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Abstract

This thesis examines the existence of a dominant route between a hub pair and factors

that influence bike share cyclists route choices. This research collects 132,396 hub-

to-hub global positioning system (GPS) trajectories over a 12-month period between

April 1, 2015 and March 31, 2016 from 750 bicycles provided by a bike share program

(BSP) called SoBi (Social Bicycles) Hamilton. Then, a GIS-based map-matching

toolkit is used to convert GPS points to map-matched trips and generate a series of

route attributes. In order to create choice sets, unique routes between the same hub

pair are extracted from all corresponding repeated trips using a link signature tool.

The results from t statistics and Path-size logit models indicate that bike share cyclists

are willing to detour for some positive features, such as bicycle facilities and low traffic

volumes, but they also try to avoid too circuitous routes, turns, and steep slopes over

4% though detouring may come with a slight increase in turns. This research not

only helps us understand BSP cyclist route preferences but also presents a GIS-based

approach to determine potential road segments for additional bike facilities on the

basis of such preferences.
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Preface

This thesis is organized as a compendium of related articles. It consists of the following

two chapters:

Chapter 2: Understanding bike share cyclist route choice using GPS data:

Comparing dominant routes and shortest paths

Chapter 3: Determinants of bike share cyclist route choice behavior using

GPS data

Although the two journal articles have been co-authored with the research supervi-

sors and Dr. Ron Dalumpines (the first paper), the thesis author takes responsibility

of the content of each chapter, including setting up research objectives, reviewing

literatures, processing and analyzing data, coding, specifying and estimating models,

and interpreting results. The supervisors contributions include suggesting the topics

and methods of this research, discussing all the outcomes, and editing and evaluating

the entire papers and prior to journal submission.
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Chapter 1

INTRODUCTION

1.1 THE RESEARCH PROBLEM

Physical inactivity is a significant element accounting for death, chronic morbidity,

and disability; statistically, it contributed to 21.5% of ischemic heart disease, 16%

of colon cancer, 14% of diabetes, 11% of ischemic stroke, and 10% of breast cancer

all over the world (Bull et al., 2004). Over the past 20 years, adult and childhood

obesity rates have doubled, while adolescent obesity has tripled (Ford et al., 2014).

According to WHO (2016), the global overweight rate of adults over 18 years old

is around 39%, and the overall obesity rate is 13% in 2014. Over the past decade,

the obesity rate of 35 countries participating in the Organization for Economic Co-

operation and Development (OECD) has increased to 19.5% in 2015, and 25.8% of

adults in Canada aged 15 years and over are obese (OECD, 2017). It is essential

to engage in physical activity that can benefit not only physical health by reducing

the potential of obesity (Flynn et al., 2006), osteoporosis (Biddle et al., 2004), and
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cardiovascular disease (Andersen et al., 2006), but also mental health to some extent

(Biddle et al., 2004; Panter et al., 2008).

Transport accounted for 23% of global energy-related greenhouse gas emissions in

2004, where around three quarters were from road vehicles, and total transport-related

emissions were predicted to increase by about 80% from 2007 to 2030 (Kahn et al.,

2007). According to Kunzli et al. (2000), air pollution was associated with morbidity,

such as respiratory and cardiovascular diseases, bronchitis, and asthma attacks, and

accounted for 6% of total mortality every year, where half was caused by automobile

emissions. In this case, active travel, primarily including walking and cycling, has

been encouraged given its benefits for public health by increasing physical activity

(Pucher et al., 2010), reducing the probability of obesity (Saunders et al., 2013) and

chronic diseases (Giles-Corti et al., 2010), and for the environment by mitigating air

and noise pollution (De Nazelle et al., 2011).

Dill (2009) claimed that it is more likely for cycling than walking to replace mo-

torized traffic because cycling is faster and can cover much longer distances. However,

switching from car to bicycle also means a higher risk of traffic accidents and inhala-

tion of air pollution on the road (De Hartog et al., 2010). It has been found that

positive effects of cycling, including decreased air pollution emissions and increased

physical fitness, were generally larger than its aforementioned risks, especially con-

sidering its influences for the whole society instead of individuals (De Hartog et al.,

2010). Rojas-Rueda et al. (2011) further demonstrated that benefits of bike share

programs (BSPs), such as Bicing in Barcelona, were larger than risks in terms of

public health and carbon emissions. According to Fishman (2015), BSPs have been

advocated in the past few years as the number of participating cities has increased

2
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from just a few in the late 1990s to over 800 in 2014. No matter for cycling or driv-

ing, route choice analysis is essential and important because it can reveal commuters

perceptions about route attributes and reactions or adaptations to the source of in-

formation, understand individual travel behavior, and predict traffic volumes (Prato,

2009).

In order to motivate the use of BSPs, it is necessary to explore bike share cyclists

route choices to learn about corresponding spatial distributions and factors that can

contribute to their travel behavior, which will help transport planners determine

which road segments can be equipped with what types of bicycle facilities.

1.2 RESEARCH OBJECTIVES

The goal of this research is to determine what and how route attributes can affect

bike share cyclist route choice behavior using GPS dataset derived from SoBi (Social

Bicycle) in Hamilton. To achieve this goal, the following step-by-step objectives are

required:

• Gnerate cyclists actual trips from hub to hub using GPS trajectories and extract

unique routes to constitute a choice set for each hub pair.

• Determine whether a dominant route exists between a hub pair according to

normalized Gini coefficients and explore the spatial distribution of bike share

cyclists dominant routes.

• Compare dominant routes with shortest paths based on distance and examine

differences.

3
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• Identify determinants that contribute to SoBi cyclist route choice decision mak-

ing processes in terms of route attributes based on path-size logit models.

Realizing these objectives will contribute to the existing body of literature about

cyclist route choice behavior. Firstly, it will fill a major research gap regarding

what and how route attributes influence bike share cyclists route choice decisions.

These findings will help urban planners and policy makers to better understand the

preferences of BSP cyclists and find solutions to promote the use of BSP, especially

within the area of Hamilton. Secondly, it will fill a research gap left by Lima et

al. (2016) who introduces the use of Gn and finds a tendency towards a preferred

route among all the routes for a drivers routine journey. To the authors knowledge,

this is the first study to generate attributes for each trip taken by BSP users, to use

Gn to determine whether a dominant route exists between a BSP hub pair, and to

evaluate the efficiency of dominant routes by comparing with shortest distance routes.

In addition, this research proposes a new method to generate choice sets using BSP

cyclists actual routes instead of hypothetical routes created by conventional choice

set generation techniques. In this case, findings in this study will reveal the actual

preferences of cyclists for route attributes because all the evaluated routes are cyclists

hub-to-hub choices in the real world.

1.3 THESIS OUTLINE

Including this introduction, this thesis consists of four chapters. Chapters 2 and 3 re-

spectively contain two stand-alone research papers, and Chapter 4 briefly summarizes

major findings and contributions.

4
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Chapter 2 determines that the most preferred route between each hub pair can

be regarded as a dominant route given the value of Gn and compares it with the

corresponding shortest path based on distance in terms of route attributes based on t

statistics. The comparison shows that dominant routes are significantly longer than

their shortest distance routes, indicating that most bike share cyclists are willing to

detour for some routes attributes, such as bicycle facilities and low traffic volumes,

which may be accompanied by the increase of some negative features such as turns

and intersections.

Chapter 3 examines the determinants of bike share cyclist route choice behavior

using modelling Path-size Logit. A new method of generating alternative routes for

route choice sets using actual cyclists routes within a BSP is introduced and confirmed

to be effective. All the models for datasets with different Gn levels demonstrated that

cyclists are willing to detour for some positive features, such as bicycle facilities, but

they also try to avoid detouring too much, steep slopes over 4%, and high traffic

volumes.

Chapter 4 reviews major findings and contributions of these two research papers,

followed by a section discussing the limitations of this research. Finally, this thesis

concludes with suggestions for future studies.
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Chapter 2

UNDERSTANDING BIKE

SHARE CYCLIST ROUTE

CHOICE USING GPS DATA:

COMPARING DOMINANT

ROUTES AND SHORTEST

PATHS

2.1 INTRODUCTION

Active travel, any form of human-powered transportation like bicycling and walking,

benefits not only physical fitness (Merom et al., 2010; Sahlqvist et al., 2012; Saunders
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et al., 2013), but also social and cognitive development (Badland and Oliver, 2012).

For this reason, policy makers and urban planners continue to seek ways of increasing

the use of active commute modes (Sallis et al., 2006; St-Louis et al., 2014). It has been

suggested that cycling is more likely to replace motorized travel modes than walking

given its faster speed and capability of covering longer distances, though most of the

focus recently has been placed on walking (Dill, 2009). Cycling can benefit not only

the environment by reducing carbon emissions (Rissel, 2009; Woodcock et al., 2009),

but also health by reducing obesity, chronic diseases and weight gain (Andersen et

al., 2000; Oja et al., 2011; Pucher et al., 2010). Bike share programs (BSP), providing

bikes that can be picked up and dropped off at self-serve docking stations, have grown

rapidly in past years; for example, the number of participating cities has increased

from 13 in 2004 to 855 in 2014 (Fishman, 2015). Hamilton, Ontario is one such city

operating a BSP commonly referred to as SoBi (Social Bicycles) Hamilton, which,

at the time of its official launch in March 2015, had 750 GPS (global positioning

system)-equipped bicycles located at over 100 hubs. The GPS feature means that

cyclist routes can be tracked in real-time, providing an opportunity for route choice

analysis.

In general terms, route choice analysis is necessary to appraise perceptions of

route attributes, to forecast future traffic conditions on road networks, to simulate

travel behavior under hypothetical scenarios, and to look at response and adaptation

to message sources (Prato, 2009). Government policy makers, researchers and pro-

fessionals can understand individual travel preferences by analyzing the route choice

decision-making process in an effort to identify related determinants in terms of route

10
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attributes and the demographic characteristics of travelers. In the context of walk-

ing and cycling, they can develop policies and build facilities for encouraging greater

use of such active travel modes. For example, studies of cyclist routes can help to

identify what types of regulations and cycling infrastructure programs are useful in

promoting the use of the bicycle for utilitarian trips in order to reduce automobile

usage (Aultman-Hall et al., 1997; Su et al., 2010).

Most route choice studies create alternative routes using choice set generation

methods. However, this research generates routes for all the trips between SoBi hubs

from GPS data using a GIS-based map-matching toolkit (Dalumpines and Scott,

2011), and extracts unique routes from those duplicate hub-to-hub trips using a link

signature extraction tool developed for this study. As a result, for a hub pair, it is

possible to create choice sets of observed and alternative routes from actual routes

taken by SoBi users instead of creating alternative routes using various techniques.

Unlike most previous research based on individuals, this study generates choice sets

on the basis of hub pairs to control origins and destinations for routes and investigates

characteristics of these hub-to-hub routes within the BSP. Between a hub pair, the

unique route with a maximum number of trips on it is regarded as the dominant

route. As such, this study presents a new and essential attempt to explore the spatial

distribution of dominant routes, which visually provides planners with road segments

suitable for developing bicycle facilities. Given the usage frequencies of unique routes,

extraction of hub-to-hub dominant routes can help determine cyclists preferences.

In this study, this is achieved by comparing attributes between dominant routes

and shortest paths based on distance, thereby identifying factors affecting cyclist

behavior. Although SoBi Hamilton provides a real-time app for its users to show the

11
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number of bicycles and docks available at each hub, the app is not able to recommend

optimal cycling routes. In this case, the dominant route between a hub pair could be

considered as the optimal route rather than a shortest path because it is frequently

chosen by multiple SoBi users. Finally, this study illustrates the usefulness of using

bike share data for understanding route choice decisions since bicycles from recent

BSPs are usually equipped with GPS devices.

The remainder of this paper is organized as follows. Section 2 reviews methods

to collect data for route choice analysis and discusses variables, including route at-

tributes and cyclist characteristics, affecting cyclist route choice behavior. Section

3 briefly describes the study area and sources of both the cycling network and GPS

dataset. Section 4 discusses the generation of route choice sets using the GIS-based

map-matching toolkit and link signature tool, and the methods of statistical anal-

ysis involving the normalized Gini coefficient and paired t-test. Section 5 displays

results derived from statistical analysis and spatial patterns of dominant routes be-

tween hubs. Section 6 summarizes major findings, significant limitations, and future

implications of this research.

2.2 BACKGROUND

2.2.1 Data Collection Methods

Most previous bicycle route choice studies used stated preference (SP) surveys or

revealed preference (RP) surveys as the data collection method (Aultman-Hall et al.,

1997; Guttenplan & Patten, 1995; Howard & Burns, 2001; Hunt & Abraham, 2007;

12
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Tilahun et al., 2007). Respondents for SP surveys make a choice among different facil-

ities or different route options, forcing them to trade off some positive features (Broach

et al., 2012). According to Abraham et al. (2002), SP surveys can collect a large

sample size of data easily and cheaply, and avoid inter-correlations among attributes,

but the ability of respondents to convert their usual routes and preferred facilities

in mind to match the created choice set in the survey may lead to missing some im-

portant features for route choices. On the contrary, RP surveys gather information

based on actual route choices made by participants, so the collected data can reveal

preferences in a real choice environment. However, the tedious and time-consuming

collection process limits the sample size, and the capability of participants to precisely

recall routes influences the match between revealed routes and actual route networks

(Stinson & Bhat, 2003). In order to accurately recall routes that participants choose,

GPS devices that can automatically record traces have been used for data collection

in many more recent route choice studies including Broach et al. (2012), Hood et al.

(2011), Menghini et al. (2010), and Papinski and Scott (2013). The drawbacks to

using GPS data for research include the high cost of equipping GPS devices and the

transformation of points recorded by devices into actual traces that users take.

2.2.2 Potential Determinants of Cyclist Route Choice Be-

havior

Some work has regarded travel time or distance as the most important factor in-

fluencing the route choices of cyclists for commuting purposes (Aultman-Hall et al,

1997; Sener et al., 2009; Stinson & Bhat, 2003). However, Tilahun et al. (2007)

discovered bicycle route preferences of trading off travel time for particular facilities,

13
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such as designated bike lanes, trails off street, and parking on the street side. Simi-

larly, Winters et al. (2010b) found that utilitarian bicycle trips are 360 m longer than

the shortest path route in Metro Vancouver because cyclists are willing to detour

slightly to ride on routes with more bicycle facilities. Almost all the earlier studies

explore the influence of bicycle facility type on commuter cyclist route choice. Broach

et al. (2012) illustrated that off-street/separated bike paths that definitely have no

motorized traffic are preferred, followed by bike boulevards that are neighborhood

streets with traffic calming features. Simultaneously, on-street bike lanes can more

or less mitigate the negative influence of traffic nearby, so they are more attractive

than a heavy traffic street without a bike lane, but not preferred compared to a street

with low traffic volume (Broach et al., 2012). Consistently, Winters & Teschke (2010)

found the order of bicycle route preferences: off-street paths, physically separated

routes adjacent to main streets, neighborhood routes, rural roads and routes on ma-

jor roads.However, these findings are opposite to some studies that have found that

bike lanes on streets are more attractive than separated bike paths followed by routes

without bicycle facilities (Hood et al., 2011; Sener et al., 2009; Stinson & Bhat, 2003).

In addition to bicycle facilities, bicyclist route choice behavior can be affected

by other route attributes. Utilitarian or purposeful cyclists generally prefer fewer

stop signs, red lights, and major cross streets (Sener et al., 2009; Stinson & Bhat,

2003). Many previous studies have emphasized the obvious importance of slope, turn

frequency and motorized traffic volume; that is, cyclists tend to avoid steep slopes,

turns and exposure to heavy traffic volume. Statistically, cyclists will choose to avoid

a turn with a cost of less than 0.17 km, and if the detour of avoiding climbing a hill 10

m high is no more than 0.59 km, cyclists will choose the detour (Hood et al., 2011).
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With regard to bridges, commuter cyclists prefer those without automobiles, or those

with a barrier between motorized and non-motorized traffic, or those without any

special provisions for cyclists but connected to bike lanes (Stinson & Bhat, 2003). Few

studies have explored the effects of on-street parking characteristics, such as presence

of parking, parking type, parking occupancy rate, and length of parking area, on

cyclist route choice. However, in Texas, Sener et al. (2009) found that cyclists prefer

routes with no or minimal parking along the street, and discovered a preference of

routes with angled parking among all the alternative routes with on-street parking.

Additional factors that affect cyclists routes in terms of cyclist characteristics, such

as age, gender, income, and cycling experience, are also commonly explored in some

studies. Lower income and younger respondents tend to make shorter commutes,

and there is no significant relationship between gender and travel time, though males

make many more bicycle trips than females (Shafizadeh & Niemeier, 1997). Never-

theless, Aultman-Hall et al. (1997) did not find any significant correlation between

age and commuting distance for adults, though a few respondents under 18 years old

in Guelph, Ontario rode a slightly shorter distance. As cycling experience and mo-

tor vehicle traffic volume are associated with safety, more experienced cyclists with

better skills may prefer to ride in the street than on a bike path, while inexperi-

enced/infrequent cyclists are more sensitive to safety concerns and traffic volumes or

speed limits (Antonakos, 1994; Hunt & Abraham; 2007; Lott & Tardiff, 1978; Winters

& Teschke, 2010). Consistently, experienced cyclists are more willing to ride on bike

lanes rather than separated bike paths, and their familiarity with roads helps them

mitigate delay and safety issues on utilitarian trips (Broach et al., 2012). In addition,

females are found to have a higher probability to cycle on perceived safer routes than
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males (Tilahun et al., 2007). Similarly, females attach more importance to safety, few

hills, and convenience for errands than males (Antonakos, 1994). As a reaction to a

cycling accident, it is interesting to find that females are more likely to alter their

routes than males (Howard & Burns 2001).

In summary, the most commonly used route attributes for analyzing cycling route

choice include slopes, turn frequency, traffic volumes, and bicycle facilities, such as

bike lanes, separated bike paths, and residential streets with traffic calming. Other

route attributes that may affect choice include stop signs, red lights and major cross

streets, and on-street parking characteristics. In terms of cyclist characteristics, some

previous studies found that lower income and younger cyclists have a higher sensitivity

to travel time, but a lower sensitivity to facility quality, and are more willing to use

separated bike paths, sidewalks, and dirt trails, while other studies did not find any

significant relationships. Experienced bicyclists have a stronger preference to ride on

a bike lane than on a bike path, while inexperienced bicyclists care more about safety,

traffic volumes and speed limits. Concerning gender, safety, few hills, convenience for

errands, and quality of facilities are more important for women than men.

2.3 DATA

2.3.1 Study Area

Hamilton is a densely populated city in the province of Ontario with a population

of 536,917 in 2016 (Statistics Canada, 2016). Public transit in the city depends on

buses. In March 2015, Hamilton launched a bike share program called SoBi Hamilton,

consisting of 750 bicycles and over 100 hubs with a designated distance of 300 to 600
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meters between hubs. As shown in Figure 2.1, all of the hubs, represented by black

dots, are located below the escarpment, in the vicinities of downtown Hamilton and

McMaster University.

Figure 2.1: Study area of SoBi Hamilton.

2.3.2 Cycling Network

For this study, the cycling network was created from two data sources: a road net-

work containing trails for the City of Hamilton (DMTI Spatial, 2015) and bikeways

(Open & Accessible Data, 2016). Essentially, an attribute describing different types of
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bikeways was added to links comprising the road network, producing a more detailed

network, consisting of 22,710 links and 16,731 junctions, containing 6 road types and

10 categories of bikeways. Cyclists, however, only traveled along three road types:

major roads, minor roads, and trails (Figure 2.1). A digital elevation model with a

resolution of 30 m was used for to calculate link slopes.

2.3.3 GPS Dataset

As mentioned earlier, SoBi bikes are GPS-equipped, meaning that the number of

bikes at hubs can be determined in real time, informing users of bicycle and park-

ing availability at start hubs and end hubs, respectively. More importantly, cycling

routes can be tracked in real time, providing reliable data for route choice analysis.

Although stated preference and revealed preference surveys have been widely used in

past studies due to the ease and cost effectiveness of collecting data, this project uses

GPS points to reveal the actual routes of users.

This study obtained from SoBi Hamilton 161,426 GPS trajectories describing the

actual routes of bike share users over a 12-month period (April 1, 2015 to March

31, 2016). However, only 132,396 trips were between two different hubs. This study

grouped trips by origin-destination (O-D) hub pairs and used a GIS-based map-

matching toolkit to generate multiple route attributes for exploring determinants of

cyclist route choice behavior.
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2.4 METHODOLOGY

2.4.1 Data Generation

GIS-based map-matching toolkit

The GIS-based map-matching toolkit developed by Dalumpines and Scott (2011) was

used to match the GPS trajectories with the cycling network and extract a series

of attributes describing each route. The main principle of the toolkit is to use the

shortest path algorithm, provided by the Network Analyst extension in ArcGIS, given

basic inputs, including stops representing origin and destination points, and barriers

constraining the shortest path algorithm, to follow the GPS trajectories. The map-

matching process is shown in Fig. 2. Specifically, origin and destination points

are identified as stops, and a polyline feature is created from a set of GPS points

representing a hub-to-hub trip (Figure 2.2a). Then, a buffer with a default distance

chosen by the user (in this case, 50 m) is created around the polyline feature to

identify barriers by intersecting with road segments (Figure 2.2b). The observed

route is reproduced because barriers force the shortest path algorithm to follow the

stream of GPS trajectories (Figure 2.2c). Since the fit of GPS trajectories to a road

network is sensitive to buffer distance, Dalumpines & Scott (2011) did an experiment

testing the impact of different buffer distances on map-matching results and found

that a 50 m buffer maximizes the accuracy of the map-matching algorithm.
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Figure 2.2: Conversion from GPS trajectories to an observed route using the map-
matching toolkit.

Link signature extraction

In the cycling network, each road segment (link) has an ID. The link signature extrac-

tion tool, developed for this study, extracts all links comprising a route and combines

their link IDs in ascending order using colons for separation. The list of ordered link

IDs is the original link signature for one trip. As shown in Figure 2.3, overlapping
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trips may be slightly different at the origin and the destination, which can be caused

by the delay of activating time. However, such trips should still be seen as exactly

the same. Thus, the links at the start and end points are removed from the link ID

list to generate an altered link signature for the core portion of each trip. As a result,

unique routes from hub-to-hub are extracted from all the actual map-matched trips

according to their core link signatures. At the same time, the use frequency of each

unique route is calculated according to the number of trips traversing it.

Figure 2.3: Generation of core link signatures for each hub-hub trip.

2.4.2 Statistical Analysis

In order to compare dominant routes with their shortest path counterparts based on

distance, it is necessary to determine whether a dominant route exists between a hub

pair; that is, whether the most popular route with the most trips on it between a hub

pair can be regarded as the dominant route.

Normalized Gini coefficient

The Gini coefficient is a widely used statistical measure showing dispersion in a set

of values. Its value ranges from 0 to (1 − 1/N), where N refers to the sample size.
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A Gini coefficient of 0 indicates perfect equality, while a value that is maximized

indicates complete inequality. In the field of route choice analysis, the Gini coefficient

is used to evaluate whether a preference exists among all the unique routes between

O-D pairs. Lima et al. (2016) normalized the Gini coefficient to compare its value

G for an O-D group of trips with the corresponding heterogeneous number of unique

routes N (>1) by the following formula:

Gn =
G

1− 1/N
(2.1)

In this case, no matter how many unique routes are between an O-D group, a Gn of

1 indicates perfect inequality (e.g., for an O-D group with a large number of trips,

where all the trips travel along the same route, while the other alternative routes have

no trips, the normalized Gini coefficient will be 1). In this study, however, perfect

inequality cannot be reached because only hub pairs containing at least 2 unique

routes are considered in the analysis. A normalized Gini coefficient of 0 indicates

perfect equality, where all unique routes have the same number of trips on them.

Paired t-test

The paired t-test is a parametric test that identifies differences between paired mea-

surements respectively from two paired samples, and determines whether the mean

difference is statistically significant. In this study, for hub pairs, the paired t-test

is used to compare differences between dominant routes and corresponding shortest

paths based on distance.
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2.5 RESULTS

For this study, Table 2.1 lists general information about the SoBi dataset extracted

from the GPS points. There are 7,437 hub pairs in total, but only 5,561 of them

are used for this study. Excluded are hub pairs with round trips or only one unique

route between them. The map-matching procedure produces 161,426 trips along the

cycling network, where 82% are from hub-to-hub. Given the core link signature of

each hub-to-hub trip, 49,120 unique routes are extracted from all the trips. Some of

the unique routes are then removed from the entire choice set, including those not

between hub pairs for study, those with portions on expressways likely due to GPS

errors, and those far away from start and end hubs caused by GPS errors where 600

m is used due to the designated distance separating hubs. Statistically, the average

number of hub-to-hub unique routes is 8, while the maximum is 77 and the minimum

is 2. Concerning the number of trips on each unique route, dominant routes between

hub pairs are identified, and only 299 of them follow shortest paths based on distance.

Table 2.1: GPS data processing summary.

Description Number Notes
Map-matched trips 161,426

Trips between hubs 132,397

Hub pairs 7,437

Hub pairs for study 5,561 Excludes 1) Round trips, 2) One route

Unique hub-to-hub routes 49,120

Unique hub-to-hub routes for study 41,369 Excludes 1) Not within 600 m of hub, 2) On expressways

Average # routes between hub pairs 8

Maximum # routes between hub pairs 77

Minimum # routes between hub pairs 2

Dominant hub-to-hub routes 4,563 Excludes dominant routes with 1 trip

Dominant route = shortest path (m) 299
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In order to determine whether some routes are used more frequently than others,

the normalized Gini coefficient Gn is used. Specifically, for a hub pair, the closer to

0 the Gn is, the more evenly routes are chosen; the closer to 1 the Gn is, the more

biased route choice is toward one route. Generally, hub pairs have high a Gn with a

median value of 0.5, indicating that a dominant route exists.

Figure 2.4: Cyclist route choices.

(a) The median values of Gn versus the number of hub-to-hub trips.

(b) Demonstration of a hub pair with a high Gn.

(c) Demonstration of a hub pair with a low Gn.
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The relationship between median values of the normalized Gini coefficients for

hub pairs with no less than two unique routes and the number of corresponding trips

is plotted in Figure 2.4a. The results suggest that a route is much more preferred as

the number of trips between hubs increases. In addition, the tendency of Gn shows

suggests that if a unique route is repeated more than 25 times, a biased route tends

to be the dominant route between a hub pair. Figure 2.4b shows an example of all

the unique routes between a hub pair with a high normalized Gini coefficient of 0.91,

where the dominant route has 344 trips on it, followed by the second preferred route

with 58. The shortest distance route has only 5 trips on it. On the contrary, the

example of the hub pair with a low Gn of 0.19 contains 20 unique routes and 26 trips,

where only 4 trips travel along the dominant route and no trip are on the shortest

distance route (Figure 2.4c). In general, the number of trips on dominant routes

accounts for about 49% of the total number of trips between hub pairs for study.

The spatial pattern of SoBi users dominant routes along the entire cycling net-

work shows that highly used road segments usually contain a series of hubs (Figure

2.5a). The road segments without bikeways containing a large number of dominant

routes are likely suitable candidates for adding bicycle facilities (Figure 2.5b). At the

same time, most road candidates for additional bicycle facilities are around a cluster

of hubs and have relatively high accessibility to the existing bicycle infrastructure.

Additionally, a visual comparison of Figure 2.5a and 2.5b shows that most frequently

used roads are equipped with bicycle facilities, indicating that cyclists tend to travel

along roads with bikeways.

25



M.Sc. Thesis - Wei Lu McMaster - School of Geography and Earth Sciences

Figure 2.5: Spatial distribution of dominant routes.

(a) on all the road segments and (b) on roads without bikeways.

The paired t-test was used to explore differences between dominant routes and

shortest paths based on distance. Table 2.2 shows summary statistics (mean val-

ues for route attributes), and t-statistics to identify whether differences between

dominant-route attributes and shortest-path attributes are statistically significant.

Specifically, bolded values suggest that differences are statistically significant at the

5% significance level.
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Table 2.2: Route attributes of dominant routes compared to corresponding shortest
paths (distance).

Bolded t-statistics imply differences significant at the 5% significance level.

Variables Dominant Shortest Difference t  statistic
Length (m) 2137.98 1971.35 166.63 36.25
RDI (compared to straight line) 1.36 1.26 0.1 23.96
Unique road segments 5.36 5.08 0.28 6.34
Intersections 22.83 22.59 0.24 3.55
Mean route distance btw intersections (m) 95.2 91.74 3.46 13.86
Longest leg length (m) 1009.72 1051.13 -41.41 -5.24
Turn statistics
Left turn 2.01 1.9 0.11 4.51
Right turn 2.05 1.89 0.15 6.51
Sharpe left turn 0.13 0.11 0.02 3.23
Sharpe right turn 0.13 0.1 0.03 5.89
Total turns 4.31 4 0.3 6.92
% of route based on slope
Slope 0-2% 65.16 66.44 -1.28 -6.37
Slope 2-4% 20.86 19.92 0.94 6.16
Slope 4-6% 5.93 6.46 -0.52 -7.03
% of route based on road type or bikeway type
Major (%) 31.74 41.53 -9.78 -22.83
Minor (%) 66.42 56.7 9.72 22.77
Trail (%) 1.83 1.75 0.08 1.99
Designated BL (%) 26.92 20.36 6.55 19.87
Cautionary un-signed BR-HT (%) 2.8 5.36 -2.55 -16.19
Cautionary un-signed BR-MT (%) 3.39 2.1 1.29 10.14
Cautionary un-signed BR-LT (%) 1.12 1.06 0.06 1
Signed on-street BR-MHT (%) 0.28 0.26 0.02 0.72
Signed on-street BR-LT (%) 10.21 8.24 1.97 9.22
Separated bike path (%) 0.27 0.16 0.11 3.64

Note: Differences are calculated as attributes of dominant routes minus those of

shortest distance routes. Thus, positive t statistics correspond to higher values for

dominant route attributes, while negative t statistics suggest higher values for

shortest path attributes.
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Dominant routes are significantly longer than shortest paths based on distance,

implying that cyclists may detour for other route characteristics. Consistently, the

mean route directness index (RDI) of dominant routes is larger than that of shortest

distance routes. The RDI, measuring the ratio of a routes distance to the straight-

line distance between its origin and destination, shows the efficiency/circuity of a

route. The mean RDI values of dominant routes and shortest paths are 1.36 and

1.26, respectively indicating that routes are 36% and 26% longer than the straight-

line distances between hubs. In this case, dominant routes are, on average, 10%

less efficient than corresponding shortest paths based on distance. Simultaneously,

dominant routes have more unique road segments, more intersections, and longer

mean route distance between intersections compared to shortest distance routes, while

the average distance on the longest leg of dominant routes is significantly shorter than

that of shortest distance routes.

In terms of turn frequency, significant differences are identified for the number of

sharp turns and normal turns. The average number of turns is 4.31 for dominant

routes with 2.01 left turns and 2.05 right turns, compared to 4.00 for shortest paths

(distance) with 1.90 left turns and 1.89 right turns. Both dominant and shortest

distance routes are found to avoid sharp turns over 90 degrees, though the number of

sharp left and right turns are both slightly higher in dominant routes than in shortest

distance routes. With regard to slopes, cyclists will feel a slope of 3-4%, and do not

like climbing a grade over 4% (Transport Canada, 2010). Also, slopes over 5% are

regarded as steep hills (Winters et al., 2010a). In this study, 92% of dominant routes

on average are on slopes of no more than 6%, where 65% are on 0-2% gradients.

Similarly, 93% of shortest paths based on distance are on slopes of no more than 6%,
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where 66% are on 0-2% gradients. Compared to shortest distance routes, cyclists

prefer to take longer trips on 2-4% slopes, and avoid steep slopes of 4-6% as well as

flat areas with slopes no more than 2%. A possible reason for avoiding flat areas for

dominant routes may be a tradeoff for other attributes.

Dominant routes tend to follow minor roads covering 66% of a route and avoid

major roads comprising 32%. In comparison, shortest distance routes contain fewer

proportions on minor roads (57%) and more proportions on major roads (42%). At

the same time, the distance of a dominant hub-to-hub route on trails on average is

significantly longer than that of its corresponding shortest path. Concerning bicycle

facilities, it is more likely for SoBi users to choose routes with longer designated on-

street bike lanes, cautionary un-signed bike routes on streets with moderate traffic

volume, signed on-street bike routes with mostly low traffic volume, and separated

bike paths instead of shortest distance routes. Additionally, SoBi cyclists tend to

avoid riding on cautionary un-signed bike routes on streets with high traffic volume

compared with shortest paths based on distance.

2.6 CONCLUSIONS

Route choice analysis is commonly based on stated preference surveys or revealed

preference surveys, which can impact sample size and result accuracy. Some updated

studies used GPS devices to automatically record the actual routes taken by users and

create alternative routes using some form of choice set generation (Broach et al., 2012;

Hood et al., 2011; Menghini et al., 2010). However, none of them created choice sets

using actual cyclists routes, which in this study were extracted from all the duplicate

trips between an origin and a destination derived from GPS data. The usage of each
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unique route is identified afterwards. As a result, all the generated actual unique

routes between an origin and destination (OD) pair can be regarded as an OD choice

set. This paper used a GIS-based map-matching toolkit to produce all the trips

along the cycling network using a GPS dataset, and introduced a new link signature

extraction tool to do all three aforementioned jobs. Lima et al. (2016) introduced the

idea of dominant routes for drivers frequent trips and found a tendency of each driver

towards a preferred route between an OD pair. This study not only demonstrates that

a dominant route is chosen by multiple cyclists instead of only individuals between a

bike share hub pair, but also identifies route attributes contributing to such dominance

by comparing with the corresponding shortest path based on distance.

Normalized Gini coefficients indicate that cyclists tend to have a dominant route

between a hub pair, and the bias becomes much stronger as the number of trips

increase between them. According to the core link signatures of routes, only 7%

of dominant routes chosen by SoBi users are shortest paths based on distance. In

this study, dominant routes are compared to their corresponding shortest distance

routes using paired t-tests. Significant differences are identified in many route at-

tributes, including mean route distance between intersections, the length of longest

leg, the proportion of route along road segments with different slopes, with different

road types, and with different bikeways, as well as the number of unique road seg-

ments, intersections, and turns. Similar comparisons can be conducted between other

alternative routes, such as dominant routes and second preferred routes.

The most significant differences in this research are found in route distance, RDI,

road types, and bicycle facilities. Hub-to-hub dominant routes are 10% less efficient

than their corresponding shortest path based on distance according to RDI values,
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suggesting that shortest distance routes are not the optimal choice for cyclists in the

real world. With respect to road type, minor roads and trails are preferred to major

roads for cycling. Moreover, SoBi users are willing to detour for bicycle facilities

without high traffic volumes.

One of the most significant constraints affecting further interpretation of the re-

sults is the lack of demographic data. The findings could be more comprehensive if

general socio-demographic information of SoBi users is collected (e.g., age, gender,

income, cycle experience). In addition, the shortest-path alternatives based on time

for cycling cannot be generated because the cycling speed varies between cyclists, and

it will also change over time, especially for long distances.

The future implications of this study are twofold. On one hand, it provides a new

tool for future studies to extract unique routes from a large dataset of trips between

ODs and generate choice sets based on actual routes tracked by GPS devices. Also,

since a series of attributes of unique routes have been produced by the GIS-based

map-matching, the next step is to explore the contribution of those attributes to the

use frequency of unique routes using models. In addition, since most BSPs recently

contain the GPS technology, this study provides a brand new and cost effective way

to explore cyclists route choice decision-making process using bike share users GPS

trajectories. The findings from this research bring positive benefits to urban planning

and policy making in the City of Hamilton by examining the spatial distribution of

cyclists dominant routes and the influence of bicycle facilities, which can determine

what types of bicycle facilities are suitable to be developed on which road segments.

Simultaneously, for SoBi users, a recommended cycling route between hubs can be

provided on the basis of generated dominant routes in this study.
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Chapter 3

DETERMINANTS OF BIKE

SHARE CYCLIST ROUTE

CHOICE BEHAVIOR USING

GPS DATA

3.1 INTRODUCTION

Walking and cycling, two forms of active travel, can improve a persons health by

reducing the likelihood of obesity (Gordon-Larsen et al., 2009) and chronic disease

(Frank et al., 2006), and the environment by reducing carbon emissions and noise

pollution (De Nazelle et al., 2011). According to Dill (2009), although most contem-

porary studies have focused on walking, cycling, rather than walking, has a greater

potential to replace automobiles because of higher speed and the ability of traveling
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longer distances. A bike share program (BSP), an automated rental program pro-

viding bicycles that can be picked up and locked at hubs, is a cost-effective form

of public transit that is healthy for users and can help improve traffic congestion

and air pollution (Kisner, 2011). According to Davis (2014), newer BSP bicycles

are usually equipped with global positioning system (GPS) devices, and technologies

are developed to provide mobile applications and/or websites that can reveal bicycle

availability at hubs. Although the global number of bike share programs has rapidly

increased over the last decade, BSPs have been around for about 50 years (Shaheen et

al., 2010). Fishman (2016) found that the number of cities with BSPs has risen from

13 in 2004 to 855 in 2014. In 2015, the City of Hamilton, Ontario joined this group by

launching a BSP called SoBi (Social Bicycles) Hamilton with 750 bicycles equipped

with GPS devices and over 100 hubs. The availability of bicycles at hubs and the

actual traces of each SoBi user are recorded. Such information benefits route choice

analysis by providing origins, destinations, and observed routes using GPS points.

Route choice is a decision-making process in which a person selects a specific

route, based on its attributes, from a specified origin to a destination (Bapat et

al., 2017). Route choice modeling consists of two parts: one is the generation of

alternative routes for the corresponding observed route to form a choice set; the

other is the determination of the likelihood of choosing one route from a choice set

(Ben-Akiva et al., 2004). Prato (2009) states that it is necessary to analyze route

choice because it can help researchers, policy makers, and urban planners evaluate

travelers perceptions of route attributes, predict commuter travel behavior, learn

about commuter reaction and adaptation to information sources, and estimate future

traffic volumes on road networks. Therefore, the analysis of cyclist route choice
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behavior can contribute to promoting the use of bicycles by understanding their

preferences for bicycle infrastructure and other route attributes.

Usually, choice set generation methods are used to create alternative routes for an

observed route from an origin to a destination. However, this research regards each

hub pair as a cluster and all the actual routes between the two hubs forming the pair

as members of a choice set. Simultaneously, the weight of each route depends on the

number of trips taken along the route. Unlike previous studies, this project does not

derive choice sets using traditional choice set generation techniques, but instead uses

actual cyclists routes and controls origins and destinations for multiple participants

instead of individuals. This means that preferences for route attributes are evaluated

by cyclists route choices in the real world. A GIS-based map-matching toolkit is used

to transform GPS points into trips along the cycling network; then, unique routes are

extracted from those duplicate trips based on their core link signatures. As a result,

a large dataset containing all the actual routes from hub-to-hub taken by SoBi users

is created. In order to determine whether a particular preference toward one route

exists among all the unique routes between a hub pair, a normalized Gini coefficient

(Gn) is calculated. For comparison, this study estimates a global model, a mild

preference (medium Gn) model, and a strong preference (high Gn) model to identify

the contribution of each route attribute to cyclist route choice decisions.

This paper mainly consists of six sections including this introduction and the

list of references. Section 2 discusses different data collection methods, choice set

generation techniques, and travel behavior models for route choice analysis. Section

3 describes the collection and processing of GPS data, including converting GPS

trajectories to map-matched trips and creating choice sets for SoBi by extracting
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unique routes from trips, as well as the principles of Gn and route choice modelling

Path-Size Logit (PSL) model. Section 4 presents descriptive results derived from

Gn and three models with different preference levels using PSL. Section 5 concludes

significant findings, contributions, and future implications of this research.

3.2 BACKGROUND

The most commonly used data collection methods for many previous studies in the

realm of route choice analysis have been stated preference (SP) surveys or revealed

preference (RP) surveys (Howard & Burns, 2001; Hunt & Abraham, 2007; Tilahun

et al., 2007; Guo & Loo, 2013; Razo & Gao, 2013; Tseng et al., 2013). The SP sur-

veys are attractive because participants only need to rank their preference of different

facilities or route options, which can easily and quickly collect a large dataset with-

out concerning inter-correlations among attributes for further analysis (Abraham et

al., 2002). RP surveys are appealing because actual routes made by participants are

recalled, which reveals preferences in the real world (Stinson & Bhat, 2003). SP sur-

veys may, however, lose some significant attributes because participants are required

to make choices among different facilities and route characteristics given by the choice

set within a survey. Similarly, the participants of time-consuming RP surveys may

not be able to recall accurately their routes. Some route choice studies used GPS

devices to automatically record actual routes taken by participants, which maximizes

accuracy, but can be costly in terms of equipping GPS devices and can present diffi-

culties with respect to converting GPS data to actual routes within a road network

(Broach et al., 2012; Hood et al., 2011; Papinski and Scott, 2013).
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In route choice analysis, choice set generation is a common and essential step

that creates alternative routes for observed routes between an origin-destination (O-

D) pair. According to Prato (2009), there are four types of choice set generation

methods: deterministic shortest path-based methods, stochastic shortest path-based

techniques, constrained enumeration algorithms, and probabilistic approaches. K-

shortest path is the simplest approach that provides multiple alternative routes by

minimizing a generalized cost function. However, this technique is not effective due

to the high probability of generating highly overlapping routes. Path labeling, the

most widely used approach that can avoid the overlapping problem creates optimized

routes based on different generalized costs for variables, known as labels. The labels,

specified by researchers, can be different for each case study. Howard and Burns

(2001), for example, generate alternative routes by extracting optimal paths between

O-D pairs in terms of distance, directness, and safety. Prato and Bekhor (2006)

applied the labeling approach by optimizing routes for distance, free-flow time, travel

time, and delay that represents the congestion level; however, they found path labeling

inadvisable because of high dependence on the definition of labels, which requires

prior understanding about individual travel preferences. Broach et al. (2012) used

an improved version of route labeling, where alternatives were created by maximizing

individual criteria with distances controlled by multiple distance constrained values

within a pre-specified range. For instance, alternative routes could be generated by

maximizing the proportion of a route on bicycle facilities within a distance constraint.

For bike share programs, cyclists can choose among multiple routes between an O-

D hub pair. By focusing on hub pairs, the consideration of producing alternative

routes to represent potential choices of cyclists using traditional choice set generation
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techniques may be unnecessary because multiple actual routes taken by BSP members

between a pair can be treated as alternatives.

With respect to travel behavior modeling, the Multinomial Logit (MNL) and

Nested Logit (NL) are perhaps the most commonly used discrete choice models, but

neither of them is appropriate for route choice modeling (Prato, 2009). Specifically,

NL is not suitable due to its assumption that each alternative route is solely assigned

to one nest, but the actual routes may share links with others. The MNL is unable

to account for similarities among alternatives, so it is highly likely to over-predict the

probabilities of routes with overlapping links, which results in overwhelming estimated

traffic volumes on these shared links (Ben-Akiva et al., 2012; Dalumpines & Scott,

2017). In order to solve the problem of overlapping links, many studies have applied

the Path-Size Logit (PSL) model, which adds a correction factor, an attribute called

the path size that measures the level of overlap, into the MNL formulation (Ben-

Akiva & Bierlaire, 1999; Broach et al., 2012; Frejinger et al., 2009; Hood et al., 2013;

Menghini et al., 2010; Ramming, 2001). The PSL is the most widely used model for

route choice analysis because of the simple utility formulation and high efficiency of

estimation using conventional software (Bekhor et al., 2006).

3.3 METHODS

3.3.1 GPS Data Collection and Post-processing

GPS data recording cyclists routes were collected from GPS devices equipped on the

bicycles provided by SoBi Hamilton. The service area of the BSP, containing over

100 hubs with a designated distance of 300 to 600 meters between them is shown by
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black dots in Figure 3.1. The GPS device is always running and never turned off so

that both SoBi operators and users can always track the location of each bicycle.

Figure 3.1: Study area and road network of SoBi Hamilton.

From April 1, 2015 to March 31, 2016, 161,426 GPS trajectories describing SoBi

users observed routes were collected, where 132,396 cases travelled between hubs. In

this study, only hub-to-hub trips were taken into account and were grouped by origin-

destination (O-D) hub pairs. A GIS-based map-matching toolkit was used to match

the GPS traces to the cycling dataset, and also to generate a series of attributes

describing characteristics of the routes. The cycling network was created based on a
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bikeway dataset from the City of Hamilton (Open & Accessible Data, 2016) and a road

line dataset containing all road types, such as major roads, minor roads, expressways,

and trails, for Hamilton obtained from CanMap Content Suite (DMTI Spatial, 2015).

As a result, a detailed cycling network composed of 22,710 links and 16,731 junctions

with 6 road types and 10 categories of bikeways was created. However, only trails

within McMasters campus, two road types including major and minor roads (Figure

3.1), and nine type of bikeways (Figure 3.2) were actually travelled by cyclists. A

high-resolution digital elevation model (DEM) with a pixel size of 3030m was used

to calculate the gradient gain and loss at about 30m increments along each road

segment.

The actual cycling trips along the cycling network were generated by a GIS-based

map-matching toolkit, which was developed using the Python scripting language.

The toolkit generates a series of route attributes (Table 3.1), such as route distance,

route directness, number of turns, mean distance between intersections, and length of

longest leg (Dalumpines & Scott, 2011). The core principle of this toolkit is to match

GPS points to the network using the shortest path algorithm and two basic inputs

in ArcGIS (Network Analyst extension). One basic input is origin and destination

points, and the other input is barriers that constrain the shortest path algorithm to

create a map-matched route following the GPS trajectories representing an actual

trip. In brief, the start and end points of a GPS trajectory are regarded as stops,

and a 50 m buffer around the polyline converted by the GPS trajectory is created to

identify the barriers. As a result, the shortest path algorithm generates the observed

route, which is actually the shortest route between the origin and destination (stops)

following the GPS points constrained by barriers.
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Figure 3.2: Bikeway distribution in study area.

3.3.2 Choice Set Generation

In the 12-month period SoBi dataset, 132,396 hub-to-hub trips were collected and

map-matched; however, many of them follow identical routes. In order to extract

unique routes between hub pairs from all the actual trips, core link signatures for

trips are created to identify whether those trips travel along the same unique routes.

Since each road segment has a link ID in the cycling network, all the links making up

a trip are extracted, and their corresponding IDs are combined together in ascending

order with colons separating each link ID. Repeated trips may have a small difference
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at the origin and destination points due to the instability of GPS devices or the delay

in activating time, but they should be regarded as exactly the same. Thus, the list

of ordered link IDs without the links at the origin and the destination is regarded as

the core link signature. As a result, the trips with the same core link signature are

considered to follow the same route, and the use frequency of each unique route is

calculated based on the number of trips along it. Unlike other studies using choice

set generation to create alternative routes for an observed route, this research regards

all the actual unique routes taken by SoBi users as both observed and alternative

routes between each hub pair, and the weight of each route refers to the number of

trips on it. In this case, hub pairs with only one unique route between them are

removed from the study; specifically, there are 7,962 hub pairs, but 20% of them are

excluded because of only containing one unique route and 2% are excluded due to

round trips. In general, the number of hub-to-hub unique routes ranges from 2 to 77,

and on average each hub pair includes 14 unique routes.

3.3.3 Normalized Gini Coefficient

The Gini coefficient, normally used for measuring income inequality, is a well-known

index to explore dispersion in a series of values. In route choice analysis, the Gini

coefficient can identify whether there is a preference for a route between an origin

and a destination. It varies between 0 (perfect equality) and 1 − 1/N (complete in-

equality), where N represents number of unique routes between a hub pair. In order

to normalize the Gini coefficient by comparing the value of G for an O-D group to
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its number of unique routes N (>1), the formula of the normalized Gini coefficient is

(Lima et al., 2016):

Gn =
G

1− 1/N
(3.1)

where a Gn value of 1 always indicates perfect inequality no matter how many unique

routes exist within a group, suggesting perfect bias towards one route, while a Gn of

0 still refers to perfect equality, where all the O-D unique routes are evenly used by

cyclists. Therefore, a value of Gn for a hub pair close to 0 indicates that routes are

chosen more evenly, while the Gn close to 1 implies a route is more biased and the

alternatives are less likely to be chosen.

3.3.4 Path-Size Logit Model

The multinomial logit (MNL) model is a method used to model the relationship

between a polytomous dependent variable and a set of independent variables (Ben-

Akiva & Lerman, 1985). In other words, MNL can predict the probabilities for

alternative outcomes of a polytomous response variable given a series of explanatory

variables. However, for route choice modeling containing overlapping routes, MNL is

inappropriate as it cannot account for similarities among route alternatives (Bekhor

et al., 2006; Prato, 2009). To correct for the overlapping routes, the Path-Size Logit

(PSL) model, easily adding a correction factor (i.e., path size attribute) to the path

utility under the structure of the MNL model, is suitable for studies exploring the

factors influencing route choice behavior (Bekhor et al., 2006). There are multiple

formulations to generate the path size attribute. Frejinger & Bierlaire (2007) stated

that the original PS formulation (Ben-Akiva and Bierlaire, 1999) with a theoretical

support could provide intuitive results. Thus, the original formulation was chosen
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in this study. PSin, representing the path size (PS) attribute of path i taken by

individual n, for the j alternatives in choice set Cn is defined as:

PSin =
∑
a∈Γi

La

Li

1∑
j∈Cn

δaj
(3.2)

where Γi is all the links of path i, La is the length of link a, Li is the length of path i,

and δaj is the link-route incidence dummy that equals 1 if link a is a part of j and 0

otherwise. The path size always has values less than or equal to 1 (Prato & Bekhor,

2007). That is, a sole route without overlapping links in a choice set is given a PS

of 1, while a route containing partial overlaps is given a PS less than 1. The final

formula of the PSL model is:

Pγ(i|Cn) =
eVin+InPSin∑

j∈Cn
eVjn+InPSjn

(3.3)

where Pγ(i|Cn) is the probability of choosing alternative route i given the choice set

of alternative routes Cn for observation n, Vin and Vjn are respectively the determinis-

tic utilities of routes i and j. There is no adjustment to deterministic utility for a sole

route with ln(PS) = 0, while the alternative routes in the choice set containing over-

lapping links with ln(PS) < 0 lead to the decreased deterministic utility (Dalumpines

& Scott, 2017).

3.4 RESULTS

There were 132,396 hub-to-hub trips taken by its SoBi Hamilton users between April

1, 2015 and March 31, 2016, where most trips were taken along the same unique
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routes. From these trips, 41,318 hub-to-hub unique routes were extracted, which

constitutes the global dataset, where for each hub pair, the number of alternative

routes ranges from 2 to 77 with an average of 14. Globally, a high normalized Gini

coefficient with a median value of 0.5 for hub pairs is found, implying a tendency of

a dominant route between a hub pair. Figure 3.3 displays two examples respectively

referring to all the unique routes between a hub pair with a high Gn of 0.91 (a), where

75% trips are travelling along the dominant route, and the other with a low Gn of 0.19

(b), where all the unique routes are almost evenly used. With regard to hub pairs

with a mild preference towards a route among all the route choices (0.5 ≤ Gn < 0.8),

only 1257 of the total hub pairs meet the specification and are included in the medium

Gn dataset with 12,902 unique routes, and the number of alternative routes for each

hub pair varies from 2 to 66 with an average of 17. Concerning the high preference

dataset (Gn ≥ 0.8) that contains 2472 routes derived from 250 hub pairs with highly

biased dominant routes, the number of alternative routes ranges from 2 to 73 with a

mean value of 14 for each hub pair.

Figure 3.3: (a) Demonstration of a hub pair with a high Gn. (b) Demonstration of a
hub pair with a low Gn.
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3.4.1 Descriptive Statistics

Table 3.1 lists summary statistics, including the mean value and standard deviation

of each route attribute, respectively for the global, medium Gn, and high Gn datasets.

As expected, the average route distance of the high Gn dataset is shorter than the

average distance of routes from the medium Gn dataset, followed by that of routes

from the global dataset. Generally, around 99% of routes in all three datasets are

no more than 6 km, and their route distance distribution are quite similar (Figure

3.4). Specifically, most of routes taken by cyclists from all the datasets are between

1 and 2 km. Compared to the global dataset, many more routes from the other two

datasets are within 2 km, while the global dataset routes tend to dominate over the

other two datasets from 2 km onward.

Figure 3.4: Route distance pattern for routes from three datasets: global, medium
Gn, and high Gn.
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In general, the mean values of route attributes for the medium Gn dataset are

usually between those for the global and high Gn dataset (Table 3.1). The average

route directness index (RDI), showing the efficiency of a route, is lowest in the high

Gn dataset, which indicates that routes from the high Gn dataset are the least cir-

cuitous on average, followed by the medium Gn and the global datasets. Similarly,

the number of road segments, total turns, and intersections confirm that routes in

the high preference dataset are more direct than those in the other two datasets.

Interestingly, the average route distances between intersections are almost the same

for all three datasets. Compared to the medium Gn and global datasets, the high

preference dataset contains routes with a larger proportion along flat roads with slope

of 0-2%, trails, designated bike lanes, and cautionary un-signed bike routes on streets

with moderate and low traffic volume on average. Given the average proportion of a

route along some bikeways less than 0.3%, routes from all three datasets are almost

unlikely to be taken on signed on-street bike routes with moderate to high traffic

volume, paved multi-use trails shared with pedestrians, unpaved multi-use trails, and

unmarked paved shoulder bike lanes. In addition, the average path size values suggest

that routes in the high Gn dataset have more overlaps than those in the medium Gn

and global datasets.
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Table 3.1: Descriptive statistics of route attributes for global, medium Gn, and high Gn datasets.

mean ± std. mean ± std. mean ± std.

Route distance Distance of route in kilometers 2.11 ± 1.27 1.66 ± 0.99 1.43 ± 0.92

Straight-line distance Straight-line distance between origin and destination in kilometers 1.5 ± 0.94 1.18 ± 0.71 1.01 ± 0.63

RDI Route directness index (compare to straight line) 1.65 ± 13.69 1.56 ± 2.33 1.50 ± 0.81

Path size A correction factor to path utility 0.38 ± 0.23 0.31 ± 0.22 0.28 ± 0.21

Unique road segments Number of unique road segments that a route travel along 6.22 ± 3.16 5.32 ± 2.60 4.37 ± 2.54

Left turn Number of left turns 2.46 ± 1.71 2.05 ± 1.51 1.74 ± 1.52

Right turn Number of right turns 2.48 ± 1.70 2.09 ± 1.51 1.69 ± 1.45

Total turns Total number of turns 5.20 ± 3.23 4.40 ± 2.74 3.66 ± 2.76

Intersections Number of intersections 23.13 ± 15.11 18.06 ± 11.84 15.44 ± 10.66

Distance btw intersections Average route distance between intersections in kilometers 0.1 ± 0.02 0.10 ± 0.02 0.10 ± 0.03

Longest leg length Length of longest leg in kilometers 0.91 ± 0.58 0.78 ± 0.47 0.75 ± 0.44

Prop. Slope 0-2% (%) Proportion of route along road segments with slope of 0-2% 65.98 ± 24.36 68.92 ± 25.09 72.81 ± 25.59

Prop. Slope 2-4% (%) Proportion of route along road segments with slope of 2-4% 20.87 ± 14.48 19.59 ± 15.27 17.39 ± 14.57

Prop. Slope 4-6% (%) Proportion of route along road segments with slope of 4-6% 5.80 ± 7.16 5.01 ± 7.39 3.61 ± 6.33

Prop. Slope 6%+ Proportion of route along road segments with slope over 6 % 7.35 ± 11.02 6.48 ± 11.42 6.19 ± 13.74

Major road (%) Proportion of route along major roads 29.48 ± 27.27 26.66 ± 28.56 22.15 ± 30.44

   -Major roads without BL (%) Proportion of route along major roads without designated bike lanes 22.63 ± 24.37 20.41 ± 25.59 15.77 ± 25.29

   -Major roads with BL (%) Proportion of route along major roads with designated bike lanes 6.85 ± 13.43 6.26 ± 14.07 6.38 ± 16.83

Minor road (%) Proportion of route along local roads 68.34 ± 27.01 70.07 ± 28.38 69.35 ± 30.20

   -Minor roads without BL (%) Proportion of route along minor roads without designated bike lanes 52.09 ± 27.31 53.40 ± 28.48 48.25 ± 30.86

   -Minor roads with BL (%) Proportion of route along minor roads with designated bike lanes 16.25 ± 20.31 16.67 ± 21.70 21.10 ± 27.41

Trail (%) Proportion of route along trails 2.18 ± 7.72 3.27 ± 9.55 8.50 ± 15.39

Designated BL (%) Proportion of route on designated bike lanes 23.30 ± 23.26 23.20 ± 24.80 28.31 ± 30.15

Cautionary un-signed BR-HT (%) % of route on cautionary un-signed bike routes on street with high traffic volume 2.70 ± 8.47 1.93 ± 7.40 0.88 ± 4.72

Cautionary un-signed BR-MT (%) % of route on cautionary un-signed bike routes on street with moderate traffic volume 3.47 ± 8.86 4.05 ± 9.98 6.99 ± 14.00

Cautionary un-signed BR-LT (%) % of route on cautionary un-signed bike routes on street with low traffic volume 1.20 ± 5.28 1.38 ± 5.91 4.12 ± 11.19

Signed on-street BR-MHT (%) % of route on signed on-street bike routes with moderate to high 

Var iable Descr iption
Global Medium High G Gn n

traffic volume 0.29 ± 2.21 0.23 ± 2.16 0.23 ± 2.12

Signed on-street BR-LT (%) % of route on signed on-street bike routes with mostly low traffic volume 10.72 ± 14.28 11.05 ± 15.63 10.05 ± 16.89

Paved multi-use trail (%) % of route on paved multi-use trails (shared with pedestrians) 0.23 ± 1.72 0.19 ± 1.55 0.11 ± 0.82

Unpaved multi-use trail (%) % of route on unpaved (softer surface) multi-use trails (shared with pedestrians) 0.0001 ± 0.02 0.0003 ± 0.03 0

Unmarked paved shoulder BL (%) % of route on unmarked paved shoulder bike lanes 0.0003 ± 0.03 0.0004 ± 0.04 0
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3.4.2 Contribution of Route Attributes

Before modeling, multi-collinearity should be examined to make sure that no corre-

lation exists among independent variables because collinearity makes the coefficients

unstable. Given the correlation coefficients between independent variables, it can

be found that the straight-line distance, the number of intersections, and the total

route distance are positively correlated with each other with indices larger than 0.8.

Identically, the number of road segments, left turns, right turns, and total turns are

highly correlated with each other. Also, the proportion of a route along major roads

without designated bike lanes (BLs) is strongly negatively correlated to that along

minor roads without designated BLs. Simultaneously, proportion of route along a

minor road with designated BLs has a very high positive correlation with that along

the overall designated BLs because most designated BLs are on the minor roads in

the study area. Therefore, the straight-line distance, the proportion of a route along

minor roads without designated BLs, the overall designated BLs, the number of inter-

sections, road segments, left turns, and right turns are removed from the final models

due to multi-collinearity. Additionally, the proportion of a route along slopes over

6% is also excluded from the model because it is mutually complementary with the

sum of the other three groups of slopes, and around 93% of routes are on road seg-

ments with slopes lower than 6%. Furthermore, proportions of a route along unpaved

multi-use trails and unmarked paved shoulder BL are removed from the final model

because such bicycle facilities are at the edge of SoBi service area and few trips occur

there (< 0.0005% of a route is along these two facilities).

For all three models estimated from the aforementioned datasets, the probability

of choosing a route is negatively correlated to route distance if there are no other
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route attributes, indicating that cyclists tend to choose shorter routes without con-

sidering other factors. However, the estimation results of the PSL models displayed

in Table 3.2 show that route distance has a positive effect, implying a detour for other

significant attributes. The estimates for all three models suggest that cyclists prefer

less circuitous routes given a negative sign of RDI and a positive sign of the longest

leg length. Similarly, the significant negative determinant, the total number of turns,

and the significant positive determinant, the average distance between intersections,

in the global and high Gn models tell the same story because turns and intersections

may make routes more circuitous. In terms of elevation, it has no significant influ-

ence on the medium Gn model, but both global and high Gn models find significant

negative effects for 0-2% and 4-6% slopes, and it is much less likely to travel on 4-6%

slopes than on 0-2% slopes given the values of the coefficients. Interestingly, in the

high Gn dataset containing hub pairs with a high preference towards dominant routes,

the slope of 2-4% has a significant positive contribution. In this case, avoiding flat

areas may be a tradeoff for other route attributes.

With regards to road types and bicycle facility types, all three models show a

preference for trails that are mainly within McMasters campus, followed by cautionary

un-signed bike routes on streets with low traffic volumes, and a tendency of avoiding

those un-signed bike routes on streets with high traffic volumes and paved multi-use

trails that are a small subset requiring a significant detour. At the same time, in

the global model, cautionary un-signed bike routes on street with moderate traffic

volume is a significant positive variable, while it is a negative determinant for the

high preference dataset. In addition, both the global and medium Gn models find a

preference for signed on-street bike routes with mostly low traffic volumes while the

high Gn model finds it insignificant.
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Table 3.2: PSL model estimation results for global, medium Gn, and high Gn datasets.

Attributes
Global Medium G n High G n

coeff. t -stat coeff. t -stat coeff. t -stat

Route distance 0.21   19.71   0.72   28.86   2.48   49.64   
RDI -0.01   -3.06   -0.46   -27.94   -2.25   -48.81   
Total turns -0.01   -4.48   0.0003 0.08   -0.07   -10.35   
Distance btw intersections 1.37   8.43   -0.11   -0.40   1.16   5.08   
Longest leg length 0.65   39.23   0.87   31.82   2.12   41.29   
Prop. Slope 0-2% -0.21   -3.37   -0.14   -1.59   -0.53   -3.12   
Prop. Slope 2-4% -0.02   -0.30   0.02   0.15   0.62   3.17   
Prop. Slope 4-6% -0.48   -3.88   0.10   0.55   -5.96   -13.84   
Major roads without BL 0.13   5.03   0.08   2.22   -1.44   -16.43   
Major roads with BL 0.27   5.57   0.34   4.76   0.25   1.81   
Minor roads with BL -0.08   -2.85   0.03   0.76   -2.47   -28.79   
Trails 1.41   21.84   1.30   12.49   1.61   12.97   
Cautionary un-signed BR-HT -0.66   -9.19   -0.46   -3.94   -1.69   -4.67   
Cautionary un-signed BR-MT 0.32   7.35   -0.01   -0.21   -0.22   -2.37   
Cautionary un-signed BR-LT 1.14   16.16   0.94   7.14   0.94   7.29   
Signed on-street BR-MHT -0.06   -0.28   0.04   0.09   0.18   0.23   
Signed on-street BR-LT 0.19   6.21   0.16   3.48   0.12   1.44   
Paved multi-use trail -1.39   -4.04   -1.30   -2.41   -13.98   -7.08   
ln(Path Size) -1.34   -140.93 -1.50   -104.70 -2.68   -96.37   

Number of observations 41318 12902 2472

Pseudo R2 0.054 0.069 0.195

Bolded values imply attributes significant at the 5% level.

As expected, without considering other attributes, SoBi cyclists tend to pedal

along major roads with or without designated BLs, and minor roads with designated

BLs possibly because the most highly demanded hubs are along major roads (Figure

3.5). Surprisingly, minor roads with designated BLs change to a significant negative

factor in the global model, and for the high Gn model, the coefficients of both major

roads without designated BLs and minor roads with designated BLs switch to negative

after including ln (Path Size) in these models probably because most route overlaps

occur upon designated BLs, especially designated BLs on minor roads. As shown in
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Figure 3.6, a hub pair with a high Gn of 0.86 from Cannon at Sherman to York at

Macnab contains 9 unique routes, and the majority of overlaps lies on Cannon Street

East that is classified as a minor road with designated BLs, which may cause an

interaction with the route path size. In Table 3.2, the ln (Path Size) estimates for all

three models are negative, which indicates that SoBi users have tendency to choose

hub-to-hub routes sharing links with other alternatives, especially between hub pairs

with a high preference for dominant routes. Concerning the model performance, the

high Gn model performs the best, followed by the medium Gn model and the global

model, which is reasonable because the high Gn model examines hub pairs with a

clear bias rather than the other two datasets where some alternatives may mitigate

the effects of some significant attributes.

Figure 3.5: Demand pattern of SoBi hubs.
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Figure 3.6: Demonstration of routes between a hub pair mainly along Cannon Street.

3.5 CONCLUSIONS

Like some other route choice analysis studies (Broach et al., 2012; Hood et al., 2011;

Menghini et al., 2010), this paper used data from GPS devices to accurately track

the actual routes taken by participants. However, it did not make use of traditional

choice set generation methods, such as path labeling and K-shortest path, to create

alternative routes because a choice set consisting of actual cyclists routes can be

generated for a bike share program (BSP). In detail, multiple unique routes between

each hub pair are extracted from repeated trips generated by the GIS-based map-

matching toolkit, and the weight of each unique route was identified by the number

of trips on it. In terms of route choice modeling, similar to previous studies, PSL

models are found to improve the performance of MNL models tested in this paper

(Bekhor et al., 2006; Frejinger & Bierlaire, 2007).
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Generally, cyclists are willing to slightly endure more time to use bicycle facil-

ities (Broach et al., 2012; Tilahun et al. 2007; Winters et al., 2010; Winters &

Teschke, 2010), such as designated bike lanes, trails off street, separated bike paths,

and residential streets with traffic calming, and to avoid some other route attributes,

involving stop signs, red lights, major cross streets (Sener et al., 2009; Stinson &

Bhat, 2003), turn frequency (Aultman-Hall et al., 1997; Hood et al., 2011), steep

slopes and high traffic volumes (Broach et al., 2012; Hood et al., 2011). The con-

tribution of most route attributes to SoBi cyclists route choice behavior is similar

to the aforementioned studies; specifically, the BSP users also slightly detour on less

circuitous routes to avoid turns, changing roads, steep slopes (i.e., slopes over 4%),

and high traffic volumes. Concerning off-street trails, the PSL models illustrated a

strong preference for them; however, usage occurs on McMaster Universitys campus

as travelling on campus has few additional choices. In terms of other road types and

bicycle facilities, the PSL models illustrated a preference for cautionary un-signed bike

routes on streets with low traffic volumes, followed by designated BLs, and signed

on-street bike routes with mostly low traffic volumes, and an avoidance of cautionary

un-signed bike routes on streets with high traffic volumes and paved multi-use trails

far away from main roads. The major differences relied on the major roads without

designated BLs and minor roads with designated BLs; the global model found a bias

on major roads without designated BLs and a tiny negative effect of minor roads with

designated BLs, while the high preference model revealed an avoidance for both of

them probably because of their correlation with the path size attribute. Although a

positive correction factor for link overlaps is expected, all three models in this paper

find that ln (Path Size) has a significant negative contribution, which is similar to

59



M.Sc. Thesis - Wei Lu McMaster - School of Geography and Earth Sciences

Dalumpines and Scott (2017) illustrating that ln (Path Size) is regarded as a utility

probably containing hidden attractive features from overlapping links instead of a

correction factor. The negative ln (Path Size) estimate is reasonable in this study as

actual routes make up the choice set, so cyclists prefer overlapping links, which may

contain some advantages, such as covering bicycle facilities and high connectivity to

other routes.

These findings can help transportation professionals and urban planners under-

stand cyclists preference for route choice. In order to promote cycling, the findings

suggest that bicycle infrastructure should be added on the major roads and roads

with low traffic volumes, but also other factors should be considered (e.g., roads with

steep slopes over 4% should be avoided; paved multi-use trails should be built in

more accessible areas). Also, negative ln (Path Size) estimates suggest that future

studies can further explore the highly overlapped links to identify the hidden features

that attract BSP cyclists. In addition, this paper proposes a new way to establish a

BSP choice set by extracting actual hub-to-hub routes from repeated trips taken by

cyclists, which provides a new alternative route generation technique for BSP route

choice analysis. Furthermore, these outcomes can be used to build a new function

within the SoBi mobile application to provide recommended routes for cyclists given

the effects of significant determinants. The main limitation of this paper is lacking

some route attributes that may be significant, such as stop signs, red lights, and pave-

ment quality, as well as some demographic data, such as age, gender, income, and

cycling experience, which can make the analysis of BSP cyclists route choice behavior

more comprehensive.
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Chapter 4

CONCLUSIONS

4.1 INTRODUCTION

This thesis has used a combination of descriptive statistics and path-size logit models

in order to explore and analyze the spatial distribution of cyclists dominant routes

and determinants of bike share cyclist route choice behavior. The following four

objectives have been addressed:

• Gnerate cyclists actual trips from hub to hub using GPS trajectories and extract

unique routes to constitute a choice set for each hub pair.

• Dtermine whether a dominant route exists between a hub pair according to

normalized Gini coefficients and explore the spatial distribution of bike share

cyclists dominant routes.

• Compare dominant routes with shortest paths based on distance and examine

differences.
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• Identify determinants that contribute to the SoBi cyclist route choice decision

making process in terms of route attributes based on path-size logit models.

This chapter summarizes major findings and contributions of this thesis with

respect to the aforementioned objectives. Then, the limitations of this research are

discussed, followed by conclusions and recommendations for future research.

4.2 SUMMARY OF FINDINGS AND RESEARCH

CONTRIBUTIONS

This thesis has explored the spatial distribution of bike share cyclists dominant routes

and identified factors accounting for their route choice decisions. Chapter 2 confirmed

the existence of dominant routes between hub pairs, examined their spatial patterns,

and compared them with shortest paths based on distance. Chapter 3 further in-

troduced Path-Size Logit (PSL) modeling to create models reflecting the influence of

each factor on SoBi cyclist route choice behavior. In general, the first three objectives

are addressed by Chapter 2, while the last objective is addressed by Chapter 3.

Findings from both Chapters 2 and 3 are similar to most previous studies associ-

ated with the correlation between route attributes and cyclists route choices. First,

cyclists are willing to slightly detour to use bicycle facilities (Broach et al., 2012;

Tilahun et al. 2007; Winters et al., 2010; Winters & Teschke, 2010). Next, although

detouring may come with more turns and intersections, cyclists still try to avoid both

of them (Aultman-Hall et al., 1997; Hood et al., 2011; Sener et al., 2009; Stinson

& Bhat, 2003). In addition, both steep slopes and high traffic volumes are found as

negative features for cyclists route choice decisions (Broach et al., 2012; Hood et al.,
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2011). More details of findings and contributions of Chapters 2 and 3 are respectively

discussed below.

Similar to Lima et al. (2016) who found that drivers tend to have a dominant route

among all the routes between an origin and a destination, Chapter 2 demonstrates

that bike share cyclists also have a preferred route between a hub pair according to the

value of normalized Gini coefficients (Gn). A Gn closer to 1 suggests a stronger bias

toward one route, which can be considered as a dominant route; while a Gn closer to 0

indicates an even use of all the routes between a hub pair. To the authors knowledge,

this is the first instance of extracting unique routes from all the hub-to-hub trips

taken by multiple cyclists and introducing the idea of dominant routes in the bike

share context. Then, around 93% of dominant routes are found not to be shortest

paths based on distance. That is, shortest distance routes are not the optimal route

choices for bike share cyclists in the real world. Specifically, Chapter 2 finds that

cyclists tend to endure 10% more distance than shortest distance routes on average

to use bicycle facilities without high traffic volumes, which may result in a slight

increase in turns and intersections. In addition, Chapter 2 also visually displays the

spatial pattern of dominant routes and proposes candidates of road segments suitable

for additional bicycle facilities (Figure 2.5).

Chapter 3 introduced three PSL models based on three datasets with different

Gn levels. In other words, the global model estimates all the hub-to-hub routes;

the medium Gn model estimates routes belonging to hub pairs with Gn at least 0.5

and smaller than 0.8; while the high Gn model estimates routes between hub pairs

with Gn no less than 0.8. These three models imply a similar tradeoff between the

route distance and other route attributes. Bike share cyclists are willing to detour
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on not too circuitous routes in order to avoid turns, steep slopes (> 4%), and high

traffic volumes. Simultaneously, the specific contribution of each bicycle facility type

is examined. The PSL models show a strong preference for off-street trails that are

mainly on McMaster Universitys campus, which has few additional choices for cycling.

At the same time, SoBi cyclists prefer to travel along cautionary un-signed bike routes

on streets with low traffic volumes, followed by designated BLs, and signed on-street

bike routes with mostly low traffic volumes, and try to avoid cautionary un-signed bike

routes on streets with high traffic volumes and paved multi-use trails far away from

main roads. Unexpectedly, a significant negative contribution of ln (Path Size) has

been found, which is similar to findings from Dalumpines and Scott (2017). Instead

of a correction factor, ln (Path Size) in this case is treated as a utility probably

with some hidden attractive features from overlapping links. As a route choice study

utilizing choice sets consisting of actual routes, the negative ln (Path Size) estimate

makes sense because route overlapping occurs with some positive features, such as

bicycle facilities.

4.3 RESEARCH LIMITATIONS

A common and significant constraint of both studies limiting further interpretation

of results is the lack of demographic data and some other route attributes that could

probably be significant, such as stop signs, red lights, and pavement quality. More

comprehensive findings could be achieved if SoBi cyclists socio-demographic informa-

tion, such as age, gender, income, and cycling experience, and more route attributes

had been collected. Simultaneously, some routes are removed from this research due
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to GPS errors, which is unavoidable for all the route choice studies using GPS tech-

nology. Additionally, for Chapter 2, it would be interesting to include the comparison

between dominant routes and shortest paths based on travel time as well, which is

difficult to generate as the cycling speed changes among different cyclists, and it may

also vary over time, especially for long distances. With respect to Chapter 3, the

correlation between designated BLs and path size attribute cannot be eliminated, so

the contributions of major roads without BLs and minor roads with BLs changed

when the path size attribute was added into those models, especially for the high Gn

model. This may be because designated BLs usually have high route overlaps upon

them.

4.4 CONCLUSIONS AND FUTURE RESEARCH

According to descriptive statistics and models generated within this thesis, it can

be found that most bicycle facilities, especially those developed along major roads,

have positive contributions while turns, high traffic volumes, and steep slopes have

negative contributions to bike share cyclist route choice behavior. As a result, in

order to promote the use of BSPs, this thesis helps policy makers and urban planners

explore and propose a new plan to add more bicycle facilities probably on major roads

or roads with low traffic volumes after examining road segment candidates for more

bicycle facilities derived from the spatial distribution of SoBi users dominant routes.

Moreover, a new section within the SoBi mobile application can be developed to pro-

vide recommended routes for cyclists given the impact of each significant determinant

and hub-to-hub dominant routes.
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With regard to future studies in the field of cycling route choice analysis, this

thesis made several contributions. First, it provides a new tool to extract unique

routes from a large dataset of trips between origin-destination pairs for future research

using GPS data. Second, it proposes a new logic to explore cyclists route choices using

BSP data, which can provide accurate routes without concerning the high expense

of equipping GPS devices for researchers because recent BSPs usually contain GPS

technology. At the same time, it is the first research to generate variables for each BSP

route to analyze cyclist route choice behavior. Additionally, a brand new method of

generating choice sets based on cyclists actual routes is introduced because multiple

unique routes between each hub pair were taken by cyclists in the real world. In this

case, the identified preference for route attributes is based on actual choices from

multiple BSP cyclists instead of individuals. Furthermore, this thesis focused only

on one BSP: SoBi Hamilton. Although this thesis did determine the contributions

of factors to BSP users route choices, we recommend for planners and professionals

that additional analysis of other BSP should be conducted in order to solidify these

findings in the cycling route choice context. Similar descriptive statistics and models

to those described above in this thesis need to be produced for other BSPs to better

understand the determinants of cyclist route choice behavior in general.
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