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Abstract
This thesis examines decision optimization of product recalls. Product recalls

in recent years have shown unprecedented impact on both immediate economic and
reputational damage to the company and long-lasting impact on the brand and indus-
try. Admittedly, imperfect product quality makes recalls inevitable. Thus, we explore
from three perspectives to elicit business insights regarding better management and
risk control.

Chapter 1 introduces the topic of product recall management optimization and
its real-world motivation.

Chapter 2 views the decision making of “when to initiate a product recall”as
a dynamic process and takes the feedback of customer returns to update the product
defect rate. Updating is simplified by the conjugate properties of beta distribution
and Bernoulli trials. We develop the optimal stopping model to find the thresholds of
total product returns above which initiating recall is optimal. We implement dynamic
programming to solve the model optimally. For large-size problems, we propose a
simulation method to balance computation time with solution quality.

Chapter 3 allows the company to control the recall risk by investing in quality.
We adopt the one-stage stochastic newsvendor model and add quality-dependent
recall risk. The resulting model is not concave in production quantity and quality
levels. The parametric analysis reveals several interesting features such as the optimal
ordering quantity and quality level have a conflicting relationship. We further extend
our model from internal supply to external supply from multiple sources.

Chapter 4 examines managing product recalls from the closed-loop supply
chain management and disruption management perspectives. We model the loca-
tion and allocation decisions of both manufacturing plants and reprocessing facilities
where facilities are built after the recalls. Numerical experiments show the costs
of overlooking potential recalls vary greatly, indicating the necessity of considering
recalls in initial designs and the importance of accurate recall probability prediction.

Chapter 5 summarizes.
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Chapter 1
Introduction

This thesis examines three important topics in product recall management op-
timization with a particular focus on product recall timing, the impact of investment
in product quality on product recalls, and aftermath mitigation with reprocessing cen-
ter construction. These topics are of interest to academics, operations management
professionals, and policy makers.

General Motors’s decade-long delay in initiating the Cobalt recall, XL Inc.’s
disposing of six hundred tons of beef products in intact packaging at landfills, and
Samsung’s multi-billion-dollar loss for settling the market and societal costs related
to its potentially explosive Galaxy Note 7 have captured wide interest in academia,
practice and the public – poor management of product recalls can cause great harm
to the public, the company and its customers (Chao et al. [8]). Our research has
practical operations management implications about the need for integrating product
recall concerns into the product quality control system and viewing the recall decision
making as a dynamic process with timely updated information.

The first essay, “Product Recall Timing Optimization using Dynamic Pro-
gramming”, examines the decision-making of product recall as a dynamic process
and searches for the optimal stage of initiating a product recall. This topic matters
because the timing of a company’s product recall initiation is critical in limiting the
financial and social damage whereas early recalls result in unnecessary shock to the
market and are associated with negative stockmarket returns. (Davidson and Worrell
[14]). Accurate estimation of product quality and costs for recall and other alterna-
tives is key for correct and timely decisions, yet we know little about how to effectively
integrate valuable information such as customer feedback into the decision making.

Take the General Motors’s Cobalt recall for example: the company was aware
of the faulty ignition switch as early as 2005, yet persistently denied responsibility
for unexpectedly high accident rates. GM did not initiate a voluntary recall until it
was facing a class action law suit. One source of the company’s stubbornness was a
balance-analysis using ten-year old data (Maiorescu [26]). Since product quality is
defined by customer satisfaction (Krajewski et al. [21]), we use customer feedback
to update the estimation of product defect rate for a better understanding for recall
costs.

A classic approach for modeling and optimizing a dynamic process is the dy-
namic programming (DP) method. We use beta distribution to estimate product
defect rate and binomial distribution for the number of product returns of each pe-
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riod that provides the conjugate property to facilitate the calculation of posterior
distribution and expectations’calculation. We focus on the following tasks: identify
the probability distributions for modeling product defect rate and customer feedback
process; model and solve the product recall optimization problem with DP method;
explain the optimal solution found and use its structure to explore alternative meth-
ods other than DP to solve large-size problems.

The second essay, “Newsvendor Problem using Quality Investment for Product
Recall Risk Control”, studies the optimization problem that integrates product recall
concerns with the production quality control by extending the classic newsvendor
model. We capture the probability of product recalls using a decreasing function of
the level of product quality.

The subject firm controls product quality by focused manufacturing invest-
ment – this impacts production cost. Our goal is to maximize total expected profits.
We obtain an objective function of sales, operational costs and cost of recall risks.
What’s more, we have identified necessary conditions for the objective to be negative
semi-definite.

Using parametric analysis of this extended newsvendor model we observe two
interesting features. First, production quantity and quality levels seem to have con-
flicting effects – one waxes and the other wanes in optimal solutions for most in-
stances of parameter changes. Second, increasing profitability discourages investment
in quality – this result is counterintuitive to our initial expectations.

We further extend our model (which focuses on internal supply) by examining
the case of external supply from multiple sources in which two external suppliers
satisfy independent demands and cover each other’s demand only when the other is
having recalls. Our results suggest little impact from recall-covering interaction on
optimal solutions.

The third essay, “Optimal Facility Location to Mitigate Product Recall Risks”,
aims to minimize the aftermath of major product recall events with a closed-loop
network design optimization model. This chapter was written under the supervision
of Dr. Kai Huang, McMaster University. Our motivation comes from the 2012 XL.
Inc. beef products recall which became the largest meat recall in Canadian history.
We found the management of this product recall to be shockingly poor. Hundreds of
tons of beef products – usable for other purposes such as rendering – went directly
to landfills.

In the moment of crisis, the company managing a major recall is usually un-
willing or unable to properly coordinate the reverse flow of returned products. We
propose the two-stage facility location model extended to include reprocessing and
disposal facilities for management of both forward and reverse flows. Our research
connects the two areas of disruption management and closed-loop network design.
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Disruption management uses facility location models to ensure the consistent supply
of products to satisfy customer demand and protects the system against unexpected
and rare disasters such as earthquake and tsunami (Qi et al. [37]). Closed-loop net-
work design aims to minimize the long-run average cost of forward and reverse flows
by improving the use of recyclable production components (Fleischmann et al. [17]),
decreasing the collection costs (Pishvaee et al. [34]), and increasing service rates and
customer satisfaction (Min and Ko [31]).

The existing literature treats reverse flow for daily operations but does not
serve the properties of major product recalls well. Our challenge is to design an
optimal network that can accommodate product returns in the context of major
product recalls. We propose a two-stage stochastic mixed integer programming model,
in which we locate the manufacturing plants in the first stage and the reprocessing and
disposal facilities in the second stage. We adopt a scenario-based approach to describe
the uncertainty of major recall events that may happen in manufacturing plants as
well as the availability of reprocessing facilities. Given the complexity induced by
our nested facility location problem, we devise an algorithm based on Lagrangian
relaxation to solve the uncapacitated case.

To summarize, my dissertation research makes the following primary contri-
butions. In the first essay, we model and solve the optimization problem of product
recalls by combining dynamic programming with the Bayesian conjugate property of
beta distributions and Bernoulli processes. The flexibility of the beta distribution
in modeling various shapes and ranges of probability distributions well serves the
potential estimation of product defect rate. We can reasonably assume the process
of customer discovery of defective products is composed of independent and identi-
cal events and follows the Bernoulli process. Combining a beta distribution and a
Bernoulli process enables the Bayesian conjugate property that posterior distribution
remains a beta distribution whose parameters follow a simple updating rule.

Moreover, we define the threshold curve as the connection of states of largest
allowable customer returns – one more returned product switches the optimal deci-
sion from continuing to initiate a recall – of all stages in the optimal solution. The
threshold curve for the optimal decision shows a non-decreasing trend that crosses
the origin. This observation inspires our approximation of root functions and the
application of using the simulation method for large sized problems. Overall, our ex-
periments show the proposed DP model and simulation method could solve various
sizes of problems in a satisfying balance of solution accuracy and computation time.

The main contribution in the second essay is that we model and solve the
optimization problem of product recall management by incorporating quality control
into the classic newsvendor problem. We first examine the internal supply case in
which the core company has direct control of quality level. Concavity analysis shows
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the objective is neither concave nor convex. But our numerical experiments suggest
that with the chosen function forms, namely exponential and Erlang, the objective
function has one stationary point of local minimum and one stationary point of global
maximum.

We extend our model to multiple external suppliers. Both suppliers satisfy
their own demands independently and supply for each other’s customers only when
the other party has a recall. Our numerical experiments show that the prospect of
covering the other party’s demand in case of recall has very little impact on either
supplier’s optimal ordering quantity and quality level.

My third essay contributes to the literature by designing an optimal network
that can accommodate product returns in the context of major product recalls. We
design a two-stage stochastic mixed integer programming model, in which we locate
the manufacturing plants in the first stage and the reprocessing and disposal facilities
in the second stage. Our results of comparing total cost and computation time in
the search of optimal modeling setting based on the minimax regrets method suggest
our proposed model minimizes worst-case regrets. Moreover, considering potential
product recalls reduces total costs in the long run – disregarding potential recalls
could lead to selection of plant locations that initially seem to minimize costs, but
that in hindsight are risky candidate sites with high expected costs to handle possible
recalls.

Overall, my dissertation demonstrates that it is effective to use operations
research methods to handle the unique features of product recalls. Our dynamic
programming model suggests that utilizing the customer feedback information to
estimate product defective rate and treating product recall decisions in a dynamic
framework avoids the over reaction of early recall and the heavy expense of late
recall. Our extended newsboy model introduces the dimension of product quality
whose impact on recall probability offers the opportunity to reduce product recall
risks by investing in manufacturing. Our closed-loop facility location model promotes
the integration of recall risks in locating manufacturing plants thus reduce the worst-
case regrets.

The rest of the thesis proceeds as follows. Chapter 2 models the timing de-
cisions for initiating product recall in a dynamic process and applies the conjugate
property of beta distribution and Bernoulli process to solve for optimal. Chapter 3
extends the newsvendor problem to incorporate quality induced product recall con-
cerns and optimize decisions of ordering quantity and quality levels. Chapter 4 builds
a two-stage stochastic location-allocation model to optimize long-run average cost
of forward and reverse flows to properly manage the returned products from recalls.
Chapter 5 summarizes the thesis and suggests directions for future research.
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Chapter 2
Product Recall Timing Optimization us-
ing Dynamic Programming

In this chapter, we treat the product recall timing as a dynamic process and use
the information of customer returns of each period to update the perceived product
defect rate. Higher defect rate indicates a high risk for the future including high
return maintenance and likely product recall costs, for which immediate recall can be
a wiser choice than continuing. Based on the system state, we aim to find thresholds
that above which initiating recall is the optimal decision. We first develop an optimal
stopping model with fixed defect rate shared by all periods and solve the problem
with dynamic programming (DP) technique. Then we extend the model using defect
rate updated by the number of product returns of preceding period and solve it
with DP method. We show computing complexity increases dramatically with the
problem size, thus implementing DP method is unrealistic for practical problems with
large data. We use simulation method of parametric optimization to select the best
fitting function form and parameter for the threshold curve. Also, we will explore the
possibility of using approximate dynamic programming to solve our proposed model.

2.1 Introduction

Making decisions on when to initiate product recalls should be a dynamic
process that uses information from customer feedback. Traditionally, decision makers
choose recall timing using prior estimation for potential damage caused by defective
products. Because the prior estimation is based on historical data of similar products
and manager’s subjective opinions, it could result in wrong decisions. Estimation
inaccuracy may be due to fallible subcomponents that significantly limit the effec-
tiveness or safety of product usage, ignorance of negative side-effects from long term
usage, or disregard for seemingly unlikely events that trigger critical social or eco-
nomic damage. However, using information from customer feedback after a product’s
market release helps fix this inaccuracy.

When facing the issue of having defective product released in the marketplace,
managers make the decision to initiate a product recall with the goal of optimizing
both the company’s short-term and long-term costs. Information leading to the re-
call may originate within the company or from customer feedback. Internal quality
systems and external audits help firms identify design and production problems in a
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structural way.
Many firms have comprehensive quality systems that involve internal processes

and external audits to ensure product safety. Depending on the nature of the product,
quality standards may stipulate 100% inspection and test, or may measure adherence
to specifications based on statistical sampling before shipping products to customers.
For example, firms typically use sampling for batch processes or large unit volumes,
whereas 100% testing is more appropriate when manufacturing specialized equipment,
such as custom engineered equipment or premium products such as luxury cars.

Firms usually complement internal quality processes, either by choice or by
law, with external quality audits. For example, companies may value the reputational
benefit of having its manufacturing facilities certified by a third party company (e.g.,
International Standards Organization (ISO) 9001). Once a firm has achieved ISO 9001
certification at a facility, it would typically pay for an ISO inspector to audit that
facility on a regular basis (e.g., every six months). The inspector would report back to
the firm on any issues and work with the plant to ensure continued compliance with
the ISO standards. The regular review process might be a source of information that
reveals a potential recall situation. The second type of external inspection derives
from laws to protect public safety. Countries have standards organizations (e.g.,
Canadian Standards Association (CSA) in Canada and Underwriters Laboratories
(UL) in the United States). In Canada, for example, firms submit products for
testing and CSA approval before being able to sell them in the marketplace. On an
ongoing basis, CSA sends its inspectors without prior notice to check manufacturing
process compliance and to select product samples for off-site testing. If they uncover
problems, CSA inspectors can stop production and quarantine inventory.

Although reliable and effective in detecting foreseeable design and production
issues, internal quality systems and external audits are not able to eliminate the
product failures or the inaccuracy of prior estimations mentioned earlier.

There are three possible reasons that products can pass internal or external
quality inspections but still result in serious safety concerns leading to product recalls
after products reach the market.

Firstly, changes in the using environment could lead the product to fail or
cause safety issues (i.e., items that meet specifications during the tests, but fail some-
time after being sold). For instance, as described by Beauchamp and Littlefield [4],
the 1998 recall initiated by Maple Leaf Inc. (MLF) was caused by Listeria contam-
ination in one of its cutting machines. Internal testing procedures of MLF failed to
identify this problem due to the light contamination and low safety standards at the
time, yet the natural growth of the bacteria posed serious danger to customers’health
upon consumption. Secondly, unanticipated problems do not have tests designed to
detect them. For example, toys with small breakable parts may send children to
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the emergency room over choking hazards. Thirdly, components may fail in certain
situations that are not taken seriously, or not considered during internal tests. For
example, in the General Motors product recall of 2014 and 2015, the company over-
looked the problem that the ignition switch under vibration may cause power steering
to fail. In their internal tests, the car model operated normally for long durations un-
der controlled situation. But in real use, if there is vibration such as that is caused
by a heavy key chain moving with traffi c, it could result in a fatal accident. Valukas
[51] provided a detailed report on this incident. To sum up, it is justifiable to assume
imperfect product in terms of quality.

Furthermore, some of the potential quality issues could lead to significant
damage to society and to the company’s profits and reputation. When the company
believes that it has sold products that could pose a threat to public health or welfare
or damage to its brand or reputation, it will initiate a product recall. Based on the
manager’s estimation of potential risks, he may choose to recall at any time after
releasing products to the market. The decision periods could cover the entire lifetime
of the product, or cover the warranty period offered by the company. Here we use
the warranty time for the sake of simplicity.

Theoretically, there exists an optimal timing to initiate a product recall. Early
recall actions result in unnecessary shock to the market and are associated with
negative impacts on company revenue and stock markets performance. See studies by
Jarrell and Peltzman [20] in drugs and automobile industries, Davidson and Worrell
[14] for the other industries. Delayed recalls, on the other hand, may results in
massive negative media coverage and liability costs, and could add serious pressure
to the company and severe reputational damage.

Here, we treat the decision of recall timing as a dynamic process and use
customer feedback to update estimation of product defect rate for a better picture of
expected costs. With this approach, we aim to design a sequential analysis model to
discover the structure of optimal policy for product recall timing problem.

The rest of the chapter is arranged as follows: Section 2.2 provides a brief
review of related literature on product recall timing; Section 2.3 models the prob-
lem with optimal stopping problem and assumes defective rate as a constant, and
provides solutions with dynamic programming and parameter analysis; Section 2.4
extends the model with updating defective rate based on product returns obtained
from previous periods, and shows solution with dynamic programming and compares
results of Section 2.2; and Section 2.5 proposes directions for future study.

2.2 Literature Review

This survey of papers from the past twenty years shows a gap in the literature
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on product recall timing optimization.
Daughety and Reinganum [13] are among the first to consider products with

imperfect quality and unobservable safety status. They assume unsafe products can
cause injury to customers and incur liability-related costs to the firm. They develop a
monopoly model of production planning and product safety signaling, aiming to find
the equilibrium that can balance the expected liability cost of unsafe products and
high initial production cost of high safety standard products. The firm can observe
its product risk and the probability that product use can cause injury or damage, but
this information is unobservable to customers. However, the firm’s pricing decision
affects both the customers’perception of product safety and demand. If an injury
happens, the company needs to cover liability costs including direct and indirect
costs of lawsuits. The authors assume safer products can reduce marginal expected
liability cost, but will increase manufacturing cost. They find that if marginal total
cost largely depends on production cost, then the company signals via high price; and
if total cost is largely decided by expected liability cost, then the company signals
through volume.

Noticeably, the magnitude of capital market punishment on recall announce-
ments for involuntary actions (compared to voluntary actions) is not consistent in
relevant studies. Jarrell and Peltzman [20] use event study methodology to examine
the impact of producing defective products on stakeholder wealth in the drug and au-
tomobile industries. They find that capital markets severely penalize companies with
recalls and, thereby, create a considerable deterrence against producing faulty prod-
ucts. The authors also show that spillover effects impact other production lines of the
recall company and the whole industry as well. Davidson and Worrell [14] examine
abnormal returns caused by product recalls in industries other than drugs and auto-
mobiles. They show abnormal returns are significant upon recall announcements and
are more negative when products are replaced than being checked and repaired. Their
results do not provide statistically significant evidence that government-ordered re-
calls cause more abnormal returns than voluntary recalls. However, Thirumalai and
Sinha [49] conclude that financial markets are indifferent to recall announcement.
They analyze empirically the recall data of medical devices from 2002 to 2005 to
find the financial consequences of defective devices and the firm characteristics that
are determinants of recalls. Unlike findings in previous literature, they find that the
financial market does not impose significant deterrence to producing defective prod-
ucts. They also discover that firms can learn from their previous recall experience as
analysis indicates reduced recall likelihood.

In their review, Maruckeck et al. [29] identify three research opportunities in
product recall management, including identifying a product recall problem, mitigating
recall risks and learning from recall. The closest issue related to recall timing is timely
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communicating recall messages through the supply chain, which is much different than
our product recall timing problem.

Research on product recall timing has emerged only recently. The following
papers examine product recall timing using empirical or analytical approaches. Hora
et al. [19] pursue the reasons for lengthy recalls in the US toy industry. They measured
the time taken to initiate product recall by the difference between the dates of recall
announcement and first product sale. Their empirical analysis shows recall time is
impacted by recall strategy (preventative vs. reactive), recall reason (design flaws
vs. manufacturing defects) and recall firm’s position in the supply chain. With all
other factors equal, companies using preventative strategies, recalling due to design
flaws, and having an upper position in the supply chain take longer to recall due to
operational diffi culties and larger responsibilities.

With mechanism design approach, Chao et al. [8] adopt a threshold time-of-
product recall-initiation for the design of recall cost-sharing contracts. They propose
two new contractual agreements of recall cost sharing schemes to coordinate qual-
ity improvement efforts made by two parties of the supply chain (manufacturer vs.
supplier). Both contracts are based on root cause analysis, a method that accurately
reveals the party responsible for the recall. Analysis begins at the earliest expiration of
sold products. Contract S (selective root cause analysis) uses root cause analysis only
when a recall happens before a threshold time and allocates all costs to the responsi-
ble party; after the threshold time, recall cost is shared with a fixed rate. Contract P
(partial cost allocation), on the other hand, uses root cause analysis regardless of the
time of recall occurrence and always shares the cost between two parties with the re-
sponsible party incurring more recall cost. Their results show root-cause-analysis is
not necessary when information is perfect and costs nothing. When the information
cost is not negligible, they show Contract S is consistently better than both Contract
P and fix-rate contracts in improving supply chain performance and product quality.

The most relevant study of recent years is done by Sezer and Haksöz [46]
who treat product recall management as a continuation of quality control, and use
an optimal stopping model to address when to initiate a recall for a dyad supply
chain. During the seller’s manufacturing, a production fault could happen randomly
that affects product lifetimes. Upon expiration of each sold product, the seller decides
whether to initiate a recall. If no recall action is taken, a public inspection takes place
and detects the production fault with certain accuracy. If found at fault, the seller
receives a fine that is more expensive than the cost of a voluntary recall. The authors
capture the random factors with different approaches, including using state of nature
for the state of manufacturing fault, using exponential distributed random variable
for product expiration time, and using fixed rate probability for a successful detection
rate of public inspection. They solve the problem with dynamic programming after
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applying smaller filtration and likelihood ratio process to the model. Besides the
general model, they also examine optimal solutions for a static model of a single
product, a general case of multiple but finite products, and a special case of infinite
products. Finally, the authors explore two extensions of the general model. The
first considers conditional public inspection that only takes place when the lifetime
is shorter than expected. The second assumes observable manufacturing faults that
the seller can detect.

We construct the mathematical model for recall timing problem as one of the
optimal stopping. But unlike Sezer and Haksöz [46] who use techniques of sequential
hypothesis testing of Poisson processes, we intend to use the conjugate property of the
beta distribution and Bernoulli processes to integrate customer feedback information
into recall decision making.

The literature shows recall costs are composed of various factors. Berman [6]
summarizes lists of both direct and indirect recall costs incur for product recalls.

Direct recall costs are positively linked to recall size (i.e., the number of prod-
ucts to be collected) and whether the recall is voluntary. Berman [6] lists the direct
costs of product recalls, including communication costs, product disposition costs,
and overhead. Regulation costs can also be part of product recalls. For instance,
Hooker et al. [18] identify food safety regulation costs, which vary by plant size, in
the food sector. Sezer and Haksöz [46] use product price, P, as the variable cost for
voluntary recall and authority inflicted a big fine, K, as the variable cost for invol-
untary recalls. In their numerical example, P equals 1.5, while K equals 100. Min
[30] considers transportation costs as part of recall costs and measures the loss of
customer goodwill by the time required to finish a recall.

Indirect costs include the lost sales or revenue and long lasting negative ef-
fects on demand (Marsh et al. [28]), potential damage to financial health (Marino
[27] and Welling [52]), product liability risks (Thomsen and McKenzie [50] and Salin
and Hooker [43]), and possible severe impact of litigation loss (Marucheck et al. [29]).
Customers may switch to other brands or other product types if the company’s prod-
ucts are perceived unsafe; for instance, Marsh et al. [28] find demand for meat
products dropped during 1982-1988 after consumers responded to meat product re-
calls by switching to meat substitute products. Marino [27] and Welling [52] show
the probability of both civil and criminal charges increase with the length of time
that unsafe products stay in the market. Thomsen and McKenzie [50] and Salin and
Hooker [43] find strong evidence that recalls are associated with significant decreases
in share price. Jarrell and Peltzman [20] show indirect costs of recall are likely to be
far more than direct costs.

Hora et al. [19] argue that prompt recall initiation reduces operational costs
for three reasons. (1) Earlier defect detection allows the company to fix similar

10



Ph.D. Thesis - L. Yao McMaster University - DeGroote School of Business.

problems in unsold products; (2) Variable costs to collect defective products may be
lower since products are more likely located at downstream intermediaries instead of
end customers; (3) fewer liability risks since defective products stay in the market
for a shorter time. However, their conclusion on direct recall costs works better
with continuous production and release of products and, as such, does not fit for our
problem setting.

Our recall cost setting has two parts, variable costs dependent on the number
of products remaining in the market and a one-time fixed cost for initiating a recall.
We can use variable costs to indicate direct recall costs that largely depend on the
recall magnitude (i.e., the number of products to be collected). Fixed costs indicate
the indirect recall costs, which are larger than the variable costs and increase with
time and the number of products returned.

2.3 Model with Stationary Product Defect Rate Distribution

In this section, we explain the story, construct the model, and develop a nu-
merical case for the product recall timing model, which later extends into a general
form with dynamically updated return rate.

Consider a company that sells M products to the market1. The products,
however, are not all of perfect quality. The firm assures its customers of its products’
quality during the warranty time of T periods. Within warranty coverage, if a product
is found defective, it will be returned and managed with certain compensation c1 (per
unit) paid to the customer. All returned products contribute to the loss of customer
goodwill which is calculated at the end of the decision process with cost cF per unit. If
all products have been returned before the end time T , the process ends prematurely
and the cost of goodwill is evaluated on all M products with same unit cost cF .

To prevent the potentially large costs of customer goodwill loss, the responsible
manager (he) can observe the total number of product returned (st) at the beginning
of any period t, t = 1, . . . , T , and decide whether to stop the process by initiating
a product recall. During the recall, an immediate cost K will occur along with the
costs of collecting products remaining in the market with c0 per unit.

In order to facilitate the decision, he can estimate the return rate p̃, i.e., the
probability of a randomly selected product being defective, based on historical data of
similar products. Suppose the return rate p̃ follows a beta distribution of parameters k
and n (k ≤ n) estimated from historical data, i.e., p̃ ∼ Beta(k, n), and the probability
density function is

1 Specifically, we assume these M units belong to one production lot of the same product type. If
the firm produces other lots of this type of product or other product types, product recall decisions of those
lots will follow similar and independent decision making processes.
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Notations Definitions

c0 unit cost of recall products in market,“0”marks system halts

c1 unit cost of managing product returns, “1”marks system continues

cF unit cost of goodwill loss, “F”marks the process finishes

K immediate cost of recall action

kt, k parameter of beta distribution for product defect rate in period t

M initial number of products in market

mt number of products remaining in the market at the beginning of period t

nt, n parameter of beta distribution for product defect rate in period t

p̃t random variable estimating product defect rate in period t

r̃t random variable estimating number of product returns in period t

st number of products returned so far at the beginning of period t

T total number of time periods

Table 1. Notations and meanings for parameters and variables in product recall
timing optimization models.

fp̃(p) =
(n− 1)!

(k − 1)!(n− k − 1)!
pk−1(1− p)n−k−1 for 0 ≤ p ≤ 1. (1)

Since the manager decides at each stage in a dynamically changing process
that evolves through time, this decision process belongs to the category of sequential
analysis. To be specific, our problem of focus is similar to the optimal stopping
problem. Therefore we adopt a dynamic programming approach and use the principle
of optimality to construct the model. We introduce notations in Table 1 to facilitate
model formulations.

2.3.1 Model Building

In this section the manager’s estimate of the product rate p̃t follows a beta
distribution indifferent to time periods, i.e., p̃t ∼ Beta(k, n), for which the expectation
E(p̃t) is k/n. We use k and n to denote the beta distribution parameters instead of
kt and nt since their values are constant through all time periods. The number of
products remaining in market (mt) and the total number of returned products (st)
abide the relationship mt + st = M . The number of products returned r̃t in period t
follows the binomial distribution since the process is similar to conductingmt identical
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Figure 1. An illustration of the product return process in the constant defect rate
model.

Bernoulli processes with success rate p̃t, i.e., r̃t ∼ Bin(mt, p̃t).
In this binomial distribution, we use a random variable as the estimation of

event occurrence rate instead of a fixed probability because the true value is unknown.
Instead, the manager can estimate the distribution of the defect rate from historical
data. Therefore, we use this beta-distributed random variable p̃t for defect rate at the
tth period with which we generate the estimation of the number of product return r̃t
accordingly. In our extension of the dynamically updating defect rate model in the
following section, the defect rate estimation from historical data is treated as prior
information and updated each period using obtained value of product returns. An
illustration of the process is shown in Figure 1.

Using the principle of optimality, we model this dynamic programming process
with value function Vt(st) for t = 0, 1, . . . , T − 1 and terminal value VT (sT ) in expres-
sions (2-3).

VT (sT ) = cF sT (2)

Vt(st) =


min

 c0(M − st) +K Recall

c1E(r̃t) + E[Vt+1(st + r̃t)] Continue
If st < M

cFM Stop If st = M

(3)

where r̃t ∼ Bin(mt, p̃t) and p̃t ∼ Beta(k, n). Terminal value Vt(st) in (2) shows
that the cost of goodwill loss is linear to the total number of product returns if the
process finishes the entire warranty time. Depending on the number of returns at the
beginning of period t, the value function Vt(st) in (3) takes different forms. If all the
products have been returned, i.e., st equals M , the process terminates with the cost
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of goodwill loss proportional to total returns M . Otherwise, the manager evaluates
the choices between immediate recall costs and the expected cost to continue. If
he decides to recall, a variant cost proportional to products remaining in the market
takes place along with a fixed cost K. If he decides to continue, he expects to take the
cost of managing returns of the tth period along with expected costs of the following
periods E[Vt+1(st + r̃t)].

Using the property of conditional expectation which is well exemplified in Ross
[39], E(X) = E[E(X | Y )], we calculate the cost incurred to manage product returns
at stage t, given system state st, in the following

c1E(r̃t) = c1E[E(r̃t | p̃t)] (4)

= c1

∫ 1

0

E(r̃t | p̃t = p)fp̃(p) dp

= c1

∫ 1

0

pmtfp̃(p) dp

= c1mt

∫ 1

0

pfp̃(p) dp

= c1mtE(p̃t)

= c1(M − st)k/n

where fp̃(p) is the probability density function of beta distribution for p̃t ∼ Beta(k, n)
as in (1), and other parameters are explained in Table 1.

By the law of total probability, the probability of getting r products returned
in period t is

Pr(r̃t = r | st) =

∫ 1

0

Pr(r | p̃t = p, st)fp̃(p) dp (5)

=

∫ 1

0

(
M − st

r

)
pr(1− p)M−st−rfp̃(p) dp

and the expectation of cost-to-go function starting from stage t + 1 depends on st
only, with the expression as follows

E[Vt+1(st + r̃t)] =
M−st∑
r=0

Vt+1(st + r) Pr(r | st). (6)

Since value function for the process end T is given in (2), recursively calculating
the expected costs of remaining periods E[Vt+1(st+1)] with (6) and value function
Vt(st) with (3) will determine the optimal decision for any possible state st at any
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time stage t.

2.3.2 Solution using Dynamic Programming

The classic dynamic programming (DP) procedure can solve the static product
defect rate distribution model with ease and result in an optimal policy that works for
any possible state of the system. This policy assists decisions of whether to initiate
a product recall or continue with the process based on the states observed in the
current stage and discovers a critical level of the system state at which the best
decision switches from “CONTINUE”to “RECALL”. We call this critical level the
threshold, which is the largest system state that a “CONTINUE”decision remains
optimal for the stage.

2.3.2.1 The Threshold Curve

Firstly, we examine the threshold from the last period θT−1 to gain some insight
of DP solving procedures.

Proposition 1 Recall threshold for the last time period is determined by given pa-
rameters from Table 1 and beta parameters k and n with following equation:

θT−1 =

⌊
K + [c0 − (c1 + cF ) k/n]M

(1− k/n) cF + c0 − c1k/n

⌋
(7)

Proof. Given the definition of recall threshold, θT−1 is the largest number of return
that “CONTINUE”remains optimal decision, i.e., the cost to continue is equal to or
less than the cost to recall. From the model (2-3), certain states sT−1 satisfies the
following inequality

c0 (M − sT−1) +K ≥ c1E (r̃T−1) + E [VT (sT−1 + r̃T−1)]

From analysis in (4), we can write E (r̃T−1) = k/n (M − sT−1), therefore

c0 (M − sT−1) +K ≥ c1
k

n
(M − sT−1)

+E

[
VT

(
sT−1 +

k

n
(M − sT−1)

)]
[(

1− k

n

)
cF + c0 − c1

k

n

]
sT−1 ≤ K +

[
c0 − (c1 + cF )

k

n

]
M

It is reasonable to assume that unit cost incurred during a recall is higher than
that for managing returns in a “CONTINUE”decision, i.e., c0 > c1. Since the ratio
k/n is equivalent to the expectation of defect probability E(p̃), 0 < k/n < 1. Hence
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the coeffi cient of sT−1 is positive, and we can solve the above inequality for all eligible
sT−1.

sT−1 ≤
K + [c0 − (c1 + cF ) k/n]M

(1− k/n) cF + c0 − c1k/n
Because recall threshold corresponds to the largest eligible sT−1 solved, the

result in (7) holds.
Now extend the above procedure to compute thresholds prior to the last pe-

riods. When 0 ≤ st ≤ M − 1 for t = 2, . . . , T − 1, let function A (st) = c0 (M − st)
denotes recall costs, function B (st) = c1E (r̃t) = c1 (M − st) k/n denotes return man-
agement costs, and function wt (st) = E [Vt+1 (st + r̃t) | st < M ] denotes expected
costs for all future periods since t+ 1 if continue, we have

Vt (st | st < M) = min

 A (st) +K

B (st) + wt (st)

Since cost-to-go for stage t+ 1 is

Vt (st + r̃t) =


min

 A (st + r̃t) +K

B (st + r̃t) + wt+1 (st + r̃t)
If r̃t < M − st

cFM If r̃t = M − st

we have the following expression for expected cost to continue wt (st):

wt (st) =
M−st−1∑
r=0

Pr (r̃t = r | st) min {A (st + r) +K,B (st + r) + wt+1 (st + r)}

+ Pr (r̃t = M − st | st) cFM

The company initiates recall only if A (st) < B (st) + wt (st). Let function
Gt (st) refer to the difference of recall costs and return management costs, i.e.,

Gt (st) = A (st)−B (st)

=

(
c1
k

n
− c0

)
st +

(
c0 − c1

k

n

)
M +K

= αst + β

where α = c1k/n− c0 and β = (c0 − c1k/n)M + K. Consequently, the firm initiates
product recall only when
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Gt (st) = αst + β < wt (st)

Calculating backwards, we obtain

wt (st) = E [Vt+1 (st + r̃t)] =

M−st∑
r=0

Vt+1 (st + r) Pr (r̃t = r | st)

from previous steps going back to the ending period T.
Conditional on the value of α, ranges of st to make product recall decisions

are as follows
α value Initiate recall if st satisfies

α > 0 st < [wt (st)− β] /α

α = 0 β < wt (st)

α < 0 st > − [β − wt (st)] /α

Table 2. Recall decision ranges of system states for different parameter setting.

Using the dynamic programming method, one obtains the value of wt (st) for
each state st. Using Table 2, the largest state st that solves for a “CONTINUE”
decision is the value for threshold θt at stage t. Thus we obtain the optimal decision.

2.3.2.2 Numerical Experiments

We now describe a numerical example to illustrate the optimal solution and
threshold curve for our proposed model (2-3). In this numerical example, with para-
meters of k and n given in Table 3, the probability of getting r̃t = r products returned
in period t is

P (r | st) =
3(6− st − r)(5− st − r)
(7− st)(6− st)(5− st)

,

given that 0 ≤ r ≤M − st and 0 ≤ st ≤M.
With parameters in Table 3, results of value function Vt(st) and threshold θt

in optimal policy µ∗t given any state st of any stage t are listed in Table 4. Note that
during each time stage, the cost-to-go increases at first then decreases after switching
decision. This happens because the function corresponding to “CONTINUE”decision
(c1E(r̃t) + E[Vt+1(st + r̃t)]) increases over state st while the function representing
“RECALL”decision (c0(M−st)+K) decreases linearly over state st. Optimal policy
µ∗t is to choose to “RECALL”when observed total returns st exceeds threshold θt, and
choose to “CONTINUE”if observed total returns st is less or equal to the threshold θt.
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c0 c1 cF K n k M T

2 1 3 5 4 1 4 3

Table 3. Initial parameter values for the numerical example.

For instance, at period t equals 1, the optimal action is “CONTINUE”when observed
total returns st is less or equal to 2 and optimal action switches to “RECALL”when st
is greater or equal to 3; thus the largest observed returns st before switching decision
is 2, which is the threshold θ2.

Figure 2 shows optimal decisions for all states in every stage. The states for
which optimal decision changes from “CONTINUE”to “RECALL”form the thresh-
olds. Thresholds curve that reflects the optimal policy is shown as dark round dots
in Figure 2.

Changing the value of parameter K only while other parameters remain the
same in Table 3, the recall threshold θt varies as in Table 5. Recall threshold increase
when immediate recall cost increase, which suggest high immediate recall cost dis-
courages the action of product recalls. In our case, when immediate cost is higher
or equal to 10, recall threshold is equal to 3 which equals M − 1; since recall action
only take action when sT−1 = θT−1 + 1 for sT−1 <= M − 1, this result suggests the
decision maker will always choose to continue no matter how many products being
returned.

Changing the value of parameter unit cost of goodwill cF only while other
parameters remain the same in Table 3, the threshold θt varies as in Table 6. When
the unit cost of goodwill cF decreases, recall threshold θt increases and the manager
is less willing to recall. The unit cost of goodwill is the company’s estimation of
long-term impact of product returns to its reputation and customer loyalty. The
more a company cares about its market sustainability and long-term profit, the more
cautious action it will take and the more willing it is to take a recall action.

When cF is within the range of [6, 11], the optimal decision for the first period
is “CONTINUE”. In contrast, when cF is within the range of [12,30], the optimal
decision for the first period is “RECALL”. Under this circumstance, the company
should not release products in the first place.

2.3.2.3 Sensitivity Analysis

We experiment the impact of comparative magnitude of unit cost of managing
return c1 and unit cost of recall c0 with four cases: (1) c0 � c1, for instance c0 equals
2 while c1 equals 20; (2) c0 < c1, for instance c0 equals 2 while c1 equals 5; (3) c0 > c1,
for instance c0 equals 5 while c1 equals 2; (4) c0 � c1, for instance c0 equals 20 while
c1 equals 2. The parameters settings are shown in Table 7.

18



Ph.D. Thesis - L. Yao McMaster University - DeGroote School of Business.

t st Vt(st) µ∗t θt t st Vt(st) µ∗t θt

0 0 8.54 CONTINUE 0 0 4.00 CONTINUE

0 6.74 CONTINUE 1 6.00 CONTINUE

1 7.80 CONTINUE 2 2 8.00 CONTINUE 2

1 2 8.60 CONTINUE 2 3 7.00 RECALL

3 7.00 RECALL 4 12.00 STOP

4 12.00 STOP

Table 4. Numerical experiment results of static rate recall timing problem.

Figure 2. Optimal decisions for all possible states and the threshold curve of the
numerical example of four products and three stages.
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K Corresponding threshold

1, . . . , 4 θt = 1 for t = 1, 2, 3

5, . . . , 8 θt = 2 for t = 1, 2, 3

9 θt =

 2 t = 1

3 t = 2, 3

10 θt = 3 for t = 1, 2, 3

Table 5. Recall threshold increases with fixed recall cost K increases.

cF Corresponding threshold

1 θt = 3 for t = 1, 2, 3

2 θt =

 2 t = 1, 2

3 t = 3

3 θt = 2 for t = 1, 2, 3

4, 5 θt = 1 for t = 1, 2, 3

6, . . . , 11 θt = 0 for t = 1, 2, 3

12, . . . , 30 θt = 0∗ for t = 1, 2, 3

Table 6. Recall threshold decreases with unit cost of goodwill increases.

Common parameters Case 1 Case 2 Case 3 Case 4

cF K n k M T c0 c1 c0 c1 c0 c1 c0 c1

3 15 100 1 10 12 2 20 2 5 5 2 20 2

Table 7. Other initial parameter values for numerical examples.
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Case 1. Optimal decisions of all possible states are shown in Figure 3 where
the threshold curve plotted show a increasing trend of thresholds along with time.
This is because the expected cost to continue decreases when there is less time left in
the warranty periods.

Figure 3. Optimal decisions of all possible states and the threshold curve in case 1:
c0 � c1 (c0 = 2, c1 = 20) .

Case 2. Optimal decisions of all states are plotted in Figure 4 where the
threshold curve also shows a increasing trend of thresholds with time. But the slope
is much more gentle compared to case 1 and the threshold at time t = 2 is higher.

Case 3. Optimal decisions of all states are plotted in Figure 5 where the
threshold curve shows a constant ratio of thresholds with time of t = 1, . . . , T − 1.
Note the threshold curve of t = 1, . . . , T − 1 increases to θt = 8 compared to θt = 6
in Case 2.

Case 4. Optimal decisions plotted in Figure 6 where the threshold curve shows
a constant ratio of thresholds with time t = 1, . . . , T − 1 which are higher than the
results in previous three cases.

Our experiments in four cases show that thresholds are sensitive to the pa-
rameter settings of unit cost of managing return c1 and unit cost of recall c0. The
smaller c0 is relative to c1, the steeper the threshold curve as time increases. Oth-
erwise, the thresholds line is flat and higher on the graph when c0 − c1 gets larger.
These results suggest when recall costs increase faster than the return managing cost
for “CONTINUE”decisions, managers tend to wait-and-see and take higher recall
risks.
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Figure 4. Optimal decisions of all possible states and the threshold curve in case 2:
c0 < c1 (c0 = 2, c1 = 5) .

Figure 5. Optimal decisions of all possible states and the threshold curve in case 3:
c0 > c1 (c0 = 5, c1 = 2) .
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Figure 6. Optimal decisions of all possible states and the threshold curve in case 4:
c0 � c1 (c0 = 20, c1 = 2) .
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Adding Kt in Recall Costs Using the same set of parameters same as in the
Case 2 sensitivity analysis (shown in Table 8), we compare impacts of using a linearly
increasing cost with time (Kt) with a fixed cost (K) in recall costs computation.

c0 c1 cF K n k M T

2 5 3 15 100 1 10 12

Table 8. Parameters for numerical example testing impact of Kt versus K case.

Compared to the threshold curve plotted in Figure 4 which show a slowly
increasing trend, the linearly increasing cost Kt results in a steeper increasing trend
of threshold curve as shown in Figure 7.

The above comparison shows that using the linearly increasing costs Kt per-
mits higher thresholds to recall in later periods than having a fixed value of K in
the recall costs. This finding contradicts our assumption, which is inspired by previ-
ous studies such as Hora et al. [19], that if recall costs increase with time, managers
tend to initiate recalls promptly. Our results show that managers react similarly for
early stages given the same number of product returns on hand, but choose to con-
tinue the process with a much higher threshold with Kt in recall costs than with K
in constant defect rate problems. This result suggests that increasingly higher recall
cost adds more inertia and resistance for initiating product recalls.

2.4 Model with Dynamically Updated Product Defect Rate
Distribution

In this case, we assume the firm’s manager is aware that the number of product
returns can help reveal the true defect rate. Based on this belief, he decides to
use periodically-collected information on product returns to update his estimation of
products defect rate. An illustration of product return process is shown in Figure 8.

2.4.1 Model Building

Defining state variables for stage t as the three dimensional vector (st, nt, kt)
and using the principle of optimality, we model the dynamic programming process
with value function Vt(st, nt, kt) for t = 0, 1, . . . , T − 1 and terminal value function
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Figure 7. Optimal decisions of all possible states and the threshold curve considering
recall costs linearly increasing with time.

1 2 t t+10 T

r0 r1 rt

s0=0
m0=M

s1=s0+r0
m1=Ms1

s2=s1+r1
m2=Ms2

st+1=st+rt
mt+1=Mst+1

... ...

st=st1+rt1
mt=Mst

k0
n0

k1=k0+r0
n1=n0+m0

k2=k1+r1
n2=n1+m1

kt=kt1+rt1
nt=nt1+mt1

kt+1=kt+rt
nt+1=nt+mt

Figure 8. An illustration of product return process for dynamically updating product
defect rate model.
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VT (sT , nT , kT ) in expressions (8-9).

VT (sT , nT , kT ) = cF sT (8)

Vt(st, nt, kt) =


min


c0(M − st) +K Recall

c1E(r̃t | st, nt, kt)
+ E[Vt+1(st+1, nt+1, kt+1)]

Continue
If st < M

cFM Stop If st = M

(9)

where r̃t ∼ Bin(mt, p̃t) and p̃t ∼ Beta(kt, nt). Parameters are defined in Table 1.
Definitions of value functions are similar to those of the constant defect rate model.
The difference is the state space expands to three dimensional, i.e., (st, nt, kt), because
knowledge of kt and nt are necessary to update the defect rate of stage t. As a
consequence, expected costs for returns management and the following periods are
conditioned on the entire state space (st, nt, kt).

By the law of total probability, the probability of getting r̃t = r products
returned in period t is

Pr(r̃t = r | st, nt, kt) =

∫ 1

0

Pr(r | p̃ = p, st)fp̃(p | nt, kt) dp (10)

=

∫ 1

0

(
M − st

r

)
pr(1− p)M−st−rfp̃(p | nt, kt) dp

=
Γ (r + kt) Γ (nt − kt +M − st − r) Γ (M − st + 1) Γ (nt)

Γ (M + nt − st) Γ (1 + r) Γ (M − st − r + 1) Γ (kt) Γ (nt − kt)
whose complexity contributes to the solving diffi culty of the dynamically updated
defect rate problem. Gamma function Γ (n) is an extension of factorial functions
where

Γ (n) =

∫ ∞
0

xn−1e−xdx

and Γ (n) = (n− 1)! if n is an integer. Applying the law of total probability, similar
to the computing steps in finding c1E(r̃t) for the constant rate model with formula
(4), we have

c1E(r̃t | st, nt, kt) = c1
kt
nt

(M − st) . (11)

2.4.1.1 Conjugate property of beta distribution and Bernoulli trials

Suppose in period t the return rate p̃t follows a beta distribution with para-
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meters kt and nt (kt ≤ nt), i.e., p̃t ∼ Beta(kt, nt) for which the expectation E(p̃t) is
kt/nt. At the first stage (t = 0), prior estimation of return rate follows Beta(k0, n0)
for which parameters k0 and n0 are exogenously determined by historical data or the
decision maker. The number of products remaining in market mt and the total num-
ber of returned products st follows the relationship that mt + st = M as mentioned
previously. The number of product returns in period t follows a binomial distribu-
tion since the process is similar to conducting mt identical Bernoulli processes with
success rate p̃t, i.e., r̃t ∼ Bin(mt, p̃t). The conjugate property of beta distributions
and Bernoulli processes states that if the prior distribution follows a beta distribu-
tion Beta(r, n) and the sampling process is Bernoulli with r′ successes out of n′ trials
then the posterior distribution also follows a beta distribution Beta(r′′, n′′) where
r′′ = r + r′, n′′ = n + n′. Winkler [53] provides excellent materials on the conjugate
property for those interested, covering proofs and examples. In our case, with initial
estimation following a beta distribution and all sampling processes being Bernoulli,
we can prove by induction that the resulting posterior distributions are also beta
distributions.

With the conjugate property of beta distribution and Bernoulli trials, the sys-
tem states for the dynamically updated defect rate model update using the following
recursive expressions for any t = 1, 2, . . . , T.

kt+1 = kt + r̃t (12)
nt+1 = nt + (M − st) (13)

Therefore given system state (st, nt, kt) at stage t, we can solve for the expected costs
of stages starting from t+ 1 using expression (14).

E[Vt+1(st+1, nt+1, kt+1)] =
M−st∑
r=0

Vt+1 (st + r, nt +M − st, kt + r) Pr(r̃t = r | st, nt, kt).

(14)

2.4.1.2 Applying Conjugate Property to States kt and nt

Since the total number of returned products at the beginning of period t is
st =

∑t−1
i=1 ri, for t = 1, 2, . . . , T −1 and s1 = 0, parameters kt and nt have expressions

in the following.

kt =

 k0 t = 0

k0 + st t = 1, 2, . . . , T − 1
(15)
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nt =

 n0 t = 0

n0 + tM −
∑t−1

i=0 si t = 1, 2, . . . , T − 1
(16)

=


n0 t = 0

n0 +M t = 1

n0 + tM −
∑t−2

i=0(t− 1− i)ri t = 2, 3, . . . , T − 1

(17)

We can prove formulas for kt and nt by induction.
Proof. Since k0 is given, k1 = k0+r0 satisfies the form kt+1 = k0+

∑t
i=0 ri. Suppose

this formula holds for any ` that 1 ≤ ` ≤ T − 1, i.e., k` = k0 +
∑`−1

i=0 ri. Then

k`+1 = k` + r`

= k0 +
`−1∑
i=0

ri + r`

= k0 +
∑̀
i=0

ri

also satisfies the proposed formula.
For the formula of nt with respect to system states, with n0 given n1 = n0 +

m0 = n0 +M − s0 which satisfies the formula nt = n0 + tM −
∑t−1

i=0 si. Suppose this
formula holds for any ` that 1 ≤ ` ≤ T − 1, i.e., n` = n0 + `M −

∑`−1
i=0 si. Then

n`+1 = n` +m`

= n0 + `M −
`−1∑
i=0

si +M − s`

= n0 + (`+ 1)M −
∑̀
i=0

si

also satisfies the proposed formula.
For the formula of nt with respect to returns in previous stages, with n0 given,

n1 = n0 +m0 = n0 +M , n2 = n1 +m1 = n0 +M + (M − r0) = n0 + 2M − r0 which
satisfies the formula nt = n0 + tM −

∑t−2
i=0(t − 1 − i)ri. Suppose this formula holds

28



Ph.D. Thesis - L. Yao McMaster University - DeGroote School of Business.

for any ` that 2 ≤ ` ≤ T − 1, i.e., n` = n0 + `M −
∑`−2

i=0(`− 1− i)ri. Then

n`+1 = n` +m`

= n0 + `M −
`−1∑
i=0

si +M − s`

= n0 + (`+ 1)M −
∑̀
i=0

si

also satisfies the proposed formula.
For the formula of nt with respect to returns in previous stages, with n0 given,

n1 = n0 +m0 = n0 +M , n2 = n1 +m1 = n0 +M + (M − r0) = n0 + 2M − r0 which
satisfies the formula nt = n1 + (t − 1)M −

∑t−2
i=0(t − 1 − i)ri. Suppose this formula

holds for any ` that 3 ≤ ` ≤ T , i.e., n` = n1 + (`− 1)M −
∑`−2

i=0(`− 1− i)ri. Then

n`+1 = n` +m`

= n0 + `M −
`−2∑
i=0

(`− 1− i)ri + (M −
`−1∑
i=0

ri)

= n0 + `M −
`−2∑
i=0

(`− 1− i)ri + (M −
`−2∑
i=0

ri − r`−1)

= n0 + (`+ 1)M −
`−1∑
i=0

(`− i)ri

also satisfies the proposed formula. By induction, we show the formulas (15), (16)
and (17) hold for t = 2, 3, . . . , T − 1.

2.4.1.3 Identifying State Space

The notion of “curse of dimensionality”was coined by Bellman [5]. This innate
feature is as old as the technique of dynamic programming itself. Exponentially
increasing state space makes the calculation for value functions very diffi cult, if not
impossible, when the problem size increases. To deal with this curse, researchers such
as Powell [35] apply approximation methods to constrain the exploding dimensions.
Powell [35] categorizes three types of curse of dimensions, including state space, action
space and decision space.

Fortunately, in our problem we can reduce the dimensionality by observing the
connections of states st, nt and kt. Given the number of product returns until time t,
i.e., st, beta distribution parameter kt is decided by k0+st for all t = 0, 1, 2, . . . , T −1

29



Ph.D. Thesis - L. Yao McMaster University - DeGroote School of Business.

since s0 = 0, but nt could be a range if time t is at stage 2 or after. Using nt and nt
to denote the lower and upper bound of the range for nt, then

nt = n0 + tM, ∀t ≥ 2 (18)

when si = 0 for all i = 1, 2, . . . , t− 1.

nt = n0 + tM − (t− 1)st, ∀t ≥ 2 (19)

when r0 = st and ri = 0 for all i = 1, . . . , t− 2, i.e., si = st, for all i = 1, . . . , t− 1.

nt = min n0 + tM −
t−2∑
i=0

(t− 1− i)ri (20)

subject to
t−2∑
i=0

ri ≤ st

0 ≤ ri ≤M − si, ∀i = 0, . . . , t− 2
k−1∑
i=0

ri ≤ st, ∀k = 1, . . . , t− 1

s0 = 0

ri ∈ N+, ∀i = 0, . . . , t− 2

To explain the proposed lower bound in expression (19), we present the system
(20) that minimizes nt defined in expression (17) as the objective and in its constraints
confine product return ri (∀i = 0, . . . , t − 2) following the updating rules. Because
function

∑t−2
i=1(t− 1− i)ri is a weighted sum of non-negative decision variables ri, its

minimum can be found by assigning the decision variable that has the largest weight,
i.e., r0, with its largest possible value st and the rest of ri to be zero. If we change
the minimum in the objective to maximum, then the revised version of system (20)
will find the upper bound of nt in expression (18). The maximum can be found when
assigning ri (∀i = 0, . . . , t−2) to be zero, in which case the number of product returns
of the first t− 1 periods is always zero.

Hence given time t ≥ 2, the state space is bounded separately with st ∈ [0,M ],
kt = k1 + st, and nt ∈ [n1 + tM − (t − 1)st, n1 + tM ]. The range of st is M + 1,
kt depends on st, and the range of nt is (t − 1)st + 1. Thus given st, the number of
products returned at stage t = 2, 3, . . . , T , there are (t−1)st+ 1 corresponding states
(st, nt, kt) in the dynamically updated product defect rate distribution model.

2.4.2 Solution using Dynamic Programming

Similar to solving the fixed defect rate model, we apply dynamic programming
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to solve the dynamic updating defect rate model (8-9). Because the state space
extends from st to (st, kt, nt), we calculate the value function based on the ranges
of kt from expression (15) and nt from expression (16). In this backward induction
process, we use the conjugate property of the beta distribution and Bernoulli trials
for states updating and compute the transition probability with expression (10) to
find the value of cost-to-go (14).

Comparing the results of taking “RECALL”action with immediate recall costs
and taking “CONTINUE” action with the expected expenditure of cost-to-go, we
obtain the optimal decisions for each possible state at all stages. Since the state st
has much more impact than the states kt and nt, we use the concept of thresholds
defined for the fixed rate model, i.e., threshold θt is the largest state st that the
“CONTINUE”decision remains optimal at stage t. Thresholds of all stages comprise
the optimal policy.

2.4.2.1 The threshold curve

Similar to our study approach for the constant defect rate model, we start by
examining the threshold from the last period θT−1 to gain some insight of DP solving
procedures.

Proposition 2 Product recall threshold for the last time period is determined by
given parameters from Table 1 and beta parameters k and n with following equation:

θT−1 =

⌊
K + [c0 − (c1 + cF ) kT−1/nT−1]M

(1− kT−1/nT−1) cF + c0 − c1k/n

⌋
(21)

Proof. The definition of recall threshold, θT−1 is the largest number of return that
“CONTINUE”remains the optimal decision, i.e., the cost to continue is equal to or
less than the cost to recall. From the model (2-3), certain states sT−1 satisfy the
following inequality

c0 (M − sT−1) +K ≥ c1E (r̃T−1) + E [VT (sT−1 + r̃T−1)]

From analysis in (4), we can writeE (r̃T−1) = kT−1/nT−1 (M − sT−1), therefore

c0 (M − sT−1) +K ≥ c1
kT−1
nT−1

(M − sT−1)

+E

[
VT

(
sT−1 +

kT−1
nT−1

(M − sT−1)
)]

[(
1− k

n

)
cF + c0 − c1

kT−1
nT−1

]
sT−1 ≤ K +K +

[
c0 − (c1 + cF )

kT−1
nT−1

]
M
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It is reasonable to assume that unit cost incurred during a recall is higher
than that for managing returns in a “CONTINUE” decision, i.e., c0 > c1. The
ratio kT−1/nT−1 is equivalent to the expectation of defect probability E(p̃), 0 <
kT−1/nT−1 < 1. Hence the coeffi cient of sT−1 is positive, and we can solve the above
inequality for all eligible sT−1.

sT−1 ≤
K + [c0 − (c1 + cF ) kT−1/nT−1]M

(1− kT−1/nT−1) cF + c0 − c1kT−1/nT−1
Because recall threshold corresponds to the largest eligible sT−1 solved, the

result in (21) holds.
Now extend the above procedure to compute thresholds prior to the last peri-

ods. When 0 ≤ st ≤M −1 for t = 2, . . . , T −1, let function A (st, nt, kt) denote recall
costs c0 (M − st) +K, function wt (st, nt, kt) denote expected costs for all future peri-
ods if continue E [Vt+1 (st + r̃t, nt +M − st, kt + rt)], and functionB (st, nt, kt) denote
return management costs c1E (r̃t | st, nt, kt) which equals to c1 (M − st) kt/nt, value
function transforms to the following:

Vt (st, nt, kt) = min

 A (st, nt, kt)

B (st, nt, kt) + wt (st, nt, kt)

The company initiates recall only if A (st, nt, kt) < B (st, nt, kt)+wt (st, nt, kt).
Let function Gt (st, nt, kt) refer to the difference between recall costs and return man-
agement costs, i.e.,

Gt (st, nt, kt) = A (st, nt, kt)−B (st, nt, kt)

=

(
c1
kt
nt
− c0

)
st +

(
c0 − c1

kt
nt

)
M +K

= αkt,ntst + βkt,nt

where α (kt, nt) = c1kt/nt − c0 and β (kt, nt) = (c0 − c1kt/nt)M + K. Consequently,
the firm initiates product recall only when

Gt (st) = α (kt, nt) st + β (kt, nt) < wt (st, nt, kt)

Calculating backwards, with expression (14) we obtain

wt (st, nt, kt) = E [Vt+1 (st + r̃t, nt +M − st, kt + rt)]

=
M−st∑
r̃t=0

Vt+1 (st + r̃t, nt +M − st, kt + rt) Pr (r̃t | st, nt, kt)
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from previous steps going back to the ending period T.
Theoretically, given each system state (st, nt, kt), we can compute the corre-

sponding α (kt, nt) and β (kt, nt) . Conditional on the value of α (kt, nt), ranges of st
to make product recall decisions are as follows

α (kt, nt) value Initiate recall if st satisfies

α (kt, nt) > 0 st < [wt (st, nt, kt)− β (kt, nt)] /α (kt, nt)

α (kt, nt) = 0 β (kt, nt) < wt (st, nt, kt)

α (kt, nt) < 0 st > − [β (kt, nt)− wt (st, nt, kt)] /α (kt, nt)

Table 9. Recall decision ranges of system state st for dynamically changing defect
rate model.

2.4.2.2 Numerical experiments

We experiment with a numerical example using the parameters in Table 10 and
find results shown in Figure 9. The solid circle dots indicate the optimal decisions
to “CONTINUE”, the cross dots indicate the decision to “RECALL”, the empty
diamond dots indicate the decision to “STOP”and solid square dots indicate that
decisions depend on nt state.

The generic model considers a larger state space in which the current state
is determined not only by the number of products returned so far, i.e., st, but also
how these products were returned through time, i.e., nt. Hence, with the same prod-
ucts returned, the optimal decisions could be either “CONTINUE”or “RECALL”
depending how the returned products were accumulated. The decision in this case is
identified as “nt-DEPENDENT”, because the manager cannot make a decision based
on the number of products returned alone, he also needs the return history which is
reflected by nt.

We increase the number of time stages T from 4 (Figure 9) to 8 (Figure 10), 12
(Figure 11) and 16 (Figure 12) to identify its impact on optimal decisions and thresh-
old curve. With larger problem sizes, the situation of “nt-DEPENDENT”appears
more frequently at the borders between regions of “CONTINUE”and “RECALL”
decisions. For example when T is 4, only one “nt-DEPENDENT”dot shows for t = 2
and st = 9. Detailed results show when the state is in (s2 = 9, 21 ≤ n2 ≤ 26, k2 = 10),
we choose “RECALL”; when the state is in (s2 = 9, 27 ≤ n2 ≤ 30, k2 = 10), we choose
“CONTINUE”. In contrast, we have three “nt-DEPENDENT”states for T = 8, four
and six “nt-DEPENDENT”states for T = 12 and T = 16 respectively.

Comparing the four results in Figures 9-12, it appears that, with the same cost
parameters, the threshold curve shifts up with more initial products in the market.
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c0 c1 cF K n0 k0 M T

15 2 3 15 10 1 10 4

Table 10. Parameters for numerical example.

Figure 9. Optimal decisions of all possible states for dynamically updated defect
rate distribution model with six products and four time periods. “nt-DEPENDENT”
suggest managers need to know state nt to make decisions.
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Figure 10. Optimal decisions of all possible states for dynamically updated defect
rate distribution model with six products and eight time periods. “nt-DEPENDENT”
suggest managers need to know state nt to make decisions.
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Figure 11. Optimal decisions of all possible states for dynamically updated defect
rate distribution model with six products and 12 time periods. “nt-DEPENDENT”
suggest managers need to know state nt to make decisions.

States with “nt-DEPENDENT”optimal decisions appear as the intermediate states
at the inflection points when threshold curve rises up. For these states, complete
knowledge of the states (st, nt, kt) is required to make optimal decisions.

2.4.3 Size of State Space

Using results of identifying dimensionality, based on the range of nt there are
(t− 1)st + 1 corresponding states (st, nt, kt) for any given st at stage t = 2, 3, . . . , T .
For any stage t = 2, 3, . . . , T, the number of states is

M∑
st=0

[(t− 1)st + 1] = M + 1 +

M∑
st=0

(t− 1)st

= M + 1 + (t− 1)

M∑
st=0

st

= M + 1 + (t− 1)
M (M + 1)

2
.
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Figure 12. Optimal decisions of all possible states for dynamically updated defect
rate distribution model with six products and 16 time periods.“nt-DEPENDENT”
suggest managers need to know state nt to make decisions.
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The number of states for all stages since the second stage is

T∑
t=2

M∑
st=0

[(t− 1)st + 1] =
T∑
t=2

[
M + 1 + (t− 1)

M (M + 1)

2

]

= (M + 1) (T − 1) +
M (M + 1)

2

T∑
t=2

(t− 1)

= (M + 1) (T − 1) +
M (M + 1)

2

T (T − 1)

2

= (M + 1) (T − 1)

(
1 +

MT

4

)
=

1

4

(
M2T 2 −M2T +MT 2 + 3MT − 4M + 4T − 4

)
.

Adding the number in the first stage, which is one, and the number in second stage,
which isM+1, the total number for states a dynamically updated defect rate problem
with given initial products on market M and warranty time span T , is

T∑
t=2

M∑
st=0

[(t− 1)st + 1] + 1 +M + 1 =
1

4

(
M2T 2 −M2T +MT 2 + 3MT + 4T

)
+ 1.

This number largely depends on the value M2T 2/4 when M and T get large.
For instance, when M equals 100 and T equals 24, the number of possible states
is 1,396,225 which is close to 1,440,000, the result of M2T 2/4. Since the number of
states rapidly increases whenM and T get large, the computation for value functions
becomes increasingly time consuming, which motivates us to develop alternatives to
find the optimal solutions.

2.4.4 Simulation Method

To avoid the time-consuming computation of the value function Vt(st, kt, nt),
we use the simulation method to directly find the best fitting curve for product recall
thresholds. Results from our previous numerical example indicate that the thresholds
curve can be deemed to be a function of time stages. To be specific, the thresholds
curve shows a nondecreasing trend as time stage t increases. A general function form
of

θt = a
n
√
t

could be used for nonnegative parameters a and n. For simplicity, we use three
functional forms: linear functions (n = 1), square root functions (n = 2) and cu-
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bic root functions (n = 3) to approximate this relationship between thresholds and
time stages. Thus we transform the process of finding thresholds into optimizing
parameters in the approximation functions.

Given any of the three functional forms, the largest slope is defined when the
threshold of the second stage (t = 1) reaches M − 1 because the process terminates
when system state reaches M . Thus feasible ranges for slope a is [0,M − 1] . We
can limit the selection of parameter a to a range of equidifferent integers to show its
impact on the objective.

After choosing a functional form, we use randomly generated states to evaluate
the total cost when applying a certain value of the parameter a in the function.
Comparing among all candidates, the best choice of a completes the approximation
function and provides thresholds of all time stages.

A benefit of adopting this simulation method is that we can ignore the com-
plexity of computing value functions for all possible states in each time stage. This
method also works for the dynamically distributed defect rate model if we are willing
to sacrifice some accuracy in system states.

Globally optimizing the simulation method requires the model to satisfy a
certain level of convexity, for instance, the golden section method requires quasi-
convexity. The trait of convexity is hard to prove for our models. Therefore, we
will adopt an approaching method of using discretized values of a from its applicable
range. For example, if we choose an equal interval of 0.5 and suppose M equals 11,
then the candidates of a are {0, 0.5, 1, 1.5, . . . , 9.5, 10}. For each candidate, we run
the simulation for a suffi cient amount of trials so that the sample mean is reliable.

In stage t of a simulation trial with given system states (st, kt, nt), we first
judge whether the system should “RECALL”or “CONTINUE”by comparing st and
θt. If st is greater than θt, which means “RECALL” is the better choice, then we
compute the immediate recall costs and add it to the total costs and end its trial.
Otherwise, if st is less than or equal to θt, we make a “CONTINUE”decision and
update the system as follows. We start by generating the probability for any product
in the market failing during this time period, i.e., product defect rate of this stage.
This probability pt follows the beta distribution. We use the uniformly distributed
random number U generated by the computer as the cumulative probability from 0
to p̃t with the beta distribution.∫ pt

0

(nt − 1)!

(kt − 1)!(nt − kt − 1)!
pkt−1(1− p)nt−kt−1dp = U (22)

Solving expression (22) for the probability pt prepares the calculation for the number
of returns rt in this stage. Since rt follows a binomial distribution of mt products in
the market, which equals M − st, and event occurrence rate of pt, we use another
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c0 c1 cF K n0 k0 M T

15 10 3 15 10 1 16 16

Table 11. Parameter settings for the simulation example.

random number as the accumulative probability following Binomial distribution and
obtain rt. Based on system states and rt, we compute the return management cost
of this stage and add it to the total costs. Following the states updating formulas
(12-13), we now obtain the states (st + rt, kt + rt, nt + (M − st)) as (st+1, kt+1, nt+1)
for stage t + 1 and are ready for the next stage. The process terminates when all
products are returned or it reaches the ending stage, and a termination cost incurs
for both cases.

Comparing the mean of total costs for all the candidates, we select the one
with the smallest costs and use it for the thresholds curve. The simulation method
requires much less computation because the number of parameter candidates increases
with total products numberM alone, compared to the complexity of using DP which
increases with M2T 2.

2.4.4.1 Exact Solution and Comparison

We can show the effi ciency of using the simulation method with a numerical
example. Using the parameters as shown in Table 11, we calculated the optimal
solutions shown in Figure 13 with dynamic programming. The expected total cost
(V0) is 127.60 from our DP computation.

We select the value candidates for parameter a from the set {1, 3, 5, 7, 9} and
aim to test the effi ciency of approximation, explore the best fitting function and find
the best parameter choice for each functional form. First, we approach the threshold
curve with linear functions

θt = at.

With repetition number of 5000, our simulation results are shown in Table 12.
We use the percentage of error instead of effi ciency since the former shows a

better trend. The error is defined as the percentage difference between the simulation
averages (E (TC)) and expected cost calculated using dynamic programming (V0).

Error(%)=
V0 − E (TC)

V0
· 100%

Our linear function approximation results show a = 5 as the best choice with the
lease error of 4.73%.

We also use the 95% confidence interval (CI) to complement our point esti-
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Figure 13. Optimal solutions calculated with dynamic programming method for a
dynamically updating defect rate distribution model with parameters in Table 11.

a 9 7 5 3 1

E (TC) 135.41 134.54 133.64 138.23 167.04

Error 6.12% 5.43% 4.73% 8.33% 30.91%

95%CI-LB 133.59 132.75 131.81 136.29 164.60

95%CI-UB 137.22 136.32 135.47 140.17 169.48

Table 12. Simulation results with linear function approximations (θt = at), where
a = 5 is the best choice with the smallest error rate for problem parameters given in
Table 11.
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Figure 14. Combining DP solved optimal results with approximating linear functions
(θt = at), where a = 5 is the best choice with the smallest error rate for problem
parameters given in Table 11.

mation of expected cost (E (TC)). The lower bound (LB) and upper bound (UB) of
the confidence interval in Table 12 are calculated with the following formula

LB = µ− tα/2
s√
n
, UB = µ+ tα/2

s√
n

where µ and s are the mean value and sample standard deviation of our experiment
results respectively; since our experiment repetition n is 5000, we use zα/2 of 1.96
instead of the t distribution value.

Combining the linear function lines with the threshold curve and optimal so-
lutions results in Figure 14. The number of states violating the DP optimal results
is the least when a = 5 in linear approximations is perhaps the reason why it shows
the least error percentage.

Next, we experiment the square root functions

θt = a
√
t

with the same set of values {1, 3, 5, 7, 9} as the candidates for parameter a. In Table
13, experiment results show the square root function performs the best when a = 7
with error equals 3.88%. Observing the combination of all five square root function
curves and the DP solved optimal solutions in Figure 15, the curve using a = 7 has
perhaps the least number of states violating the optimal decisions from DP solution.
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a 9 7 5 3 1

E (TC) 134.46 132.55 133.00 151.11 210.04

Error 5.37% 3.88% 4.23% 18.42% 64.61%

95%CI-LB 132.67 130.74 131.16 148.92 207.97

95%CI-UB 136.25 134.36 134.84 153.29 212.21

Table 13. Simulation results with square root function approximations (θt = a
√
t),

where a = 7 is the best choice with the smallest error rate for problem parameters
given in Table 11.

Figure 15. Combining DP solved optimal results with approximating square root
functions (θt = a

√
t), where a = 7 is the best choice with the smallest error rate for

problem parameters given in Table 11.
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a 9 7 5 3 1

E (TC) 133.41 132.92 138.42 170.77 216.71

Error 4.55% 4.16% 8.48% 33.83% 69.84%

95%CI-LB 131.59 131.16 136.43 168.44 214.79

95%CI-UB 135.22 134.67 140.41 173.10 218.64

Table 14. Simulation results with cubic root function approximations (θt = a 3
√
t),

where a = 7 is the best choice with the smallest error rate for problem parameters
given in Table 11.

Then we experiment with cubic root functions

θt = a
3
√
t

with the same value set for parameter a. The simulation results shown in Table 14
present a = 7 as the best choice for cubic root functions with error 4.16%. Also
combining the cubic function curves and DP-obtained optimal results in Figure 16
confirms our observation that the best fitting curve has the least states violating
optimal decisions.

Comparing all of the above results, the square root function using parameter
a = 7 has the least error percentage. Therefore, we choose the square root function
θt = a

√
t for simulations of large size problems.

2.4.4.2 Estimation of Threshold Curve for Large Scale Problems

We exemplify the effi ciency of using simulation method with the setting that
products number M is 100 and time stages T is 24. In this case the total number of
states approaches 1.4 million as discussed in Section 2.4.3.

Since the number of products increases to 100, we choose the candidates for
parameter a from the set {10, 30, 50, 70, 90} . Our computation results shows in Table
16 using 5000 repetitions for each parameter candidate. The results suggest that
using a = 50 in the square root function has the lowest expected costs 944.90, which
can be used as the upper bound estimation for expected costs. Our simulation with
5000 repetitions takes about 300 seconds (five minutes) to finish, yet applying the DP
method takes over 361,200 seconds (above 100 hours) to finish.

Note that our simulation results provide the best choice within the given can-
didates. It is likely that in between these numbers there are better choices of the
function parameter for more accurate approximation. The limitation of simulation
comes from both the choice of functional form and the choice of parameter candi-
dates set. The benefits of using simulation include a guaranteed solution and quick
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Figure 16. Combining DP solved optimal results with approximating cubic root
functions (θt = a 3

√
t), where a = 5 is the best choice with the smallest error rate for

problem parameters given in Table 11.

c0 c1 cF K n0 k0 M T

15 10 3 15 100 1 100 24

Table 15. Parameter settings for the large size problem (M = 100, T = 24) in
assessing the simulation method.

a 90 70 50 30 10

E (TC) 951.93 950.87 944.90 945.70 1155.78

95%CI-LB 941.51 940.52 934.53 935.47 1143.08

95%CI-UB 962.34 961.21 955.27 955.92 1168.47

Time(sec.) 301 301 299 270 96

Time(min.:sec.) 5:01 5:01 4:59 4:30 1:36

Table 16. Simulation results for large size problem (M = 100, T = 24) with square
root function approximations (θt = a

√
t), where a = 50 is the best choice with the

smallest expected costs for problem parameters given in Table 15.
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response to the change of problem settings, which can provide the decision maker a
reliable approach for examining different problem scenarios and a dependable upper
bound estimation of expected costs.

2.5 Conclusions and Proposal for Future Research

In this chapter, we construct the model for making product recall decisions
by using the number of product returns to update the estimation of product defect
rate distribution. Our primary contribution to the literature is that we model and
solve the optimization problem of product recalls by combining dynamic programming
with the Bayesian conjugate property of beta distributions and Bernoulli processes.
We build two models of different defect rate distribution estimation. The model for
stationary defect rate distribution assumes the random variable for defect rate follows
the same distribution during the entire time horizon, while the dynamically updating
defect rate distribution uses the product returns of the proceeding stage to update
the estimated distribution.

We define the threshold curve as the connection of states of largest number of
total returns of all stages in the optimal solution. The threshold curve for the optimal
decision shows a nondecreasing trend that crosses the origin. This observation inspires
our approximation of the threshold curve by nonlinear functions, such as square root
functions and cubic root functions.

Our proposed DP method is capable of solving moderate sized problems and
obtaining optimal solutions of all possible states. Yet, the computation complexity
is proportion to the squared product of the number of products in the market and
total time stages. Therefore we apply the simulation method for problem-solving,
which shows low-error rate performance when applied to moderate-size benchmark
problems. Our experiments show the proposed simulation method could solve the
large sized problems in a satisfying balance of solution accuracy and computation
time.

In future work, we propose to explore the feasibility of using approximate dy-
namic programming methods to solve our model. Unlike the backward recursion used
in dynamic programming, the Approximate Dynamic Programming (ADP) steps for-
ward through time using value function approximation and sample paths in search of
the optimal solution. Sample path is a sequence of exogenous information that de-
scribes the stage transitions of all defined stages. ADP implements suffi cient amount
of calculation iterations using sample paths to find the satisfactory approximation for
value functions.

A commonly used method to approximate the value function is Q-learning.
Application of Q-learning for optimal stopping problem has been discussed by Bert-
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sekas and Tsitsiklis [7] where the transitional probability matrix is given and has
a steady-state distribution. Based on their work, we may be able to explore the
possibility of applying Q-learning to our dynamically updated product defect rate
distribution model.
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Chapter 3
Newsvendor Problem using Quality In-
vestment for Product Recall Risk Control

This chapter extends the classic single-period stochastic newsvendor model
with product recall risk management. The probability of product recalls is captured
by a decreasing function of product quality level. The core company exerts control on
product quality through manufacturing investment, which impacts unit production
cost, to optimize total expected profits. Given the free choices of the cost func-
tion and recall probability function, the resulting objective function considering sale
revenues, operational costs and recall risks is not necessarily negative semi-definite.
Parametric analysis in the newsvendor model reveals several interesting features. One
is that the production quantity and quality level seem to have conflicting effects as
one waxes and the other wanes in optimal solutions during most cases of parame-
ter changes. The only two exceptions include changing variable unit production cost
and demand rate. Another feature is that increasing profitability discourages invest-
ment in quality. We further extend our model from internal supply to external supply
from multiple sources. In the case of two external suppliers satisfying independent
demands and covering each other’s demand only when the other is having recalls,
our results suggest little impact from recall-covering interaction on optimal solutions.
Additional numerical results show consistency with internal supply case.

3.1 Introduction

This chapter extends the newsvendor problem with product quality control.
In order to deal with risks in product recall, the core company decides its invest-
ment level on product quality, which impacts production cost and the probability
of product recall. The classic newsvendor problem is a single-period stochastic in-
ventory control problem. In their influential work, Arrow, Harris and Marschak [2]
examine the newsvendor model and derive the critical fractile solution. We follow the
same notation system in Parlar [32] which provides an excellent detailed review of the
problem. Typically it considers seasonal products for which leftover products have
little value – the salvage value is small compared to the sale price. Through decid-
ing the optimal order quantity Q the newsvendor model considers the expected total
profit that includes salvage values (v per unit), penalty costs (p per unit), sales rev-
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enue (s per unit) and purchasing costs (c per unit). Suppose the demand is denoted
by random variable X with a probability density function f(x), the random profit is
denoted by Π and a realized value of profit π can be written as

π =

 sx+ v(Q− x)− cQ, if x ≤ Q (surplus)

sQ− p (x−Q)− cQ, if x > Q (shortage)

Thus, the expected profit E [Π] = P (Q) is a function of order quantity:

P (Q) =

∫ Q

x=0

[sx+ v(Q− x)− cQ] f (x) dx

+

∫ ∞
x=Q

[sQ− p (x−Q)− cQ] f (x) dx

= (s− v)µ− (c− v)Q− (s+ p− v)

∫ ∞
x=Q

(x−Q) f (x) dx

where µ = E [X] is the mean demand. Using Leibniz’s rule of differentiation, we have

P ′ (Q) = −(c− v) + (s+ p− v)

∫ ∞
x=Q

f (x) dx

P ′′ (Q) = − (s+ p− v) f (Q) ≤ 0

and the negative second order derivative proves the objective function concave.
The concavity of the above objective function leads us to solve the problem

with first and second order optimality conditions. Given the demand probability
density function f (x) and using F (x) for the corresponding cumulative distribution
function (CDF), one can obtain the optimal order quantityQ∗ by solving the following
equation

F̄ (Q∗) =

∫ ∞
x=Q

f (x) dx =
c− v

s+ p− v
where F̄ (x) = 1− F (x) .

The newsvendor model assumes products have perfect quality, however, recent
product recall events suggest otherwise. We consider possible product recalls, which
occur after product sales, in response to low product quality. The core company con-
trols product quality through investment in manufacturing; high investment ensures
high product quality level. We use ` to denote product quality level and R(`) to
denote the probability of incurring a product recall because of quality concerns. Im-
proving quality level ` decreases the product recall probability R(`) (0 ≤ R(`) ≤ 1)
and increases the unit cost of production, denoted by c(`). Hence, first derivative
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functions satisfy the following conditions:

R′(`) =
dR (`)

d`
< 0, c′(`) =

dc (`)

d`
> 0

By choosing the right manufacturing quantity Q and quality level ` we can maximize
the expect total profits, denoted by E(Π), considering revenues, operational costs,
and possible recall costs. Product recall will incur the cost of k per unit to manage
the products in the market.

Calculating total profits in the case of no product recalls (π1), given the real-
ization of demand x, is the same as in the classic newsvendor problem, which is

π1 =

 sx+ v (Q− x)− c (`)Q, if x ≤ Q

sQ− p (x−Q)− c (`)Q, if x > Q

= smin {Q, x}+ v (Q−min {Q, x})
−p (x−min {Q, x})− c (`)Q

= (s− v + p) min {Q, x}+ (v − c (`))Q− px

If there is a product recall, total profits (π0) depend on whether there is a
surplus or shortage of products compared to demand. If the seller overproduced,
he needs to manage recall cost on top of sales revenue and production cost but will
receive no salvage value for surplus production. If there is a shortage, the seller need
not worry about shortage penalty since recall cost overshadows it in terms of the cost
of loss of goodwill. Thus,

π0 =

 (s− k)x− c (`)Q, if x ≤ Q

(s− k)Q− c (`)Q, if x > Q

= (s− k) min {Q, x} − c (`)Q

Expected number of products sold, denoted by function L (Q), is

L (Q) = E [min {Q,X}]

= QF̄ (Q) +

∫ Q

x=0

xf (x) dx

= µ−
∫ ∞
x=Q

(x−Q) f (x) dx

Hence, the expected value for total profits E(Π) = P (Q, `) is calculated conditioning
on product recall occurrence. Define function P0 (Q, `) = E [Π0] and P1 (Q, `) =
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E [Π1]. We have

P (Q, `) = E(Π | no recall) Pr(no recall) + E(Π | recall) Pr(recall)
= P1 (Q, `) Pr(no recall) + P0 (Q, `) Pr(recall)
= [(s+ p− v)L (Q) + (v − c(`))Q− pµ] (1−R (`))

+ [(s− k)L (Q)− c (`)Q]R (`)

=
[
s̄− k̄R (`)

]
L (Q)− [c (`) + vR (`)− v]Q

−pµ [1−R (`)] (23)

where all parameters defined in Table 17 and for brevity using notation

k̄ = k + p− v, s̄ = s+ p− v

To ensure our model is solvable and meaningful, we assume the following relationship
hold for the four cost parameters:

k > s, p > v, s > c (` = 0) > v (24)

Notations Definition

k unit cost to recall products in the market

p penalty cost of per unit product at a shortage

Q manufacturing quantity variable

s sales income of products sold per unit

` product quality level variable

v salvage value per unit of surplus product

X demand random variable

Table 17. Notations and meanings for parameters and variables in newsvendor quality
investment for product recall risk control models.

We explore the possible optimal solutions with first order conditions by solving
the equations (25-26).

∂P (Q, `)

∂Q
=

(
s̄− k̄R (`)

)
F̄ (Q)− c (`)− vR (`) + v = 0 (25)

∂P (Q, `)

∂`
= R′ (`)

(
pµ− k̄L (Q)− vQ

)
−Qc′ (`) = 0 (26)
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Figure 17. Implicit plot of first derivative functions shows two intersection points
for potential solutions. The left point is (Q = 12.44, ` = 0.74) and the right point
(Q = 129.69, ` = 2.55) .

Equation (25) can reduce to the following

F̄ (Q) =
c (`) + vR (`)− v

s̄− k̄R (`)

which is the exact optimal condition for the one-stage newsvendor problem when re-
ducing quality factor `, i.e., c (`) = c and R (`) = 0. When we draw the implicit plot
of equations (25-26), the intersection points are the candidates for our optimal solu-
tions. For instance, using parameter values from Section 3.2.1, we find two candidate
solutions as intersection points in the implicit plot as shown in Figure 17. Computing
objective values from the candidate solutions leads us to the optimal solution. For
example, the objective value for the left point in Figure 17 P (Q = 12.44, ` = 0.74)
is -339.94, and the right point has the objective value P (Q = 129.69, ` = 2.55) of
310.96, which is the optimal solution.
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3.2 Model Analysis

In this section, we explore the concavity of the proposed objective function.
The Hessian matrix H of our objective (23) has the following entries

H11 =
(
s̄− k̄R (`)

)
L′′ (Q)

H12 = H21 = −k̄R′ (`)L′ (Q)− c′ (`)− vR′ (`)
H22 = −

(
k̄L (Q) + vQ− pµ

)
R′′ (`)− c′′ (`)Q

where c′′ (`) and R′′ (`) are corresponding second derivative functions, respectively.
Since the two-by-two Hessian matrix H is symmetric, the suffi cient and nec-

essary conditions for H to be negative-semidefinite are H11 ≤ 0, H22 ≤ 0 and
H11H22 − (H12)

2 ≥ 0 as provided by Bazaraa et al. [3]. These conditions for our
objective (23) are as follows: (

s̄− k̄R (`)
)
L′′ (Q) ≤ 0 (27)

−
(
k̄L (Q) + vQ− pµ

)
R′′ (`)− c′′ (`)Q ≤ 0 (28)

−
(
s̄− k̄R (`)

)
L′′ (Q)

{(
k̄L (Q) + vQ− pµ

)
R′′ (`) + c′′ (`)Q

}
−
[
k̄R′ (`)L′ (Q) + c′ (`) + vR′ (`)

]2 ≥ 0 (29)

The above conditions hold if our model (23) is reduced to the simpler case
of one-stage stochastic newsvendor problem by letting the production cost of highest
quality level ` equal the newsvendor’s unit production price and assigning the corre-
sponding recall probability as zero, i.e., c

(
`
)

= c and R
(
`
)

= 0. Given this quality
level `, conditions (28-29) hold for derivatives of fixed values of functions R

(
`
)
and

c
(
`
)
are all zeros and condition (27) reduces to the following

− (s+ p− v)L′′ (Q) ≥ 0. (30)

Because L′′ (Q) = −f (Q), the condition (30) is

(s+ p− v) f(Q) ≥ 0

and equivalent to the concavity condition P ′′ (Q) = − (s+ p− v) f (Q) ≤ 0 for the
aforementioned newsvendor problem.

Next, we explore some necessary conditions for desirable solutions (Q, `) which
will assist our concavity analysis. By desirability we mean gaining positive expected
profit, i.e., P (Q, `) ≥ 0. Desirable Q and ` should satisfy the necessary condition of

P1 (Q, `) ≥ 0

since P0 (Q, `) is always negative. Finding desirable region for P (Q, `) can be very
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diffi cult, thus we explore necessary conditions of the desirable region by satisfying
P1 (Q, `) ≥ 0 instead. We use P1-desirable to denote (Q, `) that satisfies P1 (Q, `) ≥ 0.

We search for the P1-desirable region of quality level ` by identifying its upper
and lower bounds separately. The highest quality level ` requires the largest expected
profits of no product recall condition to be positive, i.e.,

` = arg max
`
P1 (Q∗, `) ≥ 0

where the optimal quantity Q∗ is obtained by

F̄ (Q∗) =
c
(
`
)
− v

s+ p− v .

At the same time, with our assumption in (24) we have c (` = 0) > v to ensure
practicality, therefore the lower bound of ` is zero. Together we obtain the P1-
desirable region for ` as [0, `).

The P1-desirable region of Q is a function of `, i.e.,

Q ∈
{
Q | P1 (Q, `) ≥ 0, ∀ ` ∈ [0, `)

}
.

Using parameters in Section 3.2.1, P1-desirable region of ` is suggested to be [0, 5.1)
and P1-desirable region of Q shifts with the value of `. Figure 18 shows P1-desirable
region of Q gets larger and its center shifts to the right when ` decreases.

Proposition 3 Necessary conditions for P
(
Q̄, `

)
to be concave on `, given an arbi-

trary Q̄ in its P1-desirable region, are R′′ (`) ≥ 0 and c′′ (`) ≥ 0 for any P1-desirable
`.

Proof. Rewrite ∂2P (Q, `) /∂`2 = H22 as follows

∂2P (Q, `) /∂`2 = −c′′ (`)Q+R′′ (`) g (Q) (31)

where

g (Q) = −k̄L (Q) + pµ− vQ.
Since both Q and ` are P1-desirable, they satisfy P1-desirable condition as follows

P1 (Q, `) = sL (Q) + (v − c(`))Q− pµ ≥ 0

sL (Q)− c (`)Q ≥ pµ− vQ

Hence,

g (Q) ≤ −k̄L (Q) + sL (Q)− c (`)Q

= (s− k)L (Q)− c (`)Q
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Figure 18. Illustration of P1-desirable region for ` is [0,5.1) since P1 (Q∗, ` = 5.1) is
negative (-5.5) and P1 (Q∗, ` = 5.0) is a small positive number (12). Also, P1-desirable
region of Q is determined by the value of `. As ` increases, P1-desirable region of Q
enlarges its size and its center shifts to the right (Q∗ (` = 5.1) ≈ 88, Q∗ (` = 5.0) ≈ 90,
Q∗ (` = 3) ≈ 135).
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With our assumption (24) that s < k, it is clear that g (Q) ≤ 0.
To summarize, having both R′′ (`) and c′′ (`) being non-negative ensures

∂2P (Q, `) /∂`2 ≤ 0 given both variables are in their P1-desirable regions. These
results suggest that when satisfying the conditions of R′′ (`) ≥ 0 and c′′ (`) ≥ 0 if the
production quantity is fixed to a P1-desirable quantity Q̄, the expected profit P (Q, `)
is concave on P1-desirable quality level `.

Proposition 4 Suffi cient and necessary condition for concavity condition (27), i.e.,
H11 ≤ 0, is R

(
`
)
≤ s̄/k̄ given P1-desirable (Q, `).

Proof. We have

H11 =
(
s̄− k̄R (`)

)
L′′ (Q) = −

(
s̄− k̄R (`)

)
f (Q) ≤ 0

which is equivalent to
(
s̄− k̄R (`)

)
f (Q) ≥ 0. Since f (Q) is always positive, the

condition transforms to

s̄− k̄R (`) ≥ 0.

Because R (`) is an increasing function of quality level `, i.e., R (`) ≤ R
(
`
)
where `

is the upper bound of the P1-desirable ` as defined previously. Thus the condition is
equivalent to

s̄/k̄ ≥ R
(
`
)

and complete our proof.

Proposition 5 Suffi cient and necessary conditions for concavity condition (28), i.e.,
H22 ≤ 0, are R′′ (`) ≥ 0 and c′′ (`) ≥ 0 given P1-desirable (Q, `).

Proof. The condition of H22 ≤ 0 is equivalent to

H22 = g (Q)R′′ (`)− c′′ (`)Q ≤ 0

where g (Q) = −k̄L (Q) + pµ− vQ as defined previously. We have proved g (Q) ≤ 0
of any P1-desirable Q also quantity Q is always non-negative, thus the suffi cient and
necessary conditions are R′′ (`) ≥ 0 and c′′ (`) ≥ 0.

Proposition 6 Necessary conditions for the concavity condition (29), H11H22 −
(H12)

2 ≥ 0, include s̄/k̄ > R
(
`
)
, R′′ (`) ≥ 0, c′′ (`) ≥ 0 and R′′ (`) + c′′ (`) > 0.

Proof. This concavity condition requires H11H22 ≥ 0 if H12 = 0 or H11H22 > 0 if
H12 6= 0. Since

H12 = −k̄R′ (`)L′ (Q)− c′ (`)− vR′ (`)
= −

[
c′ (`) +R′ (`)

(
k̄F̄ (Q) + v

)]
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is not always zero given arbitrary values of (Q, `), we need H11H22 > 0.

H11H22 = −
(
s̄− k̄R (`)

)
L′′ (Q)

{(
k̄L (Q) + vQ− pµ

)
R′′ (`) + c′′ (`)Q

}
= f (Q)

(
s̄− k̄R (`)

)
[−g (Q)R′′ (`) + c′′ (`)Q]

Given any P1-desirable (Q, `), we have proved g (Q) ≤ 0. Because R (`) ranges in
(0, 1) and s̄ < k̄, we need

s̄− k̄R (`) > 0, R′′ (`) ≥ 0, c′′ (`) ≥ 0 and R′′ (`) + c′′ (`) > 0.

Since function R (`) is increasing of ` and ` is the upper bound of P1-desirable quality
level, above necessary conditions of expression (29) transform to the following

s̄/k̄ > R
(
`
)
, R′′ (`) ≥ 0, c′′ (`) ≥ 0 and R′′ (`) + c′′ (`) > 0.

and complete our proof.
Now we explore the convexity of recall function P0 (Q, `) because when quality

level ` is small, P0 (Q, `) dominates the result of the total expected profit. The Hessian
matrix for P0 (Q, `) is shown as follows (k − s) f (Q) −c′ (`)

−c′ (`) −Qc′′ (`)


Since k is greater than s, function P0 (Q, `) is convex on Q given a fixed quality level
ˆ̀ because the second order partial derivative is non-negative, i.e.,

∂2P0 (Q, `)

∂Q2
= (k − s) f (Q) ≥ 0 (32)

Satisfying conditions (27-29) will require certain constraints on parameters
and structures of functions R (`) and c (`). Our numerical study in Section 3.2.1
suggests that an arbitrary choice of parameters and function structures will result in
an objective function neither concave nor convex as shown in Figure 19. The existence
of local minima can be explained by expression (32), i.e., the value of P0 (Q, `) plays
a bigger role when the quality level is very small and given any fixed quality level ˆ̀,
function P0 (Q, `) is convex on production quantity Q.

3.2.1 Base Case for Numerical Study

We have chosen the initial parameter values and functional forms to establish
a base case. This allows us to examine the impact of parametric changes on the
optimal solutions. We choose exponential functions for the demand density function
f (x) and recall probability function R (`) and a linear unit production cost function
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Figure 19. Illustration of objective being neither convex and concave with arbitrary
choice of functions.
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c (`), as

f (x) = λe−λx, R (`) = αe−β`, c (`) = γ + θ`

with parameters from Table 18.

α β γ θ λ k p s v

0.9 1 5 2 1/100 50 6 25 4

Table 18. Parameter values for the base case study.

The solution for this special case is Q∗ approximately equals to 130 and `∗

approximately equals to 2.55 resulting in an expected profit of 310.95. The surface
of the base case illustrates that the model can be concave as shown in Figure 20.
Conditions that allow concave models will be one the goals of our next step.

3.2.2 Parametric Analysis

In this section, we evaluate impacts of various parameters on our proposed
model (23) when they deviate from base case values. We present optimal decisions of
production quantity Q∗ and quality level `∗ as well as corresponding expected profits
P∗ (Q∗, `∗) that results from changing parameters from their base case values. The
base case parameter values are in bold in the Tables (19-25).

We first explore the impacts of the magnitude of recall probability, i.e., the
impact of parameter α in R (`) = αe−β` on the optimal solutions and expected profits.
Experiments show that as the probability of recall decreases, the manager will produce
more and invest less on quality level and obtain higher profits, as indicated by results
in Table 19. This suggests that less pressure from potential product recalls leads
the manager to focus on higher production and less on improving product quality.
Expected profits also increase because of a lower product recall risk.

We also want to measure the impacts of changing unit production cost, i.e.,
impacts of parameters γ and θ in c (`) = γ + θ`. Results in Table 20 suggest that
increasing unit production cost will lead to lower production and higher investment on
product quality, but increasing variable production cost will result in lower production
quantity and also lower quality level. Increasing fixed part γ or varied part θ impacts
differently on the optimal solution. Expected profit is quite sensitive to the changes in
unit production cost. This suggests that when dealing with manufacturing becomes
more expensive, managers are willing to invest more on product quality and produce
less.

Changes in expected demand affect the production quantity alone in the op-
timal solutions, as shown by results in Table 21. This suggests the demand rate will
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Figure 20. Function surface of the base case shows the model’s concavity in local
area.

α Q∗ `∗ P∗ (Q∗, `∗)

0.6 144 2.11 422

0.7 138 2.28 378

0.8 134 2.42 342

0.9 130 2.55 311

1 126 2.67 284

Table 19. Impacts of recall probability parameter α on optimal solutions.
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γ Q∗ `∗ P∗ (Q∗, `∗) θ Q∗ `∗ P∗ (Q∗, `∗)

4 148 2.50 449 1 176 3.11 735

5 130 2.55 311 1.5 150 2.78 496

6 115 2.59 189 2 130 2.55 311

7 102 2.63 81 2.5 114 2.37 162

8 91 2.65 −16 3 100 2.22 39

Table 20. Impacts of fixed production cost (left) and variable production cost (right)
on optimal solutions.
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1/λ Q∗ `∗ P∗ (Q∗, `∗) 1/λ Q∗ `∗ P∗ (Q∗, `∗)

80 104 2.55 249 100 130 2.55 311

90 117 2.55 280 200 259 2.55 622

100 130 2.55 311 300 389 2.55 933

110 143 2.55 342 400 519 2.55 1244

120 156 2.55 373 500 648 2.55 1555

Table 21. Impacts of expected demand rates on optimal solutions.

only impact the production quantity but not the quality level. Results of the right-
side table concord with our observation that optimal quality level is not affected by
changes in demand rates. Moreover, the optimal production quantity and expected
profits increase linearly with the demand rates.

Increasing the unit cost of recall management will decrease the production
quantity and increase quality investment, similar to that of increasing production
cost, but the impact is much milder. In the right side of Table 22, when modifying
unit recalls cost with the same ratio of changing unit production cost, its impact on
expected profits remains much milder compared to that of unit production cost.

Varying the value of unit penalty cost shows a mild impact on both optimal
solutions as shown in Table 23. Increasing unit penalty of shortage stimulates more
production but lowers the quality level slightly at the same time.

Lowering the sales price too much will force the company to produce zero
units and invest nothing in quality accordingly because there is no potential profit for
production. In this situation, a cost of the penalty of unsatisfied demand will incur.
But when the profit margin is high, the investment in quality will decrease which
indicates the core company cares less about product quality when products become
more lucrative. The right side of Table 24 shows a sharp increase of both production
quantity and quality level when the sale price becomes high enough to make a profit.

Increasing the salvage value of product encourages more production because
the risk of producing too much is dampened by an increasingly satisfactory compensa-
tion. Surprisingly, the safe ticket of high salvage value also disincentivizes investment
in quality. Note when the salvage value is large enough, in our case when v equals
11, the company will produce as many as it can because the salvage value is larger
than the total risk of product recall and low demand. This is why we set a lower
limit on the fixed part of the unit cost and prevent the unrealistic situation of infinite
production.

In the majority of the above parametric analysis, the optimal production quan-
tity and optimal quality level change in opposite directions. For instance, when unit
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k Q∗ `∗ P∗ (Q∗, `∗) k Q∗ `∗ P∗ (Q∗, `∗)

40 136 2.32 369 25 148 1.84 496

45 133 2.44 338 37.5 137 2.25 386

50 130 2.55 311 50 130 2.55 311

55 127 2.65 287 62.5 124 2.79 255

60 125 2.75 265 75 119 2.99 211

Table 22. Impacts of unit recall cost on optimal solutions.

p Q∗ `∗ P∗ (Q∗, `∗)

4 121 2.59 364

5 125 2.57 337

6 130 2.55 311

7 134 2.53 286

8 138 2.52 262

Table 23. Impacts of penalty cost on optimal solutions.

s Q∗ `∗ P∗ (Q∗, `∗) s Q∗ `∗ P∗ (Q∗, `∗)

15 0 0 −60 17 0 0 −60

25 130 2.55 311 19 0 0 −60

35 167 2.45 1085 21 110 2.60 31

45 195 2.37 1922 23 120 2.58 168

55 217 2.31 2794 25 130 2.55 311

Table 24. Impacts of sales price on optimal solutions.
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v Q∗ `∗ P∗ (Q∗, `∗) v Q∗ `∗ P∗ (Q∗, `∗)

2 112 2.57 217 7 176 2.48 513

3 120 2.56 261 8 204 2.44 609

4 130 2.55 311 9 248 2.38 733

5 142 2.54 368 10 366 2.23 914

6 156 2.51 434 11 20000 1.62 16722

Table 25. Impacts of salvage value on optimal solutions.
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Q∗ `∗ P∗ (Q∗, `∗)

R (`) = αe−β` α ↗ ↘ ↗ ↘

C (`) = γ + θ` γ ↗ ↘ ↗ ↘

C (`) = γ + θ` θ ↗ ↘ ↘ ↘

demand rate 1/λ ↗ ↗ −→ ↗

unit recall cost k ↗ ↘ ↗ ↘

penalty cost p ↗ ↗ ↘ ↘

sales price s ↗ ↗ ↗↘ ↗

salvage value v ↗ ↗ ↘ ↗

Table 26. Summary of increasing parameters’impacts on optimal solutions.

recalls cost increases, the optimal production quantity decreases while optimal qual-
ity level increases. This suggests with safer and higher quality products which have
less profit margin, the core company should produce less of this type of product. One
explanation may be that as the quality level increases, the punishment of overproduc-
tion overshadows the potential benefits of satisfying occasionally high demand. We
observe two exceptions such that optimal solutions of quantity and quality level do
not vary in divergent directions. One is changing the varied unit production cost, for
which both production quantity and quality level decreases when varied production
cost is high. The other exception is changing the demand rate, which affects opti-
mal production quantity alone. We summarize the impacts of increasing parameter
values on the optimal solutions in Table 26.

3.2.3 Modeling Demand with Erlang Distribution

To depict the various forms that demand distribution might take, we adopt
the Erlang distribution for the demand random variable X. The probability density
function is

f(x) =

 λe−λx (λx)
n−1

(n−1)! , x ≥ 0

0, x < 0

where n = 1, 2, · · · with mean n/λ and variance n/λ2. When parameter n equals
one, the Erlang distribution reduces to the exponential distribution. Figure 21 shows
that using an Erlang distributed random variable for demand brings flexibility in
modeling.

We use the same parameters in Table 18 and experiment with Erlang parame-
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Figure 21. Erlang distributed demand X with n = 1, 2, 3 and λ = 0.01.
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ter n increasing from 1 to 5. Table 27 shows the numerical results that both optimal
ordering quantity Q∗ and quality level `∗ increases as n increases. Our parametric
analysis in Section 3.2.2 exemplifies that increasing average demand rate 1/λ in ex-
ponential distribution leads to higher optimal ordering quantity but has no impact on
optimal quality level. Increasing Erlang parameter n also results in a larger average
demand rate n/λ and increases both Q∗ and `∗ concurrently. This difference may be
attributed to the influence of n on the shape of Erlang distribution – when n grows,
the probability density function curve is pressed down and shifted to the right with
less skewness.

n P∗ (Q∗, `∗) Q∗ `∗

1 311 130 2.55

2 1102 254 2.69

3 1992 373 2.76

4 2931 488 2.80

5 3899 601 2.83

Table 27. With Erlang distributed demand, both optimal ordering quantity and
quality level increases when Erlang parameter n increases.

When applying first order optimality condition to the objective P (Q, `), we
observe increasing Erlang parameter n has more notable impacts on the partial dif-
ferential function ∂P (Q, `) /∂Q. Figure 22 shows that increasing Erlang parameter
n does not significantly impact the shape of two implicit differential function curves
comparing to using exponential distribution, but pushes the curves up and to the
right, which explains the increase of both ordering quantity and quality level in opti-
mal solution.

3.3 Extending the Model with External Suppliers

In practice, companies do not always own the manufacturing of its products
or viewing production as its core competence. For instance, a typical warehouse
retailer does not produce any of the products on its shelves; instead, it depends on
multiple suppliers for high quality products supply. Therefore, we want to examine the
impacts of using multiple external suppliers as the production sources. In this case,
the product quality level is no longer within the direct control of the core company
(the seller). However, the company can indirectly control the product quality level
by offering suppliers higher purchase price on meeting higher quality standards.
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Figure 22. Implicit plots using first order optimality conditions shows increasing
Erlang parameter n does not change the shape of two function curves significantly
but pushes the curves up and to the right, which explains the increasements of both
decision variables in optimal solution.
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Supplier S1 S2

Product quality level `1 `2

Unit production cost c1 (`1) c2 (`2)

Recall probability R1 (`1) R2 (`2)

Order quantity Q1 Q2

Demand random variable X1 ∼ f1 (x1) X2 ∼ f2 (x2)

Table 28. Variables and functions for the extension of two suppliers.

Here is a real life example from our neighborhood. Fortinos is a chained re-
tailer owned by Loblaw which offers daily grocery for its customers. Loblaw sells
products of its own brand Presidential Choice (PC) on a variety of convenient veg-
etable packages, organic produce, processed foods (cakes and ice cream) and etc. Of
a common produce, spinach, Fortinos offers two types of products from two separate
suppliers. One is the cooking spinach which costs $2.55 per 500 grams; the other
is the organic baby spinach which costs $5.99 per 500 grams. The organic spinach
would have higher quality standards on freshness, appearance and bacteria control
along with other production requirement of being organic. While including two or
more suppliers in its supply chain, Fortinos would seek the best ordering quantities
and quality standards when managing its suppliers to optimize its expected profit.

3.3.1 Modeling with Two Suppliers

Suppose the seller collaborates with two suppliers (S1 and S2) that specialize
in manufacturing. We use random variable X1 with PDF f1 (x1) to denote demand
satisfied by S1, random variable X2 with PDF f2 (x2) for demand satisfied by S2, and
X1 and X2 are independent. Suppose the seller is aware of the cost-quality relations
of both suppliers from historical data. Based on the seller’s required quality level,
unit manufacturing cost from suppliers (i = 1, 2) follows the function ci (`i) where `i
is the required product quality level. The seller also determines purchase quality of
each supplier (Qi) to maximize his expected total profits considering the risks of a
potential product recall. The product recall probability of suppliers (i = 1, 2) follows
the function Ri (`i) . Table 28 shows variables and functions for the two suppliers.

The focus of this proposed study is to examine impacts of the cost functions
and recall probability functions on the seller’s optimal order quantities, product qual-
ity levels, and the expected profits. There are four cases of possible recall situations,
for which we use ‘0’to denote recall and ‘1’to denote good products with no recall
and represent the four cases in Table 29.

Four events happen in the single period of decision making, including ordering
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Supplier S1 S2 Probability Profit function

Both are good 1 1 (1−R1 (`1)) (1−R2 (`2)) Π11

Only S2 recalls 1 0 (1−R1 (`1))R2 (`2) Π10

Only S1 recalls 0 1 R1 (`1) (1−R2 (`2)) Π01

Both recall 0 0 R1 (`1)R2 (`2) Π00

Table 29. Four cases of suppliers recall situations.
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Begin End

Order Q Demand Recall
(Possibly, R(l))

Production
Cost c(l)

Sale Recall
Cost



Salvage/
Penalty

Figure 23. Four events in single period decision-making process.

products with quantity Qi and quality level `i from supplier i (i = 1, 2), satisfying
demand (X1 = x1 and X2 = x2) and obtain sale income, incurring recall costs if
recall happens, or incurring penalty costs and collecting salvage values if recall does
not happen. Figure 23 illustrates the sequence and outcome of the above four events.

Hence, the total expected profit (E (Π)) of one-stage stochastic newsvendor
quality control model with two suppliers is

E (Π) =
1∑
i=0

1∑
j=0

E (Πij | S1 = i, S2 = j) Pr (S1 = i, S2 = j) (33)

where

Π11 = s [min (X1, Q1) + min (X2, Q2)]− [c1 (`1)Q1 + c2 (`2)Q2]

+v [(Q1 −min (X1, Q1)) + (Q2 −min (X2, Q2))]

−p [(X1 −min (X1, Q1)) + (X2 −min (X2, Q2))]

Π10 = s [min (X1, Q1) + min (X2, Q2)]− [c1 (`1)Q1 + c2 (`2)Q2]

+v [Q1 −min (X1, Q1)]− p [X1 −min (X1, Q1)]− kmin (X2, Q2)

Π01 = s [min (X1, Q1) + min (X2, Q2)]− [c1 (`1)Q1 + c2 (`2)Q2]

+v [Q2 −min (x2, Q2)]− p [X2 −min (X2, Q2)]− kmin (X1, Q1)

Π00 = s [min (X1, Q1) + min (X2, Q2)]− [c1 (`1)Q1 + c2 (`2)Q2]

−k [min (X1, Q1) + min (X2, Q2)]

and probabilities Pr (S1 = i, S2 = j) are shown in Table 29. This model may be ex-
tended for multiple suppliers by adding the set of decision variables (Qi, `i) and func-
tions (ci (`i) , Ri (`i)) for each supplier i (i = 1, 2, . . . , n). We will explore the solution
methods and discover insights for the proposed model of two or more suppliers.
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3.3.2 Numerical Studies

We explore the impacts to the optimal solution of four cases: (1) the second
supplier takes additional demand; (2) the two suppliers share demand evenly; (3)
demand-sharing while decreasing production cost of the second supplier; (4) demand-
sharing and two suppliers have different prices. Supplier One’s parameters are the
same as in base case for internal supply (Section 3.2.1).

3.3.2.1 Case 1. S2 takes additional demand.

α1 β1 γ1 θ1 λ1 α2 β2 γ2 θ2 λ2 k p s v

0.9 1 5 2 1/100 0.96 1 6 2.5 1/50 50 6 25 4

Q∗1 `∗1 Q∗2 `∗2 P∗ (Q∗1, `
∗
1, Q

∗
2, `
∗
2)

129.69 2.55 49.26 2.47 330.28

Table 30. Parameter setting and optimal solutions for case 1 the second supplier takes
additional demand.

The results suggest adding the second supplier does not affect the optimal
solution of supplier one (S1) even that S1 may serve customers of S2 in case that
S2 initiates a recall. This might attribute to the small probability setting of both
suppliers, especially of the newly added supplier S2.

3.3.2.2 Case 2. S1 and S2 share the demand evenly.

When both suppliers now share the original setting of 100 demand evenly, the
results show each supplier optimize its process separately as if they are supplying
alone with the half demand. Reducing demand alone does not impact the optimal
quality level, but reduces the optimal order quantity the same way demand alters,
which is consistent with our numerical findings of internal supply case. We notice
that supplier two (S2) has slightly lower quality level but much less order quantity in
optimal solutions comparing to supplier one, the reason is its high production cost.
Thus in case 3 we aim to examine the effects of improving production cost.

3.3.2.3 Case 3. Demand-sharing while decreasing production cost of S2.

By improving production cost of supplier two, the solutions show that both
its quality level and ordering quality improve, which echo with results in our previous
numerical analysis in Section 3.2.1.

3.3.2.4 Case 4. Demand-sharing and two suppliers have different prices.

72



Ph.D. Thesis - L. Yao McMaster University - DeGroote School of Business.

α1 β1 γ1 θ1 λ1 α2 β2 γ2 θ2 λ2 k p s v

0.9 1 5 2 1/50 0.96 1 6 2.5 1/50 50 6 25 4

Q∗1 `∗1 Q∗2 `∗2 P∗ (Q∗1, `
∗
1, Q

∗
2, `
∗
2)

64.84 2.55 49.26 2.47 170.80

Table 31. Parameter setting and optimal solutions for case 2 demand-sharing evenly
between two suppliers.

α1 β1 γ1 θ1 λ1 α2 β2 γ2 θ2 λ2 k p s v

0.9 1 5 2 1/50 0.96 1 4 1.5 1/50 50 6 25 4

Q∗1 `∗1 Q∗2 `∗2 P∗ (Q∗1, `
∗
1, Q

∗
2, `
∗
2)

64.84 2.55 84.41 2.79 475.49

Table 32. Parameter setting and optimal solutions for case 3 demand-sharing and
cost-improved second supplier.

α1 β1 γ1 θ1 λ1 α2 β2 γ2 θ2 λ2 k p s1 s2 v

0.9 1 5 2 1/50 0.96 1 4 1.5 1/50 50 6 30 20 4

Q∗1 `∗1 Q∗2 `∗2 P∗ (Q∗1, `
∗
1, Q

∗
2, `
∗
2)

74.93 2.50 72.26 2.86 465.86

Table 33. Parameter setting and optimal solutions for case 4 demand-sharing and
different prices.
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Figure 24. Expected profit (E (Π)) is concave on ordering quantities when fixing
optimal quality levels `∗1 and `

∗
2.

Case 4 is modified based on case 3 that both suppliers share the demand evenly
but in this case supplier S1 has higher price ($30) and supplier S2 has lower price
($20) compared to the unified price $25 in case 3. With increased price, the optimal
ordering quantity increases by 10.09 for S1 but the quality level decreases by 0.05.
Similarly for S2 as the price decreases the optimal ordering quantity decreases by
12.15 and the quality level increases by 0.07. These results are consistent with our
analysis of price changes for internal supply in Section 3.2.1.

One surprising result shown in case 4 is that the more expensive products of
S1 have lower optimal quality level than the less expensive products of S2 comparing
their cost structure. This counter intuitive result suggests a high cost and high selling
price product could have lower optimal quality level because higher profit margin does
not incent quality improvement. On the contrary it may accommodate the recall risks
and allow lower quality.

3.3.3 Concavity Results

We explore the concavity of the proposed model (33) by isolating the order-
ing quantities/quality levels while setting the remaining decision variables with their
optimal solution values. The results show the expected profit function is concave
on both ordering quantities and quality levels as shown in Figure 24 and Figure 25
respectively.
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Figure 25. Expected profit (E (Π)) is concave on the quality levels when fixing optimal
order quantities Q∗1 and Q

∗
2.
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3.4 Conclusion

In this chapter we extend the newsvendor problem for product recall risk
management by optimizing both quality level and ordering quantity. Our main con-
tribution is that we model and solve the optimization problem of product recall man-
agement by incorporating quality control in the classic newsvendor problem. We add
quality-dependent functions for recall probability and production cost so that recall
risks can be well quantified in the objective function.

Our first discussion centers on the internal supply case in which the core com-
pany has direct control of quality level. Concavity analysis shows the objective is
neither concave nor convex in the feasible region, but applying the first and second
order optimality conditions can effectively find the optimal solution. Our numerical
analysis shows in most cases an inverse relationship between optimal ordering quan-
tity and quality level as summarized in Table 26. One counter-intuitive finding is
that higher selling price does not incentivize investment on quality levels, instead
it promotes lower quality level since higher profit margin can accommodate higher
potential costs of recall.

We extend our model to external multiple suppliers, especially the case of two
suppliers. Both suppliers satisfy their own demands independently and supply for
each other’s customers only when the other party has a recall. Our results show
that the prospect of covering the other party’s demand in case of recall has very
little impact on either supplier’s optimal ordering quantity and quality level. In other
words, the optimal solutions are determined by parameter and function settings of
the individual supplier. Our concavity analysis suggests that the objective is concave
for quality levels (ordering quantities) of the two suppliers when ordering quantities
(quality levels) are set to be optimal.
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Chapter 4
Optimal Facility Location to Mitigate
Product Recall Risks

This chapter is motivated by major food product recall events in recent years,
especially how the timely and effective response using post-recall management can
make a difference. We consider the rare but very influential major product recalls
as disruptions to the supply chain and incorporate locating reprocessing centers for
the returned products to mitigate expected operational costs. We adopt the closed
loop network design framework and assume the location decisions for reprocessing
center take place after the product recall events. Our scenario based analysis shows
the approach is effective in both absolute and relative measures.

4.1 Introduction

In September 2012, the rejection of ground beef imports by the U.S. custom
and the later outbreak of the E.coli disease forced XL Inc. (XL) to start a series of
beef recalls, which turned out to be the largest meat recall event in Canada history.
The recall of 1,800 products impacted over 33 retail chains across Canada. Over
4,000 tons of meat and meat products were sent back to plants for disposal. This
unprecedented amount of recalled products overwhelmed the capacities of any existing
disposal methods of XL, the largest domestically owned meat processor in Canada
at the time, resulting in 600 tons of frozen beef being sent directly to landfill. The
failure to adequately process recalled products raised the public concern over XL’s
capability to maintain food safety. This incident eventually led to a transfer of XL’s
ownership for the Calgary plant. Charlebois et al. [9] discussed this event and its
impacts in detail.

In comparison, when facing the 2008 Listeria outbreak, Maple Leaf Food Inc.
(MLF) recalled all potentially affected products promptly and dealt with the disposal
of 1,300 tons of beef and beef products. MLF’s actions bought time to discover the
contamination source and recover the brand. Nevertheless, there was a substantial
direct cost of $19 million related to recall activities (e.g., collection and destruction,
shutdown and sanitation of facility, media, and customer response call center). In
total, MLF suffered approximately $200 millions loss in this incident.

Food safety is generally referred to as the prevention of illness resulting from
the consumption of contaminated food as discussed by Akkerman [1]. This topic
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has attracted more attention recently because of the growing rigorous government
standards as well as the large social and financial impacts of major food safety fail-
ure. Effective control of food safety along the supply chain is important but very
complicated because food is vulnerable to contamination and food supply chains are
sophisticated. For example, Desmarchelier et al. [15] provide a summary of food
safety management in the red meat industry of Australia. Risk mitigation strategies
are applied in the entire food supply chain.

However, food borne disease is a critical inherent risk factor in food manufac-
turing and distribution, due to the indigenous existence of microbial contaminations
in raw food materials, natural growth of pathogens, inevitable mistakes in manual
operations, contamination and other factors. In response to food safety incidents,
business and society adopt food recalls to correct the situation and mitigate mon-
etary and social costs. Manufacturing companies manage food recalls by collecting
products from their distribution channels and adopting best methods to recondition
and dispose recalled products.

Proper preparation could help companies manage food recalls more effi ciently
and effectively, especially in strategic planning. For example, firms could use location-
allocation decisions for both manufacturing plants and reprocessing facilities for re-
called products. Linking to optimization studies, Akkerman et al. [1] provide a review
of improving food supply chain management with network planning models. Food
quality, food safety and sustainability are considered as key objectives. Three lev-
els of network planning models are considered, namely strategic network design (e.g.,
facility location-allocations), tactical network planning (e.g., production and distri-
bution) and operational transportation planning (e.g., routing). They suggest that
strategic network design is critical in food safety control, impacting how long food
products travel and how widely the products spread geographically, both of which
determine the size of potential product recalls.

This chapter addresses the supply chain safety control issue by designing the
supply chain network to incorporate the negative effects of product recalls. Although
our model is motivated by food recall, it can be applied to any supply chain with
significant impacts of recall events. Extending from the closed-loop network design
concept, this work focuses on managing the reverse flow (recalled products) in a cost-
effi cient manner. However, rather than maintaining a closed-loop supply chain on a
daily basis as in most studies (e.g., repair and post-sale service systems), we study
the effi cient way of managing random and rare major product recalls. The features of
rareness and randomness of major products recalls lead us to disruption management
studies in which researchers focus on how to consistently satisfy customer demands
given that some suppliers may fail. Our focus is different in that we consider how to
quickly build a reprocessing network to dispose recalled products.
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We study the location-allocation problem with random occurrence of product
recalls and treat the recall incidences as disruptions to the supply chain. In our set-
ting, the company first makes decisions to locate manufacturing plants and allocate
demands. After the product recall occurs, we make decisions to locate the reprocess-
ing center(s) from internal (self-owned recall facility) or external (third-party busi-
ness) sources and allocate recalled products for reprocessing or local disposal. Three
features distinguish our problem from other location-allocation problems. Firstly, fa-
cility location and allocation decisions occur in two stages. Secondly, the second stage
location-allocation happens under uncertainty. Thirdly, reverse logistic flows exist in
the second stage.

We design a two-stage stochastic mixed integer programming model, in which
we locate the manufacturing plants in the first stage and the reprocessing/disposal
facilities in the second stage. We adopt a scenario-based approach to describe the
uncertainty of major recall events that may happen in manufacturing plants as well as
of availability of reprocessing facilities. Given the complexity induced by our nested
facility location problem, we devise an algorithm based on Lagrangian relaxation to
solve the uncapacitated case.

This chapter will be organized as follows. Section 4.2 provides a brief review
of literature. Section 4.3 introduces the mathematical model, an analysis based on
facility capacities, and a Branch-and-Bound algorithm incorporating Lagrangian re-
laxation for the uncapacitated case. Section 4.5 presents the computational results
and managerial insights from experiments. Section 4.6 summarizes contributions and
discusses further research directions.

4.2 Literature Review

There are two research streams closely related to our research, i.e., reliable sup-
ply chain network design, and location-allocation with bidirectional logistical flows.

There is a well-developed literature on modeling supply chain disruption man-
agement. Snyder et al. [48] provide a review of optimization models in supply chain
network planning with disruption management. They categorize by network status,
underlying mathematical models and risk measures. They show various models ex-
tending the classical P-median and Uncapacitated Facility Location Problem (UFLP),
Capacitated Facility Location Problem (CFLP) models with reliability features (i.e.,
consistent satisfaction of demands when some facilities fail in random disruptions).
Qi et al. [37] consider a fortification model with disruptions. They manage locations,
allocations and inventory. Both suppliers and retailers can experience random dis-
ruptions. Qi et al. [36] examine different sourcing and replenishment decisions with
two suppliers. Dada et al. [11] develop a newsvendor procurement model selecting
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from multiple unreliable suppliers. Their results suggest that newsvendor, customers
and retailers perceive different service level changes when disruption occurs. Com-
pared to reliability concerns, cost is the most determinant factor. This body of work
focuses on satisfying customer demand —there is no focus on reverse flow.

On the other hand, in closed-loop supply chain models, the emphasis is to
minimize the long-run average cost of forward and reverse flows, which does not
model the random occurrence of product recalls. Uncertainty in closed-loop supply
chain network design is not always considered. Some studies use a fixed return rate
based on historical data (e.g., Min and Ko [31], Salema et al. [41], Lu and Bostel
[25], and Lee and Dong [22]). Savaskan et al. [45] describe product return rate as a
function of investment used to promote product return.

Hitherto, uncertain factors in closed-loop supply chain include return rate,
demand for re-manufactured products (secondary market), quality of returned prod-
ucts, and variable costs for collection, processing and transportation. Pishvaee et al.
[34] describe uncertain demands, returns and transportation costs given by a robust
network design model. Salema et al. [42] address uncertain demand and return with
scenario dependent uniform random numbers to minimize the total cost of the reverse
logistics network. Ramezani et al. [38] consider uncertainty in demand and return ra-
tio as well as various variable costs in their multi-objective forward/reverse network
design. Listeş [24] uses scenario-dependent parameters to describe uncertain demand
and returned product quantity for their supply and product-return networks. Few re-
searchers assume the scenario of randomly failing manufacturing plants which results
in major recall events.

The literature has taken different approaches to deciding the quantity to dis-
pose during returned products collection and reprocessing. Early literature tends to
not consider disposal cost. For instance, Savaskan et al. [45] do not take disposal as
a cost factor when comparing different re-manufacturing channels. With increasing
focus on environment-friendly and effi cient supply chains, disposal costs are reflected
in later studies. For example, Min and Ko [31] alter the repair facility capacities to
accommodate returned quantities at each time period so no disposal will occur.

Decisions regarding disposal cost can be categorized in three types: fixed ra-
tios, market driven and cost driven. Fixed disposal ratios are deduced from historical
data and adopted to simplify the model (e.g., Pishvaee et al. [34], Lu and Bostel [25],
and Lee and Dong [22]). Cost driven decisions aim to minimize total cost of collec-
tion, reprocessing and disposal. Salema et al. [42] minimize total supply chain costs
by using fraction of customer demand used for disposal or recovery. Ramezani et al.
[38] use disposed quantity to maximize the total profit within the capacity of opened
disposal centers. Market driven decisions select the best efforts to satisfy demands of
secondary market. Pishvaee et al. [34] model the disposal quantity as decision vari-
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able so that secondary market can be satisfied in the most effi cient way. Listeş [24]
take the perspective that returned products can be disposed in two decisions: before
collection and before reprocessing, both of which aim to maximize the total profit
while satisfying market demands.

In summary, the existing literature treats reverse flow on day-to-day basis.
This modeling approach does not serve major product recalls well. Our challenge is
to design an optimal network that can accommodate product returns in the context
of major product recalls.

4.3 Facility Location to Mitigate Recall Risks

4.3.1 Model Development

In this section, we use a two-stage stochastic programming approach described
by Ruszczynski and Shapiro [40] to model the problem. In the first stage, we make
facility location and transportation decisions. In the second stage, under each disrup-
tion scenario, we make recall decisions including recall facility locations (e.g., centers
for reconditioning, reprocessing, and rendering) and recall allocation decisions (e.g.,
use local disposal or recall center). The objective is to minimize the sum of facility
location costs, transportation costs and recall costs.

Define I as the set of candidate locations for manufacturing facilities, and use
i as the index. Define K as the set of candidate locations for recall centers and use
k as the index. Note that recall centers could reuse the manufacturing facilities, or
use third party processing facilities. Thus we could have I ⊂ K or I

⋂
K = ∅. We

use FF and RF to indicate forward product flow and reverse product flow (initiated
by recall events) respectively. Clearly, facilities built for manufacturing and recall
processing have different fixed costs, defined as fFFi and fRFk . Facility capacity is
denoted by MFF

i or MRF
k .

Define J as the set of retailers and use j as the index. Each retailer has a
demand Dj, the cost of shipping one unit of product demand from facility i to retailer
j is cFFij , while the reverse flow costs c

RF
jk per unit. For recalled products, two recall

modes are available, i.e., local disposal and central processing. Local disposal incurs a
retailer location related cost cLDj , and central processing incurs a recall center related
cost cCPi .

To describe the uncertainty of facility disruption, we use scenario set S and
index s. We used ps to denote the probability of scenario s. Manufacturing facilities
failing in scenario s is denoted by set Is. Accordingly, recall centers available in
scenario s is denoted by set Ks. The choice of Ks can be decided extraneously.

81



Ph.D. Thesis - L. Yao McMaster University - DeGroote School of Business.

For instance, recalled products could be prohibited from returning to their original
manufacturing facility due to safety concerns, or be sent to third party facilities due
to economic considerations.

Decision variables used in this model are facility location variables (X for
manufacturing facilities and Z for recall facilities), transportation variables (Y ), and
recall assignment variables (V for local disposal andW for central processing):

Xi =

{
1 manufacturing facility at location i is open
0 otherwise.

Zks =

{
1 recall facility is open at location k under scenario s
0 otherwise.

Yij : quantity transported from facility i to retailer j
Vjs : quantity for local disposal under scenario s at retailer j
Wjks : quantity from retailer j to plant k for central processing under s

With these notations, the two-stage stochastic program for the Facility Location with
Recall Problem (FLRP) is formulated as follows:
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(FLRP) min
∑
i∈I

fFFi Xi +
∑
i∈I

∑
j∈J

cFFij Yij

+
∑
s∈S

ps

[∑
k∈Ks

fRFk Zks +
∑
k∈Ks

∑
j∈J

(
cRFjk + cCPk

)
Wjks +

∑
j∈J

cLDj Vjs

]
(34)

s.t.
∑
i∈I

Yij = Dj ∀j ∈ J (35)∑
j∈J

Yij ≤MFF
i Xi ∀i ∈ I (36)∑

j∈J
Wjks ≤MRF

k Zks ∀s ∈ S, k ∈ Ks (37)∑
k∈Ks

Wjks + Vjs =
∑
i∈Is

Yij ∀j ∈ J , s ∈ S (38)

Yij ≥ 0 ∀i ∈ I, j ∈ J (39)
Wjks, Vjs ≥ 0 ∀j ∈ J, s ∈ S, k ∈ Ks (40)
Xi ∈ {0, 1} ∀i ∈ I (41)
Zks ∈ {0, 1} ∀s ∈ S, k ∈ Ks (42)

The objective (34) is the expected total cost of facility location-allocation
decisions from both stages. In the first stage, the manufacturing facility location
and demand distribution are determined, while in second stage, recall center location
and recall product distribution are determined. Constraint (35) ensures demand of
each retailer is satisfied. Constraint (36) and (37) guarantees forward and recalled
products are processed in an open facility within the capacities. Constraint (38)
requires recalled products either be sent back to recall center for reprocessing or
disposed locally. Other constraints are for non-negativity and for binary variables.

It is noteworthy that the proposed formulation is very general and can include
different recall situations. Firstly, the model can cover cases of capacitated and
uncapacitated facilities or any hybrid types by changing the capacity parameterMFF

i

and MRF
k to be infinite or finite numbers. Secondly, the definition of set Ks provides

a lot of flexibility in modeling. For instance, facilities in Ks can be the exact locations
where the food safety incidents happen, suggesting that recalled products must return
to their original manufacturing plants; a type of corrective action in this situation is
to fix problems such as mislabeling. We can also require facilities in Ks be locations
other than the original manufacturing facilities to model the situation in which the
original facilities are unsuitable for processing (e.g., safety overhaul). Moreover, Ks
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could be third party facility locations to model the outsourcing of processing recalled
products. Thirdly, for further extension, recall facility location decisions Zks’s could
be moved to the first stage. The difference between this extension and (FLRP) will
show the difference between prepared recall facility location decisions and reactive
facility location decisions.

In addition, the model could indicate different traceability capability in for-
ward flow. Currently, we assume full traceability in forward flow, i.e., each retailer
could distinguish the products from failed plants from others. We can also model
incomplete traceability such that retailer can’t identify the source of the recalled
products, by altering constraint (38) to

∑
k∈KsWjks + Vjs =

∑
i∈I Yij for all j ∈ J

and s ∈ S.

4.3.2 Analysis

If the demand of a retailer is satisfied by more than one facility, it is called “de-
mand splitting”, otherwise, it is called “no demand splitting”. Note that (FLRP)
contains two types of demands, corresponding to the two stages (i.e., customer de-
mand and recall demand). To be concise, we use “plants”to denote manufacturing
centers located for forward flows, and “facilities” to denote processing centers lo-
cated for reverse flows. We have the following result in the optimal demand splitting
schemes of (FLRP):

Theorem 7 In the optimal solutions of (FLRP), demand splitting schemes of for-
ward and reverse flows depend on the capacity constraints of both plants and facilities.
There are four schemes:

(a)If plants and facilities are both uncapacitated, then there exists no demand split-
ting for both forward and reverse flows;

(b)If plants are capacitated but facilities are uncapacitated, then there exists demand
splitting for forward flow and no demand splitting for reverse flow;

(c)If plants are uncapacitated but facilities are capacitated, then there could exist
demand splitting for both flows;

(d)If plants and facilities are both capacitated, then there could exist demand split-
ting for both flows.

Proof. Consider an arbitrary retailer u ∈ J . Assume that except the allocation
decisions for u, all other decisions are fixed to their optimal values. We use superscript
∗ to represent the optimal values. These decisions include:

X∗i (i ∈ I) locating plants for forward flow,
Z∗ks(k ∈ Ks, s ∈ S) locating facilities for reverse flow,
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Y ∗ij(i ∈ I, j ∈ J \{u}) allocating demands of retailers other than u in forward
flow,

V ∗js,W
∗
jks (j ∈ J \{u}, k ∈ Ks, s ∈ S) allocating recall demands of retailers other

than u for central reprocessing and local disposal respectively in reverse flow.
In the following, we discuss the demand splitting schemes in two steps. We

isolate demand splitting decisions in the reverse flow in the first step, and apply the
results in the second step to integrate both forward and revers flows. Note we use ∗
to denote optimal solutions for (FLRP) in this proof, while later in algorithm design
we use ∗ to denote best solutions found in Lagrangian relaxation.

Step 1. Demand allocations in forward flows, i.e., Y ∗iu (i ∈ I), are known and
optimal.

We use K∗s to denote the set of facilities to open for reverse flow in scenario
s ∈ S in the optimal solution. Let βks be the proportion of demand for retailer u
allocated to facility k ∈ K∗s in scenario s, β′s be the proportion of demand allocated
to local disposal in scenario s. We have

∑
k∈K∗s βks + β′s = 1 in scenario s.

Let D∗us be the optimal recall demand from u in scenario s. Note that when
forward flow is traceable, we have D∗us =

∑
i∈Is Y

∗
iu; when forward flow is untraceable,

we have D∗us =
∑

i∈I Y
∗
iu if Y

∗
iu > 0 for some i ∈ Is, and D∗us = 0 otherwise.

Using Ω to denote the total cost of known location and allocation decisions,
(FLRP) can be simplified as follows:

min Ω +
∑
s∈S

ps

[ ∑
k∈K∗s

(
cRFuk + cCPk

)
βksDus + cLDu β′sDus

]
s.t.

∑
k∈K∗s

βks + β′s = 1∀s ∈ S

βksDus +
∑

j∈J\{u}
W ∗
jks ≤MRF

k ∀k ∈ K∗s , s ∈ S

βks, β
′
s ≥ 0 ∀k ∈ K∗s , s ∈ S.

Note that local disposal at retailer u always has unlimited capacity. This setting can
be altered by adding constraint β′sDus ≤ MRF

u in the analysis, where MRF
u is the

capacity for local disposal of u.
If the facilities are uncapacitated, the optimal solution is either 0 or 1 because

the objective function is a linear function of βks and β
′
s defined on interval [0, 1]. In

other words, there is no demand splitting for any scenario s ∈ S. Denote

γ∗s = min

{
cLDu , min

k∈K∗s

{
cRFuk + cCPk

}}
,

and optimal recall cost of u as ψ∗s(D
∗
us) = γ∗sD

∗
us, then the optimal objective value is
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Ω +
∑

s∈S psψ
∗
s(D

∗
us).

If the facilities are capacitated, in order to minimize the objective function,
we sort the coeffi cients (cRFuk + cCPk ) (k ∈ K∗s) and cLDu in increasing order, denoted
as c1, c2, · · · , cns+1 where ns = |K∗s|. Then the optimal solution is to assign demand
according to this order given the capacity constraints. We redefine reverse flow cost
ψ∗s(D

∗
us) as follows:

ψ∗s(D
∗
us) =


c1D

∗
us D∗us ≤MRF

1

ck+1

(
D∗us −

k∑
i=1

MRF
i

)
+

k∑
i=1

ciM
RF
i

k∑
i=1

MRF
i ≤ D∗us ≤

k+1∑
i=1

MRF
i

∀k = 1, · · · , ns

where c1 ≤ c2 ≤ · · · ≤ cns ≤ cns+1. Note that if the unit cost of local disposal is
ranked before that of facility j, then calculations for facility j and its followers are
unnecessary because local disposal is uncapacitated.

We have the same form of optimal objective value Ω +
∑

s∈S psψ
∗
s(D

∗
us). Note

that reverse flow cost ψ∗s(D
∗
us) is a continuous and nondecreasing piece-wise linear

function ofD∗us when facility capacities are limited. Clearly ψ
∗
s(·) is a convex function.

Step 2. In the optimal solution, denote I∗ as the set of plants open in forward
flow, I∗s as the set of plants that are open and get disrupted in scenario s ∈ S. Let αi
be the proportion of demand allocated to plant i ∈ I∗ for forward flows, ψ∗s(D∗us) be
the optimal cost for reverse flow as defined in Step 1, where D∗us =

∑
i∈I∗s αiDu (or in

the case with untraceable demand, if Y ∗iu > 0 for some i ∈ I∗s , then D∗us = Du). Let
Ψ be the cost of all known optimal decisions. (FLRP) can be simplified as follows:

min Ψ +
∑
i∈I∗

cFFiu αiDu +
∑
s∈S

psψ
∗
s

∑
i∈I∗s

(αiDu)

s.t.
∑
i∈I∗

αi = 1

αiDu +
∑

j∈J\{u}
Y ∗ij ≤MFF

i ∀i ∈ I∗

αi ≥ 0 ∀i ∈ I∗

If facilities are uncapacitated, then ψ∗s(D
∗
us) = γ∗sD

∗
us = γ∗s

∑
i∈I∗s αiDu. Clearly,

the objective function is linear in αi’s. It holds that when plants are uncapacitated,
the plant incurring the lowest cost will be chosen, thus the optimal solution does
not have demand splitting for neither forward nor reverse flows, which completes the
proof for Theorem 7 Scheme (7). On the other hand, with capacitated plants the op-
timal demand splitting scheme for reverse flow remains to be no demand splitting;
while capacity limits of plants in forward flow require demand splitting to satisfy all
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demands at the lowest cost, which completes the proof for Theorem 7 Scheme (7).
In the case of capacitated facilities and uncapacitated plants, apparently de-

mand splitting in reverse flow exists because of facility capacity limits, would the
demand splitting in reverse flow lead to demand splitting in forward flow even when
there is no restriction on plant capacity?

Suppose, on the contrary, there is no demand splitting in the optimal decision.
Consider the retailer u has demand Du, served by two plants I∗ = {i1, i2} and two
facilities K∗s = {k1, k2} that are open for all scenarios. Plants fail independently. Let
us compare the following two cases.

In the first case, Du is completely served by plant i1 ∈ I∗. Denote the proba-
bility of failure of i1 as qi1 =

∑
s:i1∈I∗s ps, called the failure rate of i1. The allocation

cost TC1 for i1 can be represented as TC1 = cFFi1uDu + qi1ψ(Du). Note we use ψ(·) in-
stead of ψ∗(·) because it is not optimal solution. In the second case, Du is satisfied
by two plants i1 and i2. Let αi1 and αi2 denote the proportions of demand Du sat-
isfied by i1 and i2 respectively, where αi1 + αi2 = 1. Let the failure rates of plants
i1 and i2 be qi1 and qi2 respectively. Then the total allocation cost TC2 would be
TC2 = αi1c

FF
i1u
Du+αi2c

FF
i2u
Du+qi1(1−qi2)ψ(αi1Du)+(1−qi1)qi2ψ(αi2Du)+qi1qi2ψ(Du)

. Comparing TC1 and TC2:

TC1 − TC2 =(1− αi1)cFFi1uDu − αi2cFFi2uDu − qi1(1− qi2)ψ(αi1Du)

− (1− qi1)qi2ψ(αi2Du) + qi1(1− qi2)ψ(Du)

=αi2(c
FF
i1u
− cFFi2u )Du + (qi1 − qi2)ψ(αi2Du)

+ qi1(1− qi2) [ψ(Du)− ψ(αi1Du)− ψ(αi2Du)] .

Because ψ(·) is nondecreasing and convex, we have ψ(Du)−ψ(αi1Du)−ψ(αi2Du) ≥ 0.
If cFFi1u − cFFi2u = qi1 − qi2 = 0, then TC1 − TC2 ≥ 0. Otherwise, by setting external
parameters, we can always construct a problem where in the optimal solution, demand
splitting is better than no demand splitting.

In more general case with multiple (more than two) plants and facilities avail-
able to serve the retailer, we can also construct a problem which has an optimal
solution with demand splitting, which completes the proof for Scheme (7). In addi-
tion, a numerical example is given in Example 1. Finally, when plants and facilities
are both capacitated, from the same analysis, the claim in Scheme (7) holds.

The most interesting result in Theorem 7 is the existence of demand splitting
in forward flow when the (reverse flow) facilities are capacitated, as shown in Scheme
(7). We use a numerical example to illustrate Theorem 7.

Example 1 Suppose we have all the information of the optimal solution except de-
mand splitting scheme for retailer u. With demand D∗u = 10, retailer u has two plants
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I∗ = {1, 2} available in forward flow, and two facilities K∗s = {3, 4} for any scenario
s ∈ S available in reverse flow. We assume the manufacturing facilities fail inde-
pendently with probability q1 = 0.1 and q2 = 0.9 respectively. We have four scenarios
(with probability of p1 = 0.81, p2 = p3 = 0.09, p4 = 0.01) for all possible outcomes.

Transportation unit costs in forward flow are cFF1u = 1, cFF2u = 30, unit cost of
transportation and central processing for reverse flow are cRFu3 + cCPu3 = 2, cRFu4 + cCPu4 =
60, local disposal unit cost is cLDu = 100. Suppose plants and local disposal loca-
tion have unlimited capacity, and capacities of central processing centers are MRF

3 =
5,MRF

4 = 60.
We use TC to represent the expected total allocation cost of u. Note facility

3 and 4 are capable of processing any amount of returned product from u, thus the
local disposal at u need not to be considered (more expensive), which leaves TC to be
solely dependent on the demand splitting factor α1, i.e., the proportion of Du satisfied
by plant 1 in forward flow. With no demand splitting, customer u is solely served by
plant 1 with TC = 289.

α1 = 1

TC =
2∑
i=1

cFFiu αiDu + +
∑
s∈S

psψs

∑
i∈I∗s

αiDu


= 1 · 10 + 0.81 · (5 · 2 + 5 · 60) + 0.09 · (5 · 2 + 5 · 60)

= 289

Similarly when u is solely supplied by plant 2 we have TC = 355.8. However, if the
demand is shared by the two plants evenly we have TC = 191.9. The results show
demand splitting scheme with α1 = 0.5 gives lower cost than no demand splitting
(α1 = 1 or α1 = 0). Moreover, solving the problem with MAPLE shows that α1 = 0.5
is the optimal solution, which complies with our statement in Theorem 7 Scheme (7).

4.4 Lagrangian relaxation

To find the optimal solution for model (FLRP), we could use readily available
commercial solvers such as CPLEX. However, preliminary computational studies show
that this problem is hard to solve even for medium size instances. This motivates us
to develop a more effi cient method based on Lagrangian relaxation.

Major diffi culties for solving (FLRP) come from two aspects: 1) the demand
balance constraint (35) impedes us from developing an analytical algorithm similar
to that of Snyder and Daskin [47]; 2) constraint (38) increases the complexity further
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by connecting the forward flow and the reverse flow. We could relax constraints (35)
and (38) of (FLRP) by introducing Lagrangian multipliers λ = (λj) and µ = (µjs)
to obtain the following Lagrangian relaxation problem:

(FLRP − LRλ,µ)

min L(λ,µ)

=
∑
i∈I

fFFi Xi +
∑
i∈I

∑
j∈J

cFFij Yij +
∑
j∈J

λj

(
Dj −

∑
i∈I

Yij

)

+
∑
s∈S

ps

[∑
k∈Ks

fRFk Zks +
∑
k∈Ks

∑
j∈J

(
cRFjk + cCPk

)
Wjks +

∑
j∈J

cLDj Vjs

]

+
∑
s∈S

∑
j∈J

µjs

(∑
i∈Is

Yij −
∑
k∈Ks

Wjks − Vjs

)

=
∑
i∈I

fFFi Xi +
∑
j∈J

[∑
i∈I

(cFFij − λj) +
∑
s∈S

∑
i∈Is

µjs

]
Yij +

∑
j∈J

λjDj

+
∑
s∈S

∑
k∈Ks

psf
RF
k Zks +

∑
s∈S

∑
k∈Ks

∑
j∈J

[
ps
(
cRFjk + cCPk

)
− µjs

]
Wjks

+
∑
s∈S

∑
j∈J

(
psc

LD
j − µjs

)
Vjs (43)

s.t. (36), (37), (41), (42)
0 ≤ Yij ≤ Dj ∀i ∈ I, j ∈ J (44)
0 ≤ Wjks ≤ Dj ∀j ∈ J , s ∈ S, k ∈ Ks (45)
0 ≤ Vjs ≤ Dj ∀j ∈ J , s ∈ S, k ∈ Ks. (46)

Constraint (44) is modified from (39) to confine that the product quantity
delivered to retailer j is no more than the retailer’s demand. Similarly, constraints
(45) and (46) are modified from constraint (40) to confine local disposal and central
processing quantities.

4.4.1 Lower Bound

Relaxing constraint (38) breaks up the connection between forward and reverse
flows, therefore we can separate (FLRP − LRλ,µ) into two optimization problems,
i.e., (FLRP − LRλ,µ − F) for forward flow and (FLRP − LRλ,µ − R) for reverse
flow, which can be solved separately. The optimization problem for the forward flow
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is defined as:

(FLRP − LRλ,µ −F)

min
∑
i∈I

fFFi Xi +
∑
i∈I

∑
j∈J

(
cFFij − λj

)
Yij +

∑
j∈J

λjDj +
∑
s∈S

∑
i∈Is

∑
j∈J

µjsYij (47)

s.t. (36), (41), (44).

We use binary parameter δis equals one to denote the case plant i has triggered recall
event in scenario s, and zero for otherwise. Therefore objective function of (FLRP−
LRλ,µ−F) is equivalent to

∑
i∈I f

FF
i Xi+

∑
i∈I
∑

j∈J
(
cFFij − λj +

∑
s∈S µjsδis

)
Yij +∑

j∈J λjDj.
Note that (FLRP − LRλ,µ − F) can be solved by an effi cient algorithm.

We will open a plant at site i if and only if this decision decrease objective value.
Objective value changes due to opening a plant at i (denoted by φi) can be determined
by solving the following optimization problem:

φi = min fFFi +
∑
j∈J

(
cFFij − λj +

∑
s∈S

µjsδis

)
Yij

s.t.
∑
j∈J

Yij ≤MFF
i ,

(44).

The calculation of φi depends on whether plant i has capacity limits.
In uncapacitated case

(
MFF

i =∞
)
, we have:

Y ∗ij =

Dj, cFFij − λj +
∑
s∈S

µjsδis < 0

0, otherwise.

In capacitated case
(
MFF

i <∞
)
, the problem is a continuous knapsack prob-

lem and we can find the optimal solution greedily as the method presented in [12].

For plant i, sort customer j in increasing order of
(
cFFij − λj +

∑
s∈S

µjsδis

)
. Let j′ be

the new ranking, and J − be the set of customers with negative coeffi cients. Then:

Y ∗ij′ =

min

{
Dj′ ,M

FF
i −

j′−1∑
m=1

Dm

}
, j′ ∈ J −

0, otherwise.
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Next, the optimization problem for the reverse flow is defined as:

(FLRP − LRλ,µ −R)

min
∑
s∈S

∑
k∈Ks

psf
RF
k Zks +

∑
s∈S

∑
k∈Ks

∑
j∈J

ĉjksWjks +
∑
j∈J

∑
s∈S

(
psc

LD
j − µjs

)
Vjs (48)

s.t. (37), (42), (45), (46),

where ĉjks = ps
(
cRFjk + cCPk

)
− µjs for all j ∈ J , s ∈ S, k ∈ Ks. Clearly, (FLRP −

LRλ,µ −R) is separable for s ∈ S, k ∈ Ks. Also notice that local disposal decisions
V = (Vjs) can be decided independently of Z = (Zks) andW = (Wjks) as follows:

V ∗js =

{
Dj, psc

LD
j − µjs < 0

0, otherwise.

Given a scenario s, if we locate a facility at candidate site k ∈ Ks, changes
of objective value (denoted by ψks) are determined by the following optimization
problem:

ψks = min psf
RF
k +

∑
j∈J

ĉjksWjks

s.t.
∑
j∈J

Wjks ≤MRF
k .

(49)

To solve (FLRP − LRλ,µ −R), we open a facility k under scenario s if and only if
ψks < 0. The solution of (49) depends on whether plants have capacity limits.

In uncapacitated case (MRF
k =∞), we have:

W ∗
jks =

{
Dj, ĉjks < 0

0, otherwise.

In capacitated case (MRF
k < ∞), sort customer j in increasing order of ĉjks.

Let j′ be the new ranking, and J − be the set of customers with negative ĉjks. Then:

W ∗
jks =

min

{
Dj′ ,M

RF
k −

j′−1∑
m=1

Dm

}
, j′ ∈ J −

0, otherwise.

4.4.2 Upper Bound

We solve (FLRP) using location decisions obtained from (FLRP − LRλ,µ)
for an upper bound. With location decisions, (FLRP) is reduced to a linear pro-
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gramming problem with allocation decisions only. However, in cases of capacitated
plants, initial location decisions may be infeasible to obtain an upper bound prob-
lem due to insuffi cient plants’ capacity. To restore feasibility, we design a greedy
heuristic procedure by assigning unfixed closed plants to open in increasing order of
contribution φ(i) (shown in the following algorithm).
Algorithm 1 Restore feasibility.
if ρ <= 0 then
Stop{open facilities have suffi cient capacity}
else
if ρ >

∑
i∈I′

MFF
i then

Stop{No feasible upper bound can be found}
else
Sort i ∈ I ′ by the increasing order of φi, denoted by i+
while ρ > 0 do
X∗i+ = 1
ρ = ρ−MFF

i+

i+ = i+ + 1
end while
end if
end if

Let I ′ be the set of plants that are closed in the optimal solution of relaxed
problem (FLRP−LRλ,µ) but not fixed to closure (e.g. in later mentioned branching
process of branch and bound), and denote demands not fulfilled by total capacities
of open plants with

ρ =
∑
j∈J

Dj −
∑
i∈I′

MFF
i .

Note that we don’t need to adjust location solutions of reverse flows, because
local disposal has unlimited capacity and any returned products beyond capacities of
central reprocessing can be handled with local disposal method.

Let Î be the set of all open plants and set K̂s denotes all open facilities in
scenario s in the optimal solution of relaxed problem (FLRP−LRλ,µ). The problem
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to obtain upper bound is formulated as follows:

min
∑
i∈I

∑
j∈J

cFFij Yij +
∑
s∈S

∑
j∈J

ps

[∑
k∈Ks

(cRFjk + cCPk )Wjks + cLDj Vjs

]
(50)

s.t. (35), (38), (39), (40)∑
j∈J

Yij ≤MFF
i X∗i =

{
MFF

i , i ∈ Î
0, i ∈ I − Î

(51)

∑
j∈J

Wjks ≤MRF
k Z∗ks =

{
MRF

k , k ∈ K̂s, s ∈ S
0, k ∈ K − K̂s, s ∈ S

(52)

With constraint (38) maintaining flow balance at different scenarios, above problem
cannot be categorized as a transportation problem. With Theorem 7 for Schemes (a)
and (b) where facilities’capacities are uncapacitated, costs incurred in stage two can
migrate to stage one and constraint (38) is omitted.

In Schemes (a) and (b) with uncapacitated facilities, returned products of
affected customer are fully processed in one recall mode (either local disposal or
central processing). Optimal recall mode is selected based on comparative economic
attractiveness. Let set Is+ = ∪s∈SIs denote plants that fail in at least one scenario.
Let the unit cost for reverse flow at each customer j in scenario s in the upper bound
solution be c̃js, where c̃js = min

{
mink∈K̂s

{
cRFjk + cCPk

}
, cLDj

}
.

Allocation decisions in reverse flows can be calculated directly:

W ∗
jks =


∑

i∈Î∩Is+
Yij, cRFjk + cCPk = c̃js

0, otherwise
V ∗js = 0;

OR

V ∗js =


∑

i∈Î∩Is+
Yij, cLDj = c̃js

0, otherwise
W ∗
jks = 0
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Then the transportation problem can be transformed into:

min
(35),(39),(51)

∑
i∈Î

∑
j∈J

cFFij Yij +
∑
s∈S

∑
j∈J

psc̃js
∑
i∈Î

(δisYij)

=
∑
i∈Î

∑
j∈J

(
cFFij +

∑
s∈S

psc̃jsδis

)
Yij. (53)

In Scheme (a) where manufacturing plants are uncapacitated, there is no demand
splitting in both forward and reverse flows according to Theorem 7. Thus allocation
decisions are either demand Dj or 0. We can calculate the optimal upper bound given
solutions of the Lagrangian relaxation problem (FLRP −LRλ,µ) with the following
algorithm.
Algorithm 2 Find upper bound in Scheme (a).

Define set I1 for plants that are open and disrupted in at least one scenario, i.e., I1 = Î ∩ Is+ .
while j ∈ J do
αj = min

i∈Î−I1

{
cFFij

}
, βij = cFFij +

∑
s∈S

psc̃jsδis

β∗ij = min
i∈I1

{
βij
}

if αj ≤ βj then
if cFFi∗j j = αj then
Y ∗i∗j j = Dj

end if
else if βi∗j j = β∗ij then
Y ∗i∗j j = Dj

Define set Si∗j j for scenarios in which the chosen plant i
∗
j fails

if cLDj = c̃js where s ∈ Si∗j j then
V ∗js = Dj

else if cCPk∗j + cRFk∗j
= c̃js where s ∈ Si∗j j then

W ∗i∗j j = Dj

end if
end if
j = j + 1
end while

In Scheme (b), problem (53) fit the classic form of transportation problem and
can be solved by network simplex method. We refer to the work of [10] that provides
a good guidance for network simplex method.

We close plants and facilities that serve no customers in the found upper bound
solution.

In cases Scheme (c) and (d), we use Cplex LP solver.
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4.4.3 Lagrangian Multipliers

Each vector pair of (λ,µ) forms a lower bound L(λ,µ) to the optimal solution
of (FLRP). To obtain the optimal solution, we need to solve

max
λ,µ
L(λ,µ)

We use the subgradient method to update the Lagrangian multipliers as in [16].
In the nth iteration of Lagrangian relaxation algorithm, denote the lower bound with
Ln, the best upper bound found so far with BUB, and the Lagrangian multipliers
for the next iteration with λn+1, µn+1 where:

λn+1j ← λnj + tn

(
Dj −

∑
i∈I

Yij

)
, µn+1js ← µnjs + tn

(∑
i∈Is

Yij −
∑
k∈K

Wjks − Vjs

)
The step size is determined by

tn =
βn(BUB − Ln)∑

j∈J

(
Dj −

∑
i∈I

Yij

)2
+
∑
s∈S

∑
j∈J

(∑
i∈Is

Yij −
∑
k∈Ks

Wjks − Vjs
)2

Note that βn is a predetermined constant for the nth iteration, whose value will be
halved if three consecutive iterations fail to make improvements.

The process of closing the gap between upper bound and lower bound is ter-
minated if any of the following three criteria is satisfied:

• BUB − Ln
Ln < ε where ε is a predetermined error tolerance

• βn < βmin, where βmin is the minimal step size allowed
• n > nmax, where nmax is the maximal step number allowed.

4.4.4 Branch and Bound

We incorporate the Lagrangian relaxation into a branch and bound algorithm
to ensure the optimality gap is closed at ε-level. Since plants location decisions
are more impactive than facility location decisions, we branch on the former (i.e.
Xi) only. At each node, branching plant selected is the unfixed open location with
greatest contribution φ(i). The variable Xj is forced to be fixed value of zero and
then one. Width-first search manner is applied in branching. A branch is fathomed
if the lower bound of the parent node is greater than the best found upper bound.
The tree is fathomed if obtained lower bound is within ε times the best found upper
bound, for which the latter is the ε-optimal solution for the original problem. In
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each node, final Lagrangian multipliers are inherited to its children nodes and used
as initial multipliers.

4.5 Computational Results

In the first experiment, we compare total cost and computation time of three
models. The first model locates both manufacturing plants and recall processing
facilities, and allocates customer demands all in the first stage. In the second stage,
the first model allocates returned products given possible recall scenarios in located
plants. We use RNM (recovery network design model) as studied from Fleischmann
et al. [17] to represent the first model. The second model is our model (FLRP),
which makes location-allocation decisions for plants and customers in the first stage,
and locates facilities and allocates returned products in the second stage, considering
the availability of reprocessing centers in various recall scenarios. The third model
designs the most cost-effective network in a non-fail situation and takes the best
available reprocessing centers when failure scenarios happen. We use reactive facility
location model (RFL) to represent the third model setting.

The first model RNM ignores the possibility that some facilities may not be
available in some scenarios, and makes decisions of locating both plants and facilities
in the first stage. On the contrary the neglected uncertainty is considered in (FLRP),
and we expect numerical results show the benefits of our consideration.

Our numerical example in Table 34 shows that the forward flow network of the
first two models may not necessarily be the same. The second model shows better
total cost (1%-5% less) and but a lot more complex to solve (using about five times
more calculation time). Integration models (i.e. the first two models) performs better
in total costs than reactive model (the third model). Location decisions are mostly
different between integration models and reactive model.

In this section we use numerical experiments to test the necessity and signif-
icance of product recall modeling as well as the impacts of parameters. The model
is coded with General Algebraic Modeling System (GAMS) language and tested on a
GAMS server which runs on Intel Xeon dual CPU 2.00GHz 2.00 GHz processor with
8.0 GB RAM under Windows 64-bite operating system. We consider three variations
in both environment settings and modeling settings in our experiments. Modeling set-
tings describe the strategy of network design that a manager adopts, and environment
settings simulate the true events for which the adopted strategic locations are used
to satisfy demands and manage reverse flows. Depending on how many plants issue
recalls in each second stage scenario, we consider three variations, namely no-recall,
single-recall and dual-recall. No-recall does not consider the possibility of recall and
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RNM FLRP RFL RNM FLRP RFL RNM FLRP RFL

Cost($000s) 6.92 6.36 7.54 1.68 1.62 1.81 2.85 2.78 2.96

Time(sec.) 0.61 0.24 0.50 0.92 0.98 0.70 6.64 24.58 2.56

Model size | I | 4 | I | 8 | I | 16

| K | 3 | K | 6 | K | 12

| S | 10 | S | 36 | S | 136

| J | 4 | J | 10 | J | 20

Cost(/FLRP) 1.09 1.00 1.19 1.04 1.00 1.12 1.03 1.00 107

Time(/FLRP) 2.56 1.00 2.11 0.94 1.00 0.71 0.27 1.00 0.10

Table 34. Compare costs and computation time of three models
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its impact on the network. Single-recall assumes exactly one plant issues a recall in
each scenario. Dual-recall considers the occurrence of recall and assumes at most two
plants issues recalls per scenario, i.e., situations of exactly one plant and exactly two
plants issuing recalls. Table 35 illustrates the relationship of no-recall, single-recall
and dual-recall in environment and modeling settings.

Number of plants issue Environment Modeling

recall per scenario notation notation

No-recall 0 S0 M0

Single-recall 1 S1 M1

Dual-recall 1 OR 2 S2 M2

Table 35. Relationship of no-recall, single-recall and dual-recall in environment and
modeling settings.

Combination of three modeling settings and three environment settings gives
us nine optimal total costs for a specific set of parameters. For instance, the ex-
pected total cost with (M0, S1) reflects the expenditure of both forward and reverse
flows when there are recalls in reality, in fact one recall per scenario, while the man-
ager assumes no recall in strategic network designs. Table 36 shows one set of typical
experiment results, i.e., expected total costs of three model settings under three en-
vironments.

Notice diagonal numbers are the costs when model settings match environment
settings, which we can call perfect information decisions (PIDs). Comparing with
PIDs, total costs naturally increase when failing probability is either over-estimated
(e.g., model considers at most two facilities have recalls per scenario while only one
facility has recall in reality), or under-estimated (e.g., model considers no recall while
in reality exactly one plant issues recall per scenario). We use regrets to evaluate
effects of wrong estimation on total costs.

In the search of optimal modeling setting in three scenarios, we use Savage’s
minimax regrets method, a widely applied approach that conservatively chooses the
option of least worst case costs [44]. We define regrets in two ways: relative measure
and absolute measure. Relative measure uses the percent cost increase when modeling
settings mismatch environment settings compared to PIDs. Absolute measure uses
value increase instead of percent increase. Table 37 shows results of applying relative
and absolute measures of data in Table 36.

The reason that we adopt two measures to describe regrets is that PIDs un-
der different environment settings can differ in significant ways. Therefore the best
modeling option reflected by relative measure could be different from the choice of ab-
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S0 S1 S2

M0 50,389.44 142,210.15 186,006.79

M1 53,657.82 138,413.01 179,521.94

M2 53,657.82 138,413.01 179,521.94

Table 36. Numerical example of optimal costs for three modeling settings under three
environment settings.
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solute measure because the PID reference may change. Data in Table 37, for example,
shows that, with relative measure, no-recall modeling (M0) is superior to single-recall
(M1) and dual-recall modeling (M2) because, with M0, the worst cost increase is
3.61% more than PIDs compared to 6.49% increase for both M1 and M2. However,
with absolute measure, the opposite is true (i.e., with M0, the worst cost increase is
$6485 compared to $3268 for both M1 and M2). To avoid bias generated by choosing
only one measure, we use both measures.

S0 S1 S2 S0 S1 S2

M0 1 102.74% 103.61% - 3,797.14 6,484.84

M1 106.49% 1 1 3,268.38 -

M2 106.49% 1 1 3,268.38 -

Table 37. Apply relative measure (left) and absolute measure (right).

4.5.1 Parameter Settings

Our experiments test four sets of parameters settings: recall probability, ca-
pacity abundance, costly reverse flows and facility availability.

Based on the literature, the probability of a first stage plant issuing a recall in
the second stage, recall probability, is within the range of [0.01, 0.08]. Due to physical,
social and financial differences, recall probabilities of candidate plant locations may
be quite different from each other. We use a uniform distribution with the range
[0.01, 0.08] to generate the probability of each plant incurring recalls.

Capacity abundance is how abundant one plant’s capacity is compared to the
total demands, i.e., the proportion of total demands that one plant can satisfy with
its capacity. Four degrees of capacity abundance are considered as in Table 38.

Costly reverse flows measure how expensive reverse flows are compare to for-
ward flows. Three ratios are considered as in Table 39.

Facility availability measures the proportion of available facilities to open in
the second stage compared to total number of possibly usable facilities. Four degrees
of facility availability are considered as in Table 40.

4.5.2 Results

4.5.2.1 Impacts of Facility Availability

In order to find the impacts of facility availability on the choice of best mod-
eling settings, we test four different levels of facility availability. With each level, we
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Capacity Notation Proportion of total demands

abundance that a facility can satisfy

Tight Cap1 25%

Fair Cap2 50%

Medium Cap3 75%

Plenty Cap4 100%

Table 38. Capacity abundance settings.

Costly reverse Notation Ratio of unit cost in reverse flows

flows compare to that of forward flows

Inexpensive costRF1 10

Medium costRF2 50

Expensive costRF3 100

Table 39. Costly reverse flows settings.

Facility Notation Percentage of facilities available

availability to open in the second stage

Scarce prKs1 20%

Somewhat prKs2 40%

Adequate prKs3 60%

Suffi cient prKs4 80%

Table 40. Facility availability settings.
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experiment with four variations of capacity abundance and three variations of costly
reverse flows, applying randomly generated recall probabilities following a uniform
distribution. Results are shown in Table 41:

prKs1 prKs2 prKs3 prKs4 Average

Relative M0 12.20% 10.70% 11.52% 12.15% 11.64%

measure M1 45.14% 44.95% 46.23% 45.46% 45.45%

M2 42.66% 44.35% 42.25% 42.39% 42.91%

Absolute M0 4.08% 3.86% 4.62% 4.52% 4.27%

measure M1 48.62% 49.20% 49.86% 49.46% 49.29%

M2 47.30% 46.94% 45.52% 46.02% 46.44%

Table 41. Proportion of optimal model setting under various facility availabilities.

When interpreting this table, note that the table columns for both relative
and absolute measures sum to one. Each table entry represents the proportion of the
time that the respective modeling setting is optimal. For example, using the rela-
tive measure, when facility availability is 20% (pKs1), the proportion of M1 being the
optimal model is 45.14%. We see that facility availability in the second stage does
not significantly impact the choice of the best model setting using either relative or
absolute measures (i.e., the values in each row do not deviate much from the row av-
erage). For example, in the relative measure M1 row, proportions range from 44.95%
to 46.23% with an average of 45.45%. Our prior is that decreasing facility availabil-
ity could increase the proportion of modeling with recall considerations as optimal
settings because higher facility availability indicates lower uncertainty in managing
reverse flows and thus lower expected costs. Our results, on the contrary, show the
optimal model setting is indifferent to facility availability. One explanation might be
that our aggregation of data nullified the impact, or the impact is overshadowed by
other more influential factors such as capacity abundance.

In all four cases, models considering recalls (M1UM2) performs significantly
better than models without (M0) (e.g., for both relative and absolute measures, the
M1 and M2 row values are much larger than the M0 ones). On average, with rel-
ative measure optimal models considering recalls, M1 and M2 account for 88.36%
(45.45+42.91) of optimal model settings. With absolute measure, optimal models
considering recalls account for 95.73% (49.29+46.44). This dominance proves that
considering potential product recalls reduces total costs in the long run. Disregard-
ing potential recalls could lead to selection of plant locations that initially seem to
minimize costs, but that in hindsight are risky candidate sites with high expected
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costs to handle possible recalls. Our results with both relative and absolute mea-
sures support the assumption that designing with recall considerations minimizes the
worst-case regrets.

The results also suggest that it is not obviously better to consider dual recall
over single recall modeling. On average, of optimal models with recall consideration,
using relative measure, single-recall models (M1) have proportions of 45.45% com-
pared to 42.91% for dual-recall models; using absolute measure, single-recall models
have 49.29% versus 46.44% for dual-recall models.

Dual recalls consider the following cases: a) two plants incurring recalls at
the same, and b) only one plant incurring a recall at a time. Since plants incur
recalls independently with a small probability, between 1% and 8%, the chances of
two recalls happening at the same time appears to be too small to impact the network
design in any noticeable scale. However, dual recalls modeling requires much more
computation resources compared to single recalls since the scenario size increases
exponentially. Balancing the above considerations, single recall modeling suffi ciently
serves our purpose of planning for potential recall risks and rationalizing computation
power.

4.5.2.2 Impact of Capacity Abundance

Risks of not considering recall in network design decrease when plants’capacity
abundance increases. The reason may be that insuffi cient plants’capacity leads to
various recall scenarios and thus increases the expected costs of managing recalls. This
suggests abundant plants’capacity allows more space for risk control for managers in
designing networks without recall concerns. Results concerning capacity abundance
are shown in Table 42. When capacity is tight (Cap1), it is almost never good to
ignore the possibility of recalls (i.e., for relative measure, the M0 table entry is 2%
and for absolute measure, the M0 table entry is 0%).

Cap1 Cap2 Cap3 Cap4

Relative M0 2.00% 5.48% 12.33% 41.05%

measure M1 50.22% 47.95% 44.57% 32.31%

M2 47.78% 46.57% 43.10% 26.64%

Absolute M0 0.00% 5.00% 0.48% 20.71%

measure M1 50.76% 47.48% 50.00% 45.33%

M2 49.24% 47.52% 49.52% 33.95%

Table 42. Proportion of optimal model setting under various capacity availability.
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The only time that it might be acceptable for decision makers to ignore recall
costs is when plant capacity is large compared to demand (i.e., when there is plenty of
capacity (Cap4), the M0 table entry is 41.05% for relative measure and the M0 table
entry is 20.71% for absolute measure). However, if the business is growing, current
excess capacity will ultimately disappear. Therefore planning with potential recall
serves the long term goal of building reliable and cost-effective networks.

4.5.2.3 Impact of Costly Reverse Flows

Results concerning capacity abundance are shown in Table 43. Dominance of
M1andM2may be attributable to the distinguishable recall probabilities of candidate
plant locations. To optimize the network design for first stage only,M0may choose to
open plants at relatively lower expense despite of their high chance of issuing recalls
in the second stage, which results in premium payments when recalls do occur.

cRF1 cRF2 cRF3

Relative M0 7.36% 15.46% 14.67%

measure M1 49.17% 43.26% 42.81%

M2 43.47% 41.29% 42.52%

Absolute M0 2.86% 4.58% 5.57%

measure M1 51.70% 48.01% 48.27%

M2 45.44% 47.41% 46.16%

Table 43. Proportion of optimal model setting under various costly degrees of reverse
flows.

4.5.2.4 Cost Increase as a Result of Neglecting Recalls in Network
Design

We apply the same set of recall probability and fix facility availability at 70%.
Numerical results show the dominance of M1andM2 over M0 with minimax regrets
similar to the results of Experiment 1. Results concerning capacity abundance are
shown in Table 44.

We also notice M1 and M2 have very close or equal total costs in various
capacity abundance and costly reverse flow settings. Both perform dominantly better
than M0 when considering recalls.

We show the impact of capacity availability/costly reverse flow on the cost of
M0 compared to M1 and M2 with relative measure, which is the cost of neglecting
recalls in network design.
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Max Cap1 Cap2 Cap3 Cap4

regret tight fair medium plentiful

costRF1 Inexpensive 70% 50% 40% 40%

costRF2 Medium 90% 70% 60% 60%

costRF3 Expensive 100% 80% 70% 70%

Table 44. Max regrets for choosing M0 with relative measures.
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The costs of overlooking potential recalls vary largely from our randomly gen-
erated data sets, which indicates not only considering recalls in initial designs is
necessary but also accurately predicting product recall probability can be crucial to
effectively design the network.

4.6 Conclusions

This chapter addresses the supply chain safety control issue by designing the
supply chain network to incorporate the negative effects of product recalls. This
work focuses on managing the reverse flow (recalled products) in a cost-effi cient man-
ner. We study the effi cient way of managing random and rare major product recalls
and consider how to quickly build a reprocessing network to dispose recalled prod-
ucts. We study the location-allocation problem with random occurrence of product
recalls and treat the recall incidences as disruptions to the supply chain. Three
features distinguish our problem from other location-allocation problems. Firstly, fa-
cility location and allocation decisions occur in two stages. Secondly, the second stage
location-allocation happens under uncertainty. Thirdly, reverse logistic flows exist in
the second stage.

We design a two-stage stochastic mixed integer programming model, in which
we locate the manufacturing plants in the first stage and the reprocessing/disposal
facilities in the second stage. We adopt a scenario-based approach to describe the
uncertainty of major recall events that may happen in manufacturing plants as well as
of availability of reprocessing facilities. Given the complexity induced by our nested
facility location problem, we devise an algorithm based on Lagrangian relaxation to
solve the uncapacitated case.

The existing literature treats reverse flow on day-to-day basis. This modeling
approach does not serve major product recalls well. We fill the gap by designing
an optimal network that can accommodate product returns in the context of major
product recalls.

We compare total cost and computation time in the search of optimal modeling
setting in three scenarios based on the minimax regrets method using both relative
and absolute measures. Our experiments test four sets of parameters settings: recall
probability, capacity abundance, costly reverse flows and facility availability. We find
that facility availability in the second stage does not significantly impact the choice
of the best model setting. However, we find that designing with recall considerations
minimizes worst-case regrets. Moreover, considering potential product recalls reduces
total costs in the long run — disregarding potential recalls could lead to selection
of plant locations that initially seem to minimize costs, but that in hindsight are
risky candidate sites with high expected costs to handle possible recalls. Risks of
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not considering recall in network design decrease when plants’capacity abundance
increases.
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Chapter 5
Thesis Summary and Concluding Remarks

In this thesis, we examine three important topics of product recall manage-
ment optimization with a particular focus on recall timing, recall risk control with
quality investment, and post-recall damage mitigation with reprocessing center lo-
cation. Real-world incidents of recent years such as the GM’s decade-long delay of
initiating the Cobalt recall, XL’s discarding of tons of beef products to landfills, and
Samsung’s multi-billion-dollar settling of potentially explosive Galaxy Note 7s have
demonstrated that poor recall management can result in great harm to the company,
the customers, and the public at large. Our research has practical implications for
improving product recall management using optimization tools.

The first essay investigates the “when to initiate the product recall”problem
in a dynamic decision making process. Using our dynamic programming model that
updates the estimation for product defect rate, we solve for a threshold curve that
defines the maximum number of returned products at each stage beyond which ini-
tiating product recall is optimal. Our numerical experiments show that threshold
curves are sensitive to costs of managing product returns and recalls. That is, if man-
aging recalls is much more expensive than managing returns, then managers tend to
“wait-and-see”and, thereby, take higher recall risks.

Our primary contribution to the literature is combining dynamic programming
and the conjugate property of beta distributions and Bernoulli processes to model
and solve the product recall timing optimization problem. Due to computational
complexity, our proposed dynamic programming model faces the limitation of problem
size. We adopt the simulation method using the structure of threshold curve to solve
large-sized problems to balance solution accuracy and computation time.

The second essay explores “how to reduce product recall risks”using produc-
tion quality investment. Our primary contribution is that we model and solve this
optimization problem by extending the classic single-period stochastic newsvendor
problem. Introducing a second decision variable of quality level, we capture its rela-
tionships with recall probability and production cost with monotone functions. Since
the adopted function forms are very general, our model is neither convex nor con-
cave. Our parametric studies, however, reveal some interesting features such as the
observation that optimal ordering quantity and quality level have a conflicting re-
lationship; that is, most parameter changes lead one to increase and the other to
decrease. Another finding is that increased profitability discourages quality level,
which can be explained by viewing quality level as a cost factor since production
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cost is a non-decreasing function of quality. We further extend the model of internal
suppliers to multiple external suppliers. Our numerical experiments suggest external
suppliers satisfy their demands independently and respond very little to the potential
requirements of covering other suppliers’demand in the case of product recall.

The third essay seeks to answer “how to reduce recall cost” from the per-
spective of locating reprocessing centers. Our primary contribution is that we model
and solve a two-stage stochastic mixed integer programming model that combines
closed-loop network design and disruption management. We adopt a scenario-based
approach to describe the uncertainty of product recalls and devise a Lagrangian-
relaxation-based algorithm to solve the uncapacitated case. Our numerical experi-
ments show that designing networks with product recall concerns reduces worst-case
regrets. Furthermore, considering potential recalls in the location design reduces total
expected costs in the long run, given relative tight capacity abundance, inexpensive
to expensive reverse flow cost, and scarce to suffi cient facility availability.

The research in this thesis can be extended in several directions. To address
large-sized recall timing optimization in the dynamic programming model, we can
adopt the neurodynamic programming method studied by Bertsekas and Tsitsiklis
[7] to find an approximate function form for the model objective. To extend our
efforts for reducing recall risks with quality control, we can devise a random price-
dependent demand function– as summarized by N. Petruzzi and M. Dada [33]–
instead of assuming both demand and price are exogeneous for higher cross-functional
effectiveness. Our closed loop network design model requires accurate estimation of
product recall probability; we can extend this model with accuracy estimation of
predicting product recall probability as studied by M. Lim et al. [23].
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