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Abstract

Matrix variate distributions present a innate way to model random matrices. Realiza-

tions of random matrices are created by concurrently observing variables in different

locations or at different time points. We use a finite mixture model composed of

matrix variate normal densities to cluster matrix variate data. The matrix variate

data was generated by accelerometers worn by children in a clinical study conducted

at McMaster. Their acceleration along the three planes of motion over the course of

seven days, forms their matrix variate data. We use the resulting clusters to verify

existing group membership labels derived from a test of motor-skills proficiency used

to assess the children’s locomotion.
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Chapter 1

Introduction

With the development of new data collection technologies, such as electronic sensors,

cell phones and web browsers, there are now many rich sources of multivariate data.

Much of this data can be represented as matrices, where the rows can describe different

time points or spatial locations and the columns can represent different metrics (e.g.

heart rate, acceleration, network speed, .).

Statistical methods that can effectively use matrix variate data have gained in

popularity with the rise of these new technologies. One common statistical problem

statisticians face is finding sub-populations or clusters in multivariate data. They

often turn to finite mixture models to accomplish this goal. These statistical methods

have a rich history in the statistical literature (McNicholas, 2016).

More recently, finite mixture models have been extended to matrix variate normal

(Viroli, 2011), matrix variate t (Doğru et al., 2016) and skew matrix variate distribu-

tions (Gallaugher and McNicholas, 2017a). Mixtures of these distributions have been

developed to make sense of this plethora of matrix variate data.
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We will look at clustering matrix variate data collected by the HOPP study (Tim-

mons et al., 2012) being conducted at McMaster University. The HOPP investigators

are using accelerometer sensors to collect data on children’s movement patterns in

3-D space over the course of a week. We will use a finite mixture model composed of

matrix variate normal densities to cluster the children into different groups based on

their movement patterns and compare them to existing group assignments which are

based on a test of the children’s motor-skills proficiency.

2



Chapter 2

Background

2.1 Finite Mixture Models

Cluster analysis is an overarching term used to describe statistical methods that look

for grouping structures in data. A detailed overview of clustering methods can be

found in Hastie et al. (2009). One common method of clustering is referred to as

model-based, which assumes an observation X originates from a population with G

separate sub-populations. It is unknown which of the G sub-populations X comes

from.

If the number of sub-populations is finite, the mixture model for the density of an

observation X is given by

f(X|ϑ) =
G∑

g=1

πgfg(X|θg) (2.1)

where the πg’s are called the mixing proportions and have the following two con-

straints, πg > 0 and
∑G

g=1 πg = 1. The fg(·)’s are the component densities, and

3
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ϑ = (π1, π2, . . . , πG,θ1,θ2, . . . ,θG) are all the parameters of the mixture model.

Overviews of finite mixture models can be found in Fraley and Raftery (2002) and

McLachlan and Peel (2004).

Classically, the normal mixture model has been used most frequently in practice.

Some of the first works using the normal mixture models include Wolfe (1965), Baum

et al. (1970) and Scott and Symons (1971). This early adoption is due to the Normal

distributions attractive mathematical properties. In this case, the fg(X|Θg) has a

density drawn from the multivariate normal distribution where

fg(X|Θg) = fg(X|µg,Σg) =
1√

(2π)p|Σg|
exp

{
− 1

2
(X− µg)

′Σ−1g (X− µg)

}
. (2.2)

Here µg is the mean vector and Σg is the covariance matrix of the distribution.

In addition to the multivariate normal distribution, many non-normal distribu-

tions have been used to formulate finite mixture models. Some examples include the

t-distribution (Peel and McLachlan, 2000), the skew-t distribution (Vrbik and Mc-

Nicholas, 2012, 2014), the shifted asymmetric Laplace distribution (Franczak et al.,

2014), the power exponential distribution (Dang et al., 2015) and the generalized

hyperbolic distribution (Browne and McNicholas, 2015).

2.2 Matrix Variate Distributions

Matrix variate distributions have an important place in the theory of multivariate

analysis. They are used to model matrix valued random variables as random matrices

(Gupta and Nagar, 1999). Many multivariate techniques depend on functions of

random matrices such as characteristic roots, determinants and traces. The two

4
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most common matrix variate distributions in use by statisticians are the Wishart

distribution (Wishart, 1928), used to model the sample covariance distributions and

the matrix variate normal distribution, a generalization of the multivariate normal

distribution.

2.3 Matrix Variate Normal Distribution

The matrix variate normal distribution (MVN) is an attractive distribution because it

retains the mathematical tractability of the multivariate normal distribution and can

be used as a reference distribution for many multivariate events because of guarantees

made by the central limit theorem. Associations between the MVN and other matrix

variate distributions are outlined by Dawid (1981) and Gupta and Nagar (1999).

A random matrix XXX , of size n× p follows the MVN, denoted as Nn×p(M,Σ,Ψ).

The distribution parameters consist of three matrices, the location parameter matrix

M and two scale parameter matrices, Σ, an n× n matrix and Ψ, an p× p matrix.

The density of X, a realization of XXX , can be written as

f(X|M,Σ,Ψ) =
1

(2π)
np
2

|Σ|
n
2 |Ψ|

p
2 exp

{
− 1

2
tr(Σ−1(X−M)Ψ−1(X−M)T )

}
. (2.3)

A nice property of this MVN density is that it can be decomposed into the multi-

variate normal density Nnp with dimensions np (Gupta and Nagar, 1999) as follows:

XXX ∼ Nn×p(M,Σ,Ψ)⇔ vec(XXX ) ∼ Nnp(vec(M),Σ⊗Ψ) (2.4)

where vec(M) is the vectorization of location parameter matrix and⊗ is the Kronecker

5
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product.

Since Nn×p(M,Σ,Ψ) is a special case of Nnp(vec(M),Σ ⊗ Ψ), the mean and

variance of Nn×p(M,Σ,Ψ) can be expressed as

E(vec(X)|M,Σ,Ψ) = vec(M) (2.5)

Var(vec(X)|M,Σ,Ψ) = Σ⊗Ψ (2.6)

Where vec is a linear transformation, converting a matrix into a column vector.

This stacks the columns of a matrix on top of each other. The Kronecker product of

the two matrices results in a block matrix.

2.4 Finite Mixtures of Multivariate Normal distri-

butions

In the context of finite mixture models, we expect that the random matrix XXX follows

a MVN distribution and has G sub-populations. The density of XXX is

f(X|π1, π2, . . . , πG,Θ1,Θ2, . . . ,ΘG) =
G∑

g=1

πgfMVN(X|Mg,Σg,Ψg) (2.7)

where Θg = (Mg,Σg,Ψg) represents the parameters of the gth MVN and the weights

πg represent the prior probabilities of belonging to each of the sub-populations g =

1 . . . G (Glanz and Carvalho, 2013). The a posteriori probability of the observed

matrix Xg belongs to the gth component of the mixture is expressed by Bayes theorem

6
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as

τgi = P(Xi|π1, π2, . . . , πg,Θ1,Θ2, . . . ,Θg) =
πgfMVN(Xi|Θg)∑G
h=1 πhfMVN(Xi|Θh)

(2.8)

2.5 Covariance Matrix Estimation

The estimation of a covariance matrix or its inverse is of primary importance for many

statistical methods. The covariance matrix derived from an n-dimensional random

vector Y = (Y1, Y2, . . . , Yn)′ is defined as

Σn×n = E(Y − µ)(Y − µ)′ = (σij) (2.9)

where µ = E(Y) is the mean vector and σij is the variance of random variable Yi

when i = j and the covariance between Yi and Yj when i 6= j (Pourahmadi, 2013).

The values of the matrix Σ are by default unconstrained. Each variance and co-

variance are estimated uniquely from the data. This results in many parameters to

estimate, especially when n is large. Imposing some structure on the entries of Σ

reduces the number of parameters to estimate and makes many problems computa-

tionally tractable.

Structured covariance matrices can be modeled in two complementary ways: gen-

eralized linear models (GLMs) and regularization (Pourahmadi, 2013). The GLM

methods use covariates and different link functions to model the covariance matrices.

These methods depend on being able to find unconstrained and statistically impor-

tant re-parametrization of the covariance matrices. They often employ spectral and

Cholesky decompositions to find these re-parametrization (Pourahmadi, 1999; Zhang

and Leng, 2011; Lee et al., 2017).

7
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Regularization methods have been a heavily researched topic (Bickel and Levina,

2008b; Pourahmadi, 2013). Two types of regularization have received the most at-

tention. The first involves shrinking either the eigenvalues or the eigenvectors of the

covariance matrix. The second involves component-wise regularization of the covari-

ance matrix which shrinks the eigenvalues and the eigenvectors simultaneously. The

goal is to replace smaller entries in Σ with zero. We used component-wise regular-

ization, in the form of tapering (Bickel and Gel, 2011; McMurry and Politis, 2010) to

regularize the Ψ covariance matrices used in the mixture models.

8



Chapter 3

Methodology

3.1 Maximum Likelihood Estimation

Suppose we have N independent observed matrices Xi, where i = 1, 2, . . . , N . We

want to cluster these N matrices into one of the G groups. The log-likelihood function

can be written as

l(π,Θ|X1,X2, . . . ,Xn) =
N∑
i=1

log

{ G∑
g=1

πgfMVN(X|Mg,Σg,Ψg)

}
(3.1)

The parameters in equation 3.1 can be estimated using the EM algorithm (Demp-

ster et al., 1977; McLachlan and Krishnan, 2008). Different EM algorithms have been

developed for the MVN (Glanz and Carvalho, 2013) and mixtures of MVN (Viroli,

2011).

The EM algorithm requires an allocation variable z for the mixture model defined

in equation 2.7. z is a vector of dimension G, giving the component membership of

9
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each matrix Xi. Note that z follows a multinomial distribution (Viroli, 2011)

f(z|π,Θ) =
G∏

g=1

πzg
g (3.2)

and when zg = 1

f(zg = 1|π,Θ) = πg. (3.3)

Using z, we can define the complete density as the product of the conditional

densities:

f(X, z|π,Θ) = f(X|zg = 1;π,Θ)f(z|π,Θ) (3.4)

We can then maximize the conditional expectation of f(X, z|π,Θ) using a fixed set of

parameters, π′ and Θ′. See Viroli (2011) and Glanz and Carvalho (2013) for details.

The maximization is defined as:

argmax
π,Θ

E
z|X,π′,Θ′

[
log f(X|z,π,Θ) + log f(z|π,Θ)

]
, (3.5)

which is the same as maximizing the likelihood

L(π,Θ|X1,X2, . . . ,Xn, τgi) =
G∑

g=1

N∑
i=1

τgi log
[
πgfMVN(Xi|Mg,Σg,Ψg)

]
. (3.6)

10
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3.2 EM Algorithm

To find the maximized values of the mixture parameters, Mg, Σg and Ψg, the follow-

ing expectation must be iteratively maximized:

E
z|X,π′,Θ′

[ N∑
i=1

log f(Xi|zi;π,Θ)

]
, (3.7)

where f(X|z;π,Θ) has the MVN distribution.

The following expression for the expectation is derived by Viroli (2011):

E
z|X,π′,Θ′

[ N∑
i=1

log f(Xi|zi;π,Θ)

]
=

G∑
g=1

f(zig|Xi;π
′,Θ′)

[
− npN

2
log(2π)− pN

2
log |Ψg|

−nN
2

log |Σg| −
1

2

N∑
i=1

trΨ−1g (Xi −Mg)Σ
−1
g (Xi −Mg)

T

]
(3.8)

Closed form estimates of the mixture parameters are obtained by taking the first

derivatives of equation 3.8 with respect to the individual parameters. They are de-

noted as follows:

M̂g =

∑N
i=1 τgiXi∑N
i=1 τgi

(3.9)

Ψ̂g =

∑N
i=1 τgi(Xi − M̂g)Σ

−1
g (Xi − M̂g)

T

p
∑N

i=1 τgi
(3.10)

Σ̂g =

∑N
i=1 τgi(Xi − M̂g)

T
Ψ−1g (Xi − M̂g)

n
∑N

i=1 τgi
(3.11)

11
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The mixture weights can be calculate by evaluating equation 3.8 under the con-

straints π̂g > 0 and
∑G

g=1 π̂g = 1 and are expressed as

π̂g =

∑N
i=1 τgi
N

. (3.12)

In the E-step of the EM algorithm, P(zgi = 1|Xi) must be computed at each

iteration as a function of the current parameters π′ and Θ′. In the M-step of the

algorithm, the two components of equation 3.5 can be maximized individually because

their cross-derivatives are equal to zero.

3.2.1 Convergence Criterion

There are many ways of choosing the convergence criteria for an EM algorithm. We

used a criterion based on the Aitken acceleration (Aitken, 1926). At iteration t, the

Aitken acceleration is defined as

a(t) =
l(t+1) − l(t)

l(t) − l(t−1)
(3.13)

where l(t) is the observed log likelihood at iteration t. We use a(t) to calculate an

asymptotic estimate of the log-likelihood at iteration t+ 1. This asymptotic estimate

is defined as:

l(t+1)
∞ = l(t) +

1

1− a(t)
(l(t+1) − l(t)) (3.14)

We stop the EM algorithm when l
(t+1)
∞ − l(t) < ε as described in McNicholas et al.

(2010). This criteria is used because the likelihood can flatten out before increasing

again. The estimate l
(t+1)
∞ , is used to evaluate if the likelihood will ever increase in

12
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future iterations.

3.2.2 Group Selection

The number of groups, G in a clustering problem is rarely known apriori. Selecting

a sufficient number of groups is important to get right. In this work, we used the

Bayesian information criteria (BIC) (Schwarz, 1978) to select G. The BIC is defined

as follows:

BIC = 2l̂ − ρ logN (3.15)

where l̂ is the estimated log likelihood, ρ is the number of free parameters in the

model and N is the number of observations.

3.3 Covariance Estimation

As noted by Banfield and Raftery (1993), each covariance matrix Σg generated from

a G component mixture model, modeling a p-dimensional random variable has p(p+1)
2

free parameters. In the interest of parsimony, cluster constraints on the Eigen-

decomposition of the covariance matrices are introduced by Banfield and Raftery

(1993) and Celeux and Govaert (1995).

The Eigen-decomposition takes the form

Σg = λgΓg∆gΓ
′
g (3.16)

13
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Table 3.1: GPCMs used in the EM algorithm

Model Volume Shape Orientation Σg Free Parameters

EEE Equal Equal Equal λΓ∆Γ′ p(p+1)
2

VVV Variable Variable Variable λgΓg∆gΓ
′
g

Gp(p+1)
2

where Γg is the matrix of Eigenvectors, ∆g is a diagonal matrix containing the nor-

malized Eigenvalues in decreasing order and λg = |Σg|
1
p .

Following the terminology in Celeux and Govaert (1995), we used the Gaussian

parsimonious clustering models (GPCM) defined in Table 3.1 to model the covariance

matrices, Σg and Ψg in the EM algorithm described above.

It should be noted that, when modeling sequential observations, Σ can be repre-

sented by a modified Cholesky decomposition (Pourahmadi, 1999, 2000) of the form:

D = TΣT′ or equivalently Σ−1 = T′D−1T (3.17)

where T is a unique unit lower triangular matrix and D is a unique diagonal matrix

with positive diagonal elements. As was pointed out in Pourahmadi (1999), T and D

can be interpreted as generalized auto-regressive parameters and innovation variances.

A family of eight Gaussian mixture models is developed by McNicholas and Mur-

phy (2010) called the Cholesky-decomposed Gaussian mixture model (CDGMM).

Each member of the CDGMM family has an interpretation for longitudinal data and

belongs to the GLM family of covariance models referenced in Section 2.5. When

Tg = T, the auto-regressive relationship between time points is the same for each

group. When Dg = D, the variability at each time point is the same across groups.

It can be shown that models in the CDGMM family have equivalent models in the

GPCM family (McNicholas, 2016). These equivalent models are given in Table 3.2.

14
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Table 3.2: GPCM and equivalent CDGMMs

GPCM CDGMM Tg Dg Free Parameters

EEE EEA Equal Equal / Anisotrophic p(p−1)
2

+ p

VVV VVA Variable Variable / Anisotrophic G[p(p−1)
2

] +Gp

Despite these equivalencies, the GPCM models do not explicitly account for the lon-

gitudinal nature of the data.

3.3.1 Tapering

The component-wise regularization, in the form of tapering, starts with the diago-

nal elements of Σp×p, and successively adds sub-diagonals if the data determines its

warranted. Tapering gradually shrinks the off diagonal elements to zero. Tapering

requires the variables that make up the covariance matrix to have a natural ordering,

making it appropriate for longitudinal or time-series data.

The tapered estimate of the sample covariance matrix is defined as

SW = S ∗W = (sijwij) (3.18)

where ∗ denotes Schur (coordinate-wise) matrix multiplication. A frequently used

weight matrix W, called trapezoidal W is popular in the time series literature (Bickel

and Gel, 2011) and is defined as:

wij =


1, if |i− j| ≤ lh,

2− |i−j|
lh
, if lh < |i− j| < l,

0, otherwise.

(3.19)

15
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where l is the tapering parameter ranging from 0 ≤ l ≤ p and lh = l
2
.

The effectiveness of tapering depends on the choice of l. l is usually chosen by a

a resampling scheme like k-fold cross-validation or subsampling (Bickel and Levina,

2008b). We used the subsampling procedure described by Bickel and Levina (2008a)

to choose l. The sample is split randomly into two chunks of size n1 = n(1 − 1
logn

)

and n2 = n
logn

, where Σ is of dimension n × n. This is repeated k times. We let

Σ̂1,v and Σ̂2,v be the empirical covariance matrices based on samples of size n1 and

n2 from the vth split. Using these covariance matrices, we minimize the risk, R̂(l) in

the following equation:

R̂(l) =
1

k

k∑
v=1

‖ Tl(Σ̂1,v)− Σ̂2,v ‖2F (3.20)

where Tl() is the tapered covariance matrix with tapering parameter l and ‖‖2F is the

squared Frobenius matrix norm of the difference between the tapered and un-tapered

covariance matrices. This is repeated for different values of l and the value of l with

the smallest R̂(l) is used in the mixture model.

3.4 The Julia Programming Language

We have used the Julia language (Bezanson et al., 2012) to implement all the methods

described in Section 3. Typically statisticians choose the R language (R Core Team,

2017) to implement their algorithms. We have deviated from the norm here because

we felt Julia offered a number of advantages over R.

Julia is a language specifically designed for numerical computing. It is a dynamic

language which checks data types, modifies objects and functions at run-time and not

16
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compile time, making the users programming experience similar to R. Despite this, it

has performance approaching statically typed languages like C and FORTRAN. Its

speed at doing numerical computations is within a factor of 2 relative to optimized

C code and an order of magnitude faster than R.

Julia has extensive mathematical function libraries and does not require wrappers

to call existing C or FORTRAN code. Programmers do not have to vectorize code

for performance like they do in R. Julia was designed for parallel and distributed

computing from the ground up, making it ideal for implementing algorithms that will

be used on large data sets.

The R language has many attractive features including a plethora of packages

geared towards statisticians, built in support for NA’s, a large user community and

a very mature development environment (RStudio).

Julia is a more desirable choice than R when the developer requires fast run

time speed, is implementing an algorithm from scratch or the statistical model would

benefit from a parallel or distributed implementation.

17



Chapter 4

Analyses

4.1 HOPP Study

The motivating clinical study for this work is called HOPP (Timmons et al., 2012).

HOPP stands for Health Outcomes and Physical activity in Preschoolers. It is the

only Canadian longitudinal study of preschool children to examine the relationships

between physical activity, fitness, nutrition and health outcomes. The study is fol-

lowing 414 children for three years. The children are tested once per year over the

course of the study.

After each study visit, the children wear accelerometer belts for seven consecutive

days to measure their physical activity. The accelerometer is only removed for sleeping

or when the child goes in the water. Every 3 seconds, the accelerometer measures

how the child accelerates in the three planes of motion:

• Vertical (Axis 1)

• Anteroposterior or Forward-Backward (Axis 2)
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• Mediolateral or Side to side (Axis 3)

A forth measurement, the vector magnitude (vm), is included in the analysis along

with the three axis measurements. It is defined as follows:

VM =
√

axis12 + axis22 + axis32. (4.1)

4.1.1 HOPP Data

The HOPP study data we analyzed was a subset of the main study. It included the

accelerometer data from 49 children taken from the third year of the study. These

children were divided into two groups, based a motor-skills assessment called the

Bruinitisky-Oserestky test of motor proficiency (BOT-2) (Cools et al., 2009; Tim-

mons et al., 2012). This is a 14-item test that gives is a composite score from 4

areas: fine manual control, manual coordination, body coordination, and strength

and agility. The composite score is converted into a sex- age-specific percentile,

where the included participants were either < 15th percentile (which is indicative of

a motor deficiency) or > 80th percentile for motor skills. The two groups consisted

of 25 children determined to have Normal motor-skills and 24 determined to have

Abnormal motor-skills. The researchers were interested in seeing if their groupings

were supported by the accelerometer data.

The HOPP data has measurements defined at each 3 second interval over the

course of the 7 day measurement period. This allows us some latitude in how we ag-

gregate the data for analysis. After consulting with the HOPP researchers, we decided

on aggregating each childs measurements in two distinct ways. The first aggregation

scheme was by monitoring day. This results in between 6 and 8 time points per child.
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The vm and axis values were summed for each day. The second aggregation scheme

involved aggregating the measurements by each hour the accelerometer was worn.

The three axis measurements and the vector magnitude captured over the course

of the monitoring period, form each childs matrix variate data. The rows of the

matrix X are the time points being used, in this case days or hours. The columns of

X are the four measurements. There are 49 X’s in total, one per child.

Despite the fact that the children were supposed to wear their accelerometers

for seven consecutive days, there was a lot of variability in their wear time. The

variability in the days worn is illustrated in Figure 4.1. The children are ordered by

their median wear time, which is represented by the circles in the plot. The lines

range from the minimum to the maximum wear day. The majority of the children

wear their accelerometers for seven consecutive days. There are some outliers, like

child A11, who wore their accelerometer on days 1,2,8,9,10,13,14 and 18. While the

sequence has eight total days, there are wide gaps between successive days. This

could potentially pose a problem when estimating Ψ, the between days covariance

matrix.

When aggregating the four metrics by wear hour, the number of measurement

times between children and the size of the gaps between wear times were even more

pronounced. The children’s hours of wear time ranged from 107 to 492 hours. In

order to reduce this variability, hours was changed to percent of the maximum hour

worn. This reduced the median number of unique time points from 89 to 59 per child.

The resulting variability is displayed in Figure 4.2. The gaps between successive wear

times are still evident in the children’s data (e.g.: A11 vs A10), but the overall number

of time points is much more uniform.
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Figure 4.1: Days worn accelerometer. Variability across children
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Figure 4.2: Percent of maximum wear hour. Variability across children
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Figure 4.3: Smoothed mean trends across days

Next we look at the mean trends of the four metrics over time. Figure 4.3 shows the

trends for the two investigator identified groups by wear day. Each line corresponds

to a smoothed trend and the grey area surrounding the line corresponds to a 95%

confidence band. Group A has a peak in the four trends at day 5 which does not occur

in the group B. In group B, the axis 2 trend is clearly distinguishable from the axis

1 trend, although the two confidence bands mostly overlap. The overlap indicates

there is likely not a statistically significant difference (at the 5% level) in the curves

at a given time point. This difference in axis 1 and 2 trends is not evident in group

A. Qualitatively, the groups have different patterns of wear across the days.

The mean trends across wear hours is displayed in Figure 4.4. The trends appear
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Figure 4.4: Smoothed mean trends across percent maximum wear hour

to be shifted up in magnitude in group A as compared to group B. The peak we

observed in Figure 4.3 is no longer evident in group A’s trend line. On this time

scale, the two groups mean trends look very similar.

4.2 Clustering of the HOPP Data

We used a finite mixture model of MVN’s to investigate the number of clusters/sub-

populations in the HOPP data. The clustering algorithm was initialized using k-

means clustering values (McNicholas, 2016). We looked for between 2 and 5 groups.

We chose to use the two GPCMs, VVV and EEE listed in Table 3.1 because of their
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ease of implementation and their connections to the CDGMMs listed in Table 3.2.

Tapering the Ψ covariance matrices would impose additional structural constraints

on them, freeing us from using the other members of the CDGMM family to model

the covariances between time points. When tapering was used, it was trained via

subsampling using 5 distinct subsamples for each value of l and applied to all Ψg’s

used in the model. Tapering was not used on the Σg matrices, as the variables do

not have a natural ordering.

The groups produced by the clustering algorithm were compared to the existing

groups via the adjusted Rand index. The unadjusted Rand index (RI) is the ratio of

the pairs agreement to the total number of pairs (Rand, 1971). A RI of one indicates

perfect agreement. Chance agreement can enlarge the RI, making it problematic in

some cases. The adjusted RI (ARI) was developed to overcome this problem (Hubert

and Arabie, 1985). The ARI has an expected value of zero when the classification is

purely random and retains the property of being equal to 1 when there is complete

class agreement.

4.2.1 Imputation Strategy

Given that many children had a different number of time measurements / rows in

their X matrix, an imputation strategy was required to ensure all the X’s had the

same number of rows, as this is required by the MVN clustering algorithm detailed

in Chapter 3.

The general imputation strategy consisted of the following steps:

1. Decide on the number of time measurements to include in the analysis

2. Calculate the overall median vm and axis values per child
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3. Restrict the number of rows in each X to the value in 1.

4. Replace any missing rows with the median values from 2.

In step 1, we used 8 days and 45 hours respectively. We chose these numbers

because they kept the number of imputed values low (4 total or 8.2%) and still

allowed us to look at a sizable number of time points.

Admittedly this is not an optimal imputation strategy. It is likely very conser-

vative, does not account for the uncertainty related to the imputation and could

attenuate any correlations between the variables or time points. A superior strat-

egy involves modeling the covariance matrix using the GLM framework mentioned in

Chapter 2. A generalized EM algorithm is developed by (Huang et al., 2012) in the

context of the modified Cholesky decomposition, to evaluate the maximum likelihood

estimates of the GLMs parameters.

4.2.2 Results for the Days Data

Clustering the matrix variate data over days resulted in the discovery of two groups

in the data. Figure 4.5 shows the two group solution as the clear favorite based on

the size of its BIC value. Dasgupta and Raftery (1998) suggest that a difference of

10 between BIC values constitutes very strong evidence in favor of the model with

the larger BIC value. These authors defined the BIC to be -1 times our definition in

equation 3.15. This plot is constructed for the results of the VVV:VVV model with

different group sizes. Here the first VVV corresponds to the covariance structure of

the Σg matrix while the second one corresponds to the structure of the Ψg matrix.

Figure 4.6 compares different covariance structures for the two group solution. The

smallest BIC values belong to the model with same Σg structure across the groups
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Figure 4.5: BICs for different group sizes using the days data

27



M.Sc. Thesis - Peter A. Tait McMaster - Mathematics and Statistics

39400

39500

39600

EEE:V
VV

EEE:V
VV Ta

pe
rin

g

VVV:E
EE Ta

pe
rin

g

VVV:V
VV Ta

pe
rin

g

VVV:V
VV

VVV:E
EE

EEE:E
EE

EEE:E
EE Ta

pe
rin

g

Covariance structure (G=2)

B
IC

Figure 4.6: BICs for different covariance structures using the days data

and different Ψg structures between the groups. In this configuration, tapering did

not improve the model fit.

The cluster labels for the EEE:VVV with tapering model are compared to the

investigators groups in Table 4.1. There are 21 of the 49 entries in the off diagonal

cells, indicating poor agreement. The RI is 0.5 but when compared to the ARI,

which is equal to 0.002, it is clear that it is inflated by random agreements. The ARI

indicates that we have poor pairwise agreement between the groups and the cluster

labels.

This lack of agreement is interesting. The results suggest that there are two groups

in the data but they do not correspond to the groups identified by the investigators.
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Table 4.1: Classification performance of the EEE:VVV tapering model for the days
data

Actual Groups
Cluster Labels 1 2

1 18 14
2 7 10

Clearly the accelerometer data is capturing information that is not being gathered by

the BOT-2 assessment.

The mean trends of the two groups identified by the model are illustrated in Figure

4.7. The EEE:VVV with tapering model is displayed because the tapering smoothed

the mean curves, making their differences more apparent. The results suggest that

group 1 is larger because of the narrower confidence bands, it indicates an increase

in the variables over the closing days of monitoring and the curves are shifted down

compared to group 2.

In-order to visualize the effect of tapering on the Ψ matrices, we converted them

into correlation matrices (ρ) using the well known matrix identity ρ = D′ΨD′, where

D =
√

diag(Ψ). Figure 4.8 displays the Ψ correlation matrices for the VVV:VVV

and EEE:VVV Tapering model. It is clear that tapering reduced the size of the off

diagonal elements in the later model. When we examine the eighth day, we see that

the magnitude of the correlation does not decrease with time as we would expect.

This is due to our single imputation strategy. The eighth day contains the majority

of the imputed values, tainting the correlations between it and the other time points.
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Figure 4.7: Clustering mean trends for the days data

30



M.Sc. Thesis - Peter A. Tait McMaster - Mathematics and Statistics

1 2

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

0.00

0.25

0.50

0.75

1.00
Correlation

VVV:VVV Model

1 2

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

0.00

0.25

0.50

0.75

1.00
Correlation

EEE:VVV Tapering Model

Figure 4.8: Ψ correlation matrix comparison for the days data
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Figure 4.9: BICs for different group sizes using the percent maximum wear hours
data

4.2.3 Results for the Hours Data

Clustering the matrix variate data over the percent maximum wear hours resulted

in the discovery of two groups in the data. Figure 4.9 indicates that the two group

solution is the overwhelming favorite based on the size of its BIC value. In contrast

to the days data, Figure 4.10 indicates an EEE model of Ψg was preferred.

The results in Table 4.2 indicate that the mixture model actually found only one

group in the data. The RI was 0.49 and the ARI was equal to 0.0. This contradicts

the results found in the days data. We feel that this contradiction can be explained

by the model fit being poor and is not due to any actual homogeneity in the study
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Figure 4.10: BICs for different covariance structures using the percent maximum wear
hours data
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Table 4.2: Classification performance of the EEE:EEE tapering model for the percent
maximum wear hours data

Actual Groups
Cluster Labels 1 2

1 25 24

subjects movement patterns. The two group model did not capture any variation

between the clusters within the hours or the four variables. This can be seen by the

EEE:EEE model having the lowest BIC value. Better models of the Ψ matrix, that

could capture the non consecutive nature of the measurement times would improve

the model fit and likely change the results as well.

The mean trends for the single group is displayed in Figure 4.11. The axis trends

are very linear, with the axis 2 and axis 3 trends being shifted upwards relative to the

axis 1 trend. This indicates the children are moving side to side the most, followed

by forwards and backwards and vertically.
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Figure 4.11: Mean trends from model using the percent maximum wear hours data
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

Using a finite mixture model consisting of MVNs, we were able to confirm that the

HOPP study data we analyzed did indeed consist of two groups of children. These

two groups did not coincide with the group labels provided by the study investigators.

This suggests that the accelerometer data does provide additional information, not

captured by the BOT-2 assessment that should be used to identify children with

abnormal movement patterns.

5.2 Future Work

This work suggests many avenues for future investigation. The first would be co-

variance estimation. The covariance structures we used could be improved by taking

advantage of the GLM framework described in (Pourahmadi, 2013). This would al-

low us to estimate missing entries in the covariance matrices using an EM algorithm
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(Huang et al., 2012) as opposed to using single imputation of the raw data as we

did here. In addition, using the modified Cholesky decomposition would allow us to

model autoregressive (Pourahmadi, 1999), moving average (Zhang and Leng, 2011)

and ARMA (Lee et al., 2017) covariance structures. Finally the GLM framework

could help us model the nonconsecutive time points we observed in the accelerometer

data (Pan and MacKenzie, 2006; Zhang et al., 2015).

A second topic to investigate is the over penalization of the mixture models BIC

values when tapering is used. Tapering is reducing the number of free parameters in

the model by setting some entries of Ψ to zero. This is not currently being captured

by ρ in equation 3.15. Some work has been done on modifying the BIC value in the

context of banding the covariance matrix (Leng and Li, 2011) but to our knowledge,

this has not been extended to tapering.

A third avenue of investigation could be looking at mixtures of non-Normal matrix

variate distributions. Mixtures of matrix variate t distributions (Doğru et al., 2016)

offer a model of the data that is more robust to outliers due to its heavy tails.

Mixtures of skewed matrix variate distributions (Gallaugher and McNicholas, 2017a)

could offer similar robustness to outliers (Gallaugher and McNicholas, 2017b), with

the additional benefit of modeling asymmetric (e.g. fatter) clusters.

Finally, we could investigate how to incorporate additional covariates (e.g.: age,

gender, etc.) into the models (Anderlucci and Viroli, 2015) and modeling the com-

ponent means (McNicholas and Subedi, 2012) using linear, cubic and non-parametric

trends.
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