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Abstract

In this thesis, we present some new results in distribution theory for both discrete and

continuous random variables, together with their motivating applications.

We start with some results about the Multivariate Gaussian Distribution and its char-

acterization as a maximizer of the Strichartz Estimates. Then, we present some charac-

terizations of discrete and continuous distributions through ideas coming from optimal

transportation. After this, we pass to the Simpson’s Paradox and see that it is ubiquitous

and it appears in Quantum Mechanics as well. We conclude with a group of results about

discrete and continuous distributions invariant under symmetries, in particular invariant

under the groups A1, an elliptical version of O(n) and Tn.

As mentioned, all the results proved in this thesis are motivated by their applications in

different research areas. The applications will be thoroughly discussed. We have tried to

keep each chapter self-contained and recalled results from other chapters when needed.

The following is a more precise summary of the results discussed in each chapter.

In chapter 1, we discuss a variational characterization of the Multivariate Normal distribu-

tion (MVN) as a maximizer of the Strichartz Estimates. Strichartz Estimates appear as a

fundamental tool in the proof of wellposedness results for dispersive PDEs. With respect

to the characterization of the MVN distribution as a maximizer of the entropy functional,

the characterization as a maximizer of the Strichartz Estimate does not require the con-

straint of fixed variance. In this chapter, we compute the precise optimal constant for the

whole range of Strichartz admissible exponents, discuss the connection of this problem to

Restriction Theorems in Fourier analysis and give some statistical properties of the family

of Gaussian Distributions which maximize the Strichartz estimates, such as Fisher Infor-

mation, Index of Dispersion and Stochastic Ordering. We conclude this chapter presenting

an optimization algorithm to compute numerically the maximizers.
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Chapter 2 is devoted to the characterization of distributions by means of techniques from

Optimal Transportation and the Monge-Ampère equation. We give emphasis to methods

to do statistical inference for distributions that do not possess good regularity, decay or

integrability properties. For example, distributions which do not admit a finite expected

value, such as the Cauchy distribution. The main tool used here is a modified version

of the characteristic function (a particular case of the Fourier Transform). An important

motivation to develop these tools come from Big Data analysis and in particular the Con-

sensus Monte Carlo Algorithm.

In chapter 3, we study the Simpson’s Paradox. The Simpson’s Paradox is the phenomenon

that appears in some datasets, where subgroups with a common trend (say, all negative

trend) show the reverse trend when they are aggregated (say, positive trend). Even if this

issue has an elementary mathematical explanation, the statistical implications are deep.

Basic examples appear in arithmetic, geometry, linear algebra, statistics, game theory,

sociology (e.g. gender bias in the graduate school admission process) and so on and so

forth. In our new results, we prove the occurrence of the Simpson’s Paradox in Quantum

Mechanics. In particular, we prove that the Simpson’s Paradox occurs for solutions of the

Quantum Harmonic Oscillator both in the stationary case and in the non-stationary case.

We prove that the phenomenon is not isolated and that it appears (asymptotically) in the

context of the Nonlinear Schrödinger Equation as well. The likelihood of the Simpson’s

Paradox in Quantum Mechanics and the physical implications are also discussed.

Chapter 4 contains some new results about distributions with symmetries. We first dis-

cuss a result on symmetric order statistics. We prove that the symmetry of any of the

order statistics is equivalent to the symmetry of the underlying distribution. Then, we

characterize elliptical distributions through group invariance and give some properties.

Finally, we study geometric probability distributions on the torus with applications to

molecular biology. In particular, we introduce a new family of distributions generated

through stereographic projection, give several properties of them and compare them with

the Von-Mises distribution and its multivariate extensions.
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Chapter 1

Variational Characterization of the

Multivariate Normal distribution

through Strichartz Norms

The Multivariate Normal (MVN) distribution has several different characterizations. We

refer to [47], [90], [51] and [72] for more details about the MVN.

In this chapter, we concentrate on those characterizations of the MVN through variational

principles. We start with the well known characterization via entropy maximization under

the constraint of fixed variance and pass later to our new results related to the maximiza-

tion of Strichartz Estimates.

1.1 Characterization through Entropy

A well known characterization of the Gaussian distribution is through the maximization

of the Differential Entropy, under the constraint of fixed variance Σ. We focus on the

case of when the support of the probability density function (pdf) is the whole Euclidean

Space Rn.

Theorem 1.1.1. Let X be a random vector whose pdf is fX . The Differential Entropy

h(X) is defined by the following functional:

h(X) := −
∫
Rn
fX(x) log fX(x) dx.

The Multivariate Normal Distribution has the largest Differential Entropy h(X) amongst
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all the random variables X with equal variance Σ. Moreover, the maximal value of the

Differential Entropy h(X) is h(MVN(Σ)) = 1
2 log[2πe|Σ|].

The proof is very simple and can be found in several places (see for example a nice

treatment in [33]). For completeness, we report the computation in the case n = 1.

1.1.1 Proof of Theorem 1.1.1

We consider the variational derivative of h(X) with the constraint of f being a probability

distribution and with the constraint of having a fixed variance σ2. This gives rise to the

following Euler Lagrange Equation with two Lagrangian multipliers λ0 and λ2:

L(v;λ0, λ2) = −
∫
R
v(x) ln(v(x)) dx+λ0

(
1−

∫
R
v(x) dx

)
+λ2

(
σ2 −

∫
R
v(x)(x− µ)2 dx

)
with v(x) being some function with Expected Value µ :=

∫
R xv(x)dx. The two Lagrangian

multipliers λ0 and λ2 appear, because of the two constraints. One constraint is related to

the normalization condition ∫
R
v(x)dx = 1

and the other is related to the requirement of fixed variance

σ2 =

∫
R
v(x)(x− µ)2dx.

Now, we take the variational derivative of the functional L. To be at a critical point,

we need to impose that this variational derivative is zero for every test function g(x).

Therefore, we get:

0 = −L′(v)g =
d

dt
|t=0L(v(x) + tg(x)) =

∫ ∞
−∞

g(x)
(
ln(v(x)) + 1 + λ0 + λ2(x− µ)2

)
dx.

Since this must hold for any variation g(x), the term in brackets must be zero, and so,

solving for v(x), it yields:

v(x) = e−λ0−1−λ2(x−µ)2
.

Now, we use the constraint of the problem and solve for λ0 and λ2. From
∫
R v(x) dx = 1,

we get the condition

λ
− 1

2
2 π

1
2 = eλ0+1

12



and from σ2 =
∫
R v(x)(x− µ)2dx, we get

σ2eλ0+1λ
3
2
2 = π

1
2 /2.

Solving for λ0 and λ2 we get λ0 = 1
2 log(2πσ2)− 1 and λ2 = 1

2σ2 which altogether give the

Gaussian Distribution:

v(x) =
1√
2πσ

e−
(x−µ)2

2σ2 .

A similar argument for the second derivative, gives

< L′′(v)g1, g2 >= −
∫
S⊂R

g1(x)v(x)−1g2(x)dx

with S the support of v(x) and g1(x), g2(x) test functions. Negativity (v(x) > 0 for every

x ∈ R) gives maximality. To get the optimal entropy constant, it is enough to plug inside

the optimizer in h(X).

1.2 A Remark on the Sharp Constant for the Schrödinger

Strichartz Estimate and Applications

In this section, we compute the sharp constant for the Homogeneous Schrödinger Stri-

chartz Inequality and Fourier Restriction Inequality on the Paraboloid in any dimension

under the condition, as it is conjectured (and proved in dimensions n = 1 and n = 2),

that the maximizers are Gaussians.

We observe also how this would imply a far from optimal, but ”cheap” and sufficient,

criterion of global wellposedness in the L2-critical case p = 1 + 4/n. With respect to the

characterization of the MVN through entropy maximization, here, there is no constraint

of fixed variance required. The results of this section highlight how the MVN plays a

fundamental role in fields very different from probability and statistics.

1.2.1 Introduction and Motivation

Consider the following Nonlinear Schrödinger Equation (from now on NLS):

i∂tu(t, x) + ∆u(t, x) + µ|u|p−1u(t, x) = 0 (t, x) ∈ (0,∞)× Rn, (1.1)
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with initial datum u(0, x) = u0(x), x ∈ Rn. Here, the space dimension is n ≥ 1, the

nonlinearity has p ≥ 1 and µ = −1, 0, 1 in which cases the equation is said to be defocusing,

linear and focusing, respectively.

Extended research has been done to prove the global wellposedness of the above problem

in the scale of Hilbert Spaces Hs(Rn) (see Section 1.2.2 for a precise definition). In the

case of regular solutions s > n/2, the algebra property of the space Hs(Rn) makes the proof

simpler, while in the case s ≤ n/2 one needs Strichartz estimates to close the argument

(see again Section 1.2.2). We refer to [116] for more details and references.

Strichartz Estimates were originally proved by Strichartz [113] in the non end-point case

and much later for the end-point case by Keel and Tao [68] in the homogeneous case and by

Foschi [54] in the inhomogeneous case, following Keel and Tao’s approach. See also [114]

After Strichartz’s work, a huge research field opened and Strichartz estimates were proved

for several different equations. See [116] and the references therein, for a more complete

discussion on Strichartz Estimates.

Several mathematicians have then been interested in the problem of the sharpness of

Strichartz Inequalities. As far as we know, the first one addressing this problem has

been Kunze [74], who proved the existence of a maximizing function for the estimate

||eit∂2
xu||L6

t,x(R2) ≤ Sh(1)||u||L2(R) (case of dimension n = 1), by means of the concentration

compactness principle used in the Fourier Space and by means of multilinear estimates

due to Bourgain [18]. This method has been first developed by him in relation to a

variational problem from nonlinear fiber optics on Strichartz-type Estimates [73]. The

first author to give explicit values of the sharp Strichartz Constants and characterize the

maximizers has been Foschi [53], who proved that in dimension n = 1 the sharp constant

is Sh(1) = 12−1/12, while in dimension n = 2 the sharp constant is Sh(2) = 2−1/2. He

also proved that the maximizer is the Gaussian function f(x) = e−|x|
2

(up to symmetries)

in both dimensions n = 1 and n = 2 (see Section 1.2.2 below). He moreover conjectured

(Conjecture 1.10) that Gaussians are maximizers in every dimension n ≥ 1. Independently,

this result has been reached also by Hundertmark and Zharnitsky in [63] that gave also

a conjecture on the value of the Strichartz Constant (Conjecture 1.7). An extension of

these results can be found in [24]. A step towards proving Foschi’s conjecture has been

done by Christ and Quilodán [27], who demonstrated that Gaussians are critical points in

any dimension n ≥ 1. They do not give any conjecture on the explicit value of the sharp

Strichartz Constant Sh(n) for general dimension n. Duyckaerts, Merle and Roudenko
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in [46] give an estimate of Sh(n) and also precise asymptotics in the small data regime,

but not the explicit value.

Here, assuming that Gaussians are actually maximizers, as it is conjectured, and not

just critical points, we compute the Strichartz Constant in a setting a little more general

than the one of the conjecture of Hundertmark and Zharnitsky [63] and this is the main

contribution of the section.

Theorem 1.2.1. Suppose Gaussians maximize Strichartz Estimates for any n ≥ 1. Then,

for any n ≥ 1 and (q, r) admissible pair (see Section 1.2.2 below ), the sharp Homogeneous

Strichartz Constant Sh(n, q, r) = Sh(n, r) defined by

Sh(n, r) := sup

{
||u||LqtLrx(R×Rn)

||u||L2
x(Rn)

: u ∈ L2
x(Rn), u 6= 0

}
, (1.2)

is given by

Sh(n, r) = 2
n
4
−n(r−2)

2r r−
n
2r . (1.3)

Moreover, if we define Sh(n) := Sh(n, 2 + 4/n, 2 + 4/n) by

Sh(n) = sup

 ||u||L2+4/n
t,x (R×Rn)

||u||L2
x(Rn)

: u ∈ L2
x(Rn), u 6= 0

 , (1.4)

then for every n ≥ 1 we have that

Sh(n) =
(1

2
(1 +

2

n
)−n/2

) 1
2+4/n

; (1.5)

Sh(n) is a decreasing function of n and

Sh(n)→ 1

(2e)1/2
, n→ +∞.

For any n ≥ 1 and (q̃, r̃) admissible pair, the sharp Dual Homogeneous Strichartz Constant

Sd(q, r, n) = Sd(n, r) is defined by

Sd(n, r) := sup

{∣∣∣∣∫
R e

is∆F (s)ds
∣∣∣∣
L2
x

||F ||
Lq̃
′
t L

r̃′
x

: F ∈ Lq̃
′

t L
r̃′
x (R× Rn), F 6= 0

}
, (1.6)

We have that Sh(n, r) = Sd(n, r).
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Remark 1.2.2. We notice that q and r are not independent since they are an admissible

pair. For this reason, q appears in S(n, r) just as a function of r. One could have also

expressed the sharp constant as a function of q by

Sh(n, q) = 2
− 1
q

(
1− 4

qn

)−1/q+n/4

,

since r = 2qn
nq−4 (just plug this expression inside Sh(n, r)).

20 40 60 80 100

0.5

1

1.5

2

Sh(n) =
(

1
2(1 + 2

n)−n/2
) 1

2+4/n

x

y

Remark 1.2.3. We can see that, for n = 1 and n = 2, we recover the values of Sh(n)

found by Foschi in [53].

Remark 1.2.4. The asymptotics of Sh(n) basically say that in the non-compact case of Rn,

the increase of the spatial dimension n allows more dispersion, but the rate of dispersion,

measured by the Homogeneous Strichartz Estimate, does not increase indefinitely. We

believe that a similar phenomenon should appear in the case of the Schrödinger equation

on the hyperbolic space. We think that it might not be the case for manifolds which become

more and more negatively curved with the increase of the dimension, in which case we

might observe an indefinitely growing dispersion rate.

The knowledge of the Optimal Strichartz Constant gives a more precise upper bound

on the size of the L2−norm for which the ”cheapest argument” (the standard Duhamel’s

Principle -see for example [116]-) gives global wellposedness for (1.1) in the L2-critical case

p = 1 + 4/n. From now on we will concentrate on the case s = 0 (note 0 < n/2 for every

n > 0), namely we will consider just the case in which the initial datum u0(x) ∈ L2(Rn)

and just the case of not supercritical nonlinearities 1 < p ≤ 1+4/n. In the subcritical case

1 < p < 1+4/n, Tsustsumi [119] proved local wellposedness and also global wellposedness
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due to the fact that the local time of existence given by his strategy depends just on

the L2-norm of the initial datum and that the NLS have a conservation law at the L2-

regularity (Tloc = Tloc(||u0||L2(Rn))). Also in the critical case, Tsutsumi proved local

wellposedness, thanks to the global bound of the L
2(n+2)/n
t,x Strichartz Norm (see Section

1.2.2), but now the conservation law could not lead to global existence because the local

existence time depends on the profile of the solution (Tloc = Tloc(u0)). The problem of

global wellposedness for the NLS, in the L2-critical case in any dimension, has been solved

just recently in a series of papers by Dodson (see [43], [44], [45]). However if the initial

datum is “sufficiently small” in L2
x then one can get global existence with the argument

developed in [119], namely by a straight contraction mapping argument. Here, we give a

more precise estimate of this ”sufficiently small” and so we have the following theorem.

Theorem 1.2.5. Consider equation (1.1) with initial datum u0(x) ∈ L2
x(Rn) satisfying

the following bound

||u0(x)||L2
x
<

1

Sh(n, r)α

(
1

Si(n, r)
− 1

Si(n, r)α

)n/4
(1.7)

with α = 2 if n ≥ 4 and α = 1 + n/4 for 1 ≤ n ≤ 4. Here Sh(n, r) and Si(n, r)

are, respectively, the sharp Homogeneous and Inhomogeneous Strichartz Constants. Then,

there is a unique global solution u(t, x) ∈ L2
x(Rn) for every t ≥ 0.

Remark 1.2.6. This result reminds a bit what happens in the focusing case, in which

there is an upper bound on the size of the L2-norm of the initial datum for which one can

get global well-posedness and condition (1.7) looks like the Gagliardo-Nirenberg Inequality

(see [122] and [116]). Anyways, we want to make clear that condition (1.7) is in some sense

fictitious and it is not a threshold. See, for example, the results of Dodson [43], [44], [45].

Strichartz Inequalities can be set in the more general framework of Fourier Restriction

Inequalities in Harmonic Analysis. This connection has been made already clear in the

original paper of Strichartz [113]. Therefore, Theorem 1.2.1 can be rephrased in this

framework.

Theorem 1.2.7. Fix n ≥ 1 and consider the paraboloid (Pn, dPn) defined in (1.19) and

(1.20) below. Suppose Gaussians maximize the Fourier Restriction Inequality

||f̂dPn||
L

2(n+2)
n

t,x (Rn+1)
≤ Sh(n)||f ||L2(Pn,dPn) (1.8)
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Then, the sharp constant Sh(n) is given by

Sh(n) =
(1

2
(1 +

2

n
)−n/2

) 1
2+4/n

.

The remaining part of the section is organized as follows. In Subsection 1.2.2, we fix

some notation and collect some preliminary results, about the Fourier Transform and the

Fundamental Solution for the Linear Schrödinger Equation, about the Strichartz Estimates

and their symmetries and the main results in the literature about maximizers for the

Strichartz Inequality and about the sharp Strichartz Constant. In Subsection 1.2.3, we

prove Theorem 1.2.1, while, in Section 1.2.4, we prove Theorem 1.2.5. In Subsubsection

1.2.5, we discuss the connection between Strichartz and Restriction Inequalities, proving

Theorem 1.2.7 in Subsubsection 1.2.5.1. In the Appendix, we give some further comments

on the Inhomogeneous Strichartz estimate and on the wave equation.

1.2.2 Notations and Preliminaries

With Schwartz functions we will mean functions belonging to the following function space

S (Rn) := {f ∈ C∞(Rn) | ‖f‖α,β <∞ ∀α, β} ,

with α and β multi-indices, endowed with the following norm

‖f‖α,β = sup
x∈Rn

∣∣∣xαDβf(x)
∣∣∣ .

Let (X,Σ, µ) be a measure space. For 1 ≤ p ≤ +∞, we define the space Lp(X) of all

measurable functions from f : X → C such that

||f ||Lp(X) :=

(∫
X
|f |p dµ

)1/p

<∞.

Consider f : Rn → C a Schwartz function in space and F (t, x) : R × Rn → C a Schwartz

function in space and time. We well use the following notation (and constants) for the

space Fourier Transform

f̂(ξ) =
1

(2π)
n
2

∫
Rn
e−ix·ξf(x)dx

and for the Inverse space Fourier Transform

f(x) :=
1

(2π)
n
2

∫
Rn
eix·ξ f̂(ξ)dξ,

18



and the following for the space-time Fourier Transform

F(F )(τ, ξ) :=
1

(2π)
n+1

2

∫
Rn
e−itτ−ix·ξf(t, x)dxdt

and the Inverse space-time Fourier Transform

F (t, x) :=
1

(2π)
n+1

2

∫
Rn+1

eitτ+ix·ξF(τ, ξ)dξdτ.

By means of the Fourier Transform, we can finally define Hs-spaces as the set of functions

f such that

||f ||Hs(Rn) :=

(∫
Rn
|f̂(ξ)|2(1 + |ξ|)2s

) 1
2

< +∞,

with s ∈ R. Mixed spaces such as LqtL
r
x(R× Rn) include functions f such that

‖f‖LqtLrx(R×Rn) := ‖‖f‖Lrx(Rn)‖Lqt (R) < +∞

with q, t ∈ R.

1.2.2.1 The Fourier Transform and the Fundamental Solution for The Linear

Schrödinger Equation

In this subsection we solve the Linear Schrödinger Equation

i∂tu(t, x) = ∆u(t, x), (t, x) ∈ (0,∞)× Rn, (1.9)

with initial datum u0(x) = e−|x|
2 ∈ S (Rn). These computations are well known, but we

will rewrite them here in order to clarify what we will compute in the next sections. Since

u0(x) ∈ S (Rn), then also ∂tu(t, x) ∈ S (Rn) and ∆u(t, x) ∈ S (Rn). So we can apply the

Fourier Transform to both sides of (1.9) and get:

iût = −|ξ|2û,

whose solution is

û(ξ, t) = ei|ξ|
2tû(ξ, 0).

So we just need to compute the Fourier Transform of the initial datum and then the

Inverse Fourier Transform of û(t, ξ) to get the explicit form of the solution.
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û(0, ξ) =
1

(2π)
n
2

∫
Rn
e−ix·ξu(0, x)dx =

1

(2π)
n
2

∫
Rn
e−ix·ξe−|x|

2
dx

=
1

(2π)
n
2

∫
Rn
e−(|x|2+ix·ξ−|ξ|2/4)e−|ξ|

2/4dx =
e−|ξ|

2/4

(2π)
n
2

∫
Rn
e−|x−iξ/2|

2
dx.

by using contour integrals. We notice that, with a simple change of variables, we have:

2n/2
∫
Rn
e−|x−iξ/2|

2
dx = 2n/2

∫
Rn
e−|x|

2
dx =

∫
Rn
e−|x|

2/2dx = (2π)n/2.

Hence

û(0, ξ) =
e−|ξ|

2/4

(2π)
n
2

πn/2 =
e−|ξ|

2/4

2
n
2

.

With this we can conclude:

u(t, x) =
1

(2π)
n
2

∫
Rn
ei|ξ|

2t+ix·ξ e
−|ξ|2/4

2
n
2

=
1

2n
1

πn/2

∫
Rn
e−|ξ|

2(1/4−it)+ixξ̇dξ

=
1

2n
1

πn/2

∫
Rn
e−(|ξ|2(1/4−it)−ixξ̇−|x|2/(1−4it))e−|x|

2/(1−4it)dξ =

=
1

2n
1

πn/2
e−|x|

2/(1−4it)

∫
Rn
e
−
∣∣∣ξ√1/4−it+ix/(

√
1−4it)

∣∣∣2
dξ.

Now we make the change of variables η = ξ
√

1/4− it+ ix/(
√

1− 4it) to get

u(t, x) =
1

2n
1

πn/2
e−|x|

2/(1−4it)

∫
Rn
e−|η|

2
(1/4− it)−n/2dη

=
1

2n
1

πn/2
e−|x|

2/(1−4it)(1/4− it)−n/2πn/2 = (1− 4it)−n/2e−
|x|2

1−4it

Hence

u(t, x) = (1− 4it)−n/2e−
|x|2

1−4it . (1.10)

1.2.2.2 Strichartz Estimates and their symmetries

In this subsection, we state the Strichartz Estimates for the Schrödinger equation, since

they are the main topic of the present section and it will help to clarify the statement of

our main theorems.
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Definition 1.2.8. Fix n ≥ 1. We call a set of exponents (q, r) admissible if 2 ≤ q, r ≤ +∞
and

2

q
+
n

r
=
n

2
.

Proposition 1.2.9. [113], [68], [54] Suppose n ≥ 1. Then, for every (q, r) and (q̃, r̃)

admissible and for every u0 ∈ L2
x(Rn) and F ∈ Lq̃

′

t L
r̃′
x (R× Rn), the following hold:

• the Homogeneous Strichartz Estimates

∣∣∣∣e−it∆u0

∣∣∣∣
LqtL

r
x
≤ Sh(n, q, r)||u0||L2

x
;

• the Dual Homogeneous Strichartz Estimates

∣∣∣∣∣∣∣∣∫
R
eis∆F (s)ds

∣∣∣∣∣∣∣∣
L2
x

≤ Sd(n, q, r)||F ||Lq̃′t Lr̃′x
;

• the Inhomogeneous Strichartz Estimates

∣∣∣∣∣∣∣∣∫
s<t

e−i(t−s)∆F (s)ds

∣∣∣∣∣∣∣∣
LqtL

r
x

≤ Si(n, q, r, q̃, r̃)||F ||Lq̃′t Lr̃′x
.

As explained for example in [53], Strichartz Estimates are invariant by the following

set of symmetries.

Lemma 1.2.10. [53] Let G be the group of transformations generated by:

• space-time translations: u(t, x) 7→ u(t+ t0, x+ x0), with t0 ∈ R, x0 ∈ Rn;

• parabolic dilations: u(t, x) 7→ u(λ2t, λx), with λ > 0;

• change of scale: u(t, x) 7→ µu(t, x), with µ > 0;

• space rotations: u(t, x) 7→ u(t, Rx), with R ∈ SO(n);

• phase shifts: u(t, x) 7→ eiθu(t, x), with θ ∈ R;

• Galilean transformations:

u(t, x) 7→ e
i
4

(
|v|2t+2v·x

)
u(t, x+ tv),

with v ∈ Rn.
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Then, if u solves equation (1.9) and g ∈ G, also w = g ◦u solves equation (1.9). Moreover,

the constants Sh(n, q, r), Sd(n, q, r) and Si(n, q, r, q̃, r̃) are left unchanged by the action of

G.

Remark 1.2.11. For Strichartz Estimates for different equations and different regulari-

ties, we refer to [116].

1.2.2.3 Previous Results on Sharp Strichartz Constant and Maximizers

Here, we collect the results concerning the optimization of Strichartz Inequalities that we

need for the next sections. For a broader discussion, we refer to [117] and the references

therein.

Proposition 1.2.12. [74], [27], [53] For any n ≥ 1 and (q, r) admissible pair, we define

Sh(n) := Sh(n, 2 + 4/n, 2 + 4/n) by

Sh(n) := sup

 ||u||L2+4/n
t,x (R×Rn)

||u||L2
x(Rn)

: u ∈ L2
x(Rn), u 6= 0

 . (1.11)

Then we have the following results:

• Radial Gaussians are critical points of the Homogeneous Strichartz Inequality in any

dimension n ≥ 1 for all admissible pairs (q, r) ∈ (0,+∞)× (0,+∞);

• The sharp Strichartz Constants Sh(n) can be computed explicitly in dimension n = 1:

Sh(1) = 12−1/12; and dimension n = 2: Sh(2) = 2−1/2. Moreover, in both the cases

n = 1 and n = 2, the maximizers are Gaussians.

1.2.3 Proof of Theorem 1.2.1

We are ready to prove Theorem 1.2.1. We assume, as conjectured, that radial Gaussians

are mazimizers and not just critical points as proved in [27]. So we will take u0(x) = e−|x|
2
.

By Lemma 1.2.10, the choice of the Gaussian is done without loss of generality. We start

to compute the L2-norm of the initial datum and so of the solution:

||u(t, x)||L2
x

= ||u0(x)||L2
x

=
(∫

Rn
e−2|x|2dx

)1/2
=
(∫

Rn
e−2|x|2/42−ndy

)1/2
(1.12)

= 2−n/2
(∫

Rn
e−|x|

2/2dy
)1/2

= 2−n/2(2π)n/4 =
(π

2

)n
4

(1.13)
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by similar computations as in Subsection 1.2.2.1.

Now we compute the LqtL
r
x-norm of the linear solution

u(t, x) = (1− 4it)n/2e−
|x|2

1−4it .

First

|u(t, x)|r = |1−4it|−rn/2
∣∣∣∣e− |x|21−4it

∣∣∣∣r = |1+16t2|−rn/4
∣∣∣∣e− (1+4it)|x|2

1+16t2

∣∣∣∣r = |1+16t2|−rn/4e−
r|x|2

1+16t2 .

Then

||u(t, x)||rLrx = |1 + 16t2|−rn/4
∫
Rn
e
− r|x|2

1+16t2 dx

By the change of variable

y = r1/2(1 + 16t2)−1/2

and hence dy = rn/2x(1 + 16t2)−n/2dx, we get

||u(t, x)||rLrx = |1 + 16t2|n/2−rn/4r−n/2
∫
Rn
e−|y|

2
dy = |1 + 16t2|n/2−rn/4r−n/2πn/2,

which implies

||u(t, x)||Lrx = |1 + 16t2|n/(2r)−n/4r−n/(2r)πn/(2r).

Now we have to take the Lqt -norm of what we obtained:

||u(t, x)||LqtLrx =
(∫

Rn
||u(t, x)||qLrx

)1/q

which means, since (q, r) is an admissible pair (and so q = 4r/[n(r − 2)]), that

||u(t, x)||LqtLrx =
(∫

Rn
||u(t, x)||

4r
n(r−2)

Lrx

)n(r−2)
4r

=
[ ∫

R
|1 + 16t2|−1

]n(r−2)
4r

(π
r

)n/(2r)
,

since (n/(2r)−n/4)q = −1. Now by a simple change of variable inside the integral (4t = s)

we get:

||u(t, x)||LqtLrx =
(π
r

) n
2r
(π

4

)n(r−2)
4r

.

Putting everything together we get the equation:
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S(n, r)
(π

2

)n/4
=
(π
r

) n
2r
(π

4

)n(r−2)
4r

and so

S(n, r) = 2
n
4
−n(r−2)

2r r−
n
2r .

In the case q = r = 2 + 4/n one gets:

||u(t, x)||q
Lqt,x

= q−n/2πn/2
∫
R
|1 + 16t2|−1 = πn/2(2 + 4/n)−n/2

π

4
.

Putting all the information together we get:

2−2π1+n/2(2 + 4/n)−n/2 = Sh(n)2+4/n(π/2)1+n/2

and solving for Sh(n) one gets:

S(n) =

(
1

2

(
1 +

2

n

)−n/2) 1
2+4/n

Now we have to prove that Sh(n) is a decreasing function of n, namely we have to prove

that:

(
1

2

(
1 +

2

n+ 1

)−(n+1)/2
) 1

2+4/(n+1)

= Sh(n+ 1) ≤ Sh(n) =

(
1

2

(
1 +

2

n

)−n/2) 1
2+4/n

.

Taking the natural logarithm to both sides and using the fact that the logarithm is a

monotone increasing function of his argument we get:

1

2 + 4/(n+ 1)

[
− log(2)− n+ 1

2
log(1 + 2/(n+ 1))

]
≤ 1

2 + 4/n

[
− log(2)− n

2
log(1 + 2/n)

]
.

We can easily see that
−log(2)

2 + 4/(n+ 1)
≤ −log(2)

2 + 4/n
,

so it remains to prove that

1

2 + 4/(n+ 1)

[
− n+ 1

2
log(1 + 2/(n+ 1))

]
≤ 1

2 + 4/n

[
− n

2
log(1 + 2/n)

]
.
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Changing variables to x := (n+ 1)/2 and y := n/2 leads to

xlog(1 + 1/x)

1 + 1/x
≥ ylog(1 + 1/y)

1 + 1/y

and changing variables again α := 1 + 1/x > 1 and β := 1 + 1/y > 1 we remain with

log(α)

α(α− 1)
≥ log(β)

β(β − 1)
.

So now it remains to show that the function f : R→ R, defined by

f(t) =
log(t)

t(t− 1)
,

is decreasing in t and this would lead to the conclusion since α < β. Computing its

derivative f ′(t) one gets:

f ′(t) =
t− 1− log(t)(2t− 1)

t2(t− 1)2
.

We have to verify the inequality just for t ≥ 1. We define then

g(t) = log(t)− t− 1

2t− 1

and compute its derivative:

g′(t) =
(2t− 1)2 − t
t(2t− 1)2

and so we can see (remember t ≥ 1) that g′(t) ≤ 0 if and only if t ≤ 1, and g′(1) = 0,

so t = 1 is a minimum. g(1) = 0 and then positive. So, going backwards with the

computations, the inequality Sh(n+ 1) < Sh(n) is verified.

Now we have to prove the asymptotics and this is easy:

lim
n→+∞

S(n) = lim
n→+∞

(1

2
(1 +

2

n
)−n/2

) 1
2+4/n

= lim
n→+∞

2−1/21/e
1

2+4/n =
1√
2e
.

It remains to prove the equivalence between the homogeneous and the dual constant. It

basically comes from a duality argument. Denote with < ·, · > the dual product (it changes

accordingly to the space) and define Tu := eit∆u. Then for every f ∈ L2
x an F ∈ LqtLrx we

have

| < f, T ∗F > | = | < Tf, F > | ≤ ||Tf ||LqtLrx ||F ||Lq′t Lr′x
≤ Sh||f ||L2

x
||F ||

Lq
′
t L

r′
x
.

25



So

||T ∗F ||L2
x

:= sup
f∈L2

x

| < f, T ∗F > |
||f ||L2

x

≤ Sh||F ||Lq′t Lr′x
,

hence Sd ≤ Sh. Analogously:

| < Tf, F > | = | < f, T ∗F > | ≤ ||f ||L2
x
||T ∗F ||L2

x
≤ Sd||f ||L2

x
||F ||

Lq
′
t L

r′
x
.

So

||Tf ||LqtLrx := sup
F∈Lq

′
t L

r′
x

| < Tf, F > |
||F ||

Lq
′
t L

r′
x

≤ Sd||f ||L2
x
,

hence Sh ≤ Sd and so we get Sh = Sd. This concludes the proof of the theorem.

1.2.4 Proof of Theorem 1.2.5

Here, we give the proof of Theorem 1.2.5. We will skip some of the details because standard

in the theory of global wellposedness for the NLS. We refer to [116] for some of the details

skipped. We consider equation (1.1):

i∂tu(t, x) + ∆u(t, x) + µ|u|p−1u(t, x) = 0 (t, x) ∈ (0,∞)× Rn, (1.14)

with initial datum u(0, x) = u0(x), space dimension is n ≥ 1, p ≥ 1 in both the focusing

and defocusing case: µ = −1, 1, since we are dealing with a small data analysis. By

Duhamel’s Principle we define the Duhamel’s Operator:

Lu := χ(t/T )e−it∆u0(x)− iµχ(t/T )

∫ t

0
e−i(t−s)∆|u(s, x)|p−1u(s, x)ds, (1.15)

where T > 0 and χ(r) is a smooth cut-off function supported on −2 ≤ r ≤ 2 and such

that χ(r) = 1 on −1 ≤ r ≤ 1. Using Duhamel’s formula, we take the LqtL
r
x-norm of Lu

(from now on, unless specified, t ∈ [−T, T ] in the definition of LqtL
r
x-norm), and get:

||Lu||LqtLrx ≤ Sh(n, r)||u||L2
x

+ Si(n, r)||u||p
Lq̃
′p
t Lrx

≤ Sh(n, r)||u||L2
x

+ Si(n, r)T
1/(q̃′)−p/q||u||p

LqtL
r
x

choosing r̃′p = r.

Now we need to do some numerology. Since (q, r) and (q̃, r̃) are admissible pairs: 2/q +

n/r = n/2, 2/q̃+ n/r̃ = n/2. Moreover, since we are in the L2-critical case we can choose

r̃′p = r and q̃′p = q, having still some freedom on the choice of (q, r) as it can be seen by
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the following lemma. The conditions on (q, r) and (q̃, r̃) can be rewritten as a system of

linear equations in (1/q, 1/q̃, 1/r, 1/r̃).

Lemma 1.2.13. There exist infinitely many solutions to the system

SE = N,

where

S =


2 0 n 0

0 2 0 n

0 0 p 1

p 1 0 0

 ,

E = (1/q, 1/q̃, 1/r, 1/r̃)T and N = (n/2, n/2, 1, 1)T , if and only if p = 1 + 4/n. If

p 6= 1 + 4/n the system has no solutions.

Remark 1.2.14. Basically this lemma implies that, using the estimates that we have used

above in the Hs-scale, we cannot remove a power of T in front of the nonlinear term in

the subcritical (good) and supercritical (bad) cases.

Proof. We can see that det(S) = 0 and rank(S) = 3, because the upper-left 3×3 matrix is

not singular for p 6= 0. If p 6= 1+4/n, then the augmented matrix [S,N ] has rank([S,N ]) =

4, so the system has no solutions, while for p = 1+4/n, rank([S,N ]) = 3 and so the system

has infinitely many solutions.

Remark 1.2.15. Similar computations can be done for any regularity s, and with nonlin-

ear exponent p(s) = 1 + 4/(n− 2s). The critical case q̃′p = q is the interesting one for us,

because in the subcritical case q̃′p < q, we can shrink the interval of local wellposedness,

since T 1/(q̃′)−p/q appears in the estimates of Duhamel’s Operator with a positive power,

and so we do not need to do a small data theory.

Now we will see how big the datum can be in order to have a ”cheap” contraction with

only the estimates done above. Define

R := αSh(n, r)||u0||L2
x

and

BR := {u ∈ LqtLrx : ||u||LqtLrx ≤ R}.

Choose also β > 0 such that

Si(n, r)R
p−1 < 1/β.
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With these choices we get:

||Lu||LqtLrx ≤ Sh(n, r)||u||L2
x

+ Si(n, r)T
1/(q̃′)−p/q||u||p

LqtL
r
x
≤ R(1/α+ 1/β) ≤ R

for every 1/α + 1/β ≤ 1 and with 1/α + 1/β = 1 in the less restrictive case. So the

Duhamel’s Operator L sends the balls BR into themselves if ||u0||L2
x

is small enough, more

precisely when

||u0||L2
x

=
R

Sh(n)α
.

This implies that

Si(n, r)
(
αSh(n, r)||u||L2

x

)p−1
< 1/β,

which means:

||u||L2
x
<

1

Sh(n, r)α

(
1

βSi(n, r)

)1/(p−1)

.

Using our hypotheses on p, α, β we get:

||u||L2
x
<

1

Sh(n, r)α

(
1

Si(n, r)
− 1

Si(n, r)α

)n/4
. (1.16)

For now, the only restriction on α is 1/α+ 1/β ≤ 1.

Remark 1.2.16. The coefficients α and β are almost conjugate exponents, suggesting an

orthogonal decomposition of the solution on the linear flow and on the nonlinear one.

Now we check that the operator Lu is a contraction. Let

u(t) = e−it∆u0 − iµ
∫ t

0
e−i(t−s)∆|u(s)|p−1u(s)ds. (1.17)

and

v(t) = e−it∆u0 − iµ
∫ t

0
e−i(t−s)∆|v(s)|p−1v(s)ds. (1.18)
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be two solutions of (1.14). Then

||Lu− Lv||LqtLrx =

∥∥∥∥∫ t

0
e−i(t−s)∆

(
|u(s)|p−1u(s)− |v(s)|p−1v(s)

)
ds

∥∥∥∥
LqtL

r
x

≤ Si(n, r)|||u|p−1u− |v|p−1v||
Lq̃
′
t L

r̃′
x

≤ Si(n, r)
(
||u||p−1

LqtL
r
x

+ ||v||p−1
LqtL

r
x

)
||u− v||LqtLrx

in the above choice of exponents (q, r) and (q̃, r̃). This implies:

||Lu− Lv||LqtLrx ≤ 2Si(n)Rp−1||u− v||LqtLrx < 2/β||u− v||LqtLrx ,

so we need 2/β ≤ 1, namely β ≥ 2 and so 1 ≤ α ≤ 2, since 1/α+ 1/β ≤ 1. This is the last

restriction on α that we need to apply to the estimate (1.16). We remark here that (1.16)

holds for every 1 ≤ α ≤ 2 and so we are allowed to take the maximum on both sides of

(1.16). Notice also that the left hand side of (1.16) does not depend on α.

Remark 1.2.17. To have a contraction the ball needs to be big enough, but not that much

namely Sh(n, r)||u||L2
x
≤ R ≤ 2Sh(n, r)||u||L2

x
.

Now we want to optimize on ||u0||L2
x
, namely we want to take it as big as possible,

maintaining the property of Lu of being a contraction. In other words we have to find the

maximum of the function

Fn(α) =
1

α

(
1− 1

α

)n/4
,

when α ∈ [1, 2]. Taking the derivative, we get:

F ′n(α) = −α−2−n/4 (α− 1)n/4−1 (−(1 + n/4)(α− 1) + αn/4) .

So F ′n(α) ≥ 0 if and only if

1 ≤ α ≤ 1 + n/4.

In particular when n ≥ 4, αmax = 2 and when n ≤ 4, αmax = 1 +n/4. This concludes the

proof of Theorem 1.2.5.

Remark 1.2.18. The coefficient α = 2 is not always the optimal one, as it is usually

used in every exposition on the topic. The optimal α depends on the dimension n. We

can compute explicitly the values of Fn(αmax) in any dimension: for n = 1 Fn(αmax) =

F1(5/4) = 5−5/44, for n = 2 Fn(αmax) = F2(3/2) = 3−3/22, for n = 3 Fn(αmax) =

F3(7/4) = 33/47−7/44 and for n ≥ 4 Fn(αmax) = 2−1−n/4.
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1.2.5 Applications to Fourier Restriction Inequalities

Strichartz Inequalities can be set in the more general framework of Fourier Restriction

Inequalities in Harmonic Analysis. This connection has been made clear already in the

original paper of Strichartz [113]. In this subsection we will highlight this relationship in

the Schrödinger/Paraboloid case and we will see how to prove Theorem 1.2.7. For the

case of different flows and hypersurfaces, like the Wave/Cone or Helmholtz/Sphere cases,

we refer to [117] and the references therein for more details.

Consider a function f ∈ L1(Rn), then its Fourier Transform f̂ is a bounded and continuous

function on all Rn and it vanishes at infinity. So f̂ |S , the restriction of f̂ to a set S is well

defined even if S has measure zero, like, for example, if S is a hypersurface. It becomes

then interesting to understand what happens if f ∈ Lp(Rn) for 1 < p < 2. From Hausdorff-

Young inequality, we can see that if f ∈ Lp(Rn) then f̂ ∈ Lp′(Rn) with 1/p+ 1/p′ = 1, so

f̂ can be naturally restricted to any set A of positive measure. It turns out that a big role

is played by the geometry of the set S. Stein proved that if the set S is sufficiently smooth

and its curvature is big enough (in fact it is not true for hyperplanes), then it makes sense

to talk about f̂ |S belonging to Lp-spaces.

1.2.5.1 Proof of Theorem 1.2.7

From now on we will focus on the case where the hypersurface is the paraboloid S = Pn,

where Pn is defined as

Pn := {(τ, ξ) ∈ R× Rn : −τ = |ξ|2} (1.19)

and is endowed with the measure dPn that is given by∫
Pn
h(τ, ξ)dPn =

∫
Rn
h(−|ξ|2, ξ)dξ. (1.20)

(here h is a Schwartz function) and induced by the embedding Pn ↪→ Rn+1. To prove the

theorem, we have just to show the equivalence of Restriction Inequalities and Strichartz

Inequalities.

It makes sense to talk about a restriction, if f̂ |S is not infinite almost everywhere and a

restriction estimate holds:

||f̂ |Pn |||Lq(Pn,dPn) ≤ ||f ||Lp(Rn),

for some 1 ≤ q < ∞ and for every Schwartz function f . This last estimate is equivalent,

by a duality argument and Parseval Identity, to
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||F−1(F̂ dPn)|Pn ||Lp′ (Rn) ≤ ||F ||Lq′ (Pn,dPn),

for all Schwartz functions F on Pn and where

F−1(F̂ dPn)(t, x) =

∫
Pn
eixξ+itτ F̂ (τ, ξ)dτdPn(τ, ξ)

is the Inverse Space-Time Fourier Transform of the measure F̂ dPn. The dual formulation

connects directly to the fundamental solution (1.10)

u(t, x) = (1− 4it)−n/2e−
|x|2

1−4it

of equation (1.9)

i∂tu(t, x) = ∆u(t, x), (t, x) ∈ (0,∞)× Rn.

Since u can be rewritten in the form

u = F−1(û0dP
n).

In this way the Homogeneous Strichartz Inequality∣∣∣∣eit∆u0

∣∣∣∣
LqtL

r
x
≤ Sh(n, q, r)||u0||L2

x
,

for q = r = 2 + 4/n, as in this present case, can be rewritten in the following way:

||f̂dPn||
L

2(n+2)
n

t,x (Rn+1)
≤ Sh(n)||f ||L2(Pn,dPn) (1.21)

with Sh(n) given by

Sh(n) =
(1

2
(1 +

2

n
)−n/2

) 1
2+4/n

.

This proves Theorem 1.2.7.

Remark 1.2.19. We notice that results for the paraboloid seem easier to obtain than

for example for the sphere. For example there is not yet the counterpart of [27] in the

wave/sphere case and we do not have a conjecture on the sharp Strichartz Constant in

general dimension in the case of the wave equation.

Remark 1.2.20. As we said above, the connection between restriction theorems and PDE

links a much broader class of hypersurfaces and PDEs. For more details on the more
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recent results, we refer to [27], [28], [29], [48], [49] and to [117] for a survey on restriction

theorems.

Remark 1.2.21. The Hilbert structure has been crucial in some of the proofs of the

existence of maximizers for restriction inequalities. See for example [48] and [27]. Here,

we are in L2
x and so a Hilbert case, but our analysis is not touched by this problem, because

we are interested in the optimal constants and not on the extremizers.

1.2.6 Appendix: some comments on the Inhomogeneous Case and the

Wave Equation

In this appendix, we share some comments and computations on the Inhomogeneous

Strichartz Estimate and on the case of the wave equation. We will not prove any the-

orem, but we will highlight some difficulties and make some remarks.

1.2.6.1 The Inhomogeneous Strichartz constant Si

By the TT ∗ principle (take Tu := eit∆) and by duality, the Homogeneous Strichartz and

the Dual Strichartz inequality are equivalent. By the same principle one can prove that

the operator TT ∗ : LqtL
r
x → Lq̃

′
r Lr̃

′
x is bounded if and only if the operator T : L2

x → LqtL
r
x

is bounded. Unfortunately, the Inhomogeneous Strichartz Inequality cannot be seen as

such a composition because it involves the retarded operator. This does not prevent the

retarded operator to keep the boundedness properties of TT ∗ but it complicates a lot the

computation of Si(n, r, q, r̃, q̃) and the proof of the existence of critical points, that, as far

as we know, has not been treated yet in the literature. In the following, we will outline

how the integrals become not tractable in the inhomogeneous case already in the case of

a Gaussian and so a simple direct computation seems not to be enough to calculate the

best Strichartz Constant. We will concentrate also here on the L2-critical case. See [116]

or [70] for more details on the TT ∗-method.

We now test the inhomogeneous inequality with Gaussians for every dimension. It is not

known yet in the literature if they are maximizers or not, but an explicit computation

would lead at least to a lower bound on the constant. We recall that the solutions that

we want to test are

u(t, x) = (1− 4it)−n/2e−
|x|2

1−4it ,

while the inequality we need to test is∥∥∥∥∫
s<t

e−i(t−s)∆F (s)ds

∥∥∥∥
LqtL

r
x

≤ Si(n, q, rq̃, r̃)||F ||Lq̃′t Lr̃′x
.
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with F (t, x) = |u(t, x)|p−1u(t, x).

We start by computing the norm on the right hand side of this inequality. By the choice

of the exponents and the criticality of the problem r̃′p = r and q̃′p = q. So we get

||F ||
Lq̃
′
t L

r̃′
x

= |||u|p||
L
q/p
t L

r/p
x

= ||u||p
LqtL

r
x
.

By the computations done in Section 1.2.3, we then get:

||F ||
Lq̃
′
t L

r̃′
x

=
(π

4

)np(r−2)
4r

(π
r

) pn
2r
.

Now we have to compute the left hand side of the inhomogeneous Strichartz Inequality:∥∥∥∥∫
s<t

e−i(t−s)∆F (s)ds

∥∥∥∥
LqtL

r
x

.

We start computing explicitly e−i(t−s)∆F (s). By definition of e−i(t−s)∆, we have

e−i(t−s)∆F (s) =
1

(2π)
n
2

∫
Rn
eix·ξ ̂e−i(t−s)∆Fdξ =

1

(2π)
n
2

∫
Rn
eix·ξ+i(t−s)|ξ|

2
F̂ dξ.

So we have now to compute F̂ (s, ξ):

F̂ (s, ξ) =
1

(2π)
n
2

∫
Rn
e−ix·ξF (s, x)dx =

1

(2π)
n
2

∫
Rn
e−ix·ξ|u(s, x)|p−1u(s, x)dx

= (2π)−n/2
∣∣1 + 16s2

∣∣−(p−1)n/4
(1− 4is)−n/2

∫
Rn
e−ix·ξe

− |x|
2

1−4is
− (p−1)|x|2

1+16s2

= (2π)−n/2
∣∣1 + 16s2

∣∣−(p−1)n/4−n/2
(1 + 4is)n/2

∫
Rn
e−ix·ξe

− (p+4is)|x|2

1+16s2

= (2π)−n/2
∣∣1 + 16s2

∣∣−(p−1)n/4−n/2
(1 + 4is)n/2 ×

×
∫
Rn
e
− (p+4is)|x|2

1+16s2
−ix·ξ+ (1+16s2)|ξ|2

4(p+4is) e
− (1+16s2)|ξ|2

4(p+4is)

= (2π)−n/2
∣∣1 + 16s2

∣∣−(p−1)n/4−n/2
(1 + 4is)n/2 ×

×
∫
Rn
e
−
∣∣∣∣ x(p+4is)1/2

(1+16s2)1/2
+i

ξ(1+16s2)1/2

2(p+4is)1/2

∣∣∣∣2
e
− (1+16s2)|ξ|2

4(p+4is)

=
e
− (1+16s2)|ξ|2

4(p+4is)

(2π)n/2

×
∣∣1 + 16s2

∣∣−(p−1)n/4−n/2
(1 + 4is)n/2(1 + 16s2)n/2(p+ 4is)−n/2πn/2

= 2−n/2
∣∣1 + 16s2

∣∣−(p−1)n/4
(

1 + 4is

p+ 4is

)n/2
e
− (1+16s2)|ξ|2

4(p+4is)
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by completing the square and changing integration variables to

y =
x(p+ 4is)1/2

(1 + 16s2)1/2
+ i

ξ(1 + 16s2)1/2

2(p+ 4is)1/2
,

similarly to the computations that we have done in Section 1.2.2. So

F̂ (s, ξ) = 2−n/2
∣∣1 + 16s2

∣∣−(p−1)n/4
(

1 + 4is

p+ 4is

)n/2
e
− (1+16s2)|ξ|2

4(p+4is) .

Notice that this is consistent with what we got in Section 1.2.2 in the case s = 0 and

p = 1. Now, putting everything together, we get:

e−i(t−s)∆F (s) =
1

(2π)
n
2

∫
Rn
eix·ξ+i(t−s)|ξ|

2
F̂ dξ =

1

(2π)
n
2

∫
Rn
eix·ξ+i(t−s)|ξ|

2
2−n/2

∣∣1 + 16s2
∣∣−(p−1)n/4

(
1 + 4is

p+ 4is

)n/2
e
− (1+16s2)|ξ|2

4(p+4is) =

1

(2π)
n
2

2−n/2
∣∣1 + 16s2

∣∣−(p−1)n/4
(

1 + 4is

p+ 4is

)n/2 ∫
Rn
e
− (1+16s2)|ξ|2

4(p+4is) eix·ξ+i(t−s)|ξ|
2

=

1

(2π)
n
2

2−n/2
∣∣1 + 16s2

∣∣−(p−1)n/4
(

1 + 4is

p+ 4is

)n/2
×

×
∫
Rn
e

−|ξ|2
[

(1+16s2)
4(p+4is)

−i(t−s)
]
+ixξ+

|x|2

4

[
(1+16s2)
4(p+4is)

−i(t−s)
]
e

− |x|2

4

[
(1+16s2)
4(p+4is)

−i(t−s)
]

=

1

(2π)
n
2

2−n/2
∣∣1 + 16s2

∣∣−(p−1)n/4
(

1 + 4is

p+ 4is

)n/2
×

×
∫
Rn
e

−

∣∣∣∣∣∣∣ξ
[

(1+16s2)
4(p+4is)

−i(t−s)
]1/2

− ix

2

[
(1+16s2)
4(p+4is)

−i(t−s)
]1/2

∣∣∣∣∣∣∣
2

e

− |x|2

4

[
(1+16s2)
4(p+4is)

−i(t−s)
]

which by the change of variable η = ξ
[

(1+16s2)
4(p+4is) − i(t− s)

]1/2
− ix

2
[

(1+16s2)
4(p+4is)

−i(t−s)
]1/2 , becomes

e−i(t−s)∆F (s) =
1

(2π)
n
2

2−n/2
∣∣1 + 16s2

∣∣−(p−1)n/4
(

1 + 4is

p+ 4is

)n/2
×

×
∫
Rn
e−|η|

2
e

− |x|2

4

[
(1+16s2)
4(p+4is)

−i(t−s)
] [

(1 + 16s2)

4(p+ 4is)
− i(t− s)

]−n/2
.
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In conclusion:

e−i(t−s)∆F (s) =
1

(2π)
n
2

2−n/2
∣∣1 + 16s2

∣∣−(p−1)n/4
(

1 + 4is

p+ 4is

)n/2
×

[
(1 + 16s2)

4(p+ 4is)
− i(t− s)

]−n/2
×

×πn/2e
− |x|2

4

[
(1+16s2)
4(p+4is)

−i(t−s)
]

=

∣∣1 + 16s2
∣∣−(p−1)n/4

(
1 + 4is

p+ 4is

)n/2 [(1 + 16s2)

p+ 4is
− 4i(t− s)

]−n/2
e

− |x|2

4

[
(1+16s2)
4(p+4is)

−i(t−s)
]

=

∣∣1 + 16s2
∣∣−(p−1)n/4

[
1 + 4is

1− 4ip(t− s) + 16ts

]n
2

Again, this is consistent with what we got in Section 1.2.2 in the case s = t = 0 and p = 1.

At this point the approach of the direct computation seems not good enough anymore,

because one should integrate in the variable s and this does not seem to have an explicit

expression with elementary functions. We plan to study numerically this case in a future

work.

Remark 1.2.22. If one would be able to compute explicitly Si(n, r), one could use Theorem

1.2.5 also as a stability-type result for the solutions of the NLS, in a similar spirit of the

stability of solitons in the focusing case. This connection links, in some sense, optimizers

and stability, also when the functionals involve both space and time.

1.2.6.2 The wave Equation case

For completeness, we want to mention here that similar studies have been done for several

others homogeneous Strichartz Estimates, like the wave equation. The complete charac-

terization of critical points done by [27] in the case of the Schrödinger Equation is still

not available in the case of the wave equation. We believe that an argument completely

similar to the one that we have given in Section 1.2.3 would lead to the computation of

the possible best Homogeneous Wave Strichartz Constant W (n) for the wave equation,

once a complete characterization of the maximizers would be available. For more details

on the case of the wave equation we refer to [53], [24] and [21].

Remark 1.2.23. There are well known transformations that send solutions to the Schrö-

dinger Equation to solutions of the wave equation, see for example [116]. So one strategy

here could be also to transform the maximizers of Sh(n, r) into solutions of the corre-

sponding wave equation and hope that the known transformation sends maximizers to
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maximizers. Unfortunately, to our knowledge, no known transformation does this job.

This technique could be very helpful also for other equations.

Remark 1.2.24. We mention here that the functions that optimize the Wave Strichartz

Inequality (see [53]), optimize also the Sobolev Embeddings (see [115], [5] and [6]). Let

1 < p < n and p∗ = np
n−p , then

||u||Lp∗ (Rn) ≤ C(n, p)||∇u||Lp(Rn)

with optimal constant C(n, p) given by

C(n, p) = π1/2n−1/p

(
p− 1

n− p

)1−1/p( Γ(1 + n/2)Γ(n)

Γ(n/p)Γ(1 + n− n/p)

)
and maximizers given by

u(x) = (a+ b|x|
p
p−1 )

−n−p
p ,

with a, b > 0. We notice that with p = 2 and substituting n with n + 1 in the above opti-

mizers, we recover the optimizers given in [53]. The correspondence between the constants

seems more involved.

1.3 The Maximal Strichartz Family of Gaussian Distribu-

tions: Fisher Information, Index of Dispersion, Stochas-

tic Ordering

In this section, we define and study several properties of what we call Maximal Strichartz

Family of Gaussian Distributions. This is a subfamily of the family of Gaussian Dis-

tributions that arises naturally in the context of the Linear Schrödinger Equation and

Harmonic Analysis, as the set of maximizers of certain norms introduced by Strichartz, as

discussed in the previous section of this chapter.

From a statistical perspective, this family carries with itself some extra-structure with

respect to the general family of Gaussian Distributions. In this section, we analyse this

extra-structure in several ways. We first compute the Fisher Information Matrix of the

family, we then introduce some measures of Statistical Dispersion and, finally, we intro-

duce a Partial Stochastic Order on the family. Moreover, we indicate how these tools can

be used to distinguish between distributions which belong to the family and distributions

which do not. We show also that all our results are in accordance with the Dispersive-PDE
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nature of the family.

1.3.1 Introduction and Motivation

The most important multivariate distribution is the Multivariate Normal Distribution

(MVN). To fix the notation, we give here its definition.

Definition 1.3.1. We say that a random variable X is distributed as a Multivariate

Normal Distribution if its probability density function (pdf)

fX : Rn → R

takes the form

fX(x1, . . . , xn) =
1√

(2π)n|Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
,

where µ := E[X] ∈ Rn is the Mean Value Vector and Σ := V ar(X) ∈ Sym+
n is the n× n

positive definite symmetric Variance-Covariance Matrix.

Its importance derives mainly (but not only) from the Multivariate Central Limit

Theorem which has the following statement.

Theorem 1.3.2. Suppose that X = (x1, . . . , xn)T is a random vector with Variance-

Covariance Matrix Σ. Assume also that E[x2
i ] < +∞ for every i = 1, . . . , n. If X1, X2, . . .

is a sequence of iid random variables distributed as X, then

1

n1/2
Σn
i=1

(
Xi − E[Xi]

)
→d MVN(0,Σ),

where →d represents the convergence in distribution.

Due to its importance, several authors have tried to give characterizations of this

family of distributions. See for example [90] and [72] for an extended discussion on mul-

tivariate distributions and their properties. As mentioned in Section 1.1 the MVN can

be characterized by means of variational principles, such as the maximization of certain

functionals. We recall from Section 1.1, the well known characterization of the Gaussian

distribution through the maximization of the Differential Entropy, under the constraint

of fixed variance Σ in the case when the support of the pdf is the whole Euclidean Space

Rn.
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Theorem 1.3.3. Let X be a random variable whose pdf is fX . The Differential Entropy

h(X) is defined by the following functional:

h(X) := −
∫
Rn
fX(x) log fX(x) dx.

The Multivariate Normal Distribution has the largest Differential Entropy h(X) amongst

all the random variables X with equal variance Σ. Moreover, the maximal value of the

Differential Entropy h(X) is h(MVN(Σ)) = 1
2 log[(2πe)n|Σ|.

We refer to Section 1.1 for a proof of this well known theorem. This characterization

is, in some sense, not completely satisfactory because it is given just with the restriction

of fixed variance.

As mentioned in Section 1.2, a more general characterization of the Gaussian Distribution

has been given in a setting which, at first sight, seem very far, and it is the one of Harmonic

Analysis and Partial Differential Equations.

We first introduce the so called Admissible Exponents.

Definition 1.3.4. Fix n ≥ 1. We call a set of exponents (q, r) admissible if 2 ≤ q, r ≤ +∞
and

2

q
+
n

r
=
n

2
.

Remark 1.3.5. As mentioned in Section 1.2, these exponents are characteristic quantities

of certain norms, the Strichartz Norms, naturally arising in the context of Dispersive

Equations and can vary from equation to equation. We refer to [116] for more details.

We recall the precise characterization of the Multivariate Normal Distribution, through

Strichartz Estimates, towards which we contributed in Theorem 1.2.1 of previous section.

Theorem 1.3.6. [113], [68], [27], Suppose n = 1 or n = 2. Then, for every (q, r) and

(q̃, r̃) admissible and for every u0 ∈ L2
x(Rn) such that ||u0||2L2(Rn) = 1, we have∣∣∣∣e−it∆u0

∣∣∣∣
LqtL

r
x
≤ S(n, q, r), (1.22)

where Sh(n, q, r) = Sh(n, r) is the sharp Homogeneous Strichartz Constant, defined by

Sh(n, r) := sup
{
||u||LqtLrx(R×Rn) : ||u||2L2

x(Rn) = 1
}
, (1.23)
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and given by

Sh(n, r) = 2
n
4
−n(r−2)

2r r−
n
2r . (1.24)

Moreover, the inequality (1.22) becomes an equality if and only if |u0|2 is the pdf of a

Multivariate Normal Distribution.

For several other important results on Strichartz estimates we refer to [9], [63], [65], [71]

and the references therein.

The symmetries of the functional in (1.22) give rise to a family of distributions that we

call Maximal Strichartz Family of Gaussian Distributions.

F :=
{
p(t, x) =

(π
2

)−n
2 |RTR|−

1
2 |λ2 + 16t2|−n/2e−

2(x−x0−vt)
T (RTR)−1(x−x0−vt)
λ2+16t2 :(1.25)

(t, λ) ∈ R× R, (x0, v) ∈ Rn × Rn, R ∈ SO(n)
}
. (1.26)

We refer to Section 1.3.2 for its precise construction. This is a subfamily of the family of

Gaussian Distributions and, among the other things, it has the feature that the Mean Vec-

tor µ and the Variance Covariance Matrix Σ depend on common parameters. Therefore,

from a statistical perspective, this family carries with itself some extra-structure with

respect to the general family of Gaussian Distributions. This extra-structure becomes

evident from the form of the Fisher Information Metric of the family.

Theorem 1.3.7. Consider p(t, x), a probability distribution function belonging to the

Maximal Strichartz Family of Gaussian Distributions F , defined in equation (1.25). The

vector of parameters θ, indexing F , is given by

θ := (xT0 , v
T
0 , λ, (R

TR)ij , t)
T .

Then, the Fisher Information Matrix of p(t, x) is given by the following:

• in the spherical case (RTR = σ2Id), by
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I(θ) =



1
σ2 Id

t
σ2 Id 0 0 1

σ2 v0

t
σ2 Id

t2

σ2 Id 0 0 t
σ2 v0

0 0 λ2n
8 n λ

16σ2 (λ2 + 16t2) 2λtn

0 0 n λ
16σ2 (λ2 + 16t2) n

32

(
λ2+16t2

)2

σ4
nt
σ2

(
λ2 + 16t2

)
1
σ2 v0

t
σ2 v0 2λtn nt

σ2

(
λ2 + 16t2

)
|v0|2
σ2 + 32nt2


;

• in the elliptical case (RTR = σ2
i Id -see Section 1.3.3 for the precise definition), by

I(θ) =



1
σ2
i
Id t

σ2
i
Id 0 0 1

σ2
i
vi0

t
σ2
i
Id t2

σ2
i
Id 0 0 t

σ2
i
vi0

0 0 λ2n
8

λ
16σ2 (λ2 + 16t2) 2λtn

0 0 λ
16σ2 (λ2 + 16t2) 1

32

(
λ2+16t2

)2

σ4
t
σ2

(
λ2 + 16t2

)
1
σ2
i
vi0

t
σ2
i
vi0 2λtn t

σ2

(
λ2 + 16t2

)
Σn
i=1
|vi0|2
σ2
i

+ 32nt2


.

Remark 1.3.8. Technically, the only possible case inside the Maximal Strichartz Family

of Gaussian Distributions is when RTR = Idn×n, since R ∈ SO(n) (the spherical case,

with σ2 = 1). The form of the Fisher Information Matrix, in that case, simplifies to

a lower dimension. Nevertheless, the computation performed in the way we did, gives

the possibility to compute a distance (in some sense centred at the Maximal Strichartz

Family of Gaussian Distributions) between members of the Maximal Strichartz Family of

Gaussian Distributions and other Gaussian Distributions, for which the orthogonal matrix

condition RTR = Idn×n is not necessarily satisfied. In particular, it can distinguish

between Gaussians evolving through the PDE flow (See Section 1.3.2) and Gaussians which

do not, because not correctly spread out in every spatial dimensions.

As we said, Strichartz estimates are a way to measure the dispersion caused by the

flow of the PDE to which they are related. In statistics, dispersion explains how stretched

or squeezed a distribution is. A measure of statistical dispersion is a non-negative real

number which is small for data which are very concentrated and increases as the data

become more spread out. Common examples of measures of statistical dispersion are the

variance, the standard deviation, the range and many others. Here, we connect the two

closely related concepts (dispersion in statistics and PDEs) by introducing some measures
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of statistical dispersion like the Index of Dispersion in Definition 1.3.32 (see Section 1.3.4)

which reflect the Dispersive PDE-nature of the Maximal Strichartz Family of Gaussian

Distributions.

Definition 1.3.9. Consider the norms ||·||a and ||·||b on the space of Variance-Covariance

Matrices Σ and || · ||c on the space of mean values µ. We define the following Index of

Dispersion:

IabcM := ||Σ(0)||a ×
||Σ(t)||b
||µ(t)||4c

(1.27)

with t 6= 0 and where µ(t)

µ(t) := x0 + vt

while Σ(t) is given by

Σ(t) :=
1

4

(
λ2 + 16t2

)
RTR.

We call IabcM the abc-Dispersion Index of the Maximal Family of Gaussians and we call

IaM := ||Σ(0)||a

a-Static Dispersion Index of the Maximal Family of Gaussians.

We compute this Index of Dispersion for our family of distributions and show that it

is consistent with PDE results. We refer to Definition 1.3.32 for more details.

Another important concept in probability and statistics is the one of Stochastic Order.

A Stochastic Order is a way to consistently put a set of random variables in a sequence.

Most of the Stochastic Orders are partial orders, in the sense that an order between the

random variables exists, but not all the random variables can be put in the same sequence.

Many different Stochastic Orders exist and have different applications. For more details

on Stochastic Orders, we refer to [76]. Here, we use our Index of Dispersion to define

a Stochastic Order on the Maximal Strichartz Family of Gaussian Distributions and see

how there are natural ways of partially ranking the distributions of the family (See Section

1.3.5), in agreement with the flow of the PDE.

Definition 1.3.10. Consider two random variables X1 and X2 such that µX1(θ1) =

µX2(θ2), for any θ1 and θ2. We say that the two random variables are Ordered accordingly
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to their Dispersion Index I if and only if the following condition is satisfied

X1 ≺ X2 ⇔ I(X2) ≤ I(X1).

Remark 1.3.11. In this definition the index I can vary accordingly to the context and

the choices of the norms in the definition of the index.

An important tool in our analysis is what we call 1
α -Characteristic Function (See

Section 1.3.2 ) that we briefly anticipate from Chapter 2.

1.3.2 Construction of the Maximal Strichartz Family of Gaussian Dis-

tributions

This subsection is devoted to the construction of the Maximal Strichartz Family of Gaus-

sian Distributions. The program is the following:

1. We define 1
α -Characteristic Functions;

2. We prove that if u0 generates a probability distribution p0(x), then u(t, x) = eit∆u0

(See below for its precise definition) still defines a probability distribution pt(x) =

|u(t, x)|2;

3. By means of 1
α -Characteristic Functions, we give the explicit expression of u(t, x)

the generator of the family;

4. We use symmetries and invariances to build the complete family F .

1.3.2.1 The 1
α-Characteristic Functions

Following the program, we first need to introduce the tool of 1
α -Characteristic Functions

to characterize F . It is basically the Fourier Transform, but, differently from the Charac-

teristic Function, the average is not taken with the pdf, but with a power of the pdf.

Definition 1.3.12. Consider u : Rn → C to be a Schwartz function, namely a function

belonging to the space

S (Rn) := {f ∈ C∞(Rn) | ‖f‖α,β <∞ ∀α, β} ,

with α and β multi-indices, endowed with the following norm

‖f‖α,β = sup
x∈Rn

∣∣∣xαDβf(x)
∣∣∣ .
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Moreover, suppose that ∫
Rn
|u|α = 1,

namely that |u|α defines a continuous probability distribution function. Then, we define

φuα(ξ) :=
1

(2π)
n
2

∫
Rn
e−ix·ξu(x)dx.

We call φuα(ξ) the 1
α -Characteristic Function of u. Moreover, we define the Inverse 1

α -

Characteristic Function by

ψφ
u
α
α (x) :=

1

(2π)
n
2

∫
Rn
eix·ξφuα(ξ)dξ.

We refer to Chapter 2 for examples and properties of 1
α -Characteristic Functions and

to the Chapter 2 applications of this tool. In particular, we notice that ψ
φuα
α (x) = u(x).

Remark 1.3.13. If u is essentially complex valued and for example α = n ∈ N, then

there are n-distinct complex roots of |u|2. In our discussion, this will not create to us any

problem, because our process starts with u and produces |u|2. We remark that the map

|u|α 7→ u is a multivalued function. For this reason, we cannot reconstruct uniquely a

generator, given the family that it generates. See formula (1.31) below for more details.

Remark 1.3.14. We could define 1
α -Characteristic Functions for more general functions

u : X → F with X a locally compact Abelian group and F a general field. We do not

pursue this direction here and we will leave it for a future work. We notice that φuα(ξ) can

be considered also as a 1
α -Expected Value

E
1
α

|u|2 [e−ixξ] =
1

(2π)
n
2

∫
Rn
e−ix·ξu(x)dx.

1.3.2.2 Conservation of Mass and Flow on the space of probability measures

In this subsection, we show that if p0(x) = |u0|2 defines a probability distribution, then

also pt(x) = |eit∆u0|2 defines a probability distribution. This is mainly a consequence of

the property of eit∆ of being a unitary operator.

Theorem 1.3.15. Consider P(Rn), the set of all probability distributions on Rn and

u : (0,∞)×Rn → C a solution to (1.9). Then u induces a flow in the space of probability

distributions.
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Proof. Consider u0 : Rn → C such that ||u||L2(Rn) = 1, so p0(x) := |u0(x)|2 is a probability

distribution on Rn. Consider u(t, x), the solution of (1.9) with initial datum u0. Then

∂t

∫
Rn
|u|2 = ∂t

∫
Rn
uū =

∫
Rn
∂t(uū) =

∫
Rn

(∂tuū+ u∂tū) (1.28)

=

∫
Rn
<
[
ū

(
i

2
∆u

)
− u

(
i

2
∆ū

)]
= 0. (1.29)

So ∂t
∫
Rn |u|

2 = 0 and hence ∫
Rn
|u(t, x)|2 =

∫
Rn
|u0(x)|2 = 1.

Therefore, for every t ∈ R, p(t, x) := |u(t, x)|2 is a probability distribution.

u0 ∈ L2(Rn) u(t) ∈ L2(Rn)

p0 ∈ P(Rn) p(t) ∈ P(Rn)

S(t)

| · |2

S(t)∗

| · |2

Remark 1.3.16. This situation is in striking contrast with respect to the heat equation,

where if you start with a probability distribution as initial datum, instantaneously the

constraint of being a probability measure is broken.

1.3.2.3 Fundamental Solution for The Linear Schrödinger Equation using 1
α-

Characteristic Functions

Recall from Subsection 1.2.2.1 that the solution to the Linear Schrödinger Equation

i∂tu(t, x) = ∆u(t, x), (t, x) ∈ (0,∞)× Rn, (1.30)

with initial datum u0(x) = e−|x|
2 ∈ S (Rn) is given by

u(t, x) = (1− 4it)−n/2e−
|x|2

1−4it ,
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which produces the following probability density function

p(t, x) =
(π

2

)−n
2 |1 + 16t2|−n/2e−

2|x|2

1+16t2 (1.31)

which is going to be the generator of the family of distributions F , due to Theorem 1.3.15.

1.3.2.4 Strichartz Estimates and their symmetries

Recall from Section 1.2.2.2 Theorem 1.2.10, namely that Strichartz Estimates are invariant

by the following set of symmetries.

Lemma 1.3.17. [53] Let G be the group of transformations generated by:

• space-time translations: u(t, x) 7→ u(t+ t0, x+ x0), with t0 ∈ R, x0 ∈ Rn;

• parabolic dilations: u(t, x) 7→ u(λ2t, λx), with λ > 0;

• change of scale: u(t, x) 7→ µu(t, x), with µ > 0;

• space rotations: u(t, x) 7→ u(t, Rx), with R ∈ SO(n);

• phase shifts: u(t, x) 7→ eiθu(t, x), with θ ∈ R;

• Galilean transformations:

u(t, x) 7→ e
i
4

(
|v|2t+2v·x

)
u(t, x+ tv),

with v ∈ Rn.

Then, if u solves equation (1.9) and g ∈ G, also v = g ◦u solves equation (1.9). Moreover,

the constants Sh(n, q, r), Sd(n, q, r) and Si(n, q, r, q̃, r̃) are left unchanged by the action of

G.

Not all these symmetries leave invariant the set of probability distributions P(Rn).

Therefore, we need to reduce the set of symmetries in our treatment and, in particular,

we need to combine the scaling and the parabolic dilations in order to have all the family

inside the space of probability distributions P(Rn).

Lemma 1.3.18. Consider uµ,λ = µu(λ2t, λx) such that u(t, x) ∈ P(Rn) maximizes (1.22),

then µ = λn/2.
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Proof.

1 = ||uλ||2L2(Rn) = µ2

∫
Rn
|u(λ2t, λx)|2dx = µ2λ−n||u||2L2(Rn) = µ2λ−n,

so µ = λn/2.

Remark 1.3.19. We notice that some of the symmetries can be seen just at the level of

the generator of the family u, but not by the family of probability distributions pt(x). For

example the phase shifts u(t, x) 7→ eiθu(t, x), with θ ∈ R give rise to the same probability

distribution function because |eiθu(t, x)|2 = |u(t, x)|2 and, partially, the Galilean transfor-

mations u(t, x) 7→ e
i
4

(
|v|2t+2v·x

)
u(t, x+tv), with v ∈ Rn reduces to a space translation with

x0 = vt, since

∣∣∣∣∣e i4
(
|v|2t+2v·x

)
u(t, x+ tv)

∣∣∣∣∣
2

= |u(t, x+ tv)|2. In some sense, the parameter

θ can be seen as a latent variable.

Therefore, we have the complete set of probability distributions induced by the gener-

ator u(t, x).

Theorem 1.3.20. Consider pt(x) = |u(t, x)|2 a probability distribution function generated

by u(t, x) (see Subsection 1.2.2.1). Let S be the group of transformations generated by:

• inertial-space translations and time translations: p(t, x) 7→ p(t+ t0, x+x0 +vt), with

t0 ∈ R, x0 ∈ Rn and v ∈ Rn ;

• scaling-parabolic dilations: u(t, x) 7→ λnu(λ2t, λx), with λ > 0;

• space rotations: u(t, x) 7→ u(t, Rx), with R ∈ SO(n);

Then, if u solves equation (1.9) and g ∈ S, also v = g ◦ u solves equation (1.9), qt(x) =

|v(t, x)|2 is still a probability distribution for every g ∈ S and the constant Sh(n, q, r) is

left unchanged by the action of S.

This theorem produces the following definition:

Definition 1.3.21. We call Maximal Strichartz Family of Gaussian Distributions the

following family of distributions:

F :=
{
pt(x) =

(π
2

)−n
2 |RTR|−

1
2 |λ2 + 16t2|−n/2e−

2(x−x0−vt)
T (RTR)−1(x−x0−vt)
λ2+16t2 :(1.32)

(t, λ) ∈ R2, (x0, v) ∈ Rn × Rn, R ∈ SO(n)
}
. (1.33)
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Remark 1.3.22. Let p(t, x) be the pdf defined in equation (1.31). Then, choose p̃t(x) ∈ F
with R = Id, x0 = v0 = 0 and λ = 0. This implies: p̃t(x) = p(t, x) ∈ F . For this reason,

we call p(t, x) the Family Generator of F . We notice also that, in the definition of the

family and with respect to Theorem 1.3.20, we used as scale parameter λ1/2 instead of λ.

This is done without loss of generality, since λ > 0.

Right away we can compute the Variance-Covariance Matrix and Mean Vector of the

family.

Corollary 1.3.23. Suppose X is a random variable with pdf pt(x) ∈ F . Then its Expected

Value is

E[X] := µ = x0 + vt

and its Variance is

Σ =
1

4
(λ2 + 16t2)(RTR).

Proof. The proof is a direct computation.

Remark 1.3.24. We see here that, differently from the general family of Gaussian dis-

tributions, here the Mean Vector and the Variance-Covariance Matrix are related by a

parameter, which represents the time flow.

1.3.3 The Fisher Information Metric of the Maximal Strichartz Family

F

Information geometry is a branch of mathematics that applies the techniques of differen-

tial geometry to the field of statistics and probability theory. This is done by interpreting

probability distributions of a statistical model as the points of a Riemannian manifold,

forming in this way a statistical manifold. The Fisher information metric provides a nat-

ural Riemannian metric for this manifold, but it is not the only possible one. With this

tool, we can define and compute meaningful distances between probability distributions,

both in the discrete and continuous case. Crucial is then the set of parameters on which

a certain family of distributions is indexed and the geometrical structure of the param-

eter set. We refer to [1] for a general reference on information geometry. The first one

to introduce the notion of distance between two probability distributions has been Rao

in [98] (see also [4]), who used the Fisher Information Matrix as a Riemannian Metric on

the space of parameters.

In this subsection, we restrict our attention to the Fisher Information Metric of the Max-

imal Strichartz Family of Gaussian Distributions F and provide details on the additional
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structure that the family has with respect to the hyperbolic model of the general Family

of Gaussian Distributions. See for example [34], [35] and [77].

1.3.3.1 The Fisher Information Metric for the Multivariate Gaussian Distri-

bution

First, we give the general definition of the Fisher Information Metric:

Definition 1.3.25. Consider a statistical manifold S, with coordinates given by θ =

(θ1, θ2, · · · , θn) and with probability density function p(x; θ). Here, x is a specific observa-

tion of the discrete or continuous random variables X. The probability is normalized, so

that
∫
X p(x, θ)dx = 1 for every θ ∈ S. The Fisher Information Metric Iij is defined by the

following formula:

Iij(θ) =

∫
X

∂ log p(x, θ)

∂θi

∂ log p(x, θ)

∂θj
p(x, θ) dx. (1.34)

Remark 1.3.26. The integral is performed over all values x that the random variable X

can take. Again, the variable θ is understood as a coordinate on the statistical manifold S,

intended as a Riemannian Manifold. Under certain regularity conditions (any that allows

integration by parts), Iij can be rewritten as

Iij(θ) = −
∫
X

∂2logp(x, θ)

∂θi∂θj
p(x, θ) dx = −E

[
∂2logp(x, θ)

∂θi∂θj

]
. (1.35)

Now, to compute explicitly the Fisher Information Matrix of the family F , we use the

following theorem that you can find in [86].

Theorem 1.3.27. The Fisher Information Matrix for an n-variate Gaussian distribution

can be computed in the following way. Let

µ(θ) =
[
µ1(θ), µ2(θ), . . . , µN (θ)

]T

be the vector of Expected Values and let Σ(θ) be the Variance-Covariance Matrix. Then,

the typical element Ii,j , 0 ≤ i, j < n, of the Fisher Information Matrix for a random

variable X ∼ N (µ(θ),Σ(θ)) is:

Ii,j =
∂µT

∂θi
Σ−1 ∂µ

∂θj
+

1

2
tr

(
Σ−1 ∂Σ

∂θi
Σ−1 ∂Σ

∂θj

)
,
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where (..)T denotes the transpose of a vector, tr(..) denotes the trace of a square matrix,

and:

∂µ

∂θi
=
[
∂µ1

∂θi
∂µ2

∂θi
· · · ∂µn

∂θi

]T
;

and

∂Σ

∂θi
=



∂Σ1,1

∂θi

∂Σ1,2

∂θi
· · · ∂Σ1,n

∂θi

∂Σ2,1

∂θi

∂Σ2,2

∂θi
· · · ∂Σ2,n

∂θi

...
...

. . .
...

∂Σn,1
∂θi

∂Σn,2
∂θi

· · · ∂Σn,n
∂θi


.

Now, we have just to compute the Fisher Information Matrix entry by entry, following

the theorem. We recall here that we are considering the following family of Gaussian

Distributions:

F :=
{
p(t, x) =

(π
2

)−n
2 |RTR|−

1
2 |λ2 + 16t2|−n/2e−

2(x−x0−vt)
T (RTR)−1(x−x0−vt)
λ2+16t2 :

(t, λ) ∈ R2, (x0, v) ∈ Rn × Rn, R ∈ SO(n)
}
.

and that, in particular, we have that the Expected Value of a random variable X with

distribution belonging to the family F is given by

µ := x0 + vt,

while the Variance-Covariance Matrix is given by

Σ :=
1

4

(
λ2 + 16t2

)
RTR.

Remark 1.3.28. We remark again that µ and Σ depend on some common parameters,

like the time t.

1.3.3.2 Proof of Theorem 1.3.7: The Spherical Multivariate Gaussian Distri-

bution

Here, we consider the case in which RTR = σ2Idn×n, namely the case where the Variance-

Covariance Matrix is given by Σ := 1
4

(
λ2 + 16t2

)
σ2Idn×n. In this case, the vector of
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parameters θ is given by

θ := (xT0 , v
T
0 , λ, σ

2, t)T ,

with x0 and v0 are n× 1, while λ, σ2, t are scalars. In order to fix the notation, we call

(θ1, . . . , θn)T := (x0, . . . , xn), (θn+1, . . . , θ2n)T := (v0
0, . . . , v

n
0 ), θ2n+1 = λ, θ2n+2 = σ2 and

θ2n+3 = t. Now, we want to compute all the coefficients of Iij . We use the symmetry of

the information matrix Iij , so Iij = Iji. The relevant coefficients are the following:

• i = 1, . . . , n, j = 1, . . . , n

Ii,j =
∂µT

∂θi
Σ−1 ∂µ

∂θj
= (0, . . . , 1i, . . . , 0)T

1

σ2
Idn×n(0, . . . , 1j , . . . , 0) =

1

σ2
δij ;

• i = 1, . . . , n, j = n+ 1, . . . , 2n

Ii,j =
∂µT

∂θi
Σ−1 ∂µ

∂θj
= (0, . . . , 1i, . . . , 0)T

1

σ2
Idn×n(0, . . . , tj , . . . , 0) =

t

σ2
δij ;

• i = 1, . . . , n, j = 2n+ 1

Ii,j = 0,

because µ does not depend on λ and Σ does not depend on x0;

• i = 1, . . . , n, j = 2n+ 2

Ii,j = 0,

because µ does not depend on σ2 and Σ does not depend on x0;

• i = 1, . . . , n, j = 2n+ 3

Ii,j =
∂µT

∂θi
Σ−1 ∂µ

∂θj
= (0, . . . , 1i, . . . , 0)T

1

σ2
Idn×n(v0

0, . . . , v
n
0 ) =

1

σ2
vi0;

• i = n+ 1, . . . , 2n, j = n+ 1, . . . , 2n

Ii,j =
∂µT

∂θi
Σ−1 ∂µ

∂θj
= (0, . . . , ti, . . . , 0)T

1

σ2
Idn×n(0, . . . , tj , . . . , 0) =

t2

σ2
δij ;

• i = n+ 1, . . . , 2n, j = 2n+ 1
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Ii,j = 0,

because µ does not on λ and Σ does not depend on v0;

• i = n+ 1, . . . , 2n, j = 2n+ 2

Ii,j = 0,

because µ does not depend on σ2 and Σ does not depend on v0 ;

• i = n+ 1, . . . , 2n, j = 2n+ 3

Ii,j =
∂µT

∂θi
Σ−1 ∂µ

∂θj
= (0, . . . , 1i, . . . , 0)T

1

σ2
Idn×n(v0

0, . . . , v
n
0 ) =

t

σ2
vi0;

• i = 2n+ 1, j = 2n+ 1

Ii,j =
1

2
tr

(
Σ−1 ∂Σ

∂θi
Σ−1 ∂Σ

∂θj

)
=

1

2
tr

(
1

σ2
Id

2λσ2

4
Id

1

σ2
Id

2λσ2

4
Id

)

=
λ2

8
tr(Id) =

λ2n

8
;

• i = 2n+ 1, j = 2n+ 2

Ii,j =
1

2
tr

(
Σ−1 ∂Σ

∂θi
Σ−1 ∂Σ

∂θj

)
=

1

2
tr

(
1

σ2
Id

2λσ2

4
Id

1

σ2
Id
λ2 + 16t2

4
Id

)
= n

λ

16σ2
(λ2 + 16t2);

• i = 2n+ 1, j = 2n+ 3

Ii,j =
1

2
tr

(
Σ−1 ∂Σ

∂θi
Σ−1 ∂Σ

∂θj

)
=

1

2
tr

(
1

σ2
Id

2λσ2

4
Id

1

σ2
Id

8tσ2

4
Id

)
= 2λtn;

• i = 2n+ 2, j = 2n+ 2

Ii,j =
1

2
tr

(
Σ−1 ∂Σ

∂θi
Σ−1 ∂Σ

∂θj

)
=

1

2
tr

(
1

σ2
Id
λ2 + 16t2

4
Id

1

σ2
Id
λ2 + 16t2

4
Id

)
=

n

32

(λ2 + 16t2)2

σ4
;
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• i = 2n+ 2, j = 2n+ 3

Ii,j =
1

2
tr

(
Σ−1 ∂Σ

∂θi
Σ−1 ∂Σ

∂θj

)
=

1

2
tr

(
1

σ2
Id
λ2 + 16t2

4
Id

1

σ2
Id8tσ2Id

)
=
nt

σ2

(
λ2 + 16t2

)
;

• i = 2n+ 3, j = 2n+ 3

Ii,j =
∂µT

∂θi
Σ−1 ∂µ

∂θj
+

1

2
tr

(
Σ−1 ∂Σ

∂θi
Σ−1 ∂Σ

∂θj

)
=

(v0
0, . . . , v

n
0 )T

1

σ2
Idn×n(v0

0, . . . , v
n
0 ) +

1

2
tr

(
1

σ2
Id8tσ2Id

1

σ2
Id8tσ2Id

)
=

=
|v0|2

σ2
+ 32nt2.

In conclusion, we have

I(θ) =



1
σ2 Id

t
σ2 Id 0 0 1

σ2 v0

t
σ2 Id

t2

σ2 Id 0 0 t
σ2 v0

0 0 λ2n
8 n λ

16σ2 (λ2 + 16t2) 2λtn

0 0 n λ
16σ2 (λ2 + 16t2) n

32

(
λ2+16t2

)2

σ4
nt
σ2

(
λ2 + 16t2

)
1
σ2 v0

t
σ2 v0 2λtn nt

σ2

(
λ2 + 16t2

)
|v0|2
σ2 + 32nt2


.
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1.3.3.3 Proof of Theorem 1.3.7: The Elliptical Multivariate Gaussian Distri-

bution

We define

1

σ2
i

Id :=



1
σ2

1
0 · · · 0

0 1
σ2

2
· · · 0

...
...

. . .
...

0 0 · · · 1
σ2
n


.

We define also
1

σ2
:= Σn

i=1

1

σ2
i

and
1

σ4
:= Σn

i=1

1

σ4
i

.

Using this notations, we are going to compute the matrix Iij . The relevant coefficients are

the following:

• i = 1, . . . , n, j = 1, . . . , n

Ii,j =
∂µT

∂θi
Σ−1 ∂µ

∂θj
= (0, . . . , 1i, . . . , 0)T

1

σ2
i

Idn×n(0, . . . , 1j , . . . , 0) =
1

σ2
i

δij ;

• i = 1, . . . , n, j = n+ 1, . . . , 2n

Ii,j =
∂µT

∂θi
Σ−1 ∂µ

∂θj
= (0, . . . , 1i, . . . , 0)T

1

σ2
i

Idn×n(0, . . . , tj , . . . , 0) =
t

σ2
i

δij ;

• i = 1, . . . , n, j = 2n+ 1

Ii,j = 0,

because µ does not depend on λ and Σ does not depend on x0;

• i = 1, . . . , n, j = 2n+ 2

Ii,j = 0,
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because µ does not depend on σ2 and Σ does not depend on x0;

• i = 1, . . . , n, j = 2n+ 3

Ii,j =
∂µT

∂θi
Σ−1 ∂µ

∂θj
= (0, . . . , 1i, . . . , 0)T

1

σ2
Idn×n(v0

0, . . . , v
n
0 ) =

1

σ2
i

vi0

= (v0
0/σ

2
1, . . . , v

n
0 /σ

2
n);

• i = n+ 1, . . . , 2n, j = n+ 1, . . . , 2n

Ii,j =
∂µT

∂θi
Σ−1 ∂µ

∂θj
= (0, . . . , ti, . . . , 0)T

1

σ2
Idn×n(0, . . . , tj , . . . , 0) =

t2

σ2
i

δij ;

• i = n+ 1, . . . , 2n, j = 2n+ 1

Ii,j = 0,

because µ does not depend on λ and Σ does not depend on v0;

• i = n+ 1, . . . , 2n, j = 2n+ 2

Ii,j = 0,

because µ does not depend on σ2 and Σ does not depend on v0;

• i = n+ 1, . . . , 2n, j = 2n+ 3

Ii,j =
∂µT

∂θi
Σ−1 ∂µ

∂θj
= (0, . . . , 1i, . . . , 0)T

1

σ2
Idn×n(v0

0, . . . , v
n
0 ) =

t

σ2
i

vi0

= t(v0
0/σ

2
1, . . . , v

n
0 /σ

2
n);

• i = 2n+ 1, j = 2n+ 1

Ii,j =
1

2
tr

(
Σ−1 ∂Σ

∂θi
Σ−1 ∂Σ

∂θj

)
=

1

2
tr

(
1

σ2
Id

2λσ2

4
Id

1

σ2
Id

2λσ2

4
Id

)

=
λ2

8
tr(Id) =

λ2n

8
;

• i = 2n+ 1, j = 2n+ 2
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Ii,j =
1

2
tr

(
Σ−1 ∂Σ

∂θi
Σ−1 ∂Σ

∂θj

)
=

1

2
tr

(
1

σ2
i

Id
2λσ2

i

4
Id

1

σ2
i

Id
λ2 + 16t2

4
Id

)
= Σn

i=1

λ

16σ2
i

(λ2 + 16t2) =
λ

16σ2
(λ2 + 16t2);

• i = 2n+ 1, j = 2n+ 3

Ii,j =
1

2
tr

(
Σ−1 ∂Σ

∂θi
Σ−1 ∂Σ

∂θj

)
=

1

2
tr

(
1

σ2
i

Id
2λσ2

i

4
Id

1

σ2
i

Id
8tσ2

i

4
Id

)
= 2λtn;

• i = 2n+ 2, j = 2n+ 2

Ii,j =
1

2
tr

(
Σ−1 ∂Σ

∂θi
Σ−1 ∂Σ

∂θj

)
=

1

2
tr

(
1

σ2
i

Id
λ2 + 16t2

4
Id

1

σ2
i

Id
λ2 + 16t2

4
Id

)

= Σn
i=1

1

32

(
λ2+16t2

4

)2

σ4
i

=
1

32

(
λ2+16t2

4

)2

σ4
;

• i = 2n+ 2, j = 2n+ 3

Ii,j =
1

2
tr

(
Σ−1 ∂Σ

∂θi
Σ−1 ∂Σ

∂θj

)
=

1

2
tr

(
1

σ2
i

Id
λ2 + 16t2

4
Id

1

σ2
i

Id8tσ2Id

)
= Σn

i=1

t

σ2
i

(
λ2 + 16t2

)
=

t

σ2

(
λ2 + 16t2

)
;

• i = 2n+ 3, j = 2n+ 3

Ii,j =
∂µT

∂θi
Σ−1 ∂µ

∂θj
+

1

2
tr

(
Σ−1 ∂Σ

∂θi
Σ−1 ∂Σ

∂θj

)
=

(v0
0, . . . , v

n
0 )T

1

σ2
i

Idn×n(v0
0, . . . , v

n
0 ) +

1

2
tr

(
1

σ2
i

Id8tσ2
i Id

1

σ2
i

Id8tσ2
i Id

)
=

= Σn
i=1|vi0|2/σ2

i + 32nt2.
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In conclusion, we have

I(θ) =



1
σ2
i
Id t

σ2
i
Id 0 0 1

σ2
i
vi0

t
σ2
i
Id t2

σ2
i
Id 0 0 t

σ2
i
vi0

0 0 λ2n
8

λ
16σ2 (λ2 + 16t2) 2λtn

0 0 λ
16σ2 (λ2 + 16t2) 1

32

(
λ2+16t2

)2

σ4
t
σ2

(
λ2 + 16t2

)
1
σ2
i
vi0

t
σ2
i
vi0 2λtn t

σ2

(
λ2 + 16t2

)
Σn
i=1|vi0|2/σ2

i + 32nt2


.

This concludes the proof of Theorem 1.3.7.

1.3.3.4 The General Multivariate Gaussian Distribution

As pointed out in [34] and [35], for general multivariate normal distributions, the explicit

form of the Fisher distance has not been computed in closed form yet even in the simple

case where the parameters are t = 0, λ = 0, v0 = 0. From a technical point of view, as

pointed out in [34] and [35], the main difficulty arises from the fact that the sectional

curvatures of the Riemannian manifold induced by F and endowed with the Fisher Infor-

mation Metric, are not all constant.

We remark again here that the distance induced by our Fisher Information Matrix is

centred at the Maximal Strichartz Family of Gaussian Distributions, to enlighten the dif-

ference between members of the Maximal Strichartz Family of Gaussian Distributions and

other Gaussian Distributions, for which RTR = Idn×n is not necessarily satisfied. In par-

ticular, our metric distinguishes between Gaussians evolving through the PDE flow (See

Section 1.3.2) and Gaussians who do not, because not correctly spread out in every spatial

dimensions.

Remark 1.3.29. We say that two parameters α and β are orthogonal if the elements of the

corresponding rows and columns of the Fisher Information Matrix are zero. Orthogonal

parameters are easy to deal with in the sense that their maximum likelihood estimates

are independent and can be calculated separately. In particular, for our family F the

parameters x0 and v0 are both orthogonal to both the parameters λ and σ2. Some partial

results, for example when either mean or variance are kept constant can be deduced. See

for example [34], [35] and [77].

Remark 1.3.30. The Fisher Information Metric is not the only possible choice to compute

distances between pdfs of the family of Gaussian Distributions. For example in [77], the
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authors parametrize the family of normal distribution as the symmetric space SL(n +

1)/SO(n+ 1) endowed with the following metric

ds2 = tr(Σ−1dΣΣ−1dΣ)− 1

n+ 1
(tr(Σ−1dΣ))2 +

1

2
dµTΣ−1dµ.

Moreover, the authors in [77] computed the Riemann Curvature Tensor of the metric and,

in any dimension, the distance between two normal distributions with the same mean and

different variance and also the distance between two normal distributions with the same

variance and different mean.

Remark 1.3.31. If we consider just the submanifold given by the restriction to the coor-

dinates i = 1, . . . , n and i = 2n+ 2 on the ellipse λ2 + 16t2 = 4 we recover the hyperbolic

distance

ds2
H :=

dµ2

σ2
+
dσ2

2σ4
.

The geometry however does not seem the one of a product space, at least considering the

fact that mixed entries are not zero, in our parametrization.

1.3.4 Overdispersion, Equidispersion and UnderDispersion for the Fam-

ily F

As we said, Strichartz estimates are a way to measure the dispersion caused by the flow

of the PDE to which they are related. In statistics, dispersion explains how spread out a

distribution is. In this subsection, we connect the two closely related concepts (dispersion

in statistics and PDEs) by introducing some measures of statistical dispersion like the

Index of Dispersion in Definition 1.3.32 (see Section 1.3.4) which reflect the Dispersive

PDE-nature of the Maximal Strichartz Family of Gaussian Distributions. We compute

this Index of Dispersion for our family of distributions and show that it is consistent with

PDE results.

Definition 1.3.32. Consider the norms || · ||a and || · ||b on the space of Variance-Cova-

riance Matrices Σ and || · ||c on the space of mean values µ. We define the following Index

of Dispersion:

IabcM := ||Σ(0)||a ×
||Σ(t)||b
||µ(t)||4c

(1.36)

with t 6= 0 and where µ(t)
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µ(t) := x0 + vt

while Σ(t) is given by

Σ(t) :=
1

4

(
λ2 + 16t2

)
RTR.

We call IabcM the abc-Dispersion Index of the Maximal Family of Gaussians and we call

IaM := ||Σ(0)||a

a-Static Dispersion Index of the Maximal Family of Gaussians. Moreover, we say that the

distribution is:

• abc-overdispersed, if IabcM < 1;

• abc-equidispersed, if IabcM = 1;

• abc-underdispersed, if IabcM > 1.

Analogously, we say that the distribution is:

• a-overdispersed, if IaM < 1;

• a-equidispersed, if IaM = 1;

• a-underdispersed, if IaM > 1.

Here, we discuss some particular cases and compute the dispersion indexes IabcM and

IaM for certain specific norms || · ||a, || · ||b and || · ||c.

• In the case t = 0, the a-Static Dispersion Index of the Maximal Family of Gaussians

that we choose, is given by the variance of the distribution. We choose ||Σ||a = det(Σ)

and so we get

IaM = ||Σ||a = det(Σ) =

(
1

4
λ2

)n
det(RTR).

Now, in the spherical case RTR = σ2Id, one gets

IaM =

(
1

4
λ2σ2

)n
.

So, the distribution is

– a-overdispersed if 1
4λ

2σ2 < 1;
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– a-equidispersed if 1
4λ

2σ2 = 1;

– a-underdispersed if 1
4λ

2σ2 > 1.

Therefore, with ||Σ||a = det(Σ) the type of dispersion does not depend on the di-

mension n.

Remark 1.3.33. In the strictly Strichartz case σ2 = 1, we have that the dispersion

is measured just by the scaling factor λ.

Choosing instead ||Σ||a = tr(Σ) as a-Static Dispersion Index of the Maximal Family

of Gaussians, we have some small differences:

IaM = ||Σ||a = tr(Σ) =

(
1

4
λ2

)
tr(RTR).

Now, in the spherical case RTR = σ2Id, we get

IaM = n

(
1

4
λ2σ2

)
.

So, the distribution is

– a-overdispersed if n1
4λ

2σ2 < 1;

– a-equidispersed if n1
4λ

2σ2 = 1;

– a-underdispersed if n1
4λ

2σ2 > 1.

So with ||Σ||a = tr(Σ) the type of dispersion does depend on the dimension n.

• In the case t ∈ R, when t is different from zero, we can express Σ as a function of µ.

In fact we have:

t =
(µ− x0) · v0

|v0|2

and so

Σ(µ) =
1

4

(
λ2 + 16

((µ− x0) · v0

|v0|2
)2
)
RTR.

For example, if now we choose x0 = 0 and µ = v0 = (1, 0, . . . , 0)T we get

Σ(µ) =
1

4

(
λ2 + 16

)
RTR,
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so for ||Σ||a = ||Σ||b = det(Σ) and ||µ||2c = Σn
1=1|µi|2 we get, in the spherical case

RTR = σ2Id,

IabcM =

(
1

4
λ2σ2

)n
×
(

1

4
(λ2 + 16)σ2

)n
.

So the distribution is

– abc-overdispersed if
(

1
4λ

2σ2
)n × (1

4(λ2 + 16)σ2
)n
< 1;

– abc-equidispersed if
(

1
4λ

2σ2
)n × (1

4(λ2 + 16)σ2
)n

= 1;

– abc-underdispersed if
(

1
4λ

2σ2
)n × (1

4(λ2 + 16)σ2
)n
> 1.

Remark 1.3.34. In particular, from this, we notice that if at t = 0 we are a-equidispersed,

an instant after we are abc-overdispersed, in fact:

IabcM =

(
1

4
λ2σ2

)n
×
(

1

4
(λ2 + 16)σ2

)n
= (1 + 4σ2)n > 1.

This is in agreement with the dispersive properties of the family F and legitimates, in some

sense, our choice of Indexes of Dispersion. Moreover, if the

IabcM = (1 + 4σ2)n > 1,

is actually different from IabcM = 5n, namely σ2 = 1, we can argue that the Gaussian

distribution that we are analysing does not come from the Maximal Strichartz Family of

Gaussian Distributions.

Remark 1.3.35. This index is different from the Fisher Index which is basically the

variance to mean ratio

IF :=
V ar(X)

E[X]

and it is the natural one for count data. The index IF is then more appropriate for families

of distributions related to the Poisson distribution and that are dimensionless. In fact, in

our case and in contrast with the Poisson case, we scale the Variance-Covariance Matrix

as the square of the Expected Value: Σ ' µ2.

Remark 1.3.36. The characterization of the Gaussian Distribution given by Theorem

1.3.6 and Theorem 1.2.9 can be used also to give a measure of dispersion with respect to

the Maximal Family of Gaussian Distributions, considering the Strichartz Norm:

IS :=
||eit∆u0(x)||LqtLrx

S(n, r)
.
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By Theorem 1.3.6 one has that 0 ≤ IS ≤ 1. When the index is close to one, the distri-

bution is close, in some sense, to the family F , while, when the index is close to zero,

the distribution is very far from F . This index clearly does not distinguish between dis-

tributions in the family F . It would be very interesting to see if the closeness to one of

the index of dispersion IS computed on a general distribution implies a proximity to the

Maximal Family of Gaussian Distributions also from the distribution point of view and

not just from the point of view of the dispersion.

1.3.5 Partial Stochastic Ordering on F

Using the concept of Index of Dispersion, we can give a Partial Stochastic Order to the

family F . For a more complete treatment on Stochastic Orders, we refer to [76]. We start

the analysis of this section with the definition of Mean-Preserving Spread.

Definition 1.3.37. A mean-preserving spread (MPS) is a map from P(Rn) to itself

p(x; θ1)→ p(x; θ2)

where p(x; θ1) and p(x; θ2) are respectively the pdf of the random variables X1 and X2 with

the property of leaving the Expected Value unchanged:

µX1(θ1) = µX2(θ2),

for any θ1 and θ2 in the space of parameters.

The concept of a Mean-Preserving Spread provides a partial ordering of probability

distributions according to their level of dispersion. We then give the following definition.

Definition 1.3.38. Consider two random variables X1 and X2 such that µX1(θ1) =

µX2(θ), for any θ1 and θ2. We say that the two random variables are Ordered accordingly

to their Dispersion Index I if and only if the following condition is satisfied

X1 ≺ X2 ⇔ I(X2) ≤ I(X1).

Now, we give some examples of ordering accordingly to the indexes of dispersion that

we discussed above.

• In the case t = 0, we choose ||Σ||a = det(Σ) and so we get

IaM = ||Σ||a = det(Σ) =

(
1

4
λ2

)n
det(RTR).
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Now, in the spherical case RTR = σ2Id, one gets

IaM =

(
1

4
λ2σ2

)n
.

Using this index, we have the following partial-ordering

X1 ≺ X2 ⇔ λ2
2σ

2
2 ≤ λ2

1σ
2
1.

This order does not depend on the dimension n. By choosing instead ||Σ||a = tr(Σ),

we obtain:

IaM = ||Σ||a = tr(Σ) =

(
1

4
λ2

)
tr(RTR).

Now, again in the spherical case RTR = σ2Id, one gets

X1 ≺ X2 ⇔ λ2
2σ

2
2 ≤ λ2

1σ
2
1,

which is the same ordering as before. This order does not depend on the dimension

n again and this seems to suggest that even if the value of the Dispersion Index

might depend on the choice of the norms, the Partial Order is less sensible to it.

Remark 1.3.39. In the strictly Strichartz case σ2 = 1, we have that the Stochastic

Order is given just by the scaling factor λ.

• In the case when t is different from zero, we have:

Σ(µ) =
1

4

(
λ2 + 16

((µ− x0) · v0

|v0|2
)2
)
RTR.

If now we choose x0 = 0 and µ = v0 = (1, 0, . . . , 0)T , we get

Σ(µ) =
1

4

(
λ2 + 16

)
RTR,

so, for ||Σ||a = ||Σ||b = det(Σ) and ||µ||2c = Σn
1=1|µi|2, we get, in the spherical case

RTR = σ2Id, the following Partial Order :

X1 ≺ X2 ⇔
(

1

4
λ2

2σ
2
2

)n
×
(

1

4
(λ2

2 + 16)σ2
2

)n
≤
(

1

4
λ2

1σ
2
1

)n
×
(

1

4
(λ2

1 + 16)σ2
1

)n
.

Remark 1.3.40. Again, in the strictly Strichartz case σ2 = 1, we have that the Stochastic

Order is given just by the scaling factor λ.
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Remark 1.3.41. In the case of the the a-Static Dispersion Index of the Maximal Family

of Gaussians IaM , the role of σ2 and λ2 seem interchangeable. This suggests a dimensional

reduction in the parameter space, but, when t 6= 0, σ2 and the parameter λ decouple

and start to play a slightly different role. This suggest again a way to distinguish between

Gaussian Distributions which come from the family F and Gaussians which do not, and so

to distinguish between Gaussians which are solutions of the Linear Schrödinger Equation,

and Gaussians which are not.

Remark 1.3.42. Using the definition of Entropy, we deduce that, for Gaussian Distribu-

tions, h(X) = 1
2 log(2πe)ndet(Σ). We see that, for our family F , the Entropy increases,

every time that we increase λ, σ2, t, but not when we increase x0 and v0. In particular,

the fact that the Entropy increases with t is in accordance with the Second Principle of

Thermodynamics.

Remark 1.3.43. It seems that, the construction of similar indexes, can be performed

in more general situations. In particular, we think that an index similar to IabcM can be

computed in every situation in which a family of distributions has the Variance-Covariance

Matrix and the Expected value which depend on common parameters.

1.4 Strichartz Estimates as an Optimization Problem

In this section, we rephrase the problem of finding the maximizer of the Strichartz Es-

timates as an optimization problem. We start with the Projection Method and then we

discuss the Newton Method. We refer to [19] for more details on these methods.

1.4.1 The Optimization Algorithm for the Projection Method

The scheme that we will use here is is an iterative ascent algorithm combined with a

projection approach. A detailed description of the method can be found in [7] and the

reference therein.

We concentrate in the case of spatial dimension n = 1 and critical exponent p = 6. The

cost functional is given by:

J(u0) := sup
u0 6=0,u0∈L2

x(Rn)

‖ei∆u0‖6L6
t,x(R×Rn).

Now, we need to compute the gradient of our cost functional J . We do not have any

Lagrange multiplier, since the constraint will be later imposed by projection. The Gatauex
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derivative of J(u0) can be computed as follows. We have

J(u0 + δh0) =

∫
Rn×R+

|eit∆(u0 + δh0)|6.

A trick here is to think about |u|2p as (uū)p. We get:

∂

∂δ
J(u0 + δh0) =

3

∫
Rn×R+

|eit∆(u0 + δh0)|4(2Re(ūh0) + 2δ|eit∆h0|2)

and so

J ′(u0) =
∂

∂δ
|δ=0J(u0 + δh0) = 6

∫
Rn×R+

|eit∆u0|4Re(ūh0).

The optimization of the functional J is constrained by the flow of the PDE, namely{
iut(t, x) + ∆u(t, x) = 0, x ∈ Rn, t ∈ R+

u(0, x) = u0(x).
(1.37)

and {
iht(t, x) + ∆h(t, x) = 0, x ∈ Rn, t ∈ R+

h(0, x) = h0(x).
(1.38)

We introduce the adjoint variable u∗ and integrate it against the equation for h. We get:

0 = Re

∫
Rn×R+

(iht + ∆h)ū∗ = Re

∫
Rn×R+

ihtū
∗ +Re

∫
Rn×R+

∆hū∗ =

Re i

∫
Rn

[h(+∞)ū∗(+∞)− h(0)ū∗(0)] +Re

∫
Rn×R+

(iu∗t + ∆u∗)h̄.

This gives us a suggestion for the adjoint equation and so we impose:{
iu∗t + ∆u∗ = |u|4u, x ∈ Rd, t ∈ R

u∗(+∞, x) = 0.
(1.39)

This gives us the following condition:

0 = −Re i
∫
Rn
h(0)ū∗(0) +Re

∫
Rn×R+

|u|4uh̄.
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Using this in the equation < J ′(u0, λ), h0 >=
∫
Rn×R+ |u|4uh̄, we obtain:

Re i

∫
Rn×R+

h0ū
∗(0) =< J ′(u0), h0 >

that can be rewritten as

< −iu∗(0), h0 >L2(Rn)=< J ′(u0), h >,

this must be true for every h0 ∈ L2(Rn) and so it implies that

−iu∗0 = J ′(u0).

The general strategy is to follow the algorithm described in the next few lines. For a given

set of values of the mass ‖u(t)‖L2(Rn) = M0

• Set n = 0 and define the tolerance ε.

• Set initial guess for control variable u0.

• Solve directly the linear Schrödinger Equation.

iut +
1

2
∆u = 0

for initial condition u(0, x) = u0(x) has as unique solution:

u(t, x) = t−n/2
∫
Rn
ei
|x−y|2

2t u0(y)dy.

• Solve the adjoint problem, which is{
iu∗t + ∆u∗ = |u|4u, x ∈ Rd, t ∈ R

limt→+∞ u
∗(t, x) = 0.

Note that this can be reduced to the quadratures, just by multiplying the equation

by the linear propagator e−it∆ and then integrate by parts, from t to +∞. Therefore,

we get:

u∗(t) =

∫ +∞

t
ei(t−s)∆|eis∆u0|4eis∆u0ds.

This can be seen as a condition on u0 too.

• Calculate the gradient in the proper Hilbert space H (be careful when it is not L2)
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gives

∇J(u0) = −iu∗(0).

• Calculate ascent direction using Polak-Ribiére formula p(n). Now, we have to mini-

mize our functional J over the manifold:

MM0 :=
{
u(t) ∈ L2(Rn) | ‖u(t)‖L2(Rn) = M0

}
.

Define

ψ(τ) :=
M0

‖u(n) + τp(n)‖L2(Rn)

(
u(n) + τp(n)

)
.

We update with

u(n+1) = ψ(τn), u(0) = u0.

u0 has to be chosen properly.

p(n) = ∇J (n) − βnp(n−1)

and

βn =

(
∇J (n),∇J (n) −∇J (n−1)

)
L2(Rn)

‖∇J (n−1)‖2
L2(Rn)

.

• Find the step size τn using arc minimization:

τn = arg max {J(ψ(τ))}

• Set φ(n+1) = ψ(τn).

• Evaluate

∆J =
J(u(n+1))− J(u(n))

J(u(n))
.

• Update n 7→ n+ 1.

• While ∆J > ε we keep going, otherwise we stop.

1.4.2 Optimization Algorithm with the Newton Method

An alternative way to set the optimization problem is by means of the Newton method.

For more details on the Newton method, we refer to [19].
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Consider the optimization problem

sup
u0 6=0,u0∈L2

x(Rn)

Ψ(u0) := sup
u0 6=0,u0∈L2

x(Rn)

‖u0‖6L6
t,x(R×Rn)

‖u0‖6L2
x(Rn)

= sup
u0 6=0,u0∈L2

x(Rn)

‖ u0

‖u0‖L2
x(Rn)

‖6L6
t,x(R×Rn)

= sup
u0 6=0,‖u0‖L2

x(Rn)
=M0

‖u0‖6L6
t,x(R×Rn)/M

6
0 .

Therefore, the maximization problem of Ψ is equivalent to the following Euler-Lagrange

problem:

J(u0, λ) :=
‖u0‖6L6

t,x(R×Rn)

M6
0

+ λ(‖u0‖6L2
x(Rn) −M

6
0 ).

The Gatauex derivative of J(u0, λ) is given by the following computation. We have

J(u0 + δh0, λ) =
1

M6
0

∫
Rn×R+

|eit∆(u0 + δh0)|6 + λ

[(∫
Rn
|u0 + δh0|2

)3

−M6
0

]
.

Therefore, we get:
∂

∂δ
J(u0 + δh0, λ) =

3M−6
0

∫
Rn×R+

|eit∆(u0 + δh0)|4(2Re(ūh0) + 2δ|eit∆h0|2)

+3λ(

∫
Rn
|u0 + δh0|2)2

∫
Rn

(2Re(ū0h0) + 2δ|h0|2)

and so

J ′(u0, λ) =
∂

∂δ
|δ=0J(u0 + δh0)

= 6M−6
0

∫
Rn×R+

|eit∆u0|4Re(ūh0) + 6λ

(∫
Rn
|u0|2

)2 ∫
Rn
Re(ū0h0).

Since also ∂
∂λJ(u0, λ) = 0, then ∫

Rn
|u0|2 = M2

0

and so

J ′(u0, λ) =
∂

∂δ
|δ=0J(u0 + δh0) = 6M−6

0

∫
Rn+1

|eit∆u0|4Re(ūh) + 6λM4
0

∫
Rn
Re(ū0h0).
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This is all under the constraint of the PDE:{
iut(t, x) + ∆u(t, x) = 0, x ∈ Rn, t ∈ R+

u(0, x) = u0(x).
(1.40)

and {
iht(t, x) + ∆h(t, x) = 0, x ∈ Rn, t ∈ R+

h(0, x) = h0(x).
(1.41)

Now, we introduce the adjoint variable u∗ and integrate it against the equation for h. We

get:

0 = Re

∫
Rn×R+

(iht + ∆h)ū∗ = Re

∫
Rn×R+

ihtū
∗ +Re

∫
Rn×R+

∆hū∗ =

Re i

∫
Rn

[h(+∞)ū∗(+∞)− h(0)ū∗(0)] +Re

∫
Rn×R+

(iu∗t + ∆u∗)h̄.

This gives us a suggestion for the adjoint equation and so we impose:{
iu∗t + ∆u∗ = |u|4u, x ∈ Rd, t ∈ R

limt→+∞ u
∗(t, x) = 0.

(1.42)

This gives us the following condition:

0 = −Re i
∫
Rn×R+

h(0)ū∗(0) +Re

∫
Rn×R+

|u|4uh̄.

Using this in the equation J ′(u0, λ) = 0, we obtain:

M−6
0 Re i

∫
Rn×R+

h0ū
∗(0) + λ

∫
Rn
Re(ū0h0) = 0

than can be rewritten as

< −iM−6
0 u∗0 + λu0, h0 >L2(Rn)= 0,

this must be true for every h0 ∈ L2(Rn) and so it implies that

−iM−6
0 u∗0 + λu0 = 0.

Note that λ = λ(M0).

Remark 1.4.1. The analysis about the optimization problems outlined in this subsection
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deserves further investigation and needs to be completed with the actual numerical com-

putation of the optimizer. At the moment we are writing the thesis, this is a work in

progress.

1.5 Concluding Remarks

In this chapter, we have discussed a characterization of the MVN distribution, by means of

the maximization of the Strichartz Estimates. Differently from the case of the characteri-

zation through the entropy functional maximization, the one through Strichartz Estimates

does not require the constraint of fixed variance. We computed the precise optimal con-

stant for the whole range of Strichartz admissible exponents, discussed the connection of

this problem to Restriction Theorems in Fourier analysis and gave some statistical prop-

erties of the family of Gaussian Distributions which maximize the Strichartz estimates. In

particular, we computed the Fisher Information matrix of the family, we gave an Index

of Dispersion and we proposed a Stochastic Ordering. We concluded this chapter pre-

senting an optimization algorithm to compute numerically the maximizers. This last part

deserves further development and it is object of current research. Furthermore, Strichartz

estimates are available for several dispersive PDEs and there might be characterizations

of other probability distributions based on some maximization procedure related to other

differential equations. This also deserves further consideration.
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Chapter 2

Characterization of Distributions

through ideas from Optimal

Transportation

In this chapter, we present some characterizations of probability distribution using some

ideas coming from Optimal Transportation. We also use some of the techniques to give

some estimation procedures for parameters of distributions with lack of regularity.

For the details of the theory of optimal transportation and an extended treatment of the

subject, we refer the interested reader to [120].

2.1 On 1
α-Characteristic Functions and Applications to

Asymptotic Statistical Inference

In this section, we give emphasis to a method to do statistical inference and to study

properties of random variables, whose probability density functions (pdfs) do not possess

good regularity, decay and integrability properties.

The main tool will be what we will call 1
α -Characteristic Function, a generalization of the

classical Characteristic Function that is basically a measurable transform of pdfs. In this

perspective and using this terminology, we will restate and prove theorems, such as the

Law of Large Numbers (LLN) and the Central Limit Theorem (CLT) that now, after this

measurable transform, apply to basically every distribution, upon the correct choice of a

free parameter α.
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We apply this theory to Hypothesis Testing and to the construction of Confidence Intervals

for location parameters. We connect the classical parameters of a distribution to their

related 1/α-counterparts, that we will call 1
α -Momenta.

We treat in detail the case of the Multivariate Cauchy Distribution for which we compute

explicitly all the 1
α -Expected Values and 1

α -Variances in dimension n = 1 and for which

we construct an approximate confidence interval for the location parameter µ, by means

of asymptotic theorems in the 1
α -context.

Among the other things and to illustrate the usefulness of this point of view, we prove

some new characterizations of the Poisson Distribution, the Uniform Discrete and the

Uniform Continuous Distribution.

2.1.1 Introduction and Motivation

One of the most important tool in probability and statistics is the Characteristic Function,

which is defined as follows.

Definition 2.1.1. Consider the Probability Space (Rn,B(Rn), ν). Here Rn is the Sample

Space, B(Rn) is the Borel σ-algebra and ν is a Probability Measure on B(Rn). Then, the

Characteristic Function of ν on B(Rn) is the function φν(t) : Rn → C defined as follows:

φν(t) :=

∫
Rn
eit·xν(dx).

Remark 2.1.2. In the following, we will mainly talk about Characteristic Functions of a

probability measure ν related to discrete (e.g. ν(dx) =
∑

k ckδxk) or absolutely continuous

(e.g. ν(dx) = f(x)dx) distributions.

For several reasons, this tool is fundamental in distribution theory and statistical

inference. For example, one can compute Momenta, whenever they exist, just by a simple

derivation procedure.

Definition 2.1.3. Suppose φX(t) is k times continuously differentiable on Rn. Then, we

can define the Moment of order k by the formula

E[Xk] := (−i)kφ(k)
X (0).
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Here Xk = Xk1
1 Xk2

2 . . . Xkn
n uses the multi-index notation with |k| = k1 +k2 + · · ·+kn and

0 ≤ ki ≤ |k| for every i = 1, . . . , n.

Thanks to the fact that the Characteristic Function characterizes the distribution and

thanks to the Lévy’s Continuity Theorem (see Section 2.1.5), several important theorems

can be proved by means of the Characteristic Function, like the Law of Large Numbers

and the Central Limit Theorem. Here are the precise statements of these theorems.

Theorem 2.1.4 (Weak Law of Large Numbers). Let X1, X2, . . . be iid random variables

with E[Xi] = µ and V ar[Xi] = σ2 < +∞. Define Xn := 1
nΣn

i=1Xi. Then, for every ε > 0,

lim
n→+∞

P (|Xn − µ| < ε) = 1,

namely Xn Converges in Probability to µ.

Theorem 2.1.5 (Central Limit Theorem). Let X1, X2, . . . be a sequence of iid random

variables with E[Xi] = µ and V ar[Xi] = σ2 < +∞. Define Xn := 1
nΣn

i=1Xi. Suppose

Gn(x) := PYn(Yn ≤ x) with Yn :=
√
n
(
Xn − µ

)
/σ. Then, for every −∞ < x < +∞,

lim
n→+∞

Gn(x) =

∫ x

−∞

1√
2π
e−

1
2
x2
dx,

namely
√
n(Xn − µ)/σ Converges in Distribution to a Standard Normal as n→ +∞:

√
n(Xn − µ)/σ →d N (0, 1), n→ +∞.

These theorems are building blocks of Statistical Inference, especially for what con-

cerns the Asymptotic Estimation of Parameters and for what concerns the determination

of Asymptotic Confidence Intervals and of Asymptotic Rejection Regions for Hypotheses

Testing.

A limitation of these theorems is that they do not apply to every distribution, because

not all distributions possess good regularity, decay and integrability properties in order to

admit at least one momentum with finite value.

The scope of this section is to extend these building blocks-theorems to distributions

which do not admit the traditional momenta and to use them to do statistical inference.

Therefore, we will describe and prove some theorems about something that we will call
1
α -Characteristic Function (see Section 2.1.2 below for the precise definition). This tool

allows us to obtain some weak versions of the Law of Large Numbers (LLN) and of the
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Central Limit Theorem (CLT) that can be applied to every distribution, both discrete and

continuous, upon the correct choice of a free parameter α (see Section 2.1.5 below for the

precise statements).

Remark 2.1.6. We underline here that the 1
α -Characteristic Function can be re-seen in

the context of measurable transforms between pdfs and that the versions of the LLN and

CLT, that we will state and prove from this point of view, are essentially well known. We

will give more details about this in Section 2.1.2.

Remark 2.1.7. We specify here that the 1
α -Characteristic Function reduces to the usual

Characteristic Function in the case α = 1 and so one can recover classical results in the

case α = 1.

Remark 2.1.8. The main use of the 1
α -Characteristic Function is intended to be for

distributions which do not fall in the hypotheses of classical theorems (and asymptotic

theorems).

We apply this theory to Hypothesis Testing and to the construction of Confidence

Intervals for location parameters. We relate the classical parameters of a distribution to

their 1/α-counterparts that we will call 1
α -Momenta.

We treat in detail the case of the Multivariate Cauchy Distribution for which we compute

explicitly all the 1
α -Expected Values and 1

α -Variances in dimension n = 1 and for which

we construct an approximate confidence interval for the location parameter µ, by means

of our asymptotic theorems in the 1
α -context.

Among the other things and to illustrate the properties of the 1
α -Characteristic Function,

we prove some new characterizations of the Poisson Distribution, the Uniform Discrete

and the Uniform Continuous Distribution.

The remaining part of the section is organized as follows. In Subsection 2.1.2, we define

the 1
α -Probability of an event E, the 1

α -Characteristic Function and the 1
α -Momentum

of order k. Moreover, we explain how our point of view has a simple interpretation

as measurable transform of pdfs. In Subsection 2.1.3, we compute the 1
α -Characteristic

Functions of some common distributions, like the Geometric Distribution, the Multivariate

Normal Distribution and the Exponential Distribution. In Subsection 2.1.4, we prove,

giving emphasis to our definitions, some Inequalities and Identities, like the Chebyshev

Inequality, a characterization of the Poisson Distribution and a characterization of both the
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Discrete and the Continuous Uniform Distributions, using the concept of 1
α−Probability.

In Subsection 2.1.5, we define the notions of Convergence in 1
α -Probability and Convergence

in 1
α -Distribution and then use Lévy’s Continuity Theorem to prove a generalized version

of the Law of Large Numbers and the Central Limit Theorem. In Subsection 2.1.6, we use

the results of Subsection 2.1.5 and Slutsky’s Theorem to construct Approximate Confidence

Intervals and Approximate Rejection Regions for Hypothesis Testing. In Subsection 2.1.7,

we discuss the case of the Multivariate Cauchy Distribution and do some inference on its

location parameter, using the theory of 1
α -Characteristic Functions.

Remark 2.1.9. The characterizations of the distributions are new, as their applications

in later chapters, while the asymptotic theorems that we use, state and prove, are just a

little variation of essentially well known results.

Remark 2.1.10. We believe that several other characterizations and theorems can be

proved by means of the 1
α -Characteristic Function, but we leave these for future studies.

2.1.2 Definition of 1
α
-Characteristic Functions

In this subsection, we fix some notation and we introduce the tool of 1
α -Characteristic

Functions. The 1
α -Characteristic Function is basically the Fourier Transform, but, differ-

ently from the Characteristic Function, the average is not taken with respect to the pdf,

but with respect to the 1
α -power of the pdf.

In the next paragraphs, we will always consider the Probability Space (Rn,B(Rn), ν), where

Rn is the Sample Space, B(Rn) is the Borel σ-algebra and ν is a Probability Measure on

B(Rn). We will often use the notation ν1/α(dx) with which we will mean ν1/α(dx) =

f(x)1/αdx with x ∈ Rn in the absolutely continuous case and ν1/α(dx) =
∑

k c
1/α
k δxk

with xk ∈ Rn, k ∈ N in the discrete case. When there will not be any problem of mis-

understanding, we will not specify with respect to which measure we are computing the

probability of an event.

We now define what we mean with 1
α -Probability.

Definition 2.1.11 ( 1
α -Probability of an Event E). Consider a random variable X with

probability measure ν(dx). We call 1
α -Probability of an Event E, the following quantity

P 1/α(X ∈ E) :=

∫
E ν

1/α(dx)∫
Rn ν

1/α(dx)
.
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With this definition, we can specify what we mean with 1
α -Momentum of order k.

Definition 2.1.12 ( 1
α -Momentum of order k). Consider a random variable X with prob-

ability measure ν(dx). We call 1
α -Momentum of order k, the following quantity

E1/α(Xk) :=

∫
E x

kν1/α(dx)∫
Rn ν

1/α(dx)
.

Here Xk := Xk1
1 Xk2

2 . . . Xkn
n and xk := xk1

1 x
k2
2 . . . xknn use the multi-index notation with

|k| = k1 + k2 + · · ·+ kn and 0 ≤ ki ≤ |k| for every i = 1, . . . , n.

Remark 2.1.13. These quantities are new characteristic values of each particular distri-

bution and characterize it, as much as classical momenta do.

We are ready to define the notion of 1
α -Characteristic Function.

Definition 2.1.14 ( 1
α -Characteristic Function). Consider a random variable X with prob-

ability measure ν(dx). Then, the 1
α -Characteristic Function of ν on B(Rn) is the function

φ
1
α
X(ξ) : Rn → C defined as follows:

φ
1
α
X(ξ) :=

∫
Rn e

−ix·ξν1/α(dx)∫
Rn ν

1/α(dx)
.

Proposition 2.1.15. Consider φ
1
α
X(ξ) the 1

α -Characteristic Function of a random vari-

able X Then, if φ
1
α
X(ξ) is k times continuously differentiable on R, we have that the 1

α -

Momentum of order k can be computed by the formula

E
1
α [Xk] := (−i)k(φ

1
α
X)(k)(0).

Proof. It is a direct and simple computation.

Remark 2.1.16. The concepts that we defined in this section can be interpreted also as

follows. Consider X a random variable. Then, we can define Xh, a new random variable,

in the following way:

P (Xh ∈ E) := E[1(X ∈ E)h(X)/c],

provided that h is a measurable transform and c ∈ (0,∞) is given by c := E[h(X)]. In our

case, h(t) is chosen to be h(t) = f1/α−1(t). This point of view is legitimate and simplifies

the treatment of the asymptotic theorems in later sections. We decided to keep the point of

view of the 1/α-Characteristic Function, because, in our opinion, it better explains what

the transform does to the pdf, namely a redistribution of its mass. Moreover, the 1/α-point
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of view connects more directly to the analysis of the Consensus Monte Carlo Algorithm

for Big Data introduced in [105], as we will explain in detail in Section 2.3.

2.1.3 The 1
α
-Characteristic Functions of some common distributions

In this subsection, we compute the 1
α -Characteristic Function of some common distribu-

tions. In particular we compute the 1
α -Characteristic Functions of the Geometric Distri-

bution, the Multivariate Normal Distribution and the Exponential Distribution.

Remark 2.1.17. We note first that for some common distributions, like the Binomial, the

Poisson, the Negative Binomial and all the distributions whose pdf contains some factorials

(so mainly distributions which, in some way, involve some counting), the 1
α -Characteristic

Function is not available in explicit form. Nevertheless, for these distributions it is already

possible to construct all the Momenta that you need and so one does not really need the

explicit form of the 1
α -Characteristic Function.

The main attention is then posed on distributions for which we can already talk about

the usual Momenta and we will leave for a later section the discussion on the Cauchy

Distribution, that does not admit any Momenta.

• The Geometric Distribution f(k; p) = (1 − p)kp for k = 0, 1, 2, . . . and 0 < p < 1.

The 1
α -Characteristic Function can be computed in the following way.

φ
1
α
X =

NUM

DEN

and so

NUM = Σ+∞
k=0e

−ikξ(1− p)k/αp1/α.

Now take q = (1− p)1/α and so p1/α = (1− qα)1/α, therefore

NUM = (1− qα)1/αΣ+∞
k=0(e−ikξq)k.

Now, since 0 < p < 1, also 0 < q < 1 and therefore (e−ikξq)k is the general term of

an absolutely convergent series. Then

NUM = (1− qα)1/α 1

1− e−iξq
.

To obtain the normalizing constant, one needs to substitute, ξ = 0 into the previous

formula and so get
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φ1/α(ξ) = NUM/DEN =
1− (1− p)1/α

1− (1− p)
1
α e−iξ

• The Multivariate Normal Distribution The pdf of the Multivariate Normal Distri-

bution can be written in the following way:

fx(x1, . . . , xn) =
1√

(2π)n|Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ))

)
,

where x ∈ Rn, µ ∈ Rn and |Σ| is the determinant of Σ, which is a positive definite

symmetric (n × n)-matrix. Again, the 1
α -Characteristic Function can be computed

in the following way:

φ
1
α
X =

NUM

DEN

and so

DEN =

∫
Rn

(
1√

(2π)n|Σ|

)1/α

exp

(
− 1

2α
(x− µ)TΣ−1(x− µ)

)
dx

=
αn/2|Σ|1/2−1/2α

(2π)n/2α

∫
Rn
e−

1
2
|y|2dy = αn/2|Σ|1/2−1/2α(2π)n/2−n/2α.

by the change of variables y = α−1/2Σ−1/2(x− µ).

NUM =

∫
Rn
e−iξ·x

(
1√

(2π)n|Σ|

)1/α

exp

(
− 1

2α
(x− µ)TΣ−1(x− µ)

)
dx

= αn/2|Σ|1/2−1/2α(2π)−n/2αe−iµ·ξ
∫
Rn
e−

1
2
|y|2−iα1/2Σ1/2y·ξdy

= αn/2|Σ|1/2−1/2α(2π)−n/2αe−iµ·ξ−
1
2
αξTΣξ

×
∫
Rn
e−

1
2(|y|2−2iα1/2Σ1/2y·ξ−αξTΣξ)dy

= αn/2|Σ|1/2−1/2α(2π)−n/2αe−iµ·ξ−
1
2
αξTΣξ

∫
Rn
e−

1
2
|z|2dz

= αn/2|Σ|1/2−1/2α(2π)n/2−n/2αe−iµ·ξ−
1
2
αξTΣξ
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by the change of variables y = α−1/2Σ−1/2(x−µ) and y = z−iα1/2Σ1/2ξ. Therefore:

φ1/α(ξ) = NUM/DEN = e−iµ·ξ−
1
2
αξTΣξ.

• The Exponential Distribution f(x;λ) = λe−λx for x > 0

Similarly as before, the 1
α -Characteristic Function can be computed in the following

way:

φ
1
α
X =

NUM

DEN

and so

DEN =

∫ +∞

0
λ1/αe−xλ/αdx = λ1/α−1α

∫ +∞

0
e−ydy = λ1/α−1α, (2.1)

by the change of variable y = xλ/α.

NUM =

∫ +∞

0
λ1/αe−ixξ−xλ/αdx =

λ1/α

λ/α+ iξ

∫ +∞

0
e−ydy =

λ1/α

λ/α+ iξ
(2.2)

by the change of variable y = xλ/α+ ixξ. So the 1
α -Characteristic Function is

φ1/α(ξ) = NUM/DEN =
α−1λ1/α+1−1/α

λ/α+ iξ
=

λ

λ+ iαξ
. (2.3)

Remark 2.1.18. We notice that, in all the above cases, we recover the usual Charac-

teristic Function if we choose α = 1 and this is a general fact and very easy to prove.

Also, we notice that the Gaussian is a fixed point of the 1
α -Characteristic Function (up to

constants) as it is for the usual Characteristic Function.

Remark 2.1.19. The P
1
α (X = x) of discrete and continuous distributions does not nec-

essarily coincide with P (X = x). We refer to Section 2.1.4, for a characterization of

distributions for which this fact does occur.

2.1.4 Identities and Inequalities

In this subsection, we prove some identities and inequalities, which will be useful for

the next section. In particular, we prove a Chebyshev Inequality, a characterization of

the Poisson Distribution and a characterization of both the Discrete and the Continuous
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Uniform Distributions, using the concept of 1
α−Probability. Some of these results are of

independent interest and serve also for the sake of illustration of the theory.

Remark 2.1.20. A lot of other identities and inequalities can be proved in a similar way

to the case α = 1. We refer to [25] for a more complete set of references and type of

inequalities that one can try to reprove in this context. We plan to discuss them in a

future work.

We start with the Chebyshev Inequality.

Theorem 2.1.21 (Chebyshev Inequality). Let X be a random variable and g(x) ≥ 0.

Then, for any r > 0, the following inequality holds:

P
1
α (g(X) ≥ r) ≤ E

1
α [g(X)]

r
. (2.4)

Proof. To fix the ideas, we prove the theorem in the continuous case. The discrete one

follows similarly. We just need to perform a series of inequalities. Let c−1
α :=

∫ +∞
−∞ f(x)

1
αdx

be the normalizing constant.

E
1
α [g(X)] = cα

∫ +∞

−∞
g(x)f(x)

1
αdx ≥ cα

∫
{x:g(x)≥r}

g(x)f(x)
1
αdx (2.5)

≥ cα
∫
{x:g(x)≥r}

rf(x)
1
αdx = rP

1
α (X ∈ {x : g(x) ≥ r}) = rP

1
α (g(X) ≥ r) .(2.6)

This concludes the proof of the theorem.

Remark 2.1.22. The proof does not require the probability context (in fact cα does not

play any role), so the inequality works in the more general setting of measure theory and

can be in fact seen as the classical Chebyshev Inequality applied to the random variable

Xh (See Remark 2.1.16). It can be proved that Chebyshev Inequality is a conservative

inequality, namely it is rarely attained as in the case α = 1. For the case α = 1 we refer

to [55].

Example 2.1.23. We consider the case r = t2 with t > 0 and g(x) = (x − µα)2/σ2
α

where µα := E
1
α [X] and σ2

α := V ar
1
α [X] = E

1
α [X2] − E

1
α [X]2. Plugging this inside the

Chebyshev Inequality, we obtain:

P
1
α
(
(X − µα)2/σ2

α ≥ t2
)
≤ E

1
α [(X − µα)2/σ2

α]

t2
=

1

t2
. (2.7)
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This can be rewritten in the following two ways:

P
1
α (|X − µα| ≥ σαt) ≤

1

t2
(2.8)

or

P
1
α (|X − µα| ≤ σαt) ≥ 1− 1

t2
, (2.9)

which is a control on the 1
α -Probability tails.

Remark 2.1.24. The example would have not worked if instead of using the µα and σα

we would have used the usual µ and σ.

We pass now to a characterization of the Poisson Distribution.

Proposition 2.1.25 (Poisson’s Identity). A random variable X ∼ Poiss(λ), namely its

pdf is f(x;λ) = e−λλx

x! , x ∈ N if and only if

P
1
α (X = x+ 1) =

(
λ

x+ 1

) 1
α

P
1
α (X = x),

for some α > 0.

Proof. First, we suppose X ∼ Poiss(λ). Then, if we call the normalizing constant

cα := Σ+∞
x=1f(x;λ)1/α,

we have

P
1
α (X = x+ 1) = cα

e−λ/αλ(x+1)/α

(x+ 1)!1/α
= cα

e−λ/αλ1/α

(x+ 1)1/α

λx/α

(x!)1/α
=

(
λ

x+ 1

) 1
α

P
1
α (X = x).

On the other side, if

P
1
α (X = x+ 1) =

(
λ

x+ 1

) 1
α

P
1
α (X = x),

then

P (X = x+ 1) =

(
λ

x+ 1

)
P (X = x),
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because P
1
α (X = x) = cαP (X = x)

1
α , for every x ∈ N. Now, for every x ∈ N, we define

px := P (X = x)

and so we have:

px+1/px =
λ

x+ 1
,

which by recursion becomes

px/p0 =
λx

x!
.

Now, we use the normalizing condition to get p0:

1 = Σ+∞
x=0p0

λx

x!
= p0Σ+∞

x=0

λx

x!
= p0e

λ

and so p0 = e−λ. Therefore,

f(x;λ) = P (X = x) =
e−λλx

x!
,

for every x ∈ N and so X ∼ Poiss(λ). This concludes the proof of the theorem.

Here we give a characterization of the Discrete Uniform Distribution.

Theorem 2.1.26 (Characterization of the Discrete Uniform Distribution). For every

N ∈ N, the following equivalence is true. A random variable X follows the Discrete

Uniform Distribution X ∼ Uniform(1, N) (f(j,N) = 1/N for every j = 1, . . . , N) if and

only if the following condition holds

P
1
α (X = j) = P (X = j)

for every j = 1, . . . , N .

Proof. First of all, we define pj := P (X = j) so that P
1
α (X = j) =

p
1/α
j

ΣNi=1p
1/α
i

. Therefore,

the condition P
1
α (X = j) = P (X = j) for everyj = 1, . . . , N is equivalent to

p
1/α
j

Σn
i=1p

1/α
i

= pj

for every j = 1, . . . , N . One direction is trivial to prove, since you can just plug in this

last formula p1 = · · · = pN = 1/N and the identity is satisfied. Now, we suppose that the
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identity is satisfied, namely that

P
1
α (X = j) = P (X = j)

for every j = 1, . . . , N and so that
p

1/α
j

ΣNi=1p
1/α
i

= pj for every j = 1, . . . , N . Since ΣN
i=1pi = 1,

at least one of the pi’s is not zero. We take j 6= k with pk 6= 0 and we take the ratio side

by side of the previous equality, so that we have

p
1/α
j

p
1/α
k

=

p
1/α
j

ΣNi=1p
1/α
i

p
1/α
k

ΣNi=1p
1/α
i

=
pj
pk

for every j = 1, . . . , N and k = 1, . . . , N but j 6= k. So, since pk 6= 0, and for pj 6= 0, we

have
p

1/α−1
j

p
1/α−1
k

= 1 and hence pj = pk for every j, k such that pj 6= 0. So, p1 = · · · = pN = 1
N

where N is the number of indexes j such that pj 6= 0. This proves the theorem.

Here we give a characterization of the Continuous Uniform Distribution.

Theorem 2.1.27 (Characterization of the Continuous Uniform Distribution). Suppose

f(t) is a pdf such that F (x) =
∫ x

0 f(t)dt is differentiable in x. A random variable X with

pdf f(x) follows the Continuous Uniform Distribution if and only if P
1
α (X ∈ E) = P (X ∈

E), for every E ⊂ Rn measurable.

Proof. If X ∼ U(a, a + 1) then its pdf is f(x) = 1 for a ≤ x ≤ a + 1 and 0 otherwise.

Therefore f(x)
1
α = 1 for a ≤ x ≤ a+ 1 and 0 otherwise. Hence, the two pdfs coincide and

so P
1
α (X ∈ E) = P (X ∈ E). Similarly if instead of (a, a+ 1) we consider a more general

set. Now, suppose that P
1
α (X ∈ E) = P (X ∈ E) is true for every E ⊂ Rn measurable, so

it is true in particular for E = [c, b]. Therefore,∫ b
c f(x)

1
αdx∫

R f(x)
1
αdx

=

∫ b

c
f(x)dx.

If we take c = 0 and b = x, this implies that

F (x) =

∫ x
0 f(t)

1
αdt∫

R f(x)
1
αdx

=

∫ x

0
f(t)dt = G(x)

and so by taking the derivative in x (which is allowed by Lebesgue Differentiation Theo-
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rem),

F ′(x) =
f(x)

1
α∫

R f(x)
1
αdx

= f(x) = G′(x).

This implies that f(x) 6= 0 if and only if f(x) = cα :=
(∫

R f(x)
1
αdx

) α
α−1

, and so that

X ∼ U(I(cα)). This completes the proof of the theorem.

Remark 2.1.28. Both these theorems have a simple adaptation to the multivariate case.

Moreover, other theorems can be extended to the 1
α -case. We refer to [25] pages 121-127

and 187-192 for a set of Identities and Inequalities that can be reproved in the 1
α -context.

We leave this for a future work.

2.1.5 Characteristic Functions and Weak Convergence

In this subsection, we will discuss the interplay between the concepts of 1
α -Characteristic

Function and Weak Convergence. This will allow us to prove the 1
α -counterpart of some

very famous and important theorems, like the Law of Large Numbers and the Central

Limit Theorem. Again, this theorems are just small adaptations of well known results

(See Remark 2.1.16).

We first recall Lévy’s Continuity Theorem, which will turn out to be useful in the following.

Theorem 2.1.29 (Lévy’s Continuity Theorem). Let (νn)n∈N be a sequence of probability

measures on Rn, with Characteristic Functions (φn)n∈N. If νn →w ν∞, then φn converges

pointwise to φ∞, the Characteristic Function of ν∞. Conversely if φn converges pointwise

to a function φ∞ which is continuous at 0, then φ∞ is the Characteristic Function of a

probability measure ν∞ and νn →w ν∞.

Proof. See for example [16].

2.1.5.1 The Law of Large Numbers and the Central Limit Theorem

Before stating and proving a generalization of the Law of Large Numbers, we have to

introduce the notion of Convergence in 1/α-Probability.

Definition 2.1.30 (Convergence in 1/α-Probability). We say that a sequence of random

variables X1, X2, . . . Converges in 1/α-Probability to a random variable X if, for every

ε > 0, we have

lim
n→+∞

P 1/α(|Xn −X| < ε) = 1.

We are now ready to prove a generalization of the Law of Large Numbers.
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Theorem 2.1.31 (Weak Law of Large Numbers). Let X1, X2, . . . be a sequence of iid

random variables with E
1
α [Xi] = µα and V ar

1
α [Xi] = σ2

α < +∞ for every i ∈ N and for a

certain α ∈ R. Define Xn := 1
nΣn

i=1Xi. Then, for every ε > 0,

lim
n→+∞

P 1/α(|Xn − µα| < ε) = 1,

namely Xn converges in 1/α-Probability to µα.

Proof. It is a straightforward application of the Chebyshev Inequality. For every ε > 0, we

compute

P 1/α(|Xn − µα| ≥ ε) = P 1/α(|Xn − µα|2 ≥ ε2) ≤
E1/α

[
(Xn − µα)2

]
ε2

=
V ar

1
α [Xn]

ε2
=
σ2
α

ε2
.

Therefore

P 1/α(|Xn − µα| < ε) = 1− P 1/α(|Xn − µα| ≥ ε) ≥ 1− σ2
α

ε2
→ 1,

as n→ +∞ and so the theorem.

Before stating and proving the Central Limit Theorem, we have to introduce the notion

of Convergence in 1/α-Distribution.

Definition 2.1.32 (Convergence in 1/α-Distribution). We say that a sequence of random

variables X1, X2, . . . Converges in 1/α-Distribution to a random variable X if

lim
n→+∞

F
1
α
Xn

= F
1
α
X (x)

at all points x of continuity of F
1
α
X (x). Here F

1
α
Y (y) := P

1/α
Y (Y ≤ y).

We are now ready to prove a generalization of the Central Limit Theorem.

Theorem 2.1.33 (Central Limit Theorem). Let X1, X2, . . . be a sequence of iid random

variables with E
1
α [Xi] = µα and V ar

1
α [Xi] = σ2

α < +∞ for a certain α ∈ R. Suppose

also that, for that α ∈ R, the third moment exists. Define Xn := 1
nΣn

i=1Xi. Suppose

G
1/α
n (x) := P

1/α
Yn

(Yn ≤ x) with Yn :=
√
n
(
Xn − µα

)
/σα. Then, for every −∞ < x < +∞,

lim
n→+∞

G1/α
n (x) =

∫ x

−∞

1√
2π
e−

1
2
x2
dx,

namely
√
n
(
Xn − µα

)
/σα → N (0, 1)
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in 1
α -Distribution.

Proof. Consider the 1
α -Characteristic Function of Yn :=

√
n
(
Xn − µα

)
/σα, namely

φ
1
α
Yn

(ξ) = E
1
α [eiξx].

Moreover, consider the function g(ξ) := log

(
φ

1
α
Yn

(ξ)

)
and expand it in ξ close to ξ = 0,

so

g(ξ) = g(0) + g′(0)ξ +
1

2
g′′(0)ξ2 + o(ξ2).

We now want to compute the coefficients g(0), g′(0) and g′′(0). First of all, g(0) =

log

(
φ

1
α
Yn

(0)

)
= log(1) = 0. Then g′(ξ) =

d
dξ
φ

1
α
Yn

(ξ)

φ
1
α
Yn

(ξ)
= iE

1
α
Yn

[Yn] = 0 and then g′′(ξ) =

φ
1
α
Yn

(ξ) d
2

dξ2
φ

1
α
Yn

(ξ)−[ d
dξ
φ

1
α
Yn

(ξ)]2

[φ
1
α
Yn

(ξ)]2
and so g′′(0) = −E

1
α [X2] + E

1
α [X]2 = −V ar

1
α [Yn] = −1. This

implies that

g(ξ) = −1

2
g′′(0)ξ2 + o(ξ2)

in a neighborhood of ξ = 0. Therefore,

φ
1
α
Yn

(ξ) = φ
1
α
X1

(ξ/
√
n) = e−

1
2
ξ2+o(ξ3/n3/2).

So, pointwise for fixed ξ (and uniformly for a closed neighborhood of the origin), we have

that

φ
1
α
Yn

(ξ)→ e−
1
2
ξ2
, as n→ +∞.

By Lévy’s Continuity Theorem, we deduce that

√
n
(
Xn − µα

)
/σα → N (0, 1)

in 1
α -Distribution. This completes the proof.

Remark 2.1.34. The theorems and notions of convergence presented above, reduce to well

known results if applied to the sequence Xh
n , where Xh has been defined in Remark 2.1.16.

Remark 2.1.35. The request of existence of the third moment can be removed, but with

the expense of complicating the proof a bit and with the benefit of improving the range of

α. We decided to not pursue this direction here.
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2.1.6 Some inference: Confidence Intervals and Hypothesis Testing

In this subsection, we use the generalization of the Law of Large Numbers and the Central

Limit Theorem presented above, to give, asymptotically, some estimates about µα and σ2
α.

We will see, in the following section, that this will indeed permit us to do some inference on

classical parameters of distributions for which the classical Law of Large Numbers and the

classical Central Limit Theorem do not apply. We start by discussing Confidence Intervals

for µα with σ2
α known or unknown, to pass after, by means of the Inversion Principle, to

Hypothesis Testing.

2.1.6.1 Confidence Interval for µα with σ2
α known

By the Central Limit Theorem, we have that

Yn :=
√
n(Xn − µα)/σα →d N (0, 1)

in 1
α -Distribution. Therefore, for n sufficiently big, one can consider the approximation

P
1
α

(
Xn − k

σα√
n
≤ µα ≤ Xn + k

σα√
n

)
= P

1
α
(∣∣√n(Xn − µα)/σα

∣∣ ≤ k) ' Φ(k)− Φ(−k)

with Φ(·) the cdf of the Standard Normal Distribution N (0, 1), and then impose

1− γ = Φ(k)− Φ(−k)

to get

kγ = Φ−1
(

1− γ

2

)
.

Therefore, we say that

Xn − kγ
σα√
n
≤ µα ≤ Xn + kγ

σα√
n

is an Asymptotic Confidence Interval for µα at level 1− γ with known 1
α -Variance, equal

to σ2
α.

Remark 2.1.36. We underline here that, since the type of convergence depends on α,

also the precision of the approximation

P
1
α
(∣∣√n(Xn − µα)/σα

∣∣ ≤ k) ' Φ(k)− Φ(−k)

varies with α. When needed, it is then possible to optimize in α, to get better estimates.
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2.1.6.2 Confidence Interval for µα with σ2
α unknown

Suppose now that σ2
α is unknown. In this case, we cannot use the type of interval that we

used before, so we substitute σ2
α with S2

n, the Sample Variance

S2
n :=

1

n− 1
Σn
j=1

(
Xj −Xn

)2
.

Therefore, we look for an Asymptotic Confidence Interval for µα at level 1− γ of the form

Xn − k
Sn√
n
≤ µα ≤ Xn + k

Sn√
n
.

We basically need to find again the value of k such that

P
1
α

(
Xn − k

Sn√
n
≤ µα ≤ Xn + k

Sn√
n

)
→ 1− γ,

when n→ +∞. Consider now the random variable

Zn :=
√
n
(
Xn − µα

)
/Sn.

The distribution of this random variable is not known a-priori, but we can use Slutsky’s

Theorem.

Theorem 2.1.37 (Slutsky’s Theorem). Let X1, X2, . . . and Y1, Y2, . . . be two sequence of

random variables such that

Xn → X

in 1/α-Distribution and

Yn → c

in 1/α-Probability, as n→ +∞. Then

XnYn → cX

in 1/α-Distribution, as n→ +∞.

Proof. The proof is the same as in the usual Slutsky’s Theorem, but replacing the usual

Convergence in Probability and Convergence in Distribution with the Convergence in 1/α-

Probability and Convergence in 1/α-Distribution.

Now, Yn converges in 1
α -Distribution to Y ∼ N (0, 1) by the Central Limit Theorem,

while S2
n converges in 1

α -Probability to 1 (since Xn converges in 1
α -Probability to µα and

g(z) = z2 is a continuous function). Now,
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Zn =
√
n(Xn − µα)/Sn =

Yn√
S2
n
σ2
α

→ N (0, 1)

in 1
α -Distribution. Therefore, proceeding as before, we have that

P
1
α

(
Xn − k

Sn√
n
≤ µα ≤ Xn + k

Sn√
n

)
= P

1
α
(∣∣√n (Xn − µα

)
/Sn

∣∣ ≤ k) ' Φ(k)− Φ(−k).

If we impose again that

1− γ = Φ(k)− Φ(−k)

we obtain that

kγ = Φ−1
(

1− γ

2

)
and so that

Xn − kγ
Sn√
n
≤ µα ≤ Xn + kγ

Sn√
n

is an Asymptotic Confidence Interval for µα at level 1 − γ when the true variance σα is

unknown.

Remark 2.1.38. Also here the precision of the approximation

P
1
α
(∣∣√n(Xn − µα)/Sn

∣∣ ≤ k) ' Φ(k)− Φ(−k)

depends on α and, when needed, it is then possible to optimize in α, to get better estimates.

2.1.6.3 Rejection Regions and Hypothesis Testing

By means of the Inversion Principle (see for example Theorem 9.2.2 in [25]), we can

construct Rejection Regions for Hypothesis Testing starting from Confidence Intervals. In

particular, if we want to test the following hypothesis:

H0 : µα = µ0
α vs Ha : µα 6= µ0

α,

we can use the results of the previous section to obtain that, if the variance σ2
α is known,

the set

{
x :
∣∣√n(xn − µα)/σα

∣∣ > kγ
}

is the Rejection Region for the Most powerful test at level γ; while, if the variance σ2
α is
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unknown, {
x :
∣∣√n(xn − µα)/Sn

∣∣ > kγ
}

is the Rejection Region for the Most powerful test at level γ.

2.1.7 The case of the Cauchy Distribution

In this subsection, we discuss an application of the concept of 1
α−Characteristic Function

to the Cauchy Distribution. Our aim here is to illustrate the use of the 1
α−Characteristic

Function to do inference for a distribution which do not admit any finite Momenta for

α = 1. We first construct 1
α -Momenta for this distribution and then use the asymptotic re-

sults of the previous sections to construct Asymptotic Confidence Interval for the location

parameter of the Cauchy Family.

2.1.7.1 On the 1
α-Momenta of order k and the Cauchy Distribution

Now, we concentrate on the case of the Multivariate Cauchy Distribution.

Definition 2.1.39. We say that a random variable X is distributed as a Multivariate

Cauchy Distribution if and only if its pdf takes the following form

f(x;µ,Σ, n) =
Γ
(

1+n
2

)
Γ
(

1
2

)
π
n
2 |Σ|

1
2 [1 + (x− µ)TΣ−1(x− µ)]

1+n
2

.

Here x ∈ Rn, µ ∈ Rn, while Σ is a positive definite n× n symmetric matrix and n ≥ 1 is

the dimension.

Since this is a location scale family, we can assume µ = 0 and Σ = Idn×n. Otherwise,

we can just apply the affine transformation Y := Σ1/2(X−µ) to reduce to that case. Now,

we want to compute for which α > 0 and k, n = 1, 2, . . . we can define 1
α Moment of order

k, E
1
α [Xk]. Namely, we want to find for which values of n, k and α, we have that the

quantity
∣∣∣E 1

α [Xk]
∣∣∣ is finite. So, we do the following estimate:

∣∣∣E 1
α [Xk]

∣∣∣ ≤ C ∫
Rn

|x|k

(1 + |x|2)
1+n
2α

dx ≤ C
∫ +∞

1

ρk+n−1

ρ
n+1
α

dρ ≤ C
∫ +∞

1

1

ρ
n+1
α
−n−k+1

.

In this series of inequalities, the constant C can vary from step to step, but it remains

independent of ρ. We have that∣∣∣E 1
α [Xk]

∣∣∣ < +∞⇔ n+ 1

α
− n− k + 1 > 1,
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namely, if and only if the order of the momentum k satisfies the following condition:

k <
n+ 1

α
− n.

In the case n = k = 1, we need 0 < α < 1 and in general we need 0 < α < n+1
n+k to have

that the 1
α -Moment of order k, E

1
α [Xk], is well defined.

Remark 2.1.40. We can see that, since the number of moments k is constrained by the

inequality k < n+1
α − n, in the classical case α = 1, the Cauchy Family of Distributions

does not admit any finite Momentum.

We can actually compute in closed form, the values of the first and second moments

of the Cauchy Distribution for any α and n for which those moments exist. In dimension

n = 1, to give sense to µα, we need 0 < α < 1, while to give sense to σ2
α, we need

0 < α < 2/3. For simplicity, we will stay with dimension n = 1 and consider just the case

where α = 1/p with p positive integer.

We start by computing the normalizing constant and we get∫ +∞

−∞

1

πp
1

(1 + x2)p
dx = 2πiR(p)

with

R(p) :=
1

πp
(2i)−2p+1(−1)p−1(2p− 2)!

[(p− 1)!]2
.

This is done using the Theorem of Residues (see for example [104]). Then µ2k+1
p = 0 for

every k such that k < (n+1)p−n, because the integral of any odd function on a symmetric

interval, whenever it exists, must be zero.

Remark 2.1.41. We underline that, using the scale location invariance of the family, if

X is a standard univariate Cauchy, then Y := µ+σX is a Cauchy with location parameter

µ and scale parameter σ. In this way, one can easily see that, for the random variable Y ,

µ1
p = µ. In general, whenever it exists, µα = µ.

Now, we have that ∫ +∞

−∞

1

πp
x2

(1 + x2)p
dx = 2πiQ(p)

with

Q(p) :=
1

πp
(2i)−2p+1

[(p− 1)!]2

p−1∑
k=0

(p− 1)!

k!(p− 1− k)!

× [−δ(k = 0) + 2iδ(k = 1) + 2δ(k = 2)] (−1)p−1−k(2i)k(2p− k − 2)!.
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Also this is done using the Theorem of Residues, but also by means of the differential

identity
dn

dxn
(f(x)g(x))

=

n∑
k=0

n!

k!(n− k)!
[−δ(k = 0) + 2iδ(k = 1) + 2δ(k = 2)] (−1)n−k

(p+ n− k − 1)!

(p− 1)!
,

with n = p− 1. Therefore, collecting all the previous computations, we obtain

V arp[X] =
2πiR(p)

2πiQ(p)

=
Σp−1
k=0

(p−1)!
k!(p−1−k)! [−δ(k = 0) + 2iδ(k = 1) + 2δ(k = 2)] (−1)k(2i)k(2p− k − 2)!

(2p− 2)!
.

Remark 2.1.42. We recall here that, if c is a Pole of Order n, then the Residue of f

around z = c can be found by the formula:

Res(f, c) =
1

(n− 1)!
lim
z→c

dn−1

dzn−1
((z − c)nf(z)) .

2.1.7.2 Asymptotic Results

Consider again the case n = 1 and α = 1/2 (so p = 2). As explained in the previous

section, we can compute the 1
α -Expected Value that is µα = 0, whenever it exists. As

explained before the scale parameter µ is zero too: µ = µα = 0. Moreover, V ar1/α[X] =

V arp[X] = V ar2[X] = 1 (just by an explicit computation of the integrals or using the

formula of the previous subsection). Therefore, we can apply the Central Limit Theorem

to get that

Xn

√
n→ N (0, 1)

in 2−Distribution. This enables us to do some inference as presented in Section 2.1.6

and construct, for this distribution, both Confidence Intervals for µ = µα and Rejection

Regions for Hypothesis Testing for µ = µα again as presented in Section 2.1.6. Again, by

using the scale-location invariance of the family, if X is a Standard Cauchy Distribution,

then Y := µ+σX is a Cauchy Distribution with location parameter µ and scale parameter

σ. In this way, we can easily see that, for the random variable Y , µα = µ1
p = µ and so the

confidence interval for µ1
p becomes an Asymptotic Confidence Interval for µ at level 1− γ

of the form:

Xn − kγ
1√
n
≤ µ ≤ Xn + kγ

1√
n
.
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Similar results can be deduced in the case of unknown variance and for different values of

α.

Remark 2.1.43. In [89] the author employs a different and elegant method to estimate the

parameters of the Univariate Cauchy Distribution. He takes advantage of the equivariance

under Möbius Transformations of the Cauchy Family, but he explains that, due to this fact,

his strategy unlikely will extend to other family of distributions. Differently from [89], our

method does not rely on any particular algebraic/geometric structure of a single family

(like the equivariance mentioned above) and so it works for any family of distribution.

Moreover, our method work in any dimensions and not just in the univariate case as

for [89].

Remark 2.1.44. We discussed here several results about 1
α -Characteristic Functions and

their application, but we believe that lots of other results can be proved and that this tool

can be very helpful in a very general framework.

2.2 The Monge-Ampère Equation in Transformation The-

ory and an Application to 1
α-Probabilities

In this section, we give an application of the theory of Monge-Ampère Equations to Trans-

formation Theory in Probability. The motivation behind this section is to show that the

transformation from a pdf to its 1
α -counterpart is transferred also at the level of the ran-

dom variables.

We treat explicitly the cases of the Multivariate Normal Distribution, Multivariate Expo-

nential Distribution and Cauchy Distribution. Moreover, we prove some rigidity theorems

on the possible transformations which send a pdf to its 1
α -counterpart. In the general

case, it is not possible to construct explicitly the transformation between the random vari-

ables, despite it is always possible to reduce to quadrature the transformation between

the pdfs. We conclude the section by setting our theorems in the context of the Monge-

Ampère equations and the Optimal Transportation theory and by giving some numerics

to illustrate the motion of mass, while transforming a pdf to its 1
α -counterpart.

2.2.1 Introduction and Motivation

An important issue in probability and statistics is the one of Transformation Theory. The

main problems addressed by Transformation Theory are mainly two:
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• (Direct Problem) Suppose you have a random variable X with its pdf fX(x) and

another random variable Y which explicitly depends on X through a transformation

t. Then you can write Y = t(X). What is the pdf fY (y) of the random variable Y ?

How does it depend on the transformation t?

• (Inverse Problem) Suppose now that you have a rule which assigns to the pdf fX(x)

of X another pdf fY (y). Is there a transformation t, such that Y = t(X) is a random

variable with pdf fY (y)? Can you construct explicitly this transformation t?

X r.v. Y = t(X) r.v.

fX(x) pdf of X fY (y) pdf of Y

t

f·(·)

t]

f·(·)

The Direct Problem is very well understood and in fact we have the very general and

very well known theorem (see for example [25]).

Theorem 2.2.1. [Change of Variables Formula] Let X be a random variable with pdf

fX(x) and let Y = t(X). Here t is an invertible transformation from the range of X to

the range of Y . Define the sets X and Y in the following way:

X := {x : fX(x) > 0} and Y := {y : y = t(x) for some x in X}.

Suppose that fX(x) is continuous on X and that t−1(y) has continuous derivatives on Y.

Then the pdf of Y is given by the following formula:

fY (y) = fX(t−1(y))|det(J(t−1(y))| y ∈ Y (2.10)

and 0 otherwise. Here Jt−1 is the Jacobian Matrix of the transformation t−1, inverse of

t.

The Inverse Problem is much more complicated and leads to a Partial Differential

Equation very hard to solve, because it is Fully Nonlinear. This equation goes under the
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name of Monge-Ampère Equation and we can easily deduce it as follows. As hypothesis

of the Inverse Problem, we know both fX(x) and fY (y). On the set Y, fX(t−1(y)) 6= 0 by

definition, so dividing (2.10) on both sides by fX(t−1(y)) we get:

|det(Jt−1(y))| = fY (y)

fX(t−1(y))
y ∈ Y.

Now, since the transformation t is invertible and smooth, then both |det(Jt(y)| 6=
0 and |det(Jt−1(y)| 6= 0. If we assume that t is regular enough, then det(Jt(y)) is a

regular function of y, so if it is never zero, it must keep the same sign for every y ∈ Rn.

Therefore, det(Jt(y)) is always either positive or negative and this leads to the Monge-

Ampère Equation:

det(Jt−1(y)) = F (y) y ∈ Y (2.11)

with y ∈ Rn, F (y) = + fY (y)
fX(t−1(y))

or F (y) = − fY (y)
fX(t−1(y))

if, respectively, det(Jt(y)) > 0 or

det(Jt(y)) < 0. A simple application of the theory of Monge-Ampère Equations give us

the following results.

Theorem 2.2.2. [Monge-Ampère Equation] Suppose that fX(x) : Rn → R and fY (y) :

Rn → R are the pdfs of two real random variables such that t]fX = fY with t] explicit.

Then, the transformation t such that Y = t(X), and which satisfies t]fX = fY , must be a

solution of the following differential equations:

• n = 1: t must satisfy the Semilinear Ordinary Differential Equation

d

dy
t−1(y) =

fY (y)

fX(t−1(y))
y ∈ Y;

• n ≥ 2: t must satisfy the Fully Nonlinear Monge-Ampère Equation

det(Jt−1(y)) =
fY (y)

fX(t−1(y))
y ∈ Y.

Here, Y is defined as follows:

Y := {y : y = t(x) for some x in X}

and

X := {x : fX(x) > 0}.
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Remark 2.2.3. From the theorem, it is pretty clear that the lower the dimension n is,

the simpler the problem becomes. This is true, because, in low dimension, it is simpler to

solve the differential equation that the transformation t has to satisfy.

Now, we apply this theorem in the context of 1
α -Characteristic Functions. The 1

α -

Characteristic Function is a tool introduced in Section 2.1 as a natural generalization of

the classical Characteristic Function. The main novelty of this tool is that it permits to

extend classical theorems, such as the Law of Large Numbers (LLN) and the Central Limit

Theorem (CLT) to basically every distribution, upon the correct choice of a free parameter

α. This allows us to do some Asymptotic Inference with distributions which do not have

any finite classical moments, such as finite mean or finite variance (for example). Using

Theorem 2.2.2, we can compute explicitly some of the transformations which send a pdf

to its 1
α -counterpart.

Corollary 2.2.4. [Explicit Transformations] Suppose that X is a random variable whose

pdf is fX(x). Suppose also that fY (y) = f
1
α
X (y), where

f
1
α
X (x) :=

fX(x)1/α∫
Rn fX(x)

1
αdx

is the 1
α -counterpart of fX(x). Then, we can construct an explicit invertible and smooth

map t such that Y = t(X) and the pdf of Y is fY (y) in the following cases:

• if X is distributed as a Multivariate Normal Distribution X ∼ MVN(0,Σ), then

u(x) := t(x) = (x1
√
α, . . . , xn

√
α) =

√
αx.

• if X is distributed as a Multivariate Exponential Distribution X ∼ MVE(Λ), with

Λ = (λ1, . . . , λn), then u(x) := t(x) = α(x1, . . . , xn) = αx.

• if X is distributed as a Cauchy Distribution X ∼ Cauchy(0) and α = 1
2 , then

x = t−1(y) = tan
(

y
1+y2 + arctan(y)

)
.

Remark 2.2.5. Similar constructions work in more general cases, like for example the

case of the Cauchy Distribution with a different α (the proofs follow the same lines). Since

the main purpose of this section is to point out certain important facts of the theory, we

do not treat as many cases as we can and we leave some further applications to a future

work.

Another question to which we want to answer is the following. In Corollary 2.2.4, we

basically treated the problem distribution by distribution. The reason is that there is not
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an explicit formula for the solutions of the Fully Nonlinear Monge Ampère Equation and,

therefore, we do not have a general explicit formula that gives the transformation between

the random variables once we know the transformation between the pdfs. Now, a natural

question is: when we pass from a pdf fX(x) of a random variable X to its 1
α -counterpart,

is there a transformation t such that the random variable Y = t(X) has, as its own pdf,

the density f
1
α
X (y) with t(X) = bXa? The answer is given by the following theorem.

Theorem 2.2.6. [Rigidity Theorem] Fix the dimension n = 1. Suppose that fX(x) is the

pdf of a random variable X and f
1
α
X (y) is its 1

α -counterpart. Suppose moreover that there

is a transformation t : R → R such that the random variable Y = t(X) has, as its own

pdf, the density fY (y) = f
1
α
X (y) with t(X) = bXa. Then, the following facts are true.

1. Both a and b cannot be taken universal and they depend on fX(x), the particular pdf

of the random variable X, since, otherwise, they are trivial: a = b = α = 1.

2. Suppose a = 1 and α 6= 1, then the pdf fX(x) is of the form

fX(x) = d
α

1−α e
−K2(α)

p+1
xp+1

,

where d, p and K2(α) are real constants which depend on α.

Remark 2.2.7. Theorem 2.2.6 confirms that a polynomial transformation at the level of

the pdfs do not correspond in general to a polynomial transformation at the level of the

random variables.

Remark 2.2.8. From Theorem 2.2.6, it emerges a family of distributions that one can

call Uniform-Exponential Family. It can be indexed not just by α, but also by other

parameters like for example p. The second part of Theorem 2.2.6 can be viewed as a

characterization of the distributions of the Uniform-Exponential Family with pdfs of the

form fX(x) = d
α

1−α e
−K2(α)

p+1
xp+1

.

Remark 2.2.9. We believe that the possibility of building these explicit transformations,

between a random variable and its 1
α -counterpart, can be very useful in the cases in which

the inference is non-trivial because of the non-suitable decay or regularity of the original

pdf. In fact, in these not easy cases, one can explicitly pass to the 1
α -pdf, do inference

there and then transform back the results.

The remaining part of the section is organized as follows. In Subsection 2.2.2, we

give the proofs of Theorem 2.2.2 and of its Corollary 2.2.4 and also of Theorem 2.2.6. In

Subsection 2.2.3, we collect and explain some results about the Monge-Ampère Equation.
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In Subsection 2.2.4, we restate our results in the context of Optimal Transportation Theory,

while in Subsection 2.2.5, we do some numerics and give some comments on how the point

of view of Transportation Theory explains the movement of mass from one pdf to its
1
α -counterpart.

2.2.2 Proofs

In this subsection, we give the proofs of our main results. For what concerns Theorem

2.2.1 and Theorem 2.2.2, we do not enter into the details of the proofs either because they

are trivial, or because they have been already given in the Introduction and they are well

known. Instead, we give the complete proof of Corollary 2.2.4 and Theorem 2.2.6.

2.2.2.1 Proof of Corollary 2.2.4

The strategy here is to find a particular solution of the Fully Nonlinear Monge-Ampère

Equation

det(Jt−1(y)) =
fY (y)

fX(t−1(y))
y ∈ Y

in the cases under investigation. We first treat the case of the Multivariate Normal Dis-

tribution. Suppose n = 2 and X ∼MVN(0, Id), so fX(x, y) = 1
2πe
−x

2+y2

2 . From this, we

can construct f
1
α (x, y) and get

f
1
α (x, y) =

1

2π
e−

x2+y2

2α α−1,

therefore we obtain

fX(x, y)

f
1
α (u)

=
1

2πe
−x

2+y2

2

1
2πe
−
u2

1+u2
2

2α α−1

= αe
x2+y2

2
−u

2
1+u2

2
2α ,

where u := t−1. We arrive at the equation

∂u2

∂y

∂u1

∂x
− ∂u2

∂x

∂u1

∂y
= αe

x2+y2

2
−u

2
1+u2

2
2α .

If we choose u1 = α−1/2x and u2 = α−1/2y, the equation is satisfied and so u(x, y) =

t−1(x, y) = α−1/2(x, y). In the case of general dimension n, we notice that in the formula

of det(Ju(y)), there exists just one term with all the ∂ui
∂yi

for every i = 1, . . . , n. Therefore,

if we choose again ui(y) = ui(yi) for every i = 1, . . . , n, then

det(Ju(y)) = Πn
i=1

∂ui
∂yi
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and so we have just to solve

Πn
i=1

∂ui
∂yi

= αn/2e
Σni=1y

2
i

2
−Σni=1u

2
i

2α ,

which, again, admits the solution: ui = α+1/2yi and so u(y) = t−1(y) = α+1/2y. The case

of the Multivariate Normal Distribution is solved.

Now, we treat the case of the Multivariate Exponential Distribution. Suppose X ∼
MVE(λ), so fX(y) = λne−λΣni=1yi . From this we can construct f

1
α (y) and get

f
1
α (y) =

λn/αe−λα
−1Σni=1yi

λn/α
(
λ
α

)−n .

Therefore, we obtain

fX(y)

f
1
α (u)

=
λne−λΣni=1yi

λn/αe−λα
−1Σn

i=1
ui

λn/α( λα)
−n

= αne−λΣni=1yi−α−1ui(y)

and so, defining again u := t−1, the equation becomes

det(Ju(y)) = αne−λΣni=1(yi−α−1ui(y)).

Again, we notice that in the formula of det(Ju(y)), there exists just one term of the sum

which involves all the ∂ui
∂yi

for every i = 1, . . . , n. So, if we choose again ui(x) = ui(xi) for

every i = 1, . . . , n, then

det(Ju(y)) = αne−λΣni=1(yi−α−1ui(y))

and so we have just to solve

Πn
i=1

∂ui
∂yi

= αne−λΣni=1yi−α−1ui(y),

which admits the solution ui = αyi and so u(y) = t−1(y) = αy. This completes the proof

in the case of the Multivariate Exponential Distribution.

Now, it remains to prove the case of the Cauchy Distribution, with n = 1, α = 1
2 . In

this case, X is such that its pdf takes the form fX(x) = 1
π

1
1+x2 . We can again, from this,

construct f
1
α
X (x) and get

f
1
α
X (x) =

π−1/α(1 + x2)−1/α∫ +∞
−∞ [fX(x)]1/αdx

=
2

π
(1 + x2)−2.
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Therefore, we get

fX(x)

f
1
α (u)

=
π−1(1 + x2)

π−12(1 + u(x)2)−2
=

1

2

(1 + u(x)2)2

1 + x2

and so we obtain the equation

du(x)

dx
=

1

2

(1 + u(x)2)2

1 + x2
.

By separation of variables, we then get

du

(1 + u(x)2)2
=

1

2

dx

1 + x2

that, with the condition u(0) = 0, integrates to:

1

2

(
u

1 + u2
+ arctan(u)

)
=

1

2
arctan(x.)

Therefore, by inverting arctan, we get

x = t(y) = tan

(
y

1 + y2
+ arctan(y)

)
.

Now, if you compute the first derivative of this transformation, we get

dy

dx
=

2 sec
(

x
1+x2 + arctan(x)

)
(1 + x2)2

.

This implies that dy
dx > 0 for every x, and so it is invertible when it exists. This concludes

the proof of the corollary.

Remark 2.2.10. We think that the construction of explicit solutions with the technique

used above can be of independent interest. See [26] for more results on entire solutions of

Monge-Amp ére equations.

2.2.2.2 Proof of Theorem 2.2.6

In this subsection, we prove Theorem 2.2.6. Suppose that we have two random variables

X and Y such that Y = bXa with X a random variable with cdf FX(x), then we have:

FY (y) = P (Y ≤ y) = P (bXa ≤ y) = P

(
X ≤ 1

b
y

1
a

)
= FX

(
1

b
y

1
a

)
.

99



On the other side, by hypothesis, fY (y) = 1
K(α) [fX(y)]

1
α , where K(α) =

∫
R[fX(x)]

1
αdx.

Therefore, we obtain the functional identity:[
K(α)

ab
y

1
a
−1f

(
1

b
y

1
a

)]α
= f(y),

with f(x) := fX(x). Here, we are implicitly using the hypothesis y > 0, but a similar

treatment works for y < 0. Changing variables with z := 1
by

1
a , we obtain[

K(α)

ab

]α
zα(1−a)[f(z)]α = f(bza),

for every z ∈ R. Since we want this to be true for every f , then we just test this identity

over different distributions and show that Y = bXa implies a = b = α = 1.

Suppose fX(x) = 1/c for x ∈ [0, c], namely X ∼ Unif([0, c]). Then[
K(α)

aba

]α
zα(1−a)[f(z)]α = f(baza)

becomes [
K(α)

aba

]α
zα(1−a) = cα−1,

for every z ∈ [0, c]. Now, for z = c, we get[
K(α)

aba

]α
= caα−1.

For z = c/2, we get instead [
K(α)

aba

]α
= 2α(a−1)caα−1.

Putting everything together, we then get[
K(α)

aba

]α
= 2α(a−1)

[
K(α)

aba

]α
and so a = 1, since K(α) 6= 0. With this constraint on a, we are reduced to[

K(α)

b

]α
[f(z)]α = f(bz).

Now, we consider fX(x) = e−x, namely X ∼ exp(1) and this implies

100



[
K(α)

b

]α
e−zα = e−bz.

By taking the logarithm to both sides (they are positive), we obtain

z(α− b) = α log

(
K(α)

b

)
.

Since the equality must hold for every z, then α− b = 0. This implies that α = b = K(α)

and so our identity reduces to

[f(z)]α = f(αz),

for every z ∈ R. If we now test this identity with the standard normal distribution, we

obtain: (
1√
2π

)α
e−

α
2
z2

=
1√
2π
e−

1
2
α2z2

and this implies α = 1 and so a = b = 1, namely the trivial case Y = X and α = 1.

Now, we pass to the second part of the theorem. Suppose t(x) = cx, then the the Fully

Nonlinear Monge-Ampère Equation

det(Jt−1(y)) =
fY (y)

fX(t−1(y))
y ∈ Y

becomes
c

n(α)
[f(cy)]

1
α = f(y),

where n(α) =
∫
R[f(x)]

1
αdx. To make the notation lighter define d := c

n(α) . Recall that c is

actually a function of α, so c = c(α). Since both sides of c
n(α) [f(cy)]

1
α = f(y) are positive,

we can take the logarithm to both sides and, after defining w(y) := log(f(y)), we obtain

w(cy) = αw(y)− α log(d).

Now, we take a derivative with respect to y to both the sides (here w′(z) := d
dzw(z)) and

obtain:

cw′(cy) = αw′(y),

since α log(d) is constant in y. Now, we define h(z) := w′(z) and we differentiate two times

with respect to α (note that in the following ċ := d
dαc(α)) both sides of ch(cy) = αh(y),

the identity obtained. This gives:

101



c̈h(cy) + (ċ)2yh′(cy) + cyc̈h′(cy) + y2c(ċ)2h′′(cy) + y(ċ)2h′(cy) = 0.

Changing variables to z := yc, we obtain the identity:

c̈ch(z) + [2(ċ)2 + cc̈]zh′(z) + z2(ċ)2h′′(z) = 0.

This is a second order linear ODE in the unknown h(y) with smooth coefficients, so it

admits a two parameter family of solutions. Now, we have to distinguish between two

different cases.

In the case −1 6= − cc̈
(ċ)2 , the general solution is given by the following family

h(z) = K1z
−1 +K2z

− cc̈
(ċ)2 .

This can be verified for example by using the ansatz h(z) = zp and finding that p = −1

or p = − cc̈
(ċ)2 . Since h(z) = w′(z), then w(z) = K1 log(z) + K2

p+1z
p+1 + K3 with p = − cc̈

(ċ)2

and hence, since w(z) = log(f(z)), we have:

f(z) = eK3zK1e
K2
p+1

zp+1

,

for some real constants K1, K2 and K3. We now want to find the constants such that the

condition

w(cy) = αw(y)− α log(d)

is satisfied. Plugging our function w(z) inside this equation, we get

K1 log(c) +K1 log(y) +
K2

p+ 1
(cy)p+1 +K3 = αK1 log(y) + α

K2

p+ 1
yp+1 + αK3 − α log(d).

Collecting everything term by term, we get the following identity

[K1(1− α)] log(y) + yp+1K2

[
cp+1

p+ 1
− α

p+ 1

]
+ [K1 log c+K3(1− α) + α log d] = 0,

for every y ∈ R. This is a functional identity and so it implies that the coefficients of

the left hand side must be all zero. We suppose that α 6= 1, otherwise we come back

to the trivial case. This implies right away that K1 = 0. If K2 = 0 we get f(y) = eK3

with K3 = α log d
α−1 so f(x) = d

α
α−1 is the pdf of a Uniform Distribution. If K2 6= 0, then
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c(α) = α
1
p+1 and K3(1− α) + α log d = 0, so K3 = α log d

α−1 and

f(z) = d
α
α−1 e

−K2(α)
p+1

zp+1

,

with K2(α) determined through the normalizing condition and the constant c(α) im-

plicitly determined by c(α) = α
1
p+1 with p = − cc̈

(ċ)2 , determined through the condition

c
n(α) [f(cy)]

1
α = f(y). We note that the condition c(α) = α

1
p+1 with p = − cc̈

(ċ)2 is not void,

since it is satisfied at least by c(α) = α and c(α) = α1/2 (but also for any c(α) = αN ,

N ∈ R), in accordance with Corollary 2.2.4 and just by direct substitution).

In the case −1 = − cc̈
(ċ)2 , which happens if and only if c(α) = L2e

L1α (L1, L2 ∈ R are

constants of integration), the general solution is given by the following family

h(z) = K1
1

z
+K2

log(z)

z
.

This can be verified for example by direct computation. Since h(z) = w′(z), then

w(z) = K1 log(z) +
K2

2
log2(z) +K3

and hence, since w(z) = log(f(z)), we have:

f(z) = eK3zK1z
log
(
K2
2

)
,

for some real constants K1, K2 and K3. We now want to find the constants such that the

condition

w(cy) = αw(y)− α log(d)

is satisfied. Plugging our function w(z) inside this equation, we get

K1 log(c) +K1 log(y) +
K2

2
(log(c) + log(y))2 +K3

= αK1 log(y) + α
K2

2
log2(y) + αK3 − α log(d).

Collecting everything term by term, we get the following identity

(
K1 log(c) +

K2

2
log2(c)− αK3 + α log(d)

)
+

log(y) (K2 log(c) + (1− α)K1) + log2(y)

(
K2

2
− αK2

2

)
= 0,
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for every y ∈ R. This is a functional identity and so it implies that the coefficients of the

left hand side must be all zero. The condition
(
K2
2 − α

K2
2

)
= 0 implies K2 = 0 and so

this, with (K2 log(c) + (1− α)K1) = 0 implies that K1 = 0. Using(
K1 log(c) +

K2

2
log2(c)− αK3 + α log(d)

)
= 0,

we get K3 = log(d) and so f(z) = d = c
n(α) . Now, using the condition

c

n(α)
[f(cy)]

1
α = f(y),

we get: d× d
1
α = d and so, since d 6= 0 by hypothesis,

c

n(α)
= d = 1.

Now, n(α) = c = L1e
L2α, but also

n(α) =

∫
R

[f(x)]
1
αdx =

(
c

n(α)

) 1
α

×
(

c

n(α)

)−1

=

(
c

n(α)

) 1
α
−1

and so c = n(α) = c1−α, that implies α = 0, which is impossible, or c = 1, which is the

trivial case of the identity transformation. This concludes the proof of the theorem.

Example 2.2.11. Consider the case p = 0, this implies − cc̈
(ċ)2 = 0 and since c 6= 0

(otherwise we go back to the trivial case), c(α) = a1α+ a2 for some real constants a1 and

a2, therefore

f(z) =

[
a1α+ a2

n(α)

] α
α−1

e−K2(α)z.

Due to the normalizing condition, we have

f(z) = K2(α)e−K2(α)z

with K2(α) =
[
a1α+a2
n(α)

] α
α−1

. Since we can choose a1 = 1 and a2 = 0, we also have that

n(α) =
∫ +∞

0 K2(α)e−K2(α)zdz = α. This implies that K2(α) = α and so that f(z) = e−z,

namely the pdf of the Exponential Distribution. This confirms the result of Corollary

2.2.4. If we ask p = 1, we get c(α) =
√
a1α+ a2 for some real constants a1 and a2 and

we recover the Normal Distribution, again as in Corollary 2.2.4.

Remark 2.2.12. This theorem basically says that if there is a transformation t of the
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form t(X) = bXa, then both a and b depend on the pdf f through the equation[
K(α)

ab

]α
zα(1−a)[f(z)]α = f(bza).

2.2.3 The Monge-Ampère Equation

The Monge-Ampère Equation is a very well know equation in geometry and mathematical

physics. It arises naturally in several problems in Riemannian Geometry, Conformal

Geometry, Complex-Kähler Geometry and CR geometry. The Monge-Ampère Equations

are related to the Monge-Kantorovich Optimal Mass Transportation Problem, when the

cost functional therein is given by the Euclidean distance (see Section 2.2.4 and for example

[52]).

In this subsection, we collect some basic results of the theory, just for illustration purposes.

We start by giving the general definition of Monge-Ampère Equation in dimension n = 2.

Definition 2.2.13. Given two independent variables x and y, and one dependent variable

u, the general Monge-Ampère Equation is of the form

L[u] = A(uxxuyy − u2
xy) +Buxx + 2Cuxy +Duyy + E = 0

where A, B, C, D and E are functions depending on the variables x, y, φ, ux, and uy

only.

Remark 2.2.14. In the previous sections, we used mainly the case where u = (u1, u2)

with u1 = ux and u2 = uy, and coefficients A = 1, B = C = D = 0 and E = − f(y)

f
1
α (u(y))

.

Theorem 2.2.15 (Rellich’s Theorem). Let Ω be a bounded domain in R3, and suppose

that, on Ω, A, B, C, D, and E are continuous functions of x and y only. Consider the

Dirichlet problem:L[u] = 0, on Ω

u|∂Ω = g(x, y).

Here g is a smooth function. If

BD − C2 −AE > 0,

then the Dirichlet problem has at most two solutions u which assume the same boundary

value on ∂Ω.
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Remark 2.2.16. This theorem cannot be generally applied to solve our main theorems,

because in our cases E = − f(y)

f
1
α (u(y))

and so it depends on the unknown function u(y).

If the source function E does not depend on the unknown function, but possesses

certain symmetries, it is sometimes possible to construct solutions of the MongeAmpère

equation, provided we can solve a Quasilinear ODE.

Remark 2.2.17. Fix the dimension n = 2 and consider a source of the form f(x, y) =

F (ax2 +bxy+cy2 +kx+sy), for some real constants a, b, c, k, s. Then the Monge-Ampère

equation is reduced to

∂2u

∂x∂x

∂2u

∂y∂y
− ∂2u

∂x∂y

∂2u

∂y∂x
= F (ax2 + bxy + cy2 + kx+ sy).

At this point, we can look for solutions of the form u(x, y) = W (z) with z = ax2 + bxy +

cy2 + kx+ sy and W solving the following quasilinear ODE:

2[(4ac− b2)z + as2 + ck2 − bks]W ′(z)W ′′(z) + (4ac− b2)[W ′(z)]2 + F (z) = 0.

With the substitution w(z) := [W ′(z)]2 and, for example, with the choice of parameters

b = k = s = 0 and a = c = 1 (spherical case) one is lead to the following linear ODE:

8w′(z) + 4w(z) + F (z) = 0

that can be solved by the method of Variation of Constants. For several other cases that

can be of interest and where it is possible to find an explicit solution of the Monge-Ampère

equation, we refer to the handbook [96].

2.2.4 Connection to the problem of Optimal Transportation

In this subsection, we show how the results discussed in the previous sections can be

restated in the more general context of Optimal Transportation Theory. We refer to [52]

for a more complete discussion of this important research field and of the connection

between the theory of Monge-Ampère Equations and Optimal Transportation.

Consider two measures η and ν defined over two measurable spaces X and Y respectively.

The problem here is to find a measurable map T : X → Y such that T]η = ν, namely such

that

ν(A) = η(T−1(A)) ∀ A ⊂ Y,
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and such that it minimizes a certain cost function c:∫
X
c(x, T (x))dη(x) = min

S]η=ν

∫
X
c(x, S(x))dη(x).

Here c : X × Y → R is the cost function and S : X → Y is a measurable map such that

S]η = ν.

Definition 2.2.18. Suppose that T : X → Y and that T]η = ν, then T is called Transport

Map. Suppose moreover that T satisfies∫
X
c(x, T (x))dη(x) = min

S]η=ν

∫
X
c(x, S(x))dη(x).

Then T is called Optimal Transport Map.

The problem of Optimal Transportation is in general very difficult, already in the

simplest scenarios like the one of the Euclidean Space X = Y = Rn with the Euclidean

Distance c(x, y) = ||x − y||2 := Σn
i=1|xi − yi|2 as cost function. We note also that not all

the possible η and ν are admissible since not for all η and ν, it is possible to find at least

one transport map, like for example in the case that one of the two measures η and ν is

the Dirac delta, while the other is not.

In the cases that we have treated in the previous sections, we have that X,Y ⊂ Rn and

that the measures are η(dx) = f(x)dx and ν(dy) = g(y)dy. Now, if S : X → Y is a

sufficiently smooth transport map, we can rewrite the transport condition S]η = ν as a

Monge-Ampère Equation. Suppose that φ : Rn → R is a continuous function. Then, by

duality, the condition S]η = ν can be rewritten as∫
Rn
φ(S(x))f(x)dx =

∫
Rn
φ(y)g(y)dy.

Now, as before, if we assume that det(∇S(x)) 6= 0 we can use Theorem 2.2.1 (the Change

of Variables Formula) to get:

∫
Rn
φ(S(x))f(x)dx =

∫
Rn
φ(y)g(y)dy =

∫
Rn
φ(S(x))g(S(x))|det(∇S(x))|dx.

This must be true for every test function φ(y) and therefore we have

f(x) = g(S(x))|det(∇S(x))|,
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which leads again to the Monge-Ampère Equation as before. In this context, we can restate

Theorem 2.2.2 as follows:

Theorem 2.2.19. Suppose that X is a random variable and that η(dx) = fX(x)dx, with

fX(x) the pdf of X and

ν(dx) = f
1
α
X (x)dx

its 1
α -counterpart. Then we can construct explicit Transport Maps in the following cases:

• if η is the pdf of a Multivariate Normal Distribution X ∼ MVN(0Σ) and ν is its
1
α -counterpart, then S(y) = (

√
αy1, . . . ,

√
αyn) = y

√
α.

• if η is the pdf of a Multivariate Exponential Distribution X ∼ MVE(λ1, . . . , λn)

and ν is its 1
α -counterpart, then S(y) = α(y1, . . . , yn) = αy.

• if η is the pdf of a Cauchy Distribution X ∼ Cauchy(0) and α = 1
2 and ν is its

1
α -counterpart, then x = S−1(y) = tan

(
y

1+y2 + arctan(y)
)

.

Similarly as in the context of the Monge Ampère Equation, the uniqueness of a Trans-

port Map is not granted. To obtain it, one often tries to construct an Optimal Transport

Map relatively to a certain cost function c with suitable hypotheses. For completeness,

we recall here a result of Brenier [20] (see also [52]).

Theorem 2.2.20. Let η and ν be two compactly supported probability measures on Rn. If

η is absolutely continuous with respect to the Lebesgue measure, then:

• There exists a unique solution T to the optimal transport problem with cost function

c(x, y) = |x−y|2
2 .

• There exists a convex function u : Rn → R such that the optimal map T is given by

T (x) = ∇u(x) for η-a.e. x.

Furthermore if η(dx) = f(x)dx and ν(dy) = g(y)dy, then T is differentiable η-a.e. and

|det(∇T (x))| = f(x)

g(T (x))

for η-a.e. x ∈ Rn.

Remark 2.2.21. In the cases in which one can compute explicitly a Transport Map T ,

it would be interesting to find a criterion of uniqueness, and hence a cost function c, such

that the explicit Transport Map T is actually an Optimal Transport Map for that c. A
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similar criterion could be then applied to Transformation Theory in order to choose a

natural map that, at the level of the random variables, sends the random variable to its
1
α -counterpart.

Remark 2.2.22. We notice that, in both the cases of the Multivariate Normal Distribution

and the Multivariate Exponential Distribution, we constructed the Transport Maps T (u) =

α1/2u and T (u) = αu respectively, for which there exist convex functions K such that

T = ∇K. For the Multivariate Normal Distribution we have K = 1
2α

1/2||u||2, while for

the Multivariate Exponential Distribution we have K = 1
2α||u||

2 with ||u||2 = Σn
i=1|ui|2.

2.2.5 Some Numerics

In this subsection, we plan to illustrate graphically the transformations that we have

constructed in the previous sections. As explained before, the transformation t can be

interpreted as a Transport Map.

In the graph below, we can see that, while decreasing the values of α, the mass moves

towards the mean of the distribution and this is in accordance with the Law of Large

Numbers. We chose the length of the domain so that 0.995 of the mass of the distribution

is included in the graph. Given a percentage p, the quantiles Q(p) cannot be computed

explicitly for the Normal Distribution (there are of course tables), but there is an explicit

formula for both the Exponential Distribution Qe(p) = −log(1 − p) and for the Cauchy

distribution Qc(p) = tan (π(p− 0.5)). Here p stays for the percentage or plotting point.

Figure 2.1: Mass Transportation in The Exponential Distribution
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%Exponential Distributions: ya=1/a*exp(x/a)

x=linspace(0,5.3,100); %Area inside 99.5

y1=exp(-x);

y2=10*exp(-10*x);

y10=2*exp(-2*x);

plot(x,y1,x,y2,x,y10)

title(’Mass Transportation for the Exponential Distribution’)

legend(’alpha=1’,’alpha=1/2’, ’alpha=1/10’)

Figure 2.2: Mass Transportation in The Normal Distribution

%Normal Distributions: ya=1/(2*pi*a)^(1/2)*exp(-x^2/(2*a))

x=linspace(-2.81,2.81,100); %Area inside 99.5

y1=1/(2*pi*1).^(1/2)*exp(-x.^2/(2*1));

y2=1/(2*pi*(1/2)).^(1/2)*exp(-x.^2/(2*(1/2)));

y10=1/(2*pi*(1/10)).^(1/2)*exp(-x.^2/(2*(1/10)));

plot(x,y1,x,y2,x,y10)

title(’Mass Transportation for the Normal Distribution’)

legend(’alpha=1’,’alpha=1/2’, ’alpha=1/10’)

%Cauchy Distributions:

x=linspace(-127.32,127.32,100); %Area inside 99.5

y1=1/pi*(1+x.^2).^(-1);
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Figure 2.3: Mass Transportation in The Cauchy Distribution

y2=2/pi*(1+x.^2).^(-2);

plot(x,y1,x,y2)

title(’Mass Transportation for the Cauchy Distribution’)

legend(’alpha=1’,’alpha=1/2’)

We notice that indeed, when the parameter α → 0, the distributions tend weakly

to the Dirac Delta. For the sake of illustration, we verify this property in the case of

the Exponential Distribution. Suppose that X ∼ exp(λ), then fX(x;λ) = λe−xλ and so

f
1
α (x;λ) = λ

1
α e−x

λ
α

λ1/α−1α
. Suppose also that φ(x) is a continuous function on [0,+∞] with

compact support inside [0,+∞]. Then, by duality,

∫ +∞

0
f

1
α (x;λ)φ(x)dx =

∫ +∞

0

λ

α
e−x

λ
αφ(x)dx =

∫ +∞

0
e−xφ(αλ−1x)→ φ(0),

as α → 0 and λ fixed (this actually works also when λ = λ(α) and α goes to zero faster

than λ). And so this means that

f
1
α (x;λ)

w−→ δx=0,

as α→ 0. This phenomenon becomes even more evident through an animation, that can be

performed by the following simple code in MATLAB. Here, we concentrate in particular on

the cases of the Exponential Distribution and Normal Distribution, but similar animations
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can be performed for other distributions.

%ANIMATION EXPONENTIAL

FramesNumbers= 100;

frames = moviein(FramesNumbers);

x = 0 : .01 : 10;

p = 1;

for i = 1 : FramesNumbers

p = p +1;

y = p.*exp(-x.*p);

plot(x, y);

title(’Mass Transportation in The Exponential Distribution’)

frames(:, i) = getframe;

end

save frames

%ANIMATION NORMAL

FramesNumbers= 100;

frames = moviein(FramesNumbers);

x = -10 : .01 : 10;

p = 1;

for i = 1 : FramesNumbers

p = p +1;

y = 1/(2*pi*p^(-1))^(1/2).*exp(-x.^2*p/2);

plot(x, y);

title(’Mass Transportation in The Normal Distribution’)

frames(:, i) = getframe;

end

save frames

Remark 2.2.23. The code for the animation has been built, taking inspiration from [3].
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2.3 Applications to the Consensus Monte Carlo Algorithm

We conclude this chapter with some final comments, where we mention that what we called
1
α -Characteristic Functions appear implicitly in the context of the Consensus Monte Carlo

Algorithm (see [105]). We briefly explain where and how and leave more detailed comments

to later on, when in Section 3.3 we discuss the Simpson’s Paradox in this context.

Big data can be seen as data that, for one reason or another, is too big to efficiently

process on a single machine. Some of the main problems are processor, memory, or disk

bottlenecks and often they can be eliminated just by distributing the data across different

machines. This is computationally expensive and so there is need of efficient algorithms

to reduce the costs.

The Consensus Monte Carlo is a possible solution and works in the following way. First,

it breaks the data into shards, then it sends each shard to a different machine which

independently runs a Monte Carlo Algorithm from a posterior distribution given its own

data, and then combine the posteriors (consensus).

Let y represent the full data set, and ys be the fraction of the data set corresponding to

shard s. Moreover, let θ be the model parameters. Then, the posterior distribution of the

system can be written as

p(θ, y) ∝
S∏
s=1

p(ys|θ)p(θ)1/S ,

where S represents the total number of shards. The prior distribution p(θ) is broken into

S components p(θ)1/S to preserve the total amount of prior information in the system and

totally resembles our 1/α-Probabilities, with α = S.

Our results can be then seen as a theoretical analysis of some of the key objects appearing

in the algorithm in [105], also in the case of non-Gaussian posteriors, which require some

extra theoretical work according to the authors of [105].

2.4 Concluding Remarks

This chapter discussed the characterization of distributions using properties related to

optimal mass transportation. The methods used, which have strong connection with

Fourier analysis can be applied to do statistical inference for distributions that do not
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possess good regularity, decay or integrability properties, like the Cauchy distribution.

As a possible application, we have discussed some topics in Big Data analysis and in

particular the Consensus Monte Carlo Algorithm. Further characterizations of probability

distributions might be available using these techniques and might be good to work on them

in the future.
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Chapter 3

The Simpson’s Paradox

In this chapter, we study the Simpson’s Paradox. The Simpson’s Paradox is the phe-

nomenon that appears in some datasets, where subgroups with a common trend (say, all

negative trend) show the reverse trend when they are aggregated (say, positive trend).

In the first section, we give a brief introduction of the problem and the second section, we

prove that the Simpson’s Paradox occurs also in an unconventional settings, like the one

of Quantum Mechanics.

3.1 The Ubiquity of the Simpson’s Paradox

As just said, the Simpson’s Paradox is the phenomenon that appears in some datasets,

where subgroups with a common trend (say, all negative trend) show the reverse trend

when they are aggregated (say, positive trend). Even if this issue has an elementary

mathematical explanation, it has a deep statistical significance.

In this section, we discuss basic examples in arithmetic, geometry, linear algebra, statistics,

game theory, gender bias in university admission and election polls, where we describe the

appearance or absence of the Simpson’s Paradox.

3.1.1 Introduction and Motivation

In probability and statistics, the Simpson’s paradox (called also Yule-Simpson effect) is a

paradox in which a trend that appears in different groups of data disappears when these

groups are combined, while the reverse trend appears for the aggregate data. This effect

is often encountered in social sciences, psychology, medical sciences in general, ecology,
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theoretical statistics and several other fields [121].

The problem of the occurrence of this paradox is a very old one and dates back to the 19th

century. The first author which treated this topic has been Pearson [95], who pointed out

the occurrence of the paradox, while studying correlation measures for continuous, non-

categorical data. Subsequently, Yule [125] [126] pointed out that ”a pair of attributes

does not necessarily exhibit independence within the universe at large even if it exhibits

independence in every subuniverse”. See also [127].

Simpson first described this phenomenon in a paper [109], where he considered a 2x2x2

contingency table with attributes A, B, and C and illustrated the paradox using a heuristic

example of clinic patients. In the example, patients received treatment or no treatment.

When the data were examined by gender (subpopulations), one was led to conclude that

both males and females responded favorably to the treatment, compared to those who

did not receive the treatment. However, when the data were aggregated (population),

there seemed to not be anymore any association between the use of the treatment and the

survival time. See [57] for more details.

The name Simpson’s paradox was given to this phenomenon by Blyth [17]. Since Simpson

did not actually discover this statistical paradox, some authors prefer to call it reversal

paradox or amalgamation paradox. Good and Mittal [59] studied deeply how to avoid the

paradox and gave necessary and sufficient conditions on the contingency tables and on

the sampling experiments in order to avoid the paradox. See Subsection 3.2.2.3 for more

details.

One popular example of the occurrence of the Simpson’s paradox is the Berkeley Gender

Bias Admission Problem [15]. Here is the story.

In 1973, the Associate Dean of the graduate school of the University of California Berkeley

worried that the university might be sued for sex bias in the admission process [15]. In

fact, looking at the admission rates broken down by gender (male or female), we have the

following contingency table:

Applicants Admitted Deny

Female 1494 2827

Male 3738 4704
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The Chi-square statistics for this test has one degrees of freedom with value χ2 = 111.25

and corresponding p-value basically = 0, while the Chi-square statistics with Yates con-

tinuity correction for this test has a value of χ2 = 110.849 and corresponding p-value

again approximately 0 (precision order 10−26). A näıve conclusion would be that men

were much more successful in admissions than women, which would clear be understood

as a bad episode of gender bias. At that point, Prof. P.J.Bickel from the Department of

Statistics of Berkeley, was asked to analyse the data.

In a famous paper [15] with E.A.Hammel and J.W.O’Connell, P.J.Bickel studied the prob-

lem in detail. Graduate departments have independent admissions procedures and so they

are autonomous for taking decisions in the graduate admission process. A further division

in subgroups does not find a real counterpart in the structure of Berkeley’s system. The

analysis of the data, performed department by department, produces the following table:

Dpt Male Applications Male Admissions Female Applications Female Admissions

A 825 62% 108 82%

B 560 63% 25 68%

C 325 37% 593 34%

D 417 33% 375 35%

E 191 28% 393 24%

F 191 28% 393 24%

As Bickel, Hammel and O’Connell say in [15], ”The proportion of women applicants tends

to be high in departments that are hard to get into and low in those that are easy to get

into” and it is even more evident in departments with a large number of applicants. The

examination of the aggregate data was showing a misleading pattern of bias against female

applicants. However, if the data are properly pooled, and taking into consideration the

tendency of women to apply to departments that are more competitive for either genders,

there is a small but statistically significant bias in favour of women. The authors concluded

that ”Measuring bias is harder than is usually assumed, and the evidence is sometimes

contrary to expectation” [15]. This episode is one of the most celebrated real examples of

what is called Simpson’s Paradox : the trend of aggregated data might be reversed in the

pooled data.

Note that the Simpson’s Paradox is not confined to the discrete case, but it can appear

also in the continuous case. Even if less famous, we want to mention the following example

which has been discussed on the New York Times recently [91]. Still today, the Simpson’s
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Paradox can be a source of confusion and misinterpretation of the data.

An article of the journalist F.Norris [91] raised the concerns of readers, because of the

following apparently paradoxical result. F.Norris analysed the variation of the US wage

over time. Accordingly to the statistics, from 2000 to 2013, the median US wage (adjusted

for inflation) has risen of about 1%, if the median is computed on the full sample. However,

if the same sample is broken down into four educational subgroups, the median wage

(adjusted for inflation) of each subgroup decreased. The percentages of variation for each

subgroup are summarized in the following table:

Group Median Change

Total +0.9%

High School Dropouts -7.9%

High School Graduates, No college -4.7%

Some College -7.6%

Bachelor’s or Higher -1.2%

Here, the reason of the reversal is that the relative sizes of the groups changed greatly over

the period considered. In particular, there were more well-educated and so higher wage

people in 2013 than in 2000.

In both the cases described above (discrete and continuous, respectively), the variables

involved in the paradox are confounded by the presence of another variable (department

and level of education, respectively).

Remark 3.1.1. For more examples we refer to [78], [121] and the references therein.

The problem of the occurrence of this paradox was considered already in the 19th

century. The first author which treated this topic has been Pearson [95], followed by the

contributions of Yule [125] [127] and Simpson [109]. In this section, we outline that the

Simpson’s Paradox is not confined to statistical problems, but it is ubiquitous in science.

We give a series of formal definitions in Subsection 3.1.2. In Subsection 3.1, we show the

ubiquity of the Simpson’s Paradox in several areas of technical and social sciences and we

also give some examples of its occurrence.

3.1.2 Measures of Amalgamation

In this section, we give the definition and some popular examples of Measures of Amalga-

mation. For more details, we refer to [59].
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3.1.2.1 Definitions

First, we define the Process of Amalgamation of contingency tables ti, i = 1, . . . , n.

Definition 3.1.2. Let ti = [ai, bi; ci, di], i = 1, . . . , l be 2× 2 contingency tables corre-

sponding to the i-th of l mutually exclusive sub-populations, with aibicidi 6= 0. Let Ni = ai+

bi+ci+di denote the sample size for the i-th sub-population and let N = N1+· · ·+Nl be the

total sample size of the population. If the n tables are added together, the process is called

Amalgamation. We obtain a table T := [A,B;C,D] := [Σl
i=1ai,Σ

l
i=1bi,Σ

l
i=1ci,Σ

l
i=1di],

where A+B + C +D = N .

After having amalgamated a group of contingency tables, we can define the Measure

of Amalgamation.

Definition 3.1.3. Let Mp×p be the set of all p × p contingency tables. A function α :

Mp×p → R is called Measure of Amalgamation.

Given the definition of Measure of Amalgamation, we can formally define the Simpson’s

Paradox.

Definition 3.1.4. We say that the Simpson’s Paradox occurs for the Measure of

Amalgamation α if

max
i
α(ti) < α(T) or min

i
α(ti) > α(T),

with α defined as in Definition 3.1.3 and T = t1 + t2.

We fix some terminology that we are going to use in the list of examples below in the

context of contingency tables (see [59]). Sampling Procedure I, called also Tetranomial

Sampling, is performed when we sample at random from a population. Sampling Procedure

IIR (respectively IIC), called also Product-Binomial Sampling, is performed when the row

totals (respectively columns) is fixed and we sample until this marginal totals are reached.

Sampling Procedure III controls both row and column totals.

3.1.2.2 Examples

Consider the 2× 2 contingency table t = [a, b; c, d], given by

t =

S not S

T a b

not T c d
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The following are popular examples of Measures of Amalgamation (see [59]).

• The Pierce’s measure:

πPearce(t) =
a

a+ b
− c

c+ d
.

Under Tetranomial Sampling and Product-Binomial Sampling with row fixed, this

measure becomes

πPearce = P̂ (S|T )− P̂ (S|T̄ ).

It compares the estimated probability of an effect S under treatment and the esti-

mated probability of an effect S without any treatment (row categories are considered

to be the ”causes” of the column categories).

• The Yule’s measure is given by the formula:

πY ule(t) =
ad− bc
N2

.

It compares the frequency a/N with respect to its estimated expected frequency

under independence of rows and columns. In fact:

πY ule(t) =
ad− bc
N2

=
a

N
− (a+ b)(a+ c)

N2
= P̂ (S ∩ T )− P̂ (S)P̂ (T ),

since N = a+ b+ c+ d.

• The Odds Ratio is arguably the most popular measure of amalgamation:

πOdds(t) =
ad

bc
.

The Odds Ratio is the ratio between the estimated probability of success and the

estimated probability of failure, given a treatment or a no-treatment. In fact

πOdds(t) =
a
b
c
d

=

a/(a+b)
b/(a+b)

c/(c+d)
d/(c+d)

=
P̂ (S|T )/P̂ (S̄|T )

P̂ (S|T̄ )/P̂ (S̄|T̄ )
.

• The Weight of Evidence is given by:

πWeightC (t) = log
a(b+ d)

b(a+ c)
.

Under Tetranomial Sampling or column fixed Product-Binomial Sampling,

the Weight of Evidence represents the logarithm of the estimated Bayes factor in
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favour of S, knowing that the treatment was T , namely:

πWeightC = log
P̂ (T |S)

P̂ (T |S̄)
.

• The Causal Propensity :

πCausal(t) = log
d(a+ b)

b(c+ d)
,

under Tetranomial Sampling or Product-Binomial Sampling with row fixed, repre-

sents the estimated propensity of T causing S rather than S̄:

πCausal(t) = log
P̂ (S̄|T̄ )

P̂ (S̄|T )
.

3.1.3 The Simpson’s Paradox appears not just in statistics

In this section, we give very basic examples of the appearance of the Simpson’s Paradox

in fields different from statistics. In particular, we give examples in arithmetic, geometry,

statistics, linear algebra, game theory and election polls.

• Arithmetic: There exist quadruplets a1, b1, c1, d1 > 0 and a2, b2, c2, d2 > 0 such

that a1/b1 > c1/d1 and a2/b2 > c2/d2 but (a1 + a2)/(b1 + b2) < (c1 + c2)/(d1 + d2).

Example: (a1, b1, c1, d1) = (2, 8, 1, 5) and (a2, b2, c2, d2) = (4, 5, 6, 8). In this case,

the Measure of Amalgamation is given by:

π(t) =
a

b
− c

d
=
ad− bc
bd

.

If we consider the contingency tables

t1 = [a1, b1; c1, d1]

and

t2 = [a2, b2; c2, d2]

and the amalgamated one:

T = [a1 + a2, b1 + b2; c1 + c2, d1 + d2],

we have that:

max
i=1,2

π(ai) < 0 < π(T)
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and so we have the Simpson’s Paradox, accordingly to Definition 3.1.4.

• Geometry: Even if a vector v1 has a smaller slope than another vector w1, and a

vector v2 has a smaller slope than a vector w2, the sum of the two vectors v1 + v2

can have a larger slope than the sum of the two vectors w1 + w2. Example: take

w1 = (a1, b1), v1 = (c1, d1), w2 = (a2, b2), v2 = (c2, d2). The same Measure of

Amalgamation of the previous example makes the game here as well.

• Statistics: A positive/negative trend of two separate subgroups might reverse when

the subgroups are combined in one single group. This happens in both the discrete

and continuous case. We gave examples of this in the introduction, with the Berkeley

Gender Bias (discrete) case and the ”time vs US wage” case (continuous).

• Linear Algebra There exists A1, A2 ∈Matn×n such that

det(A1) > 0, det(A2) > 0, but det(A1 +A2) < 0.

Consider for example A1 = t1 and A2 = t2, as above.

• Game Theory: The Prisoner’s Dilemma shows why two players A and B might

decide to not cooperate, even if it appears that, for both of them, it is more conve-

nient to cooperate. If both A and B cooperate, they both receive a reward p1. If

B does not cooperate while A cooperates, then B receives p2, while A receives p3.

Similarly, if vice versa. If both A and B do not cooperate, their payoffs are going to

be p4. To get the Simpson’s Paradox, the following must hold:

p2 = a2/b2 > p1 = c2/d2 > p4 = a1/b1 > p3 = c1/d1.

Here p2 > p1 and p4 > p3 imply that it is better to not cooperate for both A

and B both given the fact that the other player does or does not cooperate (Nash

Equilibrium). Note that, if we use these quadruplets for the table of rewards, we get

for the rewards of player A:

Rewards for A B cooperates B does not

A cooperates p1 p3

A does not p2 p4

and for the rewards of player B:
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Rewards for B B cooperates B does not

A cooperates p1 p2

A does not p3 p4

Using the values in our examples, we get for the rewards of player A:

Rewards for A B cooperates B does not

A cooperates 0.75 0.2

A does not 0.8 0.25

and for the rewards of player B:

Rewards for B B cooperates B does not

A cooperates 0.75 0.8

A does not 0.2 0.25

Note that this implies that both players A and B are pushed, for personal con-

venience, to not cooperate, independently of what the other player does, but end

up getting a worse reward than if they would have both cooperated. In fact, the

amalgamated contingency table, gives:

Rewards for A+B B cooperates B does not

A cooperates 1.5 1

A does not 1 0.5

that prizes the decision of cooperation. The Measure of Amalgamation considered

here can be thought in the form of an Utility Function, such as:

UA(a, b) = p1ab+ p3a(1− b) + p2b(1− a) + p4(1− a)(1− b)

and

UB(a, b) = p1ab+ p2a(1− b) + p3b(1− a) + p4(1− a)(1− b).

Here a = 1, means that A cooperates, while a = 0 means that A does not. Similarly

for B. Note that, under the conditions on p1, p2, p3 and p4 mentioned above, the

Utility is bigger for the choice of not cooperation for both A and B, given any

decision taken by the other player. In fact,

p1 = UA(1, 1) < UA(0, 1) = p2
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and

p3 = UA(1, 0) < UA(0, 0) = p4

and analogously for UB. However, when we combine the utilities, we get Utility

Function

UA+B(a, b) = 2p1ab+ (p2 + p3)a(1− b) + (p3 + p2)b(1− a) + 2p4(1− a)(1− b).

This utility is always bigger for cooperation, if we require 2p4 < p2 + p3 < 2p1, as

we chose in our example. In fact:

2p4 = UA+B(0, 0) < UA+B(1, 0) = p2 + p3 = UA+B(0, 1) < 2p1 = UA+B(1, 1).

In this way, we have restated the Prisoner’s Dilemma in the context of the Simpson’s

Paradox.

• Election Polls: Suppose candidates T and C run for elections in two states State1

and State2. Suppose that candidate T and C receive in State1 a percentage of votes:

%votes for T =
a

b
> 1− a

b
= %votes for C

and that candidate T and C receive in State2 a percentage of votes:

%votes for T =
c

d
> 1− c

d
= %votes for C.

Is it possible that overall candidate C receives a higher percentage of votes? Clearly,

this is not possible because a
b > 1− a

b implies a > 0.5b and c
d > 1− c

d implies c > 0.5d

and so

0.5b+ 0.5d < a+ c,

which implies
a+ c

b+ d
> 0.5

and so
a+ c

b+ d
> 1− a+ c

b+ d
.

In this case, we do not have any paradox and this is related to the fact that there

is an extra constraint on the construction of the contingency table. Note that since

the set of real numbers for which these inequalities hold is an open set, the inclusion

of a not strong third candidate will not change the situation. What happens if the

third candidate is as strong as T and C? We plan to work on this and the problem
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of gerrymandering in the future.

3.2 The Simpson’s Paradox in Quantum Mechanics

In this section, we give some results about the occurrence of the Simpson’s Paradox in

Quantum Mechanics.

In particular, we prove that the Simpson’s Paradox occurs for solutions of the Quantum

Harmonic Oscillator both in the stationary case and in the non-stationary case. In the

non-stationary case, the Simpson’s Paradox is persistent: if it occurs at any time t = t̃,

then it occurs at any time t 6= t̃. Moreover, we prove that the Simpson’s Paradox is

not an isolated phenomenon, namely that, close to initial data for which it occurs, there

are lots of initial data (a open neighborhood), for which it still occurs. Differently from

the case of the Quantum Harmonic Oscillator, we also prove that the paradox appears

(asymptotically) in the context of the Nonlinear Schrödinger Equation, but at intermittent

times.

We conclude with a discussion about the likelihood of incurring in the Simpson’s Paradox

in Quantum Mechanics, some numerical examples and some final considerations and open

problems.

3.2.1 Introduction and Motivation

In this section, we show that the occurrence of the Simpson’s Paradox can be detected

in a completely different setting with respect to the ones more commonly studied. In

particular, we will show that the phenomenon appears in quantum mechanics too and

more precisely in the context of the Quantum Harmonic Oscillator and the Nonlinear

Schrödinger Equation.

Very few papers in the literature treat the Simpson’s Paradox related to problems in

Quantum Mechanics. At our knowledge, the only ones available are the fast track com-

munication by Paris [93], an experimental result by Cialdi and Paris [31], the preprint by

Shi [108] and our work, which is the first that connects the Simpson’s Paradox to Partial

Differential Equations and Infinite Dimensional Dynamical Systems.

We consider the Linear Schrödinger Equation in the presence of a Harmonic Potential :
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i}
∂

∂t
ψ(t, x) = − }2

2m
∆ψ(t, x) +

1

2
mω2|x|2ψ(t, x) (t, x) ∈ (0,+∞)× Rn. (3.1)

Here i =
√
−1 is the complex unit, } is the Planck Constant, m represents the mass of

a particle and ω is the angular velocity. For this equation, we prove that, with a proper

choice of the initial datum and the proper choice of the measure of amalgamation, the

Simpson’s Paradox can occur.

Theorem 3.2.1. [Existence of the Simpson’s Paradox]

Consider equation (3.1) for every spatial dimension n ≥ 1. Then, for every m > 0, ω > 0,

there exists a set of parameters (xi(t), γi(t), vi(t)) for i = 1, . . . , 4, such that the following

is true. If we consider an initial datum of the form ψ(0, x) = Σ4
i=1ψi(0, x) with ψi(0, x)

the soliton solutions as in Theorem 3.2.8 below, namely such that

ψi(t, x) =
(mω
π}

)1/4
ei[x·vi(t)+γi(t)+

ωt
2

]e−
mω
2} |x−xi(t)|

2
,

then the Simpson’s Paradox occurs in the following cases:

• in the stationary case, namely when vi(t) = 0 and xi(t) = xi for every t both when

γi = γj for every 1 ≤ i, j ≤ 4 and when γi 6= γj 1 ≤ i, j ≤ 4, i 6= j.

• in the non-stationary case, if there exists t0 ∈ R such that the Simpson’s Paradox

occurs at t0, then the Simpson’s Paradox occurs at any t1 with t1 6= t0 too.

For the choice of the measure of amalgamation for which the paradox occurs, we refer

to Subsection 3.2.2.3 and the following.

Remark 3.2.2. As it will become evident in the proof of the theorems, this phenomenon

appears at both semiclassical and anti-semiclassical scales. See Section 3.2.3 and Remark

3.2.19.

Remark 3.2.3. The fact that in the non-stationary case the Simpson’s Paradox when it

appears at a time t0, it persists for any time t1 6= t0 is due to the fact that the measure

of amalgamation that we choose is constant in time for the type of solutions that we are

considering. See Section 3.2.3 below.

Remark 3.2.4. This theorem can be seen as a criterion to avoid the paradox in the spirit

of [59]. In fact it is enough to avoid the paradox at time t = t̃ for some t̃ ∈ R to avoid the

paradox forever. This is a good property, because, the possibility of building contingency

tables which avoid the paradox, simplifies the interpretation of the data.
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This phenomenon is not an isolated phenomenon, namely close to solutions which

exhibit the Simpson’s Paradox, it is full of solutions which do the same. This is in fact

the content of the following theorem.

Theorem 3.2.5. [Stability of the Simpson’s Paradox]

Suppose that there exists a set of parameters (xi(t), γi(t), vi(t)) for i = 1, . . . , 4 such that

the Simpson’s Paradox occurs in the stationary case. Then, there exists r > 0 such that,

for every (x̃i(t), γ̃i(t), ṽi(t)) for i = 1, . . . , 4 inside Br((xi(t), γi(t), vi(t)), i = 1, . . . , 4),

the Simpson’s Paradox still occurs for initial data as in Theorem 3.2.1. Moreover, if the

Simpson’s Paradox occurs for a ψ(t, x) at a certain time t̃, then there exists and open ball

in Σ := L2(Rn, dx) ∩ L2(Rn, |x|2dx) such that the Simpson’s Paradox still occurs for any

ψ̄(t̃, x) = ψ(t̃, x) + w(t̃, x) with w(t̃, x) ∈ Σ and the same time t̃.

Moreover, the Simpson’s Paradox can be detected also in the case of a Focusing Non-

linear Schrödinger Equation (NLS) asymptotically in time, at least in the case of spatial

dimension n = 1. In this case though, the paradox is intermittent. See Section 3.2.8 for

more details.

Theorem 3.2.6. [Nonlinear case] Consider equationi ∂∂tψ(t, x) = −∆xψ(t, x)− |ψ(t, x)|p−1ψ(t, x), (t, x) ∈ R× Rn

ψ(0, x) = ψ0(x),

where n = 1, 1 < p < 1 + 4
n is the L2-subcritical exponent. Then, there exist initial

data ψ0(x) in the form of Multi-Solitons (see 3.2.10 below and [88]) for which there exists

t̃� 1 such that the Simpson’s Paradox occurs at time t̃.

Remark 3.2.7. For some comments about the nonlinear case in dimension n > 1, we

refer to Section 3.2.8.

The remaining part of the section is organized as follows. In Subsection 3.2.2, we

collect some preliminary results, like the construction of the general moving soliton for

the Harmonic Oscillator, the properties of the soliton and the construction of the multi-

soliton for the Nonlinear Schrödinger Equation and the discussion about the choice of the

measure of amalgamation. In Subsection 3.2.3, we first give the proof of Theorem 3.2.1 in

the case of dimension n = 1, both stationary and non-stationary case, and then we adapt

it to the case of spatial dimension n ≥ 2. In Subsection 3.2.4, we give the complete proof

of Theorem 3.2.5, while, in Subsection 3.2.5, we give the proof of Theorem 3.2.6. Finally,

we give some final considerations and talk about open problems in Subsection 3.2.8.
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3.2.2 Preliminaries

In this subsection, we collect some preliminary results that we will need in the proofs of

the theorems. We first construct The Moving Soliton Solution of the Quantum Harmonic

Oscillator, we discuss the properties of the soliton and the construction of the multi-soliton

for the Nonlinear Schrödinger Equation. In the last subsubsection, we discuss the chosen

Measure of Amalgamation.

3.2.2.1 The Moving Soliton Solution of the Quantum Harmonic Oscillator

We look for solutions which represent moving solitons, namely solutions of the form:

ψ(t, x) = u(x− x(t))ei[x·v(t)+γ(t)+ωt
2

] (3.2)

for a certain choice of u(x), x(t), v(t) and γ(t).

Theorem 3.2.8. There exists a solution of equation (3.1) of the form (3.2) with the

following conditions on u(x), x(t), v(t) and γ(t):

• the profile u(x) satisfies the equation

− }2

2m
∆u(x) +

1

2
mω2|x|2u(x) +

ω

2
u(x) = 0, x ∈ Rn; (3.3)

• the position vector x(t) and the velocity vector v(t) satisfy the following system of

ODE ẋ(t) = }
mv(t)

v̇(t) = −m
} ω

2x(t)
(3.4)

• the complex phase γ(t) is such that

γ̇(t) =
1

}
L(x(t), ẋ(t);m,ω),

where L(x(t), ẋ(t);m,ω) := 1
2m|ẋ(t)|2− 1

2mω
2|x(t)|2 is the Lagrangian of the system

of ODEs (3.4).

Proof. The strategy here is to take a general solution of the form

ψ(t, x) = u(x− x(t))ei[x·v(t)+γ(t)+ωt
2

],
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plug this ansatz into

i}
∂

∂t
ψ(t,x) = − }2

2m
∆ψ(t,x) +

1

2
mω2|x|2ψ(t,x) (t,x) ∈ (0,+∞)× Rn

and then choose the profile u(x) and the parameters x(t), v(t) and γ(t) such that the

equation (3.1) is satisfied. In the following, we will use the variable y defined by y :=

x − x(t). We start by computing all the derivatives involved in (3.1). First, the time

derivative:

∂

∂t
ψ(t,x) =

[
−ẋ · ∇yu(y) + iu(y)

(
v̇(t) · y + v̇(t) · x(t) + γ̇(t) +

mω

}

)]
ei[x·v(t)+γ(t)+ωt

2
].

Then, the spatial derivative with respect to xj , for every j = 1, . . . , n:

∂

∂xj
ψ(t,x) =

[
∂

∂yj
u(y) + ivj(t)u(y)

]
ei[x·v(t)+γ(t)+ωt

2
].

In the end, the second spatial derivative with respect to xj , for every j = 1, . . . , n:

∂2

∂x2
j

ψ(t,x) =

[
∂2

∂y2
j

u(y) + 2ivj(t)
∂

∂xj
u(y)− |vj(t)|2u(y)

]
ei[x·v(t)+γ(t)+ωt

2
].

Now, we can plug everything inside equation (3.1) and get:

i}
[
−ẋ · ∇yu(y) + iu(y)

(
v̇(t) · y + v̇(t) · x(t) + γ̇(t) +

ω

2

)]
= − }2

2m

[
∆yu(y) + 2iv(t) · ∇u(y)− |v(t)|2u(y)

]
+

1

2
mω2

[
|y|2 + 2x(t) · y + |x(t)|2

]
u(y),

since the coefficient ei[x·v(t)+γ(t)+ωt
2

] is never zero and appears in every term. Now, if we

impose that the profile u(x) satisfies the equation

− }2

2m
∆u(x) +

1

2
mω2|x|2u(x) +

}ω
2
u(x) = 0, x ∈ Rn,
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we are left with the identity:

i} [−ẋ · ∇yu(y) + iu(y)v̇(t) · (y + x(t) + γ̇(t))]

= − }2

2m

[
+2iv(t) · ∇u(y)− |v(t)|2u(y)

]
+

1

2
mω2

[
2x(t) · y + |x(t)|2

]
u(y).

Now, equating term by term, we obtain −i}ẋ · ∇yu(y) = −}2

m iv̇(t) · ∇yu(y) and hence

ẋ(t) =
}
m

v(t).

Moreover, we get −}v̇(t) · yu(y) = mω2x(t) · yu(y) and so

v̇(t)u(y) = −m
}
ω2x(t).

Now the remaining condition is

−} (v̇(t) · x(t) + γ̇(t)) =
}2

2m
|v(t)|2u(y) +

1

2
mω2|x(t)|2u(y),

which, using the other conditions, becomes

−γ̇(t) =
mω2

2}
|x(t)|2 − m

2}
|ẋ(t)|2

and so

γ̇(t) =
1

}
L(x(t), ẋ(t);m,ω),

with L(x(t), ẋ(t);m,ω) = 1
2m|ẋ(t)|2 − 1

2mω
2|x(t)|2. This concludes the proof of the theo-

rem.

Remark 3.2.9. The system ẋ(t) = }
mv(t)

v̇(t) = −m
} ω

2x(t)

can be reduced to the second order ODE:

ẍ + ω2x = 0, (3.5)

which has the explicit solutions

x(t) = x0 cos(ωt) +
}
m

v0

ω
sin(ωt), (3.6)
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where x0 is the initial position, v0 is the initial velocity, m the mass, } the Planck

Constant and ω is the frequency.

3.2.2.2 Existence of Solitons and Multisolitons for theNonlinear Schrödinger

Equation

In this subsubsection, we present the most complete results about the existence and

properties of a single soliton solutions for the Nonlinear Schrödinger Equation, mainly

due to Berestycki-Lions [11], Berestycki-Lions-Peletier [12], Gidas-Ni-Nirenberg [56] and

Kwong [75]. Moreover, we present a theorem by Martel and Merle [88] which proves the

existence of Multi-solitons solutions for such equation. We will not present the full proof

here, because it is involved, and we refer to [88] for more details. We consider the following

Nonlinear Schrödinger Equation

i ∂∂tψ(t, x) = −∆xψ(t, x)− |ψ(t, x)|p−1ψ(t, x), (t, x) ∈ R× Rn

ψ(0, x) = ψ0(x),
(3.7)

where n ≥ 1, 1 < p < 1 + 4
n is the L2-subcritical exponent. For this equation, there are

soliton solutions, which share very similar property with the solutions of (3.1). These

solutions are solitary waves of the form ψ(t, x) = eiωtQω(x) for some ω > 0 and where

Qω ∈ H1(Rn) is a solution of

∆Qω +Qpω = ωQω, Qω > 0. (3.8)

These solutions Qω can be computed explicitly in dimension n = 1 and take the form

Qω(x) = ω
1
p−1

 p+ 1

2 cosh2
(
p−1

2 ω
1
2x
)
p−1

,

up to symmetries. In any dimension n ≥ 1, they are radially symmetric, exponentially

decaying, unique up to symmetries and minimize the so called Energy Functional. We

refer to [11], [12], [56] and [75] for more details. By the symmetries of equation (3.7), for

any v0 ∈ Rn, x0 ∈ Rn and γ0 ∈ R

ψ(t, x) = Qω(x− x0 − v0t)e
i[ 1

2
v0·x− t4 |v0|2+ωt+γ0] (3.9)
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is still a solution of (3.7) and represents a soliton moving on the line x = x0 + v0t. In

this framework, we can state a theorem about the existence of multi-solitary waves for the

Subcritical NLS due to Martel-Merle [88].

Theorem 3.2.10. [88] Let 1 < p < 1 + 4/n. Let K ∈ N∗. For any k ∈ {1, . . . ,K}, let

ωk > 0, vk ∈ Rn and γ0
k ∈ R. Assume that for any k 6= k′, we have vk 6= vk′. Let

Rk(t, x) = Qωk(x− x0
k − v0

kt)e
i[ 1

2
v0
k·x−

t
4
|v0
k|

2+ωkt+γ
0
k].

Then, there exists an H1(Rn) solution U(t) of (3.7) such that, for all t ≥ 0, we have:

∥∥U(t)− ΣK
k=1Rk(t)

∥∥
H1(Rn)

≤ Ce−θ0t

for some θ0 > 0 and C > 0.

3.2.2.3 Measure of Amalgamation

In the following, we consider the problem of amalgamation in the context of Partial Dif-

ferential Equations (PDEs). We use the following measure of amalgamation.

Definition 3.2.11. Consider two solutions ψ(t,x) and φ(t,x) of equation (3.1). The

Measure of Correlation between ψ(t,x) and φ(t,x) is given by

Corr(ψi(t, x), ψj(t, x)) =
Cov(ψi(t, x), ψj(t, x))

V ar(ψi(t, x))
1
2V ar(ψj(t, x))

1
2

, (3.10)

where

Cov(ψi(t,x), ψj(t,x)) := <
∫
Rn

(x− µi)(x− µj)ψi(t,x)ψ̄i(t,x)dx (3.11)

Remark 3.2.12. We will actually use mainly the Covariance Cov(ψi(t,x), ψj(t,x)), in-

stead of the Measure of Correlation Corr(ψi(t, x), ψj(t, x)) for the following reasons.

First of all, here it is not important to have a measure of homogeneity 0 (see [59]), because

(similarly as in the two body problem) the bigger the mass of the solutions is, the more the

attraction between the solutions increases and so it makes sense to take this into account

in our Measure of Amalgamation.

Second, since we chose the constants in order to make the solitons all of mass one, we

could simply divide Cov(ψi(t,x), ψj(t,x)) by the masses of each solutions to get something
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of homogeneity zero (be careful that this would not be equal to Corr(ψi(t, x), ψj(t, x))).

Third, this choice makes the computations less obscure, since they are already involved.

This Measure of Amalgamation seems different from the discussed in [59] and from the

structure outlined above. Here we see how, in fact, this measure is not that dissimilar.

Consider two solitons ψi = ρie
iθi = <(ψi) + iIm(ψi), i = 1, 2. Then, build the following

contingency table

a = [ρ1 cos(θ1), ρ1 sin(θ1); ρ2 cos(θ2), ρ2 sin(θ2)].

Take as measure of amalgamation α(a) = det(a), so α(a) = ρ1ρ2 sin(θ1 − θ2). Now since

there is an in some sense ”hidden variable x”, we integrate over it and get the correlation

Cov(ψi(t,x), ψj(t,x)), apart from a translation in the phase of π
2 . This small adjustment

in the phase is due to the fact that we want to have the highest amalgamation when the

solitons are multiples one of the other and minimal when the phase is opposite.

Remark 3.2.13. One could argue that a paradoxical situation appears also when

Cov(ψ1(t,x), ψ2(t,x)) << −1.

and

0 ≤ Cov(ψ3(t,x), ψ4(t,x)) << 1

but

Cov(ψ1(t,x) + ψ3(t,x), ψ2(t,x) + ψ4(t,x)) ≥ 0.

This makes perfect sense, but it is not how the Simpson’s Paradox has been defined in the

literature. See for example [94].

3.2.3 Proof of Theorem 3.2.1

In this subsection, we give the proof of Theorem 3.2.1. We will divide it in different

subsubsections accordingly to the space dimension and if the case is stationary or non-

stationary.

3.2.3.1 The case n = 1

In this subsubsection, we consider the case of spatial dimension n = 1.

Remark 3.2.14. In spatial dimension n = 1, the solutions of equation (3.3) can be

computed explicitly. In fact, just by plugging in the equation the ansatz, the solutions can
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be verified to be

u(x) = e−
mω
2} x

2
.

Since equation (3.1) and (3.3) are linear equations, then every multiple of a solution is

still a solution. For normalizing reasons, in the following we will consider the following

solution

u(x) =
(mω
π}

)1/4
e−

mω
2} x

2
.

3.2.3.2 The stationary case

In this subsubsection, we will always assume x(t) = xi with xi ∈ R independent of time

for any i = 1, . . . , 4. We recall the definition of Measure of Correlation that we will use.

Definition 3.2.15. Consider two solutions ψ(t,x) and φ(t,x) of equation (3.1). The

Measure of Correlation between ψ(t,x) and φ(t,x) is given by

Corr(ψi(t,x), ψj(t,x)) =
Cov(ψi(t,x), ψj(t,x))

V ar(ψi(t,x))
1
2V ar(ψj(t,x))

1
2

,

where

Cov(ψi(t,x), ψj(t,x)) := <
∫
Rn

(x− µi)(x− µj)ψi(t,x)ψi(t,x)dx

Now, we are ready to compute the Measure of Correlation for two solitons in spatial

dimension n = 1 and in the stationary case.

Proposition 3.2.16. Consider two moving solitons:

ψi(t, x) =
(mω
π}

)1/4
ei[x·vi(t)+γi(t)+

ωt
2

]e−
mω
2} |x−xi(t)|

2
,

and

ψj(t, x) =
(mω
π}

)1/4
ei[x·vj(t)+γj(t)+

ωt
2

]e−
mω
2} |x−xj(t)|

2
,

for 1 ≤ i ≤ j ≤ 4 and with x(t), v(t) and γ(t) as in Theorem 3.2.8. Consider the case

in which, for every t ∈ R, one has that xk(t) = xk, for every k = 1, . . . , N independent of

time. Then, the Covariance between these two solitons is given by:

Cov(ψi(t, x), ψj(t, x)) =
1

2
cos(γi − γj)

[
}
mω
− 1

2
|xi − xj |2

]
e−

mω
4} |xi−xj |

2
(3.12)
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Proof. We need to use the definition of Covariance and the shape of the solitons.

Cov(ψi(t, x), ψj(t, x)) = <
∫
Rn

(x− µi)(x− µj)ψi(t,x)ψi(t,x)dx

=
(mω
π}

)1/2
<
∫
R

(x− µi)(x− µj)ei[γi+
ωt
2
−γj−ωt2 ]e−

mω
2} |x−xi(t)|

2−mω
2} |x−xj(t)|

2
dx

=
(mω
π}

)1/2
<ei[γi−γj ]

∫
R

(x− µi)(x− µj)e−
mω
2} [2x2−2x(xi+xj)+x

2
i+x

2
j ]dx

=
(mω
π}

)1/2
e−

mω
2} [x2

i+x
2
j ]<ei[γi−γj ] ×

×
∫
R

(x− µi)(x− µj)e−
mω
} [x2−x(xi+xj)+

1
4

(xi+xj)
2]+mω

4} (xi+xj)
2
dx

=
(mω
π}

)1/2
e−

mω
2} [x2

i+x
2
j ]+

mω
4} (xi+xj)

2

cos(γi − γj)

×
∫
R

(x− µi)(x− µj)e−
mω
} |x− 1

2
(xi+xj)|2dx.

Now, by changing variables to y = x− xi+xj
2 and using the precise value of µi (See Lemma

3.2.21 below), we get:

Cov(ψi(t, x), ψj(t, x)) =(mω
π}

)1/2
e−

mω
4} |xi−xj |

2
cos(γi − γj)

×
∫
R

(
y +

xi + xj
2

− xi
)(

y +
xi + xj

2
− xj

)
e−

mω
} |y|

2

dy

=
(mω
π}

)1/2
e−

mω
4} |xi−xj |

2
cos(γi − γj)

∫
R

(
y2 − (xi − xj)2

4

)
e−

mω
} |y|

2

dy

=
(mω
π}

)1/2
e−

mω
4} |xi−xj |

2
cos(γi − γj) (I1 − I2)

with

I1 =

∫
R
y2e−

mω
} y2

dy.

and

I2 =

∫
R

(xi − xj)2

4
e−

mω
} y2

dy.

In both I1 and I2 we use the change of variables z = y
(
mω
π}
)1/2

, which implies y =
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(
mω
π}
)−1/2

z and so dy =
(
mω
π}
)−1/2

dz. This leads to

I1 =

∫
R
y2e−

mω
} y2

dy =
(mω

}

)−1
∫
R
z2e−z

2
(mω

}

)−1/2
dz =

(mω
}

)−3/2 π1/2

2

and to

I2 =

∫
R

(xi − xj)2

4
e−

mω
} y2

dy

=
(mω

}

)−1/2 (xi − xj)2

4

∫
R
e−z

2
dz =

(mω
}

)−1/2 (xi − xj)2

4
π

1
2 .

Now, putting everything together, we get

Cov(ψi(t, x), ψj(t, x)) =
(mω
π}

)1/2
e−

mω
4} |xi−xj |

2
cos(γi − γj) (I1 − I2)

=
(mω
π}

)1/2
e−

mω
4} |xi−xj |

2
cos(γi − γj)

((mω
}

)−3/2 π1/2

2
− (xi − xj)2

4

(mω
}

)−1/2
π

1
2

)

=
1

2
cos(γi − γj)

[
}
mω
− 1

2
|xi − xj |2

]
e−

mω
4} |xi−xj |

2
.

This completes the proof.

Corollary 3.2.17. Consider two moving solitons:

ψi(t, x) =
(mω
π}

)1/4
ei[x·vi(t)+γi(t)+

ωt
2

]e−
mω
2} |x−xi(t)|

2
,

and

ψj(t, x) =
(mω
π}

)1/4
ei[x·vj(t)+γj(t)+

ωt
2

]e−
mω
2} |x−xj(t)|

2
,

for 1 ≤ i ≤ j ≤ 4 and with x(t), v(t) and γ(t) as in Theorem 3.2.8. Consider the case

in which, for every t ∈ R, one has that xk(t) = xk, for every k = 1, . . . , 4 independent of

time. Then, the Measure of Correlation between these two solitons is given by:

Corr(ψi(t, x), ψj(t, x)) = cos(γi − γj)
[
1− mω

2}
|xi − xj |2

]
e−

mω
4} |xi−xj |

2
.

Proof. Since

Cov(ψi(t, x), ψj(t, x)) =
1

2
cos(γi − γj)

[
}
mω
− 1

2
|xi − xj |2

]
e−

mω
4} |xi−xj |

2
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and V ar(ψi(t, x)) = V ar(ψj(t, x)) = }
2mω (See Lemma 3.2.22 below), then, by definition

of Measure of Correlation, one gets

Corr(ψi(t, x), ψj(t, x)) =
Cov(ψi(t, x), ψj(t, x))

V ar(ψi(t, x))
1
2V ar(ψj(t, x))

1
2

= cos(γi − γj)
[
1− mω

2}
|xi − xj |2

]
e−

mω
4} |xi−xj |

2
.

This completes the proof of the corollary.

Now, we are ready to show that, with a proper choice of the parameters, the Simpson’s

Paradox occurs.

Proof of Theorem 3.2.1. The proof consists in finding parameters such that the Simpson’s

Reversal occurs, namely such that

Cov(ψ1(t, x), ψ2(t, x)) > 0,

Cov(ψ3(t, x), ψ4(t, x)) > 0

but

Cov(ψ1(t, x) + ψ3(t, x), ψ2(t, x) + ψ4(t, x)) < 0

or vice versa,

Cov(ψ1(t, x), ψ2(t, x)) < 0,

Cov(ψ3(t, x), ψ4(t, x)) < 0

but

Cov(ψ1(t, x) + ψ3(t, x), ψ2(t, x) + ψ4(t, x)) > 0.

Now, we define

L2
ij :=

mω

2}
|xi − xj |2

so that Cov(ψi(t, x), ψj(t, x)) can be rewritten in the following way:

Cov(ψi(t, x), ψj(t, x)) =
}

2mω
cos(γi − γj)

[
1− L2

ij

]
e−

1
2
L2
ij .

First, we treat the case γi = γj , for every i, j = 1, . . . , 4. We can restate our hypotheses

and thesis in the following way: we suppose that 0 < L12 < 1 and 0 < L34 < 1 and we

have to prove that there exists an admissible choice of 0 < L12 < 1 and 0 < L34 < 1, L23
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and L14 such that

[
1− L2

12

]
e−

1
2
L2

12 +
[
1− L2

23

]
e−

1
2
L2

23 +
[
1− L2

34

]
e−

1
2
L2

34 +
[
1− L2

14

]
e−

1
2
L2

14 < 0.

Since we are in dimension n = 1, we can choose x1 < x2 < x3 < x4. This implies that

L14 = L12 + L23 + L34 and so that we have to find an admissible choice of 0 < L12 < 1

and 0 < L34 < 1 and L23 such that

[
1− L2

12

]
e−

1
2
L2

12 +
[
1− L2

23

]
e−

1
2
L2

23 +

+
[
1− L2

34

]
e−

1
2
L2

34 +
[
1− (L12 + L23 + L34)2

]
e−

1
2

(L12+L23+L34)2
< 0.

We choose L2
12 = 1− ε21, so that Cov(ψ1(t, x), ψ2(t, x)) > 0,, L2

34 = 1− ε22 so that

Cov(ψ3(t, x), ψ4(t, x)) > 0, and L2
23 = 1 + δ2 with ε1 << 1, ε2 << 1. Therefore, we get:

ε21e
− 1

2
(1−ε21) − δ2e−

1
2

(1+δ2) + ε22e
− 1

2
(1−ε22) +

+

[
1−

(√
1− ε21 +

√
1− ε22 +

√
1 + δ2

)2
]
e
− 1

2

(√
1−ε21+

√
1−ε22+

√
1+δ2

)2

< 0.

Now, notice that
(√

1− ε21 +
√

1− ε22 +
√

1 + δ2
)2

> 1 and so that

[
1− (

√
1− ε21 +

√
1− ε22 +

√
1 + δ2)2

]
e
− 1

2

(√
1−ε21+

√
1−ε22+

√
1+δ2

)2

< 0.

This implies that we just need to find ε1, ε2 and δ such that

ε21e
− 1

2
(1−ε21) − δ2e−

1
2

(1+δ2) + ε22e
− 1

2
(1−ε22) < 0

to have that Simpson’s Paradox occurs. We choose ε1 = ε2 = α > 0 and δ = kα > 0 and

so we just need to find k and α such that

2α2e−
1
2

(1−α2) − k2α2e−
1
2

(1+(kα)2) < 0.

Reorganizing all the terms and taking the logarithm to both sides of the inequality, one

finds that, if one chooses k and α such that

α2 <
2 log

(
k2

2

)
k2 + 1

,

138



then the Simpson’s Paradox occurs. It is enough to choose for example α = 10−100 and

k = 100 and both α2 <
2 log

(
k2

2

)
k2+1

and 0 < kα < 1 are satisfied. This concludes the proof

of the case γi = γj , for every i, j = 1, . . . , 4 in spatial dimension n = 1.

Now, we pass to the case γi = γj if and only if i = j, i, j = 1, . . . , 4.

Recall that we defined

Lij :=
mω

2}
|xi − xj |2

and so Cov(ψi(t, x), ψj(t, x)) can be rewritten in the following way:

Cov(ψi(t, x), ψj(t, x)) =
}

2mω
cos(γi − γj)

[
1− L2

ij

]
e−

1
2
L2
ij .

for every i, j = 1, . . . , 4. We assume that

Cov(ψ1(t, x), ψ2(t, x)) > 0,

and that

Cov(ψ3(t, x), ψ4(t, x)) > 0

and want to prove that it can happen that

Cov(ψ1(t, x) + ψ3(t, x), ψ2(t, x) + ψ4(t, x)) < 0.

We choose γ2 − γ1 = π
2 − ε and γ4 − γ3 = π

2 − ε with 0 < ε << 1. With this we get:

2mω

}
Cov(ψ1(t, x) + ψ3(t, x), ψ2(t, x) + ψ4(t, x)) =

cos(γ2 − γ1)[1− L2
12]e−

1
2
L2

12 + cos(γ3 − γ2)[1− L2
23]e−

1
2
L2

23

+ cos(γ4 − γ3)[1− L2
34]e−

1
2
L2

34 + cos(γ1 − γ4)[1− L2
41]e−

1
2
L2

41 =

sin(ε)[1− L2
12]e−

1
2
L2

12 + cos(γ3 − γ2)[1− L2
23]e−

1
2
L2

23

+ sin(ε)[1− L2
34]e−

1
2
L2

34 + cos(γ1 − γ4)[1− L2
41]e−

1
2
L2

41 .

Now, we choose γ3 − γ2 = π − δ and so this implies that

γ4 − γ1 = γ4 − γ3 + γ3 − γ2 + γ2 − γ1 =
π

2
− ε+ π − δ +

π

2
− ε = 2π − (2ε+ δ).
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Therefore, we obtain:

2mω

}
Cov(ψ1(t, x) + ψ3(t, x), ψ2(t, x) + ψ4(t, x)) =

sin(ε)[1− L2
12]e−

1
2
L2

12 + cos(γ3 − γ2)[1− L2
23]e−

1
2
L2

23

+ sin(ε)[1− L2
34]e−

1
2
L2

34 + cos(γ1 − γ4)[1− L2
41]e−

1
2
L2

41 =

sin(ε)[1− L2
12]e−

1
2
L2

12 + cos(π − δ)[1− L2
23]e−

1
2
L2

23

+ sin(ε)[1− L2
34]e−

1
2
L2

34 + cos(2ε+ δ)[1− L2
41]e−

1
2
L2

41 .

Now, we can choose L12 = L23 = L34 = L < 1 (which implies L14 = 3L), so that we

get

2mω

}
Cov(ψ1(t, x) + ψ3(t, x), ψ2(t, x) + ψ4(t, x)) =

sin(ε)[1− L2
12]e−

1
2
L2

12 + cos(π − δ)[1− L2
23]e−

1
2
L2

23

+ sin(ε)[1− L2
34]e−

1
2
L2

34 − cos(2ε+ δ)[1− L2
41]e−

1
2
L2

41 =

2 sin(ε)[1− L2]e−
1
2
L2 − cos(δ)[1− L2]e−2L2

+ cos(2ε+ δ)[1− 9L2]e−
9
2
L2
.

for ε > 0 . So, if you choose ε and δ small enough and 1
3 < L < 1 but L ' 1, we get

2mω

}
Cov(ψ1(t, x) + ψ3(t, x), ψ2(t, x) + ψ4(t, x)) =

2 sin(ε)[1− L2]e−
1
2
L2 − cos(δ)[1− L2]e−2L2

+ cos(2ε+ δ)[1− 9L2]e−
9
2
L2

' −8e−9/2 < 0.

and so we get

Cov(ψ1(t, x) + ψ3(t, x), ψ2(t, x) + ψ4(t, x)) < 0,

This completes the proof of the case γi = γj if and only if i = j, i, j = 1, . . . , 4. So the

proof of the stationary case in dimension n = 1 is complete.

Remark 3.2.18. In the case of the contingency tables, one encounters matrices of the

form

Ai = [ai, bi; ci, di],

with i = 1, 2. Using the notation of these chapters, this means that ”Cov(Ai, Aj) =

sin(γi − γj)ρiρj” if you rewrite Ai in polar form: ai = ρi cos(γi), bi = ρi sin(γi), ci =
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aj = ρjcos(γj) and di = bj = ρj sin(γj). So, we have a Measure of Amalgamation of

the form Cov(ψ1(t, x), ψ2(t, x)) = R(ρi, ρj)Θ(γi − γj) (a radial part times an angular

part). This structure is very similar to that of the Quantum Harmonic Oscillator. The

difference is that, in the case of the Quantum Harmonic Oscillator, one has R(ρi, ρj) =

|ρi − ρj |2e−
|ρi−ρj |

2

2 , not always increasing in ρi, ρj and this is due to the tail interaction

between the quantum particles, which is absent in the usual contingency table case where

we get R(ρi, ρj) = ρiρj.

Remark 3.2.19. The case when Lij > 1, namely when

} <
mω

2
|xi − xj |2

is the Semiclassical Regime, namely the regime where the Planck Constant } is smaller

the all the other physical quantities present. We call the case when Lij = 1, namely when

} =
mω

2
|xi − xj |2

Uncorrelation Regime, since in this case, due to a non-trivial interplay between the physical

quantities one has uncorrelation of the solitons (Cov(ψi(t, x), ψj(t, x))=0). When Lij < 1,

namely when

} >
mω

2
|xi − xj |2

we will talk about Anti-Semiclassical Regime, because now certain physical constants are

even smaller than the Planck Constant }. We underline that, in the case γi = γj for

any i, j = 1, . . . , n, the Quantum Effect becomes evident because the angles between the

solitons do not play a role, as in the classical (usual contingency tables regime) case, but

it is the presence of both the Semiclassical Regime and the Anti-Semiclassical Regime that

cause the Simpson’s Paradox.

Remark 3.2.20. One can read the Simpson’s Paradox as the following fact. Even if the

soliton ψ1 repels ψ3 (Cov(ψi(t, x), ψj(t, x)) < 0) and ψ2 repels ψ4 (Cov(ψi(t, x), ψj(t, x)) <

0), the multi-soliton ψ1 + ψ3 can attract ψ2 + ψ4 (Cov(ψi(t, x), ψj(t, x)) > 0). Similarly

by reversing all the inequalities.

3.2.3.3 The non-stationary case n = 1

Now, we pass to the non-stationary case in spatial dimension n = 1. Consider moving

solitons of the form

ψi(t, x) =
(mω
π}

)1/4
ei[x·vi(t)+γi(t)+

ωt
2

]e−
mω
2} |x−xi(t)|

2
, (3.13)
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for i = 1, . . . , N with N the number of solitons and with x(t), v(t) and γ(t) as in Theorem

3.2.8. For these objects, we compute how the center of Mass moves and how the Variance

changes under the evolution of (3.1).

Lemma 3.2.21. The center of Mass of each ψi(t, x) as defined in (3.13) is given by

µi :=

∫
R
x|ψ(t, x)|2dx = xi(t), (3.14)

for every i = 1, . . . , N .

Proof. First, we recall the following fact about integrals involving Gaussians

∫
R
e−ax

2
dx =

(∫
R2

e−a(x2+y2)dxdy

) 1
2

= (2π)1/2

(∫ +∞

0
e−aρ

2
ρdρ

) 1
2

= −
(π
a

) 1
2
e−aρ

2
∣∣∣+∞
0

=
(π
a

) 1
2
,

for every a > 0. Therefore, for every i = 1, . . . , N and using the change of variables

y := x− x(t), we have

µi :=

∫
R
x|ψ(t, x)|2dx =

(mω
π}

) 1
2

∫
R
xe−

mω
} [x−xi(t)]2dx

=
(mω
π}

) 1
2

∫
R

[y + xi(t)]e
−mω} y2

dy

=
(mω
π}

) 1
2

∫
R
x(t)e−

mω
} y2

dy = xi(t).

Lemma 3.2.22. The Variance of each ψi(t, x) as defined in (3.13) is given by

V ar(ψi(t, x)) :=

∫
R
|x|2|ψ(t, x)|2dx−

(∫
R
x|ψ(t, x)|2dx

)2

=
}

2mω
, (3.15)

for every i = 1, . . . , N .

Proof. First of all we notice that(∫
R
x|ψ(t, x)|2dx

)2

= |µi|2 = |xi(t)|2

and so we need to compute just
∫
R |x|

2|ψ(t, x)|2dx.
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V ar(ψi(t, x)) := −|xi(t)|2 +

∫
R
|x|2|ψ(t, x)|2dx

= −|xi(t)|2 +
(mω
π}

)1/2
∫
R
|x|2e−

mω
} [x−xi(t)]2dx

= −|xi(t)|2 +
(mω
π}

)1/2
∫
R

[|y|2 + 2xi(t)y + |xi(t)|2]e−
mω
} y2

dy

= −|xi(t)|2 +
(mω
π}

)1/2
∫
R

[|y|2 + |xi(t)|2]e−
mω
} y2

dy

= (1− 1)|xi(t)|2 +
(mω
π}

)1/2
∫
R
|y|2e−

mω
} y2

dy =
(mω
π}

)1/2
∫
R
|y|2e−

mω
} y2

dy

=
(mω

}

)1/2−1−1/2
π−1/2

∫
R
|z|2e−z2

dz =
}

2mω
.

Remark 3.2.23. These last two lemmas are in accordance with the fact that solitons are

entities which travel linearly in space and do not spread spatially over time.

Now, we can compute how the Measure of Correlation between two solitons vary over

time.

Proposition 3.2.24. Consider two moving solitons:

ψi(t, x) =
(mω
π}

)1/4
ei[x·vi(t)+γi(t)+

ωt
2

]e−
mω
2} |x−xj(t)|

2
,

and

ψj(t, x) =
(mω
π}

)1/4
ei[x·vj(t)+γj(t)+

ωt
2

]e−
mω
2} |x−xj(t)|

2
,

for 1 ≤ i ≤ j ≤ N and with x(t), v(t) and γ(t) as in Theorem 3.2.8. Then, the Covariance

between these two solitons is given by:

Cov(ψi(t, x), ψj(t, x)) = e−
mω
4} [xi(t)−xj(t)]2− m

4ω} [ẋi(t)−ẋj(t)]2 × (3.16)

×1

2
cos
{
i[γi(t)− γj(t)−

m

2}
(ẋi(t)− ẋj(t))(xi(t) + xj(t))]

}
×(3.17)

×
(

}
mω
−
(
|ẋi(t)− ẋj(t)|2

2ω2
+

1

2
|xi(t)− xj(t)|2

))
. (3.18)

143



Proof. Again, we need to use the definition of Covariance and the shape of the solitons.

Cov(ψi(t, x), ψj(t, x)) = <
∫
Rn

(x− µi)(x− µj)ψi(t,x)ψi(t,x)dx

=
(mω
π}

)1/2
×

×<
∫
R

(x− µi)(x− µj)ei[γi(t)+
ωt
2
−γj(t)−ωt2 +ixvi(t)−ixvj(t)]e−

mω
2} |x−xi(t)|

2−mω
2} |x−xj(t)|

2
dx

Now, we reorganize the exponent of the exponential:

ix(vi(t)− vj(t))−
mω

2}
|x− xi(t)|2 −

mω

2}
|x− xj(t)|2 =

i
m

}
x(ẋi(t)− ẋj(t))−

mω

2}
[
2|x|2 − 2x(xi(t) + xj(t)) + |xi(t)|2 + |xj(t)|2

]
=

−mω
2}
[
|xi(t)|2 + |xj(t)|2

]
+
mω

4}

(
(xi(t) + xj(t)−

i

ω
(ẋi(t)− ẋj(t))

)2

−mω
}

[
|x|2 − x

(
xi(t) + xj(t)−

i

ω
(ẋi(t)− ẋj(t))

)]
−mω

}

[
1

4

(
xi(t) + xj(t)−

i

ω
(ẋi(t)− ẋj(t)

)2
]

= −mω
4}

[
2|xi(t)|2 + 2|xj(t)|2 − |xi(t) + xj(t)|2 +

|ẋi(t)− ẋj(t)|2

ω2

]
− im

2}
(xi(t) + xj(t)) (ẋi(t)− ẋj(t))

−mω
}

[
x− 1

2

(
xi(t) + xj(t)−

i

ω
(ẋi(t)− ẋj(t)

)]2

= −mω
4}
|xi(t)− xj(t)|2 −

m

4ω}
|ẋi(t)− ẋj(t)|2

mω

}
|y|2 − im

2}
(xi(t) + xj(t))(ẋi(t)− ẋj(t)),

by changing variables to y = x− xi(t)+xj(t)− i
ω

[ẋi(t)−ẋj(t)]
2 . So, we get
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Cov(ψi(t, x), ψj(t, x)) =(mω
π}

)1/2
e−

mω
4} [xi(t)−xj(t)]2− m

4ω} [ẋi(t)−ẋj(t)]2<
{
ei[γi(t)−γj(t)−

m
2} (ẋi(t)−ẋj(t))(xi(t)+xj(t))] ×

×
∫
R

(
y +

xi(t) + xj(t)− i
ω [ẋi(t)− ẋj(t)]

2
− xi

)
×

×

(
y +

xi(t) + xj(t)− i
ω [ẋi(t)− ẋj(t)]

2
− xj

)
e−

mω
} |y|

2

dy
}

=

(mω
π}

)1/2
e−

mω
4} [xi(t)−xj(t)]2− m

4ω} [ẋi(t)−ẋj(t)]2<
{
ei[γi(t)−γj(t)−

m
2} (ẋi(t)−ẋj(t))(xi(t)+xj(t))] ×

×
∫
R

(
y +
− i
ω [ẋi(t)− ẋj(t)]

2
+
xi(t)− xj(t)

2

)
×

×

(
y +
− i
ω [ẋi(t)− ẋj(t)]

2
− xi(t)− xj(t)

2

)
e−

mω
} |y|

2

dy
}

=

(mω
π}

)1/2
e−

mω
4} [xi(t)−xj(t)]2− m

4ω} [ẋi(t)−ẋj(t)]2<
{
ei[γi(t)−γj(t)−

m
2} (ẋi(t)−ẋj(t))(xi(t)+xj(t))] ×

×
∫
R

(
|y|2 − |ẋi(t)− ẋj(t)|

2

4ω2
− 1

4
|xi(t)− xj(t)|2 −

i

ω
y(ẋi(t)− ẋj(t))

)
e−

mω
} |y|

2

dy
}

=(mω
π}

)1/2
e−

mω
4} [xi(t)−xj(t)]2− m

4ω} [ẋi(t)−ẋj(t)]2<
{
ei[γi(t)−γj(t)−

m
2} (ẋi(t)−ẋj(t))(xi(t)+xj(t))] ×

×
∫
R

(
|y|2 − |ẋi(t)− ẋj(t)|

2

4ω2
− 1

4
|xi(t)− xj(t)|2

)
e−

mω
} |y|

2

dy
}

=(mω
π}

)1/2
e−

mω
4} [xi(t)−xj(t)]2− m

4ω} [ẋi(t)−ẋj(t)]2 ×

× cos
{
i[γi(t)− γj(t)−

m

2}
(ẋi(t)− ẋj(t))(xi(t) + xj(t))]

}
(J1 − J2)

with

J1 =

∫
R
y2e−

mω
} y2

dy.

and

J2 = −
(
|ẋi(t)− ẋj(t)|2

4ω2
+

1

4
|xi(t)− xj(t)|2

)∫
R
e−

mω
} y2

dy.

In both J1 and J2, we use the change of variables z = y
(
mω
π}
)1/2

, which implies y =(
mω
π}
)−1/2

z and so dy =
(
mω
π}
)−1/2

dz. This leads to

J1 =

∫
R
y2e−

mω
} y2

dy =
(mω

}

)−1
∫
R
z2e−z

2
(mω

}

)−1/2
dz =

(mω
}

)−3/2 π1/2

2
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and to

J2 =

∫
R

(
|ẋi(t)− ẋj(t)|2

4ω2
+

1

4
|xi(t)− xj(t)|2

)
e−

mω
} y2

dy (3.19)

=
(mω

}

)−1/2
(
|ẋi(t)− ẋj(t)|2

4ω2
+

1

4
|xi(t)− xj(t)|2

)∫
R
e−z

2
dz (3.20)

=
(mω

}

)−1/2
(
|ẋi(t)− ẋj(t)|2

4ω2
+

1

4
|xi(t)− xj(t)|2

)
π

1
2 . (3.21)

Now, putting everything together, we get

Cov(ψi(t, x), ψj(t, x)) =(mω
π}

)1/2
e−

mω
4} [xi(t)−xj(t)]2− m

4ω} [ẋi(t)−ẋj(t)]2 ×

× cos
{
i[γi(t)− γj(t)−

m

2}
(ẋi(t)− ẋj(t))(xi(t) + xj(t))]

}
(J1 − J2) =(mω

π}

)1/2
e−

mω
4} [xi(t)−xj(t)]2− m

4ω} [ẋi(t)−ẋj(t)]2 ×

× cos
{
i[γi(t)− γj(t)−

m

2}
(ẋi(t)− ẋj(t))(xi(t) + xj(t))]

}
×

×

((mω
}

)−3/2 π1/2

2
−
(mω

}

)−1/2
(
|ẋi(t)− ẋj(t)|2

4ω2
+

1

4
|xi(t)− xj(t)|2

)
π

1
2

)
=

e−
mω
4} [xi(t)−xj(t)]2− m

4ω} [ẋi(t)−ẋj(t)]2 ×

×1

2
cos
{

[γi(t)− γj(t)−
m

2}
(ẋi(t)− ẋj(t))(xi(t) + xj(t))]

}
×

×
(

}
mω
−
(
|ẋi(t)− ẋj(t)|2

2ω2
+

1

2
|xi(t)− xj(t)|2

))
.

This completes the proof.

Remark 3.2.25. This Measure of Amalgamation seems to depend on time, but it actually

does not as we will see in the proof of Theorem 3.2.1 (the non-stationary case), just after

the next corollary. A crucial role is played by the explicit formula of the solutions of the

Classical Harmonic Oscillator (3.5).

As in the stationary case, we can deduce the following.

Corollary 3.2.26. Consider two moving solitons:

ψi(t, x) =
(mω
π}

)1/4
ei[x·vi(t)+γi(t)+

mωt
} ]e−

mω
2} |x−xj(t)|

2
,
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and

ψj(t, x) =
(mω
π}

)1/4
ei[x·vj(t)+γj(t)+

mωt
2} ]e−

mω
2} |x−xj(t)|

2
,

for 1 ≤ i ≤ j ≤ N and with x(t), v(t) and γ(t) as in Theorem 3.2.8. Then, the Measure

of Correlation between these two solitons is given by:

Corr(ψi(t, x), ψj(t, x)) = e−
mω
4} [xi(t)−xj(t)]2− m

4ω} [ẋi(t)−ẋj(t)]2 ×

× cos
{
i[γi(t)− γj(t)−

m

2}
(ẋi(t)− ẋj(t))(xi(t) + xj(t))]

}
×

×
(

1− mω

}

(
|ẋi(t)− ẋj(t)|2

2ω2
+

1

2
|xi(t)− xj(t)|2

))
.

Proof. It follows the same line of the stationary case and so we omit it.

Now, we are ready to prove that, in the non-stationary case and for solitons, the

Simpson’s Paradox is persistent in time for the Quantum Harmonic Oscillator.

Proof of Theorem 3.2.1-Non-stationary case. The proof consists in showing that for every

t ∈ R
Cov(ψi(t, x), ψj(t, x)) = Cov(ψi(0, x), ψj(0, x))

and then conclude by the bi-linearity of the measure of amalgamation. We recall that

Cov(ψi(t, x), ψj(t, x)) =

e−
mω
4} [xi(t)−xj(t)]2− m

4ω} [ẋi(t)−ẋj(t)]2 ×

×1

2
cos
{

[γi(t)− γj(t)−
m

2}
(ẋi(t)− ẋj(t))(xi(t) + xj(t))]

}
×

×
(

}
mω
−
(
|ẋi(t)− ẋj(t)|2

2ω2
+

1

2
|xi(t)− xj(t)|2

))
.

At this point, we just need to compute each time dependent term and see that it is the

same as the one at time t = 0. This is done taking advantage of the explicit form of the

solutions of the Harmonic Oscillator (3.5). First of all, we know that x(t) is of the form

x(t) = α cos(ωt) +
β

ω
sin(ωt)

for some α ∈ R and β ∈ R and so that

ẋ(t) = −ωα sin(ωt) + β cos(ωt).
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Therefore,

|xi(t)− xj(t)|2 +
1

ω2
|ẋi(t)− ẋj(t)|2

= |αi cos(ωt) +
βi

ω
sin(ωt)− αj cos(ωt)− βj

ω
sin(ωt)|2 +

1

ω2
| − ωαi sin(ωt) + βi cos(ωt) + ωαj sin(ωt)− βj cos(ωt)|2 =

|αi − αj |2 cos2(ωt) +
1

ω2
|βi − βj |2 sin2(ωt)

+
2

ω
(αi − αj)(βi − βj) cos(ωt) sin(ωt) +

|αi − αj |2 sin2(ωt) +
1

ω2
|βi − βj |2 cos2(ωt)

− 2

ω
(αi − αj)(βi − βj) cos(ωt) sin(ωt) =

|αi − αj |2 +
1

ω2
|βi − βj |2.

Therefore, we have that

e−
mω
4} [xi(t)−xj(t)]2− m

4ω} [ẋi(t)−ẋj(t)]2 ×
(

}
mω
−
(
|ẋi(t)− ẋj(t)|2

2ω2
+

1

2
|xi(t)− xj(t)|2

))
=

e
−mω

4}

(
|αi−αj |2+ 1

ω2 |βi−βj |2
)
×
(

}
mω
− 1

2

(
|αi − αj |2 +

1

ω2
|βi − βj |2

))
.

Now, we have to concentrate on the phase:

cos
{

[γi(t)− γj(t)−
m

2}
(ẋi(t)− ẋj(t))(xi(t) + xj(t))]

}
.
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First of all,

(ẋi(t)− ẋj(t))(xi(t) + xj(t)) =[
−ωαi sin(ωt) + βi cos(ωt) + ωαj sin(ωt)− βj cos(ωt)

]
×

×
[
αi cos(ωt) +

βi

ω
sin(ωt) + αj cos(ωt) +

βj

ω
sin(ωt)

]
=
[
−ω sin(ωt)(αi − αj) + cos(ωt)(βi − βj)

]
×
[
(αi + αj) cos(ωt) +

1

ω
(βi + βj) sin(ωt)

]
=

ω sin(ωt) cos(ωt)
[
−|αi|2 + |αj |2

]
+

1

ω
sin(ωt) cos(ωt)

[
|βi|2 − |βj |2

]
+

cos2(ωt)
[
αi + αj

] [
βi − βj

]
+ sin2(ωt)

[
αj − αi

] [
βi + βj

]
=

sin(2ωt)

2

[
ω
[
|αj |2 − |αi|2

]
+

1

ω

[
|βi|2 − |βj |2

]]
+

αjβi − βiαj +
[
αiβi − βjαj

]
cos(2ωt).

Hence,

m

2}
(ẋi(t)− ẋj(t))(xi(t) + xj(t))

=
mω

4}

[[
|αj |2 − |αi|2

]
+

1

ω2

[
|βi|2 − |βj |2

]]
sin(2ωt) +

m

2}
[
αjβi − βiαj

]
+
m

2}
[
αiβi − βjαj

]
cos(2ωt).

Now,

}γ̇(t) =
1

2
m|ẋ(t)|2 − 1

2
mω2|x(t)|2 =

1

2
m [−ωα sin(ωt) + β cos(ωt)]2 − 1

2
mω2

[
α cos(ωt) +

β

ω
sin(ωt)

]2

=

1

2
m
[
ω2|α|2 sin2(ωt) + |β|2 cos2(ωt)− 2ωαβ sin(ωt) cos(ωt)

]
−1

2
mω2

[
|α|2 cos2(ωt) +

|β|2

ω2
sin2(ωt) +

2

ω
αβ sin(ωt) cos(ωt)

]
=

1

2
mω2

[
−|α|2 cos(2ωt) +

|β|2

ω2
cos(2ωt)− 2

ω
αβ sin(2ωt)

]
.
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Now, we integrate with respect to time side by side and obtain:

} [γ(t)− γ(0)] =

1

2
mω2

[
− 1

2ω
|α|2 sin(2ωt) +

1

2ω

|β|2

ω2
sin(2ωt) +

1

ω2
αβ cos(2ωt)

]
and so

γi(t) = γi0 +
mω

4}

[
−|αi|2 +

|βi|2

ω2

]
sin(2ωt) +

m

2}
αiβi cos(2ωt),

which implies that

γi(t)− γj(t) = γi0 − γ
j
0 +

mω

4}

[[
|αj |2 − |αi|2

]
+

1

ω2

[
|βi|2 − |βj |2

]]
sin(2ωt)

+
m

2}
[
αiβi − βjαj

]
cos(2ωt).

Therefore, putting everything together we get:

γi(t)− γj(t)− m

2}
(ẋi(t)− ẋj(t))(xi(t) + xj(t)) = γi0 − γ

j
0 −

m

2}
[
αjβi − αiβj

]
.

This is independent of time and so also

cos
(
γi(t)− γj(t)− m

2}
(ẋi(t)− ẋj(t))(xi(t) + xj(t))

)
= cos

(
γi0 − γ

j
0 −

m

2}
[
αjβi − αiβj

])
.

is independent of time.

Remark 3.2.27. It is interesting to notice that, since our Measure of Amalgamation

basically measures the ”angles” between the solitons, this measure ends up depending just

on the initial angular momentum αjβi − αiβj, with αi = xi0 and βj = vj0 and the initial

complex phase γi0 − γ
j
0 for what concerns the angular part.
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Therefore, our Measure of Amalgamation is constant in time:

Cov(ψi(t, x), ψj(t, x)) = e−
mω
4} [xi(t)−xj(t)]2− m

4ω} [ẋi(t)−ẋj(t)]2 ×

×1

2
cos
{

[γi(t)− γj(t)−
m

2}
(ẋi(t)− ẋj(t))(xi(t) + xj(t))]

}
×

×
(

}
mω
−
(
|ẋi(t)− ẋj(t)|2

2ω2
+

1

2
|xi(t)− xj(t)|2

))
=

1

2
cos
(
γi0 − γ

j
0 −

m

2}
[
αjβi − αiβj

])
×

×e−
mω
4}

(
|αi−αj |2+ 1

ω2 |βi−βj |2
)
×
(

}
mω
− 1

2

(
|αi − αj |2 +

1

ω2
|βi − βj |2

))
=

Cov(ψi(0, x), ψj(0, x)).

Finally, we have that

Cov(ψ1(t, x), ψ2(t, x)) = Cov(ψ1(0, x), ψ2(0, x)),

that

Cov(ψ3(t, x), ψ4(t, x)) = Cov(ψ3(0, x), ψ4(0, x))

and that

Cov(ψ1(t, x) + ψ3(t, x), ψ2(t, x) + ψ4(t, x)) = Cov(ψ1(0, x) + ψ3(0, x), ψ2(0, x) + ψ4(0, x)).

This implies that, if the Simpson’s paradox appears at any time t = t0, then it appears at

any time t 6= 0, and that, if the Simpson’s paradox does not appear at any time t = t0,

then it does not appear at any time t 6= 0. This completes the proof of Theorem 3.2.1 in

the non-stationary case.

Remark 3.2.28. A by-product of the following analysis is that the Measure of Amalga-

mation that we use is a conserved quantity, if we restrict our attention to solutions like

solitons.

3.2.3.4 The case n ≥ 2

In spatial dimension n ≥ 2, we can use a decomposition in Spherical Harmonics to obtain

all possible solutions with Schwartz regularity and hence the ground state. This is a very

well known result and report it here for completeness. We refer to [13], for an extended

discussion on it.
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Proposition 3.2.29. The normalized ground state solution of equation (3.1)

i}
∂

∂t
ψ(t, x) = − }2

2m
∆ψ(t, x) +

1

2
mω2|x|2ψ(t, x) (t, x) ∈ (0,+∞)× Rn.

in spatial dimension n ≥ 2 is

ψ(t,x) =
(mω
π}

)n
2
e−

mω
2} |x|

2
ei
nωt

2 , (3.22)

up to symmetries.

Proof. First of all, we have that in spherical coordinates the Laplacian can be rewritten

in the following way:

∆xf = f ′′ +
n− 1

r
f ′ +

1

r2
∆Sn−1f,

where r ∈ (0,+∞), f ′ := ∂
∂rf , ∆Sn−1 is the Laplace-Beltrami Operator on Sn−1. Since

we are looking for the ground state, by the properties of the ground state developed in

Section 3.2.2, we have

ψ(t,x) = eitλf(r).

Plugging this inside (3.1), we get:

− }2

2m

(
f ′′ +

n− 1

r
f ′
)

+
1

2
mω2|r|2f − λ}f = 0.

Now, we plug inside the equation the ansatz e−
mω
2} r

2
and one gets

− }2

2m

(
−mω

}
+ r2

(mω
}

)2
+
n− 1

r
(−2r)

mω

2}

)
+

1

2
mω2|r|2 + λ} = 0,

which implies λ = nω
2 . And so one gets the solution

ψ(t,x) =
(mω
π}

)n
4
e−

mω
2} |x|

2
ei
nωt

2 ,

using a normalizing procedure completely similar to the case n = 1.

In a way similar to the case of spatial dimension n = 1, we can compute explicitly the

value of the Measure of Amalgamation.
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Proposition 3.2.30. Consider two moving solitons:

ψi(t,x) =
(mω
π}

)n/4
ei[x·vi(t)+γi(t)+

nωt
2

]e−
mω
2} |x−xj(t)|2 ,

and

ψj(t,x) =
(mω
π}

)n/4
ei[x·vj(t)+γj(t)+

nωt
2

]e−
mω
2} |x−xj(t)|2 ,

for 1 ≤ i ≤ j ≤ N and with x(t), v(t) and γ(t) as in Theorem 3.2.8. Consider the case

in which, for every t ∈ R, one has that xk(t) = xk, for every k = 1, . . . , N independent of

time. Then, the Covariance between these two solitons is given by:

Cov(ψi(t,x), ψj(t,x)) =
1

2
cos(γi − γj)

[
n}
mω
− 1

2
|xi − xj |2

]
e−

mω
4} |xi−xj |2 . (3.23)

Proof. Again, we need to use the definition of Covariance and the shape of the solitons.

Cov(ψi(t,x), ψj(t,x)) = <
∫
Rn

(x− µi)(x− µj)Tψi(t,x)ψ̄i(t,x)dx

=
(mω
π}

)n/2
<
∫
Rn

(x− µi)(x− µj)ei[γi+
nωt

2
−γj−nωt2

]e−
mω
2} |x−xi(t)|2−mω2} |x−xj(t)|2dx

=
(mω
π}

)n/2
<ei[γi−γj ]

∫
Rn

(x− µi)(x− µj)e−
mω
2} [2|x|2−2x·(xi+xj)+|xi|2+|xj |2]dx

=
(mω
π}

)n/2
e−

mω
2} [|xi|2+|xj |2]<ei[γi−γj ] ×

×
∫
Rn

(x− µi)(x− µj)e−
mω
} [|x|2−x·(xi+xj)+

1
4
|xi+xj |2]+mω

4} |xi+xj |2dx

=
(mω
π}

)n/2
e−

mω
2} [|x|2i+|xj |2]+mω

4} |xi+xj |2 cos(γi − γj)

×
∫
R

(x− µi)(x− µj)T e−
mω
} |x− 1

2
(xi+xj)|2dx.

Now, by changing variables to y = x− xi−xj
2 , we get:
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Cov(ψi(t,x), ψj(t,x)) =(mω
π}

)n/2
e−

mω
4} |xi−xj |2 cos(γi − γj)

×
∫
Rn

(
y +

xi − xj
2

− xi

)(
y +

xi − xj
2

− xj

)
e−

mω
} |y|

2

dy

=
(mω
π}

)n/2
e−

mω
4} |xi−xj |2 cos(γi − γj)

∫
Rn

(
|y|2 − |xi − xj |2

4

)
e−

mω
} |y|

2

dy

=
(mω
π}

)n/2
e−

mω
4} |xi−xj |2 cos(γi − γj) (I1 − I2)

with

I1(n) =

∫
Rn
|y|2e−

mω
} |y|

2
dy.

and

I2(n) =

∫
Rn

|xi − xj |2

4
e−

mω
} |y|

2
dy.

In the computation of I1(n) and I2(n), there is a little bit of difference with respect to the

case of spatial dimension n = 1. In both I1(n) and I2(n), we use the change of variables

z = y
(
mω
}
)1/2

, which implies y =
(
mω
}
)−1/2

z and so dy =
(
mω
}
)−n/2

dz. This leads to

I1(n) =

∫
Rn
|y|2e−

mω
} |y|

2
dy =

(mω
}

)−1
∫
Rn
|z|2e−|z|2

(mω
}

)−n/2
dz

=
(mω

}

)−1−n
2

n∑
i=1

Ii(n),

where

Ii(n) :=

∫
Rn
|zi|2e−|z|

2
dz =

∫
R
|zi|2e−|zi|

2
dzi ×

∫
Rn−1

e−|ẑi|
2
dẑi =

π
1
2

2
π
n−1

2 =
1

2
π
n
2 .

Here ẑi is the vector z without the i-th component. Therefore,

I1(n) =
(mω
π}

)−1−n
2

Σn
i=1I

i(n) =
(mω

}

)−1−n
2 n

2
π
n
2 =

n}
2mω

(
π}
mω

)n/2
.
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With the same change of variables, we treat I2(n):

I2(n) =

∫
Rn

|xi − xj |2

4
e−

mω
} |y|

2
dy

=
(mω

}

)−n/2 |xi − xj |2

4

∫
Rn
e−|z|

2
dz =

(mω
π}

)−n/2 |xi − xj |2

4

=
|xi − xj |2

4

(
π}
mω

)n/2
.

Now, putting everything together, we get

Cov(ψi(t, x), ψj(t, x)) =
(mω
π}

)n/2
e−

mω
4} |xi−xj |

2
cos(γi − γj) (I1 − I2)

=
(mω
π}

)n/2
e−

mω
4} |xi−xj |

2
cos(γi − γj)

(
n}

2mω

(
π}
mω

)n/2
− |xi − xj |2

4

(
π}
mω

)n/2)

=
1

2
cos(γi − γj)

[
n}
mω
− 1

2
|xi − xj |2

]
e−

mω
4} |xi−xj |2 .

This completes the proof.

Corollary 3.2.31. Consider two moving solitons:

ψi(t,x) =
(mω
π}

)n/4
ei[x·yi(t)+γi(t)+

nωt
2

]e−
mω
2} |x−xj(t)|2 ,

and

ψj(t,x) =
(mω
π}

)n/4
ei[x·vj(t)+γj(t)+

nωt
2

]e−
mω
2} |x−xj(t)|2 ,

for 1 ≤ i ≤ j ≤ N and with x(t), v(t) and γ(t) as in Theorem 3.2.8. Consider the case

in which, for every t ∈ R, one has that xk(t) = xk, for every k = 1, . . . , N independent of

time. Then, the Measure of Correlation between these two solitons is given by:

Corr(ψi(t,x), ψj(t,x)) = cos(γi − γj)
[
1− mω

2n}
|xi − xj |2

]
e−

mω
4} |xi−xj |2 .

Proof. Since

Cov(ψi(t,x), ψj(t,x)) =
1

2
cos(γi − γj)

[
n}
mω
− 1

2
|xi − xj |2

]
e−

mω
4} |xi−xj |2

and V ar(ψi(t,x)) = V ar(ψj(t,x)) = n}
2mω , then, by definition of Measure of Correlation

one gets
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Corr(ψi(t,x), ψj(t,x)) =
Cov(ψi(t,x), ψj(t,x))

V ar(ψi(t,x))
1
2V ar(ψj(t,x))

1
2

= cos(γi − γj)
[
1− mω

2n}
|xi − xj |2

]
e−

mω
4} |xi−xj |2 .

This completes the proof of the corollary.

Now, we are ready to show that, according to the choice of the parameters, the Simp-

son’s Paradox can occur also in spatial dimension n > 1.

Proof of Theorem 3.2.1. Again, the proof consists in finding parameters such that the

Simpson’s Reversal occurs, namely such that

Cov(ψ1(t, x), ψ2(t, x)) > 0,

Cov(ψ3(t, x), ψ4(t, x)) > 0

but

Cov(ψ1(t, x) + ψ3(t, x), ψ2(t, x) + ψ4(t, x)) < 0

or vice versa,

Cov(ψ1(t, x), ψ3(t, x)) < 0,

Cov(ψ2(t, x), ψ4(t, x)) < 0

but

Cov(ψ1(t, x) + ψ3(t, x), ψ2(t, x) + ψ4(t, x)) > 0.

We define

L2
ij :=

mω

2n}
|xi − xj |2

and so Cov(ψi(t, x), ψj(t, x)) can be rewritten in the following way:

Cov(ψi(t, x), ψj(t, x)) =
n}

2mω
cos(γi − γj)

[
1− L2

ij

]
e−

n
2
L2
ij .

This definition of Lij is slightly different from the one given in the proof of the case n = 1.

From now on, since we are just looking for the existence of a set of parameters which

leads to the Simpson’s Paradox we assume that x1, x2, x3 and x4 stay on a line. With

this choice, the proof reduces to the case of spatial dimension n = 1. It is enough then to

choose L12 = 1−ε21, L34 = 1−ε22, L23 = 1+δ2 with ε1 << 1, ε2 << 1, with ε1 = ε2 = α > 0
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and δ = kα > 0 for α2 <
2 log

(
k2

2

)
n(k2+1)

and L14 = L12 + L23 + L34. It is enough to choose for

example α = 10−100 and k = 100 and both α2 <
2 log

(
k2

2

)
k2+1

and 0 < kα < 1 are satisfied.

This concludes the proof of the case γi = γj , for every i, j = 1, . . . , 4. The proof in the

case γi 6= γj , for every i, j = 1, . . . , 4, i 6= j is very similar, so we omit it. This completes

the proof in the stationary case for spatial dimension n > 1.

Remark 3.2.32. In the case n = 1, there is more constraint in the choice of the param-

eters, since, for example, x1, x2, x3 and x4 must be on the line and so Lij must satisfy

something like L12 + L23 + L34 = L41. This is not anymore true in dimension n > 1,

because the xi’s can stay on different geometrical objects like squares or triangles and still

give rise to the Simpson’s Paradox. This does not necessarily mean that, in higher dimen-

sion, the Simpson’s Paradox is more likely to happen, because also the configurations of

not occurrence of the Simpson’s Paradox increase in number. See Section 3.2.8 and [94].

Remark 3.2.33. Also in the case of dimension n > 1, we can talk about Semiclassical

Regime, Uncorrelation Regime and Anti-Semiclassical Regime but, this time, Lij > 1

corresponds to the case } < mω
2n |xi−xj |

2, Lij = 1 to the case } = mω
2n |xi−xj |

2 and Lij < 1

to the case } > mω
2n |xi − xj |2. This means that, with the increase of the dimension n,

the Anti-Semiclassical Regime is, in some sense, more likely to appear. See again Section

3.2.8 for more details on some probabilistic issues related to the Simpson’s Paradox.

3.2.3.5 The non-stationary case n ≥ 2

Now, we pass to the non-stationary case in spatial dimension n ≥ 2. Consider moving

solitons of the form

ψi(t,x) =
(mω
π}

)n/4
ei[x·vi(t)+γi(t)+

nωt
2

]e−
mω
2} |x|

2
, (3.24)

for i = 1, . . . , N with N the number of solitons and with x(t), v(t) and γ(t) as in Theorem

3.2.8. Again, for these objects, we compute how the center of Mass moves and how the

Variance changes under the evolution of (3.1).

Lemma 3.2.34. The center of Mass of each ψi(t,x) as defined in (3.13) is given by

µi :=

∫
R

x|ψ(t,x)|2dx = xi(t), (3.25)

for every i = 1, . . . , N .

157



Proof. We first recall the following fact about integrals involving Gaussians:∫
Rn
e−a|x|

2
dx =

(∫
R
e−ax

2
dx

)n
=
(π
a

)n/2
,

for every a > 0. Therefore, for every i = 1, . . . , N and using the change of variables

y := x− x(t), we have

µi :=

∫
R

x|ψ(t,x)|2dx =
(mω
π}

)1/2
∫
Rn

xe−
mω
} [x−xi(t)]

2
dx

=
(mω
π}

)n/2 ∫
Rn

[x + xi(t)]e
−mω} |y|

2
dy

=
(mω
π}

)n/2 ∫
Rn

x(t)e−
mω
} |y|

2
dy = xi(t).

Lemma 3.2.35. The Variance of each ψi(t,x) as defined in (3.13) is given by

V ar(ψi(t,x)) :=

∫
Rn
|x|2|ψ(t,x)|2dx−

(∫
Rn

x|ψ(t,x)|2dx
)2

=
n}

2mω
, (3.26)

for every i = 1, . . . , N .

Proof. First of all, we notice that(∫
Rn

x|ψ(t,x)|2dx
)2

= |µi|2 = |xi(t)|2

and so we just need to compute
∫
R |x|

2|ψ(t, x)|2dx.
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V ar(ψi(t,x)) := −|xi(t)|2 +

∫
Rn
|x|2|ψ(t,x)|2dx

= −|xi(t)|2 +
(mω
π}

)n/2 ∫
Rn
|x|2e−

mω
} [x−xi(t)]

2
dx

= −|xi(t)|2 +
(mω
π}

)n/2 ∫
Rn

[|y|2 + 2xi(t) · y + |xi(t)|2]e−
mω
} |y|

2
dy

= −|xi(t)|2 +
(mω
π}

)n/2 ∫
Rn

[|y|2 + |xi(t)|2]e−
mω
} |y|

2
dy

= (1− 1)
(mω
π}

)n/2
|xi(t)|2 +

(mω
π}

)n/2 ∫
Rn
|y|2e−

mω
} |y|

2
dy

=
(mω
π}

)n/2 ∫
Rn
|y|2e−

mω
} |y|

2
dy

=
(mω

}

)n/2−1−n/2
π−n/2

∫
Rn
|z|2e−|z|2dz =

n}
2mω

.

Now, we can compute how the Measure of Correlation between two solitons vary over

time also in the case n > 1.

Proposition 3.2.36. Consider two moving solitons:

ψi(t, x) =
(mω
π}

)n/4
ei[x·vi(t)+γi(t)+

nωt
2

]e−
mω
2} |x−xj(t)|

2
,

and

ψj(t, x) =
(mω
π}

)n/4
ei[x·vj(t)+γj(t)+

nωt
2

]e−
mω
2} |x−xj(t)|

2
,

for 1 ≤ i ≤ j ≤ N and with x(t), v(t) and γ(t) as in Theorem 3.2.8. Then, the Covariance

between these two solitons is given by:

Cov(ψi(t, x), ψj(t, x)) = e−
mω
4} [xi(t)−xj(t)]2− m

4ω} [ẋi(t)−ẋj(t)]2 × (3.27)

×1

2
cos
{
i[γi(t)− γj(t)−

m

2}
(ẋi(t)− ẋj(t))(xi(t) + xj(t))]

}
×(3.28)

×
(
n}
mω
−
(
|ẋi(t)− ẋj(t)|2

2ω2
+

1

2
|xi(t)− xj(t)|2

))
. (3.29)
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Proof. Again, we need to use the definition of Covariance and the shape of the solitons.

Cov(ψi(t, x), ψj(t, x)) = <
∫
Rn

(x− µi)(x− µj)ψi(t,x)ψi(t,x)dx

=
(mω
π}

)n/2
×

×<
∫
R

(x− µi)(x− µj)ei[γi(t)+
nωt

2
−γj(t)−nωt2

+ixvi(t)−ixvj(t)]e−
mω
2} |x−xi(t)|

2−mω
2} |x−xj(t)|

2
dx

Now, we reorganize the exponent of the exponential. Similarly to the case n = 1:

ix(vi(t)− vj(t))−
mω

2}
|x− xi(t)|2 −

mω

2}
|x− xj(t)|2 =

−mω
4}
|xi(t)− xj(t)|2 −

m

4ω}
|ẋi(t)− ẋj(t)|2 −

mω

}
|y|2

− im
2}

(xi(t) + xj(t))(ẋi(t)− ẋj(t)),

by changing variables to y = x− xi(t)+xj(t)− i
ω

[ẋi(t)−ẋj(t)]
2 . So, we get
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Cov(ψi(t, x), ψj(t, x)) =(mω
π}

)n/2
e−

mω
4} [xi(t)−xj(t)]2− m

4ω} [ẋi(t)−ẋj(t)]2<
{
ei[γi(t)−γj(t)−

m
2} (ẋi(t)−ẋj(t))(xi(t)+xj(t))] ×

×
∫
R

(
y +

xi(t) + xj(t)− i
ω [ẋi(t)− ẋj(t)]

2
− xi

)
×

×

(
y +

xi(t) + xj(t)− i
ω [ẋi(t)− ẋj(t)]

2
− xj

)
e−

mω
} |y|

2

dy
}

=

(mω
π}

)n/2
e−

mω
4} [xi(t)−xj(t)]2− m

4ω} [ẋi(t)−ẋj(t)]2<
{
ei[γi(t)−γj(t)−

m
2} (ẋi(t)−ẋj(t))(xi(t)+xj(t))] ×

×
∫
R

(
y +
− i
ω [ẋi(t)− ẋj(t)]

2
+
xi(t)− xj(t)

2

)
×

×

(
y +
− i
ω [ẋi(t)− ẋj(t)]

2
− xi(t)− xj(t)

2

)
e−

mω
} |y|

2

dy
}

=

(mω
π}

)n/2
e−

mω
4} [xi(t)−xj(t)]2− m

4ω} [ẋi(t)−ẋj(t)]2<
{
ei[γi(t)−γj(t)−

m
2} (ẋi(t)−ẋj(t))(xi(t)+xj(t))] ×

×
∫
R

(
|y|2 − |ẋi(t)− ẋj(t)|

2

4ω2
− 1

4
|xi(t)− xj(t)|2 −

i

ω
y(ẋi(t)− ẋj(t))

)
e−

mω
} |y|

2

dy
}

=(mω
π}

)n/2
e−

mω
4} [xi(t)−xj(t)]2− m

4ω} [ẋi(t)−ẋj(t)]2<
{
ei[γi(t)−γj(t)−

m
2} (ẋi(t)−ẋj(t))(xi(t)+xj(t))] ×

×
∫
R

(
|y|2 − |ẋi(t)− ẋj(t)|

2

4ω2
− 1

4
|xi(t)− xj(t)|2

)
e−

mω
} |y|

2

dy
}

=(mω
π}

)n/2
e−

mω
4} [xi(t)−xj(t)]2− m

4ω} [ẋi(t)−ẋj(t)]2 ×

× cos
{
i[γi(t)− γj(t)−

m

2}
(ẋi(t)− ẋj(t))(xi(t) + xj(t))]

}
(J1 − J2)

with

J1 =

∫
R
y2e−

mω
} y2

dy.

and

J2 = −
(
|ẋi(t)− ẋj(t)|2

4ω2
+

1

4
|xi(t)− xj(t)|2

)∫
R
e−

mω
} y2

dy.

In both J1 and J2, we use the change of variables z = y
(
mω
π}
)1/2

, which implies y =(
mω
π}
)−1/2

z and so dy =
(
mω
π}
)−n/2

dz. This leads to

J1 =

∫
R
|y|2e−

mω
} y2

dy =
(mω

}

)−1
∫
R
|z|2e−z2

(mω
}

)−n/2
dz =

(mω
}

)−1−n/2 n

2
πn/2
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and to

J2 =

∫
R

(
|ẋi(t)− ẋj(t)|2

4ω2
+

1

4
|xi(t)− xj(t)|2

)
e−

mω
} y2

dy (3.30)

=
(mω

}

)−n/2( |ẋi(t)− ẋj(t)|2
4ω2

+
1

4
|xi(t)− xj(t)|2

)∫
R
e−z

2
dz (3.31)

=
(mω

}

)−n/2( |ẋi(t)− ẋj(t)|2
4ω2

+
1

4
|xi(t)− xj(t)|2

)
π
n
2 . (3.32)

Now, putting everything together, we get

Cov(ψi(t, x), ψj(t, x)) =(mω
π}

)n/2
e−

mω
4} [xi(t)−xj(t)]2− m

4ω} [ẋi(t)−ẋj(t)]2 ×

× cos
{
i[γi(t)− γj(t)−

m

2}
(ẋi(t)− ẋj(t))(xi(t) + xj(t))]

}
(J1 − J2) =(mω

π}

)n/2
e−

mω
4} [xi(t)−xj(t)]2− m

4ω} [ẋi(t)−ẋj(t)]2 ×

× cos
{
i[γi(t)− γj(t)−

m

2}
(ẋi(t)− ẋj(t))(xi(t) + xj(t))]

}
×

×
((mω

}

)−1−n/2 n

2
πn/2 −

(mω
}

)−n/2( |ẋi(t)− ẋj(t)|2
4ω2

+
1

4
|xi(t)− xj(t)|2

)
π

1
2

)
=

e−
mω
4} [xi(t)−xj(t)]2− m

4ω} [ẋi(t)−ẋj(t)]2 ×

×1

2
cos
{

[γi(t)− γj(t)−
m

2}
(ẋi(t)− ẋj(t))(xi(t) + xj(t))]

}
×

×
(
n}
mω
−
(
|ẋi(t)− ẋj(t)|2

2ω2
+

1

2
|xi(t)− xj(t)|2

))
.

This completes the proof.

As in the stationary case, we can deduce the following.

Corollary 3.2.37. Consider two moving solitons:

ψi(t, x) =
(mω
π}

)n/4
ei[x·vi(t)+γi(t)+

nωt
2

]e−
mω
2} |x−xj(t)|

2
,

and

ψj(t, x) =
(mω
π}

)n/4
ei[x·vj(t)+γj(t)+

nωt
2

]e−
mω
2} |x−xj(t)|

2
,

for 1 ≤ i ≤ j ≤ N and with x(t), v(t) and γ(t) as in Theorem 3.2.8. Then, the Measure
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of Correlation between these two solitons is given by:

Corr(ψi(t, x), ψj(t, x)) = e−
mω
4} [xi(t)−xj(t)]2− m

4ω} [ẋi(t)−ẋj(t)]2 ×

× cos
{
i[γi(t)− γj(t)−

m

2}
(ẋi(t)− ẋj(t))(xi(t) + xj(t))]

}
×

×
(

1− mω

n}

(
|ẋi(t)− ẋj(t)|2

2ω2
+

1

2
|xi(t)− xj(t)|2

))
.

Proof. It follows the same line of the stationary case and so we omit it.

Proof of Theorem 3.2.1. The proof of the main theorem in the non-stationary case for

spatial dimension n > 1 follows the same strategy employed in the case n = 1, since

the quantities depending on time of Cov(ψi(t, x), ψj(t, x)) are the same and what varies

are just some constants which now depend on the dimension n. Therefore, we have the

persistence of the Simpson’s Paradox also in the case n > 1. This completes the proof of

Theorem 3.2.1.

3.2.4 Proof of Theorem 3.2.5

In this subsection, we give the complete proof of Theorem 3.2.5. Now, we suppose that

there exist solitons ψi(t, x) for i = 1, . . . , 4 such that

Cov(ψ1(t, x), ψ2(t, x)) > 0,

Cov(ψ3(t, x), ψ4(t, x)) > 0

but

Cov(ψ1(t, x) + ψ3(t, x), ψ2(t, x) + ψ4(t, x)) < 0.

We want to prove that the same inequalities work if we consider ψ̃i(t, x) for i = 1, . . . , 4

with parameters (x̃i(t), γ̃i(t), ṽi(t)) for i = 1, . . . , 4, where x̃i(t) = xi(t) + δi = xi + δi,

γ̃i(t) = γi(t) + εi = γi + εi and ṽi(t) = vi(t) = 0 for every i = 1, . . . , 4. It will work in a

similar way for the vice versa, namely when

Cov(ψ1(t, x), ψ3(t, x)) < 0,

Cov(ψ2(t, x), ψ4(t, x)) < 0

but

Cov(ψ1(t, x) + ψ3(t, x), ψ2(t, x) + ψ4(t, x)) > 0
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and so we will omit the proof in this case.

We already know that

Cov(ψi(t, x), ψj(t, x)) =
1

2
cos(γi − γj)

[
n}
mω
− 1

2
|xi − xj |2

]
e−

mω
4} |xi−xj |

2

and also that

Cov(ψ̃i(t, x), ψ̃j(t, x)) =
1

2
cos(γ̃i − γ̃j)

[
n}
mω
− 1

2
|x̃i − x̃j |2

]
e−

mω
4} |x̃i−x̃j |

2
.

Now, we expand this last expression and get

Cov(ψ̃i(t, x), ψ̃j(t, x)) =
1

2
cos(γ̃i − γ̃j)

[
n}
mω
− 1

2
|x̃i − x̃j |2

]
e−

mω
4} |x̃i−x̃j |

2
=

=
1

2
cos(γi + εi − γj − εj)

[
n}
mω
− 1

2
|xi + δi − xj − δj |2

]
e−

mω
4} |xi+δi−xj−δj |

2
=

1

2
[cos(γi − γj) cos(+εi − εj)− sin(γi − γj) sin(+εi − εj)]×

×
[
n}
mω
− 1

2
|xi − xj |2 − (δi − δj) · (xi − xj) +

1

2
|δi − δj |2

]
×

×e−
mω
4} [|xi−xj |2+2(δi−δj)·(xi−xj)+|δi−δj |2] =

cos(εi − εj)Cov(ψi(t, x), ψj(t, x))e−
mω
4} [2(δi−δj)·(xi−xj)+|δi−δj |2] +

1

2
[− sin(γi − γj) sin(+εi − εj)]×

×
[
n}
mω
− 1

2
|xi − xj |2 − (δi − δj) · (xi − xj) +

1

2
|δi − δj |2

]
×

×e−
mω
4} [|xi−xj |2+2(δi−δj)·(xi−xj)+|δi−δj |2] +

1

2
[cos(γi − γj) cos(+εi − εj)− sin(γi − γj) sin(+εi − εj)]×

×
[
−(δi − δj) · (xi − xj) +

1

2
|δi − δj |2

]
×

×e−
mω
4} [|xi−xj |2+2(δi−δj)·(xi−xj)+|δi−δj |2]

Now when |δi − δj | → 0 and |εi − εj | → 0, we have that the first term of the sum

cos(εi − εj)Cov(ψi(t, x), ψj(t, x))e−
mω
4} [2(δi−δj)·(xi−xj)+|δi−δj |2] → Cov(ψi(t, x), ψj(t, x)),
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while the second term of the sum

1

2
[− sin(γi − γj) sin(+εi − εj)]

[
n}
mω
− 1

2
|xi − xj |2 − (δi − δj)(xi − xj) +

1

2
|δi − δj |2

]
→ 0

and the third term of the sum

1

2
[cos(γi − γj) cos(+εi − εj)− sin(γi − γj) sin(+εi − εj)]

×
[

1

2
|δi − δj |2 − (δi − δj)(xi − xj)

]
e−

mω
4} [|xi−xj |2+2(δi−δj)·(xi−xj)+|δi−δj |2] → 0.

Therefore

Cov(ψ̃i(t, x), ψ̃j(t, x))→ Cov(ψi(t, x), ψj(t, x)).

Hence, when |δi − δj | ≤ Kij << 1 and |εi − εj | ≤Mij << 1, if Cov(ψi(t, x), ψj(t, x)) ≥ 0,

then Cov(ψ̃i(t, x), ψ̃j(t, x)) ≥ 0. Now

Cov(ψ̃1(t, x) + ψ̃3(t, x), ψ̃2(t, x) + ψ̃4(t, x)) =

Cov(ψ̃1(t, x), ψ̃2(t, x)) + Cov(ψ̃1(t, x), ψ̃4(t, x)) +

Cov(ψ̃3(t, x), ψ̃2(t, x)) + Cov(ψ̃3(t, x), ψ̃4(t, x))

→

Cov(ψ1(t, x), ψ2(t, x)) + Cov(ψ1(t, x), ψ4(t, x)) +

Cov(ψ3(t, x), ψ2(t, x)) + Cov(ψ3(t, x), ψ4(t, x))

= Cov(ψ1(t, x) + ψ3(t, x), ψ2(t, x) + ψ4(t, x)) < 0.

Therefore, if we choose

K <
1

4
min(K12,K14,K32,K34)

and

M <
1

4
min(M12,M14,M32,M34),

every soliton with parameters in the ball

BKM := {(x̃i, γ̃i) : sup
i=1,...,4

|x̃i − xi| ≤ K, sup
i=1,...,4

|γ̃i − γi| ≤M}

present the Simpson’s Paradox. This proves the first part of the theorem.

Now, we pass to the second part of the theorem. Consider solutions of equation (3.1) of

the form ψ̃i(t, x) = ψi(t, x) + wi(t, x), where ψ(t, x) = Σ4
i=1ψi(t, x) is a soliton solution
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such that, at time t̃, Simpson’s Paradox occurs. Now, by explicit computation, we get:

Cov(ψ̃i(t̃, x), ψ̃j(t̃, x)) = Cov(ψi(t̃, x) + wi(t̃, x), ψj(t̃, x) + wj(t̃, x)) =

Cov(ψi(t̃, x), ψj(t̃, x)) + Cov(wi(t̃, x), ψj(t̃, x)) +

+Cov(ψi(t̃, x), wj(t̃, x)) + Cov(wi(t̃, x), wj(t̃, x)).

Therefore

∣∣∣Cov(ψ̃i(t̃, x), ψ̃j(t̃, x))− Cov(ψi(t̃, x), ψj(t̃, x))
∣∣∣

=
∣∣Cov(wi(t̃, x), ψj(t̃, x)) + Cov(ψi(t̃, x), wj(t̃, x)) + Cov(wi(t̃, x), wj(t̃, x))

∣∣ ≤
≤
∣∣Cov(wi(t̃, x), ψj(t̃, x))

∣∣+
∣∣Cov(ψi(t̃, x), wj(t̃, x))

∣∣+
∣∣Cov(wi(t̃, x), wj(t̃, x))

∣∣
≤
(∣∣∣∣xψj(t̃, x))

∣∣∣∣
L2(Rn)

+
∣∣∣∣ψj(t̃, x))

∣∣∣∣
L2(Rn)

)
×
(∣∣∣∣xwi(t̃, x))

∣∣∣∣
L2(Rn)

+
∣∣∣∣wi(t̃, x))

∣∣∣∣
L2(Rn)

)
+
(∣∣∣∣xψi(t̃, x))

∣∣∣∣
L2(Rn)

+
∣∣∣∣ψi(t̃, x))

∣∣∣∣
L2(Rn)

)
×
(∣∣∣∣xwj(t̃, x))

∣∣∣∣
L2(Rn)

+
∣∣∣∣wj(t̃, x))

∣∣∣∣
L2(Rn)

)
+
(∣∣∣∣xwi(t̃, x))

∣∣∣∣
L2(Rn)

+
∣∣∣∣wi(t̃, x))

∣∣∣∣
L2(Rn)

)
×
(∣∣∣∣xwj(t̃, x))

∣∣∣∣
L2(Rn)

+
∣∣∣∣wj(t̃, x))

∣∣∣∣
L2(Rn)

)
= C(||ψi(t̃, x)||Σ)||wj(t̃, x)||Σ + C(||ψj(t̃, x)||Σ)||wi(t̃, x)||Σ + ||wi(t̃, x)||Σ||wj(t̃, x)||Σ
≤ C(δi + δj) + δiδj ≤ Cδij ,

for δi > 0, δj , > 0 and δi < δij , δj < δij . Now, if we proceed as in the proof of the first

part of the theorem we get also that∣∣∣Cov(ψ̃1(t, x) + ψ̃3(t, x), ψ̃2(t, x) + ψ̃4(t, x)

−Cov(ψ1(t, x) + ψ3(t, x), ψ2(t, x) + ψ4(t, x))
∣∣∣ ≤ δ

for δ < 1
4 min(δ12, δ14, δ32, δ34) and hence the statement. This completes the proof of

Theorem 3.2.5.
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3.2.5 Proof of Theorem 3.2.6

In this subsection, we give a complete proof of Theorem 3.2.6. We first prove that we can

choose the parameter ω such that the mass of each soliton is Mω = 1.

Lemma 3.2.38. There exists ω > 0 such that ‖Qω‖L2(Rn) = 1.

Remark 3.2.39. This is the only place in which we use the condition 1 < p < 1 + 4
n . For

all the other steps, we just need the existence and the properties of the solitons.

Proof. Consider λ = λ(ω) > 0 and Qλ = λαQ(λx) with α > 0, Q solution of ∆Q+Qp = Q

and Qω solutions of ∆Q + Qp = ωQ. If we plug inside this last equation the ansatz

Qλ = λαQ(λx), we get

λα+2∆Q+ λαpQp = ωλαQ.

Therefore ω = λ2 and α = 2
p−1 . Hence Qλ(ω) = Qω = ω

1
p−1Q(ω

1
2x). Now, we compute the

mass of Qω which gives

M2
ω =

∫
Rn
|Qω|2 = ω

2
p−1
−n

2M2,

with M2 =
∫
Rn |Q|

2 independent of ω. So, by solving 1 = ω
2
p−1
−n

2M2 we get the thesis.

From now on, all the functions Q will be Qω such that Mω = 1.

Remark 3.2.40. This requirement becomes necessary in the following for the computation

of the Measure of Amalgamation. It basically asks |Q|2 to be a probability distribution.

Let ωk > 0, vk ∈ Rn and γ0
k ∈ R. Assume that for any k 6= k′, we have vk 6= vk′ . Let

Rk(t, x) = Qωk(x− x0
k − v0

kt)e
i[ 1

2
v0
k·x−

t
4
|v0
k|

2+ωkt+γ
0
k].

Now, we compute the Center of Mass of the solitons in a way similar to how we computed

the Center of Mass in the case of the Quantum Harmonic Oscillator.

Lemma 3.2.41. Consider Qω such that Mω = 1. Then µk(t) :=
∫
Rn x|Rk(t, x)|2 =

x0
k + vkt.

Proof.

µk(t) =

∫
Rn
x|Rk(t, x)|2 =

∫
Rn
x|Qω(x− x0

k − vkt)|2 =

∫
Rn

(y + x0
k + vkt))|Qω(y)|2(3.33)

=

∫
Rn

(x0
k + vkt))|Qω(y)|2 = (x0

k + vkt)M
2
ω = x0

k + vkt, (3.34)

by Lemma 3.2.38.
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Now, we are ready to compute the Measure of Amalgamation between two moving

solitons Rk and Rj .

Cov(Rk(t), Rj(t)) = <
∫
Rn

(x− µk(t))(x− µj(t))Qω(x− x0
k − vkt)×

×Qω(x− x0
j − vjt)ei[θk(t,x)−θj(t,x)]

with

θj(t, x) =
1

2
v0
j · x−

t

4
|v0
j |2 + ωjt+ γ0

j

and

θk(t, x) =
1

2
v0
k · x−

t

4
|v0
k|2 + ωkt+ γ0

k .

Now, we choose

ω0
k = ω0

j = ω

(the ω such that Mω = 1 from Lemma 3.2.38) and

γ0
k = γ0

j = γ

so that

θk(t, x)− θj(t, x) =
1

2
x(vk − vj)−

1

4
t(|vk|2 − |vj |2).

Now, we use a trick to reorganize the integrand in order to find again a structure similar

to the one that we obtained in the case of the Quantum Harmonic Oscillator. We focus

on the exponential terms first. We multiply and divide the integrand of Cov(Rk(t), Rj(t))

by

e
1
4
|x−µk(t)|2+ 1

4
|x−µk(t)|2

and get
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Cov(Rk(t), Rj(t)) = <
∫
Rn

(x− µk(t))(x− µj(t))e
1
4
|x−µk(t)|2+ 1

4
|x−µk(t)|2 ×

×Qω(x− x0
k − vkt)Qω(x− x0

j − vjt)e−
1
4 [|x−µk(t)|2+|x−µj(t)|2+2ix·(vk−vj)+it(|vk|2−|vj |2)].

Now, we complete the square to get

−1

4

[
|x− µk(t)|2 + |x− µj(t)|2 + 2ix · (vk − vj)

]
=

−1

2

[
|x|2 − x · (µk(t) + µj(t)) +

1

2
|µk(t)|2 +

1

2
|µj(t)|2 + ix · (vk − vj)

]
=

−1

2

[
|x|2 − x · (µk(t) + µj(t)− i(vk − vj)) +

1

2
|µk(t)|2 +

1

2
|µj(t)|2

]
=

−1

4

[
|µk(t)|2 + |µj(t)|2

]
−1

2

[
|x|2 − x · (µk(t) + µj(t)− i(vk − vj)) +

1

4
((µk(t) + µj(t)− i(vk − vj))2)

]
+

1

8
(µk(t) + µj(t)− i(vk − vj))2 =

−1

4

[
|µk(t)|2 + |µj(t)|2

]
+

1

8
(µk(t) + µj(t)− i(vk − vj))2

−1

2

[
x− 1

2
(µk(t) + µj(t)− i(vk − vj))

]2

Now, putting everything back together and taking the change of variables y := x−1
2(µk(t)+

µj(t)− i(vk − vj)), we get:
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Cov(Rk(t), Rj(t)) = <e−i
t
4

[|vk|2−|vj |2]e−
1
4 [|µk(t)|2+|µj(t)|2]+ 1

8
(µk(t)+µj(t)−i(vk−vj))2 ×∫

Rn

(
y +

1

2
(µk(t) + µj(t)− i(vk − vj))− µk(t)

)
×
(
y +

1

2
(µk(t) + µj(t)− i(vk − vj))− µj(t)

)
×e

1
4
|y+ 1

2
(µk(t)+µj(t)−i(vk−vj))−µj(t)|2+ 1

4
|y+ 1

2
(µk(t)+µj(t)−i(vk−vj))−µk(t)|2 ×

×Qω(x− x0
k − vkt)Qω(x− x0

j − vjt)e−
1
2
|y|2 =

<e−i
t
4

[|vk|2−|vj |2]e−
1
4 [|µk(t)|2+|µj(t)|2]+ 1

8
(µk(t)+µj(t)−i(vk−vj))2 ×

×
∫
Rn

(
y +

1

2
(µk(t)− µj(t)− i(vk − vj))

)
×
(
y +

1

2
(−µk(t) + µj(t)− i(vk − vj))

)
×

×e
1
4
|x−µj(t)|2+ 1

4
|x−µk(t)|2 ×Qω(x− x0

k − vkt)Qω(x− x0
j − vjt)e−

1
2
|y|2 =

<e−i
t
4

[|vk|2−|vj |2]e−
1
4 [|µk(t)|2+|µj(t)|2]+ 1

8
(µk(t)+µj(t)−i(vk−vj))2 ×

×
∫
Rn

[
(y − i1

2
(vk − vj))2 − 1

4
|µk(t)− µj(t)|2

]
×

×e
1
4
|x−µj(t)|2+ 1

4
|x−µk(t)|2 ×Qω(x− x0

k − vkt)Qω(x− x0
j − vjt)e−

1
2
|y|2 =

<e−i
t
4

[|vk|2−|vj |2]e−
1
4 [|µk(t)|2+|µj(t)|2]+ 1

8
(µk(t)+µj(t)−i(vk−vj))2 ×

×
∫
Rn

[
|y|2 − i(vk − vj)y −

1

4
|vk − vj |2 −

1

4
|µk(t)− µj(t)|2

]
×

×e
1
4
|x−µj(t)|2+ 1

4
|x−µk(t)|2 ×Qω(x− x0

k − vkt)Qω(x− x0
j − vjt)e−

1
2
|y|2 .

Now, we need to get rid of the odd term in y inside the integral and, for this, we need the

following lemma.

Lemma 3.2.42. For every p ∈ Rn we have
∫
Rn yQ(y − p)Q(y + p)dy = 0.

Proof. ∫
Rn
yQ(y − p)Q(y + p)dy =

∫
Rn
−zQ(−z − p)Q(−z + p)dz

= −
∫
Rn
zQ(z + p)Q(z − p)dz = −

∫
Rn
yQ(y − p)Q(y + p)dy = 0

by radiality of Q.

Therefore, going on with the computation and using again the radiality of Qω, we get
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Cov(Rk(t), Rj(t)) = <e−i
t
4

[|vk|2−|vj |2]e−
1
4 [|µk(t)|2+|µj(t)|2]+ 1

8
(µk(t)+µj(t)−i(vk−vj))2

×
∫
Rn

[
|y|2 − 1

4
|vk − vj |2 −

1

4
|µk(t)− µj(t)|2

]
×e

1
4
|x−µj(t)|2+ 1

4
|x−µk(t)|2 ×Qω(x− x0

k − vkt)Qω(x− x0
j − vjt)e−

1
2
|y|2

= cos

(
− t

4
[|vk|2 − |vj |2]− 1

4
(µk(t) + µj(t))(vk − vj)

)
×e−

1
4 [|µk(t)|2+|µj(t)|2]+ 1

8
|µk(t)+µj(t)|2− 1

8
|vk−vj |2

×
∫
Rn

[
|y|2 − 1

4
|vk − vj |2 −

1

4
|µk(t)− µj(t)|2

]
×e

1
4
|y+ 1

2
(µk(t)−µj(t)−i(vk−vj)|2+ 1

4
|y− 1

2
(µk(t)−µj(t)+i(vk−vj)|2

×Qω
(∣∣∣∣y +

1

2
(µk(t)− µj(t)− i(vk − vj)

∣∣∣∣)×
Qω

(∣∣∣∣y − 1

2
(µk(t)− µj(t) + i(vk − vj)

∣∣∣∣) e− 1
2
|y|2

= cos

(
− t

4
[|vk|2 − |vj |2]− 1

4
(µk(t) + µj(t))(vk − vj)

)
×

×e+ 1
8
|µk(t)−µj(t)|2+ 1

8
|vk−vj |2

×
∫
Rn

[
|y|2 − 1

4
|vk − vj |2 −

1

4
|µk(t)− µj(t)|2

]
×

×e−
1
8
|µk(t)−µj(t)|2− 1

8
|vk−vj |2

×Qω
(∣∣∣∣y +

1

2
(µk(t)− µj(t)− i(vk − vj)

∣∣∣∣)
×Qω

(∣∣∣∣y − 1

2
(µk(t)− µj(t) + i(vk − vj)

∣∣∣∣) =

Therefore, we have

Cov(Rk(t), Rj(t)) =

cos

(
t

4
[|vk|2 − |vj |2] +

1

4
(µk(t) + µj(t))(vk − vj)

)
×
∫
Rn

[
|y|2 − 1

4
|vk − vj |2 −

1

4
|µk(t)− µj(t)|2

]
×Qω

(∣∣∣∣y +
1

2
(µk(t)− µj(t)− i(vk − vj))

∣∣∣∣)
×Qω

(∣∣∣∣y − 1

2
(µk(t)− µj(t) + i(vk − vj))

∣∣∣∣) .
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Now, we change variables again to y = x− i
2 (vk − vj) ad we get:

Cov(Rk(t), Rj(t)) = cos

(
t

4
[|vk|2 − |vj |2] +

1

4
(µk(t) + µj(t))(vk − vj)

)
×

×
∫
Rn

[
|y|2 − 1

4
|µk(t)− µj(t)|2

]
×Qω

(∣∣∣∣y +
1

2
(µk(t)− µj(t))

∣∣∣∣)Qω (∣∣∣∣y − 1

2
(µk(t)− µj(t))

∣∣∣∣) .
To enlighten the notation, we define akj := 1

2(µk(t)− µj(t)) and hence we get:

Cov(Rk(t), Rj(t)) = cos

(
t

4
[|vk|2 − |vj |2] +

1

2
akj(vk − vj)

)
×

×
∫
Rn

[
|y|2 − |akj |2

]
Qω (|y + akj |)Qω (|y − akj |) .

Remark 3.2.43. Until now, we did not use the hypothesis n = 1. We will from now on.

Now, we use the explicit form of the soliton:

Q(x) =

(
p+ 1

2

)p−1 [
cosh

(
p− 1

2
x

)]−2p+2

up to symmetries (see Subsection 3.2.2). Therefore, we have

Qω

(∣∣∣∣x+
1

2
(µk(t)− µj(t))

∣∣∣∣)Qω (∣∣∣∣x− 1

2
(µk(t)− µj(t))

∣∣∣∣) =(
p+ 1

2

)p−1

ω
1
p−1

[
cosh

(
p− 1

2
ω

1
2 [x+ akj ]

)]−2p+2

×

×ω
1
p−1

(
p+ 1

2

)p−1 [
cosh

(
p− 1

2
ω

1
2 [x− akj ]

)]−2p+2

=(
p+ 1

2

)2p−2

ω
2
p−1

[
cosh

(
p− 1

2
ω

1
2 [x+ akj ]

)]−2p+2

×
[
cosh

(
p− 1

2
ω

1
2 [x− akj ]

)]−2p+2

.

Now, since vk 6= vj for j 6= k either vk > vj or vk < vj . We suppose vk > vj . Therefore,
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for t� 1, we have µk(t) > µj(t) and so as t→ +∞, then akj → +∞. Therefore

Qω

(∣∣∣∣x+
1

2
(µk(t)− µj(t))

∣∣∣∣)Qω (∣∣∣∣y − 1

2
(µk(t)− µj(t))

∣∣∣∣) =(
p+ 1

2

)2p−2

ω
2
p−1

[
cosh

(
p− 1

2
ω

1
2 [x+ akj ]

)]−2p+2

×
[
cosh

(
p− 1

2
ω

1
2 [x− akj ]

)]−2p+2

'

(2(p+ 1))2p−2 ω
2
p−1 e−(p−1)2ω

1
2 [|x+akj |+|x−akj |],

uniformly in x over R, as akj → +∞. Therefore,∫
Rn

[
|y|2 − |akj |2

]
Qω (|y + akj |)Qω (|y − akj |) '

(2(p+ 1))2p−2 ω
2
p−1

∫
R

[
|x|2 − |akj |2

]
e−(p−1)2ω

1
2 [|x+akj |+|x−akj |].

We compute this last integral explicitly, dividing it into three parts:∫
R

[
|x|2 − |akj |2

]
e−(p−1)2ω

1
2 [|x+akj |+|x−akj |] =∫

x>akj

[
|x|2 − |akj |2

]
e−(p−1)2ω

1
2 [|x+akj |+|x−akj |] +∫

−akj<x<akj

[
|x|2 − |akj |2

]
e−(p−1)2ω

1
2 [|x+akj |+|x−akj |] +∫

x<−akj

[
|x|2 − |akj |2

]
e−(p−1)2ω

1
2 [|x+akj |+|x−akj |] = I(akj) + II(akj) + III(akj).

Now, we compute each integral separately and then we put everything together. We start

with III(akj):

III(akj) :=

∫
x<−akj

[
|x|2 − |akj |2

]
e−(p−1)2ω

1
2 [|x+akj |+|x−akj |]dx =

−
∫
−z<−akj

[
| − z|2 − |akj |2

]
e−(p−1)2ω

1
2 [|−z+akj |+|−z−akj |] − (dz) =∫

z>akj

[
|z|2 − |akj |2

]
e−(p−1)2ω

1
2 [|z−akj |+|+z+akj |]dz = I(akj).
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Now, assuming akj > 0 (but for akj < 0 it works in the same way), we have

I(akj) =

∫
x>akj

[
|x|2 − |akj |2

]
e−(p−1)2ω

1
2 [|x+akj |+|x−akj |] =∫

x>akj

[
|x|2 − |akj |2

]
e−2(p−1)2ω

1
2 x =

1

2
(p− 1)−2 ω−

1
2

∫
y>2(p−1)2ω

1
2 akj

[
1

4
(p− 1)−4 ω−1|y|2 − |akj |2

]
e−y =

1

8(p− 1)6
ω−

3
2

{[
2(p− 1)2ω

1
2akj + 1

]2
+ 1

}
×e−2(p−1)2ω

1
2 akj −

|akj |2ω−
1
2

2(p− 1)2
e−

1
2

(p−1)2ω
1
2 akj .

by changing variables y := 2 (p− 1)2 ω
1
2x. Also,

II(akj) :=

∫
−akj<x<akj

[
|x|2 − |akj |2

]
e−(p−1)2ω

1
2 [|x+akj |+|x−akj |] =∫

−akj<x<akj

[
|x|2 − |akj |2

]
e−2akj(p−1)2ω

1
2 = e−2akj(p−1)2ω

1
2

[
x3

3
− a2

kjx

]+akj

−akj
=

−4

3
a3
kje
−2akj(p−1)2ω

1
2 .

Therefore,

I(akj) + II(akj) + III(akj) ' −
4

3
a3
kje
−2akj(p−1)2ω

1
2 ,

when t→ +∞, since II(akj) has a stronger power of akj . This implies that∫
Rn

[
|y|2 − |akj |2

]
Qω (|y + akj |)Qω (|y − akj |) −→ 0−

as t→ +∞ and hence it is asymptotically negative. Now, we concentrate on the phase:

cos

(
t

4
[|vk|2 − |vj |2] +

1

2
akj(vk − vj)

)
× = cos

(
t

2
[|vk|2 − |vj |2] +

1

4
(xk0 + xj0)(vk − vj)

)
.

We choose parameters in the following way:
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v1 = −v2, v3 = −v4,
1

4
(x1

0 +x2
0)(v1− v2) =

π

2
+ ε, and

1

4
(x3

0 +x4
0)(v3− v4) = −3

2
π+ δ,

so that

Cov(R1(t), R2(t)) ' 4

3
εa3

12

(
p+ 1

2

)2p−2

ω
2
p−1 e−2a12(p−1)2ω

1
2

and

Cov(R3(t), R4(t)) ' 4

3
δa3

34

(
p+ 1

2

)2p−2

ω
2
p−1 e−2a34(p−1)2ω

1
2 ,

for 0 < ε� 1 and 0 < δ � 1.

Moreover, we choose x2
0 = −x3

0 and x1
0 = −x4

0, |v4|2 − |v1|2 = q1, |v3|2 − |v2|2 = q2, t̃1 such

that 1
2 t̃1q2 = 0 mod 2π and t̃2 such that 1

2 t̃2q1 = 0 mod 2π. These choices imply

q1 = q2 = q, (v1, v2, v3, v4) = (v1,−v1,+
√
q + |v1|2,−

√
q + |v1|2)

and

t̃ = t̃1 = t̃2 =
4πk

q

with k � 1 (basically big enough to satisfy the asymptotic conditions of Theorem 3.2.10

and [88]), v1 such that

|v1|2 = q

(
π
2 + ε

)2
−
(
π
2 + ε

)2
+
(
−3

2π + δ
)2

and

(x1
0, x

2
0, x

3
0, x

4
0) =

(
x1

0,
2

v

(π
2

+ ε
)
− x1

0,−
2

v

(π
2

+ ε
)

+ x1
0,−x1

0

)
with v = v1.
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At this point, we can compute

Cov(R1(t̃, x) +R3(t̃, x), R2(t̃, x) +R4(t̃, x)) =

Cov(R1(t̃, x), R2(t̃, x)) + Cov(R3(t̃, x), R4(t̃, x)) +

Cov(R2(t̃, x), R3(t̃, x)) + Cov(R4(t̃, x), R1(t̃, x)) '
4

3
εa3

12

(
p+ 1

2

)2p−2

ω
2
p−1 e−2a12(p−1)2ω

1
2 +

4

3
δa3

34

(
p+ 1

2

)2p−2

ω
2
p−1 e−2a34(p−1)2ω

1
2

−4

3
a3

23

(
p+ 1

2

)2p−2

ω
2
p−1 e−2a23(p−1)2ω

1
2 − 4

3
a3

41

(
p+ 1

2

)2p−2

ω
2
p−1 e−2a41(p−1)2ω

1
2 < 0,

for ε and δ small enough (similarly as in the proof for the Quantum Harmonic Oscillator).

Moreover, since t̃ � 1 and from Theorem 3.2.10, one has that ψ(t̃, x) ' Σ4
k=1Rk(t̃, x)

and so, at the instant t̃ � 1, the Simpson’s Paradox occurs. This completes the proof of

Theorem 3.2.6.

3.2.6 How likely is the Simpson’s Paradox in Quantum Mechanics?

An important question is: ”How likely is the Simpson’s Paradox?”. It is in fact interesting

to quantify, in some way, the chances that one has to run into the paradox.

In the case of 2× 2× l contingency tables with l ≥ 2, Pavlides and Perlman [94] address

the problem and, among the other things, they prove the following.

Suppose that a contingency table consists of a factor A with two levels, a factor B with

other 2 levels and a third factor C with l ≥ 2-levels. Then, the array of cell probabilities

p lies on the Simplex

S4l :=
{

p| pi ≥ 0, ∀i = 1, . . . , 4l; Σ4l
i=1pi = 1

}
.

Endow S4l with the Dirichlet Distribution on S4l, denoted by D4l(α) and denote with πl(α)

the probability of having the Simpson’s Paradox under D4l(α). Pavlides and Perlman

proved in [94] that π2(1) = 1
60 and conjectured that for every α > 0, there exists h(α) > 0

such that

πl(α) ' π2(α)× e−h(α)( l2−1), l = 2, 3, . . . .
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A similar question can be asked in the case of the Quantum Harmonic Oscillator and the

Nonlinear Schrödinger equation. In the constructions developed in the previous sections,

we aimed just at finding one single choice of the parameters which gives the Simpson’s

Paradox and we did it mainly with a perturbative method. But how large is (and in which

sense it is large) the set of parameters which gives the Simpson’s Paradox?

To investigate a little bit further this issue, we briefly recall the proof of Theorem 3.2.1,

at least in the stationary case and deduce from it a preliminary result on the likelihood of

occurrence of the Simpson’s Paradox.

Consider two moving solitons of the form:

ψi(t, x) =
(mω
π}

)1/4
ei[x·vi(t)+γi(t)+

ωt
2

]e−
mω
2} |x−xi(t)|

2
,

and

ψj(t, x) =
(mω
π}

)1/4
ei[x·vj(t)+γj(t)+

ωt
2

]e−
mω
2} |x−xj(t)|

2
,

for 1 ≤ i ≤ j ≤ 4 and with x(t), v(t) and γ(t) as in Subsection 3.2.8.

Consider the case in which, for every t ∈ R, one has that xk(t) = xk, for every k = 1, . . . , N

independent of time. It has been proven in Proposition 3.2.16 above that the Covariance

between any of these two solitons is given by:

Cov(ψi(t, x), ψj(t, x)) =
1

2
cos(γi − γj)

[
}
mω
− 1

2
|xi − xj |2

]
e−

mω
4} |xi−xj |

2

Therefore, the proof of Theorem 3.2.1 in the stationary case reduces to the problem of

finding parameters such that the Simpson’s Paradox occurs, namely such that

Cov(ψ1(t, x), ψ2(t, x)) > 0,

Cov(ψ3(t, x), ψ4(t, x)) > 0

but

Cov(ψ1(t, x) + ψ3(t, x), ψ2(t, x) + ψ4(t, x)) < 0
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or vice versa,

Cov(ψ1(t, x), ψ2(t, x)) < 0,

Cov(ψ3(t, x), ψ4(t, x)) < 0

but

Cov(ψ1(t, x) + ψ3(t, x), ψ2(t, x) + ψ4(t, x)) > 0.

Now, we define

L2
ij :=

mω

2}
|xi − xj |2

so that Cov(ψi(t, x), ψj(t, x)) can be rewritten in the following way:

Cov(ψi(t, x), ψj(t, x)) =
}

2mω
cos(γi − γj)

[
1− L2

ij

]
e−

1
2
L2
ij .

In the following discussion, we treat only the case γi = γj , for every i, j = 1, . . . , 4.

We can restate our hypotheses and thesis in the following way: we suppose that 0 < L12 <

1 and 0 < L34 < 1 and we want to quantify ”how many” admissible choices of 0 < L12 < 1

and 0 < L34 < 1, L23 and L14 there are such that

[
1− L2

12

]
e−

1
2
L2

12 +
[
1− L2

23

]
e−

1
2
L2

23 +
[
1− L2

34

]
e−

1
2
L2

34 +
[
1− L2

14

]
e−

1
2
L2

14 < 0.

Remark 3.2.44. Note that the defining condition for the occurrence of the Simpson’s

Paradox are all inequalities which is a hint of the fact that the Simpson’s Paradox occurs

in a open set of the correct topology (see Theorem 3.2.5).

Since we are in dimension n = 1, we can choose x1 < x2 < x3 < x4. This implies that

L14 = L12 + L23 + L34 and so that we have to find an admissible choice of 0 < L12 < 1

and 0 < L34 < 1 and L23 such that

[
1− L2

12

]
e−

1
2
L2

12 +
[
1− L2

23

]
e−

1
2
L2

23 +

+
[
1− L2

34

]
e−

1
2
L2

34 +
[
1− (L12 + L23 + L34)2

]
e−

1
2

(L12+L23+L34)2
< 0.
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Figure 3.1: Surface discriminating between the region of parameters where the Simpson’s
Paradox occurs and does not occur.

Now, if we define X := L12, Y := L34 and Z := L23, we get that the Simpson’s Paradox

occurs when the following are satisfied:

0 < X < 1

0 < Y < 1[
1−X2

]
e−

1
2
X2

+
[
1− Y 2

]
e−

1
2
Y 2

+
[
1− Z2

]
e−

1
2
Z2

+[
1− (X + Y + Z)2

]
e−

1
2

(X+Y+Z)2
< 0.

Figure 1 focuses on a small region of the parameters’ space with 0 < X,Y < 1 and

represents the surface which discriminates between where the paradox occurs and when it

does not.

Note that, when one of the coordinates (for example Z) becomes larger and larger, the
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Figure 3.2: The likelihood of occurrence of the Simpson’s Paradox decreases to zero as
one of the distances between the particles increases indefinitely.

paradox occurs more and more rarely. In fact, the condition

[
1−X2

]
e−

1
2
X2

+
[
1− Y 2

]
e−

1
2
Y 2

+
[
1− Z2

]
e−

1
2
Z2

+
[
1− (X + Y + Z)2

]
e−

1
2

(X+Y+Z)2
< 0

for big Z reduces to [
1−X2

]
e−

1
2
X2

+
[
1− Y 2

]
e−

1
2
Y 2

< 0

which is incompatible with

0 < X < 1, and 0 < Y < 1.

Figure 2 explains this last sentence visually.

We have decided to test the inequality f(X,Y, Z) < 0 over a grid of n× n× n values

with n = 1000 in the parallelepiped (X,Y, Z) ∈ [0, 1]× [0, 1]× [0, 4] and we discovered that

about 1.2∗10−4 of the times (0.012%) the inequality is satisfied. Note that the choice of the
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uniform distribution on [0, 1]×[0, 1]×[0, 4] has been made because for Z > 4 the Simpson’s

Paradox ’s region is almost null (Figure 2) and because already 0 < X,Y < 1. This result

deserves further investigation. For reproducibility purposes, we give the Matlab Code that

we used for the analysis:

syms X Y Z

fun=@(X,Y,Z)((1-X.^2).*exp(-X.^2/2)+(1-Y.^2).*exp(-Y.^2/2)

+(1-Z.^2).*exp(-Z.^2/2)+(1-(X+Y+Z).^2).*exp(-(X+Y+Z).^2/2));

n=1000;

S=zeros(n);

m=zeros(n);

x=0:1/n:1;

y=0:1/n:1;

%since the max of this function is 4

z=0:1/n:4;

SP=0;

%syms t

%[X,Y]=meshgrid(0:0.1:1,0:0.1:1);

for i= 1:n+1

for j=1:n+1

for k=1:n+1

if fun(x(i),y(j),z(k))<0

SP=SP+1;

else

SP=SP+0;

end

end

end

SP # Number of occasions in which the Simpson’s Paradox occurs

SP/(n+1)^3

# Percentage of occasions in which the Simpson’s Paradox occurs

3.2.7 Some Numerical Examples

For illustration purposes, we give some numerical examples of cases in which the Simpson’s

Paradox occurs and on which it does not. We find interesting to give to each parameters

their true physical value.
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Consider the Planck Constant

} =
h

2π
=

1

2π
∗ 6.62607004 ∗ 10−34m2kg/s = 1.0545718 ∗ 10−34m2kg/s,

the Mass of an Electron

m = 9.10938356 ∗ 10−31kg

with frequency of revolution

f = 6.6 ∗ 1015s−1

and angular velocity

ω = 2πf = 4.1469023 ∗ 1016s−1.

Note that the quantity

L2
ij :=

mω

2}
|xi − xj |2

that we defined and used in Section 3.2.6 for the sketch of the proof of the stationary case

of Theorem 3.2.1, is dimensionless and it is a fundamental quantity.

We choose L2
12,L2

34 and L2
23 which are all around 1. Note that this implies the following

about the distance between the particles:

1 ' L2
ij =

mω

2}
|xi − xj |2 =

9.10938356 ∗ 10−31 ∗ 4.1469023 ∗ 1016

1.0545718 ∗ 10−34
|xi − xj |2

' 3.582091 ∗ 1020|xi − xj |2.

This implies that

|xi − xj | ' 5.2836213 ∗ 10−11m.

Recall that the Bohr Radius, which represents approximately the most probable distance

between the center of a nuclide and the electron in a hydrogen atom in its ground state, is

rBohr = 5.2917721067 ∗ 10−11m

We choose L2
12 = 1− ε21, L2

34 = 1− ε22 and L2
23 = 1 + δ2 with ε1 � 1, ε2 � 1. The following

R code produces and example of the paradox in our case:

x=1-10^(-10); #L_{12}^2<1--> Positive Correlation
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y=1-10^(-10); #L_{34}^2<1--> Positive Correlation

z=1+10^(-5); #L_{23}^2

(1-x^2)*exp(-x^2/2)+(1-y^2)*exp(-y^2/2)+(1-z^2)*exp(-z^2/2)

+(1-(x+y+z)^2)*exp(-(x+y+z)^2/2)

#Reversal Condition <--> Negative Correlation

[1] -0.0888821

Of course, there are cases in which the Simpson’s Paradox does not occur, like

x=1-10^(-1); #L_{12}^2<1--> Positive Correlation

y=1-10^(-1); #L_{34}^2<1--> Positive Correlation

z=1+10^(-5); #L_{23}^2

(1-x^2)*exp(-x^2/2)+(1-y^2)*exp(-y^2/2)+(1-z^2)*exp(-z^2/2)

+(1-(x+y+z)^2)*exp(-(x+y+z)^2/2)

#Reversal Condition not satisfied <--> Positive Correlation

[1] 0.1177287

3.2.8 Final Considerations and Open Problems

In this subsection, we present some open problems and some final considerations about the

occurrence of the Simpson’s Paradox in the settings of the Quantum Harmonic Oscillator

and of the Nonlinear Schrödinger Equation.

• Intermittent Paradox in the nonlinear case. In the nonlinear case the choice of the

parameters can be redone in order to get the non occurrence of the paradox. For example,

keeping the same other conditions, but now requesting

1

2
t̃1q2 = π mod 2π

and
1

2
t̃2q1 = π mod 2π,

we get that the paradox disappears at time t̃ = 2π
q1
mcm{ q22π t̃1,

q1
2π t̃2}. Therefore, we can

say that, for the Nonlinear Schrödinger Equation, the Simpson’s Paradox is Intermittent.

We think that this is the case for any choice of the initial data, but this is not proved in

our theorems and so it remains an open problem.

• What happens for finite times in the nonlinear case?. This is hard to tell, because one

does not have the soliton structure, which, in the nonlinear case, appears just asymptoti-

cally. We believe that, if one defines, in a reasonable way, a measure of amalgamation for
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solutions which are not solitons, would get that, for finite times, the Simpson’s Paradox

will be highly intermittent. In that case it would be interesting to understand how many

times the paradox appears and disappears before a fixed time T .

• The nonlinear case in spatial dimension n > 1. In dimension n > 1, the explicit form of

the ground state is not available. Hence the analysis done do not apply directly. Anyways,

we still believe that, since the structure of the measure of amalgamation is similar to the

other cases (as shown in Section 3.2.5 in the proof of Theorem 3.2.6), the Simpson’s

Paradox occurs in the nonlinear case, for n > 1, as well.

• The case of more than 4 solitons. Suppose that a contingency table consists of factors

A with two levels, factor B with other 2 levels and a third factor C with l ≥ 2-levels. This

case corresponds, in the framework of the Quantum Harmonic Oscillator, to considering

an initial datum of the form

ψ(0, x) = Σ4l
i=1ψi(0, x),

with each ψi(0, x) of the form:

ψi(t, x) =
(mω
π}

)1/4
ei[x·vi(t)+γi(t)+

nωt
2

]e−
mω
2} |x−xi(t)|

2
,

where the parameters xi(t), vi(t) and γi(t) are defined as above (see Subsection 3.2.2). In

the case of contingency tables, we say that a Simpson’s reversal occurs when

p4i+1p4i+4 ≥ p4i+2p4i+3 for any i = 1, . . . l,

but (
Σl−1
i=0p4i+1

)(
Σl−1
i=0p4i+4

)
≤
(

Σl−1
i=0p4i+2

)(
Σl−1
i=0p4i+3

)
or the same occurs, but with all the inequality reversed. In the context of the Quantum

Harmonic Oscillator with an initial datum of the form ψ(0, x) = Σ4l
i=1ψi(0, x), we say that

the Simpson’s Paradox occurs when

Cov (ψ4i+1(t, x), ψ4i+4(t, x)) > Cov (ψ4i+2(t, x), ψ4i+3(t, x)) for any i = 1, . . . l,

but

Cov
(

Σl
i=1ψ4i+1(t, x),Σl

i=1ψ4i+4(t, x)
)
< Cov

(
Σl
i=1ψ4i+2(t, x),Σl

i=1ψ4i+3(t, x)
)
.

The proof of the occurrence of the Simpson’s Paradox, in the case of l > 1, follows the

same lines of the case l = 1, with just very small adaptations. We just want to mention
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that, with the increase of l, the paradox becomes rarer and rarer. See the next paragraph

for more details.

• Probability of the occurrence of the Simpson’s Paradox. An important question is: ”How

likely is Simpson’s Paradox?”. It is in fact interesting to quantify, in some way, the chances

that one has to run into the paradox. In the case of contingency tables, Pavlides and

Perlman address the problem [94] and, among the other things, they prove the following.

Suppose that a contingency table consists of a factor A with two levels, a factor B with

other 2 levels and a third factor C with l ≥ 2-levels. Then, the array of cell probabilities

p lies on the Simplex

S4l :=
{

p|pi ≥ 0, ∀i = 1, . . . , 4l; Σ4l
i=1pi = 1

}
.

Endow S4l with the Dirichlet Distribution on S4l, denoted by D4l(α) and denote with πl(α)

the probability of having the Simpson’s Paradox under D4l(α). Pavlides and Perlman

proved in [94] that π2(1) = 1
60 and conjectured that for every α > 0, there exists h(α) > 0

such that

πl(α) ' π2(α)× e−h(α)( l2−1), l = 2, 3, . . . .

A similar question can be asked in the case of the Quantum Harmonic Oscillator and

Nonlinear Schrödinger equation. In our constructions, we aimed just at finding one single

choice of any parameter which gives the Simpson’s Reversal and we did it mainly with a

perturbative method. But how large is (and in which sense it is large) the set of parameters

which gives the Simpson’s Reversal? One, first, has to construct a reasonable probability

distribution on the space of parameters (and, maybe later, in a more advanced way, on

the space of solutions) and then compute. One could use something similar to what

Pavlides and Perlman presented, but it does not seem reasonable to not use the particular

features of the Schrödinger equation. The stationary case seem much simpler than the

non-stationary one. It is also interesting to understand if the probability of getting the

Simpson’s Paradox changes varying the spatial dimension n. From our construction, it is

not clear if to conjecture that the probability increases or decreases with n, since, for our

purposes, it is enough to reduce the problem to the one dimensional case. From one side,

in dimension n ≥ 2, there are more geometrical shapes which can give the paradox, like

triangles or rectangles. But, in the same way, there are more sets of parameters which do

not give the Simpson’s Reversal. We think that, since the measure of amalgamation of

two solitons increases with the dimension n, the Simpson’s Paradox should be rarer and

rarer. Even if we reported some preliminary results, the problem of the likelihood of the

Simpson’s Paradox remains an open problem.
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• Connection with Game Theory. The Prisoner’s Dilemma is an example, in game theory,

that shows why two players might decide to not cooperate, even if it appears that it is

more convenient for both of them. Suppose we are playing a game with two players A

and B. They can choose to either ”Cooperate” or ”Not-Cooperate”. Accordingly to their

choices, they get certain payoffs. If both players A and B decide to cooperate, they both

receive a reward, p1. If B chooses to not cooperate while A cooperates, then B receives

a payoff p2, while A receives a payoff p3. Similarly, if the roles of A and B are reversed.

If both players A and B decide to not cooperate, their payoffs are going to be p4. To get

the Prisoner’s Dilemma, the following must hold on the payoffs:

p3 > p1 > p4 > p2.

This condition is the analogue to the original requirement on the Simpson’s Paradox of

having angles in decreasing order. Here p3 > p1 and p4 > p2 imply that it is better to

not cooperate for both A and B (condition θ3 > θ1 and θ4 > θ2) both given the fact that

the other player does or does not cooperate. This situation in game theory is called Nash

Equilibrium. The dilemma then is that the Nash Equilibrium might not be the global

optimal situation, similarly as in the case of the Simpson’s Paradox, where the Simpson’s

Reversal can occur θ3,4 < θ1,2. We have discussed this in more detail in Section 3.1.

• Test for Linearity. Suppose that during a physical experiment, one observes the present

of solitons and want to understand if the phenomenon is linear on non-linear. The fact

that in the linear case the Simpson’s paradox is persistent and in the nonlinear it is not,

could be use to test linearity against non-linearity. If during the experiment, the paradox

appears for almost all the times t (or almost never) then one can think that the solitons

are present due to a linear interaction and a presence of an external trapping potential.

Instead, if the paradox appears and disappears in a relevant amount of instants t, then

the phenomenon cannot be modelled in a linear way and one has to use a nonlinear one.

We have not pursued this direction yet.

•Way to build a continuous of contingency tables without the Paradox. In the construction

of contingency tables, it is very important to try to avoid the Paradox. Our theorems,

in some sense, give a way to construct such tables. Theorem 3.2.1 and Theorem 3.2.5

basically say that, with the proper choice of the initial contingency table, one can construct

a continuous of contingency tables indexed by t, using the Quantum Harmonic Oscillator

Flow and that this continuous of contingency tables is actually stable in the sense that, if

one varies the initial entries of a small quantity, one goes on avoiding the paradox for any

time t and so for all the family of contingency tables.
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• Other Equations. It would be interesting to verify if the Simpson’s Paradox occurs also

for other PDEs or ODEs. Our construction often relies on the possibility of having a

2-dimensional co-domain for the solutions, but we do not exclude that, with a different

Measure of Amalgamation to which you can adapt a definition of Simpson’s Paradox, one

can still obtain the Simpson’s Paradox for equation whose co-domain is, for example, R.

We expect that a similar phenomenon could appear, for example, for the Dirac Equation.

3.3 The Simpson’s Paradox in Big Data and the Consensus

Monte Carlo Algorithm

We go back to the problem of distributing a big amount of data to different machines and

approach based on the Consensus Monte Carlo algorithm to address it.

We will describe how the algorithm works as explained in [105] and add that the Simpson’s

Paradox appears as a real problem in the ”consensus” estimate.

3.3.1 Introduction and Motivation

The Consensus Monte Carlo algorithm is a method of performing approximate Monte

Carlo simulation from a Bayesian posterior distribution based on very large data sets.

The strategy employed by the method is to divide the data sets into multiple processors.

The possible approaches to attack the problem are mainly multi-core and multi-machine

computing. The first can be very effective but does not alleviate bottlenecks and requires

non-trivial coding. The second does eliminate bottlenecks, but requires high computa-

tional cost in order to communicate between different machines. The two approaches are

complementary.

The Consensus Monte Carlo algorithm proposes to divide big data sets across several dif-

ferent machines and sample independently from the posterior of each machine given its

own share of data.

The authors of [105] mentioned that a problem with the algorithm is the possible small-

sample bias due to the fact that the full data set is divided into several much smaller

samples. Jackknife can be used to work on this issue.
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In the following, we will add that a further problem is related to the possibility of the

Simpson’s Paradox appearing at different levels of the division of the data into different

machines.

In Subsection 3.3.2, we describe the Consensus Monte Carlo (CMC) algorithm, while in

Subsection 3.3.3, we highlight the possibility of the appearance of the Simpson’s Paradox

as a problem in the consensus estimate.

3.3.2 The Algorithm

Following [105], we have that the CMC algorithm works in the following way. The com-

plete data set is divided into ”shards”; each shard is sent to a machine which performs a

Monte Carlo simulation from the posterior distribution given its part of the data; at this

point, the estimate of each machine is sent back to another machine which is responsible

for the average of the estimate and so producing the ”consensus” estimate.

More precisely, suppose that y represents the full data set, ys the data set given to the

machine s and θ being the vector of model parameters. Assuming that the sampling pro-

cedure is done independently by each machine, but allowing dependence in each machine,

we get:

p(θ|y) ∝ ΠS
s=1p(ys|θ)p(θ)1/S .

Here p(θ) represents the prior information on θ, while p(ys|θ) is the posterior produced

by machine s.

Each machine can generate θs1, . . . , θsG with s = 1, . . . , S draws from p(θ|ys). At this

point, a machine averages the draws received from each of the s machines with the appro-

priate weights Ws and obtain the consensus posterior for draw g.

θg =

∑S
s=1Wsθsg∑S
s=1Ws

.

The common choices of the weights is the sample variance, but other possible estimates

of the variance of the sampling distribution are available.
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3.3.3 The Simpson’s Paradox for the Consensus Monte Carlo Algorithm

Let us consider as an example the data set relative to the relative to Berkeley Gender Bias

in Graduate School Admission described in Subsection 3.1.3.

Suppose that S = 6 and each s represents one of the departments A,B,C,D,E, F . Con-

sider the two subgroupsG = Male = 0 andG = Female = 0 and build a logistic regression

model for the whole dataset and for each department, having the response variable Y = 1

representing the admission, while Y = 0 the not admission. We want to give an estimate

of the coefficient θ, representing the correlation between Y and the gender difference.

As explained in Subsection 3.1.3, on the whole data set the estimate for θ would be pos-

itive in favour of males, while mostly negative in each single department. The apparent

contradiction was explained with the presence of a confounding variable, namely the fact

that female students applied to more competitive departments, with lower admission rates.

As seen, this issue comes when the data are somehow limited with respect to the current

quantity of information available. The possibility of the presence of several confounding

variables in big data sets is real and must be taken into consideration in algorithms like the

Consensus Monte Carlo where estimates from different machines are combined together.

And the probability of incurring in the Simpson’s Paradox is definitely not negligible (see

again [94]).

3.4 Concluding Remarks

In this chapter, we have studied the Simpson’s Paradox. The Simpson’s Paradox is the

phenomenon that appears in some datasets, where subgroups with a common trend show

the reverse trend when they are aggregated. We noticed the occurrence of the paradox in

several different areas in science by giving extended examples. The main new results of

this chapter concerned the occurrence of the Simpson’s Paradox in Quantum Mechanics.

We proved that the Simpson’s Paradox occurs for solutions of the Quantum Harmonic

Oscillator both in the stationary case and in the non-stationary case. We proved that

the phenomenon is not isolated and that it appears (asymptotically) in the context of

the Nonlinear Schrödinger Equation as well. Moreover, we discussed the likelihood of

occurrence of the paradox in Quantum Mechanics and noticed its relation to the Bohr

radius which might have important physical consequences. It would be good to check if

we can detect this phenomenon experimentally.
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Chapter 4

Univariate and Multivariate

Distributions with Symmetries

This chapter contains some new results about distributions with symmetries.

First, we discuss a result on symmetric order statistics. We prove that the symmetry of any

of the order statistics is equivalent to the symmetry of the underlying distribution. Then,

we characterize elliptical distributions through group invariance and give some properties.

Finally, we study geometric probability distributions on the torus with applications to

molecular biology.

4.1 Distributions invariant under Discrete Symmetries

In this section, we discuss results about some probability distributions with discrete sym-

metries.

4.1.1 The Reflection Group

Most of the material of this subsection can be found in [124], [62] or in [36] and the

references there in.

A reflection group is a discrete group which is generated by a set of reflections of a finite

dimensional Euclidean space. More precisely, we have the following definition.

Definition 4.1.1 (The Reflection Group). Let E be a finite-dimensional Euclidean space.
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• A finite reflection group is a subgroup of the general linear group of E which is

generated by a set of orthogonal reflections across hyperplanes passing through the

origin.

• An affine reflection group is a discrete subgroup of the affine group of E that is

generated by a set of affine reflections of E.

For what concerns us, we will always work with (R,+, ·) as the underlying field, but

generalizations to other fields, leading to complex reflection groups or reflection groups

over finite fields are possible.

Reflection groups, appear, for example, as the symmetry groups of regular polytopes of

the Euclidean space. Reflection Groups are the ”concrete” version/ particular cases of the

more ”abstract” Coxeter Groups [36].

In one dimension, we have E = R and the only nontrivial group is the simple reflection.

Simple reflections correspond to the Coxeter group, A1, in bracket notation [31−1], it is of

rank 1 and order 2, with Coxeter-Dynkin diagram and represents the 1-simplex.

In two dimensions, we have E = R2 and the finite reflection groups are the dihedral groups,

which are generated by reflections in two lines that form an angle of 2πm
n with m,n ∈ N

relatively prime.

In three dimensions, symmetry groups of the five Platonic solids are finite reflection groups.

Note that the symmetry group of the regular dodecahedron and its dual, the regular

icosahedron, are the Coxeter group H3 [37].

All these discrete groups act as isometry on E.

Discrete isometry groups generated by reflections appear also when E is a more general

Riemannian manifolds, for example on the sphere Sn or on the hyperbolic space Hn.

4.1.2 Symmetry of a Distribution via Symmetry of Order Statistics

In this subsection, we establish the following characterization of symmetric absolutely

continuous distributions and symmetric discrete distributions. Suppose X1, . . . , Xn is

a random sample from a distribution with pdf/pmf fX(x), and X1:n, . . . , Xn:n are the
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corresponding order statistics. Then, the order statistics are symmetric with respect to

the reflection group A1, namely Xr:n
d
= −Xn−r+1:n for some r = 1, . . . , n, if and only if

the underlying distribution is symmetric with respect to A1, fX(x) = fX(−x). Here,
d
=

means that the two random variables have the same distribution. In the discrete case, we

assume the support to be finite.

4.1.2.1 Introduction and Motivation

Suppose X1, . . . , Xn are n iid random variables. The corresponding order statistics are

the Xi’s arranged in non-decreasing order, denoted by X1:n ≤ X2:n ≤ · · · ≤ Xn:n. A broad

literature has been developed on the study of order statistics and we refer to [2] and [38]

for an extended set of references. Here, we concentrate on the problem of characterizing

probability distributions through some properties of order statistics.

It is clear that the knowledge of the distribution of X1:1 completely determines the dis-

tributions Xr:n for every r such that 1 ≤ r ≤ n and every n ∈ N. It also completely

determines the marginal and joint distributions of various linear combinations of order

statistics. Also, the knowledge of the distribution of Xn:n determines the distribution of

the Xi’s completely. This is true for the following simple reason. To fix the ideas, think

about the absolutely continuous case. Since the cdf of Xn,n is Fn:n(x) = [F (x)]n for every

x and since F is a positive real-valued function, then F (x) = (Fn:n(x))
1
n . The intermediate

order statistics completely determine the distribution F (x), In fact,

Fr:n(x) = Pr(Xr:n ≤ x) = IF (x)(r, n− r + 1),

where I1−p(r, n− r + 1) = r n!
r!(n−r)!

∫ 1−p
0 tr−1(1− t)n−rdt and the inverse function readily

gives you F (x).

It is well known that order statistics possess some more interesting distributional properties

if the population distribution is symmetric, say about 0. In this case, by using the facts

that f(−x) = f(x) and so that F (−x) = 1−F (x), we have that Xr:n
d
= −Xn−r+1:n for all

r = 1, . . . , n (see, for example, [2]) and similarly for the joint distributions of any sets of

order statistics.

What we want to investigate here is the converse of this assertion, namely, if knowing

that Xr:n
d
= −Xn−r+1:n for some r = 1, . . . , n forces the original pdf to be symmetric. i.e.

fX(x) = fX(−x). In this regard, we have the following result.
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Theorem 4.1.2. Suppose X1, . . . , Xn is a random sample from a distribution with pdf (

or pmf) fX(x), and X1:n, . . . , Xn:n are the corresponding order statistics. Then, Xr:n
d
=

−Xn−r+1:n for some r = 1, . . . , n if and only if fX(x) = fX(−x). Here
d
= means that

the two random variables have the same distribution. In the discrete case, we assume the

support to be finite.

The proof proceeds in two steps. First, we prove that S, the support of f(x), must be

symmetric; then, we prove that f(x) = f(−x) on S. The proof follows slightly different

lines in the discrete and absolutely continuous case, and so we divided it in the two cases

(see Section 4.1.2.3).

The rest of this subsection is organized as follows. In Subsubsection 4.1.2.2, we explain

the notation and list some preliminary results about absolutely continuous and discrete

order statistics. In Subsubsection 4.1.2.3, we present the complete proof of Theorem 4.1.2.

4.1.2.2 Notation and Preliminaries

In this subsubsection, we list some preliminary results, concerning absolutely continuous

and discrete order statistics.

The form of the pdf of Xr:n when the population is absolutely continuous is given by the

following theorem.

Theorem 4.1.3. Let X1:n, . . . , Xn:n denote the order statistics of a random sample

X1, . . . , Xn

from an absolutely continuous population with cdf FX(x) and pdf fX(x). Then, the pdf of

Xr:n is

fXr:n(x) =
Γ(n+ 1)

Γ(r)Γ(n− r + 1)
[FX(x)]r−1[1− FX(x)]n−rfX(x). (4.1)

The form of the pmf of Xr:n when the population is discrete is given by the following

theorem.

Theorem 4.1.4. Let X1:n, . . . , Xn:n denote the order statistics of a random sample

X1, . . . , Xn
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from a discrete population with cdf FX(x) and pmf fX(x). Then, the pmf of Xr:n is

P (Xr:n = x) =
n−r∑
j=0

n!

j!(n− j)!(
(1− F (x))j(F (x))n−j − (1− F (x) + f(x))j(F (x)− f(x))n−j

)
.

For more details on the distribution theory of order statistics, we refer to [2] and [38].

4.1.2.3 Proof of Theorem 4.1.2

In this subsubsection, we present a complete proof of Theorem 4.1.2. One direction is

trivial, as already explained in the introduction.

Absolutely Continuous Case

Now, we consider the case in which the distribution is absolutely continuous. We start by

proving that the support must be symmetric.

Lemma 4.1.5 (Symmetric Support). Suppose X1, . . . , Xn is a random sample from an

absolutely continuous density fX(x). If Xr:n
d
= −Xn−r+1:n, then S := {x : fX(x) > 0},

the support of fX(x), is symmetric.

Proof. Suppose Xr:n
d
= −Xn−r+1:n. Then, fXr:n(x) = fXn−r+1:n(−x) and so

Γ(n+ 1)

Γ(r)Γ(n− r + 1)
[FX(x)]r−1[1− FX(x)]n−rfX(x)

=
Γ(n+ 1)

Γ(r)Γ(n− r + 1)
[FX(−x)]n−r[1− FX(−x)]r−1fX(−x).

If x ∈ Sc, then fX(x) = 0. Consequently, by the condition fXr:n(x) = fXn−r+1:n(−x), we

get

[FX(−x)]n−r[1− FX(−x)]r−1fX(−x) = 0.

On the left hand side, we have the product of three terms. Therefore, in order for the left

hand side to be zero, it is enough that at least one of the factors is zero. Then, we have

three cases:

• f(−x) = 0 and so −x ∈ Sc;

• F (−x) = 0 which implies f(−x) = 0 and so −x ∈ Sc;

• F (−x) = 1 which implies f(−x) = 0 and so −x ∈ Sc.
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In all the three cases, we get that if we suppose that x ∈ Sc, then −x ∈ Sc. If we repeat

the same steps assuming now that −x ∈ Sc, we will get x ∈ Sc. Therefore, −x ∈ Sc if

and only if x ∈ Sc and so x ∈ S if and only if −x ∈ S. This means that the support S is

symmetric, as required.

Now, we can work on S the support of f(x).

By Lemma 4.1.5, we can concentrate on x ∈ S. By Theorem 4.1.3, and by assumption

Γ(n+ 1)

Γ(r)Γ(n− r + 1)
[FX(x)]r−1[1− FX(x)]n−rfX(x)

=
Γ(n+ 1)

Γ(r)Γ(n− r + 1)
[FX(−x)]n−r[1− FX(−x)]r−1fX(−x).

This implies

[FX(x)]r−1[1− FX(x)]n−rfX(x) = [FX(−x)]n−r[1− FX(−x)]r−1fX(−x).

Since x ∈ S, we can divide term by term by [FX(−x)]n−r[1− FX(−x)]r−1fX(x) and get:[
FX(x)

1− FX(−x)

]r−1 [1− FX(x)

FX(−x)

]n−r
=
fX(−x)

fX(x)
.

By Lemma 4.1.5 and changing x 7→ −x in this identity, we get the symmetric relation[
FX(−x)

1− FX(x)

]r−1 [1− FX(−x)

FX(x)

]n−r
=

fX(x)

fX(−x)
.

If we multiply term by term, we get[
FX(x)

1− FX(−x)

]−n+2r−1 [1− FX(x)

FX(−x)

]n−2r+1

= 1

and so [
1− FX(x)

FX(−x)

]n−2r+1

=

[
FX(x)

1− FX(−x)

]n−2r+1

.

Since for x ∈ S, we have 0 < F (x) < 1, we get:

1− FX(x)

FX(−x)
=

FX(x)

1− FX(−x)
.
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Multiplying term by term, we get

[1− FX(x)][1− FX(−x)] = [FX(−x)][FX(x)],

which simplifying becomes

FX(−x) = 1− FX(x),

which is equivalent to fX(x) = fX(−x). This concludes the proof in the absolutely

continuous case.

Discrete Case

Now, we consider the case in which the distribution is discrete.

We start by proving that the support must be symmetric.

Lemma 4.1.6 (Symmetric Support). Suppose X1, . . . , Xn is a random sample from a

discrete density fX(x). If Xr:n
d
= −Xn−r+1:n, then S := {x : fX(x) > 0}, the support of

fX(x), is symmetric.

Proof. Suppose there exists x such that Pr(X = x) = px > 0, while Pr(X = −x) = 0.

This already implies x 6= 0. Since |S| < +∞, then there exists a well defined xm such that

xm = argmax{x : Pr(X = x) > 0, but Pr(X = −x) = 0}.

For simplicity we call −x = x1 and x = xm, with Pr(X = xm) = pm.

By hypothesis P (Xr:n = x) = P (Xn−r+1 = −x). By Theorem 4.1.4 and by assumption,

we get

n−r∑
j=0

n!

j!(n− j)!
(
(1− F (x))j(F (x))n−j − (1− F (x) + f(x))j(F (x)− f(x))n−j

)

=

r−1∑
j=0

n!

j!(n− j)!

×
(
(1− F (−x))j(F (−x))n−j − (1− F (−x) + f(−x))j(F (−x)− f(−x))n−j

)
.

By the binomial identity (a+b)n =
∑n

j=0
n!

j!(n−j)!a
jbn−j with a = 1−F (−x) and b = F (−x),
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and, respectively, with a = 1− F (−x) + f(−x) and b = F (−x)− f(−x), we get

r−1∑
j=0

n!

j!(n− j)!
(
(1− F (−x))j(F (−x))n−j − (1− F (−x) + f(−x))j(F (−x)− f(−x))n−j

)

= −
n∑
j=r

n!

j!(n− j)!

×
(
(1− F (−x))j(F (−x))n−j − (1− F (−x) + f(−x))j(F (−x)− f(−x))n−j

)
= −

n−r∑
j=0

n!

j!(n− j)!

×
(
(1− F (−x))n−j(F (−x))j − (1− F (−x) + f(−x))n−j(F (−x)− f(−x))j

)
,

by changing index j 7→ n− j. Therefore, we have the identity

n−r∑
j=0

n!

j!(n− j)!
(
(1− F (x))j(F (x))n−j − (1− F (x) + f(x))j(F (x)− f(x))n−j

)

= −
n−r∑
j=0

n!

j!(n− j)!

×
(
(1− F (−x))n−j(F (−x))j − (1− F (−x) + f(−x))n−j(F (−x)− f(−x))j

)
,

which must be true for every x ∈ S. For x = xm, we get

n−r∑
j=0

n!

j!(n− j)!
(
0j1n−j − pjm(1− pm)n−j

)
= −

n−r∑
j=0

n!

j!(n− j)!

(
pj1(1− p1)n−j − (1)n−j0j

)
,

and so
n−r∑
j=0

n!

j!(n− j)!
pjm(1− pm)n−j

=

n−r∑
j=0

n!

j!(n− j)!
pj1(1− p1)n−j = 0.

This implies that each term of the sum is zero, since already non-negative, which means

pm = 0 or pm = 1.

If pm = 1, we have that Pr(X = xm) = 1 and so Pr(Xr:n = xm) = 1 for every r = 1, . . . , n.
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Since, by assumption, P (Xr:n = x) = P (Xn−r+1 = −x), then x = −x = xm = 0, which is

excluded, for the same argument at the beginning of the proof. Therefore pm = 0.

The same argument can be repeated on the set S \ {x1, xm} and then iteratively. This

concludes the proof of the lemma.

Now, we can work on S the support of f(x). By Lemma 4.1.6, we can concentrate on

x ∈ S. By hypothesis P (Xr:n = x) = P (Xn−r+1 = −x).

By the same computations in the proof of Lemma 4.1.6, we are reduced to the identity

n−r∑
j=0

n!

j!(n− j)!
(
(1− F (x))j(F (x))n−j − (1− F (x) + f(x))j(F (x)− f(x))n−j

)

= −
n−r∑
j=0

n!

j!(n− j)!

×
(
(1− F (−x))n−j(F (−x))j − (1− F (−x) + f(−x))n−j(F (−x)− f(−x))j

)
,

which must be true for every x ∈ S.

Since |S| < +∞, we have S = {x1, . . . , xm} for some m ∈ N, and so that
∑m

i=1 pi = 1,

where pi = P (X = xi) for i = 1, . . .m and xi = −xm−i+1 for i = 1, . . .m by Lemma 4.1.6.

Consider x = xm, we get

n−r∑
j=0

n!

j!(n− j)!
(
0j1n−j − pjm(1− pm)n−j

)
= −

n−r∑
j=0

n!

j!(n− j)!

(
pj1(1− p1)n−j − (1)n−j0j

)
,

and so
n−r∑
j=0

n!

j!(n− j)!
pjm(1− pm)n−j =

n−r∑
j=0

n!

j!(n− j)!
pj1(1− p1)n−j .

Consider the function

g(p) :=

n−r∑
j=0

n!

j!(n− j)!
pj(1− p)n−j .
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Using well known results about the regularized incomplete Beta function, we get

g(p) = r
n!

(n− r)!r!

∫ 1−p

0
tr−1(1− t)n−rdt.

This function is differentiable in p for p ∈ [0, 1] and so

g′(p) = −r n!

(n− r)!r!
(1− p)r−1pn−r ≤ 0.

Note that g′(p) = 0 if and only if p = 0 or p = 1. Note that p = 0 if and only if we

are outside the support (but we are on the support) and p = 1 in the degenerate case of

|S| = m = 1, when the theorem is trivially true, since S = {0} and P (X = 0) = 1.

Evaluating g(p) at p1 and pm, we get

g(p1) = g(pm),

which, by monotonicity and so invertibility of g(p) for 0 < p < 1, implies

p1 = pm.

Now, we proceed by induction. Suppose pj = pm−j+1 for every j = 1, . . . , k− 1. Consider

xk, pk and xm−k+1, pm−k+1. We get:

n−r∑
j=0

n!

j!(n− j)!
(
(1− F (xk))

j(F (xk))
n−j − (1− F (xk) + f(xk))

j(F (xk)− f(xk))
n−j)

= −
n−r∑
j=0

n!

j!(n− j)!
(
(1− F (xm−k+1))n−j(F (xm−k+1))j

)

+
n−r∑
j=0

n!

j!(n− j)!
(
(1− F (xm−k+1) + f(xm−k+1))n−j(F (xm−k+1)− f(xm−k+1))j

)
,

which by definition of cdf, becomes

n−r∑
j=0

n!

j!(n− j)!
(pk+1 + · · ·+ pm)j(p1 + · · ·+ pk)

n−j
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−
n−r∑
j=0

n!

j!(n− j)!
(pk + · · ·+ pm)j(p1 + · · ·+ pk−1)n−j

=

n−r∑
j=0

n!

j!(n− j)!
(p1 + · · ·+ pm−k)

j(pm−k+1 + · · ·+ pm)n−j

−
n−r∑
j=0

n!

j!(n− j)!
(pm−k+2 + · · ·+ pm)n−j(p1 + · · ·+ pm−k+1)j .

By induction hypothesis

p1 + · · ·+ pk−1 = pm−k+2 + · · ·+ pm,

which implies

pk + · · ·+ pm = 1− (p1 + · · ·+ pk−1) = 1− (pm−k+2 + · · ·+ pm) = p1 + · · ·+ pm−k+1.

Therefore, the negative terms cancel out.

We are reduced to

n−r∑
j=0

n!

j!(n− j)!
(pk+1 + · · ·+ pm)j(p1 + · · ·+ pk)

n−j

=
n−r∑
j=0

n!

j!(n− j)!
(p1 + · · ·+ pm−k)

j(pm−k+1 + · · ·+ pm)n−j .

We can use again the invertibility of the function g(p) to get

p1 + · · ·+ pk = pm−k+1 + · · ·+ pm,

which, by induction hypothesis, implies

pk = pm−k+1.

Note that this concludes the proof in the discrete case, since in the case |S| is even, the

induction stops at k = m/2, while if |S| is odd the induction stops at k = (m− 1)/2, with

the only constraint of x(m−1)/2+1 = 0 and no extra constraint on the spare p(m−1)/2+1.
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This concludes the proof of the theorem in both cases.

4.2 Distributions invariant under Continuous Symmetries

Continuous symmetries are usually studied by means of topological groups or Lie groups.

Topological groups are groups with a topology with respect to which the group operations

are continuous. Lie groups are groups that have the structure of a differentiable manifold,

with the group operations are compatible with the differentiable structure. Here are the

precise definitions. See for example [42].

Definition 4.2.1. A topological group (G, ,̇τ) is a topological space with topology τ and is

also a group with respect to the operation · such that the group operations:

(G×G, τ × τ) 7→ (G, τ) : (g1, g2) 7→ g1 · g2

and

(G, τ) 7→ (G, τ) : g 7→ g−1

are continuous with respect to the proper topology. Here g1, g2, g ∈ G.

Definition 4.2.2. A real Lie group (G, ,̇A) is real differentiable manifold with differen-

tiable structure A, and a group with respect to the operation · such that the group opera-

tions:

(G×G,A×A) 7→ (G,A) : (g1, g2) 7→ g1 · g2

and

(G,A) 7→ (G,A) : g 7→ g−1

are smooth maps with respect to the proper differentiable structures. Here g1, g2, g ∈ G.

One of the most important of these groups is the orthogonal group ( see Definition

4.3.1 below).

A lot of very important distributions are invariant under the action of this group, like

spherical distributions and the Standard Multivariate Normal in particular.

In the next section, we will study the characterization of elliptical distributions, a more

flexible version of spherical distributions, through group invariance.
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4.3 A characterization of elliptical distributions

through group invariance

In this section, we present a characterization of elliptical distributions through group

invariance. We complete the analysis characterizing also marginals and conditional dis-

tributions of elliptical distributions as invariant under subgroups of the original group.

We continue with an appendix on further properties like the polar decomposition and the

existence of the Haar Measure. Finally, we cast our discussion in the context of the metric

ground form.

4.3.1 Introduction and Motivation

Spherical and elliptical distributions are flexible extensions of the multivariate normal

distribution that keep the (probably) most important feature of Gaussians, namely the

ellipticity of the probability contours. Spherical and elliptical distributions have been

studied in extended detail and we refer the interested reader to the works of Fang-Kotz-

Ng [51], Eaton [47], Cambanis-Huang-Simons [23], Diaconis [39], Fang-Anderson [50],

Gomez-Gomez-Marin [58] and the references therein.

A natural definition of spherically symmetric distribution is through their invariance with

respect to the group orthogonal transformations.

Definition 4.3.1. An p×1 random vector X is said to be spherically symmetric distributed

if and only if

X
d
= HX

for every H ∈ O(p), where O(p) is the orthogonal group (see Section 4.3.4 for the defini-

tion of O(p)).

Elliptical distributions instead, are usually defined by means of linear transformations

of spherical distributions [47] or assuming the existence of a density of a particular form [90]

or through the particular form of their characteristic function [47], [90].

In this subsection, we give an equivalent but group theoretical definition of elliptical dis-

tributions, as it is commonly done for spherical distributions. We restrict our attention

to elliptical distributions, centred in the origin and with symmetry axes parallel to the

coordinate axes in order to keep the parallel with orthogonal transformations. Technically,

this means that we are working in the quotient space with respect to rigid motions. In

fact, the general case of non-zero mean and non-trivial correlations can be recovered by
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rigid transformations of the Euclidean space. This is consistent with the common choice

in the definition of spherical distributions, to be spherical with respect to the origin. We

introduce what we call Stretched Orthogonal Matrices.

Definition 4.3.2. Suppose that we have a sequence of real numbers λi ∈ R for every

i = 1, . . . , p such that λ2
1 × · · · × λ2

p = 1 and that Λ := diag(λ2
1, . . . , λ

2
p). Then, we define

the set of Λ-Stretched Orthogonal Matrices Os(p; Λ) by

Os(p; Λ) :=
{
K ∈Matp×p : KTΛK = Λ

}
.

The set of Stretched Orthogonal Matrices possesses a group structure and is diffeo-

morphic to O(p), but it is not a subgroup of O(p) (apart in the trivial case Λ = Idp×p).

Moreover, Os(p; Λ) possesses slightly different algebraic properties. We refer to Section

4.3.6 for the precise analysis of these properties.

By means of Stretched Orthogonal Matrices, we can characterize elliptical distributions by

group invariance. We prove the following theorem.

Theorem 4.3.3. Suppose that X = (X1, . . . , Xp)
T is a random vector. The following

statements are equivalent:

• X
d
= KX for every K ∈ Os(p; Λ).

• The characteristic function of X satisfies φΛ,X(t) = φΛ,X(KT t) for some φΛ ∈ Φp

and for any K ∈ Os(p; Λ)).

• There exists a function ψ(·) of a scalar variable such that ψ(tTΛt) = φΛ(t).

• If the density exists, it must take the form

fX(x) = cpdet(Λ)−1/2e
(
xTΛx

)
,

with cp a normalizing constant dependent just on the dimension p and the function

e. Also, the function e can be taken independent of p.

Note that the equivalence of the last three characterizations is well known, while the

first one has not been developed explicitly in the literature, as far as we know.

We have the following definition.

Definition 4.3.4. A random variable Y which satisfies one of the previous conditions is

said to be a Λ-Elliptical Distribution and its distribution will be denoted by E(Λ).
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Remark 4.3.5. In the case Λ = Idp×p, the random variable Y is invariant under O(p)

and so it is simply a Spherical Distribution.

Marginals and conditional distributions of elliptical distributions can be characterized

by subgroup invariance. We have the following theorem.

Theorem 4.3.6. Suppose that an p×1 random vector Y follows a Λ-Elliptical Distribution

and is partitioned as Y = (YT
1 ,Y

T
2 )T with Y1 an p1 × 1 vector and Y2 an p2 × 1 vector

(p2 := p− p1). Then, the following statements are true:

• Y1
d
= KY1 for every K ∈ Os(p1; Λp1).

• The group Os(p1; Λp1) which leaves invariant Y1 is the subgroup of Os(p; Λp), which

does not move the remaining components Y2. Here Λk = diag(λ2
1, . . . , λ

2
k).

A similar statement holds for conditional distributions Y1 | Y2.

Remark 4.3.7. Note that the theorem works also if the components of the vector Y1 are

not necessarily in increasing order of the indexes.

Remark 4.3.8. This result can be potentially used as a way to test for spherical symmetry

in the class of elliptical distributions. We refer to [8], [10] and [67], for more details

on testing for spherical symmetry. An interesting treatment of the distributions on the

hyperboloid is given in [64].

The remaining part of this subsection is organized as follows. In Subsubsection 4.3.2,

we collect some notation and preliminary results. In particular, we introduce some basic

notions in group theory focusing on the group O(p) of orthogonal matrices and then recall

some known results about marginals and conditional distributions of elliptical distribu-

tions. In Subsubsection 4.3.6, we discuss the group theoretical properties of Stretched

Orthogonal Matrices and give their explicit form in the case p = 2. In Subsubsection

4.3.7, we give the proofs of our main theorems. We conclude with the Appendix 4.3.8,

where we discuss some further properties of Stretched Orthogonal Matrices, like the Polar

Representation, some Angle-Radius theorems and the construction of the Haar Measure.

We also connect our constructions to the metric ground form.

4.3.2 Notations and Preliminaries

In this subsubsection, we fix some notations and discuss some preliminaries. In the fol-

lowing, we use the notation Λk := diag(λ2
1, . . . , λ

2
k).
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4.3.3 Basics on Group Theory and Invariance under Graoup Actions

The section is devoted to a collection of definitions and theorems in Group Theory. The

fundamental example is the one of Orthogonal Matrices O(p). We focus on what we need

for our main theorems and, for more details on group theoretical approaches in statistics,

we refer to Fang-Kotz-Ng [51], Eaton [47] and Diaconis [39].

Definition 4.3.9. The couple (G, ·) is called Group, if the following conditions are sat-

isfied.

• G is a set.

• Closure: · is a binary operation, defined on the set G:

· : G×G→ G : (g1, g2) 7→ g1 · g2,

such that for every g1, g2 ∈ G, there exists g3 ∈ G with g3 = g1 · g2.

• Associativity: For all g1, g2, g3 ∈ G the following condition holds true:

g1 · (g2 · g3) = (g1 · g2) · g3.

• Identity: There exists e ∈ G such that for every g ∈ G, the following condition holds

true: e · g = g · e = g.

• Inverse: For every g ∈ G, there exists hg often denoted by hg := g−1 such that

g · hg = hg · g = e.

Definition 4.3.10. Suppose that (G, ·) is a Group and X is a set,. A Left Group Action

Φ of G on X is a function

Φ : G×X → X : (g, x) 7→ Φ(g, x)

that satisfies the following two conditions:

• Compatibility: For every g1, g2 ∈ G and every x ∈ X , we have that

Φ(g2,Φ(g1, x)) = Φ(g2 · g1, x).

• Identity: For every x ∈ X and with e the Identity Element of G we have that:

Φ(e, x) = x.
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Remark 4.3.11. Note that here, differently from [51], we are distinguishing between

Group and Group Action.

In the following, we will often write g1g2 instead of g1 · g2.

Definition 4.3.12. Two points x1, x2 ∈ X are said to be equivalent under G, if there

exists g ∈ G such that x2 = gx1. In such a case, we write x1 ∼ x2 mod G.

Proposition 4.3.13. The relation ∼ is an equivalence relation in G, in the sense that it

satisfies the following properties:

• Reflexivity: For any x ∈ X, it holds that x ∼ x mod G.

• Symmetry: For any x1, x2 ∈ X, if it holds that x1 ∼ x2 mod G, then it holds that

x2 ∼ x1 mod G.

• Transitivity: For any x1, x2, x3 ∈ X, the following condition holds: if x1 ∼ x2 mod G

and x2 ∼ x3 mod G, then x1 ∼ x3 mod G.

To enlighten the notation, we will often write x1 ∼ x2 instead of x1 ∼ x2 mod G.

Definition 4.3.14. A function f : X → R is said to be Invariant under G, if the following

condition holds:

f(gx) = f(x) for each x ∈ X and each g ∈ G.

A function f : X → R is said to be Maximal Invariant under G, if it is Invariant under

G and if the following condition holds:

f(x1) = f(x2) implies x1 ∼ x2.

Definition 4.3.15. The Orbit O(x) of x ∈ X under the Group (G, ·) is defined by the

following set:

O(x); = {g · x | g ∈ G}.

By these last two definitions, we can say that a Maximal Invariant Function is a

function which assumes different values for different orbits.

Proposition 4.3.16. Consider a set X and a group (G, ·) which acts on X from the left.

Assume that f : X → Y1 is Maximal Invariant under G. Then a function h : X → Y2

is Maximal Invariant under G if and only if there exists ν : Y1 → Y2 such that h(x) =

ν(f(x)).

Proof. See [51] (page 15, Theorem 1.1).
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We define distributions invariant under the action of a group.

Definition 4.3.17. Let X be a random variable with values in the sample space X and

whose pdf is Pθ with parameter space θ ∈ Ω. Let G be a group of transformations from

X into itself. The family of distributions {Pθ; θ ∈ Ω} is said to be Invariant under G if

every g ∈ G, θ ∈ Ω determine a unique element ḡθ in Ω, such that, when X ∼ Pθ, then

gX ∼ Pḡθ, namely:

Pḡθ(gB) = Pθ(B)

for every B ⊂ X measurable.

4.3.4 The example of Orthogonal Matrices

In this section, we present the group of Orthogonal Matrices which naturally appear in

the study of spherical distributions.

Let O(p) := {H ∈Matp×p : HTH = Idp} be the set of orthogonal matrices. Suppose that

X = Rp and G = O(p) with the matrix multiplication · as the operation. It is a very well

known fact that (G, ·) is a group which acts on the left on X .

Proposition 4.3.18. The function f : Rp → R given by f(x) = ‖x‖2 is Maximal Invariant

under (G, ·).

Proof. The function f is invariant under (O(p), ·), in fact

f(Hx) = xTHTHx

for all x ∈ Rp and for all H ∈ O(p). On the other hand, if f(x1) = f(x2) for some

x1, x2 ∈ Rp, then there exists H ∈ O(p) such that x2 = Hx1. This is true because two

points at the same distance form the origin can be moved one to the other by a rotation.

This implies that x1 ∼ x2 and so that f is Maximal Invariant.

Corollary 4.3.19. Suppose that x ∈ Sp−1 := {x ∈ Rp : xTx = 1}. Then, for any

H ∈ O(p), we have that Hx ∈ Sp−1, namely the Sp−1 is invariant under the action of

O(p).

Proof. It is a simple application of the previous proposition.

Remark 4.3.20. Given a group (G, ·), there might be several Maximal Invariant functions

under (G, ·). For example, in the case just discussed, any g(x) = a‖x‖2 with a > 0 is

Maximal Invariant under (O(p), ·). Also, g(x) = h(f(x)) for any h ∈ C1(R) with h′ > 0.
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4.3.5 Marginals and Conditionals of Elliptical Distributions

Here, we collect a couple of theorems from [90] concerning marginals and conditionals of

elliptical distributions. We start with marginal distributions.

Theorem 4.3.21. Suppose that X is elliptically distributed with mean µ and variance V .

Here µ are p × 1 vectors and V is an p × p symmetric positive definite matrix. Suppose

that X = (XT
1 ,X

T
2 )T with X1 a p1 × 1 vector and that µ = (µT1 , µ

T
2 )T with µ1 a p1 × 1

and also that V = [V11, V12;V21, V22] is the corresponding partitioned matrix. Then X1 is

elliptically distributed with mean µ1 and variance V11.

We continue with conditional distributions.

Theorem 4.3.22. Suppose that X is elliptically distributed with mean µ and variance V .

Here µ are p × 1 vectors and V is an p × p symmetric positive definite matrix. Suppose

that X = (XT
1 ,X

T
2 )T with X1 a p1 × 1 vector and that µ = (µT1 , µ

T
2 )T with µ1 a p1 × 1

and also that V = [V11, V12;V21, V22] is the corresponding partitioned matrix. Then X1 is

elliptically distributed with mean

E[X1 | X2] = µ1 + V12V
−1

22 (X2 − µ2)

and variance

Cov[X1 | X2] = g(X2)
(
V11 − V12V

−1
22 V21

)
for some function g.

4.3.6 Stretched Orthogonal Matrices

In this section, we discuss Stretched Orthogonal Matrices and prove their algebraic prop-

erties.

4.3.6.1 Group Theoretical Properties

In this subsection we discuss the group theoretical properties of Stretched Orthogonal

Matrices. First of all, we have that (Os(p; Λ)), ·) is a group.

Theorem 4.3.23. The set Os(p; Λ) endowed with the matrix multiplication · inherited

from Matp×p is a group (Os(p; Λ), ·).

Proof. We need to show that (Os(p; Λ)), ·) satisfies the properties of Definition 4.3.9.
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• Closure: Suppose that K,H ∈ Os(p; Λ). Therefore KTΛK = Λ and HTΛH = Λ.

We want to verify that

(KH)TΛ(KH) = Λ.

By definition of transpose:

(KH)TΛ(KH) = HTKTΛKH = HTΛH = Λ,

by hypothesis on K and H. So, (Os(p; Λ), ·) is closed.

• Associativity : This is a consequence of the fact that Os(p; Λ) inherits the operation

· from Matp×p.

• Identity : The element e := Idp×p ∈ Os(p; Λ) since

IdTp×pΛIdp×p = Λ and KIdp×p = Idp×pK = K. Therefore, e := Idp×p is the Identity

Element of Os(p; Λ), ·).

• Inverse: Since λ2
1 × . . . λ2

p = 1, then any K ∈ Os(p; Λ) is invertible. In fact:

det(K)2 = det(KT )det(Λ)det(K) = det(KTΛK) = det(Λ) = 1

and so det(K) 6= 0. This implies that there exists an inverse K−1 ∈ Matp×p. Now,

we have to prove that K−1 ∈ Os(p; Λ). Since K ∈ Os(p; Λ), then

KTΛK = Λ.

Now, multiply by (KT )−1 (which exists since det(KT ) = det(K)) on the left and by

K−1 on the right to get:

Λ = (KT )−1ΛK−1 = (K−1)TΛK−1,

which is true since (K−1)T = (KT )−1 (just transpose the identity KK−1 = Idp×p). But

then:

(K−1)TΛK−1 = Λ

and so K−1 ∈ Os(p; Λ).

The following theorem proves that the groups O(p) and Os(p; Λ) are distinct and satisfy

some rigidity properties.

Theorem 4.3.24. It holds that Os(p; Λ) = O(p) if and only if λ2
1 = · · · = λ2

p.

Moreover,
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• if Os(p; Λ) 6= O(p), then there exists k such that (Os(p; Λ))(i1,...,ik)×(i1,...,ik) ∩O(k) =

{Idk×k};

• (Os(p; Λ))(i1,...,ik)×(i1,...,ij)
∩O(j) = O(j) = Os(j, λi1 , . . . , λij ) for every i1, . . . , ij such

that λi1 = · · · = λij .

Remark 4.3.25. Geometrically, this means that Os(p; Λ) acts as O(p) on sub-ellipsoids

corresponding to axes of the same length of the main ellipsoid, while it acts as a distinct

group on the other sub-ellipsoids.

Remark 4.3.26. Basically the two groups Os(p; Λ) and O(p) have either trivial intersec-

tion or they coincide.

Proof. Suppose that λ2
1 = · · · = λ2

p, then λ2
1 = · · · = λ2

p = 1 because

λ2
1 × · · · × λ2

p = 1

and so Λ = Idp×p and so KTK = KT Idp×pK = KTΛK = Λ = Idp×p.

Suppose that there exist two indexes 1 ≤ i 6= j ≤ n such that λ2
i 6= λ2

j . Without loss of

generality, we can think that i = 1 and j = 2. Consider a matrix K of the form

K :=



0 µ1 0 . . . 0

µ2 0 . . . . . . 0

0 0 1 . . . 0
...

...
...

. . . 0

0 . . . . . . 0 1


and whose transpose is

KT =



0 µ2 0 . . . 0

µ1 0 . . . . . . 0

0 0 1 . . . 0
...

...
...

. . . 0

0 . . . . . . 0 1


.
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Now we compute KTΛK and we get

KTΛK =



µ2
1λ

2
2 0 0 . . . 0

0 µ2
2λ

2
1 . . . . . . 0

0 0 λ2
3 . . . 0

...
...

...
. . . 0

0 . . . . . . 0 λ2
p


.

If we impose KTΛK = Λ, we obtain the conditions:

µ2
1λ

2
2 = λ2

1 µ2
2λ

2
1 = λ2

2.

Therefore, for µ2
1 =

λ2
1

λ2
2

and for µ2
2 =

λ2
2

λ2
1
, the matrix K ∈ Os(p; Λ). Since by hypothesis

λ2
1 6= λ2

2, then either µ1 or µ2 are bigger than one, and so K has at least one entry bigger

than 1. This implies that K /∈ O(p) and so that Os(p; Λ) 6= O(p), because the two sets

differ for at least one element.

Now, {Idk×k} ∈ Os(p; Λ)|span{ei1 ,...eik} ∩ O(p), where ei1 , . . . eik are eigenvectors of Λ cor-

responding to different eigenvalues. Now, suppose that there are two eigenvectors ei, ej of

Λ such that the respective eigenvalues λ2
i 6= λ2

j . Without loss of generality, we can think

that i = 1 and j = 2. Suppose that there exists K ∈ Os(p; Λ) ∩ O(p) with K 6= Idp×p.

Then, imposing KTΛK = Λ, we have the following system to be solved:
K2

11λ
2
1 +K2

21λ
2
2 = λ2

1

K11K12λ
2
1 +K21K22λ

2
2 = 0

K2
12λ

2
1 +K2

22λ
2
2 = λ2

2.

There are two possible cases K12 = 0 which implies K21 = 0 and K2
22 = K2

11 = 1. If

K12 6= 0, then

K|span{e1,e2} =

(
K22 −λ2

λ1

√
1−K2

22
λ1
λ2

√
1−K2

22 K22

)
.

If K2
22 6= 1, then K|span{e1,e2} must be antisymmetric and so λ2

1 = λ2
2, which is absurd.

Therefore

K|span{e1,e2} =

(
1 0

0 1

)
.

Therefore, all the other entries of the first two columns and rows are zero, otherwise the
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matrix K cannot be orthogonal. We can repeat the same argument for every pair of

eigenvectors of Λ with different eigenvalues. The remaining part of the proof, follows from

the first part of the theorem.

It is easy to find Maximal Invariant functions under the group Os(p; Λ).

Proposition 4.3.27. The function gΛ : Rp → R given by gΛ(x) = xTΛx is Maximal

Invariant under (G, ·) with G = Os(p; Λ).

Proof. The function g is invariant under (Os(p; Λ), ·), in fact

gΛ(Kx) = xTKTΛKx = gΛ(x)

for all x ∈ Rp and for all K ∈ Os(p; Λ). On the other hand, if gΛ(x1) = gΛ(x2) for some

x1, x2 ∈ Rp, then there exists K ∈ Os(p; Λ) such that x2 = Kx1. This implies that x1 ∼ x2

and so that gΛ is maximal invariant.

Remark 4.3.28. Note that the equivalence relation ∼ is done through the group

(Os(p; Λ), ·)

and not through (O(p), ·).

The following corollary states that Os(p; Λ) is the invariant group for the (p − 1)-

dimensional ellipsoid Ep−1
Λ := {x ∈ Rp : xTΛx = 1}.

Corollary 4.3.29. Suppose that x ∈ Ep−1
Λ . Then, for any K ∈ Os(p; Λ), we have that

Kx ∈ Ep−1
Λ , namely Ep−1

Λ is invariant under the action of Os(p; Λ).

Proof. It is a simple application of the previous proposition.

4.3.6.2 Explicit form of Stretched Orthogonal Matrices in dimension p = 2

In this subsection, we provide the explicit form of matrices belonging to Os(2,Λ2).

Theorem 4.3.30. Suppose that K ∈ Os(2,Λ2). Then, there exists θ ∈ [0, 2π) such that

K = K+ :=

 cos(θ) −
∣∣∣λ2
λ1

∣∣∣ sin(θ)∣∣∣λ1
λ2

∣∣∣ sin(θ) cos(θ)

 .

or

K = K− :=

 cos(θ)
∣∣∣λ2
λ1

∣∣∣ sin(θ)∣∣∣λ1
λ2

∣∣∣ sin(θ) − cos(θ)

 .
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Remark 4.3.31. It is a straightforward computation to verify that K+J = K−, where the

matrix J represents the reflection with respect to the y-axis and takes the form:

J :=

(
1 0

0 −1

)
.

Proof. Consider a matrix K of the form

K :=

(
K11 K12

K21 K22

)

and impose the condition:

KTΛK = Λ

with

Λ :=

(
λ2

1 0

0 λ2
2

)
.

The condition

KTΛK = Λ

reduces to the following system of couple equations:
K2

11λ
2
1 +K2

21λ
2
2 = λ2

1

K11K12λ
2
1 +K21K22λ

2
2 = 0

K2
12λ

2
1 +K2

22λ
2
2 = λ2

2.

Suppose that K12 = 0, then K21 = 0 and K2
22 = K2

11 = 1 and so the only possible solutions

are

K :=

(
±1 0

0 ±1

)
.

If K12 6= 0, then one has 
K11 = −K21K22λ2

2

K12λ2
1

K2
11λ

2
1 +K2

21λ
2
2 = λ2

1

K2
12λ

2
1 +K2

22λ
2
2 = λ2

2.

Now, sequentially substituting and using the fact that the function f(x) = x√
1−x2

is

monotone in its domain of definition to obtain that K22 = ±K11, we get that K22 =

±K11, K12 = ±
∣∣∣λ2
λ1

∣∣∣ sin(θ) and K21 = ±
∣∣∣λ1
λ2

∣∣∣ sin(θ) with K21K12 > 0 if K11K22 < 0 and

K21K12 < 0 if K11K22 > 0. Since −1 ≤ K11 ≤ 1 and by choosing K11 = cos(θ) for some
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θ ∈ [0, 2π], we get that the only possible solutions K are of the form:

K = K+ :=

 cos(θ) −
∣∣∣λ2
λ1

∣∣∣ sin(θ)∣∣∣λ1
λ2

∣∣∣ sin(θ) cos(θ)

 .

or

K = K− :=

 cos(θ)
∣∣∣λ2
λ1

∣∣∣ sin(θ)∣∣∣λ1
λ2

∣∣∣ sin(θ) − cos(θ)

 .

Remark 4.3.32. Note that all the topological and differential properties of Os(p; Λ) are

the same as the ones of O(p), since the two groups are diffeomorphic. In fact, the simple

rescaling of the axes, (x1, . . . , xp) 7→ (x1/λ1, . . . , xp/λp) the ellipsoid is mapped to the

sphere and any Os(p; Λ) is mapped to O(p) by A 7→ Λ−1/2A.

Remark 4.3.33. A similar analysis can lead to the explicit formula for Stretched Or-

thogonal Matrices in higher dimensions.

4.3.7 Proof of the main theorems

In this subsection, we prove the characterization of elliptical distributions and of their

marginals and conditionals by means of the invariance under the group Os(n; Λ).

4.3.7.1 Characterizations of Elliptical Distributions: proof of Theorem 4.3.3

In this subsubsection, we prove the characterization of Elliptical Distributions by means

of Stretched Orthogonal Matrices, given in Theorem 4.3.3.

We start by proving that the first two conditions of Theorem 4.3.3 are equivalent. Suppose

that X
d
= KX for every K ∈ Os(p; Λ). Note that:

φΛ,KX(t) = E
[
eit

TKx
]

= E
[
ei(K

T t)TX
]

= φΛ,X(KT t).

But since X
d
= KX, then φΛ,KX(t) = φΛ,X(t) and so we have that φΛ,X(KT t) = φΛ,X(t).

Now, suppose that φΛ,X(KT t) = φΛ,X(t). By the same chain of equalities, we get

φKX(t) = φX(t). But, by the Characterization Theorem of Distributions through their

Characteristic Function, we get: X
d
= KX. This implies that the first two conditions are
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equivalent.

To enlighten the notation, from now on, we will not specify the random variable X for the

Characteristic Function and the Maximal Invariant Function, when we do not think there

is risk of confusion.

Now, we prove that the second and third conditions are equivalent. Suppose that there

exists a function ψΛ(·) such that ψΛ(tTΛt) = φ(t). Then

φΛ(KT t) = ψ((KT t)TΛ(KT t)) = ψ(tTKΛKT t) = ψ(tTΛT t) = ψ(tTΛt) = φΛ(t)

and so φΛ(KT t) = φΛ(t).

Now, suppose that φΛ(KT t) = φΛ(t). Then, the function fΛ(t) := tTΛt is maximal

invariant under the action of (Os(p; Λ), ·). Therefore, φΛ must be a function of fΛ(t) =

tTΛt. This implies that there exists ν such that φΛ = ν ◦ fΛ. The function φΛ = ν ◦ fΛ

concludes the proof.

Now, we prove that the first and forth conditions are equivalent. Suppose that

fX(x) = cpdet(Λ)−1/2e
(
xTΛx

)
,

for some e and cp. Then

fX(Kx) = cpdet(Λ)−1/2e
(
(Kx)TΛKx

)
=

cpdet(Λ)−1/2e
(
xTKTΛKx

)
= cpdet(Λ)−1/2e

(
xTΛx

)
= fX(x).

By the change of variables formula we have:

fKX(x) = fX(KTx)|det(K)| = fX(KTx)

and so that fX(x) = fKX(x) and that X
d
= KX for every K ∈ Os(p; Λ). On the other

side, if X
d
= KX, then with the same argument used backwards fX(x) = fX(Kx) and

so the density fX(x) is invariant under the action of Os(p; Λ). But Os(p; Λ) has the

function fΛ(t) = tTΛt as a maximal invariant function and so fX must be a function of ψ
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(Proposition 4.3.16) and so it must take the form:

fX(x) = cpdet(Λ)−1/2e
(
xTΛx

)
,

with cp a normalizing constant dependent just on the dimension p and the function e and

the function e is independent of p.

Example 4.3.34. Well known examples of Elliptical distributions are the Multivariate

Normal Distribution, Multivariate t-Distribution, Mixtures of Multivariate Normal Dis-

tributions. Slightly less known is the explicit formula for The Uniform Distribution on the

Ellipsoid X ∼ Unif(E(Λ)) is given by

fX(x) =
1

S
, x ∈ E(Λ),

where S is given by:

S = 2πc2 +
2πab

sinφ

(
E(φ, k) sin2 φ+ F (φ, k) cos2 φ

)
.

Here

cosφ =
c

a
, k2 =

a2(b2 − c2)

b2(a2 − c2)
, a ≥ b ≥ c

and

F (φ, k) :=

∫ φ

0

dθ√
1− k2 sin2 θ

and

E(φ, k) :=

∫ φ

0

√
1− k2 sin2 θ dθ

are incomplete elliptic integrals of the first and second kind, respectively. The case of the

sphere (a = b = c which gives φ = 0) is well defined in the limit φ → 0. Note that

the surface area of an ellipsoid of revolution may be expressed in terms of elementary

functions:

S1 = 2πa2

(
1 +

1− e2

e
tanh−1 e

)
where e2 = 1− c2

a2
(c < a),

S2 = 2πa2
(

1 +
c

ae
sin−1 e

)
where e2 = 1− a2

c2
(c > a).

Note that S1 = S2. Any X ∼ Unif(E(Λ)) is invariant under the action of Os(p; Λ).
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4.3.7.2 Marginals and Conditional Distributions: proof of Theorem 4.3.6

This subsubsection is devoted to the proof of Theorem 4.3.6.

It is well known that all marginals of Λ-elliptical distributions are elliptical with the same

functional form (see [90] page 34 or Subsection 4.3.5 above). Note that, by Theorem 4.3.3,

φΛ(t) = ψ
(∑n

i=1 λ
2
i t

2
i

)
for some ψ. If we choose t = (tT1 , t

T
2 )T , with t2 = 0, then we

obtain the characteristic function of the vector Y1. Again, by Theorem 4.3.6, we have

that there exists ψ̃ such that

φ1(t1) := E[eit1
TY1 ] = ψ̃

(
p1∑
i=1

λ2
i t

2
i

)
=

ψ

(∑p1
i=1 λ

2
i t

2
i∏p1

i=1 λ
2
i

)
with ψ̃(z) =: ψ

(
z∏p1

i=1 λ
2
i

)
. Therefore, Y1

d
= KY1 for every K ∈ Os(p1; Λp1).

Now

Λ̃p1 := diag

(
λ2
i∏p1

i=1 λ
2
i

)
i=1,...,p1

is a matrix which is allowed in our definition of Stretched Orthogonal Matrices, therefore

for every K ∈ Os(p1; Λp1), we have that KT Λ̃p1K = Λ̃ and so KTΛp1K = Λ. This implies

that the group Os(p1; Λp1) which leaves invariant Y1 is the subgroup of Os(p1; Λp1), which

does not move the remaining components Y2.

For what concerns the conditional distribution part, that is a consequence of Theorem

1.5.4 from Muirhead [90] (see also Subsection 4.3.5) and the proof just developed on the

marginal distributions case.

4.3.8 Appendix

In this subsubsection, we collect some further properties of elliptical distributions, that are

well known for spherical distributions and that can be proved with simple modifications

in the spherical case.

4.3.8.1 Polar Representation

We can represent an elliptically distributed random vector into polar coordinates.
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Theorem 4.3.35. Suppose that Y ∼ E(Λ) for some Λ = diag(λ2
1, . . . , λ

2
p) ∈Matp×p and

has density

fY(y) = cpdet(Λ)−1/2e
(
yTΛy

)
,

with cp a normalizing constant dependent just on the dimension p and the function e is

independent of p. Suppose to perform the change of variables:

Y1 = λ1r sin(θ1) sin(θ2) . . . sin(θp−2) sin(θp−1)

Y2 = λ2r sin(θ1) sin(θ2) . . . sin(θp−2) cos(θp−1)

Y3 = λ3r sin(θ1) sin(θ2) . . . cos(θp−2)
...

Yp−1 = λp−1r sin(θ1) sin(θ2)

Yp = λpr cos(θ1),

with r > 0, 0 < θi ≤ π, i = 1, . . . p− 2, 0 < θp−1 ≤ 2π. Then, the following are true.

• The random variables r, θ1, . . . , θp−1 are independent.

• The distributions of θ1, . . . , θp−1 are the same for all Y.

• The marginal distributions of the θk’s are proportional to sinp−1−k(θk) for k =

1, . . . , p− 1.

• The random variable r2 := Y TΛ−1Y has density function given by:

fr2(w) =
cpπ

p/2

Γ(p2)
wp/2−1e(w), w > 0.

Proof. The proof dips most of the steps from Theorem 1.5.5 page 55 from [90]. By the

change of variables Y = Λ1/2X, then X is spherically distributed with density:

fX(x) = cpe
(
xTx

)
.

It is well know (see for example Theorem 2.1.3 in [90]) that the transformation from

X1, . . . , Xp to r, θ1, . . . , θp−1 is

J(r, θ1, . . . , θp−1) = rp−1 sinp−2(θ1) sinp−3(θ2) . . . sin(θp−2).

It follows that the joint density of r, θ1, . . . , θp−1 is

f(r,θ1,...,θp−1) =
cp
2
rp−2 sinp−2(θ1) sinp−3(θ2) . . . sin(θp−2)e(r2).
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A first simple consequence of this formula is that r, θ1, . . . , θp−1 are independent random

variables by Factorization Theorem and that the distributions of θ1, . . . , θp−1 are the same

for all Y. Compute the marginal distribution of r2 fr2 by integrating against the angles

and get (for w = r2):

fr2(w) =

∫
θ1,...,θp−1

f(r,θ1,...,θp−1) =

∫
θ1,...,θp−1

cp
2
rp−2 sinp−2(θ1) sinp−3(θ2) . . . sin(θp−2)e(r2)

=
cp
2
rp−2e(r2)

∫
θ1,...,θp−1

sinp−2(θ1) sinp−3(θ2) . . . sin(θp−2) =
cpπ

p/2

Γ(p2)
wp/2−1e(w), w > 0.

A simple consequence of the previous theorem is the following corollary.

Corollary 4.3.36. Suppose that Y ∼ E(Λ) for some Λ = diag(λ2
1, . . . , λ

2
p) ∈Matp×p and

has density

fY(y) = cpdet(Λ)−1/2e
(
yTΛy

)
,

with cp a normalizing constant dependent just on the dimension p and the function e and

the function e is independent of p. Suppose to have the change of variables:

Y1 = λ1r sin(θ1) sin(θ2) . . . sin(θp−2) sin(θp−1)

Y2 = λ2r sin(θ1) sin(θ2) . . . sin(θp−2) cos(θp−1)

Y3 = λ3r sin(θ1) sin(θ2) . . . cos(θp−2)
...

Yp−1 = λp−1r sin(θ1) sin(θ2)

Yp = λpr cos(θ1),

with r > 0, 0 < θi ≤ π, i = 1, . . . p − 2, 0 < θp−1 ≤ 2π. Then, the sin2 θk’s have the Beta

Distribution, for k = 1, . . . , p− 2:

fsin2 θk
(y) =

y
p−k

2
−1(1− y)

1
2
−1

B(1
2 ,

p−k
2 )

, 0 ≤ θk < π, k = 1, . . . , p− 2

while θp−1 ∼ Unif(0, 2π).

4.3.8.2 Angle-Radius Theorems

In this subsubsubsection, we discuss some independence properties of the angle and radius

random variables, which are consequences of the polar representation.
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First of all, we have that the radius and angles are independent.

Theorem 4.3.37. Suppose that Y is a Λ-Elliptical Distribution such that P (Y = 0) = 0.

Define ΩΛ(Y) := Y
YTΛ−1Y

and rΛ := YTΛ−1Y. Then:

• ΩΛ(Y) is uniformly distributed on E(Λ).

• ΩΛ(Y) and rΛ(Y) are independent.

Remark 4.3.38. The condition P (Y = 0) = 0 is a technical condition, assumed to ensure

that all the quantities involved are well defined with probability one.

Proof. Consider K ∈ Os(p; Λ), then:

ΩΛ(KY) =
KY

(KY)TΛ−1KY
= K

Y

YTKTΛ−1KY
= K

Y

YTΛ−1Y
= KΩΛ(Y),

since whenever K ∈ Os(p; Λ), also K−1 ∈ Os(p; Λ). Therefore ΩΛ(KY) ∼ KΩΛ(Y). Since

Y ∼ E(Λ), then Y ∼ KY and so ΩΛ(KY) ∼ ΩΛ(Y). Therefore KΩΛ(Y) ∼ ΩΛ(Y) and

hence by Theorem 4.3.47, ΩΛ(Y) must be the uniform distribution on E(Λ).

Define:

µ(B) := P (ΩΛ(Y) ∈ B|r ∈ C),

where B is a Borel set in E(Λ) and C is a Borel set such that P (r ∈ C) 6= 0. The measure

µ is invariant under the action of Os(p; Λ), since:

µ(KB) := P (ΩΛ(Y) ∈ KB|r ∈ C) = P (K−1ΩΛ(Y) ∈ B|r ∈ C)

= P (ΩΛ(K−1Y) ∈ B|r ∈ C) = P (ΩΛ(Y) ∈ B|r ∈ C) = µ(B).

Therefore µ(KB) = µ(B) for any K ∈ Os(p; Λ) and so the measure µ is invariant under

the action of Os(p; Λ) and so it must be the uniform distribution on E(Λ). Therefore,

P (ΩΛ(Y) ∈ B|r ∈ C) = µ(B) = P (ΩΛ(Y) ∈ B),

which means that P (ΩΛ(Y) ∈ B|r ∈ C) = P (ΩΛ(Y) ∈ B) and so rΛ and ΩΛ are indepen-

dent.

We also have a characterization of t-distribution and Beta-distribution, similar to the

one using spherical distributions (see [90] Theorem 1.5.6 and Theorem 1.5.7 page 38).
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Theorem 4.3.39. Suppose that Y ∼ E(Λ) is a p × 1 random vector, such that P (Y =

0) = 0. Then, the following are true:

• W := αTΛ−1/2Y
‖Λ−1/2Y‖ , for some αTα = 1, α ∈ Rp, then

T = (p− 1)
1
2

W

(1−W 2)
1
2

has the tp−1 distribution.

• If A ∈ Sym+
p×p idempotent of rank k, then

Z =
YTΛ−1/2AΛ−1/2Y

‖Λ−1/2Y‖2

has the Beta Distribution Z ∼ Beta
(
k
2 ,

p−k
2

)
.

Proof. Consider the random variable:

T = (p− 1)
1
2

W

(1−W 2)
1
2

.

Note that T is a function of ΩΛ which is uniformly distribution on E(Λ) as soon as T is

Λ-Elliptical by Theorem 4.3.37 and for every α as in the hypotheses. Therefore, we have

freedom in the choice of the distribution of Y . In the meantime:

T = (p− 1)
1
2

W

(1−W 2)
1
2

= (p− 1)
1
2

αTΛ−1/2Y
‖Λ−1/2Y‖

(1−
(
αTΛ−1/2Y
‖Λ−1/2Y‖

)2
)

1
2

= (p− 1)
1
2

αTΛ−1/2Y

(‖Λ−1/2Y‖2 −
(
αTΛ−1/2Y

)2
)

1
2

= (p− 1)
1
2

∑p
k=1

αkYk
λ2
k[∑p

j=1

(
Yj
λ2
j

)2

−
(∑p

i=1
αiYi
λ2
i

)2
] 1

2

.

Since we are allowed to choose our favourite α by Theorem 4.3.37, we choose α such that

221



αk = 0 for every k = 2, . . . , p and so we obtain:

Y = (p−1)
1
2

α1Y1

λ2
1[∑p

j=1

(
Yj
λ2
j

)2

−
(
α1Y1

λ2
1

)2
] 1

2

= (p−1)
1
2

α1Y1

λ2
1[∑p

j=2

(
Yj
λ2
j

)2

+
(
Y1

λ2
1

)2
−
(
α1Y1

λ2
1

)2
] 1

2

.

Therefore, if we choose α1 = 1 and Yk ∼ N(0, λ2
k) for k = 1, . . . , p we get that

Y = (p− 1)
1
2

Z1√
Y 2
p−1

,

with

Z1 :=
Y1

λ2
1

∼ N(0, 1); Y 2
p−1 :=

p∑
j=2

(
Yj
λ2
j

)2

∼ χ2(p− 1).

Therefore, since Z1 and Y 2
p−1 are independent and by definition of t-distribution Y ∼ tp−1.

Similarly,

Z =
YTΛ−1/2AΛ−1/2Y

‖Λ−1/2Y‖2

with A ∈ Sym+
p×p idempotent of rank k. Again, since

Z = ΩΛ(Y)AΩΛ(Y),

we can assume without loss of generality that Y ∼ MVN (0,Λ). Therefore, there exists

K ∈ Os(p; Λ) such that

KTΛ−1/2AΛ−1/2K =

[
Idk 0

0 0

]
.

Define U := KΛ−1/2Y. We have:

Z =

∑k
j=1 U

2
j∑n

j=1 U
2
j

,

where
∑k

j=1 U
2
j ∼ χ2

k and
∑n

j=K+1 U
2
j ∼ χ2

n−k are independent. This implies that

Z ∼ Beta
(
k

2
,
p− k

2

)
.
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4.3.8.3 The Haar Measure on Os(p; Λ)

In this subsubsection, we construct explicitly the Haar measure for Os(p; Λ). We recall

the precise definition of Haar measure.

Definition 4.3.40. Consider a locally compact Hausdorff topological group (G, ·), endowed

with the Borel σ-algebra B. We define the left translate of S ∈ B as follows:

gS = {g.s : s ∈ S}.

A measure µ on B is called left translation invariant if for every S ∈ B and every g ∈ G
we have:

µ(gS) = µ(S).

A well known definition-theorem due to Haar gives the definition of Haar measure.

Theorem 4.3.41. The Haar measure is the unique, up to a positive multiplicative con-

stant, countably additive, non-trivial measure µ on B satisfying the following properties:

• The measure µ is left-translation-invariant.

• The measure µ is finite on every compact set, namely µ(K) < +∞ for every K

compact with respect to the topology of the group.

• The measure is outer regular on B:

µ(E) = inf{µ(U) : E ⊆ U,U open}.

• The measure µ is inner regular on open sets:

µ(E) = sup{µ(K) : K ⊆ E,K compact}.

Now, we can pass to our specific case. Consider any K ∈ Os(p; Λ). We have

KTΛK = Λ.

Take the exterior derivative of this equality. Since Λ is constant, we get:

dKTΛK +KTΛdK = 0p×p,
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which implies that

dKTΛK = −(dKTΛK)T

and so that dKTΛK is antisymmetric. Note also that, if we define

H := Λ1/2KΛ−1/2,

then

HTH = (Λ1/2KΛ−1/2)TΛ1/2KΛ−1/2 = Idp×p

and so the matrix H is orthogonal. Therefore, with an analogous computation, we get:

HTdH = Λ−1/2KTΛdKΛ−1/2 := ω.

The differential form ω is invariant under the action of Os(p; Λ). In fact, it is left invariant,

since for P ∈ Os(p; Λ), K 7→ PK implies Λ−1/2KTP TΛPdKΛ−1/2 = Λ−1/2KTΛdKΛ−1/2.

It is also right invariant (K 7→ KP T ) by a similar computation and Theorem 2.16 of [90].

Therefore

(ω) = (Λ−1/2KTΛdKΛ−1/2) :=

m∧
i<j

(Λ−1/2KTΛ1/2)i(Λ
1/2dKΛ−1/2)j

is an invariant differential form under the action of Os(p,Λ).

Therefore, we can define the Haar Measure of Os(p; Λ) by

µ(S) :=

∫
S

(ω)

for every S ⊂ Os(p; Λ). It is easy to see that

µ(S) = µ(PS) = µ(SP T ),

for any P ∈ Os(p; Λ). Therefore µ is an invariant measure under the action of Os(p; Λ).

Recall the following theorem (Theorem 2.1.15 and Corollary 2.1.16) from [90].

Theorem 4.3.42.

V ol(O(p)) =
2pπp

2/2

Γp(
p
2)

.

Using this and that V ol(O(p)) = V ol(O(p))det(Λ) = V ol(Os(p; Λ)), we can easily
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construct a normalized differential form

(ω∗) :=
1

V ol(Os(p; Λ))
(ω)

and so

µ∗(S) :=

∫
S

(ω∗)

an invariant probability measure on Os(p; Λ).

We can give the explicit form of the Haar measure in the case p = 2

Example 4.3.43. Consider the case p = 2. In this case, the matrix K takes the form

K = K+ :=

 cos(θ) −
∣∣∣λ2
λ1

∣∣∣ sin(θ)∣∣∣λ1
λ2

∣∣∣ sin(θ) cos(θ)

 .

Therefore

KTΛdK

=

 cos(θ) −
∣∣∣λ2
λ1

∣∣∣ sin(θ)∣∣∣λ1
λ2

∣∣∣ sin(θ) cos(θ)

( λ2
1 0

0 λ2
2

) − sin(θ)dθ −
∣∣∣λ2
λ1

∣∣∣ cos(θ)dθ∣∣∣λ1
λ2

∣∣∣ cos(θ)dθ − sin(θ)dθ

 .

Therefore

KTΛdK = dθ

(
0 −1

1 0

)
.

This implies that

µ∗Os(2;Λ2) :=

∫
S

(ω∗) =
1

V ol(Os(2; Λ2))

∫
S

(ω) =

∫
S̃
dθ.

Note that all this discussion gives us a characterization of µ∗Os(p;Λ) as the uniform

distribution on Os(p; Λ).

Corollary 4.3.44. The measure µ∗Os(p;Λ) is the uniform probability distribution on the

group Os(p; Λ).

4.3.8.4 The Spherical and Elliptical Measure

To construct an elliptical measure, we can simply use a diffeomorphism from the sphere

to the ellipsoid and pull-back the spherical measure. Here, we use this approach. We start

with a definition.
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Definition 4.3.45. The Spherical Measure µSn is the normalized natural Borel measure

on Sn.

This definition does not give a precise way to construct the Spherical Measure. There

are several ways to do this: by means of the Hausdorff Measure, by Embedding in the

Euclidean space or using Lebesgue measure. All these methods define the same measure

on Sn. Indeed, by a theorem of Christensen [30], we have the following proposition.

Proposition 4.3.46. [30] Let M be a locally compact Hausdorff space and u and v two

positive uniform measures on M . Then, the exists c ∈ R+ such that u = cv.

Since all these measures represent the uniform distribution on Sn, and any two uni-

formly distributed normalized Borel regular measures on a separable metric space must

be the same measure, then all these measures represent the same measure.

The case of the ellipsoid is analogous and therefore, we have the following theorem.

Theorem 4.3.47. There exists a unique invariant probability distribution µ∗Os(p;Λ) on

Os(p; Λ), which is the uniform distribution on Os(p; Λ) and is given by the formula:

µ∗Os(p;Λ) :=

∫
S

(ω∗) =
1

V ol(Os(p; Λ))

∫
S

(ω)

There is a natural relationship between the Haar Measure on O(p) and Os(p; Λ) and

the Spherical and Elliptical Measures.

For any x ∈ Sn and any A ⊂ Sn, we have

µ∗O(p)({g ∈ O(p) | g(x) ∈ A}) = σp−1(A).

Analogously, for any x ∈ Ep−1
Λ and any A ⊂ Ep−1

Λ , we have

µ∗Os(p;Λ)({h ∈ Os(p; Λ) | h(x) ∈ A}) = σp−1
Λ (A),

where σp−1
Λ is the Uniform Measure on Ep−1

Λ .

4.3.8.5 The Metric Ground Form

The theory that we discussed in this manuscript can be set in the context of metric ground

forms (see [123]).
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In his discussion of Classical Groups, H. Weyl [123] considers arbitrary non-degenerate

quadratic forms, as

Q(x) =

m∑
i=1

m∑
j=1

qijxixj ,

with qij=qji . In the highest level of generality qij belong to an arbitrary field K of zero

characteristic for every i, j = 1, . . . ,m.

The linear transformations L such that for Q = [qij ]
m
i,j=1, we have

LTQL = Q

form a sort of ”orthogonal group” OG(m).

Our case correspond to Q = Λ, G = Os(m,Λm) and K = R.

Weyl does not discuss the applications to distribution theory of his characterizations, but

one can generalize our constructions using Weyl’s theory and characterize more general

group invariant probability distributions. However, we find that it is good to have explicitly

discussed the case of the broadly used elliptical distributions with specific interest.

4.4 The Direct Product of Circle Groups

The circle group, often denoted by (T, ·), since it can be identified as the 1-torus is the

multiplicative subgroup of the complex plane C of all complex numbers with absolute

value 1:

T := {z ∈ C : |z| = 1}.

It is an Abelian, since C is Abelian.

The circle group is isomorphic to other important Lie Groups. We have

T ' S1 ' U(1) ' R\Z ' SO(2).

Here U(1) is the set of all unitary matrices, R\Z is the quotient space of the real line

with respect to integer translations and SO(2) is the set of special orthogonal matrices of

dimension 2.
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Motivated by the applications to molecular biology, in the following treatment, we will be

concentrated on the more general product space T2 which corresponds to the 2-torus.

4.5 On Geometric Probability Distributions on the Torus

with Applications to Molecular Biology

In this section, we propose a family of probability distributions, alternative to the von

Mises family, that we call Inverse Stereographic Normal Distributions, which are counter-

parts of the Gaussian Distribution on S1 (univariate) and on Sn and Tn (multivariate).

We discuss some key properties of the model, such as multimodality and closure with

respect to marginalizing and conditioning. We compare this family of distributions to

the von Mises’ family. We then discuss some inferential problems and introduce a no-

tion of moments which is natural for inverse stereographic distributions, revisit a version

of the Central Limit Theorem in this context and construct point estimators, confidence

intervals and hypothesis tests. Finally, we conclude with some applications to molecular

biology and some examples, as to how to use these models to approximate parameters of

the von Mises distributions in certain particular cases. This study is motivated by the

Protein Folding Problem and by the fact that a large number of proteins involved in the

DNA-metabolism assume a toroidal shape with some amorphous regions.

4.5.1 Introduction and Motivation

In the recent years, statisticians paid increasing attention on random variables taking val-

ues on manifolds, since probability distributions on manifolds have key applications and

also propose stimulating theoretical challenges. The theory of statistical distributions on

manifolds represents the natural link between several theoretical research areas including

topology, differential geometry, analysis, probability theory, data science and statistical

inference. We refer to [66] and [83] for an extended list of references in this research area.

Amongst the most important statistical problems on manifolds, those arising from the

analysis of circular data, spherical data and toroidal data play a fundamental role. Mo-

tivated by important applications in molecular biology, we will concentrate mostly on

toroidal data, but we will discuss some properties of distributions on the circle and the

sphere as well.

More precisely, the motivation behind our study relates to the Protein Folding Problem
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(PFP), which is one of the major open problems in biochemistry. Protein folding is the

physical process that a protein chain undertakes before reaching its final three dimensional

shape (conformation). The shape of the protein ensures that the protein does its job prop-

erly, while a misfolding can be the cause of several neurodegenerative diseases and other

types of diseases as well [106].

Since the physical process underlying protein folding is complicated, there has been limited

success in predicting the final folded structure of a protein from its amino acid sequence. A

better understanding of this would definitely have clinical impact and result in the design

of efficient drug molecules for the cure of the diseases mentioned above.

The PFP can be divided into two parts: the static problem and the dynamic problem. As

explained in [41], the static problem is to predict the active conformation of the protein

given only its amino acid sequence, while the dynamic problem consists in rationalizing

the folding process as a complex physical interaction. Both these problems have a precise

mathematical formulation.

Some regions of the conformation of a protein may look amorphous and so require random

models and probability distributions to be described properly. A large number of proteins

involved in DNA metabolism with different evolutionary origin and catalyzing different

reactions assume a toroidal shape [60], [61]. It has been argued that the preference towards

the toroidal form may be due to special advantages in the DNA-binding [60], [61]. A long

list of proteins share the toroidal form [60], [61].

The importance of the PFP and the DNA-binding process motivated statisticians to find

appropriate statistical models that describe these phenomena and then to study the prop-

erties of these models which have circular, spherical or toroidal symmetries theoretically

as in applications.

The most famous circular distribution is the von Mises distribution. We say that a ran-

dom variable Θ, taking values in S1 is distributed as a Von Mises Random Variable

Θ ∼ VM(µ, κ), if its probability density (pdf) is given by

f(θ | µ, κ) =
eκ cos(θ−µ)

2πI0(κ)
,
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where κ > 0, µ ∈ [−π, π) and θ ∈ [−π, π). Here,

I0(z) :=
1

2πi

∮
e(z/2)(t+1/t)t−1dt

is the Modified Bessel Function of the First Kind of Order 0 (the contour encloses the

origin and it is run counterclockwise). The parameters µ ∈ [−π, π) and κ > 0 represent

the location and concentration, respectively. One of the reasons for the popularity of this

distribution is that it approaches the normal distribution on the real line in the high-

concentration limit (κ→ +∞).

The interest on the theory as well as practical applications motivated researchers to look

for a good higher dimensional analogue of the one dimensional von Mises Distribution.

The Bivariate Von Mises Distribution (BVM) is a probability distribution describing a

two dimensional random vector, taking values on a torus T2 := S1 × S1. It aims at

representing an analogue on the torus of the Bivariate Normal Distribution (BVN). The

Full Bivariate Von Mises Distribution (FBVM) was first proposed by Mardia [79]. Some

of its variants are currently used in the field of bioinformatics to formulate probabilistic

models of protein structure. See also [80], [81], [82], [83], [84], [85], [86], [87] and [118].

We say that a random variable Θ = (Θ1,Θ2), taking values in T2, is distributed as a

Bivariate Von Mises Random Variable Θ ∼ BVM(µ, ν,A, κ1, κ2), if its pdf is given by

the following function:

f(φ, ψ) =

exp[κ1 cos(φ− µ) + κ2 cos(ψ − ν) + (cos(φ− µ), sin(φ− µ))A(cos(ψ − ν), sin(ψ − ν))T ]

Z
,

for the angles φ, ψ ∈ [−π,+π). Here, µ and ν are the location parameters for φ and ψ,

respectively, κ1 and κ2 are the concentration parameters, the matrix A ∈ Mat2×2 gives

a non-trivial correlation structure, while Z is the Partition Function (a normalization

constant) given by:

Z :=

∫
[−π,+π)2

dφdψ×

exp[κ1 cos(φ− µ) + κ2 cos(ψ − ν) + (cos(φ− µ), sin(φ− µ))A(cos(ψ − ν), sin(ψ − ν))T ].

The FBVM seems to be over-parametrized for being the “Toroidal Counterpart” of the

BVN. In fact, the FBVM depends on eight parameters, while the BVN possesses only five

parameters. This situation becomes even clearer in the high-concentration limit (κ→ +∞)

230



[87]. For this reason, several submodels have been proposed. Four commonly used variants

of the bivariate von Mises distribution have been originally proposed by Mardia [81] and

then revisited by Rivest [99] and also by Singh-Hnidzo-Demchuk [110]. These variant are

models with a reduced number of parameters and are derived by setting the off-diagonal

elements of A to be zero. The following models are submodels of the FBVM which have

been discussed in the literature:

• the Cosine Model with Positive Interaction [87] has its probability density function

as

f(φ, ψ) =
1

Zc+
(κ1, κ2, κ3) exp[κ1 cos(φ−µ) +κ2 cos(ψ− ν)−κ3 cos(φ−µ−ψ+ ν)],

where µ and ν are the means for φ and ψ, κ1 and κ2 their concentration, and κ3

is related to their correlation, while Zc+ is the normalization constant and A =

[−κ3, 0; 0,−κ3];

• the Cosine Model with Negative Interaction [87] has its probability density function

as

f(φ, ψ) =
1

Zc−(κ1, κ2, κ3)
exp[κ1 cos(φ− µ) + κ2 cos(ψ− ν)− κ3 cos(φ− µ+ψ− ν)],

where µ and ν are the means for φ and ψ, κ1 and κ2 their concentration, and κ3

is related to their correlation, while Zc− is the normalization constant and A =

[−κ3, 0; 0, κ3];

• the Sine Model [110] has its probability density function as

f(φ, ψ) =
1

Zs(κ1, κ2, κ3)
exp[κ1 cos(φ−µ) +κ2 cos(ψ−ν) +κ3 sin(φ−µ) sin(ψ−ν)],

where µ and ν are the means for φ and ψ, κ1 and κ2 their concentration, and

κ3 is related to their correlation, while Zs is the normalization constant and A =

[0, 0; 0,−κ3];

• the Hybrid Model [69] has its probability density function as

f(φ, ψ) =
1

Zh(κ1, κ2, κ3, ε)
×

exp{κ1 cos(φ) + κ2 cos(ψ) + ε[(cosh γ − 1) cosφ cosψ + sinh γ sinφ sinψ]},

where ε is a tuning parameter (often ε = 1), µ and ν are the means for φ and ψ,
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κ1 and κ2 their concentration, and κ3 is related to their correlation, while Zh is the

normalization constant and A = [a11, a12; a21, a22] satisfying:a11 cosµ cos ν − a12 cosµ sin ν − a21 sinµ cos ν + a22 sinµ sin ν = ε(cosh γ − 1)

a11 sinµ sin ν + a12 sinµ cos ν + a21 cosµ sin ν + a22 cosµ cos ν = sinh γ

for some quadruplet of entries a11, a12, a21, a22.

The use of these distributions have pros and cons. The pros: the von Mises distributions

resemble the multivariate normal in the case of high-concentration limit, they are closed

with respect to conditioning, it is relatively easy to give multimodality conditions, and

the parameters have easy interpretability, even when they do not exactly match the ones

of the Bivariate Normal Distribution (BVN). The cons: the family is not closed under

marginalization (but in the case of high-concentration limit), the estimation and test of

hypothesis are not trivial and require numerical methods. For example, the MLEs cannot

be computed explicitly and requires optimization algorithms for their determination. To

overcome this problem, more advanced procedures, like the pseudo-likelihood estimators,

have been suggested [83].

It is a common belief that the geometry of the torus implies that there is not a completely

natural counterpart of the BVN on the torus (see, for example, the discussion in [69]).

Therefore, despite von Mises models have been proven to be successful, there has not been

a definite answer yet to which of the models proposed is the “best” candidate to represent

the Toroidal Counterpart of the BVN.

In this section, we aim at giving an alternative to the von Mises type distributions both

in univariate and multivariate case, which maintain the good properties of the von Mises

distributions, like the asymptotic normality, but also possess some extra properties, such

as the closure under marginalization or the simplicity in the estimation and hypothesis

testing that the MVN possesses in the Euclidean case, but the von Mises distributions do

not.

The candidate distribution that we propose is called Inverse Stereographic Normal Dis-

tribution on the Torus (ISND). The name comes from the fact that the Stereographic

Projection of this distribution is the BVN on R2 (see Section 4.5.2). We start by giving

the definition of the ISND on the circle S1.

Definition 4.5.1. We say that a random variable Θ has an Inverse Stereographic Normal
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Distribution, denote by ISN (µ, σ2), if its probability density function is given by

fΘ(θ) :=

√
1

2π

1

(1 + cos θ)σ
e−

1
2σ2 ( sin θ

1+cos θ
−µ)

2

,

for some µ ∈ R, σ > 0 and for any θ ∈ [−π,+π).

In a similar manner, we can define the Multivariate Inverse Stereographic Normal

Distribution, as follows.

Definition 4.5.2. We say that a random variable Θ := {Θ1, . . . ,Θn} has a Multivariate

Inverse Stereographic Normal Distribution, denoted by MISN (µ,Σ), if its probability

density function is given by

fΘ(θ) :=

n∏
i=1

(
1√

2π|Σ|(1 + cos θi)

)
e
− 1

2

(
sin θ1

1+cos θ1
−µ1,...,

sin θn
1+cos θn

−µn
)T

Σ−1
(

sin θ1
1+cos θ1

−µ1,...,
sin θn

1+cos θn
−µn

)
,

for some µ := (µ1, . . . , µn)T ∈ Rn, Σ ∈ Sym+
n×n and for any θ = (θ1, . . . , θn) ∈ [−π,+π)n.

Remark 4.5.3. In Section 4.5.2, we will see that this type of construction can be used for

all probability distributions on the Euclidean space.

As we will see in the subsequent subsections, there are several advantages of this

approach, listed below not necessarily in order of importance:

• The Stereographic Projection suggests a natural way to construct distributions on

manifolds, by transforming distributions on the Euclidean Space (see Section 4.5.2);

• The number of parameters of the ISND match the number of parameters of the

BVN, without imposing any further constraint (see Section 4.5.2);

• The Bivariate Von Mises Distribution and ISND resemble each other in the case of

high-concentration limit for certain ranges of parameters and, moreover, the ISND

approximates the BVN in the case of high concentration limit (see Section 4.5.3);

• There is a natural interpretation for the parameters of the ISND, relating to the

parameters of the BVN (see Section 4.5.4);

• The Stereographic Projection suggests a more geometric counterpart of the Euclidean

Moments which differs from the Circular Moments (see Section 4.5.4);

• The definition of moments using the Stereographic Projection helps address some

problems of interpretation of the parameters of directional variables (see Remark

4.5.45 in Section 4.5.6.1);
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• The estimation problems for the ISND do not need numerical methods, since the

estimates of the parameters are the transformed estimates of the parameters of the

BVN (see Section 4.5.6.1);

• The Stereographic Projection gives the possibility of transferring the test statistics

from the Euclidean space to Manifolds and this simplifies the problems of Hypothesis

Testing, Confidence Intervals and Goodness of Fit (see Section 4.5.6.1).

The rest of this section is organized as follows.

In Subsection 4.5.2, we describe the construction of general inverse stereographic pro-

jected distributions and present the main example of the ISND. We give results about the

marginals of the ISND which are still ISND (Theorem 4.5.13), and conditionals which are

ISND as well (Theorem 4.5.16). We also present some results on bimodality conditions

for this family of distributions (Theorem 4.5.17 and Theorem 4.5.19).

In Subsection 4.5.3, we discuss the comparison of the ISND and the BVM. In particular,

we prove an approximation result in the case of high-concentration limit which connects

BVN, ISDN and BVM models for some subset of the parameter space.

In Subsection 4.5.4, we introduce inverse stereographic moments and moment generating

functions which lead naturally to a corresponding central limit theorem on the torus. We

compare the moments with the classical circular moments and with the moments of Eu-

clidean random variables.

In Subsection 4.5.6, we pass to statistical inference. We first discuss point estimation, con-

fidence intervals and hypothesis testing for the model parameters (see Subsection 4.5.6.1).

Then, we discuss sampling methods (see Subsection 4.5.7). All these constructions follow

the lines of Euclidean cases.

In Subsection 4.5.8, we present some numerical examples and applications. In Subsub-

section 4.5.8.1, we produce some plots of the ISND for some choices of the parameters,

both in the unimodal and the multimodal cases. In Subsubsection 4.5.8.2, we compare

numerically the BVM and the ISND, using Theorem 4.5.21 for the corresponding ranges

of the parameters. We conclude with Subsection 4.5.8.4, where we give an application to

a problem in molecular biology.
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Notation and Preliminaries

In the following, we will use the notation Matn×n to denote the set of square matrices of

dimension n and Sym+
n×n to denote positive symmetric matrices of dimension n.

4.5.2 Inverse Stereographic Projected Distributions

on the Torus

In this subsection, we introduce the Inverse Stereographic Projected Distributions and then

give some properties of the model. As mentioned in the introduction, here we describe

the construction of general inverse stereographic projected distributions and then present

the main example of the ISND. We present results about the marginals of ISND which are

still ISND (Theorem 4.5.13), and conditionals which are ISND as well (Theorem 4.5.16).

We finally present some results on bimodality conditions for this family of distributions.

4.5.2.1 Inverse Stereographic Projected Probability Distributions

In this subsubsection, we describe how to stereographic project a probability distribution

defined on Sn−1 or Tn into the Euclidean Space Rn, and how to construct the inverse

projected distribution. Let us start with the one dimensional case n = 1.

Theorem 4.5.4. Suppose fX(x) is a pdf on R, and we consider the Stereographic Pro-

jection in angular coordinates

θ 7→ x :=
sin θ

1 + cos θ
,

with θ ∈ [−π,+π). Then,

fΘ(θ) =
1

1 + cos θ
fX

(
sin θ

1 + cos θ

)
.

Vice versa, suppose fΘ(θ) is a pdf on S1, and we consider the Inverse Stereographic

Projection

x 7→ θ := 2 arctan(x),

for x ∈ R. Then,

fX(x) =
2

1 + x2
fΘ (2 arctan(x)) .

Proof. Follows by a simple change of variables formula.

Remark 4.5.5. This theorem has an analogous counterpart in higher dimensions, where
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the metric of Sn−1 is given by

gSn−1(x) :=
4

(1 + x2
1 + · · ·+ x2

n)2

(
dx2

1 + · · ·+ dx2
n−1

)
.

A simple consequence of this theorem is a characterization of the Cauchy Distribution

on the real line by means of the Stereographic Projection.

Corollary 4.5.6. The Cauchy Distribution on R is the unique distribution mapped to the

Uniform distribution S1 under Stereographic Projection.

Proof. It is straightforward to show this.

Theorem 4.5.4 provides us a formula which works also for the torus Tn := S1×· · ·×S1.

Theorem 4.5.7. Suppose fX1,...,Xn(x1, . . . , xn) is a pdf on Rn, and we consider the Stere-

ographic Projection

(θ1, . . . θn) 7→ (x1, . . . , xn) :=

(
sin(θ1)

1 + cos(θ1)
, . . . ,

sin(θn)

1 + cos(θn)

)
,

for (θ1, . . . , θn) ∈ Tn and so with θi ∈ [−π,+π) for every i = 1, . . . , n. Then,

fΘ1,...,Θn(θ1, . . . , θn)dθ1 . . . dθn = fX1,...,Xn

(
sin(θ1)

1 + cos(θ1)
, . . . ,

sin(θn)

1 + cos(θn)

) n∏
i=1

dθi
1 + cos(θi)

.

Vice versa, suppose fΘ1,...,Θn(θ1, . . . , θn) is a pdf on Tn, and we consider the Inverse Stere-

ographic Projection

(x1, . . . , xn) 7→ (2 arctan(x1), . . . , 2 arctan(xn)) ,

for every (x1, . . . , xn) ∈ Rn. Then,

fX1,...,Xn(x1, . . . , xn)dx1 . . . dxn = 2n
n∏
i=1

dxi
1 + x2

i

fΘ1,...,Θn (2 arctan(x1), . . . , 2 arctan(xn)) .

Proof. this can be shown by a straightforward calculation.

Remark 4.5.8. We give a brief remark about the spherical case. To fix the ideas, we

consider the case of dimension n = 3. In this case, the stereographic projection is given by

(θ, φ) 7→ (x, y) :=

(
cos(θ) sin(φ)

1− cos(φ)
,
sin(θ) sin(φ)

1− cos(φ)

)
,
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for θ ∈ [−π,+π) and φ ∈ [0,+π). Therefore, we have

fΘ,Φ(θ, φ)dθdφ = fX,Y

(
cos(θ) sin(φ)

1− cos(φ)
,
sin(θ) sin(φ)

1− cos(φ)

)
sin(φ)dθdφ

(1− cos(φ))2
,

since the Jacobian of the transformation is J = sin(φ)
(1−cos(φ))2 .

Vice versa, suppose fΘ,Φ(θ, φ) is a pdf on S2, and we consider the inverse Stereographic

Projection

(x, y) 7→ (θ, φ) =

(
arctan

(y
x

)
, arccos

(
x2 + y2 − 1

x2 + y2 + 1

))
,

for every (x, y) ∈ R2. Then,

fX,Y (x, y)dxdy = fΘ,Φ

(
arctan

(y
x

)
, arccos

(
x2 + y2 − 1

x2 + y2 + 1

))
2dxdy

(1 + x2 + y2)
√
x2 + y2

,

by the inverse formula for the Jacobian.

Note that, even if in both the spherical and toroidal cases, the density functions on the

manifold and on the Euclidean Space are defined through a Stereographic Projection, the

final density functions are different and do reflect the geometry of the manifold.

Remark 4.5.9. The Stereographic Projection is a Conformal Transformation and so it

does not change angles. In our context, this is a very useful property as it means that the

Stereographic Projection maps elliptical contours to elliptical contours.

4.5.2.2 Inverse Stereographic Projected Normal Distribution

We are now ready to define the Inverse Stereographic Normal Distribution.

Definition 4.5.10. We say that a random variable Θ has an Inverse Stereographic Stan-

dard Normal Distribution, denoted by ISN (0, 1), if and only if its density function is

given by

fΘ(θ) :=

√
1

2π

1

1 + cos θ
e−

1
2( sin θ

1+cos θ )
2

,

for θ ∈ [−π, π).

We can then introduce some parameters to the model and give a general definition of

the ISND.
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Definition 4.5.11. We say that a random variable Θ has an Inverse Stereographic Normal

Distribution, denoted by ISN (µ, σ2), if and only if its density function is given by the

following formula:

fΘ(θ) :=

√
1

2π

1

(1 + cos θ)σ
e−

1
2σ2 ( sin θ

1+cos θ
−µ)

2

,

for some µ ∈ R, σ > 0 and for any θ ∈ [−π,+π).

In a similar way, we can define the Multivariate Inverse Stereographic Normal Distri-

bution.

Definition 4.5.12. We say that a random variable Θ := {Θ1, . . . ,Θn} has a Multivariate

Inverse Stereographic Normal Distribution, denoted by MISN (µ,Σ), if and only if its

density function is given by

fΘ(θ) :=

n∏
i=1

(
1√

2π|Σ|(1 + cos θi)

)
e
− 1

2

(
sin θ1

1+cos θ1
−µ1,...,

sin θn
1+cos θn

−µn
)T

Σ−1
(

sin θ1
1+cos θ1

−µ1,...,
sin θn

1+cos θn
−µn

)
,

for some µ := (µ1, . . . , µn) ∈ Rn, Σ ∈ Sym+
n×n and for any θ = (θ1, . . . , θn) ∈ [−π,+π)n.

In strong contrast with the Multivariate Von Mises Distribution, the Inverse Stereo-

graphic Normal Distribution is closed under marginalization.

Theorem 4.5.13. Suppose that a random variable Θ := {Θ1, . . . ,Θn} ∼ MISN (µ,Σ).

Then, for every i = 1, . . . , n, we have Θi ∼ ISN (µi,Σii).

Proof. We give the proof just in the case n = 2, which is more interesting for the applica-

tions that we have in mind, but the proof for the general case follows in a similar way.

Suppose a random variable Θ := {Θ1, . . . ,Θn} ∼ MISN (µ,Σ). Its pdf is given by

fΘ(θ) :=

n∏
i=1

(
1√

2π|Σ|(1 + cos θi)

)
e
− 1

2

(
sin θ1

1+cos θ1
−µ1,...,

sin θn
1+cos θn

−µn
)T

Σ−1
(

sin θ1
1+cos θ1

−µ1,...,
sin θn

1+cos θn
−µn

)
,

for some µ := (µ1, . . . , µn) ∈ Rn, some Σ ∈ Sym+
n×n and for any θ = (θ1, . . . , θn) ∈

[−π,+π)n. In the case n = 2, we have:

fΘ1,Θ2(θ1, θ2) :=
1

2π|Σ|
1

(1 + cos θ1)

1

(1 + cos θ2)
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×e−
1
2

[
sin θ1

1+cos θ1
−µ1,

sin θ2
1+cos θ2

−µ2

]T
Σ−1

[
sin θ1

1+cos θ1
−µ1,

sin θ2
1+cos θ2

−µ2

]
.

Therefore,

fΘ1(θ1) =

∫ +π

−π
dθ2fΘ1,Θ2(θ1, θ2) =

∫ +π

−π
dθ2

1

2π|Σ|
1

(1 + cos θ1)

1

(1 + cos θ2)
×

×e−
1
2

[
sin θ1

1+cos θ1
−µ1,

sin θ2
1+cos θ2

−µ2

]T
Σ−1

[
sin θ1

1+cos θ1
−µ1,

sin θ2
1+cos θ2

−µ2

]
.

Now, define B := Σ−1 and so Bij = (Σ−1)ij for j = 1, 2 and 2b = b12 + b21. This implies

that

fΘ1(θ1) =
1

2π|Σ|
e
− b11

2

{
sin θ1

1+cos θ1
−µ1

}2

(1 + cos θ1)

×
∫ +π

−π

dθ2

(1 + cos θ2)
e
− b22

2

{
sin θ2

1+cos θ2
−µ2

}2

e
− 2b

2

{
sin θ1

1+cos θ1
−µ1

}{
sin θ2

1+cos θ2
−µ2

}
.

Now, we do the following change of variables:

z :=
sin θ2

1 + cos θ2
− µ2, dz =

dθ2

1 + cos θ2
.

Then, we obtain:

fΘ1(θ1) =
1

2π|Σ|
e
− b11

2

{
sin θ1

1+cos θ1
−µ1

}2

(1 + cos θ1)

∫ +∞

−∞
dze−

1
2 [2bα(θ1)z+b22z2],

with α(θ1) := sin θ1
1+cos θ1

− µ1. Upon completing the square, we get

fΘ1(θ1) =
1

2π|Σ|
e
− b11

2

{
sin θ1

1+cos θ1
−µ1

}2

e
+ b2

2b22

{
sin θ1

1+cos θ1
−µ1

}2

(1 + cos θ1)

∫ +∞

−∞
dze
− 1

2

[
b22z+

bα(θ1)√
b22

]2

.

By performing another change of variables

x := b22z +
bα(θ1)√
b22

, dx = b22dz,

we get

fΘ1(θ1) =
1

2π|Σ|b22

e
− b11

2

{
sin θ1

1+cos θ1
−µ1

}2

e
+ b2

2b22

{
sin θ1

1+cos θ1
−µ1

}2

(1 + cos θ1)

∫ +∞

−∞
dxe−

1
2
x2
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=
b22b11 − b2√

2πb22

e
− 1

2
b11b22−b

2

b22

{
sin θ1

1+cos θ1
−µ1

}2

(1 + cos θ1)
=

1√
2πΣ11

e
− 1

2Σ11

{
sin θ1

1+cos θ1
−µ1

}2

(1 + cos θ1)
.

Since

fΘ1(θ1) =
1√

2πΣ11

e
− 1

2Σ11

{
sin θ1

1+cos θ1
−µ1

}2

(1 + cos θ1)
,

then Θ1 ∼ ISN(µ1,Σ11). Thus, the family of Multivariate Inverse Stereographic Normal

Distributions is closed under marginalization, as required.

Remark 4.5.14. Note that, left as is, the MISN (µ,Σ) might not seem completely sat-

isfactory for the following reason. Suppose for simplicity that we consider the case of S1.

We have PΘ(Θ ∈ [α+ θ0, β + θ0]) which depends on θ0, and thus it depends on the choice

of the north pole in the Stereographic Projection. This does not seem a desirable property,

but the choice of the North Pole corresponds, in some sense, to the choice of the point at

infinity in the real line. Also in the real line, we make the arbitrary choice of placing the

origin somewhere and we somehow “break the symmetry” of the real line, as we do here

for the circle.

Remark 4.5.15. All this suggests us to consider a natural measure on the manifold, at

least when the probability distribution is obtained through Stereographic Projection. This

measure is the pull-back measure

P ∗dx =
dθ

1 + cos θ
,

where P is the Stereographic Projection. This suggests a different way to compute mo-

ments and the moment generating function. We discuss this in more detail later in Section

4.5.4.

Similarly, the Inverse Stereographic Normal Distribution is also closed under condi-

tionals.

Theorem 4.5.16. Suppose a random variable Θ := {Θ1, . . . ,Θn} ∼ MISN (µ,Σ) and

we have the partition Θ = (Θ1,Θ2), µ = (µ1, µ2),

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
,

where Θ1 and µ1 are k × 1 vectors and Σ11 ∈Matk×k, and Σ−22 is the generalized inverse

240



of Σ22. Then, the conditional distribution of Θ1, given Θ2 is given by

Θ1 | Θ2 ∼MISN (µ1 − Σ12Σ−22 (Θ2 − µ2) ,Σ11 − Σ12Σ−22Σ21).

Proof. The proof follows the same lines as in the proof of Theorem 4.5.13 and the tech-

niques used in the Euclidean case (see for example Theorem 1.2.11 page 12 in [90]).

4.5.2.3 Unimodality and Multimodality Conditions

As can be seen from some simulations (see, for example, Subsection 4.5.8.1), ISND can be

multimodal and so it is important to determine the conditions on the parameters which

ensure that the pdf is unimodal and the ones that produce a multimodal distribution.

We now give necessary and sufficient conditions for the ISND to be unimodal.

Consider the density function of a ISND with parameters µ = 0 and σ2 > 0, given by

fΘ(θ) :=

√
1

2π

1

1 + cos θ
e−

1
2( sinθ

1+cos θ )
2

.

Note that for θ = 0 the density has a removable singularity and it can be extended to a

smooth function by choosing fΘ(π) = 0. This makes θ = 0 a critical point of the density

and hence the global minimum. Since S1 is compact and fΘ(θ) is not constant, it admits

a maximum and a minimum distinct from the maximum. To ensure unimodality, we need

to find µ and σ2 such that the derivative of fΘ(θ) admits only one further zero apart from

θ = π.

Then, we start by computing the first derivative of the pdf fΘ(θ) as

d

dθ
fΘ(θ) =

√
1

2πσ2

1

(1 + cos θ)2σ2
e−

1
2σ2 ( sin θ

1+cos θ
−µ)

2

×
{
σ2 sin θ −

(
sin θ

1 + cos θ
− µ

)}
.

Therefore, we need to find conditions for which

σ2 sin θ −
(

sin θ

1 + cos θ
− µ

)
= 0

only once for θ ∈ [−π,+π).
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Note that in the simplified case, when µ = 0, we need to solve

σ2 sin θ − sin θ

1 + cos θ
= 0,

which has the solutions sin θ = 0 so that θ = 0 and θ = π (already counted) and cos θ =
1
σ2 − 1, which has solutions just when −1 ≤ 1

σ2 − 1 ≤ 1, which implies

σ2 ≥ 1

2
.

Therefore, we have the following theorem.

Theorem 4.5.17. Consider the Inverse Stereographic Normal Distribution fΘ(θ|µ, σ2)

with parameters µ = 0 and σ2 > 0. Then, fΘ(θ|µ, σ2) is unimodal if and only if σ2 < 1
2 .

The interpretation here is that when the mass of the density is too spread out on the

real line, when sent to the circle, it tends to accumulate on itself and produce more than

one peak.

The general case is much more complicated and does not have a solution that is easily

computable, because it needs the solution formula for general polynomial equations of

third order. This is what we consider next.

We need to solve the equation

σ2 sin θ −
(

sin θ

1 + cos θ
− µ

)
= 0

for µ ∈ R and σ2 > 0. We actually need to prove that it has only a single solution for

θ ∈ [−π,+π). We have already discussed the case θ = π, and so we can multiply the

equality by 1 + cos θ (which is non-zero) to get:

σ2 sin θ cos θ + σ2 sin θ − sin θ + µ(1 + cos θ) = 0.

Therefore,

cos θ(σ2 sin θ + µ) = sin θ − µ− σ2 sin θ

and hence (
1− sin2 θ

)
(σ2 sin θ + µ)2 =

(
sin θ − µ− σ2 sin θ

)2
.
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By expanding the terms, we get

σ4 sin2 θ + 2µσ2 sin θ + µ2 − σ4 sin4 θ − 2µσ2 sin3 θ − µ2 sin2 θ

= sin2 θ + µ2 + σ4 sin2 θ − 2µ sin θ − 2σ2 sin2 θ + 2µσ2 sin θ.

Upon simplifications, we get

−σ4 sin4 θ − 2µσ2 sin3 θ + sin2 θ
(
−µ2 − 1 + 2σ2

)
+ sin θ(2µ) = 0,

and so

σ4 sin4 θ + 2µσ2 sin3 θ + sin2 θ
(
µ2 + 1− 2σ2

)
− 2µ sin θ = 0

which factors to

sin θ
(
σ4 sin3 θ + 2µσ2 sin2 θ + sin θ

(
µ2 + 1− 2σ2

)
− 2µ

)
= 0.

Note that θ = 0 implies µ = 0 which we have already treated before. The case θ = π has

already been discussed too. So, we reduce our problem to solving

σ4 sin3 θ + 2µσ2 sin2 θ + sin θ
(
µ2 + 1− 2σ2

)
− 2µ = 0.

The precise three solutions of this system are not of extreme importance and the compu-

tations are in fact pretty involved. In any case, they can be computed pretty easily using

some symbolic software like Maple or Wolfram Alpha. We got, for σ2 6= 0, the following

x1 = sin θ1 = − 2µ

3σ2
− 1

81 3
√

2σ6
((−354294σ14µ− 39366σ12µ3 − 354294σ12µ)

+
√

((−354294σ14µ− 39366σ12µ3− 354294σ12µ)2 + 4(2187σ8− 4374σ10− 729σ8µ2)3))1/3)

+(
√

2(2187σ8 − 4374σ10 − 729σ8µ2))/

(81σ6(−354294σ14µ− 39366σ12µ3 − 354294σ12µ

+
√

((−354294σ14µ−39366σ12µ3−354294σ12µ)2 + 4(2187σ8−4374σ10−729σ8µ2)3))1/3),
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x2 = sin θ2 = − 2µ

3σ2
− 1

162 3
√

2σ6
(1− i

√
3)((−354294σ14µ− 39366σ12µ3 − 354294σ12µ)

+
√

((−354294σ14µ− 39366σ12µ3− 354294σ12µ)2 + 4(2187σ8− 4374σ10− 729σ8µ2)3))1/3)

−((1 + i
√

3)(2187σ8 − 4374σ10 − 729σ8µ2))/

(81 ∗ 22/3σ6(−354294σ14µ− 39366σ12µ3 − 354294σ12µ)

+
√

((−354294σ14µ− 39366σ12µ3− 354294σ12µ)2 + 4(2187σ8− 4374σ10− 729σ8µ2)3))1/3)

and

x3 = sin θ3 = − 2µ

3σ2
− 1

162 3
√

2σ6
(1 + i

√
3)((−354294σ14µ− 39366σ12µ3 − 354294σ12µ)

+
√

((−354294σ14µ− 39366σ12µ3− 354294σ12µ)2 + 4(2187σ8− 4374σ10− 729σ8µ2)3))1/3)

−((1− i
√

3)(2187σ8 − 4374σ10 − 729σ8µ2))/

81 ∗ 22/3σ6(−354294σ14µ− 39366σ12µ3 − 354294σ12µ)

+
√

((−354294σ14µ−39366σ12µ3−354294σ12µ)2 + 4(2187σ8−4374σ10−729σ8µ2)3))1/3).

What we actually want is to find conditions on µ and σ2 so that x2, x3 are really

complex conjugate. If we manage to do so, we will just have that x1 = x1(µ, σ2) is the

only possible other critical point for fΘ(θ) apart from θ = π.

244



For this, we need to examine the Discriminant of the Polynomial given by

σ4 sin3 θ + 2µσ2 sin2 θ + sin θ
(
µ2 + 1− 2σ2

)
− 2µ = 0.

We recall the following lemma.

Lemma 4.5.18. Consider the general cubic equation

ax3 + bx2 + cx+ d = 0

with a 6= 0 and a, b, c, d ∈ R. This cubic equation, with real coefficients, has at least one

real solution x1. Moreover, consider the Discriminant of the Polynomial:

ax3 + bx2 + cx+ d = 0

given by

∆ := 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2.

Then:

• If ∆ > 0, the equation has three distinct real roots;

• If ∆ = 0, the equation has multiple roots and all the roots are real;

• If ∆ < 0, the equation has one real root and two complex conjugate roots.

We want to make use of this lemma and compute the Discriminant of the Polynomial :

σ4 sin3 θ + 2µσ2 sin2 θ + sin θ
(
µ2 + 1− 2σ2

)
− 2µ = 0.

Note that this polynomial is cubic in the variable x = sin θ. In the notation of Lemma

4.5.18, we have

a = σ4, b = 2µσ2, c = µ2 + 1− 2σ2, d = −2µ.

Therefore, the discriminant ∆ = ∆(µ, σ2) in this case becomes

∆(µ, σ2) = −72µσ2(µσ4)(µ2 + 1− 2σ2) + 8µ(2µσ2)3 − 4σ4(µ2 + 1− 2σ2)3 − 108σ8µ2

= −72µ4σ8 − 72µσ4 + 144µσ6 + 64µ4σ6 − 4σ4
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×(µ6 − 6µ4σ2 + 3µ4 + 12µ2σ4 − 12µ2σ2 + 3µ2 − 8σ6 + 12σ4 − 6σ2 + 1)− 108σ8µ2.

It seems complicated to find more explicit analytic conditions for which ∆(µ, σ2) < 0, and

so we leave this criterion as is. To verify the unimodality, it is enough to plug in the values

of µ and σ2 and verify that one obtains a negative value which would ensure unimodality.

We have thus just proved the following theorem.

Theorem 4.5.19. Consider the Inverse Stereographic Normal Distribution fΘ(θ|µ, σ2)

with parameters µ 6= 0 and σ2 > 0. Then, fΘ(θ|µ, σ2) is unimodal if and only if ∆(µ, σ2) <

0, where ∆(µ, σ2) is given by

∆(µ, σ2) := −72µ4σ8 − 72µσ4 + 144µσ6 + 64µ4σ6 − 4σ4

×(µ6 − 6µ4σ2 + 3µ4 + 12µ2σ4 − 12µ2σ2 + 3µ2 − 8σ6 + 12σ4 − 6σ2 + 1)− 108σ8µ2.

Remark 4.5.20. Note that for µ = 0, the discriminant ∆(µ, σ2) = −4(−8σ6 + 12σ4 −
6σ2 + 1) is negative if and only if 0 ≤ σ2 ≤ 1

2 and so this is the case of unimodality. This

is in agreement with what we found above.

4.5.3 Inverse Stereographic Normal vs Von Mises Models

In this subsection, we compare the Inverse Stereographic Normal Distribution with the Von

Mises Distribution. A classical argument to promote the use of the Von Mises Distribution

as a natural circular counterpart of the Normal Distribution is due to the fact that, in the

case of high-concentration limit, the two distributions resemble each others

fVM (θ) ∝ eκ1 cos θ ' e−κ1θ2/2,

for 0 < θ � 1 or for κ� 1. Note that this approximation does not uniquely identify the

Von Mises Distribution, and in fact it is valid for several other distributions as well. In

particular, it is valid also for the Inverse Stereographic Standard Normal Distribution.

We note that, for most of the choices of parameters, the Bivariate von Mises and the

Inverse Stereographic Normal are not close to each other, but they are in some particular

cases. We analyse these cases and give precise asymptotic bounds.

Theorem 4.5.21. Consider the Full Bivariate Von Mises Distribution:

fVM (φ, ψ)
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∝ exp[κ1 cos(φ− µ) + κ2 cos(ψ − ν) + (cos(φ− µ), sin(φ− µ))A(cos(ψ − ν), sin(ψ − ν))T ],

defined for φ ∈ [−π,+π) and ψ ∈ [−π,+π). Here, µ ∈ [−π,+π) and ν ∈ [−π,+π)

represent the marginal mean values, κ1 and κ2 are the concentration parameters, and the

matrix A ∈Mat2×2 is related to their correlation. Further, consider the Bivariate Inverse

Stereographic Normal Distribution:

fSN (φ, ψ)

:=
1

2π|Σ|
1

1 + cosφ,

1

1 + cosψ
e
− 1

2

(
sinφ,

1+cosφ,
−µ1,

sinψ
1+cosψ

−µ2

)T
Σ−1

(
sinφ,

1+cosφ,
−µ1,

sinψ
1+cosψ

−µ2

)
,

defined for φ ∈ [−π,+π) and ψ ∈ [−π,+π). Here, µ := (µ1, µ2) ∈ R2, Σ ∈ Sym+
2×2.

Moreover, suppose µ = ν = µ1 = µ2 = 0, b = a12 = a21 = 0 and b11 = κ11 + (a11 + a22),

b22 = κ22 + (a11 + a22). Then, the following holds:

‖fISN (φ, ψ)− fVM (φ, ψ)‖ ≤ C
(
|φ|3 + |ψ|3

)
,

for (φ, ψ) ∈ Bε(0, 0) with 0 < ε� 1.

Remark 4.5.22. Note that the result can be restated as an high-concentration limit ap-

proximation result.

Remark 4.5.23. This theorem reveals that the choice of the Von Mises Distribution as

the spherical counterpart of the Normal Distribution is just one of the possible choices

and not the only choice, since there are several distributions with the same asymptotic

behaviour in the case of high-concentration limit.

Proof. Consider the Bivariate von Mises Distribution, upon expanding the trigonometric

functions and taking log of the pdf, we get:

log(fVM (φ, ψ)) ∝ κ1[cosφ cosµ1 + sinφ sinµ1] + κ2[cosψ cosµ2 + sinψ sinµ2]

+a11[cosφ cosµ1 + sinφ sinµ1][cosψ cosµ2 + sinψ sinµ2]

+a12[cosφ cosµ1 + sinφ sinµ1][sinψ cosµ2 − sinµ2 cosψ]

+a21[sinφ cosµ1 − sinµ1 cosφ][cosψ cosµ2 + sinψ sinµ2]
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+a22[sinφ cosµ1 − sinµ1 cosφ][sinψ cosµ2 − sinµ2 cosψ]

= κ1 cos(φ) + κ2 cos(ψ) + a11 cos(φ) cos(ψ) + a22 sin(φ) sin(ψ).

Now, we approximate this quantity at second order in the limit of (φ, ψ) ' (0, 0) and get

log(fVM (φ, ψ)) ∝ κ1

(
1− φ2

2

)
+ κ2

(
1− ψ2

2

)

+a11

(
1− φ2

2

)(
1− ψ2

2

)
+ a22

(
1− φ2

2

)(
1− ψ2

2

)
.

Since we are approximating at second order in (φ, ψ), we get

log(fVM (φ, ψ)) ∝ −κ1
φ2

2
− κ2

ψ2

2
− a11

φ2

2
− a11

ψ2

2
− a22

φ2

2
− a22

ψ2

2
.

We do the same for the Inverse Stereographic Bivariate Normal Distribution and obtain

−2log(fISN )

∝ b11

(
sinφ

1 + cosφ
− µ

)2

+ 2b

(
sinφ

1 + cosφ
− µ

)(
sinψ

1 + cosψ
− ν
)

+ b22

(
sinψ

1 + cosψ
− ν
)2

' b11

(
φ

2
− µ

)2

+ 2b

(
φ

2
− µ

)(
ψ

2
− ν
)

+ b22

(
ψ

2
− ν
)2

= b11

(
φ2

4
− φµ+ µ2

)
+ 2b

(
φψ

4
− ν φ

2
− ν ψ

2
+ µν

)
+ b22

(
ψ2

4
− ψν + ν2

)

= −b11
φ2

2
− b22

ψ2

2
.

Here, bij := (Σ−1)ij for i, j = 1, 2. The theorem then follows by matching the coefficients

and by the fact that our Taylor expansion stopped at second order in (φ, ψ).

Remark 4.5.24. Note that some choices are not possible; for example, the choice µ1 =

µ2 = 0 gives some constraints on the parameters µ, ν, b11, b, b22.
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4.5.4 Inverse Stereographic Moments, Inverse Stereographic

Moment Generating Function and a version of the Central Limit

Theorem

In this section, we introduce the Inverse Stereographic Moments and the Inverse Stereo-

graphic Moment Generating Function. We use them to rephrase the Central Limit Theo-

rem in the context of Tn.

4.5.4.1 The Inverse Stereographic Moments

In this subsubsection, we introduce a suitable notion of Moments and Moment Generating

Function which is in agreement with the way in which we have constructed the densities

on the Circle and Torus, namely, through the Stereographic Projection.

We start by describing how we modify the classical Circular and Spherical Moments in

order to make them natural for the Stereographic Projection. At this point, our discus-

sion sticks to S1 to simplify the explanation, but later we will define the Inverse Stere-

ographic Moments and Inverse Stereographic Generating Function for the Spherical and

the Toroidal cases as well.

Definition 4.5.25. Consider a random variable Θ defined on S1 with pdf given by fΘ(θ),

for every θ ∈ [−π,+π). Then, the Circular Moments of Θ are defined as

mn := E(zn) :=

∫
[−π,+π)

fΘ(θ)einθdθ,

where z = eiθ.

Moreover, we can define the following quantities: the Population Resultant Vector

ρ := m1; the Length R := |m1|; the Mean Angle θµ := Arg(m1); the Lengths of the Higher

Moments Rn := |mn|; the Angular Parts of the Higher Moments (nθµ) mod 2π.

Remark 4.5.26. Note that, as an easy consequence of Hölder’s Inequality with p = 1 and

q =∞, Circular Moments are well defined for any random variable Θ which takes values

on S1.

We can define Sample Moments analogously.

Definition 4.5.27. Suppose we have a set of observations θ1, . . . θn on the random variable
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Θ. Then, we can define the Sample Moments of order n as

mn :=
1

N

N∑
i=1

zni .

Moreover, we can define the following quantities: the Sample Resultant Vector ρ :=
1
N

∑N
n=1 zn; the Sample Mean Angle θ := Arg(ρ); the Length of the Sample Mean Resultant

Vector R := |ρ|.

Remark 4.5.28. A simple consequence of the previous definitions is that the Sample

Mean Resultant Vector can be represented as

ρ = Reiθ.

This is the classical way in which Moments on the Circle are defined. Roughly speak-

ing, one considers the Lebesgue Measure dθ on [−π,+π), restricts polynomials zn to the

Circle S1 and computes the Moments accordingly. This operation is legitimate and proved

to be useful to answer statistical questions.

However, this procedure has no connection with the Stereographic Projection, since the

Stereographic Projection does not send the Lebesgue Measure on [−π,+π) (and the cor-

responding the Circle) to the Lebesgue Measure on the Real Line and also does not send

polynomials defined on C ' R2 to their restriction to S1.

So, we propose to compute Moments in a way which is consistent with the Stereographic

Projection. Therefore, this way of computing Moments is particularly suitable for random

variables defined on the circle obtained by Inverse Stereographic Projection. This pro-

cedure identifies in a geometrically natural way the circular counterpart of the moments

defined in the Euclidean Space with respect to the Lebesgue Measure. A corresponding

construction would also work in higher dimensions.

Definition 4.5.29. Consider a random variable Θ defined on S1 with pdf fΘ(θ). Then,

we define the k-Inverse Stereographic Circular Moments as

mS1

k [Θ] := ES

[(
sin θ

1 + cos θ

)k]
:=

∫ +π

−π

(
sin θ

1 + cos θ

)k
fΘ(θ)dθ.
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Remark 4.5.30. Note that, by applying the Stereographic Projection, we get

mS1

k [Θ] =

∫ +∞

−∞
xkfΘ(2 arctan(x))

2dx

1 + x2
.

Therefore, if fΘ(θ) comes from an Inverse Stereographic Projection

mS1

k [Θ] =

∫ +∞

−∞
xkfX(x)dx

with X being the image of Θ under Stereographic Projection.

Remark 4.5.31. With this definition of Moments of a Random Variable, not all ran-

dom variables defined on the Circle admit finite Inverse Stereographic Moments (Hölder’s

Inequality is not conclusive in this case). For example, the Uniform Distribution on S1

(Θ ∼ Unif(0, 2π)), which corresponds to the Cauchy Distribution on the Real Line through

Inverse Stereographic Projection, does not admit any finite Inverse Stereographic Moment.

This definition can be easily extended to random variables defined on Sn and Tn. We

will just discuss the case of the torus, since it is of interest in the subsequent discussion.

Definition 4.5.32. Consider a random variable Θ = (Θ1, . . . ,Θn) defined on Tn :=

S1×· · ·×S1 with pdf given by fΘ(θ) and θ := (θ1, . . . , θn). Then, we define the (k1, . . . , kn)-

Inverse Stereographic Toroidal Moment as

mTn
(k1,...,kn)[Θ] := ETn

[(
sin θ1

1 + sin θ1

)k1

, . . . ,

(
sin θn

1 + sin θn

)kn]

:=

∫
[−π,+π)n

n∏
i=1

dθi

[(
sin θ1

1 + sin θ1

)k1

× · · · ×
(

sin θn
1 + sin θn

)kn]
fΘ(θ).

Here, k1, . . . , kn ∈ N.

Example 4.5.33. With this definition, it is easy to see that the Inverse Stereographic

Moments of a random variable distributed as MISN (µ,Σ) coincide with the standard

moments of the Multivariate Normal Distribution in Rn and so

ETn [MISN (µ,Σ)] = µ

and

V arT
n

[MISN (µ,Σ)] = Σ.
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Remark 4.5.34. An important consequence of this definition of moments is that we can

compute moments of distributions coming from Inverse Stereographic Projections analyt-

ically and by performing simple integrations on Rn. This is a big simplification also from

the point of view of the implementation, since the estimation of parameters would not

need numerical optimization algorithms, in general. Note that the simplification in the

computation is directly related to how simple the computation of the moments is in the

corresponding random variable on the Euclidean space.

Remark 4.5.35. These definitions of moments turn out to be somehow independent of

the choice of the North Pole. Think about the case n = 2. The choice of the North

Pole N is as arbitrary as the choice of the origin or the point at infinity in the real line.

A line does not know anything about the system of coordinates that we put on. In the

same way, the circle has no intrinsically well defined north pole. However, we want that

characteristic quantities like the expected value and the variance are as independent as

possible with respect to the choice of the North Pole.

If you choose a north pole N ′ 6= N , you can go from one Stereographic Projection to

another by a simple change in the angles θi 7→ θ + θ0
i for i = 1, . . . , n. This choice of N ′

gives us a new Inverse Stereographic Projection and so a new pdf fΘ(θ + θ0) 6= fΘ(θ).

The point is that, the measure also changes consistently and so also dθ
1+cos θ 7→

dθ
1+cos(θ+θ0) ,

which compensates the change in the pdf.

This procedure of choosing a geometric definition of moments leaves every characteristic

quantity to be invariant. There is still the dependence on the choice of the origin in the

Euclidean Space and so the definition is not perfectly independent of any coordinate system.

However, this sort of dependence on the coordinate system is the same as the Euclidean

one, where it is well accepted.

4.5.5 A Central Limit Theorem and the Inverse Stereographic Moment

Generating Function

In this subsection, we construct an Inverse Stereographic Moment Generating Function

that we use to prove a version of the Central Limit Theorem on the Circle.

We do not prove the most general version possible and we will stick to the one dimen-

sional case, even though the theorem works in higher dimensions as well. The result is a

consequence of the definition of Inverse Stereographic Moment Generating Function and
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of the Central Limit Theorem on the Euclidean Space.

Definition 4.5.36. Consider a random variable Θ defined on S1 with pdf fΘ(θ). Then,

we define the Inverse Stereographic Circular Moment Generating Function as

MS1
[Θ] := ES

[
et tan θ

2

]
:=

∫ +π

−π
et tan θ

2 fΘ(θ)dθ.

Remark 4.5.37. Note that, by applying the Stereographic Projection, we get

MS1

n [Θ] =

∫ +∞

−∞
etxfΘ(2 arctan(x))

2dx

1 + x2
.

Therefore, if fΘ(θ) comes from an Inverse Stereographic Projection,

MS1
[Θ] =

∫ +∞

−∞
etxfX(x)dx

with X being the image of Θ under Stereographic Projection.

This makes the above choice of moments a natural one. We can construct a Inverse

Stereographic Circular Moment Generating Function in higher dimensions as well.

We concentrate on the case of the Torus.

Definition 4.5.38. Consider a random variable Θ = (Θ1, . . . ,Θn) defined on Tn :=

S1 × · · · × S1 with pdf given by fΘ(θ) and θ := (θ1, . . . , θn). Then, we define the Inverse

Stereographic Toroidal Moment Generating Function as

MTn
Θ (t1, . . . , tn) := ETn

[
e
∑n
i=1 ti tan

θi
2

]
:=

∫
[−π,+π)n

n∏
i=1

dθie
∑n
i=1 ti tan

θi
2 fΘ(θ).

Here, t1, . . . , tn ∈ R.

We are now ready to state and prove a version of the Central Limit Theorem suitable

for Inverse Stereographic Probability Distributions.

Theorem 4.5.39. Suppose Θ1,Θ2, . . . is a sequence of iid random variables which take

values in S1 and which are inverse stereographic projected by some random variables

X1, X2, . . . on the real line. Suppose the Inverse Stereographic Circular Moment Gen-

erating Function exists in a neighbourhood of t = 0. Further, suppose that ES1
[Θi] = µ

253



and V ar[Θi] = σ2 > 0. Define

Φn := P−1

(√
n
(

1
n

∑n
i=1 P (Θi)− µ

)
σ

)
,

with P being the Stereographic Projection. Then,

Φn → ISN (0, 1) as n→ +∞,

in the sense of the Inverse Stereographic Circular Moment Generating Function and so in

distribution.

Remark 4.5.40. This is not the most general version of Central Limit Theorem that we

can prove. In particular, the condition on the existence of the stereographic mgf is not

necessary, as in the usual case. However, we stick to this formulation for the simplicity

of the argument.

Proof. First of all, notice that

MS1

Θi(t) = MP (Θi)(t),

for every i = 1, . . . , n. This implies that

ES1
[Θi] = µ, V arS

1
[Θi] = σ2.

Now, by definition of Inverse Stereographic Moment Generating Function, we obtain

MS1

Φn(t) = MS1

P−1

(√
n( 1

n
∑n
i=1

P (Θi)−µ)
σ

)(t) = M√
n( 1

n
∑n
i=1

P (Θi)−µ)
σ

.

The random variable
√
n( 1

n

∑n
i=1 P (Θi)−µ)
σ satisfies all the hypotheses of the classical Cen-

tral Limit Theorem and, in particular, independence is preserved by the Stereographic

Projection and this can be seen by the following chain of equalities:

fΘ1,Θ2(θ1, θ2) = fX1,X2

(
sin θ1

1 + cos θ1
,

sin θ2

1 + cos θ2

)
dθ1

1 + cos θ1

dθ2

1 + cos θ2

= fX1

(
sin θ1

1 + cos θ1

)
fX2

(
sin θ2

1 + cos θ2

)
dθ1

1 + cos θ1

dθ2

1 + cos θ2
= fΘ1(θ1)fΘ2(θ2).
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Therefore, √
n
(

1
n

∑n
i=1 P (Θi)− µ

)
σ

→ N (0, 1)

in distribution. This implies that

M√
n( 1

n
∑n
i=1

P (Θi)−µ)
σ

→MN (0,1) = MP−1(N (0,1))(t) = MMISN (0,1)
(t).

Therefore,

MS1

Φn(t)→MMISN (0,1)
(t) as n→ +∞,

and so

Φn → ISN (0, 1) as n→ +∞.

This concludes the proof of the theorem.

Remark 4.5.41. This version of the Central Limit Theorem is a straightforward conse-

quence of the classical Central Limit Theorem and the smoothness of the Stereographic

Projection.

4.5.6 Inference

In this subsection, we discuss some key inferential issues such as point estimation, confi-

dence intervals and hypothesis testing. We also discuss some sampling methods for inverse

stereographic probability distributions.

4.5.6.1 Parameter Estimation and Hypothesis Testing

The first statistical problem that we address is the problem of Parameter Estimation.

We need to find good Statistics or Estimators which take values in S1, Sn, Tn or any

other manifold which can be flattened out on the Euclidean Space through Stereographic

Projection.

Definition 4.5.42. Consider a statistic TX on Rp. Then, we call Inverse Stereographic

Statistic, the following real-valued or vector-valued function: TΘ := P−1 ◦ TX ◦ P , where

P is the Stereographic Projection.

Remark 4.5.43. These estimators are natural for distributions defined through Inverse

Stereographic Projection and, in general, this definition works well, whenever we transport

a random variable from one space to another through an invertible map P .

Example 4.5.44. Suppose we have a random sample Θi ∼ ISN (µ, σ2), for i = 1, . . . , n.

Consider the Stereographic Projection P . We want to define the Inverse Stereographic
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Sample Mean and then compute its distribution. The Inverse Stereographic Sample Mean

can be defined as

Θ̄S := P−1

(
n∑
i=1

P (Θi)

n

)
,

where Θi ∼ ISN (µ, σ2), for i = 1, . . . , n. By the definition of P and since Θi ∼
ISN (µ, σ2), for i = 1, . . . , n, we have P (Θi) ∼ N(µ, σ2), for i = 1, . . . , n, and so∑n

i=1
P (Θi)
n ∼ N(µ, σ2/n). Again, by the definition of P , we have Θ̄S ∼ ISN (µ, σ2/n).

Note that similar considerations can be done for the Sample Variance and other estimators,

and that P (Θ̄S) is a point estimator of µ.

Remark 4.5.45. The canonical definition of circular moments run into some problems

due to the fact that the parameters that one uses in the circular cases mimic the ones

used in the Euclidean case and do not take into consideration the different geometry of the

circle, sphere and torus, for example.

Consider the sample mean of two angles. If the angles are θ1 = −1 and θ2 = +1, one has

no problem to say that the mean is 0. Suppose, instead, the angles are −π
2 and π

2 . Then,

it is not clear if it is more reasonable to say that the mean is 0 or π.

The knowledge of the mean is much more meaningful in the Euclidean setting than in a

periodic setting, where ”−∞ and +∞ join together”. The Inverse Stereographic Moments

address this issue by breaking the symmetry of the circle and keeping −∞ and +∞ distinct.

In this way, the problem mentioned above (of a not unequivocal definition of mean) no

longer exists. This procedure also suggests that it might be more intuitive to give an

interpretation of parameters of circular/spherical/toroidal distributions after stereographic

projection of the distribution.

We can also develop Interval Estimation for random variables distributed as an Inverse

Projected Distributions. Now, we concentrate on Confidence Intervals. Confidence Inter-

vals are Interval Estimators with a measure of confidence. We call (1 − α)-Confidence

Interval a Confidence Interval with a Confidence Coefficient equal to 1 − α. We con-

struct a Confidence Interval for the Population Mean of a random variable distributed as

a Inverse Stereographic Normal.

Example 4.5.46. Suppose we have a random variable Θ ∼ ISN (µ, σ2) defined on S1

with µ unknown and σ2 known. Consider the Stereographic Projection P . We want to
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construct a (1 − α)-Confidence Interval for µ. A Confidence Interval for µ depends on

statistics of the form

[L(θ1, . . . , θn), U(θ1, . . . , θn)].

It is well known that a confidence interval for µ in the case of Normal distribution is of

the form:

C(x1, . . . , xn) :=

{
µ : x̄− zα/2

σ√
n
≤ µ ≤ x̄+ zα/2

σ√
n

}
,

where n is the sample size, x1, . . . , xn is the sample realization, x̄ is the sample mean and

zα/2 is the quantile of the Standard Normal Distribution.

Now, we construct a corresponding confidence interval on S1 at level 1− α. We have

1− α = Pr
(
c ≤ P

(
Θ̄S
)
− µ ≤ d

)
= Pr

(
c+ µ ≤ P

(
Θ̄S
)
≤ d+ µ

)
= Pr

(
c+ µ ≤ 1

n

n∑
i=1

P (Θi) ≤ d+ µ

)

= Pr

(
c

σ/
√
n
≤ Z ≤ d

σ/
√
n

)
= Φ(d

√
n/σ)− Φ(c

√
n/σ),

with Z ∼ N(0, 1). A possible choice is then c = −d = zα/2
σ√
n

. Therefore,

C(θ1, . . . , θn) :=

{
µ : P (θ̄S) + zα/2

σ√
n
≤ µ ≤ P (θ̄S)− zα/2

σ√
n

}
becomes an Inverse Stereographic Interval Estimator of µ. Since

P (C(θ1, . . . , θn)) = 1− α

for some α ∈ [0, 1], then C(θ1, . . . , θn) is a (1 − α)-Inverse Stereographic Confidence

Interval of µ.

Remark 4.5.47. Note that θ̄S ∼ ISN (0, σ2) if and only if P (θ̄S) ∼ N(0, σ2) and so the

confidence interval does not depend on P .

Remark 4.5.48. Note that there are two fundamental advantages in using this perspec-

tive: a theoretical and a practical one. From a theoretical point of view, everything is

geometrically consistent. From a practical point of view, the estimators are explicit and

their distributions can be computed as explicitly as they can be computed on the Euclidean

Space. Therefore, there is no need for numerical optimization, when there is no need in

the Euclidean counterparts.
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Now, we explain the construction of Hypothesis Tests.

Example 4.5.49. Suppose we have a random variable Θ ∼ ISN (µ, σ2) defined on S1

with µ unknown and σ2 known. Consider the Stereographic Projection P . Suppose we

want to test the following hypotheses:

H0 : µ = µ0 vs Ha : µ 6= µ0.

Consider a random sample Θ1, . . . ,Θn ∼ ISN (µ, σ2). We can use the inversion theorem

and build a Rejection Region from the Confidence Intervals described above. For a fixed

level α, the Most Powerful Unbiased Test (see [25]) has rejection region

R(θ) :=
{
θ = (θ1, . . . , θn) : |P (θ̄S)− µ| > zα/2σ/

√
n
}
.

This test has size α if P (H0 is rejected |µ = µ0) = α.

4.5.7 Sampling Methods for Inverse Stereographic Projected Distribu-

tions

The aim of the next few subsections is to show how easy it is to sample from Inverse

Stereographic Projected Distributions. The method is to sample from the corresponding

Euclidean Distributions and then inverse stereographic project the sample on the circle,

sphere or torus.

Due to the applications in molecular biology that we discuss later, we concentrate on the

case of the torus T2 := S1 × S1 and on the Inverse Stereographic Normal Distribution.

The method we use to sample from a random variable distributed as ISND is the so called

Box-Muller Transformation (see [111]).

The Box-Muller Transformation

The Box-Muller Sampling is based on representing in polar coordinates the joint distribu-

tion of two independent Standard Normal Random Variables X and Y :

X ∼ N(0, 1) Y ∼ N(0, 1).

The joint distribution fX,Y (x, y) is

fX,Y (x, y) = fX(x)fY (y) =
1√
2π
e−

x2

2
1√
2π
e−

y2

2 =
1

2π
e−

x2+y2

2 ,
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and is invariant by rotations of the (x, y)-plane. Note that x2+y2 = r2 and this suggests to

represent/transform the pdf of the Bivariate Normal Distribution in/to polar coordinates

as

fX,Y (x, y) =
1

2π
e
−r2

2 .

This implies that the joint pdf of r and θ is given by

fr,θ(r, θ) =
1

2π
e
−r2

2 r.

From this, it is clear that fr,θ(r, θ) is the product of two density functions: Exponential

Distribution of the square radius

r2 ∼ Exp
(

1

2

)
;

and the Uniform Distribution of the angle

θ ∼ Unif(0, 2π).

Recall the connection between the exponential distribution and the uniform distribution,

given by

Exp(λ) =
− log(Unif(0, 1))

λ
.

Then,

r ∼
√
−2 log(Unif(0, 1))

and this gives us a way to generate points from the Bivariate Normal Distribution by

sampling from two independent Uniform Distributions, one for the radius r and another

for the angle θ.

The algorithm goes as follows:

• Draw U1, U2 ∼ Unif(0, 1);

• Transform the variables into radius and angle by r =
√
−2 log(U1) , and θ = 2πU2;

• Transform radius and angle back to

x = r cos θ, y = r sin θ.
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The result of this procedure is the generation of two independent Normal Random Vari-

ables X and Y , based on the ability to generate U1, U2 ∼ Unif(0, 1).

Remark 4.5.50. We have assumed here, of course, that we can generate iid Uniform

Random Variables. This is not a trivial problem, but this has been discussed extensively

in the literature. For a nice review of several existing methods of generating the Uniform

Distribution on various Compact Spaces, we refer to [39], [40] and [92].

A simple MATLAB implementation of the Box-Muller algorithm is shown below:

% NORMAL SAMPLES USING BOX-MUELLER METHOD

u = rand(2,100000);

r = sqrt(-2*log(u(1,:)));

theta = 2*pi*u(2,:);

x = r.*cos(theta);

y = r.*sin(theta);

% DISPLAY BOX-MULLER SAMPLES

figure

% X SAMPLES

subplot(121);

hist(x,100);

colormap hot;axis square

title(sprintf(’Box-Muller Samples Y\n Mean = %1.2f\n Variance = %1.2f\n

Kurtosis = %1.2f’,mean(x),var(x),3-kurtosis(x)))

xlim([-6 6])

% Y SAMPLES

subplot(122);

hist(y,100);

colormap hot;axis square

title(sprintf(’Box-Muller Samples X\n Mean = %1.2f\n Variance = %1.2f\n

Kurtosis = %1.2f’,mean(y),var(y),3-kurtosis(y)))

xlim([-6 6])

At this point, one needs only to inverse stereographic project the random variables X and

Y just obtained to get the corresponding ISND on S1.
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4.5.8 Applications and Numerical Examples

In this subsection, we give some numerical examples and applications of the theory devel-

oped in the preceding sections.

4.5.8.1 Plots and Animations

In this subsubsection, we collect some plots and animations in order to visualize the

Inverse Stereographic Normal Distribution and to see how the parameters change the

location, scale and shape of the distribution.

We can see that the distribution can be unimodal and multimodal, depending on the range

of parameters that we have used. Also, we underline that the pdf in Figure 1 is unimodal

and the ”multimodal looking” behaviour is just apparent. In fact, the sides of the square

of the Ramachandran Plot (see [97]) are identified and so the four angles are actually the

same point. The graph is in agreement with Theorem 4.5.17 and Theorem 4.5.19. Note

how simpler it is to simulate ISDN with respect to simulate Von Mises distributions [14].

scale = [linspace(0,10,200)]; % surface scaling (0 to 10, 200 frames)

for ii = 1:length(scale)

x1 = linspace(-pi, pi);

x2 = linspace(-pi, pi);

[X1,X2]= meshgrid(x1,x2);

Y1 = sin (X1)./(1+cos(X1));

Y2 = sin (X2)./(1+cos(X2));

c=scale(ii);

Z1=(2*pi)^(-0.5)*exp(-0.5.*c*(Y1).^2)./(c*(1+cos(X1)));

Z2=(2*pi)^(-0.5)*exp(-0.5.*c*(Y2).^2)./(c*(1+cos(X2)));

Z=Z1.*Z2;

surf(X1,X2,Z)

pause(0.05) % control of the animation speed

end

% Stereographic NORMAL SAMPLES USING BOX-MUELLER METHOD

% DRAW SAMPLES FROM PROPOSAL DISTRIBUTION

u = rand(2,1000);

r = sqrt(-2*0.1*log(u(1,:)));

theta = 2*pi*u(2,:);
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Figure 4.1: Parameter σ = 0.1

Figure 4.2: Parameter σ = 1

x = r.*cos(theta);

y = r.*sin(theta);

theta1=2*atan(x-1);

theta2=2*atan(y-1);

figure

xlim([-pi pi])

ylim([-pi pi])
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Figure 4.3: Parameter σ = 10

scatter(theta1,theta2)

Figure 4.4: Parameter σ = 0.1, µ = 0

4.5.8.2 Comparison between the von Mises distribution and the ISND

In this subsubsection, we use Theorem 4.5.21 to show how in the case of high-concentration

limit the BVM distribution is well approximated by the Bivariate Inverse Stereographic

Normal Distribution (BISND) for a certain range of parameters.
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Figure 4.5: Parameter σ = 1, µ = 0

Figure 4.6: Parameter σ = 10, µ = 0

Consider a BVM distribution with parameters ν = µ = 0, A = Id2×2 and κ1 = κ2 =

100. Then, by using Theorem 4.5.21, we can find some parameters of the BISND that

approximate the BVM up to third order. By Theorem 4.5.21, we get: µ1 = µ2 = 0,

b11 = b22 = −101, b = −1. We can see by the following R-plot (Figure 8) how close the

two curves are: the black one is the BISND, while the red one is the BVM.

#Comparison von Mises ISND
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Figure 4.7: Parameter σ = 10, µ = 1

curve(sqrt(101)/(sqrt(2*pi)*(1+cos(x+pi/2)))

*exp(-0.5*101*(sin(x+pi)/(1+cos(x+pi)))^2),

from=-pi, to=pi, xlab="", ylab="")

par(new = TRUE)

curve((1/(2*pi*besselI(100, 0, expon.scaled = FALSE)))

*exp(100*cos(x-pi)),

from=-pi, to=pi, xlab="", ylab="", axes=FALSE, col="red")

We can fit a BISND to the data analysed in [110] in a similar way. In that section, the

authors imposed a11 = a12 = a21 = 0 and found κ̂1 = 35.41, κ̂1 = 20.17, µ = 0.073 rad,

ν = −1.560 rad and â22 = −13.70. For the corresponding parameters in the BISND, we

get µ1 = 0.05903399, µ2 = 2.123424, b11 = 34.66034, b = −7.178959, b22 = −16.525.

These numbers seem completely different from the ones obtained for the von Mises fit,

and this is not surprising, since the hypothesis of Theorem 4.5.21 are not satisfied in this

case.

4.5.8.3 Goodness of Fit Tests

In this subsubsection, we discuss the problem of Goodness of Fit. We want assess whether

the model that we have proposed is indeed a good model for the observed data. Later, we

will test if the distribution of points follows a ISND or another distribution, using these

type of tests.
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Figure 4.8: The black curve is the Bivariate Inverse Stereographic Normal. The red curve
is the Bivariate von Mises

Again, due to the duality given by the Stereographic Projection, we reduce the problem to

the Goodness of Fit Tests on the Euclidean Space. Of course, there are several methods

to test normality of a dataset or any other type of distributional form, but since we want

to provide an illustration of the potential of the method, we just stick to some of the most

common ones, like the Chi-Squared Goodness of Fit Test, the Shapiro-Wilk Test, and the

Kolmogorov-Smirnov Test.

Now, we show a couple of examples as to how the tests work in a case in which we expect

rejection and also in a case in which we expect to not reject.

Example 4.5.51. If we sample uniform distributed points on the circle, we can see that

a simple Chi-square Test and a simple Shapiro-Wilk Test ( [107], [100], [101], [102]

and [103]) reject the null hypothesis H0 of being Inverse Stereographic Normal.

> #Uniformity Test

> set.seed(100)

> theta<-c(runif(100, min = -pi, max = pi));

> x<-tan(theta/2);

> shapiro.test(x)
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Shapiro-Wilk normality test

data: x

W = 0.5798, p-value = 1.811e-15

Example 4.5.52. If we instead sample from a ISND(µ,Σ), it is enough to test for

normality on the Euclidean Space:

> set.seed(100)

> shapiro.test(rnorm(5000, mean = 0, sd = 1))

Shapiro-Wilk normality test

data: rnorm(5000, mean = 0, sd = 1)

W = 0.9996, p-value = 0.5105

4.5.8.4 An Application to Molecular Biology

In this subsubsection, we consider an application to molecular biology of the toroidal prob-

ability models and the methods developed in preceding sections.

On the torus, it is natural to use two angles as coordinates. To describe the so called

dihedral angles φ and θ (sometimes called conformational angles or torsional angles) in

the protein main chain, people use the so called Ramachandran map. The Ramachan-

dran map identifies a point in the protein main chain with a point on a flat square of the

Euclidean plane R2 with opposite sides identified. From the mathematical point of view,

the Ramachandran map represents the embedding of the Flat Torus (also called Clifford

Torus) into the Euclidean space R4. However, it turns out to be a very useful starting

point in the inference process.

We consider the data set in [32]. This data set is taken from the open access Confor-

mational Angles DataBase. It consists of 8190 Conformation Angles from 1208 PDB

structures in 25% non-redundant protein chains. See Figure 4.9 and 4.10. The experiment

method taken into consideration is the NMR (Nuclear Magnetic Resonance).

#Data

require(gdata);

DihedralAnglesData = read.xls ("/Users/selvit/Documents/Distribution of
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Points on Manifolds/Comprehensive Examination

2015/DehidralAnglesData_JustAngles_CorrectDataGoodFormat.xls",

sheet = 1, header = TRUE);

DAD<-DihedralAnglesData;

head(DAD);

plot(DAD[,1],DAD[,2]);

plot(DAD[,1],DAD[,2],main="Ramachandran Plot", xlab="phi-angle(degrees)",

ylab="psi-angle(degrees)");

AngoliMedi<-c(mean(DAD[,1]), mean(DAD[,2]));

var(DAD);

smoothScatter(DAD[,1],DAD[,2],main="Ramachandran Plot-SmoothScatter",

xlab="phi-angle(degrees)", ylab="psi-angle(degrees)")

x=sin(2*pi*DAD[,1]/360)/(1+cos(2*pi*DAD[,1]/360));

y=sin(2*pi*DAD[,2]/360)/(1+cos(2*pi*DAD[,2]/360));

Projected<- matrix(c(x,y), nrow = 8190, ncol=2);

dim(Projected);

plot(Projected[,1], Projected[,2], xlim=c(-20,20), ylim=c(-20,20))

#Estimation:

mean(x)

[1] -2.092306

mean(y)

[1] 2.257566

InvProjMeanX<- 2*atan(mean(x))

InvProjMeanY<- 2*atan(mean(y))

InvProjMeanX

[1] -2.249901

InvProjMeanY

[1] 2.307633

#Test

library(mvnormtest)

require(mvnormtest)

mshapiro.test(t(Projected[1:4000,]))
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Shapiro-Wilk normality test

data: Z

W = 0.1063, p-value < 2.2e-16

#Reject the test of Normality without any doubt,

accordingly to the Shapito Test.

The Ramachandran Plot for the residue ALA is shown below in Figure 4.9 and 4.10.

The Shapiro-Wilk Normality Test rejects beyond every reasonable doubt the hypothesis

of normality on the projected data set and so we can conclude that these data are not

distributed as an ISND.

At this point, without taking advantage of the projected data set, it seems not easy to

find a reasonable model which fits the data well.

Let us see how the projected marginals behave under Stereographic Projection:

par(mfrow=c(2,2)); hist(x,breaks=10000, xlim=c(-10,10));

hist(y,breaks=10000, xlim=c(-10,10));

It seems reasonable to test if −X ∼ exp(λ) and if Y ∼ exp(µ) for some λ > 0 and µ > 0.

To do this, we perform a Kolmogorov-Smirnov Test.

Remark 4.5.53. Although this hypothesis has been formulated after looking at the data,

here we are not interested in the result of the test, but in proposing test procedures. A

similar point of view has already been taken in [84] (See Section 5.3 of that paper).

%Maybe the distribution is different. Using the Histogram,

it seems that the projected marginals look like exponentials...

ks.test(y,mean(y))

Two-sample Kolmogorov-Smirnov test

data: y and mean(y)

D = 0.8172, p-value = 0.5165

alternative hypothesis: two-sided

ks.test(-x,mean(-x))
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Figure 4.9: Ramachandran Plot of the 8190 Conformation Angles from 1208 PDB struc-
tures in 25% non-redundant protein chains

Two-sample Kolmogorov-Smirnov test

data: -x and mean(-x)

D = 0.8641, p-value = 0.4442

alternative hypothesis: two-sided

#The Projected look like exponential (the y) and reversed

exponential (the x). This may suggest a stereographic

double exponential as a good fit. Can’t reject, it seems a good fit.
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Figure 4.10: Ramachandran Plot of the 8190 Conformation Angles from 1208 PDB struc-
tures in 25% non-redundant protein chains

From the Kolmogorov-Smirnov Test, we cannot reject the Null Hypothesis of exponential-

ity, which does support the assumption of our model.

From the Ramachandran Plot, it is clear that there are two peaks and that the data are

clustered along two main major circles in the torus. Our model, even if it fits well, does

not see these differences.

Remark 4.5.54. Note that, from this example, it becomes clear how helpful it is to project

the data to the Euclidean Space, find a good model there and test for it, and then inverse
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Figure 4.11: Stereographic projection of the marginals of the distributions of the 8190
Conformation Angles

project the result to the torus.

4.6 Concluding Remarks

This chapter has dealt with some new results about distributions with symmetries. First,

we discussed a result on symmetric order statistics. We proved that the symmetry of

any of the order statistics is equivalent to the symmetry of the underlying distribution

in both the continuous and discrete case. Note that, even if our result is confined to di-
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mension one, it might be important also in the study of those depth functions which are

essentially radial. Second, we characterized elliptical distributions through group invari-

ance and give some properties. A key point here has been the bijective correspondence of

the angle/radius coordinates to the Euclidean coordinates. Third, we studied geometric

probability distributions on the torus and applied our results to a problem in molecular

biology. The new distributions introduced are generated through stereographic projection.

We gave several properties of these distributions and compared them with the Von-Mises

distribution and its multivariate extensions. The simplicity of this approach is reflected

in the simplification of the estimation procedure and numerical algorithms.
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Chapter 5

Summary and Future Directions

In this thesis, we have presented some new contributions to distribution theory both for

discrete and continuous random variables. The results were connected to their applica-

tions.

In chapter 1, we discussed a variational characterization of the Multivariate Normal distri-

bution (MVN), by means of Strichartz Estimates. With respect to the characterization of

the MVN distribution as a maximizer of the entropy functional, the characterization as a

maximizer of the Strichartz Estimates does not require the constraint of fixed variance. In

this chapter, we computed the precise optimal constant for the whole range of Strichartz

admissible exponents, discussed the connection of this problem to Restriction Theorems

in Fourier analysis and gave some statistical properties of the family of Gaussian Distri-

butions which maximize the Strichartz estimates, such as Fisher Information, Index of

Dispersion and Stochastic Ordering. We concluded this chapter presenting an optimiza-

tion algorithm to compute numerically the maximizers. This last part deserves further

development and it is object of current research. Furthermore, Strichartz estimates are

available for several dispersive PDEs and there might be characterizations of other prob-

ability distributions based on some maximization procedure related to other differential

equations. This also deserves further consideration.

Chapter 2 concerned the characterization of distributions using ideas from Optimal Trans-

portation and the Monge-Ampère equation. We gave emphasis to methods to do statistical

inference for distributions that do not possess good regularity, decay or integrability prop-

erties, like the Cauchy distribution. The main tool used here was a modified version of the

characteristic function. We related our results to some topics in Big Data analysis and in
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particular the Consensus Monte Carlo Algorithm. Further characterizations of probabil-

ity distributions might be available using these techniques and might be good to work on

them in the future.

In chapter 3, we studied the Simpson’s Paradox. The Simpson’s Paradox is the phe-

nomenon that appears in some datasets, where subgroups with a common trend (say, all

negative trend) show the reverse trend when they are aggregated (say, positive trend). We

discussed its ubiquity in science with some basic examples from arithmetic, geometry, lin-

ear algebra, statistics, game theory, gender bias in university admission and other fields.

Our main new results concerned the occurrence of the Simpson’s Paradox in Quantum

Mechanics. We proved that the Simpson’s Paradox occurs for solutions of the Quantum

Harmonic Oscillator both in the stationary case and in the non-stationary case. We proved

that the phenomenon is not isolated (stability) and that it appears (asymptotically) in

the context of the Nonlinear Schrödinger Equation as well. When considering the phys-

ical quantities involved with their proper values, from our analysis, it results that the

Simpson’s Paradox occurs when the Bohr radius is crossed and so our results might have

important physical consequences. It might be possible to detect this phenomenon experi-

mentally and so further investigation is needed. Other subjects in this area which deserve

further investigations are the probability of occurrence of the paradox and the possible

very general algebraic structure that underlines the phenomenon. Note that related prob-

lems appear in Spatial Statistics and Meta-Analysis as well.

Chapter 4 contained some new results about distributions with symmetries. First, we dis-

cussed a result on symmetric order statistics. We proved that the symmetry of any of the

order statistics is equivalent to the symmetry of the underlying distribution in both the

continuous and discrete case. Note that even if our result is essentially one dimensional, it

might be extended to the multidimensional case, since several important depth functions

are radial. Second, we characterized elliptical distributions through group invariance and

give some properties. We think that the essence of our characterization is related to the

bijective correspondence of the angle/radius coordinates to the Euclidean coordinates and

so that extensions, for example, to hyperbolic symmetries or to distributions with star-

shaped contours are possible. Third, we studied geometric probability distributions on

the torus with applications to molecular biology. We introduced a new way of produc-

ing families of distributions generated through stereographic projection and we compared

them with the Von-Mises distribution and its multivariate extensions. We added several

other properties of these distributions. The simplicity of this approach is reflected in the
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simplification of the estimation procedure. It seems reasonable to pursue further this point

of view and extend it to distributions with more complicated symmetries.
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[27] M. Christ and Q. René, Gaussians rarely extremize adjoint Fourier restriction

inequalities for paraboloids, Proc. Amer. Math. Soc., 142 (2014) no. 3 887-896.

[28] M. Christ, S. Shuanglin, Existence of extremals for a Fourier restriction inequal-

ity, Anal. PDE, 5 (2012) no. 2 261-312.

[29] M. Christ, S. Shuanglin, On the extremizers of an adjoint Fourier restriction

inequality, Adv. Math., 230 no. 3 (2012) 957-977.

[30] J. P. R. Christiansen, On some measures analogous to Haar Measure, Math.

Scand., 26 (1970), 103-106.

[31] S. Cialdi and M. G. A. Paris, The data aggregation problem in quantum hy-

pothesis testing, Eur. Phys. J. D, (2015) 69: 7 (4pp).

[32] http://cluster.physics.iisc.ernet.in/cgibin/

cadb/callapplet1.pl?identity

=25&experiment=N&mode=F&Entire

=1&Fully=0&Additional=0&Generous=0&Disallowed=0&Alpha=0&Beta

=0&Threeten=0&residue0=ALA

[33] K. Conrad, Probability Distributions and Maximum Entropy,

http://www.math.uconn.edu/ kconrad/blurbs/analysis/entropypost.pdf.

[34] S. I. R. Costa, S. A. Santos and J. E. Strapasson, Fisher information dis-

tance: a geometrical reading, Discrete Applied Mathematics, Volume 197 (2015)

59-69.

[35] S. I. R. Costa, S. A. Santos and J. E. Strapasson, Fisher Information Matrix

and Hyperbolic Geometry, Proc of IEEE ISOC ITW2005 on coding and complexity,

(2005) 34-36.

[36] H. S. M. Coxeter, Discrete groups generated by reflections, Ann. of Math., 35

(1934) 588-621.

[37] H. S. M. Coxeter, Regular Polytopes (Third Edition), Dover Publications, New

York (1973).

[38] H. A. David and H. N. Nagaraja, Order Statistics, Wiley Series in Probability

and Statistics, Wiley-Interscience [John Wiley & Sons], Hoboken, NJ (2003).

279



[39] P. Diaconis, Groups Representations in Probability and Statistics, Institute of

Mathematical Statistics Lecture Notes-Monograph Series 11, Institute of Mathe-

matical Statistics, Hayward, CA (1988).

[40] P. Diaconis, S. Holmes and M. Shahshahani, Sampling from a Manifold, In-

stitute of Statistical Science Volume 10 (2013) 102-125.

[41] D. B. Dix Mathematical Models of Protein Folding, people.math.sc.edu/dix/fold.pdf

[42] M. P. DoCarmo Differential geometry of curves and surfaces , Prentice-Hall, Inc.,

Englewood Cliffs, NJ (1976).

[43] B. Dodson, Global well-posedness and scattering for the defocusing, L2-critical,

nonlinear Schrödinger equation when d = 1, Amer. J. Math., 138 no. 2 (2016)

531-569.

[44] B. Dodson, Global well-posedness and scattering for the defocusing, L2-critical,

nonlinear Schrödinger equation when d = 2, Duke Math. J., 165 no. 18 (2016)

3435-3516.

[45] B. Dodson, Global well-posedness and scattering for the defocusing, L2-critical,

nonlinear Schrödinger equation when d ≥ 3, J. Amer. Math. Soc. 25 no. 2 (2012)

429-463.

[46] T. Duyckaerts, F. Merle, S. Roudenko, Threshold solutions for the focusing

3D cubic Schrödinger equation, Rev. Mat. Iberoam. 26 no. 1 (2010) 1-56.

[47] M. L. Eaton, Group Invariance Applications in Statistics, NSF-CBMS Regional

Conference Series in Probability and Statistics, 1, Institute of Mathematical Statis-

tics, Hayward, CA; American Statistical Association, Alexandria, VA (1989).

[48] L. Fanelli, L. Vega, N. Visciglia, Existence of maximizers for Sobolev-

Strichartz inequalities, Adv. Math., 229 no. 3 (2012) 1912-1923.

[49] L. Fanelli, L. Vega, N. Visciglia, On the existence of maximizers for a family

of restriction theorems, Bull. Lond. Math. Soc., 43 no. 4 (2011) 811-817.

[50] K. T. Fang and T. W. Anderson, Statistical Inference in Elliptically Contoured

and Related Distributions, Allerton Press, New York (1990).

[51] K. T. Fang, S. Kotz and K. W. Ng, Symmetric Multivariate and related Distri-

butions, Monographs on Statistics and Applied Probability, 36, Chapman and Hall,

Ltd., London (1990).

280



[52] A. Figalli and G. De Philippis, The Monge-Ampère equation and its link to

optimal transportation, Bull. Amer. Math. Soc., 51 no. 4 (2014) 527-580.

[53] D. Foschi, Maximizers for the Strichartz inequality, J. Eur. Math. Soc., 9 no. 4

(2007) 739-774.

[54] D. Foschi, Inhomogeneous Strichartz estimates, J. Hyperbolic Differ. Equ., 2

(2005) no. 1 1-24.

[55] M. Ghosh, G. Meeden, On the Non-Attainability of Chebyshev Bounds, Amer.

Statist. 31 (1977) 35-36.

[56] B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via

the maximum principle, Comm. Math. Phys., 68 (1979) 209-243.

[57] H. H. Goltz and M. L. Smith, Yule-Simpson’s Paradox in Research, Practical

Assessment, Research and Evaluation, 15 Number 15 (2010) 1-9.

[58] E. Gomez, M. A. Gomez-Villegas and J. M. Marin A survey on continuous

elliptical vector distributions, Rev. Mat. Complut. 16 no. 1 (2003) 345-361 .

[59] I. J. Good and Y. Mittal, ”The Amalgamation and Geometry of Two-by-Two

Contingency Tables”, The Annals of Statistics, 15 (2) (1987) 694-711.

[60] M. M. Hingorani and M. O’Donnell, Toroidal proteins: Running rings around

DNA, Current Biology, Volume 8 Issue 3 (1998) R83-R86.

[61] M. M. Hingorani and M. O’Donnell, A tale of toroids in DNA metabolism,

Nature Reviews Molecular Cell Biology, 1 (2000) 22-30.

[62] J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge University

Press, Cambridge, UK (1992).

[63] D. Hundertmark and V. Zharnitsky, On sharp Strichartz inequalities in low

dimensions, Int. Math. Res. Not. (2006) Art. ID 34080 18 pp.

[64] J. L. Jensen, On the Hyperboloid Distribution, Scandinavian Journal of Statistics,

Vol. 8 No.4 (1981) 193-206.

[65] J. Jiang and S. Shao, On characterisation of the sharp Strichartz inequality for

the Schrödinger equation, Anal. PDE, 9 no. 2 (2016) 353-361.

[66] P. E. Jupp and K. V. Mardia, Directional Statistics, John Wiley & Sons, New

York (2008).

281



[67] T. Kariya and M. Eaton, Robust Tests for Spherical Symmetry, The Annals of

Statistics, 5 (1977) 206-215.

[68] M. Keel, T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 no. 5

(1998) 955-980.

[69] J. T. Kent, K. V. Mardia and C. C. Taylor, Modelling strategies for bivariate

circular data, In: Barber, S., Baxter, P.D., Gusnanto, A., Mardia, K.V. (eds.) The

Art and Science of Statistical Bioinformatics, Leeds University Press, Leeds (2008)

70-74.

[70] S. Klainerman, Lecture Notes in Analysis (2011),

https://web.math.princeton.edu/ seri/homepage/courses/Analysis2011.pdf.

[71] S. Klainerman and M. Machedon, Remark on Strichartz-type inequalities, Int.

Math. Res. Not., 5 (1996), 201-220.

[72] S. Kotz, N. Balakrishnan and N. L. Johnson, Continuous Multivariate Dis-

tributions, Vol. 1: Models and Applications (Second Edition), Wiley Series in Prob-

ability and Statistics: Applied Probability and Statistics, Wiley-Interscience, New

York (2000).

[73] M. Kunze, On a variational problem with lack of compactness related to the

Strichartz inequality, Calc. Var. Partial Differential Equations, 19 no. 3 (2004)

307-336.

[74] M. Kunze, On the existence of a maximizer for the Strichartz inequality, Comm.

Math. Phys., 243 no. 1 (2003) 137-162.

[75] M. K. Kwong, Uniqueness of positive solutions of ∆u − u + up = 0 in Rn, Arch.

Rational Mech. Anal., 105 (1989) 243-366.

[76] E. L. Lehmann, Ordered families of distributions, The Annals of Mathematical

Statistics, 26 (1955) 399-419.
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