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Abstract

Surface plasmon resonances at the nanoscale hold great potential for applications in

many areas, and the characterization of plasmonic nanostructures plays a critical role

in the realization of these applications. Electron energy loss spectroscopy (EELS)

has emerged as a powerful characterization tool to study the response of plasmonic

nanostructures due to its high spatial-resolution and the capability to probe bright

as well as dark plasmonic modes. The main limiting factor of EELS is the energy

resolution. However, in this thesis, we overcome this limitation using a combination

of electron monochromation and the use of the Richardson-Lucy algorithm. We show

that the algorithm could be used to obtain effective energy resolutions up to 10

meV. Using EELS we analyze the resonances of planar nanostructures, and we found

that the supported resonances can be described as edge and cavity or film modes,

behaving as 1D and 2D modes respectively. We also demonstrate that edge modes

are unaffected by the presence of bends up to the critical angle of 90◦ where the

modes start self-interacting producing large energy shifts. The interaction of plasmon

resonances is also studied, and we show that the coupling can be reduced to three

behaviors: coupling through the edge, coupling through a corner, and non-coupling.

We propose a method to control the coupling through the edge in offset nanowires,

by tuning the nodal alignment and spectral overlap of the edge modes. Finally,
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we analyze the plasmon modes supported by Koch snowflake fractal antennas, and

we demonstrate that modes present in the fractals are formed by the edge modes

supported by their characteristic edges. This thesis provides a complete picture of

the surface plasmon resonances supported by planar nanostructures and demonstrates

the ability of EELS to probe and image a wide variety of plasmonic resonances.
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Preface

Light has fascinated humanity since ancient times, as evidenced by the earliest known

lenses, made from polished quartz, which dates back to 700 BC. Since then our un-

derstanding of light has increased significantly, thanks to revolutionary work of many

scientists. From the first optics treatises of Euclid (300 BC) and Alhazen (11th Cen-

tury) to the formulation of the classic theory of electromagnetism by James Maxwell

(1860s) and the development of quantum optics, we are building our understanding

of the nature of light and its interaction with matter.

Richard Feynman’s famous talk, entitled There is plenty of room at the bottom

[17] delivered more than 50 years ago, is considered to be seminal in the conception of

nanotechnology. In the talk, he presented his visionary idea of a technological revolu-

tion leading towards the atomic scale and the boundaries of the physical laws. Since

his talk, nanotechnology has traveled far, unraveling and discovering new properties

and phenomena in several areas of knowledge. Optics is no stranger to this techno-

logical revolution. In particular, thanks to the advancements in fabrication methods

of nanostructures in the last decades the ability to confine light on sub-wavelength

scales was achieved using surface plasmons excited on nanoscale structures.

Surface plasmons (SPs) are electron density waves that exist at the interface of a

metal and a dielectric akin to the traveling waves that propagate across the surface
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of a pond after throwing a pebble into the water. The study of this phenomenon

gave rise to the development of the research field called Plasmonics. The field of plas-

monic is experiencing an exponential growth because of its potential for technological

advancement [18]. The range of possible applications is vast, and this promise of plas-

monics [19] has promoted an explosion of research in this field over the last decade

not only for the technological impact but also for the fascinating science behind this

phenomenon.

As Feynman himself stated, to study phenomena at the nanoscale, we require

high spatial resolution, and to achieve it we required good electron microscopes [17].

As predicted by Feynman in 1959, the advances in electron optics made the rise of

Nanotechnology possible. Relatively recently, it was shown that it is possible to ex-

cite SPs in the visible range using the fast electrons of an electron microscope and

detect the SPs with sub-wavelength resolution [20]. The combination of the very

high resolution of electron microscopes and the use of electron spectroscopies in the

microscope showed to be more than suitable to study the local optical response of

metallic nanostructures. Electron energy loss spectroscopy (EELS) inside a scanning

transmission microscope (STEM) stands out among other electron microscopy tech-

niques in the characterization of SPs, not only due to the high spatial resolution that

can be achieved but also due to the ability to probe bright as well as dark SPs [21].

In this thesis, a myriad of plasmon resonances modes that complex, as well as simple,

planar structures support is shown, studied and analyzed using the high-resolution

of STEM-EELS and the improved resolution obtained with the use of computational

algorithms. The effects of plasmon coupling and hybridization of plasmonic nanos-

tructures in proximity are also analyzed and studied. The understanding of plasmon
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resonances in nanostructures and their coupling mechanism, will not only expand the

current knowledge of plasmon resonances in nanostructures, but give us the tools to

design plasmonic absorbers required for a variety of applications, including energy

harvesting, sensing, therapeutics, catalysis, and nano-optics in general.

This thesis consists of seven chapters. Chapter 1 provides the theoretical frame-

work of the formation of surface plasmon resonances in metallic nanostructures. It

also includes a description of the excitation of surface plasmons by fast electrons

as well as the background and literature review required to understand the results

presented in chapters 3 to 5. Chapter 2 describes the methods used in this the-

sis including sample fabrication, characterization as well as modeling of plasmonics

nanostructures. The use of the Richarson-Lucy algorithm to improve the energy res-

olution of EELS for the characterization of surface plasmon resonances is presented

in Chapter 3. Results and analysis of edge and film (cavity) modes, which are the

two types of modes excited on planar nanostructures are shown in Chapter 4. The

coupling of planar nanostructures is described in chapter 5 through the study of

the offset nanowire dimers, nano-square dimers, and metallic strips. In chapter 6,

the results and analysis of the surface plasmon resonances in planar metallic fractal

structures are presented. Finally, Chapter 7 provides the conclusion and summarizes

the contributions of the research described in this thesis.
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Chapter 1

Surface Plasmons

Surface Plasmons are electron density oscillations that occur at the interface between a

conductor and a dielectric when the real part of the dielectric function Re(ε) changes

sign from positive in the dielectric material to negative in the conductor. These

oscillations are associated with electromagnetic fields at the interface, which resemble

light waves bound to the surface of metal. When the extent of the metallic surface

is smaller than visible light wavelengths, we have electromagnetic fields confined to

the nanoscale. The potential applications of surface plasmons promoted the growth

of plasmonics as a research area. To mention just a few examples:

• Plasmon resonances can be used to fabricate highly sensitive chemical sensors

and could allow identification down to the single molecule level [22].

• The ability to squeeze light down to nanoscale volumes of surface plasmons

has the potential to provide unprecedented resolution for optical patterning

[23, 24, 25].

• Metal nanoparticles with resonances in the infrared can be used to eliminate
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tumors without damaging nearby tissue [26, 27].

• Due to its reduced size, plasmonic nanostructures can be incorporated in pho-

todetectors and photovoltaic devices and potentially increase their performance

[28].

• Metamaterials composed of plasmonic nanostructures can have unique optical

characteristics such as negative refraction, which is required to realize exotic

phenomena such as super-lensing and optical cloaking [29, 30, 31].

In this chapter, the historical development marking key contributions to the field

of plasmonic is described briefly, followed by the theoretical background, and the

description of surface plasmons on various configurations. Finally, a physical inter-

pretation, as well as a description of the different models to explain the coupling of

plasmonic structures, are also given in this chapter.

1.1 Plasmonics a historical perspective

The first plasmonic application dates as far back as the 4th century, where Romans

unknowingly used nanoscale metallic particles to fabricate glass. The famous Lycur-

gus Cup is a relic from this era, which due to the optical dichroism of the metallic

nanoparticles in the glass, this cup appears jade green in reflected light but a bril-

liant red in transmission, as seen in figure 1.1. The first quantitative observation of

surface plasmons started back in 1902, when Wood illuminated a metallic diffraction

grating with polychromatic light and noticed narrow dark bands in the spectrum

of the diffracted light [32], which are known, even today, as Wood Anomalies. Lord

Rayleigh suggested a physical interpretation soon after the discovery of the anomalies.

However, it is only on 1941 that the anomalies were associated with the excitation of
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electromagnetic surface waves by Fano [33]. From the inception of Plasmonics, EELS

was a fundamental tool for the study of surface plasmons. In 1957 Ritchie proposed

that thin metallic films could support collective electron oscillating modes excited by

an inelastic interaction with fast electrons, providing the first theoretical description

of surface plasmons. The experimental confirmation of the theory came two years

later in experiments of reflection EELS of a 10 nm thick aluminum film by Powell

and Swan [34, 35].

Figure 1.1: Lycurgus Cup [British Museum Images].

Surface plasmons excited optically in metal films on a substrate were reported

and explained in 1968 almost simultaneously by Otto [36] and by Kretschmann and

Raether [37]. In 1974 Fleishman observed an unexpected enhancement of the signal

of Raman-scattering from molecules deposited on rough metallic surfaces. Three

years later Jeanmaire and Van Duyne explained that the enhancement was caused by

the interaction of the high electromagnetic fields of surface plasmons on the metallic

surface and the molecules, and the technique now known as surface-enhanced Raman
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spectroscopy was born. Another observation that triggered interest in the scientific

community occurred on 1989 when Ebbesen fabricated an array of holes in a metal

film and observed that the nanoscale holes transmitted more light than expected. But

it was only nine years later that the explanation of the enhanced transmission was

attributed to surface plasmons [38]. Since then, the field of Plasmonics has expanded

tremendously, and a reflection of this growth is the amount of scientific literature

related to surface plasmons that since the late 90s has doubled every five years [39].

1.2 Theoretical description of plasmons

1.2.1 The Drude model

In 1900, Paul Drude proposed one of the most simple but at the same time very

useful models to describe the interaction of a metallic solid and an electromagnetic

field [40, 41]. Drude assumed the description of the interaction was based on the

microscopic movement of the electrons in the metal. It considers the metal as a lattice

of positively charged ions in which electrons behave as a free gas of non-interacting

particles that move in the immobile lattice of ions driven by the force of the external

electric field. The model neglects any electron-electron and electron-ion long-range

interaction, being instantaneous collisions the only interactions that a free electron

experiences. After a collision, the electrons emerge with a random direction, with

an average time between collisions τ , as shown in figure 1.2(a). Considering that

in average the collisions cause the movement of the electron to be damped, Drude

obtained the following equation of motion of an electron in a metal under the influence

of an electric field [39, 42]:
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E

E

(a)

(b)

Figure 1.2: (a) In Drude model the metal is formed by a lattice of fixed positive ions
(black circles) and the electrons (blue circles) are free to move and only experience
instantaneous collisions. The improved Drude-Lorentz model (b) also considers the
electrons bound to the atomic nucleus (red circle).

m
∂2r

∂t2
+mγ

∂r

∂t
= qE (1.1)

where r is the position of the electron, m describes the effective free electron mass,

γ is the damping term (γ = 1
τ
), also known as the collision frequency, q is the charge

of the electron, and E = E0e
−iωt is the external electric field (where E0 and ω are

the amplitude and the frequency of the applied electric field respectively). Assuming

a solution of the form r(t) = r0e
−iωt and replacing into equation 1.1, this gives:

r(t) =
−qE(t)

mω2 + iωmγ
(1.2)

This microscopic movement of the electrons in the metal has an effect at the
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macroscopic scale which is an induced polarization P (t) = qner(t) that arises when

conduction electrons are displaced by a distance r (ne is conduction electron den-

sity). This induced polarization is connected to the external electric field through the

dielectric function ε of the material:

ε(ω)E(ω) = ε0E(ω) + P (ω) (1.3)

Replacing the polarization into equation 1.3, we get the Drude dielectric function

of a free electron metal:

ε(ω) = ε0 −
ω2
p

ω2 + iγω
(1.4)

where ε0 describes the ionic background in the metal and ωp is the bulk plasma

frequency of the free electron gas given by:

ω2
p =

√
neq2

m
(1.5)

It is useful to separate and identify the real and imaginary parts of the dielectric

function:

Re[ε(ω)] = ε0 −
ω2
p

ω2 + γ2
(1.6)

Im[ε(ω)] =
ω2
pγ

ω3 + γ2ω
(1.7)

With this simple model, we can describe the optical properties of a free electron

metal. Assuming ε0 = 1 and zero damping (γ = 0), the Drude dielectric function
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simplifies to ε = 1− ω2
p/ω

2. With this approximation we can distinguish to regimes:

One when ω > ωp, ε is positive, thus the metal has a real refractive index (n =
√
ε).

Therefore, the metal becomes transparent because the electrons in the metal are too

slow to respond fast enough to the external field. The other regime when ω < ωp,

then ε is negative, and the refractive index becomes imaginary, and this implies that

electromagnetic waves cannot propagate inside the medium and are reflected because

the electrons in the metal can screen the field.

The validity of the Drude model gives accurate results for metals in the infrared

region but starts to break down in the visible region because higher-energy photons

can promote electrons from lower energy bands into the conduction band. This inter-

band transition lies in the visible part of the spectrum for some metals like gold

and copper, thus in this range electrons can be promoted from the d-band to states

above the Fermi energy, these transitions are responsible for the particular color in

these metals. Figure 1.3 shows a comparison of the Drude and experimental dielectric

function for silver.

1.2.2 The Drude-Lorentz model

Five years after Drude model, Lorentz extended the model to include the bound

electrons responsible for inter-band transitions using a classical approach [42]. In

this approach, we expand the Drude model and consider that the electrons in energy

bands below the conduction band are bound to the nucleus. These bound electrons,

in the model, are displaced from their equilibrium by the interaction with the electric

field but will “bounce” back to their equilibrium position when the field vanishes, as

shown in figure 1.2(b). This phenomenon can be described in the equation of motion

of the electrons with a spring constant that provides the restoring force that maintains
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Figure 1.3: (a) Real and (b) imaginary parts of the dielectric function of silver calcu-
lated with the Drude model (blue), the Drude-Lorentz model (red), and experimental
data (black) from literature [1].
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the bound electrons in their equilibrium position as follows:

m
∂2r

∂t2
+mγ

∂r

∂t
+mω2

0r = qE (1.8)

where the spring constant κ is written in terms of the resonant frequency of the

bound electron ω0 (ω0 =
√

κ
m

). Following a similar procedure than in the Drude’s

model we have the Drude-Lorentz dielectric function:

ε(ω) = ε0 +
ω2
p

ω0 − ω2 − iγω
(1.9)

Figure 1.3 shows the comparison between the real and imaginary parts of the

dielectric function in the Drude model and the Drude-Lorentz model, and the exper-

imental dielectric function of silver [1]. The Drude model has a good agreement at

energies below 3.8 eV however it breaks down for higher values. The Drude-Lorentz

has a larger range of validity up to approximately 4.2 eV. However, for higher en-

ergies, none of the models fits with the experimental dielectric function, this can be

improved by adding more inter-band transitions into the model.

1.2.3 Surface Plasmon Polaritons at Interfaces

Surface plasmons present at interfaces between a dielectric and metal are known as

surface plasmon polaritons (SPPs). These surface electromagnetic waves propagate

along the interface and are coupled to the electron oscillations in the metal. For the

physical description of these SPPs, we assume a planar interface with ε2 for the metal

at z < 0, and ε1 for the dielectric at z > 0. The interface located at z = 0 defines

the coordinate system, with the field propagating along the x direction, as shown

in figure 1.4. The wave equation describes the SPPs, and each region can be solved
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separately. Assuming that the dielectric function ε is uniform and does not change

with the position we have the following wave equation:

λSPP

x

z δ1

δ2

E1x

E2x

ε1E1z

ε2E2z

Figure 1.4: Schematic representation of an intensity distribution of an SPP propa-
gating along a metal-dielectric interface (x), where the z component of the electric
field decays exponentially

52Ê − ε

c2

∂2Ê

∂2t
= 0 (1.10)

We know that the SPPs propagate parallel to the surface but decay exponentially

into the metal and into space away from the interface, thus we can write a solution

of the equation in each region j as:

Êj = (Ejxx̂+ Ejz ẑ)ei(kjxx−ωt)eikjzz (1.11)

Replacing the solution Ê into equation 1.10 we obtain the Helmholtz equation:

52Ê + k2Ê = 0 (1.12)

where k2 = ε(ω
c
)2.

The phase is continuous at the interface for a wave propagating at the surface, thus
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k1x = k2x = kx. The boundary conditions indicate how the solutions from each region

match at the interface. The normal component of the displacement is continuous

across the interface, thus ε1E1z = ε2E2z. Also the parallel component of the electric

field is also continuous at the interface E1x = E2x. We know that the wave propagate

along x , thus kx is real. Since the wave is evanescent along z then kiz is imaginary

(see figure 1.4). With all this considerations, we obtain the dispersion relation for

SPPs:

kx =
ω

c
(
ε1ε2
ε1 + ε2

)1/2 (1.13)

kjz =
ω

c
(

ε2j
ε1 + ε2

)1/2, j = 1, 2 (1.14)

From this dispersion relation we deduce that the condition in which kx is real

and kjz is imaginary can only be satisfied if ε1ε2 < 0 and ε1 + ε2 < 0. If we assume

an interface with ε1 = 1 and a metal described by Drude model with no damping,

ε2 = 1− ω2
p/ω

2, the dispersion relation along the interface becomes:

kx =
ω

c
(
ω2

2
− ω2

sp

ω2 − ω2
sp

)1/2 (1.15)

where ωsp = ωp/
√

2 is the surface plasmon frequency. Figure 1.5 shows the light

line and the dispersion relation for a Drude metal which lie to the right demonstrating

the bound nature of the SPPs. The light line does not cross the SPPs dispersion

relation at any point. For this reason, is not possible to directly excite SPPs with

plane waves and a medium is needed to compensate for the momentum mismatch, to

change ω = ckx to ω = ckx/n.
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Figure 1.5: The light line on vacuum (green) and on a prism (blue), as well as
the dispersion relation for the SPPs at a metal-air (black) is shown, with surface
plasmon frequency ωsp indicated. The inset shows the Kretschmann configuration
that provides enough momentum to excite SPPs with optical excitation

The dispersion relation displays the properties of the SPPs. We can see that for

small wave vectors corresponding to low frequencies (energies) the SPPs are close to

the light line. Therefore the plasmon waves are delocalized and extend over many

wavelengths into the dielectric space [42]. On the contrary, when the wave vectors are

large, the SPPs approach the characteristic surface plasmon frequency. For a Drude

metal without damping, the wave vector approaches infinity as the SPP frequency

reaches ωsp, and the group velocity goes to zero. In this limit, the SPPs takes an

electrostatic character which is known as the surface plasmon. The dispersion relation

also explains why it is possible to use a prism to excite SPPs in a metallic film in

the Kretschmann configuration [37]. In that configuration, the metal prism interface
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creates an evanescent field with enough momentum to excite SPPs at the metal-air

interface, as shown in in figure 1.5.

In real metals, damping is not negligible, and losses and energy dissipation occur

[43]. These losses are related to the imaginary part of the dielectric function as

shown in equation 1.7. In the traveling SPPs, damping creates an attenuation of

the wave constraining the distance traveled by the SPPs. The intensity of the wave

decreases as e−2Im[kx]x. Thus the characteristic propagation length (LSPP ) depends

on the imaginary part of the wave vector as follows:

LSPP =
1

2Im[kx]
(1.16)

Losses also affect the penetration of the evanescent wave in the z direction, im-

posing a limit on the distance the wave can penetrate. This limit is known as skin

depth. Considering that the SPPs fields along z fall off as e−|kjz ||z|. Thus the skin

depth is defined as:

δj =
1

kjz
(1.17)

Using the theoretical description above, we estimate values of propagation length

LSPP in the visible range for silver which goes from approximately 10 µm to 200 µm.

Similarly, the total skin depth in the dielectric δair ranges between 150 nm and 800

nm, while the skin depth inside silver δsilver does not vary much with an average value

of 20 nm at visible frequencies.
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1.2.4 Localized Surface Plasmons

As we discussed previously, metal surfaces can support propagating plasmon modes

that are strongly localized at the surface. When the surface folds up into a discrete

structure, the field is quantized into discrete modes. Therefore, the structures instead

of propagating waves they form standing waves defined by the geometry of the particle

or finite structure. When an electromagnetic wave interacts with a discrete structure,

which is smaller than the wavelength of the wave, the electron gas is polarized which

creates a restoring force in the structure. This force produces an oscillation of the

electron density in the structure. Thus a resonance, which can be excited directly by

light, with discrete plasmon modes can arise. These plasmon resonances are called

localized surface plasmons. The frequency of the plasmon resonant modes will depend

on the geometry of the particle. i.e. the lowest order mode of a spherical particle is

illustrated in figure 1.6(a). This mode that shows positive charge accumulation on

one side and negative charge accumulation on the opposite side of the particle is the

lowest energy mode known as the dipolar mode.

Structures with different shapes will support different modes. For example, a

nanorod that is elongated in one direction will support longitudinal modes when an

external field is polarized along the long axis of the rod and will support transverse

modes when is polarized along the short dimension, as shown in figure 1.6(b). The

localized surface plasmons modes occur at discrete frequencies, but they are strongly

broadened by the damping in the metal. If damping is significant the plasmon dissi-

pates relatively quickly and the resonances become broad. As we saw before, damping

is related to the scattering of electrons that disturbs the coherence of the plasmon

oscillation. The time from the scattering event until the moment in which coherence
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Eex Eex

Eex(a) (b)

Figure 1.6: (a) Diagram of the dipolar mode of a spherical particle excited by an
external field represented by the arrow. (b) Diagram of the lowest order longitudinal
(right) and transverse (left) modes of a nanorod (b)

is destroyed is called dephasing time Td. The dephasing time includes all the differ-

ent channels in which a plasmon could decay. i.e. radiative decay and non-radiative

decay processes that result in hot electrons and holes [43]. The dephasing time of

a localized surface plasmon oscillation can be determined from the full width of the

spectral resonance of a plasmon Γ, as follows:

Td =
2h̄

Γ
(1.18)

In a finite plasmonic structure, due to the confinement of the plasmon oscillation,

multipolar modes can be supported when the structure is larger than the surface

plasmon wavelength and also much larger than the skin depth. However, if the

structure is smaller than the skin depth, the oscillations are in phase with the external
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electric field. In this case, the structure can be approximated to a dipole, and higher

order modes are absent. Therefore the far field response of the particle can be modeled

by an effective dipole moment. However, the near field response of the particle will

vary locally and will strongly depend on the geometry of the particle.

1.2.5 Plasmons in a metallic sphere

The metallic sphere is the simplest structure that can be studied when analyzing

finite plasmonic structures. Even though this is the most simple structure, to ob-

tain a relatively simple analytical solution of the optical response of the sphere some

approximations have to be made. The initial approximation is that the sphere di-

ameter is much smaller than the wavelength of the field that is exciting the plasmon

response, allowing retardation effects to be ignored. This approximation is known as

the “quasistatic” approximation because it permits a plane wave to be described as

a constant field (E = E0). Therefore, the external electric potential in polar coordi-

nates is Φ = −E0r cos(θ). Then, it is possible to arrive at a general solution of the

form [42]:

Φin(r, θ) =
∞∑
l=1

Alr
lPl(cos(θ)) (1.19)

Φout(r, θ) =
∞∑
l=1

[Blr
l + Clr

−(l+1)]Pl(cos(θ)) (1.20)

Where, Bl is determined by the boundary contidions at∞ where Φout = E0r cos(θ),

therefore B1 = −E0 and Bl = 0 for l 6= 1 indicating that for a very small particle

higher order modes cannot exist in the quasiestatic limit [39], as we mentioned before.

Al and Cl are determined from the boundary conditions at the surface of the sphere,
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as was the case in the metallic interface. Thus at r = R, the tangential components

of the electric field inside and outside are equal, and the normal components of the

displacement are also same. With this conditions and with the dielectric function of

the metal particle εin and the dielectric function of the surrounding medium εout we

have that the potentials become:

Φin = − 3εin
εin + 2εout

E0r cos(θ) (1.21)

Φout = −E0r cos(θ) +
εout − εin
εin + 2εout

E0R
3 cos(θ)

r2
(1.22)

The potential outside the sphere Θout shows two components one which is the

external field (Φ = −E0r cos(θ)) and the other which has the form of an electric

dipole proportional to the external field α ~E0·~r
4πr3

, because Φdipole = ~p·~r
4πε0εinr3

and ~p =

αε0εin ~E0 where α is defined as the polarizability. Therefore for a metallic sphere in

the quasistatic limit we have:

α = 4πR3 εout − εin
εin + 2εout

(1.23)

From equation 1.23, we can see that the total value of the polarizability will

depend on the excitation frequency if εin or εout varies with frequency. Also, the

polarizability will reach a maximum value when εin + 2εout is at a minimum for a

particular frequency; this occurs when Re[εin(ω)] = −2εout, indicating that a resonant

mode, called the dipole surface plasmon, is present. The magnitude of the resonance

will depend on the values of Im[εin] and Im[εout], the smaller they are, the stronger

the resonant. In the limit when no damping is present, and both values are zero a
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singularity exists, and a resonant mode can be excited even for minuscule external

fields. For a sphere made of a Drude metal, with a dielectric function as shown in

equation 1.9, without damping and in a vacuum environment (epsilonout = 1), the

polarizability takes the form:

α = 4πR3
−ω2

p

3ω2 − ω2
p

(1.24)

Therefore, for small frequencies ω, the polarizability approaches the static polar-

izability 4πR3. For high frequencies, α tends to zero, and the external field does

not induce a dipole because the electrons in the sphere cannot react fast enough to

the external excitation. At the singularity point, we have the dipole surface plasmon

resonance which occurs at a frequency ωdsp = ωp√
3
.

For our analysis, we have considered that the sphere falls within the quasistatic

approximation, which is limited to particles much smaller than the excitation wave-

length. For bigger particles, even for particles larger than 10% of the wavelength,

the optical response starts to differ from the quasistatic response [39]. The phase of

the external field is no longer constant across the volume of the particle, and higher

order modes can arise. Therefore a different approach that considers retardation is re-

quired. Gustav Mie completed the full electrodynamic solution in 1908 by expanding

the fields using Bessel and Hankel spherical functions [44]. The equations of the fully

retarded solution for the metallic sphere are not easy to understand intuitively, and

their analysis goes beyond the purpose of this chapter. Analytical solutions of the

optical response of only simple structures like the ones described here are of practical

interest. A numerical approach is preferred to model more complex structures, as will

be discussed in Chapter 2.
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1.3 Plasmonic coupling

In the previous section, we have described the surface plasmon on finite metallic

nanostructures. When these finite structures are in proximity, their near-fields in-

teract changing the optical response of the assembly. This phenomenon was studied

using EELS first already in 1982 in the pioneering work of Batson [45] using aluminum

nano-spheres. Intuitively, when a nanoparticle is excited, it will have an electric field

associated with the surface plasmon, as we saw in the previous section. This electric

field is “perceived” by the neighboring nanostructure. Therefore each particle in an

assembly of particles will experience a field which is the sum of the external field plus

the near-field of the other nanostructures, resulting in a coupled optical response.

From this simple picture of the coupling of plasmonic nanostructures, we can already

infer that the coupling is strong when the regions of two or more nanostructures with

high charge density are next to each other. Also, the coupling strength will increase

when the separation between the nanostructures decreases.

For a simple case of two metallic spheres in the quasistatic approximation, we can

assume that each particle will behave as a dipole, as illustrated in Figure 1.7. Because

of the net field on the two spheres, the restoring force in each particle will increase or

decrease depending on the polarization direction of the external field. Therefore, the

interaction of the two metallic spheres will produce a different net dipole and optical

response than an isolated sphere. For a field transversal to the axis between the two

particles, the polarization of the second particle will be out of phase with the plasmon

field of the first one. Therefore, the coupled resonance requires higher energy than

the single-dipole resonance, so the plasmon resonance blue-shifts. For a field parallel

to the axis, the plasmon field of the first particle is in phase with the polarization of
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the second one. The in-phase response of the spheres occurs at energies below the

resonance of the single dipolar mode. Thus the coupled resonance mode will red-shift.

In the coupling of the parallel configuration, the fields across the gap between the

particles can be much greater than the fields in isolated particles. This enhanced field

so-called “hot spot” can strongly interact with anything in the gap, so nanoparticle

dimers are excellent antennas that can couple electromagnetic waves into and out of

localized emitters [39]. This effect is used to enhance Raman scattering by molecules

adsorbed on hot spots in a technique know as Surface-enhanced Raman spectroscopy

(SERS).

(a) (b)

Figure 1.7: Diagram of the coupling of the dipolar modes of two spherical particles
excited by external field transversal to the particle-particle axis (a), and excited by a
field parallel to the particle-particle axis (b).

1.3.1 The Exciton Coupling model

The simplified description of coupling described above has a strikingly similarity to

the spectral changes observed in the dimerization of organic chromophores, which is

explained by the exciton coupling model. In the exciton model after dimerization,

the excited-state levels of the each isolated chromophore split into two levels, one
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lever with higher energy and other with lower energy with respect to the single chro-

mophore excited state. These two possible states correspond to two arrangements of

the transition dipoles of the molecules in the dimer, one with the dipoles in-phase or

symmetric and the other with the dipoles out-of-phase or anti-symmetric [46]. In this

approximation, the Coulombic interaction between the molecular dipoles determines

the energy splitting. The energy of the interaction “Usplitting”, in this model, is given

by [47]:

Usplitting = − κ|µ|2

4πε0r3
(1.25)

where |µ|2 is the module of the transition dipole, r is the distance between dipoles,

and κ is a dipole orientation parameter given by:

κ = 3 cos(θ1) cos(θ2)− cos(θ12) (1.26)

with θ12 the angle between the transition dipoles, θ1 the angle between dipole 1

and the axis connecting the two dipoles, and θ2 the angle between dipole 2 and the

axis of the dipoles. In the limit where the particle size is much smaller than the

wavelength of the incident field, and the interparticle distance r is much smaller than

the particle size, the exciton-coupling model can describe the plasmonic interaction

of metallic particles[46]. Thus, for the coupling of LSPR in nanoparticles, we can

consider the four relative orientations of the dipoles as shown in figure 1.8.

For an external field polarization along the interparticle axis, we have an end-to-

end alignment of the two dipoles. Figure 1.8 shows the angles between the dipoles,

thus κ = 2. This value of κ results on a negative value of the interaction energy
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Usplitting, suggesting that in the end-to-end symmetric configuration of dipoles the in-

teraction is attractive. Hence, the resonant energy of the dimer red-shifts with respect

to the single particle resonance. When the dipoles are aligned anti-symmetrically in

the longitudinal configuration, the angular distribution as shown in figure 1.8 results

in κ = −2 and a positive interaction energy. This indicates that the interaction is

repulsive and the resonance energy is higher that the one of the isolated particle.

However, this mode is optically forbidden because the dipoles have an equal mag-

nitude and opposite orientation, so the net dipole cancels out. This mode is called

a “dark mode” because in the quasistatic limit it cannot be directly excited by free

propagating light, however, can be excited by local probes such as electron beams.

“Dark modes” are not truly dark in larger structures were retardation is not neg-

ligible, however these modes are very difficult to excite with photons under normal

incidence making them even more difficult to detect with optical spectroscopies. Sin-

gle nanostructures can also sustain high order dark modes when the net dipole of the

resonance is zero. For the case where the external field polarization is transversal to

the interparticle axis, and both dipoles are parallel to each other, κ = −1, resulting

in a positive interaction energy. Therefore the interaction is repulsive and the res-

onance energy blue-shifts, however, the magnitude of the shift is half of the energy

of the longitudinal modes. Finally, for the transversal configuration with the dipoles

anti-symmetrically aligned κ = 1, so the resonant energy is lower. This mode is also

a dark mode because the dipoles cancel out the net dipole moment in the dimer.
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Figure 1.8: Schematic of the four possible dipole configurations of the coupling of two
metallic particles and their respective angular orientations (see text)

1.3.2 Plasmon Hybridization

The plasmonic coupling of more complex nanostructures that cannot be approximated

to a dipole and in which higher order modes are not negligible can be described by the

“hybridization” of the plasmons resonances supported by the individual nanostruc-

tures or resonant modes of more simple shapes. This mathematically intensive model

can be used to understand the response of particles with very complex geometries as

well as structures formed by multiple particles.

One of the first described examples was the plasmonic response of a nanoshell,

that can be understood by the plasmon hybridization between surface plasmons sup-

ported by a nanosphere and nano-cavity [2] as shown in figure 1.9(a). The nanoshell

support plasmons with surface charges in their inner and outer surfaces that can be

modeled as charges on a cavity and a sphere respectively. These charges can interact

due to the finite thickness of the shell, and the strength of the interaction is con-

trolled by the thickness of the shell. The hybridization results in a splitting of the

plasmon resonances into two new resonances: A symmetric bonding plasmon and an

antisymmetric antibonding plasmon. Adapting the formalism of molecular orbital
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theory and using a linear combination of atomic orbitals (LCAO) that in this case

were spherical harmonics to describe the electron density of a sphere and a cavity,

Prodan et. al. demonstrated that interactions of their plasmons resonances give

rise to the hybridized plasmon modes shown in figure 1.9(a). Although quantitively

the hybridization model can be mathematically demanding and depending on the

geometry can require expensive numerical calculations, as is the case of the atomic

hybridization model. The concept of mode splitting into bonding and antibonding

modes can be intuitively used to understand plasmonic coupling.

Another example of plasmon hybridization is the coupling of metallic nanorods

[3]. In this example, the coupling strength depends on the distance between the struc-

tures, the mode order and the distance between the resonance and the neighboring

structures. As in the previous example, the coupling of the plasmons leads to splitting

of modes in two modes, one with higher energy and another with lower energy and,

as seen in figure 1.9(b), the hybridization depends on the relative orientations of the

nanorods. With hybrid modes emerging when the nanorods are aligned either in par-

allel or series. When the nanorods are aligned perpendicular to each other, they do

not couple. Thus they do not form hybrid plasmon modes. The hybridization model

provides an intuitive way of analyzing the plasmonic response of complex nanostruc-

tures as well as the coupling between nanoparticles, making possible to predict the

splitting of resonant modes in ensembles of nanoparticles.

1.3.3 Fano Resonances

In the models discussed above, coupling promotes the formation of new modes with

resonances shifted in energy and nature. In the examples we showed, we have the
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(a) (b)

Figure 1.9: Energy-level diagram describing the plasmon hybridization in a metallic
nanoshell resulting from the interaction between an sphere and cavity plasmons (a).
The two nanoshell plasmons are an antisymmetrically coupled (antibonding) ω+ plas-
mon mode and a symmetrically coupled (bonding) ω− plasmon mode. Diagram of the
plasmon hybridization arising from the interaction of two nanorods (b). Top Panel:
the relative geometry of two nanorods showing the direction their dipole moments. θ1

and θ2 are the angles formed by the nanorods with the horizontal line. Bottom panel:
the hybridization diagram for the nanorods showing the relative shift in energies for
different orientations. The solid curve is for nanorod 2 horizontal (θ2 = 0) and the
dashed curve is for nanorod 2 vertical (θ2 = π/2). Adapted from [2] and [3].
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coupling of equivalent modes, i.e. dipole-dipole coupling, where the modes have sim-

ilar decay rates. However, when multiple resonant modes of a metallic nanostructure

system are excited simultaneously, interference between resonant modes with very

different decay rates can occur leading to a spectral response that differs from the

usual mode splitting. Specifically, if a narrow dark mode interferes with a broad

bright mode, the spectral response can take and asymmetric shape known as a Fano

resonance [48]. This definition is an adaptation of the original definition of Fano

resonance which is the interference between a continuum state and a discrete state

that resonantes in the same energy range of the continuum state.

An example of resonance interference in a plasmonic system is the case of a sym-

metric nanodisk clusters or plasmonic oligomers. Figure 1.10 shows the experimental

extinction as well as the numerical results of the gold oligomers of various configu-

rations, shown in the SEM images in the central panel. The spectrum of a single

gold disk (monomer) in the last row of the figure shows the dipolar mode. When we

put together a group of seven monomers (forming an heptamer), as shown in Figure

1.10, they couple. The coupling strength depends on the interparticle gap distance.

For a 130 nm gap, the coupling is weak, and only one peak is observed. However,

as gap decreases, a “dip” appears, which becomes more pronounced as the gap is

further reduced. This dip is characteristic of a Fano interference. The coupling of the

dipolar modes of the disks in this structure forms a bonding mode that consists of

all the individual modes oscillating in-phase. This in-phase oscillation also produces

an enhanced broad radiation making the bonding mode super-radiant [4]. As we saw

above, coupling also creates an antibonding mode in the heptamer. In this antibond-

ing mode, the dipolar mode of the central disk oscillates out of phase with the dipolar
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plasmons of the neighboring disks. The out of phase oscillation considerably reduces

the net dipole moment of the antibonding mode inhibiting radiation resulting in a

subradiant plasmon mode [4]. The interference of the broad super-radiant bonding

mode and the narrow subradiant antibonding mode induces the sharp Fano resonance

shown in Figure 1.10. As in the case of the heptamer, other structures can support

Fano resonances [49]. Structures in which coupling produces a broad super-radiant

mode and a narrow subradian mode in an energy range where the two plasmon modes

can interfere will support Fano resonances.
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Figure 1.10: Experimental and simulated extinction spectra of a gold disk or
monomer, a hexamer, and heptamers with different interparticle gap distances. The
middle column shows SEM images indicating the gap separation. As the gap separa-
tion decreases in the heptamers, we observe the formation of a Fano resonance due
to the coupling of a super-radiant mode and a subradiant mode (see text). Adapted
from [4].
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Chapter 2

Modelling, Fabrication, and

Characterization of Plasmonic

Nanostructures

In this chapter, we describe the methodology we followed for the study of the plasmon

resonances in planar structures starting by the modelling of the finite structures we

used in our study. A brief description of the software use and the theory behind it is

given. The structures used in this work were fabricated following a top-down approach

know as electron beam lithography. The details and parameters of the fabrication

procedure of the silver planar strucutres are also described in this chapter. The

characterization of the plasmonic structures, in this work, was done by STEM-EELS.

Here we provide a general description of STEM and EELS, followed by a description

of the excitation of surface plasmons by fast electrons, the physical interpretation of

the EELS signal, and a comparison with optical spectroscopy. Finally, the chapter

closes with a summary of the relevant literature on the characterization of surface
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plasmons by EELS.

2.1 Modelling of surface plasmons

In this work, some of the experiments are complemented by numerical modeling

performed using the Metallic Nanoparticle Boundary Element Method (MNPBEM)

Matlab toolbox. This software package simulates finite metallic nanostructures, using

the boundary element method (BEM) developed by Trugler et. al. [50, 51]. This

toolbox solves Maxwell’s equations for particles with homogeneous and isotropic di-

electric functions in a dielectric environment. The package works best for metallic

nanoparticles with sizes in the range of a few to few hundreds of nanometers, and for

energies in the optical and near-infrared regime.

In the BEM the nanoparticles are described by frequency dependent dielectric

functions separated by abrupt boundaries, and the fields in each region are described

in terms of interface sources that are calculated by imposing the continuity of the

potential and the electric displacement as boundary conditions [52]. The advantage of

this method is that requires less computational effort since it only involves calculations

at the boundaries and not of the whole volume. This method can be used to solve

fully retarded and non-retarded (quasistatic approximation) Maxwell’s equations that

describe surface plasmons excited by plane waves, dipoles or electron beams of any

arbitrary finite shape that can be discretized in a three-dimensional mesh as shown

in figure 2.1. Some of the limitations of MNPBEM are that it was not designed to

model large structures, it requires large amounts of memory to run optimally, and

the commands to build a 3D model are limited making the construction of complex

structures difficult. In this thesis, I model silver structures using tabulated dielectric
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functions, and unless otherwise stated the structures are not supported and instead

effective dielectric functions were used. Some simulations presented in this thesis are

performed by collaborators that did not use MNPBEM. The methods and details of

theses simulation are described in the corresponding chapters.

Figure 2.1: Discretized particle boundaries created on the MNPBEM toolbox.

2.2 Electron beam lithography

The growth of the field of plasmonics was sparked in part by the ability to fabricate

nanostructures. Two main types of fabrication methods exist, top-down that in gen-

eral involves depositing or removing material to form a pattern; and bottom-up that

involves chemical synthesis. The early works on EELS mapping of plasmonic struc-

tures relied almost exclusively on structures fabricated by a bottom-up approach.

However, the level of complexity of the structures, and the degree of morphology and

arrangement control that can be synthesized by this approach is limited compared

with top-down methods. Lithography, as well as other top-down methods, is ver-

satile in the sense that you can fabricate different structures without changing the

experimental procedure as is the case of top-down methods. For these reasons in this

work, I fabricate the structures studied in this thesis exclusively by electron beam
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lithography a well known top-down method.

The samples are fabricated on silicon nitride TEM grids. We have to use thin mem-

branes as the substrate for our nanostructures because the sample must be electron

transparent to be analyzed using STEM-EELS. For the 80keV accelerating voltage

of our experiments and electron transparent sample is a several tens of nanometers

depending on the material. The fabrication process starts by cleaning the silicon

nitride grids. First, we gently rinse the grid with acetone and with isopropyl alcohol.

We dry the grid with a N2 gun and secure it on a stub. Then, we plasma clean

the grid for 2 minutes. After the cleaning we proceed to deposit the resist, which

in our cases is polymethyl methacrylate (PMMA) 950 000 molecular weight at 3 %

anisole, on a 3 mm diameter and 30-50 nm thick silicon nitride TEM grid (Norcada)

by spin coating at 4000-6000 rpm for 90 seconds. The TEM grid is supported on a

transparent Gel-PackTM film on a glass cover slip [53]. This arrangement prevents

the rupture of the silicon membrane by the vacuum suction of the spin coater. After

the thin film is formed, the sample then is baked at 175 ◦C for 5 minutes.

The samples are patterned using energetic electrons on a JEOL JSM-7000F SEM

equipped with Nano Pattern Generation System (NPGS). Scanning coils in the SEM

allow the point by point exposure of the resist, by scanning a focused electron beam

across the sample. Together with the scanning coils, the high-speed beam blanker

allows full 2D control of the beam allowing the patterning of any 2D shape into the

resist. The patterning is performed with a 30-40 pA beam current at the highest

allowed electron beam energy in our system (30 keV) to reduce undesired scattering

events and increase resolution. The beam dosage is adjusted according to the type of

pattern we want to write. NPGS allows you to choose between point, line, and area
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dosage. It is recommended to run a test sample such as the one shown in figure 2.2

to obtain optimum writing dosages for the three types of dosages. As a practical rule

for line dosages, it is recomended to use values between 0.5 and 5 µC/cm, and for

area dosages values between 240 and 600 µC/cm2, and trying to keep the dosage low

when writing structures with gaps.

Figure 2.2: Example of a test pattern to obtain optimal dosages for a particular EBL
system. The pattern has points, single lines, group of lines, polygons, polygon dimers
with small gaps, and fractal structures to test all possible types of 2D patterns.

After exposure, the high-energy electrons have broken the long polymer chains of
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PMMA into short fragments which are removed by soaking the sample in a 3:1 iso-

propyl alcohol : methyl isobutyl ketone developer solution for 70 seconds. The sample

is the rinsed in isopropyl alcohol and dried with N2 steam. After developing, 30 to

50 nm Ag film is deposited on the samples in an electron beam evaporator system,

with a 6 keV and 250 µA electron source. After the Ag film is deposited all over the

surface of the sample, we remove the excess metal by lift-off. The sample is soaked

under agitation in acetone, which dissolves the resist and the metal that was on top

of the resist is removed, leaving behind the desired metal pattern on the substrate.

Finally, after the excess metal is removed we rinse the sample in isopropyl alcohol

and blow dry with the N2 gun. Figure 2.3 shows a scheme of the fabrication procedure.

Figure 2.3: Diagram of the procedure for electron beam lithography of silver struc-
tures in silicon nitride membrane
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2.3 Scanning Transmission Electron Microscopy

Our study of the SP resonances is performed in an STEM-TEM (FEI Titan 80-300)

equipped with an electron monochromator and operated in STEM mode. A schematic

of a generic TEM is shown in figure 2.4. The electrons are extracted from the emitter

in the gun, which in our case is a field emission operating in the Schottky mode, by

the anode which is held at a potential between 1.8 and 5.5 keV. The emitter is a

single crystal tungsten, covered with a thin layer of zirconia. The zirconia lowers the

work function of the emitter when the emitter is heated to approximately 1800 K [5].

Two main characteristics of an electron gun to consider are the brightness and the

energy spread. Brightness is a measure of the current density per unit of solid angle

normalized to the acceleration voltage. For an S-FEG the brightness is in the order

of 0.5 to 2.0 107 [A/m2 Sr V], and for an X-FEG is typically around 0.7 to 1.5 108

[A/m2 sr V] [5]. The energy spread determines the energy resolution in EELS (see

below) and can limit spatial resolution in the STEM. The electrons exit the gun with

an energy spread in the range of 0.5 to 0.8 eV. To improve this energy spread the

microscope is equipped with a monochromator, which is positioned right below the

gun. The monochromator is a Wien filter which disperses the electrons by energy

into a line, part of the line is selected using a slit, which allows electrons with a much

narrower energy spread to pass. Under optimal conditions, the monochromator can

reduce the spread below 100 meV. In this work, the monochromator was operated

under accelerating conditions with a potential of 800 V. After the monochromator,

the electrons are accelerated to 80 keV in most of our experiments, unless otherwise

indicated.

After the accelerator, the electrons go through a series of electromagnetic lenses.
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The lenses create strong magnetic fields in the path of the electrons that forces the

electrons to stay in the optic axis inducing a focusing effect. The main purpose of

the lenses in STEM mode is to form a very small probe on the sample. Two sets

of lenses are used to form the beam: the condenser lenses, and the objective lenses.

The condenser lenses (C) that are in principle used to converge the electrons from the

source to the objective lenses. A condenser aperture is inserted between condenser

lenses to define the convergence angle which is the angular size of the beam. The

objective lenses (Obj) play a critical role in the quality of the probe and size of

the probe in the STEM, and under optimal conditions, the lenses can form a sub-

nanometer electron beam. The objective lenses are typically symmetrical, with two

pole pieces separated by a small gap, which can be as small as 1 mm and can support

magnetic fields higher than 1 T [8].

In the STEM the focused beam is deflected by scanning coils in a raster fash-

ion over a two-dimensional region of interest in the sample. After the beam has

interacted with the sample, a set of projector lenses allow us to manipulate the trans-

mitted beam that reaches the detectors. In our experiments two signals are acquired

simultaneously: The high angle scattered electrons in a high angle annular dark field

(HAADF) detector, which is sensitive to the atomic number of the scattering atoms,

and provides morphological information of the sample; and the low angle scattered

electrons that are collected in the electron energy loss spectrometer. The two signals

are collected at each pixel position in the scan, forming an HAADF image and EELS

spectrum image, as shown in figure 2.5. The spectrum image is a 3D data array,

in which two axes correspond to the spatial position of the beam and the third axis

correspond to the energy loss spectrum. A slice of this 3D data set at a particular
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Figure 2.4: Schematic of a monochromated STEM [Adapted from [5]]
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energy of interest can be extracted forming energy filtered maps. Also spatially re-

solved spectra can be extracted by selecting a column of the data set at the pixel of

interest, see figure 2.5.

Figure 2.5: Diagram of STEM-EELS showing the HAADF and EELS simultaneous
acquisition. The 3D spectrum image can be divided into energy filtered maps and
spatially resolve spectra.

2.4 Electron Energy Loss Spectroscopy

Electron energy loss spectroscopy (EELS) is a technique that measures the energy

that an electron, in an incident beam of electrons, has lost due to the interaction with

a sample. This interaction causes various inelastic processes in the sample. These

processes can be divided in two by the amount of energy lost in the interaction. In

the region called core loss, the electrons from the beam interact with electrons in the

core energy levels. The EELS signals acquired in these excitations, known as core
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edges, are generally in the region above 50 eV and are related to the binding energy

of the excited electrons in an atom. The edges are labeled according to the atomic

energy shell from which the excited electron emerged. Signals from this region are

used routinely to identify elements in a sample. What is more, the chemical state and

bonding environment of the atoms in a compound is also identifiable by the analysis of

fine modulations, known as energy loss near-edge structure (ELNES). In the valence

or low-loss region, electrons have interacted with the weakly bound electrons in the

outer energy levels, usually with energies below 100 eV. In this energy region, the

energy loss reflects the dielectric response of the material, and information about

intraband transitions, interband transitions, plasmons, band gaps, excitons, and the

specimen thickness can be drawn. Also, it is in this region that excitation of SPs

occur and can be studied. Therefore this work is entirely focused on this region.

Figure 2.6 shows the three types of signals that can be collected by the spectrom-

eter in an EELS experiment: The core loss region, the valence loss or low loss region,

and the zero loss region. The zero loss region, as its name indicates, constitutes all the

electrons that have not interacted inelastically with the sample. In an ideal case, the

zero loss signal will be a delta-function. However, in reality, the zero loss signal has a

width and forms a peak called the zero loss peak (ZLP). The width of this ZLP is a

good measure of the energy broadening (intrinsic and instrumental), for this reason,

it is used to determine the spectral resolution of an EELS experiment. The long en-

ergy tails of the ZLP overlaps with the low-loss region. Considering that the low-loss

signal can be significantly smaller than the tails of the ZLP, the SP spectral can be

difficult to retrieve, and techniques such as ZLP subtraction and deconvolutions are

used.
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Figure 2.6: EELS spectrum showing the zero-loss, valence loss, and core loss regions
(from [6]).

After the electron beam interacts with the sample, the low angle scattered elec-

trons are collected in a post-column prism spectrometer. The range of angles collected

by the spectrometer or collection angle is controlled by the EELS entrance aperture

and the camera length. The projector lenses adjust the camera length. Figure 2.7

shows a diagram of the components of a prism spectrometer, which two primary func-

tions are to disperse the beam into components of different energies and to detect or

image the dispersed electrons. At the entrance of the spectrometer, a series of cor-

rection coils compensate for aberrations in the beam before the electrons reach the

electron prism. In the electron prism, the electrons are dispersed according to their

energies. Then, the dispersed beam is magnified and focused by a series of multipole

lenses to form a spectrum in the dispersion plane located at the scintillator. If the
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lenses of the spectrometer are misaligned the signal from one particular energy might

spread over multiple CCD pixels, and the energy resolution might degrade consid-

erably, for this reason, careful tuning of the spectrometer lenses is required. In the

scintillator, the electrons forming the spectrum are converted into photons. Then the

photons travel in an optical fiber to finally arrive at the CCD camera where the signal

is read.

Figure 2.7: Diagram of a post-column prism spectrometer (from [7]).

2.5 EELS of Surface Plasmons

SPs in an electron microscope are excited by the electrons traveling at very high

speeds. To describe an electron in the beam, we can assume that the electron is a

point charge that follows a straight-line trajectory with constant velocity v. Thus
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the charge density of the electron would be ρe(r̂, t) = −qδ(r̂ − v̂t). These electrons

have an electromagnetic field associated that can be described as evanescent radiation

because its intensity decays exponentially away from the electron trajectory. Also,

the electrons can also be considered a source of super-continuum light because due

to their δ function charge density, they can excite in all frequency ranges, and it

has a momentum that can lie outside of the light cone [52]. This is an important

fact because it means we can excite surface plasmons directly without the need of a

momentum matching element. Because of the local nature of the electron beam, the

electric field associated with the electron can polarize a nanostructure locally exciting

a resonant mode. Due to this locality it is possible to excite non-dipolar modes and

dark modes in finite structures.

When the swift electron interacts with a structure the energy loss experienced by

the electron moving with constant velocity v̂ is related to the force applied by the

induced electric field ( ˆEind) acting back on the traveling electron [54].

∆E = q

∫
v̂ · ˆEind[re, t] dt =

∫ ∞
0

h̄ωΓEELS(ω) dω (2.1)

where re is the position of the electron travelling down the column along z, and

ΓEELS is the energy loss probability is given by:

ΓEELS(ω) =
q

πh̄ω

∫
<(e−iωtv̂ · ˆEind[re, ω]) dt (2.2)

From both equations, we can see that the problem is reduced to calculate the

electric field induced by the traveling electron. Several approaches have been taken

to obtain this electric field for many geometries, from a single isolated sphere, as we
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discussed in the previous chapter, to complex structures, using analytical expressions

as well as numerical methods. It is important to point out, from equation 2.1, that an

energy loss probability occurs when the electron trajectory is parallel to the induced

electric field lines. This does not mean that EELS will not be able to measure modes

with a dipole oriented perpendicular to the beam trajectory. It means that, while the

net dipole orientation might lie in a plane perpendicular to the beam direction, this is

not necessarily true for the lines in the induced electric field. Thus, an energy loss can

occur as long as there are induced field lines parallel to the electron beam trajectory.

Which implies that all modes can be measured, not only the dipolar modes as is the

case in the far field optical experiments. This is because the electric field induced by

the incoming electron is local in nature, in contrast with plane wave excitation.

Figure 2.8: Top panel: Example of the square of the z component of the electric
eigenfield taken 6 nm away from a 50 nm length and 10 nm diameter nanorod. Bottom
panel: EELS maps for electron trajectories parallel to the z axis (accelerating voltage
200 keV). For each quantity, the intensity scale is the same. Adapted from [8]

Figure 2.8 as well as equation 2.2 show the link between the EELS probability

and the induced field in the sample. This helps us understand the relationship be-

tween the spectral maps we obtain in this work and what is physically happening

in the sample. However there is another description that is useful to explore, this is
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the electromagnetic local density of states (EMLDOS). This quantity represents the

density of optical modes for a given energy at a given point in space. EMLDOS indi-

cates the positions in the sample where electromagnetic energy is concentrated, and

there is a high probability of exciting a mode. Calculating the EMLDOS can be as

complex as calculating the induced electric field. But for simplicity let’s assume that

the modes can be defined by an eigen-field Ei(r̂) in the quasistatic approximation,

and we project the EMLDOS along an arbitrary axis z, then we have [8]:

ρz(ω) =
1

2π2ω

∑
i

=[fi(ω)]|Ez
i (r̂)|2 (2.3)

where fi(ω) = Λi+1
Λi−Λ(ω)

, with Λ(ω) = 1+ε(ω)
1−ε(ω)

, and Λi = Λ(ωi).

From the equation we can recognize two main components, fi(ω) which has the

spectral component and |Ei(r̂)|2 has the spatial component associated with the local

field strength. If we apply the same approximations to calculate the EELS probability

assuming the electrons are moving in a straight direction along the z axis, we have

[8, 55]:

ΓEELS(ω) =
q2

πh̄ω2

∑
i

=[fi(ω)]|Ez
i (r̂)|2 (2.4)

We can see that the ΓEELS(ω) ∝ ρz(ω), and as an example, figure 2.8 shows EELS

probability and the square of the z-component of the electric field for the first three

modes of a nanorod. The EELS and electric field variations have the same nodes

and antinodes positions; however, their total amplitudes are not comparable. For the

case of solutions of fully retarded cases, the link between EELS probability and the

z component of the EMLDOS is still valid, as was shown by Kociak for a silver disk
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[9](figure 2.9), and there is a qualitative agreement between the two quantities.
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Figure 2.9: Relation between EELS and LDOS in planar geometries. (a)Diagram of
an Ag disk of height 10 nm and radius 30 nm, where the electrons move along z,
perpendicular to the disk. The EELS probability for 200-keV (c) and 100-keV (d)
electrons mimics closely the LDOS (c) projected along the z axis in a plane 10 nm
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In EELS experiments all the energy absorbed or scattered by the sample is pro-

vided exclusively by the incoming electron. Therefore, intuitively, the energy loss

spectra should correspond to the extinction of the field the electron carries. We

can use the modal description under the quasistatic approximation, described above,

to compare EELS measurements with optical spectroscopy. In this formalism, the

extinction cross sections takes the form [55]:

σext(ω) =
∑
i

Aext,iω=[fi(ω)] (2.5)

with Aext,i are frequency independent prefactors. Comparing equation 2.5 and

2.4, we can see that for a given mode i the spectral components of EELS and optical
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extinction are proportional to =[fi(ω)]. This direct proportionality obtained from

the approximation suggest that is possible to compare EELS and extinction spectra

qualitatively.

2.6 Imaging of Surface plasmons by EELS in the

literature

Although EELS and electron spectroscopies in general played a very important role

in the study of plasmons, as we saw in the previous chapter, the interest in the field

declined considerably during the 90’s and early 2000’s. In 2001 the work of Yamamoto

et. al. demonstrated that it was posible to excite and image optical excitations with

fast electrons at nanoscale using cathodoluminesce [20]. However, It is not until 2007

that the EELS scientific community regains interest in the field thanks to the work

of Nelayah et. at. and Bosman et. al. [10, 56]. Nelayah was able to map surface

plasmon modes in triangular silver nanoprims, as shown in figure 2.10, using EELS in

a STEM, and the ability to image localized surface plasmons with an unprecedented

resolution was demonstrated. In 2008 Garcia de Abajo et. al. found and mapped dark

modes of elongated particles that cannot be excited by optical techniques, providing

further insight into the potential of EELS as a technique to study surface plasmons

[21].

Since then, several structures have been investigated including particles[15, 57, 58],

cubes [59, 60, 61, 62], disks [63, 64], wires[12, 11, 16, 65, 66], including more complex

structures [53, 67, 68, 69, 70, 71, 72, 73, 74]. Botton’s group has been actively involved

in the advancement of this area of research. Silver nanorod antennas were studied, and

the presence of multiple Fabry-Perot-like resonances was confirmed, as shown in figure
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Figure 2.10: Top left panel: A series of STEM EEL spectra acquired along an axis
(A to B) of the nanoprism illustrated in the inset. Dotted lines mark the energy of
the three main resonances. Top right and bottom panel: Energy filtered maps of the
resonant modes. The contour of the particle is shown as a white line. Adapted from
[10]
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2.11 [12]. The formation of plasmon resonances that remain unaffected, despite the

presence of sharp kinks and corners in bent nanowires, was also demonstrated (Fig.

2.11)[11]. Finally, the Babinet’s principle was also studied in a nano-slot fabricated by

FIB in a silver film [75]. This work is a continuation of the efforts of Botton’s group

to study and understand the formation of plasmonic resonances in nanostructures.

Figure 2.11: Left panel: HAADF image of a silver nanorod (top) and multiple reso-
nance modes imaged in along the length of the nanorod (bottom). Right panel: energy
filtered maps of bent nanowires that support surface plasmon resonances. Adapted
from [11, 12]

2.6.1 Edge and film modes in planar nanostructures

The mapping of planar nanostructures by EELS showed that SPs resonances were

located at the edges, corners and the center of the particles and a dependence of the

energy and intensity of the modes on their size remained identified [13]. As shown

in figure 2.12 the dependence in the edge length as well as in the aspect ratio of
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Figure 2.12: Energy dependence of the surface plasmons of silver nanoprisms as
function of (a) the edge length (b) and the aspect ratio. Corner mode (red), edge
mode (blue), and center mode (blue) of a prism as shown in figure 2.10 (from [13]).

the structure with a clear blueshift for smaller particles. Studying the resonances

presented at the edges of platelets of different shapes and dimensions, it was shown

that the dispersion of this plasmons follow the same trend despite their different

geometry, indicating that these plasmons might be similar in nature [73]. It was

demonstrated that modes sustained by the edge of a silver thin film with a finite

size in one dimension can sustain plasmon resonances that can be well described in

a one-dimensional standing wave framework [14]. Figure 2.13 shows energy filtered

maps of these edge modes that were used to calculate the dispersion relation of the

edge modes. All these reports demonstrate that quasi-1D modes can describe modes

presented at the edges of continuous planar nanostructures.

Similarly, a spectroscopy study of the central or cavity modes on planar disks

shows that there is a dependence of the energy of the modes and the radius of the
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disks [63]. It was also shown that thin films sustain modes due to the plasmon

coupling between the surfaces caused by the reduced thickness. As in the case of the

edge modes, it would be natural to assume that these film modes will also extend

to the case of finite particles. We have confirmed this assumption by mapping high

order cavity or film modes of nano-squares [76]. Also, Schmidt et. al. used the

geometrical and spectroscopic data of silver nanodisks to calculate the dispersion

relation and showed that it follows the dispersion of an extended film, as shown in

figure 2.13 [14]. These works provide an indication that SPs resonances in planar

structures can be separated and identified as edge modes and cavity modes with 1D

and 2D dimensionality respectively. What is more, it was shown that edge modes

within a single rectangular particle can couple to each other and form bonding and

antibonding modes [77].

2.6.2 Resonances in particle assemblies

A little more than one year after the first demonstration of surface plasmon map-

ping, the first study of coupled particles was published, showing the local behavior

of two elongated particles in proximity [21]. The splitting of modes into bonding and

antibonding in particles dimers was demonstrated spectroscopically [15], as shown in

figure 2.14, confirming the hybridization theory explained in Chapter 1. The coupling

of nanowire dimers was also studied, showing that the mode splitting is also possible

for modes of high order [16], where the probability maxima of the bonding modes are

localized at the gap, while in the antibonding modes are located toward the dimer

ends. These modes couple in such a way that resembles a continuous nanowire as

shown in figure 2.15.

As discussed in the previous chapter, the strength of the coupling depends on
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Figure 2.13: (b) HAADF image of a 30-nm-thick silver film with a 0.95 mm long side
superimposed with EELS maps acquired in the indicated energy ranges. The maps
show standing wave patterns corresponding to edge plasmons. (a) Intensity line
profiles extracted from the edge modes in (b). The experimental data (black lines)
are fit by a sinusoidal describing a standing wave (red lines). (c) Dispersion relation
retrieved from resonant plasmon modes of nanodisks 30 nm high with diameters of 100
- 800 nm (red and blue symbols). The red curve is the calculated dispersion relation of
the film mode of a 30-nm-thick silver film on a 15-nm-thick Si3N4 substrate. Adapted
from [14].

the distance of between the nanostructures. The closer the structures the larger the

splitting. When the separation is as small as 5 nm, the plasmon coupling is such that

the particles act as building blocks to form resonances of more complex structures

[78]. In arrangements with such small gaps the arrays behave like a single structure

and the array nature of the structure is lost, which demonstrates the extreme case

of coupling without entering in the quantum mechanical regime. For particles with

separations below 2 nm quantum mechanical effects start to emerge. Bosman et.
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Figure 2.14: Left panel: Hybridization model of a symmetric dimer. Right panel:
EELS data a silver nanoparticle dimer, showing plasmon energies as a function of
electron probe position. Adapted from [15]

al. observed a tunneling charge transfer mode in molecular tunnel junctions made

of two nano-cubes bridged by self-assembled monolayers [62]. For the case of small

particle chains, the number of particles determines the number of possible modes. A

chain containing N particles supports N modes, in addition to the transverse mode,

resembling multipolar nanowire modes [79].

This succinct summary of some of the reports on the characterization of plasmon

resonances by EELS is a small example of the capabilities of EELS as a tool used

for the in-depth analysis of plasmonic structures, materials, and devices. Thanks to

EELS mapping the localization of modes at the edges, and at the center of planar

nanostructures was shown to be more than arbitrary descriptions of the modes and

to be a description of the physical origin of the modes. In Chapter 4, we describe

our contribution towards the understanding of the origins of edge modes and film or

cavity modes. In chapter 6, we go beyond simple structures by discussing the surface

plasmon resonances in planar fractal structures, and we describe how simple edge
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Figure 2.15: (a) Plasmonic field intensity map measured along a nanowire dimer
(red arrow). The wires are separated by a small gap of 8 nm. The schematics on
top represent the electric field distribution along the dimer. (b) Electron energy-loss
spectra measured at the two ends of the dimer (blue and green lines) and a spectrum
measured in the dimer gap (red line). The colored dots in the image inset specify the
measurement positions for each spectra. From [16].

modes give rise to the complex spectral response of a fractal geometry. Also, much has

been learned about plasmonic coupling through EELS, as we described above, from

the confirmation of the splitting and field localization of bonding and antibonding

modes to the analysis of quantum effects in small gaps. However, most of the work

focused on hybridization of dipolar modes or formation of larger plasmonic structures

by strong coupling, while studies of high order edge or cavity modes coupling have
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remained marginal. In Chapter 5, we analyze the coupling of planar nanostructures

focusing on higher order modes through the study of offset nanowire dimers, nano-

square dimers, and metallic strips. In this work, we show that the high spatial

resolution, the ability to excite surface plasmons locally, and the broad range of

energies that can be analyzed, due to improvements in energy resolution shown in

Chapter 3, make EELS a unique tool for nanophotonics.
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Chapter 3

Improving EELS Energy

Resolution

One of the challenges in electron energy loss spectroscopy (EELS) is to improve the

energy resolution without compromising spatial resolution [80]. In modern electron

microscopes, as we described in previous chapters, the energy resolution is improved

by the use of gun monochromators. The monochromator filter and select the electrons

of the source based on their energy and reduce their spread to a range between 70 - 200

meV [81], and with more recent hardware improvements up to 30 meV [82], and very

recently to values around 10 meV [83, 84]. This new efforts are being made with the

aim to obtain high spectral resolution and current for a high spatial resolution given by

the electron optics. A different way to approach the challenge of improving the energy

resolution is by the use of post-acquisition computer algorithms [85, 86]. Fourier-log

and Fourier ratio procedures are available in commercial software (Gatan’s Digital

Micrograph EELS package) and are used to remove plural scattering and sharpen

spectral peaks. However, spectral sharpening is limited with these methods by noise
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amplification [81, 85]. Other numerical approaches are based on the use of Bayesian

methods of deconvolution. These methods treat the spectral noise separately from

the data and have been successfully implemented to reconstruct EELS measurements.

Overwijk et al. [87] and Kuzuo et al. [88] have used the maximum entropy method

to improve the resolution in spectra of carbon K-edge. The same algorithm has also

been used to improve the resolution of the cobalt L23-edge [81], boron K-edge [89],

and aluminum L23 ELNES of alpha-alumina[90].

Another Bayesian method is the iterative Richardson-Lucy (RL) algorithm [91,

92], which has been used extensively in a variety of fields, ranging from optical mi-

croscopy to astronomy [92, 93, 94, 95, 96]. The RL algorithm has also been previously

implemented to increase the resolution of EELS spectra. To the best of our knowledge,

Zuo was the first to apply the algorithm in this field and use it to reconstruct EELS

measurements of nickel L-edges [97]. Gloter et al. also used the RL algorithm to

reconstruct carbon K-edges, iron L23-edges and oxygen K-edges; after deconvolution,

they obtained energy resolutions of 0.2 - 0.3 eV [98]. The use of the RL algorithm

of spectra acquired with a monochromated beam has also been explored by Botton

et al. who tested the efficiency of the deconvolution in silicon L23-edges [99]. Also,

Kimoto et al. used RL deconvolution on monochromated EELS spectra to recon-

struct aluminum L23 ELNES of alpha-alumina [90]. The RL algorithm has also been

successfully implemented in the low loss regime. Egerton et al. used the algorithm

to extract the spectrum of individual components in a bilayer film [86], Aguiar et al.

applied the deconvolution to resolve peaks related to the valence electronic structure

and optical response of silicon [100], and Lazar used it to measure the band gap in

GaN and silicon [99]. The RL deconvolution has also been used to resolve surface
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plasmon resonances (SPR) of pure gold and Au-Ag alloy nanoparticles [101], and to

improve the resolution of SPR measurements in triangular silver nanoparticles [10].

As mentioned in Chapter 1, the study of surface plasmon resonances in metals

has attracted great interest because of their ability to confine electromagnetic energy

down to nano-scale dimensions [102]. The study of plasmon resonances at nano-scale

requires a high spatial resolution and the ability to analyze a wide energy range of

the electromagnetic spectrum with high energy resolution. STEM-EELS, because of

the very high spatial resolution [52], is one of the best techniques for imaging surface

plasmon resonances. It can reach the ultimate spatial resolution, thanks to recent

advances in electron sources and developments in electron optics [103, 104], limited

only by inelastic delocalization [105]. To obtain accurate images of low energy surface

plasmon resonances, the energy resolution is crucial, because even with an energy

resolution of 1 eV is difficult to observe energy losses below 5 eV, due to the high

intensity of the zero loss peak (ZLP) tail compared with low loss signal intensity [81].

In this Chapter, published here [106], we implement and assess the limits of the

Richardson-Lucy algorithm [91, 92], in an in-house MATLAB script as shown in figure

3.16, in an effort to further improve the energy resolution of low loss spectra acquired

with a monochromated electron beam. In particular, we use the RL algorithm to

improve further the resolution of EELS maps of surface plasmon resonances from a

lithographically patterned silver nanowire acquired with a monochromated beam. We

also apply the RL deconvolution to simulated spectra and measure the signal-to-noise

ratio of the deconvolved spectra as a function of the number of iterations to test the

effectiveness of the deconvolution and to obtain optimal deconvolution parameters.

To find an optimal number of iterations, we implement and test two algorithms. The
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Figure 3.16: Screenshot of the RL GUI implemented in MATLAB.

first is a very simple noise control algorithm, and the second is the stopping criterion

suggested by Van Kempen [94].

3.1 The Richardson-Lucy Algorithm

In the spectrometer, the signal from electrons with the same energy should reach

only one channel of the CCD camera. However, in reality, this is not the case because

of optical aberrations in the spectrometer, beam spreading in the detector, and the

finite energy width of the electron source cause cross channeling, in which a point

representing a specific energy is spread over multiple channels forming a blurred point.

We represent this phenomenon with the following equation:

I(i) =
∑
j

P (i/j)O(j), (3.6)
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where P (i/j) represents the point of spread function (PSF) of the spectrometer, O(j)

represents the “expected” spectra and I(i) represents the blurred spectra.

In STEM-EELS we detect electrons by converting the signal from the electrons

into photons, and we read this photon signal on a CCD camera. All these processes

of converting and reading the signal are statistical processes that originate from the

particle nature of electrons and photons. Moreover, before reaching the detector, the

signal has a statistical variation that follows a Poisson distribution. For this reason,

when we record a spectrum, we cannot be sure we measure the expected intensity

due to the presence of Poisson noise in the signal. The Poisson distribution in the

detector can be described by:

P (D(i)/I(i)) =
e−I(i)I(i)D(i)

D(i)!
, (3.7)

where D(i) represents the measured signal and P (D(i)/I(i)) represents the probabil-

ity of measuring D(i) given a signal I(i).

By maximizing the joint likelihood of the Poisson distribution, it is possible to

estimate I(i) given the measured spectra D(I). Through deconvolution, we can calcu-

late the “expected” spectra O(i) given the PSF of the spectrometer, which has to be

normalized. This procedure can be done by applying the Richardson-Lucy algorithm,

which is a Bayesian iterative procedure described by:

Ok+1
(j) = Ok

(j)

∑
i

P (i/j)D(i)∑
l P (i/l)Ok

(l)

, (3.8)

where k is iteration number, P (i/j) is the PSF, and Ok
(l) is the estimation of the

expected spectra or image at k iterations.
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When applying the RL algorithm to EELS measurements, the deconvolution has

two main advantages. The first one is that it considers the Poisson noise in the

original data. The second advantage is that the restored spectrum is robust against

small errors in the PSF. However, the main inconvenience of the algorithm is that it

might introduce artifacts and amplify noise at large number of iterations, especially

for noisy spectra. The solution to prevent the creation of these artifacts is to limit

the number of iterations as also suggested by Gloter et. al. [98]. In this work, we

implement and test two simple algorithms in MATLAB to limit the iterations before

artifacts are created on the reconstructed spectrum.

The first criterion is to monitor the noise at each iteration, in an area where we

expect the spectra should have no peaks, and limit the number of iterations when

the noise in this area reaches a threshold value. In our case, we set a threshold value

which is equal to the original noise of the data set or a multiple of this original noise

level. We define the noise, in a spectrum, as the variance of the signal every five

measurements as follows:

Noise =
1

N

N∑
j

σj, (3.9)

where σj = 1
5

∑5
i (xi+j − µj)2 and µj = 1

5

∑j+4
i=j xi.

As mentioned by Van Kempen et al. [94], the likelihood of an RL estimate in-

creases logarithmically as a function of the number of iterations. Therefore, if we

monitor the change of the reconstructed spectrum with respect to the reconstructed

estimation, we can estimate how close to the maximum likelihood solution we are. As
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a second stopping criterion, we impose a threshold value on the change of the recon-

structed spectrum to limit the number of iterations. The change of the reconstructed

spectrum (δO) is defined as [94]:

δO =

∑
iO(i)k+1 −O(i)k∑

iO(i)k
. (3.10)

3.2 Results and Discussion

When we define the EELS resolution of a system, we use the FWHM of the ZLP.

This has been done historically in the literature and represents the system resolution

[87, 98, 89, 82]. In addition, in an EEL spectrum, the PSF is well described by the

ZLP. Similarly, the deconvolved ZLP is a good estimate of the PSF in the deconvolved

spectra; hence, by analyzing the deconvolved ZLP, we can determine the effective

resolution in the system. In the literature, to assess the resolution of the reconstructed

spectrum when no experimental data obtained with higher energy resolution systems

is available for comparison (as in the case here), the energy resolution of the system

after reconstruction is based on the FWHM of the reconstructed ZLP [87, 89]. For

example, Ishizuka et al. (2003) measured the energy resolution by the FWHM of the

ZLP before and after drift correction, and they considered the energy resolution of

the corrected spectrum as the FWHM of the reconstructed ZLP. Also, Overwijk and

Reefman (2000) stated that the energy resolution is well described by the FWHM

of the deconvoluted ZLP and indicated it as the “effective” energy resolution. We

thus use here the same terminology to define the energy resolution of the deconvolved

spectrum and effective resolution.
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3.2.1 Deconvolution of simulated data

To evaluate the performance of the RL deconvolution, we apply the algorithm to a

blurred spectrum generated from simulated EELS plasmon resonance peaks obtained

at the tip of the nanowire geometry (figure 3.17). The zero loss peak of the simu-

lated spectrum is modeled as a Gaussian function centered at 0 eV with a standard

deviation of 10 meV. This accounts for the ideal case where the width of the ZLP is

equal to dispersion per channel of the EELS spectrometer, and an intensity 100 times

larger than the most intense plasmon peak. To generate the blurred spectrum, we

need to include noise and effects of the PSF on the spectrum (figure 3.18a). First,

we include the PSF by convolution of the ideal spectrum with the PSF, which in our

artificial spectrum is a ZLP extracted by the reflected tail method from the experi-

mental spectrum image. The noise considered in the artificial spectrum is a Poisson

additive noise with a measured standard deviation of the fluctuations in the signal of

9.5 x 10-5. The resolution of the artificially blurred spectrum is 70 meV as measured

by the FWHM of the ZLP.

Figure 3.17: Nanowire showing the mesh used it for the simulation. The black dot
indicates the position where the simulated spectrum is obtained.

Using the same PSF we used to generate the artificial spectrum, we perform the

RL deconvolution on the spectrum after 50, 125 and 1000 iterations as shown in figure

3.18a. The ZLP after deconvolution is very close to the simulated data even after only

50 iterations and there is not much difference as the number of iteration increases.

After 50 iterations we can see that the reconstructed spectrum matches very well with
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the ideal spectrum for peaks below 1.6 eV. Between 1.6 eV and 2.9 eV, the peaks can

be clearly identified. However, some artifacts that might be confused with shoulders

and small peaks are also identifiable. For energies above 2.9 eV, the peaks cannot

be clearly identified and fall within the noise level, and the deconvolution induces

significant artifacts, including changes in peak positions and splitting of peaks. After

125 iterations, there is not much change for peaks below 1.6 eV compared with peaks

after 50 iterations. However, for peaks above 1.6 eV the amplitude of the small

artifacts increases. After 1000 iterations the amplitude of the artifacts at energies

above 1.6 eV is comparable with the peaks, and we cannot clearly distinguish between

signal and artifact. As we can see from figure 3.18a, the RL deconvolution is very

sensitive to noise, and it is prone to noise amplification and the creation of artifacts

that can be confused with real peaks at large number of iterations.

As suggested in the literature [94, 98], a method to reduce the sensitivity to noise

is through suppression of parts of the signal where the noise contribution is larger

than the signal contribution. These noisy parts of the signal can be suppressed by

convolution of the spectrum with a Gaussian function. In our case, we filter our data

using a 0.02 eV wide Gaussian function centered at 0 eV, which corresponds to a

width of two energy channels. We convolve the artificial spectrum and the PSF with

the Gaussian function to suppress the noisy part of the data.

Figure 3.18a shows the deconvolution of the filtered data after 90, 125 and 1000

iterations. It can be seen that the formation of artifacts is reduced. For energies below

1.6 eV, the reconstructed spectrum fits reasonably well with almost no artifacts even

after 1000 iterations. For peaks between 1.6 eV and 2.9 eV, the artifacts are only

visible for the reconstruction after 1000 iterations. For energies above 2.9, artifacts are

63



Ph.D. Thesis - Edson Pazur Bellido Sosa McMaster - Mat. Sci. & Eng.

Figure 3.18: Spectra showing simulated data, blurred simulated data, and the decon-
volved spectra after 50, 125 and 1000 iterations, as well as the filtered deconvolved
spectra after 90, 125 and 1000 iterations (a). Signal-to-noise ratio of the zero loss
peak for filtered and unfiltered deconvolution (b). Signal-to-noise ratio of filtered and
unfiltered deconvolution of surface plasmon resonance peaks (c).

induced, but their amplitude is smaller compared with the unfiltered reconstruction.

However, the original signal has also been suppressed, and the only peak that can

be distinguished corresponds to the bulk plasmon of silver at 3.8 eV, which appears

red-shifted in the reconstructed spectrum.

The performance of the RL algorithm can be described with respect to energy loss

peaks in three different regimes: peaks that are almost noiseless and can be clearly

distinguished from noise, peaks that are noisy but can be distinguished from noise,
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and peaks with amplitudes comparable to the noise level. The RL algorithm can

handle the deconvolution of the first two cases readily by increasing the resolution

of the measurement and removing the tail of the ZLP, allowing identification of the

surface plasmon peaks at very low energies. However, in the third regime, where

noise amplification can be confused with real peaks, the user should exercise care

when interpreting reconstructed spectra. In cases where the noise in a spectrum is

small throughout the entire range of measured energies, the deconvolution is expected

to have an optimal performance in an extended energy range. It is also worth pointing

out that the major improvements with the deconvolution appear near the zero loss

as observed in the first peak at 0.19 eV, which initially is only visible as a shoulder

of the zero loss peak and then is very quickly resolved after only 50 iterations.

Visually, the filtered deconvolution gives better results with less amplification of

noise. In order to quantify the efficiency of the filtered and unfiltered deconvolutions,

we calculate the signal-to-noise ratio of the reconstructed spectrum as a function of

the iteration number (k) [98]:

S

N
(k) =

1∑
i |On(i)−O(k)

n (i)|
, (3.11)

where On(i) is the simulated data at energy i normalized by the sum of the simulated

spectrum (On(i) = O(i)∑
iO(i)

), and similarly Ok
n(i) is the reconstructed spectrum after

k iterations at energy i normalized by the sum of the reconstructed spectrum in the

energy range where the signal-to-noise ratio is calculated.

For the analysis of the signal-to-noise ratio of the deconvolved spectrum, we divide

the spectrum into two parts: One is the ZLP (energies below 0.1 eV), and the other

part is formed by the plasmon resonances peaks. We make this distinction because
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the intensity of the ZLP is larger compared with the intensity of the plasmon peaks.

Therefore, the ZLP dominates the values of the signal-to-noise ratio. As seen in figure

3.18b and 3.18c, the signal-to-noise ratio of the two parts of the spectrum is completely

different. In the case of the ZLP (Figure 3.18b), we have two maxima for the unfiltered

deconvolution and only one maximum for the filtered. In the reconstructions, we

observe a small monotonic increase of the signal-to-noise ratio after 1,200 and 700

iterations for the unfiltered and filtered deconvolution, respectively. This increase

in the signal-to-noise ratio of the ZLP indicates that no artifacts are created in this

region as the number of iterations increases. In the plasmon peak region (Figure

3.18c) we have a maximum value of the signal-to-noise ratio which corresponds to the

optimal value of the reconstruction. For the unfiltered deconvolution, the optimal

value occurs at 50 iterations, after this maximum the signal-to-noise decreases rapidly,

which indicates that more iterations will not improve the spectrum. For the filtered

deconvolution the optimal value of iterations is 90, after this value, the signal-to-noise

decreases relatively slowly as a function of the number of iteration. From these results,

we can see that the filtered deconvolution does not perform better than the unfiltered

deconvolution. However, if we do not know the optimal number of iterations, which

is in general the case, the filtered deconvolution is a good alternative because the

signal-to-noise ratio does not decrease significantly if we overestimate the number of

iterations. The lower value of the maximum signal-to-noise ratio of the unfiltered

deconvolution is expected because when we filter the spectrum, we are suppressing

part of the signal that might lie within the noise level, and this lost signal cannot be

recovered by the deconvolution.

We have implemented two criteria to limit the number of iterations and to obtain
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a restored spectrum without artifacts. In the first criterion, we monitor the noise

level in a range of energies where we know there are no peaks and stop the decon-

volution when the noise level is equal to the noise level of the blurred spectrum. We

implemented this stopping criterion for the reconstruction of the artificially blurred

spectrum and monitor noise in three energy ranges. The first energy range is between

-0.4 and -0.2 eV since we measure energy loss of plasmon resonances we should not

have peaks in this range of energies and the only variations in signal value comes

from noise. In this range, the noise stopping criterion failed because the RL decon-

volution does not amplify the noise because no peaks are expected in this range, and

only pure Poisson noise is present, that the algorithm is designed to handle. This

means no artifacts are created as the number of iterations increases, therefore the

deconvolution will continue indefinitely. In the second energy range (between 1.2 and

1.4 eV), the deconvolution stops after 1913 iterations. In this case, the deconvolution

introduces artifacts but only after a large number of iterations, for this reason, the

control algorithm “concludes” that the RL deconvolution is converging to a better es-

timate, and only after small artifacts are introduced the algorithm stops. In the third

energy range (between 3.0 and 3.2 eV), we know beforehand that there are plasmon

peaks present. However, the noise amplitude is comparable to the signal amplitude;

therefore, in this range, it is likely that we will introduce artifacts during the RL

deconvolution. The control algorithm limits the number of iterations to 60 in this

range of energies, which is consistent with the maximum value of the signal-to-noise

ratio (50 iterations) shown in figure 3.18c. The noise monitoring criterion for limiting

the number of iterations performs much better in this range of energies because in

this range more artifacts were introduced and the algorithm monitors the formation
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of these artifacts and stops the deconvolution when the amplitude of these artifacts

is larger than the noise of the original spectrum.

For the filtered deconvolution in the first range (-0.2 to -0.4 eV) we obtain the same

result as in the unfiltered reconstruction, the algorithm fails and the deconvolution

continues indefinitely. In the second range (1.2 to 1.4 eV) the algorithm limits the

number of iterations to 6932 iterations. In this energy range, a large number of

iterations is expected, because most of the noise is filtered in the convolution with

the Gaussian function, and is only detected by the control algorithm after a large

number of iterations. In the third range, the number of iterations is limited to 44.

The advantages of this method of limiting the number of iteration are that it is

not computationally expensive, it is simple to implement, it provides a measure of

the quality of the reconstruction, and it could limit the number of iterations close

to the optimal reconstructed spectrum. The main disadvantage is that we need to

choose and appropriate range to monitor the noise amplification to obtain an optimal

reconstructed spectrum.

As a second criterion, we monitor the change of the reconstructed spectrum as a

function of the number of iterations in the entire spectrum. We impose a threshold

value on the change of the spectrum, Van Kempen suggested a value of 0.001, at this

value the number of iterations is 86 for our simulated spectrum. When the threshold

value is 0.0025 the number of iterations is limited to 52, which is close to the maximum

signal-to-noise ratio (figure 3.18c). When we monitor the change of the deconvolved

ZL peak, we find that the number of iterations at which the RL algorithm stops, for a

fixed threshold value, is the same as when we monitor the whole spectrum. However,

when we monitor the change of the deconvolved SPR peaks, the algorithm is stopped
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after fewer iterations. For example, with threshold values of 0.001 and 0.0025, the

number of iterations is 74 and 42 respectively; and for a threshold value of 0.002,

the algorithm stops after 48 iterations, close to the optimum number of iterations.

For the filtered deconvolution, when the threshold value is 0.001, the deconvolution

stops at 117 iterations, but with a value of 0.0015, the number of iterations is 91,

which is close to the maximum signal-to-noise ratio. Monitoring the change of the ZL

peak and imposing threshold values of 0.001 and 0.0015, the number of iterations is

limited to 118 and 92 respectively. When we monitor the change of the SPR peaks,

we obtain 69 iterations for a threshold value of 0.0015 and 89 iterations, which is

close to the optimum, for a threshold value of 0.001. The advantage of this method

is its simplicity and ease of implementation, and it saves computation time because

it stops the deconvolution when the change in the spectrum is small. However, the

main disadvantage is that this criterion does not provide a direct measurement of

noise amplification in the reconstruction.

Figure 3.19: Deconvoluted spectrum (black solid line) and convoluted spectrum,
which is the convolution of the simulated spectrum (expected spectrum) and the
ZLP extracted from the deconvoluted spectrum (red dashed line).
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To complement the discussion on energy resolution in a deconvolved spectrum we

performed a test to demonstrate that the deconvoluted ZLP is a good estimate of the

PSF in the deconvolved spectra, from which we can extract the effective resolution.

We applied the RL algorithm and deconvolved the simulated blurred spectrum stop-

ping the RL algorithm after five iterations (called deconvolved spectrum). Then, we

extracted the deconvoluted ZLP by the “2 Gaussian” method in Digital Micrograph.

The convolution of the simulated spectrum (expected spectrum) and the extracted

deconvolved ZLP (called convolved spectrum) reproduces the deconvolved spectrum,

as shown in Figure 3.19. The deconvolved and convolved spectra present some dif-

ferences that can be attributed mainly to the noise in the deconvolved spectrum

(which is not considered in the convolved spectrum) and to errors in the extraction

of the ZLP from the deconvolved spectrum. Figure 3.19 shows that the width of

the plasmon peaks in the deconvolved spectrum is well reproduced by the convolved

spectrum. Therefore, we can state, therefore, with confidence that the ZLP of the

deconvolved spectrum is the PSF; therefore the FWHM of the deconvolved ZLP is a

good representation of the effective energy resolution of the deconvolved spectrum.

3.2.2 Deconvolution of experimental data

We acquired experimental low loss EELS data of a lithographically patterned silver

nanorod. As previously described, we obtain the EELS data by scanning the sample

with an electron beam and acquiring a spectrum at each pixel position in the scan

obtaining a 3D dataset. Figure 3.20 shows the sum of the raw data spectra acquired

over the scanned region (illustrated in figure 3.21), where up to four peaks are resolved.

The peaks correspond to multipolar surface plasmon-polariton resonances. Also, we

can identify the surface plasmon at 3.5 eV and the bulk plasmon at 3.8 eV. The
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number of counts in the experimental ZLP is 1.3 x 109 electrons, considering the sum

of all the spectra in the spectrum image. On average, the number of counts of the

experimental ZLP in each pixel position is 2.5 x 105 and 4.2 x 104 electrons outside

and inside the silver nanorod, respectively. In addition, from the sum of all spectra in

the spectrum image, the number of counts at the energy of the most intense plasmon

peak, before deconvolutions, is 8.8 x 106 electrons, which is 144 times smaller than

the height of the integrated ZLP over the spectrum image.

Figure 3.20: Spectra showing experimental raw data, and the filtered and unfiltered
deconvolved spectra after 10, 50, 100 and 500 iterations.

We apply the RL deconvolution to each spectrum in the spectrum image. The PSF

of the instrument was obtained by extracting the ZLP from the EELS data by the

reflected tail method. Figure 3.20 shows spectra which are the sum of reconstructed

spectra after 10, 50, 100 and 500 iterations. The reconstructed experimental spectrum

shows noise amplification after a large number of iterations, in this case after 100 and

500 iterations, as was also observed in the simulated spectrum reconstruction. This

amplification is only evident at energies above 1 eV where the noise amplitude is close
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to the signal amplitude. If we compare the raw data with the reconstructed spectra,

we can see that the plasmon peaks are buried on the tail of the zero loss peak and are

barely distinguishable in the raw data. However, after deconvolution, we can clearly

distinguish the surface plasmon resonance peaks from the ZLP tail at a low-energy

loss. The first resonant peak, which corresponds to the dipolar surface plasmon mode,

is a shoulder of the ZLP after 10 iterations, but it is clearly distinguishable after 50

iterations. As demonstrated in the deconvolution of simulated data, we can see that

the most dramatic improvement in the experimental data is in the region below 1eV.

At energies below 1 eV where the noise level does not dominate the signal, we can

see that as the number of iterations increases the peaks are sharper and more defined.

This allows the detection of peaks at very low energies where noise is not a limiting

factor. For peaks above 1 eV, the noise amplitude is close the signal amplitude and

only some peaks can be resolved. The peak at 1.08 eV can be seen as a shoulder

after ten iterations and can be clearly visible after 50 iterations. The next peaks at

1.2 and 1.32 are only visible after 50 iterations as small shoulders. As the number of

iterations is increased, the resolution of the spectra improves from 70 meV to 40 meV

after ten iterations (measured by the FWHM of the zero loss peak). After 50 and 100

iterations the FWHM of the zero loss peaks is 30 meV, and after 500 iterations the

FWHM is 10 meV, but we have also amplified the noise by increasing the number

of iterations. To effectively improve the resolution of our EELS measurements, we

need to limit the number of iterations to an optimal value where both the FWHM of

the zero loss peak and the noise amplification is minimized. The final limit at which

we can successfully deconvolve a spectrum will depend on the acquisition conditions.

We could increase the exposure time to increase the signal-to-noise ratio. However,
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the initial energy resolution of the spectrum might be degraded depending on the

stability of the electron gun and monochromator. As always, there is a trade-off

between signal-to-noise ratio and energy resolution. By increasing the exposure time

to achieve higher signal-to-noise ratio the stability of the entire acquisition system

will eventually limit the initial energy resolution.

Figure 3.21: The top left panel shows an annular dark field image of a lithographi-
cally patterned silver nanowire. The subsequent panels represent the normalized raw,
filtered (F) and unfiltered deconvolved energy filtered maps after 10, 50, 100 and 500
iterations of the first multipolar plasmon resonance of the nanowire at 0.265 ± 0.005
eV energy loss.

We have also applied the RL deconvolution on filtered data, where convolution of

the spectrum with a Gaussian function suppresses noisy parts of the signal [94]. In

our case, we filter the spectrum at each pixel position, and we filter the PSF using

a Gaussian function centered at 0 eV and with a 0.02 eV width. Figure 3.20 shows

the reconstructed data using the Gaussian filter. As in the case of the simulated
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data, the filtered reconstruction is less noisy compared with the non-filtered data

as clearly seen between 1.5 and 4 eV. We also notice that the deconvolution is less

efficient for the filtered data. This can be seen in the deconvolved zero loss peak,

where the amplitude of the peak after 100 iterations has the same amplitude as the

filtered deconvolved peak after 500 iterations. This loss of efficiency is expected since

we are broadening the original spectra by convolution with a Gaussian function and

we are introducing an extra PSF that needs to be deconvolved. From inspection of

the deconvolved spectra we could infer that the optimal number of iterations of the

unfiltered deconvolution is between 10 and 50, and this ideal deconvolution will have

an energy resolution of 30 meV. The optimal number of iterations for the filtered

deconvolution lies between 50 and 100, and will also have an energy resolution of 30

meV. However, if the features of interest in the spectrum are localized at energies

below 1 eV, we could obtain an energy resolution up to 10 meV after 500 iterations,

which is the minimum value of dispersion per channel in our spectrometer.
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Table 3.1: Normalized raw, filtered and unfiltered decon-

voluted energy filtered maps after 10, 50 and 100 itera-

tions of multipolar plasmon resonances on a lithographi-

cally patterned nanowire. The maps are formed with an

energy window of ± 0.03 eV

Energy

(eV)

Raw

data
10 it.

10 fil.

it.
50 it.

50 fil.

it.
100 it.

100 fil.

it.

0.25

0.48

Continued on next page
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Table 3.1 – Continued from previous page

Energy

(eV)

Raw

data
10 it.

10 fil.

it.
50 it.

50 fil.

it.
100 it.

100 fil.

it.

0.67

0.83

Continued on next page
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Table 3.1 – Continued from previous page

Energy

(eV)

Raw

data
10 it.

10 fil.

it.
50 it.

50 fil.

it.
100 it.

100 fil.

it.

0.97

1.08

Continued on next page
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Table 3.1 – Continued from previous page

Energy

(eV)

Raw

data
10 it.

10 fil.

it.
50 it.

50 fil.

it.
100 it.

100 fil.

it.

1.20

1.32

We have so far shown that the effective energy resolution in recorded spectra can

be improved using the RL deconvolution. However, we have not shown the effects

of the improvement of the spectral energy resolution in energy filtered maps. Figure

3.21 shows the effect of the filtered and unfiltered reconstruction on energy filtered
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maps. As seen in the reconstructed spectra, noise amplification is also seen in the

energy filtered maps as we increase the number of iterations. We also observe that

the deconvolved plasmon modes are more locally defined than the modes on the

original energy filtered maps, this can be clearly seen after the 6th resonance (table

3.1). However, for maps after 100 iterations, this improvement in the localization of

the plasmon modes is no longer visible due to the increase in noise. Table 3.1 shows

energy filtered maps of eight multipolar surface resonant modes of the silver nanowire

after 10, 50, and 100 iterations. This improvement in the apparent localization is due

to the substantial decrease in the background due to the zero-loss peak intensity drop,

and consequently the reduction in the zero-loss tails. This effect can be visualized

from local spectra extracted from the tip of the nanowire (area inside the square),

shown in the annular dark field image in figure 3.21, which demonstrates the dramatic

drop in the intensity of the tail of the zero-loss after 10 and 50 iterations (figure 3.22).

The effect results in both the improved contrast in the energy filtered maps and also

the apparent localization as the background due to the zero-loss tails are extended

over the entire field of view.

The improved spectral resolution also improves the contrast in the energy filtered

maps as shown in figure 3.21. To quantify this increase in contrast, we define contrast

as:

Contrast = Imax−Imin

Imax+Imin
,

where Imax and Imin is the maximum and the minimum intensity of the energy filtered

map respectively. Table 3.1 shows the contrast of the multipolar resonance energy

filtered maps. After ten iterations the contrast is improved up to a factor of three.

After 50 and 100 iterations there is a diminishing improvement in the contrast, and
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after 500 iterations the improvement is negligible.

Figure 3.22: Deconvolved and raw spectra obtained from the tip of the nanowire as
shown in figure 3.21. The scale of the raw and deconvolved data is shown in the right
and left axis respectively.

The effect of filtering the spectrum at each individual pixel position with a Gaus-

sian function on the energy filtered maps is shown in figure 3.21 and table 3.1. The

effect is very subtle, but two effects can be identified: One is that the maps are

less noisy than the maps formed by unfiltered deconvolution. This effect is expected

since the convolution with Gaussian function suppresses noise amplification in the

spectrum, which is reflected on the energy filtered maps. A second effect is the re-

duction of contrast compared with the unfiltered reconstructed maps after the same
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Table 3.2: Contrast of the normalized surface plasmon energy filtered maps
0.25
(eV)

0.48
(eV)

0.67
(eV)

0.83
(eV)

0.97
(eV)

1.08
(eV)

1.20
(eV)

1.32
(eV)

0 it. 0.28 0.49 0.49 0.55 0.57 0.63 0.64 0.65
10 fil. it. 0.91 0.93 0.89 0.93 0.90 0.93 0.92 0.93

10 it. 0.92 0.93 0.91 0.94 0.92 0.94 0.93 0.94
50 fil. it. 1.00 0.98 0.94 0.98 0.96 0.97 0.95 0.96

50 it. 1.00 0.99 0.95 0.99 0.98 0.98 0.97 0.97
100 fil. it. 1.00 0.99 0.94 0.99 0.97 0.98 0.96 0.98

100 it. 1.00 0.99 0.96 0.99 0.99 0.99 0.98 0.98
500 fil. it. 1.00 1.00 0.96 1.00 0.99 1.00 0.99 0.99

500 it. 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00

number of iterations. This reduction in contrast might be explained by the reduc-

tion in efficiency of the filtered deconvolution introduced by the Gaussian function

convolution.

We apply the two criteria to limit the number of iterations to the experimental

data. Since the data is formed by spectra at each position of the beam raster, we

apply the stopping algorithm to the sum of the spectra to obtain an optimal number

of iterations. Once the optimal number of iterations from the total spectra is found,

we can apply it to the each spectrum in the data set. We could apply the stopping

criterion to each spectrum in the data set, but each spectrum in the data would have

different number of iterations, and it would generate irregular energy filtered maps.

In the first criterion, we monitor the noise level by considering four ranges of

energy, where no plasmon peaks are identified. If we impose the noise threshold

as the noise level of the original spectrum, the deconvolution stops after the first

iteration, for this reason, we analyze the number of iterations as multiples of the

original noise level. Figure 3.23 shows the number of iterations as a function of the

multiples of the original noise level for filtered and unfiltered deconvolutions and for
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Figure 3.23: Optimal number of iterations versus noise level obtained monitoring
noise in four energy ranges: 4.5 to 5.5 eV; 5.5 to 6.5 eV; 6.5 to 7.5 eV; and 4.5
to 7.5 eV for unfiltered and filtered devoncolution (a). Number of iterations versus
threshold value of the slope of the change of the deconvolved spectrum for unfiltered
and filtered deconvolution (b).
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the four energy ranges: 4.5 to 5.5 eV, 5.5 to 6.5 eV, 6.5 to 7.5 eV, and 4.5 to 7.5

eV. The optimal number of iterations in this stopping criterion depends on the range

of energy we chose for the noise monitoring. We observe that if we choose a larger

energy range, the optimal number of iterations is close to the average value of the

smaller ranges within. For the filtered deconvolution, we observed that the number

of iterations to obtain the same noise amplification as in the unfiltered deconvolution

increases considerably. This occurs because the filtering removes part of the noise,

preventing its amplification during the deconvolution. This method is a simple way to

limit the number of iterations controlling the quality of the reconstruction. We do not

monitor noise level on the negative side of the spectrum because the deconvolution

removes the noise effectively in this range, which means no artifacts are created as the

number of iterations increases, therefore the deconvolution will continue indefinitely.

We also apply the second criterion proposed above and monitor the change of

the reconstructed spectrum with respect to the reconstructed estimation. We varied

the imposed threshold value and found the optimal number of iterations as shown

in figure 3.23. We can see that the number of iterations increases rapidly as we

decrease the threshold value. We also observe a small difference between the filtered

and unfiltered deconvolution which implies that the rate of change is intrinsic of the

deconvolution. For the threshold value of 0.001 suggested by Van Kempen [94], the

number of iterations for the unfiltered spectrum is 228 and for the filtered case is 207.

The noise level after the same number of iterations is between eight and ten for the

unfiltered case and between two and five in the filtered case, which suggests that this

threshold value might not be recommended if we want to maintain low noise levels

in the reconstruction. An appropriate threshold value would be between 0.0025 and
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0.01 for the unfiltered reconstruction and between 0.0015 and 0.005 for the filtered

reconstruction.

Figure 3.24: Deconvolution of two zero-loss peaks (ZLPs) separated by 50 meV (left)
and 60 meV (center), the ZLPs have an energy dispersion of 10 meV. Deconvolution
of two ZLPs separated by 56 meV (75% of full-width at half-maximum), the ZLPs
have an energy dispersion of 2 meV (right).

The studied cases show successful examples of how the RL algorithm can improve

the effective energy resolution of a system, and how the algorithm can extract infor-

mation at lower energies by reducing the PSF of the system. However, the algorithm

also present limitations; as shown by Lazar et al. the algorithm could not readily

resolve two peaks that were separated by less than the FWHM of the ZLP [99]. To

test our deconvolution algorithm, we performed the test done by Lazar et al., in

which the sum of two identical ZLPs shifted in energy by 75% of the ZLP FWHM are

deconvolved. For the test, we use an experimental ZLP with an FWHM of 74 meV.
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Since the energy dispersion we used for the acquisition is 10 meV, we shifted the two

ZLPs by 60 and 50 meV, which are 81 and 68% of the ZLP FWHM, respectively.

Figure 3.24 shows that, for the 60 meV shift, the deconvolution can differentiate the

two peaks after 50 iterations, and sharpen the FWHM of the peaks to ∼24 meV after

500 iterations. For the 50 meV shift, the deconvolution can properly differentiate

the two peaks after only 500 iterations and we obtain an FWHM of ∼32 meV. We

can notice that the spectrum has been affected after deconvolution because of the

close proximity of the two peaks. We also see a relatively large discrepancy in the

intensities of the deconvoluted peaks with respect to the original intensity ratio. But

this difference might be influenced by the energy dispersion of the spectrum consid-

ering that, for a shift of 60 meV, we have only five channels between the peaks and

only four channels for the 50 meV. To test this hypothesis, we have done extra tests.

We numerically increased the dispersion in our test to 2 meV per channel by linear

interpolation of the experimental ZLP acquired with 10 meV energy dispersion, and

shifted the two peaks by 75% (56 meV) as in the test performed by Lazar et al.. In

these conditions, as seen in Figure 3.24, we can already differentiate the two peaks

after 50 iterations. After 500 iterations the FWHM of the peaks is 26 meV, and

the discrepancies in the intensity of the two peaks are considerably reduced, with

an intensity ratio of 0.95 compared with 0.77 and 0.72 for 60 and 50 meV shifts,

respectively. This shows that, although the RL algorithm requires a larger number of

iterations to deconvolve two peaks in proximity to each other, it is possible to resolve

these features if deconvolution is done carefully, and the acquired spectrum has low

noise levels.
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3.3 Conclusions

We implemented the Richardson-Lucy algorithm and used it to reconstruct surface

plasmon resonance peaks measured by EELS. We tested the performance of the re-

construction in a blurred simulated spectrum and in experimental EELS spectra from

a lithographically patterned silver nanorod. We found that for high signal-to-noise

ratio spectra, the deconvolution improves the resolution of the spectra without in-

troducing artifacts, even for a relatively large number of iterations. However, for low

signal-to-noise ratio spectra, noise is amplified, and artifacts are created after a large

number of iterations.

In the blurred simulated spectrum, we analyzed the effectiveness of a filtered and

unfiltered deconvolution and found that the former deconvolution is a better choice

when the number of iterations is close to the optimal number. However, if the number

of iterations deviates from the optimal, the accuracy of the deconvolution decreases

considerably. In the filtered deconvolution, we found that the accuracy has a smaller

deviation from the optimal value, compared with the unfiltered deconvolution, if

the number of iterations deviates from the optimal. For this reason, the filtered

deconvolution is recommended in cases where no information of the optimal number

of iterations is known, which is in general the case.

In the deconvolution of the experimental data, we observed a considerable re-

duction of the zero loss peak tail, allowing the identification of low energy plasmon

peaks. We were also able to identify several peaks that were not visible by inspection

in the original spectra after ten iterations and even more peaks were identified after

50 iterations. We have obtained a record energy resolution of 30 meV after 50 itera-

tions with small noise amplification; and a resolution of 10 meV after 500 iterations
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with negligible noise for spectral features below 1 eV. After spectral reconstruction,

we obtained surface plasmon energy filtered maps, where we observed an increased

localization of the modes due to the reduced background arising from the tails of the

zero-loss peak. As expected, we also observed that noise amplification in the spectral

reconstruction at large iteration numbers can be seen in the energy filtered maps.

Finally, a considerable increase in contrast of the energy filtered maps, even after

only ten iterations, is observed.

We have implemented and tested two methods to limit the number of iterations.

In one, we monitor the noise level over an energy range where no peaks are expected.

In the other, we monitor the change of the deconvolved spectrum at every iteration.

In the first stopping criterion, we recommend a noise level less or equal to two times

the noise of the original spectrum to obtain a good reconstruction. In the second

criterion we recommend a threshold value between 0.01 and 0.002 for the unfiltered

reconstruction and between 0.005 and 0.001 for the filtered reconstruction.

In summary, we demonstrated the use of the Richardson-Lucy algorithm to the

deconvolution of surface plasmon resonances measured by EELS, and we show that the

algorithm can be used to obtain resolutions up 30 meV with optimal signal-to-noise

ratios, and 10 meV for signals below 1 eV. In addition, we show that the deconvolution

of EELS spectra enhances the contrast of the EELS energy filtered maps by a factor

of three. These results show that the RL algorithm can be used as a powerful post-

processing tool of EELS spectra and can be used in the analysis of surface plasmon

resonances in nanostructures for plasmonic and photonic applications.

87



Chapter 4

Edge and Film plasmon modes

Before achieving the full technological potential of plasmonics, we need to understand

the basic mechanisms in which nanostructures form plasmonic resonances. For this

reason, this chapter focuses on understanding the types of resonances present in simple

planar structures and their properties. We start analyzing the plasmon resonances

present in nano-squares and metallic strips. The simplicity of these structures makes

them a good model for the study of planar structures that supports edge and cavity or

film modes. In this chapter, we show our published work [76] with the collaboration

of Prof. Nordlander group, which performed the simulations of the nano-squares.

Finally, to investigate further the properties of edge modes, we analyze the modes

present in bent wires and edges and how the bending angle affects the properties of

the edge modes.

4.1 Edge and film modes of nano-squares

In this section, we analyze the plasmonic response of silver nano-squares of sizes rang-

ing from 230 nm up to 1 µm. We find that in even a simple nanostructure can support
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a large variety of multipolar modes. In particular, we were able to map high order

edge as well as low probability high order cavity modes with energies in the interval

from 2.36 eV down to 0.33 eV. We take advantage of the high energy and spatial

resolution of EELS to study the character of these modes, most of which, due to their

low excitation probability, low resonance energy, or the fine spatial features, have

not been previously mapped. Rigorous theoretical modeling supports the experimen-

tal results. Furthermore, by comparing electron energy loss (EEL) spectra with the

scattering cross-section of the nanostructures under study, we show that most of the

observed plasmonic modes cannot be detected in optical measurements under normal

illumination. These results not only emphasize the well-established versatility of this

technique for the study of plasmonic resonances but show that simple structures can

exhibit a rich variety of resonances well suited to test theoretical models and challenge

the limits of experimental techniques.

4.1.1 Experimental EELS measurements

A cartoon of the experimental system under analysis is sketched in figure 4.26. We

study silver nano-squares with a lateral size L and 40nm of thickness as shown in the

high angle annular dark-field (HAADF) images of two of the fabricated nano-squares

with L = 230 nm and L = 430 nm (Fig. 4.25). We use an 80 keV electron beam (with

a beam current of 1 nA), which is focused on the sample and scanned over the region

of interest. The spectrometer (Gatan Imaging Filter, Tridiem model 865) is set to

a dispersion of 10 meV per channel, 8 binning in the nonenergy-dispersive direction,

and an exposure time of 1 ms per spectrum. To improve the energy resolution of

the spectral images, we apply the Richardson-Lucy algorithm described in Chapter 3,
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(b)

(a)

t = 50 nm

L

e- (b)
Ag

L = 230 nm

L = 430 nm

Figure 4.25: Description of the experimental setup and the system under study. (a)
We consider a silver nanosquare of lateral size L and 40nm of thickness, fabricated on
a silicon nitride membrane of thickness t = 50 nm. We use an 80 keV electron beam to
excite the different plasmon resonances of this system. (b) Annular dark-field images
of two of the silver nanosquares considered in this work.

obtaining effective energy resolutions down to 50 meV measured from the full-width-

at-half-maximum of the zero loss peak. We acquire the spectral images using electron

beam step sizes as small as 4 nm.

Figure 4.26 (a) shows the EEL spectra of silver nano-squares of different lateral

sizes L measured using electron beams passing close to the edge of these systems

(red-shadowed area in the inset). These spectra show a collection of different plasmon

modes. As the size of the square increases, the modes shift to lower energies, and

higher-order modes become visible. Interestingly, the redshift occurs at different rates

for different modes. This can be noticed by looking at the energy difference between

modes #1 and #2, which clearly decreases with increasing size. Remarkably, we are

able to resolve these two peaks even for the nano-square with L = 1 µm, for which the

energy difference is only 90 meV. We determine the nature of these plasmon modes

90



Ph.D. Thesis - Edson Pazur Bellido Sosa McMaster - Mat. Sci. & Eng.

Figure 4.26: Edge and cavity plasmon modes of silver nanosquares. EEL spectra
measured at the edge (a) and at the center (b) (see insets) of silver nanosquares with
different lateral sizes L. EEL maps for the L = 850nm nanosquare corresponding to
the edge (c) and cavity (d) plasmon modes shown in (a) and (b), respectively.
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from the corresponding EEL maps, which are plotted in figure 4.26 (c) for the case

of a nano-square with L = 850 nm and in Figure 4.29c,d and 4.27 for nano-squares

of other lateral sizes L.

(a) (b)1
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6

L = 1000 nm
1
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1

3

2
L = 640 nm

(c)

Figure 4.27: (a) EELS energy filtered maps for nanosquare with L = 1000 nm showing
the edge modes of figure 4.26a, and energy filtered maps for nano-square with L =
640 nm displaying the edge (b) and cavity (c) modes of the spectra in figure 4.26a,b.

We obtain these maps by integrating over an energy window of ± 30 meV around

the corresponding resonance peaks. As seen in figure 4.26 (c) we are able to clearly

identify six different modes. The EEL probability of the first four modes is concen-

trated at the edge of the nanostructure. For that reason we label them as edge modes,

each of them having a different multipolar character determined by the number of

nodes of the EEL probability along the edge: mode #1 has no node and thus corre-

spond to a dipolar pattern, mode #2 has one node as expected from a quadrupolar

distribution, while modes #3, #4 and #5 have two, three, and four as they corre-

spond to the next multipolar orders. Similar modes have been observed in the EEL

maps of nanotriangles [73], nanocubes [78], and nanostrips [14].
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Figure 4.28: EEL spectra for the silver nanosquare with L = 850nm obtained from
the integration of the EEL signal acquired at two different regions of the nanosquare
(blue- and green-shadowed areas of the lower insets). The upper insets show the EEL
probability maps corresponding to the energies indicated by the dashed lines.

As the number of nodes increases, the EEL maps start to display some probability

in the central region of the nano-square. This can be noticed for mode #5, whose EEL

probability map shows a circular spot at the center, although it is more evident for

mode #6. In this case, due to the large number of nodes the EEL probability along

the edge becomes almost constant and a square pattern becomes visible at the center

of the nanostructure. We refer to the modes displaying a strong EEL probability

at the center of the nanostructure as cavity modes because they resemble the three-

dimensional plasmon modes present in ring-shaped cavities [107]. Low order cavity
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modes, also referred as film and breathing modes, have been observed in nanodisks [14,

63]. As expected from their EEL probability maps, these modes are more efficiently

excited when the electron beam passes through the center of the nanosquares. This is

the case of the EEL spectra shown in figure 4.26 (b), which are obtained by integrating

the EEL signal acquired within the blue-shadowed area shown in the inset. As in

figure 4.26 (a) we observe a collection of different modes that shift to lower energies

as the size of the square increases. We investigate the character of these modes by

analyzing their associated EEL probability maps obtained by integrating the signal

over a ± 60 meV energy window centered at the peak. We plot these maps in figure

4.26 (d) for the four plasmon resonances of the L = 850nm nano-square. As expected,

all modes have a significant EEL probability at the center.

We can exploit the analogy of this system with a two-dimensional cavity and label

these resonances using a pair of numbers (n,m) corresponding to the number of antin-

odes that the mode displays along the two axes of the square. Using this notation,

the mode #1 in Figure 4.26 (b), which displays a spot at the center, corresponds to

the (1, 1) mode of the nanocavity. Mode #2 is then identified as the superposition

of modes (2, 1) and (1, 2), which, due to the symmetry of the square geometry, are

degenerate and therefore are excited simultaneously in our measurements. Exactly

the same happens with mode #3, which results from the superposition of modes (3,

1) and (1, 3). Interestingly, modes with n = m and n > 1, such as mode (2, 2) cannot

be clearly identified from the spectra showed in figure 4.26 (b). However, as shown

in figure 4.28, this mode becomes visible in the EEL spectrum if instead of integrat-

ing the signal of the whole central region (blue-shadowed area in the lower inset of
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figure 4.28), we integrate only the part acquired at the corners of that region (green-

shadowed area in the lower inset of figure 4.28), where we expect to find the antinodes

of the (2, 2) mode. This is clearly confirmed by the analysis of the corresponding

EEL maps, which are also plotted as insets in figure 4.28. Mode #4, which appears

as a broad resonance in the spectrum, can be identified from the corresponding EEL

map as the superposition of modes (4, 1) and (1, 4). In contrast, modes (2, 3), (3,

2), and (3, 3) do not appear in the spectrum. These modes, as was the case for mode

(2, 2), have a smaller EEL probability compared with modes (n, 1) when the signal

from the whole central region is integrated and are therefore obscured by modes (4,

1) and (1, 4). It is worth emphasizing that the high energy resolution achieved due

to the reduction on the tails of the zero loss peak, and the relatively high beam cur-

rents employed, are the necessary conditions that allow the study of these high-order

modes, which, before this work [76], have not been previously mapped in such detail.

4.1.2 Theoretical EELS simulations

To complete our analysis of the multipolar edge and cavity plasmon modes, and to

obtain a deeper understanding of the plasmonic response of these nanostructures,

we compare our EELS measurements with theoretical simulations based on the rig-

orous solution of Maxwell’s equations using a finite-difference-time-domain (FDTD)

EELS solver developed by our collaborators [108]. Figure 4.29a,b show the compari-

son between the experimental and the simulated EEL spectra of silver nano-squares

with L = 230 nm and L = 430 nm for electron beams passing through different po-

sitions. More specifically, we measure the experimental spectra by integrating over

the shadowed areas shown in the insets, which are color coded (red for the corner,

green for the edge center, blue for 1/4 of the edge, and yellow for the central part of
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Figure 4.29: Comparison between EEL measurements and theoretical simulations.
(a,b) Experimental (top) and simulated (bottom) EEL spectra for silver nanosquares
of L = 230 nm and L = 430 nm. (c,d) Experimental EEL maps (top) and simulated
LDOS maps (bottom) for the different plasmon modes shown in (a) and (b).
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the nano-square). The same integration area is also used for the simulated spectra,

which are calculated using electron trajectories passing through the same areas of the

nanostructure. The agreement between the measured and simulated EEL spectra is

very good. We attribute the small discrepancies in the peak position to geometrical

defects on the fabricated structures as compared with the perfect shapes used in the

simulations. Another possible source of discrepancy are the differences between the

values of the thickness t and refractive index n of the substrate (see Figure 4.25a)

used in the simulation and the actual experimental values. A change on those mag-

nitudes can shift the position of the resonances, as shown in Figure 4.30. Similarly,

we attribute the differences in the peak widths to the polycrystalline character of the

fabricated nanostructures, which results in broader resonances when compared with

the simulations. We also compare the measured EEL probability maps with theo-

retical simulations of the local density of photonic states (LDOS) performed by our

collaborators. More specifically, we considered the component of the LDOS parallel

to the electron trajectory calculated on a plane parallel to the silver nano-squares and

situated 5 nm above them (Figure 4.29c,d). This quantity contains information on

the near-field intensity distribution and is therefore related to the EEL probability

maps [9, 109], as confirmed by the good agreement with the experimental results.

Examining the EEL spectra in Figure 4.29 obtained at different positions, we

observe that the dipolar edge plasmon (mode 1) is more homogeneously distributed

along the edge of the nano-square than the quadrupolar edge plasmon (mode 2). This

is seen from the faster decay of the EEL intensity associated with the latter as we

move away from the corner (red, blue, and green curves in Figures 4.29a,b) and is

consistent with our previous analysis based on the number of nodes along the edge.
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Figure 4.30: Effect of the thickness t and refractive index n of the substrate on the
EEL probability. (a) Experimental EEL spectrum for a nanosquare with L = 230
nm. (b-d) Simulated EEL spectra for the same nanostructure assuming t = 50 nm
and n = 2.17 (b), t = 100 nm and n = 2.17 (c), and t = 50 nm and n = 2.5 (d). All
spectra correspond to excitation at the corner of the nanostructure.
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In a similar way, mode 3 has a strong peak at the center of the edge, as expected

from the number of nodes associated with this mode. However, the measured EEL

probability at the corner is smaller than what is predicted theoretically, something

that we attribute to the departure of the fabricated nanostructure from a perfect

square shape. The theoretical simulations also demonstrate the formation of the

cavity plasmon modes, as seen from the increase of the relative intensity of the EEL

spectra at the center of the nanostructure (yellow curves), which is also corroborated

by the simulated LDOS maps (mode 4 in Figure 4.29c and mode 5 in Figure 4.29d).

Again, the higher intensity at the edges in the simulated results as compared with the

experimental data can be attributed to imperfections on the experimental geometry.

4.1.3 Comparison with scattering cross-section

We can complete the characterization of the plasmonic response of the silver nano-

squares by analyzing theoretical simulations of their optical scattering cross-sections.

The results of the calculation of the scattering cross-section for normal incidence are

shown in figure 4.32 (gray curves) along with the EEL spectra obtained for electron

beam trajectories passing through the center (yellow curves) and the corner (red

curves) of the nanostructure. Interestingly, the scattering spectrum only shows one

large peak, which corresponds to the dipolar edge plasmon supported by the nano-

squares. The reason is that higher multipolar modes couple more weakly to light

than the dipolar mode and because of that are commonly known as dark modes, as

we discussed in Chapter 1. This is the case for the quadrupolar edge plasmon, which

is clearly visible in the EEL spectra, does not show up in the optical spectrum. It

is important to notice that the large size of the nanostructures studied here makes

possible the excitation of the dark modes using tilted illumination thanks to the
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Figure 4.31: Scattering cross-section of the silver nanosquares with lateral size L =
230 nm (a), and L = 430nm (b). The grey curves correspond to normal incidence,
while the red curves stand for the case of unpolarized light impinging at 45 degrees.
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Figure 4.32: Comparison between EEL and optical spectra. We consider silver
nanosquares with lateral size L = 230nm (a) and L = 430nm (b). The grey curves
correspond to the optical scattering cross-section of the silver nanosquares, while the
EEL spectra are calculated for electron trajectories passing through the center (yellow
curves) and the corner (red curves) of the nanostructure.
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symmetry-breaking caused by retardation [110]. This is shown in Figure 4.31, where

we compare the cross-section calculated for light impinging at normal and 45 inci-

dence. Interestingly, the next two modes appear in the scattering spectra in the form

of weak Fano resonances [48, 49]. These resonances are the result of the interaction

between a bright superradiant mode with a broad line shape and a dark subradiant

mode displaying a narrow line shape. In our case, the dipolar edge plasmon acts

as the bright mode, while the dark modes are the higher multipolar modes ( modes

#3 and #4 in figure 4.26). The interaction between these modes is facilitated by

symmetry breaking provided by the presence of the substrate and retardation. Dark

modes, due to their reduced radiative losses, have significantly narrower lineshapes

than bright modes.

4.2 Edge modes on bent structures

4.2.1 From nano-square to nanowire

As described in the previous section, edge modes can be described as one dimensional

resonances [14, 76, 111, 112]. Where an edge mode of order n is denoted as En, n

being the number of nodes along the edge. The canonical one dimensional structure

that supports one dimensional modes is a nanowire. Therefore, it is logical to think

that the modes in a nanowire are related to the edge modes. To test this principle, we

transform a nano-square into a nanowire by changing the width of the nanosquare.

Figure 4.33a shows simulated EELS spectra calculated at the center of one edge

of the nanosquare as we transform it into a nanowire, as indicated by the stars in

Figure 4.33b. We observe how the E2 mode splits into two modes as we reduce the

width of the 200x200x6 nm3 nano-square in order to transform it into a 20x200x6
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nm3 nanowire. As the distance between edges shortens the edge modes interaction

enhances resulting into the formation of a bonding and an antibonding mode as

described by the hybridization theory [2]. The charge distribution of the modes, shown

in Figure 4.33b, confirms that the E2 modes splits into a lower energy mode or bonding

E2 mode (E2B), with both edges displaying equal charges, and an higher energy mode

or antibonding E2 mode (E2A), with the edges displaying opposite charges [77]. If

the width of the nano-rectangle keeps decreasing evolving into a nanowire, we observe

that the E2B mode shifts to lower energies and becomes what we know as the second

one dimensional mode of the nanowire. Also, the E2A mode shifts to higher energies

outside of the analyzed energy range and it does not appear among the nanowire

modes. From Figure 4.33 we observe the presence of the E4B mode which, as was the

case of the E2B mode, shifts to lower energies as the width decreases and becomes the

fourth one dimensional mode of the nanowire. We also notice the presence of a dipolar

mode (shown in the charge distribution in Figure 4.33b) that, as the distance between

edges is reduced, becomes the transverse mode found in nanowires. The coupling of

edges modes within a single structure is different to the coupling of modes in multiple

structures where no charge transfer is possible, as we explained in chapter one, in the

multiple particle case case what defines which mode has a lower or higher energy is

the electrostatic interaction between particles, and in general equal charges produce

repulsion and have higher energies; and opposite charges produce attraction an have

lower energy. In the case of coupling of edge modes within the same particle the

antisymmetric charge distribution in both edges (antibonding mode) has a higher

energy and the symmetric charge distribution (bonding mode) has a lower energy.

Intuitively, we can say that in order to have antisymmetric charges at opposite edges
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of a structure we need to polarize the structure, therefore the more polarized the

structure the more energy is required to maintain the polarization, and the higher

the resonant energy of the mode. Also, the smaller the polarization of the structure

the lower the energy required, and the lower the resonant energy of the mode.
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Figure 4.33: Evolution of simulated EELS spectra (shown in a temperature scale) as
a function of the width of a rectangular structure (a) that transforms from a nano-
square (200 nm) to a nanowire (20 nm), calculated at center of one edge indicated
by a red star in (b). Charge distribution of the edge modes indicated by the white
dots in (a) in the rectangular nanostructure of a width of 20 nm (top panel), 80 nm
(central panel), and 200 nm (bottom panel) (b).

In this section, we have demonstrated that the one dimensional modes present in

nanowires are formed by the coupling of edge modes within the nanowire [77]. This

explains why there is a dependence of the the resonant energy of the modes on the

aspect ratio of the nanowire. The larger the aspect ratio the lower the resonant energy

of the modes. Alternatively, the larger the aspect ratio of the nanowire the stronger

the coupling between edges and the larger the red-shift of the bonding edge modes.

104



Ph.D. Thesis - Edson Pazur Bellido Sosa McMaster - Mat. Sci. & Eng.

4.2.2 Energy shifts and the critical angle of edge modes

Now that we have stablished the relation between the edge modes and the modes

in a nanowire, we will focus on how these edge modes change as an edge bents and

is no longer straight. To study the effect of bending on edge modes we will study

the bending of nanowires. A previous work showed that the presence of kinks in a

nanowire did not affected the localized plasmon resonances [11]. However, in that

work the investigated bending angles were larger than 90◦. In this section, we will

analyze the evolution of the nanowire modes for several bending angles. For this

analysis 2µm long 30 nm thick and 70 nm wide silver nanowires with bending an-

gles from 30◦ to 180◦ are fabricated by electron beam lithography in 50 nm silicon

nitride TEM membranes as we described in Chapter 2. The EELS spectra are ac-

quired in a monochromated microscope and the data was post-processed by applying

the Richardson-Lucy deconvolution and a normalization procedure as explained in

Chapters 2 and 3.

Figure 4.34 shows EELS spectra acquired at three distinct locations, indicated in

the annular dark field (ADF) images, for nanowires with different bending angles. In

the straight wire we have seven modes identified as bonding edge modes EnB with n =

2 to 8 the number of nodes along the wire. Figure 4.36a shows the EELS intensity

profile of the straight nanowire displaying the nodal distribution of its edge modes.

As we decrease the bending angle we can see that mode E7B and E8B converge from

0.9 eV and 1.01 eV respectively in the 180◦ nanowire to join in energy at 0.96 eV in

the 30◦ nanowire, the same trends follow modes E5B and E6B converging from 0.66

eV and 0.81 eV respectively to 0.78 eV at 30◦ bending angle. Modes E2B, E3B, and

E4B do not appear to follow the same trend as the higher order modes, and only mode
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Figure 4.34: Evolution of EELS spectra of nanowires as a function of bending angle
(left) acquired at three color-coded locations shown in the anular dark field (ADF)
images (right). The scale bar in all ADF images is 200 nm.
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E2B experiences a very small blue shift from 0.43 eV to 0.45 eV as we decrease the

bending angle. To further support the experimental results we performed numerical

simulations of bent nanowires using the MNPBEM Matlab toolbox [50, 51] as ex-

plained in Chapter 2. Because the fabricated structures are fairly large (2 µm long)

it is computationally expensive requiring a large memory, for this reason we simulate

nanowires at a scale five times smaller than the fabricated nanowires. The 400 nm

long 6 nm thick and 14 nm wide silver nanowires are simulated using a tabulated

experimental dielectric function [113] for silver and the effect of the silicon nitride

substrate is modeled using an effective dielectric function of 2 for the surrounding

environment.
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Figure 4.35: Evolution of simulated EELS spectra as a function of bending angle in
silver nanowires
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The simulated spectra in Figure shows the same trend that we found in the ex-

perimental EEL spectra with modes E5B and E6B converging from 0.65 eV and 0.75

eV respectively in a straight nanowire to 0.74 eV in a 30◦ nanowire. The same trend

is found in modes E7B-E8B and E9B-E10B with the modes converging at 30◦ angle.

Mode E3B experiences a blue shift, as we saw experimentally, from 0.42 eV at 180◦ to

0.48 eV at 30◦ in two stages a low rate shift of 0.11 meV/deg between 180◦ and 90◦,

and a faster shift rate of 0.83 meV/deg between 90◦ and 30◦. For the case of modes

E5B, E7B, and E9B, they blue shifts with low rates of 0.11, 0.22, and 0.22 meV/deg

respectively between 180◦ and 90◦, however their shift rate increases to 1.3, 1.2, and

1.0 meV/deg between 90◦ and 30◦ which is more than five times the shift rate of angles

above 90◦. A different phenomenon is observed in modes E4B, E6B, E8B, and E10B,

although they experience a low rate blue shift of 0.11, 0.11, 2.2, and 2.2 meV/deg

at angles between 180◦ and 90◦, for angles below 90◦ the modes blue shift first to

later red shift before converging with modes E3B, E5B, E7B, and E9B respectively. In

mode E2B we notice that there is not shift from 180◦ to 90◦, however for angles below

90◦ the mode experiences a blue shift with a rate of 0.66 meV/deg. These results

indicate that although there is a very small shift for angles above 90◦ the change is

negligible and very difficult to detect experimentally with current energy resolutions,

explaining why Rossouw et. al. did not find any change in the modes they analyzed

[11]. However, for angles below 90◦ the energy shift is not negligible particularly for

high order modes where edge modes even intersect. Therefore, we can infer that the

edge modes in bent edges are unaffected by the presence of bends up to the critical

angle of 90◦ where the modes start self-interacting producing large energy shifts and

modes can eventually converge.
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4.2.3 Antinode clustering and self-interaction of edge modes

Now that we have analyzed the energy shifts produced by the bending of the edges in

nanowires, we can analyzed how the nodal distribution of the edge modes is affected

by the presence of a bend. Figure 4.36 shows the experimental and simulated EELS

intensity profile of a straight nanowire and a 30◦ bent nanowire acquired from the

gray regions displayed on the ADF images. From the figure we observe the typical

nodal distribution of an straight nanowire with nodes moving away from the center of

the nanowire as the mode order and energy increase. This typical nodal distribution

changes considerably for the 30◦ bent nanowire. We notice that the modes E5B

and E6B have merged, as well as the modes E7B and E8B, and their antinodes have

clustered due to the presence of the kink at the middle of the nanowire. When the

two modes coincide in energy, it is not a simple mode overlap, but the antinodes of

the modes merge. In modes E5B and E6B antinodes that are up to 28 nm apart in the

180◦ nanowire shift to become only one antinode in the 30◦ nanowire. Similarly, in

modes E7B and E8B antinodes that are 22 nm apart at 180◦ become one antinode at

30◦. Even in the case of modes E3B and E4B that do not merge at 30◦, the antinode

distance between the modes is reduced from 36 nm in the 180◦ nanowire to only 10

nm in the 30◦ nanowire. This is a clear indication of antinode clustering produced

by the presence of a bend in the nanowires. Because of this antinode clustering, the

nodal distribution of the edge modes in the 30◦ nanowire, shown in Figure 4.36b,

resembles more the distribution of a nanowire half the size of the actual nanowire.

This effect is expected if we realize that in the limit when the bending angle is 0◦, we

have a nanowire half the size of the original nanowire.

Figure 4.37 shows the eigenmodes E5B and E6B for several bending angles. Modes
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Figure 4.36: Experimental and simulated EELS intensity profile of a straight nanowire
(a) and a 30◦ bend nanowire (b) showing how the nodal distribution of the edge modes
changes due to the presence of a kink. The profiles were acquired in the gray regions
shown in the ADF images. The scale bars are 200 nm
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Figure 4.37: Evolution of the Eigenmodes E5B and E6B as the bending angle changes
showing the charge distribution of the edge modes.

E5B and E6B are a good example to explain the effect of self-interaction of the modes

within a bent nanowire. As we explained above, between 180◦ and 90◦ all the modes

experience a small blue shift. From the eigenmodes we observe that, at those angles,

the antinode distribution does not experience a significant change and there is very

little interaction between antinodes. Below 90◦, we observe that, as we reduce the

bending angle, the antinodes closer to the bend in mode E5B the interaction between

antinodes of opposite charge becomes stronger. This proximity produces the rapid

blue shift we saw in Figure 4.2.2. In mode E6B we observe that as the bending angle
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reduces the central antinode gets confined over the kink in the outer edge of the

wire. Also when the bending angle is sufficiently small (i.e. 30◦ for mode E6B) the

antinodes closer to the bend merge as seen in Figure 4.37. The merging of these

antinodes produces the red shift we saw in in Figure 4.2.2 that eventually causes the

intersection of even and odd modes. For the particular case of modes E5B and E6B

the intersection occurs around 30◦ where the eigenmodes become degenerate. Based

on this example we can notice that the higher the mode order the larger the number

of antinodes close to the bend, and the stronger the effect that causes the modes to

shift. For this reason we see that higher order modes are more strongly affected by

the angle change than lower order modes.

4.3 Conclusions

In summary, we have used EELS and rigorous modeling to characterize the plasmonic

response of silver nano-squares of several sizes supported by silicon nitride substrates.

We have found that these nanostructures support a collection of multipolar edge and

cavity modes, whose nature we have investigated through the analysis of the corre-

sponding EEL probability maps. The characterization of these modes, which have

not been previously detected in smaller structures, has only been possible by pushing

the detection to the current limits of this technique. Furthermore, by comparing the

EEL spectra with optical scattering cross-section calculations, we have confirmed that

most the modes supported by the nanosquares are dark and cannot be detected using

optical measurements due to their high multipolar nature. The results emphasize, yet

again, the well-established versatility of EELS and the sensitivity of this technique to

probe both bright and dark plasmon resonances.
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We have demonstrated the relationship between edge modes and the one dimen-

sional modes in nanowires. We showed that the modes supported by a nanowire are

bonding edge modes produced by the coupling of the edges in the nanowire. We also

showed that there is negligible change on the edge modes in nanowires bent by angles

larger than the critical angle of 90◦. However, for angles smaller than 90◦ the modes

shift significantly. These shifts are caused by the interaction of the antinodes of an

edge modes as the angle decreases, this interaction is stronger for high order modes.

For small angles the even modes red shift and the odd modes blue shift causing the

modes to converge. Due to this convergence the nodal distribution of highly bent

nanowires resemble the nodal distribution of a nanowire half the size of the original

nanowire. In this Chapter, by analyzing a range of simple structures, we have shown

that the combination of EELS experiments and theory provides a fundamental un-

derstanding of the plasmon physics necessary to improve the design and optimization

of new nanostructures for nanophotonic applications.
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Chapter 5

Coupling of Plasmonic

nanostructures

Tailoring the LSPR that provides extra flexibility is the coupling of plasmonic nanos-

tructures due to the interaction between the LSPR of the individual structures. The

optical response is modified when the distance between nanostructures is smaller than

their lateral size and a splitting of modes can be induced, as was explained by Prodan

et al. [2] in their hybridization model. The interaction of plasmonic nanostructures

also induces other unique effects, such as tunneling charge transfer plasmons [62],

and Fano resonances [114], expanding the toolset to modify the optical properties of

nanostructures. Even in the simplest case of nanoparticle dimers, a hybridization of

the dipolar mode that is dependent on the inter-particle distance is observed [115, 15].

This phenomenon has been used in the concept of plasmon rulers [116, 117]. In struc-

tures where the excitation of higher order modes is efficient, a richer modal spectrum

can be obtained by plasmonic coupling of higher order modes, and phenomena such

as intermodal coupling [118] can be observed. However, most of the investigation on
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plasmonic coupling has been mostly focused on the interaction of dipolar modes, or

in small structures where higher order modes are difficult to detect [119], and not

much attention has been devoted to the coupling of high order modes.

As we saw in Chapter 4, we can describe the modes present in planar nanostruc-

tures as edge and film or cavity modes. In this Chapter, we explore the interaction

between edge modes in multiple configurations, including the coupling of edge modes

in nano-squares, slot waveguides, and offset nanowires. Taking advantage of the high

resolution of EELS and its ability to excite dark modes we study not only the cou-

pling of low order modes but we also pay particular attention to the coupling of high

order modes. From the analysis of the structures, we show how versatile is the use of

coupling for the tuning of the optical properties of plasmonic nanostructures, and we

also show the wide variety of modes that can be excited by coupling of edge modes.

The section about the coupling of edge modes in nano-squares and slot waveguides,

has been published here [112] and was done in collaboration with Prof. Nordlander

from Rice University and Prof. Manjavacas from University of New Mexico.

5.1 Edge mode hybridization in nano-square dimers

In this work, we present a detailed study of the plasmonic coupling of edge modes

with a special emphasis on the interaction of high order modes and the formation of

gap modes. Through the investigation of the response of a number of nano-squares

dimers 40 nm thick with lengths from 420 nm to 1 µm separated by gaps ranging

from 50 nm to 100 nm, we study the coupling of these dimers by separating them

into low order and high order modes. To further understand the coupling of edge

modes and the formation of gap modes, we investigate structures composed of two

115



Ph.D. Thesis - Edson Pazur Bellido Sosa McMaster - Mat. Sci. & Eng.

50 µm long and 40 nm thick silver strips with widths ranging from 470 nm to 1150

nm separated by gaps with sizes from 95 nm to 115 nm (slot waveguides). The

dispersion relation of the modes formed by the coupling of edge modes in the nano-

square dimers is also analyzed and compared with the dispersion of the modes in the

planar slot waveguides. In this section, the experimental results are complemented

with numerical simulations of EELS using the MNPBEM Matlab toolbox [50, 51]

described in chapter 2. The effect of the silicon nitride substrate is modeled using

an effective dielectric function of 2.5 for the surrounding environment, and the silver

structures are modeled using a tabulated dielectric function [113].

5.1.1 Coupling of low order modes in nano-square dimers

Figure 5.38 (a) shows the EEL spectra acquired in six different areas of a 420 nm

nano-square dimer with 50 nm gap as indicated in the inset of the figure. Due to

the high effective energy resolution of the spectra (60 meV), measured from the full-

width-at-half-maximum of the zero loss peak, we can identify ten LSPR with peaks

in multiple positions. The plasmon resonances present in the nano-square dimer can

be separated into two groups for their analysis: One group formed by the first five

LSPR consisting of the lower order modes, and a second group integrated by the next

five resonances, corresponding to the higher order modes.

The experimental, as well as the simulated, EELS maps of the first five reso-

nances, are shown in figure 5.38(b-d). To extract the EELS maps, corresponding to

each surface plasmon resonance mode, we isolate the contribution from each peak in

the plasmon maps using the non-linear least squares fitting tool of the “DigitalMi-

crograph” software, which fits Gaussian peaks to a spectrum image [120]. From the
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Figure 5.38: (a) EEL spectra of a 420 nm nano-square dimer with 50 nm gap acquired
at the color-coded positions indicated in the annular-dark-field (ADF) image in the
inset. Ten peaks corresponding to LSPR modes, indicated by the arrows, are identi-
fied. (b) EELS maps of the first five resonant modes. (c) Simulated EEL spectra of
the nano-square dimer with its resonant modes indicated by the arrows. (d) Simu-
lated EELS maps of the first five plasmon modes. The first three modes are formed
by coupling of the dipolar modes in each nano-square, while the next two modes are
formed by the coupling of the quadrupolar modes.
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EELS maps, we can identify the nature of the different modes supported by the nano-

square dimer. The first three modes correspond to the coupling of the dipolar mode

of a single nano-square. Two of these new modes can be identified as bonding (mode

1) at 0.50 eV, where charge carriers of opposite sign are accumulated at each edge

near the gap, and anti-bonding (mode 3) at 0.76 eV, where charge carriers of the

same sign are localized at the edges near the gap. These type of modes have been

described previously in particles and wires [16, 59, 15, 69]. Mode 2 at 0.60 eV is a

dipolar transversal mode similar to the modes found in wires and rods [16, 12]. The

formation of this transversal mode can be explained by the lifting of the degeneracy

in the nano-square dimer between the dipolar mode with opposite charges at the top

and bottom sides of the square and the dipolar mode with opposite charges at the

left and right sides. In the dimer, the left-right dipole modes couple creating the

aforementioned bonding and anti-bonding modes, while the top-bottom dipoles form

this transversal mode. In the structures we analyze, we did not find a strong enough

interaction of the top-bottom dipoles that will lift the degeneracy of the transver-

sal bonding and anti-bonding modes. Thus they appear as a single transversal mode.

Mode 4 and 5 are generated by the coupling of the quadrupolar modes in each square.

As it is the case in the coupling of the dipolar modes, the quadrupolar mode also splits

into a bonding mode at 0.83 eV, where the charges of opposite sign are localized in

the corner close to the gap, and an anti-bonding mode at 0.95 eV, where the charges

of equal sign are concentrated in the corners close to the gap. Figure 5.40 shows an

energy diagram summarizing the coupling of lower order modes. The formation of

the five modes by the coupling of the dipolar and quadrupolar modes is an evidence

of the wide range of modes that can be excited by coupling of plasmonic structures.
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Figure 5.39: Energy diagram summarizing the coupling of the dipolar and quadrupo-
lar modes in nano-square dimers. The diagram depicts the five modes generated by
the coupling of lower order modes. The relative energy positions are not to scale since
the energy splitting will be determined by the coupling strength.

5.1.2 Edge modes and the coupling of high order modes in

nano-square dimers

Besides the coupling of low order modes, the spectra in Figure 5.38(a) and (c) also ex-

hibits several peaks corresponding to the coupling of high order modes. The intensity

distribution of these modes supported by the 420 nm nano-square dimer is displayed

in Figure 5.41. The figure shows the experimental EELS intensity and the simulated

EELS probability as a function of electron energy loss (EELS profile) acquired from
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three different edges: edges of the gap (region “i”); an edge on the side of the dimer

(region “ii”); and an edge on the base of the dimer (region “iii”), as illustrated in the

annular-dark-field (ADF) image and diagram. The experimental EELS profiles are

slightly different from the simulated ones because the fabricated structure has very

rough edges that affect the formation of the plasmon resonances. The modes formed

by the coupling of the nano-square are identified with white dashed lines and a mode

number that correspond to the peaks in the spectra in Figure 5.38(a). To understand

the origin of these modes let’s first analyze the high order modes in a single square.

Figure 5.39 shows the EELS intensity profile acquired at one edge of a 430 nm long

silver nano-square, and indicates the high order modes supported by the structure.

These modes with their EELS intensity concentrated at the edge, observed on planar

nanostructures, can be described as quasi 1-D edge modes (En) [14, 76, 77] with the

number of nodes “n” representing the order of the resonance. In Figure 5.39 edge

modes of order two (E2), three (E3) and four (E4) are observed.
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Figure 5.40: Electron energy loss spectroscopy (EELS) intensity profile (right) ob-
tained from the region indicated in the annular dark field (ADF) image of a 430 nm
nano-square (left). The profile shows the presence of three edge modes E2, E3, and
E4, marked by the dashed lines.
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When two planar structures, such as the nano-squares are in proximity, these edge

modes can couple. This coupling is responsible for the presence of peaks 6 to 10 in

the spectra in Figure 5.38(a). In a nano-square, this second group of peaks could also

be described as edge modes. To explain this premise, we can analyze the modes by

region: In region “iii” (base of the dimer), we can distinguish two modes: mode 7

and 10, based on their number of nodes, correspond to second (E2) and third (E3)

order edge modes at 1.25 eV and 1.53 eV respectively. In region “ii” (side of the

dimer), we can only distinguish clearly one peak (mode 8) at 1.30 eV with two nodes,

thus corresponding to a second order edge mode (E2). In these two regions (“ii” and

“iii”) we observe two second order modes at different energies (mode 7 and 8). This

difference in energy is caused by the coupling of edge mode E2 through the corner of

each nano-square on the side of the dimer (region “ii”). This weak coupling causes

the apparent shift in energy with respect to the edge mode E2 in the base of the dimer

(region “iii”), which does not couple. As we will discuss later in the manuscript and in

Figure 5.42, this shift in energy is an indication of mode splitting due to the coupling

of modes.

A different behavior is observed in the gap of the dimer (region “i”), in this case,

we observe the presence of two modes: mode 6 and 9 with node distribution that

corresponds to a second order edge mode at 1.18 eV and 1.46 eV respectively. This

similar node distribution indicates coupling of the second order mode of the individual

squares that split into these two modes, a bonding and an antibonding mode. We

will designate these modes as bonding gap edge (BG − E) mode and antibonding

gap edge (AG − E) mode due to their charge distribution similar to the low order

modes. Charges of opposite sign are accumulated at each edge in the gap in the
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BG − E mode, and charges of the same sign are localized at the edges of the gap

in the AG − E mode. The black line and magenta line spectra, acquired in the gap

region of the nano-square dimer and shown in Figure 5.38 (a) and (c), provide more

insight into the nature of these gap edge modes. We notice that mode number 6,

or the bonding gap edge mode order two (BG − E2), only appears in the black-line

spectra, which indicates that this mode can only be excited when the electron beam

is positioned over the metal on the edge of the nano-square. On the other hand, mode

number 9, or the antibonding gap edge mode order two (AG− E2), appears in both

the black line and the magenta line spectra, which indicates that this mode is more

delocalized.

In order to further understand the coupling of edge modes, we simulate the EELS

response of the 420 nm nano-square dimer varying the coupling strength by changing

the gap size. Figure 5.42 shows the change of the EELS spectra as a function of

gap size, plotted in a temperature scale where the peaks appear as ”warmer color”

bands, at three different positions of the nano-square dimer. Each position, indicated

by color-coded dots in black, blue and gray in Figure 5.38(c), is at the center of

an edge. The spectrum at each position, as we described before, captures the three

different behaviors observed in the coupling of edge modes in a nano-square dimer.

The strongest coupling of edge modes is through the edges within the gap in nano-

square dimers (black dot Figure 5.38(c) and region “i” Figure 5.41). Figure 5.42(a)

shows how this strong coupling splits mode E2, present in a single square, into gap

modes BG−E2 and AG−E2, splitting that is still present for gaps as large as 150 nm

in the 420 nm nano-square dimer. As the gap decreases the splitting is stronger, and

we observe how the bonding modes experience a significant red shift, and that even
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Figure 5.41: a) Experimental EELS intensity profile taken from three regions: the gap
(“i”), the side of the dimer (“ii”), the base of the dimer (“iii”) as shown in the ADF
image of the 420 nm nano-square dimer, and (b) simulated EELS probability line
profile taken from the lines (i,ii,iii) indicated in the diagram. The plasmon resonance
peaks are indicated by their corresponding mode number from the spectra in Figure
5.38 and by the dashed lines. The intensity in all the EELS profiles is normalized to
their maximum value.
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higher order bonding modes can be observed in the analyzed energy range. Modes

similar to the gap edge bonding modes were also observed in flat gap antennas and

nanocubes and were denoted as transverse cavity plasmon (TCP) modes [121, 122].

Unlike the gap edge bonding modes, the antibonding modes blue shift slightly as we

decrease the separation. Interestingly, the shift saturates and no change in energy is

observed for small separations, as seen in Figure 5.42(a).
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Figure 5.42: Evolution of simulated EELS spectra (shown in a temperature scale) as
a function of gap size at the color-coded positions in black at the gap of the dimer
(a), blue at the side of the dimer (b), and gray at the base of the dimer(c) shown
in Figure 5.38(c). The three different behaviours lead to a general scheme of the
coupling of edge modes in planar structures: Coupling through the edge that forms
bonding gap edge (BG− E) modes and antibonding gap edge (AG− E) modes (a);
coupling through the corner that forms bonding corner edge (BC − E) modes and
antibonding corner edge (AC − E) modes (b), and no-coupling edge mode (E)(c).
The mode around 0.75 eV in panel (a) is the anti-bonding mode formed by the left-
right dipole modes in each square (aqua line). The white dots in panel (b) show the
anticrossings of mode BC − E2 with high order BG− E modes.

A second coupling behavior is observed at the side of the dimers in the position

indicated by the blue dot in Figure 5.38(c) and region “ii” in Figure 5.41. In this

region, the edge modes couple through a corner. As seen in Figure 5.42(b), this
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coupling is much weaker than the coupling through the edge. For the 420 nm nano-

square, we can only see the effects of the coupling at gap separations under 100 nm.

For gap separations above 50 nm, the coupling can only be identified as a shift to

higher energies due to the higher EELS probability of the antibonding corner edge

(AC − E2) mode compared to the bonding corner edge (BC − E2) mode, as we

noted from our results in Figure 5.41. Only when we decrease the gap size below 50

nm, we can clearly distinguish the two modes, with the bonding mode red shifting

and the antibonding mode blue shifting. As we continue decreasing the gap size,

the resonant energy of both modes saturates. This coupling behavior is similar to

the coupling of longitudinal modes in nanowires dimers [16], and the longitudinal

antenna plasmon modes in nanorods [121]. In Figure 5.42(b) we can also observe the

anticrossing (white dots) formed by the interaction between mode BC−E2 and high

order bonding gap edge modes (BG−E), the interaction weakens as the order of the

bonding gap edge modes increases. A similar anticrossing behavior is found in gap

plasmons in nanocube dimers where TCP modes interact with bonding modes [122].

The third behavior found in nano-square dimers is identified as “non-coupling”,

observed at the base of the dimers in the position indicated by the gray dot in Figure

5.38(c) and region “iii” in Figure 5.41. As seen in Figure 5.42(c) in this region the

edge modes do not couple and behave as if the edge were isolated, and no change as a

function of gap separation is observed. The three different coupling behaviors of the

high order edge modes found in nano-square dimers are summarized in Figure 5.43.

The identified behaviors demonstrate that coupling of edge modes in nano-squares

can be analyzed by studying the coupling of neighboring edges independently, as is

shown in Figures 5.41, and 5.44. Due to this independence of the coupling edge
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Figure 5.43: Energy diagram summarising the coupling of the high order modes or
edge modes in nano-square dimers. The diagram shows the three behaviours: 1)
coupling through the gap generating bonding gap edge (BG − E) and antibonding
gap edge (AG − E) modes (black lines); 2) coupling through the corner generating
bonding corner edge (BC-E) and antibonding corner edge (AC − E) modes (blue
lines); 3) non-coupling in the non-interacting edge of the dimer (red lines). The
relative energy positions are not to scale since the energy splitting will be determined
by the coupling strength, as shown in figure 5.46.
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modes, the three behaviors depicted in Figure 5.42 lead to a general scheme of the

plasmonic coupling mechanisms of edge modes in planar structures.

5.1.3 Coupling of edge modes and the formation of gap modes

To test the generalization of this proposed scheme for the formation of gap edge

modes found in nano-square dimers to other planar nanostructures, we investigate

the coupling of edge modes supported by silver strips, which form the so-called slot

waveguides. The spectrum (green curve) of a single 50 µm long, 40 nm thick, and

700 nm wide silver strip displayed in Figure 5.46 (a) shows the presence of three edge

modes in this metallic slot waveguide. The first mode is identified as edge mode of

order one (E1) or the dipole mode as seen in its EELS map in Figure 5.46 (b). The

second and third modes, previously studied [14], are identified as edge modes of order

two (E2) and three (E3) as confirmed by the intensity distribution in the EELS profile

measured along the edge of the strip in Figure 5.46(c)i. The features are similar to the

ones found in an isolated nano-square, as seen in Figure 5.39. When two such very

long metallic strips interact, their plasmon modes couple and split forming hybrid

modes as indicated by the dashed lines in Figure 5.46 (a). Here, the modes present in

each one of the two 50 µm long, 40 nm thick, and 700 nm wide silver strips separated

by a 100 nm gap splits into two new modes.

From the spectra measured along the edge of one of the strips and over the gap,

areas “iii” and “ii” in the inset in Figure 5.46(a) respectively, we observe five peaks.

The first and second peak correspond to the modes formed by the coupling of mode

E1, the dipolar edge mode. The EELS map of the first peak (Figure 5.46(b) lower left

panel ) shows a significant localization of the intensity, proportional to the component

of the electric field amplitude perpendicular to the plane of the sample [8], in each one
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Figure 5.44: EELS intensity profile taken from the areas (i,ii,iii, and iv) shown in the
ADF image of a 1 µm long and 100 nm gap square dimer on the top. The dashed
lines and their corresponding mode type and order indicate the plasmon modes. We
can identify the three types of behaviours found in the coupling of edge modes: the
non-coupling edge in area “i”; coupling through the corner in area “ii” where only
the AC − E modes are observed due to the weak coupling through the 100 nm gap;
and coupling through the edge or gap coupling in areas “iii” and “iv”, where high
order BG− E and AG− E modes are observed.
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Figure 5.45: Energy diagram summarising the formation of gap edge modes in planar
nanostructures. The coupling of the edge modes in slot waveguides through the gap
splits an edge mode into an AG−E or symmetric mode and a BG−E or asymmetric
mode. The relative energy positions are not to scale since the energy splitting will be
determined by the coupling strength.

129



Ph.D. Thesis - Edson Pazur Bellido Sosa McMaster - Mat. Sci. & Eng.

of the corners of the strips, with a low intensity across the gap. The map of the second

mode, however, shows a significant intensity across the gap of the slot waveguide

between the corners of the strips. This intensity distribution is topologically identical

to the one found on the gap edge modes of the nano-square dimers. We can, therefore,

recognize the first peak as the BG− E1 mode and the second peak as the AG− E1

mode. Similar modes were found in metal-semiconductor-metal nanorods and named

gap-localized transverse modes. In that particular case, were the plasmon modes

of the metal nanorods couple through the semiconductor, the order one gap edge

modes are excited spectrally isolated from the other lower order modes due to the

asymmetry introduced by the semiconductor in the gap [123]. Mode E2 also splits

into two modes: 1) mode BG−E2, with two nodes along the edge, that can only be

excited over the surface of the strip edge (area “iii” in Figure 5.46(c)); and 2) mode

AG − E2 that has one very intense antinode at the center of the gap as seen in the

EELS profile taken from area “ii” in Figure 5.46(c). Examining the EELS profile at

the same energy of mode AG− E2 over the surface of the strip edge in area “iii” we

note a very different intensity distribution, with three nodes, indicating the presence

of mode BG−E3. The two different intensity distributions indicate that two modes

are overlapping at this energy range, and under our experimental conditions (35 meV

effective energy resolution and large background) we cannot separate the two modes.

These two modes with different field distributions can be excited due to the locality

of the electron probe. They appear independently and do not interact, suggesting

a strong near-field enhancement due to the overlap[121]. The coupling of mode E3

in the strips, besides mode BG − E3, also hybridize into mode AG − E3 that can

be excited in the gap and presents three nodes along the gap shown in the EELS
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profile from area “ii” in Figure 5.46(c). The coupling of the edge modes in the slot

waveguides and the formation the gap modes is summarized in Figure 5.45.
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Figure 5.46: (a) Color coded EEL spectra of a 50 µm long, 40 nm thick and 700
nm wide silver strip and a slot waveguide consisting of two silver strips of similar
dimension acquired in the areas marked in the ADF image in the insets. Three peaks
corresponding to edge modes (E1, E2, E3) are identified in the single strip. After
coupling of these modes in a slot waveguide, six modes are identified as indicated by
the black arrows. (b) EELS maps of the dipolar mode of the single strip and the
bonding and anti-bonding modes formed by the coupling of the dipolar modes in the
slot waveguide. (c) EELS profiles of the silver strip and the slot waveguide extracted
from the areas indicated in the insets in (a). The maps show the localization of the
modes and demonstrate the splitting due to the coupling of the edge modes.

The results from the slot waveguides, as well as from the square dimer, are consis-

tent with the following trend: The coupling of edge modes of the same order through

the edge form two types of hybridized modes. One mode with a higher probability

of excitation in the gap region (antibonding) and another with a high probability of

excitation in the region over the metallic surface of the structure (bonding). The

field distribution of the two types of plasmon resonances, which is proportional to

131



Ph.D. Thesis - Edson Pazur Bellido Sosa McMaster - Mat. Sci. & Eng.

the EELS intensity, resembles the field distribution of the resonances found on infi-

nite slot waveguides with the field concentrated in the gap on the symmetric mode

(antibonding mode) and the field localized on the metallic surface on the asymmetric

mode (bonding mode) [124].

5.1.4 Dispersion of coupled modes in planar nanostructures

Taking advantage of the high spatial and energy resolution of EELS-STEM measure-

ments, we can gain further insight into the nature of the bonding and anti-bonding

gap edge modes and measure their dispersion relation (energy vs wavenumber). The

dispersion relation is essential to evaluate the physical properties of the surface plas-

mons and to design structures with tailored properties. To measure the energy of a

resonance mode, we fit a Gaussian function to the LSPR peak in the EEL spectra,

and determine the wavenumber (k) by measuring the wavelength of the mode (λsp).

In EELS measurements λsp = 2λEELS, where λEELS is the distance between antinodes

in EELS profiles and maps, therefore k = π/λEELS [125, 65].

Figure 5.47 shows the dispersion relation for the two types of plasmon resonances

formed by coupling of edge modes obtained by measuring the energy and wavenum-

ber from ten slot waveguides, fabricated with widths ranging from 470 nm to 1150

nm and gap sizes from 95 nm to 115 nm. We can clearly observe two distinctive

dispersion relations, one for the symmetric or antibonding gap edge modes with the

EELS probability confined over the gap (red symbols), and one for the asymmetric or

bonding gap edge modes with the EELS probability localized on the edge of the struc-

tures (blue symbols). The dispersion of the antibonding gap edge modes is closer to

the light line (gray line). Therefore these resonances are less confined and have lower

propagation losses than the bonding gap edge modes, which are further away from
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Figure 5.47: Dispersion relation of the plasmon resonances obtained from ten slot
waveguides with widths ranging from 470 nm to 1150 nm. The red and blue symbols
indicate the dispersion of the symmetric or AG−E modes and asymmetric or BG−E
modes on the slot waveguides respectively. The gray line is the light line in vacuum,
and the red and blue lines are guide-to-the-eye trend lines for the dispersion of the
symmetric and asymmetric modes respectively. The black and yellow symbols show
the dispersion relation of the symmetric or AG−E modes and asymmetric or BG−E
modes found on the gap of three square dimers with side lengths from 630 nm to 1
µm that follows the same trend as the resonances in the slot waveguides.
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the light line. The bonding gap modes are, hence, more bound to the surface of the

structures exhibiting higher confinement and higher losses due to larger penetration of

the field into the metal. Figure 5.47 also shows the dispersion relation of the plasmon

resonances found in the gaps of three nano-square dimers with 630 nm, 850nm, and

1 µm side lengths and gap sizes from 90 nm to 100 nm. As we discussed previously,

the square dimers exhibit two types of gap modes similar to the ones found in the

slot waveguides: antibonding modes, which are equivalent to the symmetric modes in

slot waveguides (black symbols) and bonding modes equivalent to asymmetric modes

(yellow symbols) that follow the dispersion of the slot waveguides. This agreement

confirms the generality of our proposed coupling scheme.

5.2 Coupling of offset parallel nanowires

In the previous section, we saw coupling of the quasi 1D edge modes for three cases:

the non-coupling case, coupling through a corner and coupling through the gap. As

we demonstrated in the previous section, coupling through the corner is similar to the

coupling of nanowires (NWs) aligned end-to-end [16]. In a similar manner, coupling

through the gap would be analogous to the coupling of parallel NWs [112]. However,

one configuration remains to be analyzed: the coupling of offset edge modes. Thus,

in this section, we investigate the plasmon coupling in laterally offset parallel silver

NWs using STEM-EELS and complement it with simulations. Two classes of parallel

overlapping NW arrays are investigated: symmetric arrays in which parallel NWs of

length L that overlap by βL (Figures 5.48 and 5.51); and asymmetric arrays where

one NW of length L and another of length βL are aligned at one end (Figures 5.52 and

5.54). We analyzed two values of β: 1/2 and 2/3. These two values are motivated
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under the hypothesis that the coupling of a resonant plasmon mode of a selected

order will be preferentially favored according to the nodal alignment of the modes in

each wire. For β = 1/2 modes of an even order would be favored, and for β = 2/3

modes multiples of the 3rd order mode will be favored, as we will discuss next. The

EELS spectrum images of the offset NWs are acquired with an energy dispersion

of 10 meV/channel, and after deconvolution, we obtain an average effective energy

resolution of 50 meV. All the energy filtered maps are integrated into energy with a

window of 20 meV. Simulations of EELS spectra, energy filtered maps, and charge

distributions are carried on the MNPBEM Matlab toolbox [50, 51]. The silver NWs

are modeled using a tabulated dielectric function [113]. An effective dielectric function

of 1.8 was used to model the dielectric environment to account for the substrate effects.

The small differences between simulation and experiments are due to the absence of a

fully modeled substrate in the simulation and imperfections in fabrication with wire

dimensions differing from the ones of the simulations.

5.2.1 Coupling of symmetric offset nanowires

The simulated and experimental EELS spectra of the 1/2-overlapping symmetric NW

array for an NW spacing d of 43 nm in the experiment and 50 nm in the simulation is

shown in Figure 5.48a. The simulated NWs are 1160 nm long and 40 nm wide, while

the fabricated NWs are 1148 nm long and 44 nm wide. Overlaid for comparison are the

experimental and simulated spectra of a single NW (black lines). The simulated single

wire has the same dimensions as the ones in the simulated array, while the fabricated

single wire is 1186 nm long and 63 nm wide. Despite the difference in dimensions

between the fabricated single wire and the wires in the array, the non-hybridized 2nd,

3rd and 4th order resonance modes of the single wire, shown in the spectra, serve as a
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Figure 5.48: (a) Experimental (solid lines) and simulated (dashed lines) EEL spectra
of 1/2-overlapping parallel NWs of length L and spaced by d (blue and red lines).
The experimental spectra are acquired from the areas indicated in the HAADF image
in the inset. The simulated spectra are calculated at two positions indicated in the
inset. For comparison, experimental and simulated spectra of a single NW (black
lines) of similar dimensions is also shown in the spectra in (a). The spectra display
how the modes of order n in each NW couple and split when the offset NWs are close
to each other (dotted lines), forming bonding (nB1/2S) and antibonding (nA1/2S). (b)
Experimental (left) and simulated (right) energy filtered maps of the resonant modes
supported by the 1/2 overlapping symmetric parallel NW (scale 200 nm).

reference to analyze how the modes change as they start interacting in an offset NW

configuration. As we saw in the previous section [112], when a 1D mode ( i.e. modes

in edges of planar structures and modes in nanowires) couples through a gap, the

coupling produces two modes: a bonding (B) mode with opposite or antisymmetric

charge in both NWs and an antibonding (A) mode with equal or symmetric charge

distribution in both NWs, as shown in Figure 5.49 for two parallel wires. To identify

the modes present in the 1/2-overlapping symmetric NWs, we will follow the same

description in which symmetric charge distribution between NWs corresponds to an
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A mode and antisymmetric charge distribution between NWs corresponds to an B

mode. In the experimental EELS spectra in Figure 5.48a we observe six hybridized

modes at 0.42, 0.52, 0.61, 0.68, 0.77, and 0.87 eV with their corresponding EELS

experimental and simulated energy filtered maps in Figure 5.48b. The modes at 0.42

eV and 0.52 eV can be identified as a 2nd order antibonding (2A1/2S) and bonding

(2B1/2S) modes respectively, because of their charge distribution shown in Figure

5.50a. This is opposite to the case of hybridization of parallel NWs where the bonding

mode has a lower energy than the antibonding mode [126]. The 2A1/2S mode has a

lower energy than the 2B1/2S in the 1/2 overlapping symmetric NW array. This

reversal of energy can be explained in a simplified and intuitive way if we remember

from the plasmonic coupling section in Chapter 1 that the Coulombic interaction

determines the energy splitting. If we analyze the induced dipoles in mode 2A1/2S,

we see in Figure 5.50a that in the overlap region the dipoles are antisymmetrically

aligned therefore the dipole interaction is attractive, and the resonant energy red-

shifts with respect to the single NW resonance. For the 2B1/2S the dipoles in the

overlap region are symmetrically aligned, therefore the resonant energy blue-shifts.

This is the opposite of what happens in parallel NWs, as shown in Figure 5.49. In

the parallel wires, the dipoles are antisymmetrically aligned in the bonding mode and

symmetrically aligned in the antibonding mode.

In a similar fashion, we can identify the modes at 0.61 and 0.68 as a third order

antibonding (3A1/2S) and bonding (3B1/2S) modes respectively. Because these modes

are formed by the coupling of the 3rd order mode in each NW, the geometry of the 1/2

overlapping NWs does not favor coupling as in the case of the 2nd order modes. This
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2nd
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Figure 5.49: Schematic diagram of the formation of hybrid modes in parallel nanowires
by coupling of plasmon resonances. The figure shows the symmetric charge distri-
bution in the wires of the antibonding mode A mode and the antisymmetric charge
distribution of the bonding mode B mode. The arrows indicate induced dipoles,
which indicates if the interaction between modes is attractive or repulsive.

less favorable condition for coupling of the 3rd order modes is evidenced by the lower

splitting energy of 70 meV compared to the 100 meV of the coupling of 2nd and 4th

order modes in the experiment. This is even better illustrated in the simulations with

a 3rd order mode energy splitting of only 20 meV compared with the 120 meV splitting

for the 2nd and 4th order modes. Also, the geometric disadvantageous condition

is demonstrated by the suppression in amplitude of the hybrid 3rd order plasmon

resonance peaks seen in Figure 5.48a. This contrasts the expected monotonic decay in

EELS plasmon resonance spectral amplitude with increasing mode order in both single

and coupled wires [11, 16, 12, 65]. The resonant modes at 0.77, and 0.87 eV can be

identified as bonding (4B1/2S) and antibonding (4A1/2S) respectively. In this case, the

bonding mode is at a lower energy than the antibonding mode, which is the opposite

of what we had in modes 2A1/2S and 2B1/2S. To explain this phenomenon, the same

simplified static Coulombic interaction can be applied. Analyzing the induced dipoles

in mode 4B1/2S (see Figure 5.50a), we notice that in the overlap region, the dipoles

are antisymmetrically aligned and therefore the interaction is attractive resulting in
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a lower energy resonant mode. For the 4A1/2S the dipoles in the overlap region are

symmetrically aligned, therefore we have a higher energy resonant mode.

The experimental and simulated EELS spectra of the 2/3-overlapping NWs is

shown in figure 5.51a displaying the evolution of the modes from the independent

modes in a single wire to the coupling and splitting of modes at d = 58nm. From the

spectra we can identify six hybridized resonant modes at 0.47, 0.52, 0.63, 0.76, 0.84

and 0.92 eV. Figure 5.51b shows the experimental and simulated energy filtered maps

of these modes. Following the same description used above, we can identify the modes

present in the 2/3-overlapping symmetric NWs. The modes at 0.47 eV and 0.52 eV

can be identified as a 2nd order antibonding (2A2/3S) and bonding (2B2/3S) modes

respectively, as shown on their charge distribution in Figure 5.50b. The geometry of

the structure, in this case, does not favor the coupling of 2nd order modes as indicated

by the low splitting energy of only 50 meV. What is more, to be able to detect the

first peak at 0.47 eV, we have to integrate the signal over the green region in the

inset. Also, in the blue-line spectra, we cannot readily separate the peak at 0.47.

To clearly separate this peak we fit two Gaussians to the integrated spectra on the

blue region. After the fitting, we are able to confirm the second peak at 0.52 eV. We

can also classify the modes at 0.63 and 0.76 as 3rd order antibonding (3A2/3S) and

bonding (3B2/3S) modes respectively. Here, the geometry facilitates the coupling by

direct antinode alignment of the 3rd order mode in each NW. This is reflected in a

high splitting energy of 130 meV. Conversely to the hybridized 3rd order modes in

the 1/2-overlapping NWs, in this case, the modes do not experienced suppression,

indicating that by changing the alignment of the NWs we can control which modes

are suppressed or enhanced. For the case of the 4th order modes, the disadvantageous
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Figure 5.50: Simulated charge distribution of the modes depicting the plasmonic
coupling of modes in the 1/2 overlapping symmetric NW array (a) and in the 2/3
overlapping symmetric array (b).
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Figure 5.51: (a) Simulated (dashed lines) and experimental (solid lines) EEL spectra
of the 2/3-overlapping symmetric NWs of length L and spaced by d (blue and red
lines). The experimental spectra are acquired from the areas indicated in the HAADF
image in the inset. The simulated spectra are calculated at two positions indicated
by the dots in the inset. For comparison, experimental and simulated spectra of a
single NW (black lines) of similar dimensions is also shown in (a). The spectra shows
how the modes of order n in each NW couple and split when the offset NWs are close
to each other (dotted lines), forming bonding (nB2/3S) and antibonding (nA2/3S). (b)
The experimental (left) and simulated (right) energy filtered maps of the resonant
modes supported by the 2/3 overlapping symmetric NWs are also shown (scale 200
nm).
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geometry that suppress these modes makes it difficult to identify the peaks from the

spectra in 5.51a. We are able to detect these peaks separated by 80 meV by Gaussian

fitting on the signal integrated over the red region. In this way, we can identify the

4th order resonant modes as antibonding (4A2/3S) and bonding (4B2/3S) at 0.84, and

0.92 eV respectively. These results suggest that it is possible to promote or suppress

the coupling of a particular mode by changing the overlapping length. What is more,

it is feasible to reverse the energetic order of the bonding and antibonding modes.

5.2.2 Coupling of asymmetric offset nanowires

Figure 5.52a shows the experimental and simulated EELS spectra of the asymmetric

1/2-overlapping array comprised of two NWs with dimensions specified in in Figure

5.52b. The experimental spectra are acquired over the two regions shown in the inset,

while the simulated spectra are calculated at the positions indicated by the dots in

the inset. For comparison the figure includes the simulated spectrum of two isolated

NWs with lengths of 1160 nm (black line) and 580 nm (gray line).The fabricated

isolated long wire is 1186 nm long and 63 nm wide, while the short isolated wire is

595 nm long and 55 nm wide. As in the case of symmetric arrays, we will describe

the modes as bonding B and antibonding A according to their charge distribution.

However, in this case, the interaction is not between equal modes, as was the case of

the symmetric array. Here the coupling is between a high order mode in the long wire

and a low order mode in the short wire. Therefore, for the designation of bonding or

antibonding, we will use as a reference the charge distribution of the short wire. If

the charge distribution in the long wire is equal or symmetric to the short wire we

have an antibonding mode, if the charge distribution is opposite or antisymmetric we

have a bonding mode. In addition, because we have interaction of modes of different
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Figure 5.52: (a) Simulated (dashed lines) and experimental (solid lines) EEL spec-
tra of the 2/3-overlapping asymmetric NWs spaced by d (blue and red lines). The
experimental spectra are acquired from the areas indicated in the HAADF image in
the inset, and the simulated spectra are calculated at two positions indicated by the
dots in the inset. For comparison, experimental and simulated spectra of isolated
long (black lines) and short (gray line) NWs of similar dimensions as the ones in the
array are also shown in (a). (b) Experimental (left) and simulated (right) energy
filtered maps of the resonant modes supported by the 1/2 overlapping asymmetric
NWs (scale 200 nm).

orders, the coupling does not only depends on the geometrical alignment but also

in the spectral overlap of the modes. In the asymmetric 1/2-overlapping array the

geometry is chosen such that the 2nd order mode in the longest NW and the 1st

order modes of the adjacent NW, and multiples there of, will be aligned and the

coupling promoted. However, due to retardation effects, the spectral overlap is not

guaranteed, hindering the coupling. Considering this, we can identify the five modes

at 0.42, 0.54, 0.68, 0.80 and 0.94 eV shown in the spectra and the energy filtered
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maps in Figure 5.52. From the simulated and experimental energy filtered map of the

first mode at 0.42 eV, we can see that the mode is dominated by 1st resonant mode

of the short wire. However, in the simulation, the presence of the long wire produces

a 20 meV red-shift of the mode compare to the 1st resonance in the isolated small

wire, which is evidence of coupling between wires. This coupling is also illustrated

in the charge distribution in Figure 5.53. In the experiment, we cannot quantify the

shift due to coupling reliably since we do not have isolated wires with exactly equal

dimensions as the ones in the fabricated array. The geometrical imperfection of the

fabricated NWs might enhance or hinder the interaction of the modes in the array.

For example, if the alignment is kept by fabricating the small wire exactly half the

length of the large wire and spectral overlap is increased by changing the width of

one of the wires, the coupling strength would increase. Despite the small coupling

strength, the charge distribution of this mode displays an asymmetric alignment of

the 1st mode of the small wire and the 2nd mode of the long wire, as seen in Figure

5.53. Based on this description of the mode at 0.42 eV we will denote it 1′ − 2B1/2A.

The first number describes the coupling mode in the short wire, the second number is

the coupling mode in the long wire, the apostrophe indicates the dominant mode, the

letter represents the charge distribution, and “1/2A” indicates the 1/2-overlapping

asymmetric geometry.

Following the nomenclature from above, we can identify the mode at 0.54 eV as

1− 2′A1/2A, indicating that the second mode of the long NW is the dominant mode

and the alignment of the charge distribution is symmetric. In the simulation, the

effect of coupling in this mode is negligible with no energy shift experienced by the

dominant mode in the array compared to the isolated wire. Since we do not know the
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Figure 5.53: Simulated charge distribution of the modes depicting the plasmonic
coupling of modes in the 1/2 overlapping asymmetric NW array (a) and in the 2/3
overlapping asymmetric array (b).
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exact value of the resonant energy of the isolated structures in the experiment, we

cannot comment on the coupling strength of this mode. However, even with no energy

shift present in the simulation, the charge distribution of this mode corresponds to an

antibonding mode when the electron probe is located on a high probability position,

as shown in Figure 5.53. The mode at 0.68 eV is identified as the 2 − 3′B1/2A.

This mode is formed by the very weak interaction of the dominant 3rd mode of the

long wire and the 2nd mode of the short wire. This weak coupling is a result of

the geometric misalignment of the structure and the lack of spectral overlap between

modes. The modes at 0.80 and 0.94 eV can be identified as 2′−4B1/2A and 2−4′A1/2A

respectively, as shown by the charge distribution in Figure 5.53. Although there is a

dominant mode in each one this 2− 4 modes, the coupling strength is much stronger

than in the other analyzed modes in this structure. This stronger coupling can be

attributed to the nodal alignment between the 2nd mode of the short wire and the 4th

mode of the long wire created by the geometry, and to the greater spectral overlap

between these modes compared to the overlap of the other modes. The stronger

coupling can also be measured by the energy shift of the coupled modes. In the

simulation, mode 2′ − 4B1/2A experiences a red-shift of 60 meV compared with the

2nd mode of the isolated short wire and mode 2 − 4′A1/2A is blue shifted by 30

meV compared with the 4th mode of the isolated long wire. The modes analyzed

in the 1/2 overlapping asymmetric structure can be considered intermediate states

between a fully hybridized mode as the ones shown in the symmetric geometry and

an independent mode in isolated wires.

In the asymmetric 1/2 overlapping array, the geometry facilitated the coupling

of even modes. In the asymmetric 2/3 overlapping arrays, the geometry favors the
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Figure 5.54: (a) Experimental (solid lines) and simulated (dashed lines) EEL spec-
tra of the 2/3-overlapping asymmetric NWs spaced by d (blue and red lines). The
experimental spectra are acquired from the areas indicated in the HAADF image in
the inset, and the simulated spectra are calculated at two positions indicated by the
dots in the inset. For comparison, experimental and simulated spectra of isolated
long (black lines) and short (gray line) NWs of similar dimensions as the ones in the
array are also shown in (a). (b) Experimental (left) and simulated (right) energy
filtered maps of the resonant modes supported by the 2/3 overlapping asymmetric
NWs (scale 200 nm).
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alignment of the antinodes of the 3rd resonance in the long NW with the 2nd order

mode of the short wire. The simulated and experimental EELS spectra of the 2/3

asymmetric array are shown in Figure 5.54a for NWs spaced by 60 nm. From the

spectra we can identify five peaks at 0.37, 0.48, 0.60, 0.71, and 0.90 eV corresponding

to plasmon resonances with their experimental and simulated energy filtered maps

shown in Figure 5.54b. Following the nomenclature described above, we identify the

first mode at 0.37 eV as 1′− 2B2/3A. This mode is dominated by the 1st mode of the

short NW which is weakly interacting with the 2nd mode of the long NW. Although

the geometry and the spectral overlap are disadvantageous for the coupling, a small

interaction is still present inducing an antisymmetric alignment of the charges in the

NWs, as shown in Figure 5.53. The coupling also creates a red-shit of 30 meV in the

simulation of this mode compared to the 1st mode of the isolated short wire. The

mode at 0.48 eV is identified as 1− 2′A2/3A and no energy shift with respect the 2nd

mode of the isolated long NW is observed due to coupling in the simulation. The

modes at 0.60 and 0.71 eV are identified as 2 − 3B2/3A and 2 − 3A2/3A. Notice that

in the denomination of these modes we have not included an apostrophe indicating

a dominance of one particular mode. This lack of dominance of one particular mode

is produced by the favorable antinodal alignment of the asymmetric 2/3-overlapping

geometry and the perfect spectral overlap, shown in the simulated spectra, with equal

resonant energies of the 2nd and 3rd modes of the short and long NWs respectively.

This lack of dominance can be seen in the energy filtered maps in 5.54b, where we

notice that the loss probability of these modes is localized in both NWs and there is

not a preferential excitation of one particular NW as was the case of modes 1′−2B2/3A

and 1−2′A2/3A. The advantageous configuration of this asymmetric array that favors
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the formation of the 2−3B2/3A and 2−3A2/3A modes is also reflected in the coupling

strength which can be quantified by the energy shift of these modes compared with the

energies of the resonant modes in the isolated wires. From the simulations, we obtain

an energy shift of 120 meV for mode 2 − 3B2/3A and an energy shift of 40 meV for

mode 2− 3A2/3A which amounts to a total energy splitting of 160 meV. These values

are comparable with the energy shifts in the symmetric arrays, for example, in the

2/3 overlapping symmetric array the coupling of 3rd order modes causes an energy

splitting of 140 meV, and in the 1/2 overlapping symmetric array, the coupling of

2nd order modes produces an energy splitting of 120 meV. This result shows that by

careful tuning of the nodal alignment and spectral overlap of the modes it is possible

to enhance the coupling of selected modes on NWs of different lengths. Finally, the

peak at 0.90 eV is identified as mode 3′ − 4A2/3A. In the simulation, the interaction

of the 3rd mode of the short wire and the 4th mode of the long wire creates two

modes 3− 4′B2/3A and 3′ − 4A2/3A. However, in the experiment, we did not find the

3− 4′B2/3A mode that in the EELS simulated map is strongly dominated by the 4th

mode of the long wire (not shown). The absence of this mode might be caused by

further misalignment in the fabricated structures, considering that the short wire is

larger than 2/3 of the long wire. The results show the level of control that is possible

to obtain by the coupling of plasmonic structures. Such a level of control can also

be found in plasmonic heterodimers [127], however the fabrication of structures with

multiple materials requires multi-step lithography, and in comparison the proposed

approach is done with structures of the same material simplifying the fabrication

process.
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5.3 Conclusions

The coupling of plasmon resonances is a promising method for tailoring plasmonic

properties of nanostructures. In this Chapter, we have used the high spatial and en-

ergy resolution of an STEM-EELS system to analyze, in depth, the coupling mecha-

nism of edge modes in planar nanostructures including nano-squares, slot waveguides,

and offset nanowires. We have shown that the coupling can be understood by a sim-

ple and intuitive scheme based on three distinct behaviours: 1) A strong coupling

through the edge of the nanostructure that forms modes denominated bonding gap

edge modes and that experience a significant red shift as the gap size decreases, and

antibonding gap edge modes that blue shift until convergence for small gap separa-

tions; 2) a weaker coupling through a corner, that forms bonding and antibonding

corner edge modes similar to the ones found in coupling of nanowires; 3) a non-

coupling behaviour where the edge of the nanostructure behaves independently of the

rest of the structure and no coupling is observed.

We further studied the formation of gap edge modes in offset nanowires. We have

shown that by careful tuning of the nodal alignment by changing the overlapping

length in offset nanowires of equal length, it is possible to promote or suppress the

coupling of a particular mode. We have also shown that by the adjustment of the

offset we can control the energy of the bonding or antibonding modes to the level

where we can even reverse the energetic order of this modes. In this Chapter, we

have also demonstrated that the coupling of edge modes in NWs of different lengths

is possible. In this asymmetric NW arrays, two factors play a role in determining the

coupling strength: the nodal alignment and spectral overlap of the interacting modes.

The results indicate that it is possible to enhance the coupling of selected modes by

150



Ph.D. Thesis - Edson Pazur Bellido Sosa McMaster - Mat. Sci. & Eng.

tuning these two parameters. The analysis of the asymmetric NW arrays also showed

that it is feasible to control the coupling in order to create modes in which a mode

of a selected wire dominates the optical response. This study proves that plasmonic

coupling is a very versatile tool to modify the optical response of plasmonic systems.

What is more, here we showed a complete picture of plasmonic coupling on planar

structures, and provide simplified design rules to aid in the design of future plasmonic

devices compatible with planar industrial fabrication methods.
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Chapter 6

Surface Plasmons on Fractal

Structures

The use of fractal geometries has significantly impacted many areas of science and

engineering. One such area is antenna design, where fractal geometries are often

utilized in portable communication devices for their compact, broadband character-

istics [128]. The term fractal, that was popularized by the work of Mandelbrot [129],

is used to describe curves (most commonly in 2 dimensions) that present repeating

patterns (exact, quasi or statistical self-similarity), at all scale, often obtained by it-

eratively applying some transformation on a system. This particular property as well

as their ability to compactly fill space makes fractals ideal candidate for broadband

antennas and they have indeed inspired the design of several macroscopic anten-

nas that exhibit broadband behavior and improved performance in the GHz regime

[130, 131, 132, 133, 134, 135].
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In recent years, interest in a new type of antenna based on surface plasmon res-

onances, designed to operate at visible light frequencies, has been motivated by po-

tential applications in sensing [136], imaging [137], energy harvesting [28], and dis-

ease prevention and cure [138], as we saw in previous chapters. These so-called

“optical antennas” have characteristic dimensions at nanometer-length scales, requir-

ing nanometer precision for their fabrication and characterization. With improved

nanofabrication tools, including focused ion beam and electron beam lithography

(EBL), nano-fabrication is becoming increasingly feasible. Early prototype structures

studied include dipole [139], gap [122, 140], bowtie [141] and Yagi-Uda [142] anten-

nas. The nanoscale dimensions of optical antennas call for demanding characterization

requirements, and experimental techniques that can image beyond the optical diffrac-

tion limit are necessary for the detailed study of sub-wavelength field confinements

in optical antenna structures. Electron energy loss spectroscopy (EELS), performed

in a scanning transmission microscope (STEM), is one of the few techniques which

meets these requirements, capable of sub-nm spatial resolution and a spectral res-

olution exceeding 100 meV [82, 143]. The STEM-EELS technique has been used

successfully to map optical excitations in a variety of nanostructure geometries, in-

cluding triangular prisms [10], rods [12, 60], wires [11], cubes [60], among others

[144, 75, 79, 67, 76, 145, 64, 127].

Early studies of optical fractal antenna designs, including the Cayley tree [146],

Sierpinski fractals [147, 148, 149] and other fractal geometries [150, 151], suggest that

broadband absorption can be achieved in fractal plasmonic nano-antennas. In this

work, we study the Koch snowflake fractal geometry. A Koch fractal is constructed
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by starting with an equilateral triangle (iteration 0) and repeating the following pro-

cedure iteratively: Divide each line segment of the structure into three segments of

equal length, then, place an equilateral triangle pointing outward in the central seg-

ment in each line (the central segment is the base of the triangle). The fractals are

organized by the number of times the described procedure was applied (iteration).

We use EBL to fabricate a set of nanoscale fractal antennas on 50 nm thick silicon

nitride membranes, and STEM-EELS is used to image the optical excitations sup-

ported by the structures. The high spatial resolution achieved with STEM-EELS

allows us to visualize the multiple plasmonic modes supported by the fractal struc-

tures, to analyze structural origin of the modes present, and to study the effect of

self-similarity by comparing the response of different fractal geometry iterations. The

experimental results are complemented with numerical calculations of both EELS

spectra and eigenmode using a full wave surface integral equation method [152, 153]

performed by collaborators at the Nanophotonics and Metrology Laboratory in the

École Polytechnique Fédérale de Lausanne - Switzerland. The simulations consider

a homogeneous medium surrounding the structure, with a permittivity of ε = 1.8 to

account for the substrate influence. A Drude model was used for the permittivity

of Ag with a plasma frequency of 9.3 eV, losses of 0.03 eV and ε∞ = 4.3. In this

Chapter, we show that resonances in a complex geometry such as the Koch snowflake

fractal follow simple scaling rules based on the number of characteristic edges found

in the structure. These scaling rules can be used in the design of fractal antennas for

applications in sensing and compact nanophotonic architectures.

To analyze the effect of self-similarity on the spectral response of metallic nano-

antennas, we fabricated silver Koch snowflake fractal antennas of iteration 0, 1 and
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Figure 6.55: Experimental (top) and simulated (bottom) EEL spectra of Koch fractal
antennas of iteration 0 (a), 1 (b), and 2 (c) acquired at the color-coded positions in-
dicated in the ADF image in the insets. The arrows indicate the peaks corresponding
to resonant edge modes. Experimental EELS maps and simulated nearfield intensity
distribution of the modes found in the Koch fractals of iteration 0 (d), 1 (e), and 2
(f). The energy indicated in the nearfield intensity map is the one of the eigenmode,
not the energy of the peak in the EEL spectra.
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2, as shown in the insets in Figure 6.55. The iteration 0 structure has a side length

of 2 µm, and all iterations have a thickness of 30 nm. The spectral response is

characterized using an FEI-Titan system equipped with a monochromator and EELS

spectrometer as described in Chapter 2. To further improve the energy resolution

we performed the deconvolution procedure described in Chapter 3 [106], achieving an

effective energy resolution of up to 30 meV in our spectrum images. EELS simulations

of the Koch fractal structures are performed to correlate the experiments. Figure

6.55a,b,c shows the experimental (top) and simulated (bottom) EELS spectra of the

fractal structures obtained at several positions indicated by the color-coded boxes in

the insets. Overall, although the background in the experiment is high due to the

tails of the zero-loss peak, we observe a good agreement between the simulation and

the experiment with plasmon peaks and energies well reproduced. The increasing

difference of the peaks energy between experiment and simulation is assumed to be

due to the absence of the substrate in the simulations, whose influence can change with

increasing mode energy, as well as possible deviations of the actual Ag permittivity

from the Drude model used. The spectral response of each structure shows several

surface plasmon resonances with a first resonant peak shown as a shoulder of the

zero-loss peak tails at approximately the same energy (0.22 ± 0.04 eV) for all the

iterations of the Koch fractal behavior. The presence of these peaks is confirmed in

the well-resolved simulations.

6.1 Edge modes and Koch fractal iteration zero

As previously described, the resonances in a planar structure can be described as

quasi one-dimensional resonances (edge modes) along the edge of a structure [76, 14,
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77, 111]. An edge mode of order m is noted Em, m being the number of nodes along

the edge. Also, edge modes can be designated odd and even to describe odd or even

number of nodes m (or equivalently opposite or identical charges at extremities). In

a nanostructure, the edge modes will form eigenmodes according to the symmetry

of the structure. Based on the symmetry of the Koch fractal structures, we will

designate the eigenmodes symmetric or antisymmetric depending on their charge

distribution having symmetric or antisymmetric mirror symmetry with respect to the

vertical axis. Due to the structure symmetry, each eigenmode having only the mirror

symmetry (symmetric or antisymmetric) will implicitly exist 3 times. Since it does

not bring any additional information, this “degeneracy” will not be mentioned further

on, and the term degeneracy will only refer to eigenmodes having the same energy but

different charge distribution that cannot be matched by mirror or rotation operation.

EELS maps also follow the structure symmetry because the signal is obtained by

exciting and probing at the same location, the simplest example being the resonances

of a nanodisk that appear like concentric rings [63], thus for Koch snowflake fractals

EELS maps always appear C3 symmetric. To be able to better identify the eigenmodes

to the EELS map, the electric nearfield intensity of each eigenmode is “symmetrized”

by adding itself three times with rotation of 0◦, 120◦ and 240◦. Interestingly we

observe that degenerated eigenmodes give the same symmetrized nearfield map.

Following this description, we can identify the modes present in the equilateral

triangle (Koch fractal iteration 0). Figure 6.55(d) shows energy filtered EELS maps

and the simulated, symmetrized, electric nearfield intensity distribution of the eigen-

modes of iteration 0. The first resonant peak at 0.22 ± 0.03 eV and its associated
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Figure 6.56: Measured energy filtered maps of the Koch snowflake fractal iteration 0
and their corresponding calculated eigenmodes and their near-field distribution. The
numbers correspond to the EELS peaks in Figure 6.55a.
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map correspond to a dipolar eigenmode or edge mode order one (E1), as the sur-

face charge distribution of the eigenmodes associated to this peak shows in Figure

6.56. The higher order eigenmodes display the characteristic node distribution of

quasi one-dimensional edge modes, and they can be identified as edge modes order

two (E2), three (E3), four (E4), and five (E5) at 0.44 eV, 0.62 eV, 0.78 eV, 0.90 eV,

and 1.06 eV respectively (with an effective energy resolution of 30 meV). In the sur-

face charge distribution of the eigenmodes shown in Figure 6.56, we observe that all

three edges of the triangle in eigenmodes E2, E4 and E6 (even edge modes) display

a charge distribution corresponding to a one dimensional mode of the same order.

For the case of E1, E3 and E5, two degenerate eigenmodes are present: one in which

two edges have the same charge distribution (symmetric eigenmode); and another

mode in which only one edge exhibits the charge distribution corresponding to a one

dimensional edge mode. We note that the two other edges have opposite charge dis-

tribution sign relatively to each other (antisymmetric eigenmode). Equivalently we

can observe that eigenmodes E2, E4 and E6 follow the same C3 symmetry as the

triangle, whereas other eigenmodes only have the mirror symmetry with degeneracy

two (antisymmetric and symmetric respectively to the vertical axis). Based on the

symmetry of the triangle, the formation of two degenerate eigenmodes for odd edge

modes is understandable. Because in all odd edge modes the charge at the extrem-

ities of the edge (the triangle corner) must be opposite, and in a triangle only two

edges at maximum can fulfill this constraint at the same time, the odd edge modes

therefore split into the symmetric and antisymmetric degenerate edge modes. The

surface charge distribution of the eigenmodes of iteration 0 confirms that it is possible

to describe them as quasi one-dimensional edge modes.
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6.2 Characteristic edges and Koch fractal itera-

tion one

As is the case in the Koch fractal iteration 0, the first mode in the fractals of iteration

1 is also identified as dipolar mode with the aid of the simulations. We also notice

that, although the geometry modification from iteration 0 to 1 is large, the energy of

the dipolar mode shifts only slightly in the simulation, shift that is below our detection

limit. Figure 6.58 show the surface charge distribution for the modes of the fractal

iteration 1, and we observe that for the dipolar mode two degenerate eigenmodes

are supported, one with a top-bottom dipole and the other with a left-right dipole,

equivalent to what we found in the dipolar modes in iteration 0. However, the higher

order modes of the Koch snowflakes of iteration 1 display complex EELS intensity

and charge distributions as observed in figures 6.55 and 6.58. To understand these

complex modes, we divided the edges of the fractal structure into characteristic edges,

composed of two segments with a 120 degrees angle between them (i.e. “V” shape),

as shown in Figure 6.67 and in the inset of Figure 6.57a. To isolate the characteristic

edge of the Koch fractal iteration 1, we reproduced this “V” shape at the end of a 50

µ m long silver strip. Figure 6.57(a-b) shows the EELS spectra and energy-filtered

maps of the silver strip representing the edges of the Koch snowflake fractal iteration

1. Here we are able to identify four resonant peaks that correspond to edge modes,

in a similar manner to the modes found in straight edges on silver strips [14, 112],

despite the fact that the characteristic shape of the Koch fractal is formed by two

edges at an angle. The EELS intensity distribution corresponds to edge modes of

order one (E1), two (E2), three (E3) and four (E4). As we saw in Chapter 4, bent
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Figure 6.57: Experimental EEL spectra of the characteristic shapes of Koch fractal
antennas of iteration 1 (a) and 2 (c, e) reproduced at the very end of a 50 µm long
silver strips acquired at the color-coded positions indicated in the annular-dark-field
(ADF) image in the insets. The arrows indicate the peaks corresponding to resonant
edge modes. EELS maps of the plasmon modes found in the characteristic shapes of
Koch fractal antennas of iteration 1(b) and 2 (d, f).
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edges will maintain the same quasi one-dimensional modes than the ones found in

straight edges. A similar behaviour was found in bent silver nanowires in which the

plasmon modes were unaffected by the presence of kinks and corners [11],

A side-to-side comparison of the maps of the isolated characteristic shape and

the snowflake fractal iteration 1 is shown in Figure 6.59. Comparing the spectra in

figures 6.55(b) and 6.57(a), we observe that the peak corresponding to the E1 mode

in the isolated edges is red-shifted by 70 meV with respect to the second mode in the

snowflake. If we align these peaks by red shifting the spectra in the Koch snowflake

iteration 1, as shown in figure 6.59(a), we observe an excellent match between the

peaks present in the Koch snowflake fractal and the modes of the isolated edge in the

50 µm silver strips. The small energy difference between the modes present in both

structures can be attributed to the interaction between the edge modes within the

Koch snowflake [77].

Based on the observation that bent edges can support edge modes equivalent

to the ones in straight edges, we can now compare the EELS maps of the isolated

edges with the ones of the Koch snowflake iteration 1. From the energy filtered maps

shown in Figures 6.55(e) and 6.57(b), we can recognize that the second mode in the

snowflake corresponds to an edge mode of order one (E1) or an edge dipolar mode

of the “isolated characteristic edge”. In the simulated EELS spectra of the Koch

snowflake iteration 1 (Figure 6.55b), we notice that the second peak at 0.32 eV is

actually formed by two close resonant peaks separated by only 46 meV. Due to the

intrinsic width, the experimental EEL spectra cannot resolve those two peaks and thus

only one peak appears. Based on these simulations, we know that the second resonant

peak, observed experimentally, is formed by three eigenmodes with two degenerate
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Figure 6.58: Measured energy filtered maps of the Koch snowflake fractal iteration 1
and their corresponding calculated eigenmodes and their near-field distribution. The
numbers correspond to the EELS peaks in Figure 6.55b.
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Figure 6.59: Side-to-side comparison of the modes in the isolated edges in the 50
µm silver strips (dashed lines) and in the full Koch snowflake fractals (solid lines)
of iteration 1. (a) EELS spectra acquired at the positions marked on the insets.
The spectra of the full Koch snowflake fractal is red shifted 70 meV to align the E1

modes of both structures. (b) Comparison of the EELS energy filtered maps of the
isolated edges (left) and of the full snowflake (right) showing that the modes on both
structures are equivalent.

modes as shown in Figure 6.58. Due to the symmetry of the structure, the eigenmodes

are formed by three different distributions of the E1 mode formed in the characteristic

“V” edges. In one degenerate eigenmode, the charge distribution of the E1 mode is

localized in the top and bottom “V” edges in a symmetric configuration (four times),

in the other degenerate eigenmode, it is localized in the left and right “V” edges

in an antisymmetric configurations (two times). In the non-degenerate eigenmode,

each one of the characteristic edges displays the charge distribution of the E1 mode.
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In a similar manner, the third peak at 0.65 eV is formed by edge mode order two

(E2), and it also has three eigemodes, two generate modes, one with a top-bottom

symmetric configuration and the other with a left-right antisymmetric configuration.

Equivalently, for the case of resonant peak four, five and six in Figure 6.55b, they are

formed by edge modes of order three, four and five respectively by comparison with

the isolated characteristic “V” shape.

6.3 Eigenmodes and coupling of edge modes
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Figure 6.60: (a) Simulated spectrum of Koch fractal iteration 1 for several fractal sizes.
The size displayed is the initial length of each side in iteration 0 of the fractal. The
two peaks show the evolution of the interaction of the bonding (B) and antibonding
(A) E1 edge modes, as the structure gets smaller a stronger interaction between E1

modes results in larger splitting energy of these peaks. The inset shows the position
where the spectra were calculated. (b) Energy diagram (not to scale) showing the
formation of bonding and antibonding modes due to coupling of edge modes E1 and
E2. (c) Charge distribution diagrams of the bonding and antibonding E1 modes in
Koch fractal iteration 1. Due to the symmetry of the structure the bonding mode
supports two degenerate eigenmodes; the calculated eigenmodes are displayed inside
the diagrams.

Although the experimental results could be explained neglecting the formation
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of three eigenmodes with charge distribution corresponding to edge modes in each

characteristic edge, the formation of these eigenmodes might indicate interaction of

edge modes within the fractal structure, as shown in the work of Schmidt et al. in

rectangular structures [77]. To further analyze the formation of these eigenmodes,

we simulate the EELS spectra of Koch snowflake fractals iteration 1 of several sizes

while maintaining the thickness of the structure as shown in Figure 6.60a. We want

to examine the energy splitting of the peaks formed by E1 edge modes and not the

shift in energy due to the different fractal size; therefore, we align the second peak of

each fractal to the second peak in the fractal of initial length of 2 µm. The spectra

of the fractals of initial length 1 µm, 500 nm, and 250 nm were red shifted by 0.27

eV, 0.69 eV, and 1.2 eV respectively. We observe that, as we increase the size of the

fractal, the energy splitting reduces. This behavior might suggest that interaction of

the E1 edge modes is responsible for the formation of these two peaks. As the size

of the fractal increases the distance between edges increases and interaction between

edge modes is weaker, thus the energy splitting is reduced.

Also, we can use the hybridization model [2] to explain the charge distribution

of the eigenmodes in the Koch fractal iteration 1. For the case of edge modes and

one-dimensional modes, when the interaction is through a corner or tip [112, 16],

as seen in Chapter 5, the hybridization model dictates the formation of a bonding

and an antibonding mode. In the case of the Koch fractal formed by connected

characteristic edges, the hybridized modes become bonding (B) and antibonding (A)

charge transfer hybridized modes [69], as shown in Figure 6.60b for modes E1 and

E2. From this results we can observe that the antibonding modes have equal charges

at the extremities, while bonding modes have opposite charges. The C3 symmetry

166



Ph.D. Thesis - Edson Pazur Bellido Sosa McMaster - Mat. Sci. & Eng.

B-E2
A-E2

Symmetric Antisymmetric

Figure 6.61: Charge distribution diagrams and calculated eigenmodes of the bonding
(B) and antibonding (A) E2 modes in Koch fractal iteration 1. Due to the symmetry
of the structure the bonding mode supports two degenerate eigenmodes, and the
antibonding mode one non-degenerate eigenmode.

of the Koch fractal would allow a configuration in which all the edges can display

the antibonding modes as shown in Figure 6.60c and 6.61 for edge modes E1 and E2

respectively. However, for the case of the bonding modes in which the charges at the

extremities are opposite, the symmetry only allows two sides of the structure to fulfill

this constrain. As was the case for the edge modes in Koch fractal iteration 0, this

constraint promotes the formation of a symmetric and an antisymmetric degenerate

eigenmodes. In the symmetric eigenmode we have two groups of bonding edge modes

(blue and red in Figure 6.60c and 6.61), each group formed by two sides on the fractal

displaying bonding edge mode charge distribution symmetrically. In the antisymmet-

ric eigenmode we have two bonding edge modes (blue and red in Figure 6.60c and
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6.61) at opposite sides of the fractal displaying an antisymmetric charge distribution.

This description of the formation of eigenmodes in the Koch fractal order 1 based

on the hybridization of edge modes suggest that there is coupling within the frac-

tal structures. However an in-depth analysis of edge coupling that goes beyond the

purpose of this work is required to confirm this hypothesis.

6.4 Koch fractal iteration two
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Figure 6.62: Side-to-side comparison of the modes in the isolated characteristic edge
in the 50 µm silver strips (dashed lines) and in the full Koch snowflake fractals (solid
lines) of iteration 2. (a) EELS spectra acquired at the positions marked on the insets.
The spectra of the full Koch snowflake fractal is red shifted 70 meV to align the E1

modes of both structures. (b) Comparison of the EELS energy filtered maps of the
isolated edges (right) and of the full snowflake (left) showing that the modes on both
structures are equivalent.

The same approach of edge isolation is taken to understand the modes present in

the iteration 2 of the Koch fractal. We therefore divided the edges of the snowflake

structure to find the characteristic shape of the structure, which is the same “V” shape
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as for the iteration 1 but one-third smaller, as shown in Figure 6.57(d).In the EELS

spectra and energy filtered maps of the isolated characteristic shape, shown in Figure

6.57(e-f), we are able to identify two resonant peaks that correspond to edge modes

E1 and E2, similar to the ones found in the iteration 1 fractal, but at higher energies

due to the shorter length of the edge. A comparison of these two modes, excited

in the characteristic isolated shape with the modes present in the Koch snowflake

fractal of Figure 6.55(c,f), we can identify mode four of the fractal as an edge mode

order one (E1) of the isolated edge (because of the same strong EELS signal on each

small vertex) and mode seven of the fractal as an edge mode order two (E2) of the

isolated edge on the strip. To corroborate this argument, a side-to-side comparison

of the maps and spectra of the isolated characteristic “V” shape and the snowflake

fractal iteration 2 is shown in Figure 6.62 displaying the excellent nodal distribution

agreement of the modes between the Koch fractal and the isolated edge. As we did in

the comparison between the fractal iteration 1 and its characteristic isolated edge, for

iteration 2 we also red shift the spectra in the Koch snowflake iteration 2 by 70 meV,

as shown in Figure 6.62(a). We observe that after the shift the peaks corresponding

to the E1 and E2 modes in the isolated edges in the 50 µm silver strips match in

energy scale the peaks present in the Koch snowflake fractal.

For the fractal structure iteration 2, we also isolated and analyzed a larger portion

of the structure, as shown in Figure 6.57(e-f), i.e. the characteristic shape of the Koch

fractal iteration 1 after we apply an additional iteration of the fractal procedure to it.

In this larger portion of the fractal, we can distinguish five peaks, as shown in Figure

6.57(e). The first peak at 0.27 ± 0.04 eV corresponds to a E1 mode or dipolar mode,

which is the same mode displayed in the silver strip of the Koch fractal iteration 1
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Figure 6.63: Measured energy filtered maps of the Koch snowflake fractal iteration 2
and their corresponding calculated eigenmodes and their near-field distribution. The
numbers correspond to the EELS peaks in Figure 6.55c.
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at 0.28 ± 0.04 eV. This result suggests that the dipolar mode of iteration 1 can still

be excited in the next iteration of the fractal as the dipolar mode is the most global

one (as seen in figure 6.63) and is thus expected to be minutely affected by the fine

modification of the 2nd iteration. This effect is also observed in the Koch snowflake

fractal iteration 1 (figure 6.55b), where the second mode, which is a dipolar edge

mode (E1) at 0.32 ± 0.04 eV also present in the Koch snowflake iteration 2 (Figure

6.55c) at 0.31 ± 0.04 eV.

The second peak in Figure 6.57e is labeled as “2, 3” because in the energy filtered

maps we observed two dissimilar intensity localizations, one with the antinodes lo-

cated in the inner vertices and the other located in all vertices, as shown in the maps

two and three in Figure 6.57f respectively. To extract the EELS maps corresponding

to each surface plasmon resonance, we isolate the contribution from each edge mode

to the spectrum image using the non-linear least squares fitting tool of the “Digital

Micrograph” software [120], which fits Gaussian peaks to a spectrum image. The

separation two Gaussians to the peak at 0.55 eV yield the two EELS maps at 0.46

± 0.07 eV and 0.58 ± 0.09 eV for the second and third mode respectively. The third

and sixth modes of the isolated edges of fractal iteration 2 on the strip shown in figure

6.57(e-f) are the same two modes found in the isolated characteristic shape of Koch

fractal iteration 2 shown in figure 6.57(c-d). Thus, the modes of the isolated edges

can be described as edge modes order one (E1) and two (E2) and represent modes

four and seven found in the Koch snowflake fractal iteration 2 in figure 6.55(c,f).

These results confirm that the modes present in the strips are a good representation

of modes present in the Koch snowflakes.

When two of the characteristic “V” shapes of Koch fractal iteration 2 are joined
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Figure 6.64: Side-to-side comparison of the modes in the isolated edges in the 50
µm silver strips and in the full Koch snowflake fractals of iteration 2. (a) EELS
spectra acquired at the positions marked on the insets. The spectra of the full Koch
snowflake fractal is red shifted 70 meV to align the E1 modes of both structures. (b)
Comparison of the EELS energy filtered maps of the isolated edges (left) and of the
full snowflake (right) showing that the modes on both structures are equivalent.

by a 120 degrees angle, we generate an inverted “U”-like shape as shown in the central

area in the inset in Figure 6.57(e) and 6.67. This “U” shape, despite the multiple

kinks, also sustains edge modes. Modes E1 (dipolar edge mode), E2, and E3 can

be identified at 0.46 ± 0.07, 0.72 ± 0.04, and 0.95 ± 0.04 eV as seen in Figure

6.57(f). The “U” shape is also present in the full Koch snowflake fractal iteration

2 in Figure 6.55(c,f), and by comparison it displays the same edge modes found in

the isolated edge seen in Figure 6.57(e-f).The third, fifth and sixth peaks in the full

Koch snowflake is a E1, E2, and E3 modes respectively. To confirm this identification,

Figure 6.64 shows the good match between the modes present in the Koch snowflake

fractal iteration 2 and the modes isolated in the 50 µm silver strips. The spectra in
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Figure 6.64a, also shows a good energy overlap between the modes in the isolated

edges on the strip and the modes of the snowflakes after the latter is red-shifted by

70 meV. The energy shift can be mainly attributed to interaction of edge modes in

the snowflake [77] and to a lower extent to the fabrication procedure that did not

produce equal edges and sizes in both structures. This supports the evidence that

the isolated modes on the silver strip are equivalent to the modes present in the Koch

snowflake fractals. To support the proposed concept that a “U” characteristic edge

structure can sustain plasmonic edge modes similar to the ones found in a straight

edge, we draw a parallel and analyze the modes in a simulated “U” shape bent silver

nanowire [67, 154]. Figure 6.65 shows the spectra and the energy-filtered maps of the

bent nanowire, demonstrating that, despite the bending, the nanowire still supports

one-dimensional modes.
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Figure 6.65: Simulated EELS spectra (a) and energy filtered maps (b) of a 444 x 44 x
30 nm3 silver nanowire bent in a “U” shape formed by joining two 120 degrees bent
nanowires. The maps (b) show that the nodal distribution of a straight nanowire is
maintained in the “U” shaped nanowire.
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6.5 Self-similarity of edge modes

Now that we have identified all the edge modes present in the Koch snowflake fractals,

we can analyze the self-similarity or fractal character of the edge modes present in

the structures as we increase the number of iterations. Due to the C3 symmetry of

the Koch snowflake fractal, each mode exists 3 times. As we explained above, in our

analysis we ignore this “degeneracy”. For each edge mode in the Koch snowflake

fractal structure multiple eigenmodes can be found, however in our analysis of self-

similarity of edge modes we will not consider these eigenmodes and we only focus on

the modes found experimentally. Figure 6.66 shows a diagram depicting the formation

of edge modes for each fractal iteration. In iteration 0, we have only one mode of

a particular order for each edge. In Koch snowflake fractal iteration 1, we have two

modes that originate from a dipolar/E1 mode and only one mode for each higher order

edge mode. As described above, the first mode is the same dipolar mode found in

iteration 0, and the second mode is formed by the E1 modes in the characteristic “V”

edges in this iteration as shown in Figures 6.57(c) and 6.67. In the case of the Koch

fractal iteration 2, we have four dipolar/E1 modes, one coming from fractal iteration

0, one from the E1 mode of fractal iteration 1, and two new E1 modes. This structure

presents two types of characteristic edges, one is the characteristic “V” shape and

the other is the “U” shape as shown in Figures 6.57(e) and 6.67, and each one of

these two edges can support an E1 mode, thus two new modes are created in this

iteration. As was the case for iteration 0 and 1, in iteration 2 also only one mode of

higher order is supported. From this analysis we notice that the fractal character of

the Koch snowflake is reflected in the number of dipolar/E1 modes supported by the

fractal structure. In addition, we can deduce that the total number of edge modes in
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Figure 6.66: Diagram of the formation of the plasmon modes in Koch snowflake
fractal antennas. The number of modes depends on the number of independent edges
as described in the text.
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a Koch snowflake is equal to the number of dipolar/E1 modes in the previous fractal

iteration plus the modes formed on the characteristic edges present in the fractal.

Because the experimental results show that the modes in the fractal are governed by

the modes in the characteristic edges, this analysis can be applied to other planar

fractal structures.

Figure 6.67: (Left) Equilateral triangle which is the iteration 0 of the Koch snowflake
fractal. (Center) Koch snowflake fractal iteration 1 showing the characteristic “V”
shape of the structure formed by two line segments at an 120 degrees angle. (Right)
Koch snowflake fractal iteration 2 showing its two types of chracteristic edges: One
type is the characteristic “V” shape (in black). The other type is the “U” shape (in
blue) formed by two characteristic “V” shapes at 120 degrees angle. The figure shows
the charge distribution of an edge mode that is supported in each one of the edges.

Now that we understand how the modes evolve as we increase the fractal iterations

we can extend and quantify the number of dipolar/E1 modes (N edges) generated by

the self-similarity in the Koch snowflake fractal. From our analysis, we can infer

how many types of characteristic edges in the Koch fractal are produced after n

iterations of the fractal. For n = 0, and 1 only one type of characteristic edge is

produced, however for n n > 1 , after each iteration two types of characteristic edges

are produced, the “V” and the “U” edges. Therefore, N edges
0 = 1, and for n > 0,
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N edges
n = 2n. This results shows that the plasmons excited on Koch snowflake fractal

structures shows a self-similar fractal response with the number of modes increasing

after each iteration. This confirms that plasmonic fractal optical-antennas can exhibit

multi-resonant or broadband behaviour while maintaining a compact structure similar

to the ones found in macro-scale antennas.

6.6 Conclusions

We have analyzed and described the plasmon modes present in planar silver Koch

snowflake fractal antennas. The lowest energy modes present in all the fractal struc-

tures were identified as dipolar modes. For the higher energy modes, insight into

their origin was gained by measuring simplified geometries describing the basic build-

ing block segments of the fractal structures. Two types of basic segments were found

and studied: a “V” characteristic shape, formed by two lines at 120 degrees angle,

and a “U” shape formed joining two characteristic “V” shapes also at 120 degrees

angle. We found that, in spite of the fact that these two geometries presented were

not straight line segments, the modes sustained were quasi-one dimensional modes

(Ei). From the analysis of the isolated characteristic edges, we identified all the edge

modes supported in the Koch snowflake fractal. We determined that the total num-

ber of edge modes in a Koch snowflake of a given number of iterations depends on

the number of characteristic edges created in the fractal. Following a simple rule

we observed that the number of plasmon dipolar/E1 edge modes increases by two

after a fractal iteration, confirming that the plasmonic Koch snowflake fractal anten-

nas can exhibit multi-resonant or broadband behaviour while maintaining a compact

structure reflecting the characteristics of their macro-scale counterpart.
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Chapter 7

Summary

7.1 Conclusions

In the work presented in this thesis, we have used EELS performed inside a STEM

equipped with an electron monochromator, to characterize the plasmonic response

of planar silver nanostructures fabricated by electron beam lithography. Theoretical

modeling of the plasmon response supports and complements our findings.

As described in Chapter 3, EELS energy resolution is one of the limiting factors

for the analysis of losses below 5 eV, region in which plasmon resonances lie. In this

work, we implemented and tested the Richardson-Lucy algorithm. We showed that

the algorithm could be used to obtain effective energy resolutions up to 10 meV.

We also demonstrated that the deconvolution of EELS spectra enhances the contrast

of the plasmon resonances EELS energy filtered maps by a factor of three. This

implementation was used as a post-processing tool in the analysis of the resonances

in nanostructures studied in this thesis.

Analyzing the surface plasmon resonances of planar nanostructures, we have found
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that the supported resonances can be described as edge and cavity or film modes,

with edge modes behaving as quasi-1D modes. Furthermore, taking advantage of the

relatively large size of the analyzed structures, we were able to map, with a very high

level of detail the presence of film or cavity modes. We have demonstrated that the

modes supported by a nanowire are formed by the coupling of the edge modes in the

nanowire. We also showed that the edge modes in bent edges are unaffected by the

presence of bends up to the critical angle of 90◦ where the modes start self-interacting

producing large energy shifts and the modes converge at small bending angles.

We have shown that coupling in planar nanostructures can be described by the

coupling of their edge modes, and three coupling behaviors were identified.: 1) Cou-

pling through the edge of a nanostructure, 2) coupling through a corner, and 3) a

non-coupling behavior where the edge of the nanostructure behaves independently of

the rest of the structure. We further explored the coupling through the edge in offset

nanowire, and we found that by careful tuning of the nodal alignment and spectral

overlap it is possible to promote or suppress the coupling of a particular mode. These

studies prove that plasmonic coupling is a very versatile tool to modify the optical

response of plasmonic systems.

Finally, we have analyzed and described the plasmon modes present in planar

silver Koch snowflake fractal antennas by describing the modes present in the building

segments of the fractal structures. We found that the fractal geometry can sustain

quasi-1D edge modes, in spite of the fact that the edges of their building segments

were not straight edges. The results showed that the total number of plasmon edge

modes in the Koch fractal snowflake depends on the number of characteristic edges

created after each iteration demonstrating that the plasmonic Koch snowflake fractal
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antennas can exhibit multi-resonant behavior while maintaining a compact structure.

This thesis provides a comprehensive picture of the surface plasmon resonances

in planar nanostructures and their coupling. Moreover, the studied coupling cases

present simplified rules to aid in the design of future plasmonic devices compatible

with planar industrial fabrication methods. The thesis results emphasize the power

of EELS as a research tool to understand in depth the surface plasmon resonances

and to improve the design of new nanostructures for nanophotonic applications.

7.2 Future work

As we showed in this thesis, the STEM-TEM system is a unique tool for the charac-

terization of surface plasmon resonances. This equipment combined with the ability

to fabricate structures with the use of electron beam lithography has the potential

to further the understanding of plasmon resonances and its applications in a number

of areas. In this section, I mention a few areas that are worth pursuing and where

preliminary results were obtained.

7.2.1 Alternative methods for the characterization of surface

plasmons resonances

To date, the predominant method of studying plasmon oscillations in a TEM has

been EELS. In a non-relativistic approximation, this energy loss is produced by the

component of the electric field along the optical axis of the excited plasmon resonance.

Thus, it is impossible to gain any information about the electric field in the viewing

plane (i.e., perpendicular to the optical axis). Precisely this component can, however,

be studied using differential phase contrast (DPC) [155, 156].
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Figure 7.68: (Right) Deflections of the electron beam as it moves in a line-scan over a
reference area and over the sample. (Left) ADF image showing the line-scan direction
and the net deflections of the electron beam. In collaboration with Stefan Loffler and
graduate student Isobel Bicket.

DPC exploits the fact that electrons subject to an electromagnetic field are de-

flected according to the Lorentz force. Any deflection along the optical axis gives

rise to a change in kinetic energy and, hence, shows up in EELS. Any deflection

perpendicular to the optical axis, however, changes the direction of the electron’s mo-

mentum. This gives rise to a shift in the electron’s momentum distribution. The final

momentum distribution, after passing the nanostructure, can then conveniently be

measured in the TEM’s diffraction plane. Compared to a reference measured without

field, the displacement of the transmitted beam shows a shift that is proportional to

the field integrated along the electron trajectory.

To test this idea, We have performed preliminary experiments on two silver

nanowires as shown in Figure 7.68. The right panel shows the deflections of the
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electron beam as we line-scan the beam over the sample and over an area away from

the nanowires and over the substrate which works as our reference. The reference

line-scan also shows deflections (which are unwanted) that are probably coming from

charging effects of the silicon nitride substrate. After subtraction of the reference we

obtain the net deflections shown on the left panel of Figure 7.68. We observe that the

largest deflections correspond to the tips of the nanowires where the dipolar mode it

is expected to have high electric field intensities.

DeflectionsEELS Maps Electric Field

Figure 7.69: EELS maps of the first and second plasmon resonant modes (Left). DPC
deflections (Center) and corresponding electrical in-plane components of the electrical
field (Right) for the first and second modes. In collaboration with Stefan Loffler and
graduate student Isobel Bicket.

Using the MNPBEM toolbox and a custom script done by Stefan Loffler, we have

also simulated the plasmonic response of a 200x50x50 nm3 Ag nanorod to the electron

beam. We calculated the EELS maps and in-plane deflections along a line parallel to

the nanorod, as shown in Figure 7.69, for two plasmonic modes. The EELS maps show

the typical excitation probabilities for the first two modes, and the in-plane electric

field components show a similar behavior in general, although the local extrema are

less pronounced. The DPC deflections are found to be in good agreement with the
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electric field with some small differences close to the center of the rod which can be

attributed to the cumulative nature of the DPC deflections as well as retardation

effects. The absolute magnitude of the DPC deflections in Figure 7.69 is of the order

of 0.1 µrad at 300 keV, with a maximum deflection of 0.17 µrad for the first mode,

and a 0.04 µrad deflection for the second mode. Albeit small, these deflections should

be measurable with latest generation TEMs when using large camera lengths. In the

experiments the deflections are in the range of a mrad and not in µrad as indicated in

the simulations this apparent contradiction might indicate that there is a secondary

effect that we are measuring in the experiments, further experiments and analysis it

is needed to clarify this.

These preliminary results indicate that it might be feasible to determine all three

components of the electromagnetic field caused by plasmons using a combination of

DPC and EELS. Isobel Bicket, PhD student at Prof. Botton’s group, is working on

this topic to further understand this deflections and determine if it is possible to use

DPC to characterize plasmonic devices.

7.2.2 3D plasmonic structures and their coupling

This thesis focuses entirely on the analysis of planar structures, however for some

applications 3D structures might be desired. For this purpose it is possible to use

multi-step electron beam lithography (EBL). Isobel Bicket, in Prof. Botton’s group,

is using this technique to fabricate the upright split ring resonators (SRRs) on TEM

grids. A precise alignment of each EBL layer is required, this is done using pre-

fabricated sacrificial alignment marks deposited in the first step. Using this fabrica-

tion process, we were able to fabricate three-dimensional upright SRRs with hollow

pillars, as shown in Figure 7.70.

183



Ph.D. Thesis - Edson Pazur Bellido Sosa McMaster - Mat. Sci. & Eng.

Figure 7.70: 3D upright SRRs fabricated by multi-step EBL (Left). Charge distribu-
tion of the toroidal mode formed by the coupling of the dipolar modes in each SRRs
(Center). Magnetic field distribution of the toroidal mode (Right). In collaboration
with graduate student Isobel Bicket.

Isobel is studying SRRs because of their possible applications as metamaterials

to produce many unique properties when interacting with light, such as a negative

refractive index, and dipole magnetic moments. Due to ease of fabrication most

studies focused on planar SRRs, however with 3D fabrication, it is possible to fabricate

upright SRRs, and study the coupling of these SRRs. As shown in the simulations

in Figure 7.70, an array of SRRs with toroidal symmetry is expected to produce

a toroidal magnetic moment. According to reported simulations [157], the toroidal

dipole moment shows a high quality factor making the structure a good candidate for

a nanoscale spaser system: the nanoscale surface plasmon analogue to the laser.

7.2.3 Alternative materials for plasmonic applicactions

The most common materials materials for plasmonic applications are silver, gold,

and aluminium. Although these materials are used in most plasmonic applications to

date, new alternative materials that will exhibit low plasmonic losses, have a response

in the telecommunications electromagnetic range, and are CMOS compatibility are
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required. Different material classes such as conventional semiconductors, transparent

conducting oxides, perovskite oxides, metal nitrides, silicides, germanides, and 2D

materials such as graphene, are being explored [158]. One of this materials is Indium

Tin Oxide (ITO), which is a material commercially used as transparent electrode

in application such as screens and photovoltaics. ITO has low optical losses and a

optical response in the mid to near IR range [159], and because is a commercialized

material it can be readily use in future commercial plasmonic devices.

Figure 7.71: EELS spectrum of an ITO triangle with a thickness of 100nm and a side
length of 650nm. The insets show the EELS maps of the first two plasmon resonances
in the nano-triangle. In collaboration with graduate students Viktor Kapetanovic and
Isobel Bicket.

Using STEM-EELS, Viktor Kapetanovic, master student at Prof. Botton’s group,
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has obtained some preliminary results of the plasmonic response of ITO nanostruc-

tures fabricated by EBL, as shown in Figure 7.71. We were able to observe surface

plasmon resonances in ITO nano-triangles at energies below 0.5 eV, thanks to a com-

bination of electron monochromation and deconvolution as we explained in Chapter

3. The crystallinity of ITO structures was important for the detection of the modes.

The as fabricated ITO structure did not show plasmonic response in the EELS mea-

surements. However, after an annealing treatment in a nitrogen atmosphere the ITO

nanostructure formed larger crystalline grains, which decreases the number of elec-

tron scattering sites within the material, thus reducing plasmon losses, and allowing

the detection of the plasmon resonances by EELS, as shown in Figure 7.71.
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Javier Garćıa de Abajo, Martin Wegener, and Mathieu Kociak. Spec-

tral Imaging of Individual Split-Ring Resonators. Physical Review Letters,

105(25):255501, dec 2010.

[68] Michel Bosman, Geoffrey R Anstis, Vicki J Keast, Jackson D Clarke, and

Michael B Cortie. Light splitting in nanoporous gold and silver. ACS nano,

6(1):319–26, jan 2012.

[69] Huigao Duan, Antonio I Fernández-Domı́nguez, Michel Bosman, Stefan a Maier,

and Joel K W Yang. Nanoplasmonics: classical down to the nanometer scale.

Nano letters, 12(3):1683–9, mar 2012.

[70] Wilfried Sigle, Jaysen Nelayah, Christoph T. Koch, and Peter A. van Aken.

Electron energy losses in ag nanoholes—from localized surface plasmon reso-

nances to rings of fire. Opt. Lett., 34(14):2150–2152, Jul 2009.

[71] Nahid Talebi, Wilfried Sigle, Ralf Vogelgesang, Christoph T Koch, Cristina
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Jessica Rodŕıguez-Fernández, Isabel Pastoriza-Santos, Kevin F. MacDonald,

Luc Henrard, Luis M. Liz-Marzán, Nikolay I Zheludev, Mathieu Kociak, and
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[98] a Gloter, a Douiri, M Tencé, and C Colliex. Improving energy resolution of

EELS spectra: an alternative to the monochromator solution. Ultramicroscopy,

96(3-4):385–400, sep 2003.

[99] S Lazar, G a Botton, and H W Zandbergen. Enhancement of resolution in

core-loss and low-loss spectroscopy in a monochromated microscope. Ultrami-

croscopy, 106(11-12):1091–103, 2006.

[100] Jeffery a Aguiar, Bryan W Reed, Quentin M Ramasse, Rolf Erni, and Nigel D

Browning. Quantifying the low-energy limit and spectral resolution in valence

electron energy loss spectroscopy. Ultramicroscopy, 124:130–8, jan 2013.

[101] J W L Eccles, U Bangert, M Bromfield, P Christian, a J Harvey, and P Thomas.

UV-Vis plasmon studies of metal nanoparticles. Journal of Physics: Conference

Series, 241:012090, jul 2010.

[102] Stefan a. Maier, Mark L. Brongersma, and Harry a. Atwater. Electromagnetic

energy transport along arrays of closely spaced metal rods as an analogue to

plasmonic devices. Applied Physics Letters, 78(1):16, 2001.

[103] P E Batson, N Dellby, and O L Krivanek. Sub-̊angstrom resolution using aber-

ration corrected electron optics. Nature, 418(6898):617–20, aug 2002.

[104] O.L. Krivanek, N. Dellby, and a.R. Lupini. Towards sub-Å electron beams.
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