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ABSTRACT 

Molecular nonlinear optical (NLO) properties are extensively studied using both 

theory and experiment because of their use in myriad applications. Experimental 

measurements of the most interesting molecules’ NLO properties are difficult, so 

experimental data for molecules with desirable NLO properties is scarce. Theoretical 

tools don’t suffer from the same limitations and can provide significant insights into the 

physico-chemical phenomena underlying the nonlinear responses, can help in interpreting 

response behaviour of molecules, and can guide design the materials with desirable 

response properties. Here, I present my work on developing methods for accurately 

calculating the NLO properties of molecules using the finite field (FF) approach.  

The first chapter provides a background for the finite field and electronic structure 

methods used in this dissertation. Chapter two is a thorough investigation of the finite 

field method. The limitations of the method are highlighted and the optimal conditions 

for overcoming its drawbacks and obtaining meaningful and accurate results are 

described. Chapter three presents the first systematic study of the dependence of optimal 

field strengths on molecular descriptors. The first protocol for predicting the optimal field 

for the second hyperpolarizability is presented and successfully tested, and the 

dependence of the optimal field strength for the first hyperpolarizability on the molecular 

structure is investigated. Chapter four is an assessment of various DFT functionals in 

calculating the second hyperpolarizabilities of organic molecules and oligomers. This 

study shows the limitations of conventional DFT methods and the importance of electron 
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correlation to response properties. In chapter five we present a new method of calculating 

NLO properties using a rational function model that is shown to be more robust and have 

lower computational cost than the traditional Taylor expansion. Finally, chapter six 

includes a summary of the thesis and an overview of future work.  
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 Chapter 1

Introduction 

1.1 Motivation 

Nonlinear optics describes the behaviour of light in nonlinear materials and media.‎
1-‎4

 

While all molecules and materials are nonlinear to some extent, in most cases the optical 

properties of a substance are not significantly affected by light. However, for sufficiently 

intense light (typically from strong lasers), one can observe nonlinear optical phenomena: 

phenomena related to the way intense light alters the optical properties of material 

systems.  

Mathematically, nonlinear materials have a response that depends on the strength of 

the applied field in a nonlinear manner. For example, in conventional or linear optics, the 

dipole moment per unit volume of a substance, the dielectric polarization P, depends on 

the strength of the applied optical field F through the relation 

    (1)P t F t  (1.1) 
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where (1) is the linear susceptibility. In nonlinear optics, however, the response is 

described by the power series 

        (1) (2) 2 (3) 3 ...P t F t F t F t        (1.2) 

where (2) (3) and    are the second- and third-order nonlinear susceptibilities, 

respectively. Clearly Eq. (1.1) is always valid for sufficiently small fields; nonlinear 

optical materials are those where the nonlinear terms in Eq. (1.2) are practically 

significant. The nonlinear response of materials leads to many optical phenomena 

including changes in the optical properties of the material, generation of new light 

frequencies, and/or changes in the phase or the amplitude of the emergent light.  

Nonlinear optical effects were postulated in the 1930s, but these effects were 

considered unimportant and nonlinear terms were largely ignored for the next three 

decades. Focussed research on nonlinear optics started with the discovery of second-

harmonic generation by Franken and coworkers
‎5
 in 1961, soon after building the first 

laser in 1960.
‎6,‎7

 The high intensity of laser light made the nonlinear effects nonnegligible, 

and the field of nonlinear optics grew rapidly thereafter. The improved performance of 

nonlinear materials in some applications sustains current research in this area. This thesis 

develops new methods for computing the nonlinear response of molecules to external 

electric fields.  
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The dependence of the energy of a molecule, E, on an external static homogenous 

electric field F, can be written as a Taylor expansion of the form 

    
2 3 4

2 3 4

2 3 4

0 0 0 0

1 1 1
  0      

2! 3! 4!

E E E E
E F E F F F F

F F F F

   
     

   
  (1.3) 

     2 3 41 1 1
  0  μ α β γ  

2 6 24
E F E F F F F        (1.4) 

Here, μ is the permanent dipole moment of the molecule. The dipole polarizability, α, is 

the response of the electron cloud of an atom or a molecule to the effect of external 

electric field. The dipole polarizability is a linear response property; it can be defined 

from the second derivative of the electronic energy of a molecule with respect to the 

external electric field, or as the first-order (linear) derivative of the dipole moment with 

respect to an electric field. The third derivative of the energy is called the first 

hyperpolarizability β, and the fourth derivative is called the second hyperpolarizability γ. 

Both β and γ are nonlinear response properties. For example, γ measures the cubic 

response of a molecular property (the dipole moment) to an applied electric field. 

Predicting nonlinear optical (NLO) properties (β and γ) using quantum chemical 

methods is still challenging, and developing new methods and improving existing 

methods is an active area of research in computational chemistry.
‎8-‎19

 In contrast with 

other methods used to calculate NLO properties, such as response theory, coupled-

perturbed Hartree-Fock, or the sum-over-states method, the finite field (FF) method is a 
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straightforward and easy-to-implement technique that is easily applied for any quantum 

chemistry method. In FF approaches, properties of interest are determined directly from 

the molecular energy calculated at different external fields, without requiring any 

additional information about excited states or analytical derivatives of the energy. These 

advantages make the FF approach applicable to all levels of theory; one simply adds a 

term for the external field to the molecular Hamiltonian.  

In this thesis I present my work on using the finite field methods to calculate 

accurate nonlinear optical properties of molecules. These properties are of great interest 

to both chemistry and materials sciences, and thus have received great interest from both 

theory and experiment alike. The remaining sections of this chapter highlight nonlinear 

optical properties, methods of calculating response properties, electronic structure 

methods, and explain the key concepts used in the thesis. 

1.2 Nonlinear Optical Properties 

1.2.1 Importance 

Nonlinear optical (NLO) properties of molecules and polymers are of particular 

interest in organic chemistry and materials science, where new molecules/materials with 

desirable properties for engineering applications are sought.
‎20-‎26

 NLO materials play a 

main role in nonlinear optics and have applications in information technology and data 

storage, optical communication, optical computing, dynamic holography, harmonic 
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generation, optical switching, and frequency mixing.‎
27-‎34

 These response properties play 

an important role in studying other phenomena as well: weakly interacting systems, 

scattering processes, atom cooling and trapping, core-polarization and core-valence 

correlation, interactions between molecules and solvents and ionic reagents, and 

dielectric and refractive properties of rare gases. In the past few decades, optical devices 

have started to replace electronic devices in many areas of application.  

The dipole polarizability α gives rise to refractive index and phenomena such as 

birefringence, materials with a refractive index dependent on the polarization and 

propagation direction of applied light. The first hyperpolarizability β is linked to the 

second-harmonic generation (SHG), a nonlinear optical process that doubles the 

frequency of the input optical wave and is one of the most investigated nonlinear optical 

phenomena. It also gives rise to parametric generation and frequency mixing. The second 

hyperpolarizability γ is connected to phenomena such as optical bistability and 

conjugation, stimulated Raman scattering, third-harmonic generation, and optical 

switching and computing.  

1.2.2 Materials 

Nonlinear optical (NLO) materials utilized in photonic devices possess high 

chromophore densities and display large optical nonlinearity, ultrafast response time, 

high damage threshold, and low optical losses. Nonlinear optics emerged from solid-state 

physics, and early experimental and theoretical investigations were mainly focused on 



 

 

 

 

 

  Ph.D. Thesis – Ahmed Mohammed                             McMaster University – Chem & Chem Bio  

 

 

6 
 

materials of interest to solid-state physics including crystals, inorganic semiconductors, 

and insulators. Inorganic materials have excellent chemical and mechanical properties, 

but most of them suffer from low nonlinear efficiency. These limitations led to the search 

for new materials with good NLO properties.  

Organic nonlinear optical materials have been widely investigated because of their 

potentially high nonlinear properties and rapid response compared to inorganic ones. 

Organic molecules show extremely large NLO responses including two-photon 

absorption (TPA) and second-harmonic generation (SHG). Compared to inorganic 

materials, organic molecules exhibit superior optical properties such as ultrafast response 

time, high damage threshold, lower dielectric constants, and flexible designs that can be 

systematically improved. A large number of organic dyes, charge transfer complexes, 

fullerenes, π-conjugated polymers, nano-composites, liquid crystals, and organometallic 

compounds have been extensively investigated for nonlinear optics. 

Conjugated molecules that lead to charge transfer systems have been widely studied 

for their NLO properties.
‎35-‎38

 Many theoretical simulations and experiments have been 

conducted to understand the origin of nonlinearity in these molecules.
‎39,‎40

 The conjugated 

π-electron systems allow charge transfer within the molecule as a response to the external 

electric field. Factors that contribute to nonlinear response in these systems are the 

electron-richness of the π-conjugated center, planarity of the molecule, molecular 

symmetry, and dimensionality of charge transfer networks. The instantaneous NLO 
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responses of these systems mainly arise from electron delocalization. Typical systems of 

interest here are the π-conjugated polyene and polyyne chains.  

Adding an electron donating group at one end of a π-conjugated chain and an 

electron withdrawing one on the other end gives Donor–Acceptor (D–A) π-conjugated 

systems, sometimes referred to as push-pull molecules. The magnitude of NLO properties 

for these molecules increases superlinearly with the length of conjugated backbone, 

which is the distance between the donor and the acceptor. These systems, in their 

asymmetrical D–π–A or symmetrical D–π–A–π–D or A–π–D–π–A type have attracted 

much interest
‎40-‎46

 because of their strong nonlinear response properties and application in 

three-dimensional optical data storage,
‎47,‎48

 photodynamic therapy,
‎49

 two-photon 

fluorescence microscopy,‎
50

 etc. NLO properties of these molecules depend on donor-

acceptor strength, conjugation length, molecular structure, and intramolecular charge 

transfer (ICT). The response of these systems can be easily tuned by changing the donor 

and acceptor moieties.  

1.2.3 Experimental NLO Properties 

Nonlinear optics is an active area of research in experimental chemistry.‎
51

 The goal 

of the chemist is to understand NLO properties of materials and to be able to design 

molecules with fine-tuned magnitude and time of response.  
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Several experimental methods are available for measuring NLO properties of 

molecules in the gas phase and in solution. Experimental techniques for measuring α in 

the gas phase include the determination of the refractive index (RI) n(ω),‎
52

 the 

measurement of the relative dielectric permittivity (DP) ε(ω),
‎53

 molecular beam 

deflection techniques (MBD),‎
54

 matter-wave interferometry (MWI),‎
55

 and electron-

molecule scattering (EMS).‎
56

 The hyper-Rayleigh scattering technique can be used to 

measure the first hyperpolarizability β.
‎57,‎58

 The second hyperpolarizability γ can be 

measured by the femtosecond Degenerate Four Wave Mixing (DFWM) technique.
‎59

 

However, there are many challenges to experimental measurement of response properties. 

The measured value depends on the method of measurement, and different references 

report different values for the same method.‎
51

 Some measurements have high uncertainty 

or lead to different results and the reported value is an average. Experimental response 

properties are the tensor average of an ensemble of interacting molecules with different 

conformations and orientations measured at different frequencies. There are also vibronic 

contribution, local field factors, and solvent effects. It is difficult to isolate vibronic 

contributions in experimental measurements. Moreover, experimental data are scarce or 

unavailable for molecules with strong NLO properties. 

These factors make comparisons between theoretical and experimental values of 

response properties difficult. To reproduce experimental dipole polarizabilities, an 

average of the tensor elements of α needs to be calculated as  
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  
1

3
xx yy zz        (1.5) 

where ,  ,  andxx yy zz   are tensor elements that can be calculated theoretically.  

The average first hyperpolarizability,  , for a molecule with a dipole moment 

oriented along the x axis is 

  
1 3

5 5
xii ixi iix iix

i i

           (1.6) 

and the average second hyperpolarizability,  , is 

  
1

2 2 2
5

xxxx yyyy zzzz xxyy xxzz yyzz              (1.7) 

The complication of intermolecular interactions makes understanding the structure-

property relationship challenging. Experimentally measured nonlinear responses include 

not only local factors within the molecule, but also solute-solvent and solute-solute 

aggregates, interactions with solvents that can lead to conformational changes, and in 

some cases even chemical reactions with the solvent. These problems make uncovering 

the contribution of local factors to NLO properties challenging for experimentalists.  

These challenges give theory a key role in understanding NLO properties. 

Theoretical tools can identify the compounds with the most interesting NLO responses 

and interpret the underlying physicochemical phenomena, thereby guiding the design of 
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new molecules with targeted NLO properties. Discovering new materials with superior 

optical properties may lead to new optical devices that replace electronic circuits with 

optical ones. Progress in photonic technology relies on discovering new materials with 

superior nonlinear performance, which require understanding the contribution of local 

factors to optical properties and structure-property relationships.  

1.3 Calculation of Optical Response Properties 

Accurate calculations of the interactions of electromagnetic fields with molecules are 

important for the development of various optical devices. Several methods are available 

for calculating NLO properties that include: response theory (RT), coupled-perturbed 

Hartree-Fock (CPHF), coupled-perturbed Kohn-Sham (CPKS), sum-over-states (SOS), 

and the finite field (FF) methods. These methods are outlined in the next sections.  

1.3.1 Response Theory 

Response theory is one of the most accurate methods for calculating NLO 

properties.‎
60,‎61

 The method is based on time-dependent perturbation theory. As can be 

inferred from the name, response functions show how a property responds to an external 

perturbation. The key advantage of this method is that it replaces a computationally 

demanding explicit summation over excited states with a set of coupled response 

equations that must be solved.  
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When an external electrostatic potential is applied to a molecule, the perturbed 

Hamiltonian becomes 

 0
ˆ ˆ ˆ( ) ( )H x H V x    (1.8) 

where ( )H x  is the perturbed Hamiltonian, 
0H  is the isolated molecular Hamiltonian, 

and ( )V x  is the perturbation potential. The total energy of the system can be expanded 

with respect to x as 

   (0) (1) (2) 2
( ) ( ) ( ) 1

.... 
( ) ( ) 2

x H x x
E x E E x E x

x x

 
    

 
  (1.9) 

where  (0) 0E E  is the unperturbed zeroth-order energy associated with the 

unperturbed Hamiltonian 
0.H  The energy derivatives are defined as 

  
2

(1) (2)

2

0 0

;   ;   .
x x

dE d E
E E etc

dx dx 

    (1.10) 

These energy derivatives are molecular properties and contain information about the 

response of the system to external fields.  

The dipole moment can be decomposed into permanent and field-induced 

contributions  

     ,0 ...i i i j j

j

F F       (1.11) 
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Response properties are obtained by the analytical differentiation of the energy 

expression with respect to the field. Specifically, the permanent dipole moment is written 

as 

 

0

i

i F

E

F





 


 (1.12) 

Similarly, the electric dipole polarizability, the first hyperpolarizability, and the second 

hyperpolarizability are defined by the following expressions, respectively, 

 
2

,

0

i j

i j F

E

F F





 

 
  (1.13) 

 
3

, ,

0

i j k

i j k F

E

F F F





 

  
  (1.14) 

 
4

, , ,

0

i j k l

i j k l F

E

F F F F





 

   
  (1.15) 

The third and higher-order hyperpolarizabilities are defined in the same manner. 

1.3.2 Coupled-Perturbed Schemes 

When a molecule is subjected to an external static homogenous electric field, F, the 

interaction between the external field and the charges in the molecule produces an 

induced dipole moment, μ,  that can be written as a Taylor expansion with the form 
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   2 31 1
μ  α β γ

2 6
F F F F       (1.16) 

The dipole polarizability, α, can be calculated through coupled-perturbed iterative 

procedures that compute the first-order response of the density matrix, D
(1)

, to the applied 

electric field. In these methods, α is written as 

 
(1)

,

2 pq pq

p q

M D     (1.17) 

where 
pqM is an element of the dipole moment matrix. At the HF level, evaluating D

(1) 
is 

done through the coupled-perturbed Hartree-Fock (CPHF) method,
‎62-‎65

 while the 

coupled-perturbed Kohn-Sham (CPKS) procedure is used when DFT functionals are 

used.
‎66-‎70

 Calculating higher derivatives of energy, β and γ, can be done in a similar 

fashion, within a coupled-perturbed scheme, by including higher-orders responses of the 

density matrix, which can be calculated iteratively.  

1.3.3 Sum-Over-States Method 

The sum-over-states method
‎71-‎73

 provides accurate calculated response properties. 

The advantage of this approach over response-theory approaches is that it reveals which 

excited states contribute most to a given response property. Moreover, the frequency 

dependence of responses is easily included. However, the method is computationally 

demanding because it requires explicit calculation of the contributions of all possible 

excited states to the property, and the numerical evaluation of a sum over many terms is 
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subject to roundoff errors. The difficulty of generating the higher excited states needed 

for the method can limit its applicability too.  

In the sum-over-states method, the polarizability α can be calculated from 

perturbation theory as 

 

2

i f f i

f V i

E E







   (1.18) 

where i represents the state of interest, f is all the other states, and V is the transition 

moment between states (e.g., the dipole operator for the dipole polarizability). 

Expressions for higher-order derivatives are more complicated and computationally 

demanding.  

These three schemes of calculating response properties are analytical and they don’t 

suffer from any intrinsic numerical ill-conditioning. However, these approaches are 

computationally demanding, which limits the system size to which they can be applied. 

The difficulty of implementing these methods (especially response theory calculations) 

makes them unavailable for many existing software programs and new methods, 

especially for higher-order derivatives. Due to the difficulty in deriving and 

implementing the mathematical expressions, these three methods cannot be easily tested 

for new computational methods, and therefore it is rare to use nonlinear optical properties 

to assess the quality of new computational methods. Similarly, it is rare to use the best 
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new methods to compute the nonlinear optical responses of experimentally interesting 

molecules. 

1.3.4 Finite Field Methods 

The finite field (FF) method is widely used for calculating NLO properties of 

molecules and oligomers because of its low computational cost and ease of 

implementation.
‎69,‎74,‎75

 The method only requires calculating the energy of the molecule in  

external fields. Unlike the previous schemes, it doesn’t require analytical derivatives with 

respect to the field components or any information about excited states. This makes it 

applicable to all levels of theory and easy programmable into new codes. It is an ideal 

technique to test new electronic structure methods.  

The finite field expressions for calculating the response properties are obtained by 

arranging Eq. (1.4) as 

 
( ) ( )

2

E F E F

F


 
    (1.19) 

 
2

( ) ( ) 2E(0)E F E F

F


  
    (1.20) 

 
 

3

(2 ) ( 2 ) 2 E( ) ( F)

2

E F E F F E

F


    
    (1.21) 

 
 

4

(2 ) ( 2 ) 4 E( ) ( F) 6 (0)E F E F F E E

F


     
    (1.22) 
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The finite field (FF) method has some limits and drawbacks. It is limited to the 

calculation of static response properties, because time-dependent fields are too 

complicated to be handled in a straightforward manner. But the most crucial downside is 

the dependence of the calculated response properties on the choice of the initial field 

strength for doing the calculation. This is a well-known problem of the FF method. 

Evaluation of response properties at too small fields leads to noise due to the finite 

convergence thresholds for the energy and wave function optimization. Choosing a too 

strong field strength also leads to inaccuracies that stem from two factors. First, the 

higher order terms in the Taylor expansion in Eq. (1.4) are not negligible anymore and 

contribute to the energy of the molecule. The second, and more problematic, effect is the 

change in the electron configuration of the molecule at a certain field strength. For fields 

that are sufficiently strong, an excited state at a zero field will become lower in energy 

than the former ground state. Hence, all properties evaluated at such field strengths reflect 

the behaviour of this excited state. Moreover, strong enough field strengths can lead to 

the ionization of the molecule. Therefore, obtaining meaningful molecular response 

properties by the FF method depends on doing the calculation in a window of feasible 

field strengths that have a lower bound of noise and an upper bound of results 

corresponding to the excited or ionized states of the system. Although this is a serious 

problem of the FF method, there is no systematic way of estimating the optimal field 

strength for evaluating these properties and avoiding nonmeaningful results.  
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Another problem of the FF method is that calculated FF properties need further 

refinements to eliminate contributions from the higher derivative terms in the Taylor 

expansion. A well-known scheme to improve the accuracy of the evaluated properties is 

based on Richardson extrapolation.‎
76

 Contamination from higher-order terms in the 

Taylor series is eliminated by applying Richardson extrapolation iteratively to values 

calculated at different initial field strengths. This scheme is known to improve the 

precision of the FF properties in the first few iterations.
‎15,‎69

 However, there are no 

thorough investigations of the number of iterations that lead to the most precise results.  

1.4 Electronic Structure Methods  

1.4.1 Introduction 

The main goal of computational chemistry is understanding, quantifying, and 

predicting chemical phenomena based on the fundamental equations and principles of 

theoretical chemistry. Computational chemists use efficient software to simulate atoms, 

molecules, and solids. Sometimes computational approaches are complementary to 

experiment:  for example, computational approaches can reveal chemical phenomena in 

atomistic detail. Assessing and improving some of the current computational approaches 

is one of the main goals of this thesis. 

The past few decades have witnessed a rapid increase in the types, size, and 

complexity of systems that can be approached with computational chemistry methods. 
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This progress has allowed theoretical chemists to enter new areas of application and 

provide new perspectives to other research fields, including biological chemistry and 

materials science. The increased scope of computational chemistry is attributed to two 

main factors: the exponential growth in computing power and the development of 

improved theoretical methods (mathematical methods and computer algorithms). The 

current scope of computational chemistry includes predicting molecular structures, 

electronic and thermal properties of materials, drug binding affinities, correlations 

between molecular structures and properties, vibrational frequencies, molecular spectra, 

electronic charge distributions, dipole and higher multipole moments, and (of primary 

relevance for this thesis) nonlinear optical properties of molecules and oligomers.
‎77-‎79

  

1.4.2 The Schrödinger Equation 

The shape of the potential energy surface (PES)
‎80

 determines the structure, function, 

and the dynamics of molecules and can be determined by solving the Schrödinger 

equation. Solving the Schrödinger equation gives a description of the position and motion 

of nuclei and electrons. The time-independent Schrödinger equation for a molecule can 

be written as 

 1 2 1 2 1 2 1 2
ˆ ( , ,...., , , ,...., ) ( , ,...., , , ,...., )N n N nH E  R R R r r r R R R r r r   (1.23) 

where Ĥ is the Hamiltonian operator (the sum of kinetic energy and potential energy 

operators for the system), Ψ is the wave function for nuclei and electrons in the molecule, 
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RI is the position of nucleus I and ri is the position of electron i, and E is the molecular 

energy associated with the wave function. The molecular Hamiltonian in atomic units for 

a molecule with n electrons and N nuclei can be written as 

  
2

21 1 1ˆ  
2 2

N n n N N n
I JI I

i

I i i I I J i jI iI IJ ij

Z ZZ
H

m r r r 


             (1.24) 

where mI and ZI are the mass and atomic numbers of the I
th

 atom and rij, rIJ, and riI are 

electron-electron, nucleus-nucleus, and electron-nucleus distances, respectively. The 

Schrödinger equation is solvable exactly for one-electron atoms only. For many-electron 

atoms and molecular systems, approximations must be introduced. 

One of the most popular approximations for solving the Schrödinger equation is the 

Born-Oppenheimer approximation.
‎81,‎82

 This approximation makes it possible to solve the 

Schrödinger equation exactly for some one-electron molecules. Moreover, the Born-

Oppenheimer approximation, or another similar approximation, is needed for defining the 

molecular potential energy surface, which is a fundamental concept in chemistry.  

Nuclei are much heavier than electrons, and thus their movement is much slower. 

The Born-Oppenheimer approximation assumes that electrons’ response to the movement 

of nuclei is instantaneous and electrons don’t move on the same timescale as the nuclei, 

and therefore the two movements can be separated. Therefore electrons can be treated as 

moving while nuclei are fixed. Mathematically, this corresponds to separating the total 
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molecular wave function into electronic and nuclear wave functions. In the electronic 

Hamiltonian, the kinetic-energy and potential-energy of the nuclei can be neglected,   

 
21 1ˆ  

2

n n N n
I

e i

i i I i jiI ij

Z
H

r r

         (1.25) 

The electronic energy is the eigenvalue of the electronic Hamiltonian. Adding the 

nucleus-nucleus repulsion energy to the electronic energy gives the molecular potential 

energy surface. Finding various approximations to the potential energy surface is one of 

the fundamental problems in theoretical quantum chemistry. Most computational 

chemistry methods involve computing the potential energy surface and using it to 

elucidate chemical phenomena. 

1.4.3 Hartree-Fock Approximation 

Further approximations for the molecular wave function are required because, except 

for a few very special cases, the electronic Schrödinger equation cannot be solved for 

many-electron systems. One of the most fundamental and earliest approximations is the 

Hartree-Fock (HF) method.‎
83

 Like other approximate wave function methods that are 

suitable for large systems, in Hartree-Fock the problematic electron-electron repulsion 

potential in the molecular Hamiltonian, Eq. (1.25), is replaced with a one-electron 

effective potential operator. The resulting Hartree-Fock equations are easily solvable for 

systems with hundreds, or even thousands, of electrons.  
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The Hartree-Fock method is the basis for molecular orbital (MO) theory. In this 

theory, the motion of an electron is described by a single-particle function (orbital) that 

isn’t explicitly dependent on the instantaneous motion of the rest of the electrons. 

Although the orbital picture is only a mathematical construct that approximates reality, 

the prevalence of the orbital picture in chemistry is an indication of the predictive power 

and appeal of the Hartree-Fock theory.  

The Hartree-Fock method is simply explained as describing the many-body electron 

wave function by a single Slater determinant constructed from one-electron molecular 

orbitals. Therefore, the Hartree-Fock wave function of an N-electron system will have the 

form  

  

1 1 2 1 1

1 2 2 2 2

1 2

1 2

( ) ( ) ... ( )

( ) ( ) ... ( )1
, ,...,

... ... ... ...!

( ) ( ) ... ( )

N

N

HF N

N N N N

N

  

  


  



r r r

r r r
r r r

r r r

  (1.26) 

where 
1

!N
 is a normalization constant. Exchanging two electrons in a Slater 

determinant changes the sign of the wave function, which satisfies the anti-symmetry 

requirements of a wave function and conforms to the Pauli principle. The electronic 

Hamiltonian is replaced by the Fock operator, 

          
/2

1

ˆ ˆ ˆ ˆ1 1 2 1 1
n

core

j j j

j

F H J K


     
      (1.27) 
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where    ˆ 1jF  
 

is the one-electron Fock operator, comprising the one-electron core 

Hamiltonian,  

   2

1

1

1ˆ 1
2

core A

A A

Z
H

r
      (1.28) 

the Coulomb operator,  

  
2

1

1 2 2 12
ˆ ( )j jJ d r  r r r   (1.29) 

the exchange operator,
 

   * 1

2 2 2 12
ˆ 1 ( ) ( )j j iK d r    r r r   (1.30) 

where 12 1 2r  r r . 

Using the one-electron Fock operator as a Hamiltonian to solve the one-electron 

Schrödinger equation gives one-electron wave functions for the system called the 

Hartree-Fock spin-orbitals  1i ,

 

      ˆ 1 1 1i i iF      (1.31) 

The Hartree-Fock wave function is a Slater determinant, and the electronic energy 

(for a normalized wave function) is given by the integral 

 ˆ
el HF HFE H     (1.32) 
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The variational principle states that the energy is always an upper bound to the true 

energy. Therefore, better Slater determinants are obtained by varying the molecular 

orbitals to minimize the energy. The correct set of molecular orbitals in a Slater 

determinant,
1{ } ,N

i i 
 is the one that minimizes the electronic energy Eel. These molecular 

orbitals are usually expressed as linear combinations of atomic orbital basis functions in 

the form,  

 ( ) ( )i

k k i

i

r c r    (1.33) 

where 
i is an atomic orbital basis function which is commonly written as atom-centered 

Gaussian type functions. For example, the 1s-type Gaussian orbital has the form 

    
23/4

2 / rr e       (1.34) 

where α is the Gaussian orbital exponent. Gaussian basis sets have the advantage that the 

integrals that appear in Eqs. (1.29), (1.30), and (1.32) can be evaluated analytically, 

instead of numerically. 

The main deficiency of the Hartree-Fock approximation is the absence of electron 

correlation: in the Hartree-Fock approximation, electrons move in an effective one-body 

potential, and the explicit electron-electron interactions (the two-electron repulsion term 

in the exact Hamiltonian) is neglected. The correlation energy is defined as 

 corr exact HFE E E    (1.35) 
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where Eexact is the true energy of the system, EHF is the Hartree-Fock energy.  

Many post-Hartree-Fock methods have been proposed for including electron 

correlation, and the Hartree-Fock method is usually a good starting point for these more 

sophisticated methods for molecules near their equilibrium geometry. As discussed in the 

next sections, some of the widely-used post-Hartree-Fock methods include Møller-Plesset 

perturbation theory, configuration interaction, and coupled cluster methods.  

1.4.4 Perturbation Theory 

Perturbation theory is a widely used approach in quantum chemistry to describe the 

state of complicated systems using a simpler system.‎
84

 The starting point of the theory is 

a simple and solvable system; a perturbation Hamiltonian that represents a (hopefully 

small) change to this system is then added. If the perturbations are small enough, 

quantities associated with the perturbed system, such as energy, can be written as 

corrections to those of the model system. In Møller-Plesset perturbation theory, better 

approximations to the true Hamiltonian of a system are obtained from the simpler 

Hartree-Fock Hamiltonian.  

In perturbation theory the Hamiltonian is written as 

 
   0 1ˆ ˆ ˆH H H    (1.36) 
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where  0
Ĥ is a model Hamiltonian (e.g., Hartree-Fock; cf. Eq. (1.27)) with known 

eigenfunctions,  1
Ĥ is a perturbing Hamiltonian, and λ is a parameter that controls the 

size of the perturbation. The perturbation expansion of the ground-state wave function 

and energy can be expressed as power series 

  0 (1) 2 (2) .....i i i i          (1.37) 

  0 (1) 2 (2) .....i i i i          (1.38) 

where ( ) ( ) and n n

i i are the nth-order correction to the model’s wave function and energy,

 0 (0) and i i , respectively.  

Substituting these equations into the Schrödinger equation and equating terms, order-

by-order, in λ gives the working equations of perturbation theory. This approach allows 

for the approximation of the energies and wave functions of a difficult-to-solve 

Hamiltonian (like the exact electronic Hamiltonian) from an easier-to-solve model 

Hamiltonian (like the Hartree-Fock Hamiltonian). When the model Hamiltonian is the 

Hartree-Fock Hamiltonian, this approach is called Møller-Plesset perturbation theory.
‎85,‎86

 

Møller-Plesset perturbation theory, like all post Hartree-Fock methods, is more 

computationally demanding than Hartree-Fock. Developing numerical strategies for using 

Møller-Plesset perturbation theory for large systems is an area of active research in 

electronic structure theory. Without specialized software, it is difficult to routinely 
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compute the second-order Møller-Plesset energy for molecules containing more than 

about 50 atoms. 

1.4.5 Configuration Interaction 

The configuration interaction (CI)‎
87

 theory extends the Hartree-Fock (HF) method by 

modelling the wave function as a linear combination of multiple Slater determinants, 

rather than the single Slater determinant used in HF.  

The coefficients of the Slater determinants, which are different for each excited state 

j, are obtained by solving the eigenvalue problem 

 ˆ ( ; ) ( ; )j j jH E  r rR R   (1.39) 

where 

 
1

 
M

j ij i

i

c


     (1.40) 

For HF theory, this sum has only a single term: one Slater determinant constructed from 

the occupied HF one-electron orbitals. If { }i is a complete set of determinants within 

the basis of occupied and unoccupied Hartree-Fock orbitals, then Eq. (1.40) is called the 

full-configuration interaction (full-CI) method. This is an exact solution to the 

Schrödinger equation within this basis, but it is computationally intractable for systems 

with more than about 10 electrons.  Developing algorithms and software for computing 
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the full-CI theory for larger systems (up to maybe 100 electrons) is an extremely active 

area of research in electronic structure theory. 

For larger molecules, it is traditional to truncate the CI expansion in Eq. (1.40) by 

including only low-order excitations of the Hartree-Fock reference determinant. Consider 

the full-CI wave function, written in terms of the Hartree-Fock determinant, 
HF , and its 

single, double, etc. excitations:    

 
. vir. . vir.

0  + +... 
occ occ

a a ab ab

HF i i ij ij

i a i j a b

c c c
 

         (1.41) 

Here i, j, … denote occupied orbitals, a, b, … denote virtual orbitals, and a

i is a singly-

excited Slater determinant generated by replacing a spin orbital i with a spin orbital a (or 

exciting one electron from orbital i to orbital a). It is common to truncate the expansion in 

Eq. (1.41) after double-excitations; this is called the configuration interaction with single 

and double excitations (CISD) method. CISD is routinely applied to molecules with a few 

tens of atoms. 

The CI method can be applied to excited states and open-shell systems; it can 

simulate systems far from their equilibrium geometries. In many cases, however, one 

needs to include some highly excited determinants. Finding accurate but computationally 

efficient ways to truncate the CI expansion in Eq. (1.41) is another research topic in 

electronic structure theory. 
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1.4.6 Coupled Cluster 

The coupled cluster (CC) method is a mathematically elegant scheme and among the 

most popular methods for estimating the electron correlation energy.‎
88

 It is commonly 

used to benchmark other methods, like the density functional theory methods described 

below. The most popular coupled cluster methods are applicable for small to medium-

sized molecules (up to a few tens of atoms), though there has been significant recent 

progress on extending coupled cluster techniques to systems with a few hundred atoms.  

In the coupled cluster method, the full-CI wave function is constructed using the 

exponential ansatz,  

 T̂

HFe     (1.42) 

As before, 
HF is a Slater determinant and ˆ ,T the cluster operator that is used to account 

for electron correlation, is defined with the expansion 

 1 2 3
ˆ ˆ ˆ ˆ ˆ... nT T T T T       (1.43) 

Here n is the total number of electrons in the system, and the operator ˆ
iT generates all 

possible determinants with i excitations from the reference HF wave function. For 

example, 1T̂ and 2T̂ , the operators for all single and double excitations, respectively, are 

written as 
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. .

1
ˆ

occ vir
a a

i i

i a

T t    (1.44) 

 
. .

2
ˆ

occ vir
ab ab

ij ij

i j a b

T t
 

    (1.45) 

where i, j, … denote occupied orbitals and a, b, … denote unoccupied orbitals. Finding 

the coupled cluster wave function requires solving for the cluster amplitudes, a

it , ab

ijt , etc.   

Applying the one- and two-particle excitation operators, 1T̂ and 2T̂ , to the 

reference wave function 
HF transforms it into a linear combination of singly- and 

doubly-excited Slater determinants, respectively. That is, the CISD wave function could 

be rewritten as  

  1 2
ˆ ˆ1CISD HFT T       (1.46) 

and full-CI corresponds to applying the entire operator,    1 2 3
ˆ ˆ ˆ ˆ1 1T T T T       to 

the Hartree-Fock wave function.  

 The advantage of CC’s exponential ansatz over the CI expansion is realized when 

one truncates the excitation level. For example, if one considers only double excitations, 

the CCD wave function is 

 

ˆ

2 3

2 2
2

ˆ ˆ
ˆ        1 ...

2! 3!

T

CCD HF

HF

e

T T
T

  

 
      
 

  (1.47) 
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where CCD denotes coupled cluster with the double excitation operator only. In this 

expression, each application of 2T̂
 
gives a double excitation. So 

2

2T̂ , the product of two 

consecutive double excitations, generates quadruple excitations; 
3

2T̂  generates hextuple 

excitations, and so on. Therefore, with only the double-excitation operator, more than 

doubly-excited Slater determinants contribute to the cc wave function. This 

approximation is preferable to ―leaving out‖ these excitations (as is done in the 

corresponding CID method) as long as the excitations can be considered independently.  

Substituting the coupled cluster wave function into the Schrödinger equation gives 

 

 

ˆ ˆ

ˆ ˆ

1 2

          

ˆ ˆ                            1 ...

T T

HF HF

T T

HF HF cc HF HF

cc HF HF

He Ee

He E e

E T T

  

    

     

  (1.48) 

And the coupled cluster energy is 

 T̂

cc HF HFE He     (1.49) 

If the excitations are limited to single and double excited Slater determinants, the coupled 

cluster energy becomes 

  
occ vir occ vir

a a ab a b b a ab

cc HF i HF i ij i j i j HF ij

i a i j a b

E E t H t t t t t H
 

            (1.50) 
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Coupled cluster methods are classified according to the highest number of 

excitations in the cluster operator ˆ.T  CCSD means coupled cluster with single and 

double excitations. Adding triple excitations explicitly to CCSD makes it too 

computationally demanding and restricts its application only to very small molecules. 

This led to the development of several approaches to estimate the effects of triple 

excitations using perturbation theory. The most robust and widely used method is called 

CCSD(T), a coupled cluster with single and double excitations, with the contribution of 

triple excitations are estimated by perturbation theory. The method is very effective in 

producing accurate results and is often called the ―gold standard‖ for quantum chemistry 

calculations.  

1.4.7 Density Functional Theory 

Density functional theory (DFT) is the most popular quantum chemistry method for 

modelling systems in chemistry, physics, and materials science.
‎89-‎91

 Like post Hartree-

Fock methods, DFT provides an approximate treatment of the electron correlation. 

However, while post Hartree-Fock methods are obviously more computationally 

expensive than the underlying Hartree-Fock approximation, DFT methods have 

comparable computational cost to Hartree-Fock. This makes DFT one of the most 

efficient and versatile methods for studying the electronic structures of many-body 

systems. It is widely used to study organic reactions, biological processes, and solid-state 

materials.  
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Unlike post-Hartree-Fock methods, DFT does not treat electron correlation using a 

complicated wave function, but instead uses only the ground-state electron density. The 

electron density is a simpler mathematical formalism than the many-electron wave 

function because it depends on only three variables: the three Cartesian coordinates x, y, 

and z, while the wave function depends on three spatial and one spin coordinates for 

every electron when nuclear positions are fixed. The fact that the electron density is a 

physical observable makes it a simpler conceptual object, unlike the many-body wave 

function which is essentially uninterpretable and can’t be grasped intuitively.  

The central quantity of DFT, the ground-state electron density,   r , can be 

obtained from the ground-state N-electron wave function by  

    
2

1 2 1 2... , ,..., ...d  N NN d d   r x x x s x x   (1.51) 

Here   r is the probability of finding an electron within the volume element dr, r is a 

spatial variable, s is a spin variable, and x denotes both spatial and spin variables. For a 

molecule, the electron density is nonnegative, vanishes at infinity, and integrates to the 

number of electrons 

  N d  r r   (1.52) 

The first Hohenberg-Kohn theorem
‎92

 indicates that the ground-state electron density 

completely specifies all molecular properties, including the electronic energy, many-
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electron wave function, and molecular potential energy surface. The exact electronic 

energy, Eel, of a system can therefore be written as a functional of the electron density, 

  elE E    r  (1.53) 

It is convenient to expand the energy functional as a sum of two pieces, one of which can 

be evaluated exactly from the electron density and the other of which needs to be 

approximated, 

          extE V d F         r r r r r   (1.54) 

The first term, which is known exactly, represents the interactions of electrons with an 

external potential Vext(r) typically due to nuclei. The second term is the sum of the kinetic 

energy of electrons and electron-electron interactions. According to the second 

Hohenberg-Kohn theorem, the ground-state energy is obtained by the variational 

minimization of the energy expression in Eq. (1.54) with respect to the electron density. 

DFT replaces the difficult problem of solving the electronic Schrödinger equation 

with the problem of approximately determining the Hohenberg-Kohn function, F[ρ(r)]. 

The problem is that there are no known explicit mathematical expressions for the 

Hohenberg-Kohn functional. In 1965 Kohn and Sham
‎93

 suggested replacing the correct 

Hamiltonian, which contains the problematic electron-electron interaction term, with the 

Hamiltonian of a non-interacting system of electrons that has the same ground-state 

electron density as the correct Hamiltonian. Like the Hartree-Fock Hamiltonian, the 
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Kohn-Sham Hamiltonian can be described as a sum of one-electron operators, its 

eigenfunctions are Slater determinants, and its eigenvalues are the sum of one-electron 

eigenvalues.  

The next key idea is that the exact energy can be written as the energy of the 

fictitious system of noninteracting electrons, plus correction factors that account for the 

interactions between electrons, 

              S ext eeE T V d J T V                           r r r r r r r r  

 (1.55) 

Here  ST   r  is the kinetic energy of the fictitious system of non-interacting electrons, 

which is the sum of the kinetic energy of occupied Kohn-Sham orbitals;   J   r is the 

classical electron-electron repulsion,  T    r is the difference between the kinetic 

energy of the real and the non-interacting systems, and  eeV    r is the non-classical 

portion of the electron-electron repulsion, including exchange (from the Pauli exclusion 

principle) and electron correlation effects. The last two terms,  T    r and 

 eeV    r , are difficult to approximate explicitly, so they are combined together to 

form a single unknown function called the exchange-correlation energy, 

      XC eeE T V              r r r   (1.56) 

Eq (1.55) becomes 

          S ne ee XCE T V V E                         r r r r r   (1.57) 
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This last term, the exchange-correlation energy functional, is the only term that is 

unknown. Current research in DFT focuses on designing improved approximations to 

EXC. 

The Kohn-Sham energy functional, Eq. (1.57), can be written as an orbital 

expression for the density as 

 
         

   

 

2
1 2

1 2

1 1 2

1
  

2 2

                        

n

i i ext

i

XC

E d V d d d

E

 
   





 
         

   

   
r r

r r r r r r r r r
r r

r

 

 (1.58) 

where n is the number of electrons. The electron density is just the sum of the occupied 

orbital densities,  

    
2

1

n

i

i

 


r r   (1.59) 

Similar to Hartree-Fock, the orbitals that minimize E satisfy the one-electron Kohn-Sham 

equations 

    1 1
ˆ

i i i iG   r r   (1.60) 

where ˆ
iG is the Kohn-Sham one-electron operator 

    
 

 
2

21
2 1

1 1 12

ˆ 1  
2

N
A

XC

A A

Z
G d V

r r







        

r
r r   (1.61) 
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Here the exchange-correlation potential,  XCV r , is defined as the functional derivative 

of the exchange-correlation energy functional, 

  
 
 

xc

XC

E
V

 


r

r
  (1.62) 

As in Hartree-Fock, the Kohn-Sham orbitals are expanded using basis functions, {ϕ}, and 

then the energy expression, Eq. (1.58) is minimized. This amounts to self-consistently 

solving the Kohn-Sham equations (1.60). The Kohn-Sham equations can be solved using 

the same iterative solvers that are used in Hartree-Fock theory, simply by replacing the 

Fock operator F̂  by the Kohn-Sham operator Ĝ . 

Solving the Kohn-Sham equations has about the same computational cost as solving 

the Hartree-Fock equations, but DFT approximately includes the effects of electron 

correlation, which the Hartree-Fock method lacks. A key philosophical difference 

between HF and DFT is that while in Hartree-Fock one approximates the wave function, 

and then solves the resulting equations exactly. In DFT, the exchange-correlation energy 

functional is approximated, and then the resulting (approximate) equations are solved. 

Unlike HF, DFT is in principle exact: it is only limited by the difficulty of constructing 

effective exchange-correlation energy functionals.  

DFT methods offer an excellent combination of computational cost and accuracy. 

The affordability of DFT is enabling computational chemistry to make the transition from 



 

 

 

 

 

  Ph.D. Thesis – Ahmed Mohammed                             McMaster University – Chem & Chem Bio  

 

 

37 
 

describing small molecules to designing large systems like proteins, supramolecular 

structures, and materials with specific properties.  

1.4.8 Exchange-Correlation Functionals 

The first Hohenberg-Kohn theorem is an existence theorem: they proved that all 

molecular properties, including the ground-state electronic energy and the exchange-

correlation energy, can be written as a density functional. They did not present the form 

of this functional and, indeed, it is debatable whether an explicit expression for the 

functional exists.‎
94

 Kohn-Sham DFT is limited, therefore, by our ability to approximate 

the unknown term in the Kohn-Sham energy functional, the exchange-correlation energy 

XCE . 
XCE  includes the effects of electron exchange and correlation, the correction for 

self-interaction between electrons, and the difference in kinetic energy between the real 

and fictitious non-interacting systems. Different types of approximations for 
XCE  are 

discussed in the next sections.  

1.4.8.1 The Local Density Approximation 

Most approximate exchange-correlation functionals are based upon the local density 

approximation (LDA). LDA assumes that the energy of an electron at a point r depends 

only on the electron density at this point. Typically functionals of this type are derived 

from the uniform electron gas, a system with constant electron density where the external 
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potential is a constant neutralizing positive background charge, so that the net charge of 

this infinite system is zero.   

Within the LDA approximation, the exchange-correlation energy, 
XCE , can be 

written as 

        LDA

XC XCE d     r r r   (1.63) 

where   XC  r  is the exchange-correlation energy per electron for the uniform 

electron gas. The quantity   XC  r can be split into exchange and correlation 

contributions 

         XC X C      r r r   (1.64) 

Dirac‎
95

 derived the exchange part as 

 
 

1/3

33

4
X






 
   

 

r
  (1.65) 

This term represents the exchange energy of one electron in the uniform electron gas. For 

the correlation part, however, no explicit expression is known. 

The LDA gives bond lengths for molecules and solids with high accuracy (~2%). 

However, its accuracy for ionization energies of atoms and dissociation energies is 
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inferior to Hartree-Fock and it can fail in systems with strong electron correlation. The 

level of accuracy provided by LDA is not suitable for most applications in chemistry.  

1.4.8.2 The Generalized Gradient Approximation 

The LDA approximation assumes that the exchange-correlation energy density at the 

point r depends only on the electron density at that point, so it fails when the electron 

density changes rapidly, as it does in atoms and molecules. To include the effects of 

changes in the electron density at the point, one can express the exchange-correlation 

energy density as a function of the magnitude of the gradient of the density as well as the 

density at the point. This is the generalized gradient approximation (GGA), and 

corresponds to the expression 

       ; ,GGA GGA     r r r   (1.66) 

Including the gradient of the density leads to significant improvements over the LDA 

functionals. It was the first density functional approximation that had sufficient accuracy 

for many chemical applications. Any functional that is an explicit functional of the 

electron density and its derivatives are called pure density functionals. LDA and GGAs 

are the most popular types of pure functionals. GGAs are the most popular functionals for 

simulating condensed matter like solids, liquids, and complex materials. 
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1.4.8.3 Hybrid Functionals 

Another class of approximations to the exchange-correlation energy is the hybrid 

functionals. These functionals combine a portion of exact exchange from the Hartree-

Fock method with a more traditional density functional, typically a GGA. Hybrid 

functionals have the general form 

 (1 )hyb HF DFT DFT

XC X X CE E E E       (1.67) 

This approach generally performs better than pure functionals, helps in correcting the 

―shortsightedness‖ of DFT potential, and reduces the self-interacting error. It provides 

more accurate results for many molecular properties such as bond lengths, atomization 

energies, reaction rates, and vibrational frequencies. Hybrid-GGAs are the most popular 

functionals for molecular quantum chemistry. 

1.4.8.4 Long-range Corrected Functionals 

Pure DFT exchange-correlation functionals use the electron density and its 

derivatives at the point r to construct the exchange-correlation energy density at that 

point. This tends to underestimate long-range electron exchange-correlation, and leads to 

significant self-interaction errors, especially in many-electron systems. Long-range 

exchange corrections help overcome this problem.  
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In the long-range corrected functionals, the two-electron operator 
12

1

r
is generally 

separated into short-range and long-range parts using an Ewald-inspired decomposition, 

 
   12 12

12 12 12

11 erf r erf r

r r r

 
    (1.68) 

where erf is the standard error function, and λ is a parameter that determines the 

characteristic distance that separates the long-range (the first term in Eq. (1.68)) and 

short-range (the second term in Eq. (1.68)) contributions. Traditional pure density 

functionals are accurate for the short-range functional, while Hartree-Fock is more 

reliable for the long-range functional. If exact HF exchange is used at long range, then 

asymptotic decay of DFT potential is correct. 

Long-range corrected functionals give better molecular properties, including 

equilibrium geometries, ionization energies, charge transfer excitations, and response 

properties, for a wide range of molecules, including long chains of π-conjugated 

molecules, which are known for their nonlinear optical properties. CAM-B3LYP, a long-

range corrected functional used in this work, predicts accurate geometries and bond-

length alternation for conjugated systems.  
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1.5 Summary 

In chapter two we present what is, to our knowledge, the first thorough investigation 

of the reliability of the finite field method for evaluating the polarizability and 

hyperpolarizabilities of atoms and molecules; we also propose ways to reduce the 

numerical error of these calculations. The dependence of the calculated FF property on 

field strengths is investigated, and we observe that, for each molecule there is a region of 

feasible field strengths which depends on the structure of the molecule, the order of the 

response property, and the presence of diffuse basis functions. Calculations done using 

fields below the feasible region suffer from too large round-off errors; fields that are 

stronger than the feasible region are also problematic, probably because they cause a 

cross-over between the zero-field ground and excited state energies.  

Within the feasible field region, the main source of error is the contribution of these 

higher-order derivatives in the Taylor expansion. We observe that the first two refinement 

steps by Richardson extrapolation reduce the error by one or two orders of magnitude for 

the second hyperpolarizability, γ. (Additional refinement steps don’t lead to further 

improvement of the accuracy due to the accumulation of numerical errors.) We also show 

that the conventional choice of a factor of two when generating the geometric progression 

of field strengths used for the calculation of the FF properties is suboptimal. Based on our 

dataset of 120 molecules, a common ratio of x < 2 and two steps of refinements give the 

most precise results for γ.  
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Chapter 2 uses a thorough, but computationally costly, search to find the optimal 

field strength. In practical calculations one wishes to find a nearly optimal field very 

quickly. Chapter 3 presents the first protocol for predicting optimal field strengths for 

calculating the second hyperpolarizabilities γ. First we search for correlations between 

the optimal field strength with various molecular descriptors. In general, strong 

correlations were found between the optimal field strength of γ and descriptors of the size 

of the molecule. The best correlation was the maximum internuclear distance within a 

molecule in the direction of the applied field.  

A protocol to estimate the optimal field strength for γ was developed based on these 

findings. This protocol was used successfully to predict the optimal field strength for ten 

molecules. Predicting the optimal field through a cheap and readily available structural 

parameter like the longitudinal distance reduces the number of field-dependent energy 

evaluation and removes the requirement for human intervention in finite field 

calculations.  

The optimal field for calculating β, an odd-order derivative of energy, however, 

shows very different behaviour than γ, an even-order energy derivative. This field doesn’t 

depend on molecular size and depends, instead, on the structure of the molecule. 

Categorizing molecules by the functional groups they contain was the best way to 

estimate the optimal field for calculating β.  
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Chapter four presents a benchmark study of various DFT functionals against 

CCSD(T) for calculating the second hyperpolarizability γ for a data set of 30 molecules. 

This study shows the limitation of conventional DFT functionals for evaluating the 

second hyperpolarizability of organic molecules and oligomers. The error of these 

functionals depends on the size of the molecule, which leads to disastrous results for 

medium-sized and large molecules.  

The performance of different DFT functionals depends on the system under 

consideration. Pure functionals perform better than other models only for aromatic 

molecules. For the rest of the dataset, hybrid functionals, which contain exact HF and 

DFT exchange, perform better than pure ones, but still have errors that increase linearly 

with the size of the molecule. Long-range corrected hybrid functionals perform better 

than the rest of functions; this is probably because these functionals give better band 

gaps, have better long-range behaviour for the Kohn-Sham potential, and provide a more 

accurate treatment of electron delocalization in and through bonds. 

Chapter 4 also sheds light on the contribution of electron correlation to the calculated 

γ values. Hartree-Fock consistently underestimates γ because it lacks electron correlation. 

The study examines the validity of using CCSD(T) as a benchmarking method for π-

conjugated systems. We report a progressive deviation of CCSD from CCSD(T) for 

conjugated systems as the chain lengthens, which indicates that either the connected 
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triples excitations have significant contribution to γ values or the overestimation of triples 

contribution by perturbation theory.  

Chapter five presents a variation of the finite field method for calculating dipole 

polarizability and the first and second hyperpolarizabilities using a rational function 

model, instead of the Taylor expansion (as in the preceding chapters). We detected the 

optimal form of the rational model, determined the optimal distribution of fields, and 

showed a reliable way to choose the initial field strength for the accurate calculation of 

response properties.  

The rational function model and the polynomial model have similar errors. However, 

the rational functions, unlike polynomial models, do not need further (Richardson-like) 

refinements. This gives rational functionals a lower computational cost and ease of 

implementation. Moreover, the rational function model is less sensitive to the choice of 

the initial field strength and has wider feasible field regions.  

In addition to the work included in this thesis, I also conducted three other studies in 

my current group (at McMaster University). The first was extending our investigation of 

γ (chapters 2 and 3) to the dipole polarizability, α, and the first hyperpolarizability, β. α 

showed a very similar behaviour to that of γ, because both of them are even-order energy 

derivatives. Two steps of refinements by Richardson extrapolation increased the accuracy 

of α by about two orders of magnitude. The calculated α values, being lower energy 

derivatives than γ, were stable over a wide range of common ratios. Nonetheless, using x 
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< 2 for the geometric progression of field strengths in the refinement steps is favourable. 

The optimal field strength for calculating α has the strongest correlations with maximum 

internuclear distance in the direction of the applied field as well. A similar protocol to 

estimate the optimal field was developed and successfully tested.  

The first hyperpolarizability, β, on the other hand, being an odd-order energy 

derivative, shows a different pattern from α and γ. Similar to γ, β values benefit from 

using a common ratio x < 2 for the geometric progression of field strengths. The values 

gain about one order of magnitude in precision from the first step of refinement, without 

any systematic increase in precision with further steps. This study is in preparation for 

publication. 

Second, I conducted a study on a new pH-responsive molecular tweezer that has 

been proposed for drug delivery. This study supported the experimental finding that the 

tweezer can potentially be used as a drug carrier and provided new insights into the 

preferred conformation of the protonated tweezer. The study showed that the tweezer is 

flexible with small barriers for conformational changes, that the preferred conformation 

depends on the protonation state of the tweezer, and that the tweezer can hold aromatic 

molecules between its arms through noncovalent interactions. We were able to observe 

the dynamics of pH-induced conformational change and the drug release process through 

molecular dynamics simulations. The barrier to conformation change, the pH required to 

open the tweezer, and the drug binding energy can be tuned by substitution with 
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functional groups. This study provides a protocol to test tweezers for desirable properties. 

This study was published in the Journal of Computational Chemistry.‎
96

  

Third, I tested the adequacy of cluster models to predict pKa values of amino acid 

residues in proteins. Results for this model were compared to other approaches such as 

the numerical solution of Poisson-Boltzmann equation and those obtained by numerical 

fitting. The cluster model predicts far too low pKa values. This underestimation is due to 

the overestimation of the stabilizing effect of nearby residues with positive charges and 

the underestimation of the hydrophobic effect by continuum solvation models. This study 

shows the importance of including the hydrophobic environment of protein residues in 

calculating pKas. This study was published as a book chapter (in press).‎
97
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 Chapter 2

Finding Optimal Finite Field Strengths Allowing 

for a Maximum of Precision in the Calculation of 

Polarizabilities and Hyperpolarizabilities
*
 

2.1 Motivation 

The finite field (FF) method is a fast and easy-to-implement numerical technique that 

is widely used for calculating the static dipole polarizabilities and hyperpolarizabilities of 

molecules and polymers. Although the FF method has been extensively used for 

calculating nonlinear optical properties of molecules, there are no systematic 

investigations of its performance or comparisons with more accurate methods. A well-

known drawback of the FF approach is the dependence of the calculated quantity on the 

initial field strength. Nonetheless, there are no thorough examinations of the nature of this 

dependence or schemes to guarantee reliable calculations. Another problem of the FF 

                                                           
*
 This chapter was originally published as A. A. K. Mohammed, P. A. Limacher, B. Champagne, 

J. Comput. Chem. 34, 1497 (2013). 
†
 This chapter was originally published as A. A. K. Mohammed, P. A. Limacher, P. W. Ayers, 
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methods is the contamination of the FF results from higher order terms in the Taylor 

expansion. A few iterations of Richardson extrapolation are widely used to reduce this 

effect. But it is not clear if there is an optimal number of iterations.  

This chapter presents a thorough investigation of the FF method. An overview of the 

method is outlined and the equations required for calculating response properties are 

derived. The two main problems of the FF method, dependence on field strength and the 

need for refinement, are explored. A range of feasible field strengths that guarantee 

reliable numerical results is established. The quality of different types of meshes to 

screen the feasible region is assessed. Extrapolation schemes are presented that reduce the 

truncation error and increase the precision of the finite field calculations. 

2.2 Introduction 

Nonlinear optical (NLO) properties of molecules and polymers are a subject of high 

importance in organic chemistry and materials sciences.‎
1
 The theoretical prediction of 

NLO properties based on quantum chemical calculations is challenging and the 

development of new, along with improvement of existing, methodology remains a 

substantial demand for computational chemistry.
‎2,‎3

 The difficulties that occur in such 

calculations are related to the fact that the NLO properties render themselves very fragile 

quantities being high-order derivatives of the energy or of lower-order response 
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properties. If the dependence of the energy E on an external homogeneous static electric 

field F is written as a Taylor expansion of the form 

    
2 3 4

2 3 4

2 3 4

0 0 0 0

1 1 1
  0      

2! 3! 4!

E E E E
E F E F F F F

F F F F

   
     

   
  (2.1) 

     2 3 41 1 1
  0  μ α β γ

2 6 24
E F E F F F F       (2.2) 

the nonlinear responses, namely the first and second hyperpolarizabilities β and γ, are the 

third and fourth derivatives of E with respect to F. The other quantities are the permanent 

dipole moment μ and the dipole polarizability α. 

The finite field (FF) method is a straightforward, easy-to-implement technique for 

the calculation of hyperpolarizabilities. In contrast to other methods such as the sum over 

states approach, coupled-perturbed Hartree-Fock, or response theory, the property of 

interest can be calculated simply from the knowledge of the energy at certain field 

strengths, and no additional information is needed about excited states or analytical 

derivatives with respect to the field components. These benefits render the FF method an 

universally applicable technique to any level of theory, with no additional requirements to 

a quantum chemical program other than to allow for an extra electric field term in the 

Hamiltonian.‎
4
 It is thus common practice to first implement the FF method for the 

evaluation of hyperpolarizabilities in newly designed programs or homebuilt quantum 

chemistry codes.
‎5-‎12
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On the other hand, the FF method has also certain down-sides. It is, for example, 

limited to the evaluation of static molecular properties, as time-dependent fields cannot 

be handled in a straightforward manner. Most crucial, however, is the dependence of the 

outcome of an FF calculation on the initially chosen field strength. It is well-known that 

too small fields introduce numerical noise on the calculated properties due to the finite 

convergence thresholds for the energy and wave function optimization. These parameters 

are thus generally tightened by orders of magnitude for hyperpolarizability evaluations 

compared to an ordinary single point energy calculation. The problem with too small 

fields persists, however, due to the finite precision arithmetics of every computer, and can 

only be mitigated at most. 

At the other end of the scale, there is also an upper bound for feasible field strengths. 

A field chosen too strong leads to an inaccurate evaluation of molecular properties driven 

by two different factors: First of all, the higher-order terms in the Taylor expansion of Eq. 

(2.2) lead to non-negligible contributions to the overall energy with increasing field 

strength. This effect is systematic and can be cancelled out by linear combination of 

properties obtained at different field strengths, which is usually applied in literature.
‎13-‎18

 

A second, more cumbersome effect is the change in the electron configuration of the 

system at a certain field strength.‎
19

 The perturbative potential associated with an external 

homogeneous electric field modifies the Hamiltonian of a system in such a way that its 

spectrum becomes unbound and, as a consequence, the true ground state would 
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correspond to a completely ionized molecular core with all electrons located at minus 

infinity. In practice however, the use of finite, atom-centered basis sets prevents such 

behaviour. If the field strength in such a calculation is chosen decently enough, the 

ground state, corresponding to a metastable state in the infinite basis set description, will 

closely resemble the ground state of a zero field calculation. For too strong fields 

however, an excited state at zero field could become favourable in energy and changes 

place with the former ground state. Hence, all properties evaluated at such field strengths 

reflect the behaviour of this excited state. Moreover, quantum chemical methods lacking 

multireference character often fail to converge in the vicinity of the intersection between 

these states. 

In conclusion, choosing a reasonable field strength for an FF calculation requires 

coping with a rather delicate balance between the two extremes of too weak fields, 

leading to numerical errors that can be several orders of magnitude larger than the actual 

property of interest, and too strong fields causing the calculation of properties for an 

excited state. 

This study intends to analyze the FF method in details for a broad range of field 

strengths, to characterize the behaviour of the noise at the low field limit, and to give 

prescriptions about how to find a critical upper limit for the field. Once the region of 

feasible field strengths is identified, the issue will be addressed of how to reach a 

maximum of precision using different FF meshes and extrapolation techniques. The final 
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section contains the application of the different extrapolation schemes to some exemplary 

molecules. 

2.3 Methods 

2.3.1 FF equations for the electric field derivatives 

The FF formulae needed to compute the different tensor elements of the successive 

electric properties are straightforward to derive and treated in-depth in many excellent 

text books and articles.
‎6,‎20 

Nevertheless, they are quickly recapitulated here as certain 

aspects should be highlighted to provide useful insights exploited in later sections. 

The Taylor expansion of Eq. (2.2) can be split into an even and an odd part 

introducing symmetric and antisymmetric linear combinations of the energy at equal 

positive and negative fields: 

  
   

  2 4 6
  1 1

  0 α γ ( )
2 2 24

S

E F E F
E F E F F O F

 
       (2.3) 

  
    3 5 7

  1 1
   μ β δ ( )

2 6 120
A

E F E F
E F F F F O F

 
       (2.4) 

This allows a completely separate treatment of the polarizabilities and even order 

hyperpolarizabilities decoupled from any effects of the dipole moment and all odd order 
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hyperpolarizabilities, which characterize noncentrosymmetric molecules. The dipole 

moments and polarizabilities can be obtained directly, rearranging these equations to 

  
  2 4 6

  1 1
μ   μ β δ ( )

6 120

AE F
F F F O F

F
        (2.5) 

  
    2 4 6

2

  0   1 1
α 2 α γ ε ( )

12 360

SE E F
F F F O F

F


       (2.6) 

which are already good estimates for μ and α under the assumption that F is chosen small 

enough. 

For the evaluation of β and γ, the energy has to be known at two different field 

strengths, chosen here to be F and 2F, besides the energy at zero field. This allows to 

eliminate μ and α from Eqs. (2.5) and (2.6) to yield 

  
        2 4

2 3

μ 2 μ 2  2 1
β 2   β δ ( )

4

A AF F E F E F
F F O F

F F

 
       (2.7) 

  
          2 4

2 4

α 2 α 2 2  8 6 0 1
γ 4   γ ε ( )

6

S SF F E F E F E
F F O F

F F

   
      

 (2.8) 

The last equality in Eqs. (2.5)–(2.8) shows that all electric properties can be 

formulated as Taylor expansions in the same fashion as the energy in Eq. (2.2). Any 

quantity may thus be calculated as well from analytical dipole moments  0  and 
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 F   using Eq. (2.5), or analytical polarizabilities  0  and  F   using Eq. (2.6), 

etc. This leads to less and less finite differences to take and consequently to more precise 

results. There are, however, other methods to reduce the numerical error based on 

different extrapolation schemes. 

2.3.2 Error reduction 

A well-established method to lift the scaling of the error in Eqs. (2.5)–(2.8) to higher 

orders is based on Richardson extrapolation.‎
21

 Specifically in quantum chemistry, this 

approach is equally well known as Romberg differentiation due to its similarity with the 

numerical integration scheme of the same name.‎
13

 Both approaches are in fact exactly the 

same and were successfully applied in the past.
‎15,‎16,‎22

 

Two given Taylor expansions of an arbitrary quantity q evaluated at different field 

strengths F and xF 

     2 30q F q aF bF cF       (2.9) 

     2 2 3 30q xF q axF bx F cx F      (2.10) 

can be combined to obtain 

       2 2  ( 1) 0 ( ) ( ) .m m m mx q F q xF x q x x aF x x bF          (2.11) 



 

 

 

 

 

  Ph.D. Thesis – Ahmed Mohammed                             McMaster University – Chem & Chem Bio  

 

 

63 
 

in order to remove a certain power of F from the expansion by a proper choice of m. If q 

is evaluated for a number of field strengths following a geometric progression 

 ,0

n

nq q x F  with common ratio x, then all the   nq x F form a set of zero-order 

approximations for  0q . Refined values for  0q are obtained by acting on this set with 

the recursive relation 

 
, 1 1, 1

,

 
 

1

m

n m n m

n m m

x q q
q

x

  



  (2.12) 

For every refinement step m, the scaling power of the error is increased by one. Thus, 

if numerical values of 
,0nq are known for a geometric progression of, for example, five 

field strengths, the final 
0,4q  is an approximation for  0q  with the error scaling only as 

4( ).O F  

Richardson extrapolation is widely used in literature to refine the precision of FF 

properties, especially for the higher-order derivatives β and γ, which significantly 

improve during the first few iterations.‎
23

 Further refinement, however, is not possible, as 

the quality of the result drops, once the range of field strengths spanned by the geometric 

progression extends beyond the feasible region. 

A remedy for this is to shrink the ratio x of the progression such that more data 

points lie within the feasible region. Although it is common practice to work with x = 2, 
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values of x < 2 were found to improve the precision.‎
13

 To this end, formulae (2.7) and 

(2.8) have to be generalized to 

  
       

2 2 3 2

μ μ  6 6
 β         .            . 

1   1

A A

x

xF F xE F E xF
F

x F F x

 
 

 
  (2.13) 

  
       

 
2
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α α12 24
γ  .   0
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S S
F

xF F x E F E xF
E

x F F x x

  
   

  
  (2.14) 

which is achieved using Eq. (2.11), this time to remove the lower-order terms from the 

energy expansion. Setting x = 2, the conventional expressions (2.7) and (2.8) are 

retrieved. 

For the subsequent Richardson extrapolation, the occurrence of solely even powers 

of F in the Taylor expansions (2.5)–(2.8) makes it more convenient to change the 

definition of m in Eq. (2.12) to 

 

2

, 1 1, 1

, 2

 
 

1

m

n m n m

n m m

x q q
q

x

  



  (2.15) 

with q = {         }. 

2.3.3 Polynomial fitting 

Another way to extrapolate α and γ from an FF calculation toward the values at zero 

field is to fit an appropriate function of order r to a given set {Fi, Ei} of field strengths 
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and energies.‎
20

 For centrosymmetric systems, α and γ are obtained by fitting a polynomial 

of the form 

 
 

2
2 4

,

0

1 1
( ) ...

2 24 2 !

kr

fit fit fit k fit

k

F
E F E F F q

k
 



       (2.16) 

to these data using the least-squares method. Note that only even powers of F are needed, 

if the symmetrized energy of Eq. (2.3) is used. Thus, choosing r = 1 allows the 

determination of Efit and αfit, an order of r = 2 yields Efit, αfit, and γfit, etc., also if the 

inspected molecule is not centrosymmetric. Naturally, the precision of the extrapolated 

values depends on the choice of r for the polynomial as well as on the number of data in 

the set. As a general rule, r has to be larger, the broader the considered range {Fi} is. The 

optimal choice of r, however, depends on the nature and precision of the data, and is not 

trivial to find. 

2.3.4 Field grid 

A fine grid was used to find the optimal common ratio x for the geometric 

progression of field strengths for calculating γ of the 120 molecule benchmark 

(Figure ‎2.6) according to Eq. (2.14). For each molecule, energy calculations were 

performed at field strengths 

  /100

  0   .  2 n

nF F   (2.17) 
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with n ranging from 0 to 800 and F0
 
= 0.0005 au, which yields a maximum field strength 

> 0.1 au. This fine grid allowed us to test 200 different common ratios and determine the 

optimal x value with precision. The choice of x = 2 corresponds to setting n = 100. 

Choosing n = 50 gives 2x  , and 4 2x  is obtained by n = 25. 
 

2.3.5 Electronic structure calculations 

Geometry optimizations of the 120 molecules of the benchmark were done using the 

Gaussian 09 program‎
24

 at the CAM-B3LYP/6-31G* level of theory. The rest of the 

calculations in this study were performed with the DALTON quantum chemistry 

program.‎
25

 The reference values to which the FF properties are compared were obtained 

using response theory (RT).
‎26,‎27

 Molecular geometries were optimized at the same level 

of theory as the subsequent evaluation of the hyperpolarizabilities unless otherwise noted. 

Assessing the quality of finite differences requires the comparison of many almost 

identical numbers. For a maximal precision of these small numerical differences, care 

was taken that all wave functions, molecular energies, and property parameters were 

tightly converged. All the energies presented in this study are exact up to at least 2 . 10
-12

 

au = 2e-12 au. As the smallest molecules considered here have absolute energies above 

40 au, we end up with a relative precision of at least 1e-13 for the energy or, alternatively 

stated, 13 significant digits. 
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The convergence criteria for the response equations were chosen such that at least 10 

significant digits for αRT can be guaranteed. For βRT and γRT, it is nine and eight 

significant digits, respectively. The errors on the FF properties investigated in the present 

study are orders of magnitude higher, so that all the response properties can essentially be 

considered as the correct reference values. 

2.4 Results and Discussion 

2.4.1 Field dependence of the FF quantities 

Figure ‎2.1 and Figure ‎2.2 show γFF of the neon atom as a function of the field 

strength, as calculated using Eq. (2.8). Independent of the quantum chemical method 

used, all the curves of Figure ‎2.1a have the same characteristics: After  an initial noisy 

region below 0.001 au, values for γFF begin to stabilize before excited states become 

similar in energy and start to alter the slope at ~0.05 au. Moreover, contributions from 

higher order terms in the Taylor expansion become non-negligible at higher fields. 

Finally, all the curves drop down to zero after the field reaches ionizing strength, which 

cannot be accounted for by atom-centered basis sets. 

In Figure ‎2.1b, the window for stable calculations of γ can be seen to vary if different 

basis sets are applied. It is well-known that basis sets lacking diffuse functions only 

recover a small fraction of the actual γ (for instance, the cc-pVDZ value is about four 

orders of magnitude too small when compared to t-aug-cc-pVQZ) which goes along with 
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the need for stronger fields before reaching the stable region. For the same reasons, when 

going toward large values of F, the end of the stable region occurs at smaller field 

strengths for more diffuse basis sets. 

More insight on the field dependence of γFF can be gained if an accurate reference 

value for γ is known. In our case, response theory was applied to obtain a γRT from an 

unrelaxed CCSD calculation (Figure ‎2.2a) and a HF calculation (Figure ‎2.2b). The 

unsigned relative error |  |   |
   

     
   |reveals more details about the accuracy of γFF: 

There is a critical field strength, corresponding to ionization or state inversion below 

which the error is well-behaved and, while moving toward smaller F, γFF approaches 

more and more the γRT value. This is the region of field strengths for which extrapolation 

schemes are meaningful. Then, for even smaller field strengths, there is a clear point 

where the noise starts to drop in, systematically worsening the precision on γFF. The 

aforementioned shift of optimal field strengths for different basis sets is also visible here. 

Nevertheless, the relative precision is the same for all basis sets and reaches a maximum 

of about three significant digits. This is generally sufficient for investigations focusing on 

predicting and interpreting γ values.  
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Figure ‎2.1. Finite field second hyperpolarizabilities γFF for the neon atom as a function of the field 

strength F using Eq. (8). (a) compares different quantum chemical methods using the aug-cc-

pVTZ basis set. (b) shows values for γFF from relaxed CCSD(T) calculations using different basis 

sets.  
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Figure ‎2.2. The unsigned relative error of finite field second hyperpolarizabilities γFF of (a) 

unrelaxed CCSD, (b) HF method in comparison to response theory for the same basis sets as in 

Figure ‎2.1. 
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If the study is extended to polar molecules such as water, similar observations can 

also be made for the first hyperpolarizability β. In fact, as is shown in Figure ‎2.3a, using 

Eqs. (2.5)–(2.8), all the properties that are derivatives of the energy with respect to the 

electric field follow the same pattern. The threshold field strength at which noise starts to 

corrupt precise calculations is naturally larger for higher-order derivatives and the overall 

precision thus drops to less significant digits. At the same time, the critical field strength 

defining an upper bound for meaningful FF quantities remains unchanged or is shifted to 

smaller values as energies acquired at twice the field strength will enter the calculations, 

according to Eqs. (2.7) and (2.8). This leads to an overall shrinking of the interval of 

acceptable field strengths when going to higher-order derivatives. 

Figure ‎2.3b points out that, within the same order of derivatives, any tensor element 

can be evaluated to the same precision over the same interval of acceptable field 

strengths. This allows us to focus on one distinct tensor element only (γxxxx in the 

following). The findings for this quantity can then be generalized to any other tensor 

element. Nevertheless, an optimal field strength in x, y, and z direction has to be found 

individually for very prolate or oblate molecules (e.g., planar, π conjugated systems) if 

mixed tensor elements such as γxxyy are calculated. 

It should further be noted from Figure ‎2.3 that all the slopes in the region of 

acceptable field strengths are nearly parallel for all quantities and correspond to a 

quadratic deviation (i.e., a slope of two in the double-logarithmic representation) from the 
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reference value. This means that the error due to the usage of finite fields in this region is 

almost exclusively related to the contribution of the next term in the odd/even power 

expansion, which is the quantity’s second-order derivative (e.g., β in the case of µ, or γ in 

the case of α) and is thus straightforward to eliminate. In the low field regions of 

Figure ‎2.3, the noise takes overhand. Its characteristic scaling correlates with the order of 

the derivative. The constant round-off error on the energy differences is made field-

dependent through the division by a specific power of the field strength, according to 

Eqs. (2.5)–(2.8), which causes the error-increase at low fields. The choice of plotting the 

unsigned error in Figure ‎2.3 has the benefit of illustrating this noise rather nicely, but on 

the other hand also leads to artificial peaks on the high field side, whenever (γFF-γRT) 

changes sign (visible e.g., around 0.2 au for µ, or around 0.05 au for β). 

2.4.2 The low field limit 

As the energy is only correct up to a certain threshold δE, the finite differences in 

Eqs. (2.5)–(2.8) cannot be more precise than that. As all the FF quantities (q) are divided 

by a certain power of F, the following relations holds for their absolute precision (δq): 

 2 3 4δE  Fδμ F δα F δβ F δγ      (2.18) 
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Figure ‎2.3. Relative error of finite field properties in comparison to response theory for different 

tensor elements of water at the HF/aug-cc-pVTZ level of theory. (a) shows the dipole moment μ, 

polarizability α, and first and second hyperpolarizabilities β and γ along the direction of the 

dipole. (b) shows all nonzero tensor elements for γ. The water molecule is oriented such that the 

dipole moment points along the x axis, and z corresponds to the out-of-plane axis. 
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That the noise scales indeed as inverse powers of F can be seen from Figure ‎2.3a. 

Relation (2.18) defines an ultimate limit of how precise an FF quantity can be known. If, 

for example, for a molecule α and γ are evaluated at F = 0.001 au and its energy is 

computed to a precision of δE=1e-10 au, then the absolute error introduced on α is of the 

order 0.0001 au and likewise γ cannot be more precise than ±100 au, independent of its 

absolute magnitude. 

2.4.3 The high field limit 

Taking only the numerical noise into consideration, it would be profitable to choose 

the field strength as high as possible. However, this is prohibited by non-negligible 

higher-order terms in the Taylor expansion (2.2) and an eventual change in the electronic 

configuration. Figure ‎2.4 illustrates the interplay between the ground and excited state 

energies for neon at rather strong fields and its effect on α and γ. It holds in general that 

the more diffuse a basis set, the smaller the required field strength to cause an abrupt 

change of the slope of E(F), which corresponds to an inversion of the electronic ground 

state with the first excited state.
‎19

 This relation is well-established and is confirmed by 

Figure ‎2.4a for basis sets up to quadruple augmentation. At zero field, the energy is 

essentially the same (within 0.0001 au) for all but the nondiffuse cc-pVDZ basis. 

Applying weak fields below 0.05 au, the ground state energy changes are mostly 

described by the 21

2
F  term and are, therefore, systematic and similar for all basis sets. 
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Beyond that point, the energy of the q-aug-cc-pVDZ calculation suddenly starts to drop 

rapidly. In the same way, although sometimes less visible, all the other basis sets have a 

characteristic field strength at which the energy starts to behave differently. 

 

 

 

Figure ‎2.4. Ground and excited state energies of neon obtained by a CASSCF(8,13) calculation as 

a function of the external electric field. (a) The ground state energy using cc-pVDZ with varying 

amounts of diffuse basis functions. (b) Ground and several excited state energies, applying the q-

aug-cc-pVDZ basis set. (c) The relative energy difference (E(F)/E(0)-1), as well as the relative 

error on the polarizability (αFF/αRT-1) and on the second hyperpolarizability (γFF/γRT-1) obtained 

with aug-cc-pVDZ. (d) The same data as in (c) for q-aug-cc-pVDZ.  
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This sudden drop originates from some excited states that stabilize faster than the 

ground state when F increases so that, beyond a certain field amplitude, they are 

successively replacing the ground state. This is depicted in Figure ‎2.4b for the q-aug-cc-

pVDZ basis where the first state inversion happens at ~0.05 au followed by another one 

at ~0.1 au. The steeper slope in the interval [0.05 au, 0.1 au] is attributed to the larger α 

value for that state.
‎28,‎29

 The second inversion happens with a highly excited state whose 

zero field energy certainly lies beyond the ionization potential of neon at EIP ≈ 0.8 au, 

such that its corresponding α is physically meaningless. 

It is, however, possible to go beyond this point with less augmented basis sets, and 

Figure ‎2.4c shows proof that indeed reasonable values for αFF and γFF can be obtained for 

F > 0.05 au using the aug-cc-pVDZ basis (The same is visible in Figure ‎2.1b for other 

basis sets). Figure ‎2.4d shows what happens to the polarizability calculated above the 

critical field strength. At each crossing point of the ground state, F > 0.05 au, α jumps to 

a new value approximately corresponding to the polarizability of that new state (visible as 

a large error in Figure ‎2.4d). As γFF is calculated according to Eq. (2.8), it contains also 

the energy at twice the field strength and the critical point thus appears at half the value 

of the first ground state crossing. At even stronger fields, γFF changes sign and is thus not 

depicted in the figure anymore. 

The comparison of Figure ‎2.4c and Figure ‎2.4d reveals that it can be difficult to find 

the critical field strength only based on inspection of the ground state energy. In 
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Figure ‎2.4a, the graph for the aug-cc-pVDZ basis set possesses no obvious kink from an 

intersection with excited states. Nevertheless, γFF in Figure ‎2.4c is only acceptable for F < 

0.1 au. For stronger fields, the error is of the same magnitude or even larger than γ itself.  

For small molecules, it is usually affordable to add another layer of diffuse basis 

functions in order to clearly locate the intersection of two states and thus easily define the 

upper bound for feasible field strengths. The problem looks different for cases where the 

use of diffuse basis sets is discouraged or even prohibited due to near-linear dependences 

within the overlap matrix.
‎30

 A famous, well studied example are polyynes (PY), linear 

chains of alternating carbon–carbon single and triple bonds.‎
31

 In these extended systems, 

even nondiffuse basis sets such as cc-pVTZ can have convergence issues because of the 

relatively small triple bond length. The basis sets used to investigate NLO properties are 

thus usually of double-, maximally triple-zeta quality with few or no diffuse and 

polarization functions, also in the most recent literature.
‎15,‎16,‎32,‎33

 In Figure ‎2.5, FF 

calculations are performed at the HF/6-31G* level for PY chains containing 1 

(Figure ‎2.5a), 5 (Figure ‎2.5b), and 10 (Figure ‎2.5c) triple bonds, respectively. For the 

small molecule of Figure ‎2.5a, the usage of a nondiffuse basis set makes it difficult to 

locate any kink in the field dependence of the ground state energy that could be assigned 

to an intersection with excited states. However, additional information, such as the 

HOMO-LUMO gap, is of great assistance in tracking such a change. Indeed, the 

minimum value of the gap around F = 0.2 au corresponds to soft kinks in the relative 

error for α, and also for γ at half that field strength. 
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Figure ‎2.5. Field dependence of several quantities for PY chains of 1, 5, and 10 triple bonds, 

obtained at the HF/6-31G* level of theory. (a) shows the results for C2H2, (b) for C10H2, and (c) 

for C20H2. The upper row shows the absolute energy. In the middle, the energy difference 

between the highest occupied and the lowest unoccupied canonical molecular orbital (HOMO-

LUMO gap) is depicted. On the bottom, the relative energy difference, as well as the error on α 

and γ is shown for each molecule analog to Figure ‎2.4c and Figure ‎2.4d. 
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If the chain length is increased, a certain "diffuseness" of the basis is generated by 

the fact that neighbouring atomic basis functions overlap substantially and thus account 

for some missing features of a small basis set. This effect is also the reason why accurate 

values for the NLO properties of elongated systems can be obtained without the aid of 

diffuse basis functions.‎
34

 Figure ‎2.5b and Figure ‎2.5c are a verification of that statement. 

For C20H2, a kink at ~0.018 au is easily visible for the ground state energy. The 

discontinuities in the relative error on α and γ are more expressed than in the smaller 

chains, such that an overall localization of the critical field strength is facilitated. C10H2 

presents an intermediate behaviour with a change of slope in E(F) around F = 0.05 au. 

In conclusion, (i) the upper limit for an electric field that will lead to meaningful FF 

quantities is usually found in a straightforward manner, if the basis set contains enough 

diffuse functions, (ii) extended molecular chains behave well without diffuse basis 

functions, and (iii) in problematic cases, additional quantities such as the excitation 

energies or the HOMO-LUMO gap may help to locate the critical field strength. 

2.4.4 Extrapolating FF quantities 

We now turn to Richardson extrapolation, which has the advantage over the 

polynomial fit that no additional parameters, such as the order r, need to be chosen. The 

effects of this kind of extrapolation are studied for the second hyperpolarizability of a 

large set of molecules shown in Figure ‎2.6. For every molecule, a minimal relative error 

is found by varying the field strength, while the common ratio x and the degree of 



 

 

 

 

 

  Ph.D. Thesis – Ahmed Mohammed                             McMaster University – Chem & Chem Bio  

 

 

80 
 

refinement m in Eq. (2.15) are fixed. Although very noisy for individual molecules, the 

average over multiple molecules produces smooth graphs that show significant trends. 

It is found that the first two refinement steps reduce the relative error by more than 

one order of magnitude. Going beyond m = 2 does not lead to further improvement 

anymore as the lowering of the truncation error is superseded by the accumulated round-

off error in Eq. (2.15). The dependence of the error on x is increased for large m and leads 

to best results for x = [1.2, 1.8]. Values for x < 2, in particular 2x  , were already 

suggested in Ref. [‎13] based on inspection of an analytical function and one numerical 

example. These findings are greatly confirmed here based on a broad data set of 120 

molecules. 
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Figure ‎2.6. The minimal relative error |εγ| as a function of common ratio x and refinement step m 

(all dimensionless quantities), averaged over a data set of 120 molecules shown on the top. The 

FF calculations were done with HF/6-31G* based on CAM-B3LYP/6-31G* geometries. For each 

molecule, various γn,m were calculated using Eq. (2.15). The minimal relative error is found, by 

picking that n which leads to the smallest deviation from the reference value γRT, while m and x 

stay fixed. The averaging over the molecules is done by taking the logarithmic mean.  
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2.4.5 Exemplary cases 

We finally show the gain in precision that can be achieved using the methods of 

polynomial fitting and Richardson extrapolation for some exemplary molecules. 

Table ‎2.1 contains the relative error for α, β, and γ of tetrachloromethane and acetonitrile, 

two reference molecules for NLO measurements.
‎22

 Table ‎2.2 shows similar data for 

increasing chains of cumulene (CnH4). These conjugated systems have huge NLO 

properties with the peculiarity that a sign change for γ can occur depending on the level 

of theory.‎
35

 This leads to a rather small γRT for C6H4, whereas all the other properties like 

α and the higher-order derivatives of the Taylor expansion are extremely large. Hence, 

the precision on γFF is very limited with only one significant digit in the unrefined case. 

As a general observation, the improvement due to extrapolation is larger for α (up to 

three orders of magnitude increase for the precision) than for β and γ (one to two orders 

of magnitude). Comparing the different extrapolation schemes, no preference can be 

given. However, Richardson extrapolation with m = 1 needs only four energy 

calculations, at optimally chosen fields {0, F, xF, x
2
F}, that return a precision similar to a 

polynomial fit with 14 data points. The only time when the polynomial fit outperforms 

Richardson extrapolation is the special case of C6H4 where apparently the precision 

benefits from the larger array of data points. 
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Table ‎2.1. The relative error εq for different electric-field response properties of 

tetrachloromethane (CCl4) and acetonitrile (CH3CN) computed at the HF/aug-cc-pVTZ level of 

theory. 

 
 

Reference 

Raw 

value
(a)

 

Polynomial 

fit
(b)

 Richardson extrapolation
(c)

  

Molecule
(d)

 q qRT/au εq εq,fit x=2 x= 2  x=
4 2   

CCl4 αxx 65.67 8.0e-6 5.5e-8 2.9e-8 7.4e-9 1.7e-8  

CCl4 γxxxx 6119 6.4e-3 3.2e-4 2.4e-4 1.4e-4 2.1e-4  

CH3CN αxx 36.68 8.2e-6 1.1e-9 1.7e-8 2.0e-10 1.1e-9  

CH3CN βxxx 12.41 8.6e-4 3.3e-5 9.0e-5 8.0e-5 3.9e-5  

CH3CN γxxxx 3572 1.6e-3 6.5e-6 1.4e-4 3.3e-5 4.8e-5  

 

Different extrapolation schemes are tested for a set containing the energies for 13 field strengths 

defining a geometric progression in the range [0.001 au, 0.008 au] (and another 13 fields of 

opposite sign for the noncentrosymmetric CH3CN) plus the zero field energy. 

(a) Properties calculated by Eqs. (2.6)–(2.8) for F = 0.001 au. 

(b) A polynomial fit of order r=3 (i.e., including terms up to F
6
 with the coefficients of odd 

powers set equal zero) was used for αfit and γfit. For βfit, a polynomial of order r=2 (including 

terms up to F
4
) was fitted to the field dependent dipole moments of Eq. (2.5). 

(c) Smallest error achievable within above set of 14 data points using a refinement step m=1 and 

different choices of x. 

(d) Only tensor elements along the x axis are reported. For CCl4, this coincides with one of the 

molecule’s C2 axes. In CH3CN, the x axis is defined as the line connecting all heavy atoms. 

 



 

 

 

 

 

  Ph.D. Thesis – Ahmed Mohammed                             McMaster University – Chem & Chem Bio  

 

 

84 
 

 

 

 

Table ‎2.2. The relative error εγ for methane, ethylene and cumulene chains computed at the 

HF/aug-cc-pVDZ level of theory. 

 Reference 

Raw 

value 
Polynomial fit 

Richardson extrapolation 

Molecule γRT/au εγ r=3 r=4 x=2 x= 2  x=
4 2  

CH4 1350 1.0e-3 2.9e-6 4.9e-5 2.4e-5 3.0e-6 1.6e-5 

C2H4 1757 6.7e-4 1.6e-5 1.7e-4 6.7e-5 2.1e-5 3.2e-5 

C3H4 5820 5.2e-4 7.4e-5 1.4e-4 1.5e-5 7.8e-5 5.5e-5 

C4H4 10633 1.7e-3 2.2e-4 3.9e-5 3.4e-5 1.3e-4 1.6e-5 

C5H4 11523 4.3e-3 9.1e-4 1.8e-4 2.6e-4 5.6e-5 2.5e-4 

C6H4 1587 7.2e-2 2.1e-2 1.7e-4 1.7e-3 2.2e-3 3.5e-2 

C7H4 30383 7.9e-3 2.4e-3 3.1e-5 3.3e-4 2.7e-5 3.7e-4 

The same field strengths and settings described in Table ‎2.1 and footnotes apply also here. 
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It should finally be mentioned that the best extrapolation estimates shown in 

Table ‎2.1 and Table ‎2.2 are all obtained for field strengths between 0.001 au and 0.004 au 

with a tendency toward the lower value for the elongated chains of Table ‎2.2. On the 

other hand, the critical field strength lies beyond 0.02 au for all cases. So it seems 

essential to stay at least a factor of 10 below the critical field strength for performing the 

most precise calculations of NLO properties. 

2.5 Conclusions 

The present study assesses the reliability of the finite field (FF) method for 

evaluating the polarizabilities and hyperpolarizabilities and proposes ways to reduce the 

numerical error of such calculations. It is found that for every molecule, an individual 

region of feasible field strengths can be highlighted, which is defined by an upper and a 

lower bound. Fields chosen below that region suffer from a too large round-off error 

when taking the finite energy differences. This error scales proportionally to the 

convergence threshold of the energy and some inverse power of the field strength, 

dependent on the property. The upper bound is imposed by the critical field strength 

originating from intersections between the ground and excited state energies and depends 

on molecule-specific factors, but also strongly on the augmentation level of the basis set. 

Within the feasible region, the main source of error stems from higher-order 

derivatives of the Taylor expansion that can be removed by means of Richardson 
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extrapolation. The first two refinement steps reduce the error by one or two orders of 

magnitude for γ and up to three orders for α. Additional steps, however, do not lead to 

further improvement. A benchmark on 120 molecules confirms that a common ratio of x 

< 2 and a refinement step of m = 2 yields the most precise results. 

A polynomial fit for different meshes of field strengths within the feasible region 

reveals the same preference for values of x < 2. Although a polynomial of sufficiently 

high order provides good estimates over the whole range of feasible field strengths, a 

clear tendency to improved results is discernible, when values close to the critical field 

strength are discarded from the fit. Similar observations from Richardson extrapolation 

lead to the conclusion that a factor of about a 10th of the critical field strength should be 

the upper limit for an extrapolation leading to a maximum of precision. 
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 Chapter 3

Predicting Optimal Finite Field Strengths for 

Calculating the First and Second 

Hyperpolarizabilities Using Simple Molecular 

Descriptors
†
 

3.1 Motivation  

The previous chapter explored the general performance of the finite field method, 

with an emphasis on its dependence on the choice of initial field strength. The optimal 

common ratio for the geometric progression of the field and the optimal scheme of 

refinement of the second hyperpolarizability were determined. But an important question 

that remains is: given a molecular structure, how could the initial field for calculating 

accurate hyperpolarizabilities be determined a priori? In this chapter, we show that the 

                                                           
†
 This chapter was originally published as A. A. K. Mohammed, P. A. Limacher, P. W. Ayers, 

Chem. Phys. Lett. 682, 160 (2017). 
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optimal field strength depends on the molecular structure and should be chosen for each 

molecule individually. We, then, propose a protocol to predict the optimal field strength 

for calculating the second hyperpolarizability and suggest a way of estimating the optimal 

field for the first hyperpolarizability. 

3.2 Introduction 

The finite field (FF) method is a standard technique in quantum chemistry for 

calculating electric response properties of molecules like the static dipole polarizabilities 

(α) and higher order derivatives thereof (e.g., the first and second hyperpolarizabilities, β 

and γ).
‎1-‎4

 The main advantage of the FF method is its low computational cost and ease of 

implementation, compared to other approaches like the sum over states formalism, 

coupled-perturbed Hartree-Fock, or response theory (RT).
‎5,‎6

 Whereas these methods need 

additional information such as analytical gradients or excited state information, the FF 

method simply requires the calculation of the electronic energy in the presence of various 

external electric fields.‎
7
 As such it is usually the method of choice for newly developed 

theories, but also for high level ab initio correlated calculations. 

However, there are also serious drawbacks of the FF method, the most crucial being 

the dependence of the result on the initially chosen field strength F. The higher order 

derivatives, β and γ, are especially sensitive quantities, with a rather narrow range of 

suitable field strengths. This sensitivity arises because the FF method is effectively a way 
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of numerically differentiating the energy of a molecule with respect to the magnitude of 

the electric field, and as such suffers from finite-precision artifacts when the value of F is 

too small. On the other hand, if one chooses a value of F that is too large the higher-order 

derivatives become nonnegligible and contaminate the lower-order derivatives of interest. 

Worse, after a certain critical field strength has been passed, a field-induced state 

inversion, where an excited state at zero-field becomes lower in energy than the ground 

state occurs.‎
8
 The first effect can be mitigated using Richardson extrapolation, which 

combines calculations at several different field strengths in order to reduce the finite 

difference error.
‎9,‎10

 This procedure has been successfully applied in the literature.
‎11-‎13

 

In a recent article, we illustrated how to maximize the benefits of such refinement 

procedures.
‎14

 Using Richardson extrapolation, significant improvements of the precision 

are obtained when the applied field strengths follow a geometric progression with a 

common ratio smaller than two.
‎15

 Another finding is that the precision only benefits from 

the first one or two steps of iterative Richardson refinement. Subsequent Richardson steps 

lead to an accumulation of numerical noise. 

An open question so far is, how an optimal field strength, Fopt, which is the field 

strength that corresponds to the minimum relative error of the calculated FF quantity, 

should be chosen for a particular molecule. It is clear that molecules of different size and 

shape react differently to the applied external electric field. Intuitively, one can 

understand that large and extended molecules are exposed to much higher potential 
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changes when placed in an external field and thus are expected to have a much smaller 

Fopt than small molecules. Similarly, it is conceivable that molecules of the same size, but 

different electronic structure (e.g., saturated vs. conjugated hydrocarbon chains) might 

have very different optimal field strengths. The purpose of this study is to find 

correlations between the optimal field strength and other molecule-specific descriptors 

that allow one to make straightforward, a priori, predictions for Fopt. This is important 

because it allows one to avoid the (computer) time-consuming search for the optimal field 

strength. 

3.3 Methods 

3.3.1 Finite field method 

The energy E of a molecule for a small external homogenous static electric field F 

can be approximated with a McLaurin series, 

    
2 3 4

2 3 4

2 3 4

0 0 0 0

1 1 1
  0      

2! 3! 4!

E E E E
E F E F F F F

F F F F

   
     

   
 (3.1) 

     2 3 41 1 1
  0  μ α β γ

2 6 24
E F E F F F F      (3.2) 



 

 

 

 

 

  Ph.D. Thesis – Ahmed Mohammed                             McMaster University – Chem & Chem Bio  

 

 

94 
 

where μ and α denote the dipole moment and the dipole polarizability, respectively. The 

higher-order nonlinear responses are the first hyperpolarizability (β) and the second 

hyperpolarizability (γ). 

Eq. (3.2) can be split into even and odd powers of F, which leads to symmetric and 

antisymmetric combinations of energies at equal positive and negative field strength 

  
   

  2 4 6
  1 1

  0 α γ ( )
2 2 24

S

E F E F
E F E F F O F

 
      (3.3) 

  
    3 5 7

  1 1
   μ β δ ( )

2 6 120
A

E F E F
E F F F F O F

 
      (3.4) 

This allows the polarizabilities and the even-order hyperpolarizabilities to be treated 

separately from the dipole moment and the odd-order hyperpolarizabilities. By 

rearranging Eqs. (3.3) and (3.4), the dipole moment (μ) and polarizability (α) can be 

obtained directly as 

  
  2 4 6

  1 1
μ   μ β δ ( )

6 120

AE F
F F F O F

F
        (3.5) 

  
    2 4 6

2

  0   1 1
α 2 α γ ε ( )

12 360

SE E F
F F F O F

F


      (3.6) 

If F is chosen small enough, Eqs. (3.5) and (3.6) are good estimate for μ and α, 

respectively.  
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To evaluate β and γ, μ and α have to be eliminated from Eqs. (3.5) and (3.6), 

respectively. This can be achieved if the energy is known at two different field strengths, 

e.g., F and 2F, besides the energy at zero field 

  
        2 4

2 3

μ 2 μ 2  2 1
β 2   β δ ( )

4

A AF F E F E F
F F O F

F F

 
       (3.7) 

  
          2 4

2 4

α 2 α 2 2  8 6 0 1
γ 4   γ ε ( )

6

S SF F E F E F E
F F O F

F F

   
     (3.8) 

More generally, for any two values of field strengths (say F and xF), Eqs. (3.7) and (3.8) 

can be generalized to 

  
       

2 2 3 2

μ μ  6 6
 β         .            . 

1   1

A A

x

xF F xE F E xF
F

x F F x

 
 

 
  (3.9) 

 
       

 
2

2 2 4 2 2

α α12 24
γ  .   0

1 1

S S
F

xF F x E F E xF
E

x F F x x

  
   

            (3.10)

 

The common practice to work with field strengths F and 2F, corresponds to the 

choice x = 2 in Eq. (3.10).
‎16,‎17

 However, in a recent study we showed that using x < 2 

improves the accuracy of FF calculations because it allows for more points lying in the 

acceptable region of field strengths.‎
14

 Motivated by the results of that study, we always 

use x =  2  in our calculations of γ. Eq. (3.10) then simplifies to 

                 
        4

12
γ         2  2  0

 
SSF E F E F E

F
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For β, we use 4 2x  . Eq. (3.9) becomes 

                                    
   4 4

3 4

2   26
 β       . 

  2 2 1

A AE F E F
F

F





  (3.12)           

3.3.2 Error reduction 

The scaling of the error in Eqs. (3.7) and (3.8) can be lifted to a higher order by 

Richardson extrapolation.
‎9
 This method is widely applied to improve the precision of FF 

quantities by reducing the error from truncating the Taylor expansion, and it is known to 

improve the precision of the higher order derivatives β and γ in the first few iterations. A 

detailed description of the recursive Richardson extrapolation can be found in Ref. ‎14. 

Based on these results, we use at most two iterations of refinement (m=0, 1, 2). Eq. (3.11) 

corresponds to the unrefined γm=0 case. Combining two or three instances of γm=0 with 

adjusted fields, we obtain 

           1 4

3
γ         2 1 0 2 16  7 0

 
m S SSF E F E F E F E

F
       (3.13) 

and 
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S
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 
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For β, we use only one step of Richardson extrapolation and 
4 2x    
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   
 

      2

4 4

1
3

3
           2  3 2 2 2 2

  2 1
m A A AF E F E F E F

F

    



  (3.15) 

3.3.3 Field grid  

In this work we use a fine grid to find the optimal field strength Fopt. For each 

molecule, energy calculations are performed at field strengths 

 
 /100

  0   .  2 n

nF F  (3.16) 

with n ranging from 0 to 800 and F0=0.0005 au which yields a maximum field strength 

>0.1 au. Within this array of fields, many geometric progressions with a common ratio of 

2x   can be generated, simply by picking a particular field strength Fp and the fields 

Fp+50, Fp+100 and Fp+150. The energies at these field strengths have to be inserted into Eqs. 

(3.11), (3.13), and (3.14) together with the energy at zero field to determine the value of 

γFF at field strength Fp. For β, calculations are done at fields Fp, Fp+25, Fp+50 using 

equation (3.15). 

3.3.4 Molecular descriptors  

For every molecule the optimal field strength Fopt is correlated to other descriptors of 

structural or electronic nature. Besides quantities like maximum distances within the 

molecule, molecular weight, moments of inertia, HOMO-LUMO gap, Hartree-Fock 

energy, transition moments, and the magnitude of β and γ themselves, we also define five 
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descriptors, which are constructed from the atomic positions ri and charges qi within a 

molecule. We call them 

 

1/

1

1 atoms
p

N
p

i
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A
N 

 
  
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

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  (3.21) 

In these equations r is defined as 

 
1

1 atomsN

i

iatomsN 

 r r   (3.22) 

and p is an arbitrary exponent. Here, we study cases for p between zero and five. Eqs. 

(3.17)-(3.21) are measures for the spatial extent and charge distribution of a molecule. 

For example the radius of gyration can be obtained using Eq. (3.17) and p=2.   
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3.3.5 Electronic structure calculations 

For each molecule a geometry optimization was performed using the Gaussian 09 

program,
‎18

 using the long-range corrected hybrid density functional CAM-B3LYP,
‎19-‎24

 

which was proven to produce accurate molecular geometries,
‎25,‎26

 with a 6-31G(d) basis 

set.
‎27-‎30

  

All calculations of the response and finite field properties were done with the 

DALTON quantum chemistry program using the aforementioned optimized geometries.
‎31

 

The level of theory was HF/6-31G(d), which is known to supersede DFT polarizabilities 

in some respects.
‎12,‎16,‎17

 We used the natural population analysis method to calculate 

atomic charges using HF/6-31G(d). As our primary interest is developing methods for FF 

calculations, rather than actually computing accurate hyperpolarizabilities, the level of 

theory is relatively unimportant to our study. It is more important that (a) reference 

hyperpolarizabilities are available from response theory and (b) the method is fast enough 

to allow us to thoroughly explore different FF approaches. The Hartree-Fock method 

satisfies both these constraints. Diffuse orbitals were not employed because they would 

introduce another of numerical instabilities.
‎34,‎35

 The transferability of these HF/6-31(d) 

results to more advanced levels of theory is straightforward. A change of the quantum 

chemical method or of the basis set will lead to different values for Fopt, and certainly 

also for γFF. However, our protocol to determine these values is uninfluenced by this. 
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Because we compare very small energy differences, tight convergence criteria were 

applied for the solution of the SCF equations. The energies are calculated to machine 

precision (15 significant digits). Response theory is used to assess the accuracy of the FF 

results.
‎32,‎33

 The convergence criteria in these calculations are chosen such that response 

theory first and second hyperpolarizabilities, βRT and γRT, are numerically correct for 8 

digits and thus orders of magnitude more accurate than the smallest relative errors for FF 

encountered in this study. The relative error of a finite field quantity qFF with respect to 

qRT is given by 

  where    , 1,  FF
q

RTq
q

q
       (3.23) 

All hyperpolarizabilities are evaluated for time-independent (static) fields. Results 

are shown for the longitudinal component of the first and second hyperpolarizability 

tensor βxxx and γxxxx with x indicating the molecular axis with the smallest moment of 

inertia. The subscript x will be dropped for simplicity. 

3.4 Results and Discussion 

The molecules investigated for γ and β are presented in Figure ‎3.1 and Figure ‎3.2, 

respectively. The data sets contain cyclic and linear alkanes, (poly)alkenes, aromatic 

rings, and includes heteroatoms and functional groups to obtain a variety of molecules 
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with a wide range of values for γ (from -21.3 (methane) to 6.2 x 10
5 

au (decapentaene)) 

and β ( from 1.2 (pyrrole) to 6261.4 au (4-amino-4’-nitro-diphenylethylene)). 

3.4.1 Field dependence of hyperpolarizabilities 

 In the reliable field region, the numerical error is well-behaved and can be used for 

extrapolation and error minimization.
‎14

 The exact range of fields for which results are 

reliable is not only dependent on the level of theory, but also on the molecule under 

investigation, as seen from Figure ‎3.3 and Figure ‎3.4. For γ, the beginning of the reliable 

field region has a minimal relative error and occurs at lower field strengths for larger 

molecules (decapentaene < hexylbenzene < hexane < acetonitrile < propane). For β, the 

reliable field region of push-pull π-conjugated systems clearly starts at lower field 

strengths than that of saturated hydrocarbons. In both figures, the reliable field region is 

bordered by a noisy region at low fields (where numerical errors accumulate) and 

meaningless results at fields that are strong enough to ionize the system. Choosing field 

strengths within the reliable region is crucial for obtaining meaningful FF results. 

Figure ‎3.3 and Figure ‎3.4 demonstrate the need to find Fopt for each molecule 

individually. 
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Figure ‎3.1. Schematic representation of the 120 molecules that were used for the calculation of 

the second hyperpolarizability. 
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Figure ‎3.2: Schematic representation of the 91 molecules that were used for the calculation of the 

first hyperpolarizability. 
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Figure ‎3.3. Unsigned relative error for γ, |εγ|, for selected molecules as a function of the field 

strength F using Eq. (3.11).   
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Figure ‎3.4. Unsigned relative error for β, |εβ|, for selected molecules as a function of the field 

strength F using Eq. (3.12) 
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3.4.2 Correlation of the optimal field strengths with molecular 

descriptors 

In order to predict the optimal finite fields for first and second hyperpolarizability 

calculations, we tabulated Fopt,γ for 111 molecules (Figure ‎3.1), and Fopt,β for 91 

molecules (Figure ‎3.2), and correlated them with several molecular descriptors. For this, 

a linear regression between the logarithm of Fopt and the logarithms of each descriptor 

was performed, allowing us to identify nonlinear relationships. The correlation 

coefficients can be found in Table ‎3.1 and Table ‎3.2. The excitation energy, transition 

moment square, and oscillator strength in Table ‎3.1 are given between the ground state 

and the first allowed excited state, i.e. the lowest state with a non-zero transition moment 

along the electric field direction. All three quantities correlate only weakly with Fopt. The 

same holds for the dipole moment and the maximum interatomic distances in y- and z-

direction. 
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Table ‎3.1: Correlation coefficients R
2
 between the logarithm of the optimal field strength of γ and 

β, and the logarithm of several molecular descriptors. For γ, R
2
 is obtained for a set of 111 

molecules; For β, the set contains 91 molecules. 

 

Descriptor R
2
 for γ R

2
 for β 

Dipole moment 0.02
a
 0.06 

Oscillator strength 0.05 0.00 

Maximum distance in z 0.05 0.00 

Transition moment square 0.06 0.01 

Maximum distance in y 0.11 0.00 

Excitation energy 0.14 0.12 

HOMO-LUMO gap 0.23 0.12 

HF energy 0.64 0.14 

Molecular weight 0.74 0.00 

Moment of inertia 0.78 0.18 

Maximum distance  0.80 0.17 

|γRT| 0.81   - 

|βRT|   - 0.11 

Maximum distance in x 

(longitudinal distance) 

0.82 0.17 

 

a
 Correlation with dipole moment was done with only 88 (noncentrosymmetric) molecules for γ. 
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Table ‎3.2: Correlation coefficients R
2
 between the logarithm of the optimal field strength of γ and 

β and the logarithm of descriptors A, B, C, D, and E. B
(1,3,5)

 and D
(1,3,5)

 couldn’t be calculated for 

some molecules.  

 γ β 

P A B C D E A B C D E 

0 N/A N/A 0.733 0.652 - N/A N/A 0.125 0.122 - 

0.5 - - - - 0.582 - - - - 0.066 

1 0.767 0.033 0.688 0.113 0.593 0.152 - 0.137 - 0.061 

2 0.771 0.582 0.589 0.489 0.613 0.158 0.192 0.157 0.153 0.056 

3 0.770 - 0.458 0.391 0.628 0.162 - 0.164 - 0.056 

4 0.769 0.536 0.340 0.235 0.639 0.164 0.196 0.162 0.158 0.057 

5 0.766 - 0.256 0.187 0.648 0.165 - 0.156 - 0.058 
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The HOMO-LUMO gap is known to depend on the external electric field and thus 

indicates feasible field strengths for every molecule.‎
14

 For propane, for example, the gap 

starts at 0.70 au at zero field and drops to 0.20 au at F = 0.1 au, while for trans-hexane the 

gap drops from 0.48 au to 0.07 au for the same field strength. Increasing the field strength 

further will eventually induce an intersection between the ground state and the first 

excited state(s) of the molecule and thus indicates an upper bound for feasible field 

strengths. Nevertheless, the HOMO-LUMO gap shows only a weak correlation with Fopt,γ 

and a weaker correlation with Fopt,β.  

Whereas β correlates only weakly with any of the proposed descriptors, γ possesses 

significant correlations with extensive properties like the Hartree-Fock energy, molecular 

weight, and moment of inertia. Table ‎3.2 shows that Fopt,γ correlates best with purely 

spatial measures of the molecule that do not include atomic charges, like descriptor A. On 

the other hand, if Fopt,γ is compared to the magnitude of γ itself, a rather high correlation 

coefficient of 0.81 is found. This is different for β, where the magnitude of βRT is 

completely uncorrelated with Fopt. Apparently, optimal field strengths follow very 

different patterns for β and γ. The good correlation in the case of γ is also meaningful, 

since the regression between these two quantities returns a slope of -4.16, which is in 

close agreement to γFF ∝ F
-4

 from equation (3.10). This indicates that the optimal field 

strength of γ for every molecule is attained when the finite energy differences in equation 

(3.10) are close to a constant, molecule-independent value. Although γ is a good predictor 
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of the optimal field strength it is impossible to use it: we need an a priori, not a post 

facto, method for determining Fopt. 

The most useful correlations for γ are found for the maximum internuclear distance 

within the molecule, rmax, and the maximum internuclear distance in x-direction, xmax, the 

longitudinal distance, with an R
2
 value of 0.80 and 0.82, respectively. Figure ‎3.5 

illustrates the correlations for these two quantities. The fact that the longitudinal distance 

is available up front, at no computational cost, makes it the property of choice as a 

predictor of Fopt. The high correlation with these exclusively geometrical descriptors 

supports our assertion that the optimal field strength of γ is mainly influenced by the 

molecular extent in the direction of the applied electric field. Surprisingly, Fopt for β does 

not significantly correlate with any of these geometrical descriptors of a molecule. This 

indicates that optimal field strengths obey entirely different rules, when even or odd 

energy derivatives are calculated. 
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Figure ‎3.5. Correlations of the logarithm of the optimal field strength of γ with (a) the logarithm 

of the maximum internuclear distance within the molecule and (b) the logarithm of the maximum 

internuclear distance in the x-direction. γ is calculated using Eq.(3.14). 
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Figure ‎3.6. Correlations of the logarithm of the optimal field strength of γ obtained with 

Richardson refinement levels m=0, m=1, and m=2. 
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In Figure ‎3.6 it is shown that the optimal field strengths obtained with different 

expressions for γFF according to Eqs. (3.11), (3.13), and (3.14) are highly correlated and 

thus the correlation coefficients presented for m=2 in Table ‎3.1 and Table ‎3.2 and 

Figure ‎3.5 will hold also for Fopt evaluated at the m=0 and m=1 refinement levels. The 

slope of the linear regression is close to unity in all three cases and thus confirms that 

either variant of Eqs. (3.11), (3.13), and (3.14) yields the same molecule-specific Fopt, up 

to a constant factor.  

3.4.3 Longitudinal distance as a predictor of Fopt of γ    

To test the efficiency of using the longitudinal distance xmax as a predictor for the 

optimal field strength of γ, a comparison between the predicted and the observed Fopt is 

given in Table ‎3.3 for ten molecules of different size. The small deviation between the 

observed and the predicted field strengths verifies the suitability of xmax as a powerful 

predictor of Fopt. For all ten molecules, the precision of γFF obtained with predicted and 

actual Fopt is nearly the same and the predicted Fopt is located within the reliable field 

region. In order to find an accurate Fopt, 1600 energy evaluations were performed. 

Nevertheless we observe cases in Table ‎3.3 where the predicted values for Fopt, which is 

obtained by only 9 energy evaluations, lead to (slightly) improved values for γFF. Note 

that due to additional finite differences in the refinement procedure, Fopt is always larger 

for m=2 in comparison to the unrefined m=0. 
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Table ‎3.3: Predicted and calculated optimal field strengths (Fopt) for γ and the correspondent 

unsigned relative errors |εγ| for different molecules calculated at the HF/6-31G(d) level of theory. 

These molecules are not included in the data set used for parameterization. xmax is given in 

angstrom, |εγ| is dimensionless, and all other quantities are given in au The prediction is done 

using the relation Log Fopt = -0.73 Log xmax – 1.43. The relative errors are given for m=2 only. 

 

 

Molecule 

xmax  γRT  F
m=0

opt x 10
-3

 F
m=2

opt x 10
-3

 |εγ| 

predicted actual predicted actual predicted  actual 

acetaldehyde 3.1 720 6.21 5.66 16.5 16.9 8.75E-05 9.17E-05 

cyclopropane 3.1 250 6.20 5.78 16.4 14.6 2.51E-04 2.93E-04 

neopentane 4.3 905 5.14 5.54 13.0 14.5 3.34E-04 3.11E-04 

cyclobutanol 4.4 977 5.10 4.72 12.9 12.0 6.21E-05 8.26E-05 

thiophene 4.6 760 4.99 5.58 12.6 13.1 1.84E-03 1.83E-03 

aniline 5.8 6867 4.35 3.18 10.6 9.06 4.46E-05 2.17E-05 

hexan-2-one 8.1 5846 3.58 3.05 8.33 7.89 2.60E-05 4.99E-05 

hexylbenzene 12.1 18268 2.86 2.68 6.31 5.98 5.09E-05 1.53E-05 

decatri-1,3,5-ene 12.5 34283 2.81 2.36 6.17 5.39 2.94E-04 1.86E-04 

decanal 13.3 13987 2.71 3.16 5.89 6.32 1.27E-04 9.37E-05 

average  
      

1.34E-04 1.14E-04 
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3.4.4 Field dependence of β 

The optimal field strengths, Fopt, for the 91 molecules of the second data set 

(Figure ‎3.2) range from 0.002 to 0.046 au. This means that Fopt of β, like that of γ, 

depends on the structure of the molecule and should be found for each molecule 

individually as well, as can be seen from Figure ‎3.4. The dependence of the calculated FF 

quantity on field strength is qualitatively the same for β and γ.‎
14

 However, we were 

unable to find any correlations for Fopt,β with molecular descriptors. This can be partially 

explained because, unlike γ, the value of β does not explicitly depend on the size of a 

molecule. Instead β is determined by different functional groups and heteroatoms that add 

individual contributions, which can also cancel to zero in the case of centrosymmetric 

molecules. This can explain the poor correlation with descriptors related to molecular 

size, but still leaves an open question: why isn’t there a correlation with the absolute 

value of beta itself, which is one of the strongest correlations in the case of γ, or with the 

dipole moment. Instead, we observed that molecules from the data set with the same 

functional groups have very similar optimal field strengths. For a set of straight-chain 

alkyl amines that contain 2-14 carbons, there is no systematic change in the optimal field 

strength as the size of chain grows. Table ‎3.4 confirms the different behaviour of the 

optimal field strength for β and γ. It shows that Fopt,γ systematically decreases with 

increasing molecule size, whereas Fopt,β retains a constant value apart from numerical 

fluctuations. This indicates that only the polar NH2 group is responsible for Fopt,β without 
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influences from the nonpolar alkane tail, whereas Fopt,γ depends on all parts of the 

molecule.  

 

 

Table ‎3.4: Optimal field strengths Fopt,β and Fopt,γ for a set of straight-chain alkyl amines with the 

structure H-(CH2)n-NH2.  

 

n Fopt,β Fopt,γ 

2 0.005315 0.007362 

3 0.005028 0.00721 

4 0.004532 0.006869 

5 0.004317 0.006543 

6 0.004317 0.006498 

7 0.004627 0.006453 

8 0.005352 0.006409 

9 0.005352 0.006453 

10 0.005776 0.006364 

11 0.005696 0.00619 

12 0.006021 0.006105 

13 0.005979 0.006021 

14 0.005696 0.005938 
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3.5 Conclusions  

An assessment of the optimal field strengths for calculating the first 

hyperpolarizability, β, using a data set of 91 molecules and the second 

hyperpolarizability, γ, using a data set of 120 molecules reveals that most precise values 

for βFF and γFF are obtained at molecule-specific finite fields. 

Calculations with individually tailored field strengths, which range from 0.004 to 

0.03 au for the data set and level of theory investigated here, and two iterations of 

Richardson refinement lead to an average precision for γFF of four significant digits. This 

can be compared to an average of only 2 or 3 significant digits when the same 

computational protocol was used with an intermediate FF value of 0.01 au. 

Strong correlations of the optimal field strength for γFF with various molecular 

descriptors were found. The most useful correlation was the maximum internuclear 

distance within a molecule rmax and even more so the maximum internuclear distance in 

the field direction, xmax. This longitudinal distance, xmax, can be used to predict optimal 

field strengths for individual molecules. It is straightforward to extend this protocol to 

different electronic structure methods and basis sets. 

Contrary to the even order energy derivatives (α and γ) the odd order derivatives (μ 

and β) follow a completely different pattern, as optimal field strengths for these quantities 

are nearly independent of the size of a molecule and do not significantly correlate with 
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any of the studied descriptors. Instead, molecules with the same functional group have 

very similar optimal field strengths. 

The benefit of predicting the optimal field strength with a method-independent, 

computationally cheap, and readily available structural parameter like the longitudinal 

distance lies in the reduction of the number of field-dependent energy evaluations and, 

more importantly, in the abolition of the human intervention used to ―hunt and peck‖ for 

the right field strengths and refinement procedures. 
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 Chapter 4

Benchmarking Density Functionals for the Second 

Hyperpolarizability of Organic Molecules 

4.1 Motivation 

In the last two chapters we determined the optimal conditions for obtaining the most 

accurate results for the second hyperpolarizability by the finite field method. We 

determined the optimal choice of initial field and the ratio for the geometric progression 

of field strengths, as well as the number of refinement steps. In this chapter, we use these 

conditions to test the performance of several DFT functionals by comparing them to the 

―gold standard‖ of quantum chemistry for energy calculations, CCSD(T). Molecules with 

superior NLO properties are typically oligomers and large systems, and thus DFT, which 

offer an excellent compromise between accuracy and computational cost, is an ideal 
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method to calculate response properties for these large systems. The significant role of 

correlation in obtaining reliable response properties is shown and the shortcomings of 

DFT for computing the hyperpolarizability are shown. 

4.2 Introduction 

Nonlinear optical (NLO) properties of molecules and polymers have gained attention 

from both experimental and theoretical chemists because of their application in various 

types of optoelectronic devices.
‎1-‎9

 Theoretical tools have a particularly important role to 

play in these studies, because they can give insight into the specific molecular features 

that lead to desirable NLO properties, and therefore guide the design of new NLO 

molecules and materials.
‎10-‎13

 Nonetheless, predicting NLO properties and designing new 

materials with specific response properties remains a challenging and ambitious task for 

quantum chemistry. Materials with high NLO properties are typically polymers and 

supramolecular structures. This means that high-accuracy benchmark quantum chemistry 

methods like coupled cluster approaches are often too expensive. NLO properties are also 

sensitive to the treatment of electron correlation, and so lower-cost methods like Hartree-

Fock and density functional theory (DFT) approaches are unreliable. In this work, we 

assess the performance of several DFT functionals for calculating the second 

hyperpolarizability of organic molecules and oligomers by comparing their results to 

those obtained by the coupled-cluster method. This allows us to suggest which DFT 

functionals are most reliable.  
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A thorough understanding of molecular hyperpolarizabilities and their structure-

property relationships is still an open and active area of research for theoretical 

chemistry.
‎14-‎23

 Comparing the performance of different methods for calculating 

hyperpolarizabilities should provide more insight into the nature of these properties and 

reveal the contribution of local molecular factors and structure, and thus help for 

designing materials with desired electric response properties. It should also be useful for 

assessing the theoretical methods themselves and provide insights into how one may 

develop improved electronic structure methods.  

Direct comparisons between computed molecular (hyper)polarizabilities and 

experimental values are difficult because theory and experiment depend on different 

factors.‎
24

 Theoretical values of the second hyperpolarizability γ are usually obtained as a 

frequency-independent tensor component in the molecular propagation axis of one 

molecule; the experimental value is a tensor average <γ> of an ensemble of interacting 

molecules that have different conformations and orientations. Moreover, different 

experimental methods produce different results. Calculations must include vibronic 

contributions,
‎25,‎26

 solvent effects,‎
27

 and local field factors to be compared to experimental 

results. Experimental gas phase data for γ are rare, and nonexistent for some molecules. 

These factors make direct comparison to experimental results very difficult or unavailable 

for many molecules. As an alternative, ab initio methods of high accuracy can provide 

reference values for molecular hyperpolarizabilities.  
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The computed value of the second hyperpolarizabilities is much more sensitive to 

electron correlation than most molecular properties.‎
28-‎32

 For a small molecule or 

oligomer, one often computes reference values for second hyperpolarizability, γ, using 

coupled-cluster singles and doubles with a perturbative estimations of the triples method, 

CCSD(T), which is considered the "gold standard" of quantum chemistry. We will use 

this method in this paper also. However, CCSD(T) is too computationally expensive to be 

applied to large systems, which are of interest because NLO properties often increase 

with system size. For example, the second hyperpolarizability for all trans polyacetylene 

and polyyne oligomers is known to grow with length of the chain according to  

 an    (4.1) 

where n is the length of the chain and a is a constant. Therefore, molecules with high 

NLO properties are typically oligomers.   

 Density functional theory (DFT) methods provide a favourable compromise 

between accuracy and computational cost, and thus are widely used for calculating NLO 

properties of larger molecules. However, the most commonly used DFT functionals are 

known to fail in the qualitative description of hyperpolarizabilities for large π-conjugated 

systems.
‎33

 

In the past few years, new DFT functionals have been developed,
‎34-‎47

 but the 

performance of these functionals for evaluating NLO properties needs thorough 

investigation. Conventional DFT functionals (local density approximations (LDAs), 
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generalized gradient approximations (GGAs), global hybrids (hybrid-GGA)) are known 

to overestimate the second hyperpolarizabilities of atoms and small molecules because of 

the incorrect asymptotic behaviour of the exchange-correlation (XC) potential. This effect 

increases with the size of the system and leads to catastrophic errors for large 

molecules.
‎33,‎48

  The disastrous overestimation of γ comes from the incorrect modelling of 

electric field dependence by the exchange functional.‎
49

 Global hybrid functionals, such as 

B3LYP, correct this error only partially by including a fraction of exact HF exchange. 

The optimized effective potential (OEP) has also been proposed to solve this problem, 

but results were disappointing.‎
50

 Long-range corrected functionals like range-separated 

hybrid GGAs are superior, however. This is probably because these functionals have 

much smaller many-electron self-interaction errors.
‎38,‎51-‎57

 

The long-range corrected approach has received a considerable attention for 

calculating molecular properties, including nonlinear responses.
‎58-‎63

 However, most of 

these studies were limited to a single family of molecules (e.g. linear π conjugation, push-

pull systems), or even one single molecule. Similarly limited studies are available for the 

relatively new Minnesota family of functionals.  

In this study we benchmark the performance of several DFT functionals for static 

second hyperpolarizability against CCSD(T) method using the finite field (FF) method. 

The FF method is a straightforward and easy-to-implement approach for calculating 

longitudinal (hyper)polarizabilities of atoms and molecules using only single-point 
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energy calculations. Specifically, the value of the (hyper)polarizability is deduced from 

the value of the energy at different external fields. We use the techniques developed in 

our recent works on the finite field method to obtain accurate γ values.
‎21,‎23

 The errors in 

our FF calculations are significantly less than the errors in the electronic structure 

methods we are comparing. 

4.3 Methods 

4.3.1  The finite field method  

The energy E of a molecule subject to a small external homogenous static electric 

field F can be approximated with a McLaurin series, 

    
2 3 4

2 3 4

2 3 4

0 0 0 0

1 1 1
  0      

2! 3! 4!

E E E E
E F E F F F F

F F F F

   
     

   
  (4.2) 

     2 3 41 1 1
  0  μ α β γ ,

2 6 24
E F E F F F F        (4.3) 

where μ is the dipole moment, α is the dipole polarizability, β is first hyperpolarizability, 

and γ is the second hyperpolarizability. 

The expression for α can be obtained by arranging equation (4.3) as 

  
    2 4 6

2

  0   1 1
α 2 α γ ε ( )

12 360

SE E F
F F F O F

F


       (4.4) 

where ES is the symmetric combination of energy  
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  
   

  2 4 6
  1 1

  0 α γ ( )
2 2 24

S

E F E F
E F E F F O F

 
       (4.5) 

This allows the polarizabilities and the even-order hyperpolarizabilities to be treated 

separately from the dipole moment and the odd-order hyperpolarizabilities. Eq. (4.4) 

provides a good estimate of α when F is small enough.  

The second hyperpolarizability γ can be evaluated by eliminating α from Eq. (4.4). 

This can be achieved if the energy is known at two different field strengths, e.g., F and 

2F, besides the energy at zero field 

  
          2 4

2 4

α 2 α 2 2  8 6 0 1
γ 4   γ ε ( )

6

S SF F E F E F E
F F O F

F F

   
      

 (4.6) 

Although it is a common practice to work with field strengths F and 2F, we showed in 

chapter 2 that using a step smaller than 2 gives better results for γ. In this study we use a 

step of  2 , and the expression for γ becomes 

         4

12
γ         2  2  0

 
SSF E F E F E

F
      (4.7) 

The precision γ can be improved by using Richardson extrapolation.‎
64

 This scheme is 

widely used to improve the precision of FF quantities by reducing the error incurred by 

truncating the Taylor expansion. This method is explained in detail in chapter 2 of this 
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thesis. In this study we use two iterations of refinement for γ. The expression for the 

refined γ is 

  
     

   

3/2

2 4

2 26 2 1  76 21
          

 4 256 1  05 0

S S S

m

S

E F E F E F
F

F E F E
 

   
 
   

  (4.8) 

In this study, we consider only the time-independent (static) longitudinal second 

hyperpolarizability, γxxxx, where x denotes the molecular axis with the smallest moment of 

inertia. Henceforth the subscript x will be dropped for simplicity.  

4.3.2 Field grid  

In this study we used a fine grid to find the optimal field strength Fopt. For each 

molecule, energy calculations are performed at field strengths  

 
 /8

  0   .  2 n

nF F   (4.9) 

Many geometric progressions with a common ratio of 2x   can be generated within 

this array of fields, simply by picking a particular field strength Fp and the fields Fp+4, 

Fp+8 and Fp+12. The energies at these field strengths have to be inserted into Eq. (4.8) 

together with the energy at zero field to determine the value of γFF at field strength Fp.  

We showed in chapter 3 that the optimal field strength depends on the structure of 

the molecule and should be found for each molecule individually. For example, the 

optimal field strength for polyacetylene chains decreases from 0.0117 au to 0.0023 au as 
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the chain increases from one unit to five units. Selecting the field strength for each 

molecule individually generally reduces the error in the calculated γ by one or two orders 

of magnitude.    

4.3.3  Electronic structure calculations 

All geometry optimization was performed using the Gaussian 09 program,‎
65
‎ using 

the long-range corrected hybrid density functional CAMB3LYP,‎
‎66-‎71

 to produce accurate 

molecular geometries,
‎8,‎72

 and the cc-pVTZ basis set.‎
73
‎ Although it is well-known that 

diffuse basis functions are required to calculate accurate second hyperpolarizabilities,
‎8,‎21

 

diffuse basis sets were not used in this study because they introduce numerical 

instabilities.
‎8,‎74,‎75

 The goal of this study is to compare the performance of DFT 

functionals to CCSD(T), rather than reproducing accurate second hyperpolarizabilities. 

The cc-pVTZ basis set is acceptable for this purpose.  

Calculations of the finite field properties for CCSD(T) and the Minnesota family of 

functionals (M06-L, M06, M06-2X, and M06-HF) were performed using Molpro.‎
76

 Finite 

field properties for the rest of DFT functionals were performed using the DALTON 

quantum chemistry program‎
77

 and the aforementioned optimized geometries. Because we 

compare energies with very small differences, tight convergence criteria were applied for 

the solution of the SCF equations. The energies are converged almost to machine 

precision (~15 significant digits).  
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4.3.4 Density functionals 

Several types of exchange-correlation functionals have been tested in this study. The 

exchange-correlation functional SVWN is a local density approximation (LDA).‎
78,

‎
79

 The 

BLYP,
‎67,‎68

 PBE,‎
80

 and revPBE‎
81

 exchange-correlation functionals are generalized 

gradient approximations (GGAs). B3LYP,
‎68,‎69

 B971,
‎82

 B972,
‎83

 and PBE0
‎84

 are global 

hybrid exchange-correlation functionals; they include various amounts of nonlocal 

Hartree-Fock exchange.  

Hybrid functionals represent an improvement over pure GGA models; this is usually 

attributed to the fact they have smaller self-interacting error (SIE) than pure functionals 

like GGAs. However, using fixed amounts of DFT and HF exchange doesn’t solve all the 

problems of pure functionals: the asymptotic decay of the exchange-correlation potential 

is wrong (giving poor band gaps, excitation energies, and response properties) and there 

is still substantial many-electron self-interaction error. One can mitigate both of these 

effects by separating the Coulomb operator into short- and long-range parts. The long-

range correction (LC) scheme was first developed by Savin for local density functionals‎
85

 

and later extended to GGA functionals.‎
86

 In this scheme the amounts of HF and DFT 

exchange depend on the interelectronic distance, and are not fixed amounts like they are 

in hybrid functionals. The ratio of DFT to HF exchange is high when the interelectronic 

separation is small, where GGAs are usually accurate. When the interelectronic 

separation is large, the ratio of DFT to HF exchange is low. For example, the 
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CAMB3LYP‎
66

 functional contains 0.19 HF exchange in the zero-separation limit and 

0.65 HF exchange at long range. CAMB3LYP fixes the enormous underestimation of 

B3LYP of charge transfer excitations.‎
66

 

Another family of meta-GGA functionals (including a dependence on the kinetic 

energy density) and hybrid-GGA functionals was developed by Truhlar and coworkers 

and is usually referred to as the Minnesota functionals. M06-L
‎87

 is a local meta-GGA 

functional that doesn’t contain HF exchange. The hybrid functionals M06,‎
88

 M06-2X,‎
88

 

and M06-HF
‎89

 contain 27%, 54%, and 100% HF exchange, respectively.  

4.4 Results and Discussion  

4.4.1 Conjugated systems 

The static longitudinal second hyperpolarizabilities of polyacetylene chains 

calculated by several DFT functionals with the cc-pVTZ basis set along with errors 

relative to CCSD(T) are shown in Figure ‎4.1, Figure ‎4.2, and Figure ‎4.3, along with 

Table ‎4.1. Figure ‎4.1 shows that the CCSD method gives very similar values to CCSD(T) 

for small molecules, but the discrepancy increases with the length of the chain. Hartree-

Fock consistently underestimates γ and has the highest error among all methods, but the 

relative error decreases with the chain length. This indicates the importance of electron 

correlation for calculating accurate γ values, especially for π-conjugated systems.  
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Figure ‎4.1: (a) Longitudinal second hyperpolarizabilities of polyacetylene chains for several 

methods as a function of the number of units. (b) Relative error of longitudinal second 

hyperpolarizabilities of polyacetylene chains for several methods compared to CCSD(T) as a 

function of the number of units. 
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Figure ‎4.2: (a) Longitudinal second hyperpolarizabilities of polyacetylene chains for several 

methods as a function of the number of units. (b) Relative error of longitudinal second 

hyperpolarizabilities of polyacetylene chains for several density functionals compared to 

CCSD(T) as a function of the number of units. 
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Figure ‎4.3: (a) Longitudinal second hyperpolarizabilities of polyacetylene chains for several 

methods as a function of the number of units. (b) Relative error of longitudinal second 

hyperpolarizabilities of polyacetylene chains for four Minnesota functionals compared to 

CCSD(T) as a function of the number of units. 
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Table ‎4.1: Finite field γ values (in atomic units), relative errors, and average absolute relative 

errors for polyacetylene units H-(CH=CH)m-H, calculated by different methods using cc-pVTZ 

basis set. The relative error of a method is calculated by the expression 
( )

1method

CCSD T

error



  . 

 m=1 

 

m=2 

 

m=3 

 

m=4 

 

m=5 

 

avg. 

error 

γ 

x10
3
 

error γ 

x10
4
 

error γ 

x10
4
 

error γ 

x10
5
 

error γ 

x10
6
 

error 

CCSD(T) 1.36  1.83  10.78  3.90  1.04   

CCSD 1.36 0.00 1.84 0.01 10.71 -0.01 3.81 -0.02 1.00 -0.04 0.02 

HF -0.53 -1.39 0.73 -0.60 5.93 -0.45 2.35 -0.40 0.66 -0.37 0.64 

SVWN 1.17 -0.14 1.39 -0.24 9.73 -0.10 4.25 0.09 1.38 0.33 0.18 

BLYP 1.04 -0.23 1.37 -0.25 9.71 -0.10 4.25 0.09 1.38 0.33 0.20 

B3LYP 0.70 -0.48 1.31 -0.28 9.50 -0.12 4.08 0.05 1.29 0.24 0.23 

CAMB3LYP 0.48 -0.65 1.31 -0.28 9.26 -0.14 3.75 -0.04 1.11 0.06 0.23 

B971 0.71 -0.47 1.30 -0.29 9.39 -0.13 4.02 0.03 1.27 0.22 0.23 

B972 0.71 -0.48 1.30 -0.29 9.38 -0.13 4.01 0.03 1.27 0.22 0.23 

PBE 1.12 -0.17 1.38 -0.24 9.68 -0.10 4.22 0.08 1.37 0.32 0.19 

revPBE 1.11 -0.18 1.38 -0.25 9.65 -0.10 4.21 0.08 1.37 0.32 0.19 

PBE0 0.70 -0.48 1.30 -0.29 9.37 -0.13 3.99 0.02 1.25 0.20 0.23 

M06-L 0.80 -0.41 1.20 -0.34 9.20 -0.15 4.06 0.04 1.32 0.27 0.24 

M06 0.62 -0.54 1.24 -0.32 9.30 -0.14 3.96 0.02 1.24 0.19 0.24 

M06-2X 0.79 -0.42 1.40 -0.23 9.62 -0.11 3.86 -0.01 1.14 0.10 0.17 

M06-HF 0.77 -0.44 1.46 -0.20 9.00 -0.16 3.33 -0.15 0.91 -0.13 0.21 
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Both LDA and pure GGA functionals, SVWN and BLYP, respectively, show the 

same behaviour: underestimation of γ for short chains and overestimation of γ for long 

chains, with the relative error increasing linearly as the chain lengthens. B3LYP, a hybrid 

functional, does slightly better than the first two functionals with longer chains because 

the explicit inclusion of HF exchange partially cancels the overestimation associated with 

the pure functionals. However, the errors still diverge as the chain grows. The long-range 

corrected functional CAMB3LYP does significantly better than both hybrid and pure 

GGA functionals and is very close to CCSD. CAMB3LYP has qualitatively different 

error behaviour as the chain lengthens and is a considerable improvement over B3LYP 

for longer chains. CAMB3LYP clearly benefits from using more exact HF exchange at 

longer distances, but for very long chains, it will still fail. It is clear that 100% long-range 

Hartree-Fock exchange is essential to describe the hyperpolarizability of long conjugated 

molecules. 

Figure ‎4.2 confirms the effect of HF exchange on the performance of DFT 

functionals. The hybrid functionals, B971, B972, and PBE0, have similar behaviour and 

are slightly better than the GGAs, PBE and revPBE. However, the error increases almost 

linearly for both types of functionals as the chain grows. The effect of HF exchange is 

also clear in the Minnesota functionals shown in Figure ‎4.3. M06-L, which doesn’t 

include HF exchange, has the highest γ values, followed by M06, M06-2X, and M06-HF, 

which include 27%, 54%, and 100% HF exchange, respectively. For longer chains γ 

values decrease consistently as the percentage of HF exchange increases, with M06-2X 
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giving the lowest errors among this family of functionals. In general, there is a significant 

jump in the error when moving from the four-unit to the five-unit oligomer in most 

functionals; the only functionals that do not show this error have more than 50% long-

range exact exchange (CAMB3LYP, M06-HF, and (to some extent) M06-2X).  

Figure ‎4.4, Figure ‎4.5, and Figure ‎4.6, along with Table ‎4.2, show the values and 

relative errors of γ for polyyne chains. In general, most methods have the same 

qualitative behaviour as for the polyacetylene chains. The deterioration in the 

performance of CCSD method as the chain lengthens is worse than it was for the 

polyacetylene chains. The underestimation of HF increases with the chain size as well, 

unlike the polyacetylenes. This makes the single Slater determinant description of this 

system, especially for longer chains, questionable. However, these chains have a T1 

diagnostic between 0.012-0.014, which indicates that the CCSD(T) results should be 

trustworthy for these systems. (T1 < 0.02 indicates that the system is predominately 

single-reference and that CCSD and CCSD(T) should be reliable.‎
90

)  
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Figure ‎4.4: Longitudinal second hyperpolarizabilities of polyyne chains for several methods as a 

function of the number of units. (b) Relative error of longitudinal second hyperpolarizabilities of 

polyyne chains for several methods compared to CCSD(T) as a function of the number of units. 
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Figure ‎4.5: Longitudinal second hyperpolarizabilities of polyyne chains for several methods as a 

function of the number of units. (b) Relative error of longitudinal second hyperpolarizabilities of 

polyyne chains for several density functionals compared to CCSD(T) as a function of the number 

of units. 
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Figure ‎4.6: (a) Longitudinal second hyperpolarizabilities of polyynes chains for several methods 

as a function of the number of units. (b) Relative error of longitudinal second 

hyperpolarizabilities of polyynes chains for four Minnesota functionals compared to CCSD(T) as 

a function of the number of units. 
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Table ‎4.2: Finite field γ values (in atomic units), relative errors, and average absolute relative 

errors for polyyne chains H-(C≡C)m-H, calculated by different methods using cc-pVTZ basis set. 

The relative error of a method is calculated by the expression  
( )

1method

CCSD T

error



  . 

 m=1 m=2 m=3 m=4 m=5 avg. 

error  γ error γ 

x10
4
 

error γ 

x10
4
 

error γ 

x10
5
 

error γ 

x10
5
 

error 

CCSD(T) 826 

 

1.32 

 

7.66 

 

2.73 

 

7.32   

CCSD 859 0.04 1.26 -0.05 6.92 -0.10 2.36 -0.13 6.1 -0.17 0.10 

HF 444 -0.46 0.92 -0.31 5.1 -0.33 1.74 -0.36 4.49 -0.39 0.37 

SVWN 848 0.03 1.06 -0.20 6.32 -0.18 2.48 -0.09 7.67 0.05 0.11 

BLYP 883 0.07 1.05 -0.21 6.33 -0.17 2.5 -0.09 7.72 0.06 0.12 

B3LYP 743 -0.10 1.06 -0.20 6.41 -0.16 2.49 -0.09 7.5 0.03 0.12 

CAMB3LYP 710 -0.14 1.08 -0.18 6.34 -0.17 2.34 -0.14 6.6 -0.10 0.15 

B971 720 -0.13 1.05 -0.21 6.32 -0.18 2.45 -0.10 7.37 0.01 0.12 

B972 747 -0.10 1.07 -0.19 6.38 -0.17 2.46 -0.10 7.38 0.01 0.11 

PBE 915 0.11 1.06 -0.20 6.31 -0.18 2.47 -0.09 7.64 0.04 0.12 

revPBE 941 0.14 1.07 -0.19 6.3 -0.18 2.47 -0.1 7.61 0.04 0.13 

PBE0 740 -0.10 1.07 -0.19 6.38 -0.17 2.45 -0.10 7.32 0.00 0.11 

M06-L 212 -0.74 1.12 -0.15 6.87 -0.10 2.7 -0.01 8.26 0.13 0.23 

M06 806 -0.02 1.26 -0.05 7.26 -0.05 2.73 0.00 7.97 0.09 0.04 

M06-2X 616 -0.25 1.08 -0.18 6.4 -0.16 2.38 -0.13 6.75 -0.08 0.16 

M06-HF 574 -0.31 1.08 -0.19 5.82 -0.24 2.02 -0.26 5.4 -0.26 0.25 
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Just as in the polyacetylenes, most DFT functionals tested in this study have errors 

that increase with the length of the polyynes, leading to drastic errors for longer chains. 

As previously observed, the exceptions are functionals with large HF exchange: 

CAMB3LYP, M06-2X, and M06-HF. Although CAMB3LYP and M06-2X perform 

poorly for short chains, the dependence of the error on chain length is different, leading to 

better results for larger molecules. Both CAMB3LYP and M06-2X underestimate γ for 

all chain lengths, but they give results between CCSD and CCSD(T) for the longer chains 

we consider. As before, however, we can see that for very long chains one will still 

require 100% long-range Hartree-Fock exchange to get accurate results.  

Although CCSD(T) is widely accepted as a benchmark method for calculating the 

hyperpolarizabilities of conjugated systems,
‎61,‎62

 these results show that the performance 

of CCSD(T) for conjugated systems, especially with triple bonds, is questionable and 

requires further investigation. CCSD(T) is considered the "gold standard" for 

benchmarking other methods because the overestimation of (T) for triples is close to the 

omitted quadruple excitations, and thus the method benefits from a favoured cancellation 

of errors.‎
91

 But this effect doesn’t necessarily hold for all systems and molecular 

properties. Electron correlation is known to increase γ, which is clear in the consistent 

underestimation of HF for all molecules, and thus including more dynamic correlation 

from the estimate of triple excitation is expected to give higher γ values. However, the 

contribution of electron correlation is reduced, the ratio γCCSD(T)/γHF decreases, as the 

polyacetylene chain grows, leading to closer agreement between coupled cluster and the 
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HF method, which agrees with previous studies.
‎32,‎92

 The cause of this effect is still not 

clear. For the polyyne chains, however, we observe the opposite effect of correlation: the 

ratio γCCSD(T)/γHF increases as the chain lengthens.  

Thus, the difference between CCSD and CCSD(T) could reflect the significant 

contribution of the triples excitations to the second hyperpolarizability.‎
32

 However, MP2 

is known to overestimate the second hyperpolarizability of conjugated systems,
‎93-‎96

 and 

was shown to give the wrong trend as the chain lengthens.‎
92

 Therefore, the triples 

estimate could be overestimated. Ref [‎97] showed that both CCSD(T) and CCSD have a 

4% error, overestimation for the former and underestimation for the latter, for calculating 

γ of a linear chain of 4 hydrogens compared to full-CI. Another study showed that CCSD 

slightly outperforms CCSD(T) in calculating γ for the same chains.‎
14

 These results are 

not sufficient to make firm conclusions about the performance of CCSD and CCSD(T) 

and comparisons with more accurate methods, such as CCSDT, CC3, or DMRG, are 

required.  
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Figure ‎4.7: (a) Longitudinal second hyperpolarizabilities of polymethineimine chains for several 

methods as a function of the number of units. (b) Relative error of longitudinal second 

hyperpolarizabilities of polymethineimine chains for several methods compared to CCSD(T) as a 

function of the number of units. 
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Table ‎4.3: Finite field γ values (in atomic units), relative errors, and average absolute relative 

errors for polymethineimine H-(CH=N)m-H, calculated by different methods using cc-pVTZ basis 

set. The relative error of a method is calculated by the expression 
( )

1method

CCSD T

error



  . 

 m=1 m=2 m=3 m=4 m=5 avg. 

error γ 

x10
3
 

error γ 

x10
3
 

error γ 

x10
4
 

error γ 

x10
5
 

error γ 

x10
5
 

error 

CCSD(T) 1.21 

 

7.86 

 

3.98 

 

1.37 

 

3.48   

CCSD 1.09 -0.10 7.05 -0.10 3.42 -0.14 1.12 -0.18 2.75 -0.21 0.15 

HF 0.16 -0.87 4.22 -0.46 2.53 -0.36 0.84 -0.39 1.97 -0.44 0.50 

SVWN 1.79 0.48 9.59 0.22 5.86 0.47 2.77 1.02 9.88 1.84 0.81 

BLYP 1.69 0.39 9.60 0.22 5.92 0.49 2.80 1.05 10.02 1.88 0.81 

B3LYP 1.20 -0.01 8.12 0.03 5.13 0.29 2.23 0.64 7.17 1.06 0.73 

CAMB3LYP 0.91 -0.25 7.17 -0.09 4.20 0.06 1.57 0.15 4.24 0.22 0.15 

B971 1.18 -0.03 8.00 0.02 5.05 0.27 2.20 0.61 7.01 1.01 0.39 

B972 1.12 -0.08 7.89 0.00 5.02 0.26 2.18 0.60 6.97 1.00 0.39 

PBE 1.67 0.38 9.52 0.21 5.84 0.47 2.77 1.03 9.91 1.84 0.79 

revPBE 1.62 0.34 9.49 0.21 5.83 0.47 2.77 1.02 9.92 1.85 0.78 

PBE0 1.11 -0.09 7.79 -0.01 4.88 0.23 2.08 0.52 6.49 0.86 0.34 

M06-L 1.29 0.06 8.27 0.05 5.56 0.40 2.62 0.91 9.22 1.65 0.61 

M06 0.94 -0.22 7.49 -0.05 4.89 0.23 2.07 0.51 6.35 0.82 0.37 

M06-2X 1.01 -0.16 7.20 -0.08 4.10 0.03 1.53 0.12 4.18 0.20 0.12 

M06-HF 0.83 -0.31 6.48 -0.18 3.19 -0.20 1.05 -0.23 2.56 -0.27 0.24 
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Replacing every other carbon in a polyacetylene chain with nitrogen gives 

polymethineimines, conjugated systems with interesting NLO properties. The second 

hyperpolarizability and relative errors for these chains are shown in Figure ‎4.7 and 

Table ‎4.3. Introducing a heteroatom to the chain increases the relative error for almost all 

the methods, especially with larger molecules. Both CCSD and HF consistently 

underestimate γ values for all chains, with errors diverging as the chain lengthens. The 

effect of correlation for these systems is the same as for polyyne chains: γCCSD(T)/γHF 

increases with the number of units, starting from a 3-unit chain. LDA and pure GGA 

functionals overestimate the second hyperpolarizability with errors increasing with chain 

length. Hybrid functionals benefits from including HF exchange and partially correct the 

error of pure functionals. However, the error still diverges with chain length, but not as 

fast as in pure functionals. Both CAMB3LYP and M06-2X show a different behaviour 

for the error and are very close to CCSD. As before, the value of the T1 diagnostic (T1 = 

0.012 to 0.017 for the one- to five-unit chains) suggest that the CCSD and CCSD(T) 

values are trustworthy. 

Adding electron donating and withdrawing groups on the opposite sides of a 

polyacetylene chain gives donor acceptor π-conjugated systems, the so-called push-pull 

molecules. As shown in Table ‎4.4, there is a significant increase in the error for these 

systems compared to the non-substituted polyacetylene chains, confirming that systems 

with strong electron delocalization are challenging for DFT. Unlike the previous 

conjugated systems, there is a consistent and significant underestimation of γ by all DFT 
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methods, without a systematic increase in the error in the extending chains, which makes 

the reference method questionable. These systems have a T1 diagnostic of 0.019, slightly 

under the acceptable threshold of 0.02, indicating a strong possibility of dealing with a 

system with multi-reference character. The ratio γCCSD(T)/γHF consistently increases with 

chain length, indicating that extending the chain enhances the effect of electron 

correlation for these systems.  

Table ‎4.4: Finite field γ values (in atomic units), relative errors, and average absolute relative 

errors for amino nitro polyacetylene units NH2-(CH=CH)m-NO2, calculated by different methods 

using cc-pVTZ basis set. The relative error of a method is calculated by the expression 

( )

1method

CCSD T

error



  . 

 m=1 m=2 m=3 avg. 

error γ 

x10
4
 

error γ 

x10
5
 

error γ 

x10
5
 

error 

CCSD(T) 2.58 

 

2.06 

 

8.96   

CCSD 2.11 -0.18 1.72 -0.17 7.65 -0.15 0.16 

HF 1.03 -0.60 0.64 -0.69 2.74 -0.69 0.66 

SVWN 0.46 -0.82 0.13 -0.94 0.88 -0.90 0.89 

BLYP 0.61 -0.76 0.17 -0.92 1.07 -0.88 0.85 

B3LYP 0.60 -0.77 0.38 -0.82 2.16 -0.76 0.78 

CAMB3LYP 0.81 -0.68 0.66 -0.68 3.47 -0.61 0.66 

B971 0.60 -0.77 0.39 -0.81 2.18 -0.76 0.78 

B972 0.58 -0.77 0.39 -0.81 2.19 -0.76 0.78 

PBE 0.59 -0.77 0.17 -0.92 1.06 -0.88 0.86 

revPBE 0.63 -0.76 0.19 -0.91 1.11 -0.88 0.85 

PBE0 0.62 -0.76 0.42 -0.79 2.36 -0.74 0.76 

M06-L 0.50 -0.81 0.22 -0.89 1.35 -0.85 0.85 

M06 0.64 -0.75 0.44 -0.79 2.49 -0.72 0.75 

M06-2X 0.90 -0.65 0.69 -0.66 3.61 -0.60 0.64 

M06-HF 1.39 -0.46 0.97 -0.53 4.43 -0.51 0.50 
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4.4.2 Aromatic molecules 

For aromatic molecules, as shown in Table ‎4.5, we observe underestimation of the 

second hyperpolarizability by all the methods except LDA and pure GGA functionals for 

benzene and phenol. It is surprising that pure density functionals give the lowest errors 

for these molecules, and that hybrid and long-range separated functionals don’t benefit 

from including HF exchange. This seems to be because the underestimation by HF is 

much higher than the overestimation of DFT exchange for these molecules, so the usual 

compensation of errors does not occur. (A hybrid functional with a small fraction of exact 

exchange, like TPSSh, might work better for these aromatic molecules.) These are the 

only systems in this study where B3LYP outperformed CAMB3LYP.  

There is a significant increase in the errors for all DFT functionals when a triple 

bond is introduced by replacing an OH group with a CN, changing phenol to benzonitrile. 

The Minnesota family functionals generally does worse than the rest of the functionals, 

with errors consistently increasing with the percentage of HF exchange. Using CCSD as a 

reference, hybrid functionals performs better than pure ones, and better than 

CAMB3LYP. In these molecules the value of the T1 diagnostic ranges from 0.010 to 

0.012. 
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Table ‎4.5: Finite field γ values (in atomic units), relative errors, and average absolute relative 

errors for a set of aromatic molecules calculated by different methods using cc-pVTZ basis set. 

The relative error of a method is calculated by the expression 
( )

1method

CCSD T

error



  . 

 benzene phenol benzonitrile avg. 

error γ error γ error γ error 

CCSD(T) 6128 

 

9419 

 

40526   

CCSD 5664 -0.08 8417 -0.11 37004 -0.09 0.09 

HF 3901 -0.36 4973 -0.47 29178 -0.28 0.37 

SVWN 6856 0.12 10115 0.07 23482 -0.42 0.20 

BLYP 6795 0.11 10063 0.07 23546 -0.42 0.20 

B3LYP 5747 -0.06 8363 -0.11 20832 -0.49 0.22 

CAMB3LYP 5038 -0.18 7272 -0.23 18286 -0.55 0.32 

B971 5676 -0.07 8202 -0.13 20537 -0.49 0.23 

B972 5542 -0.10 8009 -0.15 20424 -0.50 0.25 

PBE 6696 0.09 9907 0.05 23359 -0.42 0.19 

revPBE 6605 0.08 9783 0.04 23285 -0.43 0.18 

PBE0 5466 -0.11 7941 -0.16 20092 -0.50 0.26 

M06-L 5495 -0.10 8158 -0.13 21070 -0.48 0.24 

M06 5221 -0.15 7710 -0.18 20215 -0.50 0.28 

M06-2X 5030 -0.18 7189 -0.24 18097 -0.55 0.32 

M06-HF 3842 -0.37 6038 -0.36 15529 -0.62 0.45 
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4.4.3 Small molecules 

Table ‎4.6 shows that both HF and CCSD consistently underestimate γ values for a 

set of small molecules. HF has an average error of 39%, and the absence of perturbative 

triples correlations gives an average error of 10% for CCSD. This indicates the 

importance of including correlation when calculating γ for these simple systems.  

LDA, pure GGA, and hybrid functionals consistently overestimate γ for the small 

molecules we considered. The pure GGA functionals, BLYP, PBE, and revPBE, and the 

local density approximation, SVWN, gave the worst results, with relative errors close to 

or higher than 100%. Introducing HF exchange improves the results significantly. We 

observe a consistent decrease in the error from BLYP to B3LYP to CAMB3LYP, with 

the later functional outperforming all other methods, including CCSD, and thus 

performing significantly better than B3LYP for these small molecules. These results 

show the inadequacy of conventional DFT functionals for calculating the second 

hyperpolarizability of small molecules.  

For the M06 family, the behaviour of the error is systematic, except for ethanol. The 

calculated γ decreases as the amount of HF exchange in the functional is increased from 

0% (M06-L), to 27% (M06), to 54% (M06-2X), to 100% (M06-HF). The meta-GGA 

M06-L is better than the pure functionals BLYP and PBE.   
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Table ‎4.6: Finite field γ values (in atomic units), relative errors, and average absolute relative 

errors for a set of molecules calculated by different methods using cc-pVTZ basis set. The 

relative error of a method is calculated by the expression 

( )

1method

CCSD T

error



  . 

 CH3OH C2H5OH C2H5NH2 C3H7CHO avg. 

error γ error γ error γ error γ error 

CCSD(T) 1083 

 

3028 

 

6857 

 

7326   

CCSD 1038 -0.04 2800 -0.08 5564 -0.19 6579 -0.10 0.10 

HF 654 -0.40 2169 -0.28 3458 -0.50 4555 -0.38 0.39 

SVWN 1512 0.40 5708 0.88 15210 1.22 14383 0.96 0.87 

BLYP 1534 0.42 5656 0.87 15609 1.28 13945 0.90 0.87 

B3LYP 1211 0.12 4263 0.41 10064 0.47 10105 0.38 0.34 

CAMB3LYP 1021 -0.06 3405 0.12 6756 -0.01 7660 0.05 0.06 

B971 1174 0.08 4097 0.35 9532 0.39 9907 0.35 0.29 

B972 1130 0.04 3945 0.30 8874 0.29 9605 0.31 0.24 

PBE 1482 0.37 5461 0.80 14594 1.13 13841 0.89 0.80 

revPBE 1462 0.35 5347 0.77 14119 1.06 13573 0.85 0.76 

PBE0 1117 0.03 3889 0.28 8643 0.26 9392 0.28 0.21 

M06-L 1204 0.11 3275 0.08 9062 0.32 10922 0.49 0.25 

M06 1072 -0.01 3896 0.29 7972 0.16 9526 0.30 0.19 

M06-2X 944 -0.13 4167 0.38 6169 -0.10 7865 0.07 0.17 

M06-HF 753 -0.31 2673 -0.12 4244 -0.38 5886 -0.20 0.25 
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Table ‎4.7 shows a significant jump in the errors as π-bonds are introduced. We notice 

huge errors for calculating γ of CO by M06-L, M06, and M06-HF, with both M06-L and 

M06 giving the wrong sign for γ.  

 

 

Table ‎4.7: Finite field γ values (in atomic units), relative errors, and average absolute relative 

errors for a set of small molecules calculated by different methods using cc-pVTZ basis set. The 

relative error of a method is calculated by the expression 
( )

1method

CCSD T

error



  . 

 NH3 H2O CO CO2 HCN avg. 

error γ error γ error γ error γ error γ error 

CCSD(T) 503  241  75  -297  699   

CCSD 489 -0.03 237 -0.02 65 -0.14 -345 0.16 646 -0.08 0.08 

HF 464 -0.08 242 0.00 98 0.30 -55 -0.81 262 -0.63 0.36 

SVWN 648 0.29 295 0.22 81 0.08 -106 -0.64 941 0.35 0.32 

BLYP 672 0.34 305 0.26 87 0.16 -99 -0.67 994 0.42 0.37 

B3LYP 598 0.19 282 0.17 87 0.16 -103 -0.65 675 -0.03 0.24 

CAMB3LYP 548 0.09 269 0.12 80 0.07 -118 -0.60 526 -0.25 0.22 

B971 584 0.16 275 0.14 95 0.27 -96 -0.68 656 -0.06 0.26 

B972 561 0.11 270 0.12 103 0.38 -88 -0.70 665 -0.05 0.27 

PBE 646 0.28 298 0.24 106 0.41 -85 -0.71 1012 0.45 0.42 

revPBE 638 0.27 299 0.24 117 0.55 -77 -0.74 1033 0.48 0.46 

PBE0 561 0.12 270 0.12 104 0.38 -91 -0.69 643 -0.08 0.28 

M06-L 476 -0.05 207 -0.14 -194 -3.59 -262 -0.12 502 -0.28 0.84 

M06 494 -0.02 236 -0.02 -19 -1.26 -208 -0.30 556 -0.21 0.36 

M06-2X 492 -0.02 238 -0.01 79 0.05 -114 -0.62 480 -0.31 0.20 

M06-HF 410 -0.18 285 0.18 189 1.51 -83 -0.72 539 -0.23 0.56 
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4.5 Conclusions  

We performed a benchmark study to assess the errors of several DFT functionals, 

relative to CCSD(T), for calculating the static longitudinal second hyperpolarizabilities 

for 30 molecules. The performance of these functionals depends on the system under 

consideration.  

Hybrid functionals generally perform better than pure ones, probably due to a partial 

correction of the self-interaction error, which leads the exchange-correlation potential to 

be too shortsighted. The error for both pure and hybrid functionals increases with the size 

of the molecule in conjugated systems, leading to disastrous results for longer chains, and 

indicating the inadequacy of conventional DFT functions for calculating the second 

hyperpolarizabilities for these systems. This behaviour is eliminated to a large degree in 

the range-separated CAMB3LYP functional and in functionals with more than 50% HF 

exchange: M06-2X and M06-HF. Conventional GGA functionals have high errors for 

small molecules as well. For aromatic molecules, pure GGA functionals have slightly 

smaller errors than global hybrid and long-range corrected functionals.  

Overall, the CAMB3LYP functional has the best performance, followed by M06-2X, 

which has 54% HF exchange. CAMB3LYP is a long-range corrected functional that 

benefits from using more exact HF change at longer distances to correct the erroneous 

asymptotic decay of exchange-correlation potential, and represents a significant 

improvement over the B3LYP functional for π-conjugated chains and small molecules. 
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These two functionals, CAMB3LYP and M06-2X, are recommended for all systems 

except aromatic molecules, in which pure functionals have the best performance. 

The effect of correlation on the second hyperpolarizability can be assessed by 

comparing results from Hartree-Fock and coupled cluster calculations. Including 

correlation leads to higher γ values, and Hartree-Fock consistently underestimation γ. The 

ratio γCCSD(T)/γHF increases with chain length for all conjugated systems investigated here 

except for polyacetylene chains, it consistently decreases. We also observe a significant 

divergence between CCSD and CCSD(T) that increases as the length of conjugated 

chains increases. These results indicate the need for more accurate methods to assess the 

suitability of CCSD(T) as a benchmarking method for NLO properties of conjugated 

systems.  

 

 

 

 

 



 

 

 

 

 

  Ph.D. Thesis – Ahmed Mohammed                             McMaster University – Chem & Chem Bio  

 

 

156 
 

4.6 References 

1. J. C. Chien, Polyacetylene: Chemistry, Physics and Material Science (Academic, 

Orlando, 1984). 

2. H.-J. Werner, W. Meyer, Phys. Rev. A 13, 13 (1975). 

3.  E.-A. Reinsch, W. Meyer, Phys. Rev. A 14, 915 (1976). 

4. H. Kahlert, O. Leitner, G. Leising, Synth. Met. 17, 467 (1987). 

5. B. J. Coe, J. A. Harris, L. A. Jones, B. S. Brunschwig, K. Song, K. Clays, J. 

Garin, J. Orduna, S. J. Coles, M. B. Hursthouse, J. Am. Chem. Soc. 127, 4845 

(2005). 

6. F. Mançois, L. Sanguinet, J.-L. Pozzo, M. Guillaume, B. Champagne, V. 

Rodriguez, F. Adamietz, L. Ducasse, F. Castet, J. Phys. Chem. B 111, 9795 

(2007). 

7. S. Salustro, L. Maschio, B. Kirtman, M. Rérat, .R. Dovesi, J. Phys. Chem. C 

120, 6756 (2016). 

8. P. A. Limacher, K. V. Mikkelsen, H. P. Lüthi, J. Chem. Phys. 130, 194114 

(2009). 

9. S. Borini, P. A. Limacher, H. P. Lüthi, J. Chem. Phys. 131, 1241050 (2009). 

10. R. Kanis, M. A. Ratner, T. J. Marks, Chem. Rev. 94, 195 (1994) 

11. B. Kirtman, in Theoretical and Computational Modeling of NLO and Electronic 

Materials, edited by S. P. Karna, A. T. Yeates (ACS, Washington DC, 1996), 

ACS Series Vol. 628, p. 58. 

12. B. Champagne, B. Kirtman, in Handbook of Advanced Electronic and Photonic 

Materials and Devices, Nonlinear Optical Materials Vol. 9, Edited by H. S. 

Nalwa (Academic, San Diego, 2001), p. 63. 

13. K. Y. Suponitsky, T. V. Timofeeva, M. Y. Antipin, Russ. Chem. Rev. 75, 457 

(2006). 



 

 

 

 

 

  Ph.D. Thesis – Ahmed Mohammed                             McMaster University – Chem & Chem Bio  

 

 

157 
 

14. J. B.  Robinson, P. J. Knowles, J. Chem. Phys. 137, 054301 (2012). 

15. L. M. Abreu, T. L. Fonseca, M. A. Castro, J. Chem. Phys. 136, 234311 (2012). 

16. M. de Wergifosse, F. Wautelet, B. Champagne, R. Kishi, K. Fukuda, H. Matsui, 

M. Nakano, J. Phys. Chem. A 117, 4709 (2013). 

17. M. de Wergifosse, J. Phys. Chem. A 120, 2727 (2016). 

18. H. Matsui, K. Fukuda, S. Ito, T. Nagami, M. Nakano, J. Phys. Chem. A 120, 948 

(2016). 

19. S. Wouters, V. Van Speybroeck, D. Van Neck, J. Chem. Phys. 145, 054120 

(2016). 

20. M. de Wergifosse, B. Champagne. J. Chem. Phys. 134, 074113 (2011) 

21. A. A. K. Mohammed, P. A. Limacher, B. Champagne, J. Comput. Chem. 34, 

1497 (2013). 

22. T. Wu, Y. N. Kalugina, A. J. Thakkar, Chem. Phys. Lett. 635, 257 (2015). 

23. A. A. K. Mohammed, P. A. Limacher, P. W. Ayers Chem. Phys. Lett. 682, 160 

(2017). 

24. T. Wu, A. J. Thakkar, J. Chem. Phys. 143, 144302 (2015). 

25. J. M. Luis, M. Torrent-Sucarrat, O. Christiansen, B. Kirtman, J. Chem. Phys. 

127, 084118 (2007) 

26. B. Kirtman, J. M. Luis, J. Chem. Phys. 128, 114101 (2008). 

27. J. Quertinmont, B. Champagne, F. Castet, M. H. Cardenuto, J. Phys. Chem. A 

119, 5496 (2015). 

28. R. J. Bartlett, G. D. Purvis, Phys. Rev. A 20, 1313 (1979). 

29. B. M. Pierce, J. Chem. Phys. 91, 791 (1989). 

30. H. Sekino, R.J. Bartlett, J. Chem. Phys. 94 3665 (1991). 

31. D. Jacquemin, J. M. André, E. A. Perpète, J. Chem. Phys. 121, 4389 (2004). 



 

 

 

 

 

  Ph.D. Thesis – Ahmed Mohammed                             McMaster University – Chem & Chem Bio  

 

 

158 
 

32. P. A. Limacher, Q. Li, H. P. Lüthi, J. Chem. Phys. 135, 014111 (2011). 

33. B. Champagne, E. A. Perpète, S. J. A. van Gisbergen, E.-J. Baerends, J. G. 

Snijders, C. Soubra-Ghaoui, K. A. Robins, B. Kirtman, J. Chem. Phys. 109, 

10489 (1998). 

34. S. F. Sousa, P. A. Fernandes, M. J. Ramos, J. Phys. Chem. A 111, 10439 (2007). 

35. L. Goerigk, S. Grimme, J. Chem. Theory Comp. 6, 107 (2010). 

36. L. Goerigk, S. Grimme, J. Chem. Theory Comp. 7, 291 (2011). 

37. L. Goerigk, S. Grimme, PCCP 13, 6670 (2011). 

38. A. J. Cohen, P. Mori-Sanchez, W. T. Yang, Chem. Rev. 112, 289 (2012). 

39. C.-W. Tsai, Y.-C. Su, G.-D. Li, J.-D. Chai, PCCP 15, 8352 (2013). 

40. I. Y. Zhang, X. Xu, J. Phys. Chem. Lett. 4, 1669 (2013). 

41. N. Mardirossian, M. Head-Gordon, PCCP 16, 9904 (2014). 

42. H. Sun, J. Autschbach, J. Chem. Theory Comp. 10, 1035 (2014). 

43. N. Mardirossian, M. Head-Gordon, J. Chem. Phys. 140, (2014). 

44. T. Tsuneda, K.Hirao, WIREs Comput. Mol. Sci. 4, 375 (2014). 

45. J. Autschbach, M. Srebro, Acc. Chem. Res. 47, 2592 (2014). 

46. N. Mardirossian, M. Head-Gordon, J. Chem. Phys. 144, 214110 (2016). 

47. N. Mardirossian, M. Head-Gordon, J. Chem. Phys. 145, 186101 (2016). 

48. B. Champagne, E. A. Perpète, D. Jacquemin, S. J. A. van Gisbergen, E.-

J.Baerends, C. Soubra-Ghaoui, K. A. Robins, B. Kirtman, J. Phys. Chem. A 104, 

4755 (2000). 

49. S. J. A. van Gisbergen, P. R. T. Schipper, O. V. Gritsenko, E. J. Baerends, J. G. 

Snijders, B. Champagne, B. Kirtman, Phys. Rev. Lett. 83, 694 (1999). 

50. B. Champagne, F. A. Bulat, W. Yang, S. Bonness, B. Kirtman, J. 

Chem. Phys. 125, 194114 (2006). 



 

 

 

 

 

  Ph.D. Thesis – Ahmed Mohammed                             McMaster University – Chem & Chem Bio  

 

 

159 
 

51. A. Ruzsinszky, J. P. Perdew, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, J. 

Chem. Phys. 125, 194112 (2006). 

52. A. Ruzsinszky, J. P. Perdew, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, J. 

Chem. Phys. 126, 104102 (2007). 

53. P. Mori-Sanchez, A. J. Cohen, W. T. Yang, Phys. Rev. Lett. 100, 146401 

(2008). 

54. P. Mori-Sanchez, A. J. Cohen, W. T. Yang, J. Chem. Phys. 125, 201102 (2006). 

55. A. J. Cohen, P. Mori-Sanchez, W. T. Yang, Phys. Rev. B 77, 115123 (2008). 

56. A. J. Cohen, P. Mori-Sanchez, W. T. Yang, Science 321, 792 (2008). 

57. R. Haunschild, T. M. Henderson, C. A. Jimenez-Hoyos, G. E. Scuseria, J. Chem. 

Phys. 133, 134116 (2010). 

58. M. Kamiya, H. Sekino, T. Tsuneda, K. Hirao, J. Chem. Phys. 122, 234111 

(2005). 

59. H. Sekino, Y. Maeda, M. Kamiya, K. Hirao, J. Chem. Phys. 126, 014107 (2007). 

60. D. Jacquemin, E. A. Perpete, G. Scalmani, M. J. Frisch, R. Kobayashi, C. 

Adamo, J. Chem. Phys. 126, 144105 (2007).  

61. S. Nenon B. Champagne, M. I. Spassovab, Phys. Chem. Chem. Phys. 16, 7083 

(2014). 

62. M. B. Oviedo, N. V. Ilawe, B. M. Wong, J. Chem. Theory Comput. 12, 3593 

(2016). 

63. M. Zouaoui-Rabah, M. Sekkal-Rahal, F. Djilani-Kobibi, A. M. Elhorri, M. 

Springborg J. Phys. Chem. A 120, 8843 (2016). 

64. L. F. Richardson, J. A. Gaunt, Phil. Trans. R. Soc. Lond. A 226, 299 (1927). 

65. Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. 

Scuseria,  M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,  

G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,  A. F. 

Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, 



 

 

 

 

 

  Ph.D. Thesis – Ahmed Mohammed                             McMaster University – Chem & Chem Bio  

 

 

160 
 

R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, 

T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. 

Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. 

Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, 

M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross,  V. Bakken, 

C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, 

R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. 

Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. 

Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, 

Gaussian, Inc., Wallingford CT, 2009. 

66. T. Yanai, D. P. Tew, N. C. Handy, Chem. Phys. Lett. 393, 51 (2004).  

67. A. D. Becke, Phys. Rev. A 38, 3098 (1988).  

68. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37, 785 (1988).   

69. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).  

70. T. Leininger, H. Stoll, H.-J. Werner, A. Savin, Chem. Phys. Lett. 275, 151 

(1997). 

71. A. V. Krukau, G. E. Scuseria, J. P. Perdew, A. Savin, J. Chem. Phys. 129, 

124103 (2008).   

72. M. J. G. Peach, E. I. Tellgren, P. Salek, T. Helgaker, D. J. Tozer, J. Phys. Chem. 

A 111, 11930 (2007). 

73. R. A. Kendall, T. H. Dunning Jr., R. J. Harrison, J. Chem. Phys. 96, 6796 

(1992). 

74. G. J. B. Hurst, M. Dupuis, E. Clementi, J. Chem. Phys. 89, 385(1988). 

75. M. Torrent-Sucarrat, M. Sola, M. Duran, J. M. Luis, B. Kirtman, J. Chem. Phys. 

118, 711(2003). 

76. MOLPRO, version 2010.1, a package of ab initio programs, H.-J.Werner, P. J. 

Knowles, G. Knizia, F. R. Manby, M. Sch¨utz, P. Celani, T. Korona, R. Lindh, 

A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. 

Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. 

http://link.aip.org/link/?&l_creator=getabs-normal1&l_dir=FWD&l_rel=CITES&from_key=JCPSA6000089000001000385000001&from_keyType=CVIPS&from_loc=AIP&to_j=JCPSA6&to_v=65&to_p=111&to_loc=AIP&to_url=http%3A%2F%2Flink.aip.org%2Flink%2F%3FJCP%2F65%2F111%2F1


 

 

 

 

 

  Ph.D. Thesis – Ahmed Mohammed                             McMaster University – Chem & Chem Bio  

 

 

161 
 

Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. 

Koppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. 

Meyer, M. E. Mura, A. Nicklass, D. P. O’Neill, P. Palmieri, K. Pfl¨uger, R. 

Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. 

Thorsteinsson, M. Wang, and A. Wolf, see http://www.molpro.net. 

77. DALTON, a molecular electronic structure program, Release 2.0 (2005), see 

http://www.kjemi.uio.no/software/dalton/dalton.html. 

78. J. C. Slater, Phys. Rev. 81, 385 (1951). 

79. S. J. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980). 

80. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). 

81. Y. Zhang, W. Yang, Phys. Rev. Lett. 80, 890 (1998). 

82. F. A. Hamprecht, A. J. Cohen, D. J. Tozer, N. C. Handy, J. Chem. Phys. 109, 

6264 (1998). 

83. P. J. Wilson, T. J. Bradley, D. J. Tozer, J. Chem. Phys. 115, 9233 (2001). 

84. C. Adamo, V. Barone, J. Chem. Phys. 111, 6158 (1999). 

85. A. Savin, in Recent Developments and Applications of Modern Density 

Functional Theory, edited by J. J. Seminario (Elsevier, Amsterdam, 1996). 

86. H. Iikura, T. Tsuneda, T. Yanai, K. Hirao, J. Chem. Phys. 115, 3540 (2001). 

87. Y. Zhao, D. G. Truhlar, J. Chem. Phys. 125, 194101 (2006). 

88. Y. Zhao, D. G. Truhlar, Theoretical Chemistry Accounts 120, 215 (2006). 

89. Y. Zhao, D. G. Truhlar, J. Phys. Chem. A 110, 13126 (2006). 

90. T. J. Lee, P. R. Taylor, Int. J. Quantum Chem. 36, 199 (1989). 

91. T. Helgaker, W. Klopper, A. Halkier, K. L. Bak, P. Jørgensen, J. Olsen, 2001. 

Highly Accurate Ab Initio Computation of Thermochemical Data, in Quantum 

Mechanical Prediction of Thermodynamic Data, Cioslowski, J. Ed., 

Kluwer:Dordrecht, 1. 

http://www.kjemi.uio.no/software/dalton/dalton.html


 

 

 

 

 

  Ph.D. Thesis – Ahmed Mohammed                             McMaster University – Chem & Chem Bio  

 

 

162 
 

92. Q. Li, L. Chen, Q. Li, Z. Shuai, Chem. Phys. Lett. 457, 276 (2008). 

93. J.-W. Song, M. A. Watson, H. Sekino, K. Hirao, J. Chem. Phys. 129, 024117 

(2008). 

94. B. Kirtman, S. Bonness, A. Ramirez-Solis, B. Champagne, H. Matsumoto, H. 

Sekino, J. Chem. Phys. 128, 114108 (2008). 

95. B. Champagne, B. Kirtman, Int. J. Quantum Chem. 109, 3103 (2009). 

96. S. Wouters, P. A. Limacher, D. Van Neck, P. W. Ayers, J. Chem. Phys. 136, 

134110 (2012). 

97. M. Nakano, T. Minami, H. Fukui, R. Kishi, Y. Shigeta, B. Champagne, J. Chem. 

Phys. 136, 024315 (2012). 

 

 

 

 

 



 

163 

 

 Chapter 5

Finite Field Method for Nonlinear Optical 

Property Prediction Using Rational Function 

Approximants
‡
 

5.1 Motivation  

Chapters 2-4 are based on calculating response properties using a polynomial 

function to model the dependence of the energy of a molecule on the applied field. In this 

chapter, we present and explore a novel variant of the FF method, which uses a rational 

function to fit a molecule’s energy with respect to the applied electric field. Rational 

functions are more general than the polynomial model, and thus are expected to capture 

physical behaviour that the latter can’t. Similarly to previous chapters, factors crucial for 

the method’s accuracy were tuned. These factors include: the number of terms in the 

function, the distribution of fields used to construct the approximation, and the initial 

                                                           
‡
 This chapter was originally published as A. H. G. Patel, A. A. K. Mohammed, P. A. Limacher, 

P. W. Ayers, J. Phys. Chem. A 121, 5313 (2017). 
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field in the approximation. An overall comparison of the behaviour of the two methods is 

presented which shows that the rational function is less sensitive to the chosen initial field 

and that, unlike the polynomial model, no subsequent refinement steps were needed to 

obtain reliable results. 

5.2 Introduction 

 Since the discovery of nonlinear optical (NLO) phenomena
1
 and their uses, 

determining response polarizabilities and hyperpolarizabilities for molecules and 

polymers has become increasingly relevant to many fields, including materials science 

and organic chemistry.
2
 Consequently, the demand for cheap and accurate computational 

methods to predict these molecular properties has increased.
3,4

 However, producing a 

method that achieves these goals is challenging, as the (hyper)polarizabilities are higher-

order derivatives of a molecule’s energy with respect to an external homogeneous electric 

field ( ), as follows: 

    
2 3 4

2 3 4

2 3 4

0 0 0 0

1 1 1
  0  

2! 3! 4!

E E E E
E F E F F F F

F F F F

   
     

   
   (5.1) 

The dipole moment (μ), the dipole polarizability (α), the first hyperpolarizability (β) and 

the second hyperpolarizability (γ) can be substituted in the expansion: 

     2 3 41 1 1
  0

2 6 24
E F E F F F F            (5.2) 
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Several approaches are available to compute these NLO properties, including: sum 

over states,
5
 coupled-perturbed Hartree-Fock,

6–8
 response theory,

9,10
 and the finite field 

(FF) method.
11–15

 Of these, the FF method remains one of the most computationally 

inexpensive, since unlike the other methods, no excited state information or analytical 

derivatives are required.
16

 This also makes the FF method one of the most facile to 

implement; simply knowing the energy at several field strengths is sufficient to compute 

a desired optical property. For these reasons, the FF method is commonly used first when 

one wishes to assess the performance of new quantum chemistry methods for 

(hyper)polarizabilities.
17–29

 

 Though the FF method has many advantages, the accuracy of a FF calculation is 

highly sensitive to the fields used. This sensitivity originates from the errors caused by 

choosing field strengths that are too high or low. The numerical nature of the FF method 

implies that choosing field strengths that are too low will cause finite-precision artefacts. 

Conversely, fields that are too high make higher-order terms in Eq. (5.1) nonnegligible, 

leading to errors when the Taylor series is truncated. When there are low-lying excited 

states, using fields that are too high can lead to a field-induced state inversion, where an 

excited state at zero-field becomes lower in energy than the ground state.
30

 This leads to 

properties being evaluated for the more favourable excited state rather than for the ground 

state, as desired. As a consequence of these effects, chosen field strengths must be 

optimized to ensure that computed (hyper)polarizabilities are accurate.  
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In previous work, it was found that three factors play a key role in the accuracy of a 

FF method: the total number of fields used, the distribution of the fields, and the initial 

field value around which the other fields are picked.
31

 This previous study tuned these 

three factors for a Taylor expansion based FF method.
31

 In particular, this previous 

method was based on taking finite differences, using a Taylor polynomial, to compute 

NLO properties. The optimized method, in conjunction with iterative error reduction 

using Richardson extrapolation, was found to provide accurate predictions for NLO 

properties. However, the accuracy of this method was found to be quite sensitive to the 

initial field used for the calculation. This sensitivity tends to reduce the overall reliability 

of the method, creating a significant barrier to its widespread adoption and use. 

To mitigate the field sensitivity observed with the finite difference method, we 

propose using a rational function to fit the energy instead:  

  
2 3

2 3
 
1

a bF cF dF
E F

BF CF DF

   


   
  (5.3) 

where a, b, c, d,… and B, C, D,… are fitting coefficients. By setting all the denominator 

coefficients to zero, a polynomial is obtained, so this function is a generalized form of the 

Taylor expansion. However, rational functions are well-suited to approximate asymptotic 

functions and, recalling their use in Padé approximants, (approximately) account for 

higher-order terms in the Taylor series (5.1), as one must do especially for larger fields. 

We hypothesized that these properties of rational functions may allow for improvement 
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in the energy fitting procedure. Consequently, the overall error in a FF calculation might 

be reduced, which would increase the range of electric fields that produce an acceptable 

error. To test this hypothesis, in this work, a rational function based FF method is 

optimized and compared to the Taylor FF method.  

 As in our previous work on the Taylor, or polynomial, FF model,
31

 three factors 

vital to the accuracy of the rational FF model will be optimized in this study. First, the 

ideal number of terms for the rational function approximant will be determined, which 

gives the number of fields used in the calculation. Then, different distributions of the 

chosen fields will be tested, in order to determine which distributions allow for the most 

accurate calculation of NLO properties. Finally, the error dependence on initial field 

strengths for various molecules is explored. If any trends are present, they will be used to 

produce an algorithm that can choose initial fields optimally. After the rational-function 

FF method is optimized, its accuracy and behaviour in calculating response properties 

shall be compared to the previous polynomial-based method. 

5.3 Methods 

5.3.1 Overview of the rational function approximation for the FF 

method  

To produce enough data points for the FF approximation, the energy of a molecule 

must initially be solved for at various field strengths. Selecting the appropriate field 
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strengths begins with choosing an initial field strength (  ), around which the other 

chosen field strengths ( ) are distributed. For this variant of the FF method, the selected 

fields are distributed according to: 

 
0

n

nF x F   (5.4) 

In this study,    
 

    and             
 

   . Substituting these forms into Equation 

(5.4) produces: 

 

 
100 100 100

  2    2   2

j pnp j
n

n min minF F F


  

     
  

  (5.5) 

where   is any integer between 1-800,   is any integer between 1-100, and      

            For   unknown coefficients in the rational function (Equation (5.3)), 

{    |       
 

 
   } for even values of  , and {    |       

   

 
 } for odd 

values of  . In addition, for both even and odd values of  , the energy at     is also 

determined, since this simplifies Equation (5.3) to: 

  0  E a   (5.6) 

allowing for   to be determined directly. To determine the remaining coefficients, each 

   value is substituted into Equation (5.3). Since both     and     are used, each    

value produces two equations. These substituted equations can be rearranged into the 

form:  
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    

    

    
    

2

0 0 0 0

2

0 0 0 0 0

2 2

0 0 0 0 0

2 2

0 0 0 0 0

          

   (

    

E F BF E F a F b F

E F B F E F a F b F

E xF BxF E xF a xF b x F c

E xF BxF E xF a xF b x

c

F c

c   

     

   

     

  (5.7) 

By substituting        , and rearranging into the form   ⃗   ⃗⃗: 
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   
     

              
      

        

  (5.8) 

Since both the positive and negative fields are used, for even values of   the system is 

overdetermined. This overdetermined system can be solved through least squares, or by 

discarding one of the equations. Both approaches are discussed further in Section ‎5.3.3. 

 Once the coefficients for Equation (5.3) are determined by solving the system of 

equations (5.8), the response properties can then be determined by taking the appropriate 

derivatives of Equation (5.3) at    : 
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  (5.9) 
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5.3.2 Optimizing the rational function form and field distribution 

 Using the general method presented in Section ‎5.3.1, the energies of five 

randomly selected molecules were fit by rational functions with various numbers of 

numerator and denominator terms (Table ‎5.1). The molecules tested were: acetamide, 4-

amino-4’-nitrobiphenyl (DPAN), 1-hexadecanol, hexa-1,3,5-triene (PA3), and 1-amino-

10-nitro-deca-1,3,5,7,9-pentaene (PA5AN). For each molecule, plots comparing the error 

in computed properties (     ) over varying   and    (Equations (5.4) and (5.5)) were 

generated for each approximant form (Figure ‎5.1 and Figure ‎5.2). For more information 

on benchmark values and error calculation, refer to Section ‎5.3.5.  

These plots were used to fix the form of the rational function as model 2 for the 

remainder of the study. The form of model 2 is: 

  
2 3

2
 

1

a bF cF dF
E F

BF CF

  


 
  (5.10) 

Since this model has four terms in the numerator and three terms in the denominator, 

each further FF calculation requires the molecular energy at five nonzero field values, 

along with the molecular energy at    . This is not surprising, since for a fixed (but 

large) basis set, one expects the energy to diverge to minus infinity linearly with F in the 

high-field limit. 
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Having determined the optimal functional form for the rational function, the 

generated plots were also used to fix the value of      for Equation (5.5). This 

corresponds to a common ratio of   √  for the geometric progression used to distribute 

fields in Equation (5.4) and it is the same ratio that we found when investigating the 

polynomial form in ref. 31.  

5.3.3 Testing the least squares solution 

The form of the rational function given by model 2 (Equation (5.10)) contains six 

unknown coefficients, one of which can be determined directly using Equation (5.6). For 

the remaining five unknown coefficients, positive and negative fields are picked using 

Equation (5.5). Thus, six equations were generated for five unknowns in this case, 

leading to an overdetermined system. To ensure that solving the system using least 

squares provides a consistently accurate result relative to discarding one of the equations, 

the error in computed response properties over varying    values was plotted for both 

approaches. An example plot for acetamide is given in Figure ‎5.3. Using these plots, it 

was determined that least squares provided an adequate solution to the overdetermined 

system. Thus, for the remainder of the study, the least squares solution to Equation (5.8) 

was used. To obtain solutions to both the overdetermined and truncated system of 

equations, the linear systems were solved using the numpy.linalg Python package. 
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5.3.4 Developing a protocol to find optimal values of F0 

 For FF methods, picking the optimal   value is crucial in ensuring the computed 

response properties are accurate.
31

 However, the optimal    drastically varies for each 

NLO property calculation. Thus, we devised an automatic method to determine an 

adequate    value. This    picking method arises from the investigation conducted in 

Section ‎5.3.3, as it uses the property values calculated by either least squares or 

truncating the system of equations (Equation (5.8)). In particular, the difference between 

the truncated solutions from the least squares solution is used to produce an indicator, 

denoted as  :  

 
( )max min

regression

q q
r

q


   (5.11) 

where        , and     and     are the maximum and minimum values of the 

properties calculated by removing one of six equations, respectively. Additionally, 

           refers to the value of the properties computed using least squares. The 

quantity r can be thought of as an error metric that is the ratio between (a) the difference 

between the maximum and minimum values of q obtained when the equations are solved 

using leave-one-out analysis and (b) the predicted property value obtained by least-

squares solution on the complete dataset. 

In total, this procedure requires seven points for each    value to generate the 

corresponding   value. A representative plot comparing γ values calculated via the two 
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methods of solving Equation (5.8) is given in Figure ‎5.5a.  Additionally, an example of 

the   value plotted with respect to    is given in Figure ‎5.5b. 

 To pick an    value that minimizes the error in a calculated property, the   value 

was observed as the    value is increased. Starting from the low-field limit, the first    

value for which the   value increases or decreases for five consecutive    values was 

taken as the    used for the FF calculation. The    chosen in this manner was used to 

calculate α and γ for a set of 120 molecules (Figure ‎5.6), and β for a set of 91 molecules 

(Figure ‎5.7). 

5.3.5 Electronic structure calculations and reference values to 

determine errors 

 All energy calculations in this study were performed using DALTON 2.0.
32

 The 

level of theory used was Hartree-Fock, with a 6-31G* basis set.
33

 For the calculation of 

electric properties, the HF method was found to be superior to conventional DFT.
34,35

 All 

molecular geometries were optimized with this level of theory and basis set prior to 

computing the energy. The reference values for the α, β and γ properties were calculated 

using response theory (RT).
9,10

 These RT values were used to calculate the error (   in a 

given response property using the following formula: 

 , ,

, ,
1

, ,

calc

RT

  

  


  
    (5.12) 
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where           is the response property computed using the rational-function FF 

method, and         is the corresponding property computed using RT. To ensure that 

the reference values computed by RT were accurate enough to compare to the properties 

computed using the FF method, the convergence criteria for αRT was 10 significant 

figures or greater, and for βRT and γRT, nine and eight significant digits, respectively.  

 Since assessing the finite field method requires the comparison of many similar 

and small numbers, issues related to numerical precision can become quite significant. 

Thus, all wave functions and molecular energies were tightly converged. All the energies 

used in this study are exact to at least 2e-12 au. Since the smallest molecules in this study 

have absolute energies above 40 au, this leads to a relative precision of 1e-13 au for the 

energy, corresponding to 13 significant digits. 

5.4 Results and Discussion 

5.4.1 Determining the optimal form of the rational function to fit 

the energy 

 Observing the plots for computing γ for acetamide in Figure ‎5.1, the accuracy and 

overall behaviour of the truncated rational functions (Table ‎5.1) were compared. Models 

1 and 4 can immediately be excluded from consideration, due to their relative lack of 

accuracy. Moreover, for model 3, the two blue bands signifying a double minima 

preclude it from being considered further; the presence of more than one minimum makes 
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it difficult to optimally choose both the initial field and field distribution. Finally, a 

comparison between models 2 and 5 reveals that the minimum of model 5 is not as well 

defined when compared to model 2. This is supported by the diffuse blue band observed 

in the model 5 plot, which contrasts with the better-defined blue band in the model 2 plot. 

Overall, model 2 was found to have the best accuracy, while retaining desirable error 

behaviour. A similar analysis was performed with the graphs generated for the remaining 

test molecules and NLO properties; the behaviour and accuracy of model 2 was generally 

found to hold for these as well. Thus, for the remainder of the study, the form of the 

rational function used was model 2 (Equation  (5.10)). 
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Figure ‎5.1. The behaviour of different rational function models in computing γ for acetamide. For 

each rational function form, the error relative to the reference value was determined as the initial 

field (  ) and the field fineness ( ) were changed. Model 2 was chosen as the best form of the 

rational function, since its plot contains a relatively tight and continuous blue band. This band 

indicates a desirable error distribution, along with low overall errors. The corresponding α and β 

plots for acetamide confirmed that model 2 should be used. The analysis was repeated with four 

additional molecules: 4,4-nitrophenyl aniline (DPAN), hexadecanol, 3-subunit polyacetylene 

(PA3), and 5-unit polyacetylene aminonitro (PA5AN). This confirmed the trends observed for 

acetamide. 
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Table ‎5.1. The forms of the rational function benchmarked for their accuracy in fitting molecular 

energies. 

Model number Numerator degree Denominator degree 

1 3 2 

2 4 3 

3 4 4 

4 2 2 

5 3 3 

 

 

 

 

5.4.2 Optimizing the field distribution parameters 

 Once the form of the rational function was fixed to model 2, the following step is 

to optimize the field distribution for the FF calculations. For the previous polynomial 

based FF method,
31

 the field distribution was found to be important for the accuracy of 

the method. In particular, using a geometric progression with a common ratio of √  was 

found to produce the most accurate NLO property values. Thus, in this study, we also 

choose to distribute the fields according to a geometric progression (Equation (5.4)).  The 

common ratio of this progression, denoted by  , is expanded as    
 

   . Through 
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varying the value of   from 1-100, the interspacing between chosen fields can be tuned. 

The effect of varying the   value on the accuracy of the method was observed using plots 

such as those in Figure ‎5.2. Though only the plots for γ are shown for the five test 

molecules (Methods, Section ‎5.3.2), the plots for α and β were found to show the same 

trends as those observed for γ. 

 As predicted, the plots in Figure ‎5.2 demonstrate dependence between the 

accuracy in γ and the value of   picked for a calculation. However, since the bands 

corresponding to the minimal error span a large range of   values for the molecules, this 

implies that the value of   does not have to be picked precisely. For all five molecules, 

the minimal error band appears for values of   between 20-60. Though any value 

between these will work equally well, the remainder of the study fixed     , producing 

a common ratio of   √ . This optimal common ratio was found to be the same as that 

observed for the polynomial based FF method.
31

 

5.4.3 Testing the least squares solution 

 For the rational function form given in Equation (5.10), there are six equations in 

five unknowns, i.e. the system is overdetermined. This system was solved by either least 

squares or truncating the system through removing one equation. Figure ‎5.3, where errors 

in γ are computed for acetamide, gives a representative example of a plot used to assess 

the accuracy of both methods.  
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Figure ‎5.2. Contour plots of the error in γ for five test molecules to determine the optimal field 

fineness (p) value. The bands corresponding to minimal error are bright blue, except for PA3, 

where it is yellow. These error bands are present for every molecule from p = 20-60. The error 

within these bands is stable, indicating that any choice of p between 20-60 will be equally valid. 

Thus, the value of p was fixed to 50 for the remainder of the study. 
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Figure ‎5.3. Example of a plot used to assess the performance of the least squares solution 

compared to solving a truncated system of equations. Here, the errors in computing γ for 

acetamide using model 2 are shown. No consistent trends between the least squares and truncated 

solutions could be found between molecules and properties. Thus, the least squares solution was 

used for the remainder of the study. 
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 At lower fields, the accuracy of the least squares solution and the solutions 

obtained through leaving an equation out are similar. Depending on which equation was 

removed, the    at which the error is minimized varies, with no discernable pattern. At 

higher fields, all solutions show similar behaviour, but have varying errors. One observed 

trend is that the solution obtained by removing the first equation from the system given in 

Equation (5.8) is generally very similar in behaviour and accuracy to the least squares 

solution. This suggests that the equations constructed with low field strengths contain less 

information than those using higher fields. 

 Though the solution obtained through removing the first equation showed 

predictable behaviour relative to the least squares solution, this did not hold true for the 

rest of the equations. By leaving an equation out of the system of equations (5.8), the 

error could increase or decrease, with no clear trends indicating which equations would 

lower the error when removed. Thus, as the least squares solution performed most 

predictably with regards to accuracy and behaviour, it was used for the remainder of the 

study. 
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Figure ‎5.4. The optimal initial field value (F0) that minimizes the error strongly depends on the 

molecule and NLO property for which the calculation is run. 
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5.4.4 Determining optimal initial fields for FF calculations 

 Unlike the   value or rational function form, the optimal    value varies with the 

molecule and NLO property for which the FF calculation is performed. The strong 

dependence of the optimal    on the molecule and property can be observed in 

Figure ‎5.4. This figure illustrates that    must be picked precisely to minimize the error; 

using an    that is not optimal leads to unusable results. Thus, a method to consistently 

choose the correct    value is needed. As reference values are not available in practice, 

only the calculated response property value can be used for choosing   . Additionally, 

the response property cannot be computed for too many    values, since this negates the 

cost advantage of the FF method.  

 To develop this method, plots similar to those generated for the least squares 

analysis (Section ‎5.3.3) were first used. However, instead of plotting the errors against 

  , the raw values of each computed property were plotted. An example of these plots, 

where γ is computed for acetamide, is given in Figure ‎5.5a. It can be observed that 

deviation from the least squares solution is minimized near the optimal field value, which 

is represented by the vertical red line. This deviation is quantified by the   value, 

calculated by Equation (5.11). Plotting the   value (Figure ‎5.5b) shows that it reaches a 

minimum at the optimal field, corresponding to the point at which the curves 

(Figure ‎5.5a) begin to follow the least squares solution. Thus, starting from the low-field 

limit and moving toward the high-field limit, the initial field is picked as the field after 
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which the   value consecutively increases or decreases for five    values. The field 

chosen using these criteria, represented by the purple vertical line in Figure ‎5.5b, is not 

exactly at the optimal     This is due to the roughness of   value curve at the minima, 

which makes it difficult to choose the    value exactly corresponding to the minimum. 

Overall, this algorithm was used to compute the optimal    for a set of 120 molecules 

(Figure ‎5.6). These    values were used to compute α and γ for each molecule in the 120-

molecule set. Similarly, β was computed using the    chosen for a set of 91 non-

centrosymmetric molecules (Figure ‎5.7). Overall, this field-picking method, along with 

the optimized common ratio and rational-function model allow for the computation of 

NLO properties in a quick and reasonably accurate manner. 
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Figure ‎5.5. Determining a criterion for choosing an optimal initial field for the FF calculation. 

Both graphs shown are for the computed value of γ for acetamide. The vertical red lines represent 

the optimal field value. In (a), the deviation of the other solutions from the least squares result 

decreases as the optimal field value is approached. To determine the deviation from the least 

squares result, the maximum value of a calculated property can be subtracted from the minimum, 

and divided by the least squares regression result. A plot of this value is shown in (b). As the 

deviation decreases in plot (a), the curve in plot (b) reaches a minimum. The vertical purple line 

in plot (b) is the field chosen by the field-picking algorithm. 
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Figure ‎5.6.The 120 molecules for which α and γ were calculated using the rational-function 

based FF method. 
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Figure ‎5.7. The 91 non-centrosymmetric molecules for which β was calculated using the rational-

function based FF method. 
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5.4.5 Comparison of single-molecule error behaviour to the 

polynomial model 

 After having optimized the new FF method, its accuracy and behaviour is 

compared to the previous polynomial model.
31

 To start, a single molecule comparison, 

using acetamide, is done. In general, the trends described for acetamide are representative 

of those observed for the entire dataset of molecules (Figure ‎5.6 and Figure ‎5.7). Errors in 

α, β, and γ as    is varied were plotted for the rational-function and polynomial models, 

and are given in Figure ‎5.8. For the polynomial model, each iterative Richardson 

extrapolation used to refine the error is denoted as   = 0,1,2,3. For α and γ, the error in 

the ration-function model is comparable to the   = 2 polynomial refinement. For β, the 

error in the rational-function model is comparable to   = 1 for the polynomial model. 

For each property, the error curve for the rational function fit is smoother than the 

comparable polynomial curve. This smoothness likely reduces the need for error 

refinement steps. Additionally, the lack of a need for error refinement steps for the 

rational function model provides advantages in the form of lower computational cost and 

a simpler implementation. 
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Figure ‎5.8. The α, β, and γ error behaviour for acetamide is compared between the rational-

function (a) and polynomial (b) FF methods. For the polynomial method, the behaviour with 

iterative refinement via Richardson extrapolation is shown, denoted as m = 0,1,2,3. 
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5.4.6 Overall comparison of the rational-function and polynomial 

models  

 To compare the accuracy and robustness of the rational function model versus the 

polynomial model,
31

 plots of the average α, β, and γ errors over χ for the entire dataset 

were created (Figure ‎5.9). Here,   
  

              
, where    is the initial field, and 

               is the optimal initial field chosen by the protocol presented in Section ‎5.3.4. 

This normalization allows the average behaviour of the entire dataset to be compared 

around               , where χ = 1. Though as many molecules as possible from the 

dataset were included, the energies of some molecules could not be calculated at enough 

   values to span the full range of the graph. We found that at the χ values where the data 

for these molecules ended, large discontinuities in the graph would occur. Thus, these 

molecules were not included in the graphs. The two major errors in the FF method, 

truncation and round-off error,
36

 can be observed in these graphs. Truncation error 

increases with increasing    values, and round-off error increases with decreasing    

values. 

 For α, the accuracy at χ = 1 of the rational-function and polynomial models are 

quite similar, with minimum errors of approximately 10
-7

 for both. However, the rational 

function model is approximately half an order of magnitude less accurate than the 

polynomial model. Comparing the behaviour of both models, the rational function model 

remains at a lower overall error for a large range of fields compared to the polynomial 
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model. This means that the results are robust with respect to moderate errors in choosing 

the optimal    .  

  The errors at χ = 1 for β are approximately 10
-3

, with the rational-function model 

being half an order of magnitude less accurate than the polynomial model. Similar to α, 

the rational function model is more robust to changes in initial field strength. In general, 

errors are smaller than 10
-2

 for field strengths between χ values of 1-4. This is a greater 

range than that of the polynomial model, which remains in that range for 0.25-2.5 χ only. 

Thus, small errors in choosing the optimal    are less detrimental to the accuracy of the 

rational-function model than the polynomial model. 

At χ = 1, the polynomial model
31

 obtains average errors on the order of 10
-4

 for γ. 

The rational function model performs significantly worse, with an accuracy loss of 

approximately 1.5 orders of magnitude. However, the error for the rational function 

model remains lower over a larger range of fields, as observed for the α and β 

calculations. The rational function model consistently remains at an error of 10
-1

 or lower 

for χ = 0.1-4, in contrast to the polynomial model, which achieves this for χ = 0.1-2.0 

only. 
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Figure ‎5.9. The average α, β, and γ error behaviour for the dataset of molecules is compared 

between the rational-function (red) and polynomial (blue) FF methods. The field values for each 

molecule are normalized using the optimal initial field value for each molecule. Thus,   
  

              
, where    is the initial field used for the FF calculation, and                is the 

optimal initial field automatically chosen for the FF calculation. At χ = 1, the overall error for the 

rational-function model is not as low as for the polynomial model. However, the rational model 

error remains lower over a larger range of χ, indicating that it is more robust to changes in    than 

the polynomial model. For the polynomial curves (blue), the Richardson refinement level is m = 1 

for β, and m= 2 for α and γ. 
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Though the comparison above may lead to the conclusion that the rational function 

model is less accurate overall, this is not the case. Rather, the loss of accuracy is from not 

having the error minima centered on χ = 1. For α and γ, the minimum error occurs at χ = 

0.5, while for β, the minimum error is at χ = 2. This suggests that the protocol used to 

choose the optimal    value overestimates this value for α and γ, and underestimates it for 

β. From Figure ‎5.5b, it can be observed that the   value becomes smooth only after the 

minimum is reached. For β, the   value becomes smooth before the minimum is reached. 

Thus, this over and underestimation of     is expected, as the protocol only chooses the 

optimal    value when the   value becomes smooth. Though different variations of the 

protocol were explored, none were able to yield any improvement. Thus, work will be 

continued on developing a more consistent method to find the minimum   value. 

However, despite issues with choosing    , the rational function model is more robust 

with regards to the initial field chosen; overestimation or underestimation of the optimal 

initial field will still yield reasonably accurate results. The robustness of the rational 

model is expected, as the rational function reduces the truncation error relative to a 

polynomial fit, which should increase the range of acceptable field strengths for a 

calculation. However, the round-off error remains similar for both models, but these 

errors are controlled by using very tight convergence criteria for the energies, and by 

selecting the minimum field appropriately. Overall, this robustness to the    value used in 

the calculation is a key step in improving the overall user-friendliness and reliability of 

the FF method. 
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5.5 Conclusions 

 A variation of the FF method using a rational function was presented to calculate 

longitudinal polarizability and the first and second longitudinal hyperpolarizabilities of a 

wide range of molecules. To calculate NLO properties accurately, the functional form to 

best fit the energy was found, along with the optimal field distribution and a method of 

choosing    reasonably well. The fitted rational function approximation has a polynomial 

of degree three in the numerator and a polynomial of degree two in the denominator. The 

field mesh used for this approximant was generated using a geometric progression with a 

common ratio of √ . To generate a good    guess, it was found that the deviation from 

the least squares result could be used.  

 Comparison of the optimized rational-function FF method to the polynomial FF 

method from ref. 31 shows that both perform similarly with regards to error behaviour. 

Unlike the polynomial model, the rational function model does not need subsequent error 

refinement. This is advantageous in terms of computational cost, and for ease of 

implementation. Comparison of the two methods for the overall dataset reveals that the 

rational-function FF method loses approximately 0.5-1.5 orders of magnitude in accuracy 

relative to the polynomial method. However, the insensitivity of the rational-function FF 

method to   , along with not requiring refinement steps, makes this method a strong 

choice for new quantum chemistry codes that wish to implement a cheap and simple 

method for NLO property calculations. 
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 Chapter 6

Summary and Future Work 

6.1 Motivation 

Molecular nonlinear optical (NLO) properties have a broad range of applications in 

optical devices, but experimental characterization of molecules with superior NLO 

properties is often challenging. Computational methods are useful not only because they 

allow one to compute NLO properties, but also because the calculations can provide 

insight into the physico-chemical phenomena that underlie the nonlinear responses and 

uncover the structure-property relationship. These insights, in turn, can guide the design 

of new molecules with desirable response properties for various types of optoelectronic 

devices.  

Computational studies of NLO properties are also challenging, and developing new 

computational methods, and improving existing methods, is an active area of research in 

theoretical chemistry. Existing methods for computing the NLO properties of atoms and 
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molecules have several drawbacks: (1) some methods are computationally demanding 

and can be applied only to small-to-medium-sized molecules; (2) some methods requiring 

analytical derivatives and information about excited states of the systems; (3) some 

methods are difficult to implement into computational quantum chemistry software, and 

are therefore not widely available for some types of quantum chemistry methods. The 

focus of this thesis is the finite field (FF) method, which is straightforward, 

computationally affordable, and easy-to-implement. The FF method is one of the best 

candidates for studying large molecules and using state-of-the-art electronic structure 

methods for modelling NLO properties. 

However, the finite field method is not without problems. One of these main 

problems is the dependence of a calculated NLO property on the choice of the electric 

field strength(s) one uses in the calculation. Choosing a field that is too high or too small 

leads to nonsensical results. The second problem comes from the difficulty of 

disentangling the response property of interest from the effects of higher-order responses. 

Although the finite field method is widely used for calculating NLO properties, these 

problems persist. To our knowledge, no systematic way to mitigate these issues has been 

presented in the literature. The goal of my Ph.D. thesis is to overcome these obstacles to 

the routine and systematic application of FF calculations for predicting NLO properties. 

In particular, I have performed systematic studies of the finite field method and used the 

results of those studies to provide computational protocols that are suitable for routine 

calculations.  
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6.2 Summary 

Chapter two presents a comprehensive study of the finite field methods for 

calculating the dipole polarizability and hyperpolarizabilities of molecules and oligomers. 

The dependence of the error on the initial field strength is explored and schemes to obtain 

the most precise results for response properties were proposed. The HOMO-LUMO gap 

and information about excited states were helpful in determining the critical field for 

calculating reliable response properties. We showed that using a common ratio x < 2 for 

generating the geometric progression for field strengths and two steps of Richardson 

extrapolation for refinement give the most precise results for γ. The study also shows that 

Richardson extrapolation is superior to polynomial fitting for calculating NLO properties. 

Chapter three presents a protocol for predicting the optimal field strength for 

calculating NLO properties of molecules; this avoids the computationally demanding 

search for an appropriate field strength, which was the slowest part of the computations in 

chapter 2. The second hyperpolarizability γ showed the best correlation with the 

maximum internuclear distance within a molecule in the direction of the applied field. 

Based on these findings we designed, and successfully used, a protocol to estimate the 

optimal field strength for γ. The optimal field for calculating β doesn’t depend on 

molecular size and depends, instead, on the structure of the molecule. Functional groups 

were the best way to estimate the optimal field for calculating β.  
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These two studies, presented in chapters 2 and 3, showed the optimal choices for the 

initial field, common ratio, and the number of refinement steps to produce the most 

accurate response properties. They helped in avoiding additional computational cost, 

guaranteed obtaining meaningful results, and paved the way toward automated 

calculations of NLO properties.   

Chapter four is an investigation of the performance of different DFT functionals 

compared to the CCSD(T) method for calculating the second hyperpolarizability for a 

benchmark of 30 organic molecules and oligomers. The limitations of DFT methods for 

calculating NLO properties are shown in this study. The relative performance of DFT 

functionals depends on the system under consideration: different types of functionals are 

needed for different types of molecules. Conventional DFT functionals generally 

overestimate the second hyperpolarizability of medium-sized and large molecules with 

errors increasing linearly with the size of the molecule. The long-range corrected hybrid 

functionals perform significantly better than conventional hybrid functionals and pure 

functionals. The study also reveals the significant role of correlation in calculating the 

second hyperpolarizability γ. The reliability of the CCSD(T) as a benchmarking method 

for conjugated systems is examined. CCSD was shown to diverge rapidly from CCSD(T) 

as the π-conjugated chain lengthens.  

Chapter five uses a rational function model to calculate NLO properties of 

molecules, instead of the commonly used Taylor expansion. The optimal function form 
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was determined and the optimal conditions for calculating response properties were 

outlined. Rational functions have the advantage of being less dependent on the initial 

field of calculation and not needing further refinements. Moreover, higher order 

derivatives can be approximated directly, without requiring additional energy evaluations. 

Rational function approximation methods have lower computational cost, are easier to 

implement, and are less sensitive to the field strength. However, the results from the 

rational function model seem slightly less accurate. 

6.3 Future Work 

6.3.1 Extending the benchmark study 

For many applications, DFT methods represent the best compromise between 

accuracy and computational cost. Consequently, DFT is the method of choice for 

modelling large molecules and complex systems. This motivated the work in Chapter 4 

on benchmarking DFT calculations (which are applicable to large systems) against 

coupled cluster results. This study should be extended to include more functionals 

(especially recently-developed DFT functionals that are not yet widely available in 

commercial quantum chemistry software) and additional molecules.  

We observed that different DFT functionals perform better for different types of 

molecules. More aromatic molecules should be added to the dataset to test the surprising 

conclusion that pure functionals are better than hybrid and long-range corrected ones for 
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this type of systems. π-conjugated systems possess strong NLO properties and are under 

active investigation by those who design NLO devices. The response properties of these 

molecules increase as the chain lengthens and it is important to use DFT methods that 

show the correct dependence of NLO properties on molecule size. Longer conjugated 

molecules should be added to the dataset so that the size-dependence of DFT-predicted 

NLO properties is clearer.  

Finally, in Chapter 4 we focussed on the second hyperpolarizability. A similar study 

for the polarizability and the first hyperpolarizability should be performed.  

6.3.2 Method and basis set dependence of optimal field strength 

Choosing the right field strengths for evaluating dipole polarizability and 

hyperpolarizabilities is crucial for obtaining meaningful results. The protocol for 

predicting the optimal field strengths for calculating the second hyperpolarizability γ is 

limited to the method and basis set used in the study. In general, as shown in chapter 2, 

the feasible field region starts at lower field for larger basis sets. Therefore, optimal field 

strengths are expected to decrease as the size of the basis set increases. Nonetheless, the 

qualitative behaviour of the error is the same for all basis sets. The protocol for finding 

optimal field strengths for γ that was developed in chapter 3 for HF/6-31G(d) level of 

theory can be extended in a straightforward manner to other methods and basis sets.  
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In Chapter 3 we observed that more accurate estimations of optimal field strengths 

are obtained when molecules with similar structures are considered. For example, more 

accurate predictions of the second hyperpolarizability of polyacetylene chains can be 

obtained by using a protocol specifically selected for those systems. The procedure that 

was used in chapter 3 to find protocols for optimal field strengths could be applied to 

families of molecules. 

More ambitiously, it would be helpful to design a fully automated protocol, perhaps 

by selecting a sensible initial field, and then either reducing or increasing that field until 

reliable results are obtained. For this purpose the rational model in Chapter 5 may be 

preferable, since it is less sensitive to the choice of field. 

6.3.3 Optimal field strengths for the first hyperpolarizability β 

The first hyperpolarizability β, an odd-derivative of energy, was shown to have 

different behaviour from even-order energy derivatives, namely the dipole polarizability, 

α, and the second hyperpolarizability, γ. Because β is a lower energy derivative than γ, 

we expect computing γ to be trickier. Surprisingly, we observed that FF calculations of β 

are less numerically stable and have higher relative errors. Moreover, the optimal field for 

calculating β didn’t show good correlations with any of the molecular descriptors we 

tested. In order to increase the precisions of calculations for β, we need to perform a 

systematic study of the relationship between β and molecular structure and design 

protocols to predict the optimal field strength for calculating β.  
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6.3.4 Hypergeometric functions  

Traditionally, the finite field methods used for calculating NLO properties are based 

on using a Taylor expansion to describe the energy of the system. In chapter 5, we 

showed that a rational function, which is more general than a Taylor expansion and thus 

can capture more physical behaviour, can be used to calculate response properties. The 

success of rational function models motivated us to think about even more general 

functions to describe the dependence of the energy of a molecule on the applied field. It 

can be shown that the perturbative expansion of the electronic energy in powers of the 

applied field is an asymptotic series, and the functional form associated with this series is 

a hypergeometric function. Hypergeometric functions could potentially describe the 

energy of a molecule in a finite field better than both polynomial and rational functions. 

One form of hypergeometric function that can be used is 
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The energy expression that one fits to the finite-field data is then                          
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Writing Eq. (6.2) for several different fields gives a system of nonlinear equations to 

solve for the parameters in the hypergeometric function. The (hyper)polarizabilities can 

then be determined by evaluating coefficients in the Taylor series, (6.1).  

6.3.5 Anisotropic properties 

The work in this thesis was focused on the accurate calculation of the longitudinal 

polarizability and hyperpolarizabilities. The longitudinal properties are the most 

important one for linear molecules. However, the other components of the 

(hyper)polarizability tensors of response properties are often important. The methods 

developed in this thesis can be extended to calculate other tensor elements of response 

properties in a straightforward manner.  

Applying a small static electric field F to a molecule with an energy E(0) induces a 

perturbation that could be written as a Taylor expansion as 

    
1 1 1

  0 μ  α β γ  
2 6 24
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Here , ,i j k  denote the Cartesian components of the applied field vector, 

, ,
T

x y zF F F   F  and the associated molecular responses. Most experimental 

measurements yield rotationally averaged response properties,  



 

 

 

 

 

  Ph.D. Thesis – Ahmed Mohammed                             McMaster University – Chem & Chem Bio  

 

 

208 
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Higher-order derivatives, β and γ, can be obtained from the relevant expressions (cf. Eqs. 

(1.6) and (1.7)). The methods and optimal conditions for calculating accurate NLO 

properties developed in this thesis should be extended to (hyper)polarizability tensors 

also.  

6.3.6 Testing new theoretical approaches 

One of the main advantages of the finite field methods is their ease of 

implementation. Specifically finite-field methods can easily be implemented within 

existing software and applied to new electronic structure methods because all that is 

required is to add an electric field term to the Hamiltonian (modifying the one-electron 

integrals) and then calculate the electronic energy.   

Over the past years, several new quantum chemistry methods have been explored by 

the Ayers group and its collaborators for describing the electronic structures of 

molecules. These methods include geminals methods, matrix product states, and various 

types of advanced configuration interaction approaches. The schemes developed in this 

thesis can be used to test the performance of these new approaches for calculating NLO 

properties. As stressed in the introduction, NLO properties are much more sensitive to 

errors in the description of electron correlation than most other ground-state molecular 
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properties, and therefore provide a useful and stringent test for new electronic structure 

methods. 

The finite field method can also be applied using new software for accurate 

electronic structure methods. These programs are often faster and more efficient than the 

long-established commercial programs, which enables doing highly accurate calculations 

of larger systems. However, the numerical algorithms that make these new programs so 

efficient also make it difficult, or even impossible, to implement analytical gradients 

(e.g., multipole moments); linear and higher-order responses are even more difficult to 

compute. By using the finite field method, these programs can be used to accurately 

calculate the NLO properties of extended π-conjugated systems, providing accurate 

computational benchmarks for this important class of molecules.  

6.3.7 Automated response calculations 

The finite field method depends on the choice of the initial field and thus requires 

human intervention. In chapters 2 and 3, we used a large dataset to determine the optimal 

conditions (choice of initial field, number of refinement steps, and common ratio for the 

progression of field strengths) for calculating response properties. These findings can be 

implemented in computational codes to automatically calculate NLO properties. The 

optimal field strength for the dipole polarizability and the second polarizability can be 

obtained from the maximum internuclear distance within the molecule, which is available 

a priori. Two steps of Richardson refinement and a common ratio of √2 give the most 
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precise results. This scheme will be implemented in the HORTON package, an quantum 

chemistry code developed jointly by researchers at McMaster University (Canada) and 

Ghent University (Belgium).  
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Appendix: List of Abbreviations 

 

CI Configuration Interaction 

CC  Coupled Cluster 

CPHF Coupled-Perturbed Hartree-Fock 

CPKS Coupled-Perturbed Kohn-Sham 

DFWM Degenerate Four Wave Mixing 

DFT Density Functional Theory 

DP Dielectric Permittivity 

D–A Donor–Acceptor 

EMS Electron-Molecule Scattering 

FF Finite Field 

GGA Generalized Gradient Approximation 

HF Hartree-Fock 

HOMO Highest Occupied Molecular Orbital 

ICT Intramolecular Charge Transfer  
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LDA Local Density Approximation 

LUMO Lowest Unoccupied Molecular Orbital 

MWI Matter-Wave Interferometry 

MBD Molecular Beam Deflection 

MO Molecular Orbital 

NLO Nonlinear Optical 

OEP Optimized Effective Potential  

PA Polyacetylene  

PY  Polyyne 

PES Potential Energy Surface 

RI Refractive Index 

RT Response Theory 

SHG Second-Harmonic Generation 

SOS Sum-Over-States 

TPA Two-Photon Absorption 

XC exchange-correlation 

 


