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Abstract

The thesis gives perspectives for the first passage time (FPT) of degradation processes

from both the parametric and nonparametric aspects. As an important reliability

index of the manufactured products, 100pth percentile of the FPT distribution is

always required to provide by the market. If the assumed underlying process is

misspecified and fails to fit the degradation data, the estimate of the reliability index

will lose efficiency. The typically used degradation processes include the Wiener

process, the gamma process, and the inverse Gaussian process because all of them

are close under convolution. This property can help us to obtain the FPT in analytic

forms. However, it is difficult to accurately fit the actual data with limited model

selections, then it is important to discuss how to achieve the flexible selections of the

underlying model.

To reduce the misspecification effects for the FPT density, the most straightforward

way is to observe the failure times directly. For a good summary and set of references,

see Prentice and Kalbfleisch (1979) and Kalbfleisch and Prentice (2002). However, to

guarantee the sample size of failure time observation is large enough to make statistical

inference, a large number of experiments are required which are too costly. That is the

reason why people choose to reduce the experimental cost by alternatively observing

the increments then the FPT density can be estimated based on the mathematical
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properties of the selected underlying process. Hence, the current methods cannot

simultaneously realize the low experimental cost and model robustness.

In this thesis, we firstly propose a novel parametric approach which can generalize

the degradation processes only if the corresponding Laplace transforms exist. Then

the Laplace transform of the FPT density function can be obtained in close-form

and the survival probability can be computed through Laplace inversion. For many

stochastic processes, their likelihood functions are intractable so the maximum likelihood

estimate (MLE) of the parameters are unavailable to obtain. We estimate the parameters

by generalized method of moments (GMM) which is a distance-based method. Specifically,

the weighted convolution of two independent gamma processes incorporated with

random effects is exemplified as the parametric underlying model, and it is motivated

by the scenario of multiple sensors used for monitoring the degradation of the same

critical component. Although the degradation processes generated from these sensors

reflect the same degradation path, the corresponding scales and noise are significantly

different. To find the unified degradation path, Hua et al. (2013) used the weight-averaged

unified approach which determined the weights by the defined leadership scores. Then

we develop the parametric model into a distribution-free model which can eliminate

the misspecification effects caused by wrong process-type assumption. The theoretical

Laplace transform of degradation process can be replaced by the empirical Laplace

transform composed by the observed increments and the 100pth percentile of the FPT

distribution can be approximated by the empirical saddlepoint method. As one of the

important applications in reliability engineering, the optimal design for degradation

test is studied under both the parametric and nonparametric scenarios. To optimize

the degradation test subject to the experimental cost not exceed the pre-specified
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budget, the design factors in the experiment such as the number of test units, the

number of measurements, the inspection frequency and the termination time are

considered.

Keywords: First Passage Time, Lévy Subordinator, Saddlepoint Approximations,

Laplace Inversion, Random Effects, Generalized Methods of Moments, Optimal Design.
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Chapter 1

Introduction

1.1 Background

Due to fatigue, wear or damages, the performance of a system will degrade over time.

The failure happens when the accumulation of damage reaches a certain threshold

level. Because of the requirements from markets, the 100pth percentile of the FPT

distribution is provided as an important information to reflect the reliability of the

products. To model the degradation processes, there are three processes mainly used

including Wiener process, gamma process and inverse Gaussian process. Discussions

regarding Wiener process and its generalizations to approximate degradation processes

can be seen in the literatures such as Doksum and Hóyland (1992), Doksum and

Normand (1995), Whitmore (1995), Whitmore and Schenkelberg (1997), Padgett

and Tomlinson (2004) and Wang (2010). But the two-directional Wiener process

will cause difficulties on interpretation since it fails to possess the monotonicity

property which is a typical feature for any degradation process in practice. Therefore,

the monotonic processes such as gamma process and inverse Gaussian process are
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the more appropriate selections to model degradation path. Gamma process is

systematically studied in the area of reliability engineering by van Noortwijk (2009),

Tseng et al. (2009) and Pan and Balakrishnan (2011). And the literatures regarding

inverse Gaussian degradation process include Wang and Xu (2010), Ye and Chen

(2014), Ye et al. (2014) and Peng (2015).

Knowing the lifetime distribution is very helpful for controlling the failure risk of

manufacturing products but unfortunately only several type of continuous stochastic

processes have the analytic density function so that we can find the close-form FPT

density functions. For example, the FPT of Wiener process follows an inverse Gaussian

distribution. Although the FPT of any monotonic processes can be approximated by

Birnbaum-Sanders (BS) distribution for which only the first and second moments

of the marginal distribution are required. there is always a significant bias for this

method especially when the threshold is relatively small.

If the degradation process is assumed to have stationary, independent and positive

increments, it can be identified as a monotonic Lévy process. The process itself

and its FPT can also be called as Lévy subordinator and Inverse subordinator,

respectively. In this regard, Yang and Klutke (2000) used Lévy process to characterize

the properties of device lifetime distribution and Shu et al. (2015) proposed the

cumulative degradation model with random jumps based on the characteristics of

Lévy subordinators.

How to propose an appropriate model to capture the information from the actual

dataset as much as possible is always a important issue. However, since there are

only three types of stochastic processes potentially used in the current study, it is

possible that none of them can fit the degradation data well. Once an incorrect model
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is selected, the misspecification will be the major concern in degradation processes

which may inevitably undermine the estimation accuracy for the survival probability

and make the model inefficient. However, expanding the selection of degradation

process cannot completely solve the misspecification problem which is one of the

intrinsic flaws for the parametric models. Therefore, the nonparametric approaches

can be more effective since it can eliminate the effects of misspecification caused by

incorrect process-type assumption.

Assume the underlying process to be a Lévy process, the information is fully

contained by its corresponding Laplace exponent. We can achieve the flexible selection

of the underlying processes by using different Laplace exponent. But to fit a certain

sample set, rather than characterizing the underlying process by the parametric

exponent, it can be constructed as an empirical Lévy process in which the parametric

Laplace exponent is replaced by the empirical Laplace exponent.

1.2 Models of Degradation Data and First Passage

Time

In this section, we will briefly introduce the traditional parametric models used in

analysing the degradation data.

1.2.1 General Degradation Path Model

Meeker and Escobar (1998) introduced the general degradation process by

X(t) = g(t, A),
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where A = (A1, · · · , An) is a random vector with positive components following

distribution FA and g is an increasing function and differentiable in t. For example,

Levuliene (2002) suggested the tire wear data can be modelled by the linear degradation

path model defined as

Z(t) =
t

A
,

where A is a positive random variable.

Durham and Padgett (1997) proposed the cumulative damage approach to model

the degradation data. The cumulative damage Xn+1 after n + 1 time intervals is

related to the cumulative damage at the previous time Xn. The relation can be

concluded as

Xn+1 = Xn +Dnh(Xn),

where Dn denotes the damage incurred at the (n + 1)st increment and h(·) is the

damage model function loaded on the damage Dn. The newly increased damage

Dnh(Xn) is related to the damage accumulation at the previous time.

Park and Padgett (2005) generalized the cumulative damage model as

c(Xn+1) = c(Xn) +Dnh(Xn), (1.1)

where c(·) is the damage accumulation function. Transfer this discrete process to a

continuous process represented by

dc(Xu) = h(Xu)dDu, (1.2)

4
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then the corresponding stochastic integral is given as

∫ t

0

1

h(Xu)
dc(Xu) =

∫ t

0

dDu = Dt −D0.

For example, suppose Du is a Wiener process and h(u) = 1, c(u) = u, then the

degradation process Xt is a Wiener process. The most commonly used degradation

models include Wiener process, geometric Brownian motion, gamma process and

inverse Gaussian process which can be represented by this general degradation process

if the appropriate forms are selected.

1.2.2 Wiener Process with Drift

As mentioned before, if h(u) = 1 and c(u) = u, the discrete process (1.1) from 0 to t

can be written as

Xt −X0 = Dt,

where Dt is the Wiener process with drift α > 0 and volatility σ > 0 following

N(αt, σ2t).

It can be also written in the form of the stochastic differential equation (SDE)

dXt = αdt+ σdWt,

where Wt is the Wiener process without drift.

5
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If the initial point of the process is X0 = x0, then the pdf of Xt is given by

f(x) =
1√

2πσ2t
e−

(x−x0−αt)
2

2σ2t .

It is well known that the FPT τC of Wiener process with a fixed threshold C

defined as

τC = inf(t : Xt > C), C ≥ 0,

follows an inverse Gaussian distribution with the pdf

g(τC) =

√
λ√

2πτ 3
C

exp

(
−λ(τC − µ)2

2µ2τC

)
,

where µ = C−x0
α

and λ = (C−x0)2

σ2 .

Then the probability of Xt not passing the threshold C up to t can be obtain by

integrating the pdf of inverse Gaussian distribution as

P (τC > t) = Φ

(
C − x0 − αt

σ
√
t

)
− Φ

(
−C + x0 − αt

σ
√
t

)
· exp

(
2α(C − x0)

σ2

)
.

1.2.3 Geometric Brownian Motion

The geometric Brownian motion is another good choice as a degradation process. If

the dynamic of Xt is said to follow the geometric Brownian motion, its dynamic is

given as an Itô type SDE

dXt = αXtdt+ σXtdWt.

6
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To write the SDE in the difference form as (1.1), we apply Itô lemma (see Appendix

for details) and obtain the dynamic of the logarithm of Xt

d ln(Xt) = (α− σ2

2
)dt+ σdWt,

which gives the difference form as

ln(Xt)− ln(X0) = (α− σ2

2
)t+ σWt.

Then if let c(u) = ln(u), h(u) = 1, and Dt as Wiener process with drift µ − σ2

2
,

the general degradation model can be specified as the geometric Brownian motion.

Denote τC as the FPT of the geometric Brownian motion Xt to threshold C, the

pdf of τ still follows an inverse Gaussian distribution

g(τC) =

√
λ√

2πτ 3
C

exp

(
−λ(τC − µ)2

2µ2τC

)
,

where µ = ln(C)−ln(x0)

α−σ2
2

and λ = (ln(C)−ln(x0))2

σ2 .

Hence, the probability the FPT is great than t is given by

P (τC > t) = Φ

(
ln(C)− ln(x0 − (α− σ2

2
)t)

σ
√
t

)

−Φ

(
− ln(C) + ln(x0)− (α− σ2

2
)t

σ
√
t

)
·
(
C

x0

) 2(α−σ
2

2 )

σ2

.

1.2.4 Jump Process

We can define the continuous stochastic processes as following:

7
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Definition 1.2.1 (Continuity in Time)

X is continuous at t0 implies if t → t0, Xt converges to Xt0 in probability. X is

continuous in time if this holds for all t0.

Definition 1.2.2 (Continuous in Sample Paths)

A process X is continuous at t0 if for almost all ω, t→ t0 implies X(t, ω)→ X(t0, ω).

A process is continuous in sample paths if, for almost all ω, X(·, ω) is a continuous

function.

Different with diffusion processes like the Wiener process or the geometric Brownian

motion, a jump process is only continuous in time but discontinuous in sample paths.

The gamma process and the inverse Gaussian process are two typical jump processes

with only nonnegative increments. Consider the Xt is denoted as a jump process with

h(u) = 1 and c(u) = u in the general model. The cumulative damage at time t is

given as

Xt −X0 = Dt,

where Dt is assumed to be a gamma process or a inverse Gaussian process and initial

point X0 = x0.

The marginal distribution of the gamma process is gamma distribution. The

gamma distribution with shape parameter α > 0 and rate parameter β > 0 has pdf

f(x;α, β) =
βα

Γ(α)
xα−1 exp(−βx), x > 0,

where Γ(·) is the gamma function.

Another definition of the gamma process is proposed by Berman (1981) who

8
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considered that an event occurs at time zero and only every kth event can be observed

for a Poisson process with intensity rate λ(t). This process is called non-homogeneous

gamma process with rate function λ(t) and shape parameter k. As a special case when

k = 1, the process becomes a non-homogeneous Poisson process.

The gamma distribution also holds the additivity property. IfXi has aGamma(αi, β)

distribution for i = 1, . . . , n such that all of the variables are independent and share

the same rate parameter β, then their summation is given as

n∑
i=1

Xi ∼ Gamma

(
n∑
i=1

αi, β

)
.

With the additivity property, the gamma process can be constructed as a stochastic

process {Xt, t ≥ 0} if

1. The increment Xt+s − Xs follows a gamma distribution Gamma(αt, β) with

shape parameter α and rate parameter β. The initial state X0 = 0 with

probability one.

2. If two time intervals [t1, t2] and [t3, t4]are disjoint, the increments Xt2−Xt1 and

Xt4 −Xt3 are independent.

3. The gamma process is continuous in probability.

At any time point t, the position Xt has the distribution Gamma(αt, β).

The marginal distribution of an inverse Gaussian process follows the inverse Gaussian

distribution with mean µ > 0 and the shape parameter λ > 0. Its pdf is given by

f(x;µ, λ) =

(
λ

2πx3

) 1
2

exp

(
−λ(x− µ)2

2µ2x

)
, x > 0.

9
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The inverse Gaussian distribution also holds the additivity property. If Xi has an

inverse Gaussian distribution IG(µωi, λω
2
i ) for i = 1, . . . , n and all Xi are independent

then

n∑
i=1

Xi ∼ IG

µ n∑
i=1

ωi, λ

(
n∑
i=1

ωi

)2
 .

For ωi = 1, each Xi ∼ IG(µ, λ), then

n∑
i=1

Xi ∼ IG(nµ, n2λ).

Wasan (1968) defined inverse Gaussian process as a stochastic process {Xt, t ≥ 0}

with properties including

1. The increment Xt+s − Xs follows an inverse Gaussian distribution IG(µt, λt2)

with mean µ and shape parameter λ. The initial state X0 = 0 with probability

one.

2. If two time intervals [t1, t2] and [t3, t4]are disjoint, the increments Xt2−Xt1 and

Xt4 −Xt3 are independent.

3. The inverse Gaussian process is continuous in probability.

At any time point t, the position Xt has the distribution IG(µt, λt2).

For the connection between the gamma process and inverse Gaussian process,

Dufresne et al. (1991) showed the gamma process is the limit of a compound Poisson

process with jump size conforming to a certain distribution and Ye and Chen (2014)

showed that the inverse Gaussian process is also a limiting compound Poisson process

with different jump size distribution.

10
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The FPT densities of the gamma procecss and the inverse Gaussian process can

be computed by the numerical Laplace inversion or approximated by the saddlepoint

method. Park and Padgett (2005) also suggested to approximate the pdf by BS

distribution if only the number of increments to threshold is very large. More details

regarding the FPT of these two models will be further discussed in later chapters.

1.3 Laplace Transform

It is difficult to study the statistical properties of a stochastic process since it is

common that the pdf for the sum of its increments is not available in close form.

However, once the Laplace transform of the marginal distribution exists in the analytic

form, we can always characterize the distribution of any point along the degradation

paths by its Laplace transform.

Definition 1.3.1

The Laplace transform of f(t), t ≥ 0 denoted by L{f(t)} is a statistical transform

which transfers the variable from t to s. The Laplace transform can be written in a

new function with variable s

F (s) = L{f(t)} =

∫ ∞
0

e−stf(t)dt.

As f(t) is the function of time continuous on [0,∞), the Laplace transform to the

frequency domain is one-to-one. The Laplace transform F (s) can uniquely determine

the function f(t).

11
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For example, let f(t) = t, then

F (s) =

∫ ∞
0

e−stf(t)dt =

∫ ∞
0

e−sttdt =
1

s2
, s > 0.

The propositions of the Laplace transform will be discussed in Chapter 2.

1.4 Motivating Dataset

The light output for a laser device decreases due to degradation while it increases

the operating current to maintain the constant level of light output. However, once

the operating current is so high that reaches the failure threshold, the device will be

considered to have failed. Some devices may fail suddenly with the possible reasons

such as a hidden sudden change in the physical state of the device, manufacturing

defects, the change of failure mode caused by high temperature and unexpected shocks

happen to the device.

Suppose an experiment is conducted that a sample of lasers devices are tested at

the temperature of 80◦C and percentages increase in operating current are recorded.

The data of this experiment is collected from Meeker and Escobar (1998) which

contains 15 laser units, with measure frequency every 250 hours, and the experiment

got terminated at 4000 hours. The dataset will be used throughout the thesis.

Figure 1.1 shows the plots of the 15 degradation paths. It can be seen that all the

degradation processes can pass the dashed line which is the threshold assumed as 6.

But if the threshold value becomes larger, the failure time of some units may not be

observed up to the termination time 4000.

Even if all of the failure times of the units are observed, the sample size 15 is

12
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Figure 1.1: Degradation paths for laser data

still too small to make any inference for the density function or other properties of

failure times. Conducting more times for the experiment will increase the economic

burden so it is unreasonable to collect large number of failure time observations and

then make inference. Compared with experimental cost, the measurement cost for the

degradation paths are much cheaper then finding the statistical properties of failure

time based on measured increments should be very beneficial to practice.

Therefore, rather than observing actual failure times, our idea is to alternatively

observe the increments of single or a small number of test units. And all of the

statistical inference towards the FPT will be based on the increments dataset and the

threshold value.
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1.5 Scope of the Thesis

The thesis evaluates the FPT distribution of the degradation processes through

both parametric and nonparametric perspectives. In the parametric perspective,

the study of more complicated processes can be realized in addition to the traditional

degradation processes discussed by literatures in the past decades. Using the proposed

methods, the close form of Laplace transform of the FPT density function can be

derived and its inverse Laplace transform can be either obtained by numerical method

or approximated by the saddlepoint method. Specifically, the weighted convolution of

two independent gamma processes incorporated with random effects is exemplified as

a ‘complicated process’ in Chapter 2. Since its likelihood function is intractable,

the parameters can be alternatively estimated by GMM. For the nonparametric

approach proposed in Chapter 3, we can make inferences to the FPT distribution

without observing any failure time nor giving any process-type assumption, and the

approximated FPT distribution only relies on the empirical Laplace transform of

the underlying process. As an important application of the nonparametric method in

reliability engineering, the optimal design for degradation test is discussed in Chapter

4. To optimize the degradation test, the design factors related to the experiment

such as the number of test units, the number of measurements and the length of

time interval are considered. Under the constraint that the experimental cost cannot

exceed the pre-specified budget, the optimal design are determined by minimizing the

bootstrap estimate of variance for the 100pth percentile of the FPT distribution.

14



Chapter 2

Parametric Evaluation of the First

Passage Time of Degradation

Processes

2.1 Introduction

This chapter discusses the parametric way to evaluate the first passage time (FPT)

of the degradation process. As a generalization of the regular degradation process,

the underlying process investigated in our study is assumed as weighted convolution

of multiple degradation processes incorporated with random effects.

Consider a monotonic degradation process with stationary and independent increments,

it is appropriate to assume it as an one-sided Lévy process and characterize it with

Laplace exponent. Such a Lévy process can also be called as Lévy subordinator and

its FPT is called as Inverse subordinator. In this regard, Yang and Klutke (2000)

used Lévy process to characterize the properties of device lifetime distribution and
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Shu et al. (2015) proposed the cumulative degradation model with random jumps

based on the characteristics of Lévy subordinators.

By using Lévy subordinator, Eliazar and Klafter (2004) derived an analytic expression

for the FPT density through the double Laplace transform and the nth moment

through the single Laplace transform. There are many methods to numerically obtain

the FPT density by Laplace inversion as discussed by Veillette and Taqqu (2010) and

Todorov and Tauchen (2012). The saddlepoint approximation is proposed by Daniels

(1954) which can be used as an alternate for numerical inversion of the Laplace

transform.

The weighted-convolution model is motivated by the scenario of multiple sensors

utilized on monitoring a crucial component. Since the degradation information provided

by a single sensor may be incomplete and unreliable, the multi-sensor monitoring

can obtain more accurate reliability estimates. Although the degradation processes

derived from these sensors reflect the same degradation path but their scales and

noise are significantly different. To find the unified degradation path, Hua et al.

(2013) used the weight-averaged unified approach which determined the weights by

the defined leadership scores. Specifically, the degradation process generated from

each sensor is modelled by gamma process which is widely used for the degradation

path modelling in past studies such as Park and Padgett (2005), Tseng et al. (2009),

Pan and Balakrishnan (2011).

Moreover, Chen and Ye (2016) mentioned that since the failure data in same

database are often collected from many different data sources, it is necessary to

investigate the heterogeneities by introducing random effects to model the variability.

The random effects can be reflected by replacing the parameters of the underlying
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process with the certain distributed variables. Lawless and Crowder (2004) and

Tsai et al. (2012) incorporated random effects on gamma process, and Peng (2015)

discussed the random effects when the underlying process is inverse Gaussian process.

Although the parameter estimation of degradation processes are commonly based

on MLE, it is hard to find close-form likelihood function for many degradation

processes without the important feature as gamma process or inverse Gaussian process

that is closed under convolution. The likelihood function of the weighted convolution

of gamma processes with random effects is intractable but its Laplace transform has

the closed-form expression. Therefore, the parameters can be efficiently estimated

by minimizing the distance between the parametric Laplace transform and empirical

Laplace transform. This estimation approach can be realized through GMM. GMM

was proposed by Hansen (1982) and the estimation methods of the empirical probability

transforms were discussed by Carrasco and Florens (2000), Singleton (2001) and Yu

(2004). A stochastic GMM was also proposed by Yin et al. (2011).

We define the model of weighted convolution gamma process with random effects

in Section 2.2. And in Section 2.3 the Laplace transform of its FPT is derived in the

analytic expression and two methods are discussed to invert the Laplace transform in

Section 2.3. In Section 2.4, the the distance-based parameter estimation method is

used due to intractable likelihood function. As an important indicator of reliability

information, the estimated 100pth percentiles based on numerical Laplace inversion

and saddlepoint approximation are compared with the simulated percentiles in Section

2.5. A practical dataset is analyzed in Section 2.6.
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2.2 Underlying Process

In this section, the definition of Lévy process and infinite divisible law are presented.

Then we investigate the weighted convolution of gamma processes with random effects

and derive its Laplace transform.

2.2.1 Lévy Process

The Lévy process is continuous in probability, has independent and identically distributed

increments. The Poisson process and the Wiener process are fundamental examples

of Lévy processes which are also the components of general Lévy processes as every

Lévy process can be decomposed into a a deterministic drift, a Wiener process and a

compound Poisson process. The strict definition of Lévy process is given as follow.

Definition 2.2.1 (Lévy Process)

A stochastic process Xt, t ≥ 0 with initial value X0 = 0 is called a Lévy process if it

possesses the following properties:

1. Independent increments: for every increasing sequence of times t0, . . . , tn, the

random variables Xt0, Xt1 −Xt0, . . . , Xtn −Xtn−1 are independent.

2. Stationary increments: the law of Xt+h −Xt does not depend on t.

3. Stochastic continuity: ∀ε > 0,

lim
h→0

P (|Xt+h −Xt| ≥ ε) = 0

.
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If a Lévy process is sampled at a regular time intervals 0, ∆, 2∆, . . . , we can

write Sn(∆) = Xn∆ =
∑n−1

k=0 Yk where Yk = X(k+1)∆−Xk∆ are i.i.d. random variables

with the same distribution as X∆. Then the model Sn(∆) can be specified by the

sampling the Lévy process X at different frequencies. When n∆ = t, for any t > 0

and n ≥ 1, Xt = Sn(∆) can be represented as a sum of n i.i.d. random variables with

the same distribution as Xt/n. Then we can say Xt can be divided into n i.i.d. parts.

The definition of infinitely divisible law is given by

Definition 2.2.2 (Infinite Divisibility)

A probability distribution F is said to be infinitely divisible if for any integer n ≥ 2,

there exists n i.i.d. random variables Y1, . . . , Yn such that Y1+· · ·+Yn has distribution

F .

For example, if X ∼ N(µ, σ2) then we can write X =
∑n−1

k=0 Yk where Yk are i.i.d.

with N(µ/n, σ2/n). Other common examples of infinitely divisible laws also include

the gamma distribution, α-stable distribution and the Poisson distribution. On the

other hand, given an infinitely divisible distribution F , with its n i.i.d. components,

we can construct stochastic processes on a time grid with step size 1/n such that the

distribution of X1 is given by F . Then we have the proposition given in Tankov and

Cont (2004).

Proposition 2.2.1 (Infinite Divisibility and Lévy Processes)

Let Xt, t ≥ 0 be a Lévy process. Then for every t, Xt has an infinitely divisible

distribution. Conversely, if F is an infinitely divisible distribution then there exists a

Lévy process Xt such that the distribution of X1 is given by F .

The Lévy process can be established by the Lévy-Khintchine formula (Bertoin
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(1996))

φ (ω) = µω +
1

2
σ2ω2 +

∫ ∞
0

(
1− e−ωx

)
Π (dx) ,

where µ is known as drift coefficient, σ is the volatility of the Brownian motion

component, and Π is the measure satisfying
∫∞

0
(1 ∧ x) Π (dx) <∞.

If a Lévy process is a pure jump process without drift or Brownian motion parts,

and each jump has only positive direction, it can be called as subordinator.

Let {Zt, t ≥ 0} be a Lévy subordinator starting from 0. It is characterized by its

Laplace transform

L (Zt) = E
[
e−ωZt

]
= e−tφ(ω), ω ≥ 0, (2.1)

where the notation L{·} represents the Laplace transform. The function φ is called the

Laplace exponent and is expressed by the Lévy-Khintchine formula for the one-sided

Lévy process as

φ (ω) = µω +

∫ ∞
0

(
1− e−ωx

)
Π (dx) .

where the Brownian motion part is removed.

For t > s, by writing Zt+s = Zs + (Zt+s − Zs) and using the fact that Zt+s − Zs

is independent of Zs, the Laplace transform is multiplicative.

Proposition 2.2.2

L(Zt+s) = L(Zt+s − Zs) · L(Zs) = L(Zt) · L(Zs).

To model the degradation process, we only take the jump part of Lévy process

which has independent and non-negative increments. Considering gamma jump
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process Zt, t ≥ 0 where Zt represents the degradation path for a testing unit at

time t, then we have following properties

1. Z0 = 0 with probability one;

2. Zt − Zs ∼ Gamma (ν(t)− ν(s), β) for all t > s ≥ 0 where the shape parameter

ν(t) is a non-decreasing, right-continuous, real-valued function for t ≥ 0 with

ν(0) = 0 and β > 0 is scale parameter;

3. Zt has independent increments.

To incorporate random effects to the model, the scale parameter β is assumed to

follow a gamma distribution with parameters µ and λ and its pdf is given by

f(β) =
λµ

γ(µ)
βµ−1e−λβ.

2.2.2 Weighted Convolution of Gamma Processes

If Z
(1)
t and Z

(2)
t are two independent Lévy processes, the weighted convolution can be

written as

Zt = (1− ρ)Z
(1)
t + ρZ

(2)
t , (2.2)

where ρ is the weight on Z
(2)
t . It can be seen that Zt is also a Lévy process with

corresponding Laplace transform as

L (Zt) = E
[
e−ωZt

]
= E

[
e−ω(1−ρ)Z

(1)
t

]
· E
[
e−ωρZ

(2)
t

]
= e−t(φ

(1)((1−ρ)ω)+φ(2)(ρω)), ω ≥ 0,
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where φ(1)(·) and φ(2)(·) are Laplace exponents of Z
(1)
t and Z

(2)
t respectively. Then the

Laplace exponent of the degradation process Zt is φ(ω) = φ(1) ((1− ρ)ω) + φ(2) (ρω).

Specifically, Z
(1)
t and Z

(2)
t are assumed to be two independent gamma processes

with random effects. The shape parameter function ν(t) is considered as a linear

function ν(t) = αt. For a given time t, each process conditioned on βi, i = 1, 2 follow

gamma distributions as

Z
(i)
t ∼ Gamma(αit, βi), i = 1, 2

with shape parameters αit and scale parameters βi, i = 1, 2. Moreover, the scale

parameters can be further assumed to follows gamma distribution as

βi ∼ Gamma(µi, λi), i = 1, 2.

(2.3)
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Then the Laplace transform of Zt can be written as

E
(
e−ωZt

)
= E

(
E
(
e−ωZt |β1, β2

))
= E

(
E
(
e−ω(1−ρ)Z

(1)
t |β1

)
· E
(
e−ωρZ

(2)
t |β2

))
=

∫ ∞
0

E
(
e−ω(1−ρ)Z

(1)
t |β1

)
f(β1)dβ1 ·

∫ ∞
0

E
(
e−ωρZ

(2)
t |β2

)
f(β2)dβ2

=

∫ ∞
0

(
1 +

ω(1− ρ)

β1

)−α1t λµ11

Γ(µ1)
βµ1−1

1 e−λ1β1dβ1

·
∫ ∞

0

(
1 +

ωρ

β2

)−α2t λµ22

Γ(µ2)
βµ2−1

2 e−λ2β2dβ2

=
Γ(µ1 + α1t)

Γ(µ1)
(ωλ1(1− ρ))µ1 U(µ1 + α1t, µ1 + 1, λ1ω(1− ρ))

·Γ(µ2 + α2t)

Γ(µ2)
(ωλ2ρ)µ2 U(µ2 + α2t, µ2 + 1, λ2ωρ),

where the confluent hypergeometric Kummer U function is defined as

U(a, b, z) =
1

Γ(a)

∫ ∞
0

e−ztta−1(1 + t)b−a−1dt.

We list some basic properties of confluent hypergeometric functions according to

Slater (1960). There are two types of confluent hypergeometric functions, namely

M(a, b, z) =
∞∑
n=0

(a)n
(b)n

· z
n

n!
,

where (a)n = Γ(a+n)
Γ(a)

= a(a+ 1) . . . (a+ n− 1), (a)0 = 1, and

U(a, b, z) =
π

sin πb

{
M(a, b, z)

Γ(1 + a− b)Γ(b)
− z1−bM(1 + a− b, 2− b, z)

Γ(a)Γ(2− b)

}
.

The function U(a, b, z) is analytic for all values of a, b and z, even when b is zero
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or a negative integer. It can be represented as

U(a, b, z) =
1

Γ(a)

∫ ∞
0

e−ztta−1(1 + t)b−a−1dt,

for those values of a, b and z for which the integral exists.

The nth derivative of U(a, b, z) is given as

dn

dzn
U(a, b, z) = (−1)n(a)nU(a+ n, b+ n, z).

The asymptotic behaviours for U(a, b, z) as z → 0 include

U(a, b, z) ∼ Γ(1− b)
Γ(1 + a− b)

if b < 1,

∼ − 1

Γ(a)
(log(z) + φ(a)− 2γ) if b = 1,

∼ Γ(b− 1)

Γ(a)
z1−b if b > 1,

where φ(a) = Γ′(a)
Γ(a)

and γ is Euler-Mascheroni constant defined as

γ = lim
n→∞

(
− log(n) +

n∑
k=1

1

k

)
=

∫ ∞
1

(
1

bxc
− 1

x

)
dx.

Here, bxc represents the floor function.
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2.3 First Passage Time

The FPT of {Zt, t ≥ 0} with threshold x is another process {τx, x ≥ 0} which is also

called as inverse subordinator. Its definition is given by

τx = inf(t : Zt > x), x ≥ 0;

evidently the probability of first passage time no earlier than t is simply

P (τx > t) = P (Zt < x). (2.4)

The probability P(τx > t) is called as the survival probability which represents the

probability of an unit survives longer than t. The Laplace transform of the survival

probability is given by the following proposition.

Proposition 2.3.1

The Laplace transform of survival probability P(τx > t), with respect to x, is given by

L{P (τx > t)} =
exp{−φ(ω)t}

ω
, (2.5)

Proof. If f is a smooth and bounded function and X is a non-negative random

variable, then

E [f(X)] = f(0) +

∫ ∞
0

f ′(x)P (X > x)dx.

Apply this property to Laplace transform of Zt, it yields

E [exp{−ωZt}] = 1−
∫ ∞

0

ω exp{−ωx}P (Zt > x) dx.
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Using (2.1) and (2.4) gives

exp{−φ(ω)t} = ω

∫ ∞
0

exp{−ωx}P (τx > t) dx,

and so

∫ ∞
0

exp{−ωx}P (τx > t) dx =
exp{−φ(ω)t}

ω
.

2.3.1 Inverse Laplace Transform

Let L−1{·} denote the operator of Inverse Laplace transform. Then the survival

probability P (τx > t) can be obtained by inverting the Laplace transform as

P (τx > t) = L−1{exp(−φ(ω)t)

ω
}(x). (2.6)

The Inverse Laplace transform is defined as

f(t) = L−1{F (s)} =
1

2πi

∫ γ+i∞

γ−i∞
estF (s)ds,

where the value γ is chosen such that the integration is done along the vertical line

Re(s) = γ and F (s) is analytic in the region Re(s) ≥ γ.

For many degradation processes, the close-form representations of (2.6) are unavailable

due to the difficulties in the evaluation of the complex integrals but there are many

numerical methods to approximate the inverse Laplace transform. In R and Matlab,

the ‘INVLAP’ function was created to realize such computation based on the algorithm
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proposed by Valsa and Brancik (1998). Once a underlying degradation process is

specified, the numerical method can help us to find the true value of the survival

probability.

To realize the computation, Valsa and Brancik (1998) approximate the exponential

function by est ≈ Ec(st, a) = ea

2cosh(a−st) = est

1+e−2ae2st
. When a > γt, est

1+e−2ae2st
can be

expanded into MacLaurin series est +
∑∞

n=1(−1)ne−2nae(2n+1)st such that

f(t) ≈ fc(t, a) = f(t) +
∞∑
n=1

(−1)ne−2na)f [(2n+ 1)t].

where the error, which is the sum term, can be controlled by choose the parameter a.

Expand Ec(st, a) with respect to st by applying 1
cosh(z)

= 2π
∑∞

n=0
(−1)n(n+1/2)

(n+1/2)2π2+z2
we

have Ec(st, a) = πea
∑∞

n=0
(−1)n(n+1/2)

(n+1/2)2π2+(a−st)2 , therefore

fc(t, a) =
ea

2i

∫ γ+i∞

γ−i∞
F (s)πea

∞∑
n=0

(−1)n(n+ 1/2)

(n+ 1/2)2π2 + (a− st)2
ds.

By interchanging the integration and summation, and then integrating along the

path of a semicircle with the infinite radius, we can obtain

fc(t, a) = −e
a

t

∞∑
n=0

(−1)nIm

{
F

[
a

t
+ i(n+

1

2
)
π

t

]}
or

fc(t, a) =
ea

t

∞∑
n=0

(−1)nIm

{
F

[
a

t
+ i(n− 1

2
)
π

t

]}
.
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2.3.2 Saddlepoint Approximation

Alternatively, rather than numerically computing the Laplace inversion, the saddlepoint

approximation, which was initially introduced by Daniels (1954), can be used to

approximate the inverse Laplace transform. This method provides a highly accurate

approximation formula for any pdf or probability mass function of a distribution,

based on the moment generating function (MGF) or other statistical transforms.

Given a close-form MGF M(s), the saddlepoint approximation f̂(t) for the density

is given by

f̂(t) =
1√

2πK ′′(ŝ)
exp[K(ŝ)− ŝt], (2.7)

where K(s) = log[M(s)] is the cumulant generating function (CGF) and ŝ is the

solution to the saddlepoint equation K ′(ŝ) = t. The proof can be seen in Appendix.

Apply the equation (2.7), the Laplace Inversion of survival probability can be

approximated by

P̂ (τx > t) =
1√

−2πψ′′(ω̂)
exp{−ψ(ω̂) + ω̂x}, (2.8)

where ψ(ω̂) = − log
(∫∞
−∞ exp{−ω̂x}P (τx > t)dx

)
is the Laplace exponent of the

survival probability and ω̂ satisfies ψ′(ω̂) = x.

Since the Laplace transform of survival probability is already known from Proposition

2.3.1, the Laplace exponent of survival probability ψ(ω) can be represented by the

Laplace exponent of increment φ(ω) as

ψ(ω) = − log

(
e−φ(ω)t

ω

)
= φ(ω)t+ log(ω). (2.9)
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Its first- and second-order derivatives are given by

ψ′(ω̂) = φ′(ω̂)t+
1

ω̂
,

ψ′′(ω̂) = φ′′(ω̂)t− 1

ω̂2
,

and the estimate of ω̂ satisfies the equation

φ′(ω̂)t+
1

ω̂
= x.

By Equation (2.2) and Equation (2.3), the Laplace transform of the survival

probability P (τx > t) is obtained as

L{P (τx > t)} =
E
(
e−ωZt

)
ω

=
Γ(µ1 + α1t)

Γ(µ1)
(λ1(1− ρ))µ1 U(µ1 + α1t, µ1 + 1, λ1ω(1− ρ))

·Γ(µ2 + α2t)

Γ(µ2)
(λ2ρ)µ2 U(µ2 + α2t, µ2 + 1, λ2ωρ)

·ωµ1+µ2−1.

The Laplace transform can be inverted by numerical Laplace inversion or using

the saddlepoint approximation. To find the saddlepoint approximation, the first and
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second-order derivatives of

ψ(ω) = − log (L{P (τx > t)})

= − log

(
Γ(µ1 + α1t)

Γ(µ1)
(λ1(1− ρ))µ1 U(µ1 + α1t, µ1 + 1, λ1ω(1− ρ))

)
− log

(
Γ(µ2 + α2t)

Γ(µ2)
(λ2ρ)µ2 U(µ2 + α2t, µ2 + 1, λ2ωρ)

)
−(µ1 + µ2 − 1) log(ω)

need to be calculated.

Since U(a, b, z) has derivative

d

dz
U(a, b, z) = −aU(a+ 1, b+ 1, z),

the first and second-order derivatives of ψ(ω) are given by

ψ′(ω) = −µ1 + µ2 − 1

ω
+ (1− ρ)λ1(µ1 + α1t) ·

U(µ1 + α1t+ 1, µ1 + 2, ω(1− ρ)λ1)

U(µ1 + α1t, µ1 + 1, ω(1− ρ)λ1)

+ρλ2(µ2 + α2t) ·
U(µ2 + α2t+ 1, µ2 + 2, ωρλ2)

U(µ2 + α2t, µ2 + 1, ωρλ2)
,

ψ′′(ω) =
µ1 + µ2 − 1

ω2
+ (1− ρ)λ1(µ1 + α1t) ·

A

U2(µ1 + α1t, µ1 + 1, ω(1− ρ)λ1)

ρλ2(µ2 + α2t) ·
B

U2(µ2 + α2t, µ2 + 1, λ2ωρ)
,

30



Ph.D. Thesis - Chengwei Qin McMaster - Mathematics and Statistics

where

A = −λ1(1− ρ)(µ1 + α1t+ 1)U(µ1 + α1t+ 2, µ1 + 3, λ1ω(1− ρ))U(µ1 + α1t, µ1 + 1, λ1ω(1− ρ))

+λ1(1− ρ)(µ1 + α1t)U
2(µ1 + α1t+ 1, µ1 + 2, λ1ω(1− ρ))

B = −λ2ρ(µ2 + α2t+ 1)U(µ2 + α2t+ 2, µ2 + 3, λ2ωρ)U(µ2 + α2t, µ2 + 1, λ2ωρ)

+λ2ρ(µ2 + α2t)U
2(µ2 + α2t+ 1, µ2 + 2, λ2ωρ).

Hence, the approximated survival probability can be obtained by Equation (2.8).

2.4 Parameter Estimation

Although the MLE approach is commonly used to estimate parameters, it is difficult

to conduct under some certain circumstances. For example, there is no analytic-form

density function for the convolution of two weighted beta prime distribution (gamma

distribution with random effects), then its likelihood function does not have a tractable

expression. But since there is a one-to-one relationship between the Laplace transform

and the pdf of a random variable, an estimation method based on the distance between

the parametric Laplace transform and the empirical Laplace transform is potentially

an efficient way to estimate parameters. Feuerverger and McDunnough (1981a)

showed that such approach can be realized by matching empirical characteristic

function φn with parametric characteristic function φθ with a dynamic weight function

and the parameters should satisfy the following equation

∫
ωθ(t) (φn(t)− φθ(t)) dt = 0,
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where the weighted function relies on the true parameters θ. Similarly, other empirical

transforms including the empirical Laplace transform or empirical moment generating

functions applied in estimation methods are also discussed by Braun et al. (2008).

2.4.1 Generalized Method of Moments

The GMM is proposed by Hansen (1982). Given the independent and identically

distributed observations X1, . . . , Xn, there exists a function f such that m(θ) =

E (f(Xi; θ)) = 0, i = 1, 2, . . . , n where m is norm function. By the strong law of

large numbers, the average m̂(θ) = 1
n

∑n
i f(Xi; θ) converges to m(θ) almost surely.

The GMM method is looking for θ̂ such that m̂(θ̂) is close to zero. The distance

is defined as m̂(θ)TWm̂(θ) where W is a positive definite matrix. Schmidt (1982)

considered the case W = Σ−1 where Σ is asymptotic variance of m̂(θ). The GMM

estimator θ̂ is obtained by minimizing the distance function m̂(θ)TΣ−1m̂(θ).

If Lθ(ω) = E
(
e−ωY1

)
and Ln(ω) = 1

n

∑n
i=1 e

−ωYi are respectively the theoretical

Laplace transform and the empirical Laplace transform where Yi = Zti − Zti−1
is

increment between ti−1 and ti (t0, . . . , tn are equally spaced), the distance between

the transforms converges by Gilvenko-Cantelli theorem

sup
ω
|Lθ(ω)− Ln(ω)| → 0, as n→∞.

Selecting a set of discrete grids of ω = (ω1, ω2, . . . , ωq) and letting Kθ be a

vector (Lθ(ω1), . . . , Lθ(ωq))
T and Kn be the vector of empirical Laplace transforms

as (Ln(ω1), . . . , Ln(ωq))
T , then the GMM estimator θ̂ is defined as

θ̂ = argminθ (Kn(ω)−Kθ(ω))T Σ−1 (Kn(ω)−Kθ(ω)) , (2.10)
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where the asymptotic covariance matrix Σ has the elements

Cov (Lθ(u)− Ln(u), Lθ(v)− Ln(v)) = Cov (Ln(u), Ln(v))

= Cov

(∑n
i=1 e

−uYi

n
,

∑n
i=1 e

−vYi

n

)
=

1

n2

(
E

(
n∑
i=1

e−(u+v)Yi

)
+
∑
i 6=j

E
(
e−uYi−vYj

))
− E

(∑n
i=1 e

−uYi

n

)
· E
(∑n

i=1 e
−vYi

n

)
=
nL(u+ v) + n(n− 1)L(u)L(v)

n2
− L(u)L(v) =

1

n
(L(u+ v)− L(u)L(v)) . (2.11)

The first problem of the grids selection is to determine the value of q. If the

dimension of the parameter space Θ is p, then the number of grids q should be

selected no smaller than p (Yao and Morgan (1999)). The second problem is the

values of ω1, . . . , ωq when q is determined. Schmidt (1982) suggested the grids should

minimize the determinant of the asymptotic covariance matrix and they are close

to each other. Feuerverger and McDunnough (1981b) showed that the asymptotic

variance can be made arbitrarily close to the Cramer-Rao bound by selecting large

value of q and making the grids sufficiently fine and extended. They also suggested

the grids should be chosen with equal spacing, ωk = ω0 + kτ , and the estimation

will be efficient when k → ∞ and τ → 0. However, when the grids are too fine,

the covariance matrix becomes singular and the GMM estimator is unavailable to be

computed. (Carrasco and Florens (2002)).

2.4.2 Estimation Algorithm and Procedures

It is difficult to simultaneously optimize the selection of grids and find the optimal

parameters by (2.10). Before the proper grids are chosen to minimize |Σ|, the
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parameter values need be known. Meanwhile, before θ is estimated, the selected

grids should be used. To conduct these estimation procedures, it is necessary to

separate the optimization into several stages.

First, rather than taking ω as a set of discrete points to determine the weight

matrix, ω can be taken as a continuous variable. Considering the weight function as

1, the parameters are estimated by minimizing the integral of (Lθ(ω)− Ln(ω))2 with

respect to ω.

Second, with parameter estimations obtained from the first step, the grids are

optimally designed to minimize the determinant of asymptotic covariance matrix |Σ|.

To reduce the computational burden, the number of grids q is set to be equal to the

number of parameters p. To make them equally spaced as ωk = ω0 + kτ , k = 1, . . . p,

only the values of ω0 and τ are searched.

Third, once the grids are determined, the GMM estimator can be obtained through

(2.10). For all the optimization algorithms in this article, we applied Differential

Evolution. Differential Evolution is an efficient global optimization algorithm proposed

by Storn and Price (1997). It iteratively tries to improve the candidate solution with

the certain fitness criterion.

Therefore, the three-step parameter estimations algorithm is given as following:

1 Find θ̂0 such that θ̂0 = argminθ
∫∞

0
(Lθ(ω)− Ln(ω))2 dω;

2 Minimize |Σ| by selecting the equally spaced ωk = ω0 + kτ , k = 1, . . . p;

3 Use the selected grids to find GMM estimator θ̂ according to (2.10).

In the Section 2.6, the practical data is given by a multi-dimensional data set

rather than a single-dimensional vector and the variations between test units are
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considered. Then the details regarding how to determine Lθ(ω) and Ln(ω) will be

discussed later.

2.5 Simulation Studies

The random effects on 100pth percentile of the FPT distribution are investigated when

the underlying process is a the weighted convolution of gamma process incorporated

with random effects under two different sets of pre-assumed parameters. The percentile

of the FPT distribution can be obtained through approaches proposed in the previous

sections and the results from both of the saddlepoint approximation and the numerical

inverse Laplace transform are showed.

As the model previously assumed, the gamma convolution process can be written

as

Zt = (1− ρ)Z
(1)
t + ρZ

(2)
t ,

where Z
(1)
t and Z

(2)
t are independent with respective weights 1− ρ and ρ.

As the gamma distribution is not closed under convolution when the rate parameters

are different distributed random variables, the density function of any point along the

degradation path is unavailable in analytic form.

Assume the Z
(1)
t and Z

(2)
t are two independent gamma processes with randomized

scale parameters and Zt is defined as the model in section 2.2 with two parameter

sets (ρ, α1, µ1, λ1, α2, µ2, λ2) = (0.8, 10, 2, 1, 5, 3, 1) and (0.3, 8, 3, 1, 6, 2, 1).

In the Table 2.1 and Table 2.2, the raw simulation of the 100pth percentile of the

first passage time is taken as benchmark. Each simulated tp is the 100pth percentile
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from 10,000 simulated first passage times and the mean and standard deviation of tp

are obtained after 1000 times of simulation. The percentiles of 90th, 50th, 10th obtained

by both numerical inverse Laplace transform and the saddlepoint approximation are

presented under different threshold values of 5, 10 and 15. It can been seen that

percentiles obtained by numerical inverse Laplace transform and the saddlepoint

approximation are very close in values. All of the results obtained by numerical

Laplace inversion fall inside the 95% confidence intervals of simulated percentiles and

all of the results obtained by saddlepoint approximation fall inside the 95% condidence

interval under 90th and 50th percentiles. For 10th percentile, the saddlepoint approximations

are slightly away from the 95% confidence interval. The confidence interval is constructed

using the means and standard deviations given in the Table 2.1 and Table 2.2 as

‘mean±1.96*standard deviation’.

Table 2.1: The 100pth percentile of the first passage time obtained by numerical
inverse Laplace transform, the saddlepoint approximation, mean and standard
deviation of percentile from raw simulation (from top to bottom) with the underlying
process as gamma convolution process parametrized as (ρ, α1, µ1, λ1, α2, µ2, λ2) =
(0.8, 10, 2, 1, 5, 3, 1) when threshold is assumed as 5, 10, 15 and p is assumed as 0.9,
0.5, 0.1.

5 10 15

0.9
3.1594 6.1639 9.1664
3.1577 6.1602 9.1608

3.1538(0.0227) 6.1597(0.0450) 9.1624(0.0659)

0.5
1.6669 3.3033 4.9397
1.6651 3.2987 4.9326

1.6629(0.0123) 3.3006(0.0229) 4.9380(0.0335)

0.1
0.6871 1.4166 2.1481
0.7478 1.5313 2.3175

0.6995(0.0093) 1.4251(0.0195) 2.1515(0.0299)

In Figure 2.1, the 100pth percentile tp is obtained by the numerical Laplace
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Table 2.2: The 100pth percentile of the first passage time obtained by numerical
inverse Laplace transform, the saddlepoint approximation, mean and standard
deviation of percentile from raw simulation (from top to bottom) with the underlying
process as gamma convolution process parametrized as (ρ, α1, µ1, λ1, α2, µ2, λ2) =
(0.3, 8, 3, 1, 6, 2, 1) when threshold is assumed as 5, 10, 15 and p is assumed as 0.9,
0.5, 0.1.

5 10 15

0.9
2.6919 5.2461 7.7988
2.6904 5.2430 7.7941

2.6811(0.0204) 5.2393(0.0369) 7.7956(0.0565)

0.5
1.4264 2.8235 4.2205
1.4247 2.8194 4.2141

1.4220(0.0097) 2.8225(0.0206) 4.2189(0.0282)

0.1
0.5950 1.2280 1.8626
0.6451 1.3215 2.0001

0.6097(0.0079) 1.2346(0.0165) 1.8656(0.0240)

inversion. The counterpart by the saddlepoint approximation is not provided since

their results are very close for higher percentile and the numerical Laplace inversion

performs better for lower percentile. When p gets larger, tp is increasing with a

trend. The difference in tp is also shown between the degradation models with

various parameter values of µ1 and µ2 reflecting the variation of the convolution

gamma process Zt when the scale parameters follow the gamma distribution with

different shape parameters. The other parameters of the underlying process in the

subplot (a) and subplot (b) are fixed as (ρ, α1, λ1, α2, λ2) = (0.8, 10, 1, 5, 1) and

(ρ, α1, λ1, α2, λ2) = (0.3, 8, 1, 6, 1), respectively.

2.6 Illustrative Data Analysis

In this section, we will analyze the reliability of the laser devices using the dataset

introduced in Chapter 1. The underlying model is the convolution of multiple weighted
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Figure 2.1: Plots of tp for different shape parameters of β1 and β2 while other
parameters are fixed as (ρ, α1, λ1, α2, λ2) = (0.8, 10, 1, 5, 1) for subplot (a) and
(ρ, α1, λ1, α2, λ2) = (0.3, 8, 1, 6, 1) for subplot (b)

degradation processes can be explained as the laser device is monitored by two sensors

in practice. The degradation paths derived from the sensors are different and assumed

as two independent gamma processes. As the difference of experimental environments

and data sources, the variations among the testing units are necessary to be considered

and reflected by the randomization of scale parameters of the gamma processes of the

two sensors. To unify the two degradation processes, the weight on each sensor is

also required to be estimated.

As previously mentioned in Section 2, the Laplace transform of the marginal

distribution of Zt can be calculated as

Lθ(ω) = E
(
e−ωZ1

)
= E

(
E
(
e−ωZ1|β1, β2

))
=

Γ(µ1 + α1)

Γ(µ1)
(ωλ1(1− ρ))µ1 U(µ1 + α1, µ1 + 1, λ1ω(1− ρ))

·Γ(µ2 + α2)

Γ(µ2)
(ωλ2ρ)µ2 U(µ2 + α2, µ2 + 1, λ2ωρ).
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For the n×m data set with n test units and m measurements for each unit, the

empirical Laplace transform of jth column (each unit) can be written as L
(j)
m (ω) =∑m

i=1 e
−ωYij

m
where Yij is the increment from time i − 1 to i for jth unit. Since the

degradation process for each unit follows gamma process conditioned on certain scale

parameters, then L
(j)
m (ω) =

∑m
i=1 e

−ωYij

m
for the test units j = 1, . . . , n are corresponded

to the parametric Laplace transforms E
(
e−ωZ1|β1, β2

)
with different parameters.

Since Lθ(ω) = E
(
E
(
e−ωZ1|β1, β2

))
, its counterpart empirical Laplace transform

is obtained by the average of the empirical Laplace transform of each test unit

Lmn(ω) =

∑n
j=1 L

(j)
m

n
=

∑n
j=1

∑m
i=1 e

−ωYij

nm
.

Using the proposed three-step estimation algorithm proposed in section 3.2.2, the

parameters are finally estimated as

(ρ̂, α̂1, µ̂1, λ̂1, α̂2, µ̂2, λ̂2) = (0.8422, 8.5142, 23.4739, 3.8668, 3.0867, 18.9608, 1.9226),

and the grids selected in step 2 are ωi = 0.0464 + 0.2513i where i = 1, . . . , 7. Then

estimated percentile t̂p can be obtained by plugging these parameter estimations to

(2.6).

Besides Laplace inversion and saddlepoint approximation, the 100pth percentiles of

the FPT obtained from the original data set are given in Table 2.3. When the values

of threshold are taken as 2, 4, 6, the FPT for all of the 15 test units can be obtained

by linear interpolation if the intercept of the degradation paths and thresholds are

between two actual observations. In other words, if the two known points are given by

the coordinates (x0, y0) and (x1, y1), the linear interpolant is the straight line between
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the two points. For a value x in the interval (x0, x1), the value y along the straight

line is given from the equation of slopes

y − y0

x− x0

=
y1 − y0

x1 − x0

,

and solve the equation for y in terms of x, gives

y =
y0(x1 − x) + y1(x− x0)

x1 − x0

,

which is the linear interpolation in the interval (x0, x1).

From Table 2.3, the 100pth percentiles tp are given when p = 0.9, 0.5, 0.1 under the

thresholds 2, 4, 6. tp obtained by numerical Laplace inversion, saddlepoint approximation

and linear interpolation from measured degradation paths are very close. This illustrates

that the proposed method performs well for the given dataset. To more accurately

evaluate the performance of the approaches applied to the data set, a larger sample

of experimental units are required.

2.7 Concluding Remarks

The parametric approach proposed in this chapter implements the scenario when

there are multiple sensors to monitor the same component. It gives more freedom on

the assumption of underlying processes which are mostly limited to gamma process or

inverse Gaussian process in most studies. The Laplace inversion methods discussed

in this chapter can help us to find the FPT even for the complicated degradation

processes. Moreover, the parameters estimation method based on GMM can solve
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Table 2.3: The 100pth percentile of the first passage time for the laser
data obtained by numerical inverse Laplace transform, the saddlepoint
approximation and the 100pth percentile revealed from the actual observations
(from top to bottom) when the underlying process is assumed as gamma
convolution process with estimated parameters (ρ, α1, µ1, λ1, α2, µ2, λ2) =
(0.8422, 8.5142, 23.4739, 3.8668, 3.0867, 18.9608, 1.9226), threshold is assumed as
2, 4, 6 and p is assumed as 0.9, 0.5, 0.1.

2 4 6

0.9
1338.53 2559.28 3781.05
1330.30 2556.35 3776.85
1302.73 2455.53 3769.10

0.5
992.85 2011.20 3010.68
1002.00 2175.53 2984.68
1035.71 2018.02 3157.41

0.1
720.53 1524.88 2327.73
697.00 1463.60 2237.90
741.50 1464.95 2262.18

the problem when the likelihood function is mathematically intractable and the good

performance is shown in the section of simulation and practical data analysis.

Although the gamma convolution process with random effects is taken as underlying

process, more types of degradation processes can be studied by using the same

approach such as weighted convolution of inverse Gaussian processes with random

effects.

Both of the numerical Laplace inversion and saddlepoint approximation perform

nice for median and right tail of FPT distribution and the numerical Laplace inversion

performs better than saddlepoint approximation to capture the left-tail behaviour of

FPT distribution. To improve the accuracy of the saddlepoint approximation, the

higher-order terms of the ψ(ω) should be included.

41



Chapter 3

Nonparametric Evaluation of the

First Passage Time of Degradation

Processes

3.1 Introduction

This chapter discusses the nonparametric method of approximating the FPT density

of degradation processes without observing any failure time or making any assumption

on the type of process. Davison and Hinkley (1988) developed the empirical saddlepoint

approximation by replacing the parametric Laplace exponent to the empirical Laplace

exponent. Then the empirical saddlepoint approximation can estimate the density

based on the sample set without being effected by the restraints of distributional

assumptions. The parametric FPT density can be derived if the true underlying

process is known which is taken as the standard to evaluate the performances of the

nonparametric methods.
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As a nonparametric benchmarks, BS distribution can approximate the FPT density

by knowing the moments of the marginal distribution. The two-parameter BS distribution

was originally proposed by Birnbaum and Saunders (1969a), Birnbaum and Saunders

(1969b) as a failure time distribution. Park and Padgett (2005) showed that the

failure time can be modelled by accelerated test versions of BS distribution driven by

geometric Brownian motion and gamma process.

Another benchmark is to use a certain model to fit the degradation data. The

most commonly used models are gamma process and inverse Gaussian process as we

previously discussed. Select a certain underlying process then we can hypothesize

a parametric process given the parameter θ and find the MLE θ̂ by the sample

set. This approach is better when the correct parametric model is used. However,

if the assumed model is incorrect, the nonparametric approach is superior which

improves the model performance as directly estimating the Laplace transform by the

empirical Laplace transform. Also, the nonparametric method will not be affected by

misspecification. In this chapter, we will evaluate whether the nonparametric method

can outperform the traditional parametric method of assuming the degradation process

as a certain process and the nonparametric approximation as BS approach. The

parametric method to obtain the FPT is the same as what discussed in Chapter 2.

The content of this chapter is organized as follow. We introduce the definition and

properties of the empirical Laplace transform and develop the empirical saddlepoint

approximation based on it to obtain the FPT density. Then we show that FPT

can also be approximated by BS distribution and find its flaws by evaluating its

performances by assuming the underlying process as gamma process and inverse

Gaussian process. The accuracy criterion used is relative error and with its use
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the saddlepoint approximation is compared with other two benchmarks when the

underlying process is misspecified. The estimation and the corresponding standard

error are obtained through bootstrap procedure. Some primary advantages of the

proposed method are demonstrated through a simulation study. A laser degradation

dataset is analyzed and the Kolmogorov-Smirnov goodness-of-fit test is used to test

the adequacy of the model. Bootstrap confidence intervals are also constructed for the

percentiles of the FPT distribution. Finally, some concluding comments are made.

3.2 Nonparametric Model of First Passage Time

This section describes two major nonparametric approaches to approximate the FPT

density including the empirical saddlepoint approximation and BS distribution. We

can obtain the Laplace inversion of Equation (2.6) by the empirical saddlepoint

approximation in which the parametric Laplace transform is replaced by the empirical

Laplace transform. On the other hand, BS approach only need the information of

the first and second moments to approximate the FPT of monotonic degradation

processes.

3.2.1 Empirical Laplace Transform

We will show that the empirical Laplace transform has the linearity, convergence and

convolution properties.

Corresponding to the Laplace transform (2.1), the empirical Laplace transform is
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defined as

Ln(ω) =

∫ ∞
0

e−ωxdFn(x) =
1

n

n∑
i=1

e−ωXi ,

where Fn is the empirical distribution of the sample observations X1, · · · , Xn defined

as

Fn(x) =
1

n

n∑
i=1

I(Xi ≤ x).

Suppose {Xi}1≤i≤n is a random sample from distribution F and {Yj}1≤j≤m is a

random sample from distribution G and their empirical distribution are respectively

Fn(x) =
1

n

n∑
i=1

I(Xi ≤ x), Gm(y) =
1

m

m∑
j=1

I(Yj ≤ y),

and let LFn(ω) and LGm(ω) be the corresponding empirical transforms. Then the

following lemma shows a series of propositions of the empirical transform which

provides more insights into behaviours of the empirical transforms.

Lemma 3.2.1

1. (Convolution) Suppose LFn?Gm(ω) is the empirical Laplace transform of the

convolution Fn ? Gm, then LFn?Gm = LFn(ω) · LGm(ω).

2. (Linearity) Suppose A and B are constants, then the empirical Laplace transform

of the linear combination of the two distributions A · Fn + B · Gm is given by

A · LFn +B · LGm.

3. (Convergence) LFn is an unbiased and consistent estimator of LF .
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Proof. 1. The convolution of Fn and Gm is

Fn ? Gm(z) =

∫ ∞
0

Fn(z − y)dGm(y)

=

∫ z

0

Fn(z − y)dGm(y)

=
1

nm

∫ z

0

[
n∑
i=1

I(Xi ≤ z − y)

]
m∑
j=1

I(Yj = y; 1 ≤ j ≤ m)dy

=
1

nm

n∑
i=1

m∑
j=1

∫ z

0

I(Xi ≤ z − y) · I(Yj = y; 1 ≤ j ≤ m)dy

=
1

nm

n∑
i=1

m∑
j=1

I(Xi ≤ z − Yj)

=
1

nm

n∑
i=1

m∑
j=1

I(Xi + Yj ≤ z).

Then the Laplace transform of the convolution is

LFn?Gm(ω) =

∫ ∞
0

e−ωzd[Fn ? Gm(z)]

=
1

nm

n∑
i=1

m∑
j=1

∫ ∞
0

e−ωzI(Xi + Yj = z; 1 ≤ i ≤ n, 1 ≤ j ≤ m)dz

=
1

nm

n∑
i=1

m∑
j=1

e−ω(Xi+Yj)

=

(
1

n

n∑
i=1

e−ωXi

)(
1

m

m∑
j=1

e−ωYj

)
= LFn(ω) · LGm(ω).

Hence, the Laplace transform of the convolution is the product of every single Laplace

transform.
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2. The Laplace transform of the empirical distribution function A ·Fn +B ·Gm is

LA·Fn+B·Gm(ω) =

∫ ∞
0

e−ωzd ((A · Fn +B ·Gm) (z))

= A

∫ ∞
0

e−ωzdFn(z) +B

∫ ∞
0

e−ωzdGm(z)

= A · LFn(ω) +B · LGm(ω).

Hence, the linearity holds.

3. As Xi are i.i.d. F-distributed, the expectation of LFn is

E[LFn(ω)] = E

[
1

n

n∑
i=1

e−ωXi

]

=
1

n

n∑
i=1

E[e−ωXi ]

= E[e−ωXi ]

= LF (ω).

Then, the empirical Laplace transform LFn is an unbiased estimator of LF .

By central limit theorem,

√
n

(∑n
i=1 e

−ωXi

n
− E(e−ωX)

)
d−−−→

n→∞
N(0, σ2(ω)),

where

σ2(ω) = V ar(e−ωX) = LF (2ω)− (LF (ω))2
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is a finite number. Then σ2(ω)
n

goes to zero when n→∞. Hence,

P ( lim
n→∞

sup |LFn − LF | < ε) = 1 for all ε > 0.

�

3.2.2 Empirical Saddlepoint Approximation

The parametric saddlepoint approximation requires the underlying Laplace exponent

which may not be known. If there is no assumption made about the distribution of

the increment, it is important to nonparametrically estimate the Laplace exponent

by measuring the increment multiple times to get the observations. With these

observations, substitution of the empirical Laplace exponent in place of unknown

parametric Laplace exponent can be used to develop the empirical saddlepoint approximation.

The Laplace exponent φ(ω) is replaced by the empirical Laplace exponent

φ̃(ω) = − log

(
1

n

n∑
i=1

e−ωYi

)
, (3.1)

where Y1, · · · , Yn are the increments measured with equal-length time section.

However, the empirical Laplace transform may result in ill-posed problem when

inverting this Laplace transform in numerical methods. More details regarding ill-posed

problem can be referred to Appendix. To avoid this problem, the empirical saddlepoint

approximation method is taken as an alternate to the numerical inversion of empirical

Laplace transform.
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The empirical Laplace exponent of survival probability is equal to

ψ̃(ω̂) = φ̃(ω̂)t+ log(ω̂),

and its first- and second-order derivatives are given by

ψ̃′(ω̂) = φ̃′(ω̂)t+
1

ω̂
,

ψ̃′′(ω̂) = φ̃′′(ω̂)t− 1

ω̂2
,

where the derivatives of the empirical Laplace exponent of increment are calculated

as

φ̃′(ω̂) =

∑n
i=1 Yie

−ω̂Yi∑n
i=1 e

−ω̂Yi
,

φ̃′′(ω̂) =
(
∑n

i=1 Yie
−ω̂Yi)2 − (

∑n
i=1 Y

2
i e
−ω̂Yi)(

∑n
i=1 e

−ω̂Yi)

(
∑n

i=1 e
−ω̂Yi)2

.

The estimate of ω̂ satisfies the equation

ψ̃′(ω̂) =

∑n
i=1 Yie

−ω̂Yi∑n
i=1 e

−ω̂Yi
t+

1

ω̂
= x,

so that the survival probability can be approximated as

P̃ (τx > t) =
1√

−2πψ̃′′(ω̂)
exp{−ψ̃(ω̂) + ω̂x}. (3.2)

3.2.3 The Birnbaum-Saunders Distribution Approach

Park and Padgett (2005) discussed the BS distribution as a nonparametric approach
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for the FPT distribution through the use of the Central Limit Theorem. It is

unnecessary to know the empirical Laplace exponent as the empirical saddlepoint

approximation, the BS approach only requires sample mean and variance.

Suppose the lifetime X follows a two-parameter BS distribution, BS(α, β), with

shape parameter α > 0 and scale parameter β > 0. The cumulative distribution

function (CDF) is given by

F (x;α, β) = Φ

[
1

α

(√
x

β
−
√
β

x

)]
, x > 0 (3.3)

where Φ(·) is the standard normal CDF; the PDF of x corresponding to the CDF in

(3.3) is

f(x;α, β) =
1

2
√

2παβ

[(
β

x

)1/2

+

(
β

x

)3/2
]

exp

[
− 1

2α2

(
x

β
+
β

x
− 2

)]
, x > 0.

The relationship between BS distribution and mixture inverse Gaussian distribution

is discussed by Balakrishnan et al. (2009). Consider the inverse Gaussian distribution

denoted by IG(α, β), with pdf f(x) =
(

2πα2x3

β

)−1/2

exp
(
− (x−β)2

2α2βx

)
, x, α, β > 0,

Jorgensen et al. (1991) propose the mixture of inverse Gaussian distribution with

its complementary reciprocal which is defined as

X1 ∼ IG(α, β) and X−1
2 ∼ IG(

α

β2
,

1

β
),

where X2 is called complementary reciprocal of X1 and the new distribution is given
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by

X =


X1 with probability 1− ρ

X2 with probability ρ,

X is called mixture inverse Gaussian distribution.

When ρ = 1
2
, the mixture inverse Gaussian distribution defined above can be

written in the form of BS distribution.

The approximation of FPT by BS distribution can be justified as below if the

degradation paths are assumed as discrete process. Let Nx denote the number of

increments when the process reaches the threshold x and {Zk, k ≥ 0} be the strictly

increasing process having the identical and independent non-negative increments Yi =

Zi − Zi−1, i = 1, 2, ..., with Z0 ≡ 0.

As in the case of continuous processes, the FPT and the number of increments

satisfy the relation

P(Nx > n) = P(Zn < x) = P(
n∑
i=0

Yi < x).

By Central Limit Theorem, when n is large, the probability of the FPT is given

by

P(Nx < n) = 1− P(
n∑
i=0

Yi < x) ≈ 1− Φ

(
x− E[

∑n
i=0 Yi]√

V ar(
∑n

i=0 Yi)

)

= Φ

(√
xE[Y1]

V ar(Y1)

(√
n

x/E[Y1]
−
√
x/E[Y1]

n

))
.
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Upon setting the parameters

α =

√
µ2 − µ2

1

xµ1

and β =
x

µ1

, (3.4)

where µn represents the nth moment of the increment Y1, the FPT can be taken as

BS distribution with parameters α and β with CDF as in (3.3).

With moments µ1, µ2 and threshold x, the mean and variance of the FPT Nx are

given by

E[Nx] =
x

µ1

+ (
µ2

2µ2
1

− 1

2
),

Var(Nx) = (
µ2 − µ2

1

µ3
1

)x+ (
5µ2

2

4µ4
1

− µ2

2µ2
1

+
5

4
).

Smith (1959) gave the approximated mean and variance of the renewal process

Nx as below when x is large

E[Nx] ≈
x

µ1

+
µ2

2µ2
1

,

Var(Nx) ≈ (
µ2 − µ2

1

µ3
1

)x+ (
5µ2

2

4µ4
1

− µ2

2µ2
1

− 2µ3

3µ3
1

),

where µr = E[Y r
1 ] (r = 1, 2, ...) and Y1 is a renewal.

Comparing the means and variances of the BS distribution and those of the renewal

process, it can be seen that the BS distribution tends to have smaller expectation

but larger variance than the renewal process if the moments of each increment are

finite. For both the BS distribution and the renewal process, the ratios E[Nx]/x and

V ar(Nx)/x converge to 1
µ1

and
µ2−µ21
µ31

, respectively, when x→∞.

Bertoin et al. (1999) and Lageras (2005) also discussed the relations between
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renewal process and Lévy subordinators. Each subordinator has the corresponding

inverse subordinator which represents its FPT process. From Proposition 3 of Lageras

(2005), if the mean of some specific subordinator µ1 is finite, then the expectation of

the FPT τx, E[τx] ∼ x
µ1

as x→∞.

If the degradation path is the summation of the increments, the FPT to a threshold

level x follows BS distribution when x is much greater than each increment. However,

the performance of BS approach under small threshold level deserves discussions. In

the following parts, we will look at the bias between the estimated FPT obtained

by BS approach and the true FPT based on numerical Laplace inversion. Besides

evaluating the FPT by BS approach, the results of parametric saddlepoint approximation

are also presented. The two exemplified models are gamma and inverse Gaussian

process which are often directly used to model the degradation data. The expressions

of survival probability in Laplace transform for these two processes will be obtained as

well as the corresponding estimated forms derived from the parametric saddlepoint

approximation. The parameters of BS distribution can be expressed in terms of

the parameters of the underlying degradation processes (namely, gamma and inverse

Gaussian).

Gamma Process

Gamma process is a degradation process with positive gamma-distributed increments.

The parameters of the gamma distribution are, respectively, αG as shape parameter

and βG as rate parameter.
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Suppose the marginal distribution of gamma process has PDF

f(x) =
βαGG

Γ(αG)
xαG−1e−βGx, x > 0;

its Laplace exponent is given by

φ(ω) = αG log(1 +
ω

βG
).

Then, the survival probability in the Laplace transform, with respect to x, under

the gamma process can be expressed as

L{P (τx > t)} =
exp{−αG log(1 + ω

βG
)t}

ω
,

and the corresponding Laplace exponent is

ψ(ω) = αG log(1 +
ω

βG
)t+ log(ω).

To approximate the inverse Laplace transform by the saddlepoint method, the

first- and second-order derivatives are given by

ψ′(ω) =
αGt

βG + ω
+

1

ω
,

ψ′′(ω) = − αGt

(βG + ω)2
− 1

ω2
,

and then find ω̂ through

ψ′(ω̂) =
αGt

βG + ω̂
+

1

ω̂
= x.
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Using the results above, the survival probability can be approximated by the

parametric saddlepoint approximation as shown in Equation (2.8).

Alternatively, if the FPT is approximated by the BS distribution, its parameters

α and β can be estimated from the first two moments of the marginal distribution

of the underlying degradation process. The first and second moments of gamma

distribution are given by

µ1 =
αG
βG

and µ2 =
α2
G + αG
β2
G

.

Using Equation (3.4), the parameters of the BS distribution can then be expressed,

using these two moments and threshold x, as

α̂ = (βGx)−
1
2 ,

β̂ = xα−1
G βG. (3.5)

Then, for a fixed value of x, the survival probability P̂ (τx > t) can be directly

approximated by the CDF of BS(α̂, β̂) as

P̂ (τx > t) = 1− F̂BS(t), (3.6)

where F̂BS(t) is the CDF of BS(α̂, β̂).

As an important quantity of interest, the 100pth percentile of the FPT distribution,
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tp, defined by

P (τx > tp) = 1− p, (3.7)

can be considered.

Suppose θ = t(F ) is the parameter of interest if the true underlying distribution

F is known. Then θ̂n = t(F̃ ) represents the nonparametric estimate of θ and this

estimate is also consistent. Moreover, θ̂W = t(FW ) is defined as the estimate of θ if

the underlying distribution F is incorrectly assumed as FW .

Finding an accurate estimate for the percentiles purely by raw simulation of

the empirical FPT will be very time-consuming and computationally burdensome.

However, if the marginal distribution of the underlying process is exactly known, the

expression of the Laplace transform of survival probability can be found by using

Equation (2.8). The numerical Laplace transform methods for an analytic form

have been discussed extensively in computational mathematics. The results obtained

through such numerical methods will tend to be quite accurate. For this reason, the

numerical Laplace inversion is taken as the true value of percentiles.

The visualized comparisons between different approaches under gamma process

with certain parameters are given in Figure 3.1 and Figure 3.2. In Figure 3.1, the

plots of 90th percentile, t90, are shown for different threshold values. Taken as true

values, the red plot is obtained through Laplace inversion. The black dashed plot

almost coincides with the red plot for both pairs of parameters which shows that the

saddlepoint approximation is very effective in this case. On the other hand, the BS

approach, which is in blue color and dotted type, performs worse than the saddlepoint

approximation as it is clearly away from the true value. Figure 3.2 shows the plots
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for various percentiles with threshold fixed as 10. For small p values, the saddlepoint

approximation has larger bias than the BS approach, but coincides with the red plot

when p is greater than 0.3. The bias of BS approach becomes larger when p grows.

Inverse Gaussian Process

Inverse Gaussian distribution with mean parameter µIG and shape parameter λIG has

the PDF

f(x) =

[
λIG
2πx3

]1/2

exp

{
−λIG(x− µIG)2

2xµ2
IG

}
.

Its Laplace exponent is given by

φ(ω) =
λIG
µIG

√1 +
2µ2

IGω

λIG
− 1

 .
The Laplace transform of the survival probability based on the inverse Gaussian

process is derived from (2.8) as

L{P (τx > t)} =

exp

{
−λIG
µIG

[√
1 +

2µ2IGω

λIG
− 1

]
t

}
ω

,

and the Laplace exponent of this survival probability is

ψ(ω) =
λIG
µIG

√1 +
2µ2

IGω

λIG
− 1

 t+ log(ω).
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Figure 3.1: Comparison of the 90th percentiles at certain threshold values if the
underlying process is known as gamma with parameters (5,1) and (10,1) obtained by
Laplace inversion, the saddlepoint approximation, and the BS approach

Figure 3.2: Comparison of the 100pth percentiles with threshold fixed as 10 if the
underlying process is known as gamma with parameters (5,1) and (10,1) obtained by
Laplace inversion, the saddlepoint approximation, and the BS approach
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The first- and second-order derivatives of ψ(ω) are calculated as

ψ′(ω) = µIG

(
1 +

2µ2
IGω

λIG

)− 1
2

+
1

ω
,

ψ′′(ω) = −µ
3
IG

λIG

(
1 +

2µ2
IGω

λIG

)− 3
2

− 1

ω2
,

and ω̂ satisfies the equation

µIG

(
1 +

2µ2
IGω̂

λIG

)− 1
2

+
1

ω̂
= x.

With these results, the survival probability can be approximated by the saddlepoint

method by using equation (2.8).

If the BS approach is used instead, the first two moments of the inverse Gaussian

distribution, given by

µ1 = µIG and µ2 =
µ3
IG

λIG
+ µ2

IG,

are needed.

With these two moments, the corresponding parameters of the BS distribution

are estimated as

α̂ = µIG(λIGx)−
1
2 ,

β̂ = xµ−1
IG, (3.8)
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and the survival probability under the inverse Gaussian process, P̂ (τx > t), can then

be approximated by Equation (3.6) when FBS(t) is the CDF of BS(α̂, β̂).

Figure 3.3 and Figure 3.4 show the plots when the underlying processes are selected

as inverse Gaussian processes with parameters (15, 10) or (25, 10). Figure 3.3 fixes

the percentile as 0.9, and in this case the saddlepoint approximation displays the

superiority for all the threshold values compared to the BS approach as the bias is

always much smaller. In Figure 3.4, the saddlepoint approximation is seen to be much

better than the BS approach for the two sets of parameters when p is greater than 0.3

if the threshold is fixed as 10. Although both the saddlepoint approximation and the

BS approach have larger bias than the case when the underlying process is gamma

process, the bias for the saddlepoint approximation is still considerably smaller than

the BS approach. The saddlepoint approximation coincides with the red plot when p

gets large and its bias concentrates only around small p values. On the contrary, the

plot of the BS approach completely diverges for large p and the trend is essentially

different from the plot of true values. From these results, it can be seen that the

overall bias of the saddlepoint approximation is much smaller than the BS approach.

Once the assumption of the underlying process is correct, the parametric methods

such as Laplace inversion or parametric saddlepoint approximation can undoubtedly

capture more information than BS approach which only requires the first two moments.

Then, it is understandable that the parametric method can perform better than

BS distribution. Despite this, its large bias under small threshold level still makes

people reluctant to approximate FPT density by using BS approach. Therefore,

it is important to investigate whether the empirical saddlepoint approximation can

outperform BS approach under nonparametric scenarios.
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Figure 3.3: Comparison of the 90th percentiles at certain threshold values if the
underlying process is known as inverse Gaussian with parameters (15,10) and (25, 10)
obtained by Laplace inversion, the saddlepoint approximation, and the BS approach

Figure 3.4: Comparison of the 100pth percentiles with fixed threshold as 10 if the
underlying process is known as inverse Gaussian with parameters (15,10) and (25, 10)
obtained by Laplace inversion, the saddlepoint approximation, and the BS approach
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3.3 Model Evaluation

Tsai et al. (2011) discussed the case when a set of observations following a gamma

process is incorrectly assumed as Wiener process and showed that the estimation

results in a large bias due to this misspecification. Thus, the type of underlying

process is failed to be specified but only assumed as nondecreasing Lévy process, the

problem caused by misspecification can be solved by using nonparametric approaches

as it would only rely on the sample observations.

In the areas of reliability engineering and survival analysis, only limited types

of stochastic process with good properties (gamma process and inverse Gaussian

process) have been systematically studied. Hence, even if the true underlying process

is unknown, gamma and inverse Gaussian process are still assumed for the analysis,

which may be incorrect.

Actually, to make the study of degradation processes more general, other processes

should be considered, but most of them just lose the convenient property of closure in

convolution which causes difficulty in studying the first passage time. For this reason,

a more general method is needed.

Equation (2.8) globally generalizes the study to any process and gives the true

survival probability if only the Laplace exponents exists and Equation (3.2) further

improves it by making no assumption for the certain type of Lévy subordinator.

Feuerverger (1989) proved that the empirical Laplace exponent and its derivatives

are unbiased estimates of true values and converge to them in probability.

To measure the relative error caused by misspecification, the relative error κ is
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defined as

κ =
|θ̂ − θ|
θ

.

Specifically, κ(F̃ ) and κ(FW ) represent the relative errors corresponding to the

empirical distribution F̃ and incorrectly assumed distribution FW . The nonparametric

estimate of κ(F̃ ) is calculated through the empirical saddlepoint approximations as

well as the BS approach.

3.3.1 Bootstrap Estimation

Suppose Y1, · · · , Yn are independent with a common but unknown distribution F , and

that the bootstrap method does not sample from the true distribution F but from

the empirical distribution F̃n defined as

F̃n(x) =
1

n

n∑
i=1

I(Yi ≤ x).

The empirical F̃n is a consistent estimator of the underlying distribution F . If

θ = t(F ) is the quantity of interest, then θ̂n = t(F̃n) = θ̂(Y1, · · · , Yn) is a consistent

estimator of θ. Conditioned on the observed sample and the hypothetical random

sample Y ∗1 , · · · , Y ∗n from the empirical distribution F̃ , the bootstrap estimate θ̂∗n =

θ̂(Y ∗1 , · · · , Y ∗n ) is a consistent estimator of θ̂ as well.

Usually, the sampling distribution of θ̂∗− θ̂ is not easy to find. No matter whether

the underlying distribution is known or unknown, generate a random sample from

the parametric distribution F or empirical distribution F̃ and repeat the procedure

for a large number of bootstrap runs N . The new estimates obtained in this manner
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are denoted by θ̂∗1, · · · , θ̂∗N , and then the Bootstrap estimate of standard error for θ̂

can be obtained as

s.e.(θ̂) =

√√√√ 1

N − 1

N∑
i=1

(θ̂∗i −
¯̂
θ∗)2.

3.3.2 Simulation Study

Without any assumption for the underlying process but completely following the

observations, the empirical Laplace exponent can be calculated and the survival

probability can be found through empirical saddlepoint approximations. The Bootstrap

samples are acquired by resampling from the original data set with the same size

as 1000 and then repeating the procedure 1000 times. Therefore, there are 1000

approximations of survival probability calculated from the 1000 new sample sets and

the bootstrap 100pth percentile t∗p is also obtained by the survival probability given

by Equation (3.4). The bootstrap relative error is then defined as follows:

κ∗ =
|t̂∗p − tp|
tp

, (3.9)

where t̂∗p is an estimate of the pth percentile from a bootstrap sample while tp is the

true value of the pth percentile.

If BS approach is applied to approximate the FPT density, the two parameters

are calculated from the sample as in Equation (3.4) and µ1 and µ2 − µ2
1 are replaced

by sample mean and sample variance, respectively. Thus, the right-tail cumulative

probability BS(α, β) is directly taken as the survival probability. This approach will

lose much information of the sample since only the mean and variance from the sample
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are used.

Two examples from the sample are presented. Mixed gamma process and mixed

inverse Gaussian process are taken as the true underlying processes and their survival

probabilities can be obtained by Laplace inversion. Without assuming the type of

the true process, the relative errors for the empirical saddlepoint approximation, the

BS approach as well as when the process is misspecified as a gamma process are

determined.

Mixture of two unequally weighted gamma processes

A mixed process can be written as

Zt = pZ
(1)
t + (1− p)Z(2)

t ,

where Z
(1)
t and Z

(2)
t are two independent processes with respective weights p and 1−p.

Mixed gamma process is considered as a complicated degradation model since the

gamma distribution is not closed under convolution when the rate parameters are

different and the density function of any point on the degradation path is unavailable

in analytic form.

If the two components are assumed to be Z
(1)
t ∼ Gamma(0.05t, 0.06) and Z

(2)
t ∼

Gamma(0.04t, 0.05), then {Zt}t≥0 is a mixed gamma process with marginal distribution

Z1 = 0.055×Gamma(0.05, 0.06) + 0.945×Gamma(0.04, 0.05),

when the weight on Z
(1)
t is specified as p = 0.055. Next, 1000 samples are generated

from this distribution and taken as observation data.
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In Figures 3.5 and 3.6, derived by the original data set, the plots of two nonparametric

methods, viz., empirical saddlepoint approximations and BS approach, and one parametric

method as the process is misspecified as gamma, are compared with the Laplace

inversion based on the true underlying process. Figure 3.5 shows the results of the

90th percentile with different values of threshold ranging from 0.1 to 1. In Figure 3.6,

the threshold is fixed as 1 while the percentile p ranges from 0.1 to 0.9.

The red plot represents the estimation if the true underlying process is known; the

black dashed line is the empirical saddlepoint approximation if there is no assumption

being made regarding the marginal distribution; the green dash-dotted line is the

estimation if the process is incorrectly set as gamma process; the blue dotted line is

fitted by the BS distribution. It can be seen from Figure 3.5 that empirical saddlepoint

approximations (black dashed) is always better than other approaches since the

estimate line is more close to the true value (red solid) for any value of threshold

for the 90th percentile. From Figure 3.6, the estimation by empirical saddlepoint

approximation is clearly more close to the true value than others especially for large

values of percentile. When the percentile approaches 0.9, both gamma and BS are

divergent while the empirical saddlepoint method is seen to coincide with red plot.

Tables 3.1 and 3.2 show the arithmetic mean of 1000 bootstrap relative errors κ∗

and the corresponding bootstrap estimations of standard error using two nonparametric

approaches (the empirical saddlepoint approximation and the BS approach) and

one parametric approach (assume the underlying process as gamma). These two

tables are taken as supplement for the two figures and they provide more details and

perspectives. In Table 3.1, the relative errors are investigated for the 90th percentile

for different threshold values ranging from 0.1 to 1. All the bootstrap arithmetic

66



Ph.D. Thesis - Chengwei Qin McMaster - Mathematics and Statistics

means of percentile estimation based on the empirical saddlepoint approximation are

significantly smaller than those for other methods. This phenomenon can also be seen

from Figure 3.5. Besides the bootstrap means, the bootstrap estimation of standard

error are also very small. Even if the variability of the relative errors is taken into

account, the empirical saddlepoint approximation still seems to be more stable and

reliable than other methods. Table 3.2 shows the empirical saddlepoint approximation

has a smaller relative error and relatively small variability when p is greater than 0.2.

For the cases when p is 0.1 or 0.2, direct use of parametric approach seems to be

slightly better than the empirical saddlepoint approximation.

Mixture of two equally weighted inverse Gaussian processes

In this section, we alternatively consider an equal-weighted mixed inverse Gaussian

process to see whether the empirical saddlepoint approximation can be useful in this

case as well.

With the same sample size, there are 1000 samples generated from a mixed inverse

Gaussian process {Zt}t≥0 with marginal distribution as

Z1 = 0.5× IG(2, 0.5) + 0.5× IG(5, 3).

The process includes two independent and equally weighted inverse Gaussian processes

with respective parameters (2,0.5) and (5,3).

In Figures 3.7 and 3.8, the plots of two nonparametric methods, viz., empirical

saddlepoint approximations and BS approach, and one parametric method as the

process is misspecified as gamma, are compared with the Laplace transform based

on the true underlying process as a mixed inverse Gaussian process. Figure 3.7
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Figure 3.5: Comparisons of the 90th percentiles at different threshold values obtained
by Laplace inversion, empirical saddlepoint approximation, the BS approach and the
plots of two nonparametric methods, viz., empirical saddlepoint approximations, the
BS approach, and the parametric method as the process is misspecified as gamma
process when the true underlying process is a Mixed gamma process

Table 3.1: Arithmetic means of bootstrap relative error κ∗ of 90th percentile and the
corresponding bootstrap estimation of standard error (in brackets) for different values
of threshold based on empirical saddlepoint approximations, the the BS approach, and
the parametric method as the process is misspecified as gamma process when the true
underlying process is a Mixed gamma process

Threshold Saddlepoint Gamma BS
0.1 0.0447(0.0324) 0.1755(0.0296) 2.9847(0.4696)
0.2 0.0440(0.0340) 0.2025(0.0299) 2.3104(0.3646)
0.3 0.0465(0.0348) 0.2189(0.0306) 1.9475(0.3286)
0.4 0.0498(0.0379) 0.2344(0.0310) 1.7018(0.2946)
0.5 0.0502(0.0377) 0.2421(0.0315) 1.5219(0.2757)
0.6 0.0544(0.0382) 0.2492(0.0343) 1.3817(0.2804)
0.7 0.0567(0.0388) 0.2570(0.0338) 1.2560(0.2507)
0.8 0.0567(0.0410) 0.2595(0.0345) 1.1669(0.2483)
0.9 0.0548(0.0397) 0.2641(0.0345) 1.0922(0.2347)
1.0 0.0588(0.0401) 0.2700(0.0347) 1.0151(0.2280)
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Figure 3.6: Comparisons of the 100pth percentiles with fixed threshold as 1 obtained
by Laplace inversion, empirical saddlepoint approximation, the BS approach and the
parametric method as the process is misspecified as gamma process when the true
underlying process is a Mixed gamma process

Table 3.2: Arithmetic means of bootstrap relative error κ∗ of 100pth percentile and the
corresponding bootstrap estimation of standard error (in brackets) for fixed threshold
1 and different values of p based on empirical saddlepoint approximation, the BS
approach and the parametric method as the process is misspecified as gamma process
when the true underlying process is a Mixed gamma process

p Saddlepoint Gamma BS
0.1 0.5478(0.1295) 0.3247(0.0437) 0.9574(0.0108)
0.2 0.2083(0.0963) 0.3190(0.0419) 0.9564(0.0102)
0.3 0.1065(0.0798) 0.3118(0.0414) 0.9402(0.0132)
0.4 0.0756(0.0583) 0.3055(0.0409) 0.8997(0.0192)
0.5 0.0617(0.0470) 0.3015(0.0395) 0.7999(0.0277)
0.6 0.0573(0.0436) 0.2914(0.0379) 0.5835(0.0438)
0.7 0.0596(0.0421) 0.2875(0.0383) 0.2307(0.0813)
0.8 0.0590(0.0436) 0.2786(0.0385) 0.2855(0.1405)
0.9 0.0551(0.0403) 0.2662(0.0345) 1.0393(0.2304)
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investigates the 90th percentile with the value of threshold ranging from 1 to 10 while

Figure 3.8 investigates different percentiles when p valuing from 0.1 to 0.9 while the

threshold is fixed as 10.

Figure 3.7 demonstrates that the empirical saddlepoint approximation always

performs better on estimating the 90th percentile than the other approaches when

threshold takes values from 1 to 10. From Figure 3.8, the estimation obtained by the

empirical saddlepoint approximation is seen to be the best among the three methods

when p is greater than 0.25. When p is smaller than 0.25, black dashed plot and green

dash-dotted plot are very close to each other which shows that we can get the same

relative error if the gamma process is directly used as the underlying process.

Table 3.3 gives the arithmetic means of bootstrap relative errors for the 90th

percentile for different threshold values ranging from 1 to 10. All of bootstrap means

based on empirical saddlepoint approximation are significantly smaller than other

methods and also the bootstrap estimation of standard error is always the smallest

among the three methods. The empirical saddlepoint approximation is seen to be

the most stable and reliable compared to others. Table 3.4 shows that the empirical

saddlepoint approximation has smallest relative error and its corresponding variability

is also smallest when p is greater than 0.2. When p takes the values 0.1 or 0.2, taking

the true process as gamma or using the BS approach result in slightly better results

than empirical saddlepoint approximation.

3.4 Illustrative Data Analysis

This section is still based on the laser dataset provided by Meeker and Escobar (1998).

Since the survival probability is approximated by the empirical saddlepoint method
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Figure 3.7: Comparison of the 90th percentiles at different threshold values obtained
by Laplace inversion, empirical saddlepoint approximation, the BS approach and the
parametric method as the process is misspecified as gamma when the true underlying
process is a mixed inverse Gaussian process

Table 3.3: Arithmetic means of bootstrap relative error κ∗ of 90th percentile and the
corresponding bootstrap estimation of standard error (in brackets) for different values
of threshold based on empirical saddlepoint approximation, the BS approach, and the
parametric method as the process is misspecified as gamma process when the true
underlying process is a mixed inverse Gaussian process

Threshold Saddlepoint Gamma BS
1 0.0188(0.0143) 0.0378(0.0182) 0.9397(0.1250)
2 0.0217(0.0150) 0.0313(0.0162) 0.5328(0.0801)
3 0.0217(0.0153) 0.0549(0.0170) 0.3749(0.0645)
4 0.0217(0.0157) 0.0668(0.0174) 0.2837(0.0546)
5 0.0210(0.0152) 0.0725(0.0171) 0.2326(0.0478)
6 0.0207(0.0142) 0.0752(0.0176) 0.1938(0.0422)
7 0.0199(0.0143) 0.0773(0.0177) 0.1678(0.0381)
8 0.0202(0.0151) 0.0786(0.0184) 0.1466(0.0384)
9 0.0197(0.0149) 0.0782(0.0191) 0.1300(0.0353)
10 0.0194(0.0147) 0.0782(0.0187) 0.1173(0.0336)
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Figure 3.8: Comparisons of the 100pth percentiles with fixed threshold as 1 obtained
by Laplace inversion, empirical saddlepoint approximation, the BS approach and the
parametric method as the process is misspecified as gamma when the true underlying
process is a mixed inverse Gaussian process

Table 3.4: Arithmetic means of bootstrap relative error κ∗ of 100pth percentile and the
corresponding bootstrap estimation of standard error (in brackets) for fixed threshold
10 and different values of p based on empirical saddlepoint approximation, the BS
approach and the parametric method as the process is misspecified as gamma process
when the true underlying process is a mixed inverse Gaussian process

p Saddlepoint Gamma BS
0.1 0.1391(0.0454) 0.0963(0.0519) 0.0511(0.0379)
0.2 0.0445(0.0315) 0.0332(0.0251) 0.1381(0.0455)
0.3 0.0284(0.0208) 0.0435(0.0283) 0.1633(0.0377)
0.4 0.0248(0.0189) 0.0603(0.0294) 0.1598(0.0330)
0.5 0.0216(0.0164) 0.0706(0.0263) 0.1398(0.0276)
0.6 0.0213(0.0160) 0.0795(0.0242) 0.1099(0.0256)
0.7 0.0214(0.0157) 0.0836(0.0234) 0.0650(0.0252)
0.8 0.0200(0.0152) 0.0828(0.0217) 0.0212(0.0163)
0.9 0.0209(0.0151) 0.0797(0.0193) 0.1150(0.0352)
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given in Equation (3.2), the CDF of the failure time is equivalent to subtracting the

survival probability from 1. To evaluate whether the failure times obtained from

the real data follow the approximated CDF, the nonparametric goodness-of-fit test,

namely, the Kolmogorov-Smirnov test (K-S test) is used for testing the null hypothesis

“the observations follow the approximated distribution F̂0”, and the test statistic is

D = supx |F̂0(x)−F̃ (x)|, where F̃ is the empirical distribution function of the observed

data.

Set the ordered failure times, conditioned on the threshold K, as τK(1), · · · , τK(15),

where K = 1, 2, · · · , 6. Then K-S test statistic under threshold K is defined as

DK = max
1≤i≤15

(
F̂0

(
τK(i)
)
− i− 1

15
,
i

15
− F̂0

(
τK(i)
))

,

where F̂0 is obtained by the empirical saddlepoint approximation.

Table 3.5 shows the test statistics DK , K = 1, · · · 6 as well as the critical value for

the K-S test under significance level 0.05 and sample size 15, provided by Kececioglu

(1993). The critical value 0.338 is higher than all of the K-S test statistics, and thus

the null hypothesis that the distribution of observed failure times is identical to the

distribution approximated by the saddlepoint method cannot be rejected.

However, some further evaluation need to be considered, such as the construction

of Bootstrap confidence interval for the 90th percentile.

For each test unit, there are 16 observations with the same length of time interval

and 240 increments measured for all 15 test units. Since all increments are assumed

to independently follow the same distribution, their empirical distribution can be

obtained from the observed data. Sampling the increments repeatedly from the data

with replacement can make the observation duration to be longer than the original
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termination time 4000 hours so that the failure time can be found for any threshold

value. For example, if the threshold values are taken from 1 to 10, it is still available

to find the failure time when threshold is greater or equal to 7 while this is not possible

for the original dataset.

The bootstrap resampling procedure proceeds as follows:

(i) When threshold is K, repeatedly sample increments from the original dataset

until the cumulative increment exceeds the given threshold;

(ii) Use linear interpolation to determine the failure time;

(iii) Repeat the Steps (i) and (ii) 10000 times, and get failure times τ ∗1 , · · · , τ ∗10000;

(iv) Find the pth percentile for the failure time t∗p;

(v) Repeat Steps from (i) to (iv) 1000 times, and get the bootstrap sample set for

the pth percentile t∗p,1, · · · , t∗p,1000.

With these bootstrap samples, the bootstrap arithmetic means and bootstrap

estimation of standard errors were determined and given in Table 3.6. The 95%

bootstrap confidence interval, proposed by Efron (1981), is the so-called percentile

method. Given the bootstrap CDF Ĝ and confidence level α, the bootstrap confidence

interval is obtained as θ ∈
[
Ĝ−1(α/2), Ĝ−1(1− α/2)

]
. For 95% confidence interval,

the lower bound Ĝ−1(0.025) is the 2.5th percentile of the bootstrap sample and upper

bound Ĝ−1(0.975) is the 97.5th percentile. From Table 3.7, it can be seen that

neither the misspecified gamma process nor the BS approach has any approximation

located inside the 95% bootstrap confidence interval. On the other hand, except

when threshold is 1, in all the cases the empirical saddlepoint approximation of
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90th percentile falls inside the confidence interval and are quite close to the mean

of bootstrap sample according to Table 3.6. This provides that the proposed method

performs well for this dataset and also possesses some key advantages as compared

to other approaches.

3.5 Concluding Remarks

The nonparametric method based on the empirical saddlepoint approximation gives

an effective and accurate approximation for the FPT density. Even when there is no

assumption on the exact type of degradation processes, the good approximations for

the survival probability and the 100pth percentile of lifetime can still be obtained. In

most examples of this chapter, the saddlepoint approximation performs significantly

better than other methods whether we make assumption or do not make assumption

about the underlying processes. The saddlepoint approximation often has smaller

bootstrap mean of relative error and bootstrap estimation of standard error compared

to other methods.

Of course, we can also include higher-order terms to get the second-order saddlepoint

approximation as we consider in Chapter 2, which may further improve the accuracy

of the estimation. This may be useful for the case of small p wherein we have observed

that the saddlepoint approximation possesses a large relative bias. The development

of second-order saddlepoint approximation is expected to find in the future.

When the underlying process is assumed, the true FPT density can be found

and these true values are the important benchmarks when comparing the proposed

method with other existing approaches. We need to guarantee the existence of

Laplace exponent since its close-form expression must be available in terms of Laplace

75



Ph.D. Thesis - Chengwei Qin McMaster - Mathematics and Statistics

inversion method. The existence conditions of Laplace transform will be discussed in

Appendix.
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Table 3.5: K-S test statistics for different thresholds and the critical value under
significance level of 0.05 for sample size 15

D1 D2 D3 D4 D5 D6 Critical Value
0.196 0.252 0.201 0.210 0.272 0.306 0.338
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Table 3.7: The 90th percentiles derived from the empirical saddlepoint approximation,
the parametric method as the process is misspecified as gamma process, the BS
approach, are located inside the 95% bootstrap confidence interval (denoted by Y) or
not (denoted by N)

Threshold 1 2 3 4 5 6 7 8 9 10
Saddlepoint N Y Y Y Y Y Y Y Y Y
Gamma N N N N N N N N N N
BS N N N N N N N N N N
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Chapter 4

Optimal Design of Degradation

Tests

4.1 Introduction

This chapter discusses the optimal design of the degradation test under both parametric

and nonparametric frameworks by assuming the underlying process as the gamma

process, the inverse Gaussian process, or the empirical Lévy process. To optimize

the degradation experiment, it is necessary to know how the design variables such as

the number of test units, the number of measurements, the inspection frequency or

the length of time interval can influence the accuracy of the parameter estimation.

Conditioned on the experimental cost cannot exceed the pre-specified budget, the

values of design variables are determined by minimizing the asymptotic variance

of the 100pth percentile of the FPT distribution for the parametric scenario or the

counterpart bootstrap estimate of variance for the nonparametric scenario.

The problem of optimal design has been studied by a series of literatures from
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various aspects. Yu and Tseng (1999) addressed the degradation path by a quasilinear

model and optimally determined the design variables including sample size, number

of measurements and termination time by minimizing the variance of the estimated

100pth percentile of the failure time distribution. Tseng et al. (2009) assumed the

underlying process as a gamma process and optimize the degradation test by minimizing

the asymptotic variance of the mean-time-to-failure. Tsai et al. (2012) further discussed

the heterogeneity problem by assuming the underlying process as a gamma process

incorporated with random effects and conducted the degradation test by minimizing

the asymptotic variance of the estimated 100pth percentile.

This chapter is organized as follows: In Section 4.2, the design variables, influential

factors and procedures of the optimal design are described and the gamma process,

the inverse Gaussian process or the empirical Lévy process are introduced as the

underlying processes. Then each underlying process is discussed regarding the parameter

estimation, objective function and how to proceed the corresponding optimization.

In Section 4.3, an practical example regarding laser data is discussed to illustrate the

proposed approaches.

4.2 Model Description

When conducting a degradation test, the experimental cost and the precision of

reliability estimation are the two major concerned factors. Under different assumptions,

the design values such as the sample size of test units, the measurement times, and

the inspection frequency can influence both of these two factors and inappropriate

decision for the design variables will waste experimental resources and reduce the

estimation efficiency. To deal with such issue of optimal design, we need to determine
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the values of design variables under the constraint that the total experimental cost

does not exceed the predetermined budget.

Assume n as the number of test units , m as the number of measurements made

every ftu where tu is length of each time interval, then the termination time is given as

tm = fmtu. For each test unit, the sample paths can be observed as Zt1 , Zt2 , . . . , Ztm

and the time interval between two consecutive observations is ftu = tj − tj−1 where

j = 1, . . . ,m, with the initial time t0 = 0.

Considering the cost from the time to conduct the experiment, purchasing the

tested units and the cost of measurements, the total cost of the degradation test,

TC(n, f,m), is given as a linear model to include three cost sources

TC(n, f,m) = Copfm+ Cmeanm+ Citn,

where Cop denotes the cost of operation, Cmea denotes the cost of each measurement,

and Cit is the cost purchase each test unit. If Cb denotes the pre-specified budget of

the experiment, then in any case we should make TC ≤ Cb satisfied.

The degradation processes are is given by the three different models including

the gamma process, the inverse Gaussian process and the empirical Lévy process.

All of these models are investigated conditioned on all the degradation paths are

independent and the increments are identically distributed.

The optimization criterion for each of the parametric and nonparametric models is

defined differently. The criterion for the parametric model is the asymptotic variance

of the 100pth percentile of the FPT, then the optimization problem can be states as

Minimize AV ar(tp(θ|ξ) subject to TC(ξ) ≤ Cb,
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where the vector ξ = (n, f,m) represents the design vector.

Unlike the parametric models, the optimization criterion for the nonparametric

model is alternatively defined as the bootstrap estimate of variance and optimization

statement changes to

Minimize V ar(tp(F̃ )|ξ) subject to TC(ξ) ≤ Cb.

In the rest of this section, we will individually discuss each of the degradation

models.

4.2.1 Gamma Process

Start with the gamma process Zt with the shape parameter α and the rate parameter

β, it can be represented as

Zt ∼ Gamma(αt, β).

Suppose Z
(i)
t , 1 ≤ i ≤ n represents the degradation path of ith test unit, Yij =

Z
(i)
tj − Z

(i)
tj−1

, 1 ≤ j ≤ m is the increment from tj−1 to tj. In actual dataset, and

the time interval of two consecutive measurements is ftu. If α and β are given

as the parameters of the increment within each time unit tu, then the observed

increments should follow Gamma(αf, β). As all of the test units are independent and

the increments are assumed to be identically distributed, the likelihood function for

the model can be given in terms of design variables n, f , m as well as the parameters
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θ = (α, β)

L(θ) =
n∏
i=1

m∏
j=1

βαf

Γ(αf)
yαf−1
ij e−βyij .

Then, the log-likelihood function is the natural logarithm of L(θ)

l(θ) = ln(L(θ)) = nm ln

(
βαf

Γ(αf)

)
+

n∑
i=1

m∑
j=1

ln
(
yαf−1
ij e−βyij

)
.

According to the expression of l(θ), we can see that n and m are not distinguished

in terms of positions.

Based on the assumption that the test units are independent and the increments

observed for each test unit are i.i.d., then we can say the increments for all the test

units can be collected to obtain a dataset containing n×m i.i.d. random variables.

We can take derivative of the log-likelihood function with respect to each parameter

and find the MLE of θ possess the relations specified as below

nm

(
ln(αf)− ln

(∑n
i=1

∑m
j=1 yij

nm

)
− ψ(αf) +

∑n
i=1

∑m
j=1 ln(yij)

nm

)
,

and

β =
αf∑n

i=1

∑m
j=1 yij

nm

,

where the derivative of the logarithm of the gamma function given as

ψ(α) =
d

dα
ln(Γ(α))

is known as the digamma function.
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Using Delta method, the asymptotic distribution for tp(θ) can be found as

√
n
(
tp(θ̂)− tp(θ)

)
d−→ N

(
0,
h′I−1(θ)h

f 2(tp(θ))

)
,

where the vector h is defined as

h =

(
∂F (t)

∂α
,
∂F (t)

∂β

) ∣∣∣∣∣
t=tp(θ)

.

I(θ) is the Fisher information matrix with each entry as the negative second-order

derivatives of log-likelihood function given by

I(θ)11 = nmf 2ψ1(αf),

I(θ)22 =
αf

β2
,

I(θ)12 = I(θ)21 = −f
β
.

and f(·) is the pdf of the FPT.

Since by the cdf of the FPT given in (2.6)

F (t) = 1− P (τx > t) = 1− L−1

(
e−φ(ω)t

ω

)
,

where the Laplace exponent φ(ω) is

φ(ω) = α ln

(
1 +

ω

β

)
,
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we can calculate the pdf f(t) by taking the derivative with respect to t as

f(t) =
dF (t)

dt

= −
dL−1

(
e−φ(ω)t

ω

)
dt

= −L−1(
d e
−φ(ω)t

ω

dt
)

= L−1

(
φ(ω)

ω
e−φ(ω)t

)
. (4.1)

We can interchange the sequence of inverse Laplace transform L−1 and the derivative

because by the definition of inverse Laplace transform, we have

L−1

(
e−φ(ω)t

ω

)
=

1

2πi

∫ γ+i∞

γ−i∞
eωx

e−φ(ω)t

ω
dω,

where the integrand is continuous and t is irrelevant to the integrated variable.

The elements of the vector h can be calculated by taking the partial derivatives

of the cdf with respect to each parameter

∂F (t)

∂α
= L−1

(
te−φ(ω)t

ω
· ∂φ(ω)

∂α

)
= L−1

(
te−φ(ω)t

ω
· ln
(

1 +
ω

β

))
,

and

∂F (t)

∂β
= L−1

(
te−φ(ω)t

ω
· ∂φ(ω)

∂β

)
= L−1

(
−αte

−φ(ω)t

β2 + βω

)
.
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The optimization criterion is defined as the asymptotic variance of tp given as

AV ar(tp(θ)) =
h′I−1(θ)h

nf 2(tp(θ))
. (4.2)

4.2.2 Inverse Gaussian Process

Next, we consider another commonly used degradation process, the inverse Gaussian

process. Suppose µ is the mean and λ is the shape parameter, the inverse Gaussian

process can be represented as

Zt ∼ IG(µt, λt2).

Since the increments are actually observed every ftu and µ, λ are defined as the

parameters of the increment within each time interval tu, the observed increments

follow IG(µf, λf 2).

With the observations of increment Yij = Z
(i)
tj −Z

(i)
tj−1

, the likelihood function can

be written as

L(θ) =
n∏
i=1

m∏
j=1

(
λf 2

2πy3
ij

) 1
2

exp

(
−λf

2(yij − µf)2

2µ2f 2yij

)
,

where θ = (µ, λ). And its corresponding log-likelihood function is

l(θ) = ln (L(θ)) =

∑n
i=1

∑m
j=1

(
ln(λ) + ln(f 2)− ln(2πy3

ij)
)

2
−

n∑
i=1

m∑
j=1

λ(yij − µf)2

2µ2yij
.

Take the derivatives of l(θ) with respect to µ and λ, the MLEs of the parameter are
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given as

µ̂ =

∑n
i=1

∑m
j=1 yij

nmf
,

λ̂ =

(∑n
i=1

∑m
j=1(yij − µ̂f)2

nmµ̂2yij

)−1

.

Then, the Fisher information matrix can derived as

I(θ) = nm ·

λfµ3 0

0 1
2λ2

 .
To find the vector h = (∂F

∂µ
, ∂F
∂λ

), the first-order derivatives of the cdf with respect

to µ and λ can be calculated by inverting the Laplace transforms

∂F

∂µ
= L−1

(
te−φ(ω)t

ω
· ∂φ(ω)

∂µ

)
,

∂F

∂λ
= L−1

(
te−φ(ω)t

ω
· ∂φ(ω)

∂λ

)
,

where φ(ω) is the Laplace exponent of inverse Gaussian distribution given as

φ(ω) =
λ

µ

(√
1 +

2µ2ω

λ
− 1

)
,

and its derivatives with respect to each parameter are

∂φ(ω)

∂µ
=

λ

µ2
− λ2

µ3

(
λ2

µ2
+ 2λω

)− 1
2

∂φ(ω)

∂λ
=

(
λ2

µ2
+ 2λω

)− 1
2
(
λ

µ2
+ ω

)
− 1

µ
.
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With the pdf of the FPT f(t) given in (4.1), we can conduct the optimal design

based on the optimization criterion defined in (4.2).

4.2.3 Empirical Lévy Process

The definition of empirical Lévy process can be referred to Chapter 3. Without giving

any process-type assumption, the misspecification problem can be avoid by using the

empirical Lévy process. Same as the parametric models, we assume the degradation

paths are independent and their increments Yj = Ztj − Ztj−1
follow the identical

distribution. The sample size of the increments is still n × m. Therefore, with the

i.i.d. increments Y11, Y12, . . . , Ynm ∼ F , the empirical distribution F̃ (y) is defined as

F̃ (y) =
1

nm

n∑
i=1

m∑
j=1

1Yij≤y. (4.3)

The empirical distribution F̃ is a consistent estimator of the underlying distribution

F . Since the 100pth percentile tp(F ) is the quantity of interest, then tp(F̃ ) is also the

consistent estimator of tp(F ). Conditioned on the original sample Y1, . . . , Ynm and the

hypothetical random sample Y ∗1 , . . . , Y
∗
nm from the empirical distribution F̃ obtained

by the original sample set, the bootstrap estimate tp(F̃
∗) is a consistent estimator of

tp(F̃ ).

Although the exact distribution of tp(F̃ ) is unavailable to find, the bootstrap

estimate of variance can be obtained as follows. First generate random samples from

the empirical distribution F̃ and estimate 100pth percentile by the new empirical

distribution F̃ ∗. Then repeat the procedure for a large number of bootstrap runs N

and the new estimates obtained in this manner are denoted by tp(F̃
∗
1 ), . . . , tp(F̃

∗
N).
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Finally, the Bootstrap estimate of variance for tp(F̃ ) can be obtained as

V ar(tp(F̃ )) =
1

N − 1

N∑
i=1

(
tp(F̃

∗
i )− t̄p(F̃ ∗)

)2

, (4.4)

where t̄p(F̃ )∗ =
∑N
i=1 tp(F̃ ∗i )

N
.

In this nonparametric setting, although it is obvious that the empirical distribution

is directly related to the number of test units n and the number of measurements for

each test unit m, the relation between tp and f is not very straightforward to be

figured out. For example, for a data set with design (n, f,m) as well as the length

of each time unit is tu, the new sample set can always be constructed by resampling

from the original sample set for any values of n and m. However, if f changes to f
2

which is the half of the original inspection frequency, it is unavailable to get any new

observation beside the observations from the original sample set.

Another thing to be noticed is that in equation (2.6), the time t is not the actual

testing time but is the number of time intervals ftu. The actual testing time should

be ftu · t. Then for degradation process Zf1tut with inspection frequency f1tu, its

Laplace exponent φ1(ω) satisfies

E(e−ωZf1tut) = e−tf1tuφ0(ω) = e−tφ1(ω),

where φ0(ω) is the Laplace transform of the increment in the single time unit and

φ1(ω) = f1tuφ0(ω). Similarly, if φ2(ω) is the Laplace exponent with measurement

time interval f2tu, then it satisfies φ2(ω) = f2tuφ0(ω). Therefore, the ratio between
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φ1(ω) and φ2(ω) is

φ1(ω)

φ2(ω)
=
f1

f2

.

To find the first passage time in terms of the actual testing time, the equation

(2.6) should be rewritten as

P (τx > ftut) = L−1{exp (−φ(ω)ftut)

ω
}(x). (4.5)

Suppose φ̂(ω) is the empirical Laplace exponent defined in (3.1) based on the

original sample set with inspection frequency f , then the new empirical Laplace

exponent φ̂∗(ω) = φ̂(ω) · f∗
f

for the new frequency f ∗. Hence, the survival probability

P (τx > t) under f ∗ is

P (τx > f ∗tut) = L−1{
exp

(
−φ̂∗(ω) · t

)
ω

}(x) = L−1{
exp

(
−φ̂(ω) · f∗

f
· t
)

ω
}(x). (4.6)

Replace f ∗tut by t∗, the equation (4.6) changes to

P (τx > t∗) = L−1{
exp

(
− φ̂(ω)

ftu
· t∗
)

ω
}(x). (4.7)

Therefore, the estimate of tp does not depend on f ∗ and the optimal value of it f ∗

is always fixed as 1. The optimal solutions of the other two design variables n∗ and

m∗ can be obtained by the complete enumeration method described in Yu and Tseng

(1999).
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4.3 Data Analysis

In the section, we will still keep analysing the laser data and the optimal designs are

compared under the three different settings of degradation processes. The optimization

criterion of the degradation test is the asymptotic variance given in (4.2) for the

gamma process and inverse Gaussian process or the bootstrap estimate of variance

given in (4.5) for the empirical Lévy process. The bootstrap runs N is specified as

large as 100,000.

The cost configurations are supposed to be Cop = $13/unit time, Cmea = $0.05/measurement,

Cit = $51/unit and tu = 24 hours. If the 90th percentile of the FPT t0.9 under

threshold 10 is of our interest, the optimal designs with various budgets Cb under

different underlying procecsses are shown in Table 4.1-4.3. For example, when the

budget Cb = $1250, the optimal designs under the gamma process are given as

ξ∗ = (n∗, f ∗,m∗) = (16, 2, 16) which means 16 laser devices are selected for the

experiment and each device is measured for 16 times with time interval 48 hours.

The termination time for the experiment is 16 × 48 = 768 hours and total cost is

$1244.8. The asymptotic variance for 90th percentile is 4767.339.

The values of the design variables ξ∗ showed in Table 4.1 and 4.2 are completely

identical and it is understandable that ξ∗ in Table 4.3 are different for all the budget

levels since its frequency variable f of the nonparametric model is always equal to

one.

We can see that the bootstrap estimates of variance BV ar for all the budget level

Cb in Table 4.3 are significantly greater than the counterpart asymptotic variance

AV ar in Table 4.1 and 4.2. Such phenomenon means the parametric models may be

more suitable for the degradation test based on the laser dataset when the optimization
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Table 4.1: Optimal Test Plans Under Gamma Process
Cb n* f* m* AVar(t0.9|ξ∗) Cost

1000 13 1 24 9592.011 990.6
1250 16 2 16 4767.339 1244.8
1500 20 3 12 2722.985 1500

Table 4.2: Optimal Test Plans Under Inverse Gaussian Process
Cb n* f* m* AVar(t0.9|ξ∗) Cost

1000 13 1 24 9236.610 990.6
1250 16 2 16 4593.874 1244.8
1500 20 3 12 2625.163 1500

criterion is set as the asymptotic variance. As mentioned in Chapter 3, the parametric

model can have good performance if this model can correctly capture enough information

from the dataset but once misspecification happens, the nonparametric model is an

effective approach to avoid such problem.

Substitute the MLE of the parameters, we investigate the goodness-of-fit of the

gamma distributionGamma(7.19, 14.11) and the inverse Gaussian distribution IG(0.51, 3.41)

for the laser dataset. To verify it, the Kolmogorov-Smirnov test is conducted. From

the results in Table 4.4, the p-values for the hypothesis test are 0.1508 and 0.6216 for

the gamma and inverse Gaussian distribution respectively and therefore there is no

significant evidence to claim the data are inappropriately fitted by the two parametric

models. Then, it is reasonable that the gamma and inverse Gaussian models have

comparatively smaller variances since they are seemed as the ‘correct’ models and can

capture enough information to ‘beat’ nonparametric model when the criterion is the

asymptotic variance. In the comparisons between the two parametric models, the test
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Table 4.3: Optimal Test Plans Under Empirical Lévy Process
Cb n* f* m* BVar(t0.9|ξ∗) Cost

1000 10 1 36 10834.54 996.00
1250 13 1 43 6981.344 1249.95
1500 15 1 53 4917.395 1493.75

statistic of the inverse Gaussian model (0.048626) is smaller than the test statistic of

the gamma model (0.073379) which means the inverse Gaussian process can fit the

degradation data better. Intuitively, we can conjecture it may be the reason why the

inverse Gaussian model can get even smaller asymptotic variance than the gamma

model but this issue will not be further discussed in this thesis.

The smaller variance only reflects the estimated 100pth percentile tp(θ̂) can be

found more stable regard to the true parameter-based tp(θ). It does not mean tp(θ̂) can

be more close to the true value of the percentile of the observed FPT. The prediction

accuracy is intrinsically limited by the pre-assumed model since no parametric model

can capture all the information revealed from the data. We know that tp(θ) will

change with the selection of the underlying process since the information volume

contained in θ are different. However, the true percentile of the observations will

not change with the underlying model. In Chapter 3, we compared the parametric

and the nonparametric models with the criterion defined as the prediction accuracy.

Such criterion puts the different approaches on the same platform. Therefore, the

nonparametric approach still possesses the advantages as it includes more information

from the data than the parametric models in most occasions.
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Table 4.4: The K-S test regarding the gamma and inverse Gaussian processes
Gamma IG

D-statistics 0.073379 0.048626
p-value 0.1508 0.6216

4.4 Concluding Remarks

This chapter discusses the optimal design for degradation test when the underlying

process is specifically assumed or unspecified. Although the gamma or inverse Gaussian

process is usually used as the degradation process when study the degradation test,

it is difficult to find an appropriate parametric process to accurately fit the observed

degradation data. For the parametric models, the asymptotic variance of 100pth

percentile is taken as the optimization criterion which is a function of the design

variables including number of test units n, the number of measurements m and

inspection frequency f . The optimal designs can be determined when the asymptotic

variance is minimized. Unlike the parametric evaluation of the optimal design,

the inspection frequency f is irrelevant to the value of 100pth percentile under the

empirical Lévy process and only the n and m are considered subject to the cost not

exceeding the budget. From the results of the illustrative example, the parametric

models can get the smaller variances for the special optimization criterion although

their prediction accuracy is worse than nonparametric approach according to the

results of Chapter 3. Therefore, it is appropriate to try different optimization criterion

on the degradation tests and it will be the extension of our works in the future.
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Chapter 5

Summary and Conclusions

The thesis investigates the FPT of degradation processes from the scope of Lévy

jump processes. Our approach releases the constraints that the close-form pdf of any

point along the degradation path should be existed and provides a more convenient

and general way to study the system reliability. It can be also developed to the

distribution-free method which can accurately capture the reliability information

and efficiently estimate the FPT distribution percentile. In this chapter, we will

summarize each chapter and discuss the potential future works.

5.1 Summary of Results

In Chapter 2, the proposed parametric approach based on Laplace transforms expand

the selection of degradation processes to more general one-side Lévy processes which

were previously limited to the gamma process or the inverse Gaussian process in most

cases. The FPT of the underlying process can be numerically obtained by inverse

Laplace transform. With such techniques, we can implement more complicated
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models, for example, the multi-sensors model. If a component or a part is very

crucial for the whole system, it will probably be monitored by multiple sensors. Since

each sensor may report a different degradation path, a weight-convolution of these

degradation paths is taken as the underlying degradation process reflecting the overall

reliability. One of difficulties of the complicated models is that its likelihood function

may be intractable. Then we can solve this estimation problem from other aspects.

If the Laplace transform can be in analytic form, a distance-based estimation method

such as GMM can optimally estimate the parameters by minimizing the distance

between the parametric and empirical Laplace transforms.

When the underlying process is specifically assumed, the numerical FPT density

can be found only if its analytic Laplace exponent exists so that the numerical Laplace

inversion can be conducted. In Chapter 3, these numerical results are taken as true

values and taken as standards to evaluate the nonparametric methods. Rather than

exactly giving any process-type assumption and looking for the close-form Laplace

transform, we directly obey the information of the sample set itself by replacing the

parametric Laplace transform to the empirical Laplace transform. Then the FPT

density can be effectively approximated by inverting the Laplace transform using

the empirical saddlepoint method. With the FPT density, we can find the 100pth

percentile of lifetime distribution which is the important index of reliability. As it is

always very hard to find a perfect model for a dataset, an incorrectly assumed model

may bring large bias to the estimates and make statistical inference inefficiently. The

nonparametric method can also help us to get rid of the misspecification problem.

From the examples of Chapter 3, it can be seen that our proposed nonparametric

method performs significantly better than arbitrarily modelling the data with the
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gamma process.

As a practical application, the optimal design for degradation test is studied in

Chapter 4 when the underlying processes are assumed to be the gamma process,

the inverse Gaussian process or the empirical Lévy process. In this experiment, we

look for the optimal values for the design factors which minimize the variation of

the reliability index subject to the cost not exceeding the budget. The objective

function is defined as the asymptotic variance of the 100pth percentile of the lifetime

distribution for the parametric models and as the bootstrap estimate of variance for

the nonparametric model. Since both the gamma process and the inverse Gaussian

process can fit the degradation data well, the values of the optimal design variables

are completely the same with each other while the empirical Lévy process gives a

different result. Compared with the parametric evaluations, the inspection frequency

factor under the nonparametric model is irrelevant to the value of 100pth percentile.

Hence, ignoring the influence of this factor, only the number of test units and the

number of measurements are concerned under this scenario.

5.2 Possible Future Work

We can observe that the saddlepoint approximation possesses a large relative bias

for the left tail of the FPT distribution and it can be improved by developing the

second-order saddlepoint approximation or even including higher-order terms. This

future work is also mentioned in the concluding remarks in Chapter 2 and 3.

Another potential direction is developing the single-dimensional degradation process

to the multidimensional model since many systems are subjected to multidimensional

degradation processes in practice. Therefore, to capture the reliability information of
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the system, it is necessary to propose an effective way to measure the competing risks

and examine the dependence structures. The multidimensional degradation process

can be constructed using the Lévy copula proposed by Kallsen and Tankov (2006).

Here each marginal degradation process is assumed to be an one-sided Lévy process.

In terms of the multidimensional degradation process, Wang and Pham (2012)

gave a typical example regarding the human body system to illustrate the multivariate

competing risks model. The longevity risk of human relies on the health condition of

each unit in our body from cells, tissues to organs. These biological units experience

gradual degradation of its function as well as the sudden shocks. For a human

cardiovascular function, its efficiency of delivering blood to all over the body will

begin to reduce due to the emerging risks of vascular sclerosis which causes the arteries

harden or blocked. Therefore, the health conditions of organs are multiply correlated

and the human life is exposed to the catastrophic risks when the accumulated damage

of any organ reaches the certain failure level. Consequently, proposing a method to

consider the FPT of a complex system of degradations with various of dependence

structure is important in practical significance.

In reliability area, Pan et al. (2013), Wang et al. (2015b) proposed multidimensional

degradation model driven by the Wiener process to estimate the residual life of the

products and the gamma-process driven model was discussed by Pan and Balakrishnan

(2011) and Wang et al. (2015a). Sacerdote et al. (2016) gave a numerical method to

study the FPT of two-dimensional correlated diffusion processes and Cai et al. (2017)

constructed the multivariate insurance risk model to study the joint-ruin problems of

two risk undertakers by defining the marginal process as Markovian arrival process.

With the proposed methods in the thesis, we can develop the multidimensional
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degradation process to the nonparametric frameworks. Rather than giving specific

process-type, the marginal process can be empirically modelled with the sample set.

Then the competing risks of the system can be investigated by both the copula

dependence structure and each marginal process.
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Appendix A

Itô Lemma

As an important part composing the foundations of the stochastic calculus, Itô

lemma was proved by Kiyoshi Itô in 1944. It extends the methods of calculus to

stochastic processes. This lemma is widely used in mathematical finance specifically

in derivation of the Black-Scholes equation for option pricing.

Assume Xt is a Itô drift-diffusion process given by the following SDE

dXt = µdt+ σdWt,

where Wt is a Wiener process. For a twice differentiable scalar function f(t, x) with

two entries t and x, it satisfies the following SDE

df(t,Xt) =

(
∂f

∂t
+ µ

∂f

∂x
+

1

2
σ2∂

2f

∂x2

)
dt+ σ

∂f

∂x
dWt.
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Itô lemma is derived by expansion in the regular Taylor series

df =
∂f

∂t
dt+

∂f

∂x
dx+

1

2

∂2f

∂x2
dx2 + · · · .

If x is replaced by Xt and except dWtdWt = dt, all other products including

dWtdt, dtdt and higher order terms are equal to zero.

For example, if Xt follows the geometric Brownian motion satisfies dXt
Xt

= µdt +

σdWt, the differentiation of f(Xt) = ln(Xt) can be obtained with Itô lemma

d ln(Xt) =

(
µ− σ2

2

)
dt+ σdWt,

and solving the equation gives the expression of Xt

Xt = X0 exp

((
µ− σ2

2

)
t+ σWt

)
.

The underlying process of the Black-Scholes formula is given the geometric Brownian

motion and Itô lemma is the essential theoretical support for this option pricing

formula.
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Appendix B

Existence of the Laplace Transform

We will present the sufficient conditions for the existence of Laplace transform and

prove the theorem.

Definition B.0.1 (Piecewise continuous function)

If the function f is a piecewise continuous function on the interval [a, b], then

1. f is continuous in each subinterval (ti, ti+1), i = 0, 1, . . . , n − 1 as the interval

[a, b] is split into finite subintervals with separation points a = t0 < t1 < · · · <

tn = b.

2. for the discontinuity point ti we have

∣∣∣∣∣ lim
t→t±i

f(t)

∣∣∣∣∣ <∞, i = 0, 1, . . . , n− 1.

Definition B.0.2 (Exponential Order)

f is of exponential order if there exists constants c,M > 0 as well as A > 0 such that

∣∣∣f(t)
∣∣∣ ≤Mect, t > A.
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Theorem B.0.1 (Existence of Laplace Transform)

The Laplace transform L{f(t)} =
∫∞

0
e−stf(t)dt exists if

1. f is piecewise continuous,

2. f is of exponential order.

Proof. With a positive number A, we can separate the Laplace transform into two

parts

∫ ∞
0

e−stf(t)dt =

∫ ∞
A

e−stf(t)dt+

∫ A

0

e−stf(t)dt,

and denote I1 =
∫∞
A
e−stf(t)dt and I2 =

∫ A
0
e−stf(t)dt. And I2 exists since f is

piecewise continuous.

By the definition of exponential order, we can find constants A,M, c such that∣∣∣f(t)
∣∣∣ ≤Mect. Then for I1, we have

∣∣∣e−stf(t)
∣∣∣ ≤Me−(s−c)t.

I1 also exists for s > c since

∫ ∞
A

∣∣∣e−stf(t)
∣∣∣dt ≤M

∫ ∞
A

e−(s−c)tdt ≤M

∫ ∞
0

e−(s−c)tdt =
M

s− c
.

Hence, the Laplace transform exists for s > c. �
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Appendix C

Glivenko-Cantelli Theorem

The Glivenko-Cantelli theorem was proposed by Valery Glivenko and Francesco Cantelli

in 1933. It determines the asymptotic behaviour of the empirical distribution function.

The proof of theorem refers to the personal website of David Stephens.

Theorem C.0.1 (Glivenko–Cantelli Theorem)

X1, . . . , Xn are i.i.d. random variables with cdf F and corresponding empirical distribution

function is denoted as Fn. Then,

P

(
lim
n→∞

sup
x∈R
|Fn(x)− F (x)| = 0

)
= 1.

Proof. Let ε > 0 and fix k > 1
ε
, then we can split R with the partition points

t0, t1, . . . , tk such that

−∞ = t0 < t1 ≤ · · · ≤ xk−1 =∞.
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If for j = 1, . . . , k − 1

F (t−j ) = P (Xj < tj) and F (tj) = P (Xj ≤ tj),

then

F (t−j ) ≤ j

k
≤ F (tj).

With tj−1 < tj, we have

F (t−j )− F (tj−1) ≤ j

k
− j − 1

k
=

1

k
< ε.

Since with the pointwise convergence, we have

lim
n→∞

Fn(tj) = F (tj) and lim
n→∞

Fn(t−j ) = F (t−j ).

Denote ∆n as

∆n = max
j=1,...,k−1

{|Fn(tj)− F (tj)|, |Fn(t−j )− F (t−j )|},

and it can be seen that

lim
n→∞

∆n = 0.

If x lies between tj−1 and tj such that

tj−1 ≤ x < tj,
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we have

Fn(tj−1)− F (tj−1)− ε ≤ Fn(tj−1)− F (t−j ) ≤ Fn(x)− F (x)

≤ Fn(t−j )− F (tj−1) ≤ Fn(t−j )− F (t−j ) + ε.

Therefore,

|Fn(x)− F (x)| ≤ ∆n + ε,

and as n goes to infinity

sup
x∈R
|Fn(x)− F (x)| → ∞.

If Aε denotes the set of events that the convergence is observed such that P (Aε) = 1,

then

A = ∩ε>0Aε = lim
ε→0

Aε which leads to

P (A) = P (lim
ε→0

Aε) = lim
ε→0

P (Aε) = 1.

Therefore,

P

(
lim
n→∞

sup
x∈R
|Fn(x)− F (x)| = 0

)
= 1.

�
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Appendix D

Derivation of the Saddlepoint

Approximation

This proof of Equation (2.7) is basedon Edgeworth expansion proposed by Daniels

(1954).

If φ(·) is the pdf of standard normal distribution, the pdf g(z) of a random variable

Z with mean 0 and variance 1 can be expanded into the Gram-Charlier type A series

g(z) =
∞∑
n=0

cnφ
(n)(z)

n!
,

where

cn = (−1)n
∫ ∞
−∞

Hn(z)g(z)dz,

and Hz(z) is the nth Hermite polynomial.
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Denote µi as ith moment of Z, then

g(z) = φ(z)

(
1 +

1

6
µ3(z3 − 3z) +

1

24
(µ4 − 3)(z4 − 6z2 + 3) + · · ·

)
.

Let Y be a random variable with pdf f(y) which has mean µ and variance σ2,

then Z = Y−µ
σ

and f(y) can be derived in the form of Edgeworth expansion

f(y) =
φ(z)

σ

(
1 +

ρ3

6
(z3 − 3z) +

ρ4

24
(z4 − 6z2 + 3) + · · ·

)
,

where

ρi =
K(i)(0)

K ′′(0)
i
2

.

K(·) is CGF defined in Chapter 2.

Denote

f(y; s) = esy−K(s)f(y)

which is a density function since
∫∞
−∞ e

sy−K(s)f(y)dy = 1. And for Ys follows f(y; s),

we can compute

E(Ys) = K ′(s) and

V ar(Ys) = K ′′(s).
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Applying Edgeworth expansion to f(y; ŝ) where K ′(ŝ) = y, we have

f(y; ŝ) =
1√

2πK ′′(ŝ)

(
1 +

1

8
ρ4 + · · ·

)
.

Therefore, the first-order saddlepoint approximation is given by

f̂(y) =
1√

2πK ′′(ŝ)
exp(K(ŝ)− ŝy).

We can also include the higher-order terms. For example, the second-order saddlepoint

approximation can be obtained as

f̂(y) =
1

2πK ′′(ŝ)
exp(K(ŝ)− ŝy)

(
1 +

K(4)(ŝ)

8(K ′′(ŝ))2
− 5(K(3)(ŝ))2

24(K ′′(ŝ))3

)
.
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Bertoin, J. (1996). Lévy Processes. Cambridge University Press, Cambridge.

Bertoin, J., van Harn, K., and Steutel, F. (1999). Renewal theory and level passage

by subordinators. Statistics and Probability Letters, 45, 65–69.

Birnbaum, Z. and Saunders, S. (1969a). A new family of life distribution. Journal of

Applied Probability, 6, 319–327.

Birnbaum, Z. and Saunders, S. (1969b). Estimation for a family of life distribution

with application to fatigue. Journal of Applied Probability, 6, 327–347.

Braun, M., Meintanis, S., and Melas, V. (2008). Optimal design approach to GMM

estimation of parameters based on empirical transforms. International Statistical

Review, 76, 387–400.

111



Ph.D. Thesis - Chengwei Qin McMaster - Mathematics and Statistics

Cai, J., Landriault, D., Shi, T., and Wei, W. (2017). Joint insolvency analysis of

a shared MAP risk process: A capital allocation application. North American

Actuarial Journal, 21, 178–192.

Carrasco, M. and Florens, J. (2000). Generalization of GMM to a continuum of

moment conditions. Econometric Theory, 16, 797–834.

Carrasco, M. and Florens, J. (2002). Efficient GMM estimation using the empirical

characteristic function. Working Paper, Department of Economics, University of

Rochester.

Chen, P. and Ye, Z. (2016). Random effects models for aggregate lifetime data. IEEE

Transactions on Reliability, 66, 76–83.

Daniels, H. (1954). Saddlepoint approximations in statistics. The Annals of

Mathematical Statistics, 25, 631–650.

Davison, A. and Hinkley, D. (1988). Saddlepoint approximation in resampling

methods. Biometrika, 75, 417–431.
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