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Abstract

Cluster analysis is commonly described as the classification of unlabeled observations

into groups such that they are more similar to one another than to observations in

other groups. Model-based clustering assumes that the data arise from a statisti-

cal (mixture) model and typically a group of many models are fit to the data, from

which the ‘best’ model is selected by a model selection criterion (often the BIC in

mixture model applications). This chosen model is then the only model that is used

for making inferences on the data. Although this is common practice, proceeding

in this way ignores a large component of model selection uncertainty, especially for

situations where the difference between the model selection criterion for two compet-

ing models is relatively insignificant. For this reason, recent interest has been placed

on selecting a subset of models that are close to the selected best model and using

a weighted averaging approach to incorporate information from multiple models in

this set. Model averaging is not a novel approach, yet its presence in a clustering

framework is minimal. Here, we use Occam’s window to select a subset of models

eligible for two types of averaging techniques: averaging a posteriori probabilities,

and direct averaging of model parameters. The efficacy of these model-based averag-

ing approaches is demonstrated for a family of generalized hyperbolic mixture models

using real and simulated data.
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Chapter 1

Introduction

Model averaging presents a mechanism for accounting for the fact that a model selec-

tion criterion, often the Bayesian information criterion (BIC; Schwarz, 1978), may not

select the model with the correct number of components or attain the most optimal

classification results (Biernacki et al., 2000). Additionally, models that fit the data to

a similar degree may lead to very different inferences. Hoeting et al. (1999) provide an

example in a hazards regression context for the analysis of esophagus cancer patients;

challenges arise for designing intervention strategies and predicting survival time for

future patients when two models fit the data well, yet each lead to very different

parameter estimates or life expectancy predictions.

The use of mixture models for clustering has attracted much attention over the

past decade or so. Traditionally, Gaussian components were used but, more re-

cently, non-Gaussian components have gained popularity (see McNicholas, 2016b,

for a recent review). Wei and McNicholas (2015) applied two averaging techniques,

a posteriori model averaging and direct averaging of model parameters, to mixtures

of the Gaussian parsimonious clustering models (GPCM; Celeux and Govaert, 1995),
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and found that these averaging approaches successfully enhanced clustering perfor-

mance for several data sets available in R as well as simulated data sets. The major

difference between the two methods is that the direct averaging of model parame-

ters method produces a single interpretable model, whereas the a posteriori model

averaging method does not. Here, we extend these averaging methods to mixtures

of generalized hyperbolic distributions. In comparison to the Gaussian distribution,

the generalized hyperbolic distribution is very flexible, and it would be expected that

merging components would be required more often when clustering with Gaussian

components than when clustering with generalized hyperbolic components. The gen-

eralized hyperbolic distribution has the capability of modelling a skewed cluster that

may require several Gaussian components to model.

2



Chapter 2

Background

2.1 Clustering

Cluster analysis is frequently defined as the classification of unlabelled observations

into groups such that they are more similar to one another than to observations in

other groups. However, this definition can be troublesome, because at the extreme

case each observation would be placed in its own cluster. In an alternative definition,

a cluster should consist of a set of observations that diffuse from a mode (McNicholas,

2016a). McNicholas (2016a) states that if an appropriate density is used to cluster the

data, it will have the required flexibility and parametrization such that each cluster

is a unimodal component within the mixture model. In a true clustering problem,

the group membership of all of the observation points are not known. Determining

the number and nature of the clusters as well as accurately labelling each observation

point are problems that the data analyst will encounter when clustering. Approaches

to evaluate model selection and the performance of different clustering approaches

will be described in later sections. Clustering has a wide range of applications and

3
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many examples are available, two of which include: McNicholas and Subedi (2012)

for clustering gene expression time course data to discovering genes that have similar

functions, and Franczak et al. (2015) for clustering consumer liking studies of different

bread types.

2.2 Finite Mixture Models and Model-Based Clus-

tering

Finite mixture models assume that a population is a convex combination of a finite

number of densities. In other words, it is assumed that p-dimensional data x1, ...,xn

have arisen from an underlying mixture where there are a finite number of distribu-

tions. The probability density function of a mixture model can be written,

f(x | Θ) =
G∑
g=1

πgfg(x | θg), (2.1)

where fg(x | θg) is the probability density function of the gth component, Θ =

(π1, ...πG,θ1, ...,θG) is the vector of parameters, πg are the mixing proportions, πg > 0

and
∑G

g=1 πg = 1. McNicholas (2016a) defines model-based clustering as:

“the process of clustering via a statistical mixture model”

Wolfe (1965) was the first to use finite mixture models for clustering, and it has

become one of the most popular methods for clustering in the literature. Often in

model-based clustering applications, each mixture component is taken to correspond

to a cluster in a one-to-one relationship. However, this is not always the case and will

be discussed later on in greater detail.

4
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2.3 Mixture of Generalized Hyperbolic Distribu-

tions

2.3.1 Generalized Inverse Gaussian Distribution

The Generalized Inverse Gaussian distribution (GIG) was first introduced by Good

(1953), and has since been discussed in great detail by Barndorff-Nielsen (1997),

Blæsild (1978), Barndorff-Nielsen and Halgreen (1977), and Jørgensen (1982). Using

the same notation as McNicholas (2016a), let W denote a random variable following

a generalized inverse Gaussian distribution. The probability density function of W

can be written,

q(w | a, b, λ) =
(a/b)λ/2wλ−1

2Kλ(
√
ab)

exp

{
−aw + b/w

2

}
, (2.2)

where w > 0, Kλ is the modified Bessel function of the third kind, λ ∈ R is an index

parameter, and a, b ∈ R+. The gamma distribution (where b = 0, λ > 0) and the

inverse Gaussian distribution (where λ = −1/2) are two popular special cases of the

GIG distribution.

5
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2.3.2 Generalized Hyperbolic Distribution

The probability density function of the generalized hyperbolic distribution introduced

by McNeil et al. (2005) is,

f(x | θ) =

[
χ+ δ(x,µ |∆)

ψ + γ ′∆−1γ

](λ−p/2)/2

×
[ψ/χ]λ/2Kλ−p/2(

√
[ψ + γ ′∆−1γ][χ+ δ(x,µ|∆)])

(2π)p/2|∆|1/2Kλ(
√
χψ)exp{−(µ− x)′∆−1γ}

,

(2.3)

where p is the number of variables, µ is the location parameter, γ is the skewness

parameter, ∆ is a p×p scale matrix (such that |∆| = 1), λ is the index parameter, ψ

and χ are concentration parameters, δ(x,µ|∆) = (µ − x)′∆−1(µ − x) (the squared

Mahalanobis distance between x and µ), Kλ is the modified Bessel function of the

third kind, and the vector of parameters is θ = (µ,∆,γ, λ, χ, ψ).

Browne and McNicholas (2015) propose an alternative parametrization of the

generalized hyperbolic distribution from (2.3) for the purpose of classification and

clustering applications by combining a random variable following a GIG distribution

and a latent multivariate Gaussian random variable, and posing constraints on the

parameters (see Browne and McNicholas (2015) for details). The density of the

parametrization by Browne and McNicholas (2015) can be described by,

fH(x | θ) =

[
ω + δ(x,µ | Σ)

ω +α′Σ−1α

](λ−p/2)/2

×
Kλ−p/2(

√
[ω +α′Σ−1α][ω + δ(x,µ|Σ)])

(2π)p/2|Σ|1/2Kλ(ω)exp{−(x− µ)′Σ−1α}
,

(2.4)

6
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where θ = (µ,Σ,α, ω, λ) is the vector of parameters, µ denotes the location param-

eter, Σ is the scale matrix, α denotes the skewness parameter, ω is the concentration

parameter, and λ is the index parameter.

2.3.3 Parameter Estimation

The expectation maximization (EM) algorithm (Dempster et al., 1977) is used to

carry out parameter estimation for the mixture of generalized hyperbolic distribu-

tions. The EM algorithm is an iterative algorithm that is often used when trying to

estimate model parameters in the presence of missing or incomplete data. The EM

algorithm alternates between two steps: the E-step and the M-step. In the E-step,

the expected value of the complete-data log likelihood is computed and in the M-

step, the expected value of the complete-data log-likelihood is maximized to get the

updates for parameter estimates. See Browne and McNicholas (2015) for details on

the calculations for each of these steps.

2.3.4 Convergence

Aitken’s acceleration criterion (Aitken, 1926) can be used to determine when the EM

algorithm has converged. Aitken’s acceleration estimates the asymptotic maximum

of the log-likelihood at each iteration of the EM algorithm and at iteration k can be

written,

a(k) =
l(k+1) − l(k)

l(k) − l(k−1)
(2.5)

7
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where l(k) denotes the log-likelihood at iteration k. The asymptotic estimate of the

log-likelihood at iteration k + 1 can be computed via

l(k+1)
∞ = l(k) +

1

1− a(k
(l(k+1) − l(k)). (2.6)

McNicholas et al. (2010) considers the algorithm to have attained convergence when,

l(k)∞ − l(k)<ε, (2.7)

where ε is a small value.

2.3.5 Predicted Classifications

After the parameters have been estimated, the a posteriori probabilities (expecta-

tions) are calculated via

ẑig :=
π̂gfH(xi | θ̂g)∑G
h=1 π̂hfH(xi | θ̂h)

, (2.8)

for i = 1, . . . , n and g = 1, . . . , G. These ẑig represent each observation’s probability

of belonging to each component, and can also be referred to as “soft” classifications.

Soft classifications can be useful for analyzing and comparing the results from different

clustering methods, but often the ẑig are “hardened” to 0 or 1 based on maximum a

posteriori probabilities, ie.,

MAP{ẑig} =


1 if g = argmaxh{ẑih},

0 otherwise.

(2.9)

8
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2.4 Model Selection

We now discuss a criterion that is often used to select an appropriate model. Ever

since its use by Dasgupta and Raftery (1998), the BIC has become one of the most

popular approaches for mixture model selection. The BIC can be written,

BIC = −2l(x, ϑ̂) + ρ log n,

where ϑ̂ is the maximum likelihood estimate of ϑ, l(x, ϑ̂) is the maximized log-

likelihood, ρ is the number of free parameters, and n is the number of observations.

2.5 Performance Assessment

The adjusted Rand index (ARI; Hubert and Arabie, 1985) can be used to compare

partitions for evaluating classification performance in mixture-model based applica-

tions. The ARI arises from an adjustment made to the Rand index (RI; Rand, 1971)

to account for random chance agreement. In other words, the ARI accounts for

the fact that random classification would almost certainly classify some observations

correctly by chance. The RI is given by the pair agreements,

RI =
number of agreements

number of agreements + number of disagreements
,

and can take on any value between 0 and 1, with 1 indicating perfect class agreement.

The RI however has a positive expected value under random classification, which is

9
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what inspired the adjustment to be made. The general form of the ARI is,

ARI =
index − expected index

maximum index − expected index
.

An ARI value of 1 corresponds to perfect class agreement between two partitions,

and the expected value of the ARI under random classification is 0. A negative

ARI value indicates classification which is in some sense systematically worse than

random classification. There are many other indices other than the ARI available for

comparing clustering partitions. The ARI was chosen to assess performance due to

extensive presence in past model-based clustering applications.

2.6 A Posteriori Merging of Components

In clustering, each cluster is typically represented by one mixture component in a

one-to-one relationship, such that one component is analogous to a cluster. However,

there are some situations where a cluster may best be represented by a mixture of

components rather than a single component. Baudry et al. (2010) use mixtures of

Gaussian distributions to illustrate certain cases where using a one-to-one mixture

component to cluster relationship is not optimal. They argue that a popular selection

criterion, the BIC, selects the number of mixture components that best represents

the underlying density rather than the true number of components. This can lead to

an overestimation of clusters if component densities are taken to represent clusters.

For this reason, Baudry et al. (2010) propose a hierarchical merging method that

first uses the BIC to select a number of mixture components, and then successively

merges components based on an entropy criterion. Hennig (2010) also uses mixtures

10
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of Gaussian distributions to investigate several hierarchical merging procedures that

are based on either modality or misclassification rates. Hennig (2010) illustrates how

Gaussian components can be merged for clustering the crabs data set available in

the R package (Venables and Ripley, 2002), which contains four true groups. In this

example, the BIC originally selects a nine component model, which is optimal for

fitting the underlying density, but misleading when each component is interpreted to

represent a cluster. See Hennig (2010) for more details on this example as well as

other examples of component merging for real and simulated data sets.

It would be expected that there would be more instances where merging is re-

quired when clustering with mixtures of densities that are relatively not flexible (ie.

Gaussian). In situations where a cluster has a skewed shape, multiple Gaussian com-

ponents may be needed to represent this cluster, whereas using components such as

skew-t or skew-normal distributions have more flexibility to account for this shape

and do not require merging. See Vrbik and McNicholas (2014) for illustrations of

several data sets available in various R packages where the performance of clustering

with a flexible distribution exceeds the performance of merging Gaussian components

using the method proposed by Baudry et al. (2010).

Wei and McNicholas (2015) use a method for merging components that is based

on the maximization of the ARI based on a reference model for mixture model av-

eraging using the GPCM family. In this approach, a reference model is first selected

to have the desired number of components, then all combinations of possible compo-

nent merging are inspected. The merging combination that yields the highest ARI

between the reference partition and merging combination is taken to be the best

merging combination. Herein, we use the approaches by Wei and McNicholas (2015)

11
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for merging components, an example of this merging procedure is provided in Chapter

3 for clarity.

2.7 Bayesian Model Averaging

As mentioned previously, occasionally a model selection criterion such as the BIC

may not select a model with the correct number of components or yield the best clas-

sification performance, which introduces an element of model selection uncertainty.

Additionally, model selection uncertainty is especially amplified for situations where

there is not much of a difference between the values of the criteria for two different

models. Solely using one model ignores the fact that there may be several models that

fit the data very well, but allow for very different inferences. Even though proceeding

in this way is the generally accepted norm for model-based clustering applications,

recent interest has been placed on combining information from a set of competing

models (Wei and McNicholas, 2015), and can be achieved with Bayesian model av-

eraging (BMA; Hoeting et al., 1999). BMA accounts for model selection uncertainty

by an approach that utilizes a weighted averaging of models, so that information

from several models can be combined. Hoeting et al. (1999) use M1, M2,...,MK to

represent the set of all models fitted to the data, and ∆ to represent the quantity of

interest. The posterior distribution of ∆ given data x is a weighted average of the

posterior distribution of ∆ under each of the possible models, and can be written,

pr(∆ | x) =
K∑
i=1

pr(∆ | Mi,x)pr(Mi | x) (2.10)

where pr(Mi | x), the posterior probability for model Mi, can be described by,

12
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pr(Mi | x) =
pr(x | Mi)pr(Mi)∑K
k=1 pr(x | Mk)pr(Mk)

(2.11)

and the marginal likelihood of model Mi is,

pr(x | Mi) =

∫
pr(x | θi,Mi)pr(θi | Mi)dθi, (2.12)

where θi is the vector of parameters for model Mi, pr(Mi) is the prior distribution

for θi under modelMi, and pr(Mi) is the prior probability of the modelMi. Using

all of the models for averaging has been proven to provide a better average predictive

ability rather than using a single model (Madigan and Raftery, 1994), however, the

implementation of BMA is computationally difficult in a couple of ways:

• The number of models in the summation of (2.10) can be extrordinarily large.

• The posterior model probabilities (2.12) involve very high-dimensional integrals,

that are difficult to compute.

In the next two sections, tools for managing these computational issues are provided.

2.8 Occam’s Window

To address the issue of too many models in the summation of (2.10), Madigan and

Raftery (1994) suggest using Occam’s window to select a subset of models for aver-

aging, which provides a significant reduction in the number of candidate models. In

this procedure, models that do not lie in the window (ie. models that fit the data

far worse than the ‘best’ model) are discarded and are not subjected to averaging

approaches. Occam’s window can be written as,

13
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{
Mi :

maxl{pr(Ml | x)}
pr(Mi|x)

≤ c
}
, (2.13)

where maxl{pr(Ml | x)} represents the model with the highest posterior model prob-

ability and c is some positive number. The value of c is subjective to the analyst and

depends on the context in which BMA is applied. Increasing the value of c increases

the size of Occam’s window, thereby allowing more models to be eligible for merging.

Madigan and Raftery (1994) and Wei and McNicholas (2015) both use c = 20 for

their analyses, however values of c can generally vary between ten and 100 in the lit-

erature. In Chapter 4, values of c between five and 100 will be compared for various

real and simulated dat sets to inspect the impact of Occam’s window size on cluster-

ing performance. Even though increasing the value of c can allow for more models to

be eligible for merging, the model weights will reflect when a certain model has just

marginally made the ‘cutoff’. For instance, models that have a very small difference

in selection criterion in comparison to the ‘best’ model will hold a much larger weight

in the averaging process than models that do not fit the data as well but have barely

made the window requirements. The next section outlines an approximation for the

model weights to resolve computational issues.

2.9 Approximation with the BIC

To address the computational issues of the posterior model probabilities in (2.12), Wei

and McNicholas (2015) use an approximation with the BIC (Dasgupta and Raftery,

1998),

pr(x | Mi) = exp
{
−1

2
BICi

}
, (2.14)

14
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where BICi is the BIC value for model Mi, and the model weights can be approxi-

mated by:

pr(Mi | x) ≈
exp{−1

2
BICi}∑K

k=1 exp{−1
2
BICk}

(2.15)

and Occam’s window can be written,

{
Mi : BICi −min

l
{BICl} ≤ 2logc

}
(2.16)

These approximations, (2.15) and (2.16), will be used for our analyses of real and

simulated data sets in Chapter 4.

15



Chapter 3

Methodology

3.1 Merging Mixture Components

Sometimes the models in Occam’s window will have different numbers of components.

In these situations, merging mixture components is necessary before averaging is able

to take place. To achieve this, we use the method introduced by Wei and McNicholas

(2015) which selects a ‘reference’ model to have the desired number of components,

and then merges the other models in Occam’s window to match. Models that have

less components than the reference model are discarded and only models with the

same number of components or more components than the reference model are able

to be used for averaging. There are two cases for selecting the reference model: In

Case I the model with the smallest BIC (‘best’ BIC) is the reference model, and

in Case II the model with the fewest number of components is the reference model.

Under Case I, choosing the reference model to be the model with the best BIC seems

to be a natural choice since the BIC has selected that model to be the best fit to the

data. Case II accounts for the fact that the BIC may overestimate the number of

16
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components, and is meant to try and reduce the number of components of the averaged

model if that issue arises. As mentioned previously, the merging criteria for Wei and

McNicholas (2015) is based on selecting the merging combination that produces the

highest ARI with regards to the reference model. The different merging possibilities

were created using the function combn() from R package combinat (Chasalow, 2012),

and the function permutations() from R package permute (Simpson, 2016).

The density of the merged model is an alternate form of the original model. If

the reference model has H components and a model in Occam’s window has G (H

< G) components, then using the same notation as Wei and McNicholas (2015), the

density of the new merged model would be,

f(x) =
H∑
j=1

π∗j f
∗
j (x) =

G∑
g=1

φ(x | θg), (3.1)

where π∗j represents one πj or the sum of several mixing proportions π1, ..., πG, and

f ∗j (x) represents one fj(x) or a sum of several component densities from φ(x | θ1), ..., φ(x | θG).

3.2 Merging Process Example

The merging process presented by Wei and McNicholas (2015) is best described

through an example. In this example, which is analogous to the example given by

Wei and McNicholas (2015), suppose the reference model is a three component model

and one of the models in Occam’s window is a five component model. In other words,

the goal is to merge {1, 2, 3, 4, 5} into a model with components {a, b, c}. The

partitioning of the reference model is taken to be the ‘true’ classification and is called

the ‘reference partition’. The steps are as follows:
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• 1. A matrix A of size 10×3 is constructed containing the different combinations,(
5
3

)
. In this matrix, each row represents a partial clustering. For instance,

consider the 2nd row of A, a2 = (1, 2, 4), component 1 would be placed into

new component a, component 2 would be placed into new component b, and

component 4 would be placed into new component c.

• 2. Next, for each row in A, the remaining components that have not yet been

assigned to new clusters must be considered. Following our previous example,

the components that still need to be assigned to new clusters are {3, 5}. A

9×2 permutation matrix B is created to include all the possibilities. Following

our same example, row b3 = (a, c), places component 3 into component a,

and component 5 into component c. The model after merging can now be

represented by the new components {a, b, c} = {1 ∪ 3, 2, 4 ∪ 5}.

• 3. A 10×9 matrix C is then used to store the ARI’s between the reference parti-

tion and all of the partitions arising from the different permutation possibilities

of merging. From our example a2 = (1, 2, 4) in the second row of matrix A, and

b3 = (a, c) from the 3rd row of matrix B would be stored in the second row

and 3rd column of matrix C.

After all of the ARI’s from the different merging partition possibilities have been

calculated and stored within matrix C, the partition corresponding to the highest

ARI value is chosen to be the best merging combination.
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3.3 Averaging A Posteriori Probabilities

One method used for model averaging involves computing a weighted average of the a

posteriori probabilities for the models in Occam’s window. The process for averaging

a posteriori probabilities has two steps:

1. Merge models as needed to match the number of components of the reference

model.

2. Take the sum of the a posteriori probabilities, ẑig, for each model multiplied

by their respective weight, and harden to attain predicted classifications.

When two groups are merged together in the first step, the relevant ẑig values from

the corresponding groups are added together as well. Care must be taken to ensure

that the groups are aligned and the correct ẑig are added together. For instance, the

resulting a posteriori probabilities from merging groups 1, 2, and 3, to produce a new

group A would be,

ẑiA =
3∑
j=1

ẑij (3.2)

In the second step, the a posteriori probabilities from averaging competing models

M1, ...,Mk, denoted ẑ∗ig, can be described by,

ẑ∗ig =
k∑

m=1

pr(Mm | x)ẑ
(Mm)
ig , (3.3)

where Mm is used to denote the competing model, ẑ
(Mm)
ig are the a posteriori prob-

abilities (expectations) corresponding to model Mm, pr(Mm | x) are the weights

corresponding to modelMm (described by (2.15)), and k is the total number of mod-

els being averaged. ẑ∗ig are then hardened by the process given by (2.9) to produce
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our predicted classifications.

3.4 Direct Model Averaging

For our second model averaging approach, only the models in Occam’s window with

the same number of components as the reference model under Case I (ie. the model

with the smallest BIC) can be used. This averaging approach involves the direct

averaging of model parameters, which is why including merged models would not

be possible. A significant difference between the direct model averaging approach

and the a posteriori model averaging approach is that the former produces a single

interpretable model, whereas the latter does not. Consider an example where there

are three models in Occam’s window; two of them have two components, and the

other model has three components. If the model with the smallest BIC is one of the

two-component models, then the model with three components must be discarded.

Recall the vector of parameters of the generalized hyperbolic distribution under the

parametrization of Browne and McNicholas (2015) is: θ = (µ,Σ,α, ω, λ). Let θ1

represent the vector of parameters from the first model (M1), and let θ2 represent

the vector of parameters from the second model (M2). Then, the resulting model

parameters from direct model averaging, θ∗ = (µ∗,Σ∗,α∗, ω∗, λ∗), are calculated by:

θ∗ =
k∑
i=1

pr(Mi | x)θi, (3.4)

where k = 2 in this case, and pr(Mi | x) are the weights described in (2.15). Then,

θ∗ can be used to determine the a posteriori probabilities (expected values), ẑig, from

(2.8), which are then hardened to attain the predicted classifications.
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3.5 Label Switching

For both the a posteriori averaging and direct model averaging approaches, care

must be taken into aligning the clusters so that components are correctly matched

across different models. Stephens (2000) discusses the problem of label switching in

mixture-models. For example, one model may label a component as 1, but another

model may label that same component as 2. Before averaging is able to take place,

a procedure must be used to align these two initially differently labelled clusters so

that the same label denotes similar clusters across the base clusterings. In both meth-

ods, after models are merged as required, relabelling of components was conducted

by a method that created all labelling possibilities of components and selected the

relabelled partition that had the greatest similarity to the labelling partition of the

reference model.
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Chapter 4

Analyses

4.1 Performance and Evaluation

4.1.1 Purpose

In this Chapter, we demonstrate both the averaging a posteriori (AAP) and direct

model averaging approaches for generalized hyperbolic mixture models. The goal

of our model averaging is to improve upon the clustering performance of the single

‘best’ model, as determined by the BIC. In addition to inspecting the performance

of model-averaging versus the performance of the ‘best’ model, it was also of interest

to explore how the size of Occam’s window impacted the clustering performance. As

the value of c in (2.13) is increased, Occam’s window expands allowing more models

to be eligible for merging. The farther a model fit is from the fit of the best model

is reflected in a much smaller associated model weight. Values of c that were tested

included 5, 20, 40, 60, 80, and 100.
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4.1.2 Generation of Clustering Models

To generate a group of models for averaging, the function MGHD() from the R package

MixGHD (Tortora et al., 2015) was used to carry out model based clustering using mix-

tures of generalized hyperbolic distributions. Different settings of number of groups to

fit to the data and different initialization strategies for the algorithm were inspected

creating a variety of models. The different initialization strategies implemented in-

clude:

• k-means Clustering: Partitions observation points such that the sum of squares

from points to the assigned clusters is minimized (Steinley, 2006).

• Hierarchical: First, each observation is assigned to its own cluster, then the

two closest clusters are joined to form a single cluster. The process is repeated

until there is only one cluster.

• Random: Randomly assigns each observation point to a group.

• Model Based clustering: The data are clustered using a mixture modelling

structure.

4.2 Simulation Scenarios

Two simulated data scenarios are considered in this section. The function genRandomClust()

from the R package clusterGeneration (Qiu and Joe., 2015) was used to generate

random clusters in both scenarios.
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4.2.1 Scenario I: Easy Clustering Problem

In Scenario I, a data set was generated with p = 3 variables, n = 480 observations,

and G = 3. Setting sepVal=0.2, numNonNoisy=3, and clustzind=2 created a easy

clustering problem with three non noisy variables and clusters spread fairly apart

(Figure 4.1).
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Figure 4.1: Pairs plot for the simulated data in Scenario I.

Models were fit using MixGHD for G = 2, ..., 5 paired with each of the different

initialization strategies for a total of 16 models. Changing the value of c did not

impact the number of models in Occam’s window, and each window size contained

the same three models: k-means initialization with G = 3, hierarchical initialization

with G = 3, and model-based clustering initialization with G = 3. The BIC selected

the model-based clustering initialization with G = 3 as the ‘best’ model, and merging
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was not required since all of the models in Occam’s window had the same number of

components (Table 4.1).

Table 4.1: A summary of the models in Occam’s window along with ARI values for
the true labels versus predicted classifications from the best model, from AAP, and
from direct model averaging (MA), respectively, for the simulated data in Scenario I
(for c = 5, 20, 40, 60, 80, 100).

Occam’s window Pr(Mi | D) ARI values
Model Init. BIC G Best AAP MA

Case I Case II
k-means 2007.38 3 0.3342 0.9750 0.9874 0.9874 0.8335
Hier. 2007.61 3 0.2982
Mod 2007.19 3 0.3676

Because G = 3 for all models in Occam’s window, AAP under Case 1 and Case 2

were identical. AAP achieved marginal improvement in classification performance

(ARI = 0.9874), whereas there was decrease in performance for the direct model

averaging method (ARI = 0.8335). All methods performed well as was expected for

the level of difficulty of this scenario.

4.2.2 Scenario II: Hard Clustering Problem

Scenario II generated a data set with p = 3 variables, n = 480 observations with G =

4. Setting sepVal=0.03, numNonNoisy=3, and clustzind=2. These settings created

a difficult clustering problem with clusters overlapping significantly. Scenario II was

generated to illustrate our merging approach’s ability to enhance the classification

performance when observation points lie at the intersection of clusters, and may

otherwise be misclassified. Figure 4.2 illustrates this overlap with colour denoting

true group membership. Models were fit for G = 2, ..., 5 paired with each of the

different initialization strategies discussed previously for a total of 16 models. In this
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scenario, the the number of models in Occam’s window increased as the value of c

increased as shown in Table 4.2.
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Figure 4.2: Pairs plot for the simulated data in Scenario II.

For c set to 100, 80, 60, and 40, Occam’s window selected five of the models:

k-means initialization with G = 3, k-means initialization with G = 4, hierarchical

initialization with G = 3, hierarchical initialization with G = 4, and model-based

initialization with G = 3. The three component hierarchical initialization model was

selected to be the ‘best’ model in terms of the BIC (3282.09). Because the ‘best’ model

is also the model with the least number of components, the results from Case I and

Case II AAP are identical. Both averaging a posteriori probabilities (ARI = 0.8327)

and model averaging (ARI = 0.8488) led to a slight improvement in classification

performance, with the latter being slightly better (Table 4.3).
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Table 4.2: Models in Occam’s Window for Different Window Sizes for Simulated Data
Scenario II.

Value of c Number of Models in Occam’s Window
100 5
80 5
60 5
40 5
20 4
5 3

Table 4.3: A summary of the models in Occam’s window along with ARI values for the
true labels versus predicted classifications from the best model, from AAP, and from
direct model averaging (MA), respectively, for Scenario II (for c = 40, 60, 80, 100).

Occam’s window Pr(Mi | D) ARI values
Model Init. BIC G Case I/II MA Best AAP MA

Case I Case II
k-means 3283.27 3 0.2606 0.2730 0.8245 0.8327 0.8327 0.8488
k-means 3288.21 4 0.0219
Hier. 3282.09 3 0.4682 0.4906
Hier. 3288.06 4 0.0237
Mod. 3283.55 3 0.2255 0.2363

Four models lie in Occam’s window when c is set to 20: k-means initialization with

G = 3, hierarchical initialization with G = 3, hierarchical initialization with G = 4

and model-based initialization with G = 3. The k-means initialization with G = 4

model is the only model excluded in comparison to the previous window settings.

However, since it’s weight was so small, the results are not impacted greatly by its

exclusion (Table 4.4).

Reducing the window size further by setting c = 5 reduces the number of models

in Occam’s window to three: k-means initialization with G = 3 , hierarchical initial-

ization with G = 3, and model-based initialization with G = 3. Because G = 3 for

all models, AAP under Case I and Case II are identical. Classification performance
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Table 4.4: A summary of the models in Occam’s window along with ARI values for
the true labels versus predicted classifications from the best model, from AAP, and
from direct model averaging (MA), respectively, for Scenario II (for c = 20).

Occam’s window Pr(Mi | D) ARI values
Model Init. BIC G Case I/II MA Best AAP MA

Case I Case II
k-means 3283.27 3 0.2664 0.2730 0.8245 0.8327 0.8347 0.8488
Hier. 3282.09 3 0.4787 0.4906
Hier. 3288.06 4 0.0242
Mod. 3283.55 3 0.2306 0.2363

was not impacted greatly by changing the size of the window, and classification per-

formance was marginally improved for all merging methods (Table 4.5). It is noticed

that even though the true number of groups in the data is four, the window setting

with c = 5 only selects models with G = 3.

Table 4.5: A summary of the models in Occam’s window along with ARI values for
the true labels versus predicted classifications from the best model, from AAP, and
from direct model averaging (MA), respectively, for Scenario II (for c = 5).

Occam’s window Pr(Mi | D) ARI values
Model Init. BIC G Best AAP MA

Case I Case II
k-means 3283.27 3 0.2730 0.8245 0.8327 0.8347 0.8488
Hier. 3282.09 3 0.4906
Mod. 3283.55 3 0.2363

A summary of the all the classification performances for scenario II is provided

in Table 4.6. In all sizes of Occam’s window, marginal improvement is seen from all

Table 4.6: Summary of classification results for Simulated Scenario II.

Value of c AAP Case I AAP Case II MA
40, 60, 80, 100 0.8327 0.8327 0.8488

20 0.8327 0.8347 0.8488
5 0.8327 0.8347 0.8488
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averaging approaches in comparison to the performance of the ‘best’ model. Because

the ‘best’ model was a three component model as well as the model with the least

number of components in Occam’s window, every averaging approach underestimated

the number of groups in the data. The benefit of viewing models in Occam’s window is

that it brings awareness to other models that could possibly have the correct number

of components. A larger window size (where c= 40, 60, 80, and 100) included four-

component models whereas smaller window sizes did not. However the corresponding

weights for these four-component models were extremely small.

4.3 Applications to Datasets

4.3.1 Yeast

The yeast data set concerns yeast cellular localization sites of 1,484 proteins and can

be found in the UCI machine learning repository (Nakai and Kanehisa, 1991). Three

variables were considered for this analysis: McGeoch’s method for signal sequence

recognition (MCG), the score of the ALOM membrane spanning region prediction

program (ALM), and the score of discriminant analysis of the amino acid content of

vacuolar and extracellular proteins (VAC). There are two true localization sites in

the data set (G = 2): CYT (cytosolic or cytoskeletal) and ME3 (membrane protein,

no N-terminal signal) (Figure 4.3).

Models were fit using MixGHD for G = 2, ..., 5 paired with each of the different

initialization strategies for a total of 16 models. Occam’s window selects two models

for larger sizes of Occam’s window and one model for a smaller sizes of Occam’s

window (Table 4.7).
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Figure 4.3: Pairs plot for the yeast data.

For c = 40, 80, and 60, two models lie in Occam’s window: hierarchical ini-

tialization with G = 2, and model-based initialization with G = 3. Model-based

initialization with G = 3 was selected as the ‘best’ model by the BIC (5036.84). For

AAP, we must either ignore model hierarchical initialization with G = 2 (Case I)

or merge the components of the model-based initialization model to produce a two-

component model so that both models can be used (Case II). AAP under Case II

leads to a large improvement in classification performance (ARI of 0.8257). There is

only one model eligible under Case I, so averaging does not take place and the clas-

sification performance is identical to that of the ‘best’ model (ARI of 0.5531). When

directly averaging models, again only one model is eligible leading to a classification

performance that is identical to that of the ‘best’ model (ARI of 0.5531) (Table 4.8).
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Table 4.7: Models in Occam’s Window for Different Window Sizes for the Yeast Data.

Value of c Number of Models in Occam’s Window
100 2
80 2
60 2
40 1
20 1
5 1

Table 4.8: A summary of the models in Occam’s window along with ARI values for the
true labels versus predicted classifications from the best model, from AAP, and from
direct model averaging (MA), respectively, for the yeast data (for c = 60, 80, 100).

Occam’s window Pr(Mi | D) ARI values
Model Init. BIC G Case II Best AAP MA

Case I Case II
Hier. 5044.31 2 0.0233 0.5531 0.5531 0.8134 0.5531
Mod. 5036.84 3 0.9767

For c = 5, 20, and 40 only one model, model-based initialization with G = 3, lies in

Occam’s window. Therefore, no averaging is able to take place and the classification

performance is identical to that of the ‘best’ model (ARI = 0.5531). Table 4.9 provides

a summary of the classification performance for all of the averaging approaches versus

the best model. AAP with a larger window size (c = 60, 80, and 100) under Case II

achieved a greatly superior classification performance in comparison to the ‘best’

model (ARI = 0.8134). The BIC overfit the data, which lead to an overestimation

of the number of components in the ‘best’ model. When averaging a posteriori

under Case II the model in Occam’s window with the least number of components,

hierarchical initialization with G = 2, was the reference model. The other model in

Occam’s window was merged to match for G = 2, and because there are two true

groups in the yeast data, the classification performance was greatly improved.
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Table 4.9: Summary of results for different values of c for the yeast data set.

Value of c AAP Case I AAP Case II MA
60, 80, 100 0.5531 0.8134 0.5531
5, 20, 40 0.5531 0.5531 0.5531

4.3.2 AIS

The Australian Institute of Sport (AIS) data concerns eleven biometric measurements

for athletes and is available in the alr3 package for R (Weisberg, 2010). There are

two true groups in this data set, with 102 male and 100 female athletes. The eleven

biometric measurements can be found in Table 4.10. A pairs plot of the data indicates

a slight overlapping of the two groups (Figure 4.4).

Table 4.10: Biometric Variables of the AIS data set used for analysis.

Height White cell count Body mass index
Weight (kg) Hematocrit Sum of skin folds
Lean body mass Hemoglobin Percent body fat
Red cell count Plasma ferritin concentration

Mixtures of generalized hyperbolic distributions were fitted to these data using

MixGHD for G = 2, ..., 5, and the four different initialization strategies, for a total of

sixteen different models. The size of Occam’s window did not impact the number of

models that were selected for averaging. For all values of c, Occam’s window selected

four models: k-means initialization with G = 2, k-means initialization with G = 3,

hierarchical initialization with G = 2, and model based initialization with G = 2. The

BIC selected k-means initialization with G = 3 to be the ‘best’ model (2282.07). For

AAP, either all of the two-component models must be ignored (Case I) or the ‘best’

model must be merged into a two-component model in order to use all of the models in

Occam’s window for averaging (Case II). For the direct model averaging approach, the
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Figure 4.4: Pairs plot for the AIS data.

‘best’ model has more components than all other models in Occam’s window; therefore

the other models are discarded, and averaging does not take place. The results from

all averaging approaches in comparison to the classification performance of the ‘best’

model is provided in Table 4.11. AAP under Case I and direct model averaging

lead to the same classification performance as given by the ‘best’ model since the

‘best’ model was the only model eligible for averaging (ARI = 0.6034). AAP under

Case II produces a great improvement in classification performance was observed

(ARI = 0.9030). Here, the reference model had the same number of components as
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the true number of groups in the data set. The other models in Occam’s window were

merged to match before averaging took place, which resulted in a greatly increased

classification performance.

Table 4.11: A summary of the models in Occam’s window along with ARI val-
ues for the true labels versus predicted classifications from the best model, from
AAP, and from direct model averaging (MA), respectively, for the AIS data (for
c = 40, 60, 80, 100).

Occam’s window Pr(Mi | D) ARI values
Model Init. BIC G Case II Best AAP MA

Case I Case II
k-means 2282.93 2 0.2177 0.6034 0.6034 0.9030 0.6034
k-means 2282.07 3 0.3353
Hier 2282.85 2 0.2271
Mod.- based 2282.90 2 0.2199

4.3.3 Examples with only one model in Occam’s window:

crabs data, and wine data

The crabs data set contains five morphometric measurements on two species of Lep-

tograpsus crabs (blue and orange), that are also separated into two genders. The

morphometric measurements include: frontal lobe size, carapace length, body depth,

rear width, and carapace width. These data are available in the MASS library for R

(Venables and Ripley, 2002).

The wine data set can be found in R package gclus (Hurley, 2012). This data set

consists of 13 physical and chemical measurements on 178 Italian wines from the same

region, but from three different cultivars: Barolo, Grignolino, and Barbera (G = 3).

Mixtures of generalized hyperbolic distributions were fit to each data set via

MGHD() for G = 2, .., 5, and each analysis resulted in only one model lying within
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Occam’s window. For the crabs data set, the BIC chose the model with random ini-

tialization and G = 3 components. For the wine data set, the model with hierarchical

initialization and G = 2 was selected as the best model by the BIC. The ‘best’ models

selected by the BIC for both data sets had less components than the true number

of groups. Naturally, when there is only one model in Occam’s window, averaging is

equivalent to reporting classifications from the model with the best BIC.
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Chapter 5

Conclusions

This thesis extended the mixture model averaging methods by Wei and McNicholas

(2015) to averaging with non-Gaussian, mixtures of generalized hyperbolic distribu-

tions. Averaging a posteriori and direct averaging of model parameters were the

two model averaging methods that we explored. To resolve computational issues,

two tools were leveraged: Occam’s window, and an approximation with the BIC.

Occam’s window selected a subset from the total number of models that had similar

performance to the model with the smallest BIC, and greatly decreased the number of

models to average. Additionally, an approximation with the BIC eased the computa-

tional difficulty of the model weights. When models in Occam’s window had different

numbers of components, a method based on the ARI was used to merge components

in regards to a reference model. Care was taken to ensure that the correct components

were aligned across the competing models before merging components and averaging

models.

Wei and McNicholas (2015) achieved positive results from averaging approaches,

and here we saw enhanced classification performance from these averaging approaches
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as well. Two simulation scenarios and four real data sets were used to illustrate the

performance of the different averaging techniques. In comparison to the analyses of

Wei and McNicholas (2015), it was expected that we would have to merge components

less than if the components were Gaussian. A flexible density such as the generalized

hyperbolic can potentially model a skewed cluster that would require several Gaus-

sian components to model. For both of the simulated data sets, the performance

of averaging a posteriori under both cases was slightly better than that of the best

model. The direct model averaging approach also performed better for the second

simulated scenario. For the yeast data set and the AIS data set, AAP under Case

II performed the best because the BIC overestimated the number of components for

both data sets. In the crabs and wine data sets, only one model was selected by

Occam’s window, and averaging was equivalent to reporting classifications from the

model with the best BIC. In many situations, it was also seen that larger values of c

for Occam’s window were the most beneficial for increasing classification performance.

AAP under Case II tended to have the best overall performance in comparison to the

other averaging methods. AAP under Case II does not discard any models in Occam’s

window whereas the other methods do, which may be the driving force behind this

increased performance. However, AAP under Case II can potentially underestimate

the number of components.

Future work can consist of model averaging with other distributions, such as

mixtures of skew-t distributions. Additionally, future work can investigate mixture

model averaging in a semi-supervised classification framework.
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