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Lay Abstract 

It would be hard to imagine a world where we could no longer use the antibiotics 

we are routinely being prescribed for common bacterial infections. Currently, we are in 

an era where this thought could become a reality. Although we have been able to discover 

antibiotics in the past from soil dwelling microbes, this approach to discovery is being 

constantly challenged. At the same time, the bacteria are getting smarter in their ways to 

evade antibiotics, in the form of resistance, or self-protection mechanisms. As such is it 

essential to devise methods which can predict the potential for resistance to the antibiotics 

we use early in the discovery and isolation process. By using what we have learned in the 

past about how bacteria protect themselves for antibiotics, we can to stay one step ahead 

of them as we continue to search for new sources of antibiotics from bacteria.  
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Abstract 

Microbial natural products have been an invaluable resource for providing 

clinically relevant therapeutics for almost a century, including most of the commonly 

used antibiotics that are still in medical use today. In more recent decades, the need for 

new biotherapeutics has begun to grow, as multi-drug resistant pathogens continue to 

emerge, putting into question the long-term efficacy of many drugs that we routinely 

depend on to combat infectious diseases. To affect this growing medical crisis, new 

efforts are being applied to computationally mine the genomes of microorganisms for 

biosynthetic gene clusters that code for molecules possessing anti-microbial activities that 

circumvent known resistance mechanisms. To this end, cutting-edge software platforms 

have been developed that can identify, with high predictive accuracy, microbial genomes 

that code for natural products of potential interest. However, with such analyses comes 

the need to thoroughly vet each predicted gene cluster, to identify those high-value 

candidate molecules that are not associated with known resistance mechanisms. In this 

work, a new strategy was developed that involved cataloguing all known ‘self-resistance’ 

mechanisms encoded by natural product producing microorganisms, which protect the 

producer from the highly toxic effects of their secreted anti-microbial agents. This 

collection of resistance data was leveraged and used to engineer an automated software-

based pipeline that interrogates biosynthetic gene clusters and relates them to previously 

identified resistance mechanisms. Gene clusters that are revealed to be independent of 

known resistance mechanisms can then be flagged for further chemical and biological 



 

v 
 

study in the laboratory. Such in-depth interrogations of microbial genomes aim to help 

reveal the full biological repertoire of antibiotics yet to be discovered from 

microorganisms, and will lead to the development of the next generation of 

biotherapeutics to quell the growing medical crisis of antibiotic-resistance among human 

pathogenic organisms.  
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Chapter 1. Introduction 

1.1 Thesis Context 

 The widespread emergence and rapid increase of antibiotic resistance within 

clinically-relevant microorganisms has become one of the leading causes of death 

worldwide, resulting in at least 23, 000 deaths in the United States alone 

(https://www.cdc.gov/drugresistance/). The threat of multi-drug resistant infections calls 

for increased effort and efficiency by the scientific community to discover new sources of 

anti-infective agents. Bacteria create a wide array of bioactive natural products that have formed 

the basis for many therapeutic regimes still used in the clinic, particularly for the treatment of 

infectious disease. However, over-reliance on traditional discovery efforts has led to the rediscovery 

of known molecules, resulting in a loss of industrial interest in natural product discovery1. Despite 

this, recent genome sequencing efforts have shown that much of these valuable small molecules 

remain undiscovered. Traditional discovery approaches are thought to be largely exhausted 

in their ability to identify new chemical classes of microbial natural products. As such, new, 

unconventional techniques are required to fill the discovery void. Given the wealth of 

information available concerning biosynthetic gene clusters (BGCs) and their encoded 

chemistry, development of a prioritization schema is key to effectively mine for novel small 

molecules.  

 Despite the emphasis placed on associated resistance once a product reaches the 

clinic, little is done to infer the downstream potential for emergence of resistance during 

initial isolation processes. The aim of this body of work is to develop a mean to prioritize 

those strains based on the novelty of their BGCs and predicted natural products (pNP) that 
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not only display divergent chemistry, but importantly, lack known resistance genes which 

may infer cross resistance with the current repertoire of antimicrobial agents. 

1.2 The Antibiotic Resistance Crisis 

         Antibiotics are one of the most influential discoveries of modern medicine, 

beginning with the discovery of penicillin by Alexander Flemming in 19792. However, 

the rapid emergence of multidrug resistant (MDR) pathogens in recent years has 

suggested a drastic movement towards a post-antibiotic era; a concerning concept in 

which modern day antibiotics will be rendered ineffective3,4. In response to this global 

crisis, early in 2017, the World Health Organization released a global priority pathogens 

list to draw attention to the urgent need for new anti-infective agents5. A dangerous 

escalation to the antibiotic resistance crisis is the decline in the discovery rate of new 

antimicrobials following the discovery surge exhibited in the “golden era” of microbial 

natural product discovery6. The discovery void has further favoured the emergence of 

resistant pathogens, as few new chemical scaffolds of antibiotics are actively being 

pursued in comparison to recent decades3,6. As of March 2017, approximately 41 new 

antibiotics were in the pipeline for clinical development7. 

Tremendous effort has been dedicated towards elucidating the various mechanisms 

of antibiotic resistance, with focus on the ESKAPE pathogens (Enterococcus faecium, 

Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas 

aeruginosa and Enterobacter spp.), a set of antibiotic-resistant bacteria that are particularly 

difficult to treat8,9. Despite an increased understanding in the molecular mechanisms 
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involved in antibiotic resistance, much less is understood on how this information can be 

adequately translated to assist in finding the new iteration of microbial natural products.  

1.3 Traditional Approaches to Natural Product Discovery 

Historically, natural product discovery has relied on the ability of microorganisms, 

specifically soil microbes, to produce a large array of chemically distinct secondary 

metabolites; many of which have become crucial members of the repertoire of clinically 

used antibiotics10. During the ‘golden era’ of natural product discovery, researchers relied 

on methods which have been coined the traditional approach of natural product discovery. 

The traditional method is a top-down approach focusing on the repeated fractionation of 

the excreted metabolite profile of candidate microbes to hone in on a bioactive fraction of 

interest11, 12. This method was wildly successful throughout the 1950s, 1960s, and 1970s, 

as many of the purified bioactive secondary metabolites were approved for clinical use10,13.  

The traditional approach to natural products discovery has been revamped in recent 

years by incorporating high-throughput screening techniques (HTS). HTS provided a cost 

and time efficient means to highlight or eliminate candidate compounds of interest by 

screening large libraries of natural or synthetic compounds for an activity of interest14. 

Screens can be readily adapted for broad biological activities, or enlist more focused 

methods using target-based screening approaches15, 16. Over the years, HTS has 

incorporated the use of various natural product libraries, but has not been associated with 

the high success rates as was initially postulated17. However, HTS has received criticism 
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as of late, as there is a need to establish universal standards of use, as well as increased 

quality control of the compound libraries utilized18-20.  

Despite previous success, the traditional approach is associated with high re-

discovery rates, bias towards high abundance molecules, and time consuming procedures11. 

Thus, it has been suggested that the traditional method may have reached its limit to identify 

new, and chemically distinct natural products. This has been followed by the call for new 

unconventional, and new approaches to natural product discovery to overcome the 

limitations associated with traditional discovery methods21. 

1.4 Modes of Action of Evolved Antimicrobial Natural Products 

 The “golden era” of natural product discovery provided a wealth of chemical 

entities with desirable properties as antibacterial agents. Microbial natural products have 

evolved over time to provide a competitive advantage within their respective 

environments22. Many of these secondary metabolites have evolved to be valuable sources 

of antibacterial agents, with evolution further favouring the emergence of families of 

secondary metabolites that share a common structural core23. Considering this, it is 

seemingly unsurprising the diversity which has been achieved in respect to microbial 

secondary metabolites to target almost every known bacterial target24. Despite targeting a 

variety of molecular targets, a large cohort of microbial natural products has also evolved 

to target the same bacterial targets such as the bacterial ribosome or cell wall23, 24. This 

concept of narrow spectrum behaviour of many derived microbial natural products, has 

further favoured the emergence of bacterial resistance3. As such, it becomes ever more 
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apparent of the need to develop isolation efforts directed at identifying microbial natural 

products with divergent mechanisms.  

 Identifying the mode of action of bioactive metabolites remains to be one of the 

major caveats of natural product discovery. Due to the chemical complexity and diversity 

within a single microbial extract, several compounds can be present, representing several 

modes of action, which makes target-based screening attempts inherently difficult25. An 

effort to address such concerns was accomplished by employing cytological profiling to 

decipher possible mode of actions exhibited within a single extract26. Despite associated 

efforts, current research has not met the demands in respect to identifying new sources of 

microbial products which display divergent modes of action.  

1.5 Diversity in Resistance Mechanism 

In nature, antibiotic-producing bacteria employ several resistance mechanisms to 

evade the effects of their own antibiotics, and the effects of the active molecules that are 

excreted by neighbouring species22. Furthermore, it has been established that 

environmental resistance mechanisms can act as a reservoir for the exchange of resistance 

genes to clinical pathogens, allowing preliminary insight into the evolutionary origins of 

antibiotic resistance27. This has been further suggested by detecting the presence of known 

resistance genes in environmental organisms which significantly pre-date the introduction 

of antibiotics as therapeutic agents28. The way in which bacteria avoid the effects of 

antibiotics can be broadly grouped into mechanisms where the target, or antibiotic is 

directly modified, or mechanisms in which an indirect effect occurs (i.e. translocation 
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pumps, duplicate targets). The ability of bacteria to resist the effect of antibiotics is diverse, 

and several reviews have been dedicated to summarizing the resistance mechanisms of 

bacteria, their ability to acquire resistance genes, and understanding the complex 

relationships involving the emergence of antibiotic resistance29, 30.  

1.6 Polyketides and Nonribosomal Peptides Family of Natural Products 

A large cohort of identified microbial natural products are of the polyketide (PK) 

and non-ribosomal peptide (NRP) classes. PK and NRP natural products are derived 

through a series of biosynthetic enzymes known as polyketide synthetases (PKS) and non-

ribosomal peptide synthetases (NRPS) respectively. Bioactive entities have been 

characterized from both individual assembly lines, and hybrids of the two31-33. NRPs are 

made by multimodular systems that act in a stepwise fashion to incorporate specific 

substrates to result in diverse peptidic natural products, known as non-ribosomal peptide 

synthetases34, 35. This structural diversity is driven by the numerous substrates that can be 

included, such as proteinogenic and non-proteinogenic amino acids, allowing for numerous 

combinations of possible products36. Examples of NRPs from characterized assembly line 

systems are vancomycin, bacitracin, and daptomycin all of which have been developed as 

clinical agents37-39. Polyketides are also assembled in a multimodular enzymatic fashion 

through polyketide synthetases, that enable the addition of variable monomer biosynthetic 

units (e.g. small organic acids) resulting in a high degree of structural diversity40, 41. 

Example polyketides with antibacterial activities are erythromycin and rifamycin42, 43.  
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The comprised assembly line systems resulting in the production of PKs, and NRPs 

have an outstanding ability to create products with chemical diversity. Due to their modular 

nature, the potential for molecular diversity is significantly increased through the aid of 

molecular promiscuity caused by the biosynthetic enzymes23. Diversity within these 

systems can be further achieved through the addition of various tailoring enzymes affording 

additional chemical complexity44. In comparison to other classes of microbial natural 

products, PKs and NRPs account for most bioactive natural products, including those with 

antimicrobial activity24. 

1.7 Organization of Natural Product Biosynthetic Gene Clusters 

Characterization of NRP and PK assembly line systems has demonstrated the 

clustering of genes related to the biosynthesis of natural products to certain locations within 

a genomic sequence, known as a biosynthetic gene cluster (BGC). Greater understanding 

of these assembly line systems has provided insight into finite details of the biosynthetic 

assembly systems, such as those involving predicting the stereochemistry of PKs, or the 

influence of thioesterase domains (enzymes which catalyze the release of the peptide) in 

generating further chemical diversity45, 46.   

Depositories have been established to store information regarding what is currently 

known in the context of BGCs to facilitate future endeavours involving the biosynthesis of 

secondary metabolites47, 48. Further investigation into the biosynthetic assembly lines 

involved in the production of secondary metabolites, also has revealed accessory genes that 

are involved in regulation, export, and self-protection, all relating back to the product of 
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the BGC. Self-protection genes play a pivotal role in protecting the host producing 

organism from the effects of their own repertoire of antibiotics49.  

BGCs dedicated to the production of several classes of natural products were 

identified in the late 1990’s and further characterization and annotation of BGCs continues 

today. Due to the nature of resistance genes providing self-protection, several works have 

demonstrated the beginnings of defining associations between resistance genes, chemical 

scaffold, and the BGC for a given antibacterial agent 24,50,51. Close genomic proximity 

between the BGCs and the resistance gene for that product have been demonstrated within 

many families of natural products including glycopeptides, aminoglycosides, macrolides, 

and beta- lactam natural products.  

1.7.1 Glycopeptide Biosynthetic Gene Clusters 

           Glycopeptide antibiotics such as vancomycin, have a notable presence within the 

clinic as they are used as one of the treatment of choice agents against methicillin-resistant 

Staphylococcus aureus (MRSA)52. The emergence of resistance to glycopeptide antibiotics 

pushed the field to not only identify the mechanisms of resistance but also begin to identify 

the molecular genetics underlying the resistance mechanisms. Five genes necessary for 

providing a high level of glycopeptide resistance were identified on a transposable element 

within Enterococcus faecium53. Three of the five genes, VanH, VanA, and VanX, were 

later identified within two known producers of glycopeptide antibiotics54. This finding 

demonstrated that the source of the observed resistance genes within the clinic was the 

original producers of the antibiotic. This demonstrated for the first time a significant 
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contribution to delineating the relationships between clinically observed resistance genes, 

and their respective origins.  

The first BGC identified for a glycopeptide antibiotic was in 1998 from 

Amycolatopsis orientalis, the producer of chloroeremomycin55. Since then, several other 

BGCs have been identified, and characteristic genes for the biosynthesis of glycopeptide 

antibiotics have been summarized56. Apart from chloroeremomycin, identified BGCs for 

glycopeptide natural products contained a form of self-protection, or resistance gene. 

Certain producers, such as Amycolatopsis sp., producer of balhimycin, contain the 

characteristic VanHAX cassette on a separate contig57. Instead, the balhimycin BGC 

contains an additional gene within the boundaries that functions as a resistance gene. 

Glycopeptide antibiotics share the same mode of action, and this similarity is further 

reflected within the BGCs and their forms of self-protection mechanisms being reflective 

of their target. 

1.7.2 Aminoglycoside Biosynthetic Gene Clusters 

Aminoglycoside antibiotics represent an extensive family of natural products with 

clinical importance, particularly due to their potent antimicrobial activity against 

Mycobacterium tuberculosis. However, the effectiveness of many aminoglycosides is 

being challenged by emerging resistance58. Several aminoglycoside producing organisms 

have been identified and, in partnership with sequencing information, have provided a 

strong understanding of the involved biosynthetic machinery59,60. The most commonly 

encountered resistance mechanisms associated with aminoglycosides are the expression of 
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enzymes that directly modify the antibiotic through phosphorylation, adenylation, or 

acetylation61,62. 

The first BGC identified for an aminoglycoside antibiotic was identified for 

streptomycin from Streptomyces griseus in 198763. Although only partial, the major 

resistance gene associated with streptomycin was found located within the BGC 

boundaries. Several other BGC have been identified for the aminoglycoside family of 

natural products, and their associated resistance genes detected within the cluster 

boundaries reflect the same mechanisms which were detected within the clinic. Despite 

there being subclasses of aminoglycosides, they share significant overlap in their associated 

resistance mechanisms, further representing the developing relationship between resistance 

genes, BGCs, and mode of action of antibiotics. 

1.7.3 Macrolide Biosynthetic Genetic Clusters 

Macrolide antibiotics are produced by PKSs, and represent a family of 

therapeutically relevant antibiotics with Gram-positive activity. The first resistance gene 

for a macrolide antibiotic was originally classified in 1982 from Saccharopolyspora 

erythreus, as an enzyme capable of methylating the bacterial 23S ribosomal RNA64. 

Subsequent research in years following elucidated the BGC for erythromycin, including 

the previously identified resistance gene65,66. In many instances, the determined resistance 

genes for macrolide antibiotics have significant sequence similarity between one another, 

as seen with the genes encoding ABC transporters conferring resistance to three macrolide 

antibiotics67. Overall, extensive research has been put towards elucidating the self-
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protection mechanisms afforded by microbes that posses the ability to produce macrolide 

antibiotics in the form of target modification, alterations of cell permeability (e.g. ABC 

transporters), and through the aid of antibiotic modifying enzymes68-70. 

1.7.4 Beta-Lactam Biosynthetic Gene Clusters 

  Beta-lactam antibiotics represent one of the defining families of natural products in 

terms of clinical relevance. Despite the excitement surrounding the isolation of penicillin, 

the first beta-lactamase capable of rendering penicillin ineffective was isolated within a 

strain of Escherichia coli before the antibiotic’s debut as a therapeutic agent71.  

Penicillin was the first beta-lactam antibiotic to undergo BGC characterization as 

several of the genes necessary for biosynthesis were identified in close proximity within 

the Penicillium chrysogenum genome72. Upon initial identification, no speculation was 

made to infer plausible self-protection genes within the proposed cluster. In years 

following, several BGCs were identified for the main classes of beta-lactam antibiotics. As 

with other classes of natural products, several self-protection mechanisms were identified 

within the BGCs of producing organisms (e.g. target modification, expulsion pumps, and 

antibiotic modifying enzymes)73,74. 

1.8 Current Considerations of Resistance Genes in Natural Product Discovery 

The traditional approach to natural product discovery places little emphasis on the 

potential for resistance to a new antibiotic, despite the importance it plays in defining a 

successful therapeutic agent. A resistance guided approach was established using the 

known self-protection mechanisms of antibiotic producers to effectively screen, and enrich 
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for the isolation of both glycopeptide and ansamycin antibacterials50. This strategy 

enhanced the ability to define new members of these classes of antibiotics in comparison 

to previous years. Despite the attributed success of the technique, the current era of 

antimicrobial resistance requires as a necessity, the discovery of new chemical scaffolds 

with less likelihood to be effected by current resistance mechanisms.  

Moving closer to such a scenario, was accomplished by the Wright lab through the 

development of the Antibiotic Resistance Platform in 201775. The platform incorporates 

the use of several individual resistance elements on separate plasmids, which are used to 

screen extracts to decrease the identification of previously identified antibiotics, and 

highlight those which may possess different self-protection mechanisms75. Furthermore, 

the developed platform was also utilized to identify extracts which may act as novel 

inhibitors of common resistance mechanisms75. The developed platform begins to highlight 

the importance, and usefulness, of self-protection mechanisms in the modern era of 

antibiotic discovery. However, the platform is currently limited to those which have well 

defined self-protection mechanisms.  

1.9 Bioinformatic Platforms for Identification of Secondary Metabolites 

 As previously mentioned, NRP and PK natural products are produced by assembly 

line systems that can result in extensive structural diversity. The surge in availability of 

genomic information has not only allowed for a better understanding of the genetic basis 

of these assembly line systems, but also the generation of bioinformatic platforms capable 

of inferring secondary metabolites directly from the DNA sequence (DNA-RNA-protein-
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small molecules)76-79. To this end, a bioinformatic platform for the Predictive Informatics 

of Secondary Metabolomes (PRISM) has been developed by the Magarvey lab to infer the 

location of these assembly line systems directly from the genome of an organism of 

interest76. Furthermore, the understanding of the domain selectivity within the assembly 

line systems allows PRISM to predict a possible structure from the detected gene 

cluster76,77. The ability to uncover the secondary metabolite potential of organisms begins 

to reflect how valuable microbes can be in their ability to produce several chemically 

distinct entities. It has been estimated that a mere 10% of the biosynthetic potential of 

microbes has been currently characterized80. Moreover, strategies are readily being 

developed to compare the predicted chemistry of secondary metabolites against natural 

product chemistries that are already known81. This can be extended further to relate known 

natural products to their respective gene clusters, also known as de-orphaning clusters, to 

ensure the focus remains on those gene clusters encoding potentially novel natural 

products81. To this end, the Magarvey lab has developed several bio- and chemo-informatic 

tools to assist in generating more targeted, or guided approaches to natural product 

discovery. Of them is PRISM as described above, and two others are Generalized Retro-

biosynthetic Assembly Prediction Engine (GRAPE), and the Global Alignment for Natural 

Product Chemoinformatics (GARLIC)81. GRAPE is a retrobiosynthetic algorithm that 

enables known natural products to be broken down into their biosynthetic units, and can be 

directly compared against detected BGCs81. Tools such as these serve as valuable resources 

to effectively identify new sources of microbial natural products in the genomic era of 

discovery.  
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1.10 Bioinformatic mining for Microbial Natural Products 

 Bioinformatic programs such as PRISM present an enormous advantage moving 

forward in the modern era of natural product isolation, but require pairing with additional 

bioinformatic tools that can identify the predicted molecules in microbial extracts. Efforts 

to address this need have been developed in recent years such as Informatic Search 

Algorithm for NAtural Products and DEREPLICATOR82,83. Keeping inline with the 

interests of the Magarvey lab to develop bioinformatic tools to accelerate natural product 

discovery, an additional resource known as the Computational Library for Analysis of Mass 

Spectral Data (CLAMS) has been developed (Internal Bioinformatic Tool from Dejong et 

al., McMaster University). CLAMS enables the detection of plausible small molecules 

within a mass spectra file and identifies them as “peaks”. Furthermore, CLAMS can report 

the respective mass to charge ratio of detected peaks, which is then used to compare against 

an in-house database of small molecule data to identify those which may relate to 

previously known microbial products. Further aiding this resource as a valuable 

bioinformatic tool, is the ability to infer which peaks are the same, or different between 

collected mass spectra of interest. An extension of CLAMS has further been developed to 

assert those inherently unique peaks that may be explicated related to a single strain through 

comparison against a database containing the mass spectral information gathered within the 

lab.  

 Continued development of bioinformatic tools are inherently necessary to bridge 

the gap between detection of BGCs within a genome and identifying those encoded 

products in microbial extracts. Having devised methods to aid in this task, brings forth a 
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unique opportunity to identify those potential peaks of interest that may have been missed 

during the traditional era of antibiotic discovery.  

1.11 Resistance Genes and the Genomic Era of Natural Product Discovery 

The steady growth of genomic information has not only allowed for a greater 

understanding of the genetic basis of secondary metabolite biosynthesis, but also an 

increased ability to assess changes in the resistance landscape. Significant research has been 

dedicated to surveillance and monitoring of clinically relevant resistance genes. Databases 

such as the Comprehensive Antibiotic Resistance Database, have been compiled to 

highlight what is known about clinically-relevant antibiotic resistance, and its molecular 

basis84. Resources such as these have also been accompanied by several studies dedicated 

to providing surveillance measures in a clinical context85,86. 

As microbes produce antibiotics, they are required to also co-produce resistance 

genes to allow the host to avoid lethality from the effects of the small molecules they 

produce49. As described above, this notion has resulted in the identification of several self-

protection, or resistance genes within the confines of BGCs, that exhibit relationships to 

the specific class of molecules they encode. This impending relationship between resistance 

genes and chemical scaffolds has been used to enrich for isolation efforts of molecules with 

similar chemical scaffolds, highlighting the underlying relationship that exists between the 

two50. As such, further studies involving the resistance genes present within the BGCs have 

demonstrated a relationship to the classes of small molecules, and corresponding molecular 

target, such as the ribosomal methylation resistance genes of macrolide antibiotics65. The 
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repeated defining of these relationships, especially in respect the main classes of natural 

products, suggests that these antimicrobial resistance genes may serve as a characteristic, 

or defining feature of these chemical class of natural products.    

Further investigation into these relationships involved with antimicrobial resistance 

genes and target prediction, may allow one to envision methods that assert the mode of 

action without extensive structural knowledge. By pairing with the advancements of the 

genomic era brings forth a unique opportunity to reveal resistance genes associated with 

BGCs. By further focusing on the relationships between antimicrobial resistance genes and 

their respective targets, may allow for us to further delineate the complex relationships 

occurring between the two. If a sufficient method to address this concept can be generated 

in a systematic fashion, would allow for significant advancement in the ability to postulate 

the potential molecular target of predicted natural products from the genomic information. 

By creating such a process, may help better navigate the wealth of predicted BGCs, to 

ensure focus remains on those which may diverge mechanistically.  

1.12 Challenges of Natural Product Discovery in a Genomic Era 

 The genomic era brings forth an abundance of sequencing information that goes 

beyond what is generally able to be deciphered manually. At the same time, technology is 

rapidly advancing in ability to develop appropriate bioinformatic platforms to manoeuver 

the wealth of sequencing information. This would allow one to envision a generation of 

natural product isolation that diverts away from the classical means of bioactivity guided 

fractionation and move forward with data driven approaches. Despite the promising 



M.Sc Thesis- Chelsea Walker 
McMaster University – Biochemistry and Biomedical Sciences 

 

17 
 

potential of genomic-driven natural product discovery, challenges with such methods 

exist87. Often, BGCs are silent, or not expressed under normal laboratory conditions88,89. 

Overcoming such a hurdle can often require laborious efforts to activate or upregulate a 

given cluster or involve heterologous expression which is accompanied with its own set of 

inherent challenges90,91. Furthermore, direct identification of structure predicted secondary 

metabolites within a complicated microbial extract can vary greatly due to enzymatic 

promiscuity and the inherent potential for post-translational modifications23. 

It is also well appreciated that not all microbial BGCs encode secondary metabolites 

with antibacterial properties92,93. For example, this would include molecules such a 

siderophores that are important for a microbe's ability to sequester iron94. Furthermore, 

siderophore compounds are encoded by the same NRPS, and PKS machinery as other 

microbial natural products95. The presence of these types of BGCs, among others, would 

hinder or convolute the search for BGCs that encode for new antibacterial small molecules. 

Therefore, it is critical that genomic-guided discovery methods employ a logic to discount 

both BGCs associated to known molecules, as well as BGCs that encode for secondary 

metabolites with undesirable activities or characteristics.  

1.13 Microbial Strains with Potential to be Sources of Novel Antimicrobials  

 Actinobacteria in the past have been a major focus of traditional discovery methods, 

with many clinically relevant antibiotics being isolated from them96.  Extending research 

further into microbes outside of the of the Actinomycetes is hoped to bring forth new 

sources of chemically distinct natural products.  Delving into organisms which were not 
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extensively investigated during the golden era of discovery is accompanied by its own 

series of potential complications as many organisms now, are being isolated from unique 

environments, leading to possible difficulty in cultivations under normal laboratory 

conditions97.  

 The potential to identify microbes who might be “genetically primed” to produce 

secondary metabolites would bring forth an additional level of confidence in tackling the 

growth conditions of these underexplored producers. This can essentially allow for guided 

isolation efforts into various aquatic and soil dwelling bacteria such as Aquimarina 

muelleri, and Lysobacter gummosus. Shifting focus to the genome of microbes would allow 

insight to the secondary metabolite capacity of these microbes, but also show the depth of 

potential that may remain in those producers that may have also been mined in the past. 

1.14 Flexibacter sp. as a Potential Producer of Bioactive Natural Products 

 Flexibacter sp. is a Gram-negative environmental bacterium, which is most 

commonly known for it association as a fish pathogen98. Different Flexibacter species have 

been isolated from various environmental locations, including areas of rotting swamp grass, 

marine environments, and general soil locations99-101. In the past, two Flexibacter sp. 

ATCC 35208, and Flexibacter sp. ATCC 35103, have been interrogated and found to 

produce an intriguing family of secondary metabolites, the monobactams99,100. 

Monobactams are monocyclic beta-lactam containing molecules with weak antibacterial 

activities102. Monobactams have been of clinical interest with the development of 

Aztreonam, and their stability in the presence of beta-lactamases102. Despite the finding of 
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one of the industry's most intriguing families of natural products, Flexibacter sp., ATCC 

35208 has not been extensively mined for the potential of other bioactive secondary 

metabolites. Recent genomic sequencing of Flexibacter sp., has revealed that its secondary 

metabolite potential goes beyond monobactams in form of other possible NRPs, suggesting 

Flexibacter sp., may be a valuable candidate for further investigation. Pairing this 

knowledge with the appreciation for the biosynthetic capacity already achieved by this 

organism suggests there may be potential to extend even further to other uncharted 

molecular targets.  

1.15 Thesis Overview 

 

 

Figure 1.1 Thesis overview. Using genome mining and resistance profiling to highlight 

natural products of interest that may serve as valuable sources of new antibiotics. 

The impending crisis involving antibiotic resistance further reiterates the need for 

new platforms for antibiotic discovery. Natural products in the past of proved to be a 

valuable resource of bioactive metabolites, and history urges us to revisit them again in 
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efforts to address the antibiotic resistance crisis. This need for new discovery platforms that 

consider antibiotic resistance genes is the overarching objective of this thesis. By defining 

such a method using resistance profiling, and genomic mining will reveal new sources of 

microbial natural products with antibacterial properties, the hypothesis to my work.  

 The central research project, prepared for submission for publication, delves into a 

devised platform for the discovery of microbial natural products. It is aimed to reveal which 

organisms have a strong potential to produce bioactive molecules that evade common 

resistance mechanisms, based on a selective approach to avoid re-discovery of known 

molecules and identify those which differ mechanistically. These findings will enlist a 

multidimensional approach leading towards a method to reveal new antibiotic agents, 

showcasing how valuable microbes continue to be in efforts to identify the next iteration of 

antibacterial agents.  
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Chapter 2. Defining Antibiotic Molecules Refractory to Known Resistance 

Mechanisms from Microbial Genomes via Machine Learning 

2.1 Chapter Preface 

 The genomic era of discovery brings forward an unique environment for defining 

the next iteration of antimicrobial natural products. As with the challenges associated 

with the traditional era of discovery, the genomic era brings forth its own set of 

challenges to move forward in defining new isolation methods. As bioinformatic, and 

computational technology advances, we can leverage this information to build new 

resources to aid in the search for new natural products. As antimicrobial resistance 

continues to be a major health concern, it is ever more apparent of the need to define new 

antimicrobials that lack noted resistance genes. As such, it is essential that new methods 

of antibiotic discovery are focused on assessing the possibility for resistance to emerge, at 

the beginning of isolation efforts.  

 The following chapter is formatted as a manuscript that is prepared for submission 

for publication, in which I am the lead author. I conducted the experimental design, and 

performed all experiments (except for those stated below), curated ATP datasets, 

interpreted results, and wrote the manuscript. Dr. Haoxin Li prepared the work related to 

the siderophore prediction engine, curated siderophore datasets, isolated siderophore 

compounds, and contributed to the manuscript. Dr. Maclean Edwards also contributed to 

the experimental design, generated SIPE and ATP algorithms, and validated statistical 

methods. Dr. Jabed Tomal carried out the random forest experiments, and validated 
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statistical methods. Nishanth Merwin performed the global analysis of siderophore, and 

ATP predicted products, and provided guidance on the manuscript. Chris Dejong assisted 

in curation of datasets. Michael Skinnider programmed the additions of hidden Markov 

models to PRISM, and contributed to the manuscript. Dr. Nathan Magarvey contributed 

to the experimental design, and contributed to the manuscript.  

2.2 Abstract 

Microorganisms have historically been the main source of antibiotic agents. The 

central approach to realize these antibiotics is random screening and cultivation of 

microbes, collecting organic extracts and conducting screening of them using bioactivity 

guided fractionation. Accumulated information of existing natural product structural 

classes, and known antibiotic resistance is often not influential of this discovery process, 

and lacks modern data-driven methodology. Genome sequencing has revealed many 

potential antibiotic pathways, yet methods to decipher this information, and devise 

predictive algorithms to define relationships to known antibacterials is lacking. Moreover, 

it remains unclear how to select biosynthetic gene clusters and the natural products they 

encode, that are refractory to current observed antibiotic resistance. In this work a 

strategy is described to change how microbes are explored for antibiotic agents using a 

series of allied algorithms that creates a platform to delineate biosynthetic clusters that 

create novel antibiotics lacking appreciated resistance profiles. We identify features 

within the known chemical space to permit classification of compounds, or encountered 

biosynthetic gene clusters as siderophores with a high degree of accuracy. Using a 

devised compendium of antimicrobial resistance genes in the form of hidden Markov 
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models built into PRISM, and the associated known chemistry of natural product space, 

we have enabled a method capable of replicating for known antimicrobial resistance 

mechanisms in the form of the Antimicrobial Target Predictor. We also survey the global 

landscape of predicted natural products that lack defining features related to siderophores, 

or other known natural products to highlight the numerous entities yet to be discovered 

that may serve as agents in defining the next iteration of antibacterial agents. 

2.3 Introduction 

The emergence of multidrug resistant human pathogens refractory to the current 

clinical antibiotics demands new strategies to define the next generation antibiotics1. 

Defining such novel antibacterial chemistry from synthetic compounds has proved 

challenging, and existing screening methods of microbial natural product extracts has as 

well2,3. Origins of these challenges differ, but both display a general inefficiency and a 

bias towards existing antibiotic scaffolds. Natural product screenings implementing 

cellular bioactivity tracking is challenged with rediscovery of knowns, whereas synthetic 

compound leads realized through target-based screening are often inactive on whole 

cells4. Of the known targets that lead to killing, natural antibiotics hit all the known 

described 58 targets5. Mapping of these naturally-derived antibacterials, particularly of 

the polyketide (PK) and nonribosomal peptide (NRP) classes, shows that their chemical 

diversity parallels target diversification5. Using retrobiosynthetic clustering also 

demonstrated that ~40 per cent of the time agents with chemically distinct scaffolds act 

through distinct biological targets/mechanisms5.   
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Genomics of microorganisms have revealed large collectives of natural product 

biosynthetic pathways6. Products of the vast majority of these pathways can not be readily 

ascribed to known compounds, evidenced by the ~1000 cluster-to-compound matches 

known to date7,8. Of the biosynthetic pathways identified, PK and NRP pathways are in 

particular abundance, and of interest, as they may encode novel entities. The molecular 

diversity afforded by the modularity of the PK and NRP biosynthetic logic, when 

considering the combinatorics and permutations would certainly cover vast chemical 

space9. If one envisions the possible combinatorics from genetic code, the natural product 

diversity using the known ~500 PK and NRP monomers and associated capacity to create 

scaffold diversity is greater than 500 factorial. Those detectable in genomes, in theory, 

encode agents that have been selected for, and the failed chemical combinations with no 

favorable action would have been lost over evolutionary time10. Though to date, the 

known number of NRP, PK and hybrids thereof only represent less than 10% of the 

encodable space, and suggests an intriguing notion that those newfound clusters could 

encode novel antibiotic chemistry11. A key challenge is to define the predicted natural 

products (pNPs) and compare to the known chemistry. The concept of divergent 

molecules on its own, is not sufficient to suggest the actions of these pathways will 

produce antibiotics with other functions. Siderophore molecules, agents with iron-

binding/retrieval functions lack antibacterial action, and are also produced via PK and 

NRP assembly logic12. As such, decoding this information to define the unknowns and 

infer functions using machine processing is of the essence to classify the molecular 

actions (siderophore, known antibiotics, and possibly novel antibiotics).  
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New algorithms are required to compare pNPs to natural products (NPs) that can 

account for, in some cases, poor prediction accuracy (degeneracy from DNA-RNA-

protein-small molecules), yet define differentiated novel chemicals that lack susceptibility 

to known resistance. Most tools have focused on biosynthetic gene cluster (BGC) 

detection, and to varying degrees’ structural prediction alone13-16. Other confounding 

issues are the need to sort pNPs that are not antibiotics (e.g. siderophores), reveal novel 

agents, and selectively target their isolation. Connectivity of BGCs to those pNPs and 

physical isolation of these unknowns is also still in its relative infancy, and must also be 

addressed to conduct systematic mining to impact antibiotic discovery17. Also, many 

known antibiotics and siderophores have not yet been connected to their cognate BGCs18. 

Construction of an integrated framework that also takes into consideration antibiotic 

resistance is required to create intelligent selection of the next generation of antibiotic 

leads. These methods would also need to be efficient enough to deal with the large deluge 

of biosynthetic data. Machine learning and algorithms to define the molecular functions 

of predicted structures has not yet been presented with a scale to prioritize molecule 

isolation. Here we present a machine-driven process to create a new method to identify 

evolved antibiotic molecules that are chemically and mechanistically differentiated, and 

not immediately susceptible to observed resistance. At the core of this new strategy is the 

formative training data of the known chemistry, resistance, and principles of machine 

learning/algorithm bio-chemoinformatic design. Application of this new approach is set 

forward on a large collective of sequenced BGCs defining new molecules with varying 
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spectrums of functions (siderophores and antibiotics), and activities on drug resistant 

pathogens. 

2.4 Results and Discussion 

2.4.1 A Compendium of Resistance Genes Connected to Molecular Targets 

Antibiotics may be described as “selfish molecules” analogous to the concept of a 

“selfish gene”. Within the operons encoding these selfish-molecules are likewise counter-

strategies to ensure it is protected from the inhibitory actions of its product19, 20. Self-

protection mechanisms parallel the four main antibiotic resistance strategies found in 

clinical resistance, including: target inactivation, target decoy, antibiotic modification, 

and antibiotic expulsion (Fig. 2.1).  Initial cataloging of resistance determinants has 

focused on defining their presence in clinically relevant pathogens but given the origins, 

one may conceive their utility in sorting and clustering antibiotic producing pathways21,22. 

Several resources have been dedicated to the tracking and providing surveillance of 

clinically associated resistance genes but not as extensive for producer encoded 

resistance21, 23-25.  Despite the acknowledgment of importance of resistance genes in 

governing the success of antibiotics, a smaller emphasis has been placed on defining the 

intertwined relationship between resistance genes and the mechanism of action of 

antibiotics. 
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Figure 2.1. Microbial secondary metabolites are encoded by biosynthetic gene 

clusters that contain a gene associated with serving a self-protection 

function.  Common resistance mechanisms encoded by resistance genes in biosynthetic 

gene clusters are (A) target modifications, (B) transporters, (C) target modifications, and 

(D) decoy mechanisms. Other non-antibacterial products encoded by the same assembly 

line systems include (E) iron-binding molecules (siderophores). Image courtesy of Sheena 

Gingerich. 

 

To survey the known antibiotic self-protection genes, an extensive literature 

search of published data was compiled of the antimicrobial resistance (AMR) genes 

encountered within environmental and clinical microbial organisms. Each instance of a 

BGC associated resistance gene was flagged, and a hidden Markov model (HMM) was 

created for their subsequent detection. Cut-off scores were empirically determined, 

culminating in 301 HMMs that also included a set of clinical resistance genes that were 

combined into a single searchable set (Supplementary Table 2.1)23. For the noted clinical 
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observed resistance genes, we refined for several of the available HMMs to ensure 

specificity. Having set clear cut-off scores that would lead to few instances of false 

reporting, we integrated these within the Prediction Informatics of Secondary 

Metabolomes (PRISM) platform15. Within the PRISM framework, these HMMs can be 

used to query input BGCs for the presence of candidate resistance genes. Taking these as 

a complete set, we moved forward with creating a linkage of these resistance 

determinants to the molecular targets of the antibiotics that they resist. This map of 

correlations between the curated resistance genes and molecular targets revealed 

associations to 25 antibacterial targets (Fig. 2.2, Supplementary Table 2.2). Comprised in 

Fig. 2.2, is a series of depicted modifications that are representative of individual AMR 

genes, which have been developed into HMMs. Furthermore, respective modifications 

have been segregated into those that are specific to the cell wall/membrane, or cellular 

targets. Segregating the compiled AMR genes one step further, aimed to highlight those 

determined modifications within each category that are reflective of direct target 

modifications, or those which are cytosolic modifications (e.g. antibiotic modifications, or 

expulsion pumps). Further breakdown of curated resistance mechanisms revealed 37% to 

be associated with direct antibiotic modifications, 32% as transporters, 15% representing 

modifications to antibacterial targets, 5% as target decoys, and 11% were found to be of 

less common resistance functions (e.g. immunity proteins, or clinical genes modulating 

resistance). The creation of the compendium of environmental and clinically relevant 

resistance genes, and drawing associations to known antibacterial targets was a critical 

first step to enable the use of the information in an integrated fashion. 
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Of the accumulated antibiotic associated resistance genes, the majority (78%) 

could be specifically tied to a known antibacterial target, whereas nonspecific, or 

multidrug resistance genes were less frequent (21%), and finally a small percentage were 

identified to an unknown molecular target (1%). Of the surveyed resistance genes, the 

most frequently observed target relationship was those resistance genes related to 

inhibition of the bacterial ribosome with 90 instances (38%). This follows a similar 

pattern as exhibited in the context of microbial natural products, with most evolved 

chemical entities also targeting the bacterial ribosome5.The second most commonly 

observed relationship between resistance genes and molecular targets was to penicillin-

binding proteins with 52 instances (22%), followed by D-Ala-D-Ala chelators with 20 

instances (9%). Following the top three molecular targets, most remaining targets exhibit 

small percentages, or fewer than 10 instances of a direct relationship between resistance 

genes and molecular targets. The entire list of molecular targets and their associated 

resistance genes can be seen in Supplementary Table 2.3. 



M.Sc Thesis- Chelsea Walker 
McMaster University – Biochemistry and Biomedical Sciences 

 

30 
 

 

Figure 2.2. A compendium of antibiotic resistance determinants connected to their 

associated molecular target.  A comprehensive survey of the known resistance 

mechanisms exhibited by bacteria identified 25 targets of the inner cell wall membrane 

(1-5), outer cell membrane (6), cell wall associated enzymes (7-9), amino acid 

metabolism (10-21), and individual enzymes (22-25).Modifications can be broadly 

grouped by those which are cell membrane and cell wall cytosolic modifications, direct 

modifications to the cell membrane and cell wall, as well as cellular cytosolic or non-

target modifications, and cellular target direct modifications. Full target legend is listed in 

Supplementary Table 2.2. Image courtesy of Sam Holmes. 

2.4.2 Devising a Training Set of Predicted Natural Products from Known 

Biosynthetic Gene Clusters 

The decrease in costs associated with next generation sequencing has spurred a 

generation of characterizing the biosynthetic genes responsible for various classes of 

microbial natural products. To this end, a set of microbial natural product BGCs was 
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collected and comprised of 227 antibacterial, 31 siderophore, and 104 antifungal BGCs 

(Supplementary Table 2.4). This curated set of known BGCs provided the basis for 

creating pNPs with known molecular functions to generate the training and test sets for 

the custom optimization algorithms. Each of the curated BGCs were analyzed for their 

predicted biosynthetic substrates and resistance genes (from section above) using PRISM, 

to be used as a feature set. The results of this surveying, were also used to manually 

annotate to relate known BGCs, detected AMR HMMs and molecular targets of 

antibacterial BGCs (Supplementary Table 2.5). Each of these known natural products 

were also broken into chemical subunit pieces, using a Generalized Retro-biosynthetic 

Assembly Prediction Engine (GRAPE)18. GRAPE breaks down each represented natural 

product into its respective substrates, and monomer composition. It was reasoned that 

upon breaking down microbial natural products into their biosynthetic origins, would 

reveal distinct features that would allow the differentiation between antibiotics, and 

siderophore natural products. GRAPE generated subunits and the PRISM predicted 

substrates are relatable using the Global Alignment for Natural Product 

Chemoinformatics (GARLIC)18. This resource enables the direct comparison between 

PRISM predicted substrates, and the subunits of previously known microbial products to 

allow comparisons to be established between pNPs and the structural features of known 

natural products. Collecting the data of the known GRAPE subunits and the PRISM 

subunits from these curated sets alongside the resistant profiling, would create a feature 

set for downstream predictive algorithms to predict the molecular function. Furthermore, 
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these features will be used as a foundation for devised algorithms to infer a prediction 

when a new BGC is encountered. 

2.4.3 Machine Learning of Known and Predicted NP Siderophore Chemistry 

A key challenge in mining microbial genomes for natural products is selecting what 

BGCs may encode in respect to their function, such as those with antibacterial properties. 

PK and NRP biosynthesis paradigms lead to diversified molecules with a range of 

functions, and siderophore chemistry is one of such functions12, 26-28. As previously 

mentioned, siderophore molecules function as iron scavengers for microbes, and are 

unlikely to possess the necessary features to be developed as clinically useful antibiotics. 

To define what features of siderophore chemistry may be differentiating, the training set 

of knowns described above was used. In addition to the BGC data above, we also 

undertook a comprehensive literature review, covering review papers in addition to 

primary literature, to collect the chemical structures of all known siderophore compounds. 

A total of 384 siderophores were collected with information including their structures, 

producers, and membrane receptors (Supplementary Fig. 2.2)12, 29-37. Manual annotation 

revealed that 204 of these siderophores, from 29 genera, were associated with one of 14 

known membrane receptors (Supplementary Table 2.6). Among the 384 siderophores, 

43% are peptidic siderophores, whereas the other 57% are non-peptidic siderophores.  

To model the structural characteristics of siderophores, a control set of non-

siderophores was additionally required. As we decided to use 284 siderophore compounds 

in our training set, we randomly selected a control set of twice the size of the training set, 
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selecting 568 non-siderophores from our in-house microbial natural products database. 

After curation of all compounds, we used GRAPE to reveal the monomers within each 

chemical structure. We first considered the distribution of substrate monomers between 

siderophores and non-siderophores, by simply looking for those monomers with the 

highest occurrence within each set, as determined by GRAPE. There was a clear 

difference between the distributions, wherein six of the top ten most common monomers 

from the siderophore set have the characteristics to facilitate iron binding; 

hydroxyornithine, lysine, 5,6-dihydropyoverdine chromophore, 2,3-dihydroxybenzoic 

acid, beta-hydroxyaspartic acid, and benzoic acid. The entire list of siderophore 

monomers and the top monomers from non-siderophores can be seen in Supplementary 

Table 2.7.  

Following the initial insight into the notion of there being distinct differences 

between siderophore and non-siderophore structures, we developed a random forest 

model to classify compounds as siderophores. A random forest model was trained for 

binary siderophore classification using the 131 structural features identified by GRAPE. 

From the 384 siderophore compounds, 74% were randomly selected as the training set, 

and 26% were retained as the test set. In regards to non-siderophore compounds, 91% 

were randomly selected as the training set, and 9% were retained as the test set. Our 

model showed a sensitivity (siderophores correctly predicted as siderophores) of 97% and 

specificity (non-siderophores correctly predicted as non-siderophores) of 98%, with a 

false negative rate (siderophores incorrectly predicted as non-siderophores) of 3% and a 
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false positive rate (non-siderophore incorrectly predicted as siderophores) of 2%. The 

overall prediction accuracy was 95%. 

Having shown that a random forest model permitted classification of siderophores 

from structural information, we next considered siderophore classification of pNPs from 

BGCs. Our first attempt was to use the same random forest model built from structural 

information to predict siderophore pNPs obtained from PRISM. However, because the 

accuracy of PRISM in substrate prediction is less than 100%, the performance of the 

model was not adequate. We therefore sought to develop a second random forest model 

based on known siderophore and non-siderophore pNPs. We collected all 31 known 

siderophore BGCs and 406 non-siderophore BGCs. The second random forest model was 

trained using 20 siderophore and 254 non-siderophore pNPs with all the information that 

PRISM detects, including amino acid and polyketide substrates, tailoring genes, sugar 

genes, and resistance genes (see Methods). Performance on the remaining pNPs showed a 

sensitivity of 91% and specificity of 93%, with a false negative rate of 9%, and a 7% false 

positive rate. The overall prediction accuracy was 84%. 

Random forest models are effective at revealing variable importance and their 

relationship with prediction error. Within this model, the most important variables for 

structural and cluster predictions are shown in Fig. 2.3B. Common important variables for 

both structural and pNP classification included 2,3-dihydroxybenzoic acid, malonate, 

methyl malonate, sugar presence, lysine, valine, cyclic tailoring reaction, 

hydroxyornithine, and serine. 
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Within the training dataset, there were significantly more non-siderophore pNPs 

leading to misclassifications favouring non-siderophores. Biased weighting and sampling 

techniques favouring the underrepresented siderophore pNPs could alleviate this 

misclassification error38. To tune the random forests, we plotted the out-of-bag prediction 

errors against number of trees grown for the compound and pNP data (Supplementary 

Fig. 2.3). For the compound data, the out-of-bag error is stabilized at around 400 trees 

grown. For the pNP data, the out-of-bag error is stabilized at around 300 trees. Hence, in 

both the data sets, we have achieved our tuned random forest models by growing 500 

trees. However, when we investigated classes of pNPs that were often incorrectly 

predicted, we found that lipopeptides, such as daptomycin, polymyxin and teixobactin, 

were always predicted incorrectly (Supplementary Table 2.8). This issue using the 

existing machine learning strategies lead us to consider how we may create an alternate 

algorithm that would create the differentiating power to separate lipopeptides (often 

antibacterial) from siderophores. Lipopeptides shares some structural similarities with 

NRPS-derived siderophores: for example, both classes have several amino acids with 

charged side chains. The limited number of annotated siderophore BGCs complicated the 

ability to accurately capture the differences between siderophore and lipopeptide pNPs. In 

lieu of these challenges, we decided to use a second approach, linear regression, for 

siderophore pNP classification. 
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2.4.4 Broyden-Fletcher-Goldfarb-Shanno-optimized Linear Coefficients for 

Siderophore and Antibiotic Prediction 

A custom optimization strategy was used to specifically address the issue of poor 

predictive power for siderophore pNPs from lipopeptide BGCs. Here, the training 

strategy does not aim to achieve the best total separation, but to minimize the total pNPs 

that are misclassified. This idea was translated into a function as described in Methods, 

and referred to as the siderophore identification prediction engine (SIPE). Of note, this 

function only uses the errors in misclassified observations to iterate and improve. This 

aims to create a better classification by specifically improving misclassification instead of 

boosting total separation. Using the Broyden-Fletcher-Goldfarb-Shanno minimization 

algorithm to minimize this defined function, a set of optimal linear coefficients are 

produced. When applied to a given pNP, an unbounded score is output, which can be used 

to represent the likelihood that a given pNP is a siderophore. The performance of this 

method is defined by the following stats: an overall accuracy of 97%, a false positive rate 

of 1%, and a false negative rate of 40%. 55 of 160 pNPs received an unknown 

classification when compared with random forest model using the same training and 

testing sets. However, this model correctly classified products from lipopeptides BGCs as 

non-siderophore producing BGCs, in addition to other non-siderophore BGCs in the 

testing set (Supplementary Table 2.8). To compare the performance of the two models, 

we plotted the receiver operating characteristic curves. The overall performance of SIPE 

and the random forest model were comparable but a key differentiating function of SIPE 

is the reduction of misclassification such that lipopeptide antibiotics were not defined as 
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siderophores (Fig. 2.3). We therefore selected the linear regression model as our default 

for potential siderophore pNP classification, as we only wish to eliminate pNPs that are 

siderophores, and keep those with potential antibacterial properties to be assessed in the 

next segment of the pipeline. 
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Figure 2.3 Random forest and SIPE classification of NPs as siderophore compounds. 

A. Work flow representation of random forest and SIPE models. The important variable 

plot of random forest model shows the top 30 most important variables for classifying 

compounds (B) or predicted natural products from biosynthetic gene clusters (C) as 

siderophores. D. Information gathered via PRISM and GRAPE through structural and 

genetic data is used in the generation of SIPE. E. Receiver operating characteristic curve 

comparison between random forest and SIPE models for PRISM predicted siderophores 

using the whole test set. F. Reciever operating characteristic curves of random forest and 

SIPE using only lipopeptides from the devised test set.   

2.4.5 Optimization Strategy for the Generation of the Antimicrobial Target 

Predictor (ATP) 

As we have now generated a method to classify pNPs as siderophores using SIPE, 

the next task was to address the likelihood of a pNP diverging mechanistically through its 

predicted features. A custom optimization strategy was developed to assist in predicting 

which pNPs will both diverge chemically, but also do not display immediate inference of 

a currently known resistance mechanism. The generation of the ATP pipeline can be seen 

in Fig. 2.4. The first arm of the ATP pipeline demonstrates the use of the AMR genes in 

inferring a potential target, based on the frequency, and precision of the AMR HMMs 

within the devised BGC set, as described in Methods (Supplementary Table 2.9). Of the 

301 antibacterial specific resistance genes curated, 101 were present within the devised 

BGC training set. Of the AMR HMMs present, 88 were classified as single target 

resistance genes, meaning that they correlate with an exclusive target, based on a 

calculated precision above 70%. The limited number of annotated BGCs limits the ability 

to capture all AMR genes in the representative set to allow for full prediction power. 

Furthermore, a subset of the compendium is comprised of clinically associated AMR 

genes, which are likely to have evolved in locations within bacterial genomes outside of 
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dedicated BGCs. As described in methods, the ATP only asserts a prediction based on the 

detected AMR HMMs present within the identified BGC.  

Within the devised training set of BGCs, 168 (149 antibacterial, 14 antifungal, and 

5 siderophore) contained detectable known resistance genes. This suggests that within our 

devised training set, 149 of 227 antibacterial BGCs have previously characterized, or 

known self-protection genes. Using this subset as a notion to test the simple prediction 

engine using only AMR genes, a target prediction was generated 65% of the time, with an 

accuracy of 99%. As in, the simple prediction engine could infer a target 65% of the time 

within the devised training set due to the presence of a noted single-target resistance gene. 

In cases of the presence of a noted multi-target resistance gene, no target is predicted, and 

rather all encountered targets associated with that resistance gene are listed. Three 

individual testing measures were applied to assert the ability to identify the target of a 

pNP that is outside of the devised training set of known BGCs. Using a leave-one-out 

cross validation, a prediction was made 39% of the time, with an accuracy of 80%. The 

second validation used was Monte Carlo cross-validation, which resulted in the ability to 

infer a target prediction 47% of the time, with a mean accuracy of 76%. 

        Although the performance was adequate in predicting the antimicrobial target 

when a resistance gene was present, it was essential to devise a method that would also 

infer the potential target of a pNP based on predicted chemical features. In this sense, the 

simple prediction optimization approach was combined with GARLIC, a previously 

published method to compare the known chemistry between known NPs, and pNPs from 

a detected BGC18.  This enabled an approach to account for both chemical and resistance 



M.Sc Thesis- Chelsea Walker 
McMaster University – Biochemistry and Biomedical Sciences 

 

40 
 

features associated with a pNP. Using the devised BGC set, those labelled with 

antimicrobial activity (227 BGCs) were used to assess the ability to properly predict an 

antimicrobial target, using the devised combined approach, or ATP. When ATP is applied 

to a given pNP, a predicted target and unbounded confidence score is outputted. This 

represents the likelihood of the pNP to assert its mode of action via a previously 

characterized target. Confidence scores aside, a correct target prediction was made 40% 

of the time, and was unknown 10% of the time. Although, when confidence scores are 

considered, a correct prediction is made 86% of the time with a confidence score above 

0.5, and 90% of the time when above a confidence score of 1.0 (Supplementary Fig. 2.4). 

Although incorrect predictions are made, the assigning of a confidence score shows the 

potential of the engine to correctly identify those with both strong chemical and resistance 

features to assert those which may diverge in mode of action. The predicted targets, and 

overall confidence scores of the known antibacterial BGCs can be seen in Supplementary 

Table 2.10. 
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Figure 2.4. Workflow of the generation of ATP using antibiotic-target AMR 

correlations, and chemical features. AMR correlations are made by surveying the set of 

known BGCs and corresponding AMR HMM hits. Chemical feature comparisons of 

predicted natural products are made through GARLIC and consider associated molecular 

target annotations. Red represents NRPS, brown indicates antimicrobial resistance genes. 

2.4.6 Analysis of pNPs Arising from the ATP/SIPE Pipeline 

To further assert where focus should be placed in respect to identifying pNPs with 

desired activities, we sought to analyze the pNPs of all public and in-house available 

genomic sequences. The multi-stage process is depicted in Fig. 2.5 to identify those pNPs 

with the potential diverge in mode of action, and do not encode pNPs with chemotypes 

indicative of siderophores. We used PRISM to analyze all prokaryotic genomes (65,423 

as of March 2016) from NCBI, as well as an internal library of bacterial genomes (339 



M.Sc Thesis- Chelsea Walker 
McMaster University – Biochemistry and Biomedical Sciences 

 

42 
 

genomes), resulting in the identification of 293,712 BGCs from which pNPs were 

generated39. The first stage of the pipelined process, was to limit the analysis to those 

pNPs with more than 3 predicted domains, and were derived from NRPS or PKS 

producing pathways. This eliminated 106,022 pNPs from non NRPS or PKS pathways, 

and 143,142 which contained fewer than 3 predicted domains. With the remaining 44,556 

pNPs, we eliminated, or grouped those pNPs with high similarity scores as determined by 

GARLIC, to account for multiple producers of the same pNP. This was accomplished by 

grouping those pNPs with similarity scores ≥0.98 as determined by GARLIC, as a single 

entity. Upon doing so, 32,493 pNPs were determined to be duplicates, leaving 12,063 

pNPs for further analysis. The first stage of the pipelined process, involved the use of 

SIPE to eliminate 383 pNPs as encoding possible siderophores. Throughout the ATP 

analysis, 744 pNPs were eliminated based on their AMR gene confidence scores alone, 

whereas 2705 were eliminated based on associated GARLIC scores, or a combination of 

GARLIC and AMR genes. This left 8231 pNPs for further investigation. 

For interest purposes, the diversity of all pNPs identified (before removing 

duplicates) as siderophores were plotted against their similarity to known siderophore 

NPs. This revealed many unknown siderophore pNPs bearing different structural features, 

and from several different microbial producers (Supplementary Figure 2.5). This 

demonstrated the pNPs from genomically-detected NRPS dependent siderophore 

pathways contained a large degree of structural diversity from those currently known (see 

above section on).  
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To verify predictions made by our models with compounds and BGCs that have 

not previously been identified as siderophores, we investigated three BGCs and their 

products: acidobactins40, vacidobactins40 and potensibactin41. SIPE predicted that 

acidobactin A and B, vacidobactin A and B, and potensibactin were siderophore 

compounds. To confirm the prediction, crude extracts of Acidovorax citrulli DSM 17060, 

Variovorax paradoxus S110, and Nocardiopsis potens DSM 45234 were analyzed by 

LC/MS. In each of these instances, we could detect the masses of their iron-bound species 

when iron was added that increased over time to the detriment of their corresponding apo-

peaks of acidobactins (A. citrulli DSM 17060), vacidobactins (V. paradoxus S110) and 

potensibactin (N. potens DSM 45234) (Supplementary Fig. 2.6, Supplementary Table 

2.11). Thus, through testing these three pNPs from their associated BGCs determined by 

SIPE analysis, shows they are in fact siderophore molecules. 
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Figure 2.5. ATP workflow to identify pNPs by eliminating predicted siderophores, 

and identifying pNPs without common resistance mechanisms, and possess unique 

chemistry. PRISM predicted natural products from detected biosynthetic gene clusters 

are analyzed by SIPE to identify probably siderophores, followed by ATP to identify 

those with probable targets. The predicted natural products of determined BGCs can be 

identified through the aid of CLAMS by analyzing collected mass spectral data.   

 

2.4.7 Non-siderophore Antibiotic pNPs 

As predicted siderophores were eliminated in the first step of the process, the next 

task was to identify those with a potential to encode potentially novel antibacterials. A 

main theme throughout the ATP pipeline is to identify those BGCs and corresponding 

pNPs relating to known antibiotic pathways, or those which may exhibit cross resistance 

with previously identified natural products. At the first exit point, 744 pNPs were 

eliminated from the pipeline based solely on their associated resistance gene scores, as 

determined by ATP. The BGCs at this respective point were likely to contain a noted 

single target resistance gene, as determined by ATP, resulting in a high confidence score 

target prediction to be made. For example, contained within the pNPs predicted from 
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NCBI, would be Saccharopolyspora erythraea, a known producer of erythromycin41. A 

detailed ATP analysis of the erythromycin BGC, demonstrates the detection of a 

resistance gene with a high precision score, which would infer a target prediction to be 

made. Although, ATP still reports GARLIC analysis to highlight the chemical similarities 

to previously identified NPs (Supplementary Table 2.12). Several other noted examples 

of previously characterized BGCs, and associated products can be examined in a similar 

fashion as depicted in Supplementary Tables 2.13-2.15. This particular exit point 

highlights the importance of considering AMR genes, when structural predictions may 

not be suffcient due to inaccurate predictions, resulting in low GARLIC scores to known 

compounds, as displayed with the andrimid BGC (Supplementary Table 2.13).  

The true potential of the devised method results from the analysis of those pNPs 

which were not contained within the original test set. In this respect, the recently 

published BGC of aldgamycin42, and bananamide43 were analyzed (Supplementary Table 

2.16 and Supplementary Table 2.17). Aldgamycin is macrolide antibacterial agent, with 

members isolated from S. avidinii, and Streptomyces sp. KMA-00142, 44, 45. Detailed ATP 

analysis reveals a strong target prediction towards the bacterial ribosome, through 

identification of a resistance gene previously found to be associated with another known 

macrolide natural product chalcomycin. Interestingly, chalcomycin has been found to be 

co-produced with aldgamycin in Streptomyces sp. KMA-00142. The prediction is further 

increased through high GARLIC scores towards other macrolide antibiotics with activity 

annotations also suggesting the bacterial ribosome. Despite aldgamycin not undergoing 

mode of action characterization in the past, its strong similarities to other macrolide 
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antibiotics has likely suggested it would indeed target the bacterial ribosome, and this has 

been further suggested by ATP analysis. A second example analyzed at this portion of the 

ATP pipeline is bananamide from Pseudomonas fluorescens BW11P243. Detailed ATP 

analysis of the BGC, revealed detection of an AMR gene encoding a MatE efflux 

transporter, which in the devised training set, was routinely related to other known natural 

products known to cause membrane disruption. Despite exhibiting low GARLIC scores 

towards known NPs with annotated molecular targets, the emphasis placed towards the 

presence of AMR genes, allows for a high confidence prediction to be made inferring the 

likely mode of action of bananamide to be through membrane disruption.  

 Moving to the second exit point along the ATP pipeline, acts to eliminate those 

BGCs that did not possess resistance genes with high precision scores, or lacked detection 

of a known AMR gene. This point focuses more on the chemical features of the pNPs 

alone, or in the presence of noted multi-target resistance genes. Furthermore, this may 

allow for inferring, and identifying potential BGCs for previously known NPs that have 

yet to be connected to their associated BGC. In this sense, we have identified what we 

believe to be the BGC responsible for LL-19020, and LL-AO341. LL-19020 was initially 

characterized from S. lydicus subspecies tanzanius NRRL 18036, as an antibacterial 

agent, and is reported to be related to the family of elfamycin antibiotics46. This is further 

reflected in the detailed ATP analysis, demonstrating despite the absence of a resistance 

gene inferring the mode of action, a series of GARLIC scores with associated annotations 

towards elongation factor Tu, allows for a high confidence prediction to be made 

(Supplementary Table 2.18). This further correlates with what has long been appreciated 
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of elfamycin type antibiotics exerting their mode of action through targeting bacterial 

elongation factor Tu47.  

The second example involved the identification of the BGC for LL-AO341 from 

its known producer, S. candidus NRRL 314748. Detailed ATP analysis of the determined 

cluster revealed a target prediction to be made inferring the mode of action to involve 

targeting cardiolipin within the bacterial cell membrane (Supplementary Table 2.19). The 

prediction was made based on the chemical similarities between the pNP to the known 

NP telomycin, and associated molecular target annotations. Despite some structural 

differences in the final structure of LL-AO341, the similarities in the core backbone of 

each compound, allows for a target prediction through the pNP of the determined cluster. 

To further assert that a correct prediction was made, a crude extract of S. candidus NRRL 

3147 was tested against previously generated telomycin-resistant strains of 

Staphylococcus aureus5. In comparison to wild-type strains, the crude extract was less 

effective at causing inhibition towards telomycin-resistant strains (Supplementary Figure 

2.7). The mutation rendering the strains resistant to telomycin, had been previously 

mapped back to a series of inactivating mutations in the cardiolipin synthase gene of S. 

aureus5. This notion of cross-resistance between telomycin and LL-AO341 has been 

demonstrated in the past, as well as the suggested mode of action towards a component of 

the cytoplasmic membrane49. This similarity in observed activity suggests LL-AO341 is 

acting through the same mode of action as telomycin, through a direct interaction with 

cardiolipin within the bacterial membrane. Interestingly, further investigation into the 

BGC responsible for LL-AO341, suggests the presence of a gene encoding phospholipase 



M.Sc Thesis- Chelsea Walker 
McMaster University – Biochemistry and Biomedical Sciences 

 

48 
 

A2, that may serve as a self-protection enzyme. Cardiolipin has been found to serve as a 

substrate for phospholipase A2, and subsequently leads to the hydrolysis of cardiolipin50. 

Furthermore, telomycin has previously been demonstrated to possess valuable activity in 

vivo51. Thus, suggesting further studies involving telomycin and LL-AO341 could be of 

value in pursuing either as clinically relevant agents. Overall, these examples showcase 

the ability of the pipeline to de-replicate against pNPs that may exhibit cross resistance 

with known antibacterial agents. 

2.4.8 Directed Isolation and Testing of pNP Antibiotics 

 The end pNPs of the ATP pipeline hold the strongest potential to identify those 

with divergent modes of action, and further highlight the chemical diversity exhibited 

within the pNPs from a range of microbial producers. By plotting the diversity observed 

within all the pNPs that pass ATP (confidence scores below 0.5), and before removing 

duplicate pNPs (29,191 pNPs), can reveal those that may represent new chemical classes 

of natural products that have yet to be identified (Supplementary Fig. 2.7). As we see by 

the overlapping points, GARLIC identified several pNPs with high structural similarity. 

This supports the notion that several microbes can produce the same pNPs. This could 

also occur because of sequencing bias within the NCBI database. This diversity can be 

further analyzed by revealing the total number of pNPs identified by ATP in different 

bacterial species (Supplementary Figure 2.9A). As was similar in the siderophore global 

analysis, most identified pNPs by ATP were from Pseudomonas, Burkholideria, and 

Streptomyces species. To account for potential bias within the NCBI database towards 

clinically relevant pathogens, we also analyzed the number of pNPs identified by ATP 



M.Sc Thesis- Chelsea Walker 
McMaster University – Biochemistry and Biomedical Sciences 

 

49 
 

within a certain genus, in comparison to the total number of PRISM identified BGCs 

(Supplementary Figure 2.9B). This revealed a distinctly different bacterial profile than 

had previously been identified when looking at total pNPs identified by ATP only. 

Although, a degree of bias exists, as some of these organisms may only be represented by 

a few genomic sequences. Regardless, both analysis highlight the untapped potential of 

microbes to produce pNPs that meet the ATP criteria to infer potential pNPs that diverge 

mechanistically, and good candidates for further analysis.  

 The large set of pNPs remaining at the end of the ATP pipeline can be further 

segregated for analysis. As shown in Fig. 2.5, by removing duplicates for those pNPs with 

high structural similarity scores, we could condense the original pool of 29,165 pNPs to 

8231 pNPs.  By analyzing BGCs associated with these pNPs, we can assess those 

remaining for their presence or absence of a previously known AMR genes. Upon doing 

so, 26% of those remaining at the end had an associated resistance gene, leaving 74% 

with no previously known AMR gene. Also important to note, those BGCs remaining at 

the end of the devised pipeline, are not always guaranteed to be associated with 

antibacterial activity. As previously mentioned, it is well appreciated that these assembly 

line systems produce NPs other than those associated with antibacterial activity, such as 

antifungal compounds, or new classes of siderophore molecules. These pNPs are likely to 

be present within the end pool, including those without an associated resistance gene. 

Although the pNPs without an associated known resistance gene highlight those with a 

strong potential to produce a product with a new mode of action, there is also a potential 
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for that pNP to be associated to a non-bacterial target, which would not require an 

associated self-protection gene to be present.  

As several pNPs were identified for further analysis and to increase the likelihood 

of identifying a pNP with antibacterial activity, it was essential to add an additional layer 

to prioritize for further analysis. The results of the ATP pipeline, were combined with in-

house bioactivity screening data performed against P. aeruginosa PAO1, and methicillin-

resistant S. aureus USA 300.  Upon doing so, we sorted for strains with multiple pNPs 

from the ATP analysis, and those that exhibited Gram positive, Gram negative, or broad 

spectrum activity. Several strains were identified that possessed the necessary 

characteristics to act as a starting point to verify the ATP platform. To this end, we 

focused on four strains interest; Flexibacter sp. ATCC 35208, Aquimarina muelleri DSM 

19832, Lysobacter gummosus DSM 6980, and Aquimarina sp. DSM 19860 (Fig. 2.6). 

Overlapping with accumulated bioactivity data allows a first glance into the probability of 

the excreted metabolites within these organisms to produce natural products which may 

diverge mechanistically, which is an essential feature to identify the pNPs of the ATP 

pipeline with desriable antibacterial activity. Due to the impending threat of pathogens 

such as the ESKAPE pathogens, finding new sources of therapeutic agents that 

circumvent these screening strains is of utmost importance in defining the next iteration 

of antibiotics52. 

Further identifying the pNPs from ATP analysis in the microbial extracts requires 

bioinformatic tools to infer possible locations within complex microbial extracts. Using 

an in-house software program, Computational Library for Analysis of Mass Spectral Data 
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(CLAMS) (Internal Bioinformatic Tool from Dejong et al., McMaster University), we 

can readily decipher complex microbial extracts to reveal those respective peaks within 

the LC-MS/MS chromatogram that may be correlated to the pNP identified by the ATP 

pipeline. Using CLAMS, peaks within the chromatogram can be compared on a large 

scale, against in-house LC-MS/MS data to identify those peaks with low observed 

occurrences in other microbial extracts. The resulting analysis of Flexibacter sp. ATCC 

35208, A. muelleri DSM 19832, L. gummosus DSM 6980, and Aquimarina sp. DSM 

19860 can be seen in Supplementary Fig. 2.10-2.13 respectively. Although the 

relationship between unique peaks directly correlating to the pNPs is not concrete, it 

provides an opportunity to explore this concept, and assess the relationship between 

unique peaks of microbial extracts, and BGCs within organisms.  

Flexibacter sp. ATCC 35208 represents an interesting organism to further 

elucidate the pNPs identified from the ATP pipeline with observed Gram positive activity 

against methicillin-resistant S. aureus USA 300. As seen in Supplementary Fig. 2.10, 

there are several possible locations that could relate to the pNPs determined from the ATP 

pipeline. As depicted in Fig. 2.6, Flexibacter sp. ATCC 35208 contains two pNPs that 

possess the necessary predicted features to be NPs with divergent activity. The other 

pNPs present within Flexibacter sp. ATCC 35208, did not encode any with siderophore 

features, but did contain a pNP for a monobactam, SQ 28, 332, in which the BGC has 

recently been identified, and this is further supported by GARLIC 

analysis53,54.  Monobactams are of notable interest due to their modes of action, and 

desirable activities that have resulted in the development of therapeutic agents55. Findings 
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such as this, highlight the metabolic potential of Flexibacter sp., and suggest it may be 

able to produce other interesting NPs. By allowing the unique peaks identified to guide 

isolation efforts, candidate peaks have been narrowed down to five peaks (observed m/z 

614.273, m/z 574.238, m/z 988.434, m/z 963.403, and 1032.425), that we believe could 

be related to the pNPs of the ATP pipeline, and account for the exhibited antibacterial 

activity. NMR studies are currently underway to elucidate the structure of the natural 

product, and will be followed up with BGC analysis to confirm the relationship to one of 

the pNPs of the ATP pipeline. 
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Figure 2.6. ATP analysis reveals four organisms with pNPs that lack direct 

association to known resistance mechanisms, and exhibit divergent predicted 

chemistry. Analysis focuses on (A) Flexibacter sp. ATCC 35208, (B) Lysobacter 

gummosus DSM 6980, (C) Aquimarina muelleri DSM 19832, (D) Aquimarina sp. DSM 

19860. Represented genome circles depict number of predicted natural products from the 

genomic information which meet ATP requirements.  Red indicated NRPS gene clusters, 

blue indicates PKS gene clusters, green indicates tailoring enzymes. 

 

 

 



M.Sc Thesis- Chelsea Walker 
McMaster University – Biochemistry and Biomedical Sciences 

 

54 
 

2.5 Materials and Methods 

2.5.1 Generation of the Antibiotic Resistance Determinant Compendium 

To identify resistance determinants present within biosynthetic gene clusters, a 

comprehensive analysis was undertaken. This set of devised HMMs was developed in 

continuation of the previous set of hidden Markov models previously published within the 

PRISM platform5. The previous resistance determinant library of 257 hidden Markov 

models was further extended by 44 hidden Markov models associated with antimicrobial 

resistance. 166 hidden Markov models were obtained from the Resfams antibiotic 

resistance hidden Markov model database23. Antibiotic resistance sequences were 

manually collected based on homology to literature defined antimicrobial resistance 

sequences to generate alignments via MUSCLE56, and subsequently trimmed using 

trimA157. From resulting alignments, hidden Markov models were generated using 

hmmbuild program, version 3.1b1 via the HMMer3 software package58.  For each devised 

hidden Markov model bitscore cutoffs were determined via manual analysis of the search 

results acquired through the UniProtKB database59, using the HMMER web server58. The 

generated list of antimicrobial specific hidden Markov models is presented in 

Supplementary Table 2.1.  

 To provide a further expansion of the compendium of AMR genes, each 

developed hidden Markov model was manually annotated for the broader mechanism of 

the AMR gene (e.g. antibiotic modification, target modification), specific modification 

(e.g. glycosyl transferase, ABC Transporter), as well as mode of action of the antibiotic it 
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is associated to. The accumulation of this information, would provide the foundation for 

the generation of devised optimization approaches. 

2.5.2 Chemical Structures Used for Training and Testing Sets 

To first assert whether a compound is a siderophore, as well as identify those 

which may be previously characterised compounds, all chemical structures were required 

to be converted to a standardized format to allow for adequate comparison. To this end, 

GRAPE18, was employed to break down each chemical structure into individual monomer 

units. In respect to SIPE, 374 Simplified molecular-input line-entry system (SMILES) of 

siderophore compounds were curated based on extensive literature review. This was 

combined with 568 SMILES of non-siderophore compounds randomly selected from an 

in-house bacterial secondary metabolite database.  

        In respect to ATP, the GARLIC portion of the pipeline incorporates all microbial 

natural products compiled from extensive literature search and represented within an in-

house bacterial secondary metabolite database (53,401). Each present within the in-house 

database was analyzed by GRAPE. Each microbial natural product that is known to be 

associated with antibacterial activity is also correlated with a target if known. 

Siderophore, and anti fungals are represented by as their own respective target for 

simplicity in the generation of ATP. 

2.5.3 Biosynthetic Gene Clusters Used in Training and Test Sets 

The BGCs used for analysis in regards to both SIPE and ATP were accumulated 

through extensive literature review to reveal those BGC of known microbial compounds. 
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In respect to SIPE, 31 fully annotated siderophore BGCs were included. BGCs used in 

SIPE training and testing also included 456 non-siderophore BGCs. The BGCs curated 

for ATP analysis was accomplished in a similar manner and represented by 227 

antimicrobial, 31 siderophore, and 104 antifungal BGCs. The DNA sequence of each 

respective BGC was analyzed by PRISM version 2.1.2 to gather the predicted amino acid 

or polyketide monomers, associated tailoring genes, and access for the presence of 

resistance genes. The output of the PRISM analysis was used in the building and testing 

of both the SIPE and ATP models. 

2.5.4 Features 

We used 131 structural features from GRAPE to identify siderophore and non-

siderophore compounds and 822 genetic features from PRISM to identity siderophore and 

non-siderophore biosynthetic clusters. The full lists of features were previously described 

in references 5 and 16. 

2.5.5 Random Forests 

Random forests62 is an ensemble of classification trees which each tree is grown 

to its maximal depth using a bootstrap sample63 of the training data and at each node of 

the tree the best split is chosen from a random sample of variables instead of all feature 

variables. One example of decision tree is shown in Supplementary Figure 2.1. The 

aggregation of classification trees in an ensemble is done by majority vote and ties are 

handled by a random mechanism. In this study, we applied random forests with under 

sampling and oversampling of the majority class and minority class, respectively. To 
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construct a random forests ensemble, we grew 500 trees with tuning parameter using the 

R package randomForest. Default parameters in randomForest were used for other 

settings in this model. 

2.5.6 Siderophore Identification Prediction Engine (SIPE) 

Linear coefficients were optimized using the Broyden-Fletcher-Goldfarb-Shanno 

algorithm to minimize the following function: 

def F(x): 

 BGC_scores = X . Bi 

 error_idx = BGC_scores < 1.0 

 error = (1-BGC_scores)[error_idx] 

 return ||error|| + h*||Bi|| 

 

where X represents a 2D matrix comprised of multiple BGCs and their features, and Bi 

represents a vector containing a set of coefficients for each feature. This function returns 

a single value identifying the total error with the given set of coefficients. The parameter 

h (set to 0.5), is used to limit the total coefficients. An initial set of coefficients of 0 were 

used to initialize the optimization function. When applying this model, a linear 

combination of features multiplied by their trained weights is used to generate a score. 

2.5.7 Antimicrobial Target Predictor 

Using the devised set of biosynthetic gene clusters, and the AMR HMMs which 

hit within BGCs, the precision of the most frequently seen target is calculated as the 

relative frequency of that target for each occurrence of that AMR gene. The relative 

confidence represents the amount of data that supports the prediction, and is calculated by 

the target count of the most common target for that AMR gene divided by the highest 

such count among all AMR genes. All other targets for that gene are also stored. The 
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precision is the probability of correct target prediction (on the dataset itself), by choosing 

the most frequently seen target for the given AMR gene, and is given by equation (1). 

                                           𝑝𝐴 = 𝑃(𝐶|𝐴) =  
𝑚𝑎

𝑛𝑎
                                                           (1) 

Where 𝑝𝑎 is the precision, 𝐶 is the state of a correct prediction, 𝐴, represents an AMR 

gene, 𝑚𝑎 is the count for the most common target seen for the AMR gene 𝐴, and 𝑛𝑎 is the 

total number of times that AMR gene occurred in the data set.  

 Relative confidence is the normalized probability that of a given AMR gene being 

responsible for a correct prediction within the dataset given by equation (2). 

                                                        𝑐𝐴 =
𝑃(𝐶|𝐴)

𝑚𝑎𝑥𝐵∈𝐷𝑃(𝐵|𝐶)
                                                     (2) 

=
𝑃(𝐶|𝐴)∗𝑃(𝐴)

𝑚𝑎𝑥𝐵∈𝐷𝑃(𝐶|𝐵)∗𝑃(𝐵)
 

=
𝑚𝑎

𝑚𝑎𝑥𝐵∈𝐷𝑚𝐵
 

Where 𝐶 , 𝐴, 𝑚𝑎 are as above, and 𝐷 is the dataset of AMR genes. As some resistance 

genes can be associated with multiple targets, for prediction purposes, a single target 

resistance gene is a resistance gene with a determined precision above 0.7. Resistance 

genes with lower precisions are classified as multi-target resistance genes. 

Also, included in the prediction process is the information gathered from 

GARLIC, a software comparison for that biosynthetic gene cluster against all known 

fragments (GRAPE) of all known compounds in our database, and their associated target, 
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if any. To make an overall prediction for the target of a given cluster is given by equation 

(3). 

                                               𝑠𝑡=𝑎𝑡+𝑔𝑡
                                                               (3) 

Where 𝑠𝑡 is the overall target prediction, 𝑎𝑡 is the AMR-target based score, and 𝑔𝑡 is the 

chemical feature based equation.  

The AMR-based target score is defined by the following (4). 

𝑎𝑡                         

                                𝐴∈𝐿(𝑡)                       𝐴∈𝑀(𝑡)         𝐴∈𝑁(𝑡)                                  (4) 

Where 𝑡 is the target, 𝑝𝑎 is the precision for the AMR gene 𝐴, 𝑐𝐴 is the relative 

confidence for that gene, 𝐿(𝑡) is the set of AMR genes in the cluster that are single target 

and predict the target, 𝑀(𝑡) is the set of multi-target AMR genes in the cluster that have 

been associated with that target, and 𝑁(𝑡) is the set of single-target AMR genes for which 

the target has been seen, but is not the main predicted target.  

The chemical feature based equation is defined by the following equation (5). 

 

𝑔𝑡   

                             𝑠∈𝑃(𝑡)                                     𝑠∈𝑄(𝑡)                                                (5) 

Where 𝑡 is the target, 𝑃(𝑡) is the set of relative garlic scores that are annotated by that 

target among the top five annotated hits. The min and max functions are used so that the 

score is treated as one when it is above one and as zero when below zero.  

Finally, the predicted target is the target that has the highest score for that cluster, and the 

confidence score is given as the difference between the highest and second highest scores 

defined by (6). 

                                 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = ŝ − max {𝑠𝑡: 𝑠𝑡 ∈ 𝑆 \{ŝ}},                                     (6) 

Where 𝑆 is the set of all target scores for that cluster and 

                                                     ŝ = max{𝑠𝑡: 𝑠𝑡 ∈ 𝑆}                                                    (7) 
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2.5.8 Global Analysis of Predicted Siderophores and Other pNPs from ATP analysis 

65,423 microbial genomes, and 339 in-house genomes were obtained from the 

NCBI Genome database (downloaded March 2016)39, and processed through PRISM 

version 2.1.2.. pNPs with GARLIC scores ≥0.98, were grouped, and considered to be the 

same pNP based on structural similarity. Distances between siderophore pNPs, and other 

pNPs were generated via the Manhattan distance of biosynthetic features (all PRISM 

features excluding resistance genes). Of the pNPs revealed through the ATP pipeline, a 

pairwise similarity matrix was generated per the relative score identified by GARLIC. A 

2D projection of these relationships was then generated using t-SNE as implemented 

within Scikit-learn using the Barnes-Hut approximation63. 

2.5.9 General Chemical Procedures 

High-resolution MS spectra were collected on AB Sciex 5600+ TripleToF mass 

spectrometer (AB Sciex LLC, USA), equipped with an electrospray ionization source 

(ESI), coupled to a Shimadzu Nexera XR HPLC system using a Luna C18 column 

(50mm x 3.0mm, Phenomenex), running acetonitrile with 0.1% formic acid, and ddH2O 

with 0.1% formic acid as the mobile phase for analytical separations. 

2.5.10 Microbial Strains 

A. citrulli DSM 17060, V. paradoxus DSM 30034, N. potens DSM 45234, A. 

muelleri DSM 19832, Lysobacter gummosus DSM 6980, and Aquimarina sp. DSM 19860 

were obtained from the German Resource Centre for Biological Material (DSMZ). 

Flexibacter sp. ATCC 35208 was purchased from the American Type Culture Collection 

(ATCC). S. candidus NRRL 3147 was purchased from the Agricultural Research Service 
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Culture Collection (NRRL). A. citrulli and V. paradoxus were maintained on Acidovorax 

Complex Media56. N. potens, and S. candidus were maintained on Bennett’s media. A. 

muelleri DSM 19832 and Aquimarina sp. DSM 19860 were maintained on Bacto Marine 

Agar. L. gummosus and Flexibacter sp. were maintained on Nutrient agar. All strains 

were grown at 30℃. The following strains were used in susceptibility assays. P. 

aeruginosa PAO1 was maintained on Tryptic Soy agar at 37°C. S. aureus Newmann, and 

S. aureus USA 300 were maintained on Tryptic Soy agar at 37°C. 

2.5.11 Production of Natural Products 

The following was performed to isolate the predicted siderophore natural 

products. Fresh colonies of DSM 17060 and DSM 30034 were inoculated 50 mL of 

acidovorax complete media and grown for 72 hr at 30°C. Single colonies of DSM 45234 

were initially inoculated into 50 mL of KE media, followed by Bennett’s media for 72 hr 

at 30°C. After fermentation, cultures were centrifuged at 7000 rpm, supernatant was 

extracted by Diaion HP-20 (2%) for 2hr. Methanol eluent of the HP-20 resin was 

prepared for LC/MS analysis. Cultures were spun down at 8000xg for 20 minutes at 4 °C. 

The supernatant was extracted with 2% absorbent HP-20 resin (Diaion). Following a 2 hr 

incubation, resin was eluted to with excess methanol, and evaporated to dryness. The 

dried fraction was re-suspended in water, and followed by a liquid-liquid partition with 

butanol. The organic fraction was kept, and evaporated to dryness.  

A fresh colony of S. candidus NRRL 3147 was used to inoculate 50mL of KE 

media, and grown for 72 hr at 28°C at 200 RPM. A 1% inoculation was made into LL-

A0341 seed media48, and grown for 72 hr at 28°C and 200 RPM. Fresh colonies of A. 



M.Sc Thesis- Chelsea Walker 
McMaster University – Biochemistry and Biomedical Sciences 

 

62 
 

muelleri and Aquimarina sp. were used to inoculate 50mL cultures of Bacto Marine 

media, and grown for 48 hr at 28°C and 200 RPM. Following growth, a 1% inoculation 

was made into either 50mL or 1L of the same media, followed by growth at 28°C for 120 

hr and 200 rpm. A fresh colony of L. gummosus was used to inoculate 50mL of Tryptic 

Soy broth and grown at 28°C for 48 hr and 200 rpm. Following growth, a 1% inoculation 

was made into 50mL of 1L of the same media, and grown for 120 hr at 28°C and 200 

rpm. A fresh colony of Flexibacter sp. was used to inoculate 50mL of Nutrient broth and 

grown for 72 hr at 28°C and 200 rpm. A 2% inoculation was made into either 50mL of 1L 

of SJ media and grown for 72 hr at 28°C and 200 rpm. All above cultures were harvested 

by centrifugation for 20 minutes at 8000 rpm, and 4°C. The supernatant was then 

extracted with 2% absorbent HP-20 resin (Diaion). Following a 2 hr incubation, resins 

were eluted with excess methanol and evaporated to dryness. A. muelleri, Aquimarina sp. 

And L. gummosus were then subjected to liquid-liquid partition with butanol, and keeping 

the organic fraction, and evaporating to dryness. Production of possible pNPs were 

analyzed via activity profiling, and LC/MS analysis. 

The collected extract from Flexibacter sp. was dissolved in methanol, and 

prepared for semi-preparative scale LC-MS. Fractions containing determined unique 

peaks, and activity were kept. Semi-preparative chromatography was performed using a 

Luna 5µm C18 column (Phenomenex, 250 x 10mm) with water (0.1% formic acid) and 

acetonitrile (0.1% formic acid) as the mobile phase, at a flow rate of 4mL/min. After 3 

minutes, acetonitrile was increased in a linear manner (curve 5) from 5% to 30% at 7 

minutes, then maintained until 10 minutes, then increased to 60% at 15 minutes, followed 
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by a wash off 100% acetonitrile. pNPs of interest eluted at 10-11 minutes. This was 

followed up with a second round of semi-preparative chromatography. After 3 minutes, 

acetonitrile was increased in a linear manner (curve 5) from 5% to 15% by 25 minutes 

followed by a wash with 100% acetonitrile. pNPs of interested eluted between 15.5-16.5 

minutes.  

2.5.12 Determination of Antibacterial Activity 

Crude microbial activity of collected fractions from each strain in the ATP 

analysis were determined using bioactivity testing in cation-adjusted Mueller Hinton 

broth. P. aeruginosa PAO1 and S. aureus USA 300 were cultured at 37 °C overnight, 

followed by 1:50 dilution into fresh media and grown until an O.D. of 0.6 was reached. 

Once reached, strains were further diluted to 10-3 before being used in activity assays. S. 

aureus Newmann was treated in the same manner for their respective assays. Crude 

extracts collected were tested at a final concentration of 200µg/mL and 400µg/mL after 

incubation for 16 hr and 37°C. Absorbance readings to determine percent inhibition were 

measured at 600nm.   

2.5.13 Genome Sequencing and Analysis  

Gram positive strains within the in-house library of strains were extracted by 

inoculating a single colony into 50mL of appropriate media, and grown for generally 72 

hr at 28°C. Incubation times may be altered depending on strain. 500-1000µL of culture 

was centrifuged at 12xg for 5 minutes and suspended in 500µL SET buffer (75 mM NaCl, 

25 mM EDTA pH 8.0, 20 mM Tris HCl pH 7.5, 2 mg/mL lysozyme), and incubated for 2 

hr at 37°C. Following incubation, a final concentration of 0.5mg/mL Proteinase K and 
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1% SDS were added. Mixture was incubated at 55°C for 2 hr, following adjustment of 

NaCl to 1.25M. This was followed by extracting twice with phenol-chloroform. Genomic 

DNA was precipitated by the addition of isopropanol, and washed twice with ethanol. 

DNA was suspended in sterile water before being sent for sequencing. Gram negative 

organisms were inoculated into 50mL of appropriate media, and generally incubated at 

28°C, unless strain calls for otherwise. Genomic DNA was isolated per the protocol from 

GenElute Genomic DNA Extraction kit (Sigma Alrich). Library preparation and Illumina 

sequencing was performed at the Farncombe Metagenomics Facility at McMaster 

University, by an Illumina HiSeq DNA sequencer. Genomes are assembled by 3 assembly 

software systems (Velvet, IDBA, SPAdes), and then followed by SPPACE to scaffold 

assembled contigs64-66. The best assembly is selected using summary statistics reported by 

QUAST quality assessment reports67.  

2.6 Conclusion 

In this work, we have created a methodology to engage the genomic capacity of 

microbes using a method that is data-driven and represents a departure in how microbes 

have historically been interrogated for antibiotic molecules. From identified BGCs, ATP 

can define and classify pNPs as probable antibacterials or other chemotypes such as 

siderophores. SIPE, represents a linear regression model for the classification of pNPs as 

siderophore chemotypes with a high degree of accuracy. Furthermore, ATP employs a 

custom optimization based approach developed from a compendium of AMR genes, and 

structural elements of previously characterized natural products to identify those pNPs 

which diverge in both respects. The accuracy of the developed method aims to ensure 
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laborious efforts involving genome mining are not centered upon predicted chemotypes 

associated with siderophores, but rather those with a high probability of producing 

antibacterial agents. The wealth of genomic information, and transition towards 

computational based approaches has significantly revived efforts in respect to defining 

new methods of natural product discovery that move away from the traditional discovery 

methods of the golden era. Despite efforts involving genome mining inferring pNPs, 

identifying those with a strong potential to be clinically relevant as antibacterial agents 

remained untouched prior to development of ATP. By providing a resource to classify 

possible bioactivity of pNPs based on similarities to other natural products, and resistance 

genes, allows focus and efforts to be directed towards isolation of pNPs with diverse 

bioactivities. It is hoped that the devised method will act as a resource to diminish the 

impact of the associated challenges of the traditional era of discovery, and result in 

positive contributions to meet the demand for new antibacterials to circumvent current 

antibiotic resistance mechanisms. 
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2.7 Supplementary Tables 

Supplementary Table 2.1 Curated hidden Markov Models used by PRISM to detect 

antibiotic resistance genes within BGCs 

Resistance 

Legend 

Antibiotic Gene Gene 

Function 

HMM L Cut off 

AMR 1 Bacitracin bcrB,bcrA ABC 

Transporters 

bacitracin_

ABC_transp

orters.hmm 

150 

AMR 2 Bacitracin bacA, bcrC Phosphatase bacitracin-

phosphatase

s.hmm 

230 

AMR 3 Mersacidin mrsG, mrsE ABC 

Transporters 

mersacidin-

ABC_transp

orter.hmm 

310 

AMR 4 nukacinISK-

1 

NukE, 

NukH 

ABC 

Transporters 

nukacinISK-

1-

ABC_Trans

porter.hmm 

360 

AMR 5 Subtillin SpaI Immunity 

Protein 

subtillin-

immunity_p

rotein 

250 

AMR 6 Subtillin spaE, spaG ABC 

transporters 

SubtilinAB

CTransporte

rs.hmm 

170 

AMR 7 Fruilimycin expA ABC 

transporters 

fruilimycin-

ABC_transp

orter.hmm 

400 

AMR 8 Cinnamycin cinT, cinH ABC 

Transporters 

cinnamycin-

ABC_transp

orters.hmm 

350 

AMR 9 A500359 orf21 Phosphotran

sferase 

A500359_p

hosphotrans

ferase.hmm 

300 
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AMR 10 Caprazamyc

in 

cpz22 ABC 

Transporters 

caprazamyci

n-

ABC_transp

orter.hmm 

720 

AMR 11 Caprazamyc

in 

cpz12, 

cpz27 

Acyl 

Transferase 

caprazamyci

n-

acetyl_trans

ferase.hmm 

110 

AMR 12 A54145 IptM, IptN ABC 

Transporters 

A54145_AB

C_transport

er.hmm 

300 

AMR 13 Daptomycin DptM, 

DptN, DptP 

ABC 

Transporters 

daptomycin-

ABC_transp

orter.hmm 

270 

AMR 14 Daptomycin mprF Target 

Modificatio

n 

daptomycin-

Phosphatidy

lglycerol_ly

syltransferas

e.hmm 

630 

AMR 15 calcium-

dependent 

antibiotic  

hasP Phosphotran

sferase 

CDA_phosp

hotransferas

e.hmm 

600 

AMR 16 Cytolysin cylI Immunity 

Protein 

cytolysin-

immunitypr

otein.hmm 

190 

AMR 17 Epidermin epiG, epiG ABC 

Transporters 

epidermin_

ABC_transp

orters.hmm 

255 

AMR 18 Epidermin epiH Membrane 

Protein 

epidermin_

membrane_

protein.hm

m 

300 

AMR 19 Nisin NisE, nisG ABC 

Transporters 

nisin-

ABCtranspo

rter.hmm 

260 
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AMR 20 Nisin nisI Immunity 

Protein 

Nisin 

Immunity 

Protein 

390 

AMR 21 Pep5 pepI Immunity 

Protein 

pep5-

immunity_p

rotein.hmm 

145 

AMR 22 Polymyxin pmxD, 

pmxC 

ABC 

Transporters 

polymyxin-

ABC_transp

orters.hmm 

815 

AMR 23 Beta Lactam BCII Class B 

metallo beta 

lactamase 

Class_B_me

tallo_betalac

tamases.hm

m 

115 

AMR 24 Cephamycin pbp1, pbp1a penicillin 

binding 

protein 

isoform 

penicillian_

binding_pro

tein-

isoform.hm

m 

410 

AMR 25 Cephamycin pbp1a penicillin 

binding 

protein 

cephamycin

-PBP.hmm 

770 

AMR 26 Beta Lactam Beta_Lacta

m1 

Beta 

Lactamase 

II 

outfile66.h

mm 

240 

AMR 27 Beta Lactam Beta_Lacta

m2 

Beta 

Lactamase 

outfile07.h

mm 

240 

AMR 28 Beta Lactam Beta_Lacta

m3 

Beta 

lactamase II  

outfile03.h

mm 

200 

AMR 29 Beta Lactam BJP Beta 

lactamase 

subclass B3 

metallo- 

beta 

lactamase 

outfile67.h

mm 

179 
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AMR 30 Beta Lactam BlaB Beta 

Lactamase 

B 

outfile68.h

mm 

231 

AMR 31 Beta Lactam blaI Gene 

modulating 

beta lactam 

resistance, 

regulates 

BlaZ 

outfile69.h

mm 

270 

AMR 32 Beta Lactam blaR1 Gene 

modulating 

beta lactam 

resistance, 

regulates 

BlaZ 

outfile70.h

mm 

1300 

AMR 33 Beta Lactam CARB-PSE Beta 

lactamase 

class A 

outfile71.h

mm 

320 

AMR 34 Cephalospor

in 

cblA Beta 

Lactamase 

outfile72.h

mm 

280 

AMR 35 Cephalospor

in 

CepA Beta 

Lactamase 

outfile73.h

mm 

290 

AMR 36 Cephalospor

in 

cfxA Beta 

Lactamase 

outfile75.h

mm 

216 

AMR 37 Beta Lactam ClassA Class A beta 

lactamase 

outfile79.h

mm 

415 

AMR 38 Beta Lactam ClassB Class B beta 

lactamase 

outfile80.h

mm 

275 

AMR 39 Beta Lactam AmpC Class C 

Beta 

lactamase 

outfile81.h

mm 

430 

AMR 40 Beta Lactam Class D Class D beta 

lactamase 

outfile82.h

mm 

220 
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AMR 41 Beta Lactam CMY_LAT

_MOX_AC

T_MIR_FO

X 

Class C 

Beta 

lactamase 

outfile83.h

mm 

535 

AMR 42 Beta Lactam ctxM Class A 

Beta 

lactamase 

outfile84.h

mm 

550 

AMR 43 Beta Lactam DHA Class C 

Beta 

Lactamase 

outfile85.h

mm 

485 

AMR 44 Beta Lactam DIM_GIM_

SIM 

B1 metallo- 

beta-

lactamases 

outfile86.h

mm 

300 

AMR 45 Beta Lactam Exo Class A beta 

lactamase 

outfile94.h

mm 

240 

AMR 46 Beta Lactam GES Class A beta 

lactamase 

outfile96.h

mm 

250 

AMR 47 Beta Lactam GOB Subclass B3 

metallo-beta 

lactamases 

outfile97.h

mm 

288 

AMR 48 Beta Lactam IMP Plasmid 

mediated 

IMP-type 

carbapenem

ases 

(subclass B1 

(metallo-) 

beta-

lactamase) 

outfile98.h

mm 

343 

AMR 49 Beta Lactam IND IND beta-

lactamases 

(subclass B1 

(metallo-) 

beta-

lactamase) 

outfile99.h

mm 

242 
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AMR 50 Beta Lactam KHM KHM beta-

lactamases 

(subclass B1 

(metallo-) 

beta-

lactamase) 

outfile100.h

mm 

340 

AMR 51 Beta Lactam KPC Klebsiella 

pneumoniae 

carbapenem 

resistant 

(KPC) beta-

lactamases 

(class a) 

outfile101.h

mm 

371 

AMR 52 Beta Lactam L1 L1 beta-

lactamase 

(subclass B3 

(metallo-) 

beta-

lactamase) 

outfile102.h

mm 

585 

AMR 53 Beta Lactam Lactamase 

B 

Beta-

lactamase 

superfamily 

domain 

outfile43.h

mm 

240 

AMR 54 Beta Lactam LRA LRA beta-

lactamase 

(subclass B3 

(metallo-) 

beta-

lactamase) 

outfile103.h

mm 

270 

AMR 55 Beta Lactam mecR1 mecR1: 

gene 

modulating 

beta-lactam 

resistance 

outfile108.h

mm 

600 

AMR 56 Beta Lactam moxA MoxA beta-

lactamase 

(class a) 

outfile116.h

mm 

220 
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AMR 57 Beta Lactam PC1 PC1: blaZ 

beta-

lactamase 

(class a) 

outfile121.h

mm 

250 

AMR 58 Beta Lactam NDM_ccrA NDM-

CcrA", "A 

grouping of 

related 

NDM and 

CcrA beta-

lactamases 

outfile119.h

mm 

256 

AMR 59 Beta Lactam sfh sfh beta-

lactamases 

(subclass B2 

(metallo-) 

beta-

lactamase) 

outfile128.h

mm 

520 

AMR 60 Beta Lactam SHV_LEN A grouping 

of the 

related SHV 

and LEN 

beta-

lactamases 

(class a) 

outfile129.h

mm 

435 

AMR 61 Beta Lactam SME SME beta-

lactamase 

(class a) 

outfile130.h

mm 

490 

AMR 62 Beta Lactam SPM Sao Paulo 

metallo-

beta-

lactamase 

(SPM-1) 

(subclass B1 

(metallo-) 

beta-

lactamase) 

outfile131.h

mm 

120 



M.Sc Thesis- Chelsea Walker 
McMaster University – Biochemistry and Biomedical Sciences 

 

73 
 

AMR 63 Beta Lactam SubclassB1 Subclass B1 

(metallo-) 

beta-

lactamase 

outfile133.h

mm 

215 

AMR 64 Beta Lactam SubclassB2 Subclass B2 

(metallo-) 

beta-

lactamase 

outfile134.h

mm 

440 

AMR 65 Beta Lactam Subclass B3 Subclass B3 

(metallo-) 

beta-

lactamase 

hydrolize 

penicillins 

outfile135.h

mm 

315 

AMR 66 Beta Lactam TEM TEM beta-

lactamase 

(class a) 

outfile136.h

mm 

437 

AMR 67 Beta Lactam Transpeptid

ase 

Penicillin 

binding 

protein 

transpeptida

se domain", 

"Target 

Redundancy

/Overexpres

sion 

outfile05.h

mm 

390 

AMR 68 Beta Lactam VEB_PER VEB and 

PER beta-

lactamases 

(class a) 

outfile161.h

mm 

290 

AMR 69 Beta Lactam VIM Verone 

integron-

encoded 

(VIM) 

metallo-

beta-

lactamase 

outfile162.h

mm 

183 
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(subclass B1 

(metallo-) 

beta-

lactamase) 

AMR 70 A40926, 

balhimycin 

VanY, 

VanyB,  

D-Ala-D-

Ala 

Carboxypep

tidases 

carboxypept

idases.hmm 

200 

AMR 71 Vancomycin VanE, 

VanG, 

VanSc 

D-Ala-D-

Serine 

ligase 

vancomycin

-d-ala-d-

serine_ligas

es.hmm 

405 

AMR 72 Balhimycin, 

A47934, 

vancomycin 

VanA, 

VanXST, 

VanX 

D-Ala-D-

Ala 

Dipeptidase

s 

dipeptidases

.hmm 

200 

AMR 73 Teicoplanin, 

Vancomycin 

VanH D-lactate 

dehydrogen

ase 

d-

lactate_dehy

drogenases.

hmm 

540 

AMR 74 Teicoplanin, 

Vancomycin 

Van A D-Ala-D-

lactate 

Ligase 

glycopeptid

es-D-ala-D-

ala_Ligases.

hmm 

630 

AMR 75 Vancomycin Ligase_1 D-Ala-D-

Ala-Ligase 

C 

outfile22.h

mm 

100 

AMR 76 Vancomycin Ligase_2 D-Ala-D-

ala-Ligase 

N 

outfile23.h

mm 

100 

AMR 77 Vancomycin DalaDala D-alanine--

D-alanine 

ligase 

outfile21.h

mm 

245.65 

AMR 78 Vancomycin VanA VanA: D-

Ala-D-Ala 

outfile149.h

mm 

800 
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75 
 

ligase that 

can 

synthesize 

D-Ala-D-

Lac 

AMR 79 Vancomycin VanB VanB: D-

Ala-D-Ala 

ligase that 

can 

synthesize 

D-Ala-D-

Lac 

outfile150.h

mm 

800 

AMR 80 Vancomycin VanC anC: D-Ala-

D-Ala ligase 

that can 

synthesize 

D-Ala-D-

Ser 

outfile151.h

mm 

700 

AMR 81 Vancomycin VanD VanD: D-

Ala-D-Ala 

ligase that 

can 

synthesize 

D-Ala-D-

Lac 

outfile152.h

mm 

680 

AMR 82 Vancomycin VanH VanH: D-

specific 

alpha-

ketoacid 

dehydrogen

ase that 

synthesizes 

D-lactate 

outfile153.h

mm 

575 

AMR 83 Vancomycin vanR VanR: 

transcription

al activator 

regulating 

VanA, 

outfile154.h

mm 

271 
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VanH and 

VanX 

AMR 84 Vancomycin vanS VanS: 

trasncription

al regulator 

of van 

glycopeptid

e resistance 

genes 

outfile155.h

mm 

230 

AMR 85 Vancomycin vanT VanT: 

membrane 

bound 

serine 

racemase, 

converting 

L-serine to 

D-serine 

outfile156.h

mm 

650 

AMR 86 Vancomycin vanW VanW: 

glycopeptid

e resistance 

gene 

outfile157.h

mm 

460 

AMR 87 Vancomycin vanX VanX: 

glycopeptid

e resistance 

gene 

outfile158.h

mm 

270 

AMR 88 Vancomycin VanY,  VanY: 

glycopeptid

e resistance 

gene", 

"Gylcopepti

de 

Resistance 

outfile159.h

mm 

130 

AMR 89 Vancomycin vanZ VanZ: 

glycopeptid

e resistance 

gene 

outfile160.h

mm 

330 
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AMR 90 fosfomycin FomA Phosphotran

sferase 

fosfomycin-

fomA-

Phosphotran

sferase.hmm 

240 

AMR 91 fosfomycin FosB Phosphotran

sferase 

fosfomycin-

fomB-

phosphotran

sferase.hmm 

450 

AMR 92 Dapadiamid

es 

DdaI Transmembr

ane Pump 

dapadiamide

s-

transmembr

ane_protein.

hmm 

500 

AMR 93 Fosmidomy

cin 

fsr MSF 

Transporter 

Fosmidomy

cin-

MFS.hmm 

556 

AMR 94 FR 90098 dxrB DOXP 

Isoform 

FR90098-

DOXP_redu

ctoisomeras

es.hmm 

750 

AMR 95 Platencin, 

plantensimy

cin 

PtmP3, 

PtnP3, FabF 

beta-

ketoacyl-

acyl-carrier-

protein 

synthase II 

Isoform 

beta-

ketoacyl-

acyl-carrier-

protein_synt

hase_II_Isof

orms.hmm 

800 

AMR 96 Andrimid admT Acyl CoA 

Carboxylase 

Isoform 

AdmT-acyl 

CoA 

carboxylase 

isoform.hm

m 

700 

AMR 97 Pantocin A paaC Transmembr

ane 

Transporter 

pantocinA-

Transmembr

ane_transpo

rter.hmm 

335 
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AMR 98 Mupirocin mupA isoleucyl-

tRNA 

synthetase 

isoform 

mupirocin-

isoleucyl-

tRNA_synth

etase_isofor

m.hmm 

625 

AMR 99 Chuangxmy

cin, 

Indolmycin 

TrpRS1, 

sgr3809 

Tryptophan-

tRNA 

synthetase 

isoform 

tryptophanyl

_tRNA_synt

htase_isofor

ms.hmm 

720 

AMR 100 Borrelidin THR threonyl-

tRNA 

synthetase 

borreldin-

threonyl 

tRNA 

synthetase 

1415 

AMR 101 Albomycin ambK seryl-tRNA 

synthetase 

albomycin_s

eryltRNAsy

nthetase.hm

m 

800 

AMR 102 Phosphothri

cin 

rimL phosphothri

cin-N-

acetyltransfe

rase 

phosphothri

cin-

acetyltransfe

rase.hmm 

310 

AMR 103 Chlorohthric

in 

chlG MFS 

Transporter 

chlorothrici

n-

MFS.hmm 

500 

AMR 106 Microcin C7 mccE Immunity 

Protein 

microcin_C

7-

Acyl_transf

erase.hmm 

895 

AMR 109 Factumycin FacT MFS 

Transporter 

factumycin-

ABC_transp

orter.hmm 

900 

AMR 110 GE2270A, 

kirromycin 

tuf, tufB1 Ef-Tu 

Isoform 

kirromycin-

Ef_Tu_isofo

rms.hmm 

840 



M.Sc Thesis- Chelsea Walker 
McMaster University – Biochemistry and Biomedical Sciences 

 

79 
 

AMR 111 Pikromycin, 

Thiostrepton

, 

Clindamyci

n, 

erythryomyc

in , 

Gentamicin, 

hygromycin, 

kanamycin 

PikR1, 

PikR2, 

TsnR, 

LmrB, erm, 

ermE, gtmJ, 

hyg6, kmr 

rRNA 

methyltransf

erase 

rRNA_meth

yltransferase

sI20150513-

211754-

0720-

8042522-

pg.hmm 

210 

AMR 112 Clindamyci

n 

LmrA, 

LmrC 

ABC 

Transporters 

clindamycin

-

ABC_transp

orters.hmm 

810 

AMR 113 Althiomycin almE MSF 

Transporter 

althiomycin-

MFS_transp

orter.hmm 

300 

AMR 114 fortimycin ForP Phosphotran

sferase 

fortimycin-

phosphotran

sferase.hmm 

400 

AMR 115 puromycin pac Acetyl 

Transferase 

puromycin-

acetyltransfe

rase.hmm 

220 

AMR 116 puromycin pur8 MFS 

Transporter 

39, 40 196 

AMR 117 fusidic acid fusB Detoxificati

on protein 

fusB_fusard

ic_acid_resi

stance.hmm 

400 

AMR 118 Chloramphe

nicol 

mdtL, cml-e MSF 

Transporter 

chloramphe

nicol_MFS_

transporters.

hmm 

440 

AMR 119 Chloramphe

nicol 

Cata10, 

cata12, 

cata2 

Acetyl 

Transferase 

chloramphe

nicol_acetyl

transferases.

hmm 

180 
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AMR 120 Chloramphe

nicol 

Cat Acetyl 

Transferase 

outfile16.h

mm 

80 

AMR 121 Chloramphe

nicol 

CAT Acetyl 

Transferase 

outfile75.h

mm 

216 

AMR 122 Chloramphe

nicol 

CAT Acetyl 

Transferase 

outfile76.h

mm 

75 

AMR 123 Chloramphe

nicol 

C_MSF Efflux 

Pump 

outfile77.h

mm 

250 

AMR 124 Chloramphe

nicol 

CPT Phosphotran

sferase 

outfile78.h

mm 

250 

AMR 125 Chloramphe

nicol 

CPT Phosphotran

sferase 

outfile14.h

mm 

80 

AMR 126 Gentamicin gtmJ Phosphotran

sferase 

gentamicin-

phosphotran

sferase.hmm 

275 

AMR 127 Hygromycin 

A 

hyg28 ABC 

Transporters 

hygromycin

-

ABC_transp

orter.hmm 

1000 

AMR 128 Hygromycin 

A 

hyg19 MFS 

Transporter 

hygromycin

-MFS.hmm 

300 

AMR 129 Hygromycin 

B 

Hyg, hyg21 Phopshotran

sferase 

hygromycin

-

phosphotran

sferase.hmm 

700 

AMR 130 Florfenicol florR MSF 

Transporter 

florfenicol-

MFS.hmm 

775 

AMR 131 Istamycin istP Phosphotran

sferase 

istamycin-

phosphotran

sferase.hmm 

200 

AMR 132 Kanamycin KanM Acetyl 

Transferase 

kanamycin-

acetyltransfe

rase.hmm 

225 
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AMR 133 Neomycin AAC8 Acetyl 

Transferase 

neomycin-

acetyltransfe

rase.hmm 

480 

AMR 134 Neomycin Neo Phosphotran

sferase 

neomycin-

phosphotran

sferase.hmm 

230 

AMR 135 Paromycin PPH Phosphotran

sferase 

paromycin-

phosphotran

sferase.hmm 

220 

AMR 136 Paromycin AAC7 Acetyl 

Transferase 

paromycin-

acetyltrasnfe

rase.hmm 

400 

AMR 137 Erythromyci

n 

ereA, ereB, 

depI 

Esterase esterases.hm

m 

113 

AMR 138 Avilamycin aviABC1, 

AviBC2 

ABC 

Transporters 

availamycin

-

ABCtranspo

rter.hmm 

500 

AMR 139 Tylosin tlrC ABC 

Transporters 

TylosinABC

Transporters

.hmm 

470 

AMR 140 Streptomyci

n 

str Acyl 

Transferase 

streptomyci

n-

acetyltransfe

rase.hmm 

400 

AMR 141 streptomycn strA Phosphotran

sferase 

Streptomyci

nPhosphotra

nsferases.h

mm 

300 

AMR 142 Streptogram

in 

vgaA ABC 

Transporters 

streptogrami

n0ABC_tran

sporter.hmm 

760 
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AMR 143 Spiramycin smrB ABC 

Transporters 

spiramycin-

ABC_transp

orter.hmm 

650 

AMR 144 Spectinomy

cin 

spcN Phosphotran

sferase 

spectinomyc

in-

phosphotran

sferase.hmm 

400 

AMR 145 Lincomycin  lnuA, lnuB Nucleotidylt

ransferase 

lincoasmide

-

nucelotidyltr

ansferases.h

mm 

100 

AMR 146 Macrolides mphA Phosphotran

sferase 

macrolide-

phosphotran

sferases.hm

m 

285 

AMR 147 tetracycline Tet37 resistance 

protein  

tetracycline-

resistance_p

rotein.hmm 

700 

AMR 148 Tetracycline

s 

TetO, TetW, 

otrA 

Ribosomal 

Protection 

protein 

tetracycline-

ribosomal_p

rotection_pr

oteins.hmm 

790 

AMR 149 Tetracycline TetX Oxidoreduct

ase 

tetracycline-

oxidoreduct

ase.hmm 

400 

AMR 150 Tetracycline TetH, tcr3, 

TetA, otrB 

MSF tetracycline-

MFS.hmm 

429 

AMR 151 Tetracycline TetA tetA: 

tetracycline 

resistance 

MFS efflux 

pump 

outfile139.h

mm 

447 

AMR 152 Tetracycline TetA_B tetA(B): 

tetracycline 

outfile137.h

mm 

520 
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resistance 

MFS efflux 

pump 

AMR 153 Tetracycline TetA_G TetA-G", 

"tetA(G): 

tetracycline 

resistance 

MFS efflux 

pump 

outfile138.h

mm 

550 

AMR 154 Tetracycline TetD tetD: 

tetracycline 

resistance 

MFS efflux 

pump 

outfile140.h

mm 

550 

AMR 155 Tetracycline TetH_TetJ tetH and 

TetJ: 

tetracycline 

resistance 

MFS efflux 

pumps 

outfile142.h

mm 

490 

AMR 156 Tetracycline TetM_TetW

_TetO_TetS 

TetM-

TetW-TetO-

TetS", 

"tetM, tetW, 

tetO, and 

tetS: 

tetracycline 

resistance 

ribosomal 

protection 

protein 

outfile143.h

mm 

700 

AMR 157 Tetracycline MFS_Tet Tetracycline

_Resistance

_MFS_Efflu

x_Pump", 

"tetracycline 

resistance 

outfile144.h

mm 

186 
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MFS efflux 

pump 

AMR 158 Tetracycline Tet_Resista

nce1 

tetracycline 

resistance 

ribosomal 

protection 

protein 

outfile145.h

mm 

940 

AMR 159 Tetracycline TetX tetX: 

tetracycline 

inactivation 

enzyme 

outfile146.h

mm 

750 

AMR 160 Tetracycline TetY tetY: 

tetracycline 

resistance 

MFS efflux 

pump 

outfile147.h

mm 

542 

AMR 161 Tetracycline Tex_N Tex-like 

protein N-

terminal 

domain 

outfile32.h

mm 

157 

AMR 162 Tetracycline TetE TetE", 

"tetE: 

tetracycline 

resistance 

MFS efflux 

pump 

outfile141.h

mm 

480 

AMR 163 Macrolides ermD, 

ermE, ermF 

rRNA 

adenine N-

6methyltran

sferase 

macrolides-

rRNA_adeni

ne_dimethyl

ases 

275 

AMR 164 Pristamycin ptr Membrane 

Protein 

pristamycin-

MFS.hmm 

740 

AMR 165 Macrolides Macro_glyc

osyl 

macrolide 

glycosyltran

sferase: 

macrolide 

outfile106.h

mm 

685 
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inactivation 

enzyme 

AMR 166 Aminoglyco

sides 

ACC3 Aminoglyco

side 

Acetyltransf

erase 

(AAC3) 

outfile46.h

mm 

300 

AMR 167 Aminoglyco

sides 

ACC3-I Aminoglyco

side 

Acetyltransf

erase 

(AAC3-I) 

outfile47.h

mm 

150 

AMR 168 Aminoglyco

sides 

ACC6-I Aminoglyco

side 

Acetyltransf

erase 

(AAC6-I) 

outfile49.h

mm 

300 

AMR 169 Aminoglyco

sides 

ACC6-Ib Aminoglyco

side 

Acetyltransf

erase 

(AAC6-Ib) 

outfile48.h

mm 

400 

AMR 170 Aminoglyco

sides 

ACC6-II Aminoglyco

side 

Acetyltransf

erase 

(AAC6-II) 

outfile50.h

mm 

350 

AMR 171 Aminoglyco

sides 

ANT2 Aminoglyco

side 

nucleotidyltr

ansferase 2 

outfile57.h

mm 

480 

AMR 172 Aminoglyco

sides 

ANT3 Aminoglyco

side 

nucleotidyltr

ansferase 3 

outfile58.h

mm 

450 
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AMR 173 Aminoglyco

sides 

ANT4 Aminoglyco

side 

nucleotidyltr

ansferase 4 

outfile59.h

mm 

490 

AMR 174 Aminoglyco

sides 

ANT6 Aminoglyco

side 

nucleotidyltr

ansferase 6 

outfile60.h

mm 

530 

AMR 175 Aminoglyco

sides 

ANT9 Aminoglyco

side 

nucleotidyltr

ansferase 9 

outfile61.h

mm 

202 

AMR 176 Aminoglyco

sides 

Antibiotic_

NAT 

Aminoglyco

side 3-N-

Acetyl 

Transferase 

outfile15.h

mm 

100 

AMR 177 kanamycin APH3 Aminoglyco

side 

phosphotran

sferase 3 

outfile62.h

mm 

70 

AMR 178 Aminoglyco

sides 

APH6 Aminoglyco

side 

phosphotran

sferase 6 

outfile63.h

mm 

370 

AMR 179 Aminoglyco

sides 

ANT Aminoglyco

side 

Nucleotidylt

ransferase 

outfile165.h

mm 

200 

AMR 180 Sorangicin sorF Glycosyl 

Transferase 

sorangicin-

glycosyltran

sferase.hmm 

640 

AMR 181 Rifamycin rifP MFS 

Transporter 

rifamycin-

MFS.hmm 

830 
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AMR 182 Microcin J mcjD ABC 

Transporters 

microcinJ-

ABC_transp

orter.hmm 

1025 

AMR 183 Microcin 

B17 

mcbE, mcbF ABC 

Transporters 

microcinb17

-

ABC_transp

orter.hmm 

115 

AMR 184 Novobiocidi

n 

GyrB DNA gyrase 

B Isoform 

novobiocidi

n-

DNA_gyras

e.hmm 

1460 

AMR 185 Albicidin albG Pentapeptid

e Repeats 

albicidin_pe

ntapeptide_r

epeats.hmm 

350 

AMR 186 Albicidin albF ABC 

Transporters 

albicidin_A

BC_transpor

ters.hmm 

600 

AMR 187 Quinolones Qnr Pentapeptid

e Repeats 

pentapeptide

repeats.hm

m 

223 

AMR 188 Fluorouinol

ones 

FRT Fluoroquino

lone 

Resistant 

DNA 

Topoisomer

ase 

outfile95.h

mm 

1370 

AMR 189 Quinolones Quin quninolone 

resistance 

protein 

(Qnr): 

antibiotic 

target 

protection 

protein 

outfile123.h

mm 

330 

AMR 190 Tunicamyci

n 

tmrB resistance 

protein  

tunicamycin

-

150 
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resistance_p

rotein.hmm 

AMR 194 MultiDrug mdtE, acrB, 

amrA, 

amrB, aprA 

RND 

Transporters 

AllRND_tra

nsporters.h

mm 

320 

AMR 195 Multi Drug ykkD, ykkC small 

multidrug 

resistant 

small_multi

drug_resista

nt_protein.h

mm 

115 

AMR 197 Trifolitoxin tfxE Trifolitoxin 

Operon 

Protein 

Trifolitoxin

Resistance.h

mm 

550 

AMR 198 Zwittermici

n 

ZmaR Acetyl 

Transferase 

Zwittermici

nAcetyltrans

ferase.hmm 

600 

AMR 199 MultiDrug QacF, emrE Cationic 

multidrug 

transporters 

cationic_mu

ltidrug_trans

porters.hmm 

135 

AMR 200 MultiDrug 16s rRNA1 16S 

ribosomal 

RNA 

methyltransf

erase 

outfile45.h

mm 

370 

AMR 201 MultiDrug ABC Trans1 ABCAntibio

ticEffluxPu

mp 

outfile51.h

mm 

245 

AMR 202 MultiDrug ABC Trans2 ABC 

Transporters 

outfile06.h

mm 

285 

AMR 203 MultiDrug ABC Trans3 Abc 

Transporters 

outfile17.h

mm 

240 

AMR 204 MultiDrug ABC Trans4 ABC 2 type 

transporter 

outfile08.h

mm 

650 
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AMR 205 MultiDrug Acetyl_Tran

s1 

Acetyl 

Transferase 

1 

outfile09.h

mm 

130 

AMR 206 MultiDrug Acetyl_Tran

s2 

Acetyl 

Transferase 

3 

outfile41.h

mm 

200 

AMR 207 MultiDrug Acetyl_Tran

s3 

Acetyl 

Transferase 

4 

outfile00.h

mm 

150 

AMR 208 MultiDrug Acetyl_Tran

s4 

Acetyl 

Transferase 

7 

outfile39.h

mm 

200 

AMR 209 MultiDrug Acetyl_Tran

s5 

Acetyl 

Transferase 

8 

outfile40.h

mm 

190 

AMR 210 MultiDrug Acetyl_Tran

s6 

Acetyl 

Transferase 

9 

outfile42.h

mm 

130 

AMR 211 MultiDrug Acr AcrB/AcrD/

AcrF 

Family 

outfile34.h

mm 

200 

AMR 212 MultiDrug Acetyl_Tran

s7 

Acetyl 

Transferase 

outfile33.h

mm 

125 

AMR 213 Multidrug adeI Membrane 

fusion 

protein of 

multi drug 

efflux 

complex 

outfile52.h

mm 

650 

AMR 214 Multidrug adeB Membrane 

fusion 

protein of 

multi drug 

efflux 

complex 

outfile53.h

mm 

1900 
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AMR 215 Multidrug adeC-adeK-

oprM 

Outer 

membrane 

factor the 

multidrug 

efflux 

complex 

outfile54.h

mm 

580 

AMR 216 Multidrug adeR Regulator of 

AdeABC 

efflux 

system 

outfile55.h

mm 

500 

AMR 217 Multidrug adeS Regulator of 

AdeABC 

efflux 

system 

outfile56.h

mm 

600 

AMR 218 Multidrug AminotransI

_II 

Aminotransf

erase class I 

and II 

outfile30.h

mm 

372 

AMR 219 Multidrug AminotransI

V 

Aminotransf

erase  class 

IV 

outfile35.h

mm 

100 

AMR 220 Multidrug APH Phosphotran

sferase 

enzyme 

family 

outfile25.h

mm 

172 

AMR 221 Multidrug baeR Subunit of 

gene 

modulating 

antibiotic 

efflux 

outfile64.h

mm 

420 

AMR 222 Multidrug baeS Subunit of 

gene 

modulating 

antibiotic 

efflux 

outfile65.h

mm 

1200 
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AMR 223 Multidrug cfr 23s rRNA 

methyltransf

erase 

outfile74.h

mm 

490 

AMR 224 Multidrug emrB subunit of 

efflux pump 

conferring 

antibiotic 

resistance 

outfile87.h

mm 

205 

AMR 225 Multidrug emrA smalll 

multirug 

resistance 

antibiotic 

efflux pump 

outfile88.h

mm 

150 

AMR 226 Multidrug Erm 23s rRNA 

methyltransf

erase 

outfile89.h

mm 

250 

AMR 227 Multidrug Erm38 23s rRNA 

methyltransf

erase 

outfile90.h

mm 

320 

AMR 228 Multidrug ErmA 23s rRNA 

methyltransf

erase 

outfile91.h

mm 

350 

AMR 229 Multidrug ErmB 23s rRNA 

methyltransf

erase 

outfile92.h

mm 

370 

AMR 230 Multidrug ErmC 23s rRNA 

methyltransf

erase 

outfile93.h

mm 

450 

AMR 231 Multidrug Fad_Bindin

g_2 

FAD 

Binding 

Domain 

outfile38.h

mm 

500 

AMR 232 Multidrug FmrO rRNA 

methyltransf

erase 

outfile11.h

mm 

215 
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AMR 233 Multidrug HTH_AraC Bacterial 

regulatory 

helix-turn-

helix 

proteins 

outfile31.h

mm 

100 

AMR 234 Multidrug macA macA: 

subunit of 

efflux pump 

conferring 

antibiotic 

resistance 

outfile104.h

mm 

550 

AMR 235 Multidrug macB macB: 

subunit of 

efflux pump 

conferring 

antibiotic 

resistance 

outfile105.h

mm 

450 

AMR 236 Multidrug marA marA: 

transcription 

factor 

induces 

MDR efflux 

pump 

AcrAB 

outfile107.h

mm 

300 

AMR 237 Multidrug marR Gene 

Modulating 

Resistance 

outfile26.h

mm 

100 

AMR 238 Multidrug marR_2 Gene 

Modulating 

Resistance 

outfile27.h

mm 

100 

AMR 239 Multidrug methyltrans 

18 

Methyltrans

ferase 

outfile37.h

mm 

120 

AMR 240 Multidrug mexA mexA: 

membrane 

fusion 

protein of 

the MexAB-

outfile109.h

mm 

580 
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OprM 

multidrug 

efflux 

complex 

AMR 241 Multidrug mexC mexC: 

membrane 

fusion 

protein of 

the MexCD-

OprJ 

multidrug 

efflux 

complex 

outfile110.h

mm 

350 

AMR 242 Multidrug mexE mexE: 

membrane 

fusion 

protein of 

the MexEF-

OprN 

multidrug 

efflux 

complex 

outfile111.h

mm 

170 

AMR 243 Multidrug mexH mexH: 

membrane 

fusion 

protein of 

the efflux 

complex 

MexGHI-

OpmD", 

"RND 

Antibiotic 

Efflux 

outfile112.h

mm 

100 

AMR 244 Multidrug mexW-mexI A grouping 

of related 

mexW and 

mexI 

subunits of 

outfile113.h

mm 

700 
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efflux 

pumps 

conferring 

antibiotic 

resistance 

AMR 245 Multidrug mexX mexX:  

subunit of 

efflux pump 

conferring 

antibiotic 

resistance, 

RND 

transporter 

outfile114.h

mm 

271 

AMR 246 Multidrug MFS1 MFS 

Transporter 

outfile01.h

mm 

175 

AMR 247 Multidrug MFS3 MFS 

Transporter 

outfle24.hm

m 

700 

AMR 248 Multidrug MFS MFSAntibio

ticEffluxPu

mp 

outfile115.h

mm 

245 

AMR 249 Multidrug mprF mprF: 

peptide 

antibiotic 

resistance 

gene 

outfile117.h

mm 

1400 

AMR 250 Multidrug msbA msbA: 

ATP-

binding 

cassette 

(ABC) 

antibiotic 

efflux pump 

outfile118.h

mm 

500 

AMR 251 Multidrug norA norA: major 

facilitator 

superfamily 

(MFS) 

outfile120.h

mm 

370 
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antibiotic 

efflux pump 

AMR 252 Multidrug Nuc_H_Sy

mport 

Nuc_H_sym

port", 

"PF03825.1

1 

Nucleoside 

H+ 

symporter 

outfile44.h

mm 

250 

AMR 253 Multidrug phoQ phoQ: 

subunit of 

gene 

modulating 

antibiotic 

efflux 

outfile122.h

mm 

750 

AMR 254 Multidrug ramA ramA: gene 

modulating 

antibiotic 

efflux 

outfile124.h

mm 

260 

AMR 255 Multidrug RND1 resistance-

nodulation-

cell division 

(RND) 

antibiotic 

efflux pump 

outfile125.h

mm 

940 

AMR 256 Multidrug robA obA: 

transcription

al activator 

of AcrAB 

antibiotic 

efflux pump 

outfile126.h

mm 

620 

AMR 257 Multidrug romA romA: 

trasncription 

factor 

mediating 

antibiotic 

resistance 

outfle127.h

mm 

850 
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AMR 258 Multidrug soxR soxR: 

mutant 

efflux 

regulatory 

protein 

conferring 

antibiotic 

resistance 

outfile131.h

mm 

190 

AMR 260 Multidrug Bcr_cfla efflux Bcr 

CflA: drug 

resistance 

transporter 

outfile04.h

mm 

200.9 

AMR 261 Multidrug ermB EmrB: drug 

resistance 

MFS 

transporter, 

drug:H+ 

antiporter-2  

outfile10.h

mm 

230.2 

AMR 262 Multidrug MATE_effl

ux 

matE: 

MATE 

efflux 

family 

protein 

outfile13.h

mm 

147.4 

AMR 264 Multidrug soxR SoxR: 

redox-

sensitive 

transcription

al activator 

SoxR 

outfile29.h

mm 

116.9 

AMR 266 Multidrug tolC tolC: 

subunit of 

efflux pump 

conferring 

antibiotic 

resistance 

outfile148.h

mm 

570 
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AMR 267 Multidrug Whib Transcriptio

n factor 

WhiB 

outfile28.h

mm 

100 

AMR 268 Multidrug RND_MFP efflux 

transporter, 

RND 

family, MFP 

subunit 

outfile163.h

mm 

240 

AMR 269 Albicidin albD Esterase muscle-

albD-

Detoxificati

on 

Enzyme.clw 

130 

AMR 270 Enterocin A IciA Immunity 

Protein 

muscle-

IciA-

Enterocin A 

Immunity 

Protein.clw 

110 

AMR 271 Multidrug QepA MFS muscle-

qepA-MFS 

transporter.c

lw 

270 

AMR 272 Tabtoxine TbiF Ligase muscle-

TbIF-

Ligase.clw 

360 

AMR 273 Tabtoxine ttr Acetyltransf

erase 

muscle-ttr-

acetyl 

transferase.c

lw 

178 

AMR 275 Fosfomycin FosC Phosphotran

sferase 

muscle-

fosC-

fosfomycin-

phosphotran

sferase.clw 

77 

AMR 276 Fosfomycin FosX Epoxide 

Hydrolase 

muscle-

fosX-

100 
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fosfomycin-

epoxide 

hydrolase.cl

w 

AMR 277 Fosfomycin FosA Glutathione 

Transferase 

muscle-

fosA-

fosfomycin-

glutathione 

transferase.c

lw 

120 

AMR 278 Fosfomycin FosB Metallothiol 

Transferase 

muscle-

fosA-

fosfomycin-

glutathione 

transferase.c

lw 

125 

AMR 279 Beta 

Lactams 

Fec1 Beta 

lactamase 

Fec1-

BetaLactam

ase.hmm  

540 

AMR 280 Nocardicin  NocD Acetyl 

Transferase 

nocD-

acetyltransfe

rase.hmm 

316 

AMR 281 Monobacta

m 

Oxy2 Betalactama

se 

Oxy2_betala

ctamase.hm

m 

515 

AMR 282 Monobacta

m 

per1 beta 

lactamase 

per2_betalac

tamase.hmm 

400 

AMR 283 Betalactams shv2 betalactama

se 

shv2_Beta 

lactamase.h

mm 

660 

AMR 284 Polymyxin ArnA/Pmr1 Formyl 

Transferase 

  

AMR 285 Kasuguamy

cin  

KasKLM ABC 

Transporters 

kasugamyci

n-

160 
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ABC_transp

orter.hmm 

AMR 286 oxazolidino

nes and 

phenicols  

optrA ABC 

Transporters 

optrA-

oxanoloid-

ABCTransp

orter.hmm 

260 

AMR 287 copper czcA Copper 

resistance 

Protein 

czcA-copper 

resistance 

protein.hm

m 

709 

AMR 288 copper copA Copper 

Resistance 

Protein 

copA-

coppper 

resistance 

protein.hm

m 

300 

AMR 289 Collisitin mcr-1 phosphatidy

lethanolami

ne 

transferase- 

antibiotic 

modification 

mcr1-

collistin-

phosphatidy

lethanolami

netransferas

e.hmm 

1000 

AMR 290 Nisin nisG ABC 

Transporter 

nisin-nisG-

ABCTransp

orter2.hmm 

260 

AMR 291 Chalcomyci

n 

chrB rRNA 

methyl 

transferase 

chalcomycin

-

rRNAmethy

ltransferase.

hmm 

490 

AMR 292 Rifampin rph phosphotran

sferase 

Rifampin-

Rifamyicn 

Phosphotran

sferase.hmm 

1790 

AMR 293 Askumycin asuM1 MFS Asukamycin

MFSasuM1.

hmm 

900 
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AMR 294 Carnocyclin ccII Immunity 

Protein 

carnocyclin-

immunitypr

otein.hmm 

500 

AMR 295 Cereulide CesC ABC 

Transporters 

cereulide-

ABCTransp

orter 

400 

AMR 296 GE 81112 getB ABC 

Transporters 

Ge81112-

ABC 

Transporter 

800 

AMR 297 lukacidin lkcJ ABC 

Transporters 

lukacidin-

ABCTransp

orter 

975 

AMR 298 Rifampin arr ADP 

Risobosyml 

Transferase 

Rifampin-

Rifamycin 

ADP ribosyl 

transferas.h

mm 

199.7 

AMR 299 Rifampin yjiC Glycosyl 

Transferase 

Rifampin-

Rifamycin-

GlycosylTra

nsferase 

775 

AMR 300 rubradirin rubT1 ABC 

Transporters 

rubradirin-

ABC 

Transporter 

500 

AMR 302 Terreic Acid orf ABC 

Transporters 

Terreic 

Acid- ABC 

Transporter 

3350 

AMR 303 Tetarimycin TamA ABC 

Transporters 

Tetarimycin

-

ABCTransp

orter 

800 

AMR 304 Tiacumucin Tia3 ABC 

Transporter 

Tiacumucin-

ABC 

Transporter 

780 
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AMR 305 Virginamyci

n 

VarS emrB 

Transporter 

virginamyci

n-

MFStranspo

rter 

570 

AMR 306 Zeamine zmn20 ABC 

Transporter 

Zeamine-

ABCTransp

orter 

600 

AMR 307 Tylosin tlrC rRNA 

methyl 

Transferase 

Tylosin-

rRNAmethy

ltransferase 

400 

AMR 308 Capreomyci

n 

cmnU rRNA 

Methyltrans

ferase 

capreomyci

n-cmnU-

rRNAmethy

ltransferase.

hmm 

150 

AMR 309 tetronasin tnrB ABC 

Transporter 

tetronasin-

tnrB-

ABCTransp

orter 

430 

AMR 310 viomycin vph Phosphotran

sferase 

Viomycin-

vph-

phosphotran

sferase 

270 

AMR 311 Calcimycin calT ABC 

Transporter 

Calcimycin-

calT-

ABCTransp

orter 

1210 

AMR 312 Mycinamyci

n 

myrA rRNA 

Metyhl 

Transferase 

Mycinamyci

n-myrA-

rRNAmethy

ltransferase.

hmm 

350 

AMR 313 Mycinamyci

n 

myrB rRNA 

Methyl 

transferase 

Mycinamyci

n-myrB-

rRNAmethy

335 
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ltransferase.

hmm 

AMR 314 Griselimyci

n 

griR DNA 

polymerase 

III Beta 

Subunit 

Griselimyci

n-

DnaNBetaS

ubunit.hmm 

400 

 

 

Supplementary Table 2.2 Extended bacterial target legend for Fig. 2.2 

Target Number Bacterial Target 

1 Lipid II Binders 

2 Bactoprenol Phosphate Binder 

3 Phosphatidylethanolamine Binder 

4 Translocase I 

5 Membrane Destabilizers 

6 LPS Binder 

7 penicillin binding proteins 

8 D-Ala-D-Ala Chelators 

9 UDP-N-Acetylglucosamine-3-enolpryuvyl transferase 

10 Glucosamine phosphate synthetase 

11 Deoxyxylulose phosphate Reductoisomerase 

12 FabB/F 

13 Acyl CoA Carboxylase 

14 l-histidinol phosphate aminotransferase 

15 Isoleucine-tRNA synthetase 

16 Tryptophan-tRNA synthetase 

17 Threonine-tRNA synthetase 
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18 Serine-tRNA synthetase 

19 Aspartyl tRNA synthetase 

20 Glutamine synthase 

21 Pyruvate carboxylase 

22 Elongation Factor Tu 

23 Ribosome inhibitors 

24 RNAP 

25 DNA gyrase 

 

Supplementary Table 2.3 Number of resistance genes collected organized by bacterial 

target 

Molecular Target 

Resistance Gene 

Instances Percentage 

Acetyl-CoA carboxylase 1 0.427 

Aspartate-tRNA synthetase 1 0.427 

D-Ala-D-Ala chelator 20 8.547 

Deoxyxylulose phosphate reductoisomerase 2 0.854 

DNA gyrase 8 3.419 

Elongation factor Tu 2 0.854 

Fab B/F 1 0.427 

Glucosamine-6-phosphate synthetase 4 1.709 

Glutamine synthase 3 1.282 

Isoleucine-tRNA synthetase 1 0.427 

L-histidinol phosphate aminotransferase 1 0.427 

Lipid II binder 9 3.846 

LPS binder 3 1.282 

Membrane destabilizer 9 3.846 

Penicillin-binding protein 52 22.222 

Phosphatidylethanolamine binder 1 0.427 

Pyruvate carboxylase 1 0.427 
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RNA polymerase 7 2.991 

Serine-tRNA synthetase 1 0.427 

Threonine-tRNA synthetase 1 0.427 

Translocase I 4 1.709 

Tryptophan-tRNA synthetase 1 0.427 

UDP-N-acetylglucosamine-3-

enolpryuvyltransferase 7 2.991 

Undecaprenyl phosphate binder 4 1.282 

DnaN binding clamp 1 0.427 

 

Supplementary Table 2.4 List of the devised BGC set used in generation of SIPE and 

ATP  

Antibacterial Antifungal Siderophore 

A102395 acetylaranotin acidobactin 

A40926 acetylaszonalenin acinetobactin 

A47934 aculeximycin amychelin 

A500359 AFtoxin bacillibactin 

A54145 ambruticin coelibactin 

abyssomicin amphotericin coelichelin 

actagardine apoptolidin cupriachelin 

actinorhodin arthrofactin delftibactin 

albicidin asperfuranone enterobactin 

albomycin aspyridone erythrochelin 

alnumycin aureobasidin exochelin 

Alphalipomycin azaphilone ferrichrome 

althiomycin bacillomycin fimsbactin 

andrimid basiliskamide fuscachelin 

anglomycin beauvericin gobichelin 

apramycin bongkrekicacid griseobactin 

aranciamycin candicidin heterobactin 
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arylomycins chivosazol isoflavipucine 

asukamycin compactin malleilactone 

aureothin crocacin mirubactin 

avilamycin cycloheximide mycobactin 

azicemicin cystothiazoleA paenibactin 

bacillaene desmethylbassianin pyochelin 

bacitracin echinocandin pyoverdin 

bactobolin enniatin rhodochelin 

balhimycin faerifungin scabichelin 

BE14106 fengycin serobactin 

bicornutin filipin tenellin 

bogorol FR008 vanchrobactin 

borrelidin frontalamide vibriobactin 

bottromycin fumiquinazoline vulnibactin 

Butirosin fumitremorgin yersiniabactin 

caerulomycinA fumonisin 
 

calcimycin fusaricidin 
 

calciumdependentantibiotic fusaridioneA 
 

capreomycin galbonolide 
 

capuramycin gephyronicacid 
 

carnocyclinA glidobactinA 
 

cephalosporin griseofulvin 
 

cephamycinC hassallidin 
 

cereulide herbimycin 
 

chalcomycin hypothemycin 
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chejuenolide jagaricin 
 

chelocardin jamaicamide 
 

chloroeremomycin jawsamycin 
 

chloramphenicol JBIR06 
 

chlorothricin JBIR34 
 

chlortetracycline jerangolid 
 

chondrochlorens kutznerides 
 

cinnamycin lactimidomycin 
 

coelimycin luminmycin 
 

colistin melithiazol 
 

corallopyroninA methylsalicylicacid 
 

cuevaene micacocidin 
 

cyclomarin microcystin 
 

cypemycin microsclerodermin 
 

Cytolysin ML449 
 

dactylocycline monacolin 
 

Dapdiamides monodictyphenone 
 

daptomycin mulundocandin 
 

depsidomycin mycolactone 
 

difficidin mycosubtilin 
 

elansolid mycotrienin 
 

enacyloxin myxalamid 
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enduracidin myxothiazol 
 

enterocin natamycin 
 

epidermin nigericin 
 

erdacin notoamide 
 

erythromycin nystatin 
 

etnangien octacosamicin 
 

Factumycin oligomycin 
 

FD594 paenilarvin 
 

fortimicin phoslactomycin 
 

Fosfomycin pimaricin 
 

friulimicin plipastatin 
 

fungisporin pneumocandin 
 

gallidermin pradimicin 
 

GE81112 puwainaphycin 
 

gentamicin pyoluteorin 
 

goadsporin pyrrolocin 
 

gramicidin R1128 
 

granaticin respirantin 
 

griselimycin rhizopodin 
 

griseoviridin rhizoxin 
 

guadinomine rimocidin 
 

gulmirecin Sch47554 
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halstoctacosanolide solanapyrone 
 

himastatin soraphen 
 

hitachimycin sterigmatocystin 
 

hormaomycin stigmatellin 
 

hygrocin tautomycin 
 

hygromycinA taxillaid 
 

hygromycinB terrequinone 
 

indanomycin tetrahydroxynaphthalene 
 

Indolmycin thanamycin 
 

istamycin verlamelin 
 

iturin viridicatumtoxin 
 

jadomycin xenocoumacin 
 

kalimantacin yanuthoneD 
 

kanamycin 
  

kasugamycin 
  

kijanimicin 
  

kirromycin 
  

lacticin 
  

lactonamycin 
  

laidlomycin 
  

lankacidin 
  

lankamycin 
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lasalocid 
  

laspartomycin 
  

lichenysin 
  

Lincomycin 
  

lividomycin 
  

lobophorin 
  

locillomycin 
  

lysobactin 
  

lysolipin 
  

macrolactin 
  

mannopeptimycin 
  

marinopyrrole 
  

massetolide 
  

mersacidin 
  

methymycin 
  

Microcin C7 
  

microcin 
  

MicrocinB17 
  

MicrocinJ25 
  

midecamycin 
  

monensin 
  

mupirocin 
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muraymycin 
  

myxopyronin 
  

myxovirescin 
  

naphthocyclinone 
  

naphthyridinomycin 
  

napsamycin 
  

neomycin 
  

niddamycin 
  

nisin 
  

nocardicinA 
  

nocathiacin 
  

nosiheptide 
  

Novobiocin 
  

Nukacin ISK1 
  

orfamide 
  

oxytetracycline 
  

pacidamycin 
  

paenibacterin 
  

paenilamicin 
  

Pantocin A 
  

paromomycin 
  

paulomycin 
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pelgipeptin 
  

penicillin 
  

Pep5 
  

Phosphothricin 
  

piericidinA1 
  

pikromycin 
  

Platensimycin 
  

polymyxin 
  

potensimicin 
  

pristinamycin 
  

promysalin 
  

Puromycin 
  

putisolvin 
  

pyralomicin 
  

pyridomycin 
  

ramoplanin 
  

resistomycin 
  

reutericyclin 
  

ribostamycin 
  

rifamycin 
  

ristocetin 
  

rosamicin 
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rubradirin 
  

salinomycin 
  

sansanmycin 
  

saquayamycin 
  

sevadicin 
  

simocyclinone 
  

sisomicin 
  

sorangicin 
  

spectinomycin 
  

sphaerimicin 
  

steffimycin 
  

stenothricin 
  

streptolydigin 
  

streptomycin 
  

streptothricin 
  

subtilin 
  

subtilosin 
  

surfactin 
  

syringafactin 
  

syringomycin 
  

tabtoxin 
  

taromycin 
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tauramamide 
  

teicoplanin 
  

teixobactin 
  

telomycin 
  

terreicacid 
  

tetarimycin 
  

tetracycline 
  

tetronasin 
  

tetronomycin 
  

thienamycin 
  

thiomarinol 
  

thiomuracin 
  

thiostrepton 
  

thuggacin 
  

tiacumicin 
  

tirandamycin 
  

TLN05220 
  

tobramycin 
  

tolaasin 
  

tridecaptin 
  

Trifolitoxin 
  

Tunicamycin 
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tylactone 
  

Tylosin 
  

tyrocydine 
  

UK68597 
  

valinomycin 
  

vancomycin 
  

viomycin 
  

virginiamycin 
  

zeamine 
  

zwittermicin 
  

 

Supplementary Table 2.5 Detected AMR HMMs by PRISM from known antibacterial 

BGCs, and annotations of known molecular target. 

Biosynthetic Gene 
Cluster 

Resistance Genes Target 

A102395 AMR_9 Translocase 1 inhibitor 

A40926 AMR_70 DAlaDAla chelator 

A47934 AMR_84, AMR_72, AMR_73, 
AMR_74, AMR_83 

DAlaDAla chelator 

A500359 AMR_9 Translocase 1 inhibitor 

A54145 AMR_12 Glucosamine6phosphate synthase 

Abyssomicin AMR_103 4amino4deoxychorismate (ADC) 
synthase 

Actinorhodin AMR_103, AMR_116, AMR_261 Unknown 

Albicidin AMR_186, AMR_185 DNA gyrase 

Albomycin AMR_101 Serine tRNAsynthetase 

Alnumycin AMR_116 Unknown 

Alphalipomycin AMR_116 Membrane disruption 

Althiomycin AMR_286, AMR_113 Penicillin binding proteins 

Andrimid AMR_96 AcetylCoA carboxylase 

Apramycin AMR_201 Ribosome inhibitor 

Aranciamycin AMR_116 Unknown 
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Asukamycin AMR_293 Unknown 

Avilamycin AMR_138 Ribosome inhibitor 

Azicemicin AMR_224 Unknown 

Bacitracin AMR_2, AMR_83 Undecaprenyl Binder 

Balhimycin AMR_70, AMR_84, AMR_83 DAlaDAla chelator 

BE14106 AMR_271 Unknown 

Borrelidin AMR_100 ThreoninetRNA synthetase 

Calcimycin AMR_311 Membrane disruption 

Calciumdependenta
ntibiotic 

AMR_15 Membrane disruption 

Capreomycin AMR_310 Ribosome inhibitor 

Capuramycin AMR_9 Translocase 1 inhibitor 

Cephalosporin AMR_39 Penicillin binding proteins 

CephamycinC AMR_45, AMR_116 Penicillin binding proteins 

Cereulide AMR_295 Membrane disruption 

Chalcomycin AMR_291 Ribosome inhibitor 

Chelocardin AMR_261 Unknown 

Chloramphenicol AMR_123 Ribosome inhibitor 

Chlorothricin AMR_103 Pyruvate carboxylase 

Chlortetracycline AMR_150 Ribosome inhibitor 

Cinnamycin AMR_8 Phosphatidylethanolamine Binder 

Coelimycin AMR_271 Unknown 

Colistin AMR_22 LPSBinder 

Cuevaene AMR_271, AMR_261 Unknown 

Cytolysin AMR_16 Membrane disruption 

Dactylocycline AMR_261 Ribosome inhibitor 

Dapdiamides AMR_92 Glucosamine6phosphate synthase 

Daptomycin AMR_12, AMR_201, AMR_13 Glucosamine6phosphate synthase 

Depsidomycin AMR_286, AMR_116 Unknown 

Enacyloxin AMR_262 Elongation factor Tu 

Enterocin AMR_116 Membrane disruption 

Epidermin AMR_17, AMR_18 Lipid II Binder 

Erythromycin AMR_226 Ribosome inhibitor 

Etnangien AMR_262 RNA polymerase 

Factumycin AMR_109 Elongation factor Tu 

FD594 AMR_261 Unknown 

Fortimicin AMR_232, AMR_114, AMR_116 Ribosome inhibitor 

Fosfomycin AMR_90, AMR_91 UDPNacetylglucosamine3enolpyru
vyl transferase 

Friulimicin AMR_7, AMR_271 Undecaprenyl Binder 
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Gallidermin AMR_17, AMR_18 Lipid II Binder 

GE81112 AMR_296 Ribosome inhibitor 

Gentamicin AMR_126, AMR_232, AMR_116 Ribosome inhibitor 

Gramicidin AMR_211 Membrane disruption 

Granaticin AMR_264, AMR_150 LeucinetRNA synthetase 

Griseoviridin AMR_143, AMR_305, AMR_116 Ribosome inhibitor 

Hitachimycin AMR_271 Unknown 

HygromycinA AMR_127, AMR_128 Ribosome inhibitor 

HygromycinB AMR_129 Ribosome inhibitor 

Indanomycin AMR_261 Membrane disruption 

Indolmycin AMR_99 TryptophantRNA synthetase 

Istamycin AMR_116, AMR_131 Ribosome inhibitor 

Kanamycin AMR_232, AMR_261 Ribosome inhibitor 

Kasugamycin AMR_285 Ribosome inhibitor 

Kijanimicin AMR_261 Unknown 

Lacticin AMR_1 Lipid II Binder 

Lactonamycin AMR_116 Unknown 

Laidlomycin AMR_261 Unknown 

Lankacidin AMR_297 Ribosome inhibitor 

Lankamycin AMR_143 Ribosome inhibitor 

Lasalocid AMR_224 Membrane disruption 

Laspartomycin AMR_7 Unknown 

Lincomycin AMR_112, AMR_226, AMR_116 Ribosome inhibitor 

Lobophorin AMR_261 Unknown 

Locillomycin AMR_211 Unknown 

Lysobactin AMR_268, AMR_211, AMR_201, 
AMR_255 

Peptidoglycan transglycosylase 

Macrolactin AMR_286 FabG 

Marinopyrrole AMR_125 Unknown 

Massetolide AMR_235 Unknown 

Mersacidin AMR_1, AMR_3 Lipid II Binder 

Methymycin AMR_111, AMR_226, AMR_313 Ribosome inhibitor 

Microcin C7 AMR_70 AspartatetRNA synthetase 

MicrocinB17 AMR_183 DNA gyrase 

MicrocinJ25 AMR_182 RNA polymerase 

Midecamycin AMR_143 Ribosome inhibitor 

Monensin AMR_261 Membrane disruption 

Mupirocin AMR_98 IletRNA synthetase 

Muraymycin AMR_11 Peptidoglycan translocase 
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Myxovirescin AMR_98 Type 1 signal peptidase 

Naphthyridinomyci
n 

AMR_271 DNA polymerase 

Neomycin AMR_134, AMR_133 Ribosome inhibitor 

Nisin AMR_20, AMR_290, AMR_19 Lipid II Binder 

NocardicinA AMR_280 Penicillin binding proteins 

Novobiocin AMR_201 DNA gyrase 

Nukacin ISK1 AMR_4 Lipid II Binder 

Orfamide AMR_211, AMR_235 Membrane disruption 

Paenibacterin AMR_22 LPSBinder 

Pantocin A AMR_97 lhistidinol phosphate 
aminotransferase 

Paromomycin AMR_134, AMR_131 Ribosome inhibitor 

Paulomycin AMR_261 Ribosome inhibitor 

Pelgipeptin AMR_22 Unknown 

Pep5 AMR_21 Membrane disruption 

Phosphothricin AMR_102 Glutamine synthase 

Pikromycin AMR_111, AMR_226 Ribosome inhibitor 

Platensimycin AMR_196 FabB F 

Polymyxin AMR_22 LPSBinder 

Potensimicin AMR_226 Unknown 

Pristinamycin AMR_305, AMR_164 Ribosome inhibitor 

Putisolvin AMR_235 Membrane disruption 

Pyralomicin AMR_116 Unknown 

Resistomycin AMR_196 RNA polymerase 

Reutericyclin AMR_261 Membrane disruption 

Ribostamycin AMR_134, AMR_133 Ribosome inhibitor 

Rifamycin AMR_181 RNA polymerase 

Ristocetin AMR_72, AMR_73, AMR_74 DAlaDAla chelator 

Rosamicin AMR_143 Ribosome inhibitor 

Rubradirin AMR_300 Ribosome inhibitor 

Salinomycin AMR_301, AMR_196, AMR_116 Membrane disruption 

Saquayamycin AMR_264, AMR_261 Unknown 

Simocyclinone AMR_261 DNA gyrase 

Sisomicin AMR_126, AMR_232, AMR_116 Ribosome inhibitor 

Sorangicin AMR_262, AMR_180 RNA polymerase 

Spectinomycin AMR_144 Ribosome inhibitor 

Steffimycin AMR_116 RNA polymerase 

Stenothricin AMR_271 Unknown 

Streptolydigin AMR_116 RNA polymerase 
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Streptomycin AMR_141, AMR_271 Ribosome inhibitor 

Syringafactin AMR_235 Membrane disruption 

Tabtoxin AMR_272 Glutamine synthase 

Taromycin AMR_12 Membrane disruption 

Teicoplanin AMR_84, AMR_72, AMR_73, 
AMR_74, AMR_83 

DAlaDAla chelator 

Teixobactin AMR_211, AMR_201 Lipid II Binder 

Tetarimycin AMR_303 Unknown 

Thiomarinol AMR_98 IletRNA synthetase 

Tiacumicin AMR_304, AMR_224 RNA polymerase 

Tirandamycin AMR_116 RNA polymerase 

TLN05220 AMR_116 Unknown 

Tolaasin AMR_235, AMR_215 Membrane disruption 

Trifolitoxin AMR_197 Unknown 

Tylosin AMR_307 Ribosome inhibitor 

Tyrocydine AMR_201 Membrane disruption 

UK68597 AMR_70, AMR_84, AMR_73, 
AMR_75, AMR_83 

DAlaDAla chelator 

Vancomycin AMR_70, AMR_72, AMR_73, 
AMR_74 

DAlaDAla chelator 

Viomycin AMR_310 Ribosome inhibitor 

Zeamine AMR_306 Membrane disruption 

Zwittermicin AMR_198 Unknown 
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Supplementary Table 2.6 Complete legend of siderophore receptors and related 

compounds for Supplementary Fig. 2.2 

 

 

 

 

 

 

 

 

 

 

Receptor types 

Figure 1 receptor 

label Siderophores 

Figure 1 compound 

label 

CirA/TonB 1 Vulnibactin A 

FatA/TonB 2 Anguibactin B 

FecA/TonB 3 Citrate C 

femA/TonB 4 Mycobactin D 

FEpA/TonB 5 Amphi-Enterobactin E 

Ferric Hydroxamate 

Receptor/TonB 6 Vicibactin F 

Ferrichrom 

receptor/TonB 7 Ferrichrome G 

FhuE/TonB 8 Coprogen H 

FpvA/TonB 9 Pyoverdin CHAO I 

FyuA/TonB 10 Yersiniabactin J 

iutA/TonB 11 Aerobactin K 

FhuD/ABC 

transpoter 12 Staphyloferrin A L 

FxuD/ABC 13 Exochelin (1,H) M 

FepB/ABC 14 Desferrioxamine A1a N 
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Supplementary Table 2.7 Compound substrate counts and rank for siderophore and non-

siderophore compounds. All substrates are obtained through deconstruction of compound 

structures through GRAPE. 

Siderophore 

substrate 

Counts Rank Non-

siderophore 

substrate 

Counts Rank 

Ser 386 1 Val 79 1 

OHOrn 371 2 Leu 77 2 

Lys 192 3 Ala 74 3 

Gly 129 4 Ser 73 4 

Thr 122 5 Thr 69 5 

ChrD 88 6 Gly 54 6 

2,3DHB 79 7 Hpg 52 7 

Ala 78 8 PAA 50 8 

OHAsp 77 9 Pro 49 9 

BZA 54 10 Cys 42 10 

Asp 30 11 Dab 40 11 
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Supplementary Table 2.8 Accuracy comparison between random forest and SIPE. The 

test set is separated by chemical families. 

Chemical 

Family 

Random 

forest 

accuracy 

SIPE accuracy SIPE 

Predicted  

Total 

Aminoglycoside 1.00 0.00 0.00 1 

Lipopeptide 0.67 1.00 0.72 18 

Cyclic nrp 1.00 1.00 1.00 2 

Hybrid pk/nrp 1.00 1.00 0.94 16 

Depsipeptide 0.85 0.90 0.77 13 

Siderophore 0.91 0.60 0.45 11 

Beta lactam 1.00 0.00 0.00 1 

Modified nrp 1.00 1.00 1.00 1 

Tetramic acids 1.00 0.00 0.00 1 

CDPs 1.00 0.00 0.00 1 

RIPP 1.00 1.00 0.22 9 

Dipeptide 1.00 1.00 0.50 2 

Nucleotide 

antibiotic 

1.00 0.00 0.00 3 

Ergopeptine 1.00 0.00 0.00 1 

Cyclic peptide 0.88 1.00 0.88 8 

Polyketides 1.00 1.00 0.69 64 

Indole 1.00 1.00 0.75 4 

Linear nrp 0.75 1.00 0.50 4 

Glycopeptide 1.00 1.00 1.00 3 
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Supplementary Table 2.9 Resistance gene precision and frequency results from the 

devised BGC set. The determined values were used within the generation of the ATP. 

Name Count 
Correct 
Count Precision 

Relative 
confidenc
e Frequency Target Target(s) 

AMR_84 4 4 1 0.8 0.017544 
DAlaDAla 
chelator 

DAlaDAla 
chelator 

AMR_232 4 4 1 0.8 0.017544 
Ribosome 
inhibitor 

Ribosome 
inhibitor 

AMR_235 5 4 0.8 0.8 0.02193 

Membran
e 
disruption 

Unknown, 
Membran
e 
disruption 

AMR_83 5 4 0.8 0.8 0.02193 
DAlaDAla 
chelator 

DAlaDAla 
chelator, 
Undecapre
nyl Binder 

AMR_8 1 1 1 0.2 0.004386 

Phosphati
dylethanol
amine 
Binder 

Phosphati
dylethanol
amine 
Binder 

AMR_9 3 3 1 0.6 0.013158 

Translocas
e 1 
inhibitor 

Translocas
e 1 
inhibitor 

AMR_138 1 1 1 0.2 0.004386 
Ribosome 
inhibitor 

Ribosome 
inhibitor 

AMR_4 1 1 1 0.2 0.004386 
Lipid II 
Binder 

Lipid II 
Binder 

AMR_134 3 3 1 0.6 0.013158 
Ribosome 
inhibitor 

Ribosome 
inhibitor 

AMR_7 2 1 0.5 0.2 0.008772  

Unknown, 
Undecapre
nyl Binder 

AMR_133 2 2 1 0.4 0.008772 
Ribosome 
inhibitor 

Ribosome 
inhibitor 

AMR_2 1 1 1 0.2 0.004386 
Undecapre
nyl Binder 

Undecapre
nyl Binder 

AMR_3 1 1 1 0.2 0.004386 
Lipid II 
Binder 

Lipid II 
Binder 
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AMR_70 5 4 0.8 0.8 0.02193 
DAlaDAla 
chelator 

Aspartatet
RNA 
synthetase
, DAlaDAla 
chelator 

AMR_72 4 4 1 0.8 0.017544 
DAlaDAla 
chelator 

DAlaDAla 
chelator 

AMR_73 5 5 1 1 0.02193 
DAlaDAla 
chelator 

DAlaDAla 
chelator 

AMR_74 4 4 1 0.8 0.017544 
DAlaDAla 
chelator 

DAlaDAla 
chelator 

AMR_75 1 1 1 0.2 0.004386 
DAlaDAla 
chelator 

DAlaDAla 
chelator 

AMR_96 1 1 1 0.2 0.004386 

AcetylCoA 
carboxylas
e 

AcetylCoA 
carboxylas
e 

AMR_97 1 1 1 0.2 0.004386 

lhistidinol 
phosphate 
aminotran
sferase 

lhistidinol 
phosphate 
aminotran
sferase 

AMR_92 1 1 1 0.2 0.004386 

Glucosami
ne6phosp
hate 
synthase 

Glucosami
ne6phosp
hate 
synthase 

AMR_90 1 1 1 0.2 0.004386 

UDPNacet
ylglucosa
mine3enol
pyruvyl 
transferas
e 

UDPNacet
ylglucosa
mine3enol
pyruvyl 
transferas
e 

AMR_91 1 1 1 0.2 0.004386 

UDPNacet
ylglucosa
mine3enol
pyruvyl 
transferas
e 

UDPNacet
ylglucosa
mine3enol
pyruvyl 
transferas
e 

AMR_201 6 1 0.166667 0.2 0.026316  

Lipid II 
Binder, 
Ribosome 
inhibitor, 
Membran
e 
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disruption, 
Glucosami
ne6phosp
hate 
synthase, 
DNA 
gyrase, 
Peptidogly
can 
transglyco
sylase 

AMR_98 3 2 0.666667 0.4 0.013158  

Type 1 
signal 
peptidase, 
IletRNA 
synthetase 

AMR_99 1 1 1 0.2 0.004386 

Tryptopha
ntRNA 
synthetase 

Tryptopha
ntRNA 
synthetase 

AMR_285 1 1 1 0.2 0.004386 
Ribosome 
inhibitor 

Ribosome 
inhibitor 

AMR_286 3 1 0.333333 0.2 0.013158  

Unknown, 
FabG, 
Penicillin 
binding 
proteins 

AMR_280 1 1 1 0.2 0.004386 

Penicillin 
binding 
proteins 

Penicillin 
binding 
proteins 

AMR_128 1 1 1 0.2 0.004386 
Ribosome 
inhibitor 

Ribosome 
inhibitor 

AMR_125 1 1 1 0.2 0.004386 Unknown Unknown 

AMR_127 1 1 1 0.2 0.004386 
Ribosome 
inhibitor 

Ribosome 
inhibitor 

AMR_126 2 2 1 0.4 0.008772 
Ribosome 
inhibitor 

Ribosome 
inhibitor 

AMR_123 1 1 1 0.2 0.004386 
Ribosome 
inhibitor 

Ribosome 
inhibitor 

AMR_131 2 2 1 0.4 0.008772 
Ribosome 
inhibitor 

Ribosome 
inhibitor 
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AMR_211 5 2 0.4 0.4 0.02193  

Membran
e 
disruption, 
Lipid II 
Binder, 
Peptidogly
can 
transglyco
sylase, 
Unknown 

AMR_215 1 1 1 0.2 0.004386 

Membran
e 
disruption 

Membran
e 
disruption 

AMR_293 1 1 1 0.2 0.004386 Unknown Unknown 

AMR_291 1 1 1 0.2 0.004386 
Ribosome 
inhibitor 

Ribosome 
inhibitor 

AMR_290 1 1 1 0.2 0.004386 
Lipid II 
Binder 

Lipid II 
Binder 

AMR_297 1 1 1 0.2 0.004386 
Ribosome 
inhibitor 

Ribosome 
inhibitor 

AMR_296 1 1 1 0.2 0.004386 
Ribosome 
inhibitor 

Ribosome 
inhibitor 

AMR_295 1 1 1 0.2 0.004386 

Membran
e 
disruption 

Membran
e 
disruption 

AMR_111 2 2 1 0.4 0.008772 
Ribosome 
inhibitor 

Ribosome 
inhibitor 

AMR_112 1 1 1 0.2 0.004386 
Ribosome 
inhibitor 

Ribosome 
inhibitor 

AMR_113 1 1 1 0.2 0.004386 

Penicillin 
binding 
proteins 

Penicillin 
binding 
proteins 

AMR_114 1 1 1 0.2 0.004386 
Ribosome 
inhibitor 

Ribosome 
inhibitor 

AMR_116 20 7 0.35 1.4 0.087719  

Unknown, 
Penicillin 
binding 
proteins, 
RNA 
polymeras
e, 



M.Sc Thesis- Chelsea Walker 
McMaster University – Biochemistry and Biomedical Sciences 

 

126 
 

Ribosome 
inhibitor, 
Membran
e 
disruption 

AMR_196 3 1 0.333333 0.2 0.013158  

Membran
e 
disruption, 
FabB F, 
RNA 
polymeras
e 

AMR_197 1 1 1 0.2 0.004386 Unknown Unknown 

AMR_198 1 1 1 0.2 0.004386 Unknown Unknown 

AMR_1 2 2 1 0.4 0.008772 
Lipid II 
Binder 

Lipid II 
Binder 

AMR_18 2 2 1 0.4 0.008772 
Lipid II 
Binder 

Lipid II 
Binder 

AMR_19 1 1 1 0.2 0.004386 
Lipid II 
Binder 

Lipid II 
Binder 

AMR_16 1 1 1 0.2 0.004386 

Membran
e 
disruption 

Membran
e 
disruption 

AMR_17 2 2 1 0.4 0.008772 
Lipid II 
Binder 

Lipid II 
Binder 

AMR_15 1 1 1 0.2 0.004386 

Membran
e 
disruption 

Membran
e 
disruption 

AMR_12 3 2 0.666667 0.4 0.013158  

Membran
e 
disruption, 
Glucosami
ne6phosp
hate 
synthase 

AMR_13 1 1 1 0.2 0.004386 

Glucosami
ne6phosp
hate 
synthase 

Glucosami
ne6phosp
hate 
synthase 

AMR_11 1 1 1 0.2 0.004386 
Peptidogly
can 

Peptidogly
can 
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translocas
e 

translocas
e 

AMR_103 3 1 0.333333 0.2 0.013158  

Unknown, 
4amino4d
eoxychoris
mate 
(ADC) 
synthase, 
Pyruvate 
carboxylas
e 

AMR_102 1 1 1 0.2 0.004386 
Glutamine 
synthase 

Glutamine 
synthase 

AMR_101 1 1 1 0.2 0.004386 

Serine 
tRNAsynth
etase 

Serine 
tRNAsynth
etase 

AMR_100 1 1 1 0.2 0.004386 

Threoninet
RNA 
synthetase 

Threoninet
RNA 
synthetase 

AMR_109 1 1 1 0.2 0.004386 
Elongation 
factor Tu 

Elongation 
factor Tu 

AMR_268 1 1 1 0.2 0.004386 

Peptidogly
can 
transglyco
sylase 

Peptidogly
can 
transglyco
sylase 

AMR_264 2 1 0.5 0.2 0.008772  

Unknown, 
LeucinetR
NA 
synthetase 

AMR_262 3 2 0.666667 0.4 0.013158  

Elongation 
factor Tu, 
RNA 
polymeras
e 

AMR_261 15 8 0.533333 1.6 0.065789  

DNA 
gyrase, 
Unknown, 
Ribosome 
inhibitor, 
Membran
e 
disruption 
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AMR_186 1 1 1 0.2 0.004386 
DNA 
gyrase 

DNA 
gyrase 

AMR_185 1 1 1 0.2 0.004386 
DNA 
gyrase 

DNA 
gyrase 

AMR_183 1 1 1 0.2 0.004386 
DNA 
gyrase 

DNA 
gyrase 

AMR_182 1 1 1 0.2 0.004386 

RNA 
polymeras
e 

RNA 
polymeras
e 

AMR_181 1 1 1 0.2 0.004386 

RNA 
polymeras
e 

RNA 
polymeras
e 

AMR_180 1 1 1 0.2 0.004386 

RNA 
polymeras
e 

RNA 
polymeras
e 

AMR_22 4 3 0.75 0.6 0.017544 LPSBinder 
Unknown, 
LPSBinder 

AMR_21 1 1 1 0.2 0.004386 

Membran
e 
disruption 

Membran
e 
disruption 

AMR_20 1 1 1 0.2 0.004386 
Lipid II 
Binder 

Lipid II 
Binder 

AMR_271 8 5 0.625 1 0.035088  

DNA 
polymeras
e, 
Unknown, 
Ribosome 
inhibitor, 
Undecapre
nyl Binder 

AMR_272 1 1 1 0.2 0.004386 
Glutamine 
synthase 

Glutamine 
synthase 

AMR_39 1 1 1 0.2 0.004386 

Penicillin 
binding 
proteins 

Penicillin 
binding 
proteins 

AMR_164 1 1 1 0.2 0.004386 
Ribosome 
inhibitor 

Ribosome 
inhibitor 

AMR_313 1 1 1 0.2 0.004386 
Ribosome 
inhibitor 

Ribosome 
inhibitor 

AMR_310 2 2 1 0.4 0.008772 
Ribosome 
inhibitor 

Ribosome 
inhibitor 
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AMR_311 1 1 1 0.2 0.004386 

Membran
e 
disruption 

Membran
e 
disruption 

AMR_45 1 1 1 0.2 0.004386 

Penicillin 
binding 
proteins 

Penicillin 
binding 
proteins 

AMR_255 1 1 1 0.2 0.004386 

Peptidogly
can 
transglyco
sylase 

Peptidogly
can 
transglyco
sylase 

AMR_150 2 1 0.5 0.2 0.008772  

LeucinetR
NA 
synthetase
, 
Ribosome 
inhibitor 

AMR_305 2 2 1 0.4 0.008772 
Ribosome 
inhibitor 

Ribosome 
inhibitor 

AMR_304 1 1 1 0.2 0.004386 

RNA 
polymeras
e 

RNA 
polymeras
e 

AMR_307 1 1 1 0.2 0.004386 
Ribosome 
inhibitor 

Ribosome 
inhibitor 

AMR_306 1 1 1 0.2 0.004386 

Membran
e 
disruption 

Membran
e 
disruption 

AMR_301 1 1 1 0.2 0.004386 

Membran
e 
disruption 

Membran
e 
disruption 

AMR_300 1 1 1 0.2 0.004386 
Ribosome 
inhibitor 

Ribosome 
inhibitor 

AMR_303 1 1 1 0.2 0.004386 Unknown Unknown 

AMR_226 5 4 0.8 0.8 0.02193 
Ribosome 
inhibitor 

Unknown, 
Ribosome 
inhibitor 

AMR_224 3 1 0.333333 0.2 0.013158  

Unknown, 
RNA 
polymeras
e, 
Membran
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e 
disruption 

AMR_143 4 4 1 0.8 0.017544 
Ribosome 
inhibitor 

Ribosome 
inhibitor 

AMR_141 1 1 1 0.2 0.004386 
Ribosome 
inhibitor 

Ribosome 
inhibitor 

AMR_144 1 1 1 0.2 0.004386 
Ribosome 
inhibitor 

Ribosome 
inhibitor 

AMR_129 1 1 1 0.2 0.004386 
Ribosome 
inhibitor 

Ribosome 
inhibitor 
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Supplementary Table 2.10 ATP analysis of the devised BGC set and their respective 

target predictions, and confidence scores. 

Antibacterial Biosynthetic 
Gene Cluster 

Predicted Target Confidence Score 

Polymyxin LPS Binder 7.44 

Ribostamycin Ribosome Inhibitor 0.61 

Nocardicin A Penicillin Binding Protein 1.78 

Viomycin Ribosome Inhibitor 0.28 

Etnangien Unknown 0 

Gulmirecin RNA polymerase 0.49 

Nukacin ISK-1 Lipid II Binder 3.7 

Nosiheptide Tryptophan tRNA synthetase 0.5 

Laspartomycin Unknown 0 

Tridecaptin LPS Binder 0.24 

Thuggacin RNA polymerase 0.022 

Tylactone Ribosome Inhibitor 2.03 

Tirandamycin Unknown 0 

Tetarimycin Unknown 2.04 

Streptothricin Unknown 0 

BE-14106 Elongation factor Tu 0.33 

Tetracycline Tryptophan tRNA synthetase 0 

Paenilamicin Ribosome Inhibitor 0.014 

Bacitracin DAlaDAla Chelator 0.1 

Iturin DNA Gyrase 0.013 

Pristinamycin Ribosome Inhibitor 4.44 

Bactobolin Peptidoglycan translocase 0.084 

Subtilin Tryptophan tRNA synthetase 0.5 

Chalcomycin Ribosome Inhibitor 3.48 

Myxovirescin Type 1 Signal Peptidase 0.95 

Resistomycin Tryptophan tRNA synthetase 0.3 

Nocathiacin Ribosome Inhibitor 0.020 

Fungisporin Peptidoglycan translocase 0.24 

Coelimycin Unknown 0 

Zwittermicin Unknown 2.04 

Pyralomicin Ribosome Inhibitor 0.62 

Pacidamycin Penicillin Binding Protein 0.0023 

Tyrocydine Membrane Destabilizer 0.91 

Calcium dependent antibiotic Membrane Destabilizer 2.37 

Colistin LPS Binder 7.50 

Zeamine Membrane Destabilizer 2.04 
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Tabtoxin Glutamine synthase 1.54 

Epidermin Tryptophan Synthetase 0.5 

Actinorhodin Peptidoglycan 
transglycosylase 

0.060 

Enduracidin DAlaDAla Chelator 0.036 

Nisin Lipid II Binder 5.62 

Putisolvin Membrane Destabilizer 2.01 

Taromycin Glucoasmine-6-phosphate 
synthase 

0.12 

Macrolactin Unknown 0 

Tolaasin Membrane Destabilizer 4.15 

Syringomycin LPS Binder 0.53 

Balhimycin DAlaDAla Chelator 4.91 

Telomycin Cardiolipin 0.27 

Ristocetin DAlaDAla Chelator 5.97 

Cephamycin C Penicillin Binding Protein 0.13 

Erdacin Tryptophan-tRNA synthetase 0.5 

Muraymycin Peptidoglycan translocase 2.08 

Chlortetracycline Ribosome Inhibitor 0.16 

Friulimicin Unknown 0 

Factumycin Elongation Factor Tu 2.04 

Thiomuracin Tryptophan-tRNA synthetase 0 

Chondrochlorens RNA polymerase 0.19 

Asukamycin Unknown 0 

Thiostrepton Tryptophan-tRNA synthetase 0 

Teixobactin Siderophore 0.088 

Microcin B17 Tryptophan-tRNA synthetase 0.5 

Rifamycin RNA polymerase 0.48 

FD-594 Unknown 0 

Terreic Acid Transcription termination 
factor Rho 

0.049 

Simocyclinone Ribosome Inhibitor 0.34 

Aureothin Ribosome Inhibitor 0.18 

Lankacidin Ribosome Inhibitor 1.95 

Mycinamycin Ribosome Inhibitor 2.67 

Chlorothricin Elongation Factor Tu 0.28 

Daptomycin Glucosamine-6-phosphat 
synthase 

1.92 

Lacticin Lipid II Binder 1.66 

TLN-05220 Ribosome Inhibitor 0.017 

Subtilosin Tryptophan-tRNA synthetase 0.5 

Lichenysin Membrane Destabilizer 0.44 
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Bicornutin Peptidoglycan translocase 0.020 

Azicemicin Unknown 0 

Alnumycin Tryptophan-tRNA synthetase 0.3 

Pelgipeptin LPS Binder 3.81 

Massetolide Membrane Destabilizer 2.06 

Sansanmycin Penicillin-Binding Protein 0.0023 

Phosphothricin Glutamine Synthase 1.81 

Laidlomycin Ribosome Inhibitor 0.059 

Bacillaene Peptide deformylase, FabG 
 

0.25 

Enacyloxin RNA Polymerase 0.046 

Tetronomycin RNA Polymerase 1.54 

Sorangicin RNA polymerase 2.12 

Dactylocycline Ribosome Inhibitor 1.19 

Avilamycin Ribosome Inhibitor 3.76 

Aranciamycin Unknown 0 

Difficidin Ile-tRNA synthetase 0.15 

Steffimycin Unknown 0 

Aureusimine Glutamine Synthase 0.086 

Thienamycin Tryptophan-tRNA synthetase 0 

Caerulomycin A Penicillin-Binding Protein 0.060 

Surfactin Membrane Destabilizer 0.41 

Hormaomycin DAlaDAla Chelator 0.20 

Granaticin Ribosome Inhibitor 1.38 

Albomycin Serine tRNA Synthetase 2.04 

Tetronasin RNA Polymerase 1.21 

Mupirocin Ile-tRNA Synthetase 0.70 

Desmethylbassianin Unknown 0 

Gramicidin Unknown 0 

Griselimycin DnaN DNA polymerase sliding 
clamp 

0.016 

Auricin Tryptophan-tRNA synthetase 0 

Althiomycin Penicillin Binding Protein 2.04 

Lankamycin Ribosome Inhibitor 5.60 

Locillomycin Unknown 0 

Capreomycin Ribosome Inhibitor 0.29 

Bottromycin Tryptophan-tRNA synthetase 0 

Lysolipin Ribosome Inhibitor 0.44 

Andrimid Acetyl CoA Carboxylase 1.72 

Goadsporin Tryptophan-tRNA synthetase 0 

Virginamycin RNA Polymerase 0.22 

Vancomycin DAlaDAla Chelator 5.16 
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Paenibacterin LPS Binder 3.47 

A-500359 Translocase I Inhibitor 2.32 

Tiacumicin RNA Polymerase 3.45 

Rubradirin Ribosome Inhibitor 0.23 

Marinopyrrole Unknown 1.2 

Arylomycins Type 2 Signal Peptidase 1.59 

Jadomycin Ribosome Inhibitor 1.11 

Pikromycin Ribosome Inhibitor 5.17 

Lysobactin Peptidoglycan 
Transglycosylase 

6.41 

Chejuenolide Penicillin-Binding Protein 0.027 

Teicoplanin DAlaDAla Chelator 10.43 

Kalimantacin  Peptide Deformylase, FabG 0.013 

Corallopyronin A Na-dependent NADH-
quinone reductase 

0.18 

Microcin J25 RNA Polymerase 1.54 

Napthyridomycin Ribosome Inhibitor 0.022 

Cytolysin Membrane Destabilizer 1.54 

Niddamycin Ribosome Inhibitor 1.50 

Anglomycin Ribosome Inhibitor 2.02 

Reutericyclin Siderophore 0.29 

Lobophorin Membrane Destabilizer 0.16 

Syringafactin Membrane Destabilizer 2.09 

Elansolid Peptide Deformylase, FabG 0.64 

Coelibactin Siderophore 0 

Borrelidin Threonine-tRNA Synthetase 1.50 

Erythromycin Ribosome Inhibitor 4.29 

Cephalosporin Penicillin-Binding Protein 0.57 

Methymycin Ribosome Inhibitor 4.49 

Cyclomarin Elongation Factor G 0.036 

Hygromycin A Ribosome Inhibitor 3.58 

Pyridomycin  Peptidoglycan Translocase 0.12 

Cypemycin Tryptophan-tRNA synthetase 0 

Griseoviridin Ribosome Inhibitor 8.03 

Hygrocin Ribosome Inhibitor 0.53 

Lactonamycin Ribosome Inhibitor 1.12 

Rosamicin Ribosome Inhibitor 7.88 

Enterocin Siderophore 0.35 

Napthocyclinone Tryptophan-tRNA synthetase 0.5 

Tauramamide Peptidoglycan translocase 0.5 

Cereulide Membrane Destabilizer 1.80 

Sevadicin Peptidoglycan Translocase 0.60 
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Halstoctacosanolide RNA Polymerase 0.14 

A54145 Glucosamine-6-phosphate 
synthase 

1.65 

Potensimicin Ribosome Inhibitor 3.72 

Hitachimycin Elongation Factor Tu 0.57 

Trifolitoxin Unknown 1.54 

Mannopeptimycin Lipid II Binder 0.051 

Alpha Lipomycin Elongation Factor Tu 0.20 

Ramoplanin DAlaDAla Chelator 0.094 

Saquayamycin Ribosome Inhibitor 1.16 

Sphaerimicin Siderophore 0.077 

Penicillin Penicillin-Binding Protein 2.61 

A-102395 Translocase 1 Inhibitor 2.36 

Capuramycin Translocase 1 Inhibitor 2.32 

Orfamide Membrane Destabilizer 2.14 

Gallidermin Lipid II Binder 5.98 

Depsidomycin Membrane Destabilizer 0.090 

A40926 DAlaDAla Chelator 0.59 

Chelocardin Unknown 0 

UK-68597 DAlaDAla Chelator 10.64 

Oxytetracycline Tryptophan-tRNA synthetase 0 

Abyssomicin RNA Polymerase 0.053 

Cuevaene Unknown 0 

A47934 DAlaDAla Chelator 3.15 

Valinomycin Ribosome Inhibitor 0.314 

Thiomarinol Ile-tRNA Synthetase 0.52 

Albicidin DNA Gyrase 4.03 

Kirromycin Elongation Factor Tu 1.23 

Kijanimicin RNA Polymerase 0.022 

Calcimycin RNA Polymerase 0.031 

Midecamycin Ribosome Inhibitor 7.34 

Stenothricin Ribosome Inhibitor 0.14 

Myxopyronin RNA Polymerase 0.054 

GE81112 Ribosome Inhibitor 1.90 

Napsamycin Penicillin-Binding Protein  0.0023 

Streptolydigin Ribosome Inhibitor 0.86 

Chloroeremomycin DAlaDAla Chelator 2.36 
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Supplementary Table 2.11 High resolution mass measurements for SIPE identified 

compounds: acidobactins, vacidobactins and potensibactin. 

Compound Calculated 

m/z (M+H+; 

iron binding 

form) 

Observed 

m/z 

(M+H+; 

iron 

binding 

form) 

Delta 

ppm 

Calculated 

m/z 

(M+H+; 

apo-form) 

Observed 

m/z 

(M+H+; 

apo-form) 

Delta 

ppm 

Acidobactin 

A 

791.2267 791.2294 3.4 738.3152 738.3183 4.2 

Acidobactin 

B 

775.2317 775.2347 3.9 722.3203 722.3233 4.1 

Vacidobactin 

A 

805.2423 805.2458 4.3 752.3309 752.3338 3.9 

Vacidobactin 

B 

789.2473 789.2501 3.5 736.3359 736.3387 3.8 

Potensibactin 780.2013 780.2017 0.5 727.2899 727.2903 0.5 
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Supplementary Table 2.12 Detailed ATP analysis of the erythromycin BGC, a known 

inhibitor of the ribosome.  

 

 

 

 

Resistance Target Precision Other Target(s) 

AMR 226 Ribosome Inhibitor 0.83 Unknown 

 

Top Overall Garlic Scores Top Garlic Scores with Activity/Target 

Annotations 

Garl

ic 

Scor

e 

Activi

ty 

Targ

et (s) 

Name Garl

ic 

Scor

e 

Activity Target

(s) 

Name 

0.76   Pseudo-

erythromycin A-

6,9-hemiketal 

0.69 Antibacte

rial 

Riboso

me 

Inhibit

or 

N-

Demethyl-

erythromyci

n A 

0.69   Erythromycin A 

N-oxide 

0.69 Antibacte

rial 

Riboso

me 

Inhibit

or 

Erythromyci

n B 

0.69   Erythromycin G 0.69 Antibacte

rial 

Riboso

me 

Inhibit

or 

Clarithromy

cin 

0.69   Erythromycin 

analogue 

0.69 Antibacte

rial 

Riboso

me 

Inhibit

or 

6-Deoxy-15-

Norerythrom

ycin B 

0.69   6 DEOXY 15 

NORERYTHRO

MYCIN A 

0.69 Antibacte

rial 

Riboso

me 

Inhibit

or 

Kujimycin C 

Best Target 

Prediction 

Ribosome Inhibitor Confidence       4.29 
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Supplementary Table 2.13 Detailed ATP analysis of the andrimid BGC, a known 

inhibitor of acetyl CoA carboxylase 

 

 

 

 

 

 

 

Resistance Target Precision Other Target(s) 

AMR 96 Acetyl CoA 

Carboxylase 

1  

 

Top Overall Garlic Scores Top Garlic Scores with Activity/Target 

Annotations 

Garli

c 

Scor

e 

Activit

y 

Targ

et (s) 

Name Garli

c 

Scor

e 

Activity Target(s) Name 

0.63   PF-1022-D 0.30 Antibacteri

al 

 Ilamycin-

C1 

0.59   Syringolin-

D 

0.22 Siderophor

e 

 Acinetoferr

in 

0.59   Syringolin 

A 

0.22 Antibacteri

al 

Peptidoglyc

an 

translocase 

Pacidamyc

in 1 

0.59   Asporchrac

in 

0.22 Antibacteri

al 

Peptidoglyc

an 

translocase 

Pacidamyc

in 2 

0.50   Eurystatin-

C 

0.22 Antibacteri

al 

Peptidoglyc

an 

translocase 

Pacidamyc

in 3 

Best Target 

Prediction 

Acetyl CoA 

Carboxylase 
Confidence 1.72 
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Supplementary Table 2.14 Detailed ATP analysis of the teicoplanin BGC, a known 

inhibitor of D-Ala-D-Ala chelator 

 

 

 

 

 

 

Resistance Target Precision Other Target(s) 

AMR 73 DAlaDAla Chelator 1  

AMR 74 DAlaDAla Chelator 1  

AMR 72 DAlaDAla Chelator 1  

AMR 84 DAlaDAla Chelator 1  

AMR 83 DAlaDAla Chelator 0.8 Undecaprenyl Binder 

 

Top Overall Garlic Scores Top Garlic Scores with Activity/Target 

Annotations 

Garl

ic 

Scor

e 

Activity Target 

(s) 

Name Garl

ic 

Scor

e 

Activity Target(

s) 

Name 

0.92   Teicoplan

in A3-1 

0.92 Antibacter

ial 

DAlaD

Ala 

Chelator 

Teichomyc

in-A1 

0.92 Antibacter

ial 

 A 84575 

A 

0.91 Antibacter

ial 

DAlaD

Ala 

Chelator 

Parvodicin 

C4 

0.92   A-41030-

G 

0.91 Antibacter

ial 

DAlaD

Ala 

Chelator 

A-40926-

MDC1 

0.92   Teicoplan

in A2-5 

0.91 Antibacter

ial 

DAlaD

Ala 

Chelator 

Parvodicin 

B1 

0.92 Antibacter

ial 

DAlaD

Ala 

Chelator 

Teicoplan

in-RS-2 

0.91 Antibacter

ial 

DAlaD

Ala 

Chelator 

Parvodicin 

C2 

Best Prediction DAlaDAla Chelator Confidence 10.43 
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Supplementary Table 2.15 Detailed ATP analysis of the rifamycin BGC, a known 

inhibitor of RNA polymerase 

 

 

 

 

Resistance Target Precision Other Target(s) 

AMR 305 Ribosome 

Inhibitor 

1  

AMR 181 RNA Polymerase 1  

 

Top Overall Garlic Scores Top Garlic Scores with Activity/Target 

Annotations 

Garli

c 

Score 

Activit

y 

Targe

t (s) 

Name Garli

c 

Score 

Activity Target(s) Name 

0.54   Ammocidi

n C 

0.3 Antibacteri

al 

RNA 

polymeras

e 

Lipiarmycin 

B4 

0.53   Ammocidi

n A 

0.3 Antibacteri

al 

RNA 

polymeras

e 

Lipiarmycin 

A4 

0.52   Ammocidi

n B 

0.3 Antibacteri

al 

RNA 

polymeras

e 

Clostomycin-

A 

0.48   Ammocidi

n 

0.25 Antibacteri

al 

RNA 

polymeras

e 

Proansamyci

n-X 

0.44   Ammocidi

n D 

0.25 Antibacteri

al 

RNA 

polymeras

e 

Rifamycin-W 

Best Target 

Prediction 

RNA polymerase Confidence 0.48 
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Supplementary Table 2.16 Detailed ATP analysis of the BGC of the macrolide 

antibiotic aldgamycin 

 

Resistance Target Precision Other Target(s) 

AMR 291 Ribosome 

Inhibitor 

1  

 

Top Overall Garlic Scores Top Garlic Scores with Activity/Target 

Annotations 

Garl

ic 

Scor

e 

Activity Target 

(s) 

Name Garl

ic 

Scor

e 

Activity Target

(s) 

Name 

0.62 Antibacte

rial 

 Chalcomyci

n B 

0.57 Antibacte

rial 

Riboso

me 

Inhibit

or 

Deacetyl-15-

Deoxy-15-

oxolankamyc

in 

0.61 Antibacte

rial 

 Chalcomyci

n A 

0.52 Antibacte

rial 

Riboso

me 

Inhibit

or 

Kujimycin C 

0.57 Antibacte

rial 

Riboso

me 

Inhibit

or 

Deacetyl-15-

Deoxy-15-

oxolankamy

cin 

0.49 Antibacte

rial 

Riboso

me 

Inhibit

or 

15-

Deoxylanka

mycin 

0.56 Antibacte

rial 

 15-OAlpha-

4-L-O-

Acetylarcan

osyl-

lankamycin 

0.49 Antibacte

rial 

Riboso

me 

Inhibit

or 

Kujimycin D 

Best Target 

Prediction 

Ribosome Inhibitor Confidence 4.68 
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Supplementary Table 2.17 Detailed ATP analysis of bananamide from P. fluorescens 

strain BW11P2, predicting a mode of action as a membrane destabilizer 

 

 

 

 

 

 

 

 

 

 

 

Resistance Target Precision Other Target(s) 

AMR 235 Membrane 

Disruption 

0.8 Unknown 

 

Top Overall Garlic Scores Top Garlic Scores with Activity/Target 

Annotations 

Garli

c 

Score 

Activit

y 

Targe

t (s) 

Name Garli

c 

Score 

Activity Target(s) Name 

0.81   MDN-

006 

0.24 Antibacteri

al 

Ribosom

e 

Inhibitor 

Fujimycin C 

0.75   Lokisin 0.13 Antibacteri

al 

Ribosom

e 

Inhibitor 

Viridogrisei

n 1 

0.75   Tensin 0.10 Antibacteri

al 

Ribosom

e 

Inhibitor 

Grividomyci

n I 

0.75   Amphisi

n 

0.072 Antibacteri

al 

Membran

e 

Disruptio

n 

[Ala4]-

Surfactin 

Best Target 

Prediction 

Membrane 

Disruption 
Confidence 1.84 
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Supplementary Table 2.18 Detailed ATP analysis of the identified cluster for LL-19020 

from S. lydicus tanzanius NRRL 18036, a previously known antibiotic with a mode of 

action targeting elongation factor Tu 

 

 

 

 

 

 

Resistance Target Precision Other Target(s) 

N/A    

 

Top Overall Garlic Scores Top Garlic Scores with Activity/Target 

Annotations 

Garli

c 

Scor

e 

Activit

y 

Targ

et (s) 

Name Garli

c 

Scor

e 

Activity Target(s

) 

Name 

0.55   3-Furanyl-

Avermecti

n-B1 

0.44 Antibacteri

al 

Elongati

on 

Factor 

Tu 

GE-21604-A 

0.55   3-Furanyl-

Avermecti

n-A2 

0.42 Antibacteri

al 

Elongati

on 

Factor 

Tu 

Unphenelfamy

cin 

0.52   Cyclobuty

l-

Avermecti

n-B1 

0.39 Antibacteri

al 

Elongati

on 

Factor 

Tu 

LL-E19020 

zeta 

0.52   Cyclohexy

l-

Avermecti

n-A1 

0.39 Antibacteri

al 

Ribosom

e 

Inhibitor 

15-

Deoxylankamy

cin 

Best Target 

Prediction 

Elongation Factor 

Tu 
Confidence 1.25 
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Supplementary Table 2.19 Detailed ATP results of the LL-AO341 BGC from S. 

candidus NRRL 3147, predicting a molecular target of cardiolipin 

 

 

 

 

 

 

 

 

Resistance Target Precision Other Target(s) 

N/A    

 

Top Overall Garlic Scores Top Garlic Scores with Activity/Target 

Annotations 

Garl

ic 

Scor

e 

Activity Target 

(s) 

Name Garl

ic 

Scor

e 

Activity Target(

s) 

Name 

0.6 Antibacte

rial 

Cardioli

pin 

Telomycin 0.6 Antibacte

rial 

Cardioli

pin 

Telomycin 

0.55   LL-

A0341B 

0.12   Malonichr

ome 

0.55   LL-

A0341A 

0.06   Monamyci

n-I 

0.52   Neotelomy

cin 

0.06   Pyoverdin 

0.52   A-128-

HYP 

0   Heterobact

in 

Best Target 

Prediction 

Cardiolipin Confidence 0.36 
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2.8 Supplementary Figures 

 

Supplementary Figure 2.1 An example of a classification tree in random forest mode for 

siderophore prediction.  
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Supplementary Figure 2.2 Summary of microbial siderophore compounds and 

associated membrane receptors. Fourteen siderophores and their receptors are paired and 

labeled with letters and numbers, respectively. Receptors 1–11 are from Gram negative 

bacteria, and 12–14 are from Gram positive bacteria. The full legend can be found in 

Supplementary Table 2.6. 

 

 

 

 

Supplementary Figure 2.3 Out-of-bag error plots for siderophore compounds and 

natural product biosynthetic gene clusters. The out-of-bag error shows the number of 

trees required for stable error in the random forest models for compounds (a) or 

biosynthetic gene clusters (b). 

 



M.Sc Thesis- Chelsea Walker 
McMaster University – Biochemistry and Biomedical Sciences 

 

147 
 

 

Supplementary Figure 2.4 Relationships between determined confidence score, 

accuracy, and counts as determined by the ATP pipelines on known antimicrobial BGCs. 

The devised plots depict (A) the overall accuracy of ATP above a given cut off, (B) the 

number of BGCs present within the devised set above a given cut off and (C) the 

likelihood of a correct target prediction being made at a given confidence score.  
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Supplementary Figure 2.5 Global mapping of genomically predicted siderophore 

chemistries with SIPE. A. Diversity of predicted siderophore chemistries, as measured by 

the Manhattan distance (rectilinear distance) using 31 known and 4,474 PRISM predicted 

siderophore chemical structures. The horizontal axis represents the structural diversity of 

known and predicted siderophore structures, whereas the vertical axis represents the 

similarity between known and predicted siderophore structures. B. Taxonomical 

distribution of predicted siderophore BGCs at the genus level. 
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Supplementary Figure 2.6 Confirmation of predicted BGC as siderophores.  A. PRISM 

output of vacidobactins with their structures and LC/MS identification of both Apo and 

iron binding forms. B. PRISM output of acidobactins with their structures and LC/MS 

identification of both Apo and iron binding forms. C. PRISM output of potensibactin with 

its structure and LC/MS identification of both Apo and iron binding forms. 
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Supplementary Figure 2.7 Crude extracts of S. candidus NRRL 3147, producer of LL-

AO341, exhibits activity against wild-type S. aureus, and a lesser degree to S. aureus with 

mutations in cardiolipin synthase. Wild-type and previously generated spontaneously 

resistant strains of S. aureus to telomycin were exposed to a crude extract of S. candidus 

NRRL 3147 for 16hr. Results are shown as mean percent inhibition ± s.d; n=3. Data is 

representative of triplicate experiments.  
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Supplementary Figure 2.8 Global mapping of genomically predicted natural products 

identified by ATP to potentially diverge mechanistically. Diversity of pNPs identified by 

ATP as measured by pairwise similarity via GARLIC. Vertical and Horizontal axis are 

represented by the t-SNE dimensions resulting in a 2D projection plot. Purple dots are 

indicative of hybrid pNPs, red as NRP pNPs, and blue as polyketide pNPs. Overlapping 

points indicate pNPs with high structural similarity according to GARLIC.   
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Supplementary Figure 2.9 Taxonomical distribution of pNPs producers with potential 

for divergent mechanisms as identified by ATP. A. Total counts of pNPs identified by 

ATP from potential producers at the genus level. B. Ratio of pNPs identified by ATP with 

potential to diverge mechanistically in comparison to total number of PRISM pNPs at the 

genus level.  
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Supplementary Figure 2.10 CLAMS analysis of the microbial extracts produced by 

Flexibacter sp. ATCC 35208. Black dots represent peaks unique to the strain, red dots 

represent unique peaks with associated known small molecules, red/blue dots represent 

known small molecules with characterized activity.  

 

 

 

 

Supplementary Figure 2.11 CLAMS analysis representing unique peaks present within 

the accumulated extracts of A. muelleri. Black represents a detected peak with no 

associated small molecule, red represents a known small molecule with no associated 

known activity. 
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Supplementary Figure 2.12 Clams analysis representing unique peaks present within the 

accumulated extracts of L. gummosus. Black dots represent a detected unique peak with 

no associated small molecule, red/blue dots indicated a known small molecule with 

characterized activity.  

 

Figure 2.13 CLAMS analysis representing the unique peaks present within the acquired 

extracts from Aquimarina sp. Black dots indicate a detected unique peak, red dots 

indicate a detected unique peak with an associated small molecule with no activity 

associations.  
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Chapter 3: Significance and Future Directions 

 Bioactive metabolites from microbes have been major influences in the medical 

field, especially due to their significant role in the treatment of infectious diseases. 

However, a general decline in discovery rates of new chemical scaffolds, and complexity 

of microbial extracts have hindered our success with natural product isolation efforts in 

present day. Despite the associated setbacks stemming from the traditional approaches of 

natural product discovery, the advent of next generation sequencing has provoked 

renewed interest in environmental microorganisms for their bioactive secondary 

metabolite potential12. While the encoded capabilities of these organisms to produce 

numerous undiscovered entities is undisputed, the prioritization and localization of such 

compounds within complex microbial extracts remains a major hurdle in moving forward 

with defining the next iteration of natural products. Nonetheless, novel research 

confronting such limitations is on the rise, with the increased development of 

unconventional methods for natural product isolation21. The combination of genomic 

information as well as the ability to chemically de-replicate against known products from 

those predicted within the genome, allows for further development of computational 

programs to aid in defining the next generation of microbial natural products with desired 

activities, whilst avoiding potential chemotypes that are unwanted. 

 The primary aim of my thesis was to develop a new platform for antimicrobial 

natural product discovery by using antimicrobial resistance genes, and the known 

chemistry of previously identified natural products, to sort and prioritize genetically 

“primed” microbes for their potential to produce natural products with divergent actions. 

This would be followed up by downstream fermentations, to uncover the possible 

bioactive predicted natural products. Chapter 2 of my thesis is the central body of work 

regarding this concept. The act of predicting natural products from genomic information 

is widely acknowledged, but the ability to readily define those with a potential to be of 

clinical importance had yet to be established. Through the development of the 

Antimicrobial Target Predictor, as described in the chapter, we sought to address this 
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concept by using a series of aligned algorithms to predict with a high degree of accuracy 

those nonribosomal peptide, and polyketide producing pathways that are likely to encode 

biosynthetic products of interest. The investigation into the predicted natural products 

identified within this chapter revealed the ability of the Siderophore Identification 

Prediction Engine to accurately predict the action of three newly identified siderophore 

compounds; acidobactin, vacidobactin, and potensibactin.  

Moreover, we were able to further demonstrate the accuracy of the pipeline in 

eliminating previously known antibiotics such as erythromycin, and to gain further insight 

into the mode of action of known compounds such as aldgamycin and bananamide 

through the pipeline with their recently published BGCs. Additionally, we were able to 

showcase the pipeline’s ability to infer relationships between previously characterized 

natural products and potential BGCs within the producing organisms. This not only 

allows for a greater understanding of the mode of action of these compounds, especially 

in respect to the known antibiotic LL-AO341, but also attracts emphasis to the pipeline’s 

ability to eliminate BGCs of natural products that have yet to be correlated to their known 

BGCs through the use of GARLIC. Lastly, this chapter draws attention to four producers 

of pNPs whose associated chemistry, and lack of notable resistance patterns possess the 

features necessary to be of potential therapeutic interest in defining new antimicrobials.  

 Future directions of this project remain focused on the four identified producers of 

pNPs and isolation thereof. In the immediate future, we continue to move forward with 

the aid of bioinformatic tool, CLAMS, to identify, connect, and characterize the pNPs 

identified via ATP from Aquimarina muelleri, Aquimarina sp., and Lysobacter 

gummosus. In regards to Flexibacter sp., we are also actively commencing final isolation 

procedures and NMR experiments to identify the pNPs identified through ATP. Other 

future goals of this project are to extend further into the exploration of the other pNPs 

identified by the ATP. Through the aid of this novel platform it is expected that 

significant progress will be made in the ability to identify chemically distinct entities 

from various microbes.  
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 The described research project showcases the value of creating allied algorithms 

to reveal new microbial natural products in a systematic fashion. Devising modern, data-

driven methods is essential to leverage the immense amount of information gained by 

both traditional methods and genomic pursuits to create an all-encompassing platform for 

discovery. Profiling the features of pNPs of microbes is possible using the ATP platform. 

The identified pNPs support the central hypothesis of this work to combine genome 

mining and resistance profiling to reveal new sources of microbial natural products. We 

expect that further studies into these identified predicted natural products will reveal 

interesting chemical scaffolds with potential therapeutic value, to meet the demand for 

new antibiotics in the era of antibiotic-resistance. 
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