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Abstract

We consider the interaction between a single colloid particle of generalized shape and nematic liquid

crystal in the framework of Landau–de Gennes theory. At the particle surface, general strong or

weak uniaxial anchoring conditions are applied as well as uniform uniaxial forcing at infinity. In

this context, it is found that the field-free Landau–de Gennes functional with surface energy admits

uniformly continuous minimizers. We then study two examples of non-spherical colloids in a limiting

regime known as the ‘small particle limit’. Explicit solutions to the small particle limit are found

in the case of a prolate and oblate spheroidal colloid with ‘almost homeotropic’ strong anchoring.

From there, a Saturn ring defect is numerically observed in both cases.

iv



Acknowledgements

First and foremost, I would like to express my deepest and sincere thanks to Dr. Lia Bronsard for her

enthusiastic support and continuous encouragement. Throughout my time at McMaster University,

Dr. Bronsard has been an ideal supervisor and role model, guiding me through the ocean of analysis

and PDEs with her wealth of knowledge on the subjects. Without her, I would certainly not have

the mathematical interests I do today.

I would also like to greatly thank Dr. Stanley Alama for his willingness to answer my burning

questions related to this work and for welcoming all of my surprise visits to his office. Our

conversations always served as a crucial learning tool and have also given me a greater appreciation

for jazz.

As well, I would like to thank Dr. Bartosz Protas for being available to answer my numerical

questions and Dr. Dmitry Pelinovsky for critiquing this work.

Finally, a very special thanks goes to my friend and officemate Alexandr Chernyavskiy for helping

me with the colloid pictures.

v



Contents

1 Introduction 1

2 Preliminaries 5

2.1 Definitions & Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Landau–de Gennes Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Mathematical Framework 13

3.1 Colloid Particles & External Domains . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Minimizing Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Nondimensionalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Minimizers 19

4.1 Existence of Minimizing Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Euler–Lagrange Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 The Small Particle Limit 37

5.1 Revisiting the Euler–Lagrange Equations . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 A Prolate Spheroidal Colloid With Strong Anchoring . . . . . . . . . . . . . . . . . . 39

5.3 An Oblate Spheroidal Colloid With Strong Anchoring . . . . . . . . . . . . . . . . . 46

vi



M.Sc. Thesis – Lee van Brussel McMaster University – Mathematics

1 Introduction

Generally speaking, a material that is classified as ‘liquid crystal’ is one in which properties of both

isotropic liquid and solid crystal are observed at the molecular level. The term isotropic liquid

corresponds exactly to the general definition of ‘liquid’ we are familiar with. In this case, all of the

molecules constituting the given material are randomly oriented throughout the entire sample.

Figure 1: Sample of isotropic liquid molecules

The complete opposite is true for solid crystal. In this state, a material’s molecular structure is

highly ordered. Although there are many types of structuring orders for solid crystal, a typical

visualization one can refer to is that of a lattice.

Much like other types of matter, liquid crystal can attain and be classified by different ‘phases’ which

generally depend on the material, temperature, etc. [6]. In each of these phases, the liquid crystal

exhibits a characteristic ordering and response to certain external factors. For our case, we will be

considering the nematic phase.

Figure 2: Subsamples α & β of nematic liquid crystal Ω.
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The visual characteristics of nematic liquid crystal are best described when viewed from a global

and local sense. In the general global view, molecules in this phase are free to flow throughout the

sample just as a liquid may. However, when restricting the focus to a sufficiently small subsample,

it is apparent that there is a preferred direction of molecular orientation and alignment. That is,

locally, molecular orientation is not random. This property is depicted in Figure 2 above.

In the context of nematic liquid crystal, there are two main non-random orientation states that

occur. The first of these states is called uniaxial. A sample of nematic liquid crystal is said to be

in the uniaxial state when there is one distinct direction of preferred alignment. Associated to this

state is a vector called the director which gives this direction.

Figure 3: Uniaxial nematic liquid crystal with director.

The second state is called biaxial and is much harder to visualize. A nematic liquid crystal in

the biaxial state amounts to having preferred alignment directions in multiple planes for a given

subsample. A visual of this state can be found in [6].

There are several mathematical models available which aim to study nematic liquid crystal. These

models are particularly useful when information about molecular configuration is desired. Two

primary theories used to do this are the Oseen–Frank model and the Landau–de Gennes model.

In the Oseen–Frank theory, the nematic liquid crystal is assumed to be uniaxial and is described by

a unit vector field n(x) ∈ S2 defined on the sample [10]. Of course, a major drawback to this model

is that the case of biaxiality is not considered. However, a more subtle flaw is in the representation

n ∈ S2 itself. By representing the liquid crystal as a vector field, there is an inherent imposed

distinction between the ‘head’ and ‘tail’ of any given molecule in the sample. But in reality, most

2



M.Sc. Thesis – Lee van Brussel McMaster University – Mathematics

molecules that comprise nematic liquid crystal have indistinguishable head and tail. To fix these

issues, we introduce the richer Landau–de Gennes theory and is what we will use in this work.

In the Landau–de Gennes framework, nematic liquid crystal is represented by a real 3×3 symmetric,

traceless matrix-valued function called a Q-tensor. This model allows for isotropic, uniaxial and

biaxial states and are characterized by the eigenvalues and eigenvectors of theQ-tensor. Furthermore,

this model describes orientation relative to RP 2 rather than S2 which takes care of the head-tail

problem as seen in the Oseen–Frank model [3]. The Landau–de Gennes model also provides us with

an energy functional F which acts on the space of Q-tensors. By minimizing this functional over

an appropriate class of Q-tensors, we obtain a means to find energy minimizing configurations of

nematic liquid crystal by observing the eigenvectors of the minimizer.

In this paper, we are interested in showing the existence of a minimizer for F in a very particular

setting. We consider a sample of nematic liquid crystal occupying all space outside some colloid

particle. At the particle’s surface, we impose that the liquid crystal be uniaxial in the sense of

Robin and Dirichlet boundary conditions (also known in the physics literature as weak and strong

anchoring respectively). Far away from the colloid (|x| → ∞) we also impose uniform uniaxial

conditions such that the director is parallel to the vertical ‘z-direction’.

Figure 4: General setup of colloid anchoring and uniform uniaxial conditions at ∞.

3
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The existence of a minimizer for F in the specific case of a spherical colloid with homeotropic

boundary conditions (where the molecules lay perpendicular to the particle’s surface, as shown in

Figure 4) is proved in [1]. Extending this result for a general colloid shape with general uniaxial

anchoring conditions is one of the main goals of our present work. We note that results on multiple

particle systems [14], different colloid structures [13] and applied electric fields [9] in similar setups

have also been studied, but is not the focus of this paper.

Another interesting topic that is studied in [1] is that of the ‘small particle limit’. The authors

consider minimizers of the spherical colloid case and a limiting regime which, in a sense, allows

one to view minimizing configurations as the particle size tends to zero. In this limit, the authors

show the existence of a ‘Saturn ring’ defect about the colloid (a circle for which the liquid crystal

abruptly becomes uniaxial). With this, the other goal of our present work is to consider the same

setup but in two different examples. In one example, we take a prolate spheroidal colloid with

‘almost homeotropic’ boundary conditions and an oblate spheroidal colloid with the same boundary

conditions. We calculate the small particle limit in both cases and show also a Saturn ring defect

can be obtained.

The paper begins with a ‘Preliminaries’ section. Here, we discuss definitions, notation and the

necessary foundation needed to use the Landau–de Gennes model. In section 3, we construct

the general domains and colloid particles we wish to consider. From there, we define the space

over which we would like to minimize the Landau–de Gennes energy functional and then perform

nondimensionalization. In section 4, we prove the existence of minimizers in our generalized setting.

The Euler–Lagrange equations are constructed and then used to show regularity results of said

minimizers. Finally, in section 5 we derive the equations used to calculate the ‘small particle solution’

that corresponds to the small particle limit in general. We end by explicitly calculating the small

particle solutions for the case of a prolate spheroidal colloid and an oblate spheroidal colloid and

qualitatively examine their Saturn ring defects.

4
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2 Preliminaries

2.1 Definitions & Notations

Points & Sets

We restrict ourselves to subsets of R3 = R×R×R. A point x ∈ R3 has coordinates (x1, x2, x3) and

|x| :=
√
x2

1 + x2
2 + x2

3

will denote the standard Euclidean norm on R3. As usual, a domain X ⊆ R3 is an open, connected

subset of R3 and its complement is defined by Xc := R3 \X. The interior, closure and boundary of

a set X will be denoted X◦, X and ∂X respectively. Using the typical notation,

Br(x0) :=
{
x ∈ R3 : |x− x0| < r

}
will represent the open ball of radius r > 0 centred at x0 ∈ R3.

Quite often, we will also use the quantity

diam(X) := sup{|x− y| : x, y ∈ X}

called the diameter of a set X.

Finally, we say a subset U ⊂ X is compactly contained in X if U ⊂ X and U is compact. This will

be denoted by U b X.

Matrices & Matrix-Valued Function Spaces

Let M3(R) be the set of all 3 × 3 real matrices Q = (Qij) and let I be the 3 × 3 identity matrix.

The standard operations of trace and transpose acting on elements of M3(R) will be denoted via

tr(Q) =

3∑
i=1

Qii and QT = (Qij)
T = (Qji)

respectively. When paired with the operation

Q1 ·Q2 = tr(QT2 Q1), Q1, Q2 ∈M3(R) (1)

5
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the set M3(R) forms an inner product space. From this, a natural norm on M3(R) can be obtained

by defining

|Q| := (Q ·Q)1/2. (2)

For the remainder of this work, we will be restricting ourselves to the subspace S0 ⊂M3(R) defined

by

S0 :=
{
Q ∈M3(R) : Q = QT , tr(Q) = 0

}
.

That is, S0 is the set of symmetric, traceless 3× 3 matrices. The reason for this restriction will be

explained in section 2.2 below. We endow S0 with the same inner product (1) as above. When this

is done, it is easy to see that S0 takes on some very desirable properties. For example, the pairing

(S0, | · |) where | · | is the naturally induced norm (2), forms a Banach space. Even more, since each

Q ∈ S0 is symmetric, the norm | · | takes the simple form

|Q| =

 3∑
i,j=1

Q2
ij

1/2

.

Let Ck(X;S0) denote the set of k-times continuously differentiable S0-valued maps Q : X → S0,

where k ≥ 0. By this, we mean Q(x) is k-times continuously differentiable if each Qij : X → R are

k-times continuously differentiable in all variables. If k = 0, we will agree to define C0(X;S0) as

the set of continuous (not necessarily differentiable) S0-valued functions. For k = ∞, we will say

C∞(X;S0) is the set of infinitely differentiable S0-valued functions. Finally, the set Ck0 (X;S0) will

denote the space of k-times continuously differentiable S0-valued functions with compact support in

X.

The gradient of a S0-valued function can be defined via ∇Q = (∇Qij) with the multiplication

convention

(∇A∇B)ij =

3∑
k=1

∇Aik · ∇Bkj

where “ · ” denotes the standard Euclidean dot product in this context.

6
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With this, note that we may then write

|∇Q| =

 3∑
i,j,k=1

(
∂Qij
∂xk

)2
1/2

.

The typical definitions of Lp-spaces may also be extended for matrix-valued functions. We say a

measurable function Q : X → S0 belongs to Lp(X;S0) if

‖Q‖Lp(X) :=



ˆ
X

3∑
i,j=1

|Qij(x)|p dx

1/p

if 1 ≤ p <∞,

3∑
i,j=1

inf{C ≥ 0 : |Qij(x)| ≤ C a.e. in X} if p =∞

is finite. That is, Q ∈ Lp(X;S0) if Qij ∈ Lp(X;R) for every 1 ≤ i, j ≤ 3. From here, we can define

the Sobolev spaces

W k,p(X;S0) := {Q ∈ Lp(X;S0) : DαQij ∈ Lp(X) ∀1 ≤ i, j ≤ 3 and ∀|α| ≤ k}

where α = (α1, α2, α3) is a multi-index such that |α| = α1 + α2 + α3 ≤ k ∈ N and

DαQij :=
∂|α|Qij

∂xα1
1 ∂xα2

2 ∂xα3
3

exists in the weak sense. The norm we impose on W k,p(X;S0) is given by

‖Q‖Wk,p(X) :=



ˆ
X

3∑
i,j=1

∑
0≤|α|≤k

|DαQij(x)|p dx

1/p

if 1 ≤ p <∞,

3∑
i,j=1

(
max

0≤|α|≤k
inf{C ≥ 0 : |DαQij(x)| ≤ C a.e. in X}

)
if p =∞

.

In the special case where k = 1 and p = 2, H1(X;S0) := W 1,2(X;S0) becomes a Hilbert space with

inner product

〈Q1, Q2〉H1(X) =

ˆ
X

(Q1 ·Q2 +∇Q1 · ∇Q2) dx

and induced norm

‖Q‖H1(X) =

(ˆ
X

(
|Q|2 + |∇Q|2

)
dx

)1/2

.

7
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To broaden this definition, we can define the space of local H1-functions H1
loc(X;S0) by stating

Q ∈ H1
loc(X;S0) if Q ∈ H1(U ;S0) for all U b X.

2.2 Landau–de Gennes Theory

In the body of this work, a great deal of interest is paid to molecular configurations and associated

minimal energies of nematic liquid crystal. An approach to understanding both of these topics and

how they are related can be found via the Landau–de Gennes model. We partition this subsection

into two categories that deal with these subjects separately.

The Space of Q-Tensors

As discussed in the introduction, we are interested in studying nematic liquid crystal while allowing

for the uniaxial, biaxial and isotropic states to be considered. Finding an efficient model that

accommodates these conditions is what lies at the heart of Landau–de Gennes theory. To start,

suppose X is a domain representing a space occupied by nematic liquid crystal. The model tells us

to consider the space of Q-tensors

S0 =
{
Q ∈M3(R) : Q = QT , tr(Q) = 0

}
as defined in section 2.1. By observing the microscopic molecular orientation distributions at each

x ∈ X, a mapping Q : X → S0 can be constructed so that the eigenvalues λi of Q(x) determine

whether the state is uniaxial, biaxial or isotropic. The characterization of these states is as follows:

Uniaxial Q-tensors

The uniaxial state is given when the eigenvalues of Q(x) satisfy any of the conditions

λi = λj 6= λk ; i, j, k ∈ {1, 2, 3} with λi = λj 6= 0.

That is, the uniaxial state is characterized by Q(x) having two equal non-zero eigenvalues. In this

way, we obtain a direction of preferred molecular alignment by observing the largest eigenvalue and

its associated eigenvector called the director. It is worth while to note here that uniaxial Q-tensors

can be written in the form

8
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Q = s

(
n⊗ n− 1

3
I

)
; s ∈ R \ {0}, n ∈ S2

as shown in [10].

Biaxial Q-tensors

Representation of nematic liquid crystal in the biaxial state is given when the eigenvalues of Q(x)

satisfy

λi < λj < λk ; i, j, k ∈ {1, 2, 3}.

This state does not admit a classic director, but taking the largest of the three distinct eigenvalues

and observing the corresponding eigenvector can be used as an approximate director.

Isotropic Q-tensors

In this final case, the only option we are left with is to have all eigenvalues equal. However, the

traceless condition from S0 allows us to easily conclude that

λ1 = λ2 = λ3 = 0.

In fact, since any Q-tensor can also always be written in a distinct form which is given by

Q = s

(
n⊗ n− 1

3
I

)
+ r

(
m⊗m− 1

3
I

)
; s, r ∈ R

where n,m are orthonormal eigenvectors of Q and s, r are piecewise linear combinations of the

eigenvalues of Q, [10, Proposition 1], we obtain that Q is isotropic when Q = 0. In a physical

sense, this condition given by the equal eigenvalues indicates that there is no preferred direction of

alignment, and thus coincides with our typical view of traditional ‘liquid’ material at the particle

level.

Stepping away from the physics momentarily, it will be convenient to shed light on a useful basis for

S0. We begin by considering the standard cylindrical coordinate system given by the equations

x1 = ρ cos(θ), x2 = ρ sin(θ), x3 = z

where ρ ∈ [0,∞), θ ∈ [0, 2π) and z ∈ (−∞,∞).

9
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Observing the orthonormal frame (eρ, eθ, ez) where

eρ = (cos(θ), sin(θ), 0), eθ = (− sin(θ), cos(θ), 0), ez = (0, 0, 1),

it can be shown that the set of matrices {Ej(θ)}5j=1 given by

E1(θ) =

√
3

2

(
ez ⊗ ez −

1

3
I

)
, E2(θ) =

1√
2

(eρ ⊗ eρ − eθ ⊗ eθ) ,

E3(θ) =
1√
2

(eρ ⊗ ez + ez ⊗ eρ) , E4(θ) =
1√
2

(eθ ⊗ ez + ez ⊗ eθ) ,

E5(θ) =
1√
2

(eθ ⊗ eρ + eρ ⊗ eθ)

(3)

form an orthonormal basis for S0. That is, S0 = span{Ej(θ)}5j=1 with Ei · Ej = δij . This basis is

extensively used in [1] and will be used in this work to compute x3-axially symmetric solutions to

some variational problems.

Landau–de Gennes Energy Functionals

In addition to the space of Q-tensors, the Landau–de Gennes model provides us with a nonlinear

functional F defined on S0 describing the energy of a physical system containing nematic liquid

crystal. This functional may take into account elastic energy, possible surface energy coming from

particle-boundary interactions, electric and magnetic fields and other forms of energy related to the

system. Our objective here is to study a field-free functional that includes particle-boundary surface

energy and will be in the form of an integral taken over an unbounded domain Ω. The technicalities

and restrictions we impose on such domains will be discussed in section 3.1. For now, it is enough to

know that Ω will be defined so that its complement Ωc could be physically interpreted as a colloid

particle (some solid body) about the origin. The associated energy components we will be using are

the following:

Elastic Energy

The elastic energy is given by the standard Dirichlet integral

FE [Q] :=
L

2

ˆ
Ω

|∇Q|2 dx (4)

where L > 0 is a material-dependent elastic constant with units given in energy per unit length.

10
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The elastic density term |∇Q|2 is a means to penalize spatial inhomogeneities within the liquid

crystal [10].

Bulk Energy

To account for bulk effects of the liquid crystal, a bulk energy is defined by

FB [Q] :=

ˆ
Ω

fB(Q) dx (5)

where

fB(Q) := −a
2

tr(Q2)− b

3
tr(Q3) +

c

4

(
tr(Q2)

)2
(6)

is the bulk energy density. The parameter a = a(T ) ≥ 0 is a material and temperature-dependent

constant with units of energy per volume times temperature. The positive parameters b and c are

material-dependent constants with units of energy per volume [12]. As done in [1], our purposes

allow us to fix a = a(T0) where T0 is the critical nematic-isotropic transition temperature. The

constant a will now have units of energy per volume.

It is apparent that fB is a fourth-order polynomial in the entries of Q and the reasoning behind this

choice of bulk density is noted in [10]. The authors claim that fB as shown in (6) is the simplest

form of the bulk density that admits a first-order nematic-isotropic phase transition and multiple

local minima.

A global minimum of fB can also be achieved. A useful fact proven in [8] that will be used a great

deal is that fB attains this global minimum on a special set of uniaxial Q-tensors given by

U∗ :=

{
Q ∈ S0 : Q = s∗

(
n⊗ n− 1

3
I

)}
(7)

where n ∈ S2 is the director and s∗ := (b +
√
b2 + 24ac)/4c > 0. With this, we can then define a

modified bulk potential

f̃B(Q) := fB(Q)− min
Q∈S0

fB(Q)

so that f̃B(Q) ≥ 0 for all Q ∈ S0 and f̃B(Q) = 0 if and only if Q ∈ U∗. Since this is a convenient

definition, we will relabel f̃B as fB and use this convention for the remainder of the paper.

11
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Surface Energy

The final component we consider is that which describes the energy at the particle’s surface. Recall

that the domain Ω is defined so that Ωc can be physically interpreted as a particle. Therefore, the

surface of the particle is given by ∂Ω and we define the energy

FS [Q] :=
W

2

ˆ
∂Ω

|Qs −Q|2 dA. (8)

Here, we take Qs to be a boundary condition of the form

Qs(x) = s∗

(
n(x)⊗ n(x)− 1

3
I

)
where n : ∂Ω → S2 is smooth. The constant W > 0 has units of energy per area and is called the

anchoring strength. We allow W to assume values from the interval (0,+∞]. For finite W , we say

that Q has weak anchoring at the particle surface and it will be discussed in section 4.2 that this

corresponds to the Robin boundary condition

L

W

∂Q

∂ν
= Qs −Q on ∂Ω

where ν is the outward unit normal to ∂Ω. When W = +∞, we say that Q has strong anchoring at

the particle surface and this case corresponds to the Dirichlet boundary condition

Q = Qs on ∂Ω.

The technicalities of this case will be discussed in section 4.2. Thus, the surface energy FS is a

means to force a particular configuration that the liquid crystal must satisfy on the surface of the

particle.

Adding the energies (4), (5) and (8), we arrive at the quantity

FΩ[Q] :=

ˆ
Ω

(
L

2
|∇Q|2 + fB(Q)

)
dx+

W

2

ˆ
∂Ω

|Qs −Q|2 dA (9)

called the Landau–de Gennes energy. The functional FΩ is represents the total energy of the system

we wish to consider and it is this energy we wish to minimize later on.

12
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3 Mathematical Framework

As stated in the introduction, a primary goal of this work is to study energy minimizing configurations

of nematic liquid crystal about some colloid particle. In particular, the liquid crystal is to satisfy a

given configuration at the particle’s surface and uniform alignment parallel to the x3-axis at infinity.

In terms of the energy (9) from section 2.2 and previously discussed terminology, this amounts to

observing the eigenvectors of some Q∗ satisfying the variational problem

FΩ[Q∗] = inf
Q∈Y
FΩ[Q] (10)

for a suitable class of domains Ω and function space Y . The space Y should be defined so that the

pointwise condition of a solution Q∗ to (10) satisfies

lim
|x|→∞

Q∗(x) = Q∞ := s∗

(
ez ⊗ ez −

1

3
I

)
. (11)

Indeed, since ez is the director corresponding to Q∞, uniform alignment along the x3-axis will occur

at infinity if (11) is enforced.

Besides the general existence of a solution Q∗ to (10), there are already several issues one must

contemplate. The first concern is effectively modelling the physical space in which we’ll be working.

In section 3.1, we will be giving a detailed mathematical description of ‘colloid particle’ and the

corresponding domain Ω. The next issue is choosing the appropriate function space Y , which in

general is a fairly challenging task. Section 3.2 will be dedicated to defining a space with the desired

properties discussed above.

Recall also from the introduction that we are interested in observing minimizing configurations in

the small particle limit. To make sensible comparisons using this limit, the functional FΩ must be

nondimensionalized and will be done in section 3.3.

3.1 Colloid Particles & External Domains

To model our problem appropriately, we need to define a class of domains which possess sufficiently

nice mathematical properties and physically meaningful geometry in the sense of liquid crystal-

13
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particle interaction. To do this, we will describe a ‘colloid particle’ as an element of the set

K :=
{
K ⊂ R3 : K is compact, star-convex with respect to 0 ∈ K◦ and ∂K ∈ C∞

}
. (12)

The condition that 0 ∈ K◦ is for technical reasons that will be seen later, while star-convexity

ensures reasonable boundary behaviour. Since our problem is to consider liquid crystal occupying

all space about some colloid particle, the domains of interest are subsets from the collection

ED := {Ω ⊂ R3 : Ω = Kc for K ∈ K} (13)

which we will call the set of external domains. That is, ED is defined as the collection of sets which

are exterior to sets belonging to K.

A simple example of a domain Ω ∈ ED is to take K = B1(0) ∈ K as the closed unit ball centred at

the origin and define Ω = B1(0)
c
.

x2

x3

x1

Ω

K

Figure 5: Example of an External Domain Ω = Kc = B1(0)
c
.

Since every external domain is unbounded, it may be difficult to work with Ω ∈ ED directly in

certain circumstances. However, results involving unbounded domains can often be shown using

some ‘approximating’ sequence of bounded open sets. For this reason, we will construct such a

sequence for Ω ∈ ED. In particular, we will build a sequence {Ωn}∞n=1 of bounded open sets for

Ω ∈ ED such that

14
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
Ωn ⊂ Ωn+1 ∀n ∈ N,

Ωn b Ω ∀n ∈ N,⋃∞
n=1 Ωn = Ω

. (14)

To do this, we consider first an extension of a set K ∈ K. Since ∂K is smooth, the outward normal

ν(x) is a smooth function of x ∈ ∂K. At each point x0 ∈ ∂K, define the normal line segment

`n(x0) :=

{
x0 +

t

n
ν(x0) ∈ R3 : 0 ≤ t ≤ 1, n ∈ N fixed

}
and let

Kn := K
⋃( ⋃

x0∈∂K

`n(x0)

)
.

With this, note that {Kn}∞n=1 is a decreasing sequence of sets in K (i.e., Kn+1 ⊂ Kn for all n ∈ N)

and

∞⋂
n=1

Kn = K.

Let rn = diam(K1) + n and consider the open ball Brn(0). By our choice of rn, Kn is strictly

contained in Brn(0) for each n ≥ 1 and of course {Brn(0)}∞n=1 is an increasing sequence (i.e.,

Brn(0) ⊂ Brn+1(0) for all n ∈ N) satisfying ∪∞n=1Brn(0) = R3. Define the bounded open set

Ωn := Brn(0) \Kn. (15)

Given {Brn(0)}∞n=1 is increasing and {Kn}∞n=1 is decreasing with Kn ⊂ Brn(0), it is obvious that

{Ωn}∞n=1 is increasing. Also,

∞⋃
n=1

Ωn =

∞⋃
n=1

(Brn(0) \Kn) = R3 \K = Kc =: Ω ∈ ED.

By construction we also have Ωn b Ω for all n ∈ N. Thus, {Ωn}∞n=1 is a sequence of bounded open

sets satisfying the desired properties (14). Since this process can be done for any K ∈ K, we obtain

that every Ω ∈ ED can be given as a countable union of sets of the form (15). A simple example of

this construction can be seen again by considering Ω = Kc = B1(0)
c
. Here, we have

Kn = B1+ 1
n

(0), rn = diam(K1) + n = 4 + n, Ωn = Brn(0) \Kn.

15



M.Sc. Thesis – Lee van Brussel McMaster University – Mathematics

3.2 Minimizing Sets

Recall that we are interested in finding a function space Y such that the variational problem (10) is

satisfied by some Q∗ ∈ Y with lim|x|→∞Q∗(x) = Q∞. Fortunately, such a space has been carefully

constructed in [1] for the special case where Ω = B1(0)
c
.

The authors of [1] start by replacing the pointwise condition (11) by the integrability condition

ˆ
B1(0)

c

|Q−Q∞|2

|x|2
dx <∞

and claim that (11) can be recovered by resorting to estimates using the Euler–Lagrange equations

associated to FΩ. From here, they define the affine Hilbert space H∞

H∞ := H+Q∞

H :=

{
Q ∈ H1

loc(B1(0)
c
;S0) :

ˆ
B1(0)

c

|Q|2

|x|2
dx+

ˆ
B1(0)

c
|∇Q|2 dx <∞

}
.

With this, the authors then prove the existence of some QB ∈ H∞ that satisfies

FB1(0)[QB ] = inf
Q∈H∞

FB1(0)[Q]

and condition (11) [1, Proposition 3].

Using this construction as a guideline, we can consider a generalization for arbitrary external

domains. To do this, let Ω ∈ ED and define the Hilbert space

HΩ :=

{
Q ∈ H1

loc(Ω;S0) :

ˆ
Ω

|Q|2

|x|2
dx+

ˆ
Ω

|∇Q|2 dx <∞
}

with associated inner product

〈Q1, Q2〉HΩ :=

ˆ
Ω

Q1 ·Q2

|x|2
dx+

ˆ
Ω

(∇Q1 · ∇Q2) dx

and induced norm

‖Q‖HΩ := 〈Q,Q〉1/2HΩ =

(ˆ
Ω

|Q|2

|x|2
dx+

ˆ
Ω

|∇Q|2 dx
)1/2

.

16
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Again as in [1], we define the affine Hilbert space

HΩ
∞ := HΩ +Q∞.

Since any element of Q ∈ HΩ
∞ is of the form Q = Q̃+Q∞ for Q̃ ∈ HΩ, we can rearrange to obtain

Q̃ = Q−Q∞ and

ˆ
Ω

|Q−Q∞|2

|x|2
dx =

ˆ
Ω

|Q̃|2

|x|2
dx <∞ (16)

is satisfied by definition of HΩ. Thus, the integrability condition (16) is an inherent property of the

set HΩ
∞ and as in [1], we claim that (16) will be enough to recover the pointwise condition (11).

This will be shown later in section 4.3 and follows from observing the Euler–Lagrange equations

associated to FΩ. With this and results from 4.1, it will be clear that HΩ
∞ is an appropriate choice

of function space.

The idea behind imposing condition (16) is due to the inherent unboundedness of external domains

Ω ∈ ED. Indeed, for Ω unbounded we no longer have the useful results of Poincaré’s inequality

or particular compactness theorems. By imposing (16), the definition of HΩ is such that Hardy’s

inequality can be implemented and thus acts as a compromise for our unbounded setting. For a

thorough reference on Hardy’s inequality, one can see [2]. We end this subsection with a useful fact

about HΩ. It is presented in the following lemma and will be needed later for proving existence to

the variational problem (10):

Lemma 3.1. Suppose Ω ∈ ED and let {Qn}∞n=1 be a sequence of functions in HΩ such that Qn ⇀ Q

weakly in HΩ for some Q ∈ HΩ. Then, up to a suitable subsequence, Qn(x)→ Q(x) pointwise almost

everywhere in Ω.

Proof of Lemma 3.1. Let {Ωn}∞n=1 be an approximating sequence for Ω where each Ωn is of the

form (15) as constructed in section 3.1. Given Qn ⇀ Q inHΩ, we have Qn ⇀ Q inHΩ1 since Ω1 ⊂ Ω.

Using the fact that Ω1 b Ω, the definition ofHΩ ⊂ H1
loc(Ω;S0) implies Qn ⇀ Q in H1(Ω1;S0). Thus,

there exists a subsequence of {Qn}∞n=1 (denoted by {Qn,1}∞n=1) such that Qn,1(x)→ Q(x) pointwise

almost everywhere in Ω1. But since {Qn,1}∞n=1 is a subsequence of {Qn}∞n=1, the uniqueness of weak

limits gives Qn,1 ⇀ Q in HΩ. Applying the same procedure with this subsequence, Qn,1 ⇀ Q in

HΩ implies Qn,1 ⇀ Q in HΩ2 since Ω2 ⊂ Ω. Again, using the fact that Ω2 b Ω, the definition of

17
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HΩ gives Qn,1 ⇀ Q in H1(Ω2;S0). As before, there exists a subsequence of {Qn,1}∞n=1 (denoted

by {Qn,2}∞n=1) such that Qn,2(x)→ Q(x) pointwise almost everywhere in Ω2. By the uniqueness of

weak limits, Qn,2 ⇀ Q in HΩ. Continuing in this way, we obtain subsequences {Qn,k}∞n=1 so that

Qn,k(x)→ Q(x) pointwise almost everywhere in Ωk with Qn,k ⇀ Q in HΩ.

Next, we claim that the subsequence {Qn,n}∞n=1 satisfiesQn,n(x)→ Q(x) pointwise almost everywhere

in all of Ω. From above, we know that the subsequence {Qn,N0
}∞n=1 satisfies Qn,N0

(x) → Q(x)

pointwise almost everywhere in ΩN0
. By the nature of {Ωn}∞n=1, we may choose any x ∈ Ω so that

for some N ∈ N, x ∈ Ωn for all n ≥ N . Thus, choose x0 ∈ Ω so that for N0 = N ∈ N large enough,

x0 ∈ Ωn for all n ≥ N and Qn,N (x0) → Q(x0) pointwise in ΩN . By construction, {Qn,n}∞n=1 is a

subsequence of {Qn,N}∞n=1 when n ≥ N . In particular, Qn,n(x0) → Q(x0) in Ωn for all n ≥ N .

Since this may be done for almost any x0 ∈ Ω, we conclude that Qn,n(x)→ Q(x) pointwise almost

everywhere in Ω.

3.3 Nondimensionalization

Closely following the methods of [1] and [12, Appendix A], we nondimensionalize the functional FΩ.

To begin, let µ represent a natural length scale of the domain Ω ∈ ED. For our case, µ in some

way should characterize the relative size of the colloid particle. As an example, if Ω = Br(0)
c

then

one can take µ = r as done in [1]. For x ∈ Ω, define x̂ := x/µ so that x̂ is nondimensional and let

Ω̂ = {x/µ : x ∈ Ω}. By change of variables, dx = µdx̂ and

1

µ3
FΩ̂ =

ˆ
Ω̂

(
L

2µ2
|∇Q̂|2 + fB(Q̂)

)
dx+

W

2µ

ˆ
∂Ω̂

|Q̂s − Q̂|2 dA

where Q(x) = Q̂(x̂) and each term now has units of energy per volume. Using the parameter

a = a(T0) as a reference energy (as defined in section 2.2), dividing through by a we obtain

F̂Ω̂ =

ˆ
Ω̂

(
L̂

2
|∇Q̂|2 + f̂B(Q̂)

)
dx+

Ŵ

2

ˆ
∂Ω̂

|Q̂s − Q̂|2 dA

where F̂Ω̂ is now nondimensional, f̂B is simply fB with parameters a, b, c normalized by a and

L̂ =
L

µ2a
, Ŵ =

Wµa

L
.

Relabeling F̂Ω̂ as FΩ, we now assume FΩ has been nondimensionalized from now on.

18
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4 Minimizers

With the proper mathematical framework in place, the variational problem (10) can be presented

more specifically. Taking Ω ∈ ED and Y = HΩ
∞, problem (10) now takes the form

FΩ[Q∗] = inf
Q∈HΩ

∞

FΩ[Q]

where the hope is to find a solution Q∗ ∈ HΩ
∞. In section 4.1, an exact formulation of this problem

will be given, along with its existence result. The Euler–Lagrange equations (to be derived in 4.2)

will then be used in section 4.3 to show regularity results of the solution Q∗ ∈ HΩ
∞ and that (11)

lim
|x|→∞

Q∗(x) = Q∞.

is satisfied.

4.1 Existence of Minimizing Solutions

The following proposition expands the existence result found in [1, Proposition 3] for general external

domains Ω.

Proposition 4.1. Let L > 0, W ∈ (0,+∞] and suppose Ω ∈ ED. Then there exists Q∗ ∈ HΩ
∞ such

that

FΩ[Q∗] = inf
Q∈HΩ

∞

FΩ[Q]. (17)

Proof of Proposition 4.1. This result follows from the direct method of the calculus of variations

[5]. We proceed by confirming that the following three steps hold:

Step 1: FΩ is bounded below and is finite for some Q ∈ HΩ
∞;

Step 2: Any minimizing sequence of FΩ admits a weak limit (up to a subsequence);

Step 3: FΩ is lower semicontinuous.

Step 1:

It is trivial that FΩ ≥ 0 since the elastic energy FE , bulk energy FB and surface energy FS are

non-negative on HΩ
∞. To show FΩ admits finite energy, the cases where W < +∞ and W = +∞
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will be considered separately. In the case of weak anchoring, let Q = Q∞+ Φ where Φ ∈ C∞0 (Ω;S0)

is arbitrary. Denote the support of Φ by XΦ and notice that Q∞ ∈ U∗. Therefore, fB(Q∞) = 0 and

we can write

FΩ[Q] =

ˆ
Ω\XΦ

+

ˆ
XΦ

[
L

2
|∇(Q∞ + Φ)|2 + fB(Q∞ + Φ)

]
dx+

W

2

ˆ
∂Ω

|Qs − (Q∞ + Φ)|2 dA

=

ˆ
XΦ

(
L

2
|∇Φ|2 + fB(Q∞ + Φ)

)
dx+

W

2

ˆ
∂Ω

|Qs − (Q∞ + Φ)|2 dA.

Since XΦ is of finite measure and Φ is smooth, the first integral above is finite. By definition, the

surface matrix Qs and boundary ∂Ω are smooth and so we also obtain finite surface energy. Thus,

there exists Q ∈ HΩ
∞ for which FΩ[Q] < ∞. In the case of strong anchoring, we consider maps

Q ∈ HΩ
∞ for which Q = Qs on ∂Ω in the trace sense. As before, define Q = Q∞ + Φ but now take

Φ ∈ C∞0 (Ω;S0) such that Φ = Qs −Q∞ on ∂Ω. Then

ˆ
∂Ω

|Qs −Q|2 dA = 0

and we have FΩ[Q] <∞ by the same arguments used in the weak anchoring case.

Step 2:

Let

m := inf
Q∈HΩ

∞

FΩ[Q]

and let {Qn}∞n=1 be a minimizing sequence in HΩ
∞ with W < +∞. By definition, there exists N ∈ N

such that

m+ 1 ≥ FΩ[Qn] =

ˆ
Ω

(
L

2
|∇Qn|2 + fB(Qn)

)
dx+

W

2

ˆ
∂Ω

|Qs −Qn|2 dA

for all n ≥ N . In particular, the non-negativity of fB and FS allows us to write

m+ 1 ≥ FΩ[Qn] ≥
ˆ

Ω

L

2
|∇Qn|2 dx =⇒ 4(m+ 1)

L
≥ 2

ˆ
Ω

|∇Qn|2 dx.

Recall that since Qn ∈ HΩ
∞, we have the representation Qn = Q∞+ Q̃n where Q̃n ∈ HΩ. Using this

and invoking Hardy’s inequality,
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2

ˆ
Ω

|∇Qn|2 dx = 2

ˆ
Ω

|∇Q̃n|2 dx ≥
ˆ

Ω

|∇Q̃n|2 dx+ C

ˆ
Ω

|Q̃n|2

|x|2
dx

where C > 0 is a constant independent of n.

If C ≥ 1, then

4(m+ 1)

L
≥
ˆ

Ω

|∇Q̃n|2 dx+

ˆ
Ω

|Q̃n|2

|x|2
dx = ‖Q̃n‖2HΩ .

If C < 1, then

4(m+ 1)

L
≥ C

ˆ
Ω

|∇Q̃n|2 dx+ C

ˆ
Ω

|Q̃n|2

|x|2
dx = C‖Q̃n‖2HΩ .

In both situations, the sequence {Q̃n}∞n=1 is uniformly bounded in HΩ. Since HΩ is a Hilbert space,

there exists a subsequence (still denoted {Q̃n}∞n=1) such that Q̃n ⇀ Q̃∗ in HΩ for some Q̃∗ ∈ HΩ.

Defining

Q∗ := Q̃∗ +Q∞,

we obtain that Q∗ ∈ HΩ
∞ is the weak limit of the minimizing subsequence

{Qn}∞n=1 = {Q̃n +Q∞}∞n=1.

In the case where W = +∞, let {Qn}∞n=1 be a minimizing sequence such that Qn = Qs on ∂Ω in

the trace sense for each n ∈ N. Applying the same arguments as in the weak anchoring case, we

obtain a subsequence {Qn}∞n=1 ⊂ HΩ
∞ with weak limit Q∗ ∈ HΩ

∞.

Step 3:

By Lemma 3.1, we may assume that the minimizing subsequence {Qn}∞n=1 satisfies Qn(x)→ Q∗(x)

pointwise almost everywhere in Ω. Consider the sequence {fB(Qn)}∞n=1 and define

f(x) := lim
n→∞

fB(Qn(x)), x ∈ Ω.

Since fB is continuous,

fB(Q∗(x)) = lim
n→∞

fB(Qn(x)) = f(x)
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almost everywhere in Ω. Applying Fatou’s lemma,

ˆ
Ω

fB(Q∗) dx ≤ lim inf
n→∞

ˆ
Ω

fB(Qn) dx.

Using the convexity of the remaining energy terms in FΩ, we have

m ≤ FΩ[Q∗] ≤ lim inf
n→∞

FΩ[Qn] = m =⇒ FΩ[Q∗] = m.

Thus, the direct method gives the existence of a minimizer Q∗ ∈ HΩ
∞ to the problem (17).

4.2 Euler–Lagrange Equations

The main focus of this section deals primarily with deriving the Euler–Lagrange equations as shown

in the following proposition. The equations will be used to show regularity results in section 4.3.

Proposition 4.2. Suppose Q ∈ HΩ
∞ is a minimizer of FΩ. Then Q weakly satisfies the system of

semilinear partial differential equations

L∆Q = −aQ− b
(
Q2 − 1

3
|Q|2I

)
+ c|Q|2Q (18)

in Ω and weakly satisfies the boundary conditions
L

W

∂Q

∂ν
= Qs −Q if W < +∞

Q = Qs if W = +∞

on ∂Ω where the Dirichlet boundary condition can be interpreted in the trace sense.

Before committing our efforts to deriving (18), it will be worth while to note a subtlety from

the previous section. By using HΩ
∞ as our minimizing space, we are directly imposing that any

minimizing solution Q∗ of FΩ will satisfy the trace condition tr (Q∗) = 0. On the other hand,

there is nothing inherent about the functional FΩ which imposes this traceless constraint in general.

Therefore, without reference to HΩ
∞, an arbitrary solution Q∗ to the Euler–Lagrange equations

constructed from FΩ does not necessarily have to satisfy tr(Q∗) = 0. However, modifications to the

Lagrangian

L(x,Q,∇Q) :=
L

2
|∇Q|2 + fB(Q)

22



M.Sc. Thesis – Lee van Brussel McMaster University – Mathematics

can be made to rectify this issue.

To start, consider the technique used in [8] to show that fB attains its minimum on the set of

uniaxial Q-tensors U∗. The first realization is that fB can be recast in terms of the eigenvalues of

Q. Indeed, suppose λ1, λ2, λ3 are the eigenvalues of Q. Then since tr (Qn) =
∑3
i=1 λ

n
i , one has

fB(Q) = fB(λ1, λ2, λ3) := −a
2

3∑
i=1

λ2
i −

b

3

3∑
i=1

λ3
i +

c

4

(
3∑
i=1

λ2
i

)2

.

Via the method of Lagrange multipliers, we minimize fB(λ1, λ2, λ3) subject to the constraint

g(λ1, λ2, λ3) :=
∑3
i=1 λi = 0. Proceeding as usual, define the auxiliary function

f̃(λ1, λ2, λ3) := fB(λ1, λ2, λ3)− δg(λ1, λ2, λ3)

where δ is the associated Lagrange multiplier. As given in [8], for each i = 1, 2, 3

∂f̃

∂λi
= 0 ⇐⇒ −aλi − bλ2

i + c

 3∑
j=1

λ2
j

λi = δ.

Also, ∂f̃/∂λi = 0 for each i = 1, 2, 3 =⇒
∑3
i=1 ∂f̃/∂λi = 0 and so

−a
3∑
i=1

λi − b
3∑
i=1

λ2
i + c

 3∑
j=1

λ2
j

 3∑
i=1

λi = 3δ.

Imposing the condition
∑3
i=1 λi = 0, we are left with

−a · 0− b
3∑
i=1

λ2
i + c

 3∑
j=1

λ2
j

 · 0 = 3δ =⇒ δ = − b
3

3∑
i=1

λ2
i .

Resorting back to the original notation, we have found that the appropriate Lagrange multiplier is

given by δ = −(b/3)tr
(
Q2
)
. Therefore, by taking δ = −(b/3)tr

(
Q2
)
, the function f̃ is a modification

of fB which enforces the traceless constraint. With the same logic, it is easy to see that the

Lagrangian

L̃(x,Q,∇Q) :=
L

2
|∇Q|+ fB(Q)− λtr(Q)

is a modification of L which enforces the traceless condition if we take λ = −(b/3)tr
(
Q2
)
. Notice

also that if we define F̃Ω[Q] =
´

Ω
L̃(x,Q,∇Q) dx+ FS [Q], then there is Q∗ ∈ HΩ

∞ such that
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FΩ [Q∗] = inf
Q∈HΩ

∞

FΩ[Q] = inf
Q∈HΩ

∞

F̃Ω[Q] = F̃Ω [Q∗]

since L = L̃ over HΩ
∞. Thus, a minimizer of FΩ will at least weakly satisfy the Euler–Lagrange

equations derived from F̃Ω. Using this and the fact that L̃ incorporates the traceless condition

directly, it will make more sense for us to construct the Euler–Lagrange equations from F̃Ω as

opposed to FΩ. This way, solutions to the Euler–Lagrange equations will automatically satisfy the

traceless constraint, regardless of reference to the minimizing space HΩ
∞.

We now derive the Euler–Lagrange equations (18) via the first variation of F̃Ω.

Proof of Proposition 4.2. Let Q ∈ HΩ
∞ be a minimizer of

F̃Ω[Q] =

ˆ
Ω

(
L

2
|∇Q|+ fB(Q)− λtr(Q)

)
+
W

2

ˆ
∂Ω

|Qs −Q|2 dA

where λ = −(b/3)tr
(
Q2
)

is the associated Lagrange multiplier accounting for tracelessness. The

first variation of F̃Ω is given by

d

dε
F̃Ω[Q+ εΦ]

∣∣∣∣
ε=0

= 0

where Φ ∈ C∞0 (Ω;S0) is a smooth, compactly supported matrix-valued function on Ω and ε 6= 0 is

a scalar. We calculate this quantity in a number of steps, starting with the elastic energy term.

d

dε

ˆ
Ω

L

2
|∇(Q+ εΦ)|2 dx =

ˆ
Ω

L
2

d

dε

3∑
i,j=1

|∇Qij + ε∇Φij |2
 dx

=

ˆ
Ω

L
2

d

dε

3∑
i,j,k=1

(
∂Qij
∂xk

+ ε
∂Φij
∂xk

)2
 dx

=

ˆ
Ω

L 3∑
i,j,k=1

(
∂Qij
∂xk

+ ε
∂Φij
∂xk

)
∂Φij
∂xk

 dx.

Setting ε = 0 gives

(
d

dε

ˆ
Ω

L

2
|∇(Q+ εΦ)|2 dx

)∣∣∣∣
ε=0

=

ˆ
Ω

L 3∑
i,j,k=1

∂Qij
∂xk

∂Φij
∂xk

 dx

=

ˆ
Ω

L∇Q · ∇Φ dx.
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Recognizing that Q ∈ H1
loc(Ω) and using Φ ∈ C∞0 (Ω;S0), we can integrate by parts to obtain(

d

dε

ˆ
Ω

L

2
|∇(Q+ εΦ)|2 dx

)∣∣∣∣
ε=0

= −
ˆ

Ω

LQ ·∆Φ dx+

ˆ
∂Ω

LQ · ∂Φ

∂ν
dA. (19)

Next we calculate (
d

dε

ˆ
Ω

fB(Q+ εΦ) dx

)∣∣∣∣
ε=0

by first individually computing each of the terms

(a)
d

dε

ˆ
Ω

−a
2

tr
(
(Q+ εΦ)2

)
dx

(b)
d

dε

ˆ
Ω

− b
3

tr
(
(Q+ εΦ)3

)
dx

(c)
d

dε

ˆ
Ω

c

4
tr
(
(Q+ εΦ)2

)2
dx

and then taking ε = 0. For the sake of organization, we define the matrix G(ε) = Q + εΦ so that

Gij(0) = Qij and G′ij(ε) = Φij .

(a)

d

dε

ˆ
Ω

−a
2

tr
(
G2
)
dx =

ˆ
Ω

−a
2

d

dε
|G|2 dx =

ˆ
Ω

−a 3∑
i,j=1

Gij(ε)G
′
ij

 dx.

Taking ε = 0,

(
d

dε

ˆ
Ω

−a
2

tr
(
G2
)
dx

)∣∣∣∣
ε=0

=

ˆ
Ω

−a 3∑
i,j=1

QijΦij

 dx =

ˆ
Ω

(−aQ · Φ) dx.

(b)

First, we recognize that tr(G3) =
∑5
j=1 Pj(ε) where

P1 = G3
11 +G3

22 +G3
33, P2 = 3G2

12 (G11 +G22) ,

P3 = 3G2
13 (G11 +G33) , P4 = 3G2

23 (G22 +G33) ,

P5 = 6G12G13G23.
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Then

d

dε

ˆ
Ω

− b
3

tr
(
G3
)
dx =

ˆ
Ω

− b
3

5∑
j=1

P ′j(ε)

 dx

and we calculate

1

3
P ′1(0) = Q2

11Φ11 +Q2
22Φ22 +Q2

33Φ33

1

3
P ′2(0) = Q2

12(Φ11 + Φ22) + 2Q12Φ12(Q11 +Q22)

1

3
P ′3(0) = Q2

13(Φ11 + Φ33) + 2Q13Φ13(Q11 +Q33)

1

3
P ′4(0) = Q2

23(Φ22 + Φ33) + 2Q23Φ23(Q22 +Q33)

1

3
P ′5(0) = 2Φ12Q13Q23 + 2Q12Φ13Q23 + 2Q12Q13Φ23.

Summing the above and factoring with respect to Φij , it straightforward to check

1

3

5∑
j=1

P ′j(0) = Q2 · Φ

and therefore (
d

dε

ˆ
Ω

− b
3

tr
(
G3
)
dx

)∣∣∣∣
ε=0

=

ˆ
Ω

(
−bQ2 · Φ

)
dx.

(c)

It is convenient to recognize

d

dε
tr(G2)2 =

d

dε

 3∑
i,j=1

G2
ij

2

= 2

 3∑
i,j=1

G2
ij

 5∑
i,j=1

d

dε
G2
ij .

Setting ε = 0 and referring to the calculations done in (a), we obtain

2

 3∑
i,j=1

Gij(0)2

 5∑
i,j=1

d

dε
G2
ij

∣∣∣∣
ε=0

= 2|Q|2(2Q · Φ) = 4(|Q|2Q · Φ).

Therefore (
d

dε

ˆ
Ω

c

4
tr
(
G2
)2
dx

)∣∣∣∣
ε=0

=

ˆ
Ω

c|Q|2Q · Φ dx.
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Adding parts (a), (b) and (c),(
d

dε

ˆ
Ω

fB(Q+ εΦ) dx

)∣∣∣∣
ε=0

=

ˆ
Ω

(
−aQ− bQ2 + c|Q|2Q

)
· Φ dx. (20)

Next,

d

dε
λ tr(Q+ εΦ) = λ

3∑
i=1

Φii = λI · Φ

and so (
d

dε
λ tr(Q+ εΦ)

)∣∣∣∣
ε=0

=

ˆ
Ω

λI · Φ dx =

ˆ
Ω

(
−1

3
|Q|2I · Φ

)
dx. (21)

Finally, using a similar calculation as done in (a)(
d

dε

W

2

ˆ
∂Ω

|Qs − (Q+ εΦ)|2 dA
)∣∣∣∣

ε=0

= −W
ˆ
∂Ω

(Qs −Q) · Φ dA. (22)

Summing (19), (20), (21) and (22), the first variation of F̃Ω is given by

−
ˆ

Ω

LQ ·∆Φ dx+

ˆ
Ω

(
−aQ− b

(
Q2 − 1

3
|Q|2I

)
+ c|Q|2Q

)
· Φ dx

+

ˆ
∂Ω

LQ · ∂Φ

∂ν
dA−W

ˆ
∂Ω

(Qs −Q) · Φ dA = 0.

In the special case where Φ ∈ C∞0 (Ω;S0), then

ˆ
∂Ω

LQ · ∂Φ

∂ν
dA = W

ˆ
∂Ω

(Qs −Q) · Φ dA = 0

and we are left with

−
ˆ

Ω

LQ ·∆Φ dx+

ˆ
Ω

(
−aQ− b

(
Q2 − 1

3
|Q|2I

)
+ c|Q|2Q

)
· Φ dx = 0

holding for all Φ ∈ C∞0 (Ω;S0). That is, Q weakly satisfies (18)

L∆Q = −aQ− b
(
Q2 − 1

3
|Q|2I

)
+ c|Q|2Q.

Now, for general Φ ∈ C∞0 (Ω;S0), Q still weakly satisfies (18) but we now have the extra condition

ˆ
∂Ω

LQ · ∂Φ

∂ν
dA−W

ˆ
∂Ω

(Qs −Q) · Φ dA = 0
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forced by definition of the first variation. In other words,

L

W

∂Q

∂ν
= Qs −Q (23)

weakly on ∂Ω.

We can now see how the anchoring strength W dictates the boundary condition at the particle

surface. In the case of weak anchoring (W < +∞), the Robin boundary condition (23) is left as is.

For the case of strong anchoring (W = +∞), observe that in the weak formulation

ˆ
∂Ω

(Qs −Q) · Φ dA =
L

W

ˆ
∂Ω

Q · ∂Φ

∂ν
dA = 0

for all Φ ∈ C∞0 (Ω,S0). Since Qs and ∂Ω are smooth and Q ∈ H1
loc(Ω;S0), the trace theorem implies

that we may think of Q = Qs in the trace sense for W = +∞.

4.3 Regularity

In general, a minimizer Q ∈ HΩ
∞ of FΩ is dependent on the parameters L and W . To indicate this,

one may write Q = QL,W for particular L and W . However, solutions to (18) have the nice property

that they are bounded, independent of L and W .

Lemma 4.3. Let Ω ∈ ED and suppose Q ∈ HΩ
∞ solves (18). Then ‖Q‖L∞(Ω) ≤ γ for some

γ = γ(Ω, Qs, a, b, c) > 0.

The proof of Lemma 4.3 follows almost identically to that as done in [1, Lemma 5]. However, we

reproduce the proof here to extend the result for generalized Ω and to fill in omitted details. Before

proving Lemma 4.3, it will be worth while to prove the following result:

Proposition 4.4. Let Q ∈ HΩ
∞ with Q̃ = Q−Q∞ ∈ HΩ. Then(

−aQ− b
(
Q2 − 1

3
|Q|2 I

)
+ c |Q|2Q

)
· Q̃ ∼ c|Q̃|4

as |Q̃| → ∞.

Proof of Proposition 4.4. By linearity of the inner product,(
−aQ− b

(
Q2 − 1

3
|Q|2 I

)
+ c |Q|2Q

)
· Q̃ = −aQ · Q̃− bQ2 · Q̃+

b

3
|Q|2 I · Q̃+ c |Q|2Q · Q̃.
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Let us now analyze the following terms individually

(a) − aQ · Q̃

(b) − bQ2 · Q̃

(c)
b

3
|Q|2 I · Q̃

(d) c |Q|2Q · Q̃

and then comment on their asymptotic behaviour.

(a)

Rewriting,

Q · Q̃ =
(
Q∞ + Q̃

)
· Q̃

= tr
(
Q̃
(
Q∞ + Q̃

))
= tr

(
Q̃Q∞

)
+ |Q̃|2

= −s∗
3

(
Q̃11 + Q̃22

)
+

2s∗
3
Q̃33 + |Q̃|2

= −s∗
3

(
−Q̃33

)
+

2s∗
3
Q̃33 + |Q̃|2 (since Q̃ ∈ S0)

= s∗Q̃33 + |Q̃|2.

Of course, since |Q̃|2 =
∑
ij Q̃

2
ij ≥ s∗Q̃33 for |Q̃| large enough, we have that −aQ · Q̃ ∼ −a|Q̃|2 as

|Q̃| → ∞.

(b)

In this step, we will not comment on asymptotic behaviour, but will recognize useful upper bounds

needed later.

Q2 · Q̃ = tr

(
Q̃
(
Q∞ + Q̃

)2
)

= tr
(
Q̃Q2
∞

)
+ 2 tr

(
Q̃2Q∞

)
+ tr

(
Q̃3
)
.
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Calculating the first two terms, we have

tr
(
Q̃Q2
∞

)
=
s2
∗
9

(
Q̃11 + Q̃22

)
+

4s2
∗

9
Q̃33

=
s2
∗
9

(
−Q̃33

)
+

4s2
∗

9
Q̃33

=
s2
∗
3
Q̃33

and

2 tr
(
Q̃2Q∞

)
= −2s∗

3

(
Q̃2

11 + Q̃2
12 + Q̃2

13

)
− 2s∗

3

(
Q̃2

12 + Q̃2
22 + Q̃2

23

)
+

4s∗
3

(
Q̃2

13 + Q̃2
23 + Q̃2

33

)
≤ 0 + 0 + 4s∗

(
2Q̃2

13 + 2Q̃2
23 + Q̃2

33

)
≤ 4s∗|Q̃|2

Furthermore, from [10, Lemma 13]

tr
(
Q̃3
)
≤ |Q̃|

3

√
6
.

Comparing all terms, it is obvious that for |Q̃| sufficiently large, Q2 · Q̃ ≤ |Q̃|3. Therefore, we expect

the asymptotic behaviour of bQ2 · Q̃ to be no larger than b|Q̃|3.

(c)

It is easy to see that

b

3
|Q|2 I · Q̃ =

b

3
|Q|2 tr

(
Q̃I
)

= 0

since Q̃ ∈ S0.

(d)

Finally,

c |Q|2Q · Q̃ = c
∣∣∣Q∞ + Q̃

∣∣∣2 tr
(
Q̃
(
Q∞ + Q̃

))
= c

∣∣∣Q∞ + Q̃
∣∣∣2 (tr

(
Q̃Q∞

)
+ |Q̃|2

)
= c

∣∣∣Q∞ + Q̃
∣∣∣2 (s∗Q̃33 + |Q̃|2

)
.
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Also, ∣∣∣Q∞ + Q̃
∣∣∣2 =

2s2
∗

3
+ 2s∗Q̃33 + |Q̃|2

and thus

c |Q|2Q · Q̃ = c

(
2s2
∗

3
+ 2s∗Q̃33 + |Q̃|2

)(
s∗Q̃33 + |Q̃|2

)
∼ c|Q̃|4.

Comparing parts (a) through (d), we gather that the term c |Q|2Q · Q̃ from part (d) dominates for

large |Q̃|. Therefore, (
−aQ− b

(
Q2 − 1

3
|Q|2 I

)
+ c |Q|2Q

)
· Q̃ ∼ c|Q̃|4

as |Q̃| → ∞.

We may now proceed with the proof of Lemma 4.3. For the sake of space and notation, we label the

righthand side of (18)

∇fB(Q) = −aQ− b
(
Q2 − 1

3
|Q|2I

)
+ c|Q|2Q

as done in [1].

Proof of Lemma 4.3. By definition of HΩ
∞, the matrix Q has the form Q = Q∞ + Q̃ where

Q̃ ∈ HΩ. Since Q∞ is a constant matrix, ∆Q = ∆(Q∞ + Q̃) = ∆Q̃ and so the Euler-Lagrange

equations can be written as

L∆Q̃ = ∇fB(Q∞ + Q̃). (24)

Consider a function Ψ ∈ HΩ of the form Ψ = V Q̃ where V ∈ C∞0 (Ω) with V ≥ 0. Multiplying

equation (24) by Ψ and integrating by parts gives

L

ˆ
Ω

∇Q̃ · ∇Ψ dx = −
ˆ

Ω

V∇fB(Q∞ + Q̃) · Q̃ dx+

ˆ
∂Ω

V Q̃ · ∂Q̃
∂ν

ds. (25)

Appealing to Proposition 4.4, we know that the quantity ∇fB(Q∞ + Q̃) · Q̃ ∼ c|Q̃|4 as |Q̃| → ∞.

Therefore, we can find some c1 = c1(a, b, c) > 0 for which ∇fB(Q∞ + Q̃) · Q̃ ≥ 0 for |Q̃| ≥ c1. Since

Qs is smooth, we also have that the difference |Qs − Q∞| attains is maximum c2 = c2(Qs) ≥ 0 on
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the compact set ∂Ω. Thus, for γ̃ := max{c1, c2},

∇fB(Q∞ + Q̃) · Q̃ ≥ 0 for |Q̃| ≥ γ̃ and |Qs −Q∞| ≤ γ̃. (26)

Define

(|Q̃|2 − γ̃2)+ :=


|Q̃|2 − γ̃2 if |Q̃| − γ̃ > 0

0 otherwise

and let U := min{(|Q̃|2 − γ̃2)+,M} where M is some arbitrary positive constant. Take V to be of

the form V = Uϕ with 0 ≤ ϕ ∈ C∞0 (Ω) and note that due to the definition of U , V is compactly

supported on the set {|Q̃| ≥ γ̃} and is non-negative.

We claim that

L

ˆ
Ω

∇Q̃ · ∇Ψ dx ≤ 0. (27)

To see this, first note that by our definition of V and observations above, V∇fB(Q∞ + Q̃) · Q̃ ≥ 0

which directly gives

−
ˆ

Ω

V∇fB(Q∞ + Q̃) · Q̃ dx ≤ 0.

In the case of strong anchoring, ∂Q̃/∂ν = 0 and thus immediately forces the last integral in (25) to

be zero. For weak anchoring we can write

∂Q̃

∂ν
=
W

L

(
Qs − Q̃−Q∞

)
=⇒ Q̃ · ∂Q̃

∂ν
=
W

L
Q̃ ·
(
Qs − Q̃−Q∞

)
=
W

L

(
−|Q̃|2 + Q̃ · (Qs −Q∞)

)
.

By the Cauchy-Schwarz inequality and (26),

Q̃ · (Qs −Q∞) ≤ |Q̃||Qs −Q∞| ≤ |Q̃|γ̃

and so

Q̃ · ∂Q̃
∂ν
≤ W

L

(
−|Q̃|2 + |Q̃|γ̃

)
=
W

L
|Q̃|
(
−|Q̃|+ γ̃

)
.
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Applying (26) once more, we obtain

Q̃ · ∂Q̃
∂ν
≤ W

L
|Q̃| (−γ̃ + γ̃) = 0

which gives (27). Using Ψ = UϕQ̃,

L

ˆ
Ω

∇Q̃ · ∇Ψ dx = L

ˆ
Ω

∇Q̃ · ∇
(
UϕQ̃

)
dx

= L

ˆ
Ω

∇Q̃ ·
(

(ϕ∇U + U∇ϕ) · Q̃+ Uϕ∇Q̃
)
dx

= L

ˆ
Ω

ϕ
(
U |∇Q̃|2 +∇Q̃ · Q̃ · ∇U

)
dx+ L

ˆ
Ω

U∇Q̃ · ∇ϕ · Q̃ dx.

Next, we claim

∇Q̃ · Q̃ · ∇U =
1

2
|∇U |2. (28)

In the cases where either |Q̃| ≤ γ̃ or U = M , we obviously have ∇U = 0 and thus (28) holds. If

M > |Q̃|2 − γ̃2 > 0, then

∇U = ∇
(
|Q̃|2 − γ̃2

)
= 2

3∑
i,j=1

(
Q̃ij

∂Q̃ij
∂x1

, Q̃ij
∂Q̃ij
∂x2

, Q̃ij
∂Q̃ij
∂x3

)

= 2Q̃ · ∇Q̃.

Therefore

∇Q̃ · Q̃ · ∇U =
1

2
∇U · ∇U =

1

2
|∇U |2

so we may write

L

ˆ
Ω

∇Q̃ · ∇Ψ dx = L

ˆ
Ω

ϕ

(
U |∇Q̃|2 +

1

2
|∇U |2

)
dx+ L

ˆ
Ω

U∇Q̃ · ∇ϕ · Q̃ dx

and applying observation (27) leaves us with

ˆ
Ω

ϕ

(
U |∇Q̃|2 +

1

2
|∇U |2

)
dx ≤ −

ˆ
Ω

U∇Q̃ · ∇ϕ · Q̃ dx.
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Take ϕ = ϕR,

ϕR(x) :=


1 for |x| ≤ R

0 for |x| ≥ 2R

with |∇ϕR| ≤
C

|x|

for some constant C > 0 independent of R. Then, since ∇ϕR = 0 for |x| ≤ R

−
ˆ

Ω

U∇Q̃ · ∇ϕR · Q̃ dx ≤
ˆ
|x|≥R

∣∣∣U∇Q̃ · ∇ϕR · Q̃∣∣∣ dx
≤MC

ˆ
|x|≥R

|∇Q̃| |Q̃|
|x|

dx

≤MC‖∇Q̃‖L2(|x|≥R)‖Q̃/|x|‖L2(|x|≥R) (by Hölder’s inequality).

Since Q̃ ∈ HΩ, both ‖∇Q̃‖L2(|x|≥R) → 0 and ‖Q̃/|x|‖L2(|x|≥R) → 0 as R→∞. Thus,

ˆ
Ω

(
U |∇Q̃|2 +

1

2
|∇U |2

)
dx = 0

and therefore U = min{(|Q̃|2 − γ̃2)+,M} = 0 almost everywhere. Since M > 0, it must be that

|Q̃| ≤ γ̃ almost everywhere. By the triangle inequality,

|Q| = |Q̃+Q∞| ≤ |Q̃|+ |Q∞| ≤ γ̃ + s∗

√
2

3

and so

|Qij(x)| ≤ γ̃ + s∗

√
2

3

almost everywhere for each 1 ≤ i, j ≤ 3. In particular,

‖Q‖L∞(Ω) ≤
3∑

i,j=1

(
γ̃ + s∗

√
2

3

)
= 9

(
γ̃ + s∗

√
2

3

)
.

Defining γ := 9(γ̃ + s∗
√

2/3), we obtain ‖Q‖L∞(Ω) ≤ γ for γ > 0.

This result can now be used to prove that minimizers of FΩ satisfy the pointwise condition (11).

Corollary 4.5. If Ω ∈ ED and Q ∈ HΩ
∞ minimizes FΩ, then Q is uniformly continuous and

lim
|x|→∞

Q(x) = Q∞.
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Proof of Corollary 4.5. By Lemma 4.3, Q ∈ L∞(Ω;S0). Observing the Euler–Lagrange equations

L∆Q = −aQ− b
(
Q2 − 1

3
|Q|2I

)
+ c|Q|2Q,

the righthand side is purely in terms of Q which immediately gives ∆Q ∈ L∞(Ω;S0). Applying

results from [1, Lemma 5] and the Sobolev inequality, Q is uniformly continuous and

lim
|x|→∞

|Q̃(x)| = lim
|x|→∞

|Q(x)−Q∞| = 0 =⇒ lim
|x|→∞

Q(x) = Q∞

as desired.

In view again of Lemma 4.3, a similar result can be said of the norm on HΩ and is found in the

proof of [1, Theorem 1]. The following corollary is an extension of this for generalized Ω ∈ ED and

Qs. The proof still follows closely to that shown in [1, Theorem 1] and omitted details are filled.

Corollary 4.6. Suppose Ω ∈ ED and QL,W ∈ HΩ
∞ is a minimizer of FΩ. Then Q̃L,W = QL,W −Q∞

is uniformly bounded in the norm on HΩ with respect to L ≥ 1 and W > 0.

Proof of Corollary 4.6. Let ϕ be a smooth function on Ω such that ϕ(x) = 1 on ∂Ω and ϕ(x) ≡ 0

outside the open ball BR(0) where R = diam(Ωc) + 1. Define the ‘energy competitor’

P (x) = ϕ(x)Qs + (1− ϕ(x))Q∞.

Obviously, P ∈ HΩ
∞ and FΩ[P ] <∞. Furthermore, P is independent of L and W . Since QL,W is a

minimizer of FΩ, we can write

FΩ[QL,W ] ≤ FΩ[P ] =

ˆ
Ω

(
L

2
|∇P |2 + fB(P )

)
dx+

W

2

ˆ
∂Ω

|Qs − P |2 dA <∞.

Using the fact FE [QL,W ] ≤ FΩ[QL,W ] and P = Qs on ∂Ω,

L

2

ˆ
Ω

|∇QL,W |2 dx ≤ FΩ[QL,W ] ≤ L

2

ˆ
Ω

|∇P |2 dx+

ˆ
Ω

fB(P ) dx <∞.

Multiplying through by 4/L,

2

ˆ
Ω

|∇QL,W |2 dx ≤ 2

ˆ
Ω

|∇P |2 dx+
4

L

ˆ
Ω

fB(P ) dx

≤ 2

ˆ
Ω

|∇P |2 dx+ 4

ˆ
Ω

fB(P ) dx (since L ≥ 1).
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Now, ∇QL,W = ∇(Q̃L,W +Q∞) = ∇Q̃L,W and by Hardy’s inequality,

2

ˆ
Ω

|∇Q̃L,W |2 dx ≥
ˆ

Ω

|∇Q̃L,W |2 dx+ C

ˆ
Ω

|Q̃L,W |2

|x|2
dx

where C is a constant independent of L and W . If C ≥ 1, then

‖Q̃L,W ‖2HΩ ≤ 2

ˆ
Ω

|∇P |2 dx+ 4

ˆ
Ω

fB(P ) dx <∞.

If C < 1, then

C‖Q̃L,W ‖2HΩ ≤ 2

ˆ
Ω

|∇P |2 dx+ 4

ˆ
Ω

fB(P ) dx <∞.

In either case, Q̃L,W is uniformly bounded in HΩ with respect to L ≥ 1 and W > 0.
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5 The Small Particle Limit

Recall from section 3.3 that the functional FΩ had been nondimensionalized via some natural length

scale µ which characterizes the relative size of the colloid particle given by Ωc. As a result we saw

that prior to relabeling, the nondimensionalized coefficients L̂ and Ŵ were of the form

L̂ =
L

µ2a
, Ŵ =

Wµa

L

where a is the reference energy and both incorporate the relative colloid particle size µ. Thus, in

a sense, varying the relative particle size can be seen through an appropriate change in L̂ and Ŵ .

The benefit in this setup allows us to consider solutions QL,W ∈ HΩ
∞ to the minimization problem

(17) and interpret their limits (with respect to (L,W )) in the sense of relative particle size. In

this section, we study a particular limiting regime called the small particle limit. This is done by

considering

(L,W )→ (∞, w),
L

W
→ 1

w
.

Here, we allow w ∈ (0,+∞] so that both the Robin and Dirichlet boundary conditions can be

investigated. To analyze this limit rigorously, we resort to the Euler–Lagrange equations.

5.1 Revisiting the Euler–Lagrange Equations

Suppose L ≥ 1 and QL,W is a solution to the minimization problem (17). In the weak formulation

of (18), QL,W satisfies

ˆ
Ω

QL,W ·∆Φ dx =
1

L

ˆ
Ω

(
−aQL,W − b

(
Q2
L,W −

1

3
|QL,W |2I

)
+ c|QL,W |2QL,W

)
· Φ dx

=
1

L

ˆ
Ω

∇fB(QL,W ) · Φ dx

for all smooth, compactly supported S0-valued functions Φ. By Corollary 4.6, the HΩ-component

Q̃L,W = QL,W − Q∞ ∈ HΩ is uniformly bounded in the HΩ-norm with respect to L and W .

Therefore, there exists a subsequence that converges to some Q̃0 ∈ HΩ weakly in HΩ in the small

particle limit (L,W ) → (∞, w). Furthermore, Lemma 4.3 directly gives ‖∇fB(QL,W )‖L∞(Ω) ≤ γ

for some γ > 0 independent of L and W . Using these facts and defining Q0 := Q̃0 + Q∞, we pass
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to the limit in the weak formulation and obtain

ˆ
Ω

Q0 ·∆Φ dx = 0

for all smooth, compactly supported S0-valued functions Φ. In the same way, the limiting condition

L/W → 1/w implies Q0 weakly satisfies the boundary condition

1

w

∂Q0

∂ν
= Qs −Q0.

Therefore, the small particle limit is a Q-tensor Q0 ∈ HΩ
∞ weakly satisfying ∆Q0 = 0 in Ω

1
w
∂Q0

∂ν = Qs −Q0 on ∂Ω
. (29)

Moreover, Q0 is the unique HΩ
∞ solution to (29) and this fact is proven in [1, Theorem 1].

Also done in [1], the authors prove that in the case of a spherical colloid, the small particle solution

Q0 admits a ‘Saturn ring’ defect about the particle when homeotropic (normal) boundary conditions

are enforced. Specifically, it was shown that there exists a circle about the particle for which the

principal eigenvector of Q0(x) is discontinuous. This defect is physically interpreted as the liquid

crystal being uniaxial along the circle and biaxial everywhere else. Thus, the defect occurs when

two eigenvalues of Q0 become equal, which happens exactly along a circle about the particle and

presents itself as a discontinuity in the approximate director.

For the remainder of this paper, our focus will be to study alignment configurations of the small

particle limit Q0 in two specific cases. Namely, the cases where the colloid particles are taken to be

a prolate spheroid and an oblate spheroid with ‘almost homeotropic’ strong anchoring. Since the

prolate and oblate spheroids we are choosing will closely resemble that of the spherical colloid, it is

hypothesized that the small particle limits in these cases will also admit Saturn ring defects.

Indeed, over the next two sections we will derive closed-form axially-symmetric solutions to (29) for

both prolate and oblate spheroidal colloid particles with strong anchoring. Once these solution have

been obtained, we observe (qualitatively) the existence of a Saturn ring defect around the particles.
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5.2 A Prolate Spheroidal Colloid With Strong Anchoring

We derive a closed-form solution to the small particle limit problem (29) ∆Q0 = 0 in Ω

Q0 = Qs on ∂Ω

where Ω ∈ ED is taken to be the complement of the set

K =

{
x ∈ R3 :

x2
1 + x2

2

A2
+
x2

3

B2
≤ 1

}
for A = sinh(1) and B = cosh(1). The choice of constants A and B is a natural one, as it allows us

to view Ω easily under the prolate spheroidal coordinate system defined by

x1 = sinh(η) cos(θ) sin(φ), x2 = sinh(η) sin(θ) sin(φ), x3 = cosh(η) cos(φ) (30)

where 0 ≤ η < ∞, 0 ≤ θ < 2π and 0 ≤ φ ≤ π. Indeed, Ω recast under (30) takes the form

Ω = {x(η, θ, φ) ∈ R3 : η > 1} with ∂Ω = {x(η, θ, φ) ∈ R3 : η = 1}. Please see [11] for more details

on this coordinate system.

Boundary Conditions on ∂Ω

In order to obtain a closed-form solution, we construct a specific boundary condition Qs on ∂Ω.

Consider first the function

F (x1, x2, x3) :=
x2

1 + x2
2

A
+
x2

3

B

and define the vector field

n(x1, x2, x3) :=
∇F
|∇F |

=
1

|v|

(x1

A
,
x2

A
,
x3

B

)
where v =

(
x1

A ,
x2

A ,
x3

B

)
. The matrix Qs(x) defined by

Qs(x) := s∗

(
n⊗ n− 1

3
I

)
= s∗


x2

1

A2|v| −
1
3

x1x2

A2|v|
x1x3

AB|v|

x1x2

A2|v|
x2

2

A2|v| −
1
3

x2x3

AB|v|

x1x3

AB|v|
x2x3

AB|v|
x2

3

B2|v| −
1
3


will act as our boundary condition.
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In doing this, we are imposing that n be the director of Q0 along the boundary. Observing a cross

section of the colloid particle, alignment configuration along the boundary given by n(x) appears as

in Figure 6.

Figure 6: Molecule alignment profile along colloid boundary.

Note that the boundary conditions are incredibly close to being homeotropic. Although they are

not exactly, this ‘almost homeotropic’ setting allows us to make reasonable comparisons between [1]

and our work.

Converting to prolate spheroidal coordinates and evaluating at η = 1, Qs on ∂Ω takes the form

Qs =

s∗


cos2(θ)− 1

3 − cos2(θ) cos2(φ) sin2(φ) cos(θ) sin(θ) cos(φ) sin(φ) cos(θ)

sin2(φ) cos(θ) sin(θ) 2
3 − cos2(φ)− cos2(θ) + cos2(θ) cos2(φ) cos(φ) sin(φ) sin(θ)

cos(φ) sin(φ) cos(θ) cos(φ) sin(φ) sin(θ) cos2(φ)− 1
3

 .

Due to the ez-axial symmetry of our problem, it will be convenient to write Qs in the cylindrical

basis described in section 2.2. We have

Qs =

5∑
j=1

pj(φ)Ej(θ)
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where

p1(φ) = Qs · E1 =
s∗√

6
(3 cos2(φ)− 1), p2(φ) = Qs · E2 =

s∗√
2

sin2(φ),

p3(φ) = Qs · E3 = s∗
√

2 sin(φ) cos(φ), p4(φ) = Qs · E4 = 0,

p5(φ) = Qs · E5 = 0

.

Condition at ∞

Recall that since we are seeking Q0 ∈ HΩ
∞, we also would like our solution to satisfy

lim
|x|→∞

Q0(x) = Q∞ = s∗


− 1

3 0 0

0 − 1
3 0

0 0 2
3

 .

Using the same cylindrical basis, we have

Q∞ =

5∑
j=1

ujEj(θ)

where

u1 = Q∞ · E1 = s∗

√
2

3
, uj = Q∞ · Ej = 0 for 2 ≤ j ≤ 5.

Again, due to the symmetry of our problem, we will attempt to seek an ez-axially symmetric solution

to (29). As given in [1], these solutions will be Q-tensors exactly of the form

Q0(ρ, φ, θ) =

5∑
j=1

qj(ρ, φ)Ej(θ)

where ρ, φ and θ still correspond to the cylindrical coordinates described in section 2.2. Converting

this into prolate spheroidal coordinates, we let ρ = sinh(η) which gives Q0 the new form

Q0(η, φ, θ) =

5∑
j=1

qj(η, φ)Ej(θ).

At η = 1, we require qj(1, φ) = pj(φ), (j = 1, . . . , 5) and for the condition at ∞,

lim
η→∞

qj(η, φ) = uj , j = 1, . . . , 5.
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Since p4(φ) = p5(φ) = u4 = u5 = 0, this suggests that we may attempt to find Q0 of the form

Q0(η, φ, θ) =

3∑
j=1

qj(η, φ)Ej(θ).

Before we continue, it is worth while to note that in this form, it is an easy calculation to obtain

the eigenvalues of Q0. They are given by

λ1 = − q1√
6
− q2√

2

λ2 =
q1

2
√

6
+

q2

2
√

2
+

1

4

√
6q2

1 − 4
√

3q1q2 + 2q2
2 + 8q2

3

λ3 =
q1

2
√

6
+

q2

2
√

2
− 1

4

√
6q2

1 − 4
√

3q1q2 + 2q2
2 + 8q2

3

(31)

and note also that they are independent of θ.

To find q1(η, φ), q2(η, φ) and q3(η, φ), we observe that the entries of Q0

Q033 =

√
2

3
q1(η, φ), Q012 =

√
2 cos(θ) sin(θ)q2(η, φ), Q013 =

1√
2

cos(θ)q3(η, φ)

are such that each qj is isolated. Therefore, we may approach the problem by calculating

∆Q033 = ∆Q012 = ∆Q013 = 0.

The Laplace operator in prolate spheroidal coordinates is

∆ = h1(η, φ)

[
∂2

∂η2
+ coth(η)

∂

∂η
+

∂2

∂φ2
+ cot(φ)

∂

∂φ

]
+ h2(η, φ)

∂2

∂θ2

where

h1(η, φ) =
1

sinh2(η) + sin2(φ)
and h2(η, φ) =

1

sinh2(η) sin2(φ)
.

Using separation of variables, we have that ∆Q033 = 0 implies q1(η, φ) = N1(η)T1(φ) solves
N ′′1 = σ1N1 − coth(η)N ′1

T ′′1 = −σ1T1 − cot(φ)T ′1

(32)

for σ1 a constant.
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Similarly, ∆Q012 = 0 implies q2(η, φ) = N2(η)T2(φ) solves
N ′′2 = σ2N2 − coth(η)N ′2 +

4N2

sinh2(η)

T ′′2 = −σ2T2 − cot(φ)T ′2 +
4T2

sin2(φ)

and ∆Q013 = 0 implies q3(η, φ) = N3(η)T3(φ) solves
N ′′3 = σ3N3 − coth(η)N ′3 +

N3

sinh2(η)

T ′′3 = −σ3T3 − cot(φ)T ′3 +
T3

sin2(φ)

.

If σj = 6 for j = 1, 2, 3 then we find that for appropriate constants,

T1(φ) =
s∗√

6
(3 cos2(φ)− 1), T2(φ) =

s∗√
2

sin2(φ), T3(φ) = s∗
√

2 cos(φ) sin(φ)

solve their corresponding ODEs and Tj(φ) = pj(φ) for each j = 1, 2, 3.

Using σj = 6 for the remaining equations for Nj(η), we have

N1(η) = C1 cosh2(η)
(
(tanh2(η) + 2) ln(coth(η) + csch(η))− 3 sech(η)

)
N2(η) = C2

(
cosh(η)(2 coth2(η)− 5) + 3 sinh2(η) ln (coth(η) + csch(η))

)
N3(η) = C3 sinh(η)

(
coth2(η)− 3 cosh(η) ln(coth(η) + csch(η)) + 2

)
where it can be checked that

lim
η→∞

Nj(η) = 0

for each j = 1, 2, 3. For qj(η, φ) to satisfy their boundary conditions at η = 1, we take

C1 =
1

cosh2(1)
(
(tanh2(1) + 2) ln(coth(1) + csch(1))− 3 sech(1)

)
C2 =

1(
cosh(1)(2 coth2(1)− 5) + 3 sinh2(1) ln (coth(1) + csch(1))

)
C3 =

1

sinh(1)
(
coth2(1)− 3 cosh(1) ln(coth(1) + csch(1)) + 2

)
so that Nj(1) = 1.
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Lastly, we solve for another solution to (32) but with

lim
η→∞

N1(η) = u1 = s∗

√
2

3

and N1(1) = 0 so that all boundary conditions and limits for Q0 are satisfied.

To do this, take σ1 = 0 and solving for N1(η) gives a solution

N1(η) = c1

(
ln
(

sinh
(η

2

))
− ln

(
cosh

(η
2

)))
+ c2

where

lim
η→∞

N1(η) = c2.

Therefore, if we choose

c1 = −
s∗

√
2
3

ln
(
sinh

(
1
2

))
− ln

(
cosh

(
1
2

)) ,
c2 = s∗

√
2

3

then the limit condition is satisfied along with N1(1) = 0.

Adding together both solutions from (32), we obtain ∆Q033 = 0 for

q1(η, φ) =
s∗ cosh2(η)

(
(tanh2(η) + 2) ln(coth(η) + csch(η))− 3sech(η)

)
(3 cos2(φ)− 1)

√
6 cosh2(1)

(
(tanh2(1) + 2) ln(coth(1) + csch(1))− 3sech(1)

)
+ s∗

√
2

3

(
1−

ln
(
sinh

(
η
2

))
− ln

(
cosh

(
η
2

))
ln
(
sinh

(
1
2

))
− ln

(
cosh

(
1
2

)))

such that q1(1, φ) = p1(φ) and limη→∞ q1(η, φ) = u1. Similarly,

q2(η, φ) =
s∗
(
cosh(η)(2 coth2(η)− 5) + 3 sinh2(η) ln (coth(η) + csch(η))

)
sin2(φ)

√
2
(
cosh(1)(2 coth2(1)− 5) + 3 sinh2(1) ln (coth(1) + csch(1))

)
and

q3(η, φ) =
s∗
√

2 sinh(η)
(
coth2(η)− 3 cosh(η) ln(coth(η) + csch(η)) + 2

)
cos(φ) sin(φ)

sinh(1)
(
coth2(1)− 3 cosh(1) ln(coth(1) + csch(1)) + 2

)
solve ∆Q012 = 0 and ∆Q013 = 0 respectively with desired boundary conditions.
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Therefore, the small particle solution Q0 is given by

Q0(η, θ, φ) =

3∑
j=1

qj(η, φ)Ej(θ)

for qj(η, φ), j = 1, 2, 3 as above. Refering to the theory discussed prior to this section, Q0 is in fact

the unique HΩ
∞ solution to (29).

To obtain an explicit formula for the Saturn ring defect as in [1] for the spherical colloid case, an

expression for the approximate director is needed. Given the complicated form of our solution, we

will restrict ourselves to observing the existence of the Saturn ring defect in a qualitative manner.

In the spherical case, the ring defect occurs in the plane x3 = 0 (or equivalently, φ = π/2). Due to

the geometry of our problem, we expect the same for the prolate spheroid.

Using the calculated eigenvalues (31) of Q0, we plot λ1(η, π/2), λ2(η, π/2) and λ3(η, π/2) in Figure

7 below:

Figure 7: Eigenvalues of Q0 at φ =
π

2
(prolate spheroidal colloid).

As constructed, we observe that Q0 is uniaxial on the boundary η = 1 which is highlighted by the

eigenvalue crossing λ1(1, π/2) = λ3(1, π/2). Also, we observe that for some 5/4 < η0 < 3/2, there

is another eigenvalue crossing λ2(η0, π/2) = λ3(η0, π/2). Since the eigenvalues (31) are independent
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of θ, we must have then, that Q0 is uniaxial at all points (η0, π/2, θ), θ ∈ [0, 2π). Geometrically,

this traces a circle in the x3 = 0 plane about the prolate spheroid. Hence, the prolate spheroid does

admit a Saturn ring defect with our chosen boundary conditions.

The Saturn ring defect can also be seen through a numerical scheme which we’ve performed in

MATLAB. Due to the symmetry of the domain, the integral curves of the approximate director field

can be plotted in any one quadrant and then reflected in the rest. Figure 8 below represents any

cross section of these curves containing the x3-axis (taken to be the vertical).

Figure 8: Integral curves of approximate director field (prolate spheroidal colloid).

5.3 An Oblate Spheroidal Colloid With Strong Anchoring

Next, we derive a closed-form solution to the small particle limit problem (29) ∆Q0 = 0 in Ω

Q0 = Qs on ∂Ω

where Ω ∈ ED is taken to be the complement of the set

K =

{
x ∈ R3 :

x2
1 + x2

2

A2
+
x2

3

B2
≤ 1

}
but now for A = cosh(1) and B = sinh(1). Similar to the prolate case, the choice of constants A

and B allows us to view Ω easily under the oblate spheroidal coordinate system.
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This is given by

x1 = cosh(η) cos(θ) sin(φ), x2 = cosh(η) sin(θ) sin(φ), x3 = sinh(η) cos(φ)

where 0 ≤ η <∞, 0 ≤ θ < 2π and 0 ≤ φ ≤ π. Just as before, Ω recast under these coordinates takes

the form Ω = {x(η, θ, φ) ∈ R3 : η > 1} with ∂Ω = {x(η, θ, φ) ∈ R3 : η = 1}. The same reference [11]

can be used for further details on this coordinate system.

Using the same methods as before, we construct Qs by considering the function

G(x1, x2, x3) :=
x2

1 + x2
2

A
+
x2

3

B

and defining the vector field

n(x1, x2, x3) :=
∇G
|∇G|

=
1

|v|

(x1

A
,
x2

A
,
x3

B

)
where v =

(
x1

A ,
x2

A ,
x3

B

)
. We set

Qs = s∗

(
n⊗ n− 1

3
I

)
and find that Qs under the oblate spheroidal coordinates is identical to that calculated in the prolate

case. As before, the boundary conditions are observed to be ‘almost homeotropic’.

We proceed using the same process from the prolate case. The only difference now is that the Laplace

operator must be changed to the oblate spheroidal coordinate system. The Laplace operator in oblate

spheroidal coordinates is of the form

∆ = g1(η, φ)

[
∂2

∂η2
+ tanh(η)

∂

∂η
+

∂2

∂φ2
+ cot(φ)

∂

∂φ

]
+ g2(η, φ)

∂2

∂θ2

where

g1(η, φ) =
1

cosh2(η)− sin2(φ)
and g2(η, φ) =

1

cosh2(η) sin2(φ)
.

Solving the same equations

∆Q033 = ∆Q012 = ∆Q013 = 0

using the boundary conditions Qs and conditions at ∞, we obtain the unique HΩ
∞ solution
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Q0(η, θ, φ) =

3∑
j=1

qj(η, φ)Ej(θ)

where

q1(η, φ) =
s∗ cosh2(η)

((
2 tanh2(η) + 1

)
ln (tanh(η) + i sech(η))− 3i tanh(η) sech(η)

)
(3 cos2(φ)− 1)

√
6 cosh2(1)

((
2 tanh2(1) + 1

)
ln (tanh(1) + i sech(1))− 3i tanh(1) sech(1)

)
+ s∗

√
2

3

(
tan−1

(
tanh

(
η
2

))
π
4 − tan−1

(
tanh

(
1
2

)) − tan−1
(
tanh

(
1
2

))
π
4 − tan−1

(
tanh

(
1
2

)))

q2(η, φ) =
s∗
(
3i
(
cosh2(η) + 2

3

)
tanh(η) sech(η)− 3 cosh2(η) (ln(sech(η)) + ln(sinh(η) + i))

)
sin2(φ)

√
2
(
3i
(
cosh2(1) + 2

3

)
tanh(1) sech(1)− 3 cosh2(1) (ln(sech(1)) + ln(sinh(1) + i))

)
q3(η, φ) =

s∗
√

2 (i sech(η) + 3 cosh(η) (sinh(η) (ln(sech(η)) + ln(sinh(η) + i))− i)) cos(φ) sin(φ)

i sech(1) + 3 cosh(1) (sinh(1) (ln(sech(1)) + ln(sinh(1) + i))− i)
.

Since Q0 is of the same form in the prolate case, the eigenvalues are still given by equations (31).

Plotting all eigenvalues for φ = π/2, we again see an eigenvalue crossing, giving the Saturn ring

defect about the colloid.

Figure 9: Eigenvalues of Q0 at φ =
π

2
(oblate spheroidal colloid).
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Figure 10: Integral curves of approximate director field (oblate spheroidal colloid).
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