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Abstract

Recently, video has become one of the most important multimedia resources to be

shared in our work and daily life. With the development of high frame rate video

(HFV), the write speed from high speed camera array sensor to the massive data

storage device has been regarded as the main constraints on HFV applications. In

this thesis, some low-complexity compression techniques are proposed for HFV ac-

quisition and transmission.

The core technique of our developed codec is the application of Slepian-Wolf coding

theorem in video compression. The light-duty encoder employs SW encoding, result-

ing in lower computational cost. The pixel values are transformed into bit sequences,

and then we assemble the bits on same bit plane into 8 bit streams. For each bit

plane, there is a statistical BSC being constructed to describe the dependency be-

tween the source image and the SI image. Furthermore, an improved coding scheme

is applied to exploit the spatial correlation between two consecutive bit planes, which

is able to reduce the source coding rates. Different from the encoder, the collabora-

tive heavy-duty decoder shoulders the burden of realizing high reconstruction fidelity.

Motion estimation and motion compensation employ the block-matching algorithm

to predict the SI image. And then the received syndrome sequence is able to be SW

decoded with SI. To realize different compression goals, compression are separated
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to the original and the downsampled cases. With regard to the compression at the

original resolution, it completes after SW decoding. While with respect to compres-

sion at reduced resolution, the SW decoded image is necessary to be upsampled by

the state-of-the-art learning based SR technique: A+. Since there are some impor-

tant image details lost after the resolution resizing, ME and MC is applied to modify

the upsampled image again, promoting the reconstruction PSNR. Experimental re-

sults show that the proposed low-complexity compression techniques are effective on

improving reconstruction fidelity and compression ratio.
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Notation and abbreviations

PSNR Peak Signal to Noise Ratio

ME Motion Estimation

ITU International Telecommunication Union

MEPG Motion Expert Picture Group

CIF Common Interface Format

FPS Frame per Second

SR Super-resolution

SW Slepian-Wolf theorem

WZ Wyner-Ziv theorem

DSC Distributed Source Coding

LDPC Low Density Parity Check

EXIT Extrinsic Information Transfer

BP Extrinsic Information Transfer

BSC Binary Symmetric Channel

VND Variable Node Decoder

CND Check Node Decoder
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PEG Progressive Edge-Growth

CND Check Node Decoder

HFV High Frame Rate Video

CP Crossover Probability

CE Conditional Entropy

BMA Block-Matching Algorithm

MAD Mean Absolute Difference

MSE Mean Squared Error

RMSE Root Mean Squared Error

Bpp Bit per Pixel
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Chapter 1

Introduction

Video has becomes one of the most important part in our life. As the demand for

video contents and qualities increases, video compression has been the key to solve the

problem in network usages and video applications. In this chapter, a comprehensive

review of video coding techniques is completed and the motivation of this research is

summarized. Finally, the outline of this thesis is shown.

1.1 Motivation and Literature Review

Nowadays, with an increasing number of usage of Internet, especially the Mobile

Internet, video content services are playing a more significant role in many aspects

of our work and life. It is widely admitted that 90% information that travels to the

brain is via visual, which relates to the rise of video contents. This is the reason

why it becomes so important in social media world. Thus, both researchers and

industries have paid high attention to the enormous amount of video data processed

in transmission, storage and display. This has become the bottleneck of development
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in digital video industry.

Owing to the limited network bandwidth and resources, which may lead to network

outage and congestion, multimedia compression on images and videos has drawn the

academia’s attention. Video compression is a practical implementation of source

coding in information theory. Generally, the goal of compression technique on video

is to decrease the size of data, aiming at comsuming less bandwidth and storage in

hard or cloud drives.

It is known that video data may be transformed to a sequence of still images,

called as frames. The size of video could be decreased by applying compression

technologies that can cut down the spatial and temporal redundancy. For instances,

if there are high correlations among the consecutive frames, the redundancy can be

removed by only transmitting and storing the differences between frames. Some other

data compression techniques make use of perceptual features of human vision. For

example, small differences in color are more difficult to recognize than changes in

brightness. Video coding schemes can average the color in a certain area so that the

size of data can be shrunk down.

1.1.1 Video Compression Techniques

As stated in [1], the concepts of video compression are introduced and the typical

compression techniques proposed by ITU-T Video Coding Experts Group and the

ISO/IEC Moving Picture Expert Group are demonstrated. Intra-frame video coding

always refers to the reduction of spatial redundancy within one frame. Then it may

result in the smaller size of video frame data by storing the critical blocks or pixels

that represent the frame. On the other hand, temporal redundancy among video

2
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frames could be eliminated in inter-frame video coding by only coding the differences

between consecutive frames.

There are several important conventional compression standards, namely H.261,

263 and 263+, MPEG -1, 2, 4, 7, and H.264/AVC coding standards. H.261, H.263

were developed by ITU respectively in 1990 and 1996. A scheme using motion esti-

mation and compensation was proposed to implement the inter-frame prediction and

temporal redundancy elimination in [2], [3], [4], [5]. In order to improve the error

resilience and the ability of decreasing the time delay, H.263+ was proposed as an

extension of H.263 by [6],[7]. It also allows high frame rate acquisition and enhances

the error bit control in [8]. With the development of H.26x standards series, the joint

appearance of MPEG-1,2 standards boosted a series of multimedia applications in [9]

and [10]. To meet the high demand of new generation of video production in pur-

suit of less network bandwidth, high-quality broadcast televison, and high-resolution

video streaming over the Internet, MPEG-4 was claimed as a new generation video

coding standard during 1995-1999 in [11] [12]. It is involved in audio and video trans-

mission and storage systems, and it is also capable of coding individual objects, with

high efficiency. Although the performance of video coding with MPEG-4 is good,

the high complexity of the system became the constraint in computations mentioned

in [13]. Focusing on the visual content description, MPEG-7 put forwards a novel

coding system in efficient video searching, recognition, and matching by optimizing

video contents descriptors in [14].

Combined with the video coding standards mentioned above, H.264/AVC stan-

dard was finally approved as the new efficient and conventional video coding standard
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of the ITU-T and the ISO/IEC in 2003. It has been widely adopted in industry dur-

ing recent years [15],[16]. The advantages of H.264/AVC contains improved entropy

coding, motion estimation with variable block size, enhanced motion vectors over

picture boundaries and novel multiple reference picture motion compensation, and

in-the-loop deblocking filter. Of the benefits mentioned, promoted video compression

is the foremost feature in H.264/AVC distinguished from earlier standards. Thus, it

has been regarded as the common and international video compression standard for

consumers and manufacturers.

1.1.2 Motion Estimation and Compensation

Motion estimation and compensation is an important method to predict the frames by

exploiting the correlation between the successive frames. H.264/AVC demonstrates a

complete and efficient motion compensated structure to Inter-frame compression. It

is one of the most critical techniques for video compression. Inter-frame compression

uses one or more earlier or later frames in a sequence to compress the current frame,

resulting in temporal redundancy reduction. In contrast of inter-frame coding, intra-

frame compression is equivalent to image compression, uses only the current frame

and reduces the spatial redundancy .

Therefore, the combination of spatial image compression and temporal motion

compensation is contained in most video compression techniques and algorithms.

The most commonly used schemes mainly explore the differences between previous

frames and current frames. If current frame contains areas where nothing has changed

comparing with the earlier frame, the system identifies that there is nothing different

between them and simply send the indication to receiver. If there is any moving or
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changing sections such as shifting, rotation, brightness changes, the transmitter will

send the difference to receiver.

Among the mentioned video compression schemes, motion estimation and com-

pensation are widely applied in inter-frame coding. Owing to the high correlation

between the consecutive frames, the spatial and time redundancy could be greatly

reduced by finding out the differences between the reference frames and the current

frame.

The complete hybrid video encoder of H.264/AVC has been stated in [1], where

motion estimation and compensation is the critical prediction technique.

Motion Estimation contains Block-matching algorithm, Optical flow, Phase cor-

relation and frequency domain methods, and Pixel recursive algorithm. All of them

make use of the correlation between frames, within which objects could be pixels,

blocks, even descriptors and other categories [17],[18]. To meet the requirement for a

high speed encoder, the efficiency of a motion estimation algorithm plays a important

role. Of the stated schemes in ME, the block-matching algorithm is a widely used

technique leading to high efficiency and simplicity [19].

The earlier block-matching algorithm exploited Exhaustive Search (ES), which

searches for the matching block within a presumed square region. Later, other new

searching schemes such as three-step search (3SS), new three-step search (N3SS)

[20], four-step search [21], diamond search [22] and others have been proposed to

improve efficiency. Those searching algorithms have been compared in [23], from

aspects of different search patterns and searched regions shapes. In this thesis, motion

estimation and motion compensation have been employed twice in video decoder. To

achieve the highest accuracy when reconstructing, we employ ES to achieve the local

5



M.A.Sc. Thesis - Duo Yang McMaster - Electrical Engineering

optimum regardless of the high computational cost.

However, the correlation between reference and current frame depends on the

frame rate, moving speed, video resolution, and complexity of the scene. It may have

difficulties in applying ME and MC techniques especially the block-matching scheme.

1.1.3 High Frame Rate Video Coding

MPEG-X and H.26X series video coding standards mainly draw their attention on

scalable video coding so as to achieve high compression efficiency, high flexibility

(bandwidth scalability) and/or low complexity. However, in the application of high

speed camera, the storage and write speed constraints become the bottleneck of this

new video production.

With the development of video industry, high frame rate video is applied to high

speed manufacturing, medical and research fields. Usually, video camera can record at

24 to 30 fps, which is sufficient when movement is slow or changes between consecutive

frames cannot be found easily. But in recording fast action and play back in slow

motion, details of fast action will be visible. Meanwhile, with the significant increase

in frame rate which may reach hundreds even thousands of frames per seconds, the

recording, transmitting, and storing of high frame rate video will be a new challenge

to industry [24]. To obtain a high speed and continuous video acquisition, the memory

bandwidth from the sensor array to the mass data storage device is the primary limit.

In acquisition of video, the write speed of on-camera mass storage device is only

500 MB/second, which is much slower than the required one in ultra-high speed

camera. For instance, for a video frame of 2M pixels of 8-bit grey level, the raw output

throughput may reach 5000 MB/s with 2500 fps, which is an order of magnitude faster
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Figure 1.1: Designs of high speed camera acquisition system

than the write speed limit. To overcome the limit, the commonly applied method is

changing spatial and temporal resolutions. Therefore, the write speed from high-

speed camera acquisition sensor to massive data storage device is the main constraint

and challenge.

Compressing the video data from the raw output data throughput is an accessible

way to remove the bottleneck of memory bandwidth. Obviously, an efficient and fast

compressor/encoder performed in real time is necessary to keep up with the speed of

data generation. Besides the high compression efficiency, the reconstruction accuracy

at the decompressor/decoder should also keep in high fidelity. That’s because most

high speed videos are exploited in research and medical proposes.
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However, typical video compression standards are not able to meet the require-

ment of write speed and high fidelity in Fig. 1.1 (a). The video encoder in H.264/AVC

requires sophisticated systems. All existing compression schemes containing a three-

step process: decorrelation, quantization, and entropy coding. The decorrelated

frame/image is quantized and then entropy coded via either Huffman or arithmetic

coding. Entropy coding may lead to expensive computation cost. In [25], Chuah

et al. developed an asymmetric DPCM-based near-lossless compression technique to

eliminate the memory bandwidth obstacle of high speed camera. Nevertheless, the

combination with the entropy coding in the proposed scheme is also a handicap to

satisfy the ultra-high speed video.

To overcome the difficulty of encoder obstacles in typical video compression stan-

dards, we design a novel video codec with light-duty, hardware-friendly encoder and

a collaborative relatively heavy-duty decoder, in which the faster write speed, better

compression ratio and higher reconstruction fidelity could be satisfied. The light-

duty encoder could be embedded in the HFV acquisition sensor illustrated in Fig. 1.1

(b). Distributed source coding techniques are exploited in our scheme, which may

improve the computation performance of the encoder and the reconstruction level of

the decoder. Applied with Slepian-Wolf coding method, in fast encoder, the chosen

source codes stated in [26] generate the parity-check matrix H. With that matrix,

the data source is transformed to a shorter-length code, without decorrelation, quan-

tization and entropy coding. This implementation only involves the operations using

exclusive-OR adders and simple logic circuits, facilitating the write speed from cam-

era sensor to the storage device. Different from the simple encoder, the burden of

reaching better compression ratio and reconstruction fidelity of the new codec has
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shifted to the heavy-duty decoder. To achieve better compression ratio, the compres-

sion can be implemented on the downsampled image. At the decoder, ME and MC are

employed to generate the side information with previous and subsequent consecutive

frames. After Slepian-wolf decoding, the decoded downsampled image is upsampled

by approaches such as simple ’bicubic’ ,’box’ interpolation, and super-resolution (SR).

Finally, ME and MC are applied again to improve the reconstruction fidelity.

1.1.4 Distributed Source Coding

In the designed codec, distributed source coding (DSC) schemes shift the ME and MC

in traditional video encoders to the decoder, and comes up with a light-duty encoder.

DSC contains Slepian-Wolf (SW) theorem [27] and Wyner-Ziv (WZ) theorem [28].

The former one demonstrates a lossless compression scheme, while the other one

proposes a lossy compression, with side information at the decoder.

The decoder will obtain the prediction of video frame by temporal interpolation

techniques such as ME and MC. The consecutive frames are used to estimate the side

information (SI) as the vital information to recover the original image/frame. SW

and WZ coders both exploit the dependency error between the original frame and the

estimated SI to model a virtual channel. The latter author extended the SW theorem

to lossy compression. As shown in Fig. 1.2, X is the original image/frame (it would

be quantized in WZ), Y is the decoder’s SI predicted by temporal estimation and

compensation. Based on their dependency , SW coding is able to be implemented

[29]. In order to retain high fidelity in reconstructing the original frame, Slepian-Wolf

coding is adopted to achieve the lossless compression over the modeling dependency

channel.
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Figure 1.2: A distributed source coding system for lossless and lossy compression

Syndrome codes, Turbo Codes, and LDPC Codes are typical options to implement

a DSC coder, of which LDPC code is commonly applied [30]. In a practical distributed

video coding system, an appropriate coding rate applied in encoder which compresses

the source data to the syndromes is a necessity for the decoder to recover the original

image. If the channel model used at the decoder is an inaccurate representation

of the actual dependency channel, sometimes a higher coding rate need be adopted

to achieve the lossless reconstruction with the loss of compression ratio. Therefore,

a good statistics of dependency channel that referred to the P (X|Y ) becomes an

important factor in SW coding application.

Especially with regard to the video signals, there are several early architectures

and implementations of distributed video coding, such as the method in [31],[32] by

Girod et al. from Stanford University , PRISM in [33],[34] by Puri et al. from Berke-

ley University, DISCOV ER in [35] from a European project. All of them exploit

the dependency between the video frames. In the methods proposed by Stanford and

Berkeley, the applied noise model is obtained via offline training. With respect to

DISCOV ER, the noise model is obtained online. Although the statistics of different

video signals may vary a lot, those three scheme are still able to provide a reliable
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distributed video coding system. Moreover, PRISM and DISCOV ER also need to

send a feedback from the decoder to the encoder, which is a constraint for real-time

video coding.

1.2 Contribution and Organization of the Thesis

In this work, a new video codec combining a light-duty encoder and a collaborative

heavy-duty decoder is developed to satisfy the requirement of high speed camera. To

remove the obstacle during the transmission from camera sensor to massive storage

device, ME and MC is shifted to the decoder. In addition, the SW encoder results

in lower computation cost, by only involving the simple adder and XOR operations.

Also, compression at different spatial resolutions is flexible to satisfy different com-

pression requirements. An improved coding scheme which exploits the dependency

between two consecutive bit planes is proposed to reduce the coding rate. Because

most high speed videos are used for scientific and medical purposes, high reconstruc-

tion fidelity is vital in our codec. ME, MC and SW decoding at the decoder have

ability to guarantee the lossless decompression (guarantee the bit planes we code are

error free). Furthermore, an advanced upsampling technique such as SR is utilized to

reconstruct the original frame from the SW decoded version. A further modification

at corners and boundaries of the decoded image is resolved by ME and MC, achieving

a higher fidelity - PSNR.

This thesis is organized as follows:

� Chapter 2 introduces some important theorems and techniques used in our de-

veloped codec, such as SW Coding Theorems, LDPC Codes, Belief Propagation

11
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Algorithm, and EXIT charts technique. They have been applied to Degree Dis-

tribution generation, and SW encoding/decoding.

� Chapter 3 mainly describes a light-duty encoder which achieves an accessible

and efficient transmission from camera sensor to storage device.The compression

are implemented at different resolutions. And an improved coding scheme is

developed by exploiting the spatial dependency between consecutive bit planes,

and results in the decrease of the source coding rate.

� Different from the fast encoder, Chapter 4 takes the relatively heavy burden

in reconstructing the original image/frame. ME and MC have been employed

twice, by firstly recovering the SI for SW decoder and secondly further modifying

image details. Meanwhile, as the advanced US technique, SR aims to upsample

the SW decoded image, and outperforms the other conventional upsampling

interpolations such as ’box’,’bilinear’, ’bicubic’, etc.

� The experimental results are presented in Chapter 5. With respect to different

compression requirements, the trade-off between compression ratio and recon-

struction fidelity is considered.

� A conclusion is drawn in Chapter 6. Lower complexity at the encoder, higher

compression ratio and better image fidelity are satisfied in the proposed codec.

In the future work, an effective estimation of source coding rate is supposed to

be taken into consideration. Also the optimization of new degree distributions

is ought to be resolved.

12



Chapter 2

Preliminaries

In this chapter, the Slepian-Wolf (SW) coding theorem is introduced, as the key

technique in the proposed method. Some other conventional techniques related to

SW coding such as LDPC Codes, Belief Propagation (BP) Algorithm and Extrinsic

Information Transfer Charts are stated as well.

2.1 Slepian-Wolf Coding

In the landmark paper [27], Slepian and Wolf developed the SW coding theorem.

With regard to the multiple correlated sources but may not communicate with each

other, SW coding is able to be applied in the data compression.

In the distributed source compression system illustrated in Fig. 2.1, two random

processes X and Y are dependent with a statistically joint distribution P (X, Y ).

And in the DSC system, the correlated sources may not communicate with each

other, then they are encoded by SW encoder separately. When the transmitted bit

streams are received by the decoder, they are able to be jointly decoded to reduce

13
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Figure 2.1: Distributed compression system with two correlated sources X and Y

the coding rates in practical use. The joint decoder makes the most of the statistical

dependency between the correlated sources.

Considering two statistically dependent sources X and Y , which are independent

identically distributed (i.i.d.) generated in Fig. 2.2, the dark gray region represents

the independent coding, in which two uncorrelated sources is capable of being encoded

and decoded separately. To achieve the lossless compression, Shannon proves that

RX ≥ H(X),

RY ≥ H(Y ),
(2.1)

where RX and RY are the coding rates of random variables X and Y . H(X) and

H(Y ) denote the entropies of two independent sources, respectively. In addition,

we explore the dependency between the correlated X and Y to decrease the coding

rates in transmission. Two distributed random sources may be encoded dividedly,

then decoded jointly [27]. The light gray region in Fig. 2.2 represents the individual

achievable rates region for the joint SW coder, where RX and RY should be bounded

14



M.A.Sc. Thesis - Duo Yang McMaster - Electrical Engineering

Figure 2.2: SW theorem: achievable rate region for two statistically dependent i.i.d.
sequences in DSC system
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as follows:

RX ≥ H(X|Y ),

RY ≥ H(Y |X),

RX +RY ≥ H(X, Y ).

(2.2)

H(X|Y ) and H(Y |X) are the conditional entropies. [27] has shown that it is possible

to compress the correlated sources at rates no longer than those needed. Both X

and Y are able to be reconstructed with asymptotically vanishing error probability

for long sequences. Beside that, the sum rate RX + RY represents the joint encoder

rather than the separate encoder.

A special case in Fig. 2.3 is the distributed SW compression of random generated

sequence X = (X1, X2, ..., Xn)T with the SI Y = (Y1, Y2, ..., Yn)T . As distributed

video coding system shows, X depends on SI Y . The difference is that the Y is only

available at the SW decoder, not known at the SW encoder. If RX is higher than

H(X|Y ) at the encoder, the original sequence X will be reconstructed perfectly with

the help of SI Y , since RY = H(Y |X) is satisfied for encoding Y . In our case, the

SW coder is applied based on LDPC to compress the hash code.

The X and Y denote the original image and the SI image , between which there

may be a Binary Symmetric Channel (BSC) model being constructed. A crossover

probability in the modeled BSC is statistically detectable. However, they may vary

in different data sources. After detecting the statistical crossover probability for each

bit plane in practice, so the encoder has ability to realize SW encoding and compress

the data source.
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Figure 2.3: Compression of random source X with side information Y , which is only
known at the decoder.

2.2 Low Density Parity Check Codes

The performance of a SW coder based on LDPC comes close to the SW bound. The

application of low density parity check codes in distributed source coding, such as

Slepian-Wolf problem, attracts the academia’s attention. Low density graph codes

such as LDPC and low density generator matrix (LDGM) codes are both graphically

constructed. Here, LDPC is employed in SW coder [36]. LDPC is developed by

Gallager in 1960’s [37]. Moreover, LDPC codes are able to be employed in applications

such as 10GBase-T Ethernet, which sends data at 10 GB/s over twisted-pair cables,

Wi-Fi 802.11 standard and OFDM system.

The sparsity of the low density graph construction improves the encoding and de-

coding performance efficiently. Conventionally , LDPC codes are linear codes derived

from the sparse bipartite graph, which is defined as follows:

C = {x ∈ {0,1}n : Hx = 0}, (2.3)

where x = (x1, x2, . . . , xn)T is a linear codeword. Accordingly, H is an m× n sparse
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Figure 2.4: Bipartite graph of a LDPC code’s construction.

matrix called parity-check matrix, and the code is given by its null space. The

bipartite graph, which is also called factor graphs , which was first suggested by

Tanner to capture the LDPC code structure ( see Fig. 2.4 ). The following equations

are supposed to be satisfied:

x1 + x3 + x4 + x5 + x7 + x9 = 0,

x1 + x2 + x4 + x6 + x8 + x10 = 0,

x2 + x3 + x5 + x6 = 0,

x3 + x5 + x7 + x9 = 0,

x4 + x6 + x8 + x10 = 0.

(2.4)

Hence, with the group linear equations, we can obtain the LDPC codes set. The

sparse matrix H indicates that the number of 1 is sparsely distributed. The bipartite
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graph in Fig. 2.4 illustrates the code structure of an LDPC code that is also analogous

to a matrix representation. In the (n,m) Tanner graph construction, m and n are the

number of check nodes and variable nodes, respectively. On variable nodes side, each

node v refers to one code symbol in the n-length codeword, and on check nodes side,

each c represents the parity check constraint specified by one row of H with XOR

operations , which corresponds to the constraint equations in (2.4). If the entry (i, j)

of parity check matrix H is 1, it indicates that the j-th variable node connects to the

i-th check node by an edge in the bipartite graph.

LDPC codes contains two types: regular and irregular. The regular LDPC codes

means that not only the numbers of check nodes connected to each variable node

are the same as dv, but also the numbers of variable nodes connected to each check

node are the same as dc. In other words, the numbers of 1 in each column and

row are dv and dc, respectively. However, the irregular codes mentions that the

number of adjacent variable and check nodes to each check and variable nodes may

be different. Although it is easier to generate regular LDPC codes than irregular ones,

the irregular LDPC codes outperform the regular codes in distributed coding system.

It is supposed to follow that m < n to satisfy r < 1. The variable node and check

node degree distributions in the factor graph are represented as λ and ρ, respectively.

Furthermore, they are specified as following polynomial expressions [38]:

λ(x) =

dmax
v∑
i≥2

λix
i−1,

ρ(x) =

dmax
c∑
i≥2

ρix
i−1.

(2.5)

Precisely, λi presents the fraction of edges emanating from variable nodes of degree i,
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and ρi represents the fraction of edges emanating from check nodes of degree i. It is

noted that, λi(ρi) corresponds to xi−1 rather than xi. Later, the degree distribution

design and optimization will be discussed.

2.3 Belief Propagation Algorithm

The low density - sparsity of the bipartite graph structure is the crucial feature of

LDPC codes, with which the encoding and decoding efficiency of DSC is achieved. SW

Decoder adequately exploits the sparsity in employing Message Passing Algorithms.

Message passing algorithm, which is also called iterative algorithm, is one of the

general decoding scheme associated with the LDPC codes. According to the bipartite

graph structure of LDPC codes, each iteration of the algorithm completes the mes-

sages not only passing from the check nodes to the connected variables, but also from

variables to the connected check nodes. The message passed from variable(check)

nodes to check(varible) nodes is computed with its observed message and the mes-

sages passing from the adjacent nodes in previous iteration. The message usually

represents the probabilities or log-likelihood ratio. Here BP is employed to decode

the original source with the dependent SI source. An important rule to be followed is

that, the message passing from variable node v to check node c is calculated with the

messages emanating from neighboring check nodes in previous iteration except for c

itself. It works for the message passing from c to v, too.

Belief Propagation (BP) algorithm is one of message passing algorithms, in which

the message is specified as the probability or beliefs of the variable(check) node.

Here, likelihood or sometimes log-likelihood (LLR) is more convenient to compute in

iterative passing.
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Figure 2.5: The flowchart to show how Belief Propagation Algorithms works in SW
decoder

Considering two dependent sequences X = (X1, X2, . . . , Xn)T and Y = (Y1, Y2, . . . , Yn)T

at the length n. The syndrome S = (S1, S2, . . . , Sm)T at the length m is obtained

from S = HX . The LR here denotes the conditional likelihood, defined as P (X=0|Y )
P (X=1|Y )

,

while LLR here denotes the conditional log-likelihood, defined as log P (X=0|Y )
P (X=1|Y )

.

It starts from the variables passing messages to check nodes. First of all, the initial

message is computed from the observed value of SI. Therefore, at 0-th iteration, the

initial messages are obtained as [38]:

M0
i = log

P (Xi = 0|Yi)
P (Xi = 1|Yi)

. (2.6)

In each l-th iteration, Mv→c and Nc→v are the messages passing from variable

to check node and from check to variable node, respectively. More precisely, the

messages passing from variable node vi to the adjacent check node cj are computed

by:

M
(l)
vi→cj = M0

i +
∑

cr∈Cvi\{cj}

N (l)
cr→vi , (2.7)
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where vi is included in the variable set {v1, v2, . . . , vn}, and cj is included in the check

nodes set {c1, c2, . . . , cm}. Cvi is the set of all check nodes connected to variable vi, and

cr is the neighboring check node in set Cvi but except for cj itself. The superscript l

means at l-th iteration. Meanwhile, M0
i is obtained from (2.6), which is only relevant

to the observed value Yi.

Then the messages passing direction is from check nodes to variable nodes. Pre-

cisely, the message sent from ci to the neighboring variable node vj is defined as

follows:

N
(l)
ci→vj = ln

1 +
∏

vr∈Vci\vj
tanh(

M
(l−1)
vr→ci

2
)

1−
∏

vr∈Vci\vj
tanh(

M
(l−1)
vr→ci

2
)
, (2.8)

where Vci is the set of all variable nodes incident to check node ci, and vr is the

neighboring check node in set Cvi but except for vj itself. From the equations (2.7)

and (2.8), the rule mentioned above has been satisfied.

After each iteration completes, the reconstructed value X̂i is able to be predicted

as the following judgment:

X̂i =


0, if M0

i +
∑
cr∈Cvi

N (l)
cr→vi ≥ 0,

1, if M0
i +

∑
cr∈Cvi

N (l)
cr→vi < 0.

(2.9)

Then with (2.9), the estimated sequence X̂ = {X̂1, X̂2, . . . , X̂n} are obtained after

each iteration completes. When the iteration reaches a certain round or the beliefs

on variables reach a certain value, the running iteration will terminate. Belief prop-

agation algorithm itself does not depend on the channel at all. However the initial

messages are obtained according to the chosen channel.
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2.4 Extrinsic Information Transfer Charts

With the development and application of LDPC codes, the design of good degree

distributions for generating LDPC codes for various channels has arisen. Extrinsic

Information Transfer (EXIT) Charts is a technique to construct a good degree dis-

tribution of LDPC codes. EXIT charts was proposed by Stephan ten Brink, et al

[39],[40].

In this technique, there are two types of decoders: variable node decoder (VND)

and check node decoder (CND). The extrinsic messages are passed between VND

and CND. With respect to the information that exchanges between the two decoders

in each iteration, IA is defined as the apriori knowledge of the decoder, and the

IE = T (IA) is the extrinsic information function of IA, which becomes a posteriori

knowledge [41]. Moreover, the extrinsic information transfer function is developed to

compute an extrinsic posteriori information with the apriori messages. The details

about the structure of iterative EXIT chart information exchange is presented in

Fig. 2.6 [40].

More precisely, IE,V ND = T1(IA,V ND) is the extrinsic output of VND, which is

the mutual information of the extrinsic output messages of VND. It will then be

forwarded to CND, as a priori information IA,CND = IE,V ND. For the CND, IE,CND =

T2(IA,CND) is the mutual information of the extrinsic output messages of CND, which

would be sent back to VND regarded as the priori knowledge at next iteration.

The classic EXIT charts is designed for the AWGN channel. When the degree

distribution is defined as (2.5), then the extrinsic transfer functions T1 and T2 are
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Figure 2.6: Iterative decoder in optimizing a good degree distribution.

defined as follows [40][42]:

IE,V ND =

dmax
v∑
i≥2

λi · J(
√

(dv,i − 1)[J−1(IA,V ND)] + σ2
ch), (2.10)

where σch is the variance of the channel message, which is obtained from σ2
n the noise

variance of AWGN channel : σ2
ch =

4

σ2
n

. Also, dv,i is the degree-i. Then for the

extrinsic transfer function in CND, it is defined as:

IE,CND = 1−
dmax
c∑
i≥2

ρi · J(
√

(dc,i − 1) · J−1(IA,CND)). (2.11)
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The functions J(·) and J−1(·) in (2.10) and (2.11) are computed with [40]:

J(x) ≈


aJ1x

3 + bJ1x
2 + cJ1x, if 0 ≤ x ≤ x∗,

1− eaJ2x
3+bJ2x

2+cJ2x+dJ2 , if x∗ < x < 10,

1, if x ≥ 10,

(2.12)

where x∗ = 1.6363. The inverse mutual information function J−1(·) is presented by:

J−1(y) ≈


aJ−11y

2 + bJ−11y + cJ−11

√
y, if 0 ≤ y ≤ y∗,

aJ−12ln[bJ−12(1− y)]− cJ−12y, if y∗ < y < 1,

(2.13)

where y∗ = 0.3646. Those coefficients are described as:



aJ1 = −0.421061, bJ1 = 0.209252, cJ1 = −0.00640081,

aJ2 = 0.00181491, bJ2 = −0.142675, cJ2 = −0.0822054, dJ2 = 0.0549608,

aJ−11 = 1.09542, bJ−11 = 0.214217, cJ−11 = 2.33727,

aJ−12 = 0.706692, bJ−12 = 0.386013, cJ−12 = −1.75017.

(2.14)

The EXIT charts is built to predict the convergence behavior of iterative LDPC

codes. When optimizing a degree distribution, the objective is to maximize the coding

rate R = 1 − m
n

. Meanwhile, the criterion should be satisfied as long as the EXIT

function of VND IE,V ND is above the inverse EXIT function of CND IA,CND , which

are computed by (2.10) and (2.11). The curves are indicated in Fig. 2.7. In addition,

the curve fitting approach is developed to obtain the convergence threshold. That is

because IE,V ND is a decreasing function with regard to σ2
n, but IC,AND is irrelevant

to σ2
n. Therefore, the convergence threshold could be obtained when the two curves
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Figure 2.7: Curve fitting for an LDPC code at rate = 0.6

approximately meet at a certain noise variance σ2
n,0.
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Chapter 3

Light-Duty Fast Encoder

With the development of high frame rate video, and the increasing demand of applica-

tion for fast and high-fidelity videos, the high speed and continuous video acquisition

is the key technology need to be promoted so as to meet the above requirements.

However, the memory bandwidth from the sensor array to the on-board mass data

storage device blocks the real-time transmission. As shown in Fig. 1.1, common solu-

tion is to design a heavy-duty encoder which compresses the raw video data by three

steps: decorrelation, quantization, and entropy coding. Obviously, the conventional

method is not able to keep up with the high speed in recording the video, resulting

in the constraints on data writing into the storage device.

To solve the problem above, a novel video codec with light-duty, hardware-friendly

encoder and a collaborative relatively heavy-duty decoder is developed, in which the

faster write speed, better compression ratio and lower computational complexity are

able to be satisfied. With regard to the proposed fast encoder, the DSC technique

is the core part: Slepian-Wolf coding compression scheme is capable of compressing

the data source with an efficient computation. Also, the compressions have been
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separated to two cases, at original resolution and reduced resolution. Moreover, by

exploiting the dependency between two consecutive bit planes, an improved coding

scheme is put forward to decrease the source coding rate.

3.1 Slepian-Wolf Encoding

The key technique to achieve the light-duty encoder is applying SW encoding. As

mentioned above, SW encoder is able to exploit the dependency between multiple

correlated sources.

The general SW coding theorem meets the criterion (2.2). The situation in Fig. 2.3

is the distributed SW compression of two correlated sources X and Y . X is able to

represent the original image , produced by the source X. Also, Y represents the

side information image, produced by the source Y . As explained before, the SI

image/frame is available at the decoder. With regard to the original data source X,

its coding rate RX is required to be higher than H(X|Y ) at the encoder, so as to

reconstruct the original image perfectly with the help of side information.

With respect to a RGB image, each pixel in one 8-bit-depth gray image, values

from 0 to 255, which is too complicated to implement with SW coding theorem.

That is because the computational cost with BP algorithm is propotional to the

value ranges of variables.

Hence, to facilitate the SW encoding, the original data image and side information

image of decoder need to be transformed into the binary sequences. Obviously, each

8-bit-depth pixel is transformed to a 8-bit-length bit sequence. Besides, each bit in

the 8 bit planes counts differently, and the significance decreases from leftmost bit to

the rightmost bit. Conventionally, the leftmost bit is called as the most significant bit,
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Figure 3.1: Compression of original bit sequence Xk with side information sequence
Y k, which is only known at the decoder.

and the rightmost bit as the least significant bit. Here, define the bits from left to right

positions as : 1st, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th bit, respectively. Assemble the bits in

the same position for all the pixels in one frame, there are 8 bit streams generated ,

also called 8 bit planes, which are defined as Xk ∈ {X1,X2 . . . ,X8}. More precisely,

each bit stream contains n bits (n is the number of all pixels in one frame). Each one

bit represents the transformed bit of different pixels in the same bit planes. Then

the element of bit sequence Xk is defined as xk,i ∈ {xk,1, xk,2, . . . , xk,n}. Similarly,

the side information image Y also includes 8 bit streams: Yk, k ∈ {1, 2 . . . , 8}, and

each element is defined as yk,i, i ∈ {1, 2, . . . , n}. As depicted in Fig. 3.1, the SI is only

known at the decoder. The original image and side information have been transformed

to the bit streams. Since each pair of Xk and Yk are corrlated, then there may

be a Binary Symmetric Channel (BSC) model being constructed to describe their

dependency in each pair. In addition, there is a crossover probability pk = p(Xk|Yk)

being statistically detected in the modeled BSC . Afterwards, there are 8 different

BSC models being generated with 8 different crossover probabilities. More precisely,

Xk and Yk are the random variables taken values in {0, 1}, in k-th bit stream Xk
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and Yk repesctively. In order to decode the split source data without error when the

source length tends to infinity, the coding rate RXk
for the k-th bit plane is supposed

to be equal or larger than the conditional entropy H(Xk|Yk), specified as:

H(Xk|Yk) = H(pk) = −pk · log2(pk)− (1− pk) · log2(1− pk).

RXk
≥ H(Xk|Yk).

(3.1)

After detecting the conditional entropy of the modeled BSC, a degree distribution

should be optimized to generate a parity-check matrix with lower coding rate. With

the appropriate parity-check matrix H , and m and n are the dimensions of H.

Afterwards, a syndrome sequence is generated with a XOR operations:

Sk = Hk ·Xk, (3.2)

where Xk is the k-th bit stream of original image, Xk = (xk,1, xk,2, . . . , xk,n)T . Be-

sides, Sk is the syndrome sequence generated from Xk, Sk = (sk,1, xk,2, . . . , sk,m)T . In

addition, Hk is the parity-check matrix constructed for the k-th pair of bit streams.

More clearly, the length of syndrome sequence m follows the dimension of matrix Hk,

which is the practical bit sequence in transmission transformed from original data.

The practical coding rate is defined as:

RXk
=
m

n
, (3.3)

also called the source coding rate. This rate defined here is the objective to mini-

mize, so as to improve the compression ratio. After being received by the systematic

decoder, side information is able to be employed to reconstruct the original data
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source.

With the optimized degree distribution for each bit planes, the progressive edge-

growth tanner graph could be applied to construct the parity-check matrix H [43].

3.2 Degree Distribution Optimization

As explained about the SW encoding in last section, an appropriate degree distribu-

tion for LDPC codes is the key to minimize the source coding rate RX . With regard

to each bit plane, once the conditional entropy of the modeled BSC is computed, a

degree distribution designed for the corresponding data is capable of being optimized.

The degree distributions of variable nodes and check nodes are defined as (2.5).

λi and ρi denote the fraction of edges emanating respectively from variable nodes of

degree i and from check nodes of degree i. Let ai and bi be the fractions of variable

and check nodes of degree i. Then the relations between λi, ρi and ai, bi are derived

as (3.4) and (3.5):

λi =
naidv,i

dmax
v∑
i≥2

naidv,i

=
aidv,i

dmax
v∑
i≥2

aidv,i

,

ρi =
mbidc,i

dmax
c∑
i≥2

mbidc,i

=
bidc,i

dmax
c∑
i≥2

bidc,i

.
(3.4)

Since (3.4) has shown that
λi
dv,i

=
ai∑
aidv,i

, also
∑
ai = 1, then

∑ λi
dv,i

=
∑ ai∑

aidv,i
=
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1∑
aidv,i

. Afterwards, the fraction of nodes are obtained by:

ai =
λi/dv,i

dmax
v∑
i≥2

λi/dv,i

,

bi =
ρi/dc,i

dmax
c∑
i≥2

ρi/dc,i

.
(3.5)

The authors in [44] and [45] claim the optimization objectives and constraints. As

presented in [38], the source coding rate is also able to be defined as:

r(λ, ρ) =
m

n
=

dmax
c∑
i≥2

ρi/dc,i

dmax
v∑
i≥2

λi/dv,i

. (3.6)

The (3.6) demonstrates the optimization objective that is minimizing the source cod-

ing rate r(λ, ρ). Obviously, this rate depends on the degree distributions for variable

and check nodes. The inequality constraints are requested by EXIT charts scheme. In

addition, the linear programming is a reliable technique to implement this optimiza-

tion for variable nodes and check nodes, respectively. The optimization precess could

be stated as the flowchart: Fig. 3.2, in which the optimization is run iteratively with a

maximum value N . First of all, initialize the degree distribution of check nodes ρ(x),

and the iteration number is n = 0 which adds 1 after each iteration. Each iteration
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Figure 3.2: The flowchart of degree distribution optimization.
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starts from optimizing λ(x), and the problem could be formulated as:

λ′ = arg max
λ

dmax
v∑
i≥2

λi
dv,i

.

s.t.

dmax
v∑
i≥2

λiIE,V ND(i) ≥ IA,CND,

0 ≤ λi ≤ 1.

(3.7)

Fixing the degree distribution of check nodes ρ(x), the optimization objective is sup-

posed to concentrate on the variables indicated in (3.7). Then with the obtained

optimized λ(x) in this iteration and fix it, the next process will complete as the

following formulation:

ρ′ = arg min
ρ

dmax
c∑
i≥2

ρi
dc,i

.

s.t.

dmax
c∑
i≥2

ρiIE,CND(i) ≥ IA,V ND,

0 ≤ ρi ≤ 1.

(3.8)

A pair of optimized degree distribution λ′(x) and ρ′(x) could be obtained, after the

separate steps. Once the iteration number n reaches the setting N , the optimization

will stop, then output the pair of degree distribution. Otherwise, it should goto the

next round again.
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3.3 Compression at Different Spatial Resolutions

and An Improved Coding Scheme

The above optimization for degree distribution involves with EXIT charts and linear

programming, and it may lead to the expensive computational cost for each pair of

data source and side information. Since a light-duty encoder is the proposed codec’s

feature, how to select the appropriate coding rate for different bit planes with good

compression ratio and high reconstruction fidelity is worth researching.

According to the statistics of conditional entropy for each bit plane, some appro-

priate source coding rates with degree distributions obtained in [46] are able to be

applied in the SW coder directly. More precisely, to facilitate the selection of source

coding rate with its corresponding optimized degree distributions, those 38 optimized

degree distributions presented in [26] are able to be selected in different situations.

Also, they are demonstrated in Appendix. Via the statistics of crossover probabilities

in modeled BSC, a source coding rate is able to be chosen from those 38 ones to en-

code and decode the original data source without error for each bit plane. Moreover,

we hope the selected source coding rate is at a lowest rate (when the gap between

the conditional entropy and coding rate is smallest). In future work, an approximate

rate estimation for each bit plane is ought to be drawn for a HFV dataset. Those

HFV video signals are supposed to share some common properties, leading to the

concentration of conditional entropy of its corresponding channel model. In addition,

the compression at different spatial resolution and an improved coding scheme which

exploits the dependency between two consecutive bit planes are developed as below.
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3.3.1 Compression at the Original Spatial Resolution

The high frame rate video usually has high spatial resolution, containing abundant

and complicated image details. Compressing the video frames at different scale of

resolution is capable of realizing different compression requirements, such as the re-

construction image fidelity and the compression ratio.

In general, compression is implemented at the original image resolution, and it may

achieve higher reconstruction fidelity. The developed SW coder has been presented in

Fig. 3.1, where the data source and recovered side information have been transformed

into the bit streams. Furthermore, the bit streams split into 8 pairs, each of them

corresponding to the assembled bit sequences in a certain bit position, including Xk

and Yk, and they are also supposed to be the k-th bit planes. Then there would

be a BSC model being constructed to describe the correlation between each pair of

bit streams (planes). The SI frame is predicted by motion estimation and motion

compensation, and it is only known at the collaborative decoder. When it satisfies

the inequality in (3.1), the SW decoder could recover X̂k without error probability

when the length of sequence is sufficiently long. However, consider one certain video,

the resolution of each frame is fixed, and the length of transformed bit streams is

limited. It’s obvious that it is not able to tend to infinity. Take the gap between

conditional entropy and coding rate into consideration, we will increase the selected

source coding rate to achieve the perfect decoding. Therefore, based on the statistical

information of modeled BSC, an approximate selection of the source coding rate with

its degree distribution is supposed to be selected from those 38 ones in [26]. This

way can greatly reduce the computational cost in optimization for a better degree

distribution. Note that, the decoder is capable of transmitting a feedback about the
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predicted side information to the encoder, which may lead to the model construction

between the data source and the SI.

3.3.2 Compression at the Reduced Spatial Resolution

Implementing the compression at the reduced spatial resolution usually achieves a

higher compression ratio. Besides the selection of an approximate source coding rate,

downsampling is also an effective scheme to reduce the bit datas coded for the image

in transmission and storage.

A classic and simple compression-by-downsampling plan may contain a downsam-

pler as an image encoder and an effective upsampler as its decoder, which is regarded

as a lossy image compression method. With respect to HFV image signals, an appro-

priate downsampling method such as row/column binning and skipping techniques

is applied during the acquisition of raw video data. Then the corresponding decoder

has ability to reconstruct the original image by upsampling the received data. Usu-

ally, ’box’ ,’bilinear’ and ’bicubic’ interpolations are the effective upsampling methods

to be chosen. As the technology for image reconstrution develops, super-resolution

(SR) also becomes a feasible scheme to decode the downsampled image/frame at

high-fidelity, too.

Specially, bicubic interpolation is an extension of cubic interpolation for interpo-

lating data points on a two dimensional regular grid. Observing the bicubic inter-

polation, the recovery may be smoother than ones reconstructed by nearest-neighbor

or bilinear interpolation. In addition, bicubic interpolation can be implemented with

either Lagrange polynomials, cubic splines, or cubic convolution algorithm.

In the practical implementation of compression at reduced resolution, the target
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current frame is downsampled by a scale factor of Q before SW encoding. Suppose

Q = 2, the original image is downsampled by the factor 2 in the horizontal and

vertical directions. In consequence, a two-dimensional image signal will be reduced

to 1/4 of original data size. As a result of such resizing, the total transmitted video

data is able to be largely cut down. In this situation, at the collaborative decoder,

the side information is also the downsampled image predicted by ME and MC. The

main difference from the compression at original resolution case is that both data

source and side information here are the downsampled image. Since some important

image details may be lost during the resolution resizing, then some other scheme is

necessary to be developed to improve the fidelity of the upsampled frame.

3.3.3 An Improved Coding Scheme

No matter what spatial resolution the image is, a generalized and efficient scheme is

developed to reduce the source coding rates successfully . The previous two situations

are studying the statistics on the conditional entropy for each bit plane, which is

independent from other bit planes. However, the spatial correlation between two

consecutive bit planes is able to be explored. Therefore, this improved coding scheme

is proposed to reduce the spatial redundancy between consecutive bit planes.

According to the observation on the relevance of successive bit planes, we find

that when the bit pairs xk−1,i 6= yk−1,i satisfies in previous (k-1)-th bit plane, the

probability Pr(xk,i 6= yk,i) in k-th bit plane is much higher than the probability

when xk−1,i = yk−1,i holds. Therefore, we exploit the spatial dependency between

the successive bit planes, and then construct two BSC models, respectively, for the

situation when Xk−1 = Yk−1 and the situation when Xk−1 6= Yk−1 illustrated in
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Figure 3.3: Two separate BSC models are constructed for the improved coding scheme
which exploits the dependency between two consecutive bit planes.

Fig. 3.3. Note that, Xk−1 and Yk−1 are the random variables, repsectively in the

bit sequences Xk−1 and Yk−1. In each one of two BSC models, there is a statistical

crossover probability being detected, and then the conditional entropy for the k-th

bit plane is able to be calculated by averaging the conditional entropies for those two

cases. The computation of the average conditional entropy is defined as:

H(Xk|Yk, Uk) = pk−1 ·H(Xk|Yk, 0)

+ (1− pk−1) ·H(Xk|Yk, 1),

(3.9)

and

Uk =


0, if Xk−1 6= Yk−1,

1, if Xk−1 = Yk−1.

(3.10)

When Xk−1 6= Yk−1, then H(Xk|Yk, 0) is the conditional entropy of the BSC model

with crossover probability pk|ne for the k-th bit plane . Similarly, when Xk−1 = Yk−1,

H(Xk|Yk, 1) is the condition entropy of the BSC model with crossover probability pk|e

for k-th bit plane . Besides, pk−1 is the crossover probability of the BSC model for
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(k-1)-th bit plane, when the improved coding scheme is not employed.

Then, after obtaining the statistical crossover probability (called CPE) when

Xk−1 = Yk−1 and the statistical crossover probability (called CPNE) when Xk−1 6=

Yk−1 , the averaged conditional entropy for each bit plane (except the 1st plane) will

be obtained via the computation (3.9). Finally, an appropriate selection of source

coding rate is determined later. Then, the experimental results in chapter 5 will

prove the validity of the proposed optimized encoding scheme.

The flexibility at different image resolution facilitates the system to achieve differ-

ent goals on video compression. The trade-off between reconstruction frame fidelity

and frame compression ratio should be taken into consideration. The improced coding

scheme is capable of reducing the bits coded during the compression.
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Chapter 4

Heavy-duty High-Fidelity Decoder

To realize the achievable high write speed from the high-speed camera sensor to the

massive storage device, the light-duty encoder has transfered the burden of recon-

structing the original frame to the collaborative decoder. At the receiver side, a rela-

tively heavy-duty decoder is designed to obtain higher fidelity and better compression

ratio. Motion estimation and compensation are employed twice at the heavy-duty de-

coder. Firstly, the SI frame is predicted by this technique. Then we implement the

SW decoding with the received syndrome sequences and predicted SI images. With

respect to the encoding developed based on the downsampled image, then a upsam-

pler will utilize traditional upsampling methods such as ’box’, ’bicubic’ or SR. Last

but not least, some important image details included in pixels or blocks of upsampled

frame (which has been recovered to its original spatial resolution) need to be modi-

fied by ME and MC again. The diagram of implementing the developed heavy-duty

decoder is illustrated as the Fig. 4.1.

41



M.A.Sc. Thesis - Duo Yang McMaster - Electrical Engineering

Figure 4.1: The heavy-duty decoder implementation

4.1 Side Information Reconstruction by First Mo-

tion Estimation and Compensation

Corresponding to the light-duty SW encoder, the proposed SW decoder implement

motion estimation and motion compensation solely first, in order to predict the side

informationm, which is illustrated in Fig. 4.2, which does not take the other decoding

techniques into accounts.

Motion estimation exploits the temporal and spatial dependency between the cur-

rent frames and reference frames to complete the video compression. By conventional

or modified ME techniques, the video is able to be processed along the motion trajec-

tories. The difference between motion estimation and motion compensation is that,

the ME perceives the displacement of objects in the current frame compared with the

reference frames. By subtracting the current blocks from the estimated blocks, the

error with less data size will be obtained. Then, the MC could utilize the errors and

movement vectors between frames to represent the current frame and then recover

it in the receiver. Hence, the ME is the critical technique in the inter-frame coding.
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Figure 4.2: The SW coder with ME and MC in decoder

With the estimated motion vectors, the current/target frame could be reconstructed

by one or more reference frames. When there is high correlation between the cur-

rent frame and the reference frames , one could only code the difference between the

consecutive frames, leading to a less amount of data size in transmission and storage.

Since there may be different changes among frames in a real video signal, such

as a complex combination of illumination changes and movements, we mainly focus

on the motions such as the translation and rotation. Such motion is difficult to be

estimated, and it may require large amounts during processing. The classic motion

estimation techniques include block-matching algorithm (BMA), optical flow, phase

correlation and frequency domain methods, and pixel recursive algorithm. However,

the pixel-based techniques involve more computational complexity and less regularity,

and they are difficult to realize in hardware.

Block-matching algorithm is easy and successful to be applied in the motion esti-

mation when there is translation motion or the motion is slow between current frame

and reference frame. In this thesis, high frame rate video is capable of satisfying
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Figure 4.3: Block matching with the macro block size s × s pixels and a search
parameter p.

that the slow and translation motion between near frame. Also, occlusion of one

object by another, and uncovered background can be neglected. Consequently, the

features - regularity and simplicity in block-matching is more suitable for software

and hardware implementation.

BMA is a block-based estimation and compensation technique. The conventional

BMA compress the current frame by referring to the reference frame. Illustrated in

the Fig. 4.3, the estimation basis is a group of s × s pixels, called macro block. So

one frame may be divided into a sequence of macro blocks, which are compared with

the blocks in the previous or subsequent reference frames. The search region in the

reference frames is a square window centered on the collocated position of the block

in the current frame. Basically, the search window is extended to p pixels on all four

sides, constituting a larger region with a size (s+ 2p)× (s+ 2p). The p represents the
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searching parameter, and the larger p is, the more computational cost it produces.

The motion estimation is the process to find the best matching block and the

motion vector based on a certain criterion. More precisely, one could apply different

search algorithms to find the matches. Exhaustive search is the fundamental one,

besides that, three-step, new three-step, four-step, and diamond search could also be

utilized to improve the efficiency. Those other sub-optimal efficient algorithms must

keep a trade-off between the computational efficiency and the estimation accuracy.

Although ES is the most expensive one in computational cost, it is still being chosen

as the most reliable to find the best match with a better quality.

There are several common cost functions such as Mean Absolute Difference (MAD),

Mean Squared Error (MSE), Root MSE (RMSE) and so on. In general, the macro

block in the reference frame which is found as the best match of the current block

leads to the least cost. Since the conventional BMA subtract the best matching

block from the current block, it then obtains the error signal and its motion vector.

Consequently, the better its estimate, the smaller error signals are, resulting in less

transmission bit rate.

In our developed decoder, ME and MC are implemented to reconstruct the SI

image in current frame. The original image is not known at decoder, hence the

previous and subsequent reference frames are applied to predict the image as the side

information. Assuming that there are one previous frame fc−t and one subsequent

reference frame fc+t used in the estimation and compensation for the current frame

fc, t is frame gap between them. Also, MAD is chosen to be the cost function to find

45



M.A.Sc. Thesis - Duo Yang McMaster - Electrical Engineering

Figure 4.4: Motion estimation and compensation for the current frame with one
previous and one subsequent reference frames.
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the matching macro block. MAD is defined as:

MAD =
1

s2

s−1∑
i=0

s−1∑
j=0

|Ic−t(i, j)− Ic+t(i, j)|, (4.1)

where Ic−t(i, j) and Ic+t(i, j) are the RGB pixel values in macro blocks of the previous

and subsequent frame, respectively. The block pair resulting in the least cost is the

best match. Afterwards, a motion vector (dx, dy) is able to be obtained. The Fig. 4.4

assumes the movement trajectories along a translation direction among the three

frames. Consequently, the predicted block in frame fc is supposed to locate at the

center of the motion trajectory. In other words, the motion vector between frame fc−t

and fc is (dx/2, dy/2). Furthermore, the pixels value in the reconstructed current

block are averaged by:

Ic(i, j) =
Ic−t(i, j) + Ic+t(i, j)

2
,

i, j ∈ {0, 1, . . . , s− 1}.
(4.2)

By this means, the current frame is able to be recovered by ME and MC at different

spatial resolutions.

4.2 Slepian-Wolf Decoding

With the side information recovered by the first motion estimation and motion com-

pensation, the collaborative decoder is going to decode the received information -

syndrome sequences to its target spatial resolution.

Similar to the definition of traditional Slepian-Wolf decoding method, the SW

decoder in our proposed codec exploits the spatial correlation between adjacent bit
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planes to improve the compression ratio. This improvement corresponds to the im-

proced coding scheme.

With regard to the k-th bit plane decoding, it also starts from the variables passing

messages to check nodes. Suppose the length of the syndrome sequence S k is m.

Firstly, the initial message is computed from the observed value of side information

only. Therefore, referring to [36], at 0-th iteration, the initial messages emanating

from variable node vi to each of adjacent check nodes are redefined as:

M0
k,i =



(1− 2yk,i)log2
1− pk
pk

, if k = 1,

(1− 2yk,i)log2
1− pk|e
pk|e

, if k 6= 1, xk−1,i = yk−1,i,

(1− 2yk,i)log2
1− pk|ne
pk|ne

, if k 6= 1, xk−1,i 6= yk−1,i,

(4.3)

It’s obvious that the spatial dependency has been exploited except when k = 1 for

the 1st bit plane ( because there is no previous bit plane before it). In such sole

case, pk is the crossover probability of modeled BSC without the improved coding

scheme. While k 6= 1, the statistical crossover probability will be separated to two

cases. They are defined as pk|e when Xk−1 = Yk−1, and the pk|ne when Xk−1 6= Yk−1.

In the practical image coding, xk−1,i is the decoded bit for the (k-1)-th bit plane,

which should be the same as original bit data when there is no error probability after

SW decoding.

In each iteration, M
(l)
vk,i→ck,j denotes the message passing from variable node vk,i

to the adjacent check node ck,j. It is obtained as below:

M
(l)
vk,i→ck,j = M0

k,i +
∑

ck,r∈Cvk,i
\{ck,j}

N (l)
ck,r→vk,i . (4.4)
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In above equation, vk,i is in the variable nodes set Vk in k-th plane. ck,j composes

check nodes set {ck,1, ck,2, . . . , ck,m}, representing the syndrome nodes S k. Moreover,

Cvk,i is the set of all check nodes connected to variable vk,i, and ck,r is the adjacent

check node in set Cvk,i but except for ck,j itself.

To simplify the computation of the messages passing from check nodes to vari-

able nodes, (2.8) could be redefined as the following equation, denoting the message

emanating from ck,i to the connected variable vk,j. Its explanation refers to (2.8).

N
(l)
ck,i→vk,j = 2 arctanh{(1− 2sk,i)

∏
vk,r∈Vck,i\vk,j

tanh(
M

(l−1)
vk,r→ck,i

2
)}. (4.5)

Similar to (2.9), after each iteration completes, it is able to generate a recovered

value x̂k,i according to the judgment:

x̂k,i =


0, if M0

k,i +
∑

ck,r∈Cvk,i

N (l)
ck,r→vk,i ≥ 0,

1, if M0
k,i +

∑
ck,r∈Cvk,i

N (l)
ck,r→vk,i < 0.

(4.6)

After the iteration l reaches a certain number L, the belief propagation will stop

and then obtain the decoded bit sequences X̂k = {x̂k,1, x̂k,2, . . . , x̂k,n} for the k-th

bit plane. If the coding is implemented based at the original spatial resolution, then

the X̂k recovered by SW decoding and the remaining bit planes may estimated by

ME and MC constitute a reconstruction frame (here we need to retransform the

reconstructed bit streams to RGB image X̂ ). In contrast with the compression at

original resolution, if the coding is employed based on the downsampled frame, then

X̂ after predicting and SW decoding are necessary to be upsampled to its original
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resolution first.

4.3 Fast Super-Resolution

With respect to the downsampled version image, a certain technique is supposed to

be applied to upsample the SW decoded image to its original spatial resolution. The

compressions-by-downsampling method has a combination of downsampler as the en-

coder and a corresponding upsampler as the collaborative decoder. In this thesis, a

reliable upsampling technique is employed to reconstruct the image after SW decod-

ing. Conventional upsampling techniques contain the interpolations such as ’nearest’,

’box’, and ’bilinear’ and ’bicubic’. Also, the advanced upsampling techniques like

super-resolution (SR) is able to improve the recovery fidelity as well. More precisely,

the state-of-the-art learning based SR technique: A+ is an effective and efficient

method compared with other methods [47] and [48].

Comparison between the traditional upsampling interpolations and the advanced

SR are completed based on the sample frames of experimental video. Downsample one

extracted frame image firstly via ’bicubic’, then at the decoder apply ’box’, ’bilinear’,

’bicubic’ interpolations and SR respectively to upsample the downsampled version to

its original resolution. Specially, in order to achieve higher upsampling fidelity, the

advanced learning based SR: A+ is applied here to upsample the SW decoded image at

reduced resolution to its original spatial resolution. In Table. 4.1, the reconstruction

PSNRs by four upsampling schemes are presented as follows. It’s evident that the SR:

A+ is capable of achieving higher reconstruction image fidelity than the traditional

interpolations such as ’box’, ’bilinear’, ’bicubic’.
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Table 4.1: PSNR with comparing different upsampling techniques

Picture ’box’ ’bilinear’ ’bicubic’ SR: A+

No.1 29.57dB 29.49dB 30.26dB 30.62dB

No.2 30.19dB 30.34dB 31.41dB 32.42dB

No.3 31.49dB 32.07dB 33.26dB 34.78dB

No.4 36.77dB 39.51dB 42.38dB 43.62dB

No.5 35.65dB 39.04dB 42.04dB 43.38dB

4.4 Modification by Second Motion Estimation and

Compensation

After the SW decoding and upsampling by super-resolution, some important image

details may have been lost because some high frequency information are thrown away

during the image resolution resizing. Hence, it is able to exploit the spatial correlation

between the consecutive frames by motion estimation and compensation the second

time, as the supplementary information.

The main process of the modification is the same as the scheme stated in the

first utilization of ME and MC. Fix one macro block in the reconstructed current

frame, and then searching is capable of being implemented in a (s + 2p) × (s + 2p)

square window in reference frames, centered on the collocated position of the current

block. To gain the relatively high quality of the modified image, exhaustive search is

applied to find the best matches rather than the other sub-optimal efficient algorithms.

The best matching block pair should be within the square region in the previous
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and subsequent frame respectively, resulting in the least summation of MAD costs

between fc−t, fc and fc, fc+t. More importantly, the three macro blocks should be

moving along a straight trajectory, where the current block is located at the center.

Afterwards, the modification is able to be resolved by the following comparison.

After SW decoding and upsampling, the reconstructed current frame is X̄. Then we

compare the current macro block with the estimated matching block pair in reference

frames. First, obtain the maximal and minimal pixel value of the reference block pair.

Maxij = max{I ′c−t(i, j), I ′c+t(i, j)},

Minij = min{I ′c−t(i, j), I ′c+t(i, j)},
(4.7)

in which I ′c−t(i, j) and I ′c+t(i, j) are the pixel values in the matching block pair, i, j ∈

{0, 1, . . . , s−1}. Afterwards, compare the pixel values Īc(i, j) in reconstructed current

block, then the modification to the reconstructed current macro block is processed as

below:

Ĩc(i, j) =


Maxij, if Īc(i, j) > Maxij,

Minij, if Īc(i, j) < Minij,

Īc(i, j), if Minij < Īc(i, j) < Maxij.

(4.8)

The modification to upsampled frame is presented as the developed comparison. Con-

sequently, the upsampled pixel value in current frame is able to be modified, and

finally an improved reconstruction of original frame is obtained as X̃.

52



M.A.Sc. Thesis - Duo Yang McMaster - Electrical Engineering

Figure 4.5: Modification by motion estimation and motion compensation to the up-
sampled frame.
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Chapter 5

Simulation and Results

This chapter mainly presents the experimental results of the simulation on our pro-

posed compression techniques. There are two separate experiments. The first ex-

periment is about the validation of the modification via ME and MC. With respect

to the experiment on downsampled images, the performance of the modification via

motion estimation and compensation after upsampling has been assessed. Also, the

compared compression-by-downsampling method is selected. In addition, the sec-

ond experiment presents the results of the entire codec with proposed compression

techniques. The experiment 2 separates into two situations, compression at original

spatial resolution and compression at reduced spatial resolution. Besides, the perfor-

mance of the improved coding scheme which exploits the spatial dependency between

two consecutive bit planes, is also analyzed.

In the experiment on implementing the BP algorithm, the sparsity of the parity-

check matrix is fully exploited. When generating the sparse matrix, only the indexes

of those connected variable(check) nodes are recorded. Otherwise, with regard to a

LDPC code with dimension e.g. (100000, 50000), if we record the value of each entry
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in integer type, it is necessary to generate a matrix H occupying the stack memory

of 100000 × 50000 ÷ 10243 ≈ 4.7GB. By exploiting the sparsity property of LDPC

codes, the effective and efficient method can greatly reduce the overheads in stack

memory.

5.1 Experiment 1

First of all, a common compression-by-downsampling method is supposed to be chosen

to compare with our developed compression techniques. To facilitate the transmission

from high speed camera sensor to massive data storage device, a fast encoder with

low computation cost is the solution to remove the obstacle for the high throughput.

Hence, conventional idea to compress the extracted frame/image here is stated as

follows. Downsample the image first via common DS interpolation techniques such as

’box’, ’cubic’, ’bicubic’ and etc. Then decompressor upsample the received image to

its original spatial resolution. In addition, the advanced upsampling techniques such

as super-resolution may replace interpolations. In the experiment, the state-of-the-

art learning based SR method: A+ is utilized to upsample the downsampled image.

All of them are implemented with a resizing scale factor of Q = 2. Note that, those

resizing schemes do not involve the information of reference frames.

Then Table. 5.1 shows the reconstruction performance - Peak Signal Noise to

Ratio (PSNR) by different combinations of DS and US techniques.

Experiment is completed based on the HFV video source ’streetscape’ which is

captured using a sony 4K movie camera with 60Hz fps . According to the experimental

results PSNR1 which denotes the reconstruction fidelity by DS and US without other

information, it is evident that A+ outperforms the other upsampling interpolations
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Table 5.1: Simulation results on experiment 1

Downsample Upsample PSNR1 Modify via ME/MC PSNR2

’box’ ’box’ 31.50dB 35.51dB

’box’ ’bicubic’ 33.21dB 36.46dB

’bicubic’ ’bicubic’ 33.04dB 36.44dB

’box’ A+ 34.80dB 37.32dB

’bicubic’ A+ 35.50dB 37.70dB

such as ’box’, ’bicubic’. Moreover, the combination of downsampling via ’bicubic’

interpolation and upsampling via A+ has the highest reconstruction PSNR than other

ones. Consequently, we choose the best compression-by-downsampling combination:

’bicubic’ and A+ as the downsampling and upsampling techniques to be one of the

compared methods. The value PSNR = 35.50dB is the reconstruction PSNR value

of the selected combination, which will be compared with our proposed techniques

later.

Besides, another compared method called DSU is an embedded compression

scheme proposed in [49]. It put forwards a new, simple infra-frame embedded tech-

nique based on downsampling and side-information aided upsampling. This method

is able to When we set the compression ratio that is 16 : 6, the PSNR = 35.44dB.

Furthermore, we assess the performance of the modification via motion estimation

and compensation after upsampling, shown as PSNR2. Obviously, the modification

to the upsampled image with reference frames greatly promotes the reconstruction fi-

delity. The PSNR of reconstruction reaches a relatively high value PSNR = 37.70dB
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which is higher than the compared combination in PSNR1 and the image fidelity by

DSU . Based on the results of PSNR2, the modification via ME and MC is able to

be applied in our developed codec, leading to the recovery of some important image

details.

5.2 Experiment 2

The experiment 2 mainly analyzes the performance of the designed codec with the

proposed compression techniques. As illustrated in Fig. 4.1, there are two different

situations (compression at original resolution and reduced resolution) to verify the

proposed schemes. They have different advantages in compression ratio and recon-

struction fidelity. And the trade-off between them should be considered to satisfy

different compression requirements.

5.2.1 The experimental results of compression at the original

resolution

The first case is that implementing the compression based on the original spatial

resolution. The same HFV ’streetscape’ as the experimental video source have been

extracted to a sequence of frames by 60Hz fps.

Since side information Y k is predicted by the previous and subsequent frames,

the dependency between the current frame and recovered SI frame may rely on the

frame rate and the gap between the reference and current frame. For instance, we

suppose that the current target image is the m-th frame, the frame gap is t, then

the previous and subsequent reference images applied to ME are the (m-t)-th and
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Table 5.2: Compression at original resolution, the statistics of crossover probability
and conditional entropy of modeled BSC and a selection of source coding rate, frame
gap t = 5.

Bit Plane Crossover Probability Conditional Entropy Coding Rate

1st 0.0203 0.1430 0.2000

2nd 0.0639 0.3427 0.4010

3rd 0.1053 0.4854 0.5765

4th 0.1839 0.6885 0.7800

5th 0.2668 0.8368 0.9300

6th 0.3421 0.9268 ×

7th 0.4044 0.9734 ×

8th 0.4549 0.0041 ×

(m+t)-th frame, respectively. The common sense is that the smaller the frame gap

, the higher the correlation between X k and Y k supposed to be. Note that, the

compression system allows the decoder to send a feedback about the predicted SI

to the encoder. Furthermore, there is a statistically modeled BSC to describe the

dependency between the k-th pair of bit streams (planes). Then a statistical crossover

probability and corresponding conditional entropy is capable of being computed by

(3.1) for the BSC model. Consequently, a selection of source coding rate is able to

be obtained by satisfying the inequality in (3.1). In consideration of the frame gap,

a certain value t = 5 is setting in our experiment.

In Table. 5.2, the crossover probability and conditional entropy increases as bit

plane shift from the most significant bit to the least significant bit. So as to have

Slepian-Wolf coder decode the bit streams without error probability, an appropriate
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source coding rate at lowest rate is able to be selected from those 38 optimized

ones in Appendix of this thesis. Accordingly, the Table also shows the selections.

More importantly, with regard to the compression at the original resolution, there

are only the first 5 bits need be SW encoded and decoded. That’s because we find

that the more bits the SW coder compresses, the higher the PSNR and the lower

the compression ratio. And when there are only the first 5 bits being SW coded,

both compression ratio and image fidelity reaches relatively high values. Besides, the

remaining bit planes (which do not involve the SW coding) can keep the predicted

values by the first motion estimation and compensation. Consequently, when only

the first 5 bit planes are SW coded, the reconstruction frame fidelity and compression

ratio are obtained as follows.

PSNR = 39.31dB, Bpp = 2.8875.

That is 3.81dB higher than the compared compression-by-downsampling and 3.87dB

higher than DSU . And the Bit per Pixel (Bpp) demonstrates how many bits supposed

to be used in coding, representing the compression ratio.

Besides, the improved coding scheme is applied to exploit the spatial dependency

between the consecutive bit planes. Then construct two separate statistical BSC

models respectively for the situation when Xk−1 = Yk−1 and the situation when

Xk−1 6= Yk−1. More precisely, the crossover probability of the BSC model when

Xk−1 = Yk−1 is statistically calculated as CPE, and the crossover probability when

Xk−1 6= Yk−1 is statistically obtained as CPNE. With those two statistical CPs, the

corresponding conditional entropy for the k-th bit plane is able to be computaed by

averaging the entropies for those two cases (3.9).
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Table 5.3: The improved coding scheme is applied to the original image , the statis-
tics of crossover probabilities of two separate BSC models and averaged conditional
entropy and a selection of source coding rate, frame gap t = 5.

Bit Plane CPE CPNE Average CE Coding rate

2nd 0.0450 0.9789 0.2622 0.3277

3rd 0.0474 0.9529 0.2753 0.3500

4th 0.1046 0.8581 0.4945 0.5765

5th 0.1652 0.7175 0.6856 0.7800

6th 0.2313 0.6468 0.8220 ×

7th 0.3063 0.5930 0.9182 ×

8th 0.3828 0.5611 0.9718 ×

Table. 5.3 has presented the CPE and CPNE for two different BSC models. The

conditional entropy for the 1st bit plane and the pk−1 for (k-1)-th bit plane are the

same as the information in Table. 5.2. According to the statistics of this Table,

the averaged conditional entropy shows that the source coding rates is obviously

less than the previous method without the improved coding scheme, resulting in the

decrease of source coding rates effectively. At last, the reconstruction image fidelity

and compression ratio are:

PSNR = 39.31dB, Bpp = 2.2342.

Note that, the PSNR remains the same value. Therefore, the improved coding scheme

primarily reduces the source coding rate, while keeping the same reconstruction frame

fidelity.

60



M.A.Sc. Thesis - Duo Yang McMaster - Electrical Engineering

5.2.2 The experimental results of compression at the reduced

resolution

Another case is when compression is based on the downsampled spatial image. Down-

sample the original data source with a scale factor of Q = 2. By downsampling, the

Bpp is able to be dramatically reduced, leading to a much higher compression ratio.

Similar to the compression at the original spatial resolution, the primary idea of

SW encoder and SW decoder is the same as the previous one. The main difference

is that the state-of-the-art learning based SR technique is employed after the SW

decoding, in order to recover its original scale. Since there are some important image

details being lost during SW coding and resolution scaling, a modification by ME

and MC is developed the second time to improve the fidelity of the upsampled image.

Comply with the setting in the first case , frame gap here is also setting as t = 5 in

our experiment.

In Table. 5.4, the crossover probability and conditional entropy are indicated.

Because SW coding is implemented on the downsampled image, the Bpp has been

greatly reduced. There may be one more bit plane being SW coded, so as to achieve

a higher reconstruction image fidelity. So the discussion about two selections that

coding the first 5 bit planes and coding the first 6 bit planes makes sense. The trade-off

between the PSNR and Bpp is necessary to be balanced. Finally, the reconstruction

frame fidelity and compression ratio are obtained as

Coding on first 5 bit : PSNR = 38.42dB, Bpp = 0.6146.

Coding on first 6 bit : PSNR = 38.98dB, Bpp = 0.8646.
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Table 5.4: Compression at reduced resolution, the statistics of crossover probability
and conditional entropy of modeled BSC and a selection of source coding rate, frame
gap t = 5.

Bit Plane Crossover Probability Conditional Entropy Coding Rate

1st 0.0118 0.0927 0.1500

2nd 0.0442 0.2612 0.3277

3rd 0.0748 0.3836 0.4508

4th 0.1377 0.5782 0.6500

5th 0.2255 0.7702 0.8800

6th 0.3050 0.8873 1.0000

7th 0.3776 0.9563 ×

8th 0.4381 0.9889 ×

Coding the first 5 bits, that PSNR is around 3dB higher than the compared meth-

ods. Coding the first 6 bits, that PSNR is around 3.5dB higher than the compared

methods. Both cases realize lower Bpp values.

When the improved coding scheme which exploits the spatial dependency between

bit planes is applied, two separate BSC models could be constructed to describe the

dependency based on the downsampled image. The statistical crossover probability

CPE when Xk−1 = Yk−1 and CPNE when Xk−1 6= Yk−1 have been presented in

Table. 5.5. In addition, the remaining bit streams keep the predicted values by

motion estimation and motion compensation, before upsampling and modification.

At last, the reconstruction image fidelity and compression ratio in Table. 5.5 are
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Table 5.5: The improved coding scheme is applied to the downsampled image , the
statistics of crossover probabilities of two separate BSC models and averaged condi-
tional entropy and a selection of source coding rate, frame gap t = 5.

Bit Plane CPE CPNE Average CE Coding rate

2nd 0.0331 0.9739 0.2091 0.2500

3rd 0.0327 0.9843 0.2039 0.2500

4th 0.0747 0.9175 0.3852 0.4754

5th 0.1331 0.8047 0.5860 0.6800

6th 0.1956 0.6807 0.7560 0.8500

7th 0.2720 0.6181 0.8795 ×

8th 0.3512 0.5814 0.9524 ×

obtained:

Coding on first 5 bit : PSNR = 38.42dB, Bpp = 0.4514.

Coding on first 6 bit : PSNR = 38.98dB, Bpp = 0.6639.

Thus, when the PSNRs remain the same values, the improved coding scheme is suc-

cessful to a higher compression ratio.

Finally, Table. 5.6 summarizes the compression ratio and reconstruction image

fidelity of those methods mentoned above .

As illustrated in the Table. 5.6, especially the performance of those methods

(stated in bold) have demonstrated that the improved coding scheme is able to reduce

the bit per pixel value when the PSNR remains the same value where the improved

coding scheme is not applied. In addition, the compression at the reduced resolution

is successful to promote the compression ratio greatly. No matter what resolution it
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Table 5.6: Summarize the compression ratios and reconstruction PSNRs for different
cases via different methods.

Method PSNR Bpp Compression ratio

Orig 39.31dB 2.8875 2.77:1

DS 5 38.42dB 0.6146 13.02:1

DS 6 38.98dB 0.8646 9.25:1

Orig & Improved 39.31dB 2.2342 3.58:1

DS 5 & Improved 38.42dB 0.4514 17.72:1

DS 6 & Improved 38.98dB 0.6639 12.05:1

Comp-by-DS 35.50dB 2 4:1

DSU 35.44dB 3 2.67:1

is, the proposed methods outperforms the compared methods: best compression-by-

downsampling and DSU .
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Chapter 6

Conclusions and Future Work

6.1 Summary of the Thesis

In this thesis, we have developed a low-complexity compression codec for high frame

rate video. The key technique of our proposed codec is the Slepian-Wolf coding. To

facilitate the raw video signal’s transmission from the high speed camera array sensor

to the massive data storage device, SW encoding is able to realize a fast and light-

duty encoder with lower computational cost. Compared with the conventional video

encoding stated in the advanced video compression standard H.264, there are only

simple inner product and XOR operations in our developed SW encoder. Further-

more, this thesis separates the frame resolution to two different cases: original and

reduced spatial resolutions, satisfying different compression requirements. Regardless

of the spatial resolution, every RGB pixel in the image is transformed into a 8-bits

length bit sequence. We assemble the bits in the same bit position from the 1st to

the 8th, composing 8 different bit streams. The 8 assembled bit streams are called bit

planes as well. The corresponding SI image is predicted by motion estimation and
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motion compensation at decoder. With respect to each bit plane, there is a depen-

dency between each pair of bit streams original data Xk and SI Yk. Then a BSC

model is constructed to describe the dependency. There will be a statistical crossover

probability p(Xk|Yk) for the modeled BSC. Meanwhile, the conditional entropy of the

BSC is obtained by (3.1). By exploiting the dependency between two consecutive bit

planes, an improved scheme is then proposed to promote the encoding performance.

Assuming that the current bit plane is only dependent on the previous bit plane and

conditionally independent from the bit plane before the previous one, there will be

two separate BSC modeled for the situation when Xk−1 = Yk−1 and the situation

when Xk−1 6= Yk−1 respectively. Consequently, the conditional entropy of k-th bit

plane is obtained by the averaging in (3.9). In addition, after selecting the source

coding rate, with which the parity check matrix H is produced, the transmitted data

is obtained by (3.2), namely the syndrome sequence. Only the source coding rate is

equal or larger than the conditional entropy of the modeled BSC, there will be no

error in decoding when the data source length tends to infinity.

On the relatively heavy-duty decoder side, ME and MC predict the SI image

first. The motion of objects is considered slow and translation, since the frame rate

of experimental video is relatively high. Assuming that the movement is along a

straight trajectory, block-matching algorithm is easy and efficient to find the best

matching block pairs. The values of current macro blocks are computed by averaging

the values of matching block pair in previous and subsequent reference frames (4.2).

With the help of side information, SW decoder applies belief propagation algorithm

to decode the received data. When it reaches a certain iteration number or the

beliefs of variable nodes converge, the iterative decoding process is expected to stop,
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obtaining a reconstruction of bit streams. With regard to the compression at original

resolution, only the first 5 bit planes need to be encoded and decoded, while as

for the compression at reduced resolution, the first 5 or 6 bit planes are chosen to

be coded. Meanwhile, the remaining bit streams keep the predicted values by ME

and MC. Then we retransform the decoded bit streams to RGB pixel values. If the

compression is implemented based on the original image, the decompression is resolved

after SW decoding. However, if it is based on the downsampled image, the next two

designed procedures are supposed to be carried out. The first one is upsamling the

SW decoded image to its original spatial resolution. Tradition techniques are the

upsampling interpolations such as ’box’,’bilinear’, and ’bicubic’. To achieve a higher

reconstruction fidelity, the state-of-the-art learning based super-resolution technique:

A+ is applied here. Although A+ outperforms the other traditional interpolations,

there are still some important image details lost. That is because some high frequency

information has been thrown away during the scale resizing. Thus, we utilize ME

and MC again to modify the upsampled image. Fixing the macro block in current

frame, we apply BMA to find the matched block pair in the reference frames. The

modification for the current block is resolved by comparing the pixel values in the

same collocated position within a macro block region. At last, the decompression on

the downsampled image completes after that modification.

Besides, a good degree distribution plays an important role in reducing the source

coding rate. EXIT charts is able to optimize the degree distributions by solving

(3.7) and (3.8). In addition, those degree distributions generated by the EXIT charts

techniques in [50] or obtained from LTHC database [46] are also able to be utilized
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directly. Here, the 38 optimized degree distributions stated in [26], which were ob-

tained from LTHC database [46], are employed here to facilitate the selection of source

coding rates. Based on the simulation by those irregular degree distributions, those

optimized ones realize outstanding performance in decoding.

According to the experimental results, it validates that the improved coding

scheme cuts down the bit per pixel value while remaining the same reconstruction

fidelity. Furthermore, compression at different spatial resolution can realize different

compression goals. Especially, with regard to the compression on the downsam-

pled image, the compression ratio is promoted remarkably. Thus, the validity of

the developed codec is proved, and the proposed compression system outperforms

the compared methods: compression-by-downsampling with ’bicubic’ and A+, and

DSU .

6.2 Future Work

In the demonstration above, the estimation of source coding rate is difficult to ob-

tain before SW coding. Acquisition frame rate, motion speed, background, frame

gap between the current and reference frames have different influences on the im-

plementation of motion estimation and motion compensation. In this thesis, the

statistical ranges of condition entropy are not obtained when high frame rate video

varies. Therefore, it is necessary to send a feedback from the decoder to the encoder,

by which the BSC model is able to be constructed to describe their dependency. This

is a constraint of the proposed compression codec for real-time video coding. In the

future, an effective estimation of source coding rates is supposed to be put forward

to modify the proposed compression syetem .
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Appendix A

Your Appendix

The optimized degree distributions for each code rates have been obtained from LTHC

database [46], by optimization the algorithm in [50]. Especially, there are 38 optimized

degree distributions from LTHC database, which are employed in Slepian-Wolf coding

for the high frame rate video compression [26]. The coding rate designed here denotes

the source coding rate, Rs.

1. The source coding rate Rs = 0.0300. Obtained from LTHC database.

λ(x) =



0.0976872000x+ 0.2084250000x2 + .0239832000x4

+ 0.0025877000x5 + 0.0030756200x6 + 0.2216020000x7

+ 0.0791919000x15 + 0.0178188000x17 + 0.0707131000x21

+ 0.0032752600x30 + 0.0539584000x39 + 0.0959645000x40

+ 0.0373115000x49 + 0.0555949000x64 + 0.0288105000x66,

ρ(x) = x199.

(A.1)
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2. The source coding rate Rs = 0.0500. Obtained from LTHC database.

λ(x) =



0.1130550000x+ 0.2223260000x2 + 0.0217564000x5

+ 0.1437610000x6 + 0.0077757700x7 + 0.0978175000x8

+ 0.0282852000x13 + 0.0669393000x15 + 0.0730412000x26

+ 0.0149455000x34 + 0.2102970000x35,

ρ(x) = x109.

(A.2)

3. The source coding rate Rs = 0.0800. Obtained from LTHC database.

λ(x) =



0.1172100000x+ 0.2107930000x2 + 0.1521100000x6

+ 0.0845317000x7 + 0.0236898000x8 + 0.0049341200x15

+ 0.0493028000x16 + 0.1133230000x19 + 0.0147003000x23

+ 0.1190500000x40 + 0.0175400000x42 + 0.0928161000x46,

ρ(x) = x69.

(A.3)

4. The source coding rate Rs = 0.1000. Obtained from LTHC database.

λ(x) =



0.1173140000x+ 0.1997290000x2 + 0.1935750000x6

+ 0.0179234000x7 + 0.0322564000x8 + 0.0133904000x16

+ 0.1638470000x18 + 0.0222610000x20 + 0.1509760000x48

+ 0.0445984000x50 + 0.0131310000x51 + 0.0168516000x56

+ 0.0141470000x58,

ρ(x) = 0.5x56 + 0.5x57.

(A.4)
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5. The source coding rate Rs = 0.1300. Obtained from LTHC database.

λ(x) =



0.1154540000x+ 0.1846430000x2 + 0.1872730000x6

+ 0.0107396000x7 + 0.0107802000x8 + 0.0298498000x9

+ 0.0676952000x17 + 0.0713005000x21 + 0.0311166000x22

+ 0.0523218000x25 + 0.1940290000x65 + 0.0148834000x69

+ 0.0192438000x72 + 0.0020586100x89 + 0.0086120200x99,

ρ(x) = 0.5x45 + 0.5x46.

(A.5)

6. The source coding rate Rs = 0.1500. Obtained from LTHC database.

λ(x) =


0.0903419000x+ 0.1760760000x2 + 0.3044350000x6

+ 0.1356970000x15 + 0.0127703000x16 + 0.0764734000x22

+ 0.1680910000x27 + 0.0361156000x49,

ρ(x) = x39.

(A.6)

7. The source coding rate Rs = 0.1800. Obtained from LTHC database.

λ(x) =



0.1267310000x+ 0.1851360000x2 + 0.1895540000x6

+ 0.0406345000x7 + 0.0170619000x15 + 0.0511614000x18

+ 0.0888360000x19 + 0.0299488000x20 + 0.0217271000x21

+ 0.0074947900x32 + 0.0092171200x39 + 0.0078997400x53

+ 0.0871835000x60 + 0.0412600000x62 + 0.0890379000x63

+ 0.0071160400x68,

ρ(x) = 0.7x31 + 0.3x32.

(A.7)
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8. The source coding rate Rs = 0.2000. Obtained from LTHC database.

λ(x) =

{
0.0815474000x+ 0.1982150000x2 + 0.7202380000x19,

ρ(x) = x34.

(A.8)
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9. The source coding rate Rs = 0.2281. Obtained from EXIT chart based design.

λ(x) =



0.0000696838x+ 0.5645527721x2 + 0.0006797545x3

+ 0.0298558824x4 + 0.0010561819x5 + 0.0162886198x6

+ 0.2852260980x7 + 0.0945686623x8 + 0.0003948341x9

+ 0.0017553939x10 + 0.0010631110x11 + 0.0006613925x12

+ 0.0004469575x13 + 0.0003264797x14 + 0.0002535001x15

+ 0.0002065416x16 + 0.0001745563x17 + 0.0001515564x18

+ 0.0001343969x19 + 0.0001209905x20 + 0.0001102764x21

+ 0.0001014784x22 + 0.0000940540x23 + 0.0000877841x24

+ 0.0000822511x25 + 0.0000775660x26 + 0.0000733644x27

+ 0.0000697260x28 + 0.0000664825x29 + 0.0000636670x30

+ 0.0000611618x31 + 0.0000589626x32 + 0.0000570479x33

+ 0.0000554059x34 + 0.0000539797x35 + 0.0000527396x36

+ 0.0000517750x37 + 0.0000508221x38 + 0.0000500451x39

+ 0.0000494506x40 + 0.0000489172x41 + 0.0000484412x42

+ 0.0000481137x43 + 0.0000476051x44 + 0.0000472480x45

+ 0.0000467789x46 + 0.0000463338x47 + 0.0000458079x48

+ 0.0000453462x49 + 0.0000446644x50 + 0.0000441249x51

+ 0.0000436608x52 + 0.0000435132x53 + 0.0000440380x54,

ρ(x) = x17.

(A.9)
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10. The source coding rate Rs = 0.2500. Obtained from LTHC database.

λ(x) =


0.1118170000x+ 0.1479280000x2 + 0.0721407000x5

+ 0.2464250000x6 + 0.0021321100x8 + 0.4195580000x29,

ρ(x) = x23.

(A.10)
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11. The source coding rate Rs = 0.2780. Obtained from EXIT chart based design.

λ(x) =



0.0365683268x+ 0.4339804675x2 + 0.0001299819x3

+ 0.0171330361x4 + 0.0023872502x5 + 0.1923109345x6

+ 0.0016539566x7 + 0.0012354770x8 + 0.0009357160x9

+ 0.0010813697x10 + 0.0013693568x11 + 0.0024491406x12

+ 0.0001371963x13 + 0.2953988307x14 + 0.0072606502x15

+ 0.0021649586x16 + 0.0009936879x17 + 0.0005717216x18

+ 0.0003736405x19 + 0.0002657385x20 + 0.0002003367x21

+ 0.0001578227x22 + 0.0001285540x23 + 0.0001075570x24

+ 0.0000919092x25 + 0.0000799746x26 + 0.0000706532x27

+ 0.0000632326x28 + 0.0000571490x29 + 0.0000521729x30

+ 0.0000480070x31 + 0.0000444806x32 + 0.0000414675x33

+ 0.0000389182x34 + 0.0000366747x35 + 0.0000347150x36

+ 0.0000329633x37 + 0.0000314569x38 + 0.0000301197x39

+ 0.0000288897x40 + 0.0000278226x41 + 0.0000268317x42

+ 0.0000259364x43 + 0.0000251422x44 + 0.0000244178x45

+ 0.0000237279x46 + 0.0000231042x47 + 0.0000225359x48

+ 0.0000219885x49,

ρ(x) = 0.3x15 + 0.7x16.

(A.11)
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12. The source coding rate Rs = 0.3000. Obtained from EXIT chart based design.

λ(x) =


0.1392280000x+ 0.2007590000x2 + 0.2522010000x6

+ 0.0134136000x11 + 0.1710390000x17 + 0.0424794000x31

+ 0.0855733000x41 + 0.0953074000x49,

ρ(x) = 0.3x16 + 0.7x17.

(A.12)
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13. The source coding rate Rs = 0.3277. Obtained from LTHC database.

λ(x) =



0.0530701457x+ 0.3670818133x2 + 0.0000467414x3

+ 0.0001693434x4 + 0.0001839202x5 + 0.0069791251x6

+ 0.2340869351x7 + 0.0293543350x8 + 0.0010512763x9

+ 0.0005884899x10 + 0.0004336224x11 + 0.0004421017x12

+ 0.0003594770x13 + 0.0004299928x14 + 0.0004909475x15

+ 0.0005842977x16 + 0.0006793042x17 + 0.0007968070x18

+ 0.0012180480x19 + 0.0004888936x20 + 0.0233161791x21

+ 0.1332294395x22 + 0.1290474222x23 + 0.0085915359x24

+ 0.0029141588x25 + 0.0012946281x26 + 0.0007207962x27

+ 0.0004649800x28 + 0.0003297155x29 + 0.0002492324x30

+ 0.0001973730x31 + 0.0001619024x32 + 0.0001364856x33

+ 0.0001174977x34 + 0.0001029730x35 + 0.0000914730x36

+ 0.0000822134x37 + 0.0000744651x38 + 0.0000681241x39

+ 0.0000626681x40 + 0.0000580978x41 + 0.0000541896x42

+ 0.0000508900x43 + 0.0000479426x44,

ρ(x) = 0.4x14 + 0.6x15.

(A.13)
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14. The source coding rate Rs = 0.3500. Obtained from LTHC database.

λ(x) =


0.1577030000x + 0.1991060000x2 + 0.0324838000x5

+ 0.1985480000x6 + 0.0807045000x7 + 0.2997880000x21

+ 0.0310813000x22 + 0.0005852400x33,

ρ(x) = x13.

(A.14)

15. The source coding rate Rs = 0.3765. Obtained from EXIT chart based design.

λ(x) =



0.0749746514x+ 0.3276397454x2 + 0.0000133230x3

+ 0.0000334288x4 + 0.0000536346x5 + 0.0153727931x6

+ 0.0815021268x7 + 0.2102399279x8 + 0.0002396780x9

+ 0.0001470809x10 + 0.0001101496x11 + 0.0000966061x12

+ 0.0000903891x13 + 0.0000890635x14 + 0.0000914754x15

+ 0.0000970680x16 + 0.0001067689x17 + 0.0001207840x18

+ 0.0001414627x19 + 0.0001706132x20 + 0.0002138222x21

+ 0.0002778502x22 + 0.0003801933x23 + 0.0005575559x24

+ 0.0009942277x25 + 0.0038202879x26 + 0.1061438593x27

+ 0.1680729114x28 + 0.0046663975x29 + 0.0013383072x30

+ 0.0007207862x31 + 0.0004404507x32 + 0.0002851821x33

+ 0.0002019419x34 + 0.0001557353x35 + 0.0001265960x36

+ 0.0001058190x37 + 0.0000899191x38 + 0.0000773867x39,

ρ(x) = 0.2x12 + 0.8x13.

(A.15)
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16. The source coding rate Rs = 0.4010. Obtained from EXIT chart based design.

λ(x) =



0.0665052292x+ 0.3059480919x2 + 0.0001148099x3

+ 0.0008967976x4 + 0.0004931189x5 + 0.0885292799x6

+ 0.0028298017x7 + 0.0933425249x8 + 0.0270974961x9

+ 0.0288241934x10 + 0.0067485256x11 + 0.0000092266x12

+ 0.0622890112x13 + 0.0120946708x14 + 0.0041578038x15

+ 0.0023011096x16 + 0.0016328252x17 + 0.0015906365x18

+ 0.0014174658x19 + 0.0012243279x20 + 0.0010393924x21

+ 0.0008685978x22 + 0.0007279214x23 + 0.0006136080x24

+ 0.0005260355x25 + 0.0004590425x26 + 0.0004104392x27

+ 0.0003758855x28 + 0.0003539140x29 + 0.0003424701x30

+ 0.0003416727x31 + 0.0003517762x32 + 0.0003755456x33

+ 0.0004182788x34 + 0.0004931475x35 + 0.0006325812x36

+ 0.0009463712x37 + 0.0020643746x38 + 0.2806119994x39,

ρ(x) = x13.

(A.16)
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17. The source coding rate Rs = 0.4257. Obtained from EXIT chart based design.

λ(x) =



0.1242596346x+ 0.3029532976x2 + 0.0000000503x3

+ 0.1130781949x4 + 0.0000019471x5 + 0.1030539620x6

+ 0.0000011974x7 + 0.0000000440x8 + 0.0000002074x9

+ 0.0000002709x10 + 0.0000003055x11 + 0.0000003467x12

+ 0.0000004646x13 + 0.3566500769x14,

ρ(x) = 0.5x9 + 0.5x10.

(A.17)

18. The source coding rate Rs = 0.4508. Obtained from EXIT chart based design.

λ(x) =



0.0999701013x+ 0.2884808570x2 + 0.0000004467x3

+ 0.0000007193x4 + 0.0000015285x5 + 0.2323194203x6

+ 0.0053583039x7 + 0.0000044615x8 + 0.0000014946x9

+ 0.0000008772x10 + 0.0000006229x11 + 0.0000004958x12

+ 0.0000004363x13 + 0.0000004124x14 + 0.0000003973x15

+ 0.0000004041x16 + 0.0000004193x17 + 0.0000004649x18

+ 0.0000005231x19 + 0.0000006215x20 + 0.0000008004x21

+ 0.0000011595x22 + 0.0000022604x23 + 0.3738527719x24,

ρ(x) = 0.6x10 + 0.4x11.

(A.18)
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19. The source coding rate Rs = 0.4754. Obtained from EXIT chart based design.

λ(x) =



0.1153122367x+ 0.2911329163x2 + 0.0000013866x3

+ 0.0000237308x4 + 0.0000055074x5 + 0.1563430715x6

+ 0.1185591176x7 + 0.0000123470x8 + 0.0000039402x9

+ 0.0000021293x10 + 0.0000016722x11 + 0.0000014129x12

+ 0.0000012628x13 + 0.0000011759x14 + 0.0000011534x15

+ 0.0000011760x16 + 0.0000012159x17 + 0.0000013357x18

+ 0.0000015028x19 + 0.0000017858x20 + 0.0000022500x21

+ 0.0000032496x22 + 0.0000062909x23 + 0.3185781326x24,

ρ(x) = 0.7x9 + 0.3x10.

(A.19)

20. The source coding rate Rs = 0.5000. Obtained from LTHC database.

λ(x) =


0.1527930000x+ 0.2823500000x2 + 0.0062193000x3

+ 0.5586370000x19,

ρ(x) = x9.

(A.20)

21. The source coding rate Rs = 0.5261. Obtained from EXIT chart based design.

λ(x) =


0.1460827952x+ 0.2706599775x2 + 0.0375150106x4

+ 0.2419193856x6 + 0.3038228311x21,

ρ(x) = 0.3x7 + 0.7x8.

(A.21)
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22. The source coding rate Rs = 0.5515. Obtained from EXIT chart based design.

λ(x) =



0.1483309314x+ 0.2284719333x2 + 0.0000030096x3

+ 0.0949413930x4 + 0.0001039602x5 + 0.1805360736x6

+ 0.0000004930x7 + 0.0000044589x8 + 0.0000001607x9

+ 0.0000056705x10 + 0.0000009369x11 + 0.0000017390x12

+ 0.0000020428x13 + 0.0000021972x14 + 0.0000024381x15

+ 0.0000027101x16 + 0.0000031452x17 + 0.0000038634x18

+ 0.0000048678x19 + 0.0000067093x20 + 0.0000100212x21

+ 0.0000167482x22 + 0.0000309110x23 + 0.3475135857x24,

ρ(x) = 0.3x7 + 0.7x8.

(A.22)

23. The source coding rate Rs = 0.5765. Obtained from EXIT chart based design.

λ(x) =


0.1603735738x+ 0.2493334680x2 + 0.0000000001x3

+ 0.1398432549x4 + 0.0009310009x6 + 0.1919102356x8

+ 0.2576084667x24,

ρ(x) = 0.2x6 + 0.8x7.

(A.23)
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24. The source coding rate Rs = 0.6006. Obtained from EXIT chart based design.

λ(x) =



0.2365103129x+ 0.0000003166x2 + 0.3137349967x3

+ 0.0714882030x4 + 0.0000017984x5 + 0.0000026206x6

+ 0.0000020295x7 + 0.0000013959x8 + 0.0000009058x9

+ 0.1706734148x10 + 0.0004347797x11 + 0.0000483848x12

+ 0.0000733639x13 + 0.0000728850x14 + 0.0000680328x15

+ 0.0000796862x16 + 0.0000905415x17 + 0.0001139106x18

+ 0.0001440668x19 + 0.0002042075x20 + 0.0003112035x21

+ 0.0006324201x22 + 0.0182989558x23 + 0.1854026561x24

+ 0.0016072092x25 + 0.0000017023x26,

ρ(x) = 0.9x6 + 0.1x7.

(A.24)

25. The source coding rate Rs = 0.6257. Obtained from EXIT chart based design.

λ(x) =


0.2345281333x+ 0.2494103165x3 + 0.0868495874x4

+ 0.1048097509x6 + 0.3244022119x23,

ρ(x) = 0.9x6 + 0.1x7.

(A.25)

26. The source coding rate Rs = 0.6500. Obtained from LTHC database.

λ(x) =


0.2454340000x+ 0.1921240000x2 + 0.1357320000x5

+ 0.0838990000x6 + 0.1116600000x12 + 0.0029827600x14

+ 0.0222593000x15 + 0.0742901000x28 + 0.1316190000x32,

ρ(x) = 0.5x5 + 0.5x6.

(A.26)
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27. The source coding rate Rs = 0.6800. Obtained from LTHC database.

λ(x) =



0.2177260000x+ 0.1634340000x2 + 0.0001449710x3

+ 0.0000070738x4 + 0.0980647000x5 + 0.1018190000x6

+ 0.0537834000x13 + 0.0301359000x16 + 0.0566144000x20

+ 0.0109644000x26 + 0.0808932000x30 + 0.0000059471x97

+ 0.0001740400x98 + 0.1862340000x99,

ρ(x) = 0.9x6 + 0.1x7.

(A.27)

28. The source coding rate Rs = 0.7000. Obtained from LTHC database.

λ(x) =



0.2202400000x+ 0.1604510000x2 + 0.1219000000x5

+ 0.0669837000x6 + 0.0728829000x12 + 0.0056090100x19

+ 0.0223284000x21 + 0.0531729000x22 + 0.0496530000x25

+ 0.0222808000x26 + 0.2044980000x99,

ρ(x) = 0.1x5 + 0.9x6.

(A.28)

29. The source coding rate Rs = 0.7300. Obtained from LTHC database.

λ(x) =



0.2374900000x+ 0.1643770000x2 + 0.1482710000x5

+ 0.0442728000x6 + 0.0276623000x13 + 0.1174440000x15

+ 0.0384218000x30 + 0.0368359000x35 + 0.0319294000x37

+ 0.1532960000x99,

ρ(x) = 0.7x5 + 0.3x6.

(A.29)
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30. The source coding rate Rs = 0.7500. Obtained from LTHC database.

λ(x) =



0.2911570000x+ 0.1891740000x2 + 0.0408389000x4

+ 0.0873393000x5 + 0.0074271800x6 + 0.1125810000x7

+ 0.0925954000x15 + 0.0186572000x20 + 0.1240640000x32

+ 0.0160020000x39 + 0.0201644000x44,

ρ(x) = 0.8x4 + 0.2x5.

(A.30)

31. The source coding rate Rs = 0.7800. Obtained from LTHC database.

λ(x) =



0.2547740000x+ 0.1634760000x2 + 0.0032539300x4

+ 0.1524220000x5 + 0.0331399000x6 + 0.0038860400x9

+ 0.0189110000x12 + 0.0998195000x14 + 0.0151103000x27

+ 0.0769337000x29 + 0.0218393000x32 + 0.1564350000x99,

ρ(x) = 0.3x4 + 0.7x5.

(A.31)

32. The source coding rate Rs = 0.8000. Obtained from LTHC database.

λ(x) =



0.2920250000x+ 0.1739820000x2 + 0.0523131000x4

+ 0.0257749000x5 + 0.1220460000x6 + 0.0218315000x8

+ 0.0209295000x10 + 0.0322251000x14 + 0.1127710000x23

+ 0.0001708020x25 + 0.0328124000x31 + 0.0274748000x44

+ 0.0048302000x53 + 0.0126282000x59 + 0.0681855000x99,

ρ(x) = x4.

(A.32)
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33. The source coding rate Rs = 0.8200. Obtained from LTHC database.

λ(x) =



0.3037920000x+ 0.1731880000x2 + 0.0671337000x4

+ 0.0123568000x5 + 0.1341320000x6 + 0.0314767000x12

+ 0.0108393000x14 + 0.0256390000x16 + 0.0910351000x19

+ 0.0400076000x39 + 0.0000240473x45 + 0.0117242000x51

+ 0.0189157000x57 + 0.0112433000x62 + 0.0684922000x76,

ρ(x) = 0.2x3 + 0.8x4.

(A.33)

34. The source coding rate Rs = 0.8500. Obtained from LTHC database.

λ(x) =


0.3151270000x+ 0.1902840000x2 + 0.0449124000x4

+ 0.1705930000x6 + 0.1405970000x17 + 0.0081261000x37

+ 0.0440236000x41 + 0.0863369000x66,

ρ(x) = 0.5x3 + 0.5x4.

(A.34)

35. The source coding rate Rs = 0.8800. Obtained from LTHC database.

λ(x) =



0.3424730000x+ 0.1650060000x2 + 0.1203830000x4

+ 0.0191956000x5 + 0.0120714000x6 + 0.1416920000x10

+ 0.0211997000x25 + 0.0201976000x26 + 0.0185881000x34

+ 0.0428897000x36 + 0.0133019000x38 + 0.0021735800x39

+ 0.0104203000x40 + 0.0704081000x99,

ρ(x) = 0.8x3 + 0.2x4.

(A.35)
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36. The source coding rate Rs = 0.9000. Obtained from LTHC database.

λ(x) =



0.3585670000x+ 0.1663620000x2 + 0.0000299853x3

+ 0.0487523000x4 + 0.1205300000x5 + 0.0004778820x6

+ 0.0000422043x7 + 0.0409013000x10 + 0.0744850000x13

+ 0.0339421000x25 + 0.0076194000x30 + 0.0564230000x34

+ 0.0918683000x99,

ρ(x) = x3.

(A.36)

37. The source coding rate Rs = 0.9300. Obtained from LTHC database.

λ(x) =



0.4050180000x+ 0.1716200000x2 + 0.0995717000x4

+ 0.0446767000x5 + 0.0379776000x6 + 0.0612300000x10

+ 0.0188277000x14 + 0.0332702000x16 + 0.0026478100x17

+ 0.0127722000x20 + 0.0435222000x28 + 0.0075207600x50

+ 0.0123120000x52 + 0.0258378000x62 + 0.0065513300x63

+ 0.0166443000x71,

ρ(x) = 0.4x2 + 0.6x3.

(A.37)
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38. The source coding rate Rs = 0.9500. Obtained from LTHC database.

λ(x) =



0.4145410000x+ 0.1667480000x2 + 0.0971414000x4

+ 0.0737392000x5 + 0.0007658270x6 + 0.0022987300x8

+ 0.0118195000x9 + 0.0751327000x11 + 0.0575786000x19

+ 0.0063649900x26 + 0.0046459300x35 + 0.0171996000x43

+ 0.0443262000x62 + 0.0111913000x82 + 0.0165064000x99,

ρ(x) = 0.5x2 + 0.5x3.

(A.38)
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