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ABSTRACT 

This thesis presents the results of an ongoing development of a near-field microwave 

imaging system. The thesis mainly focuses on the image reconstruction algorithms and 

data processing. Two linear-inversion methods, block circulant with circulant blocks 

(BCCB) scattered-power mapping (SPM) and convolution-based SPM, have been 

proposed. Both methods are general and efficient in solving the linear inverse problem. 

The images are reconstructed in quasi-real time with the BCCB SPM and in real time 

with the convolution-based SPM. A new method of building the SPM system matrix 

formed by the calibration object power maps is proposed. It allows for a reduced number 

of calibration measurements. BCCB SPM and convolution-based SPM are intended as a 

tool to solve weak-scattering problems or as a linear-inversion module within nonlinear 

iterative reconstruction. 

An algorithm has been developed for the de-noising of S-parameter data used in 

microwave imaging. It enables the efficient estimation of the noise-free signal component 

and its separation from the noise component in 2D-scan data sets. The proposed algorithm 

offers several benefits in imaging. First, it can suppress noise and uncertainties in the data 

used as input to the reconstruction algorithms. Such noise and uncertainties lead to image 

artifacts and errors. Second, the condition number of the BCCB system matrix improves 

as a result of the de-noising preprocessing of the raw data. The algorithm can also be used 

to quantify the imaging system’s dynamic range. Finally, it allows estimating the signal-

to-noise ratio of a particular data set. 
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Another development is concerned with a novel calibration strategy for near-field 

quantitative linear-inversion methods. It employs a metallic scattering probe embedded in 

the background. The biggest advantage of the calibration with metallic scattering probe is 

the target-independent quantitative accuracy. Also, full polarimetric information about the 

incident field can be readily obtained. 

An axial-null illumination has also been proposed to simplify the calibration of 

microwave imaging systems. Such illumination also enhances the spatial resolution. It 

can be achieved with various array configurations but a minimum of two transmitting 

antennas are required. Due to the intrinsic antisymmetry of the axial-null illumination, the 

baseline signals are suppressed down to the noise level of the measurement system. 

Therefore, the most important advantage of the proposed imaging setup is that it 

eliminates the need for background (or baseline) measurements. The discussed 

improvements are expected to occur for any imaging technique that exploits wave-like 

physical fields. 
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Chapter 1            

          

Introduction 

Equation Chapter (Next) Section 1 

1.1 Background 
 

Microwave imaging is at the center of attention for many researchers around the 

world. It has a wide breadth of short-range applications in areas such as through-the-wall 

imaging [1], concealed weapon detection [2][3], non-destructive testing and evaluation 

[4][5] and biomedical imaging [6]. Within biomedical imaging, early-stage breast cancer 

detection has gained much attention [7]. Microwaves are nonionizing and they can be 

emitted and received with relatively cheap and compact components. However, when it 

comes to microwave tissue imaging, fundamental problems such as penetration depth, 

coupling power into the tissue, resolution limits, tissue heterogeneity, etc., impose a 

significant challenge to the progress toward commercial and clinical applications [8]. 

Microwave imaging aims at reconstructing the electrical and magnetic properties of 

objects as functions of position. Qualitative approaches produce the location and shape of 

objects which exhibit property contrast with respect to the background medium. The 

quantitative approaches, on the other hand, yield an estimate of the target’s electrical 

properties at each spatial point. Qualitative methods are widely used for detection of 

abnormalities even though there is no quantitative feedback. These methods often employ 
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a linearized model of scattering allowing for quick inversion. Thus, an image is 

reconstructed practically in real time. However, the results may not be satisfactory if the 

linearized forward model is an inadequate representation of the actual scattering 

processes. Qualitative methods include holographic [9]-[12], sensitivity-based [13][14], 

confocal [15]-[17], time-reversal [18][19] methods, and others. 

Quantitative techniques that are widely used in microwave imaging are the Born 

iterative methods [20]-[22], the stochastic optimization methods [23]-[25] and the 

deterministic iterative procedures [26]-[28]. These methods explicitly (or implicitly) 

update the forward model in an iterative manner to match the measured data. The 

quantitative reconstruction solves the nonlinear scattering problem which takes into 

account multiple-scattering effects and is valid for scatterers of any electrical size and 

dielectric contrast. The inverse-scattering problem is intrinsically ill-posed and is tackled 

by time-consuming iteration loops aided by appropriate regularization strategies. The 

convergence of the quantitative methods depends critically on the fidelity of the forward 

model. 

In microwave imaging, the scanning hardware usually employs acquisition surfaces of 

canonical shapes: planar, cylindrical, or hemispherical, which simplifies the 

reconstruction process. The data (back-scattered and/or forward-scattered signals) can be 

acquired either through mechanical scanning or through electronically-switched arrays. 

The transmitting antennas are designed to conform to the respective surface shape and to 

have the radiation maximum more or less along boresight and aiming at the center of the 

examined volume. This design choice achieves stronger scattering signals from possible 
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targets – the stronger the illumination is, the stronger the scattered field. Further, in 

forward-scattered (transmission coefficient) data acquisition, it is customary to align at 

least one of the receiving antennas (the sensors) along the transmitters’ boresight in order 

to minimize the signal path, thereby maximizing the signal strength. In back-scattered 

(reflection coefficient) data acquisition, it is customary to use the same antenna as a 

transmitter and a receiver along with a duplexing device that separates the incoming 

(reflected) signal from the outgoing (transmitted) one. 

Multi-illumination configurations, also known as illumination-diversity techniques, 

have been used widely in microwave imaging [17][27][29]-[32]. At the expense of 

increased hardware complexity, such configurations allow for more accurate target shape 

reconstruction and localization. This is a consequence of collecting data from multiple 

perspectives. Illumination diversity along with frequency diversity can drastically 

improve the performance of microwave imaging provided the design of the system is 

optimal. 

The physical assessment of the imaging system aims at determining the quality of the 

data before they are processed to produce an image. The raw-data quality is critical for 

the final image fidelity and it can be assessed independently from the reconstruction. The 

medical imaging community has adopted objective metrics unified across various 

modalities [33]-[35]. The metrics for the physical assessment of microwave and 

millimeter-wave imaging systems exist but there appears to be no unified system of 

definitions and assessment methods. 
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1.2 Motivation 
 

Recently, a method has been proposed offering the benefits of both quantitative 

reconstruction and fast performance, while not being nonlinear and/or iterative [36][37]. 

The key lies in the experimentally acquired resolvent kernel which properly scales the 

inversion problem thereby enabling quantitative imaging. Similar to other direct-inversion 

methods, the applicability of the work in [36] and [37] is rather limited since its forward 

model is linearized with the Born model of scattering. It is well known that the Rytov 

approximation outperforms Born approximation when electrically large low-contrast 

objects are imaged since the accuracy of the Rytov approximation does not depend on the 

scatterer’s size [38][39]. Therefore, employing the linear Rytov model in addition to also 

being capable of employing the linear Born model would significantly expand the 

method’s applicability. 

In [36] and [37], calibration measurements are used to quantify the resolvent kernel, 

thus providing a high-fidelity forward model. For that, the calibration object, or CO has to 

be scanned. The CO response constitutes a point-spread function (PSF) which in turn 

provides the respective resolvent kernel of the data equation. By definition, the calibration 

object is comprised of a scattering probe embedded in the background medium. For the 

case of planar acquisition surfaces and when the background is homogeneous or layered 

(translationally-invariant systems), it is required to have a four-time larger scanning area 

for the CO measurement as per [36] or [37]. Also, for accurate quantitative results, the 

relative permittivity of a voxel in the inspected object must be close to that of the 
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dielectric scattering probe of the CO [36][37]. Since the permittivity of the scattering 

probe is fixed, the quantitative reconstruction of objects with widely varying permittivity 

distribution, such as living tissue, is not likely to be accurate. Consequently, a four-time 

larger scanning area for the CO measurement and a fixed permittivity of the dielectric 

scattering probe make the system-calibration time-consuming. 

Another important part of the microwave system calibration is concerned with 

background de-embedding. In both transmission and reflection measurements, the single-

source illumination scheme results in relatively strong received signals even when the 

scatterer-free background is measured. These signals are referred to as the baseline 

signals, which are representative of the incident-field component in the scattering 

equations. The simplest approach to background de-embedding is based on the 

assumption that the mutual coupling between the acquisition hardware and the target can 

be neglected and the signal of the object under test is simply a superposition of the 

baseline and the scattered signals [10][36][37]. Two main problems ensue due to the need 

to estimate the baseline signal. First, the respective calibration measurements are needed 

– often performed before each measurement of an object under test. Second, the baseline 

signal contains systematic and stochastic noise as well as positioning uncertainties at 

levels comparable to those contained in the signal of the object under test. Provided the 

baseline measurement is performed under exactly the same circumstances as those of the 

object under test – a challenging requirement on its own – the systematic errors should 

cancel. Unfortunately, stochastic noise and uncertainties in the positioning do not cancel. 



PhD Thesis – Denys Shumakov Chapter 1 McMaster University – ECE 

 

6 

 

In signal processing, the extraction of the signal from noisy data is a long-standing 

problem [40]-[42]. The signals are usually dependent on a single variable, e.g., time. In 

the case of microwave imaging, raw frequency-sweep data are usually comprised of S-

parameters that depend on the frequency and the sampling location, e.g., (x, y) in planar 

scanning. Also, the S-parameters are complex. Separating the signal from the noise and 

positioning uncertainties in complex-valued 2D data at each sampled frequency would be 

beneficial in image reconstruction [6][43] minimising the need to employ case-specific 

filtering and regularization. 

1.3 Contributions 
 

The author has contributed to the development of a near-field microwave imaging 

system in the following ways: 

a) Developed two linear-inversion methods, block circulant with circulant 

blocks (BCCB) scattered-power mapping (SPM) and convolution-based SPM, 

reconstructing images in quasi-real time and in real time, respectively. Both 

methods exploit the key idea of the work in [36], but are more general and far more 

efficient in solving the linear inverse problem. Also, a reduced number of 

calibration measurements are required in comparison with the previous work. The 

methods are intended as a tool to solve weak-scattering problems or as a linear-

inversion module within nonlinear iterative reconstruction. 

b) Developed an axial-null illumination (ANI) to simplify the calibration of 

microwave imaging systems. Such illumination also enhances the spatial 
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resolution. It can be achieved with various array configurations but a minimum of 

two transmitting antennas are required, which is a well-known form of differential 

illumination. The most important advantage of the proposed imaging setup is that it 

eliminates the need for background (or baseline) measurements. 

c) Developed a novel calibration strategy for near-field quantitative linear-

inversion methods. It employs a metallic scattering probe embedded in the 

background. The advantages include an ability to obtain full polarimetric 

information as well as a target-independent quantitative accuracy. The proposed 

calibration strategy uses an S-parameter model of scattering reported in [45]. 

d) Developed an algorithm for the de-noising of S-parameter data used in 

microwave imaging. The complex S-parameter frequency-sweep data are collected 

through scans over an acquisition surface and the algorithm separates efficiently 

the resultant 2D responses (one frequency at a time) into a signal and a noise 

component. No a priori knowledge of the scanned object is required. The signal 

component estimates the noise-free data whereas the remaining data content 

estimates the noise and uncertainty in the measurement. The algorithm can also be 

used to quantify the imaging system’s dynamic range and to estimate the signal-to-

noise ratio (SNR) of a particular data set. 

Parts of this work have been published in [36][44]-[48]. 

1.4 Outline of the Thesis 
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This thesis presents the results of an ongoing development of a near-field microwave 

imaging system. The thesis mainly focuses on the image reconstruction algorithms and 

data processing. Special attention is paid to such aspects of the electromagnetic (EM) 

inverse scattering theory as the forward model formulation, the resolvent kernel in the 

integral equation of scattering as well as the Born and Rytov scalar models of scattering. 

In terms of the hardware part, the multi-illumination schemes along with spatial 

resolution limits are studied in order to propose optimal illumination schemes for near-

field microwave imaging. Calibration of the near-field microwave imaging systems is 

discussed as well, with a novel calibration strategy for the quantitative imaging being 

proposed. 

Chapter 2 introduces the data equation of EM scattering cast in the form of S-

parameter responses. The data equation is central to the developments in the subsequent 

chapters as it serves as the forward model, on which the direct inversion methods are 

based. This is followed by a discussion of the different strategies for the estimation of the 

resolvent kernel in the forward model of scattering. In addition to the well-known 

calibration with a dielectric scattering probe, a novel calibration with a metallic scattering 

probe for near-field quantitative imaging is introduced. The chapter ends with a detailed 

discussion of the linearized forward models of scattering used in this thesis.  

Chapter 3 is dedicated to the reconstruction theory of two linear inversion methods, 

BCCB SPM and convolution-based SPM, as applied to the frequency-domain 

measurement data. Both qualitative and quantitative reconstruction is discussed. A new 

method of building the SPM system matrix formed by the CO power maps is proposed. 
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For the case of planar acquisition surfaces and when the background is homogeneous or 

layered (translationally-invariant systems), the coordinate translation in Fourier space is 

presented. It leads to the system matrix being BCCB in the case of 2D imaging or block 

circulant with BCCB blocks in 3D imaging. Pros and cons of the proposed linear 

inversion methods are discussed in detail. 

Chapter 4 presents the de-noising algorithm for enhancing microwave imaging. The 

extraction of the signal from noisy data is performed with an iterative procedure similar to 

the empirical mode decomposition. The algorithm’s description is followed by the 

validation examples. De-noising raw data before reconstruction and quantifying the 

performance of an acquisition system are two possible applications of the algorithm in 

microwave imaging. 

In Chapter 5, SPM validation examples are presented. Both the 2D and 3D imaging 

cases are considered with the calibration strategies employing a dielectric scattering probe 

and a metallic scattering probe. The apodization function applied in the real space as a 

pre-processing step is studied. It is also shown that the reconstruction fidelity improves 

when the de-noising algorithm is applied to the raw data. 

Chapter 6 is concerned with illumination-diversity techniques widely used in 

microwave imaging. This chapter starts with the presentation of a rigorous theory of the 

spatial resolution in the case of multi-illumination schemes. The cross-range resolution 

limits with planar scanning are derived analytically in the far zone allowing for a 

comparison between the conventional single-source illumination and the double-source 
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illumination. Next, the ANI for near-field microwave imaging is introduced. In addition 

to the improved cross-range resolution, the proposed illumination scheme simplifies the 

imaging system calibration. 

The concluding Chapter 7 reviews the main points of the thesis and elaborates on the 

importance of the proposed work. Recommendations for future research are discussed as 

well. 
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Chapter 2           

            

Forward Model of Scattering for S-parameters 

Equation Chapter (Next) Section 1 

2.1 Introduction 
 

In the models of EM scattering and in microwave imaging in particular, it is customary 

to use the integral equation of scattering where the response is the electric field vector E. 

However, in practice, the measurements provide a scalar response as a function of 

frequency or time. The frequency-domain measurements are typically S-parameter 

frequency sweeps in a wide band. In prototypes, these measurements are often performed 

with a vector network analyzer (VNA). Both magnitude and phase information are used 

in the reconstruction process [1]. 

Consequently, the E-field at the location of the antenna needs to be linked to the 

measured responses. This link is not straightforward and it complicates the calibration of 

the microwave imaging systems. Oversimplifying the relationship between field and 

response deteriorates the accuracy of the forward model and the quality of the image 

reconstruction. 

In view of the above, microwave imaging can benefit from a forward model of 

scattering that leads to a data equation where the data are the actual responses, not the E-

field. The problem of relating the E-field model of scattering to the voltage at the antenna 
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terminals has been addressed before in the context of imaging [2]-[4]. In [2], Green’s 

function is derived for the volume integral equation of scattering where the response is in 

the form of the S-parameters of the network formed by the transmitting (Tx) and 

receiving (Rx) antennas together with the imaged volume. The derivation adopts the 

common-impedance definition of the S-parameters. Green’s function is termed “Green’s 

vector function” as it appears in the form of a vector – it is proportional to the incident 

field produced by the Rx antenna when this antenna operates in a Tx regime. The 

derivation of Green’s vector in [2] has been conducted for a free-space background using 

an expansion in spherical modes. It is argued that in principle the result should also hold 

in the case of heterogeneities. 

Recently, an integral equation of scattering for the S-parameters or the voltages at the 

antenna terminals has been proposed in [5]. The novelty and the advantage of this 

equation is that it is general with regard to the medium and the antennas used in the 

measurement setup. It is shown rigorously that: (i) a form of Green’s vector function 

exists for any complex-valued scalar response defined as a functional of the field 

distribution; (ii) the so found Green’s function is valid in any reciprocal medium bounded 

by any type of boundary conditions. Note that the derivation in [5] confirms the common-

impedance formula reported in [2] for the case of heterogeneous media.  

The reconstruction theory presented in this thesis is cast in the frequency domain, 

however it can accommodate time-domain measurements as well. Note that all frequency-
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domain quantities incorporate the exp(i )ωt  time-harmonic factor, where i 1  , ω is 

angular frequency, and t is time.  

In frequency-swept measurements, a network of rN  receivers and tN  transmitters 

acquires the data at fN  frequencies ( )mf  ( 1,..., fm N ), one frequency at a time. Here, 

we assume that the data are in the form of S-parameters ( )m
ijS  ( r1,...,i N  and 

t1,..., )j N . The data equation is obtained as [5] 

    ( ) ( ) ( ) ( ) ( )
OBJ, RO, OBJ RO, OBJ,( ) ( ) ( ) ; ;m m m m m

nn n i j

V

S S κ ε d


        r r r E r r E r r r , (2.1) 

where t r1,...,n N N   is the response index, 1,..., fm N  is the frequency sample index, 

r  is the position inside the inspected volume V  , whereas r is the observation position. 

Each nth experiment corresponds to a unique (ij) antenna pair, where the position of the 

ith (Rx) antenna is uniquely defined by r. Figure 2.1 illustrates a planar raster-scanning 

arrangement where the positions of the Tx and Rx antennas are denoted as Txr  and Rxr , 

respectively. Since the mutual position of the antenna couple remains the same during the 

scan, one position-vector r suffices to describe the positions of both antennas. For 

example, in Figure 2.1 we can define the position of the Rx antenna as Rx r r , which 

also defines uniquely the position of the Tx antenna as Tx ˆD r r z , where ẑ  is the unit 

vector along z. 

Note that throughout the thesis, position vectors and vectors of physical fields are in 

upright bold, whereas matrices are in italic bold. The complex constant at the mth 
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frequency ( ) ( )
0i / 2m m

n i jκ ω ε a a   is known. It depends on two quantities: (i) the root-

power wave ia  (W
1/2

) exciting the ith port when the ith antenna operates in a transmitting 

mode; (ii) the root-power wave ja  (W
1/2

) exciting the jth port that feeds the Tx antenna. 

The physical meaning of the root-power waves is explained in [6]. As an example, if the 

field phasors in (2.1) are root-mean-square (RMS) phasors, then ia  is the square root of 

the power injected into port i . Note that an S-parameter is associated with a particular 

mode of the ith port and ia  relates to the power of that mode only. Further, OBJ( )ε  r  is 

the relative permittivity contrast, 

 OBJ OBJ RO( ) ( ) ( )ε ε ε    r r r . (2.2) 

In (2.1) and (2.2), OBJ (object) stands for CO (calibration object) or OUT (object under 

test). The scatterer-free measurement setup is referred to as the reference object (RO). 

Here, the permittivity contrast is assumed frequency-independent. However, if the 

dispersion relation is known and separable from the spatial dependence, it can be easily 

incorporated in the resolvent kernel [7]. 

It is seen that the data equation (2.1) eliminates the need to approximate Green’s 

dyadic, which is now reduced to Green’s vector function, ( )
RO, ( ; )m

i
E r r . In this form, 

Green’s function can be accurately obtained via simulations or measurements. 
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Figure 2.1 Schematic configuration of the planar scanning setup with the Tx and Rx 

antennas aligned along each other’s boresight. O denotes the origin of the coordinate 

system whereas D is the distance between the acquisition surfaces. Double headed arrows 

show the direction of the scan. Since the mutual position between the antennas remains 

the same during the scan, one position-vector r suffices to describe the positions of both 

antennas. 

 

The kernel in (2.1) consists of two field distributions. The first, ( )
RO,
m

iE , represents the 

incident field that would be generated by the ith Rx antenna in the nth experiment if this 

antenna operated in a Tx mode. On the other hand, ( )
OBJ,
m

jE  is the total internal field 

produced by the jth Tx antenna in the nth experiment. Note that the ordered pair ( ; )r r  

indicates that the internal field distribution is a function of V r , whereas the position 

of the respective transmitting antenna is at r (see Figure 2.1). It is consistent with the 

existing convention o s( ; )r r , in which the first position vector is that of the observation 

point, while the second position vector is that of the source point. 

2.2 Strategies for Estimation of the Linearized Resolvent 

Kernel 
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Under the Born approximation, (2.1) becomes linear with respect to the unknown 

permittivity contrast and the nth response at the mth frequency: 

 
( )( ) ( ) ( )

OBJ, RO, OBJ RO, RO,( ) ( ) ( ) ( ; ) ( ; )
mm m m

nn n i j

V

S S κ ε d


        r r r E r r E r r r . (2.3) 

The field dot-product distribution in the square brackets in (2.3) is referred to as the 

linearized resolvent kernel and its acquisition is part of the system calibration. We next 

examine different strategies of estimating the resolvent kernel. 

2.2.1 Acquiring the Resolvent Kernel Analytically 

 

In far-zone microwave imaging, the incident fields can be approximated analytically, 

which is computationally inexpensive and does not require any specific hardware or 

simulation software. The far field of an antenna in an open space can be approximated 

using: (a) the plane-wave approximation, or  bexp i k r , (b) locally plane-wave 

approximation, or  bexp i k r , (c) the spherical-wave (also known as isotropic-wave) 

approximation, or bexp( i )k r

r


, (d) the cylindrical-wave approximation, or 

(2)
b0 ( ).H k ρ  Here, bk  represents the background wave number, bk  is the background 

wave vector, r is the distance from the antenna to the observation point, and r is the 

position vector of the observation point relative to the antenna. Note that the cylindrical-

wave approximation is used in the 2D case of microwave tomography with ρ being the 

distance from the antenna to the observation point. 
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The locally plane-wave approximation is extensively used in millimeter-wave 

reflection holography [8][9]. This approximation is sufficiently accurate when the 

following conditions are met: (i) the target is in the far zone of the transmitting and 

receiving antennas, (ii) the distance between the target and the scanned aperture is larger 

than the biggest dimension of the scanned aperture, and (iii) this distance is at least an 

order of magnitude larger than the wavelength. However, in near-field imaging some or 

all of these conditions may not hold, which deteriorates the fidelity of the forward model 

used in the reconstruction. 

The linearized model of scattering (2.3) can be improved by taking the radiation 

pattern of the antenna into account [10]. This is beneficial when high-gain antennas are 

used because their radiated power is significantly smaller off boresight. Besides, the 

phaseless radiation pattern of antennas is always known. It should be noted that in 

microwave imaging, it is customary to use wide-beam antennas so that the target is 

interrogated from wider viewing angles, thereby improving the spatial resolution. 

Most importantly, the analytical approximations of the resolvent kernel yield only a 

qualitative outcome. This is because they lack the proper scaling that depends on: (i) the 

power and phase of the actual excitation and (ii) the volume and contrast of an actual 

small scatterer. Also, note that analytically obtained resolvent kernels are not valid in 

near-field imaging applications. 

2.2.2 Acquiring the Resolvent Kernel with Simulations 
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In this case, the field dot-product distribution is estimated by simulating the 

measurements in the background medium for all DN  responses at all fN  frequencies. 

Two simulations have to be done at each response – one for the excitation with a 

transmitter and one for the excitation with a receiver set to operate in a transmitting mode. 

Keeping in mind that the complexity of an imaging setup is fairly high, the computational 

time may exceed even a week. 

The major advantage of using simulations is in obtaining both vectorial distributions, 

( )
RO, ( ; )m

i
E r r  and ( )

RO, ( ; )m
j
E r r  in (2.3). Note that one represents Green’s function whereas 

the other approximates the total internal field. Knowing these quantities enables 

quantitative imaging via nonlinear iterative reconstruction which involves updating the 

two field distributions separately. Also, simulations are advantageous due to the absence 

of stochastic noise. 

On the other hand, numerical errors such as mesh-convergence errors or imperfect 

absorbing boundary conditions are present. They can be reduced, however, by performing 

a mesh convergence study and using a refined mesh in the subsequent simulations. 

Unfortunately, this refinement may also lead to a prohibitive computational burden. 

The main disadvantage of the simulated resolvent kernels is that they are often 

incapable of properly modeling the actual setup due to modeling errors [11][12]. Unlike 

numerical errors, modeling errors are much more difficult to eliminate. They arise from 

the inability to account for errors within the fabrication tolerances of the antennas and the 

imaging setup, uncertainties in the constitutive parameters of the materials used in the 
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measurement enclosure, deformations caused by temperature or humidity, aging of the 

materials, etc. Moreover, the complexities in the cables, connectors, screws, supporting 

plates and so on are often ignored. Finally, the electromagnetic interference and 

positioning errors in the acquisition setup as well as the measurement errors are difficult 

to predict. All these factors corrupt the forward model fidelity, thereby making the 

quantitative results obtained with a simulated resolvent kernel not reliable, especially in 

near-field imaging. 

2.2.3 Acquiring the Resolvent Kernel Experimentally 

 

The experimental acquisition of the resolvent kernel ( ) ( )
RO, RO,( ; ) ( ; )m m

i j
 E r r E r r  offers the 

best fidelity [7][12]. For that, an electrically small scattering probe is placed in the RO 

and is measured. Together with the RO, this scattering probe forms the CO. We next 

examine two calibration strategies that can be used in near-field quantitative linear 

inversion: the one employing a dielectric scattering probe and the second one employing 

a metallic scattering probe.  

2.2.3.1 Calibration with Dielectric Scattering Probe 

 

Calibration with a scattering probe has been widely used in optical, acoustic and 

microwave imaging [12]-[19]. Here, it is discussed within the framework of linear-

inversion methods in near-field microwave imaging [12][13][19]. The concept is simple – 

an electrically small cube or a sphere with a known relative permittivity contrast is used 

as a scattering probe within the RO.  Its maximum dimension has to be equal to or smaller 
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than CO / 4 , where CO  is the shortest wavelength in the CO. This ensures that the 

scattering probe is illuminated by a relatively uniform wave field. As a whole, the volume 

of a scattering probe and its relative permittivity must satisfy the limits of Born’s 

approximation [20]. We emphasize that since the CO response represents the resolvent 

kernel of each particular imaging system, the rule of thumb is that if the CO cannot be 

imaged, the OUT cannot be reconstructed either. Thus, this calibration measurement also 

provides information about the system sensitivity. 

 

Figure 2.2 Schematic configuration of the planar scanning setup for the calibration object 

measurements: two aligned antennas (shown with thick black lines) separated by a 

distance d are moving together along the scanning route (shown with blue dash lines) in a 

raster fashion. A scattering probe (red cube) is placed at the origin. The sampling position 

is  , |uv u vx y zr . The sampling involves xN  samples along x and yN  samples along y. 

 

The scattering probe is positioned at the center of the inspected domain ( 0 0 r ) and 

the sensors scan over the whole acquisition surface (Figure 2.2). For a single voxel-size 

scattering probe of known relative permittivity contrast CO  embedded in the RO, the 

resolvent kernel at 0 0 r  can be obtained from (2.3) as 

 
 

( )
( ) CO,

RO, RO, ( )0;
vCO

( )m
m n

i j m
n

S




    r r

r
E E

 
, (2.4) 
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where v  is the volume of the scatterer and ( ) ( ) ( )
CO, CO, RO,( ) ( ) ( )m m m

n n nS S S  r r r  are the 

scattered CO responses. These responses form the PSF of the imaging system. 

In a uniform RO, measuring the PSF with a scattering probe at the center of an imaged 

domain is sufficient since the CO responses at all other lateral locations p V r , 

v1,...,p N , can be obtained from it by coordinate translation. Let the CO responses 

acquired on a planar surface with a scattering probe at the center,  0 0 0, |x y z   r , be 

denoted as 
0

( )
CO, ,

( )m
uvn

S 
r

r , 1,..., xu N , 1,..., yv N . Let the CO responses due to a 

scattering probe at  , |p p px y z   r  be denoted as 
( )
CO, ,

( )
p

m
uvn

S 
r

r . Then, the following 

holds 

 
0

( ) ( )
CO, , CO, ,

( ) ( )
p

m m
uv uvn n

S S    
r r

r r r , (2.5) 

where  0 0 0, | 0p p px x y y          r r r . 

Obtaining the CO responses from the PSFs at various range locations of the scattering 

probe is not as straightforward since the planar system scans only laterally and 

translations along range do not apply. The simplest and most reliable approach is to 

acquire the PSFs at several range locations of the scattering probe inside the volume of 

interest. By interpolating the acquired PSFs with respect to z, images at other range 

locations can be obtained. 

2.2.3.2 Calibration with Metallic Scattering Probe 
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Calibration strategy employing a metallic scattering probe has been recently proposed 

in [5]. It uses the theoretical model of scattering from an electrically short perfectly 

conducting wire [21]. 

Under the linear Born approximation, the CO scattered response ( )
CO, ( )m

nS r  can be 

obtained from (2.3) as 

 
( )( ) ( )

CO, CO RO, RO,Δ ( ) ( ) ( ; ) ( ; )
mm m

nn i j

V

S κ ε d


       r r E r r E r r r , (2.6) 

where COε  is the CO relative permittivity contrast as per (2.2). Measuring the system 

PSF allows for a straightforward extraction of the kernel 
( )

RO, RO,( ; ) ( ; )
m

i j
   E r r E r r  in 

(2.6) similarly to (2.4). Next, it is shown that each of the field distributions comprising 

this kernel can be obtained separately from the S-parameter measurements. 

Assume that the scattering is due to an electrically short perfectly conducting straight 

very thin piece of wire. This scattering problem is well known (see [21]). Surface current 

density ind( )
s,

m
jJ  is induced at the wire’s surface ws  upon illumination by the jth antenna. 

The CO scattered response can then be expressed in terms of this induced source as [5]: 

 
w

( ) ( ) ind( )
s,CO, RO,

1
( ) ( ; ) ( )m m m

jn i
s

i j

S ds
a a

    r E r r J r . (2.7) 
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As shown in [21], the surface current can be replaced by a current along the wire 
ind( )m
jI  

provided the wire’s radius a is much smaller than its length 2h , a h . In this case, (2.7) 

reduces to 

 ( ) ind( ) ( )
CO, RO,

1
ˆ( ) ( ) ( )

hm m m
jn i

h
i j

S I x x dx
a a 

      r x E . (2.8) 

Here, x̂  is along the wire’s axis and x  is the axial position. Further, if ( )
0 1mk h  , the 

induced current is expressed as [21]: 

 

2

ind( ) ( )
0,( ) 1m m

j j

x
I x I

h

  
    

   

, | |x h   (2.9) 

where 

  ( ) ( )( )
0, RO,ˆm mm

j jI  x E , (2.10) 

 

   

( ) ( ) 2
0 r,RO( )

2 3
( ) ( )

i

1 1 1 1 2
ln 1 i

2 1 2 9

m m
m

m m

h

k h k h


    

          

  





 

, (2.11) 

  
2

1 /a h  . (2.12) 

Note that 
( )
RO,
m

jE  is assumed constant along the wire’s extent since the wire is 

electrically small and sufficiently far from the jth source. With this assumption, the 

integration in (2.8) is performed using (2.9), which yields 
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w

( )
( ) ( ) ( )

w wRO, RO,CO, ,

4
ˆ ˆ( ) ( ; ) ( ; )

3

m
m m m

i jn
i j

h
S

a a
           r

r x E r r x E r r


. (2.13) 

Here, wr  is the position of the wire’s center.  

We can see that each of the ( )
RO,
m

iE  and ( )
RO,
m

jE  distributions can be mapped individually 

by S-parameter measurements. The separation of these two field distributions in the 

kernel is critical in the nonlinear reconstruction methods where ( )
RO,
m

jE  and/or ( )
RO,
m

iE  are 

subjected separately to iterative updates. 

Notice that, with a wire scatterer, only one field component may be resolved at a time. 

This is in fact desirable when full polarimetric information is required. With the wire 

being in two mutually orthogonal positions in two consecutive measurements, the 

polarization vector of the wave can be determined since the approach provides both 

amplitude and phase information. Another advantage of the wire shape is its simple 

scattering model, which employs only electric equivalent current (see (2.8)). 

In conclusion, if the inspected volume is uniform, one measurement of the system PSF 

with a scattering probe at the center suffices in estimating the resolvent kernel of the data 

equation for all responses. Even though such measurement has to be repeated for several 

range locations, it still proves to be faster than simulations. 

As a final remark, it should be noted that an acquisition of the measured resolvent 

kernel is impossible when the imaged domain is inaccessible for a scattering probe to be 

embedded in it. In addition, both simulated and measured resolvent kernels cannot be 
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estimated in the case of a completely unknown imaged scene since it cannot be emulated 

before the imaging system is deployed on site. In such cases, we have to resort to 

analytical approximations. 

2.3 Linear Approximations of the Data Equation 
 

2.3.1 Calibration with Dielectric Scattering Probe 

 

 In case of a calibration with dielectric scattering probe, the CO consists of a single 

voxel-size scatterer (the scattering probe) of known relative permittivity contrast CO  

embedded in the RO. Let V   be uniformly discretized into vN  voxels of volume v  and 

let the scattering probe reside at the pth voxel ( v1,...,p N ), the position of which is 

given by p V r . Assuming constant field inside the probe, its nth scattered response, 

 ( ) ( ) ( )
RO,CO, , CO, ,

( ) ( ) ( )
p p

m m m
nn n

S S S   
r r

r r r  (2.14) 

is obtained from (2.1) as 

 ( ) ( ) ( ) ( )
vCO RO, CO,CO, ,

( ) ( ; ) ( ; )
p

m m m m
n p pi jn

S 
      r

r E r r E r r  . (2.15) 

The expression in (2.15) represents the PSF of the nth response of the imaging system. 

2.3.1.1 Localized Quasi-Linear Approximation 

 

To express the total field ECO in the scattering probe in terms of the incident field ERO, 

we utilize the localized quasi-linear (LQL) approximation, which has a wider range of 
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applicability compared to the Born approximation [22][23]. It assumes that the total field 

within an electrically small scatterer is proportional to the incident field via a reflectivity 

tensor λ : 

 ( ) ( ) ( )
CO, CO RO,( ; ) ( ; )m m m

p pj j
  E r r λ E r r . (2.16) 

Note that (2.16) is similar to the localized nonlinear approximation, which employs the 

depolarization tensor Γ  instead of λ  [20][24]. These two quantities are formally related 

by a linear relationship [22]. What is important here is that the localized nonlinear 

approximation is most suitable for the scenarios when the internal field is a smoothly 

varying function of position, which is not the case with near-field imaging. 

We assume that the total field ECO inside the scattering probe is collinear with the 

incident field ERO. In this case, COλ  is expressed through a coefficient CO  as: 

 CO COλ I . (2.17) 

Substituting (2.17) into (2.15) leads to 

 

( )
CO, ,( ) ( )

RO, RO, ( ) ( )LQL
vCO CO

( )
( ; ) ( ; )

p

m
nm m

p pi j m m
n

S 
     

r
r

E r r E r r
  

. (2.18) 

The above is the LQL resolvent kernel of the forward model specific to the nth response 

of the imaging system. 

Next, the forward model (2.1) is applied to the OUT data: 
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 ( ) ( ) ( ) ( )
OUT, OUT RO, OUT,( ) ( ) ( ; ) ( ; )m m m m

nn i j

V

S d


        r r E r r E r r r  . (2.19) 

Neglecting the mutual coupling between the scattering voxels in the OUT, the LQL 

approximation is applied to (2.19) to obtain 

 ( ) ( ) ( ) ( ) ( )
OUT, ,LQL OUT OUT RO, RO,

LQL
( ) ( ) ( ) ( ; ) ( ; ) .m m m m m

nn i j

V

S d


         r r r E r r E r r r    (2.20) 

The substitution of (2.18) into (2.20) with p r r  leads to 

 

( )
CO, ,( ) ( )

OUT, ,LQL OUT OUT ( )
vCO CO

( )
( ) ( ) ( )

m
nm m

n m

V

S
S d





 
      

  


r r
r r r r 

 
. (2.21) 

Note that all the quantities in the square brackets of (2.21) are known and they inherently 

incorporate the Green’s function of the specific imaging setup. 

2.3.1.2 Localized Quasi-Linear Rytov Approximation 

 

Here, we derive the LQL Rytov (LQLR) approximation for the data equation using the 

LQL approximation of the CO internal field (2.16). The LQLR approximation can be 

expressed in terms of the LQL approximation in the following way [25]: 

 

( )
OBJ, ,LQL( ) ( )

OBJ, ,LQLR RO, ( )
RO,

( )
( ) ( )exp

( )

m
nm m

n n m
n

S
S S

S

 
  

  

r
r r

r
. (2.22) 

In the case of OBJ CO , where the scattering probe is at r , we set 

( ) ( )
OBJ, ,LQLR CO, ,( ) ( )m m

n nS S  rr r  and re-arrange to obtain 



PhD Thesis – Denys Shumakov Chapter 2 McMaster University – ECE 

 

34 

 

 

( )
CO, ,( ) ( )

RO,CO, ,LQL, ( )
RO,

( )
( ) ( ) ln

( )

m
nm m

nn m
n

S
S S

S





 
   

  

r

r

r
r r

r
. (2.23) 

Using (2.15) and (2.17), the nth CO scattered response for a scattering probe at r  at the 

mth frequency is obtained as 

 ( ) ( ) ( ) ( ) ( )
vCO CO RO, RO,CO, , ,LQL( ) ( ; ) ( ; ) .m m m m m

n i jnS 
      r r E r r E r r    (2.24) 

It follows from (2.23) and (2.24), that the LQLR resolvent kernel can be expressed as 

 

( ) ( ) ( )
RO, RO,CO, ,( ) ( )

RO, RO, ( ) ( )LQLR
vCO CO

( ) ln ( ) / ( )
( ; ) ( ; ) .

m m m
n nnm m

i j m m
n

S S S
        

rr r r
E r r E r r

  
 (2.25) 

Finally, to obtain the expression for the forward model of scattering under the LQLR 

approximation, we use the expression of the LQL forward model (2.20) and replace its 

resolvent kernel with the one from (2.25): 

 
 

( )
OUT,( )

RO, OUT( )
RO,

( ) ( ) ( )
RO, RO,CO, ,( )

OUT ( )
vCO CO

( )
( ) ln ( )

( )

( ) ln ( ) / ( )
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
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 (2.26) 

Note that we write the expression for 
( )
OUT, ,LQL ( )m

nS r  in the left-hand side of (2.26) 

explicitly. For that, (2.22) is re-arranged similarly to (2.23), but with OBJ OUT  and 

( ) ( )
OBJ, ,LQLR OUT,( ) ( )m m

n nS Sr r . Also, note that the left-hand side as well as all the quantities in 

the square brackets of the right-hand side of (2.26) are known, which allows for 
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formulating a respective system of equations for the unknown distribution OUT ( ) r , 

V r . 

2.3.2 Calibration with Metallic Scattering Probe 

 

Calibration with a dielectric scattering probe has a significant limitation. For accurate 

quantitative results, the permittivity of a voxel in the OUT must be close to that of the 

scattering probe in the CO [13][19]. Since the permittivity of the scattering probe is fixed, 

the quantitative reconstruction of objects with widely varying permittivity distribution is 

not likely to be accurate. In order to achieve target-independent quantitative accuracy, a 

new calibration strategy employing a metallic scattering probe can be used. 

In case of a calibration with metallic scattering probe, the CO consists of an 

electrically short perfectly conducting straight piece of wire embedded in the RO. This 

calibration step aims at acquiring the incident-field distributions due to all antennas (Tx 

and Rx) in the setup. The so-obtained distributions can then be used to construct a 

system-specific scattering model [5]. 

2.3.2.1 Linear Born Approximation 

 

The CO scattered response from an electrically small wire under the linear Born (LB) 

approximation has been obtained in (2.13). Using this result, we can express the resolvent 

kernel as 

   w

( )
CO, ,( ) ( )

w wRO, RO, ( )LB

3 ( )
ˆ ˆ( ; ) ( ; )

4

m
i j nm m

i j m

a a S

h


         

r
r

x E r r x E r r


, (2.27) 
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where w V r  is the position of the scattering probe’s center. The above is the LB 

resolvent kernel of the forward model specific to the nth response of the imaging system. 

Neglecting the mutual coupling between the scattering voxels in the OUT, the LB 

approximation is applied to (2.19) to obtain 

 ( ) ( ) ( ) ( )
OUT, ,LB OUT RO, RO,

LB
( ) ( ) ( ; ) ( ; ) .m m m m

nn i j

V

S d


        r r E r r E r r r   (2.28) 

Substituting (2.27) into (2.28) with w r r  and using ( ) ( )
0i / 2m m

n i jκ ω ε a a   leads to 

 

( )( )
0 CO, ,( )

OUT, ,LB OUT ( )

i 3 ( )
( ) ( ) .

8

mm
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n m
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S
S d

h





 
      
  


r

r
r r r

 



 (2.29) 

All the quantities in the square brackets of (2.29) are known. Note that in (2.27) and 

(2.29), the wire’s axis is along x and it has been assumed that the y and z E-field 

components are negligible. Analogous expressions accounting for the positioning of the 

wire along y and z can be easily obtained and added to the x field term in (2.29). 

2.3.2.2 Linear Rytov Approximation 

 

The linear Rytov (LR) approximation for the data equation is presented next based on 

the LB model. For that, we follow the derivation given in the case of the calibration with 

a dielectric scattering probe (see (2.22)-(2.26)). Thus, the forward model of scattering 

under the LR approximation is expressed using (2.29) as 
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 (2.30) 

The left-hand side and all the quantities in the square brackets of (2.30) are known. Thus, 

the respective system of equations can be formed for the unknown distribution 

OUT ( ), r  V r . 

2.3.3 Limitations of the Linearized Forward Model 

 

The major limitation of all direct-inversion methods is their inability to account for the 

mutual coupling and multiple scattering present in the OUT. Such effects dominate the 

scattering in complex heterogeneous objects such as living tissue, luggage items, 

structural components in civil engineering, etc. 

In general, the accuracy of the LQL approximation and LQLR approximation is a 

function of frequency and the size of the imaged target [20][22][23]. It is well known that 

the original Rytov approximation outperforms Born’s approximation when electrically 

large low-contrast objects are imaged since the accuracy of the Rytov approximation does 

not depend on the scatterer’s size [20][26][27]. Therefore, in general, the LQLR 

approximation is expected to provide additional phase corrections to the simpler LQL 

approximation in the case of electrically-large scatterers. 
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Chapter 3           

             

Theory of the Direct Inversion with Scattered 

Power Maps 

Equation Chapter (Next) Section 1 

3.1 Introduction 
 

In microwave imaging, the nonlinear inverse problem can be linearized by making 

certain approximations of the internal total field. The linear Born approximation is the 

classic example of such linearization [1][2]. It exploits the assumption that the total field 

is the same as the incident field within the imaged domain. In another linearization 

strategy, the Rytov approximation, the total internal field is expressed as an exponential 

correction to the known incident field [3][4]. Typically, the application of linear 

approximations is limited to the weak-scattering problems with each approximation 

having its pros and cons. For example, the Rytov approximation requires small contrast 

but is independent of the size of the scatterer unlike the Born approximation [5]. More 

recent approximations have been developed to enhance the accuracy and the range of 

applicability of the Born and Rytov approximations [5]-[7]. 

Once the inverse problem is linearized, it is solved by direct inversion methods, also 

known as linear inversion methods. In one such method, microwave holography, a linear 

system of equations is solved in Fourier domain, typically employing least-square 
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strategies [8]-[12]. Another representative example is diffraction tomography which is 

analogous to the inversion scheme used in X-ray computed tomography [13]-[17]. Unlike 

holography, it applies to 2D imaging in a cross section of the imaged object. The 

diffraction effects are incorporated by replacing the simplistic straight-line propagation 

model with a more realistic incident field and Green’s function. In case of far-zone 

measurements, the measured scattered field can be related to the Fourier transform of the 

contrast function and the inversion can be done via an inverse Fourier transform [18][19]. 

Sensitivity-based imaging is another qualitative method operating on the frequency-

domain measured data [20][21]. The linear problem is solved in the spatial domain with 

no matrix inversion. The method calculates the Fréchet derivatives of a least-square 

response-error function with respect to the complex permittivity as a function of position. 

The Fréchet derivatives are computed in real time using a self-adjoint formulation. 

Confocal imaging, also known as synthetic focusing, solves the linearized scattering 

problem in the spatial domain without matrix inversion as well [22][23]. The method 

operates on time-domain data and relies on multiple received signals. The strength of a 

scattering point depends on the coherent summation of its scattered components present 

in all received signals. The calculations involved are not demanding. 

All these linear inversion methods provide fast qualitative estimates of an object’s 

shape and electrical contrast. However, they cannot be used as linearized solvers at the 

core of nonlinear iterative reconstruction schemes because of their inability to provide a 

quantitative estimate of the electromagnetic constitutive parameters. 
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In the past decade, advances have led to two powerful approaches to linear quantitative 

inversion, specifically developed for microwave imaging based on scattering-parameter 

data. These two approaches, quantitative microwave holography [24] and scattered-power 

mapping (SPM) [25][26], rely on a high-fidelity forward model obtained from 

measurements. The key lies in the experimentally acquired resolvent kernel which 

properly scales the inversion problem thereby enabling quantitative imaging. For that, the 

system PSF for each range location has to be measured.  

In [25][26], the SPM methodology is derived for the case of planar acquisition 

surfaces. The RO measurements, carried out as part of the system calibration, provide the 

baseline data. In order to obtain the system PSF, a second set of calibration measurements 

is performed with a scattering probe of known electrical properties embedded in the RO. 

The so-obtained object is referred to as the calibration object (CO). Since the RO is 

assumed to be homogeneous or layered, which infers a translationally-invariant system, 

the coordinate translation can be applied. Therefore, a single scan of the CO with a 

scattering probe at the center of each range plane is sufficient to obtain the system PSF 

for all points in that plane. However, the coordinate translation proposed in [25][26] 

requires a four times larger scan area for the CO scan than that for the OUT scan. This 

makes the system calibration too time consuming and impractical. 

Here, we propose two new methods, BCCB SPM and convolution-based SPM, which 

exploit the key idea of the work in [25][26], but are more general and far more efficient in 

solving the linear inverse problem. The first important improvement is that the proposed 

methods employ the localized quasi-linear Rytov (LQLR) approximation, in addition to 
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also being capable of employing the localized quasi-linear (LQL) model of scattering. 

The LQLR approximation is subjected to a different set of limitations compared to the 

LQL approximation; thus, the applicability of the methods is significantly expanded. 

Second, a new way of building the SPM system matrix is proposed although its physical 

meaning of being the image PSF remains the same as initially introduced in [25]. This 

brings two advantages: (i) reduced number of calibration measurements, and (ii) the 

computational time being a few orders of magnitude less than that in [25][26]. 

3.2 Block Circulant with Circulant Blocks (BCCB) Scattered-

Power Mapping (SPM) 
 

We commence the discussion with the BCCB SPM, the name of which comes from its 

system matrix being of a particular mathematical structure: block circulant with circulant 

blocks in the case of 2D imaging or block circulant with BCCB blocks in 3D imaging. 

3.2.1 Qualitative Reconstruction 

 

As shown in [25], the closer the relative permittivity contrast of the scattering probe 

CO  is to the relative permittivity contrast of the OUT OUT ( ) r , the closer the ratio of 

their respective reflectivity tensors 
( ) ( )
OUT CO( ) /m mr   is to unity. Assuming that 

 ( ) ( )
OUT CO( ) / 1m m r   (3.1) 

and discretizing the integral in the data equation (2.21) into a sum over all vN  voxels, 

(2.21) is written in the discrete form: 
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S S 
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where 

 vOUT CO( ) / , 1,...,q q   q N  r   . (3.3) 

Note that (3.2) is a discretized version of the LQL forward model (2.21) with 

( )
OUT, ,LQL ( )m

nS r  and ( )
CO, , ,LQLq

m
n
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r

 defined as (see (2.14)): 
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n n nS S S  r r r , (3.4) 
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Discretizing the forward model under the LQLR approximation in (2.26), we arrive to 

an expression similar to (3.2), except for ( )
OUT, ,LQLR ( )m

nS r  and ( )
CO, , ,LQLRq

m
n
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r

 defined as 

follows: 
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Note that (3.3) stays the same in the case of LQLR approximation. 
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In the case of the calibration with a metallic scattering probe (see (2.29) and (2.30)), 

the discretizations of the forward models under the linear Born and Rytov approximations 

lead to 
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Here, the expressions for ( )
OUT, ,LB

m
nS , ( )

OUT, ,LR
m

nS , ( )
CO, , ,LBq

m
n

S 
r

 and ( )
CO, , ,LRq

m
n

S 
r

 are 

identical to those in (3.4), (3.6), (3.5) and (3.7), respectively. However, for the calibration 

with a metallic scattering probe q  is defined as 

 vOUT ( ), 1,...,q q   q N   r  . (3.10) 

Henceforth, for the sake of brevity, all the theory is presented only for the case of the 

LQL approximation, thus the subscript LQL is omitted. The application of the LQLR 

approximation as well as the LB and LR approximations in the case of the calibration 

with a metallic scattering probe follows similar steps. 

3.2.1.1 Power Maps 

 

As proposed in [25], the OUT power map is defined as a qualitative measure of the 

scattering occurring at each pth voxel, v1, ,p N . Its value at p V r  for the mth 
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frequency is determined via the CO responses with the scattering probe being at pr , i.e., 

( )
CO, ,

( )
p

m
n

S r
r , r t1, ,n N N  . Let all responses (both CO and OUT) be measured on a 

discrete grid over the acquisition surface, where the observation location is indicated by 

the indices u and v, i.e., uvr r . For example, in a rectangular planar scan of x yN N  grid 

points, 1, , xu N  and 1, , yv N . The value of the OUT power map ( )
OUT

mM  at pr  is 

defined as 
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r r r  (3.11) 

Note that (3.11) can produce a qualitative OUT image very fast without solving any 

systems of equations. Analogously to the OUT power map, the CO power map is defined 

as 
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 (3.12) 

Here, q denotes the voxel with a scattering probe in it. When p q , (3.12) becomes 

 
t r 2
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NN N N
m m

p uvp n
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M S



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    r
r r . (3.13) 

The power maps are pivotal in the SPM method, hence its name. The value of a power 

map at pr  (see (3.11) or (3.12)) provides a measure of the similarity between the OUT 

responses and those of the CO obtained with the scattering probe at pr . This measure 
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corresponds to a cross-correlation in the time domain. On the other hand, the CO power 

map value at pr , when the scattering probe is at pr , represents the maximum attainable 

scattered power among all voxels; see (3.13), which is expressed as the sum of the 

autocorrelations of all responses. 

3.2.1.2 Application to Frequency-Swept Data 

 

Often, microwave imaging employs multi-frequency data. In this case, the multi-

frequency power maps are added after the following normalization procedure [25][27]: 

 
( )
OBJ

( )
OBJ i ( )

OBJ ( )
1

( )1
( )

f
m

p

mN
p

M
p m

f m

M
M e

N






   r

r
r


, (3.14) 

where ( )m  is the maximum magnitude value of the CO power map at the mth frequency: 

  ( )( )
CO,max ( )mm

pqM  r . (3.15) 

The normalization strategy in (3.14) preserves the phase of each single-frequency power 

map. The normalization factor 
( )m  in (3.14) can be calculated using strategies alternative 

to (3.15), e.g., using the energy normalization [20]. However, (3.15) offers simpler 

implementation and faster computation [27]. 

3.2.2 Quantitative Reconstruction 

 

Substituting (3.2) into (3.11) leads to a linear system of equations in the unknown 

contrast distribution q , v1,...,q N , which is explicitly written as 
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t r v
( ) ( ) ( )
OUT CO, , CO, ,

1 1 1 1

v

( ) ( ) ( ) ,

1,..., .                                                                        

yx

q p

NN N N N
m m m
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n q u v
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

 

   

     
 



 r r
r r r

 (3.16) 

Employing (3.12) allows for writing (3.16) in a matrix form: 

 ( ) ( )Α τ bm m , (3.17) 

where 

 

v

v vv

( ) ( )
1 1CO,1 CO,

( )

( ) ( )
CO,1 CO,

( ) ( )

( ) ( )

A

m m
N

m

m m
N NN

M M

M M

  
 

  
 

   

r r

r r

, (3.18) 

 
v1τ

T

N
     , (3.19) 

 
v

( ) ( )( )
1OUT OUT( ) ( )b

T
m mm

NM M    r r . (3.20) 

The v vN N  matrix ( )Α m  in (3.17) and (3.18) consists of the CO power maps formed 

using (3.12). The v 1N   vector ( )b m  contains the OUT power map formed using (3.11). 

Solving (3.17) for τ allows to estimate a relative permittivity contrast OUT ( )p r  from 

(3.3). Finally, an actual relative permittivity distribution of the OUT is obtained from 

(2.2). 

The CO power maps across all frequencies can be combined using (3.14) to form the 

multi-frequency matrix A. Similarly, the vector b can be formed using the frequency-

combined OUT power map. The size of the so-obtained linear system of equations 
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Ατ b  is still v vN N  and it is independent of the number of frequency points. In the 

case of calibration with dielectric scattering probe, each component of the unknown 

vector τ is defined as per (3.3). In the case of the calibration with a metallic scattering 

probe, it is defined as per (3.10).  

3.2.2.1 Planar Coordinate Translation in Fourier Space 

 

If the imaging system is invariant to lateral translations, the experimentally obtained 

PSF with a scattering probe at the center of the imaged volume can be used to obtain the 

PSFs at all other lateral positions p V r . This can be realized by coordinate translation. 

In [25][26], it is suggested to perform the CO scan over an area ACO, which is four 

times larger than the area A' used to acquire the data for an OUT. This concept is 

illustrated in Figure 3.1 with two examples of voxels to be imaged. Each element of the 

square grid indicates a sampling position, which is also an imaged voxel. Figure 3.1(a) 

and Figure 3.1(c) show the cross-sectional area of the OUT. In Figure 3.1(a), the central 

voxel centerP  is highlighted, whereas in Figure 3.1(c), the corner voxel cornerP  is indicated 

by a thick line. Figure 3.1(b) and Figure 3.1(d) show the entire area ACO scanned in the 

calibration (CO) measurement. In this measurement, the scattering probe is fixed at the 

origin O while the antennas sample the response over ACO. The CO response subset 

acquired in the area 
centerPA  (outlined with a solid line in Figure 3.1(b)) is 

center

( )
CO, ,

( )m
n P

S r , 

centerPAr . This is the PSF used to compute the value of the OUT power map at centerP  

with (3.11), wherein centerp P r ; see Figure 3.1(a). On the other hand, the CO response 
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subset 
corner

( )
CO, ,

( )m
n P

S r , 
cornerPAr , acquired in the area 

cornerPA  (outlined with a solid line in 

Figure 3.1(d)) is the PSF used to compute the value of the OUT power map at 

corner .p P r  

 

 
 

 

 

 

(a) (b) 
 

 

 

 

      

 

(c) (d) 

Figure 3.1 Illustration of the measured S-parameter data on a square sampling grid: (a) the 

OUT area A' with an imaged voxel Pcenter at the center; (b) the CO area ACO and its portion 

centerPA  used to image the voxel Pcenter; (c) the OUT area A' with an imaged voxel Pcorner at 

the corner; (d) the CO area ACO and its portion 
cornerPA  used to image the voxel Pcorner. The 

origin of the CO area, which also the position of the scattering probe, is denoted as O. 

 

Here, we propose to eliminate the need for four times larger CO scan by exploiting the 

shift property of the Fourier transform. Let 0 center( )z P  r  denote the center of the fixed 

range plane z  in which the scattering probe resides. Let the PSF shift along x  and y  
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with respect to 0( )z r  be expressed with multiples of the respective sampling steps x  

and y  as 

 
,max ,max

,max ,max

( ) ( , ), , , ,

, , .

uv x x

y y

z u x v y u N N

v N N

     

 

r 


 (3.21) 

Here, ,maxxN  and ,maxyN  are the maximum shifts along x and y, respectively. Therefore,

,max2x xN N  in the case of an even number of samples along x whereas ,max2 1x xN N   

in the case of an odd number of samples along x. Analogously, ,max2y yN N  in the case 

of an even number of samples along y whereas ,max2 1y yN N   in the case of an odd 

number of samples along y. 

Then, the values of the shifted PSFs, 

 0

( )
,max ,maxCO, , ( ) ( )

,max ,max

( , ), , , ,

, , ,

uv

m
x xn z z

y y

S x y u N N

v N N

   
  

 

r r



 (3.22) 

can be obtained from that of 
0

( )
CO, , ( ) ( , )m

n zS x y 
r

 using 

   0 0

( ) ( ) i1 i
2D2DCO, , ( ) ( ) CO, , ( )( , ) ( , ) .yx

uv

m m k v yk u x
n z z n zS x y S x y e e   

       
r r r

 (3.23) 

Here, xk  and yk  are the Fourier variables corresponding to x  and y , respectively. With 

this approach, the CO scan area matches that of the OUT. 

3.2.2.2 Solving BCCB Linear System of Equations 
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Utilizing the k-space coordinate translation has yet another advantage – the SPM 

system matrix v vA N N , v x yN N N  becomes block circulant with circulant blocks, or 

BCCB. When the number of range samples zN  is larger than one (3D imaging), we have 

v x y zN N N N  and the matrix A becomes block circulant with BCCB blocks. We 

emphasize that the calibration object in either case does not have to be symmetrical 

( )x yN N . If A is block circulant with BCCB blocks (which is the most general case), 

the following holds [28][29] 

 1 ˆdiag( ( ))A F a F vec  , (3.24) 

where the Fourier matrix v vF N N  is found from the Kronecker tensor product 

F F F Fz y x    (“outside” to “inside” order) with Fz , Fy  and Fx  being Fourier 

matrices [29] of size z zN N , y yN N  and x xN N , respectively. The linear operator 

v: x y zN N N N  vec  produces a vector by stacking the columns of â , where the 

components of â  are the eigenvalues of A found from 

   v 2D(3D)â aN array . (3.25) 

Here, the symbol v: x y zN N NN  array  denotes the inverse of the vec operator, 

whereas a is the first column of A. Also, since the Fourier matrix F is unitary, its inverse 

in (3.24) is readily calculated using the adjoint matrix †F  as 

  
11 †

vF FN
  . (3.26) 
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From (3.24) it follows that there is no need to construct the whole matrix of CO power 

maps as per (3.18). Furthermore, nonsingular BCCB systems can be solved using the 

following recipe [29]: 

    1
2D(3D) 2D(3D)

ˆ( ) . /τ b a vec array , (3.27) 

where “ . / ” means component-wise division of the 2D (or 3D) arrays. 

Note that the solution τ  in (3.27) is obtained only from the first column of A. Utilizing 

2D (or 3D) Fast Fourier transform (FFT) in (3.27) allows to solve the system of equations 

(3.17) at a v v( log( ))O N N  cost. Thus, there is no need to invert a matrix at the typical 

cost of 3
v( )O N . There is no need to perform a matrix-vector multiplication either at a 

v(2 )O N  cost. 

Moreover, due to the ill-posed nature of an inverse problem, the matrix A is usually ill-

conditioned.  Convergence rates for solution schemes based on the conjugate-gradient 

method depend on the singular values of A. Such solvers typically take a long time to 

reach a solution. On the other hand, the solution with (3.27) is not affected by ill-

conditioning: being expedited by the 2D (or 3D) FFT, it is performed in real time. This is 

possible due to the advantage of having the BCCB structure. Finally, we remark that 

Tikhonov regularization is applicable with the BCCB system. It results in a system that 

can be solved directly using 2D (or 3D) FFTs without computational overhead in a 

manner similar to (3.27) [29]. 
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3.2.3 Pros and Cons of BCCB SPM 

 

BCCB SPM is proposed as a direct inversion method for fast quantitative imaging. It 

accommodates a forward model of scattering cast either as a linearized Born model or as 

a Rytov model. Two key advantages of the BCCB SPM compared to the work reported in 

[25][26] are the computational speed and the reduced area of the calibration scan. These 

advantages stem from the PSF coordinate translation implemented in the Fourier domain, 

which leads to the system matrix being of a particular mathematical structure. This 

feature is exploited to reduce drastically the computational cost from hours to minutes. 

Note, however, that although fast, BCCB SPM is not a real-time inversion method. 

It should be emphasized that the SPM method is not limited to the BCCB solver 

described by (3.27). Since the system matrix (3.18) can be readily constructed from its 

first column using (3.24), other solvers (e.g., conjugate-gradient with or without 

preconditioner) are applicable as well. 

Often, the reconstructed images contain some nonphysical values of the relative 

permittivity. The most straightforward way to resolve the non-physicality problem is to 

impose the following constraints: 

 
 
 

OUT

OUT

Re ( ) 1
,

Im ( ) 0

p

p

 V
  

 
 

r
r

r




. (3.28) 

In order to be able to impose these constraints, another solver is needed, e.g., constrained 

linear least-squares or semidefinite programming. However, constrained solvers might 
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significantly slow down the solution. Nonetheless, the freedom of choosing the solver is 

one of the biggest advantages of the BCCB SPM. 

3.3 Convolution-Based SPM 
 

Since we operate with frequency-domain data acquired on planar surfaces, the CO and 

OUT scattered responses at each frequency are functions of x and y. As per (2.5), for an 

imaging system which is translationally invariant in the lateral directions, the PSFs at all 

locations of the scattering probe in a plane 0z z   can be obtained from the one at the 

plane’s center as 

  
0

( ) ( )
0 0 0CO, , CO, ,

( , | ) ( ), ( ) |
p

m m
p pn n

S x y z S x x x y y y z 
         

r r
. (3.29) 

Substituting (3.29) into (2.21), we notice that the integral is a 2D convolution of two 

functions 

 
0

( ) ( )
OUT, CO, ,

v

1
( , ) ( , | ) ( , | )m m

n n

z

S x y x y z S x y z dz
            r
 , (3.30) 

where OUT CO( ) ( ) /  r r    is the unknown contrast function, whereas the operator   

represents a 2D convolution over x  and y  at each z  plane. Thus, having estimated the 

system PSF and having measured the OUT, the 3D image can be reconstructed slice by 

slice by deconvolution. Linear deconvolution methods offer the fastest and the simplest 

choice when computing the unknown   in (3.30). These algorithms employ some form of 

the linear reconstruction filter in a single step. The classical inverse filter, the pseudo-
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inverse filter, the Wiener filter, the constrained least-squares filter and the Tikhonov-

Miller inversion belong to this group of methods [30]-[34]. 

3.3.1 Linear Deconvolution in Fourier Space 

 

In this thesis, we demonstrate the most straightforward method of deconvolution, 

which is performed in Fourier space. This method is also known as classical inverse filter 

[30][32]. 

The coordinate translation described for the CO scattered responses also holds for the 

CO power maps. Thus, (3.16) can be represented as (see (3.30)): 

 OUT, CO, @(0,0, )
v 1

( , | ) ( , | ) ( , | )
z

j

N

x y x y j x yn n
j

M k k z k k M k k z



  


   , (3.31) 

where t r1, ,n N N and the tilde denotes the 2D Fourier transform of the OUT or CO 

multi-frequency power map, whereas ΔΩ Δ Δ Δx y z     is the voxel’s volume with Δx , 

Δy , Δz  being the discrete steps along x, y and z, respectively, in the imaged volume. 

zN  is the number of imaged range locations. 

Equation (3.31) allows formulating a square linear system of equations at each point in 

Fourier space ( , )κ x yk k  as 

 

       t r t r
t r t r

1 1( ) ( )

( )

( ) ( )

M κ m κ

x κ

M κ m κ
z

N N N N
N N N N N

   
   

    
   
   

, (3.32) 
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where the following notations are introduced 

  1

v

( ) ( , ) ( , )x κ κ κ
z

T
Nz z
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
  , (3.33) 

 OUT, 1 OUT,( ) ( , ) ( , )m κ κ κ
z

T

n n n NM z M z     , (3.34) 
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  
 
 

   

. (3.35) 

Once we have ( , )κ z  for κ  and for z , the frequency-combined 3D ratio contrast 

is recovered via 2D inverse Fourier transform slice by slice: 

  1
12D( , | ) ( , ) , , ,κ

zl l l Nx y z F z   z z z         . (3.36) 

Finally, the relative complex permittivity of the OUT is found from 

 OUT RO CO( , | ) ( , | ) ( , | )l l lx y z x y z x y z              . (3.37) 

Note that a similar methodology has been implemented in another linear inversion 

method, quantitative microwave holography (QMH) [24]. However, the distinct feature of 

QMH is that its linear system of equations is formulated directly in terms of the scattered 

CO and OUT responses (see (3.30)) as 
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       t r t r
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1 1( ) ( )

( )
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A κ b κ

x κ
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  
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, (3.38) 

where 
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, (3.39) 
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. (3.41) 

It can be shown that † †A A x A bn n n n  (see (3.38)) is equivalent to the system M x mn n  

(see (3.32)). Since the data bn  may not be entirely in the range of the forward operator 

represented by An , the direct solution of A x bn n  may not exist. On the other hand, 

under the same conditions, † †A A x A bn n n n  may have a solution and it would minimize the 

least-square error of A x bn n  [17][23]. This argument also speaks in favor of obtaining 

the PSFs experimentally, which ensures that the system matrix Mn  provides the 

physically correct functional space encompassing all possible responses acquired with the 

particular imaging setup. Lastly, note that the matrix †A An n  has not been used explicitly in 

neither the BCCB SPM nor the convolution-based SPM. 
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3.3.2 Pros and Cons of Convolution-Based SPM 

 

A new method referred to as the convolution-based SPM, is proposed. Compared to 

the BCCB SPM, the convolution-based SPM inversion procedure is performed in Fourier 

space. Being computationally simple, the method offers real-time reconstruction. 

However, the linear deconvolution implemented through a classical inverse filter has 

disadvantages. First, it fails if the matrix M  (see (3.32)) is singular or if there are zeros in 

the system PSF. This disadvantage can be counteracted with regularization schemes [31]. 

Second, even small levels of noise are significantly amplified by the inversion of very 

small values in ( )M κn , which results in reconstruction artifacts [30]. Using another 

linear deconvolution method, such as the Wiener filter or the constrained least-squares 

filter is recommended to alleviate the discussed disadvantages [30][33]. 

Finally, within the proposed inversion procedure in Fourier space, the convolution-

based SPM cannot incorporate physicality constraints as per (3.28). Thus, the 

reconstructed images may contain nonphysical values of the relative permittivity. Such 

nonphysical values in the resultant images typically have a structure similar to those 

found in emission tomography [35]: in the neighborhood of a pixel with a large negative 

(nonphysical) value, there are a number of surrounding pixels where the solution is 

relatively large and positive. Since in the weak-scattering problems, the reconstructed 

images are relatively flat with limited high-frequency activity, it is suggested to use the 

constrained least-squares filter [30][33][35]. It minimizes the amount of high-pass energy 

in the reconstructed image, thereby ensuring the smoothness of the solution. 
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3.4 Reconstruction Limitations 
 

The major limitation of the proposed BCCB SPM and convolution-based SPM is their 

inability to account for the mutual coupling and multiple scattering effects present in the 

OUT. This limitation is typical for all direct-inversion methods. For example, the 

reconstruction of a complex object comprised of high-contrast layers with embedded 

scatterers of varying dielectric permittivity is likely to fail. These limitations stem from 

the LQL (Born) or LQLR (Rytov) approximations, which linearize the forward model. 

That is why the proposed methods can be used either in weak-scattering problems or as 

modules within nonlinear iterative methods such as the Born iterative method [36] and 

the distorted Born iterative method [37]. 

The calibration strategy employing a dielectric scattering probe has a significant 

limitation in tissue imaging. Its quantitative reconstruction accuracy is target-dependent 

as seen from the assumption (3.1). Since this assumption holds only if CO OUT ( )δε ε  r , as 

the dielectric properties of the inspected object vary with position, the quantitative 

reconstruction accuracy will also vary from one position to another. Note, however, that 

the calibration with a metallic scattering probe does not suffer from the aforementioned 

limitation. Finally, we emphasize that the qualitative reconstruction is target-independent 

with both calibration strategies. 

Also, it should be stressed that if the CO cannot be reconstructed, the OUT would not 

be imaged either since the CO response represents the PSF of each particular imaging 

setup. Thus, the size of a scattering probe should be large enough for the imaging system 
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to detect its response. However, if the scattering probe is not electrically small, the 

acquired responses do not represent well the system PSFs and the reconstruction is likely 

to fail or, at least, be quantitatively inaccurate. That is why, the recommended lateral size 

of a dielectric scattering probe is smaller than min,CO / 4λ , where min,COλ  is the shortest 

wavelength inside the CO. As for the vertical dimension, it should be approximately the 

same as the thickness of the measured spatial step along the range. In case of a metallic 

scattering probe, the recommended length and diameter of the wire are min,CO / 8λ  and 

min,CO / 400λ , respectively. 

As a final remark, note that increasing the number of the independent responses 

improves the SPM (BCCB SPM and convolution-based SPM) robustness to noise, i.e., 

imaging is successful with lower data signal-to-noise ratio. This is achieved by increasing 

the number of the transmitters, the receivers and the frequency samples [20][21][25]. The 

improved robustness to noise is due to the fact that the SPM qualitative maps are, in 

essence, plots of the cross-correlation of the OUT data with the system PSF. The cross-

correlation peaks at voxels where scattering occurs. Moreover, with multiple data sets, 

these peaks add coherently. In contrast, at voxels void of scatterers, the cross-correlation 

values across the data sets add incoherently thus enhancing the image signal-to-noise 

ratio. 
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Chapter 4           

              

De-noising Algorithm Enhancing Microwave 

Imaging 

Equation Chapter (Next) Section 1 

4.1 Introduction 
 

The physical assessment of the imaging system aims at determining the quality of the 

data before they are processed to produce an image. The raw-data quality is critical for 

the final image fidelity and it can be assessed independently from the reconstruction or 

the image-processing algorithms. It is desirable to be able to quantify the physical merits 

of the data-acquisition hardware through common metrics [1][2]. For example, one such 

metric, the data signal-to-noise ratio (SNR), has a fundamental relationship with 

detectability. The Rose Criterion states that if SNR is larger than 5, the signal region will 

be detectable in most situations, but that detection performance continuously degrades as 

SNR approaches zero [2]. 

In microwave imaging, there is no agreed-upon approach to evaluate the SNR of the 

measured data or the images [3]-[7]. In [8], an approach to the data SNR estimation was 

proposed based on the measurement of a known object. However, it does not account for 

a scenario where the interference pattern in the measured two-dimensional (2D) data 

exceeds the so-called “exclusion zone” (the 2D region where the antenna aperture 
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contains the scatterer’s lateral position). The de-noising method proposed here estimates 

the noise component of the data without the need to define an exclusion zone and is, 

therefore, independent of the scattered-field pattern at the acquisition surface. Thus, it 

offers a rigorous method to evaluate the SNR of a data set and the dynamic range of the 

particular acquisition system. More importantly, having the de-noised data is beneficial in 

image reconstruction [9][10] minimizing the need to employ case-specific filtering and 

regularization. 

In signal processing, the extraction of the signal from noisy data is a long-standing 

problem [11]-[13]. The signals are usually dependent on a single variable, e.g., time. In 

the case of microwave imaging, raw frequency-sweep data are usually comprised of S-

parameters that depend on the sampling location, e.g., (x, y) in planar scanning. Also, the 

S-parameters are complex. Here, an approach is introduced to separate the signal from the 

noise and positioning uncertainties in a complex-valued 2D data set at each sampled 

frequency. 

In extracting the noise from the data, the proposed algorithm uses an iterative sifting 

procedure similar to the method of empirical mode decomposition (EMD). EMD was first 

developed to decompose a signal into intrinsic mode functions (IMFs) [14]. Later, EMD-

based filtering of 1D time-domain signals was proposed for noise suppression [15][16]. 

Our method, however, does not perform data decomposition into IMFs. Unlike EMD, it 

extracts only one IMF through a single sifting iterative loop. This IMF estimates the 

noise, which is assumed to be uncorrelated to the signal content of the data. This 

assumption leads to a stopping criterion, which differs from that used in the EMD. 
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Moreover, the signal component is not represented as a sum of IMFs as in [15][16]. Thus, 

the algorithm is conceptually different from EMD despite the similarities in the sifting 

iterations. It is a novel effective 2D de-noising technique tailored to imaging applications. 

An important advantage compared with EMD-based noise reduction [15][16] is its 

superior speed, necessary for the real-time image reconstruction. 

The de-noising algorithm is validated with complex-valued 2D data obtained from the 

microwave measurements of known objects. One such object is the reference object (RO), 

consisting of the background medium and the measurement setup (e.g., antennas, cables, 

enclosure, scanning mechanism, etc.). It serves as a host for the measured objects under 

test (OUT). The RO characterization is therefore an important part of the system 

calibration. In general, the raw image of the RO data features an interference pattern 

which varies relatively slowly in space. Another known object used here is the calibration 

object (CO) [17][18]. It consists of an electrically-small scatterer (dielectric scattering 

probe) embedded in the background. The CO interference pattern resembles a spherical 

wave which may or may not have discontinuities. The spacing between the ripples of this 

pattern remains relatively constant throughout an image and depends on the wavelength. 

Therefore, the performance of an ideal de-noising algorithm would not depend on the 

spatial variations of the interference pattern. 

The proposed applications not only validate the algorithm but also show how it can be 

used to estimate the imaging system’s SNR and dynamic range. Note that a priori 

knowledge of the scanned object is not required. 
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4.2 Algorithm Description 

4.2.1 Trend and Noise Components 

 

Similar to the EMD procedure, our de-noising algorithm starts with identifying all the 

local extrema in the 2D data. Interpolation of the maxima and minima returns two 

surfaces (2D envelopes) between which all other data points reside. The arithmetic mean 

of the two surfaces is the trend data set.  The trend is then subtracted from the original 

data to produce the residual data, containing remaining information plus noise. This 

process iterates, applying the same trend extraction to the residual data. Meanwhile, the 

trend data sets taken from each iteration are added together to estimate the data signal 

component. The iterations terminate when a stopping criterion is satisfied. The final 

residual estimates the data noise component. For microwave imaging involving complex-

valued data, the algorithm is applied separately to the real and imaginary parts of the S-

parameters at each frequency. 

Note that the trend components contain the relatively low spatial-frequency 

information, representing the scattering signal used in the image reconstruction. On the 

other hand, the extracted noise is characterized by the highest spatial frequencies. This 

physical interpretation of the trend and noise components is different from EMD [14]-

[16], where the trend subtraction is used to extract the IMFs that represent the oscillation 

modes embedded in the data. The oscillation modes are of interest in the EMD method. In 

contrast, the trend components are of interest here because their sum defines the estimated 

signal embedded in the data. 
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4.2.2 Convergence Criterion 

 

In accordance with the physical meaning of the trend and noise components, the 

proposed algorithm converges when the signal component (the sum of all extracted 

trends) and the noise component (the last residual) are uncorrelated. Thus, at each 

iteration, the convergence criterion checks the cross-correlation ( ) ( )xcor i is ★
( )in  

between the signal ( )( )is  and the noise ( )( )in . For this purpose, the 99% confidence 

threshold in the cross-correlation function is used, which is defined as [19]: 

 
1 /2

B
N





. (4.1) 

Here, x yN N N  is the sample size ( xN , yN  are the sample numbers along x and y, 

respectively), 1 /2 2.5758   ( 0.01 ) is the 0.99 probability point of the cumulative 

distribution function of the standard normal distribution. Note that (4.1) depends on the 

sample size. The convergence criterion requires that ( )xcor i B . 

4.2.3 Step-by-Step Procedure 

 

The algorithm can be summarized as follows: 

1) Set i = 0; initialize signal component, (0) ( , ) 0s x y  . 

2) Load input data set ( , )d x y . 

3) Extract the ith trend ( ) ( , )it x y  and the ith residual ( ) ( )( , ) ( , ) ( , )i ir x y d x y t x y  . 

4) Update the signal ( 1) ( ) ( )i i is s t    and the noise ( )in r . 
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5) If the convergence criterion is satisfied, stop. If not – go to step 3 and use ( )ir as input. 

4.3 Validation Examples 
 

The de-noising algorithm has been implemented in MATLAB [20]. Local extrema in 

the 2D data are found with the MATLAB functions imregionalmin()/imregionalmax() 

which are set to 2D minimal connectivity. The 2D extrema interpolations are done with 

the natural neighbor interpolation method [21]. The MATLAB function 

scatteredInterpolant() with an option natural is used. 

As part of the measurement setup, the S-parameters are acquired with a planar raster 

scanner. The inspected object is scanned between two fixed antennas aligned along each 

other’s boresight. Reflection and transmission S-parameters are acquired. The antennas 

are rectangular patches on a Teflon substrate. The frequency is swept from 11 GHz to 13 

GHz. The distance between the top and bottom scanning planes is 10 cm. The sampling 

step in both directions (x and y) is 5 mm. The imaged area is 20 cm by 20 cm. The RO 

consists of the measurement setup immersed in air. The CO differs from the RO only by 

the presence of a dielectric ( r,sc 50 ) cylinder of 1 cm height and 1 cm diameter located 

in the center of the imaged volume. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 4.1 Measured transmission coefficient modulus of: (a) RO and (b) CO. Extracted 

signal-component modulus for: (c) RO and (d) CO. Extracted noise-component modulus 

for: (e) RO and (f) CO. Natural neighbor interpolation is used. Frequency is 12.5 GHz. 
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The algorithm is applied to the acquired transmission S-parameters of the RO and CO 

at all frequencies. It takes 4 iterations (4.2 sec) in the RO case and 60 iterations (51.7 sec) 

in the CO case to satisfy the convergence criterion. 

Figure 4.1(a) shows a sample of the modulus of SRO at 12.5 GHz. The RO signal and 

noise components extracted by the algorithm are shown in Figure 4.1(c) and Figure 

4.1(e), respectively. Analogous plots of the CO input data, the extracted CO signal and 

CO noise are shown in Figure 4.1(b), (d), and (f), respectively. 

The cross-correlation between the CO signal and noise components is shown in Figure 

4.2(a). Within the 99% confidence interval, the CO noise is best aligned with the CO 

signal at zero lag. In addition, we analyze the noise outcome on repeating patterns by 

calculating the autocorrelation of the CO noise (Figure 4.2(b)). This correlogram suggests 

that the data are not random, but rather have a moderate positive autocorrelation. In 

general, noise autocorrelation can be used as an additional measure of the algorithm’s 

performance. 

Nearest neighbor interpolation is also suitable for the proposed algorithm [22]. The 

MATLAB function scatteredInterpolant() with the option nearest is used. It takes 81 

iterations (64.5 sec) to satisfy the convergence criterion, with the resultant CO signal and 

noise components shown in Figure 4.3. The respective cross-correlation estimate from the 

convergence criterion is shown in Figure 4.2(c), whereas the noise autocorrelation is 

given in Figure 4.2(d). The CO’s signal and noise become less correlated (Figure 4.2(c)) 

compared to Figure 4.2(a). Moreover, the CO noise component becomes random since 
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only a few values are outside the 99% confidence limit (Figure 4.2(d)). However, using 

nearest neighbor interpolation requires 21 more iterations to satisfy the convergence 

criterion in comparison with the natural neighbor interpolation. 

  

(a) (b) 

  

(c) (d) 

Figure 4.2 Correlation functions of the separated CO signal and CO noise components. 

Natural neighbor interpolation: (a) cross-correlation of signal and noise, (b) auto-

correlation of noise. Nearest neighbor interpolation: (c) cross-correlation of signal and 

noise, (d) auto-correlation of noise. 2D data are reshaped into 1D arrays. Horizontal lines 

show 99% confidence interval. All sequences are normalized so that autocorrelations at 

zero lag equal 1. 

 

Lastly, since we know that the signal features relatively low frequency information 

whereas the noise is in the higher frequencies, another approach to signal extraction could 

be to use the Gabor filterbank. Gabor filters have been widely used in pattern analysis 
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[23]-[25]. Here, we construct the Gabor multichannel filterbank analogously to [26]: the 

number of designed filters is 30 and they are divided into nine orientations. The 

MATLAB function imgaborfilt() with octave band and unity aspect ratio settings is used. 

Elapsed time is 0.07 sec. The respective results are demonstrated in Figure 4.4. It is seen 

that in the presented example, the quality of signal extraction with the Gabor filterbank 

method does not exceed that obtained using the de-noising algorithm. 

  

(a) (b) 

Figure 4.3 Algorithm output for the CO case at 12.5 GHz: (a) signal modulus and (b) 

noise modulus. Nearest neighbor interpolation is used. 

 

  

(a) (b) 

Figure 4.4 Gabor filterbank outcome for the CO case at 12.5 GHz: (a) signal modulus and 

(b) result of subtracting signal modulus from the CO data modulus. 
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4.4 Application to Microwave Imaging 
 

A de-noising algorithm has been proposed for complex S-parameter data used in 

microwave imaging. It enables the efficient estimation of the noise-free signal component 

and its separation from the noise component in 2D-scan data sets. Two simple 2D data 

extrema interpolation methods have been discussed and compared, with the nearest 

neighbor method yielding better quantitative results. Note that using more sophisticated 

2D interpolation methods [22] could improve the algorithm’s performance. 

The performance of the Gabor filterbank is investigated for the purpose of the signal 

and noise separation in the S-parameters’ data. By inspecting the results visually, we 

conclude that this method does not provide meaningful results, even though it is much 

faster. 

4.4.1 De-noising Raw Data before Reconstruction 

 

The proposed algorithm offers several benefits in microwave imaging. First, it can 

suppress noise and uncertainties in the data used as input to the reconstruction algorithms. 

For example, without de-noising, the SNR of the calibrated CO scattering parameters 

 CO ROS S  at 12.5 GHz equals 9.11 dB as per the formula given in [8]. After de-

noising, the SNR improves by 2.7 dB. 

In inverse problems, the classical way to filter out the high-frequency components 

associated with the small singular values is to apply regularization (e.g., Tikhonov 

regularization or the truncated singular value decomposition) [27]. On the other hand, it 
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can be seen that the de-noising algorithm offers a similar benefit: the de-noised S-

parameters are the low-pass filtered forms of the raw data. At the same time, the de-

noising algorithm does not require any ad hoc parameters whereas the choice of a 

regularization parameter and the penalty matrix (if no knowledge is available about the 

desired solution) is a difficult subject [27]. 

To maintain all of the information about the inspected object in the reconstruction 

examples presented in this thesis, the de-noising algorithm is applied only to the 

calibration measurements (RO and CO). Consequently, another notable improvement 

from using the de-noising algorithm is concerned with the BCCB system matrix 

containing the CO power maps (see (3.18)). Specifically, its condition number improves 

up to a few orders of magnitude (e.g., four orders of magnitude in the case of the 

calibration with a dielectric scattering probe embedded in the absorber sheet [28]). It is 

known that the ill-conditioned systems of linear equations (having matrices with large 

condition numbers) are a consequence of the similarity of the matrix components: 

graphically, equations correspond to near-parallel lines [29]. Applying the de-noising 

algorithm to the data to be processed alleviates this near-parallelism, thereby improving 

the condition number of the BCCB system matrix. 

4.4.2 Quantifying the Performance of Acquisition Systems 

 

The proposed algorithm can be also used to quantify the imaging system’s dynamic 

range defined as 
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max

min

s
D

s
 , (4.2) 

where maxs , mins  are the maximum and minimum measurable signals, respectively. The 

maximum signal is estimated as the mean RO signal modulus, whereas the minimum 

signal is the mean RO noise modulus. For the acquisition system used to validate the 

algorithm’s performance in this chapter, (4.2) gives the dynamic range of 30.13 dB. 

Finally, the de-noising algorithm can be instrumental in estimating the SNR of a 

particular data set. SNR is defined here similarly to the definition commonly used in 

image processing [30]-[32]: 

 SNR
μ

σ
 , (4.3) 

where μ is the signal mean modulus and σ is the standard deviation of the estimated noise. 

For example, with the CO data in Figure 4.1(b), (d) and (f), (4.3) yields the SNR value of 

13.65 dB. 
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Chapter 5           

             

Validation of Scattered-Power Mapping 

Equation Chapter (Next) Section 1 

5.1 Introduction 
 

The 2D and 3D reconstruction examples obtained with the proposed BCCB SPM and 

convolution-based SPM are presented in this chapter. Since the methods do not need 

analytical or numerical approximations of the forward model, they are particularly 

beneficial in near-field imaging. Both of them are direct-inversion techniques intended for 

the imaging of weak-scattering problems. Calibration measurements are used to obtain 

the resolvent kernel in the integral equation of scattering, thus providing a high-fidelity 

and system-specific forward model in both BCCB SPM and convolution-based SPM. The 

key aspect that enables their quantitative outcome is the use of a calibration object, the 

response of which constitutes a system PSF. The proposed methods are predominantly 

validated on examples employing the well-established calibration with a dielectric 

scattering probe. However, the reconstruction results in the case of the calibration with a 

metallic scattering probe are presented as well. 

The near-field acquisition systems used here perform planar raster scanning of the 

inspected object (see Figure 5.1). Using a vector network analyzer (VNA), both reflection 
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and transmission S-parameters are measured. Note that only the transmission data are 

acquired when a power amplifier is connected directly to the transmitting antenna. 

  

(a) (b) 

Figure 5.1 Photographs of the two planar raster-scanning systems used to acquire the 

scattering parameters: (a) an older system and (b) a new high-precision system. 

 

Since the acquired measurements are S-parameter frequency sweeps in a wide band, 

the optimal choice of frequencies has to be set. Low frequencies mean better penetration 

and thus higher signal-to-noise ratio. However, the spatial resolution is better at higher 

frequencies. In the microwave imaging of tissue, the preferred frequencies for direct-

inversion methods in which the resolution strongly depends on the wavelength are 

between 2 GHz and 8 GHz [1][2]. The frequency range used in our experiments is from 3 

GHz to 9 GHz with 61 sampling points. 

As shown in Figure 5.1, the scattered field is sampled in a bi-static or multistatic way 

depending on the case. The sampling is implemented mechanically which makes the 

scanning time of the order of hours per object. It should be emphasized that this scanning 

time can be significantly reduced by exploiting electronically-switched sensor arrays. 
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The inspected object is placed on a positioning platform between the antennas (see 

Figure 5.1). The antennas’ boresight is orthogonal to the platform. The platform is moved 

laterally (along x and y) by precision stepper motors. Thus, the scattering parameters are 

acquired as a function of x and y, where (x, y) is the relative lateral position of the 

inspected object with respect to the antennas. The vertical position of the platform (along 

z) is adjustable and fixed at a distance of about 3 mm from the aperture of the bottom 

antenna. 

The quantitative images produced by the proposed reconstruction methods show the 

relative complex (real and imaginary parts) permittivity distribution as a function of x and 

y plotted on a linear (not logarithmic) scale. The exp(i )ωt  time dependence has been 

employed throughout this thesis implying that the physically viable values of the relative 

permittivity distribution are 

  OUTRe ( ) 1 r ,  OUTIm ( ) 0,  V   r r . (5.1) 

Finally, all of the presented images are obtained by combining the respective OUT and 

CO power maps across the frequency range from 3 GHz to 9 GHz. 

5.2 Apodization Function 
 

Due to the specifics of the imaging setups used in our experiments, a sampled signal 

does not smoothly go down to zero at the edges of the acquisition aperture. As a result, 

leakage sidelobes are produced upon performing a discrete Fourier transform. This effect 

is known as apodization [3]-[5]. Such sidelobes can create ringing artifacts which are 
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usually mitigated by multiplying a signal (in the spatial domain or in the frequency 

domain) by a proper apodization function, also known as a window function [4]-[6]. It is 

a non-negative mathematical function that goes sufficiently rapidly toward zero outside of 

some given interval, so that when multiplied by the sampled signal, the product has the 

same feature outside of that interval.  

The suppression of leakage sidelobes results in a decrease of the spatial resolution [4]. 

Typically used apodization functions (e.g., Gaussian apodization function) increase either 

the resolution or the signal-to-noise ratio (SNR), but always at a considerable expense of 

one or the other [5]. However, the functions that may be used to increase both the 

resolution and SNR simultaneously can be found in literature [5][7]. 

5.3 Two-Dimensional Imaging 

5.3.1 Calibration with Dielectric Scattering Probe 

 

The first validation example is similar to that presented in [8][9] when two dielectric 

objects embedded in the absorber sheets are imaged. We commence with such example in 

order to demonstrate the capabilities of the proposed BCCB SPM and convolution-based 

SPM compared to those of the prior method in [8][9]. 

5.3.1.1 Two Dielectric Cylinders Embedded in Absorbers 

 

The specifics of the imaged setup are the same as in the experiment reported in [8][9]. 

The scanned area is 15 cm by 15 cm with a 5 mm spatial step. The reference object (RO) 

consists of 5 absorber sheets being 20 cm by 20 cm by 1 cm in size, with the relative 
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permittivity of r,RO 10 i5ε   . The calibration object (CO) is identical to the RO except 

for a dielectric cylinder of r,sc 15ε   [10] embedded in the center of the middle layer (see 

Figure 5.2(a)). Finally, the object under test (OUT) is identical to the RO except for two 

such dielectric cylinders separated by 1 cm, and embedded in the middle layer (see Figure 

5.2(b)). 

  

(a) (b) 

Figure 5.2 Photographs of: (a) CO layer with a dielectric cylinder serving as a scattering 

probe; (b) middle layer of OUT with two identical dielectric cylinders. 

 

The reconstructed results of the OUT (middle layer) obtained with the BCCB SPM are 

shown in Figure 5.3. The figure shows the estimated permittivity distribution when the 

SPM forward model is linearized with the LQL approximation. The BCCB solver with no 

regularization has been used. The same case is also reconstructed with the convolution-

based SPM with the respective results shown in Figure 5.4. We observe a better 

quantitative reconstruction in Figure 5.3 and Figure 5.4 compared to the images shown in 

[8][9], at a much faster computational time on the order of seconds for the BCCB SPM 
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and about a second for the convolution-based SPM. Along with the generation and storing 

of the CO power maps, the prior method takes a few hours to produce the images. 

Also, it is seen that the images obtained with the BCCB SPM and those obtained with 

the convolution-based SPM are similar. However, the images obtained with the BCCB 

SPM contain some nonphysical values in the imaginary part (see Figure 5.3(b)) Another 

important observation is that we are now able to reconstruct the whole scanned area of 15 

cm by 15 cm. This is compared to the imaged area of 5.5 cm by 5.5 cm in [8][9]. 

In Figure 5.3 and Figure 5.4, we see that in the neighborhood of the central pixels with 

large values, there are a number of surrounding pixels with small values. We also notice 

that the reconstructed images contain artifacts at the center of the image, i.e., instead of 

showing two cylindrical objects, the images show three objects with the central one being 

an artifact. These image errors are due to considerable noise and positioning uncertainties. 

In such cases, it is recommended to use the de-noising algorithm presented in Chapter 4. 

We apply the de-noising algorithm to the scattered CO response at each frequency sample 

as a preprocessing step. The so-obtained images obtained with the BCCB SPM are shown 

in Figure 5.5: the central artifacts are gone and the cylinders are seen well. Also, note that 

there are no nonphysical values in the imaginary part (see Figure 5.5(b)). However, the 

maximum reconstructed value in the real part of the relative permittivity dropped from 

17.37 to 11.71 (see Figure 5.3(a) and Figure 5.5(a)) whereas the maximum reconstructed 

value in the imaginary part dropped from 0.62 to –2.86 (see Figure 5.3(b) and Figure 

5.5(b)). Note that the images obtained with the convolution-based SPM applied to the de-

noised CO data are identical to those in Figure 5.5. 



PhD Thesis – Denys Shumakov Chapter 5 McMaster University – ECE 

 

92 

 

It is seen that even after de-noising the CO scattered data, weak artifacts in the form of 

horizontal and vertical lines intersecting at the center of the image are still present (Figure 

5.5). This artifact is further referred to as a central-line artifact. It is attributed to the 

apodization phenomenon: the produced leakage sidelobes cause ringing artifacts, which 

in our case appear as spurious lines at the center of the reconstructed images. In order to 

mitigate this effect, we employ the commonly used Gaussian apodization function. More 

specifically, we multiply the scattered OUT data as well as the de-noised scattered CO 

data by the Gaussian apodization function [4] in the spatial domain. The respective 

images obtained with the BCCB SPM are shown in Figure 5.6. The quantitative values 

improve whereas the central-line artifact is alleviated. Following the same data pre-

processing steps, the reconstruction with the convolution-based SPM is shown in Figure 

5.7. The so-obtained images look identical to those in Figure 5.6. 

Note that applying the same Gaussian apodization function directly to the raw data 

without de-noising of the CO scattered data, results in a reconstruction of poor fidelity 

both with the BCCB SPM and the convolution-based SPM (see Figure 5.8 and Figure 

5.9). In addition to the nonphysical values present in the imaginary parts of the relative 

permittivity, we still see the artifacts in the center of the images. Therefore, we conclude 

that in this experiment, nonphysical solutions as well as the central and line artifacts are 

attributed to the noise and uncertainties contained in the raw data. Another important 

point is that the images obtained with the BCCB SPM are very similar to those obtained 

with the convolution-based SPM, the latter being faster. 
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As a last remark, we note that the condition number of the BCCB system matrix under 

the LQL approximation improves from 9.71e+03 to 1.34e+03 after applying the de-

noising algorithm. 

  

(a) (b) 

Figure 5.3 Estimated relative permittivity of 2 dielectric cylinders: (a) real part, (b) 

imaginary part. BCCB SPM is used. 

  

(a) (b) 

Figure 5.4 Estimated relative permittivity of 2 dielectric cylinders: (a) real part, (b) 

imaginary part. Convolution-based SPM is used. 
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(a) (b) 

Figure 5.5 Estimated relative permittivity of 2 dielectric cylinders: (a) real part, (b) 

imaginary part. BCCB SPM is used with the de-noising algorithm applied to the scattered 

CO data at each frequency sample. 

  

(a) (b) 

Figure 5.6 Estimated relative permittivity of 2 dielectric cylinders: (a) real part, (b) 

imaginary part. BCCB SPM is used with the de-noised scattered CO data. Gaussian 

apodization function is applied. 



PhD Thesis – Denys Shumakov Chapter 5 McMaster University – ECE 

 

95 

 

  

(a) (b) 

Figure 5.7 Estimated relative permittivity of 2 dielectric cylinders: (a) real part, (b) 

imaginary part. Convolution-based SPM is used with the de-noised scattered CO data. 

Gaussian apodization function is applied. 

  

(a) (b) 

Figure 5.8 Estimated relative permittivity of 2 dielectric cylinders: (a) real part, (b) 

imaginary part. BCCB SPM is used with Gaussian apodization function. No data de-

noising is done. 
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(a) (b) 

Figure 5.9 Estimated relative permittivity of 2 dielectric cylinders: (a) real part, (b) 

imaginary part. Convolution-based SPM is used with Gaussian apodization function. No 

data de-noising is done. 

 

5.3.1.2 Four Dielectric Cylinders in Air 

 

The experimental setup consists of two X-band open-end air-filled waveguides with 

the waveguide at the bottom serving as a receiver only. Thus, the measured data consist 

of the forward-scattered signals and two reflected signals. The distance from the top 

antenna to the OUT is 5 cm. The imaged area is 20 cm by 20 cm. The sampling step in 

both lateral directions is 5 mm. 

The imaged dielectric cylinders of 1 cm height and 1 cm diameter have a relative 

permittivity of r,OUT 50ε  . They are placed as shown in Figure 5.10 with the edge-to-

edge separation chosen approximately equal to 0 / 4λ  (6.5 mm), 0 / 2λ  (13 mm) and 0λ  

(26 mm) at the central frequency of the X-band [11][13]. An identical dielectric cylinder 

with r,sc 50ε   serves as a scattering probe in the CO. The RO is comprised of air. 
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(a) (b) 

Figure 5.10 Schematic view of (a) dielectric cylinder serving as a scattering probe in the 

CO, and (b) the OUT consisting of four identical dielectric cylinders. 

 

The reconstructed OUT using the BCCB SPM and the convolution-based SPM is 

shown in Figure 5.11 and Figure 5.12, respectively. In both cases, the LQL approximation 

has been used. Note that utilizing the LQLR approximation is expected to produce similar 

images compared to those obtained with the LQL approximation, since the size of the 

scatterers in the OUT is electrically small. Figure 5.13 shows an example of the LQLR 

images obtained with the BCCB SPM. 

As in the previous experiment, BCCB SPM and convolution-based SPM produce 

practically identical results in the case of four dielectric cylinders in air. The 

computational time of the BCCB SPM is again on the order of seconds whereas the 

convolution-based SPM is real-time. 

Next, we apply the de-noising algorithm to the RO as well as the CO data. The so-

obtained images utilizing BCCB SPM with LQL approximation are shown in Figure 5.14. 

It is seen that the nonphysical values decrease. Also, we no longer see the artifacts in the 

center of the real part of the relative permittivity (see Figure 5.14(a)). The condition 
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number of the BCCB system matrix improves from 3.87e+05 to 5.91e+04. However, the 

central-line artifact becomes somewhat more pronounced after de-noising the data. 

As the next step, we apply the Gaussian apodization function in the spatial domain 

with the respective images shown in Figure 5.15. It is seen that the nonphysical values in 

the imaginary part of the relative permittivity increase (see Figure 5.15(b)). Note that 

following the same pre-processing steps with the convolution-based SPM produces 

similar reconstruction results (see Figure 5.16). 

In order to remove the nonphysical values in the relative permittivity distribution, we 

utilize the constrained solver instead of the BCCB solver. The fastest option is MOSEK 

(part of the CVX optimization toolbox for MATLAB [14]), which is designed for solving 

large optimization problems with many constraints and variables. The images obtained 

with MOSEK are shown in Figure 5.17 and Figure 5.18. The solutions do not contain 

nonphysical values and the real part of the relative permittivity is of satisfactory fidelity. 

However, we observe some artifacts close to the edges in the imaginary part of the 

relative permittivity (see Figure 5.17(b) and Figure 5.18(b)). The running time of the 

BCCB SPM employing MOSEK is on the order of minutes. 

Another option can be to use the constrained linear least-squares solver (lsqlin function 

in MATLAB [15]). Unlike MOSEK, the lsqlin with active-set algorithm supports a 

starting point. Here, it is defined similarly to that in [8]: 
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The running time is on the order of hours. The images obtained employing lsqlin are 

identical to those in Figure 5.17 and Figure 5.18. 

It is clear from the presented example that the nonphysical permittivity values cannot 

be removed by using the de-noising algorithm. Therefore, they can only partially be 

attributed to the noise and uncertainties in the raw data. Note that the permittivity of the 

scattering probe should be on the order of that of the RO, so that the limits of the LQL 

approximation are observed. However, this is not the case here. Thus, the violation of the 

limitations of the forward model is the most likely cause for non-physicalities in the 

solution. 

  

(a) (b) 

Figure 5.11 Estimated relative permittivity of 4 dielectric cylinders: (a) real part, (b) 

imaginary part. BCCB SPM with LQL approximation and BCCB solver are used. 
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(a) (b) 

Figure 5.12 Estimated relative permittivity of 4 dielectric cylinders: (a) real part, (b) 

imaginary part. Convolution-based SPM with LQL approximation and classical inverse 

filter are used. 

  

(a) (b) 

Figure 5.13 Estimated relative permittivity of 4 dielectric cylinders: (a) real part, (b) 

imaginary part. BCCB SPM with LQLR approximation and BCCB solver are used. 
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(a) (b) 

Figure 5.14 Estimated relative permittivity of 4 dielectric cylinders: (a) real part, (b) 

imaginary part. BCCB SPM with LQL approximation and BCCB solver are used. De-

noising algorithm is applied to the CO data as well as the RO data. 

  

(a) (b) 

Figure 5.15 Estimated relative permittivity of 4 dielectric cylinders: (a) real part, (b) 

imaginary part. BCCB SPM with LQL approximation and BCCB solver are used. De-

noising algorithm is applied to the CO data as well as the RO data. Gaussian apodization 

function is used. 
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(a) (b) 

Figure 5.16 Estimated relative permittivity of 4 dielectric cylinders: (a) real part, (b) 

imaginary part. Convolution-based SPM with LQL approximation is used. De-noising 

algorithm is applied to the CO data as well as the RO data. Gaussian apodization function 

is used. 

  

(a) (b) 

Figure 5.17 Estimated relative permittivity of 4 dielectric cylinders: (a) real part, (b) 

imaginary part. BCCB SPM with LQL approximation and MOSEK solver are used. 
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(a) (b) 

Figure 5.18 Estimated relative permittivity of 4 dielectric cylinders: (a) real part, (b) 

imaginary part. BCCB SPM with LQLR approximation and MOSEK solver are used. 

 

5.3.1.3 Reconstruction of Living Tissue Samples 

 

In the next example, the imaging of living tissue is attempted. The reconstruction of 

such complex OUT is expected to test the limits of the SPM since they are violated by 

both the contrast and the size of the scattering object. The imaging setup consists of two 

TEM horn antennas [16] with a good impedance match between 3 GHz and 9 GHz. The 

antennas are aligned along each other’s boresight. The imaged area is 13 cm by 13 cm 

with 2 mm spatial sampling step. The VNA output power is 0 dBm. The distance from the 

antennas’ aperture to the inspected object on the platform is 3 mm. 

The OUT consists of pure lard together with a chicken wing embedded in a lossy 

absorber sheet of 20 cm by 20 cm by 1 cm size (see Figure 5.19(a)). It is set on the 5 mm 

thick dielectric platform [17]. The RO is chosen to be an absorber sheet, whereas the CO 

contains a dielectric scattering probe in the center of the RO (see Figure 5.19(b)). It is a 



PhD Thesis – Denys Shumakov Chapter 5 McMaster University – ECE 

 

104 

 

cylinder of 5 mm diameter and 10 mm height. The frequency-averaged relative 

permittivities of the objects used in the experiment are given in Table 5.1. 

  

(a) (b) 

Figure 5.19 Photographs of: (a) OUT and (b) CO, used in the experiment with the chicken 

wing. 

 

Table 5.1 

Averaged Relative Permittivities in Tissue Experiment 

 
 

Reconstruction results obtained with the BCCB SPM utilizing LQL approximation are 

shown in Figure 5.20. The convolution-based SPM produces identical outcome in this 
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case. In order to mitigate the detrimental effects of noise and uncertainties present in the 

images, we apply the de-noising algorithm to the CO data as well as the RO data as a pre-

processing step (see Figure 5.21). The condition number of the BCCB system matrix 

under the LQL approximation drops from 6.06e+08 to 8.06e+04. 

Even though the OUT contours are somewhat visible (Figure 5.21(a)), it is seen that 

the LQL model does not yield meaningful quantitative results. Moreover, employing 

another solver, the conjugate-gradient with circulant preconditioner (pcg function in 

MATLAB and MATLAB Structured Matrices Toolbox [18]), produces similar images to 

those obtained with the BCCB solver. 

Finally, we employ the Gaussian apodization function in the spatial domain in order to 

remove the strong central-line artifacts in Figure 5.21. The resultant images are shown in 

Figure 5.22. The real part of the relative permittivity in Figure 5.22(a) appears somewhat 

worse than that in Figure 5.21(a). However, it does not contain central-line artifact or 

nonphysical values. Moreover, the imaginary part in Figure 5.22(b) is significantly 

improved: the OUT contours become visible and the nonphysical values are supressed. 

Nevertheless, the LQL model does not yield satisfactory quantitative images in the living 

tissue example, which illustrates its limitations. 

On the other hand, the LQLR approximation is observed to offer a better fidelity of the 

reconstruction: the contours of the chicken wing are distinguishable and the quantitative 

values are largely correct (see Figure 5.23). Note that the de-noised data are used in this 

reconstruction. Better performance of the LQLR approximation is expected: the chicken 



PhD Thesis – Denys Shumakov Chapter 5 McMaster University – ECE 

 

106 

 

wing is an electrically large object at the given frequencies. However, we notice some 

nonphysical values in the reconstructed images: it is especially noticeable in the 

imaginary part of the relative permittivity (see Figure 5.23(b)). Note that these 

nonphysical values in the relative permittivity distributions for the LQL (Figure 5.21) and 

LQLR (Figure 5.23) approximations are close to each other. As shown above, the primary 

cause of this problem is the stochastic noise and measurement uncertainties present in the 

raw data. The de-noising algorithm is instrumental in reducing the nonphysical values 

substantially (see Figure 5.20 and Figure 5.21), but it cannot remove them completely. 

This is because the limitations of the forward model are violated in the living tissue 

experiment, which is yet another factor responsible for nonphysical solutions. 

Again, we attempt to solve the non-physicality problem by employing the MOSEK 

solver with physicality constraints (5.1). It yields the same result as the lsqlin solver but at 

a faster time. We observe better image fidelity in case or the real part of the relative 

permittivity (see Figure 5.24(a)) compared to the one in Figure 5.23(a). The imaginary 

part does not improve significantly (see Figure 5.24(b)). 

The challenging example of living-tissue imaging clearly demonstrates the limitations 

of the SPM, although reconstruction of a satisfactory fidelity is achievable due to the fact 

that the SPM can accommodate the Rytov forward model. The Rytov model is not limited 

by the target’s size; therefore, the LQLR-based SPM is more likely to succeed in the near-

field imaging of large tissue samples. 
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(a) (b) 

Figure 5.20 Estimated relative permittivity in the living tissue experiment: (a) real part, 

(b) imaginary part. BCCB SPM with LQL approximation and BCCB solver are used. 

  

(a) (b) 

Figure 5.21 Estimated relative permittivity in the living tissue experiment: (a) real part, 

(b) imaginary part. BCCB SPM with LQL approximation and BCCB solver are used. De-

noising algorithm is applied to the CO data as well as the RO data. 
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(a) (b) 

Figure 5.22 Estimated relative permittivity in the living tissue experiment: (a) real part, 

(b) imaginary part. BCCB SPM with LQL approximation and BCCB solver are used. De-

noising algorithm is applied to the CO data as well as the RO data. Gaussian apodization 

function is used. 

  

(a) (b) 

Figure 5.23 Estimated relative permittivity in the living tissue experiment: (a) real part, 

(b) imaginary part. BCCB SPM with LQLR approximation and BCCB solver are used. 

De-noising algorithm is applied to the CO data as well as the RO data. 
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(a) (b) 

Figure 5.24 Estimated relative permittivity in the living tissue experiment: (a) real part, 

(b) imaginary part. BCCB SPM with LQLR approximation and MOSEK solver are used. 

De-noising algorithm is applied to the CO data as well as the RO data. 

 

5.3.2 Calibration with Metallic Scattering Probe 

 

In order to achieve target-independent quantitative accuracy, the calibration strategy 

employing metallic scattering probe is proposed. Since its envisioned application is tissue 

imaging, here we report our first results in an example containing lossy media. It uses the 

simulated data obtained with FEKO [19]. 

5.3.2.1 Dielectric Objects in Lossy Medium 

 

The imaging setup consists of two half-wavelength dipole antennas aligned along each 

other’s boresight. The distance from the antennas’ aperture to the OUT is 4 mm. The 

imaged area is 8 cm by 8 cm with 2 mm sampling step. The linearly spaced frequency 

samples are from 3 GHz to 5 GHz with 1 GHz step. Note that the physical antenna length 

is automatically adjusted at each frequency point. 
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(a) (b) 

Figure 5.25 Screenshots from FEKO of: (a) the simulation setup emulating the planar 

scan with two dipole antennas aligned along each other’s boresight; (b) the top view of 

the OUT. 

 

The OUT contains a dielectric cross of r 18ε   and a dielectric cylinder of r 12ε   (see 

Figure 5.25). The objects are 1 cm in height. The background medium in the RO is set to 

be of r,RO 9.4 i1.85ε   . Note that the RO relative permittivity value is required for the 

calculation of ( )mα  in (2.11). 

For the CO scan with the metallic scattering probe, we use a piece of wire of 5.5 mm 

length and 0.4 mm radius (see Figure 5.26(a)). It is positioned in accordance with the 

antennas’ polarization. We also perform a CO scan with a dielectric scattering probe as 

shown in Figure 5.26(b). For that, a cube with 4 mm side and a relative permittivity of 15 

is used. 

In the case of the calibration with a metallic scattering probe, the scaling factor is 

calculated according to (2.29) or (2.30). Note that it is very sensitive to the parameters of 

the wire scatterer (e.g., length and radius) as well as the relative permittivity of the 
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background. In order to overcome this drawback, the controlled object with known 

permittivity distribution can be measured. Here, we use the dielectric cylinder of r 12ε   

from the imaging setup shown in Figure 5.25. The value of the scaling factor can also be 

determined from the reconstruction of this controlled object. The so-obtained scaling 

factor value is in agreement with the one calculated analytically provided that the 

constraints for calculating ( )mα  through (2.11) are met. 

Since the images reconstructed with both methods are practically identical, only the 

results obtained with the convolution-based SPM are shown here. The LQL images in the 

case of the calibration with a metallic scattering probe are shown in Figure 5.27, whereas 

those in the case of the calibration with a dielectric scattering probe are shown in Figure 

5.29. The respective LQLR images are shown in Figure 5.28 in the case of the calibration 

with metallic scattering probe and Figure 5.30 in the case of the calibration with dielectric 

scattering probe. Note that due to the specifics of the imaging setup (i.e., antenna 

polarization) the imaged objects do not appear symmetrical. 

It is seen that the real part of the reconstructed relative permittivity is better in the case 

of the calibration with a metallic scattering probe (see Figure 5.27(a) and Figure 5.29(a) 

as well as Figure 5.28(a) and Figure 5.30(a)). Note that the scattering objects have much 

smaller contrast with the RO in the imaginary part of the relative permittivity compared to 

the real part. That is why, we observe a poor fidelity of reconstruction in the imaginary 

part (see Figure 5.27(b), Figure 5.28(b), Figure 5.29(b) and Figure 5.30(b)). 
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The presented simulation example validates the calibration with a metallic scattering 

probe for the quantitative reconstruction in near-field microwave imaging. 

  

(a) (b) 

Figure 5.26 Screenshots from FEKO of the simulation setup for the CO measurement 

with (a) metallic scattering probe and (b) dielectric scattering probe. 

  

(a) (b) 

Figure 5.27 Estimated relative permittivity in the case of calibration with a metallic 

scattering probe: (a) real part, (b) imaginary part. Convolution-based SPM with LQL 

approximation is used. 
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(a) (b) 

Figure 5.28 Estimated relative permittivity in the case of calibration with a metallic 

scattering probe: (a) real part, (b) imaginary part. Convolution-based SPM with LQLR 

approximation is used. 

  

(a) (b) 

Figure 5.29 Estimated relative permittivity in the case of calibration with a dielectric 

scattering probe: (a) real part, (b) imaginary part. Convolution-based SPM with LQL 

approximation is used. 
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(a) (b) 

Figure 5.30 Estimated relative permittivity in the case of calibration with a dielectric 

scattering probe: (a) real part, (b) imaginary part. Convolution-based SPM with LQLR 

approximation is used. 

 

5.4 Three-Dimensional Imaging 
 

Two 3D imaging experimental examples are presented here. Both of them employ 

calibration with a dielectric scattering probe. No power amplifiers are used since it 

prevents the acquisition of reflection coefficients. It is known that reflection data are 

crucial for range resolution, which is determined by the formula [13] 

 
RO

max min2( )
z

v
δ

f f



, (5.3) 

where ROv  is the speed of light in the background medium. Note that the depth 

information can still be obtained with a power amplifier connected to transmitter if 

multiple viewing angles on the receiving side are available [20]. 
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5.4.1 Reconstruction of Letter-Shaped Objects 

 

The experimental setup consists of two open-ended WR42 waveguides with the 

distance between them being approximately 74 mm. The antennas operate in air. The data 

acquisition involves transmission and reflection measurements. 

The OUT is suspended between the antennas. The distance from the antenna flanges to 

the OUT is 4 mm. It consists of the letter-shaped objects placed in a block of polystyrene 

with a thickness of 66 mm (see Figure 5.31). The objects shaped as letters C and A are 

fabricated from Eccostock HiK material [10]. As measured by a dielectric probe [12], its 

averaged relative permittivity value in the frequency range from 18 GHz to 25 GHz is 

r,OUT 4.8 i 2.2ε   , whereas that of the polystyrene is r,RO 1.05 i0.03ε   . The width of 

the letters is 7 mm whereas the thickness is 22 mm (see Figure 5.31(a)). The maximum 

lateral dimension of the letter A is 65 mm. It is placed at the center of the bottom plane. 

The maximum lateral dimension of the letter C is 61 mm, and it is placed at the center of 

the top plane. 

The CO is composed of the same polystyrene block with a dielectric cylinder of 5 mm 

diameter and 20 mm height embedded at the center of the imaged plane. The cylinder is 

made of a dielectric with r,sc 12ε  . The height of the scatterer is chosen to be 

approximately the same as that of the inspected objects. Since we aim at 3D 

reconstruction, the respective CO measurements are performed with the scattering probe 

at the center of each of the three z planes (see Figure 5.31(b)). 
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(a) (b) 

Figure 5.31 (a) Photograph of the letters C and A with their respective dimensions. (b) 

Sketch of the imaged setup with OUT consisting of 22 mm thick layers. 

 

The imaged area is 10 cm by 10 cm. The scanning step is 2 mm in both lateral 

directions. The frequency sweep is from 18 GHz to 25 GHz with 71 frequency samples. 

The VNA output power is 0 dBm. 

Note that the calculated range resolution for the given frequency range is about 21 

mm. Since the thickness of the fabricated C and A letters equals 22 mm, we should be 

able to distinguish them reasonably well in the range direction. 

The raw data in this experiment have been acquired with the scanner shown in Figure 

5.1(b). It can be seen that the metallic parts of the scanner have not been shielded. Even 

though these parts are not located in the immediate vicinity of the antennas, the raw data 

are strongly affected by the reflections from the metal (see Figure 5.32). Ideally, the 

resultant interference pattern should cancel when subtracting the RO signal from the CO 

signal. However, it is not always the case (see Figure 5.33). Consequently, the 

reconstruction fidelity is compromised. Some artifacts and nonphysical permittivity 
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values are observed in the images obtained with the convolution-based SPM (running 

time is about a second) shown in Figure 5.34, as well as in those obtained with the BCCB 

SPM (running time is several minutes) shown in Figure 5.35. We observe that the BCCB 

SPM reconstruction results are affected more by the background pattern in the raw data 

compared to the convolution-based SPM outcome. 

Next, we attempt to improve the reconstruction fidelity by de-noising the measured 

data. The resultant images obtained with the convolution-based SPM and the BCCB SPM 

are shown in Figure 5.36 and Figure 5.37, respectively. The real parts of the relative 

permittivity are relatively similar (see Figure 5.36(a) and Figure 5.37(a)) whereas the 

imaginary part looks better in Figure 5.36(b). Also, we could state that the LQL 

reconstruction of the letter C with either the convolution-based SPM or the BCCB SPM is 

not satisfactory. 

On the other hand, the LQLR approximation offers somewhat better reconstruction 

fidelity of the letter C with both methods (see Figure 5.38 and Figure 5.39). However, the 

imaginary part of the letter A is reconstructed poorly in Figure 5.38(b) and Figure 5.39(b). 

Also, we notice significant artifacts in the middle layer of the OUT when using the 

convolution-based SPM (see Figure 5.38). 

Finally, since the reconstructed results contain nonphysical values, we employ the 

MOSEK solver with physicality constraints (5.1). The respective LQLR images are 

shown in Figure 5.40. It is seen that the imaginary part of the relative permittivity is 
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reconstructed poorly (see Figure 5.40). More importantly, using MOSEK in the case of 

the LQL approximation yields a non-convergent solution. 

  

(a) (b) 

Figure 5.32 Measured S-parameter data containing an interference pattern generated by 

the metallic parts of the scanner. (a) Modulus of the CO reflection (3
rd

 layer) data at 21.9 

GHz. (b) Modulus of the RO reflection data at 21.9 GHz. 

  

(a) (b) 

Figure 5.33 Modulus of the CO scattered response obtained by subtracting the RO signal 

from the CO signal at: (a) 21.9 GHz and (b) 24 GHz. 



PhD Thesis – Denys Shumakov Chapter 5 McMaster University – ECE 

 

119 

 

  

(a) (b) 

Figure 5.34 Estimated relative permittivity of the letter-shaped objects using reflection 

data: (a) real part, (b) imaginary part. Convolution-based SPM with LQL approximation 

is used. 

  

(a) (b) 

Figure 5.35 Estimated relative permittivity of the letter-shaped objects using reflection 

data: (a) real part, (b) imaginary part. BCCB SPM with LQL approximation and BCCB 

solver are used. 
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(a) (b) 

Figure 5.36 Estimated relative permittivity of the letter-shaped objects using reflection 

data: (a) real part, (b) imaginary part. Convolution-based SPM with LQL approximation 

is used. De-noising algorithm is applied to the CO data as well as the RO data. 

  

(a) (b) 

Figure 5.37 Estimated relative permittivity of the letter-shaped objects using reflection 

data: (a) real part, (b) imaginary part. BCCB SPM with LQL approximation and BCCB 

solver are used. De-noising algorithm is applied to the CO data as well as the RO data. 
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(a) (b) 

Figure 5.38 Estimated relative permittivity of the letter-shaped objects using reflection 

data: (a) real part, (b) imaginary part. Convolution-based SPM with LQLR approximation 

is used. De-noising algorithm is applied to the CO data as well as the RO data. 

  

(a) (b) 

Figure 5.39 Estimated relative permittivity of the letter-shaped objects using reflection 

data: (a) real part, (b) imaginary part. BCCB SPM with LQLR approximation and BCCB 

solver are used. De-noising algorithm is applied to the CO data as well as the RO data. 
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(a) (b) 

Figure 5.40 Estimated relative permittivity of the letter-shaped objects using reflection 

data: (a) real part, (b) imaginary part. BCCB SPM with LQLR approximation and 

MOSEK solver are used. De-noising algorithm is applied to the CO data as well as the 

RO data. 

 

5.4.2 Reconstruction of Synthetic Multilayered Object 

 

For the next example, a five-layer synthetic object shown in Figure 5.41(a), (b) and (c) 

has been scanned. The top and bottom OUT layers are made of a 3 mm dielectric sheet 

with r 12 . The other three layers are 20x20x1 cm
3
 absorber sheets with relative 

permittivity of r 10 i5ε   . The second layer from the bottom contains a dielectric cross 

of r 18ε  , a dielectric cylinder of r 12ε   and four dielectric cylinders of r 15 i0.003ε    

[10]. All these objects are embedded in the absorbing material with r 10 i5ε    as seen in 

Figure 5.41(b). The third layer from the bottom does not contain inclusions. The fourth 

layer from the bottom contains a dielectric cross of r 12ε   positioned at the center (see 

Figure 5.41(c)). All the cylinders used in this experiment are 1 cm in diameter and 1 cm 

in height. 
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Two TEM horn antennas [16] are aligned along each other’s boresight and move in a 

planar raster fashion. The output power of the vector network analyzer (VNA) is 5 dBm. 

The imaged area is 13 cm by 13 cm with 2 mm sampling step. Both reflection and 

transmission coefficients are acquired. 

  

(a) (b) 

  
(c) (d) 

Figure 5.41 Photographs of (a) imaging setup with five-layer OUT, (b) second (from the 

bottom) layer of OUT with 13 cm by 13 cm imaged area (dashed white line), (c) fourth 

(from the bottom) layer of OUT with a dielectric cross, and (d) CO layer with a dielectric 

cylinder serving as a scattering probe. 
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The RO is comprised of two dielectric sheets and three absorber sheets resembling the 

OUT’s structure with no scattering objects. For the CO scan, we use a dielectric cylinder 

of 1 cm diameter and 1 cm height, with the relative permittivity of r,sc 15 i0.003ε   . This 

cylinder is in succession embedded in the center of each of the three absorber sheets 

comprising the RO. These are the three CO measurements, which provide the PSFs 

needed to generate the images at the corresponding range locations z = 0.8 cm, 1.8 cm 

and 2.8 cm, with the origin being at the bottom of the OUT. 

  

(a) (b) 

Figure 5.42 Estimated relative permittivity of the five-layer OUT: (a) real part, (b) 

imaginary part. BCCB SPM with LQL approximation and BCCB solver are used. De-

noising is not applied. 

 

The reconstruction results obtained with the SPM employing the LQL approximation 

are shown in Figure 5.42. We do not see the imaged objects due to the strong artifacts 

present in both the real and the imaginary parts of the relative permittivity. Applying the 

de-noising algorithm to the RO and CO data improves the fidelity of reconstruction 
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significantly (see Figure 5.43). Also, note that there are no nonphysical values in the 

resultant images. 

As the next step, we employ the LQLR approximation with the respective results 

shown in Figure 5.44. We observe superior quality of the reconstruction in comparison 

with the LQL approximation, especially in the imaginary part of the OUT permittivity 

(see Figure 5.43(b) and Figure 5.44(b)). Also, we are able to see the air pockets contained 

in the layer at 0.8z   cm (see Figure 5.41(b) and Figure 5.44). 

It should be noted that the LQL and LQLR results obtained with the BCCB SPM are 

similar to those obtained with the convolution-based SPM. However, due to the relatively 

large computational size of the problem, the BCCB SPM realized in MATLAB takes 

hours. On the other hand, the convolution-based SPM (also realized in MATLAB) 

requires a few seconds to produce the result, which makes it the number one tool for 

solving weak-scattering problems with hundreds of thousands of unknowns. 

This experiment also exemplifies the limitations of the proposed linear reconstruction 

methodology. The reconstructed real part of the OUT permittivity with both the LQL and 

LQLR approximations is not satisfactory (see Figure 5.43(a) and Figure 5.44(a)). This is 

due to two main factors. First, the scattering objects have much less contrast with the 

background (the RO) in the real part of the permittivity compared to the imaginary part. 

Second, the RO is layered, where the top and bottom low-loss slabs differ in their 

permittivity from the middle three layers, which have significant loss and lower 

permittivity. At the same time, the top and bottom slabs are right next to the inclusions, 
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which leads to strong coupling with them. This effect cannot be captured by the measured 

PSFs (the CO measurements), neither can it be accounted for by the linearized inversions 

based on the LQL and the LQLR approximations. 

  

(a) (b) 

Figure 5.43 Estimated relative permittivity of the five-layer OUT: (a) real part, (b) 

imaginary part. BCCB SPM with LQL approximation and BCCB solver are used. De-

noising algorithm is applied to the CO data as well as the RO data. 

 

  

(a) (b) 

Figure 5.44 Estimated relative permittivity of the five-layer OUT: (a) real part, (b) 

imaginary part. BCCB SPM with LQLR approximation and BCCB solver are used. De-

noising algorithm is applied to the CO data as well as the RO data. 



PhD Thesis – Denys Shumakov Chapter 5 McMaster University – ECE 

 

127 

 

References 
 

[1] J. C. Lin, “Frequency optimization for microwave imaging of biological tissues,” 

Proc. IEEE, vol. 73, no. 2, pp. 374–375, Feb. 1985. 

[2] N. K. Nikolova, “Microwave biomedical imaging,” Wiley Encyclopedia of Electrical 

and Electronics Engineering, pp. 1–22. (published online Apr. 25, 2014). 

[3] K. Khare. Fourier Optics and Computational Imaging. Chichester, U.K.: John Wiley 

& Sons, 2016, p. 198. 

[4] E. W. Weisstein. “Apodization Function.” From MathWorld–A Wolfram Web 

Resource. http://mathworld.wolfram.com/ApodizationFunction.html 

[5] D. D. Traficante and G. A. Nemeth, “A new and improved apodization function for 

resolution enhancement in NMR spectroscopy,” J. Magn. Reson., vol. 71, no. 2, pp. 

237–245, Feb. 1987. 

[6] F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier 

transform,” Proc. IEEE, vol. 66, pp. 51–83, Jan. 1978. 

[7] P. Giraudeau and S. Akoka, “Sensitivity and lineshape improvement in ultrafast 2D 

NMR by optimized apodization in the spatially encoded dimension,” Magnet. Reson. 

Chem., vol. 49, no. 6, pp. 307–313, Jun. 2011. 

[8] S. Tu, J. J. McCombe, D. S. Shumakov, and N. K. Nikolova, “Fast quantitative 

microwave imaging with resolvent kernel extracted from measurements,” Inverse 

Problems, vol. 31, no. 4, 33 pp., Mar. 2015. 

http://mathworld.wolfram.com/


PhD Thesis – Denys Shumakov Chapter 5 McMaster University – ECE 

 

128 

 

[9] D. S. Shumakov, S. Tu, and N. K. Nikolova, “Fast quantitative microwave imaging 

based on measured point spread functions and inversion in real space,” IEEE AP-

S/URSI Int. Symp. Antennas Propag., pp. 687–688, Jul. 2015. 

[10] Emerson & Cuming Microwave Products Inc. Randolph, MA, USA. Unit of Laird 

Technologies. 

[11] D. S. Shumakov, A. S. Beaverstone, D. Tajik, and N. K. Nikolova, “Experimental 

investigation of axial-null and axial-peak illumination schemes in microwave 

imaging,” IEEE AP-S/URSI Int. Symp. Antennas Propag., pp. 849–850, Jun.-Jul. 

2016. 

[12] Agilent 85070E Dielectric Probe Kit, Keysight Technologies Inc., USA 

(www.keysight.com). 

[13] D. S. Shumakov, A. S. Beaverstone, and N. K. Nikolova, “Optimal illumination 

schemes for near-field microwave imaging,” Progress In Electromagnetics Research, 

vol. 157, pp. 93–110, 2016. 

[14] CVX Research Inc., 2012. http://web.cvxr.com/cvx/beta/doc/mosek.html#mosek 

[15] MATLAB R2016a. The MathWorks Inc., Natick, MA, USA, 2016. 

[16] R. K. Amineh, M. Ravan, A. Trehan, and N. K. Nikolova, “Near-field microwave 

imaging based on aperture raster scanning with TEM horn antennas,” IEEE Trans. 

Antennas Propag., vol. 59, no. 3, pp. 928–940, Mar. 2011. 

[17] Taconic CER-10 RF & Microwave Laminate, High DK Material. 

[18] M. Redivo-Zaglia, and G. Rodriguez, “SMT: a MATLAB toolbox for structured 

matrices,” Numer. Algor., vol. 59, no. 4, pp. 639–659, Apr. 2012. 



PhD Thesis – Denys Shumakov Chapter 5 McMaster University – ECE 

 

129 

 

[19] FEKO Suite 7.0.1 for Altair. EM Software & Systems – S. A. (Pty) Ltd., USA 

(www.feko.info). 

[20] R. K. Amineh, M. Ravan, J. McCombe, and N. K. Nikolova, “Three-dimensional 

microwave holographic imaging employing forward-scattered waves only,” Int. J. 

Antennas Propag., vol. 2013, Article ID 897287, 15 pp., 2013. 



PhD Thesis – Denys Shumakov Chapter 6 McMaster University – ECE 

 

130 

 

Chapter 6           

             

Axial-Null Illumination for Near-Field Microwave 

Imaging 

Equation Chapter (Next) Section 1 

6.1 Introduction 
 

Recent efforts in microwave imaging target a variety of short-range applications such 

as concealed weapon detection, through-the-wall imaging, non-destructive testing and 

evaluation, biomedical diagnostics, etc. [1]-[6]. The scanning hardware usually employs 

acquisition surfaces of canonical shapes: planar, cylindrical, or hemispherical, which 

simplifies the reconstruction process. The data (back-scattered and/or forward-scattered 

signals) can be acquired either through mechanical scanning or through electronically-

switched arrays. The transmitting antennas are designed to conform to the respective 

surface shape and to have the radiation maximum more or less along boresight and 

aiming at the center of the examined volume. This design choice achieves stronger 

scattering signals from possible targets—the stronger the illumination is, the stronger the 

scattered field. Further, in forward-scattered (transmission coefficient) data acquisition, it 

is customary to align at least one of the receiving antennas (the sensors) along the 

transmitters’ boresight in order to minimize the signal path, thereby maximizing the 

signal strength. In back-scattered (reflection coefficient) data acquisition, it is customary 
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to use the same antenna as a transmitter and a receiver along with a duplexing device that 

separates the incoming (reflected) signal from the outgoing (transmitted) one. 

Multi-illumination configurations, also known as illumination-diversity techniques, 

have been used widely in microwave imaging [7]-[15]. At the expense of increased 

hardware complexity, such configurations allow for more accurate target shape 

reconstruction and localization. This is a consequence of collecting data from multiple 

perspectives. Illumination diversity along with frequency diversity can drastically 

improve the performance of microwave imaging provided the design of the system is 

optimal. 

It is known that multi-illumination data improve the spatial resolution [8]-[15]. Since 

the object under test (OUT) is simultaneously illuminated by multiple sources, the 

scattered signals produce a coherent summation of the field due to a scattering center. For 

example, in diffraction tomography, this improves the image angular resolution, which is 

equivalent to reducing the necessary rotation angles [8][9]. In the quasi-monostatic 

frequency-swept imaging system in [8], three transmitting antennas are used, the 

boresight axes of which are at 0˚, 30˚ and −30˚ angles with respect to the radial line 

through the center of the imaged plane. At the same time, the receiving antenna boresight 

is at an angle of 0˚. This leads to three-fold improvement in the spatial resolution 

compared to a single-source illumination using the same angular sampling rate. 

Microwave multi-static tomography systems such as [11]-[15] can also achieve 

improvement in resolution due to the multiple viewing angles. Such systems employ 
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circular switched arrays where, at each measurement, one antenna transmits and all others 

receive. However, due to reciprocity, the acquired signals can also be interpreted as due 

to multiple transmitters with a single receiver. Similarly, the reciprocity concept has been 

exploited in the ultrawideband (UWB) radar systems such as that in [10] where only one 

antenna transmits and 24 antennas receive back-scattered signals. A major advantage of 

the radar-based imaging over the tomographic imaging is its relatively simple and robust 

signal processing [16]. Some examples of the multi-static UWB radar microwave imaging 

systems are presented in [17] and [18]. They employ 31 antennas which can operate as 

transmitters or as receivers: while one antenna transmits, the measured field is acquired 

by the remaining 30 antennas. 

Finally, the different strategies can be combined in order to achieve an improved 

resolution. These strategies can be algorithmic such as multi-resolution iterative inversion 

or edge preserving regularization, and hardware-oriented such as multi-illumination or 

multi-frequency excitation. For example, a multi-illumination setup used in conjunction 

with the multi-resolution iterative inversion is discussed in [19]-[21]. 

This chapter starts with the presentation of a rigorous theory of the spatial resolution 

for the case of multi-illumination schemes. The cross-range resolution limits with planar 

scanning are derived analytically in the far zone allowing for a comparison between the 

conventional single-source illumination and the double-source illumination. These limits 

are then validated through an inversion with SPM. The reconstruction is applied to two 

sets of simulated data acquired by a four-antenna array and by the conventional 

illumination. The respective images provide the estimated resolution limits in both cases. 
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Next, the axial-null illumination for near-field microwave imaging is introduced. In 

addition to the improved cross-range resolution, the important advantage of the proposed 

illumination scheme is that it eliminates the need for background (or baseline) 

measurements, thus simplifying the system calibration. 

6.2 Analytical Investigation of Spatial Resolution Limits 

6.2.1 Cross-Range Resolution 

 

To estimate the cross-range resolution limit, consider the planar scanning scenario 

depicted in Figure 6.1. The scan is along x and y whereas z is the depth (or range) 

direction. It is assumed that the scatterer lies in a fixed cross-range plane 0z z  where its 

contrast function is given by 0( , , )f x y z  . Under the linear Born approximation, a signal 

in a planar acquisition can be viewed as the 2D convolution of the contrast function and 

the point-spread function (PSF) of the measurement system S0 [22]: 

 0 0 0( , , ) ( , , ) ( , , )A

x y

S x y z f x y z S x x y y z dx dy
 

          , (6.1) 

where Az  is the fixed z-coordinate of the acquisition plane whereas x and y indicate the 

location of the measurement point. 0 0( , , )S x y z  is a short-hand notation for 

 0 0 0( , , ) ( , , ;0,0, )AS x y z S x y z z   (6.2) 
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and it describes the system’s centered PSF, i.e., the signal recorded at ( , , )Ax y z , when a 

point (δ-function) scatterer is located at the center  00,0, z  of the imaged plane. The 

subscript in S  emphasizes that this signal is due to a point scatterer. 
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tx rxR R

tx rx 

x

Tx,Rx

tx rxD D

scanned aperture

target
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txR rxR

tx rx

x x

boresight axisTx Rx

txD rxD

scanned aperture

target

 
(a) (b) 

Figure 6.1 Illustration of the antenna and target positions in planar raster scanning in the 

case of conventional single antenna illumination: (a) monostatic, (b) bi-static. 

 

In Fourier (or k) space, (6.1) can be written as 

 0 0 0( , , ) ( , , ) ( , , )x y A x y x yS k k z f k k z S k k z  , (6.3) 

which allows for expressing the 2D Fourier transform (FT) of the unknown contrast 

function as 

 0

0 0

( , , )
( , , )

( , , )

x y A
x y

x y

S k k z
f k k z

S k k z
 . (6.4) 
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Here, S  and 0S  denote the 2D FTs of S  and 0S , respectively. It should be noted that 

(6.4) is not used directly in practical inversion schemes because 0 0( , , )x yS k k z  may have 

near-zero values, or a system of equations based on (6.3) may be ill-posed and/or over-

determined. Here, (6.4) is used only to illustrate the impact of the limits of the signal 

extent in k-space on the spatial resolution and to estimate the limits of this resolution. 

Assuming that (6.4) is valid, the contrast function can be reconstructed using 

 1
0 2

0 0

( , , )
( , , )

( , , )

x y A
D

x y

S k k z
f x y z

S k k z


  

  
  

, (6.5) 

where 
1

2D


 denotes the 2D inverse FT and f  is the estimate of f. 

Consider a point scatterer at 0 0( , )x y  in the 0z  plane. Its contrast function is defined as 

   0 0, ( ) ( )f x y x x y y     . (6.6) 

In 2D k-space, this scatterer appears as: 

 0 0i i
0( , , ) x yk x k y

x yf k k z e
 

 . (6.7) 

From (6.3), the FT of the system PSF is obtained as 

 0 0i i
0 0( , , ) ( , , )x yk x k y

x y A x yS k k z e S k k z
 

  . (6.8) 

Substituting (6.8) into (6.5) produces the reconstructed contrast function, which is in the 

form of a 2D sinc function (centered at 0x , 0y ) due to the finite spectral range limited 
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between maxk   and maxk  , ,x y . These limits depend on the spectral content of 0S , 

which in turn depends on the size of the scanned aperture as well as the transmitting and 

receiving antenna radiation patterns. The first null of the sinc function, which estimates 

the actual  -function contrast, determines the cross-range resolution limits as: 

 
max maxx y

x yk k
  

 
  . (6.9) 

Thus, the available spectral width in k-space is critical in improving the cross-range 

resolution. Also, note that (6.5) is an approximation that yields the best possible 

resolution for the given spectral limits. As the scatterer moves from the center of the 

imaged scene and toward the edge of the acquisition aperture, the cross-range resolution 

will deteriorate. 

6.2.1.1 Conventional Boresight Illumination 

 

In order to compare the spectral width of the signals acquired with the conventional 

boresight illumination and those acquired with ANI, it is beneficial to analyze the 

simplified problem of a linear scan along the x-axis where the target is in the far zone of 

the transmitting (Tx) and the receiving (Rx) antennas. Let x be the position of the Tx/Rx 

antenna pair with respect to the target (see Figure 6.1). The faster the acquired signal S(x) 

changes with x, the broader its spectrum is in kx space. Thus, increasing the sensitivity of 

the signal /dS dx is equal to increasing the spectral width 
max
xk , which in turn means 

better resolution. 
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As discussed before, the available spectral range in Fourier space is determined by that 

of the system PSF, 0 0( , )S x z , which is the signal acquired at x when a point scatterer is 

located at 0 0( 0, )x z ; see (6.2). Let 0z  be such that the range distances from the scatterer 

to the planes of the transmitter and the receiver are txD  and rxD , respectively; see Figure 

6.1. For simplicity, we consider the scenario where the receiving and transmitting 

antennas are co-located (see the monostatic-case illustration in Figure 6.1(a)) or they are 

on the opposite sides of the target but scan together the x-line while remaining aligned 

along each other’s boresight (see the bistatic-case illustration in Figure 6.1(b)). The 

scanned aperture has length aL  so that a a[ 0.5 ,0.5 ]x L L  . 

The far-zone assumption allows for neglecting the amplitude variation of the received 

signal, so that 

 tx rxi ( )
0 a( ) ( ) k R RS x S x e   . (6.10) 

Here, 2 2
tx tx( )R x D x   and 2 2

rx rx( )R x D x  . The subscript in aS  emphasizes that 

the expression is only approximate. The signal derivative with respect to x is found as 

 
a

tx rx ai (sin sin ) ( )
dS

k S x
dx

     , (6.11) 

where tx txsin /x R  and rx rxsin /x R . It is apparent that the maximum derivative 

occurs at the largest values of θtx  and θrx, i.e., when the antennas are at the edge of the 

aperture: 
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a amax max

tx rx

tx rx

sin ; sin
2 2

L L

R R
    . (6.12) 

Therefore, the signals acquired at the aperture’s edge contribute to the highest spectral 

content of 0( )xS k . The spatial frequencies of this content can be estimated by taking the 

Fourier transform of (6.11) where txsin  and rxsin  are assumed relatively constant 

(with respect to x) close to their maximum values. This yields the estimate of the 

maximum spatial frequency as 

 
max max max

tx rx(sin sin )xk k   . (6.13) 

In the best-case scenario, 
max
tx 90  and 

max
rx 90 . Then, 

max 2xk k  and, according 

to (6.9), 

 
max 4

x

xk
 

 
 . (6.14) 

This is the well-known diffraction limit of imaging with far-zone data. More generally, 

 
max max
tx rx2(sin sin )

x 





 
. (6.15) 

Here, max
tx  and max

rx  are determined by the size of the acquisition aperture, see (6.12) or 

by the antenna beamwidths, whichever is less. It is clear that wide-beamwidth antennas 

(e.g., omnidirectional antennas) are preferable as they provide wider viewing angles of 

the imaged object thereby improving the spatial resolution. Also, we recognize that larger 
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values of max
tx  and max

rx  imply longer signal paths in the planar acquisition considered 

here. In a lossy propagation medium, this means loss of information at larger angles, 

which would degrade the resolution performance additionally. 

zaL

tx rxR R

tx rx 

x

Tx1

tx rxD D

scanned aperture

target

Tx2

Rx1
s

 

zaL

txR rxR

tx rx

x

boresight axis

txD rxD

scanned aperture

target

Tx1

Tx2

Rx
s

 
(a) (b) 

Figure 6.2 Illustration of the antenna and target positions in planar raster scanning in the 

case of differential illumination: (a) monostatic, (b) bi-static. 

 

6.2.1.2 Double-Source Illumination 

 

In the case of a double-source illumination, the scattered signal due to a point scatterer 

in the differential case is approximated as 

  tx1 tx 2 rxi i i
0,d da( ) ( ) kR kR kRS x S x e e e       , (6.16) 

whereas in the in-phase case, it is 

  tx1 tx 2 rxi i i
0,d da( ) ( ) kR kR kRS x S x e e e       . (6.17) 
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Here, tx1R  and tx2R  are the distances from sources 1 and 2 to the scatterer, respectively 

(see Figure 6.2). If the angle defined by the vectors tx1R  and tx2R  (i.e., the angle 

supported by the double source when the vertex is at the scatterer’s center) is sufficiently 

small, then 

 
tx1 tx tx

tx2 tx tx

0.5 sin ,

0.5 sin .

R R s

R R s

  

  




 (6.18) 

This condition is fulfilled in the far zone of the double-source array or when tx  and rx  

tend to 90°. Then, da ( )S x  and da ( )S x  can be written in terms of aS , see (6.10), as 

  da a tx( ) ( ) 2isin 0.5 sinS x S x ks    . (6.19) 

Analogously, from (6.17) we get 

  da a tx( ) ( ) 2cos 0.5 sinS x S x ks    . (6.20) 

The argument tx0.5 sinks   can also be written as 

 tx

tx

sin
2 2

ks ks
x

R
  . (6.21) 

This result indicates an increase in the spectral content of daS   and daS   as compared to aS  

by tx/ (2 )ks R . This increase would be insignificant if txR s . However, in near-field 

imaging, where txR s , the spectral width would double. Note that the highest spectral 

components in the system PSF arise when the receiver/transmitter pair is at the edge of 
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the acquisition aperture, in which case the approximations in (6.18) hold in the near zone 

as well. 

To appreciate this effect in real (x) space, we can write explicitly the derivatives of the 

differential and the in-phase PSFs as 

 
da 3

tx rx da tx tx a

tx

i (sin sin ) i cos sin cos
2

dS ks ks
k S S

dx D


  

      
 

     (6.22) 

and 

 
da 3

tx rx da tx tx a

tx

i (sin sin ) sin sin cos
2

dS ks ks
k S S

dx D


  

      
 

    . (6.23) 

In the right-hand sides of (6.22) and (6.23), the first terms indicate the presence of high 

spectral components due to signals at the aperture’s edge such that 

max max max
tx rx| | (sin sin )xk k   . This is a result equivalent to the case of the single-source 

illumination considered above. On the other hand, when tx rx, 0  , the response 

sensitivity with the single-source illumination is zero as per (6.11), i.e., the response is 

insensitive to variations in the cross-range position of the target. This is also the case with 

the in-phase double-source illumination, i.e., da / 0dS dx   for 0x  . However, the 

signal sensitivity with the differential illumination remains nonzero: 

 

tx rx

da
a

tx, 0

i ( 0)
dS ks

S x
dx D





  

 

. (6.24) 
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In summary, the cross-range resolution can be improved by at least a factor of 2 in 

near-field imaging by using the double-source illumination such that the element 

separation is comparable to the range distance. The improvement is due to the 

introduction of incident field patterns that vary spatially faster than the one obtained with 

a single source. The effect can be further enhanced by using arrays consisting of more 

than 2 elements. This finding is particularly important in the imaging of lossy objects 

often encountered in non-destructive testing and medical (tissue) imaging. In this case, 

near-field data acquisition is a necessity since the signals attenuate fast and must be 

captured close to the abnormalities that generate them. Moreover, the angles max
tx  and 

max
rx  are severely limited by the attenuation associated with longer signal paths. Thus, it 

is important to have high signal sensitivity to target positions centered on and around the 

aperture’s axis, which is not the case with the single-source illumination. In this respect, 

an optimal choice is the differential (or the ANI) array configuration. The ANI 

configuration offers the added and very important advantage of eliminating the need to 

acquire the baseline (or reference) system response as this response is simply zero (or 

nearly so). 

6.2.2 Range Resolution 

 

It is well known that the range resolution limit with far-zone measurements is given by 

[23]: 

 
RO

max min2( )
z

v
δ

f f



, (6.25) 
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where ROv  is the speed of light in the background medium. 

It is clear that the range resolution depends primarily on the frequency bandwidth. 

Therefore, the double-source illumination is not expected to bring substantial 

improvement in this regard. This can also be understood by considering the signal 

sensitivity with respect to variations in the range position of a target. The double-source 

illumination introduces a rapidly-varying incident field in the lateral direction thus 

improving the cross-range resolution. However, it does not change significantly the 

field’s behavior along range in comparison with the conventional illumination. We briefly 

note that the range resolution could be improved by introducing 3D illuminating arrays or 

multiple planes of acquisition along range. This problem’s solution is not pursued here. 

6.3 Background De-Embedding 
 

Figure 6.3(a) shows a simple example of the conventional illumination scheme. Two 

antennas, aligned along each other’s boresight, form a two-port network together with the 

imaged volume. Each antenna may operate as a transmitter (Tx) and as a receiver (Rx) 

thus allowing for the acquisition of two reflection and two transmission coefficients. This 

configuration can be expanded into an electronically-switched array or can be scanned 

mechanically. Often, both electronic switching and mechanical scanning are employed 

since the spatial sampling rate of electronically-switched arrays may not be sufficient. 

In both transmission and reflection measurements, the single-source illumination 

scheme results in relatively strong received signals even when the scatterer-free 

background is measured. These signals are referred to as the baseline signals, which are 
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representative of the incident-field component in the scattering equations. The baseline 

signals are clearly significant with forward measurements, since in this scenario, the 

transmitter and at least one sensor are aligned along each other’s boresight while 

operating without any obstruction. The baseline reflected signals may also be strong 

relative to the reflection from a weak scatterer since achieving a perfect impedance match 

of the antenna is difficult, especially in a wide frequency range. 

In view of the above, it is clear that when an object under test (OUT) is examined, the 

acquired signal OUTS  contains two components: one due to the baseline signal, which can 

be interpreted as the incident-field signal component, and one due to the signal scattered 

from the OUT, which can be interpreted as the scattered-field component. We are 

interested in the scattered-field component scS  as it carries information about the target. 

Tx (Rx)

Rx (Tx)

 

Tx1

Tx 2

Tx3

Tx 4

Rx1

Rx 2

 
(a) (b) 

Figure 6.3 (a) Conventional measurement setup consisting of two half-wavelength dipoles 

along with (b) a transmitting ANI arrangement of dipoles (Tx1 to Tx4) together with two 

receiving antennas (Rx1 and Rx2) centered on the ANI central axis. 
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The baseline signal ROS  is acquired with a measurement in the background medium, 

here referred to as the reference object (RO). The acquisition of ROS  is part of the system 

calibration and is, in principle, independent of any subsequent OUT measurements. Then, 

the baseline signal ROS  is subtracted from OUTS  to obtain an estimate of scS , 

sc OUT ROS S S  . This simple approach to background de-embedding is based on the 

assumption that the mutual coupling between the acquisition hardware and the target can 

be neglected and the OUT signal is simply a superposition of the baseline and the 

scattered signals. 

Two main problems ensue due to the need to estimate the baseline signal ROS . First, 

the respective calibration measurements are needed—often performed before each OUT 

measurement. Second, the baseline signal contains systematic and stochastic noise and 

uncertainties at levels comparable to those contained in OUTS . Provided the baseline 

measurement is performed under exactly the same circumstances as those of the OUT—a 

challenging requirement on its own—the systematic errors should cancel. Unfortunately, 

stochastic noise and uncertainties in the positioning do not cancel. 

To address the above problems, here we propose a new axial-null illumination (ANI) 

scheme (see Figure 6.3(b)). The ANI can be viewed as the 2D extension of the 

differential illumination discussed above. It is inspired by the same illumination concept 

used in optical lithography for improving the spatial resolution [24][25]. An alternative 

term, “off-axis illumination” (OAI), is also used in the optical literature. In principle, ANI 



PhD Thesis – Denys Shumakov Chapter 6 McMaster University – ECE 

 

146 

 

can be used in planar, cylindrical and spherical scanners, although in this work we focus 

on its application with planar scanning. 

Since ANI is a multi-source illumination, it has an enhanced cross-range resolution in 

near-field measurements as proved above. However, an additional advantage of such 

illumination is in reducing the noise and uncertainty in the data by decreasing 

significantly the strength of the baseline signals. Ideally, these signals should be zero due 

to the intrinsic antisymmetry of the illumination. In practice, they are suppressed down to 

the noise floor of the receiver or the measurement uncertainties. Most importantly, near-

zero baseline signals allow to forego the calibration measurements in the background 

medium. 

It should be noted that due to a null along the central axis, ANI may be viewed as 

somewhat similar to null steering antennas (NSA) used in the wireless communications 

industry [26][27]. GPS systems, for example, are vulnerable to electromagnetic jamming 

because of the wide angular coverage. By reconfiguring the radiation pattern, NSA can 

generate a null in a given direction where the interference source is located. However, 

steering of the radiation pattern null is not needed in microwave imaging. Also, ANI has 

only one fixed null along its central axis for the purpose of having near-zero baseline 

signals as well as the large gradient of the incident field, which makes it different from 

the NSA applications. 

6.4 ANI: Setup and Design Requirements 
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(a) (b) 

Figure 6.4 Top view of the two cases of the ANI design with dipoles: (a) with 2 

antisymmetry planes, and (b) with 4 antisymmetry planes. The planes of antisymmetry 

are shown with dash lines. 

 

A simulation example of an ANI transmitting arrangement using FEKO [28] is 

illustrated in Figure 6.3(b). This particular configuration consists of 4 transmitting and 2 

receiving dipoles. Both receiving antennas are centered on the axis of the ANI. The dipole 

Rx1 is used to acquire back-scattered signals whereas the antenna along the ANI axis but 

on the opposite side of the imaged volume (Rx2) acquires the forward-scattered signals. 

The goal of ANI, as explained earlier, is to ensure zero baseline signals, i.e., zero field 

along the ANI’s axis, in a background medium that is uniform or layered. Depending on 

the antenna elements, there are at least two planar arrangements that can achieve this 

goal. These are illustrated in Figure 6.4 where dipoles are used. These two arrangements 

have the same geometry, i.e., the dipoles’ spacing and orientations are the same, but their 

phasing differs. The first arrangement (in Figure 6.4(a)) features 2 mutually orthogonal 

planes of antisymmetry intersecting at the ANI’s center. The second one (shown in Figure 

6.4(b)) has two pairs of such planes of antisymmetry. 
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(c) (d) 

Figure 6.5 Screenshot from a FEKO simulation showing the E-field strength in a plane 

intersecting the RO (background medium) at a distance of 20 mm from the plane of the 

ANI in the case of the configuration in: (a) Fig. 5-a (2 antisymmetry planes) at 3 GHz; (b) 

Fig. 5-b (4 antisymmetry planes) at 3 GHz; (c) Fig. 5-a (2 antisymmetry planes) at 11 

GHz; (d) Fig. 5-b (4 antisymmetry planes) at 11 GHz. The separation between the ANI 

elements is 70 mm. 

 

The proposed illumination scheme may appear counter-intuitive as it is clear that if a 

target is located along the ANI’s axis, it is not going to be detected—it is not illuminated, 

therefore, it does not scatter. However, ANI creates an illumination interference pattern 

(see Figure 6.5). While a null of this pattern lies at its center, maxima reside nearby. 

Depending on the separation between the ANI elements, the distance to the target and the 

wavelength, the field maxima can be anywhere between one and two times stronger than 

the boresight maximum created by a single element provided comparable power is fed to 

each of the ANI array elements. If the interference pattern changes sufficiently fast in 
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space, even a slight displacement of a target from the center disturbs the field 

antisymmetry and results in a non-zero received signal. This signal is a purely scattered 

signal, i.e., ideally, it does not have an incident-field component ( RO 0S  ). 

o,max / 2x s
x

2R1R

0

d

Tx1 Tx 2
s

z 

 

Figure 6.6 The differential illumination as a 2D ANI version. 

 

The design of the ANI array depends on the choice of its antenna elements. With the 

antenna elements known, the design involves choosing the separation distance between 

them as well as determining their orientation, which is dependent mostly on the antenna 

polarization. The ANI array can be optimized for best sensitivity by requiring that: (i) the 

field along the central axis (the z axis in Figure 6.3) is zero; (ii) within the square area 

defined by the centers of the ANI elements, there are at least four maxima of the 

interference pattern. The latter requirement ensures that the strength of the scattered 

signal is no less than that in conventional illumination since the signal path from a 

maximum of the interference pattern to the receiving antenna is not much longer 

compared to the signal path along the boresight axis. It also ensures large field gradient at 

the ANI array axis leading to high sensitivity to the position of the scatterer. 

We approach the problem of choosing the optimal separation of the ANI elements by 

considering the simpler 2D differential arrangement, which consists of two out-of-phase 
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transmitters. This arrangement is shown in Figure 6.6, where d is the focusing distance, 

i.e., the distance between the line of the transmitters (Tx1 and Tx2) and the line of the 

imaged points. The two lines are parallel. In Figure 6.6, ox  is the observation point, s  is 

the separation between the two elements, iR  ( 1,2i  ) is the distance between the i-th 

transmitter and the observation point. To obtain an analytical estimate, the problem is 

further simplified by assuming point sources. The point sources approximation (also 

known as isotropic source approximation) is commonly exploited in far-field estimations 

and analyses of antenna arrays since the results can be easily augmented to represent 

realistic antennas via a simple multiplication with the antenna pattern. Therefore, the 

point-source simplification is valid as long as the focusing plane is not in the reactive near 

field of the antenna element. 

For the case illustrated in Figure 6.6, the field at the observation point ox  can be 

written as the superposition 

 1 2inc i i
o( ) kR kR

xE x e e   , (6.26) 

where k is the wavenumber of the background medium. Note that when the background 

medium is lossy, it can be properly accounted for in the expression for k. A maximum of 

the interference pattern is required at o / 2x s  at the lowest frequency (or the largest 

wavelength max ). The distances from Tx1 and Tx2 to o,max / 2x s  are 

 2 2
1 2andR d s R d     . (6.27) 
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Figure 6.7 Magnitude distribution of the incident field for three different values of the 

distance d to the observation plane: d = 15 mm (solid), 24 mm (dash) and 35 mm (dot) in 

the case of differential illumination at 3 GHz. The separation s = 70 mm. 

 

The constructive interference occurs when 

 2 1 (2 1), 0,1,...kR kR n n     , (6.28) 

where 0n   corresponds to the first maximum. Therefore, with 0n  , the equation for a 

maximum at o,max / 2x s  is 

 2 2 0.5d s d   , (6.29) 

where max/d d  , max/s s  . The relation between s  and d  can then be found as 

 
max2 0.25, 0.5 or
2

d s s s      


. (6.30) 
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The requirements for dense sampling and large gradient of the incident-field 

distribution demand as small separation s  as possible. On the other hand, the separation 

is limited from below by the size of the ANI elements and the need to minimize mutual 

coupling. Thus, the requirement max / 2s    is usually met in practice. Conversely, if a 

specific focusing distance d  is required (typically centered in the middle of the imaged 

volume), then s  can be determined using (6.30). Note that the choice of s  and d  has 

implications for the spatial resolution as well. These were discussed in the previous 

section. 

Figure 6.7 illustrates the field distribution at 3 GHz obtained analytically using (6.26). 

The longest wavelength (in air) is max 100  mm. The separation is set at s = 70 mm. 

Three distributions are shown corresponding to d = 15 mm, 24 mm and 35 mm. 

According to (6.30), at 0 24d   mm, the field-strength peaks are aligned with the 

separation s. This is indeed the case as is evident from Figure 6.7. For 0d d , the peaks 

shift inward within the interval defined by s, which is a desirable effect. For 0d d  they 

move out of s, which is not desirable. In summary, for maximum sensitivity, the focusing 

distance d has to be kept smaller than or approximately equal to 0d , where 0d  is 

determined according to (6.30). 

In the case of far-zone measurements, i.e., d s  ( 1d  , 1s  ), it can be shown that 

the same requirement leads to 
2s d . We note that this requirement ensures the 

maximum possible field gradient at the axis of ANI and therefore the maximum 
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sensitivity. However, even if the above conditions are not met, the benefits of a zero on-

axis incident field remain. 

6.5 Validation with Scattered-Power Mapping 

6.5.1 Cross-Range Resolution Study 

 

The investigation of the resolution limits for both the conventional and axial-null 

illuminations is carried out here with the BCCB SPM presented in Chapter 3. For that, we 

simulate the OUT consisting of 2 dielectric cubes of 5 mm
3
 volume with the relative 

permittivity of r,OUT 1.2  (Figure 6.8). The RO is chosen to be air, while the CO has a 

small dielectric cube of 5 mm
3 

volume with the relative permittivity of r,sc 1.1 , placed 

in the center of the imaged plane. Note that the RO data have been used for reconstruction 

only in the conventional illumination case. 

The ANI array has a separation s = 70 mm. The distance between the transmitting and 

receiving planes is 50 mm. The focusing distance from the transmitters to the middle of 

imaged objects is 15 mm. In both illumination schemes, the transmitters and the receivers 

are half-wavelength dipoles (the physical length is adjusted at each frequency) at 

frequencies from 5 GHz to 9 GHz. 

To investigate the cross-range resolution, three cases are considered: dielectric cubes 

at edge-to-edge distances of 20y   mm, 10 mm and 5 mm (Figure 6.8). 
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(a) (b) 

Figure 6.8 Illumination setup in FEKO for the imaging of 2 dielectric cubes in the cross-

range (xy) plane: (a) conventional case and (b) ANI case. 
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Figure 6.9 Real part of the reconstructed relative permittivity of the two cubes along the y 

axis at 8 GHz for the conventional illumination case. The edge-to-edge distances between 

the cubes are: 20 mm (solid), 10 mm (dot) and 5 mm (dash-dot). 
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Figure 6.10 Real part of the reconstructed relative permittivity of the two cubes along the 

y axis at 7 GHz for the ANI case. The edge-to-edge distances between the cubes are: 20 

mm (solid), 10 mm (dot) and 5 mm (dash-dot). 
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Figure 6.11 Real part of the reconstructed relative permittivity of the two cubes along the 

y axis at 5.7 GHz for the ANI case (red solid) and -3dB level (green dashed). The edge-

to-edge distance between the cubes is 5 mm (center-to-center distance is 10 mm). 

 

Figure 6.9 shows a cut of the reconstructed relative permittivity of two dielectric cubes 

along the y axis in the case of conventional illumination. It is evident that at 8 GHz the 



PhD Thesis – Denys Shumakov Chapter 6 McMaster University – ECE 

 

156 

 

two objects merge into one when the edge-to-edge distance is 5 mm. Thus, the estimated 

resolution limit is about / 4 , where 37.5 mm is the free-space wavelength at 8 GHz. 

This result is in agreement with the estimated cross-range resolution in the conventional 

illumination case given in (6.14). 

In the case of ANI, the reconstructed relative permittivities of the imaged cubes at 7 

GHz are shown in Figure 6.10. In all three cases, it is possible to differentiate the two 

objects. Figure 6.11 shows that in the case of ANI and when 5y   mm, the two objects 

can still be distinguished well at 5.7 GHz. Therefore, the estimated cross-range resolution 

is approximately /10 , where 52.6  mm is the free-space wavelength at 5.7 GHz. 

This result is in agreement with the theory presented above where it has been shown that 

the cross-range resolution for the ANI case can be improved by at least a factor of 2 in 

comparison with the conventional illumination. 

6.5.2 Experimental Example 1 

 

The experimental setup consists of five identical open-end waveguides at the top and 

one at the bottom as shown in Figure 6.12. The four waveguides at the corners of the top 

array realize an ANI, whereas the central waveguide serves as a conventional single-

source illumination element. The waveguide at the bottom serves as a receiver only. We 

acquire only forward-scattered signals with both illumination schemes. The ANI elements 

are connected to separate vector network analyzer ports and the respective transmission 

coefficients to the receiving open waveguide at the bottom plane are acquired. These 

transmission coefficients are added to produce a total response that emulates 
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simultaneous illumination. Note that the four elements of the ANI array are oriented so 

that this total response is near zero in the baseline measurement; in practice, it varies from 

−60 dB to −53 dB across the X-band range. 

 

Figure 6.12 ANI array consisting of four transmitting X-band open-end waveguides (at 

the top plane) plus a conventional single-source illumination element at the center. 

Receiver is located at the bottom. 

13 mm 6.5 mm 

26 mm 

26 mm 

 
Figure 6.13 Schematic view of four identical dielectric cylinders serving as OUT. The 

separation distances are chosen approximately equal to 0 / 4  (6.5 mm), 0 / 2  (13 mm) 

and 0  (26 mm) at the central frequency of the X-band. 
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The ANI array has a separation of 95 mm and the focusing distance equals 50 mm as 

calculated from (6.30) for the 8 GHz frequency. The presented illumination structure in 

Figure 6.12 is part of the planar-raster acquisition system. The imaged area is 20 cm by 

20 cm. The sampling step in both lateral directions is 5 mm. 

The imaged dielectric cylinders of 1 cm height and 1 cm diameter have the relative 

permittivity of r,OUT 50  (Figure 6.13). The CO used consists of air with a dielectric 

cylinder identical to those in OUT, placed in the center of the imaged plane. 

The reconstructed OUT using the BCCB SPM with the conventional illumination and 

ANI is shown in Figure 6.14. Notice that the RO data have not been used in neither of the 

reconstructions. It is observed that the quality of the reconstructed images in the ANI case 

is much better since the detrimental effect of the baseline signal is minimized by ANI. On 

the contrary, Figure 6.14(a) demonstrates the conventional-case scenario where the 

reconstructed image is obtained from the OUT data being a superposition of the baseline 

and scattered signals. We emphasize that the same reconstruction method is used in 

generating both images in Figure 6.14. The improvement observed in Figure 6.14(b) is 

entirely due to the proposed axial-null illumination scheme. 

As a final observation, we note that the dynamic range of the reconstructed images is 

larger in the ANI case compared to that in the conventional illumination case (Figure 

6.14). 
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(a) (b) 

Figure 6.14 Qualitative reconstruction results of four dielectric cylinders for the 

frequency sweep from 8 GHz to 12 GHz: (a) with conventional illumination and (b) with 

ANI. Transmission coefficients only are processed in this example. The results are 

normalized to 1. 

 

6.5.3 Experimental Example 2 

 

For the second example, we attempt to image objects behind drywall with ANI and 

with conventional illumination. Photos of the OUT and some of its components are 

shown in Figure 6.15. The OUT consists of a piece of drywall of size 47 cm by 36 cm by 

1.3 cm, a dry-wood stud of size 47 cm by 8.8 cm by 3.7 cm and a plastic water pipe of 1.6 

cm diameter together with an insulated three-wire electric cable. Since the dielectric 

permittivity of the drywall is relatively small ( r 2.2 , tan 0.01  as per [29]), we use 

the same experimental setup consisting of X-band air-filled waveguides as in the previous 

experiment (see Figure 6.12). However, this time we are interested in the reflection 

measurements only since such scenarios admit only single-side access. Thus, the receiver 

at the bottom has been removed. In the case of ANI, the central element of the top array 
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transmits with the respective four transmission coefficients acquired. We use a 4-port test 

set allowing for a multi-port acquisition. It has been observed that this 4-port test set 

carries a considerable amount of attenuation, on the order of 5 dB to 10 dB depending on 

frequency. In order to ensure that the measurements with the ANI setup are reasonable, 

we include amplification to counteract the loss of power. 

The CO is chosen to be a metallic cylinder attached to the bottom of the drywall and 

placed at the center of the imaged plane. The cylinder is 1 cm in height and 1 cm in 

diameter. 

 

 

 

  
(a) (b) 

Figure 6.15 The OUT consisting of drywall of size 47 cm by 36 cm by 1.3 cm, a piece of 

dry-wood stud of size 47 cm by 8.8 cm by 3.7 cm, a water pipe of 1.6 cm in diameter 

attached to the left side of the stud, and a three-wire electric cable attached to the right 

side of the stud: (a) the isometric view of the whole OUT upside down and (b) the top 

view of the disassembled OUT (part to be imaged is shown only). The imaged area is 

shown with a red square. The correspondence between the screw 1 and its hole 2 in the 

dry wood is shown with the red dashed arrow. The wood knot is shown as object 3 

whereas the metallic brace attaching the pipe to dry wood is shown as object 4. 
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In the conventional illumination case, only the reflection coefficient at the central 

element of the array is acquired (Figure 6.12). Therefore, the 4-port test set is not used in 

this case. Also, since it is a reflection measurement, an amplifier cannot be used. 

Ultimately, the output power is –2 dBm in the conventional illumination case whereas the 

output power in the ANI case is 14 dBm. 

   
(a) (b) 

 
 

(c) (d) 

Figure 6.16 Qualitative reconstruction results for the second experiment: with 

conventional illumination (a) normalized magnitude and (b) phase in degrees, and with 

ANI (c) normalized magnitude and (d) phase in degrees. The frequency sweep is from 8 

GHz to 12 GHz. The contour lines of the cable are dot black, the contour lines of the dry 

wood are solid red, the contour lines of the pipe are dashed black, and the contour lines of 

metallic objects are solid white (a circle and a square). 
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The ANI array has a separation of 95 mm and the focusing distance is 5 mm which is 

in agreement with (6.30) for the 8 GHz frequency. The planar-raster acquisition system is 

used with the imaged area being 25 cm by 25 cm. The sampling step in both lateral 

directions is 2 mm. 

Using the BCCB SPM, the imaged OUT in the conventional illumination case and in 

the ANI case is shown in Figure 6.16. We observe a more detailed reconstruction with all 

of the objects being distinguishable in the case of ANI. In the conventional illumination 

case, there is a significant artifact along the x and y axes. Also, the water pipe cannot be 

seen. 

As in the previous example, the dynamic range of the images in the ANI case exceeds 

that in the conventional illumination case. However, this time such a significant 

difference in the dynamic ranges is explained by using an amplifier for the measurements 

with ANI. 
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Chapter 7           

             

Conclusions and Future Work 

Equation Chapter (Next) Section 1 

In this thesis, the results of an ongoing development of a near-field microwave 

imaging system are presented. The thesis mainly focuses on the image reconstruction 

theory and more specifically, on the linear inversion methods. Another important aspect, 

namely, the preprocessing of the measured data with a novel de-noising algorithm, has 

been investigated. 

In terms of the hardware part, a calibration strategy with metallic scattering probe is 

developed for near-field quantitative linear inversion methods. The axial-null illumination 

scheme for near-field microwave imaging is also proposed. Rigorous proof of the 

improvement in cross-range resolution in the multi-illumination case compared to the 

conventional single-source illumination is presented as well. 

Here, the conclusions related to the proposed developments are further discussed and 

summarized. Recommendations for future research are also provided. 

7.1 Scattered-Power Mapping (SPM) as a Linear-Inversion 

Module 
 

The BCCB SPM and the convolution-based SPM have been proposed as direct-

inversion methods for fast quantitative imaging. Two key advantages of these methods 
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compared to the work reported in [1][2] are the computational speed and the reduced area 

of the calibration scan. In addition, the BCCB SPM and the convolution-based SPM are 

more general since they accommodate a forward model of scattering cast either as a 

linearized Born model or as a Rytov model. It is known that compared to the Born 

approximation, the Rytov approximation is not limited by the target’s size. Therefore, the 

Rytov-based SPM is more likely to succeed in the near-field imaging of large tissue 

samples. 

It has been shown that the BCCB SPM and the convolution-based SPM produce 

similar images. However, the convolution-based SPM proves to be superior in terms of 

computational time: it provides quantitative images practically instantaneously. That is 

why convolution-based SPM is considered to be our first choice for solving weak-

scattering problems. 

Both the BCCB SPM and the convolution-based SPM are limited by the linearizing 

approximations of the forward model of scattering. Consequently, they are incapable of 

accounting for mutual coupling and multiple scattering. Such effects dominate the 

scattering in complex heterogeneous objects such as living tissue, luggage items, 

structural components in civil engineering, etc. Often, from a qualitative point of view, 

the SPM images are valuable even with strongly heterogeneous scattering objects that 

feature high contrast. Yet, these results lack quantitative accuracy. Future work aims at 

incorporating the quantitative SPM method inside nonlinear reconstruction schemes such 

as the Born iterative method [3] or the distorted Born iterative method [4] (equivalent to 

the Newton-Kantorovich [5] and Levenberg-Marquardt [6] methods). The distinguishing 
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feature of these algorithms is that they employ the Born series to successively improve 

the accuracy of the contrast estimate and that of the total field. Since they utilize linear 

reconstruction modules inside the iterative loop, they can greatly benefit from the 

quantitative real-time performance of either the BCCB SPM or the convolution-based 

SPM. 

7.2 Target-Independent Calibration for Quantitative Linear-

Inversion Methods 
 

The calibration strategy previously used by SPM imposes limitations. In this thesis, it 

is referred to as the calibration with a dielectric scattering probe. For accurate quantitative 

results, the relative permittivity of a voxel in the object under test must be close to that of 

the scattering probe in the calibration object. Since the permittivity of the scattering probe 

is fixed, the quantitative reconstruction of objects with widely varying permittivity 

distribution (e.g., living tissue) is not likely to be accurate. That is why, a new calibration 

strategy employing a metallic scattering probe has been proposed here. It allows 

achieving target-independent quantitative accuracy of the reconstruction. 

The calibration with a metallic scattering probe is also beneficial in nonlinear 

reconstruction methods where Green’s function and the incident field distribution are 

subjected separately to iterative updates. It has been shown that these two quantities 

comprising the kernel, ( )
RO,
m

iE  and ( )
RO,
m

jE  (see (2.13)), can be mapped individually by S-

parameter measurements of the wire probe. Note that, with a wire scatterer, only one field 

component may be resolved at a time. This is in fact desirable when full polarimetric 
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information is required. In contrast, the sphere, for example, is incapable of 

discriminating the waves based on their polarization. 

On the other hand, the calibration with a metallic scattering probe has a disadvantage. 

The scaling factor enabling quantitative imaging is very sensitive to the parameters of the 

wire scatterer (its length and radius) as well as the relative permittivity of the background 

(see (2.29) or (2.30)). At the same time, the only theoretical guideline for choosing the 

wire’s parameters is to ensure the wire is electrically short and very thin. That is why, 

using a controlled object embedded within the OUT volume can serve as a practical 

alternative to the calculation of the scaling factor. In this way, information about the wire 

scatterer is no longer needed: the scaling factor can be determined from the known 

permittivity distribution of the controlled object. The measurement of such controlled 

object can be done as a part of the measurement of the inspected object, or as a separate 

step during the system calibration. Both scenarios have to be thoroughly investigated in 

order to determine the optimal one to be used in the future. 

7.3 De-noising Raw Data before Reconstruction 
 

An algorithm has been proposed for the de-noising of S-parameter data used in 

microwave imaging. The complex S-parameter frequency-sweep data are collected 

through scans over an acquisition surface and the algorithm separates efficiently the 

resultant 2D responses (one frequency at a time) into a signal and a noise component. The 

separation is performed with an iterative procedure similar to the empirical mode 

decomposition. The signal component estimates the noise-free data whereas the 
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remaining data content estimates the noise and uncertainty in the measurement. The 

algorithm performance has been verified with measured data. 

It has been shown that the proposed algorithm has several benefits in microwave 

imaging. First, it can supress noise and uncertainties in the data used as an input to the 

reconstruction algorithms. Second, the condition number of the BCCB system matrix 

containing the CO power maps improves significantly after applying the de-noising 

algorithm to the respective raw data. In some cases, reconstruction with the SPM failed 

without de-noising the data. Due to all these reasons, it is strongly recommended to use 

the de-noising algorithm as a preprocessing step within linear and nonlinear 

reconstruction methods. 

7.4 Optimal Illumination Schemes for Near-Field Microwave 

Imaging 
 

Rigorous proof of the improvement in the cross-range resolution in the multi-

illumination case compared to the conventional single-source illumination has been 

developed. Based on this, an optimized axial-null illumination (ANI) scheme for near-

field microwave imaging is proposed. Due to the intrinsic antisymmetry of such 

illumination, the baseline signals are supressed down to the noise level of the 

measurement system. Therefore, the proposed axial-null illumination simplifies the 

calibration process by eliminating the need to acquire the responses in the scatterer-free 

background. On the other hand, the sharp gradient of the field magnitude within the 

separation distance provides high sensitivity to the position of a scatterer. 
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The discussed improvements are expected to occur not only for the SPM imaging 

method used here for validation purposes, but also for any other imaging technique that 

exploits wave-like physical fields. This is because the improvement results from the 

geometrical configuration of emitters and sensors as well as the fast-changing incident 

field distribution, and not the specifics of the reconstruction method. 

The initial experimental results obtained with four X-band open-end waveguides show 

that is it extremely difficult to implement the ANI array for ultra-wideband microwave 

systems. For example, a relatively small phase unbalance as well as a misalignment of the 

array elements results in a shift of the radiation null from the center of the ANI array [7]. 

However, we note that in a frequency range from 3.3 GHz to 8 GHz, ANI can be 

implemented with a single antenna introduced in [8]. Also, it should be emphasized that 

in principle, the field distribution with zero field at the center can be achieved at the step 

of processing the data coming from multiple sensors. In this way, there is no need for a 

complicated hardware while all the benefits of ANI can still be preserved. As the next 

step, we plan to undertake an extensive experimental study of the so-called synthetic 

ANI. 
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