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Abstract

Transit operators are increasingly interested in improving efficiency, reliability, and

performance of commuter trains while reducing their operating costs. In this context,

the application of optimal control theory to the problem of train control can help to-

wards achieving some of these objectives. However, the traction and braking systems

of commuter trains often exhibit significant time delays, making the control of com-

muter trains highly challenging. Previous literature on optimal train control ignores

delays in actuation due to the inherent difficulty present in the optimal control, and

in general, the control, of input-delay systems.

In this thesis, optimal control of a commuter train is presented under two cases:

(i) equal, and (ii) unequal time delays in the train traction and braking commands.

The solution approach uses the economic model predictive control framework, which

involves formulating and solving numerical optimization problems to achieve min-

imum mixed energy-time optimal control in discretized spatial and time domains.

The optimization problems are re-solved repeatedly along the track for the remainder

of the trip, using the latest sensor measurements. This would essentially establish

a feedback mechanism in the control to improve robustness to modelling errors. A

key feature of the proposed methods is that they are model-based controllers, they
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explicitly incorporate model information, including time delays, in controller synthe-

sis hence avoiding performance degradation and potential instability. To address the

issue of input-delays, the well-established predictor approach is used to compensate

for input-delays. The case of equal traction-braking delays is treated in discretized

spatial domain, which uses an already developed convex approximation to the opti-

mization problem. The use of the convex approximation allows for robust and rapid

computation of the optimal control solution. The non-equal traction-braking delays

scenario is formulated in time domain, leading to a nonconvex optimization prob-

lem. An alternative formulation for minimum-time optimal control problems is pre-

sented for delay-free systems that simplifies the solution of minimum-time optimal

control problems compared to conventional minimum-time optimal control formu-

lations. This formulation along with the predictor approach is used to help solve

the train optimal control problem in the case of non-equal traction-braking delays.

The non-equal traction-braking delay controller is compared with the equal traction-

braking delay controller by insertion of an artificial delay to make the shorter delays

equal to the longer delay. Results of numerical simulations demonstrate the validity

and effectiveness of the proposed controllers.
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Chapter 1

Introduction and Problem Statement

1.1 Background

Transit rail transports millions of passengers globally, and passenger volume is ex-

pected to grow [1]. There is increasing pressure to improve the performance, relia-

bility, and efficiency of commuter trains. Transit rail systems are facing increasing

use, wear, and tear due to higher passenger volumes as evidenced in Table 9.12 in [2].

These systems are also facing pressure to reduce costs and to improve efficiency due

to increasing concern regarding environmental issues. Train control systems play a

role in improving performance and reliability by allowing trains to run faster and

more frequently. Automated train control systems may improve safety by reducing

the risk of human error. Optimal train control systems can also run in an energy and

mechanical wear and tear optimal manner, thereby improving efficiency and reducing

costs.

Train control systems are concerned with determining the traction and braking
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commands that will drive the train from station A, the origin, to station B, the des-

tination. Train control systems must be able to manage the dynamics of the system

which are nonlinear, time-varying, and have time-delays inherent in the input(s), and

be able to maneuver the states of the system to follow the desired trajectory. Train

control systems must also operate within the realm of safety restrictions and passenger

comfort requirements. Safety restrictions include track speed limits, safe separation

distance between two neighbouring trains operating on the same section of track,

and safe equipment operation. Passenger comfort requirements include comfortable

levels of traction and braking, smooth changes in traction and braking, smooth transi-

tions between traction and braking, continuity of the control, and avoiding the use of

discontinuous control trajectories. Safety restrictions and passenger comfort require-

ments serve as constraints on train motion and actuation, and must be considered

when determining the control.

1.2 Motivation

There is a push to improving the performance and efficiency of transit systems, and

thus train control systems. This is due to the following reasons:

• economic: high cost of fuel

• environmental: pollution and greenhouse gas emissions

• increased demand: an increasing population and a trends towards urbanization

resulting in increased passenger demand

One of the ways of improving train control system performance and efficiency is by

use of optimal controllers. Conventional train control systems used in industry are
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not optimal. These train control systems were developed at a time of scarcity of on-

board computational resources. These control systems were mainly concerned with

appropriately controlling the nonlinear dynamics of the train system in order to get

the resultant velocity profile to follow the desired velocity profile. These controllers

do not plan the entire state or control trajectory, rather these controllers are focused

on determining the best control input to apply at the current time instant in order to

minimize the error between the actual and the desired state trajectory, based on the

current measurements. These controllers have the advantage that they require less in-

formation about the model, are simpler to implement, and require less computational

and memory resources.

Optimal train control systems determine the traction and braking commands that

will drive the train from station A to station B while minimizing some cost function.

Common examples of such controllers are minimum-time, minimum-energy without

regenerative braking, and minimum-energy with regenerative braking. This thesis

considers a mixture of time and energy as the cost function to minimize. While

regenerative braking is not specifically addressed here, it is rather trivial to extend the

proposed minimum-energy with no regenerative braking formulation to the minimum-

energy with regenerative braking case.

Currently, industry solutions that offer optimal train control systems to rail op-

erators are driver assistance systems [3]. These systems offer advice to train drivers,

suggesting to the drivers the speed to maintain, in order to improve performance or

reduce costs. For example, such a system provides a suggested speed to the driver,

which the driver tries to maintain, in order to minimize fuel consumption. Current

industry solutions that offer optimal train control systems are not autonomous , i.e.,

5
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these systems do not directly drive the train and do not remove the need for a human

driver.

These optimal train control systems are unable to drive the train directly because

the train dynamics considered in the optimal train control formulation may not con-

sider all the dynamics or even all the dynamics that have a significant impact on train

motion. There can be significant model mismatch between the dynamics mathemat-

ical model and the actual train dynamics. Some examples of such causes of model

mismatch include: not accurately knowing the grade (force of gravity tangential to

the track), failing to model the resistance forces properly, not accurately considering

the maximum traction and braking limits, not considering limitations on the rate of

change of traction or braking, and delays in the traction and braking actuation sys-

tems. The focus of this thesis is on a specific cause that results in significant model

mismatch: the presence of delays in traction and braking actuation systems. Current

optimal train control systems do not consider actuation delays in the dynamics [3].

Optimal train control schemes can be deployed in an autonomous set-up if delay

compensation is implemented in the optimal train control scheme.

Time-delays in actuation are everywhere in physical systems due to the fact that

there are physical delays present in the hardware and equipment. The delays in the

traction and braking control inputs is due to the equipment and hardware used to

implement the traction and braking systems. The equipment and hardware suffers

from dead-time, reconfiguration time, and warm-up time. Implementing optimal

controllers, that do not compensate for delays, in an autonomous configuration may

suffer from degraded performance and reduced robustness. Implementing an optimal

train controller autonomously requires consideration of the dynamics and behaviours
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Station A Station B

Figure 1.1: An optimal controller with delay compensation for a commuter train
system.

that have a substantial effect, such as input time-delays.

1.3 Problem Statement

The problem being addressed in this thesis is the synthesis of a train optimal controller

that compensates for delays. The purpose of the controller is to autonomously and

optimally drive the train from station A, the origin, to station B, the destination,

i.e. determine the traction and braking commands to move the train from station A

to station B. This is shown in Fig. 1.1. The controller must satisfy any constraints

due to safety restrictions and passenger comfort requirements. The controller must

be able to adequately influence the complex dynamical behaviour of the system. The

controller must also be optimal, i.e. operate the system in a manner to achieve better

performance and efficiency.

The difficulty in the autonomous control of a train is compounded by the presence

of delays in the traction and braking systems, and the nonlinear time-varying nature

of the system. In this thesis, only the nonlinear system dynamics and the presence

of time-delays in the traction and braking systems are considered. The time-varying

nature of the system is not directly addressed. The presence of delays makes controller
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design challenging, especially optimal controller design. Delays in input actuation can

degrade performance, reduce efficiency, and increase costs. The presence of delays is

one of the reasons optimal controllers are not used currently to autonomously drive

the train. Instead, currently optimal controllers are used to provide guidance to

the driver as to the speed that should be maintained to improve performance. The

problem of delays has two cases: (i) equal traction-braking delays, and (ii) nonequal

traction-braking delays. Both of these problems will be addressed in this thesis.

The proposed controller must include the following features and requirements:

• optimal

• model-based

– The controller is required to be model-based so that the controller can

include all available plant and environment information, and thus achieve

maximum improvement in performance, robustness, and reliability.

• ability to handle complex constraints, such as constraints on the states and

inputs

• ability to handle a variety of cost functions

• ability to handle the full-range of operating conditions, e.g. maximum up-

hill/downhill grades, long/short travel times, long/short trips, etc.

• real-time (or close to real-time)

• robustness in determining a solution, i.e. the control values to apply to the

system

8
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1.4 Thesis Contributions

Two new optimal controllers are proposed for commuter train operation that can

compensate for delays in traction and braking. The commuter train system is treated

as a nonlinear system. The controllers are model-based, they explicitly incorporate

the following model information: state evolution dynamics (state evolution differen-

tial equations), resistance forces, force of gravity tangential to the track, maximum

traction limits, maximum braking limits, maximum rate of change of traction, mini-

mum rate of change of traction, maximum rate of change of braking, minimum rate

of change of braking, time-delays in the input.

The controllers use an economic model predictive control framework where the

control problem is solved repeatedly along the track using the latest sensor measure-

ments, as shown in Fig. 1.2. Given a train at any position along the track, the states

of the train are measured, an optimal control problem is solved to determine the

state and control trajectory from the current position to the end of the trip. From

the given solution of the optimal control problem, the first few samples of the control

are applied and the process is repeated until the train arrives at the destination. In

other words, the control strategy is to solve a sequence of optimal control problems

based on the latest sensor measurements. The optimal control problem, which is in

continuous-time, is discretized to obtain a finite-dimensional optimization problem.

The finite dimensional optimization problem is solved using optimization solvers.

Input time-delay compensation is achieved by the use of a predictor, which is a

well established concept for addressing the problem of delays [4]–[11]. The predictor

“predicts” the system state based on the current state and the past control history.

Feedback is then based not directly upon the current state, but rather the “predicted
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Station A Station B

Figure 1.2: Optimal control of a train. The goal is to move the train from station A to
station B while minimizing an objective function.The position, velocity, acceleration,
traction effort, and braking effort profiles for the remainder of the trip are determined
by formulating and solving optimal control (optimization) problems repeatedly at
discrete points along the track, e.g. s0 (starting point), si, sj, etc.

state”.

The controllers developed are described below.

• Controller for equal traction-braking delays that uses an existing convex ap-

proximation for robust and rapid solution of the optimization problem 1.

• Controller for non-equal traction-braking delays that results in a nonconvex

optimization problem. An alternative formulation for minimum-time optimal

control problems is developed that is used to help make this case tractable.

Along with this, the past control history also plays a role in the optimization

problem formulation.
1Note: the convex approximation has been developed previously, see Yazhemsky [12],

and Yazhemsky et al. [13]. The convex approximation is not a contribution of this thesis.
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1.5 Organization of the Thesis

The remainder of this thesis is organized as follows. In Chapter 2 a review of the

literature on optimal control, train control, optimal train control, and model predic-

tive control, time-delay systems, and optimization is presented. In Chapter 3 the

system dynamics are presented for each of the following cases: no traction-braking

delays, equal traction-braking delays, non-equal traction-braking delays. In Chap-

ter 4 the optimal control problems are presented for each of the following cases: no

traction-braking delays, equal traction-braking delays, non-equal traction-braking de-

lays. In Chapter 5 a formulation is presented for optimal control of a commuter train

system subject to equal delays in traction and braking. In Chapter 6 an alternative

formulation for minimum-time optimal control problems of a commuter train with

no traction-braking delays is presented. In Chapter 7 a formulation is presented for

optimal control of a commuter train system subject to non-equal delays in traction

and braking. In Chapter 8 the computer implementation setup is detailed and results

are provided. In Chapter 9 the thesis is concluded and future work directions are

highlighted.

1.6 Related Publications

1.6.1 Journal Articles

1.6.1.1 Submitted

D. Yazhemsky et al., “An on-line optimal controller for a commuter train,” IEEE

Intelligent Transportation Systems Transactions, Submitted
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1.6.1.2 To be submitted

M. Rashid et al., “Optimal control of a commuter train with traction and braking time

delays,” IEEE Intelligent Transportation Systems Transactions, To be submitted
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Chapter 2

Literature Review

2.1 Introduction

There is extensive research on automatic train control, both non-optimal and optimal

train control. Many different control strategies and schemes have been proposed for

automatic train operation with the aim of improving performance, reliability, and

robustness.

This chapter presents a survey of the literature on control schemes for automatic

train operation under the following sections:

2.2 Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Model Predictive Control (MPC) . . . . . . . . . . . . . . . . . . . . 20

2.4 Train Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Time-Delay Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
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2.2 Optimal Control

Optimal control is concerned with control of a system to achieve a desired behaviour

or response in a manner that also optimizes, either maximizes or minimizes, a certain

performance objective. In other words, optimal control is to select a control input of

the system such that the system produces the desired behaviour or response, while

also optimizing certain performance objectives.

This section provides a brief review of optimal control and the different solution

approaches. The review is mainly concerned with continuous-time optimal control.

2.2.1 General Continuous Time Optimal Control Problem

The optimal control problem of a dynamical system in the continuous time domain

is generally formulated as [15], [16]:

min
x(t),u(t),t

J = φ (x (t0) , t0, x (tf ) , tf ) +

∫ tf

t0

L (x (t) , u (t) , t) dt (2.2.1)

subject to: ẋ (t) = f (x (t) , u (t) , t) (2.2.2)

θEquality (x (t0) , t0, x (tf ) , tf ) = 0 (2.2.3)

θInequality (x (t0) , t0, x (tf ) , tf ) ≤ 0 (2.2.4)

CEquality (x (t) , u (t) , t) = 0 (2.2.5)

CInequality (x (t) , u (t) , t) ≤ 0 (2.2.6)
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Table 2.1: General Continuous Time Optimal Control Problem: Notation and Vari-
ables
Symbol Quantity
t Independent variable that is a scalar. The independent variable is usually

time, especially in control and optimal control, since the dynamics of a
system describe the evolution of a system with respect to time, and in reality
time evolves independently. However, in general the independent variable
can be any quantity.

x (t) Vector of states of size nx
u (t) Vector of control inputs of size nu

Since the initial state, x (t0) = x0, is usually known, this can also be written as:

min
x(t),u(t),t

J = φ (x (t0) , t0, x (tf ) , tf ) +

∫ tf

t0

L (x (t) , u (t) , t) dt (2.2.7)

subject to: ẋ (t) = f (x (t) , u (t) , t) (2.2.8)

x (t0) = x0 (2.2.9)

φEquality (x (tf ) , tf ) = 0 (2.2.10)

φInequality (x (tf ) , tf ) ≤ 0 (2.2.11)

CEquality (x (t) , u (t) , t) = 0 (2.2.12)

CInequality (x (t) , u (t) , t) ≤ 0 (2.2.13)

The notation used in Eqs. (2.2.7) to (2.2.13) is defined in Table 2.1.

This second optimal control formulation is now explained in more detail.

• Objective

– The objective, Eq. (2.2.7), is a functional of the states, control, and time.

∗ L : Rnx × Rnu × R→ R, in Eq. (2.2.7), general time-varying function

of state and control at each point in time
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• Constraints

– State dynamics, Eq. (2.2.8), where f : Rnx × Rnu × R→ Rnx

– Initial state, Eq. (2.2.9), the initial state is usually known (given and fixed)

– Final state equality constraints (boundary conditions), Eq. (2.2.10), where

φEquality : Rnx × R→ RnTerminal-Boundary,Equality

– Final state inequality constraints (boundary conditions), Eq. (2.2.11), where

φInequality : Rnx × R→ RnTerminal-Boundary,Inequality

– State and control equality path constraints (path constraints), Eq. (2.2.12),

where CEquality : Rnx × Rnu × R→ RnPath,Equality

– State and control inequality path constraints (path constraints), Eq. (2.2.13),

where CInequality : Rnx × Rnu × R→ RnPath,Inequality

2.2.2 Solving an Optimal Control Problem

There are three main approaches to solving the optimal control problem detailed

in Eqs. (2.2.7) to (2.2.13) as stated in [17]–[19]:

• Hamilton-Jacobi-Bellman Equation using Dynamic Programming

• Indirect Approach

• Direct Approach

2.2.2.1 Hamilton-Jacobi-Bellman Equation

The Hamilton-Jacobi-Bellman approach uses a dynamic programming approach to

solve the optimal control problem. The Hamilton-Jacobi-Bellman approach involves

16



M.A.Sc. Thesis - Muzamil Rashid McMaster - Electrical Engineering

partial differential equations, and in general is very difficult to solve analytically [19],

[20].

2.2.2.2 Indirect Approach

The indirect approach involves the variational approach from the calculus of variations

to determine the optimal control [21]. The indirect approach results in a multiple-

point boundary-value problem that must be solved [17], [19], [21]. In general, it is

very difficult to solve multiple-point boundary-value problems [19], [21]. Typically,

the indirect method involves formation of a system Hamiltonian, and then application

of the first-order necessary optimality conditions from the calculus of variations and

Pontryagin’s minimum principle to obtain a multiple-point boundary value problem

that is to be solved to determine the optimal controls [17]. The indirect method

approach is also known as “first optimize, then discretize” [17]–[19], since the neces-

sary conditions of optimality are applied first, obtaining a multiple-boundary value

problem, which is then discretized in order find a solution to the multiple-boundary

value problem, and thus the original optimal control problem.

2.2.2.3 Direct Approach

The direct approach involves transforming the optimal control problem into an op-

timization problem [17], [19]. The continuous-time optimal control problem is an

infinite-dimensional optimization problem [19], [22]. In this approach, it is con-

verted to a finite-dimensional optimization problem, i.e. a finite number of deci-

sion variables [17], [19]. Note that the discrete-time optimal control problem, is a
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finite-dimensional optimization problem since there a finite number of decision vari-

ables [17]. The optimization problem can then be solved using any optimization

solver.

Within the direct approach, there exist different methods for solving the optimal

control problem. These methods, all have in common the finite parametrization of the

control, but instead these methods differ on the extent the state is parametrized [17],

[19]. There are two major groups of methods in the direct approach [17], [19]: (i) si-

multaneous, and (ii) sequential.

• In the sequential group, there exists the direct single-shooting method, which

is described in [17], [19]. In this method, the control is discretized, and the

state trajectory is considered to be dependent only on the initial state and the

discretized control. The optimization problem has only the discretized controls

as variables. The state trajectory is determined by simulation, i.e. solving an

initial-value problem. Thus, the direct single-shooting method is a sequence of

iterations of optimization followed by simulation.

• In the simultaneous group, two methods exist for solving optimal control prob-

lems: (i) direct multiple-shooting, and (ii) direct collocation [17], [19].

– In the direct multiple-shooting method, the time interval is divided into

subintervals. For each subinterval, the direct single-shooting method is

applied. Continuity conditions are enforced for the state trajectory at the

end of the i’th subinterval and at the beginning of the i+1’th subinterval,

i.e. the state at the beginning of the i+1’th subinterval is constrained to

be equal to the state at the end of the i’th subinterval. The values of the
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state at the beginning of each subinterval are considered to be variables

in the optimization problem. For each subinterval, the state trajectory is

considered to be dependent only on the state value at the beginning of the

subinterval and the discretized control within the subinterval. The state

trajectory for each subinterval is determined by simulation. The control

is discretized along the entire time interval. All the discretized controls

are also included in the optimization problem just like in the direct single-

shooting case.

– In the direct collocation method, the states and controls along the en-

tire time interval are discretized. Thus, the optimal control problem is

transcribed into an nonlinear programming (NLP). Any continuous-time

equations (constraints or objective) are converted to discrete-time. For ex-

ample, (continuous-time) differential equations are converted to (discrete-

time) difference equations, and integrals are converted to sums. The dis-

cretized states and controls now become decision variables in the opti-

mization problem. A key point to mention here, is that the differential

equations are only satisfied at the solution to the NLP. Also, the NLP

ends up being a large-scale NLP, since now the states and control at each

node are decision variables. The level of sparsity of the NLP is dependent

on the transcription scheme used to convert (continuous-time) differen-

tial/integral equation constraints to (discrete-time) difference/sum equa-

tions.

The advantages of the direct approach are [17]–[19]: (1) it is easy to formulate the

optimal control problem, (2) mature solvers exist for solving the resulting optimization
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problems, (3) constraints on state, control, or mixed state and control can easily be

treated.

2.2.2.3.1 Dynamic Programming Note, it is also possible to use dynamic pro-

gramming to solve the optimization problem as described in [20]. This involves dis-

cretizing the continuous-time optimal control problem to obtain a discrete-time opti-

mal control problem. The state and control have to be quantized: instead of taking

values from a continuous set, the state and control are restricted to taking values

from a discrete set. The discrete-time optimal control problem can then be solved

using dynamic programming. The discrete-time control input can be converted to

continuous-time using zero-order hold. This approach can easily consider time-varying

nonlinear systems, state constraints, control constraints, and mixed state-control con-

straints (i.e. constraint functions that depend on both the states and the control).

The drawback of this approach is that as the discretization and quantization becomes

finer, the computation and memory requirements grows rapidly and can even become

intractable, this is known as the curse of dimensionality [20].

The direct method is also known as “first discretize, then optimize” [18], [19], since

the problem is first discretized to obtain an optimization problem which is then solved

to obtain the solution to the optimal control problem.

2.3 Model Predictive Control (MPC)

Model predictive control is a model-based control strategy, a mathematical model

of the system being controlled is required. The model predictive control strategy is

generally characterized by the following [23]:
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• Use of a model of the system to predict the output of the system at future times

(horizon or window).

• Calculation of the control over the future time window by formulation and

solution of an optimization problem.

• A shifting optimization window, i.e. the following sequence is repeated: (i) solv-

ing an optimization problem to determine the control, (ii) application of the first

few control samples, and (iii) shifting of the optimization window.

Model predictive control formulates the control problem as an optimization prob-

lem, which is then solved by an optimization solver. Model predictive control (MPC)

achieves feedback by measuring the output of the system at regular intervals, and

using the measured output or state in the next control iteration. The feedback law

is obtained through iterative online optimizations [24]. The feedback law is actually

a complex function of the current state [25].

Model predictive control can also be viewed as applying the direct method of

optimal control sequentially. Both MPC and the direct method formulate the control

problem as an optimization problem which is solved using optimization solvers. The

difference is that the MPC strategy uses a shifting optimization window. A shifting

window is characterized by continuous repetition of the following sequence: measuring

the system output or state, solving the optimization (control) problem, and applying

the first few control commands. The direct method is not characterized by repeatedly

formulating and solving optimization problems to determine the control, whereas

MPC is characterized by repeatedly formulating and solving optimization problems

based on the latest system output measurements in order to determine the control.
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In the direct method, the optimization problem may be formulated and solved once,

and the resulting control commands applied open-loop.

Model predictive control requires the model of the system to be known relatively

well, i.e. the model should describe the system dynamics relatively accurately [23],

although the feedback provided by measuring the current system output or state and

solving a new optimization problem to determine the control can compensate for

disturbances, modelling errors, and other sources of uncertainty [26].

Some of the advantages of MPC are the following:

• easy to formulate [23],

• can control a wide range of processes and systems [23],

• can easily handle Multiple-Input Multiple-Output (MIMO) systems [23],

• can easily incorporate constraints, such as constraints on state, control, or func-

tions of control and state [23],

• can easily incorporate nonlinear, time-varying system dynamics [23], [27], and

• can change the objective function and the system dynamics model online [28].

The disadvantages of MPC are the following [23]:

• computational and memory requirements to compute the control, and

• requirement for an appropriate model of the system or process being controlled.

2.3.1 Classical Model Predictive Control

The notation used in Eqs. (2.3.1) to (2.3.7) is defined in Table 2.2.
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Table 2.2: Model Predictive Control: Notation and Variables

Symbol Quantity

t Time, scalar.

x [t] State, vector of size nx

u [t] Control, vector of size nu

x [t+ k | t] Refers to the predicted states at the time instant

t + k calculated at the current time instant t [23],

of size nx

rx [t] Reference trajectory for the states, of size nx

ru [t] Reference trajectory for the states, of size nu

Wx Matrix of weights for states, of size nx × nx

Wu Matrix of weights for control, of size nu × nu

W∆u Matrix of weights for control, of size nu × nu

l (x [t] , u [t] , t) : Rnx×Rnu×

R→ R

Time-varying cost function of the states and the

control

f (x [t] , u [t] , t) : Rnx ×

Rnu × R→ Rnx

State evolution

CInequality (x [t] , u [t] , t) :

Rnx × Rnu × R →

RnPath,Inequality

Path inequality constraints

CEquality (x [t] , u [t] , t) :

Rnx × Rnu × R →

RnPath,Equality

Path equality constraints
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Symbol Quantity

φInequality (x [t] , t) :

Rnx × R →

RnTerminal-Boundary,Inequality

Terminal boundary inequality constraints

φEquality (x [t] , t) :

Rnx × R →

RnTerminal-Boundary,Equality

Terminal boundary equality constraints

min
x[t+k],u[t+k],t+k,k∈0,...,N

J =
N−1∑
k=0

l (x [t+ k |t ] , u [t+ k] , t+ k) (2.3.1)

subject to: x [k + 1] = f (x [t+ k] , u [t+ k] , t+ k) (2.3.2)

φEquality (x [t+N ] , t+N) = 0 (2.3.3)

φInequality (x [t+N ] , t+N) ≤ 0 (2.3.4)

CEquality (x [t+ k] , u [t+ k] , t+ k) = 0 (2.3.5)

CInequality (x [t+ k] , u [t+ k] , t+ k) ≤ 0 (2.3.6)

• Commonly used cost functions include examples such as minimizing a quadratic

function of the state (or error from a nominal state trajectory), control (or

error from a nominal control trajectory), and the change in control as shown

in Eq. (2.3.7). The change in control is added to maintain a smooth control
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that does not fluctuate rapidly, i.e. penalize discontinuous controls.

J =
N∑
k=0

(x [t+ k | t]− rx [t+ k])TWx(x [t+ k | t]− rx [t+ k])

+
N−1∑
k=0

(u [t+ k]− ru [t+ k])TWu(u [t+ k]− ru [t+ k])

+
N−1∑
k=1

(u [t+ k]− u [t+ k − 1])TW∆u(u [t+ k]− u [t+ k − 1])

(2.3.7)

Classical model predictive control works as follows:

1. Measure (estimate) the current state of the system.

2. Solve the optimization problem for N steps into the future using the model of

the system to predict the future states.

3. Apply the first k control commands, where k ≤ N .

4. Repeat the procedure.

In the classical model predictive control setup, the key features are the iterative

online optimizations and the moving horizon. The moving horizon nature of classical

model predictive control is the reason why this control approach is also known as

receding horizon control [24].

2.3.2 Economic Model Predictive Control (EMPC)

Economic model predictive control is a variant of model predictive control where the

cost at each instant is not restricted to penalizing the distance from a set equilib-

rium [24]. In this variant, there is no a priori selected equilibrium that the controller
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attempts to stabilize or track. Instead of an a priori selection of an equilibrium trajec-

tory to stabilize or track, the equilibrium trajectory is determined by the optimization

process as a solution to the optimal control problem. The optimal control problem is

defined by the dynamics, constraints, and objective function. Also, in the context of

economic model predictive control (EMPC), depending on the problem, the concept of

a moving horizon may no longer be suitable and instead other concepts such as a fixed

horizon can instead be used [24]. In this regards, EMPC is most similar to optimal

control. Specifically, the EMPC formulation is analogous to the formulation arrived

at by iterative application of a simultaneous solution method from the direct solution

approach framework to the optimal control problem. The key difference with EMPC

and optimal control is that EMPC is a closed-loop method while optimal control may

or may not result in a closed-loop control. EMPC can be considered as a closed-loop

method because in EMPC, an optimization problem is periodically formulated and

solved using the latest sensor feedback in order to determine the control.

2.4 Train Control

2.4.1 Introduction to Train Control

2.4.1.1 Automatic Train Control (ATC)

According to the IEEE standards manual, automatic train control (ATC) is defined

as:

The system for automatically controlling train movement, enforcing train

safety, and directing train operations. ATC must include ATP and may

include ATO and/or ATS. [29, p.2]

26



M.A.Sc. Thesis - Muzamil Rashid McMaster - Electrical Engineering

. The ATC system consists of three subsystems, ATO, ATP, and ATS, and is respon-

sible for train safety, movement, and operation [30].

2.4.1.2 Automatic Train Supervision (ATS)

According to the IEEE standards manual, ATS is defined as: “The subsystem within

the ATC system that monitors trains, adjusts the performance of individual trains to

maintain schedules, and provides data to adjust service to minimize inconveniences

otherwise caused by irregularities.” [29, p.3].

ATS is the system responsible for managing the fleet of trains on the network and a

description is provided as follows, according to [30]. ATS uses an established schedule

to dispatch trains, control station dwell times, and interstation run times. ATS is

also responsible for controlling access to track sections, in order to prevent collisions

and ensure safe headway. The ATS system is usually located in a central location

and a two-way communication system is used to communicate with the trains.

2.4.1.3 Automatic Train Operation (ATO)

According to the IEEE standards manual, ATO is defined as: “The subsystem within

the ATC system that performs any or all of the functions of speed regulation, pro-

grammed stopping, door control, performance level regulation, or other functions

otherwise assigned to the train operator.” [29, p.3].

ATO is the system responsible for managing the operation of a single train [30]. It

controls the train speed by issuing traction and braking commands. The ATO system

is also responsible for accurately stopping the train at stations. This is important

because the station platform may have doors that have to line up with the train doors
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for passengers to be able to enter and exit the train from the platform. The ATO

system interacts with the ATP system.

2.4.1.4 Automatic Train Protection (ATP)

According to the IEEE standards manual, ATP is defined as: “The subsystem within

the ATC system that maintains fail-safe protection against collisions, excessive speed,

and other hazardous conditions through a combination of train detection, train sep-

aration, and interlocking.” [29, p.3].

ATP is a safety-critical system that is responsible for the safe operation of a

train [30]. The ATP system controls the emergency braking system, ensures safe

train separation, monitors speed and prevents overspeeding, controls train door oper-

ation, and other safety-critical subsystems. The ATP system is designed in a fail-safe

manner.

2.4.2 Non-Optimal Train Control

2.4.2.1 Proportional-Integral-Derivative Control (PID)

Given a velocity trajectory from station A to station B, the goal of Proportional-

Integral-Derivative control (PID) in train control is to track a pre-specified trajectory

or target speed [31], [32]. For a minimum-time objective, the target speed can be the

maximum permitted speed. In practice, the target speed is close to but not exactly

the maximum permitted speed, since a buffer region is necessary in order to reduce

the probability that the train speed will surpass the maximum permitted speed. If

the PID controller was to attempt to track the maximum permitted speed, there is

a chance that the maximum permitted speed may be surpassed, thus violating the
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speed limit.

A reference trajectory can also be provided by another high-level controller, such

as an existing optimal train control method based on a simplified model of the train.

Examples of simplified train dynamics models can be found in the works on optimal

train control that are based on analytical solutions to the optimal control problem

using classical optimal control theory (formulation of a system Hamiltonian and then

application of the first-order necessary conditions of optimality from the calculus

of variations and Pontryagin’s minimum principle). These simplified models ignore

input-delays and limits on the change in control, and use less accurate models for the

maximum traction force limit. The use of an optimal controller to generate the ref-

erence trajectory can improve operational efficiency. The PID controller attempts to

follow the reference trajectory provided by the high-level controller. The challenge of

dealing with the complex dynamics of the system are then transferred to the PID con-

troller. An issue with this approach is that although attempting to follow a reference

trajectory can help to improve on performance criteria, it may not be able to improve

the performance objectives as much as having an optimal controller synthesized us-

ing the complex dynamics. Another issue is that if the trip specifications change

partway during the trip, a new reference trajectory may have to be generated. An

optimal controller synthesized using the complex dynamics has its own issues such as

computational resource limitations, computation-time and memory limitations, and

difficulty in finding a global optimum.
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2.4.2.2 Model Predictive Control (MPC)

MPC control is similar to PID in that MPC is used to mainly track a reference

trajectory. The MPC framework has been used for train control with the objective

of following a reference trajectory while maintaining energy-efficiency, low-jerk, and

passenger comfort [33].

In the MPC framework, as described in [33], an optimization problem is formu-

lated and then solved at each time instant. A select number of control commands

are applied. The outputs are measured, and used to formulate a new optimization

problem. This process is repeated to obtain the control law. MPC train control is

different from optimal control in the following ways:

• MPC requires a reference trajectory, optimal control does not require a reference

trajectory [33]; and

• MPC is used as a moving (receding) horizon control scheme in train control,

while optimal control has a fixed horizon [33].

Some of the advantages of MPC over PID control are the following:

• MPC follows the reference trajectory optimally, while PID does not (MPC can

simultaneously optimize for tracking error, fuel consumption, passenger comfort,

etc.) [33];

• MPC can explicitly consider constraints on the control and states, while PID

can not [33]–[36]; and

• MPC can explicitly consider the nonlinear and time-varying behaviour, while

PID can not.
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Some of the advantages of PID control over MPC are the following:

• PID is not computationally intensive, while MPC is; and

• PID does not require a model of the system, while MPC does.

Since MPC also needs a reference trajectory like PID, MPC also has some of the

same issues as PID. The discussion of the issues with the use of a reference trajectory,

in Subsubsection 2.4.2.1, applies here as well.

2.4.2.3 Fuzzy Control

Fuzzy control was developed in order to overcome some of the deficiencies present

in PID control [32], [37]–[40]. A human operator has superior performance to a PID

controller. PID control was not effective at considering the different trade-offs present

when choosing a control value, and was not adept at dealing with the nonlinear and

time-varying behaviour present in the train dynamics. Fuzzy control is an attempt to

replicate a human operating the train. A human operator would consider a number of

different factors, such as desired arrival time, energy consumption, passenger comfort,

proximity to speed limit, grade, frequency of past control changes, smoothness of

the control, etc., and then choose an appropriate control command. Fuzzy control

attempts to consider these trade-offs, in a manner similar to a human operator.

The disadvantages of using fuzzy control systems for train operation are that the

fuzzy controller must be tuned, which can be a very time-consuming process [41].

Also, fuzzy control may not be adept at adapting to changes in the trip specifications

partway through the trip if the rules that determine the trade-offs between various

objectives, e.g. trip time, energy consumption, smoothness of control, are static, i.e.
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fixed and cannot be adjusted partway through the trip. Fuzzy control is also not

optimal.

2.4.2.4 Expert Systems

In [42], a two-level controller is used for automatic train control. At the low-level, the

control framework in the paper actually uses a different model to characterise a specific

operating region for the system. Each model is controlled with its own controller. The

controller architectures used can differ greatly ranging from conventional controllers

to fuzzy optimal controllers. At the high-level, there is a real-time expert system that

supervises all the low-level models and their respective low-level controllers. The

high-level expert system determines which model and controller are active at the

current time.

The disadvantage of such an approach is the potentially large computation time

compared to PID. The expert system must also be tuned and trained, which can be

very time-consuming. Proper configuration of the expert system may take a consid-

erable number of work hours on the part of a human operator or operators. Another

disadvantage of such an approach is that the reference trajectory may be suboptimal

when compared to optimal controller determined trajectories.

2.4.2.5 Neural Networks

In the papers, [43], [44], a train control scheme is proposed that uses fuzzy neural

networks. The controller consists of two fuzzy neural networks organized in an hier-

archical fashion. One fuzzy neural network determines the reference trajectory and

an appropriate performance objective. Specifically, there are n reference function
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generators and the fuzzy neural network determines: (1) the parameter sets to be

used for each reference function generator; (2) the weights to be used when summing

the results of the n reference function generators. The second fuzzy neural network

determines: (1) the gains to be used for a series of n PI controllers; (2) the weights to

be used when summing the outputs of the n PI controllers. The lower-level controller

determines the control in order to track its respective reference trajectory.

The disadvantages of such an approach are:

• The neural networks have to be trained, which can be very time-consuming [45].

• The reference trajectory may be suboptimal when compared to optimal con-

troller determined trajectories.

2.4.3 Optimal Train Control

There is extensive literature on the optimal control of a train as can be seen in

the following papers, [3], [46]–[48], and in the book by Howlett and Pudney, [49].

Specifically, the review papers, [3], [46], provide a comprehensive review of existing

literature on the train optimal control problem. The papers, [3], [46]–[48], and the

book, [49], provide a good overview of optimal train control.

The train optimal control problem has generally been dealt with in the posi-

tion domain, and as stated in [3], it is widely accepted that it is easier to treat the

train optimal control problem in the position-domain versus the time-domain. The

transformation for converting an optimal control problem along a fixed path from

time-domain to a coordinate system along the fixed path itself has been presented at

least as early as 1985 in [50].
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2.4.3.1 Calculus of Variations (Indirect Approach)

Majority of existing optimal train control literature is concerned with analytical solu-

tions to the train optimal control problem based on classical optimal control theory.

This approach involves formulating a system Hamiltonian and applying the first-order

necessary conditions of optimality from the calculus of variations and Pontryagin’s

minimum principle. Numerical algorithms are sometimes given to solve the resulting

equations. This approach provides interesting theoretical insight; however, it is lim-

ited in its ability to incorporate complex system dynamics models, state constraints,

input constraints, mixed state-input constraints, and complex objectives. This is due

to the difficulty in obtaining analytical solutions when incorporating more compli-

cated objectives and constraints.

The earliest published work found by the author on the train optimal control

problem is by Ichikawa in 1968, [51]. Some other early works include Kokotovic and

Singh in 1972, [52], and Milroy in 1980, [53]. These works utilize classical optimal

control theory, which is based on the variational approach from the calculus of vari-

ations. These works all form a system Hamiltonian, and then use the first-order

necessary conditions of optimality from the calculus of variations and Pontryagin’s

minimum principle to determine the optimal controls. The solution to the problem of

a minimum-time or minimum-energy train journey results in optimal control phases,

where at each phase, one the following control strategies is applied as described in [3]:

• Maximum Power

• Speed Hold by applying traction

• Coast
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• Speed Hold by applying braking

• Brake

The optimal control problem then becomes a finite-dimensional optimization problem

to determine the optimal switching points between the different regions of control [3].

2.4.3.2 Direct Approach

Dynamic programing has been employed to solve the train optimal control prob-

lem [54]. However, the method suffers from the “curse of dimensionality” as detailed

in [20]. The computation and memory requirements for solving optimal control prob-

lems using the dynamic programming approach can be very significant, and infeasible

in some cases. The advantage of the method is that complicated constraints on con-

trol, state, functions of state and control can be considered without significantly

affecting the tractability of the problem as described in [54].

In another direct approach, the train optimal control problem is transformed

from continuous-time (or continuous-position) to discrete-time (or discrete-position),

thus converting the infinite-dimensional optimization problem to a finite-dimensional

one [54], [55]. In [54], the problem is discretized from continuous-time to discrete-

time, and the problem is converted into the form of an optimization problem. The

sequential quadratic programming (SQP) algorithm is then applied to solve the prob-

lem. However, the authors of [54], mention in their paper that their work is not suited

to real-time control. The authors also mention some strategies to achieve real-time

control, namely, receding horizon control and model predictive control. The authors

also suggest the use of an extensive offline control calculation to determine the opti-

mal operating modes for a range of conditions, which is stored in a lookup table. The
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lookup table is used to operate the train.

In [55], several methods under the direct approach family are used to solve the

train optimal control problem. The authors use three different methods to solve the

problem: (1) Gauss Pseudospectral Method to discretize the dynamics differential

equation and the integral in the objective and then solve using the Pseudospectral

Optimal Control Solver (PSOPT) software package; (2) convert the optimization

problem into a mixed-integer linear programming (MILP) problem and solve using

specially designed solvers; (3) quantize the states and the control and then use the

dynamic programming algorithm by using the Discrete Dynamic Programming (DDP)

software package.

A note on MILPs must be made. MILP problems are not convex because of the

presence of discrete variables, i.e. variables that can only take on values in a finite set.

However, these problems can be solved to global optimality in a reasonable amount

of time using specially designed solvers [55], [56]. Further clarification must be made,

as explained in [56], although solutions to many practical MILP problems can be

obtained in a reasonable amount of time, there is no guarantee that every MILP can

be solved in a reasonable amount of time. Although the solvers guarantee finding the

global optimum for MILPs, it may take an unreasonably long time to solve for global

optimality.

The issues with the approach used in [55] is that the optimal control approach

only determines a reference trajectory. There exists another low-level controller that

is intended to track the provided reference trajectory. The issue with this is that the

overall system may be suboptimal because the system may not track the reference

trajectory accurately all the time. Performance can be improved by re-solving a new
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optimal trajectory which can take into account the difference between the current

system state and the previously calculated optimal trajectory, i.e. find a new optimal

trajectory from the current system state which is not on the previous optimal trajec-

tory. This will determine an optimal way of going from the current system state to

the desired final system state, since the previous optimal trajectory may not be the

optimal trajectory to follow to achieve the desired final system state from the current

system state. Also, the authors state that the optimal controller in the paper is not

suitable for real-time control.

In [57], [58], the train optimal control problem is solved using the genetic algorithm

(GA). Particularly in [57], the method is used to calculate a schedule for a single train

operation that can be followed by the ATO system. The schedule indicates when the

train should coast in order to save energy. The schedule is calculated before the train

departs. The authors use a suboptimal solution as the starting point for the GA

and assume that the optimal solution is close to the suboptimal starting point. The

suboptimal point is itself determined from a lookup table which provides the distance

from the destination at which the train can start coasting, as a function of the supply

voltage, timetabled passenger loads, and on-time operation. In [58], simulation results

are provided for the GA and compared against Howlett’s results, which are based on

the indirect calculus of variations approach. The results in the paper show that

the algorithm works reasonably well compared to the indirect calculus of variations

approach. One of the issues with this approach is that the GA can only search near a

suboptimal initial starting point. The optimization algorithm is, in a sense, restricted

to look for a solution near the suboptimal initial starting point and is restricted in

its ability to search a large space of the variables for a possibly better point.
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2.5 Time-Delay Systems

Time-delays in actuation or sensing may degrade performance and even make systems

unstable [4]. Systems with delays pose considerable challenge and difficulty, and

optimal control of such systems can pose additional problems. For many systems,

time-delays in sensing can be moved over to the actuation side for the purpose of

analysis and control.

2.5.1 Continuous Time

Unlike conventional systems, continuous time time-delay systems are characterized

by an infinite-dimensional state, i.e. an infinite amount of memory [4], [7]–[11], [59],

[60]. This greatly adds to the complexity of time-delay systems.

For linear systems, different control approaches have been proposed such as finite

spectrum assignment, [8], [61], reduction, [9], modified Smith predictor, [62], [63],

and feedback stabilization, [7]. Finite spectrum assignment is detailed in [8], [61].

Linear input time-delay systems can be considered to possess an infinite spectrum,

i.e. an infinite number of eigenvalues. Finite spectrum assignment is concerned with

obtaining a feedback law which results in a closed-loop system consisting of only

a finite number of eigenvalues which can be arbitrarily placed, and the rest of the

eigenvalues are eliminated. The feedback law depends on the past control input

history.

Reduction is concerned with the transformation of an infinite-dimensional system

to a finite-dimensional one, the system with delay is transformed to one without

delay [9]. This approach has been termed as a “predictor-like” technique because the

control law is based on the past control input trajectories [64].
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Feedback stabilization and the modified Smith predictor are both predictive ap-

proaches to dealing with delay [4], [7], [65]. The Smith predictor involves including

feedback based on the predicted evolution of the system. The predicted evolution is

obtained by the use of a mathematical model of the system. The use of a predic-

tor converts the controller design problem from control of a input time-delay system

to one of a input delay-free system. All of the above approaches for linear systems

transform the problem of control of an input time-delay system to one without any

input time-delay.

For nonlinear systems, the predictor approach has been presented for systems with

the same delay for all of its inputs [4]–[6]. The predictor framework bases the feedback

not on the current state or output, but rather a future predicted state or output. The

state and output at a future time is completely determined by the current state, the

past control history, and a mathematical model of the system.

2.5.2 Discrete-Time

Discrete-time systems with constant bounded time-delays in the input can be con-

verted to a higher-order discrete-time delay-free system by augmentation of the states,

see [66]–[70].

2.5.3 Time-Delays and Optimal Train Control

Existing literature on optimal control of a train does not consider delays in the actu-

ation model.
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Table 2.3: Notation and Variables
Notation Description

x vector of size Rn

ai vector of size Rn

bi scalar

c vector of size Rn

f (x) Rn → R
gi (x) Rn → R
hi (x) Rn → R

2.6 Optimization

The intent of this section is to provide a very brief review of a few concepts from

optimization. The notation used in this section is defined in Table 2.3.

2.6.1 General Optimization Problem

A general nonlinear optimization problem can be formulated as Eq. (2.6.1) [71].

Equation (2.6.1.1) is the objective, Eq. (2.6.1.2) are the m inequality constraints,

and Eq. (2.6.1.3) are the p equality constraints. Note that any inequality constraints

of the form gi,geq (x) ≥ 0 can be converted to gi (x) ≤ 0 by multiplying both sides by

−1, and then replacing −gi,geq (x) by gi (x).

min
x∈Rn

f (x) (2.6.1.1)

s.t.: gi (x) ≤ 0 for i = 1, . . . ,m (2.6.1.2)

hi (x) = 0 for i = 1, . . . , p (2.6.1.3)
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2.6.2 Convex Optimization Problem

A convex optimization problem is one where the objective function is convex and the

feasible set is a convex set [71], [72]. More specifically, for a minimization problem,

the problem is convex, if the objective function is convex and the feasible set is

convex. For a maximization problem, the problem is convex, if the objective function

is concave and the feasible set is convex.

A convex optimization problem written in standard form is formulated as Eq. (2.6.2).

min
x∈Rn

f (x) (2.6.2.1)

s.t.: gi (x) ≤ 0 for i = 1, . . . ,m (2.6.2.2)

aT
i x− bi = 0 for i = 1, . . . , p (2.6.2.3)

where f (x) , and gi (x) are all convex functions. Note that affine functions, aT
i x−bi =

0 , are convex (and concave).

Some important notes about convex optimization problems:

• In general convex optimization problems can be solved for global optimality in

a reasonable amount of time, i.e. convex optimization problems are computa-

tionally tractable [73], [74].

• Any local optimizer of a convex optimization problem is also a global opti-

mizer [71], [75].

41



M.A.Sc. Thesis - Muzamil Rashid McMaster - Electrical Engineering

2.6.3 Linear Programming

A linear program is one where the objective and all the constraints are linear or affine

functions of the variables. A linear program can be formulated as:

min
x∈Rn

cTx (2.6.3.1)

s.t.: aT
i x− bi ≤ 0 for i = 1, . . . ,m (2.6.3.2)

gT
i x− hi = 0 for i = 1, . . . , p (2.6.3.3)

2.6.4 Local vs. Global Optimum

A local optimum is a point that minimizes the objective function among neighbouring

feasible points [71]. A mathematical description of a locally optimal point, x, is as

follows [71]:

f (x) = inf {f (y) |gi (y) ≤ 0, i = 1, . . . ,m, hi (y) = 0, i = 1, . . . , p,

‖y − x‖2 ≤ R} (2.6.4)

where R ≥ 0.

A global optimum is a point that minimizes the objective function over all feasible

points [71]. A mathematical description of a globally optimal point is as follows [71]:

f (x) = inf {f (y) |gi (y) ≤ 0, i = 1, . . . ,m, hi (y) = 0, i = 1, . . . , p} (2.6.5)
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2.6.5 Dual Problem

The optimization problem defined in Eq. (2.6.1) is also known as the primal prob-

lem [76]. The dual problem is defined as [76]:

max
λ,ν

inf
x∈D

(
f (x) +

m∑
i=1

λigi (x) +

p∑
i=1

νihi (x)

)
(2.6.6.1)

s.t.: λi (x) ≥ 0 for i = 1, . . . ,m (2.6.6.2)

where D = {x|gi (x) ≤ 0, i = 1, . . . ,m, hi (x) = 0, i = 1, . . . , p}, i.e. D is the feasible

set for the primal problem. The dual problem is always a convex problem regardless

of whether the primal problem is convex or not [76].

2.6.6 KKT Conditions

Assuming that the functions f (x) , g1 (x) , . . . , gm (x) , h1 (x) , . . . , hp (x) are differen-

tiable, the Karush-Kuhn-Tucker conditions for optimality (KKT) conditions for the

general nonconvex optimization problem are [76]:

• Primal Feasibility

gi (x
∗) ≤ 0 for i = 1, . . . ,m (2.6.7.1)

hi (x
∗) = 0 for i = 1, . . . , p (2.6.7.2)

• Dual Feasibility

λ∗i ≥ 0 for i = 1, . . . ,m (2.6.7.3)
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• Complementary Slackness

λ∗i gi (x
∗) = 0 for i = 1, . . . ,m (2.6.7.4)

• Stationarity Condition

∇f (x∗) +
m∑
i=1

λ∗i∇gi (x∗) +

p∑
i=1

ν∗i∇hi (x∗) = 0 (2.6.7.5)

2.6.7 Algorithms for Nonlinear Constrained Optimization

This section provides a very brief review of a few select algorithms for nonlinear

constrained optimization.

2.6.7.1 Sequential Quadratic Programming (SQP)

SQP methods are described in [75], and the description that follows is taken mainly

from [75]. These methods work by solving a sequence of quadratic subproblems.

There are different ways of viewing the SQP approach. One of the ways is that the

nonlinear optimization problem is approximated using a quadratic program around a

given point or iterate:

• The nonlinear objective is approximated using a quadratic function.

• The nonlinear inequality and equality constraints are approximated using linear

functions, i.e. linearizing the nonlinear inequality and equality functions.

The quadratic program is solved, resulting in a new iterate for the optimal point.

The process is repeated at the new iterate. Thus, a sequence of quadratic programs

is solved, hence the name sequential quadratic programming.
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2.6.7.2 Interior-Point Methods

Interior-point methods work by successively solving approximately the perturbed

KKT conditions [75], [77], [78]. Then the perturbed KKT conditions are adjusted

to more closely approximate the actual KKT conditions for the optimization prob-

lem and the process is repeated again, see [75], [77], [78] for a much more detailed

discussion of interior-point methods.

There is a variant class of interior-point methods known as primal-dual interior-

point methods. The primal-dual methods differ from primal interior-point methods

in the following ways [75], [78]:

• Primal methods work only in the space of primal variables. Primal-dual meth-

ods work in the space of both primal and dual variables. Primal-dual methods

update both primal and dual variables at each iteration.

• The search directions of the primal and primal-dual methods may be different,

i.e. produce a different set of iterates.

• Primal methods require a feasible starting point while the primal-dual methods

do not.
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Chapter 3

Dynamics Formulation

In [79], it is shown that the equations of motion using a distributed-mass train model

can be reduced to the equations of motion of a point-mass train model. Thus, only

the point-mass train model will be considered and the impact of in-train forces on

the train dynamics behaviour will be ignored. The equations of motion in the time

domain are presented next.

3.1 Time Domain

3.1.1 Zero Traction-Braking Delays

The train dynamics model is taken from [3], [80]–[82]. The forces included in the

train dynamics model are:

• Resistance force

In [3], [83], the modelling of the resistance force is briefly described. The

resistance force is modelled by the Davis formula which takes the form of a
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second-order polynomial in v (t) where all the coefficients are non-negative:

C (v (t)) = C0 + Cvv (t) + Cv2v
2 (t). The resistance force consists of the fol-

lowing components [80]:

– Journal resistance: a constant force and only occurs if the train is moving,

corresponds to the term, C0.

– Flange resistance: proportional to velocity, corresponds to the term, Cvv (t).

– Air resistance: proportional to the square of velocity, corresponds to the

term, Cv2v2 (t).

• Component of force of gravity due to track grade

This is the force of gravity tangential to the track. It is modelled as:

g (s (t)) = mggravity,acc sin (θ (t)) (3.1.1)

where θ is the angle between the incline and the horizontal. Since the height

of the track is known for any position along the track, thus the grade and

the component of gravity affecting longitudinal motion are known functions of

position.

• Traction or braking force of the train itself

The force is given by u (t), where u is the control, traction or braking, force.

For the train system, the equations of motion in time-domain are:

• Position evolution:
ds (t)

dt
= v (t) (3.1.2.1)
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• Velocity evolution:

m
dv (t)

dt
= −C (v (t)) + g (s (t)) + u (t) (3.1.2.2)

3.1.2 Equal Traction-Braking Delays

The only difference between this case and the case in Subsection 3.1.1 is that the

dynamics equation, Eq. (3.1.2.2), is replaced with Eq. (3.1.3.1).

m
dv (t)

dt
= −C (v (t)) + g (s (t)) + u

(
t− Tdelay

)
(3.1.3.1)

3.1.3 Non-Equal Traction-Braking Delays

A more complicated system model includes one in which traction and braking are

separate control inputs, each with different time-delays. The difference between this

case and Subsection 3.1.1 are the following: the single control input, u (t), is replaced

with the two control inputs, traction, utrk (t), and braking, ubrk (t); and the dynamics

equation, Eq. (3.1.2.2), is replaced with Eq. (3.1.4.1).

m
dv (t)

dt
= −C (v (t)) + g (s (t)) + utrk

(
t− Ttrk,delay

)
− ubrk

(
t− Tbrk,delay

) (3.1.4.1)

3.2 Position-Domain

The equations of motion using position as the independent variable are detailed in [3],

[47], [48], [84] for a train, and for more general vehicles in [85]. The position do-

main dynamics are provided since the optimal control problem for the case of equal
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traction-braking delays will be formulated and solved in the position domain, as will

be explained in Chapter 5.

3.2.1 Zero Traction-Braking Delays

The continuous-position dynamics equations are:

• Time evolution:
dt (s)

ds
=

1

v (s)
(3.2.1.1)

• Velocity evolution:

mv (s)
dv (s)

ds
= −C (v (s)) + g (s) + u (s) (3.2.1.2)

3.2.2 Equal Traction-Braking Delays

The only difference between this case and the case in Subsection 3.2.1 is that the

dynamics equation, Eq. (3.2.1.2), is replaced with Eq. (3.2.2.1)

mv (s)
dv (s)

ds
= −C (v (s)) + g (s) + u

(
s− Sdelay

)
(3.2.2.1)

where s − Sdelay is the position Tdelay seconds ago, i.e. t
(
s− Sdelay

)
= t (s) −

Tdelay.

3.2.3 Non-Equal Traction-Braking Delays

For this case, the single control input, u (s), is replaced with the two control inputs,

traction, utrk (s), and braking, ubrk (s); and the dynamics equation, Eq. (3.2.1.2), is
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replaced with Eq. (3.2.3.1).

mv (s)
dv (s)

ds
= −C (v (s)) + g (s) + utrk

(
s− Strk,delay

)
− ubrk

(
s− Sbrk,delay

) (3.2.3.1)

Note that for Eq. (3.2.3.1), s− Strk,delay is the position Ttrk,delay seconds ago, i.e.

t
(
s− Strk,delay

)
= t (s)−Ttrk,delay; and s−Sbrk,delay is the position Tbrk,delay

seconds ago, i.e. t
(
s− Sbrk,delay

)
= t (s)− Tbrk,delay.

There are also a number of disadvantages with framing the train optimal control

problem using position as the independent variable as described in [3]. In the position

domain, the differential equations have singularities when the velocity is zero. This

can be circumvented by setting the velocity at the origin and the destination to be

arbitrarily small but non-zero [47]. The rate of change of time evolution approaches

infinity as the velocity approaches zero (arbitrarily small but positive velocity). The

rate of change of velocity evolution approaches infinity if the acceleration experienced

is positive and the velocity approaches zero (arbitrarily small but positive velocity).

The singularity in the velocity evolution equation can also be removed by changing

state from velocity to kinetic energy as described in [3], [47].
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3.3 Maximum Tractive and Braking Forces

3.3.1 Maximum Tractive Force

The maximum traction force that can be applied is considered to be a function of the

current train velocity. The traction force is limited by

utrk,max = min

{
Utrk,max,

P

v
,
kPP

v2

}
(3.3.1)

where P is the maximum power (constant), v is train velocity, Utrk,max is an upper

bound on the tractive force (constant), and kP is a constant greater than or equal to

one. Note that the term, kPP
v2

, is an approximation used for the motor field weakening

region [33], [86].

3.3.2 Maximum Braking Force

The braking force is assumed to be a constant independent of the train velocity.
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Chapter 4

Optimal Control Formulation of a

Commuter Train with and without

Delays in the Input

The control approach to drive a train from Station A to Station B is as follows. The

control problem is solved repeatedly along the track using the latest sensor measure-

ments. The first few control commands are applied to the system. The state or

output of the system is measured, and then a new optimal control problem is solved

based upon the latest sensor measurements.

Formulations are provided for the train optimal control problem in the continuous

temporal and spatial domains for each of the following cases: (i) no input delay in

traction and braking commands, (ii) equal delays in traction and braking commands,

and (iii) non-equal delays in traction and braking commands. The formulations are

provided and the intractable nature of each of them are discussed.
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4.1 Zero Traction-Braking Delays

4.1.1 Continuous-Time

• Objective function:

min
s(t),v(t),u(t),t

J (4.1.1.1)

• Subject to the following constraints:

– Initial states

∗ Initial position

s (t0) = s0 (4.1.1.2)

∗ Initial velocity

v (t0) = v0 (4.1.1.3)

– Final states

∗ Arrive at destination

s
(
tf
)

= sf (4.1.1.4)

∗ Stop at rest

v
(
tf
)

= 0 (4.1.1.5)

– Final arrival time scheduling bounds

tf,min ≤ tf ≤ tf,max (4.1.1.6)

– Position dynamics
ds (t)

dt
= v (t) (4.1.1.7)
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– Velocity dynamics

m
dv (t)

dt
= −C (v (t)) + g (s (t)) + u (t) (4.1.1.8)

– Must either not pass a certain position limit for each value of time, or,

must not be behind a certain position limit for each value of time

smin (t) ≤ s (t) ≤ smax (t) (4.1.1.9)

– Speed limits

0 ≤ v (t) ≤ vmax (s (t)) (4.1.1.10)

– Control/actuation limits

umin (v (t)) ≤ u (t) ≤ umax (v (t)) (4.1.1.11)

– Limits on the change in control

µmin (t) ≤ d

dt
(u (t)) ≤ µmax (t) (4.1.1.12)

A note on the above optimal control problem: the formulation above is not tractable

in the continuous time domain, but is instead tractable in the discrete time domain.

4.1.1.1 Objective Function

The two widely used objective functions according to [3], [47], are:
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• Minimum-time:

min
s(t),v(t),u(t),t

tf (4.1.1.13)

• Minimum-energy, which has the two following variants:

– Minimum-energy with no regenerative braking. This occurs when there is

no system to recover any of the kinetic energy during braking, i.e. all the

kinetic energy is lost when the train brakes. The objective function is,

min
s(t),v(t),u(t),t

∫ tf

t0

max (u (t) , 0) v (t) dt (4.1.1.14)

– Minimum-energy with regenerative braking. This occurs when the train

has a system that can recover a portion of the kinetic energy while braking.

The objective function is,

min
s(t),v(t),u(t),t

∫ tf

t0

{max (u (t) , 0) + σmin (u (t) , 0)} v (t) dt (4.1.1.15)

where σ is the regenerative braking recovery factor, i.e. the portion of

braking energy that is recovered.

Only minimum-time and minimum-energy with no regenerative braking formulations

are considered in this thesis. It is trivial to extend the minimum-energy with no

regenerative braking formulation to the case of minimum-energy with regenerative

braking.
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4.1.1.2 Disadvantages of Formulating the Train Optimal Control Problem

in Time Domain

There are a number of disadvantages with framing the optimal control problem of a

train using time as the independent variable [3], [47], [48], [84]. This is explained in

more detail below.

Speed limits are known in advance as a function of position. Different sections of

the track may have different speed limits [3], [47], [48], [84].

Grade is known in advance as a function of position. Since the component of the

force of gravity due to track grade may have a considerably larger magnitude than the

resistance force and it may also be the largest force experienced by the train, other

than the tractive and braking force of the engine and braking mechanism, respectively,

it is important to accurately consider the grade while discretizing the problem in order

to solve it using an optimization solver [3], [47], [48], [84].

An important real-life objective is to minimize the travel time. Minimizing travel

time allows for the operation of more train trips, decreasing headway, increasing

passenger capacity, and reducing passenger wait times across the rail line [3], [48], [84].

Including travel time into the objective function results in increasing the complexity

of the nonlinear optimization problem as opposed to a fixed trip travel time. A more

detailed elaboration on the minimum-time objective increasing problem formulation

complexity is as follows:

• If the discretization intervals, ∆t, are fixed, then the objective would be to min-

imize the number of intervals. In this case, the optimization problem becomes

a mixed-integer nonlinear linear programming (MINLP). This is because the

number of intervals is a discrete variable which can only take positive integer
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values. MINLP problems are extremely difficult to solve [87], [88].

• If the number of discretization intervals is fixed, then the objective becomes to

minimize the sum of the discretization intervals ∆ti, i.e. the ∆ti are decision

variables. This problem is definitely easier than the first one, since it is not

an MINLP but instead an NLP. However, it increases the number of decision

variables and makes the constraints more complicated as opposed to the problem

in the position-domain. Specifically, it adds N more decision variables, where

N is the number of discretization nodes.

4.1.2 Continuous-Position

To address the issues with using time as the independent variable, the problem is

formulated in the position domain.

• Objective function:

min
t(s),v(s),u(s),s

J (4.1.2.1)

• Subject to the following constraints:

– Initial states

∗ Initial time

t (s0) = t0 (4.1.2.2)

∗ Initial velocity

v (s0) = v0 (4.1.2.3)

– Final states
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∗ Stop at rest

v
(
sf
)

= 0 (4.1.2.4)

– Final arrival time scheduling bounds

tf,min ≤ t
(
sf
)
≤ tf,max (4.1.2.5)

– Time dynamics
dt (s)

ds
=

1

v (s)
(4.1.2.6)

– Velocity dynamics

mv (s)
dv (s)

ds
= −C (v (s)) + g (s) + u (s) (4.1.2.7)

– Must either not pass a certain time limit for each value of position, or,

must not be behind a certain time limit for each value of position, i.e.

must be within a certain time window for each position

tmin (s) ≤ t (s) ≤ tmax (s) (4.1.2.8)

– Speed limits

0 ≤ v (s) ≤ vmax (s) (4.1.2.9)

– Control/actuation limits

umin (v (s)) ≤ u (s) ≤ umax (v (s)) (4.1.2.10)

58



M.A.Sc. Thesis - Muzamil Rashid McMaster - Electrical Engineering

– Limits on the change in control

µmin (s) ≤ v (s)
d

ds
(u (s)) ≤ µmax (s) (4.1.2.11)

A note on the above optimal control problem: the formulation above is not tractable

in the continuous position domain, but is instead tractable in the discrete position

domain.

4.1.2.1 Objective Functions

The objective functions now are [3], [47]:

• Minimum-time:

min
t(s),v(s),u(s),s

t
(
sf
)

(4.1.2.12)

• Minimum-energy:

– Minimum-energy with no regenerative braking:

min
t(s),v(s),u(s),s

∫ sf

s0

max (u (s) , 0) ds (4.1.2.13)

– Minimum-energy with regenerative braking:

min
t(s),v(s),u(s),s

∫ sf

s0

{max (u (s) , 0) + σmin (u (s) , 0)} ds (4.1.2.14)

where σ is the regenerative braking recovery factor, i.e. the portion of

braking energy that is recovered.
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4.2 Equal Traction-Braking Delays

Formulations are presented for the case of equal traction-braking delays that are not

tractable as explained in each subsection below. These formulations are arrived at by

using the input-delay dynamics differential equation in the optimal control problem,

instead of the delay-free one. A tractable formulation of the problem will be provided

in Chapter 5.

4.2.1 Time Domain

The only difference between the case of a input delay-free system and a single input-

delay system is that dynamics equation Eq. (4.1.1.8) is replaced by Eq. (4.2.1.1) in

the optimal control formulation.

m
dv (t)

dt
= −C (v (t)) + g (s (t)) + u

(
t− Tdelay

)
(4.2.1.1)

The current formulation of the problem is not tractable due to the following reasons:

the infinite-dimensional nature of the system due to the presence of the delay, and

the infinite-dimensional nature of the optimization problem in continuous-time.

4.2.2 Position Domain

The only difference between the case of a input delay-free system and a single input-

delay system is that dynamics equation Eq. (4.1.2.7) is replaced by Eq. (4.2.2.1) in

the optimal control formulation.

mv (s)
dv (s)

ds
= −C (v (s)) + g (s) + u

(
s− Sdelay

)
(4.2.2.1)
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The current formulation of the problem is not tractable because of the infinite-

dimensional nature of the system due to the presence of the delay, and the infinite-

dimensional nature of the optimization problem in continuous-position.

4.3 Non-Equal Traction-Braking Delays

Formulations are presented for the case of non-equal traction-braking delays. These

formulations are not tractable as explained in each subsection below. These formu-

lations are arrived at by using the non-equal traction-braking input delay dynamics

differential equation in the optimal control problem, instead of the delay-free one. A

tractable formulation of the problem will be provided in Chapter 7.

4.3.1 Time Domain

min
s(t),v(t),utrk(t),ubrk(t),t

J (4.3.1.1)

s.t.

s (t0) = s0 (4.3.1.2)

v (t0) = v0 (4.3.1.3)

s
(
tf
)

= sf (4.3.1.4)

v
(
tf
)

= 0 (4.3.1.5)

tf,min ≤ tf ≤ tf,max (4.3.1.6)

ds (t)

dt
= v (t) (4.3.1.7)
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m
dv (t)

dt
= −C (v (t)) + g (s (t))

+ utrk
(
t− Ttrk,delay

)
− ubrk

(
t− Tbrk,delay

) (4.3.1.8)

smin (t) ≤ s (t) ≤ smax (t) (4.3.1.9)

0 ≤ v (t) ≤ vmax (s (t)) (4.3.1.10)

0 ≤ utrk (t) ≤ utrk,max (v (t)) (4.3.1.11)

0 ≤ ubrk (t) ≤ ubrk,max (v (t)) (4.3.1.12)

utrk (t)ubrk (t) = 0 (4.3.1.13)

µtrk,min (t) ≤ d

dt

(
utrk (t)

)
≤ µtrk,max (t) (4.3.1.14)

µbrk,min (t) ≤ d

dt

(
ubrk (t)

)
≤ µbrk,max (t) (4.3.1.15)

The constraint, Eq. (4.3.1.13), is added to ensure that either one of traction or brak-

ing is active at any given time. Applying both traction and braking can result in:

equipment damage; increased cost of operation and reduced operating efficiency by in-

creasing mechanical wear and tear, and reducing energy efficiency by wastage; reduced

operating performance; and may also reduce passenger comfort. Equation (4.3.1.11)

is a limit on the tractive force, likewise, Eq. (4.3.1.12), is a limit on the braking force.

Equation (4.3.1.14) is a limit on the rate of change of the tractive force, likewise,

Eq. (4.3.1.15), is a limit on the rate of change of the braking force.

The current formulation of the problem is not tractable because of the infinite-

dimensional nature of the system due to the presence of the delay, and the infinite-

dimensional nature of the optimization problem in the continuous domain.
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4.3.2 Position Domain

min
t(s),v(s),utrk(s),ubrk(s),s

J (4.3.2.1)

s.t.

t (s0) = t0 (4.3.2.2)

v (s0) = v0 (4.3.2.3)

tf,min ≤ t
(
sf
)
≤ tf,max (4.3.2.4)

v
(
sf
)

= 0 (4.3.2.5)

dt (s)

ds
=

1

v (s)
(4.3.2.6)

mv (s)
dv (s)

ds
= −C (v (s)) + g (s)

+ utrk
(
s− Strk,delay

)
− ubrk

(
s− Sbrk,delay

) (4.3.2.7)

tmin (s) ≤ t (s) ≤ tmax (s) (4.3.2.8)

0 ≤ v (s) ≤ vmax (s) (4.3.2.9)

0 ≤ utrk (s) ≤ utrk,max (v (s)) (4.3.2.10)

0 ≤ ubrk (s) ≤ ubrk,max (v (s)) (4.3.2.11)

utrk (s)ubrk (s) = 0 (4.3.2.12)

µtrk,min (s) ≤ v (s)
d

ds

(
utrk (s)

)
≤ µtrk,max (s) (4.3.2.13)

µbrk,min (s) ≤ v (s)
d

ds

(
ubrk (s)

)
≤ µbrk,max (s) (4.3.2.14)

Note that for Eq. (4.3.2.7), s− Strk,delay is the position Ttrk,delay seconds ago, i.e.

t
(
s− Strk,delay

)
= t (s) − Ttrk,delay; and for Eq. (4.3.2.7), s − Sbrk,delay is the
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position Tbrk,delay seconds ago, i.e. t
(
s− Sbrk,delay

)
= t (s)− Tbrk,delay.

The problem with non-equal traction-braking delays is not tractable using position

as the independent variable. The problem is not tractable because Sbrk,delay, and

Strk,delay are nonlinear functions of past state trajectories, i.e. the problem is of an

infinite-dimensional nature.
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Chapter 5

Equal Traction-Braking Delays

The optimal control formulation, used in Algorithm 1, and based on the approxima-

tion in [13] resulting in a convex optimization problem is given below. A summary

of the convex approximation is provided in Appendix A for ease of reference. The

continuous position and the discrete position formulations are provided.

5.1 Continuous-Position

min
t(s),v(s),ρ(s),γ(s),γ+(s)

∫ sf

s0

weγ
+ (s) ds+ wρt

(
sf
)

(5.1.1.1)

s.t.

t (s0) = tPredicted (5.1.1.2)

s (s0) = sPredicted (5.1.1.3)

v (s0) = vPredicted (5.1.1.4)

tmin ≤ t
(
sf
)
≤ tmax (5.1.1.5)
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v
(
sf
)

= 0m/s (5.1.1.6)

dt (s)

ds
= ρ (s) (5.1.1.7)

dv (s)

ds
= g (s)− C0

m
ρ (s)− Cv

m
− Cv2

m
v (s) + γ (s) (5.1.1.8)∥∥∥∥∥∥∥

 2

v (s)− ρ (s)


∥∥∥∥∥∥∥

2

≤ v (s) + ρ (s) (5.1.1.9)

0 ≤ γ+ (s) (5.1.1.10)

γ (s) ≤ γ+ (s) (5.1.1.11)

0m/s < v (s) ≤ vmax (s) (5.1.1.12)

0 s/m < ρ (s) <∞ s/m (5.1.1.13)(
ubrk,max

)
ρ (s) ≤ γ (s) (5.1.1.14)

γ (s) ≤ utrk,maxρ (s) (5.1.1.15)

γ (s) ≤ r0ρ (s) + rv + rv2v (s) (5.1.1.16)

5.2 Discrete-Position

The optimal control formulation, for a train at a position marker s [q], is given by:

min
t[k],v[k],ρ[k],γ[k],γ+[k],k∈{q,...,N}

N−1∑
i=q

{
weγ

+ [i] δs [i] + wρρ [i]
}

(5.2.1.1)

s.t.

t [q] = tPredicted (5.2.1.2)

s [q] = sPredicted (5.2.1.3)

v [q] = vPredicted (5.2.1.4)
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tmin ≤ t [N ] ≤ tmax (5.2.1.5)

s [N ] = sf (5.2.1.6)

v [N ] = 0m/s (5.2.1.7)

for k ∈ {q, . . . , N − 1} :

t [k + 1] = t [k] + ρ [k] δs [k] (5.2.1.8)

v [k + 1] = ubrk,max [k] +

{
g [k]− C0

m
ρ [k]

− Cv
m

− Cv2

m
v [k]

+γ [k]} δs [k]

(5.2.1.9)

for k ∈ {q, . . . , N} : ∥∥∥∥∥∥∥
 2

v [k]− ρ [k]


∥∥∥∥∥∥∥

2

≤ v [k] + ρ [k] (5.2.1.10)

0 ≤ γ+ [k] (5.2.1.11)

γ [k] ≤ γ+ [k] (5.2.1.12)

0m/s < v [k] ≤ vmax [k] (5.2.1.13)

0 s/m < ρ [k] <∞ s/m (5.2.1.14)(
ubrk,max

)
ρ [k] ≤ γ [k] (5.2.1.15)

γ [k] ≤
(
utrk,max

)
ρ [k] (5.2.1.16)

γ [k] ≤ r0ρ [k] + rv + rv2v [k] (5.2.1.17)
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The objective, Eq. (5.2.1.1), includes a weighted sum of tractive force applied, for

minimizing energy, and a weighted sum of ρ [k], for minimizing time and more im-

portantly to minimize the error between ρ [k] and 1
v[k]

, i.e.
∣∣∣ρ [k]− 1

v[k]

∣∣∣, so that the

approximated dynamics for the convex approximation is close (approximately equal)

to the actual dynamics. Minimizing only the sum of ρ [k] corresponds to a minimum-

time journey. A sufficiently large value for the weight on ρ [k], wρ, is always required

regardless of whether the journey is minimum-energy or minimum-time to ensure that

the approximated dynamics in the convex formulation match the actual dynamics of

the system.

5.3 Algorithm

The solution procedure for optimally operating or driving the train from Station A to

Station B for the case of equal traction-braking delays is detailed in Algorithm 1 and

a high-level overview is given as follows. The position discretization nodes, denoted

by si in Fig. 5.8, are selected once initially from the origin to the destination before

beginning the trip. The discretization nodes are not modified again. The optimal

control problem is successively solved at the pre-selected discretization nodes, i.e.

see Fig. 5.8. The set of remaining position discretization nodes is prepended with an

additional discretization node, s [q], for the predicted states, time and velocity, at the

predicted position. This allows the initial conditions, time and velocity, and continuity

of control, current fixed control, to be fixed at the predicted position discretization

node. This additional node is later discarded when the optimal solution is returned

from the solver.

At each of the remaining discretization nodes, the optimal control solution returns
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the control commands, and time and velocity states. The time and control values are

used in an interpolation scheme to generate control command values at regular control

time steps of TS, which are then issued to the train propulsion and braking systems.

An overview of the prediction process in Algorithm 1 is presented below. Note that

for equal traction-braking delays, delay-compensation is achieved using model-based

prediction.

1. Using the knowledge of the previous control inputs to the system, and the train

dynamics, predict the effect on the system using a model of the system, i.e.

what is the expected position and velocity. This is shown in Fig. 5.5.

• Initially it can be assumed that the past control history consists of all zero

traction and braking commands. If the initial states of the system are

at rest (stationary position, zero velocity, zero acceleration) and the past

control history is all zero traction and braking commands. Issuing traction

and braking commands of zero magnitude to a train at rest will not cause

the train to move, i.e. the states of the train do not change.

2. Use the expected states (position and velocity) as the initial conditions in a new

optimization problem to determine the control inputs from t+Tdelay onwards.

This is shown in Fig. 5.6. In this optimization problem, ignore the input delay

in the dynamics (state evolution) equations. The predictor synchronizes the

system state with the control, i.e. we know the value of the states after all the

control values in the buffer have had an effect. The control commands present in

the buffer are commands that have been issued but have not yet had an effect on

the system. Thus, the dynamics equations will be the same as in Eq. (3.1.2.2).
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Current
Position

Control Buffer

TS

TDelay

Figure 5.1: Control buffer.The arrow pointing into the control buffer shows where the
control commands enter the buffer, and the arrow pointing out of the control buffer
shows where the control commands exit the buffer.

• The set of discretization nodes in the optimization formulation includes

all remaining discretization nodes from the predicted position till the end,

with the addition of the predicted position.

3. Apply a select number of the control commands (solved for by the solution to

the optimization problem) to the system, as shown in Fig. 5.7. The control

commands will not take effect immediately but rather after a delay.

4. Repeat this procedure. This is shown in Fig. 5.8.

Note that the history of the control input trajectory is required for the time period

starting from the current time, t (s), and going back in time to t
(
s− Sdelay

)
. The

quantity, t
(
s− Sdelay

)
, is simply equal to t (s)−Tdelay, which greatly simplifies the

calculation of t
(
s− Sdelay

)
, since, Sdelay, is a function of the past state trajectory.

Use of the predictor transforms the problem from control of a delayed input system

to the control of a delay-free input system.
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Algorithm 1: Optimal control of train with equal traction-braking delays
1 begin
2 Initialize TS
3 Initialize s [k] for k ∈ {0, . . . , N}
4 t ← 0
5 tSample Start ← 0
6 SNext ← 0
7 Measure t, s, v
8 while s <sf do
9 if s ≥ SNext then

10 Function Prediction(Guideway Data, t, s, v,
{ubuf [0] , . . . , ubuf [j]}): is

11 tStart ← t
12 tPredicted ← t
13 while tPredicted-tStart <TDelay do
14 Integrate ODE using values from the control buffer
15 tPredicted ← tPredicted+dt

16 return tPredicted, sPredicted, vPredicted
17 Function Optimization(Guideway Data, tPredicted, sPredicted,

vPredicted, {s [q] , . . . , s [N ]}): is
18 Optimize
19 return ( {t∗ [q] , . . . , t∗ [N ]}, {v∗ [q] , . . . , v∗ [N ]},

{u∗ [q] , . . . , u∗ [N ]} )
20 SNext ← Find next discretization node greater than SNext
21 if t-tSample Start ≥ TS then
22 tSample Start ← t

23 uCurrent ← Interpolate( t+Tdelay, {t
∗ [q] , . . . , t∗ [N ]},

{u∗ [q] , . . . , u∗ [N ]})
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Current
Position

Control Buffer
000 0 ...

TS

TDelay

Figure 5.2: Control buffer filled with zeros. Initially, since the system is at rest, the
control buffer is filled with zeros.

The results in this thesis for the case of equal traction-braking delays are derived

using the convex approximation as presented in [13]. The convex approximation

can be applied for fast and robust solution of the approximate train optimal control

problem. If the two inputs have different delays, then an artificial delay can be

inserted using hardware such that the two control inputs now have the same delay,

thus allowing the convex approximation to be applied.

The problem with multiple inputs with different time-delays is not tractable using

position as the independent variable. The problem becomes tractable using time as

the independent variable as will be explained in Chapter 7. However, in such a case,

it is also possible to artificially delay the input commands with shorter delays so

that all input channels would have equal delays, and then apply the control approach

presented in this section. These two approaches to handling of non-equal delays will

be compared in Chapter 8.
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Current
Position

Control Buffer
ubuf[0]000 ...

TS

TDelay

Figure 5.3: Control buffer after the first control input is applied. The first control
sample will remain in the buffer for the length of the delay after which it will exit the
buffer and thereupon affect the system.

Current
Position

Control Buffer
ubuf[j]ubuf[j-1]ubuf[1]ubuf[0] ...

TS

TDelay

Figure 5.4: Control buffer filled.
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Current
Position

Figure 5.5: Predicted states using the samples in the control buffer.

Current
Position

Figure 5.6: Optimization problem using the predicted states as the initial condition
on the system time and velocity in the optimization problem.
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Current
Position

Figure 5.7: Application of the newly determined control inputs.

Current
Position

Figure 5.8: Application of the control algorithm at an arbitrary instant.
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Chapter 6

Alternative Formulation to

Minimum-Time Journeys

An alternative formulation of the optimal control problem is developed, using time

as the independent variable, that is more suited to minimum-time problems. The

formulation is initially provided for the single-input delay-free case, i.e. zero traction-

braking delays.

We plan to use a change of variable from t to τ using the following transformation

that maps t to τ , as defined in [15]. Note that, t takes on values in the interval:

t ∈
[
t0, tf

]
(6.0.1)

and that, τ takes on values in the interval:

τ ∈ [0, 1] (6.0.2)
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The transformation is as follows:

τ =
t− t0
tf − t0

(6.0.3)

The inverse transformation is as follows:

t =
(
tf − t0

)
τ + t0 (6.0.4)

This allows us to express the following derivatives as:

ds (t)

dt
=
ds (τ)

dτ

dτ

dt
=
ds (τ)

dτ

1

h
(6.0.5)

dv (t)

dt
=
dv (τ)

dτ

dτ

dt
=
dv (τ)

dτ

1

h
(6.0.6)

where we have denoted
dτ

dt
=

1

h
=

1

tf − t0
(6.0.7)

or

h = tf − t0 (6.0.8)

6.1 Continuos τ -Domain

The optimal control problem using τ as the independent variable, in the continuous

domain, is given in Eq. (6.1.1).

min
h,s(τ),v(τ),u(τ)

J (6.1.1.1)
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s.t.

s (τ = 0) = s0 (6.1.1.2)

v (τ = 0) = v0 (6.1.1.3)

s (τ = 1) = sf (6.1.1.4)

v (τ = 1) = 0 (6.1.1.5)

t (τ) = t0 + hτ (6.1.1.6)

tf,min ≤ t (τ = 1) ≤ tf,max (6.1.1.7)

ds (τ)

dτ

1

h
= v (τ) (6.1.1.8)

m
dv (τ)

dτ

1

h
= −C (v (τ)) + g (s (τ)) + u (τ) (6.1.1.9)

smin (τ) ≤ s (τ) ≤ smax (τ) (6.1.1.10)

0 ≤ v (τ) ≤ vmax (s (τ)) (6.1.1.11)

umin (τ) ≤ u (τ) ≤ umax (τ) (6.1.1.12)

µmin (τ) ≤ 1

h

d

dτ
(u (τ)) ≤ µmax (τ) (6.1.1.13)

6.1.1 Objective Functions

6.1.1.1 Minimum-Time

min
h,s(τ),v(τ),u(τ)

h (6.1.2)

6.1.1.2 Minimum-Energy

min
h,s(τ),v(τ),u(τ)

∫ τ=1

τ=0

max (u (τ) , 0) v (τ) h dτ (6.1.3)
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6.2 Discrete τ -Domain

The optimal control problem using τ as the independent variable, in the discrete

domain, is given in Eq. (6.2.1).

min
h,s[k],v[k],u[k],k∈{0,...,N}

J (6.2.1.1)

s.t.

t [0] = t0 (6.2.1.2)

s [0] = s0 (6.2.1.3)

v [0] = v0 (6.2.1.4)

s [N ] = sf (6.2.1.5)

v [N ] = 0 (6.2.1.6)

tf,min ≤ t [N ] ≤ tf,max (6.2.1.7)

for k ∈ [1, . . . , N ] :

s [k] = f1 (h, s [0] , . . . , s [N ] ,

v [0] , . . . , v [N ])

(6.2.1.8)

v [k] = f2 (h, v [0] , . . . , v [N ] ,

u [0] , . . . , u [N ])

(6.2.1.9)

t [k] = t [0] + h
i=k−1∑
i=0

δτ [i] (6.2.1.10)

for k ∈ [0, . . . , N ] :

smin [k] ≤ s [k] ≤ smax [k] (6.2.1.11)

0 ≤ v [k] ≤ vmax [s [k]] (6.2.1.12)
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umin [k] ≤ u [k] (6.2.1.13)

u [k] ≤ umax [k] (6.2.1.14)

for k ∈ [0, . . . , N − 1] :

µmin [k] ≤ 1

h

∆u [k]

∆τ [k]
(6.2.1.15)

1

h

∆u [k]

∆τ [k]
≤ µmax [k] (6.2.1.16)

6.2.1 Objective Functions

6.2.1.1 Minimum-Time

min
h,s[k],v[k],u[k]

h (6.2.2)

6.2.1.2 Minimum-Energy

Using the trapezoidal integration rule [89], the minimum-energy objective function is

given below.

min
h,s[k],v[k],u[k]

i=N−1∑
i=0

(max [u [k] , 0] v [k] + max [u [k + 1] , 0] v [k + 1])

2
hδτ [i] (6.2.3)

Some explanation is now needed for the formulation in Eqs. (6.1.1) and (6.2.1).

The independent variable in this case is not t, but rather the variable τ . The relation-

ship between t and τ is an affine one. The quantity, h, which is defined in Eq. (6.0.8),

is a scalar quantity that determines the trip time. This is different compared to the

position-domain as is explained in the following. The path of travel is known and

fixed. It is the velocity trajectory that determines the travel time. The goal is to

determine the velocity profile (a function) over the path that will minimize travel
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time. In this formulation, the velocity profile, which is a function, is determined such

that the position profile that follows from the velocity profile, satisfies the constraints

of starting from the origin and arriving at the destination. The velocity profile and

the position profile that follows from the velocity profile, determine the magnitude of

the single variable, h, which determines the trip time. The variable, h, is used in the

dynamics equations that describe the behaviour of the commuter train system.
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Chapter 7

Non-Equal Traction-Braking Delays

The non-equal traction-braking delay case is dealt with the use of (i) a predictor, mod-

el-based prediction, to compensate for the “common” portion of the delays; (ii) use

of the alternative formulation for minimum-time journeys, i.e. use of the τ -domain;

and (iii) use of either traction and braking command buffers, whichever is longer, to

serve as constraints on the traction or braking control profile, respectively. This is

explained in more detail in this section. The optimal control formulation, used in Al-

gorithm 2, is given below. The continuous time and the discrete time formulations

are provided.

7.1 Continuous Time

The continuous time formulation is presented in Eq. (7.1.1).

min
h,s,v,u,t,τ

J (7.1.1.1)

s.t.
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s
(
t = tPredicted

)
= sPredicted (7.1.1.2)

v
(
t = tPredicted

)
= vPredicted (7.1.1.3)

for t ∈
[
tPredicted, tqe

]
:

ds (t)

dt
= v (t) (7.1.1.4)

m
dv (t)

dt
= −C (v (t))

+ g (s (t))

+ utrk (t)

− ubrk (t)

(7.1.1.5)

ubrk (t) = ūbrk (t) (7.1.1.6)

smin (t) ≤ s (t) ≤ smax (t) (7.1.1.7)

0 ≤ v (t) ≤ vmax (s (t)) (7.1.1.8)

0 ≤ utrk (t) ≤ utrk,max (v (t)) (7.1.1.9)

0 ≤ ubrk (t) ≤ ubrk,max (v (t)) (7.1.1.10)

utrk (t)ubrk (t) = 0 (7.1.1.11)
d

dt

(
utrk (t)

)
≤ µtrk,max (t) (7.1.1.12)

µtrk,min (t) ≤ d

dt

(
utrk (t)

)
(7.1.1.13)

d

dt

(
ubrk (t)

)
≤ µbrk,max (t) (7.1.1.14)

µbrk,min (t) ≤ d

dt

(
ubrk (t)

)
(7.1.1.15)

s (τ = 0) = s
(
tqe
)

(7.1.1.16)

v (τ = 0) = v
(
tqe
)

(7.1.1.17)

tf,min ≤ t (τ = 1) ≤ tf,max (7.1.1.18)
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s (τ = 1) = sf (7.1.1.19)

v (τ = 1) = 0 (7.1.1.20)

for t ∈
(
tqe, tN

]
, τ ∈ [0, 1] :

t (τ) = tqe + hτ (7.1.1.21)

ds (τ)

dτ

1

h
= v (τ) (7.1.1.22)

m
dv (τ)

dτ

1

h
= −C (v (τ))

+ g (s (τ))

+ utrk (τ)

− ubrk (τ)

(7.1.1.23)

smin (τ) ≤ s (τ) ≤ smax (τ) (7.1.1.24)

0 ≤ v (τ) ≤ vmax (s (τ)) (7.1.1.25)

0 ≤ utrk (τ) ≤ utrk,max (v (τ)) (7.1.1.26)

0 ≤ ubrk (τ) ≤ ubrk,max (v (τ)) (7.1.1.27)

utrk (τ)ubrk (τ) = 0 (7.1.1.28)

µtrk,min (τ) ≤ 1

h

d

dτ

(
utrk (τ)

)
(7.1.1.29)

1

h

d

dτ

(
utrk (τ)

)
≤ µtrk,max (τ) (7.1.1.30)

µbrk,min (τ) ≤ 1

h

d

dτ

(
ubrk (τ)

)
(7.1.1.31)

1

h

d

dτ

(
ubrk (τ)

)
≤ µbrk,max (τ) (7.1.1.32)
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7.1.1 Objective Functions

7.1.1.1 Minimum-Time

min
h,s,v,u,t,τ

h (7.1.1.33)

7.1.1.2 Minimum-Energy

min
h,s,v,u,t,τ

∫ t=tqe

t=tPredicted

utrk (t) v (t) dt+

∫ τ=1

τ=0

utrk (τ) v (τ) h dτ (7.1.1.34)

Note, however, that this problem is still not tractable, since it is still infinite-

dimensional. The reason is that the constraint, Eq. (7.1.1.6), requires knowledge of

function values over a continuous interval which is infinite-dimensional, i.e. requires

an infinite amount of memory. The problem is made tractable by recognizing that

the control commands issued to the train traction and braking systems are piecewise

constant. A piecewise constant function can be stored in a finite amount of memory

because only a finite number of samples are necessary to be able to characterize the

entire function [67].

The problem is made tractable by assuming that the inputs are piecewise con-

stant [67], and by use of the predictor which allows for compensating the “common”

portion of the delays by predicting the states using a mathematical model of the train,

and traction and braking control commands in the delay buffers. The discrete-time

optimal control formulation is detailed in Section 7.2.
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7.2 Discrete-Time

The discrete-time formulation is presented in Eq. (7.2.1). The optimal control formu-

lation, for a train at a position marker sMilepost [q], is given by:

min
h,s[k],v[k],utrk[k],ubrk[k],k∈{0,...,N+ncc}

J (7.2.1.1)

s.t.

t [0] = tPredicted (7.2.1.2)

s [0] = sPredicted (7.2.1.3)

v [0] = vPredicted (7.2.1.4)

tf,min ≤ t [N + ncc] ≤ tf,max (7.2.1.5)

s [N + ncc] = sf (7.2.1.6)

v [N + ncc] = 0 (7.2.1.7)

for k ∈ [1, . . . , N + ncc] :

smin [k] ≤ s [k] ≤ smax [k] (7.2.1.8)

0 ≤ v [k] ≤ vmax [s [k]] (7.2.1.9)

for k ∈ [0, . . . , N + ncc] :

utrk [k]ubrk [k] = 0 (7.2.1.10)

0 ≤ utrk [k] ≤ utrk,max [v [k]] (7.2.1.11)

0 ≤ ubrk [k] ≤ ubrk,max [v [k]] (7.2.1.12)

for k ∈ [1, . . . , ncc] :

s [k] = f1 (s [0] , . . . , s [ncc] ,

v [0] , . . . , v [ncc])

(7.2.1.13)
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v [k] = f2 (v [0] , . . . , v [ncc] ,

utrk [0] , . . . ,

utrk [ncc − 1] , ubrk [0] ,

. . . , ubrk [ncc − 1]
)

(7.2.1.14)

∆utrk [k]

∆t [k]
≤ µtrk,max (7.2.1.15)

−
∆utrk [k]

∆t [k]
≤ −µtrk,min (7.2.1.16)

∆ubrk [k]

∆t [k]
≤ µbrk,max (7.2.1.17)

−
∆ubrk [k]

∆t [k]
≤ −µbrk,min (7.2.1.18)

for k ∈ [0, . . . , ncc − 1] :

ubrk [k] = ūbrk [k] (7.2.1.19)

for k ∈ [ncc + 1, . . . , N + ncc] :

s [k] = f3 (h, s [ncc] , . . . ,

s [N + ncc] , v [ncc] ,

. . . , v [N + ncc])

(7.2.1.20)

v [k] = f4 (h, v [ncc] , . . . ,

v [N + ncc] , utrk [ncc] ,

. . . , utrk [N + ncc] ,

ubrk [ncc] , . . . ,

ubrk [N + ncc]
)

(7.2.1.21)

1

h

∆utrk [k]

∆τ [k − (ncc + 1)]
≤ µtrk,max [k] (7.2.1.22)
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1

h

∆utrk [k]

∆τ [k − (ncc + 1)]
≥ µtrk,min [k] (7.2.1.23)

1

h

∆ubrk [k]

∆τ [k − (ncc + 1)]
≤ µbrk,max [k] (7.2.1.24)

1

h

∆ubrk [k]

∆τ [k − (ncc + 1)]
≥ µbrk,min [k] (7.2.1.25)

t [k] = t [ncc] + h

i=k−(ncc+1)∑
i=0

δτ [i] (7.2.1.26)

Equations (7.2.1.13) to (7.2.1.19) are constraints in the “constraints on control” re-

gion in Fig. 7.1. Equations (7.2.1.20) to (7.2.1.25) are constraints after the “con-

straints on control” region and in the “optimization window” region in Fig. 7.1.

Equations (7.2.1.8) to (7.2.1.12) apply for discretization nodes in both the time and

τ -domain regions, i.e. “optimization window” region in Fig. 7.1.

Equations (7.2.1.13), (7.2.1.14), (7.2.1.20) and (7.2.1.21) are state, position and

velocity, evolution constraints and are left general as any discretization scheme can

be used. Equation (7.2.1.19) serves as constraints on the control input with the

longer delay, in this case braking, as shown in the “constraints on control” region

in Fig. 7.1. Equation (7.2.1.10) ensures that both traction and braking are not ac-

tive at the same time as it may result in equipment damage or increased wear and

tear. Equation (7.2.1.8) ensures that the train departs from the origin and arrives

at the destination without overshooting. Equation (7.2.1.9) are speed limits. Equa-

tion (7.2.1.11) is maximum traction limit. Equation (7.2.1.12) is maximum braking

limit. Equation (7.2.1.26) determines the time state at each discretization node in

the τ -region, and Eq. (7.2.1.5) ensures that the train arrives within the scheduled

arrival window. Equations (7.2.1.15) to (7.2.1.18), time-domain, and Eqs. (7.2.1.22)
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to (7.2.1.25), τ -domain, are limits on the change in control due to equipment limita-

tions, equipment protection, and passenger comfort.

A select few sample objective functions are presented in Eqs. (7.2.1.27) and (7.2.1.28).

Note that a zero-order hold is assumed on the control input for samples associated

with TS (time-domain), while a first-order hold is assumed on the control input for

samples associated with δτ [k] (τ -domain).

7.2.1 Objective Functions

7.2.1.1 Minimum-Time

min
h,s[k],v[k],utrk[k],ubrk[k]

h (7.2.1.27)

7.2.1.2 Minimum-Energy

min
h,s[k],v[k],utrk[k],ubrk[k]

k=ncc−1∑
k=0

pin [k] TS

+
k=N+ncc−1∑

k=ncc

(
pin [k] v [k] + pin [k + 1]

)
h δτ [k]

(7.2.1.28)

7.2.1.3 Mixed Time-Energy-Change in Control

min
h,s[k],v[k],utrk[k],ubrk[k]

wth

+ we

k=ncc−1∑
k=0

pin [k] TS

+ we

k=N+ncc−1∑
k=ncc

(
pin [k] + pin [k + 1]

)
h δτ [k]

+ w
∆ctrl

k=N+ncc−1∑
k=0

∣∣π
∆ctrl [k]

∣∣
(7.2.1.29)
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where

π
∆ctrl [k] =


u[k+1]−u[k]

TS
, k = 0, . . . , ncc − 1 for time-domain samples

u[k+1]−u[k]
hδτ [k]

, k = ncc, . . . , N + ncc for τ -domain samples
(7.2.1.30)

The objective function now is to minimize a weighted sum of final arrival time, en-

ergy consumption, and change in control. Note that,
∑j=k−1

j=1 w
∆ctrl

∣∣π
∆ctrl [j]

∣∣, is
a penalty term on the change in control that is added to smooth out the resulting

optimal controls. This is done primarily for reasons of passenger comfort, to filter

out solutions that consist of cycles of traction and braking.

7.3 Algorithm

The method of performing optimal control for the system with non-equal traction-

braking delays is detailed in Algorithm 2, but first the problem setup and graphical

overview of the algorithm, as shown in Fig. 7.1, is explained. Note that in this figure,

it is assumed that the delay in the braking control input is larger than the delay in

the traction control input, however, the problem formulation is still applicable if the

delay in the traction control input is equal to or larger than the delay in the braking

control input.

In this case, there are now two different control command buffers. One buffer is

for storing the traction commands and the other is for storing braking commands.

The buffers are now of different sizes. The length of the traction buffer is given by

the delay, from issue to effect in traction, and the same is true for the braking buffer

except the delay value used is that for the braking system. The sampling period of
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each element in the buffer is the rate at which the control commands are issued. The

control command issue rate is assumed to be fixed and constant. This is denoted

by TS in Fig. 7.1 and Algorithm 1. The rate is assumed to be identical for traction

and braking commands. The samples enter the buffer from one end and exit from

the opposite end. In this figure, the samples enter from the right and exit from the

left. The optimization window is from the end of the prediction window, tPredicted,

shown in Fig. 7.1, till the end of the trip, tN .

Some more details regarding the optimal control procedure, Algorithm 2, are

provided as follows.

The optimal control problem is solved when the train passes a pre-selected position

marker, sMilepost [q], along the track. The position markers are chosen once at the

beginning of the trip and are not modified again for the remainder of the trip. The

position markers demarcate when the next optimization problem is solved; these are

not the discretization nodes used in the optimization formulation.

Prediction is performed using the known applied control input (control com-

mands present in the buffers) until tPredicted, which is defined as: tPredicted =

t + TMin-Delay, where TMin-Delay = min
(
Ttrk,delay, Tbrk,delay

)
. This is shown

as the prediction window in Fig. 7.1. The prediction window has fixed time-steps that

are determined by the control command input rate. Note, that for the train system

at rest, the buffers can be assumed to be filled with all zeros.

An optimal control problem is solved from the end of prediction, tPredicted, till

the end of the trip, tN . For the optimization problem, some important constraints

will be highlighted as follows:
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• The predicted states will be initial conditions on the system state for the opti-

mization problem.

• For the control buffer with the longer delay, control samples from the end of

prediction, tPredicted, till the end of buffer, tqe, are constraints on that specific

control input. The time-steps will be fixed over this period, and the time-steps

will be determined by the control sample input rate, TS , as shown in Fig. 7.1.

Note, that the optimization problem will be solved in both the time-domain and the

τ -domain. Part of the constraints will be in time-domain, and part of the constraints

will be in τ -domain. This is shown in Fig. 7.1.

Some important notes regarding the optimization problem in Eq. (7.2.1) and the

differences in the implementation of the non-equal traction-braking delay case and

the equal traction-braking delay case are provided as follows.

The optimal control solution now returns at each discretization node: control

(traction and braking commands), time state, position state, and velocity state. The

position state is now a variable that has to be determined by the optimization solver.

The position state is returned for each discretization node. The time state is only

returned for nodes in the τ -region.

The number of nodes in the optimization problem is now equal to the number of

the remaining position discretization nodes from the current train position till the

destination, with the addition of a fixed number of nodes due to the constraints on

the control due to existing values in the control buffer, as shown in Fig. 7.1. Once the

train passes a position discretization node, the number of nodes in the optimization

problem decreases by one. This point can also be rephrased as the following. The

discretization nodes in the optimization formulation include: (i) a fixed number of
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nodes separated by constant TS intervals corresponding to a constraint on either the

traction or braking control depending on which has the longer delay, and (ii) nodes

derived from converting τ from the continuous domain to the discrete domain. The

τ discretization is chosen to be uniform. The number of τ discretization nodes is

equal to the number of remaining position markers from the current train position

until the destination. Once the train passes a position marker, the number of τ

discretization nodes decreases by one. As the train progresses along the track, the set

of τ discretization nodes changes because the number of nodes decreases; however, τ

is always in the interval τ ∈ [0, 1].
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Algorithm 2: Optimal control of train with non-equal traction-braking de-
lays
1 begin
2 Initialize TS
3 Initialize sMilepost [k] for k ∈ {0, . . . , L}

4 TMin-Delay ← min
(
Ttrk,delay, Tbrk,delay

)
5 t ← 0
6 tSample Start ← 0
7 SNext ← 0
8 Measure t, s, v
9 while s <sf do

10 if s ≥ SNext then
11 Function Prediction(Guideway Data, t, s, v,

{utrk,buf [0] , . . . , utrk,buf [j − 1]}, {ubrk,buf [0] , . . . , ubrk,buf [j − 1]}):
is

12 tStart ← t
13 tPredicted ← t
14 while tPredicted-tStart <Tmin-Delay do
15 Integrate ODE using values from the traction and braking

control buffers
16 tPredicted ← tPredicted+dt

17 return tPredicted, sPredicted, vPredicted
18 Function Optimization(Guideway Data, tPredicted, sPredicted,

vPredicted, {ubrk,buf [j] , . . . , ubrk,buf [j + ncc − 1]},
{τ [0] , . . . , τ [N ]}, ): is

19 Optimize
20 return ( {t∗ [0] , . . . , t∗ [N + ncc]}, {s∗ [0] , . . . , s∗ [N + ncc]},

{v∗ [0] , . . . , v∗ [N + ncc]}, {u∗trk [0] , . . . , u∗trk [N + ncc]},
{u∗brk [0] , . . . , u∗brk [N + ncc]} )

21 SNext ← Find Next Discretization Node Greater Than SNext
22 if t-tSample Start ≥ TS then
23 tSample Start ← t

24 utrk ← Interpolate( t+Ttrk,delay, {t
∗ [0] , . . . , t∗ [N + ncc]},

{u∗trk [0] , . . . , u∗trk [N + ncc]})
25 ubrk ← Interpolate( t+Tbrk,delay, {t

∗ [0] , . . . , t∗ [N + ncc]},
{u∗brk [0] , . . . , u∗brk [N + ncc]})
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Chapter 8

Computer Implementation and

Simulation

8.1 Computer Implementation

The optimization problem in Eq. (5.2.1) is convex and can be solved for a global

optimum with any solver capable of solving convex optimization problems. The op-

timization problem in Eq. (7.2.1) is nonconvex and nonlinear and can be solved for a

local optimum using any nonlinear programming solver. The nonlinear programming

solver may solve for a global optimum; however, this is not guaranteed. In general,

solving a nonconvex optimization problem for a global optimum is extremely difficult

and time-consuming [73].

The computer implementation results for both the convex and the nonconvex

problem are produced by using Interior Point Optimizer (IPOPT) [90] interfaced to

MATLAB using the OPTI Toolbox [91]. IPOPT implements the primal-dual interior-

point algorithm [90].
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The following information is supplied to the IPOPT software package:

• Objective function

– Gradient of objective (first derivatives)

• Constraints

– Jacobian of constraints (first derivatives)

– Structure of Jacobian of constraints (sparsity pattern of the Jacobian)

• Hessian of the Lagrangian (second derivatives)

– Structure of the Hessian of the Lagrangian (sparsity pattern of the Hessian)

The analytical expressions for each of the above were calculated manually and then

implemented in MATLAB code as functions that are callable by the IPOPT solver.

The termination criteria used for IPOPT were the default ones [92]. A solver time

limit of 100 seconds is imposed on IPOPT for all optimizations except the first one,

as explained in the point on computation times below.

8.2 Results

The results shown are the following:

• The closed-loop trajectories for the states and controls.

• The computation times for each optimization for a single train run from station

A to station B. As the train moves from station A to station B, the following
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process is repeated: measuring the states of the train, solving an optimiza-

tion problem to determine the future control commands, and application of a

few of those control commands. For each of these optimization problems, the

computation times are provided. Rephrased in another way, as the train runs

from station A to station B, a sequence of optimization problems are solved at

regular intervals based upon the latest sensor feedback to determine the con-

trol commands from the current train position till the end of the trip, and the

computation times are provided for each of those optimization problems.

More details on the results provided are given below.

Closed-loop trajectories:

An optimization problem is solved at regular intervals, where the position at that

interval is the origin and the destination remains fixed, known as a fixed horizon model

predictive control strategy. A specific subset of the control commands returned from

this optimization are fed into the simulator. The control commands are issued until

the next optimization problem is triggered once the train passes the next position

marker. This allows for feedback, because the measured time, position, and velocity

are used as initial conditions for the optimization problem. This allows incorporation

of the current states of the system in determining any future control commands.

Computation time:

Computation times are provided for each closed-loop optimization run. Note that

for the nonconvex case, computation times can vary widely because of the noncon-

vexity. Also, note that for the initial optimization, the starting point is chosen at

random, and for any subsequent optimization problems, warm-start is used, i.e. the

solution from the previous step is used. The computation times are measured from
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Table 8.1: Test System Specifications
OS Name: Microsoft Windows 10
Processor: Intel(R) Core(TM) i7-6700HQ CPU @

2.60GHz, 2601 Mhz, 4 Core(s), 8 Logical
Processor(s)

Installed Physical Memory (RAM): 16.0 GB

the internal computer clock. The time shown is actual time rather than the central

processing unit (CPU) time. There are multiple processes running at the same time,

and it is at the sole discretion of the operating system which process to schedule on the

CPU at what time. The test system is not a real-time operating system (OS). Note

that there is a maximum optimization time limit of 100 s for all optimizations other

than the initial optimization. The initial optimization occurs before train departure

and can be done offline, any subsequent optimizations are intended to be performed

online.

8.2.1 Test System Specifications

The test system specifications are shown in Table 8.1.

8.2.2 Test Problem 1: Equal Traction-Braking Delays (Discrete-

Position)

The convex optimization formulation presented in Eq. (5.2.1) is used here. The

formulation parameters are:

• N = 401

• m = 1 kg

• t [0] = 0 s

• s [0] = 0m
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• v [0] = 0m/s

• tmax = 1, 000 s

• s [N ] = 10, 000m

• v [N ] = 0m/s

• vmax [k] = 100m/s for k ∈

{0, . . . , N}

• ubrk,max = −1.25m/s2

• utrk,max = 1.25m/s2

• r0 = 1.327e0 kg•m/s2

• rv = −3.663e− 2 kg/s

• rv2 = 2.528e− 4 kg/m

• C0 = −0.1 kg•m/s2

• Cv = −0.01 kg/s

• Cv2 = −0.001 kg/m

The system in the convex case has equal traction-braking delays. While this case

considers equal traction-braking delays, its results can also be used as reference for

comparison with another case discussed later in which the traction delay is shorter

than the braking delay; the nonconvex formulation will be used to solve that problem.

Alternatively, addition of an artificial delay to the traction commands renders both

delays equal, resulting in the case considered here with the convex formulation.

The weights in the objective function affect the trip journey since a relatively large

value of we would put more weight on minimizing energy, and a relatively large value

of wρ would place more weight on minimizing travel time. A sufficiently large value

of wρ is necessary for the formulation to work as explained in Chapter 5.

8.2.2.1 Minimum-Time Optimal Control

The objective function, Eq. (7.2.1.29), parameters are: wρ = 1, 000, and we = 0.

A minimum-time journey is characterized by extremal traction and braking, and

minimum time spent coasting. For example, a minimum-time trip with no minimum
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arrival time is characterized by extremal, bang-bang, control: phases of maximum

traction and braking; although, note that this may not be the only solution that

results in a minimum-time trip.

8.2.2.1.1 Shorter Delays

• Ttrk,delay = 2.8 s

• Tbrk,delay = 2.8 s

The results are shown in Figs. 8.1 and 8.2.

101



M.A.Sc. Thesis - Muzamil Rashid McMaster - Electrical Engineering

0 100 200 300 400 500

Time (s)

-1

0

1

C
on

tro
l A

cc
er

le
ra

tio
n 

(m
/s2 )

Control Acceleration

0 2000 4000 6000 8000 10000

Position (m)

-1

0

1

C
on

tro
l A

cc
er

le
ra

tio
n 

(m
/s2 )

Control Acceleration

0 100 200 300 400 500

Time (s)

-50

0

50

H
ei

gh
t (

m
) Height

0 2000 4000 6000 8000 10000

Position (m)

-50

0

50

H
ei

gh
t (

m
) Height

0 100 200 300 400 500

Time (s)

-0.04
-0.02

0
0.02
0.04

G
ra

de
 (m

/s
2 ) Grade

0 2000 4000 6000 8000 10000

Position (m)

-0.04
-0.02

0
0.02
0.04

G
ra

de
 (m

/s
2 ) Grade

0 100 200 300 400 500

Time (s)

0

5000

10000

P
os

iti
on

 (m
) Position Calc

0 2000 4000 6000 8000 10000

Position (m)

0

500

Ti
m

e 
(s

)

Time

0 100 200 300 400 500

Time (s)

0
20
40
60
80

V
el

oc
ity

 (k
m

/h
)

Velocity

0 2000 4000 6000 8000 10000

Position (m)

0
20
40
60
80

V
el

oc
ity

 (k
m

/h
)

Velocity

0 100 200 300 400 500

Time (s)

-1

0

1

A
cc

el
er

at
io

n 
(m

/s2 )

Acceleration

0 2000 4000 6000 8000 10000

Position (m)

-1

0

1

A
cc

el
er

at
io

n 
(m

/s2 )

Acceleration

Figure 8.1: Convex formulation: minimum-time considering delays in the control
input; closed-loop response. Ttrk,delay = 2.8 s, Tbrk,delay = 2.8 s. Final Position:
10,002.15 m. Overshoot: 2.15 m. Trip Time: 564.41 s. Trip Delay: N/A s. Energy
Consumed: 6568.42 J.
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Figure 8.2: Convex formulation: minimum-time considering delays in the control
input; computation times. Ttrk,delay = 2.8 s, Tbrk,delay = 2.8 s.
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8.2.2.1.2 Longer Delays

• Ttrk,delay = 7.0 s

• Tbrk,delay = 7.0 s

The results are shown in Figs. 8.3 and 8.4.
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Figure 8.3: Convex formulation: minimum-time considering delays in the control
input; closed-loop response. Ttrk,delay = 7.0 s, Tbrk,delay = 7.0 s. Final Position:
10001.51 m. Overshoot: 1.51 m. Trip Time: 573.37 s. Trip Delay: N/A s. Energy
Consumed: 6565.11 J.
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Figure 8.4: Convex formulation: minimum-time considering delays in the control
input; computation times. Ttrk,delay = 7.0 s, Tbrk,delay = 7.0 s.
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8.2.2.2 Minimum-Energy Optimal Control

A minimum-energy journey is characterized by more time spent coasting and less

time spent braking (in the case of no regenerative braking). This is because braking

results in energy loss. For example, a minimum-energy trip with no maximum arrival

time is characterized by phases of traction and coasting. There is no braking because

there is no time-limit and the kinetic energy of the system can be reduced to zero

due to resistance losses alone.

8.2.2.2.1 Shorter Delays

• Ttrk,delay = 2.8 s

• Tbrk,delay = 2.8 s

The objective function, Eq. (7.2.1.29), parameters are: wρ = 1, 000, and we =

10, 000.

The results are shown in Figs. 8.5 and 8.6.
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Figure 8.5: Convex formulation: minimum-energy considering delays in the control
input; closed-loop response. Ttrk,delay = 2.8 s, Tbrk,delay = 2.8 s. Final Position:
10,000.73 m. Overshoot: 0.73 m. Trip Time: 1003.73 s. Trip Delay: 3.73 s. Energy
Consumed: 3463.84 J.
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Figure 8.6: Convex formulation: minimum-energy considering delays in the control
input; computation times. Ttrk,delay = 2.8 s, Tbrk,delay = 2.8 s.
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8.2.2.2.2 Longer Delays

• Ttrk,delay = 7.0 s

• Tbrk,delay = 7.0 s

The objective function, Eq. (7.2.1.29), parameters are: wρ = 1, 000, and we =

568.97.

The results are shown in Figs. 8.7 and 8.8.
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Figure 8.7: Convex formulation: minimum-energy considering delays in the control
input; closed-loop response. Ttrk,delay = 7.0 s, Tbrk,delay = 7.0 s. Final Position:
10001.15 m. Overshoot: 1.15 m. Trip Time: 1005.69 s. Trip Delay: 5.69 s. Energy
Consumed: 3626.36 J.
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Figure 8.8: Convex formulation: minimum-energy considering delays in the control
input; computation times. Ttrk,delay = 7.0 s, Tbrk,delay = 7.0 s.

112



M.A.Sc. Thesis - Muzamil Rashid McMaster - Electrical Engineering

8.2.3 Test Problem 2: Non-Equal Traction-Braking Delays

(Discrete-Time)

The nonconvex optimization formulation presented in Eq. (7.2.1) is used to solve the

optimal control problem for the case of non-equal traction-braking delays. The values

of the parameters are:

• N = 201

• TS = 0.07 s

• m = 1 kg

• t [0] = 0 s

• s [0] = 0m

• v [0] = 0m/s

• tmax = 1, 000 s

• s [N ] = 10, 000m

• v [N ] = 0m/s

• vmax [k] = 100m/s for each

sMilepost [k] for k ∈ {0, . . . , L}

• ubrk,max = −1.25m/s2

• Utrk,max = 1.25 kg•m/s2

• P = 12.5 kg•m2/s3

• kP = 12.5m/s

• µtrk,min = −0.2 kg•m/s3

• µtrk,max = 0.2 kg•m/s3

• µbrk,min = −0.2 kg•m/s3

• µbrk,min = 0.2 kg•m/s3

• C0 = −0.1 kg•m/s2

• Cv = −0.01 kg/s

• Cv2 = −0.001 kg/m

The maximum traction force is given by Eq. (3.3.1). The parameters used in that

equation are given in the list above.

The following specific difference equations, Eqs. (8.2.1.1) to (8.2.1.4), are used
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in place of the general difference equations in Eqs. (7.2.1.13), (7.2.1.14), (7.2.1.20)

and (7.2.1.21), respectively. The equations, Eqs. (8.2.1.1) and (8.2.1.2), are arrived

at by assuming a zero-order hold on the control input in the time-domain region, and

the equations, Eqs. (8.2.1.3) and (8.2.1.4), are arrived at by assuming a first-order

hold on the input in the τ -domain region.

for j ∈ {1, . . . , ncc} :

s [j + 1] = s [j] +
1

2
(v [j]

+ v [j + 1])TS

(8.2.1.1)

v [j + 1] = v [j] +
1

2

[
−C (v [j])

m

+ g [j] + u [j]

− C (v [j + 1])

m

+ g [j + 1] + u [j]

]
TS

(8.2.1.2)

for j ∈ {ncc, . . . , N + ncc − 1} :

s [j + 1] = s [j] +
1

2
(v [j]

+v [j + 1])hδτ [j]

(8.2.1.3)

v [j + 1] = v [j] +
1

2

[
−C (v [j])

m

+ g [j] + u [j]

− C (v [j + 1])

m

+ g [j + 1] + u [j + 1]

]
hδτ [j]

(8.2.1.4)
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The resistance force equation is:

C (v [j]) = 0.1 + 0.01v [j] + 0.001v2 [j] (8.2.1.5)

8.2.3.1 Minimum-Time Optimal Control

The objective function, Eq. (7.2.1.29), parameters are: wt = 1, we = 0, and w
∆ctrl =

0.

8.2.3.1.1 Shorter Delays

• Ttrk,delay = 1.4 s

• Tbrk,delay = 2.8 s

• ncc = 40 (dependent on length of longest delay)

The results are shown in Figs. 8.9 to 8.12. As can be seen in the figure captions,

ignoring delays results in an overshoot of the destination, the train passes the station

by 25.57 m, while considering delays results in an overshoot of -0.27 m. The trip

time while ignoring delays is 567.63 s, while for considering delays is 568.54 s, a

difference of around 0.16 %. The energy usage for ignoring delays is 6360.59 J, while

for considering delays is 6354.93 J, a difference of around 0.09 %.
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Figure 8.9: Minimum-time ignoring delays in the control input; closed-loop response.
Ttrk,delay = 1.4 s, Tbrk,delay = 2.8 s. Final Position: 10025.57 m. Overshoot: 25.57
m. Trip Time: 567.63 s. Trip Delay: N/A s. Energy Consumed: 6360.59 J.
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Figure 8.10: Minimum-time ignoring delays in the control input; computation times.
Ttrk,delay = 1.4 s, Tbrk,delay = 2.8 s.
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Figure 8.11: Minimum-time considering delays in the control input; closed-loop re-
sponse. Ttrk,delay = 1.4 s, Tbrk,delay = 2.8 s. Final Position: 9999.73 m. Overshoot:
-0.27 m. Trip Time: 568.54 s. Trip Delay: N/A s. Energy Consumed: 6354.93 J.
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Figure 8.12: Minimum-time considering delays in the control input; computation
times. Ttrk,delay = 1.4 s, Tbrk,delay = 2.8 s.
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8.2.3.1.2 Longer Delays

• Ttrk,delay = 3.5 s

• Tbrk,delay = 7.0 s

• ncc = 100 (dependent on length of longest delay)

The results are shown in Figs. 8.13 to 8.16. As can be seen in the figure captions,

ignoring delays results in an overshoot of the destination, the train passes the station

by 16.44 m, while considering delays results in an overshoot of -0.18 m. The trip

time while ignoring delays is 578.55 s, while for considering delays is 598.43 s, a

difference of around 3.44 %. The energy usage for ignoring delays is 6205.31 J, while

for considering delays is 6130.40 J, a difference of around 1.22 %.
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Figure 8.13: Minimum-time ignoring delays in the control input; closed-loop response.
Ttrk,delay = 3.5 s, Tbrk,delay = 7.0 s. Final Position: 10016.44 m. Overshoot: 16.44
m. Trip Time: 578.55 s. Trip Delay: N/A s. Energy Consumed: 6205.31 J.
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Figure 8.14: Minimum-time ignoring delays in the control input; computation times.
Ttrk,delay = 3.5 s, Tbrk,delay = 7.0 s.
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Figure 8.15: Minimum-time considering delays in the control input; closed-loop re-
sponse. Ttrk,delay = 3.5 s, Tbrk,delay = 7.0 s. Final Position: 9999.82 m. Overshoot:
-0.18 m. Trip Time: 598.43 s. Trip Delay: N/A s. Energy Consumed: 6130.40 J.
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Figure 8.16: Minimum-time considering delays in the control input; computation
times. Ttrk,delay = 3.5 s, Tbrk,delay = 7.0 s.
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8.2.3.2 Minimum-Energy Optimal Control

The objective function, Eq. (7.2.1.29), parameters are: wt = 0, we = 1, and w
∆ctrl =

1.

8.2.3.2.1 Shorter Delays

• Ttrk,delay = 1.4 s

• Tbrk,delay = 2.8 s

• ncc = 40 (dependent on length of longest delay)

The results are shown in Figs. 8.17 to 8.20. As can be seen in the figure captions,

ignoring delays results in an overshoot of the destination, the train passes the station

by 5.89 m, while considering delays results in an overshoot of 0.07 m. The energy

usage for ignoring delays is 3423.78 J, while for considering delays is 3443.09 J, a

difference of around 0.56 %. The trip time while ignoring delays is 997.36 s, while for

considering delays is 1002.05 s. The train is late by 2.05 s when considering delays.

Minimizing energy would entail driving at lower speeds, thus increasing the travel

time. This is because losses in energy occur due to resistance and braking. Resistance

losses increase as the speed increases, thus increasing energy consumption.
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Figure 8.17: Minimum-energy ignoring delays in the control input; closed-loop re-
sponse. Ttrk,delay = 1.4 s, Tbrk,delay = 2.8 s. Final Position: 10,005.89 m. Over-
shoot: 5.89 m. Trip Time: 997.36 s. Trip Delay: N/A s. Energy Consumed: 3423.78
J.
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Figure 8.18: Minimum-energy ignoring delays in the control input; computation
times. Ttrk,delay = 1.4 s, Tbrk,delay = 2.8 s.
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Figure 8.19: Minimum-energy considering delays in the control input; closed-loop
response. Ttrk,delay = 1.4 s, Tbrk,delay = 2.8 s. Final Position: 10,000.07 m. Over-
shoot: 0.07 m. Trip Time: 1002.05 s. Trip Delay: 2.05 s. Energy Consumed: 3443.09
J.
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Figure 8.20: Minimum-energy considering delays in the control input; computation
times. Ttrk,delay = 1.4 s, Tbrk,delay = 2.8 s.
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8.2.3.2.2 Longer Delays

• Ttrk,delay = 3.5 s

• Tbrk,delay = 7.0 s

• ncc = 100 (dependent on length of longest delay)

The results are shown in Figs. 8.21 to 8.24. As can be seen in the figure captions,

ignoring delays results in an overshoot of the destination, the train passes the station

by 2.22 m, while considering delays results in an overshoot of 0.34 m. The energy

usage for ignoring delays is 3451.66 J, while for considering delays is 3550.94 J, a

difference of around 2.88 %. The trip time while ignoring delays is 997.29 s, while for

considering delays is 1003.24 s. The train is late by 3.24 s when considering delays.
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Figure 8.21: Minimum-energy ignoring delays in the control input; closed-loop re-
sponse. Ttrk,delay = 3.5 s, Tbrk,delay = 7.0 s. Final Position: 10,002.22 m. Over-
shoot: 2.22 m. Trip Time: 997.29 s. Trip Delay: N/A s. Energy Consumed: 3451.66
J.
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Figure 8.22: Minimum-energy ignoring delays in the control input; computation
times. Ttrk,delay = 3.5 s, Tbrk,delay = 7.0 s.
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Figure 8.23: Minimum-energy considering delays in the control input; closed-loop
response. Ttrk,delay = 3.5 s, Tbrk,delay = 7.0 s. Final Position: 10,000.34 m. Over-
shoot: 0.34 m. Trip Time: 1003.24 s. Trip Delay: 3.24 s. Energy Consumed: 3550.94
J.
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Figure 8.24: Minimum-energy considering delays in the control input; computation
times. Ttrk,delay = 3.5 s, Tbrk,delay = 7.0 s.
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Comparing the nonconvex, i.e. accurate dynamics, optimal control formulation vs

the convex approximation optimal control formulation: for the minimum-time case

the convex approximation resulted in a 4 % greater energy consumption and a trip

time that is -0.73 % smaller but with an overshoot of around 2.15 m vs -0.27 m; for the

minimum-energy case the convex approximation resulted in almost a 0.17 % greater

energy consumption, a trip time that is 0.60 % larger, and an overshoot of 0.73 m vs

0.07 m. For the minimum-time case, the overshoot of 2.15 m is high, however, it can be

dealt with another control system that activates near the destination whose objective

is to stop as accurately as possible at the destination, as is done currently [31].

Switching to another controller near the end of the trip will not significantly impact

the performance of the entire trip, since the non-optimal controller will be operating

the train for a very small portion of the overall trip. The performance of the convex

approximation is very similar to the nonconvex controller. The greatest advantage

to the convex formulation is its rapid computation time, that is one to three orders

of magnitude smaller than using the nonconvex formulation which uses an accurate

dynamics model. Given that the convex formulation has a much shorter computation

time and can be solved more robustly than the nonconvex formulation, the slight

degradation in the controller performance due to the extra delay may very well be

acceptable in many scenarios.

8.2.4 Test Problem 3: Equal Traction-Braking Delays with

Disturbances (Discrete-Position)

In this test case, random noise is added to the sensor measurements, both position

and velocity, and the process, i.e. a random acceleration is added to the system.
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Position sensor noise: Random Gaussian noise is added to the position sensor

measurement with the following parameters:

• Position sensor mean = 0

• Position sensor variance = 0.1

Velocity sensor noise: Random Gaussian noise is added to the velocity sensor

measurement with the following parameters:

• Velocity sensor mean = 0

• Velocity sensor variance = 0.1

The position and velocity sensor noises are uncorrelated and independent. The sensor

noises are independent of the process noise.

Process noise: A random uniform noise is added to the acceleration experienced

by the train, i.e. the noise is multiplied by the mass to get a force that is added to

the velocity dynamics. The noise has the following parameters:

• Process (uniform) noise lower bound = −0.1

• Process (uniform) noise upper bound = 0.1

The nonconvex optimization formulation presented in Eq. (7.2.1) is used to solve

the optimal control problem for the case of ignoring traction-braking delays. The

values of the parameters are listed in Subsection 8.2.3.

The delay values are:

• Ttrk,delay = 1.4 s

• Tbrk,delay = 2.8 s

• ncc = 40 (dependent on length of longest delay)
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8.2.4.1 Minimum-Time Optimal Control

The objective function, Eq. (7.2.1.29), parameters are: wt = 1, we = 0, and w
∆ctrl =

0.

The results ignoring delays are shown in Figs. 8.25 and 8.26.
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Figure 8.25: Sensor and process noise. Minimum-time ignoring delays in the control
input; closed-loop response. Ttrk,delay = 1.4 s, Tbrk,delay = 2.8 s. Final Position:
10031.30 m. Overshoot: 31.30 m. Trip Time: 577.85 s. Trip Delay: N/A s. Energy
Consumed: 6244.91 J.
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Figure 8.26: Sensor and process noise. Minimum-time ignoring delays in the control
input; computation times. Ttrk,delay = 1.4 s, Tbrk,delay = 2.8 s.
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As can be seen from Fig. 8.25, the presence of noise has now compounded the

already poor performance due to ignoring the delays and resulted in an overshoot of

around 31.30 m, which is 6 m larger than the case of ignoring delays with no noise

(25.57 m), as shown in Fig. 8.9.

The convex optimization formulation presented in Eq. (5.2.1) is used here to solve

the problem considering equal traction-braking delays. It can be assumed that an

artificial delay has been added to the traction command to make the two delays

equal. The formulation parameters are listed in Subsection 8.2.2.

The delay values are:

• Ttrk,delay = 2.8 s

• Tbrk,delay = 2.8 s

The objective function, Eq. (7.2.1.29), parameters are: wρ = 1, 000, and we = 0.

The results considering delays are shown in Figs. 8.27 and 8.28.
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Figure 8.27: Sensor and process noise. Convex formulation: minimum-time con-
sidering delays in the control input; closed-loop response. Ttrk,delay = 2.8 s,
Tbrk,delay = 2.8 s. Final Position: 10001.64 m. Overshoot: 1.64 m. Trip Time:
564.76 s. Trip Delay: N/A s. Energy Consumed: 6569.29 J.
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Figure 8.28: Sensor and process noise. Convex formulation: minimum-time consider-
ing delays in the control input; computation times. Ttrk,delay = 2.8 s, Tbrk,delay =
2.8 s.
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As can be seen from Fig. 8.27, the controller is quite robust when dealing with

noise. The overshoot in the convex case is 1.64 m, Fig. 8.27, while the overshoot in

the nonconvex case ignoring delays is 31.30 m, Fig. 8.25. The trip time in the convex

case is 564.76 s, while in the nonconvex case ignoring delays is 577.85 s. The convex

controller considering delays has a much smaller overshoot and a smaller trip time,

which is the objective.

8.2.5 Test Problem 4: Non-Equal Traction-Braking Delays

with Disturbances and Modelling Error, Underestimat-

ing Mass (Discrete-Time)

In this test case, just like in Subsection 8.2.4, random noise is added to the sensor

measurements, both position and velocity, and the process, a random acceleration is

added to the system. In addition, there is also model mismatch, the actual mass is

5 % greater than the estimated mass. The estimated mass is used for the purposes

of control. In other words, the actual mass is 5 % greater than the mass parameter

value used in the controller.

The noise parameters are the same as in Subsection 8.2.4.

The nonconvex optimization formulation presented in Eq. (7.2.1) is used to solve

the optimal control problem for the case of non-equal traction-braking delays. The

formulation parameters are listed in Subsection 8.2.3.

The delay values are:

• Ttrk,delay = 1.4 s

• Tbrk,delay = 2.8 s
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• ncc = 40 (dependent on length of longest delay)

8.2.5.1 Minimum-Time Optimal Control

The objective function, Eq. (7.2.1.29), parameters are: wt = 1, we = 0, and w
∆ctrl =

0.

The results ignoring delays are shown in Figs. 8.29 and 8.30. The results consid-

ering delays are shown in Figs. 8.31 and 8.32.
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Figure 8.29: Modelling errors, underestimating the train mass, with sensor and pro-
cess noise added. Minimum-time ignoring delays in the control input; closed-loop
response. Ttrk,delay = 1.4 s, Tbrk,delay = 2.8 s. Final Position: 10037.77 m. Over-
shoot: 37.77 m. Trip Time: 585.76 s. Trip Delay: N/A s. Energy Consumed: 6210.42
J.
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Figure 8.30: Modelling errors, underestimating the train mass, with sensor and pro-
cess noise added. Minimum-time ignoring delays in the control input; computation
times. Ttrk,delay = 1.4 s, Tbrk,delay = 2.8 s.
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Figure 8.31: Modelling errors, underestimating the train mass, with sensor and pro-
cess noise added. Minimum-time considering delays in the control input; closed-loop
response. Ttrk,delay = 1.4 s, Tbrk,delay = 2.8 s. Final Position: 10005.37 m. Over-
shoot: 5.37 m. Trip Time: 572.18 s. Trip Delay: N/A s. Energy Consumed: 6387.85
J.
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Figure 8.32: Modelling errors, underestimating the train mass, with sensor and pro-
cess noise added. Minimum-time considering delays in the control input; computation
times. Ttrk,delay = 1.4 s, Tbrk,delay = 2.8 s.
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Comparing Figs. 8.29 and 8.31, considering delays resulted in an overshoot de-

crease from 37.77 m to 5.37 m, and a trip time decrease from 585.76 s to 572.18

s.

8.2.5.2 Minimum-Energy Optimal Control

The objective function, Eq. (7.2.1.29), parameters are: wt = 0, we = 1, and w
∆ctrl =

1.

The results ignoring delays are shown in Figs. 8.33 and 8.34. The results consid-

ering delays are shown in Figs. 8.35 and 8.36.
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Figure 8.33: Modelling errors, underestimating the train mass, with sensor and pro-
cess noise added. Minimum-energy ignoring delays in the control input; closed-loop
response. Ttrk,delay = 1.4 s, Tbrk,delay = 2.8 s. Final Position: 10009.24 m. Over-
shoot: 9.24 m. Trip Time: 998.55 s. Trip Delay: N/A s. Energy Consumed: 3554.23
J.
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Figure 8.34: Modelling errors, underestimating the train mass, with sensor and pro-
cess noise added. Minimum-energy ignoring delays in the control input; computation
times. Ttrk,delay = 1.4 s, Tbrk,delay = 2.8 s.
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Figure 8.35: Modelling errors, underestimating the train mass, with sensor and pro-
cess noise added. Minimum-energy considering delays in the control input; closed-loop
response. Ttrk,delay = 1.4 s, Tbrk,delay = 2.8 s. Final Position: 10003.16 m. Over-
shoot: 3.16 m. Trip Time: 1003.17 s. Trip Delay: 3.17 s. Energy Consumed: 3507.59
J.
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Figure 8.36: Modelling errors, underestimating the train mass, with sensor and pro-
cess noise added. Minimum-energy considering delays in the control input; computa-
tion times. Ttrk,delay = 1.4 s, Tbrk,delay = 2.8 s.

153



M.A.Sc. Thesis - Muzamil Rashid McMaster - Electrical Engineering

Comparing Figs. 8.33 and 8.35, considering delays resulted in an overshoot de-

crease from 9.24 m to 3.16 m, an energy consumption decrease from 3554.23 J to

3507.59 J, but a trip time increase from 998.55 s to 1003.17 s. There is a trip delay

of 3.17 s for the case of considering delays.

The reason why the overshoot is worse than in the case of noise only and no

modelling errors, Subsection 8.2.4, is because when the controller is configured with

an underestimate of the mass parameter value, the controller requests less braking

than if the controller was configured with the correct higher mass parameter value.

This lower braking force request increases the stopping distance.

8.2.6 Test Problem 4-A: Equal Traction-Braking Delays with

Disturbances andModelling Error, Underestimating Mass

(Discrete-Position)

The convex optimization formulation presented in Eq. (5.2.1) is used here to solve the

problem considering equal traction-braking delays. It can be assumed that an artificial

delay has been added to the traction command to make the two delays equal compared

to Subsection 8.2.5. The formulation parameters are listed in Subsection 8.2.2.

The delay values are:

• Ttrk,delay = 2.8 s

• Tbrk,delay = 2.8 s

8.2.6.1 Minimum-Time Optimal Control

The objective function, Eq. (7.2.1.29), parameters are: wρ = 1, 000, and we = 0.
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The results considering delays are shown in Figs. 8.37 and 8.38.
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Figure 8.37: Modelling errors, underestimating the train mass, with sensor and pro-
cess noise added. Convex formulation: minimum-time considering delays in the con-
trol input; closed-loop response. Ttrk,delay = 2.8 s, Tbrk,delay = 2.8 s. Final Po-
sition: 10002.40 m. Overshoot: 2.40 m. Trip Time: 564.76 s. Trip Delay: N/A s.
Energy Consumed: 6707.40 J.
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Figure 8.38: Modelling errors, underestimating the train mass, with sensor and pro-
cess noise added. Convex formulation: minimum-time considering delays in the con-
trol input; computation times. Ttrk,delay = 2.8 s, Tbrk,delay = 2.8 s.
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As can be seen from Fig. 8.37, the controller is quite robust when dealing with

noise and modelling errors. The overshoot in the convex case is 2.40 m, Fig. 8.37,

while the overshoot in the nonconvex case (considering delays) is 5.37 m, Fig. 8.31.

The trip time in the convex case is 564.76 s, while in the nonconvex case is 572.18 s.

The performance is better in the convex case as opposed to the nonconvex case, but

this can be explained by the increased frequency of solving optimal control problems

using feedback in the convex case. For the convex case, for a single run from station

A to station B, the optimal control problem is solved 401 times, for the nonconvex

case, the optimal control problem is solved 201 times. Feedback occurs nearly twice

as frequently in the convex case as in the nonconvex case, thus mitigating modelling

errors. The increased frequency of feedback is possible for the convex case because of

the ability to rapidly and robustly solve convex optimization problems.

8.2.7 Test Problem 5: Non-Equal Traction-Braking Delays

with Disturbances and Modelling Error, Overestimating

Mass (Discrete-Time)

In this test case, just like in Subsection 8.2.5, random noise is added to the sensor

measurements, both position and velocity, and the process, a random acceleration is

added to the system. In addition, there is also model mismatch, the actual mass is

5 % lower than the estimated mass. The estimated mass is used for the purposes of

control. In other words, the actual mass is 5 % lower than the mass parameter value

used in the controller.

The noise parameters are the same as in Subsection 8.2.4.

The nonconvex optimization formulation presented in Eq. (7.2.1) is used to solve
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the optimal control problem for the case of non-equal traction-braking delays. The

formulation parameters are listed in Subsection 8.2.3.

The delay values are:

• Ttrk,delay = 1.4 s

• Tbrk,delay = 2.8 s

• ncc = 40 (dependent on length of longest delay)

8.2.7.1 Minimum-Time Optimal Control

The objective function, Eq. (7.2.1.29), parameters are: wt = 1, we = 0, and w
∆ctrl =

0.

The results ignoring delays are shown in Figs. 8.39 and 8.40. The results consid-

ering delays are shown in Figs. 8.41 and 8.42.
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Figure 8.39: Modelling errors, overestimating the train mass, with sensor and process
noise added. Minimum-time ignoring delays in the control input; closed-loop response.
Ttrk,delay = 1.4 s, Tbrk,delay = 2.8 s. Final Position: 10021.19 m. Overshoot: 21.19
m. Trip Time: 577.64 s. Trip Delay: N/A s. Energy Consumed: 6169.69 J.
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Figure 8.40: Modelling errors, overestimating the train mass, with sensor and process
noise added. Minimum-time ignoring delays in the control input; computation times.
Ttrk,delay = 1.4 s, Tbrk,delay = 2.8 s.
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Figure 8.41: Modelling errors, overestimating the train mass, with sensor and pro-
cess noise added. Minimum-time considering delays in the control input; closed-loop
response. Ttrk,delay = 1.4 s, Tbrk,delay = 2.8 s. Final Position: 10001.15 m. Over-
shoot: 1.15 m. Trip Time: 571.62 s. Trip Delay: N/A s. Energy Consumed: 6301.26
J.
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Figure 8.42: Modelling errors, overestimating the train mass, with sensor and process
noise added. Minimum-time considering delays in the control input; computation
times. Ttrk,delay = 1.4 s, Tbrk,delay = 2.8 s.
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Comparing Figs. 8.39 and 8.41, considering delays resulted in an overshoot de-

crease from 21.19 m to 1.15 m, and a trip time decrease from 577.64 s to 571.62

s.

8.2.7.2 Minimum-Energy Optimal Control

The objective function, Eq. (7.2.1.29), parameters are: wt = 0, we = 1, and w
∆ctrl =

1.

The results ignoring delays are shown in Figs. 8.43 and 8.44. The results consid-

ering delays are shown in Figs. 8.45 and 8.46.
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Figure 8.43: Modelling errors, overestimating the train mass, with sensor and pro-
cess noise added. Minimum-energy ignoring delays in the control input; closed-loop
response. Ttrk,delay = 1.4 s, Tbrk,delay = 2.8 s. Final Position: 10011.00 m. Over-
shoot: 11.00 m. Trip Time: 998.62 s. Trip Delay: N/A s. Energy Consumed: 3344.91
J.
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Figure 8.44: Modelling errors, overestimating the train mass, with sensor and process
noise added. Minimum-energy ignoring delays in the control input; computation
times. Ttrk,delay = 1.4 s, Tbrk,delay = 2.8 s.
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Figure 8.45: Modelling errors, overestimating the train mass, with sensor and process
noise added. Minimum-energy considering delays in the control input; closed-loop
response. Ttrk,delay = 1.4 s, Tbrk,delay = 2.8 s. Final Position: 10000.74 m. Over-
shoot: 0.74 m. Trip Time: 1004.36 s. Trip Delay: 4.36 s. Energy Consumed: 3271.07
J.
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Figure 8.46: Modelling errors, overestimating the train mass, with sensor and process
noise added. Minimum-energy considering delays in the control input; computation
times. Ttrk,delay = 1.4 s, Tbrk,delay = 2.8 s.
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Comparing Figs. 8.43 and 8.45, considering delays resulted in an overshoot de-

crease from 11.00 m to 0.74 m, an energy consumption decrease from 3344.91 J to

3271.07 J, but a trip time increase from 998.62 s to 1004.36 s. There is a trip delay

of 4.36 s for the case of considering delays.

The reason why the overshoot is lower in this case vs the case of underestimating

the mass, Subsection 8.2.5, is because when overestimating the mass the controller

assumes that the train has a greater amount of kinetic energy, and thus the controller

requests more braking than if the controller was configured with the actual mass

parameter value. This higher braking force request decreases the stopping distance.

8.2.8 Test Problem 5-A: Equal Traction-Braking Delays with

Disturbances and Modelling Error (Discrete-Position)

The convex optimization formulation presented in Eq. (5.2.1) is used here to solve the

problem considering equal traction-braking delays. It can be assumed that an artificial

delay has been added to the traction command to make the two delays equal compared

to Subsection 8.2.7. The formulation parameters are listed in Subsection 8.2.2.

The delay values are:

• Ttrk,delay = 2.8 s

• Tbrk,delay = 2.8 s

8.2.8.1 Minimum-Time Optimal Control

The objective function, Eq. (7.2.1.29), parameters are: wρ = 1, 000, and we = 0.

The results considering delays are shown in Figs. 8.47 and 8.48.
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Figure 8.47: Modelling errors, overestimating the train mass, with sensor and process
noise added. Convex formulation: minimum-time considering delays in the control
input; closed-loop response. Ttrk,delay = 2.8 s, Tbrk,delay = 2.8 s. Final Position:
10001.34 m. Overshoot: 1.34 m. Trip Time: 565.88 s. Trip Delay: N/A s. Energy
Consumed: 6411.33 J.
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Figure 8.48: Modelling errors, overestimating the train mass, with sensor and process
noise added. Convex formulation: minimum-time considering delays in the control
input; computation times. Ttrk,delay = 2.8 s, Tbrk,delay = 2.8 s.
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As can be seen from Fig. 8.47, the controller is quite robust when dealing with

noise and modelling errors. The overshoot in the convex case is 1.34 m, Fig. 8.47,

while the overshoot in the nonconvex case (considering delays) is 1.15 m, Fig. 8.41.

The trip time in the convex case is 565.88 s, while in the nonconvex case is 571.62 s.

The performance is better in the convex case as opposed to the nonconvex case, but

this can be explained by the same reasons as in Subsection 8.2.6. The difference in

the overshoot, 0.19 m, is not significant.
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Chapter 9

Conclusion and Future Work

9.1 Conclusion

Optimal control of a commuter train, a nonlinear system, under the presence of trac-

tion and braking delays was studied. Solutions were proposed for the two cases of

equal and non-equal traction-braking delays. In the case of equal traction-braking

delays, a convex optimization model was presented that employed a model of the

system in the discrete position domain resulting in a fast global solution to the prob-

lem of mixed energy-time optimal control. For the case of non-equal traction-braking

delays, a nonconvex optimization model using a model of the system in the discrete

time domain was developed. The control formulations are quite general and pro-

vide a mechanism to achieve optimal mixed energy-time objectives under various

user-specified operational constraints. The case of non-equal traction-braking delays

is quite general and can be extended to allow for optimal control of any nonlinear

system with an arbitrary number of inputs with different delays.
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Two new optimal controllers are proposed that can compensate for delays in trac-

tion and braking for commuter train operation. The commuter train system is mod-

elled as a nonlinear system. The controllers are model-based, they explicitly incorpo-

rate the model information and the trip parameters. The controllers use an EMPC

framework where the control problem is solved repeatedly along the track using the

latest sensor measurements. Given a train at any position along the track, the states,

time, position, and velocity, of the train are measured, an optimal control problem is

solved to determine the state and control trajectory from the current position to the

end of the trip. From the given solution of the optimal control problem, the first few

samples of the control are applied and the process is repeated until the train arrives

at the destination. The optimal control problem is formulated as an optimization

problem and solved using optimization solvers. Delay compensation is achieved by

the use of a predictor, i.e. model-based prediction. The optimal control formulation

in the case of equal traction-braking delays is formulated in the position domain using

an existing convex approximation. The optimization problem being convex allows for

rapid and robust computation of a global optimum. The non-equal traction-braking

delay case is made tractable with the assumption that the input is piecewise constant.

A predictor is used to compensate for the “common” portion of the delay. An opti-

mization problem is solved from the end of prediction till the end of the trip. This

optimization problem consists of two parts, one part where the independent variable

is time, and the other part where the independent variable is an affine function of

time. The affine function maps an arbitrary time interval to an interval from zero

to one. Over this interval, the length of time can be expressed as an affine function

of this alternative independent variable. For the control input with the longer delay,
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the control samples at the end of prediction till the end of the issued control samples

serve as constraints on that respective control input.

Results and simulations are presented demonstrating the feasibility of the pro-

posed formulation. Results of numerical simulations demonstrated that the proposed

control methodologies are quite effective in moving the train from origin to desti-

nation according to the operator requirements. The main advantage of the convex

formulation is that it can be quickly solved to find a globally optimal solution to the

problem, whereas the nonconvex formulation has a much longer computation time

and may not necessarily produce a globally optimal solution. However, the results of

the simulations also revealed that adding artificial delay to one of the control channels

so that the convex formulation can be employed can be a very effective strategy for

solving the non-equal delay problem, when real-time computation time is of concern.

9.2 Future Work

Some possible future directions for research to improve upon the proposed controllers

are:

• Parameter estimation: Parameter estimation can be used to allow for the con-

troller to automatically update the estimates of the model parameters in real-

time. This will allow for more accurate estimation of the model parameters,

thus reducing errors due to the use of inaccurate parameter values in the math-

ematical model.

This can also assist when parameter values change over periods of time, due to

changing environmental conditions, wear & tear, aging, etc. Some examples of
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conditions that result in parameter value changes are provided below.

– Train mass can change from station to station as passengers board and

disembark from the train.

– Train resistance forces can change as track conditions change.

∗ Aerodynamic resistance forces vary when the train is travelling inside

a tunnel versus travelling outside a tunnel.

∗ Rain and temperature can change the rolling resistance experienced

by the train due to changing rail track conditions.

Parameter estimation can also include estimation of input-delays. The con-

troller can be extended to automatically estimate delays in traction and brak-

ing. Estimation of the delays can result in more accurate delay values, thus

reducing errors from the use of inaccurate parameter values.

Adjusting to different parameter values can make the controller adaptive. The

controller can become more portable as it can be installed on different trains

with less configuration and tuning required. The controller will automatically

estimate the parameters and utilize them for the purposes of control.

• State Estimation: Another research direction would be to use more accurate

sensor models, including delays and uncertainties in sensor measurements, in the

optimal control problem. Currently, it is assumed, that the exact state values

can be measured; however, this is usually not the case in real-life. In real-life,

the full state measurement is usually not available, sensor measurements are

not free of errors, and sensors can be subject to delays. An optimal estimator

can be designed to provide improved state estimates. The optimal estimator
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can be coupled with an optimal controller to enable both optimal observation

and optimal action based upon that observation.

• Robust Control: Robust control can be used to allow for increased robustness

to disturbances and noise. For example, the grade may not be known exactly,

and there may also be errors in model parameters such as resistance coefficients

and train mass. This can also include robustness to using an inaccurate value

of the delay in the system model. Delays in actuation can severely degrade

performance and may also cause instability. The proposed controllers in this

thesis have not been tested for robustness to inaccurate traction or braking

delay values.

• State-varying delays in traction and braking: A challenging future research

direction is extending the input-delay model in the optimal control formulation

from constant delays in input to state-varying delays in input. The delays in

traction and braking would now become functions of the state. This is a more

realistic model, because the train actuation mechanism can have different delays

in traction and braking when the train is in different modes of operation: rest

mode, traction mode, and braking mode.

The above list is by no means complete or comprehensive, but rather a limited list of

possible related future research directions that are of interest.
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Appendix A

Convex Formulation of Optimal

Mixed Energy-Time Train Control

This appendix provides a brief overview of the convex approximation detailed in [13].

The original train optimal control problem formulated as an optimization problem in

the position domain, i.e. before the convex approximation is applied, is as follows.

min
t[k],v[k],u[k],k∈{q,...,N}

we

{
N−1∑
i=q

u+ [i] δs [i]

}
+ wtt [N ] (A.0.1.1)

s.t.

t [q] = tPredicted (A.0.1.2)

s [q] = sPredicted (A.0.1.3)

v [q] = vPredicted (A.0.1.4)

tmin ≤ t [N ] ≤ tmax (A.0.1.5)

s [N ] = sf (A.0.1.6)
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v [N ] = 0m/s (A.0.1.7)

for k ∈ {q, . . . , N − 1} :

t [k + 1] = t [k] +
1

v [k]
δs [k] (A.0.1.8)

v [k + 1] = v [k] +

{
(g [k]− C0)

mv [k]
− Cv
m

− Cv2

m
v [k]

+
u [k]

v [k]

}
δs [k]

(A.0.1.9)

for k ∈ {q, . . . , N} :

0 ≤ u+ [k] (A.0.1.10)

u [k] ≤ u+ [k] (A.0.1.11)

0m/s < v [k] ≤ vmax [k] (A.0.1.12)

ubrk,max ≤ u [k] (A.0.1.13)

u [k] ≤ min

{
Utrk,max,

P

v
,
kPP

v2

}
(A.0.1.14)

With a substitution of variable of ρ [k] = 1
v[k]

, and γ [k] = u[k]
v[k]

, we arrive at the

following dynamics equations:

t [k + 1] = t [k] + ρ [k] δs [k] (A.0.2)

v [k + 1] = v [k] +

{
(g [k]− C0) ρ [k]

m
− Cv
m
− Cv2

m
v [k] + γ [k]

}
δs [k] (A.0.3)

And we also arrive at the following algebraic equation:

1

v [k]
= ρ [k] (A.0.4)
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Note that, ρ ≥ 0, v ≥ 0, and that the control variable to be selected is now γ [k]

instead of u [k].

Equation (A.0.4) is relaxed from the equality constraint to the inequality con-

straint:
1

v [k]
≤ ρ [k] (A.0.5)

Equation (A.0.5) is also known as an hyperbolic constraint, and in its current form is

nonconvex, but can be transformed into the following constraint that is convex [93]:

∥∥∥∥∥∥∥
 2

v [k]− ρ [k]


∥∥∥∥∥∥∥

2

≤ v [k] + ρ [k] (A.0.6)

To ensure that ρ [k] ≈ 1
v[k]

, the term ρ [k] is included in the objective function with

a significant enough weight to ensure that the inequality is active. The optimal

control problem is now transformed to the disciplined convex form [71], [94]–[97],

thus ensuring convexity.

The dynamics are now characterized by the difference equations, Eqs. (A.0.2)

and (A.0.3), and the algebraic equation, Eq. (A.0.6). Note, that this approximation

only matches the real dynamics if Eq. (A.0.6) is active.

ubrk,max ≤ u ≤ min

{
Utrk,max,

P

v
,
kPP

v2

}
(A.0.7)

The constraints on the control, Eq. (A.0.7), must be approximated by convex func-

tions so that the optimization problem is convex, see [13]. Thus, the resulting convex

180



M.A.Sc. Thesis - Muzamil Rashid McMaster - Electrical Engineering

optimization formulation is now:

min
t[k],v[k],ρ[k],γ[k],γ+[k],k∈{q,...,N}

N−1∑
i=q

{
weγ

+ [i] δs [i] + wρρ [i]
}

(A.0.8.1)

s.t.

t [q] = tPredicted (A.0.8.2)

s [q] = sPredicted (A.0.8.3)

v [q] = vPredicted (A.0.8.4)

tmin ≤ t [N ] ≤ tmax (A.0.8.5)

s [N ] = sf (A.0.8.6)

v [N ] = 0m/s (A.0.8.7)

for k ∈ {q, . . . , N − 1} :

t [k + 1] = t [k] + ρ [k] δs [k] (A.0.8.8)

v [k + 1] = v [k] +

{
g [k]− C0

m
ρ [k]

− Cv
m

− Cv2

m
v [k]

+ γ [k]

}
δs [k]

(A.0.8.9)

for k ∈ {q, . . . , N} : ∥∥∥∥∥∥∥
 2

v [k]− ρ [k]


∥∥∥∥∥∥∥

2

≤ v [k] + ρ [k] (A.0.8.10)

0 ≤ γ+ [k] (A.0.8.11)

γ [k] ≤ γ+ [k] (A.0.8.12)
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0m/s < v [k] ≤ vmax [k] (A.0.8.13)

0 s/m < ρ [k] <∞ s/m (A.0.8.14)(
ubrk,max

)
ρ [k] ≤ γ [k] (A.0.8.15)

γ [k] ≤
(
utrk,max

)
ρ [k] (A.0.8.16)

γ [k] ≤ r0ρ [k] + rv + rv2v [k] (A.0.8.17)

The optimal control problem is now transformed to the disciplined convex form [71],

[94]–[97], thus ensuring convexity.
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