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Abstract

In this thesis, we consider a stochastic SIRS model of EEG data. The model
is built over three different network structures: a random network, a scale-
free network, and a small-world network. These models are then fit to an
EEG signal from a control individual and an EEG signal from an individual
experiencing an epileptic seizure. We are interested in determining whether
these models can distinguish between the two data sets, and whether any of
the network structures offer a significantly better fit to the data than others;
there is also a broader interest in the effects of different network structures on
the time series characteristics of an SIRS system.
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1 Introduction

Epilepsy is a neurological condition in which an individual experiences a period
of abnormal neuronal activity. This activity manifests as repeated seizures, al-
though the period of repetition can vary greatly from hours to years [10]. Often
accompanying these seizures is a loss of consciousness, causing the individual
to retain no memory of the event [10]. Epilepsy treatments consist of drugs
aimed at suppressing abnormal firing of neurons to reduce the frequency of
seizures [10].

A common way of diagnosing epilepsy is through the use of an electroen-
cephalogram (EEG). In an EEG, electrodes placed on the skull capture the
voltage changes that occur as neurons conduct electrical potentials [10]. These
so-called “brain waves” are sent to a computer and depicted as a plot of voltage
versus time [10]. During a seizure, an individual’s EEG shows distinct differ-
ences from a non-seizure control condition. Differing frequencies and increased
amplitudes can be treated as indicators of both the presence and duration of
an epileptic event [10].

Since the EEG measures changes in a quantity over time, tools from the
fields of differential equations and time series analysis can be brought to bear
to describe these signals. Mathematical models of EEGs range from the purely
phenomenological to those based firmly in biological principles. As an example
of the former, Ghorbanian et al. investigated a model of EEGs of individuals
with and without Alzheimer’s disease [8, 9]. Their model is based on coupled
Duffing-van der Pol oscillators with white noise and consists of a system of
stochastic differential equations [8, 9]. They fit the model to the data based
on both the power spectrum and information content (as measured by various
types of entropy), and concluded that such a model can accurately match EEG
data [8, 9].

An example of modelling with a more biological foundation can be found
in the classic integrate-and-fire model. Here, the change in a neuron’s mem-
brane potential is related to the sum of all incoming synaptic signals, some of
which are excitatory while others are inhibitory [6]. The neuron in this model
is said to be “leaky” as the membrane potential decays at a fixed rate [6].
When the membrane potential reaches a given threshold, the neuron fires and
a voltage spike is generated; the potential is then reset to the resting potential
and the dynamics repeat [6]. While numerically straightforward to analyze,
the integrate-and-fire model fails to take into account any of the specific phys-
iological features of the neuron.

Models such as Hodgkin-Huxley and FitzHugh-Nagumo (essentially a sim-
plified version of Hodgkin-Huxley) seek to incorporate these physiological fea-
tures. The potential is governed by the flow of ions–specifically sodium, potas-
sium, and chloride ions–across the neuronal membrane [3]. These models in-
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clude terms that account for the movement of these ions and how they relate
to the change in membrane potential [3]. While these additions make the
model more biologically sound, they also make it more numerically complex
to analyze.

As a sort of middle ground between the integrate-and-fire model and the
Hodgkin-Huxley and FitzHugh-Nagumo models, we can look at the work of
Acedo and Moraño [1]. There are three stages in which a neuron can be
at any given time: resting (the “natural” or baseline state), firing (when a
voltage change is actively taking place), or refractory (when a voltage change
has recently occurred and the neuron is unable to go through another voltage
change)[1, 10]. Acedo and Moraño draw parallels between these stages and the
stages of the typical SIRS epidemiological model: as an action potential (volt-
age change) moves from brain cell to brain cell, a neuron goes from susceptible
to an incoming voltage change (S) to undergoing a voltage change (I) to a state
where another voltage change cannot occur (R), back to a susceptible state
where the cycle can repeat [1]. Instead of assuming homogeneous mixing, they
assign an underlying structure to the population of neurons in the form of a
random network. In such a network, the average degree and the total num-
ber of nodes (neurons) are chosen, the desired number of edges/connections is
calculated based on those choices, and those edges are randomly distributed
among all pairs of nodes [1]. In their research, Acedo and Moraño found that
a certain range of model parameter values resulted in sustained oscillations in
the model output and they suggest that this model could be used to describe
the oscillations found in EEG signals [1].

Inspired by the work of Acedo and Moraño, this thesis seeks to address a
couple of questions. First: Can the stochastic SIRS model built over certain
network structures distinguish between epilepsy and non-epilepsy (control)
EEG data? Second: Does the specific network structure affect how well the
model fits the data? We are also interested in the more general question of
how different network structures affect the time series characteristics of a SIRS
system.

2 Methods

2.1 Collecting and preparing the data

The EEG recordings used in this thesis come from a study by Andrzejak et al.
[2]; the authors have kindly made their data freely accessible for any research
purposes. Two sets of EEGs were downloaded: a recording from a healthy
control subject and a recording from an individual experiencing an epileptic
seizure. Each recording was taken at a sampling frequency of 173.61 Hz for
a time of 23.6 seconds, and the values were standardized to be in units of
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Figure 1: Filtered and standardized control and epilepsy EEG signals.
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Figure 2: Power spectra for control and epilepsy data sets.

standard deviations from the mean. As outlined in the paper by Andrzejak et
al. [2], a band-pass filter tuned to the range of 0.53-40 Hz (with a response
roll-off of 12 dB/octave) was applied to the data prior to analysis. Figure 1
shows the filtered control and epilepsy EEG signals, and Figure 2 shows the
power spectra for the control and epilepsy data sets.

2.2 Constructing the networks

We consider three network structures in this study: a random network (as
described by Acedo and Moraño, [1]), a scale-free network, and a small-world
network. In all three cases, a directed network was constructed. Also note

3
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Figure 3: An example of a random network with 50 nodes.

that the term “degree” refers here to the number of incoming connections to a
node (which was set to be equal to the number of outgoing connections), not
the sum of both incoming and outgoing connections.

2.2.1 Random network

Random networks are ones in which the desired number of edges are distributed
uniformly randomly among the total number of nodes, leading to a Poisson
degree distribution [1]. An average degree k and total number of nodes N
are chosen, then the kN edges are distributed among the N nodes. In our
construction, we set k = 5 and N = 10, 000. Figure 3 shows a smaller (N = 50)
example of a random network.

2.2.2 Scale-free network

A scale-free network is one in which the degree distribution follows a power
law, i.e., if k̃ represents a given degree, then the degree distribution p(k̃) is
given by

p(k̃) = Ck̃−α, (1)

4
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Figure 4: An example of a scale-free network with 50 nodes.

where α > 2 is the power law exponent and C = α − 1 is a normalization
constant [4, 7]. This leads to the formation of “hubs”: a small number of nodes
with a large degree. As with the random network, we choose a total number
of nodes N = 10, 000 and an average degree k = 5. To achieve this average,
we use Equation (1) to compute the mean of the power law distribution as

N−1∑
k̃=1

k̃p(k̃) = (α− 1)
N−1∑
k̃=1

k̃−α+1, (2)

where the range on k̃ is chosen so that we do not end up with any uncon-
nected (orphan) nodes or any loops (a node connected to itself). We then
set Equation (2) equal to our desired average degree k = 5 and numerically
solve (using R’s uniroot function) for the power law exponent α. With this
exponent in hand, the network is constructed by distributing the desired num-
ber kN of edges among the total number N of nodes with a probability given
by Equation (1). Figure 4 shows a smaller (N = 50) example of a scale-free
network.
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Figure 5: An example of a small-world network with 50 nodes.

2.2.3 Small-world network

Small-world networks are characterized by a short average path length between
any two nodes and a high degree of clustering [12]. Again, we choose an average
degree k = 5 and a total number of nodesN = 10, 000. Following the algorithm
of Watts and Strogatz [12], we start with a one-dimensional ring lattice of size
N and randomly rewire each edge with probability p; here, we set p = 0.5. The
construction is carried out using the algorithms built into the igraph package
for R. Figure 5 shows a smaller (N = 50) example of a small-world network.

6



M.Sc Thesis - E. Mitchell McMaster University - Mathematics

2.3 The stochastic SIRS model and conversion to an
EEG signal

The deterministic continuous-time SIRS model is defined by the following
equations:

dS

dt
= −βSI + ϕR (3a)

dI

dt
= βSI − γI (3b)

dR

dt
= γI − ϕR. (3c)

If we assume a fixed finite population size N , then we can recast this as a
system of two equations:

dS

dt
= −βSI + ϕ(N − S − I) (4a)

dI

dt
= βSI − γI. (4b)

However, these equations assume each individual can come into contact with
any other individual in the population. If we wish to introduce a network
structure, then a neuron will only interact with the other neurons to which it is
connected. Since the degree of each node in these networks is a random variable
drawn from a probability distribution—Poisson in the cases of random and
small-world networks [1, 12], and a power law distribution in the case of scale-
free networks [4]—incorporating the network structures adds stochasticity to
the SIRS model.

To implement this model, we use a stochastic, discrete-time, discrete-state
process with three parameters: the rate β of infection per susceptible neuron
per infected neuron; the average period tinf of infection; and the average period
timm of immunity (refractory period). The first decision to be made is what
time step should be used in this discretization. Since the sampling frequency of
the data is 173.61 Hz, our time step should be no larger than 1/173.61 seconds
so that the output contains at least as much information as the data. Shrinking
the time step will reduce the noise, but will also increase the computation time
of the model. It was found that using time steps smaller than 1/(5 · 173.61)
produced no noticeable change in the model output, so we use this value as
our time step.

The initial values of susceptible, infected, and recovered neurons are set to
their respective equilibrium values in the deterministic differential equations,
and we keep track of which neurons are in which class at each stage of the
process.

7
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Each time step begins by cataloguing the movement of neurons from S to I.
To accomplish this, we need to convert the rate β of infection per susceptible
per infective into a probability of infection in a single time step. Suppose that
pS(t) is the probability that an initially susceptible neuron is still in S at time
t. Then the probability that a single member of I infects a susceptible neuron
in time (t, t+ dt) is given by

pS(t)βdt. (5)

It follows that
dpS
dt

= −pSβ, (6)

so pS(t) = e−βt. If βτ represents the probability that a single infected neuron
infects a single susceptible neuron in one time step τ , then

βτ = 1− pS(τ) = 1− e−βτ . (7)

To determine whether a susceptible neuron becomes infected in a given time
step, we need to know the probability β̃τ that at least one of the infected
neurons to which it is connected causes an infection. If k̃ is the degree of a
given neuron and Ĩ is the total number of infected neurons at the start of a
given time step, then

β̃τ = 1− (1− βτ )
k̃Ĩ
N . (8)

We compute this probability for each susceptible neuron, construct a separate
vector of probabilities chosen from a uniform distribution, and those neurons
for which β̃τ is greater than the corresponding randomly chosen probability
will be moved from S to I. Finally, an infection time must be assigned to each
of the new infected neurons, i.e., we must choose the number of time steps for
which the neuron will remain in the I class. For each new infected neuron,
we choose a number of time steps from a geometric distribution (although a
Poisson distribution could be and was also considered) with a mean of tinf/τ
to use as the neuron’s infection time.

After infection has occurred, recovery is tracked. Any infected neuron
whose infection time was chosen to end at the current time step is moved
from I to R. These newly recovered neurons must now be assigned a recovery
time, i.e., the number of time steps for which that neuron will remain in the R
class. Similar to how the infection times were chosen, we choose a number of
time steps from a geometric distribution with a mean of timm/τ for each newly
recovered neuron.

The final phase of each time step involves moving neurons from R to S. Any
recovered neuron whose recovery time was chosen to be the current time step
re-enters the susceptible class. Once all time steps have been realized, every
fifth step is reported as output from the model so as to match the sampling
frequency of the data.

8
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Before attempting to fit the model to the data, we need to transform the
raw output into an EEG signal. EEGs measure how the voltage in the brain
changes over time; since each neuron state—resting (S), undergoing an action
potential (I), and refractory (R)—has an associated average voltage, we can
multiply the number of neurons in each state during each time step by these
voltages to create an approximate EEG signal. The corresponding voltages
are -70 mV in the resting state, 30 mV during an action potential, and -80
mV in during the refractory state [10].

2.4 Constructing, smoothing, and optimizing the likeli-
hood surface

To fit this model to the data, we want to optimize the likelihood surface;
however, for very noisy systems (as we have here) this is often impossible to
compute directly. An alternative construct, called synthetic likelihood, can
be used in such cases [14]. To start, a set of summary statistics—metrics on
which to base the comparison between the model and the data—is chosen. For
a given vector θ of parameter values, the idea is then to simulate the model
nsim times and compute a set {si}nsim

i=1 of vectors of summary statistics [14].
We then compute µ =

∑nsim

i=1 si/nsim, S = (s1 − µ, s2 − µ, . . . , snsim
− µ), and

Σ = SST/(nsim − 1), and define the log synthetic likelihood as

Ls =
1

2
(s̃− µ)TΣ−1(s− µ)− 1

2
log |Σ| , (9)

where the summary statistics are assumed to be multivariate normally dis-
tributed and s̃ is the vector of summary statistics computed from the data
[14].

Our choice of summary statistics follows that of Ghorbanian et al. [8, 9];
we use the power spectrum, Shannon entropy, and sample entropy, as defined
below.

In the field of neuroscience, there are several common frequency bands that
are studied and frequencies outside of these bands are generally considered to
be noise [8]. These bands are labelled as: delta (approximately 0.5-4 Hz), theta
(approximately 4-8 Hz), alpha (approximately 8-13 Hz), beta (approximately
13-30 Hz), and gamma (approximately 30-60 Hz)[8]. Our summary statistics
vectors contain five elements corresponding to the total power in each of these
frequency bands.

Entropy is a measure of the information content contained in a signal, which
is related to the signal’s level of unpredictability [9]. The original (information
theoretic) definition of entropy is that of Shannon entropy. Given a discrete
random variable X, Shannon defined the entropy of X to be

−
∑
i

P (xi) log2(P (xi)), (10)

9
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where P represents the probability mass function of X. Here, we take X to
be the time series of voltages.

Other methods of calculating entropy have been devised since Shannon
first introduced the idea. Ghorbanian et al. report obtaining a better fit to
EEG data when they include both Shannon entropy and sample entropy in
their summary statistics [9]. Sample entropy measures the unpredictability of
a signal by calculating the probability that two segments of the time series
similar (as measured by the Euclidean distance between the two segments) for
m time steps will remain similar at the m+1 time step. We let nm represent the
number of pairs of time series segments of length m with Euclidean distance
less than some cutoff value r, and nm+1 represent the number of pairs of time
series segments of length m + 1 with Euclidean distance less than that same
cutoff value r. Then the sample entropy of the signal is given by

− log

(
ñm
ñm+1

)
, (11)

where ñm = nm/((N −m)(N −m− 1)) and ñm+1 = nm+1/((N −m− 1)(N −
m− 2)) [9]. Common choices for m and r are m = 2 and r = σ(X)/4 (where
σ represents the standard deviation of the signal), so these are the values we
use here [9].

To optimize the synthetic likelihood function, we compute a portion of
the likelihood surface over a range of reasonable parameter values, remove any
outliers (points farther than three standard deviations from the mean), smooth
the surface to reduce the level of noise, and optimize the smoothed surface.
In smoothing the surface, we use a generalized additive model (GAM); this
is similar to a generalized linear model (GLM) except the response variable
is expressed as a smooth function s of the predictor variables [13]. Since we
have three model parameters, s = s (β, tinf , timm) is a multivariate function;
furthermore, our parameters do not inherently live on the same scale. These
factors mean that s should be what is called a tensor product smooth [13]. To
fit the GAM, we need to express s as a linear combination of basis functions.
This is accomplished by fitting (univariate) cubic splines sβ, stinf , stimm

to each
predictor variable, then taking a tensor product of the model matrices for these
spline fits and using the resulting functions as the basis functions for the tensor
product smooth s [13]. A least squares method is then used to determine the
parameters of the GAM fit [13].

Once the likelihood surface has been smoothed, we use the Nelder-Mead
algorithm to optimize it (this performs minimization by default, so we optimize
over the negative log-likelihood surface). In general, given a starting point
P = (x1, x2, . . . , xn), this algorithm begins by computing n+ 1 points around
P and using them as the vertices of a simplex [11]. The vertices then go through
a series of reflections, expansions, and contractions, all the while “pulling” the

10
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simplex in the direction of smaller likelihood values; the algorithm terminates
once all vertices contract to the same point and that point is returned as the
minimum of the surface [11].

2.5 Model comparison

After finding the optimal parameter values for the random, scale-free, and
small-world network models across both data sets, we need to compute confi-

dence intervals for those parameters. If L̂s
(
β̂, t̂inf , t̂imm

)
is the minimum log

synthetic likelihood, and L′s is the minimum synthetic likelihood obtained by
keeping one of the parameters fixed and optimizing over the remaining two,
then the Likelihood Ratio Test says that

2
(
L̂s − L′s

)
∼ χ2

1 (12)

where χ2
1 represents the chi-squared distribution with one degree of freedom

[5]. So to find the 95% confidence interval for a given parameter, we fix that
parameter to a range of values around its optimum, optimize the (negative)
log synthetic likelihood with respect to the remaining parameters, and find the

values of the fixed parameter at which the likelihood reaches −L̂s +
χ2
1(0.95)

2
.

Figure 6 shows this idea for the tinf parameter in the random network model
of the control data, and Figure 7 shows the same for the tinf parameter in the
scale-free network model of the epilepsy data.

Finally, to compare different network structure models within each data
set, we use the Akaike information criterion (AIC). AIC is defined as

− 2L̂s + 2K, (13)

where K represents the number of parameters in the model; smaller AIC values
indicate a better model of the data. To compare the models, we look at the
difference between each model’s AIC value and the minimum AIC value across
all models.

3 Results, Discussion, and Concluding Remarks

11
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Control Epilepsy
Value 95% CI Value 95% CI

Random
β 45.01 (43.30, 49.72) 169.80 (166.02, 172.80)
tinf 0.012 (0.0107, 0.0128) 0.00524 (0.00489, 0.00526)
timm 0.167 (0.1415, 0.1713) 0.1115 (0.1096, 0.1130)

Scale-free
β 53.41 (44.88, 55.58) 174.63 (170.50, 178.16)
tinf 0.014 (0.0128, 0.0150) 0.00570 (0.005048, 0.006179)
timm 0.165 (0.1431, 0.1721) 0.0910 (0.09091, 0.09259)

Small-world
β 62.07 (54.31, 66.77) 207.36 (197.16, 238.31)
tinf 0.015 (0.0126, 0.0155) 0.00601 (0.00594, 0.00604)
timm 0.162 (0.1479, 0.1705) 0.0987 (0.0971, 0.151)

Table 1: Optimal parameter values and their associated 95% confidence inter-
vals.
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Figure 8: Control data and model output at associated optimal parameters.
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Figure 9: Epilepsy data and model output at associated optimal parameters.
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Figure 10: Power spectra for control data and model output at associated
optimal parameters.
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Figure 11: Power spectra for epilepsy data and model output at associated
optimal parameters.

The optimal parameter values and their associated 95% confidence intervals
are presented in Table 1. Figure 8 presents the control data along with the time
series for each network type at the associated optimal parameters; a similar
picture for the epilepsy data is presented in Figure 9. The power spectra for the
control data and time series for each network type at the optimal parameter
values are depicted in Figure 10, and in Figure 11 for the epilepsy data.

We set out to address two questions. First: Can the stochastic SIRS model
built over certain network structures distinguish between epilepsy and non-
epilepsy (control) EEG data? Second: Does the specific network structure af-
fect how well the model fits the data? Looking at the random network model
across both sets of data, none of the confidence intervals overlap with each
other suggesting that there are significantly different sets of parameter values
that model the control versus the epilepsy data. The same can be said of the
scale-free network model. In the case of the small-world network, the confi-
dence intervals for timm overlap meaning that parameter on its own might not
be able to distinguish between the control and epilepsy data. Overall, though,
the findings suggest that all three network structures are able to differentiate
between the two sets of data.

To answer the second question, we compute the change in the AIC between
models within each data set. For the control data, the scale-free network model
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had the lowest AIC with the random network having an AIC difference of
approximately 20.4 and the small-world network having an AIC difference of
approximately 78.8; the difference in AIC between the small-world and random
networks was about 58.4. Not only does this suggest that all three network
models are significantly different from each other, but it also suggests that the
scale-free network does the best job of modelling the control data. A similar
pattern holds for the epilepsy data. The scale-free network model again has the
lowest AIC value with the random network having a difference of 1596.0 and
the small-world network having a difference of 2293.1; the difference in AIC
between the small-world and random network models is approximately 697.1.
So again, all three models seem to be significantly different from each other
and the scale-free network best models the data. (A caveat: AIC assumes that
the “best” model fits the data adequately, but none of the models were able to
reproduce the second peak seen in the power spectrum of the epilepsy data.)

A few avenues exist for future research in this area. An important feature
of small-world networks that was not addressed in this thesis is the rewiring
probability (the probability with which each edge in the starting ring lattice is
rewired). As this probability increases from zero to one, the resulting network
transforms from a ring lattice to a random network [12]. Here, the rewiring
probability was fixed at p = 0.5, but it would be interesting to explore the
effects of adding this as an extra parameter in the small-world network model.

The summary statistics could be examined more closely to try to determine
where the models and data agree/disagree the most. Doing so might suggest
some changes to the model that could improve the fit to the data.

Another direction in which this work could be taken is to fit the models to
larger data sets. In this thesis, we considered only a single control EEG and a
single epileptic EEG. If the finding that a scale-free network model provides the
best fit holds true over a much larger set of EEG signals, it could potentially
give some insight into how the brain is organized.
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