nNOSμ is the predominantly expressed form in differentiated skeletal 

muscle and is bound to the DAPC
18,31,32

. Meanwhile, nNOSβ and nNOSγ, lacking 

a PDZ domain, are cytosolic enzymes and are less enzymatically active variants
33

. 

nNOS produces nitric oxide (NO) at the muscle membrane, thereby allowing local 

vasodilation in skeletal muscle during contractile activity. nNOS is joined to 

dystrophin through its adjacent connection with α1 and β1 syntrophin. Each of the 

syntrophins contain two pleckstrin homology domains, which are found in many 
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signalling proteins. The syntrophins act as modular adaptors that recruit signalling 

proteins to the DAPC, including nNOS, Na
+
-K

+
-ATPase channels, and 

serine/threonine kinases
34

 such as stress-activated protein kinase-3
35

. Thus, these 

proteins exhibit the bimodal role of the DAPC as both a structural scaffold and 

signalling apparatus vital to maintaining healthy myofibers. There are other 

components of the DAPC such as sarcospan, α-dystrobrevins, syncoilins, and 

calveolin-3. However, the structure and function of these molecules are beyond 

the scope of this review and have been detailed elsewhere
18,19,36

. 

ii) Expression patterns of the DAPC in different fiber types 

For years it has been known that slower, more oxidative muscle fibers in 

DMD patients are more resistant to the dystrophic pathology than faster, 

glycolytic fibers
7
. Presumably, the elevated expression of DAPC in slow 

oxidative muscles confers this protective benefit to muscles exhibiting more slow-

twitch, oxidative fiber
37

. This pattern remains true in the mdx mouse model of 

DMD
38

. The exact regulatory mechanisms which promote elevated DAPC 

expression are unknown, yet are presumably linked to the oxidative phenotype 

and/or those that maintain characteristics of continuous/tonic contractile activity 

13–16
.  

iii) Protection of slow fibers in neuromuscular disorders  

In addition to elevated DAPC levels, it is hypothesized that the primary 

cause of the heightened protection in slower, more oxidative muscles is their 
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enhanced utrophin expression, which demonstrates a greater extrasynaptic 

abundance along the sarcolemma
39–41

. Utrophin is an endogenous structural and 

functional homologue of dystrophin
24

. The main difference between utrophin and 

dystrophin is their contrasting expression pattern. While dystrophin is expressed 

along the length of the sarcolemma, utrophin A is confined to the myotendinous 

and neuromuscular junctions
42

. Its transgenic overexpression in muscle rescues 

dystrophin-null mice
43

, while dystrophin-utrophin double knockout (dKO) mice 

present a much more severe phenotype and limited lifespan
44,45

. Interestingly, 

pharmacological activation of slower, more oxidative characteristics, includes 

increased utrophin expression and enhanced protection against contraction-

induced damage
46,47

. Indeed, AMPK activation to dKO animals caused the slow, 

oxidative phenotype transition in the absence of any functional improvements
47

. 

These studies strongly suggest that utrophin is an important component to the 

protection afforded dystrophic skeletal muscle in the slower, more oxidative 

myocellular environment.  

 Although there is currently no cure for the DAPC deficiency observed in 

numerous muscular dystrophies and myopathies, recent pre-clinical work has 

attempted to leverage the benefits of the slow, oxidative myofiber phenotype 

through genetic or pharmacological interventions. PGC-1α is a powerful mediator 

of muscle plasticity and a promoter of the slow, oxidative myofiber program in 

skeletal muscle
48,49

. Elevated expression of PGC-1α in skeletal muscle of mdx 
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mice resulted in a greater proportion of slower fiber types, an improved 

histological profile, and elevated mitochondrial biogenesis in addition to 

augmented utrophin expression levels
50,51

. Another pharmacological simulator of 

the slow, oxidative muscle phenotype is the naturally occurring polyphenol 

resveratrol (RSV). RSV elicits the slow, oxidative myogenic program partly by 

stimulating silent mating type information regulator 2 homolog 1 (SIRT1)
52,53

. 

Chronic administration of RSV has been shown to improve skeletal muscle 

histology, increase the mRNA levels of utrophin, SIRT1, and PGC-1a, as well as 

the expression of slow MHC isoforms in mdx mice
54,55

. Together these studies are 

important proof-of-principle that the slow, oxidative myofiber program can confer 

dystrophic resistance to skeletal muscles, and this protective benefit can be 

induced by therapeutically available compounds. 

 5’ AMP-activated protein kinase (AMPK) is a critical regulator of muscle 

metabolism and phenotype. AMPK plays an important role in shifting towards a 

slower oxidative phenotype, through phosphorylation-mediated changes in the 

expression and/or activity of proteins associated with slower, more oxidative 

muscle fibers. Recent evidence points towards the beneficial effects of AMPK 

activation in dystrophic muscle, including elevation of DAPC components and 

utrophin, concomitant with a shift towards the slow oxidative 

phenotype
16,46,47,56,57

. Together, these investigations reveal the numerous benefits 
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of the slow oxidative muscle phenotype, and the potential therapeutic benefit of 

promoting this myofiber program in neuromuscular disorders, such as DMD. 

 

3. AMPK in Metabolic Regulation 

i) AMPK subunit expression 

Adenosine monophosphate-activated protein kinase (AMPK) is a 

heterotrimeric molecule, possessing catalytic α, scaffolding β, and regulatory γ 

subunits. Each AMPK subunit has multiple isoforms (i.e., α1, α2, β1, β2, γ1, γ2 

and γ3) leading to a variety of possible αβγ heterotrimers. This complexity of 

AMPK expression is compounded by the fact that genes for AMPK isoforms exist 

on 5 separate chromosomes
58–60

. AMPK subunits also show differential 

expression in different tissues. α1 is uniformly expressed through multiple tissues 

including heart, liver, kidney, spleen and skeletal muscle. α2 is highly abundant in 

skeletal muscle and to a lesser degree, heart and liver, with only small amounts 

being detectable in other tissues
58,61,62

. β1 subunits show similar ubiquity in 

expression as α1 subunits, but are preferentially expressed in skeletal muscle and 

heart
62

. Similar to α1 and β1, γ1 is ubiquitously expressed. γ2 expression is 

highest in the brain, and is expressed to a lesser extent in skeletal muscle. γ3 has 

the most restricted expression, being largely confined to skeletal muscle
63

. Some 

evidence suggests that γ3 is expressed only in type IIb fast-twitch fibers, with no 

expression in the slow oxidative soleus which expresses type I fibers
64

. Type IIa 
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fast-twitch fibers display intermediate levels of γ3
65

. In skeletal muscle, the 

α2,β2,γ1 AMPK complex is the most common, comprising ~70% of AMPK 

expression. Moreover, the isoforms composing the α2,β2,γ1 complex make up the 

vast majority of AMPK subunits in muscle human and rodent tissue
59

. 

ii) AMPK structure and regulation 

The α subunit of AMPK includes a N-terminal kinase domain that is 

imperative for the catalytic function of an enzyme. The β subunit contains a 

glycogen binding domain, as well as a motif known as the αγ subunit interacting 

domain (αγ-SID). The αγ-SID is responsible for binding both the α and γ subunits. 

For this reason the β subunit is imperative to the formation of functional αβγ 

heterotrimers
58–60

. During times of energy stress, cellular adenosine diphosphate 

(ADP) and adenosine monophosphate (AMP) concentrations rise. ADP and AMP 

replace sites on the γ subunit that normally bind ATP. Replacement of ATP by 

ADP/AMP at these sites promotes phosphorylation of the threonine-172 (Thr172) 

residue of the α subunit via upstream kinases, thereby increasing AMPK activity 

by almost 100-fold
66

. The major upstream kinase pathways in mammals are the 

liver kinase B1 – STE20 related adaptor – Mouse protein 25 (LKB1-STRAD-

MO25) complex
67–69

 and Ca
2+

/calmodulin activated protein kinase kinase β 

(CaMKKβ)
70–72

. The LKB1-STRAD-MO25 complex provides high amounts of 

phosphorylation at threonine-172 (Thr172) in response to elevated AMP in the 

cell
73

, while the latter pathway triggers activation of AMPK in response to 
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increases in Ca
2+ 

levels and activates AMPK independent of cellular AMP 

levels
67,74

.  

iii) AMPK function 

 Inhibition of anabolic metabolism. Via its phosphorylation of downstream 

targets, AMPK is known as a master regulator of cellular energy homeostasis. 

Indeed, the canonical function of AMPK is two-fold in response to cellular energy 

stress. First, when the energy status of the cell is low, AMPK attenuates cellular 

anabolic processes such as the synthesis of fatty acids, proteins and gluconeogenic 

substrates. Secondly, AMPK initiates catabolic pathways in order to ensure proper 

energy provision and utilization. AMPK inhibits fatty acid synthesis by affecting 

the activity of acetyl-CoA carboxylase (ACC). AMPK is able to regulate the 

function of ACC1/2 via phosphorylation, thereby inhibiting its normal production 

of malonyl-CoA, a building block for the synthesis of fatty acids
75

. Likewise, 

AMPK activation has been shown to repress protein synthesis pathways. 

Originally it was observed that this was due to phosphorylation of tuberous 

sclerosis (TSC) 2 and downstream inhibition of mammalian target of rapamycin 

(mTOR) complex 1
76

. However, later investigations revealed a more complex 

regulatory relationship where AMPK phosphorylates mTOR binding partner 

raptor, exhibiting another point of AMPK influence on cellular growth control 

pathways
77

. Thirdly, AMPK is able to regulate expression of the gluconeogenic 

enzymes phosphoenolpyruvate carboxykinase and glucose-6-phosphatase by 
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phosphorylation of CREB-regulated transcription co-activator 2
78

. Together, these 

studies indicate that AMPK elicits a multifactorial response to energy stress, and 

is able to elicit inhibition of the synthesis of all major mammalian macronutrients. 

Stimulation of energy production. In a synergy with inhibitory effects on 

anabolism, AMPK initiates a myriad of catabolic events, such as energy substrate 

breakdown, as well as pro-autophagic signaling
79,80

. Inhibition of ACC by AMPK 

has been implicated in β-oxidation of fatty acids, as evidenced by the increase in 

fatty acid oxidation in skeletal muscle from transgenic mice expressing an 

AMPKγ3 gain-of-function mutation
64

. However, it has been argued that fatty acid 

oxidation is not completely dependent on the AMPK/ACC pathway
81

. Therefore, 

a second pathway involving the storage vesicles Tre-2/BUB2/cdc 1 domain 

(TBC1D) 1 has been proposed for AMPK-mediated fatty acid oxidation. TBC1D1 

phosphorylation by AMPK promotes translocation of the fatty acid transporter 

cluster of differentiation 36 (CD36) to the muscle membrane
82

 thereby facilitating 

fatty acid utilization
83

.  In support of this, AMPK-deficient muscles lack 

phosphorylation of TBC1D1 at serine 237, potentially explaining the observed 

defect in fatty acid uptake in response to contraction
84

. AMPK is also able to 

promote cellular glucose uptake, by promoting the translocation of glucose 

transporter type 4 (GLUT4) to the plasma membrane. Normally, GLUT4 is bound 

to TBC1D1/4. Insulin activated kinase AKT phosphorylates TBC1D4, triggering 

its dissociation from GLUT4 vesicle
85

. AMPK-mediated phosphorylation of 
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TBC1D1 exhibits similar effects
86,87

. The necessity of this AMPK-mediated 

pathway for glucose uptake has been questioned, as AMPKα knockout mouse 

models have displayed mixed effects on glucose uptake following AMPK 

activation or contractile activity
88

. In contrast, recent studies with mice lacking 

both AMPKβ subunits in skeletal muscle have demonstrated the importance of 

AMPK to contraction-induced glucose uptake. In addition to blunted muscle 

glucose uptake, these mice were resistant to exercise, demonstrated by 

dramatically reduced running speed and endurance
89

. 

Initiation of autophagy. Finally, AMPK is able to induce autophagy, the 

process by which organelles are digested by coordinated function of 

autophagosomes and lysosomes. Activation of autophagy ensures optimal energy 

utilization for maintaining cellular energy homeostasis as well as the efficient 

turnover of damaged organelles. AMPK mediates autophagy via two points of 

interaction. Firstly, AMPK is able to activate the autophagy flagship protein, unc-

like kinase 1 (ULK1) directly via phosphorylation. Secondly, AMPK indirectly 

activates autophagy through phosphorylation of TSC2, causing downstream 

inhibition of mTOR and its dissociation with ULK1
80

.  

Multifaceted effects of AMPK on several energy systems can elicit 

responses that quickly and effectively modulate substrate use in the case of 

compromised cellular energy status. However, additional functions exist for the 

molecule that link to long-term adaptations in cellular homeostasis. In fact, 
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chronic AMPK activity serves to remodel skeletal muscle phenotype, thus 

impacting health and disease. 

4. AMPK in Skeletal Muscle Remodelling 

While the acute metabolic effects of AMPK are achieved through 

phosphorylation of key regulatory proteins, its longer-term phenotypic 

consequences are instigated through chronic phosphorylation of transcription 

factors and coregulators,
90–92

. As discussed below, AMPK is able to induce 

skeletal muscle remodelling by promoting regeneration, and mitigate 

neuromuscular pathology through activation of the slow oxidative myofiber 

program. 

i) AMPK in regeneration 

AMPK is able to stimulate restorative changes in skeletal muscle through 

promotion of regeneration. The regeneration of myofibers relies on the skewing of 

pro-inflammatory M1 macrophages towards their anti-inflammatory M2 

counterpart
93

. AMPK plays a role in mediating macrophage phenotype during 

skeletal muscle regeneration. Mounier et al.
94

 displayed aberrant macrophage 

skewing in the absence of AMPK through pharmacological inhibition. In 

AMPKα1 null mice, the authors observed accumulation of necrotic tissue 

following muscle injury via cardiotoxin (CTX), suggesting inadequate cellular 

debris removal by M1 macrophages. Additionally, further investigation displayed 

downregulation of signals that initiate the production of M2, which promote 
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regeneration through the induction of myogenesis. The role of AMPK in 

myogenesis is highlighted by the ablation of LKB1, an upstream AMPK kinase. 

LKB1 nullification in satellite cells and subsequent lack of AMPK activation 

causes dysregulation of the AMPK/mTOR pathway. This perturbation causes 

cells to enter a proliferative state, unable to maintain long-term self-renewal
95

. 

Further work showed the induction of Warburg-like glycolysis following AMPK 

activation signals satellite cell activation and regeneration
96

. Attenuated activation 

of AMPK has also been linked to impaired regeneration in obesity, as shown by 

Fu et al
97

. Indeed, impaired regeneration was rescued by AICAR administration, 

yet AICAR administration failed to improve muscle regeneration with AMPKα1 

KO satellite cells
97

. Further, acute administration of the AMPK-activiating 

diabetic drug metformin was able to prompt cytoprotective effects in response to 

CTX injury attributed to the reduction in Ca
2+

 influx following muscle damage
98

, 

as well as alleviating certain myopathic phenotypes through the promotion of 

muscle regeneration
99

. Currently, clinical trials are underway to determine the 

efficacy of AMPK activators in promoting regeneration in healthy elderly 

populations
100

. 

ii) AMPK drives the slow, oxidative myofiber program  

Muscle fibers exhibit different structural and functional characteristics in 

order to accommodate their variable functions, including, but not limited to, 

supporting body weight during standing to performing explosive movements 
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during intense exercise. The predominant form of myofiber categorization is 

based on four MHC types: type I, type IIA, type IIX and type IIB, as mentioned 

above (see Introduction to Skeletal Muscle). In general, muscles with faster 

contractile properties exhibit a more glycolytic profile (i.e. fast glycolytic, FG) 

and are able to handle larger fluxes of cellular Ca
2+

. In contrast, slower, more 

oxidative (i.e. slow oxidative, SO) muscles are purposed for slower, and/or 

prolonged contractions with smaller magnitudes of Ca
2+ 

influx per contraction. 

AMPK isoforms demonstrate a unique expression pattern in each fiber type of 

human and rodent skeletal muscle
101

. The α2,β2,γ1 heterotrimer is the 

predominant combination in human quadriceps muscle
102

, as well as in mouse 

muscles of differing fiber types
103

. Chronic endurance-type exercise training 

stimulates AMPK, and may also result in a muscle fiber type shift from fast, 

glycolytic characteristics to a slower, more oxidative phenotype, which depends, 

in part, on the intensity, duration, and volume of exercise
104,105

. This suggests that 

AMPK plays a role in fiber type determination. Along these lines, AMPK-

knockout models more clearly display the importance of AMPK in maintaining 

the oxidative profile of muscles. Generally, animals lacking skeletal muscle 

AMPK are intolerant to exercise, and display lower levels of mitochondrial 

content independent of fiber type changes
89

. Additionally, these muscles display a 

myopathy that includes elevated amounts of centrally nucleated and necrotic 

myofibers, with a decrease in myofiber capillarization
106

. Interestingly, these 



M.Sc. Thesis – A. G. Dial; McMaster University – Kinesiology 

 

 19 

conditions were much more exaggerated in mixed fiber type tibialis anterior 

muscles, as compared to the soleus muscle, which strongly suggests a resilience 

of slower, more oxidative myofibers in the absence of AMPK. Nevertheless, the 

role of AMPK in mediating fiber type transformation remains ambiguous, as 

AMPKβ1,β2-deficient mice display normal fiber type distribution
89

, while 

AMPKα1,α2-deficient mice display an upregulation of type I fibers, perhaps as a 

compensatory adaptation
88

. Transgenic and pharmacological models of chronic 

AMPK activation lend further credence to the importance of the kinase in driving 

characteristics indicative of the slow, oxidative myogenic program. Indeed, a 

constitutively active AMPK mutant demonstrates elevated mitochondrial 

biogenesis that is exaggerated in glycolytic muscle
107

. Pharmacological activation 

of AMPK through administration of 5’-aminoimidazole-4-carboxamide-1-β-D-

ribofuranoside (AICAR) promotes the slow oxidative muscle phenotype, 

including a shift towards slower MHC expression
108–110

. More recently discovered 

AMPK activator R419 has also been shown to elicit benefits of the slow oxidative 

phenotype, including enhanced insulin tolerance, GLUT4 and mitochondrial 

content
111

. Thus, on balance, transgenic knockout and overexpression studies, as 

well as data from pharmacological interventions, indicate that AMPK activation 

mediates a shift in muscle fiber-type composition, yet its necessity in maintaining 

fiber type characteristics remains to be determined. 
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The mechanism(s) by which AMPK governs skeletal muscle plasticity has 

not been completely elucidated. The evidence suggests that the kinase exerts its 

effects in this context, in part, by stimulating the transcriptional coactivator PGC-

1α
112

. PGC-1α is a master regulator of skeletal muscle phenotype maintenance 

and remodelling by driving the expression of the slow, oxidative myogenic 

program
48,49

. Indeed, AMPK exerts direct phosphorylation-mediated stimulation 

of PGC-1α activity
112

, as well as indirectly maintaining PGC-1α gene expression 

via phosphorylation of histone deacetylase 5 (HDAC5), which relieves its 

repression of myocyte enhancer factor 2 (MEF2), thereby inducing PGC-1α 

transcription
113,114

. Genetic gain- or loss-of function mouse models further 

underscore the relationship between AMPK and PGC-1α. Muscles which lack the 

AMPKα2 subunit are intolerant to exercise, and display lower PGC-1α levels and 

mitochondrial enzyme content
104,115

. Conversely, muscle-specific AMPK 

activation through mutation of the γ1 subunit caused elevated PGC-1α content, 

glycogen stores, and exercise capacity
104,116

.  

In summary, the physiological effects of AMPK in skeletal muscle extend 

well beyond energy homeostasis. The kinase maintains several roles involved in 

important cellular processed for modifying the long term phenotype of muscle, 

including regeneration, and determination of muscle oxidative capacity and 

phenotype. However, the exact mechanisms by which AMPK governs muscle 
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phenotype are still not clear, and its role in regulating skeletal muscle genes 

warrants further investigation. 
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Figure 2 
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Figure 2. AMPK-mediated signaling cascades that regulate expression of the DAPC in 

skeletal muscle. Exercise and several pharmacological activators stimulate AMPK activity in 

skeletal muscle. AMPK induces the function of several transcriptional activators and signaling 

molecules, such as MEF2, PPARδ, SIRT1, and PGC-1α. For example, AMPK targets the 

transcriptional co-activator PGC-1α for phosphorylation, thereby stimulating PGC-1α function. 

These transcriptional activators are capable of altering skeletal muscle phenotype, including 

stimulating DAPC gene expression. Post-transcriptional control of DAPC transcripts, via 

stabilization or degradation by RNABPs, affects mRNA content. Translation of DAPC transcripts 

occur via canonical, or in some cases, internal ribosome entry site (IRES)-mediated mechanisms. 

Finally, some post-translational modifications of DAPC proteins, such as phosphorylation (P) or 

glycosylation (G), are required for proper integration and assembly into the mature complex at the 

sarcolemma. Silent mating type information regulator 2 homolog 1 (SIRT1), 5’ adenosine 

monophosphate-activated protein kinase (AMPK), Ca
2+

/calmodulin-dependent protein kinase II 

(CaMKII), calcineurin (CN), nuclear factor of activated T cells (NFAT), peroxisome proliferator 

activated receptor gamma coactivator 1-alpha (PGC-1α), myocyte enhancer factor 2 (MEF2), 

peroxisome proliferator activated receptor beta/delta (PPARβ/δ), specificity protein 1 (Sp1), serum 

response factor (SRF), myogenic regulatory factors (MRFs), GA-binding protein (GABP), human 

antigen R (HuR), muscleblind-like protein (MBNL), KH-type splicing regulatory protein (KSRP), 

AU-rich binding factor 1 (AUF1), CUG-binding protein 1 (CUGBP1). 
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5. Regulation of the DAPC  

The expression of the DAPC involves various regulatory pathways and 

mechanisms converging onto the common endpoint of DAPC assembly. The 

diverse functions of individual DAPC components are highlighted by the variety 

of muscular dystrophies often brought on by the absence or dysfunction of 

individual DAPC members. In order to expand our knowledge of the DAPC, it is 

imperative to first understand the individual regulatory mechanisms involved in 

DAPC assembly, expression and function. 

i) Transcriptional regulation of the DAPC.  

Dystrophin. Dystrophin is encoded by the DMD gene, which is defective 

in Duchenne muscular dystrophy. The transcriptional regulation of dystrophin is 

complex, containing tissue specific promoters for brain, muscle and purkinje 

tissues, as well as four internal promoters
19,20

. Splicing at the first exon gives rise 

to truncated isoforms that are 260 kDa, 140 kDa, 116 kDa, and 71 kDa, as 

compared to the full length 427 kDa product
117–119

. Analysis of the upstream 

dystrophin promoter in skeletal muscle cells has revealed multiple regulatory 

sequences commonly involved in the transcription of skeletal muscle genes, 

including A/T-rich sites, and MEF-1 binding sites
120,121

. Also, four E-boxes are 

located in a distal enhancer region. Site-directed mutagenic analyses revealed the 

necessity for three of these sites for enhancer activity
122

. Studies also revealed 

putative binding sites for myocyte enhancer factor-2 (MEF-2) located within the 
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enhancer. Together, the combination of regulatory elements controlling 

dystrophin transcription points towards the preferential production for the protein 

in muscle cells.  

Utrophin. While the structural and functional characteristics are similar to 

dystrophin, the 376 kDa utrophin protein varies mainly in its localization. 

Expression of utrophin is under control of two different promoters, utrophin-A 

and -B. Utrophin-B protein is restricted to the vascular endothelium, while 

utrophin-A protein shows expression in different tissues including the peripheral 

nerves, vascular smooth muscle, as well as at the neuromuscular and 

myotendinous junctions in skeletal muscle
20,123,124

. Analysis of the upstream 

utrophin-A promoter revealed an N-box motif that is necessary for synaptic 

induction of utrophin at the neuromuscular junction (NMJ) through binding of 

GA-binding protein (GABP)
124

. This subsynaptic expression of utrophin is 

heavily reliant on nerve-evoked electrical activity as shown by Grammolini et 

al.
124

. In this study, the authors elegantly displayed the ability of the nerve-derived 

trophic factor heregulin to transactivate GABP and stimulate its binding at the N-

box, which in turn drove utrophin transcriptional activation. Additional 

transcription factors were found to bind within the utrophin-A promoter to induce 

transcription, including Sp1, Sp3 and Ap2
123,125

. An important second upstream E-

box modulates myogenic induction of utrophin through interactions of myogenic 
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regulatory factors (MRF), showing a similar regulatory mechanism as seen in 

other muscle specific genes
126–129

.  

The dystroglycan complex. The Dag1 gene simultaneously transcribes both 

members of the DG complex as a single precursor propeptide, which is 

proteolytically cleaved into α- and β-DG
130–132

. The Dag1 promoter has three Sp1 

recognition motifs and a more distal E-box important for maximum Dag1 

expression, as evidenced by promoter-reporter truncations assays
133

. Interestingly, 

the Dag1 promoter, with multiple Sp1 sites and high content of GC- rich 

sequences, is typical of housekeeper genes, consistent with the ubiquitous 

expression of the DG complex.  

The sarcoglycan complex. The SG complex contains four members:  

α-, β-, γ-, and δ-SG. Each possesses a unique promoter. SG promoter activities are 

correlated with myogenic differentiation. For example, α- and γ-SG show marked 

increases in transcriptional activity following the onset of myoblast differentiation 

as shown by Wakabayashi-Takai and colleagues
134

. Analysis of the γ-SG 

promoter by these authors identified A/T-rich and E-box elements, both of which 

were essential for transcriptional activation. Additionally, the myogenic 

transcription factors MyoD, myogenin, and MEF-2 were able to bind the upstream 

enhancer region of γ-SG. Furthermore, transfection of MyoD, but not myogenin 

was able to activate the γ-SG promoter in fibroblasts. Conversely, other studies 

have shown that MyoD negatively regulates α-SG promoter activity through one 
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of its two E-box motifs
135

. Interestingly, these results show that E-box motifs, 

besides acting as transcriptional enhancers, are able to fine-tune muscle-specific 

promoter expression through selective MRF activity.  

Neuronal nitric oxide synthase (nNOS). nNOS exhibits the most complex 

transcriptional regulation of the established types of the NOS enzyme. The use of 

various alternative promoters appears to be a major factor driving its complex 

expression patterns. Nine distinct first exons have been revealed in humans, 

known as exons 1a-1i. These and their corresponding 5’ flanking regions are 

spliced to a common exon 2
136,137

. The profound diversity of transcripts and their 

promoters may allow for allowing for differential regulation of nNOS, including 

differences in transcript localization and transcriptional efficiency. Exons 1a, 1b, 

and 1c, are all enriched in muscle
137,138

. Analysis of exon 1c shows prominent 

reactions with the Sp family of transcription factors
137

. Meanwhile, exon 1a was 

found to be translationally enhanced in differentiated muscle cells
138

, suggesting 

possible differentiation-dependent translational cis-RNA elements within exon 1a. 

The full length NOS gene encodes 4 versions nNOS enzyme
139

, which include α, 

β, γ, and μ. nNOS-α and nNOS-μ contain a PDZ domain, allowing binding of the 

enzyme to the cell membrane
33,140

. nNOS-μ is predominantly expressed in skeletal 

muscle and possesses a 102bp insertion between exons 16 and 17 that is unique to 

other variants
31

. β and γ variants lack the PDZ domain and are therefore cytosolic 

enzymes, with lower activity levels than α and μ
140,141

. 
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In summary, while much work has been done to characterize its regulation, 

a complete understanding of DAPC transcription is still lacking. It is increasingly 

clear that production of the DAPC is closely managed by DNA elements and 

transcription factors related to the myogenic program, suggesting the process of 

myogenesis and the development of the DAPC are very closely related. 

ii) Post-transcriptional regulation of the DAPC.  

In eukaryotes, transcription and translation are physically separated 

processes, occurring in the nucleus and cytoplasm, respectively. This allows 

eukaryotes to carry out extensive post-transcriptional processing of pre-mRNAs 

after transcription, thereby providing an additional layer of gene expression 

regulation. Skeletal muscle development, repair, and function, are dependent on 

the highly coordinated expression of many genes, including those of the DAPC. 

Indeed, many MRFs that determine the myogenic identity of cells also directly 

and/or indirectly promote the transcription of the DAPC, as mentioned above. 

Therefore, similar post-transcriptional mechanisms are likely to regulate the 

DAPC as well as the broader myogenic program. One such mechanism is the 

regulation of mRNA processing and stability by RNA-binding proteins (RBPs). 

The focus of this section is to review the effects of RBPs on skeletal muscle 

mRNA metabolism, highlighting the roles of RBPs that are best characterized in 

skeletal muscle.  
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 Human antigen R (HuR). HuR is an RBP that has multiple roles in mRNA 

metabolism including splicing, polyadenylation, localization, and stabilization of 

transcripts
142

. HuR binds to U- and AU-rich elements (AREs) in the 3’-

untranslated regions (UTRs) of specific target mRNAs, providing stabilization of 

target transcripts. AREs are responsible for mRNA decay regulation, as well as 

maintaining a precise level of short-lived transcripts such as transcription factors 

and cell cycle regulators
143,144

. For instance, MyoD and myogenin ARE regions 

are sufficient to promote mRNA decay
145

. HuR binding to these AREs results in 

stabilization and increased levels of MyoD and myogenin mRNAs and subsequent 

increased levels of the respective proteins, thus promoting myogenesis
146,147

. 

 KH-type splicing regulatory protein (KSRP). KSRP also binds to ARE-

containing mRNAs and recruits partners that assist in the rapid decay of target 

transcripts
148

. KSRP competes with HuR for binding on AREs, and their binding 

to such transcripts is mutually exclusive. Due to these reasons, the  given steady-

state level of transcripts at have been attributed to the KSRP:HuR ratio of the 

cell
149

. During proliferation, KSRP binds ARE-containing mRNAs such as MyoD 

and myogenin and promotes their decay. During differentiation, phosphorylation 

of KSRP by the kinase p38 leads to reductions in binding to these transcripts. 

Loss of this decay-promoting function from KSRP, coincident with HuR activity, 

stabilizes MyoD and myogenin mRNAs, thereby promoting myogenesis
145

. 

Additionally, inactivation of KSRP through p38 phosphorylation or microRNA 
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mediated gene suppression has also been shown to increase utrophin transcript 

levels due to relief of KSRP-mediated decay
150,151

.  

CUG-binding protein 1 (CUGBP1). CUGBP1 binds a variety of 3’-UTR 

regulatory elements including GC/GU-rich elements (GRE), and AREs
152,153

 that 

affect the alternative splicing as well as stability of several factors with key roles 

in myogenesis
154

. While some target transcripts of CUGBP1 display upregulated 

translation
154

, its binding to most ARE-containing mRNAs causes transcript 

destabilization
153,155–157

. High-throughput assays of GRE-containing mRNAs, 

such as MyoD
158,159

, are generally labile transcripts, and are therefore rapidly 

destabilized when bound by CUGBP1
160

. 

Muscleblind-like protein 1 (MBNL1). MBNL1 is a member of the MBNL 

family comprising the vast majority of MBNL expression in skeletal muscle 

versus MBNL2 or MBNL3 
161

. MBNL1 regulates alternative splicing in concert 

with CUGBP1, promoting transition towards splicing of adult transcripts during 

postnatal development
162–164

. In addition to splicing regulation, MBNL and 

CUGBP1 have been found to preferentially bind the 3’-UTR of mRNAs encoding 

transcription factors that can regulate cell development
165

. During muscle 

differentiation, the nuclear concentration of MBNL1 increases, while that of 

CUGBP1 decreases, suggesting that CUGBP1 may affect the transcripts of 

undifferentiated cells and MBNL1 may take over this role after 
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differentiation
162,164

. Together these reports suggest that this pair of RBPs may 

serve as a finely tuned regulator of skeletal muscle development. 

AU-rich binding factor 1 (AUF1). Finally, (AUF1) is generally considered 

to promote the decay of target mRNAs containing AREs
166,167

. However, AUF1 

also binds to the promoter and 3’-UTR of MEF2C mRNA, enhancing its 

transcription and translation, respectively
168

. These data suggest that AUF1 may 

partly regulate muscle differentiation through transcriptional and post-

transcriptional interactions with MRFs. 

RBPs in different fiber types and during exercise. The evidence clearly 

indicates a role for RBPs in the post-transcriptional regulation of muscle cell 

differentiation and development. Reports of RBPs in skeletal muscle suggest that 

some, such as AUF1, KSRP and HUR, are more highly expressed in slow-twitch 

skeletal muscle. Moreover, the ratio of stabilizing and destabilizing RBPs affects 

mRNA stability in muscles of different fiber type compositions. For example, 

D’Souza et al.
169

 report the stabilizing HuR and destabilizing AUF1 to both be 

elevated in slow-twitch and cardiac muscle. However, simultaneous examination 

of AUF1 and HuR revealed that the AUF1:HuR ratio was elevated in cardiac 

muscle, coinciding with the reduced stability of target transcripts in that tissue 

type. Prolonged exercise training in humans, a stimulus for chronic AMPK 

activation, is shown to induce PGC-1α expression and thus mitochondrial 

biogenesis in the presence of elevated destabilizing RBPs CUGBP1 and AUF1
170

. 
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Thus, it is possible that environments of decreased mRNA stability after exercise 

may also also promote cellular remodelling required for metabolic adaptations.  

It should be noted that there are other means of post-transcriptional 

regulation not included here. These include, but are not limited to, regulation by 

microRNAs, which have been detailed elsewhere
171

. However, RBPs represent a 

dynamic network of post-transcriptional regulation that can modulate the stability 

of mRNAs and thus the functional availability of the transcript for translation of 

its protein product. With regards to the DAPC, unique 3’-UTR regions in 

dystrophin mRNA have been shown to affect its abundance
172

, while interactions 

with KSRP and have been directly observed in utrophin mRNAs
150,151

. 

Furthermore, preliminary bioinformatic analyses have identified numerous 

putative RBP binding sites in multiple DAPC mRNAs (Dial et al., unpublished 

data). Additionally, the interactions of RBPs with MRFs have been well 

documented, suggesting that the post-transcriptional control of these factors may 

modulate the tightly coordinated gene expression involved in skeletal muscle 

development, including the production of the DAPC. 

iii) Translational and post-translational regulation of the DAPC 

Internal ribosomal entry sites. While the majority of mutations in the 

dystrophin gene generally cause DMD, premature stop codon mutations in exon 1 

and 2 do not result in the same severity of pathology. Interestingly, patients with 

these mutations exhibit very mild clinical phenotypes, with affected individuals 
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retaining the ability to walk well into adulthood
173

. It was found by Wein et al.
174

 

that mutations in the earlier exons cause alternative translation at AUG codons in 

exon 6 due to upstream internal ribosomal entry sites (IRESs)
175

, allowing for a 

truncated, functional protein to be produced. Likewise, in response to regeneration 

and pharmacological interventions
176,177

, the expression of utrophin protein 

content has been observed to robustly increase with only modest corresponding 

increases in mRNA transcript levels, which suggests this to be a translationally 

regulated increase in utrophin expression. Indeed, presence of an IRES in the 

utrophin 5’-UTR was associated with physiological and pharmacological 

inductions in utrophin translation. As modulating IRES function could have 

potential therapeutic applications for genetic conditions like DMD, these findings 

have prompted interest in IRES expression in other clinically relevant genes
173

.  

Glycosylation of the DAPC. The DGs are post-translationally cleaved at 

amino acid 653, resulting in α and β subunits
178,179

. DGs are heavily glycosylated 

at the membrane. However this process is not necessary for the cleavage of DGs, 

suggesting that the glycosylation occurs at the endoplasmic reticulum before DGs 

are trafficked to the membrane
180

. DGs undergo both N- and O-linked 

glycosylation. Treatment of the complex with N-glycanases suggests that N-

linked glycosylation is not necessary for laminin or integrin binding at the plasma 

membrane. However, full chemical deglycosylation of DG results in the complete 

loss of ligand binding, including monocolonal antibody IIH6
181

. IIH6, inhibits 
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laminin binding to α-dystroglycan, suggesting that O-linked glycosylation of DGs 

is necessary for DAPC binding to laminin
181

. The incomplete glycosylation of 

DGs is observed in aging
182

, and can lead to a variety of clinical symptoms 

including muscular dystrophy and central nervous system abnormalities
180

. 

Normal presence of the SG complex is also necessary for interaction of the DGs 

with the DAPC, as SG-null mutations lead to separation of the DG complex from 

the DAPC. Variations of limb girdle muscular dystrophies (LGMD), often 

associated with sarcoglycanopathy, have been linked to abnormal glycosylation
28

. 

Mutations in one sarcoglycan may affect the assembly of the others at the 

membrane. For example, in LGMD2F, absence of δ-SG results in the inability to 

assemble α, β and γ, leading to their rapid degradation
183,184

. 

Effects of phosphorylation on DAPC assembly. The signalling functions of 

the DAPC are also highlighted by the various phosphorylation sites within DAPC 

components. Indeed, dystrophin is the target of many kinases including 

calmodulin-dependent protein kinase II, p34
cdc2

 kinase and casein kinase
185–187

, 

and there are many putative phosphorylation sites at the c-terminal end of the 

protein
188

. The phosphorylation of dystrophin has been shown to affect its affinity 

for binding actin and syntrophin
189,190

 in vitro, while phosphorylation of cysteine-

rich region of dystrophin enhances its binding to β-DG
191

. Additionally, β-DG 

participates in adhesion-dependent phosphorylation, which mediates its binding to 

utrophin
192

. This signalling cascade has been shown to promote cell survival
193,194

, 
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and involves β-DG through interaction with the signalling molecule Grb2
195

. 

Similar adhesion-dependent phosphorylation occurs at α- and γ-SG
196

. While the 

functional significance of these events is not yet known, it suggests at SG 

adhesion to the plasma membrane may also promote cell survival in a similar 

manner as β-DG.  

In summary, the expression of the DAPC is reliant on a complex network 

of regulatory mechanisms. The transcription factors that regulate myogenesis 

appear to promote the common elevation of DAPC production. However, a 

myriad of other factors modulate the various stages of mRNA and protein 

processing, which affect the expression and function of DAPC components. 

While it has been the subject of intense research, many of the events that regulate 

the DAPC still remain to be elucidated. Since the modulation of DAPC content 

has several therapeutic benefits, the further investigation of DAPC regulators is a 

promising avenue of future research. 

6. Study Objectives 

Recent investigations have revealed that AMPK plays an important role in 

regulating the expression and function of proteins at the sarcolemma, including 

the Na
+
/K

+
-ATPase and nNOS

197–199
. Pharmacological activation of AMPK in 

dystrophic muscle leads to a rescue of DAPC expression and function, as well as 

to increased levels of the dystrophin homologue utrophin in skeletal 

muscle
13,46,106,199–203

. Meanwhile, aging-associated declines in AMPK are 
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concomitant with diminished expression and function of the DAPC
3,182,204,205

. 

However, whether AMPK is required for the basal expression and function of the 

DAPC in skeletal muscle is unknown. Thus, the purposes of this study were to 1) 

investigate the role of AMPK in the basal expression of the DAPC in skeletal 

muscle, and 2) expand our knowledge of differences in DAPC expression 

between muscle fiber types. We hypothesize that DAPC levels will be diminished 

in muscles lacking AMPK. Furthermore, we posit that DAPC expression will be 

higher in slower, more oxidative muscles. 
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Abstract 

 The dystrophin-associated protein complex (DAPC) provides a 

mechanical link between the intracellular cytoskeleton and extracellular matrix, 

serving as a mechanosensor and signal transducer across the sarcolemma. 

Pharmacological stimulation of AMP-activated protein kinase (AMPK) induces 

the expression of DAPC components in skeletal muscle, whereas physiological 

reductions in AMPK are associated with DAPC dysfunction. We sought to 

determine whether AMPK was necessary for the maintenance of DAPC 

expression in skeletal muscle. Fast glycolytic extensor digitorum longus (EDL) 

and slow oxidative soleus (SOL) muscles from wild-type (WT) mice, as well as 

from littermates deficient in both isoforms of the AMPK-β subunit in skeletal 

muscle (MKO) were analyzed. DAPC mRNA levels, as well as protein expression 

and localization were similar between genotypes, with the exception of nNOS, 

which displayed a compensatory sarcolemmal enrichment in MKO muscles. The 

content of transcriptional and post-transcriptional regulators of the DAPC, such as 

PGC-1α and KSRP, were also not affected by the loss of AMPK. However, 

MyoD and myogenin expression was significantly diminished in MKO muscles, 

which is consistent with previous reports of myopathy in these animals. 

Furthermore, we observed decrements in extrasynaptic utrophin expression 

selectively in MKO SOL muscles, despite an adaptive accumulation of PGC-1α at 

the sarcolemmal compartment. Collectively the evidence indicates that AMPK is 
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sufficient, but not essential for the maintenance of DAPC expression in skeletal 

muscle. However, AMPK is required for preserving extrasynaptic utrophin levels 

in slow, oxidative muscles, which underscores the role of AMPK in the gene 

expression of this disease modifying protein. 

 

Introduction 

Skeletal muscle is a dynamic tissue that constantly endures significant 

levels of mechanical strain and cellular stress with each contraction. Myofibers 

must be able to physically contract and generate forces necessary for movement, 

while preventing mechanical injury of the cell. The discovery of the cytoskeletal 

protein dystrophin in 1987
1
 stimulated further research into the adjacent 

glycoprotein complex localized to the sarcolemma, now known as the dystrophin-

associated protein complex (DAPC). The complex, which is generally accepted to 

be comprised of ~13 proteins, includes dystrophin, dystroglycans, sarcoglycans, 

neuronal nitric oxide synthase (nNOS), syntrophins, and dystrobrevin
2
. The 

DAPC serves multiple functions, such as providing a structural linkage from the 

sarcolemma to filamentous actin, as well as acting as a signal transduction 

apparatus between the extracellular matrix and interior of the cell
2,3

. Loss of the 

DAPC is one of the early pathogenic markers of various myopathies
4,5

 and 

muscular dystrophies
6,7

, while increased expression of the DAPC provides a 

protective benefit against dystrophic pathologies
8–12

. Indeed, recent investigations 
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have focused on promoting DAPC expression in skeletal muscle in an effort to 

mitigate Duchenne muscular dystrophy (DMD)
13,8,14,9,11,15–17

.  

Although the molecular biology of the DAPC has been investigated in 

earnest for over 30 years, the regulation of DAPC expression in skeletal muscle is 

still not fully understood. Earlier studies have suggested that within a given 

muscle, slow, oxidative myofibers display a higher expression of various 

constituents of the DAPC, as compared to their faster, more glycolytic 

counterparts
18,19

. The underlying cause for this discrepancy in DAPC expression 

between fiber types may be attributed, in part, to differences in the transcriptional 

control of DAPC genes. The regulatory regions of DAPC genes contain several 

DNA binding motifs that are targeted by transcription factors and transcriptional 

coregulators responsible for the maintenance and remodelling of skeletal muscle 

phenotype. For example, dystrophin expression is driven by the transcription 

factor MyoD
20,21

, while γ-sarcoglycan transcription is promoted by myogenin
22,23

. 

Upstream molecules that are directly or indirectly responsible for the regulation of 

these transcription factors, and others that participate in DAPC expression, 

include calcineurin (CN), peroxisome proliferator-activated receptor (PPAR) γ 

coactivator-1α (PGC-1α), PPARβ/δ, silent information regulator two ortholog 1 

(SIRT1), as well as AMP-activated protein kinase (AMPK)
24,9,15,25

. These 

upstream proteins display differential levels of fiber type-specific expression and 

activity
12

. Thus, it is reasonable to postulate that powerful phenotype-modifying 
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proteins such as PGC-1α or AMPK would impact DAPC expression in skeletal 

muscle.  

AMPK is a critical regulator of skeletal muscle metabolism, transcription, 

and phenotype. It is activated by a shift in the AMP/ADP:ATP ratio which arises 

during times of metabolic stress, such as during the contractile activity elicited by 

exercise
26

. The kinase is a heterotrimer composed of a catalytic α subunit, a 

scaffolding β subunit and a regulatory γ subunit. Each subunit exists in multiple 

isoforms (i.e., α1, α2, β1, β2, γ1, γ2, and γ3) that are expressed in varying 

proportions throughout different tissues to produce several versions of the AMPK 

enzyme
27

. The most common AMPK heterotrimer in skeletal muscle is the α2, β2, 

γ1
28

. During aging, attenuation of skeletal muscle AMPK activity
29

 is associated 

with alterations in the sarcolemmal environment, including reduced DAPC 

protein content
30–34

. AMPK is a potent regulator of skeletal muscle phenotype 

primarily through phosphorylation-mediated changes in the expression and 

activity of downstream proteins capable of regulating phenotype maintenance and 

remodelling. These downstream targets include the transcription factors nuclear 

respiratory factor 1 (NRF-1) and NRF-2/GA-binding protein (GABP), myocyte 

enhancer factor 2 (MEF2), cAMP response element binding protein (CREB), as 

well as via stimulation of the transcriptional co-activator PGC-1α
12

. AMPK also 

mediates the content and function of proteins localized to the sarcolemma, 

including for example, the Na
+
-K

+
-ATPase

35
. Along these lines, an emerging area 
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of research has focussed on the role of AMPK in regulating sarcolemmal DAPC 

expression and function. Recent investigations have revealed that 

pharmacological activation of AMPK in models of DAPC deficiency leads to a 

rescue of DAPC expression and function, as well as to increased levels of the 

dystrophin homologue utrophin in skeletal muscle
13,9,4,11,12,15,36,37

. These 

adaptations occur concomitant with a shift towards characteristics indicative of 

the slow, oxidative myogenic program. These studies are supported by 

observations of reduced nNOS levels in skeletal muscle lacking AMPK
4
. 

However, the role of AMPK in the basal expression and function of the DAPC in 

skeletal muscle is otherwise unknown. Thus, the purpose of this study is to 

investigate the role of AMPK in the basal expression of the DAPC in skeletal 

muscle. We hypothesize that DAPC levels will be diminished in muscles lacking 

AMPK. 

 

Methods 

Animals. Mice with skeletal muscle-specific deletion of the AMPK β1 and 

β2 subunits (AMPKβ1β2M-KO; MKO) were generated as described previously
38

. 

WT littermates were used for all comparisons. Extensor digitorum longus (EDL) 

and soleus (SOL) muscles from 2 month-old animals were harvested and 

immediately snap frozen in liquid nitrogen. The contralateral EDL and SOL 

muscles were immersed in OCT compound (VWR, Mississauga, ON, Canada), 
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and frozen in melting isopentane cooled to the temperature of liquid nitrogen. All 

frozen samples were stored at -80 °C until subsequent processing and analyses.  

RNA isolation and real-time quantitative polymerase chain reaction (RT-

qPCR). We evaluated the mRNA expression of multiple DAPC components in 

order to understand the effect of skeletal muscle AMPK on DAPC gene 

expression. Total RNA was isolated from EDL and SOL muscles of MKO and 

WT mice in order to make fiber type and genotype comparisons, respectively. 

Muscles were homogenized in Trizol reagent (Thermo Fisher Scientific, 

Burlington, ON, Canada) followed by purification and elution with the E.Z.N.A. 

RNA Isolation Kit (VWR, Mississauga, ON, Canada). Reverse transcription was 

performed as per the manufacturer’s protocol provided with the cDNA Reverse 

Transcription Kit (Thermo Fisher Scientific, Burlington, ON, Canada). 

Endogenous mRNAs were measured by qPCR (Eppendorf. Mississauga, ON, 

Canada) and the delta delta CT method
39

 was used to quantify expression of 

DAPC components relative to ribosomal protein S11 (RPS11). The primers used 

were:  

dystrophin forward (F)- TTCACCTCTAGCTGGTCCGA. reverse (R)- 

AGTCTTTGGGTGGCTGAGTG; utrophin forward (F)- 

CCGGAGCTAAACACCACTGT, reverse (R)- 

ATTCAGCTGAGCGAGCATGT; β-DG forward (F) – 

CGTGGTGCTGGGTGAGTG, reverse (R)- TCTGCACAGCTGTTCCATCC; α-
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SG forward (F)- GGACGGCTGAAGAGAGACAT, reverse (R)- 

AGGATAAGAGGCATCTGTGCG; β-SG forward (F)- 

CACATGGGAGGAGATGTGGAG, reverse (R)- 

CAGCCCATGTTGTGACCTGT, γ-SG forward (F)- 

CAGTCAACCCAGAACGTGACA, reverse (R)- 

AGTGCTGGCTCTGGACTTCTA; nNOS forward (F)- 

AGTGCTGGCTCTGGACTTCTA, reverse (R)- 

GGCTCAACCGAATACAGGCT; PGC-1α forward (F)- 

GGCTCAACCGAATACAGGCT, reverse (R)- 

TCTTCATCCACGGGGAGACT; laminin forward (F)- 

GAAATACTCCGGCTGCCTCA, reverse (R)- 

ACAAAACCAGGCTTGGGGAA; biglycan forward (F)- 

GGAGCCTGAGTTTTCTGCCTA, reverse (R)- 

TTGATGCCCACCTTGGTGAT; RPS11 forward (F)- 

CGTGACGAAGATGAAGATGC, reverse (R)- 

GCACATTGAATCGCACAGTC. 

Protein extraction and Western blot analysis. Muscles were initially 

ground into a fine powder using a CellCrusher tissue pulveriser (Cell Crusher 

Ltd., Portland, Oregon, USA). The powder was added to a sample tube with a pre-

determined volume of RIPA buffer (20 μl of RIPA per 1 mg muscle weight; 

Sigma-Aldrich, Oakville, ON, Canada), supplemented with a protease and 
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phosphatase inhibitor cocktail (Roche, Mississauga, ON, Canada). The solution 

was further homogenized on ice using sonication (Thermo Fisher Scientific, 

Burlington, ON, Canada) at 50% power for 5 bouts of 2 seconds, with 30 seconds 

in between each bout. Samples were spun, and the resulting supernates were 

collected. A bicinchoninic acid assay (Thermo Fisher Scientific, Burlington, ON, 

Canada) was performed in order to determine protein concentrations of samples. 

Twenty μg of protein was loaded into each lane of 6% or 10% gels and subjected 

to SDS-PAGE, and then transferred to a nitrocellulose membrane. Ponceau S 

solution (G00040, Sigma-Aldrich, Oakville, ON, Canada) was used to verify 

equal loading across all lanes
40

. Ponceau solution was washed off with Tris-

buffered saline with 1% Tween-20 (TBS-T). Membranes were then blocked with 

5% milk for 60 minutes and subsequently washed 3 x 5 minutes with (TBS-T). 

Primary antibody dilutions were prepared in 5% milk or bovine serum albumin 

(BSA). Antibodies against phosphorylated AMPKα (Cell Signalling, Beverly, 

MA, USA) dystrophin (ab3149, Abcam, Toronto, ON, Canada), utrophin (NCL-

DRP2, Leica Biosystems, Concord, Ontario, Canada), β-dystroglycan (6H1-s, 

University of Iowa Hybridoma, Iowa City, IA, USA), γ-sarcoglycan (NCL-G-

SARC-CE, Leica Biosystems, Concord, Ontario, Canada), laminin (ab11575, 

Abcam, Toronto, ON, Canada), nNOS (372800, Thermo Fisher Scientific, 

Burlington, ON, Canada), were used to assay the expression of multiple 

components of the DAPC. Antibodies against PGC-1α (AB3242, EMD Millipore, 
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Etobicoke, ON, Canada), Ca
2+

/calmodulin-dependent protein kinase II (CaMKII; 

33628, Cell Signalling, Beverly, MA, USA), MyoD (sc-304, Santa Cruz, Dallas, 

TX, USA), myogenin (F5D, University of Iowa Hybridoma, Iowa City, IA, USA), 

CUG-binding protein 1 (CUGBP1; sc-20003, Santa Cruz, Dallas, TX, USA), 

Muscleblind-like protein 1 (MBNL1; sc-47740; Santa Cruz, Dallas, TX, USA), 

KH-type splicing regulatory protein (KSRP; A302-021A; Bethyl Laboratories, 

Burlington, ON, Canada), human antigen R (HuR; sc-5261; Santa Cruz, Dallas, 

TX, USA), and AU-Rich Binding Factor 1 (AUF1; 07-260; EMD Millipore, 

Etobicoke, ON, Canada) were also employed. Primary antibodies were applied 

overnight at 4 °C with gentle shaking and washed off the following morning with 

3 x 5 minute washes in TBS-T Appropriate horseradish peroxidase (HRP) linked 

secondary antibodies (Cell Signalling, Beverly, MA, USA) were applied for 2 

hours at room temperature followed by 3 x 5 minute washes in TBS-T. Finally, 

enhanced chemiluminescence substrate (1705061, Bio-Rad, Mississauga, ON, 

Canada) was applied in order to detect target proteins. Images were captured with 

Alpha Innotech imaging equipment (Alpha Innotech, San Jose, CA, USA) and 

ImageJ
41

 was employed for densitometry.  

Immunofluorescence microscopy. The immunostaining procedure was 

carried out as described previously (6). EDL and SOL muscles stored in OCT 

from MKO and WT mice were sectioned on a cryostat (Thermo Fisher Scientific, 

Burlington, ON, Canada) into 5 μm slices. Slides were fixed with 4% 
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paraformaldehyde (PFA) for 10 minutes. Following PFA incubation, slides were 

washed in 1% PBS with Tween-20 (PBS-T) for 3 x 5 minutes. Slides were then 

incubated in a blocking solution of 10% goat serum in 1% BSA for 90 minutes. 

Following another 3 x 5 minute wash in PBS-T slides were incubated in primary 

antibodies. Protein expression and localization of the DAPC were examined by 

probing for dystrophin, β-dystroglycan, γ-sarcoglycan, and nNOS (antibodies 

listed above). All primary antibodies were incubated at a dilution of 1:1,000 

overnight at 4 °C. After primary antibody incubation, slides were washed for 3 x 5 

minutes in PBS-T. Alexa-conjugated secondary antibodies (Thermo Fisher 

Scientific, Burlington, ON, Canada) were applied to samples for 2 hours at room 

temperature (RT), followed by another 3 x 5 minute wash in PBS-T. 4′,6-

Diamidino-2-phenylindole dihydrochloride (DAPI; D1306, Thermo Fisher 

Scientific, Burlington, ON, Canada) was incubated for 10 minutes on slides to 

label myonuclei. Slides were then washed for 5 minutes in PBS-T, followed by a 

final wash for 5 minutes in PBS. After slides were dried, fluorescent mounting 

media (Agilent Technologies, Mississauga, ON, Canada) was applied and the 

slide was mounted with a cover slip. A utrophin-specific primary antibody 

(mentioned above) was used to measure protein expression and localization. The 

primary antibody was incubated at 1:100 for 30 minutes at RT. Following 3 x 5 

minute washes in PBS-T, Alexa-conjugated secondary antibody was incubated for 

2 hours at RT, followed by another 3 x 5 minute wash in PBS-T. Slides were then 
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incubated with Alexa-conjugated α-bungarotoxin (α-BTX; Thermo Fisher 

Scientific, Burlington, ON, Canada) for 2 hours at 37°C in order to visualize 

acetylcholine receptors (AChRs). Following incubation, slides were washed, 

stained with DAPI, dried and mounted. Protein expression and localization of 

AMPK and PGC-1α were examined by probing for antibodies against specific 

primary antibodies (antibodies mentioned above). Primary antibody was 

incubated at 1:500 overnight at 4°C. Following primary antibody incubation, 

slides were washed for 3 x 5 minutes in PBS-T, then incubated in Alexa-

conjugated secondary antibody at 1:500 for 2 hours at RT. Slides were then fixed 

in 4% PFA for 5 minutes, followed by 3 x 5 minute wash in PBS-T. Slides were 

then stained with laminin antibody at 1:500 for 15 minutes at RT, in order to 

visualize the skeletal muscle cell membrane. Following incubation, slides were 

washed, stained with DAPI, dried and mounted. 

Slides were viewed with the Nikon Eclipse Ti Microscope (Nikon 

Instruments, Mississauga, ON, Canada), equipped with a high-resolution 

Photometrics CoolSNAP HQ2 fluorescent camera. Images were captured and 

analysed using the Nikon NIS Elements AR 3.2 software. All images were 

obtained with the 20× objective. The operator was blinded with respect to the 

experimental group of each sample. Images were taken of the entire 5 μm section. 

Five square regions of interest (ROIs) were created, each representing 10% of the 

area of the section, thereby representing half of the total cross-sectional area of the 
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muscle sample. A threshold was applied in order to create a binary layer to 

remove background fluorescence. For DAPC localization analysis, protein 

expression was determined by fluorescence density and was measured by Sum 

Intensity/ROI Area using NIS Elements. For utrophin analysis, AChRs were 

considered positive controls for utrophin localization and thus represented 100% 

of fluorescence intensity. 30% was considered the lower limit for thresholding. 

Three square ROIs were created (as mentioned above), each containing at least 

one neuromuscular junction, thereby representing 30% of the total cross-sectional 

area of the sample. Sarcolemmal utrophin was determined by fluorescence density 

(as mentioned above). Special consideration was made to exclude regions overlaid 

with AChRs or myonuclei, as well as extramyocellular punctate structures 

indicative of epithelial utrophin
42

. AMPK localization was determined as the 

percentage of AMPK fluorescence, measured by Sum Intensity, overlaid with 

laminin (i.e., membrane) or DAPI (i.e., myonuclear). The remaining AMPK 

fluorescence was considered cytosolic. 

Statistical analyses. Differences in expression level between fiber types 

within a respective genotype (SOL vs EDL) and between genotypes of the same 

fiber type (WT vs MKO) were analyzed by one-way ANOVA and Bonferroni 

post hoc analysis. Statistical differences were considered significant if p < 0.05. 

All statistical analyses were performed on the raw data sets prior to 
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transformation to –fold differences as displayed in the graphical summaries. Data 

are presented as means ± SEM. 

 

Results 

Subcellular localization of AMPK in skeletal muscle. In order to elucidate 

the importance of AMPK in the expression of DAPC proteins, we first sought to 

investigate the myocellular localization of AMPK through the use of 

immunofluorescence imaging. This analysis was performed using EDL and SOL 

muscles from WT mice, as well as muscles from MKO animals (Fig. 1A, B). 

AMPK colocalization with laminin was employed to identify the presence of the 

kinase at the muscle membrane, while AMPK and DAPI colocalization was used 

to mark AMPK in the myonuclear compartment (Fig. 1B, C). AMPK staining 

within the myofiber but outside of myonuclei was considered cytosolic. In both 

EDL and SOL muscles of WT animals, AMPK localization was significantly 

greater (~10-12-fold) in the cytosol, as compared to the myonuclei (Fig. 1B, C). 

The content of membrane-localized AMPK was also 3-6-fold higher (p < 0.05) 

versus myonuclear AMPK expression. In turn, cytosolic AMPK abundance was 

also significantly greater (2-2.2-fold) than sarcolemmal AMPK levels. The pattern 

of cellular AMPK localization was similar between muscle types.    

DAPC transcript levels in skeletal muscle. We next examined the mRNA 

expression of DAPC components in skeletal muscles of disparate fiber type 
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composition. In the mouse, the fiber type composition of the EDL muscle is < 1% 

type I, ~8% IIA, ~22% IIX and ~66% IIB, while the SOL muscle is ~37% I, 

~56% IIA, ~6% IIX and 0% IIB
43

. In WT mice, dystrophin transcript levels were 

similar between the fast, glycolytic EDL muscle and the slower, more oxidative 

SOL muscle (Fig. 2A). Utrophin transcripts displayed ~46% higher (p < 0.05) 

expression in the SOL muscle, as compared to the EDL muscle (Fig. 2B). β-DG 

mRNA levels, along with all three SGs measured, were similar between muscle 

types in WT animals (Fig. 2C-F). nNOS mRNA content was 65% lower (p < 

0.05) in the SOL relative to the EDL muscle (Fig. 2G). The mRNA expression of 

laminin and biglycan were 64% (p < 0.05) and 57% (p < 0.1) higher, respectively, 

in SOL muscle, as compared to EDL muscle (Fig. 2H, I).  

In general, DAPC transcripts in MKO animals displayed similar muscle-

specific expression patterns as in their WT counterparts. There was significantly 

higher dystrophin (+26%) and utrophin (+68%) mRNA levels in the SOL muscle, 

as compared to the EDL muscle (Fig. 2A, B). β-DG, α-SG, and β-SG transcript 

content were similar between muscle types in MKO mice (Fig. 2C-E). γ-SG levels 

were 30% higher (p < 0.05) in the SOL muscle versus the EDL muscle (Fig. 2F), 

whereas nNOS expression was significantly lower (-40%) in the SOL relative to 

the EDL muscle (Fig. 2G). Laminin and biglycan displayed 59% (p < 0.05) and 

127% higher (p < 0.1) expression, respectively, in SOL muscle, as compared to 

the EDL muscle (Fig. 2H, 2I). 
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There were no differences in mRNA transcript expression between WT 

and MKO muscles of the same fiber type, with the exception of nNOS, which was 

40% lower (p < 0.05) in the EDL muscle of MKO animals versus WT mice (Fig. 

2G).  

 Skeletal muscle DAPC protein content. Next, we examined the protein 

expression of DAPC constituents using immunoblotting techniques. In the WT 

group, dystrophin, γ-SG, and laminin protein levels were similar between EDL 

and SOL muscles (Fig. 3A, B, E, G). Utrophin, β-DG, and nNOS expression was 

55-100% greater (p < 0.05) in the SOL muscle relative to the EDL (Fig. 3A, C, D, 

F). Dystrophin, β-DG, γ-SG, and laminin content were similar between muscles in 

the MKO animals, whereas utrophin levels were significantly higher (+69%) in 

the SOL, as compared to the EDL muscle. nNOS levels were 41% higher in MKO 

SOL as compared to MKO EDL, albeit this difference approached statistical 

significance (p = 0.07). DAPC protein expression was similar between genotypes, 

with the exception of nNOS, which was 25% lower (p < 0.05) in SOL of MKO 

animals as compared to WT counterparts.  

DAPC localization in the skeletal muscle of WT and MKO mice. We next 

investigated the expression and localization of key DAPC components through 

the use of immunofluorescence microscopy. In WT animals, β-DG expression 

was significantly higher (+115%) in SOL compared to EDL muscles (Fig. 4A, 

4C). In contrast, dystrophin, γ-SG, nNOS, and laminin levels were similar 
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between muscle types (Fig. 4A, B, D-F). In MKO mice, nNOS expression was 

significantly higher in the SOL muscle, as compared to the EDL. The levels of 

other DAPC components were similar between EDL and SOL muscles, although 

statistical trends suggest that dystrophin (p = 0.13), β-DG (p = 0.10) and γ-SG (p 

= 0.06) expression were ~30-50% higher in the SOL muscle. nNOS levels were 

also higher in the SOL muscle of MKO mice versus their WT counterparts.  

In WT animals, extrasynaptic sarcolemmal utrophin expression was 

significantly higher (148%) in the slow, oxidative SOL muscle compared to the 

fast, glycolytic EDL muscle  (Fig. 5A-C). Utrophin levels were 52% lower (p < 

0.05) in SOL muscles from MKO mice, as compared to SOL muscles from their 

WT littermates. 

 Expression of regulatory factors that control DAPC levels in muscle. To 

continue to comprehensively investigate the role of AMPK on DAPC gene 

expression, we examined the levels of regulatory molecules that participate in the 

transcriptional activation, as well as function, of the DAPC in skeletal muscle. 

PGC-1α mRNA content was ~2-2.5-fold higher (p < 0.1) in the SOL muscles 

relative to the EDL muscles in WT mice, as well as in MKO animals (Fig. 6A). 

CaMKII transcript levels were also modestly higher (+25%) in the SOL muscles 

compared to EDL muscles of WT mice, as well as in MKO animals (Fig. 6B). 

However, these data did not reach statistical significance. PGC-1α and CaMKII 

transcripts were similar between genotypes.  
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At the protein level, PGC-1α content was significantly greater (+100%) in 

the SOL muscles versus the EDL muscles of both WT and MKO animals (Fig. 

6C, D). A pan CaMKII antibody, which identifies both α and β isoforms of the 

kinase, was employed to examine the protein content of the enzyme. In both WT 

and MKO groups, CaMKIIα levels were ~60% lower (p < 0.05) in the SOL 

muscles, as compared to the EDL muscles (Fig. 6C, E). In contrast, CaMKIIβ 

protein expression was significantly greater (+2.5-4-fold) in the SOL muscles 

versus the EDL muscles of WT animals, as well as in MKO mice (Fig. 6C, F). 

PGC-1α, CaMKIIα, and CaMKIIβ protein levels were similar between genotypes. 

The expression of the myogenic regulatory factors (MRFs) MyoD and myogenin 

were similar between muscle types in both WT and MKO animals (Fig. 6C, G, 

H). However, MyoD levels were 55-60% lower (p < 0.05) in the muscles from 

MKO mice, as compared to WT animals, while myogenin protein content was 

significantly lower (~50%) in the EDL muscles of MKO animals compared to 

their WT counterparts.  

Subcellular localization of PGC-1α in skeletal muscle. To further 

investigate PGC-1α biology in relation to the role of AMPK in maintaining DAPC 

expression, we measured the abundance and subcellular localization of the 

transcriptional coactivator by employing immunofluorescence imaging. Analyses 

were performed in WT and MKO muscles, as well as muscles lacking PGC-1α, 

which served as a negative control, similar to the MKO samples in Figure 1B. 
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PGC-1α expression was 2.5-3-fold greater (p < 0.05) in SOL, as compared to 

EDL muscles of both genotypes (Fig. 7A, C), similar to our observations using 

immunoblotting assays (Fig. 6C, D). Statistical trends suggest that PGC-1α 

content was lower in the EDL (p = 0.09) and SOL (p = 0.1) muscles of MKO 

animals versus WT mice, albeit not significantly different (Fig. 7C). PGC-1α 

colocalization with laminin was employed to identify its presence at the muscle 

membrane, while PGC-1α and DAPI overlays were used to mark PGC-1α in the 

myonuclear compartment (Fig. 7A, B). PGC-1α staining within the myofiber but 

outside of myonuclei was considered cytosolic. In WT animals, SOL muscles 

displayed significantly lower expression of nuclear PGC-1α compared to EDL 

muscles, while cytosolic and membrane-associated PGC-1α were similar between 

muscle types (Fig. 7A, D). In MKO mice, SOL muscles contained a 4% lower (p 

< 0.05) expression of cytosolic PGC-1α versus EDL muscles, which was 

accompanied by a concomitant and significant 4% increase in PGC-1α abundance 

at the sarcolemma in SOL, as compared to EDL muscles (Fig. 7A, D). Additional 

strong statistical trends in the data suggest greater PGC-1α content in the 

membrane (p = 0.05) and myonuclear (p = 0.06) compartments of MKO SOL 

muscles, coincident with reduced amounts in the cytosol (p = 0.1), as compared to 

their WT counterparts (Fig. 7A, D). 

Expression of mRNA stability regulators in skeletal muscle. The levels of 

DAPC components localized to the sarcolemma can be affected at various stages 
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of gene expression, including by the stability of their mRNAs prior to translation. 

In order to assess the impact of AMPK on factors that regulate DAPC post-

transcriptional processing, we first executed a bioinformatic survey of the 3’-

untranslated region (3’-UTR) of multiple DAPC components to assess the 

prevalence of possible binding sites for RNA-binding proteins (RBPs) that either 

enhance or reduce mRNA stability. We performed this analysis using UCSC 

Genome Browser
44

 and RBPMap
45

. A number of RBP binding sites were 

identified in DAPC and utrophin 3’-UTRs, including consensus sequences for 

CUG triplet repeat RNA binding protein 1 (CUGBP1), Muscleblind-like protein 1 

(MBNL1), KH-type splicing regulatory protein (KSRP), human antigen R (HuR), 

and AU-Rich binding factor 1 (AUF1). We then assessed the protein content of 

these RBPs in the muscles of WT and MKO mice. In the WT group, the data 

reveal higher levels (p = 0.05) of MBNL1 in the EDL compared to the SOL 

muscle (Fig. 8A, C), while the other RBPs displayed similar protein content 

between muscle types. In MKO mice, MBNL1 and CUGBP1 expression were 

82% higher (p < 0.05) and 51% higher (p = 0.09), respectively, in the slow, 

oxidative SOL muscle, as compared to its faster, more glycolytic EDL counterpart 

(Fig. 8A-C). The abundance of all other RBPs examined was similar between 

muscle types in the MKO group. Finally, there was no difference in RBP levels 

between genotypes. 
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Discussion 

 In the current study we examined the role of AMPK in muscle DAPC 

biology. Confirming and extending earlier work
18,19,46

 , our data demonstrate that 

slow, oxidative muscle  has a higher expression of the DAPC and utrophin, as 

compared to faster, more glycolytic muscle. Generally, skeletal muscle AMPK 

was not essential for DAPC expression. However, the lack of AMPK resulted in 

altered levels of nNOS and extrasynaptic utrophin content, with the latter 

molecule exhibiting a significant downregulation in the SOL muscle. This 

decrease in utrophin occurred despite the upregulation of PGC-1α at the local 

membrane compartment. The maintenance of DAPC expression in MKO animals 

was not accompanied by compensatory increases in the content of a number of 

proteins that mediate the transcriptional or post-transcriptional control of DAPC 

levels. Given that chronic pharmacological AMPK activation augments DAPC 

content in skeletal muscle
9,10

, our data therefore suggests that AMPK is sufficient, 

but not required, to impact DAPC levels. Our results also strongly support the 

hypothesis that AMPK is integral to the regulation of utrophin expression in 

muscle, particularly along the sarcolemma. This lends further credence to the 

examination of AMPK-mediated utrophin induction as a therapeutic modality in 

clinical situations where sarcolemmal utrophin upregulation would be 

therapeutically beneficial, such as in DMD. 
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We observed that AMPK preferentially accumulated in the cytosol, but 

also exhibited enrichment at the sarcolemma, with a small fraction remaining in 

nuclei. A significant portion of myocellular AMPK resides in close proximity to 

the muscle membrane, which suggests that the kinase executes important 

functions at the sarcolemma. Indeed, recent investigations have revealed that 

pharmacological AMPK activation promotes translocation of the Na
+
/K

+
-ATPase 

α1 subunit to the sarcolemma, and increases activity of the ion pump
35

. 

Furthermore, Garbincius and Michele demonstrated that stretch-induced 

production of nitric oxide in cardiomyocytes was dependent on AMPK signalling 

following mechanotransduction from the DAPC
37

. Thus, our findings support the 

emergence of AMPK as an important component of the structure and function of 

the sarcolemmal compartment.  

The aging-induced attenuation of skeletal muscle AMPK activity
29

 is 

associated with alterations in the sarcolemmal environment, including reduced 

DAPC protein content
30–34

. Conversely, chronic pharmacological AMPK 

stimulation increases DAPC expression in skeletal muscle
9
. Moreover, the 

presence and function of the kinase at the sarcolemma has been recently 

established
35,37,47

. Based on this evidence, we therefore hypothesized that removal 

of muscle AMPK would decrease DAPC gene expression, and by extension 

reduce its membrane localization. We now report that DAPC transcript and 

protein levels, as well as its integrated sarcolemmal abundance, remain largely 



M.Sc. Thesis – A. G. Dial; McMaster University – Kinesiology 

 

 88 

unaffected in response to the genetic ablation of skeletal muscle AMPK. The 

exceptions were nNOS and utrophin, whose expression was altered in the muscles 

of MKO animals. nNOS mRNA was significantly lower in MKO muscles of both 

fiber types, while Western blotting detected diminished protein levels in only 

SOL muscles. Conversely, immunofluorescence measurements of nNOS detected 

significant elevations of the protein specifically at the sarcolemma. nNOS exists 

in four protein variants, including nNOSα, -β, -γ, and -μ
48

. nNOSα and -μ contain 

a postsynaptic density-95/discs large/zona occludens-1 homology (PDZ) domain, 

which allows binding of the enzymes to the cell membrane. In contrast, nNOSβ 

and -γ, both lacking the PDZ domain, are localized to the cytosol. nNOSμ, which 

contains the PDZ sequence, is predominantly expressed in skeletal muscle and is 

bound to the DAPC
49,50

. In the current study, we employed the use of reagents to 

detect pan-nNOS gene expression at the mRNA and protein levels, regardless of 

variant identity. Thus, the discordant nNOS mRNA and protein expression 

detected via complementary analyses is likely due, in part, to the existence of 

nNOS variants in skeletal muscle. Additionally, unlike the Western blotting assay 

that assesses nNOS levels in a muscle homogenate, our immunofluorescence 

measurements account specifically for sarcolemmal nNOS. Therefore, this metric 

is most reflective of nNOSμ expression, which maintains its PDZ domain adjacent 

to the sarcolemmal DAPC. The data reveal a selective upregulation of 

sarcolemmal nNOS in the SOL muscles of MKO animals, as compared to their 
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WT counterparts. It is reasonable to speculate that the enrichment of sarcolemmal 

nNOS content in these muscles is a compensatory upregulation in response to the 

absence of AMPK. This adaptation would likely occur in order to maintain higher 

basal levels of perfusion in slower, more oxidative muscles
51,52

, thereby 

mitigating the loss of capillarization in MKO SOL muscles observed in a previous 

study
4
.  

 It is well known that both whole muscle and extrasynaptic utrophin are 

more highly expressed in slow, oxidative muscles versus faster, more glycolytic 

tissues
19,25,53

, and results from SOL versus EDL muscles in the present study 

affirm this relationship. The removal of skeletal muscle AMPK selectively 

attenuated sarcolemmal utrophin expression in the slow, oxidative SOL muscles. 

While we were unable to recognize this perturbation from the immunoblotting 

results, targeted immunofluorescence assessment revealed the specific reduction 

in extrasynaptic utrophin. Molecules such as PPARβ/δ, as well as CN/nuclear 

factor of activated T-cells (NFAT) signalling confer sarcolemmal expression to 

utrophin
11,25

. For example, chronic pharmacological PPARβ/δ activation in mdx 

mice increases the frequency of slow, oxidative myofibers, as well as upregulates 

sarcolemmal utrophin content
11

. As previous studies have identified binding 

between PPARβ/δ and AMPK that was associated with the stimulation of gene 

expression indicative of slower, more oxidative characteristics
54,55

, a lack of 

interaction between these molecules may explain, at least in part, why ablation of 
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AMPK may lead to the downregulation of extrasynaptic utrophin in the SOL 

muscle. It is important to note that enriched sarcolemmal utrophin is clinically 

beneficial for DMD, as expansion beyond the typical subsynaptic expression of 

the protein serves to compensate for dystrophin loss along the muscle 

membrane
56

. AMPK gain-of function studies
14,9,10,57,58

, and now our loss-of-

function investigation, underscore the critical role of AMPK in regulating the 

therapeutically relevant expression and localization of utrophin in skeletal muscle.  

 We suspected that the maintenance of DAPC content and localization in 

MKO muscles might be the result of the upregulation of alternative signalling and 

regulatory factors that mediate DAPC biology. To this end, we examined the 

expression of CaMKII, PGC-1α, as well as the MRFs MyoD and myogenin, 

which participate, at various levels, to the transcriptional activation of DAPC 

components
59,22,20

. CaMKII and PGC-1α protein content were similar between 

muscles from WT and MKO animals. In addition, SIRT1 levels were also similar 

between genotypes (data not shown). These data suggest that AMPK is not 

required for homeostatic protein expression of these molecules in skeletal muscle, 

and that basal CaMKII and PGC-1α levels are sufficient to maintain, or contribute 

to the maintenance of, DAPC content in the absence of AMPK. In marked 

contrast, MyoD and myogenin protein levels were significantly reduced in EDL 

and SOL muscles of MKO mice compared to their WT counterparts. Recent work 

has demonstrated a critical role for AMPK in muscle regeneration, as removal of 
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AMPKα1 results in delayed and incomplete muscle repair in response to cytotoxic 

injury
60–62

 . The dysregulated myogenic program in AMPKα1 mice was 

associated with the attenuated expression of MRFs, including MyoD and 

myogenin, as compared to their WT counterparts
63

. The myopathy previously 

observed in the MKO animals utilized in the current study involves the consistent 

presence of split fibers
4
, which can arise from defects in muscle regeneration

64
. 

However, the deficit in MRF expression observed here was not accompanied by a 

corresponding loss of DAPC expression. Dumont et al. (2015) recently observed 

that β-DG and dystrophin are necessary for the proper association of cell polarity 

regulators and the ability for satellite cells to asymmetrically divide
65

. This 

function of the DAPC in the formation of myogenic progenitors suggests that its 

presence at the sarcolemma precedes the formation of mature satellite cells. 

Therefore, with the emergence of AMPK as a governor of muscle regeneration, it 

will be important for future studies to further clarify the roles of AMPK and the 

DAPC during execution of the myogenic program. 

 Within skeletal muscle, PGC-1α protein content, as well as its subcellular 

distribution, are critical variables when considering the function of the 

coactivator
66–68

. For example, the synaptic localization of PGC-1α is associated 

with enhanced expression of NMJ genes, including utrophin and AChR 

subunits
69

. Although the majority of the enzyme was situated in the cytosolic 

compartment, we observed a modest, but significant shift in PGC-1α 
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accumulation from the cytosol to the sarcolemma in SOL muscles from MKO 

animals compared to WT mice. This translocation suggests an enhanced activity 

of the enzyme at the membrane compartment. Considering the selective 

attenuation of extrasynaptic utrophin in the SOL muscles of MKO animals, as 

well as the significant mitochondrial defects in MKO mice
38

, it is likely that this 

translocation of PGC-1α to the membrane represents a cellular adjustment in an 

effort to maintain both sarcolemmal utrophin levels and subsarcolemmal 

mitochondrial gene expression. Additionally, PGC-1α has the ability to modulate 

other aspects of the sarcolemmal environment, including inducing critical 

components of the satellite cell niche fibronectin and tenascin C
70

.  Thus, 

enhanced, local PGC-1α activity may compensate for the lack of AMPK in 

administering the sarcolemmal compartment, however more work is required to 

confirm this assumption. 

 Post-transcriptional processing of mRNAs is an important regulatory step 

in the gene expression pathway. Numerous RBPs, by sequestering, folding, or 

chaperoning transcripts, have the capacity to influence critical events in gene 

expression such as the nuclear export, subcellular localization, degradation or 

translation of mRNAs
71,72

. Within skeletal muscle, gene expression is regulated 

post-transcriptionally by various RBPs, including HuR, AUF1, KSRP, MBNL1 

and CUGBP1. Generally, HuR enhances mRNA stability, AUF1 and KSRP act to 

destabilize transcripts, while MBNL1 and CUGBP1 mediate alternative splicing 



M.Sc. Thesis – A. G. Dial; McMaster University – Kinesiology 

 

 93 

of pre-mRNAs
73,74

. Since the DAPC was largely unaffected by the removal of 

AMPK in skeletal muscle, we complemented our investigation of alternative 

transcriptional mechanisms by examining whether adaptations in RBP content 

contributed at the post-transcriptional level to the maintenance of the DAPC. 

However, similar to the DAPC, we detected no significant differences between 

genotypes in RBP expression levels. While these data suggest that AMPK has no 

influence on RBP content in skeletal muscle, they also imply that these RBPs do 

not contribute to the perturbations in utrophin, nNOS, or MRF expression in 

MKO muscles. Nevertheless, it is possible that the activity of RBPs may be 

altered in the absence of AMPK-dependent functional modifications. In support of 

this, work by Wang and colleagues demonstrated that transfection of 

constitutively active AMPK results in reduced cytoplasmic accumulation of HuR 

and destabilization of several HuR target transcripts in colorectal cancer cells
75

, 

suggesting that AMPK activity can regulate RBPs and the subsequent stability of 

target transcripts. Indeed, phosphorylation of RBPs is a known modulator of their 

function. For example, phosphorylation of KSRP by the mitogen-activated protein 

kinase p38 results in its decreased cytoplasmic accumulation and function
76

. This 

is particularly relevant here since KSRP regulates skeletal muscle utrophin 

expression
77

. Although speculative, the possibility remains therefore, that 

adaptations to RBP function may be contributing to the maintenance of the DAPC 

in the absence of AMPK.  
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 In summary, our data show that skeletal muscle-specific ablation of 

AMPK left the DAPC unaffected, with the exception of nNOS upregulation. 

Thus, when previous evidence demonstrating DAPC induction in response to 

chronic pharmacological AMPK stimulation
14,9,10,78

  are considered with these 

data from an AMPK loss-of-function model, we conclude that AMPK is 

sufficient, but not necessary for DAPC expression in skeletal muscle. The 

diminished expression of MRFs MyoD and myogenin in muscles from MKO 

animals suggest impairment in regenerative capacity, corroborating previous 

findings of myopathy in AMPK KO animals. Furthermore, we observed 

decrements in extrasynaptic utrophin expression despite the adaptive 

accumulation of PGC-1α at the plasma membrane. These data indicate that 

AMPK is required to maintain sarcolemmal utrophin in slow, oxidative fibers. 

Further study is therefore warranted in order to determine the role of AMPK in 

the expression of utrophin and the utrophin-associated protein complex at the 

NMJ.  
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Figure Legends 

Figure 1. Subcellular localization of AMP-activated protein kinase in skeletal 

muscle. A, Representative Western blot of phosphorylated AMP-activated protein 

kinase (p-AMPK) in extensor digitorum longus (EDL) and soleus (SOL) muscles 

from wild-type (WT) mice and those with skeletal muscle-specific deletion of the 

AMPK β1 and β2 subunits (MKO). A typical ponceau S stain is displayed to 

demonstrate equal loading. B, Representative immunofluorescence images of 

laminin (Lam), AMPK, 4′,6-diamidino-2-phenylindole dihydrochloride (DAPI) to 

identify myonuclei, and overlay, in WT EDL and SOL muscles, as well as in 

muscle from MKO mice. Note the absence of AMPK in the MKO samples. C, 

Graphical summary of AMPK subcellular localization in cytosolic (CYT), nuclear 

(NUC), and membrane (MEM) compartments of WT EDL and SOL muscles. n = 

8; *, p < 0.05 vs. NUC; #, p < 0.05 vs. MEM. 

 

Figure 2. DAPC transcript levels in skeletal muscle. Expression levels of 

dystrophin (A), utrophin (B), β-dystroglycan (C), α-sarcoglycan (D), β- 

sarcoglycan (E), γ- sarcoglycan (F), neuronal nitric oxide synthase (nNOS; G), 

laminin (H) and biglycan (I) mRNA content in EDL and SOL muscles from WT 

and MKO animals. All values are relative to WT EDL. n = 8; *, p < 0.05 vs. EDL 

within genotype; #, p < 0.05 vs. corresponding muscle of WT. 
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Figure 3. DAPC protein content in skeletal muscle. A, Representative Western 

blots of dystrophin, utrophin, β-dystroglycan (β-DG), γ-sarcoglycan (γ-SG), 

nNOS, and laminin, as well as a typical ponceau S stain. Graphical summaries of 

dystrophin (B), utrophin (C), β-DG (D), γ-SG (E), nNOS (F) and laminin (G) 

protein content in EDL and SOL muscles from WT and MKO mice. All values 

are relative to WT EDL. Dashed line in representative blots indicates 

rearrangement of non-contiguous lanes within the same image. n = 8; *, p < 0.05 

vs. EDL within genotype; #, p < 0.05 vs. corresponding muscle in WT.  

 

Figure 4. DAPC localization in skeletal muscle. A, Representative 

immunofluorescence images of dystrophin (Dys), β-DG, γ-SG, nNOS, and Lam. 

Graphical summaries of dystrophin (B), β-DG (C), γ-SG (D), nNOS (E), and 

laminin (F) levels in EDL and SOL muscles from WT and MKO mice. All values 

are relative to WT EDL. n = 8; *, p < 0.05 vs. EDL within genotype; #, p < 0.05 

vs. corresponding muscle in WT. 

 

Figure 5. Utrophin localization in skeletal muscle. A, Representative 

immunofluorescence images of utrophin (UTR), α-bungarotoxin (α-BTX) to 

identify acetylcholine receptors at neuromuscular junctions, myonuclei (DAPI), 

and overlay in EDL and SOL muscles from WT and MKO mice. B, Higher 

magnification images of UTR (i), α-BTX (ii), DAPI (iii) and overlay (iv), which 
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identifies both synaptic and extrasynaptic utrophin content within myofibers. 

Arrows depict areas of sarcolemmal utrophin expression. C, Graphical summary 

of extrasynaptic skeletal muscle utrophin expression, with values relative to WT 

EDL. n = 8. *, p < 0.05 vs. EDL within genotype. #, p < 0.05 vs. corresponding 

muscle in WT . 

 

Figure 6. Regulatory factors that control DAPC expression in skeletal muscle. 

mRNA content of peroxisome proliferator-activated receptor γ coactivator-1α 

(PGC-1α; A) and Ca
2+

/calmodulin-dependent protein kinase II (CaMKII; B) in 

EDL and SOL muscles from WT and MKO mice. C, Representative Western 

blots of PGC-1α, CaMKIIα, CaMKIIβ, MyoD, and myogenin, as well as a typical 

Ponceau S stain. Graphical summaries of PGC-1α (D), CaMKIIα (E), CaMKIIβ 

(F), MyoD (G), and myogenin (H) protein expression levels. All values are 

relative to WT EDL. n = 8.*, p < 0.05 vs EDL within genotype; #, p < 0.05 vs 

corresponding muscle in WT.   

 

Figure 7. Subcellular localization of PGC-1α in skeletal muscle. A, 

Representative immunofluorescence images of PGC-1α, Lam, myonuclei (DAPI) 

and overlay in EDL and SOL muscles from WT and MKO mice. B, Higher 

magnification images of PGC-1α (i), Lam (ii), DAPI (iii) and overlay (iv), which 

display perinuclear sarcolemmal PGC-1α accumulation. Arrows depict areas of 
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concentrated PGC-1α expression at the sarcolemma. C, Graphical summary of 

whole muscle PGC-1α expression. D, Graphical summary of PGC-1α subcellular 

localization in cytosolic (CYT), nuclear (NUC), and membrane (MEM) 

compartments of EDL and SOL muscles from WT and MKO mice. Inset, 

Magnified view of NUC PGC-1α localization. All values are relative to WT EDL. 

n = 8.*, p < 0.05 vs EDL within genotype. 

 

Figure 8. RNA-binding proteins involved in DAPC mRNA stability. A, 

Typical Western blots of CUG triplet repeat RNA binding protein 1 (CUGBP1), 

muscleblind-like protein 1 (MBNL1), human antigen R (HuR), KH-type splicing 

regulatory protein (KSRP), AU-rich binding factor 1 (AUF1), and representative 

Ponceau S stain. Graphical summaries of CUGBP1 (B), MBNL1 (C), HuR (D), 

KSRP (E), and AUF1 (F) protein levels. All values are relative to WT EDL. n = 

4-8.*, p < 0.05 vs EDL within genotype. 
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