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Abstract 

 

The primary objective of this research is to develop and verify a methodology for modeling three-

dimensional discrete crack growth in concrete and reinforced concrete structures. Two main 

sources of damage, considered in this work, include the mechanical loading and the chemical 

interaction. The behavior of concrete is brittle in tension and becomes ductile behavior under 

compressive loading. At the same time, the chemical interaction triggers a progressive degradation 

of strength parameters. The main focus in this research is on numerical analysis of localized 

damage that is associated with formation of macrocracks. The specific form of chemical 

interaction examined here involves the alkali-silica reaction (ASR). 

The approach used in this work for describing the propagation of macrocraks is based on the 

volume averaging technique. This scheme represents a simplified form of strong discontinuity 

approach (SDA). It incorporates the notion of a ‘characteristic length’, which is defined as the 

ratio of area of the crack surface to the considered referential volume. It is demonstrated, based on 

an extensive numerical study, that this approach gives mesh-independent results which are 

consistent with the experimental evidence. The accuracy of the solutions is virtually the same as 

that based on SDA and/or the Extended Finite Element Method (XFEM), while the computational 

effort is significantly smaller. In order to describe the behavior of the fractured zone, a traction-

velocity discontinuity relation is formulated that is representative of different modes of damage 

propagation, including crack opening in tensile regime as well as shear band formation under 

compression. For tracing the discontinuity within domain, crack smoothening algorithm is 

employed to overcome any numerical instabilities that may occur close to ultimate load of the 

structure. 

The general methodology, as outlined above, has been enhanced by incorporating the chemo-

plasticity framework to describe the damage propagation in concrete affected by chemical 

interaction, i.e. continuing ASR. The latter is associated with progressive expansion of the silica 

gel that is coupled with degradation of strength properties. An implicit scheme has been developed, 
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incorporating the return mapping algorithm, for the integration of the governing constitutive 

relations. The framework has been implemented in Abaqus software to examine the crack 

propagation pattern in structural elements subjected to continuing ASR. 

Another major topic addressed in this thesis is the ‘size effect’ phenomenon. The existing 

experimental studies, conducted primarily on various concrete structures, clearly show that the 

ultimate strength is strongly affected by the size of the structure. This phenomenon stems primarily 

from the effect of localized damage that accompanies the structural failure. The quantitative 

response depends on the geometry of the structure, type of loading and the material properties. The 

size effect has been investigated here for a number of notched and un-notched concrete beams, of 

different geometries, subjected to three-point bending. Both mechanical loading and the chemical 

interaction have been considered. 

The next topic considered in this study deals with analysis of localized fracture in 3D reinforced 

concrete structures. Here, a mesoscale approach is employed whereby the material is perceived as 

a composite medium comprising two constituents, i.e. concrete matrix and steel reinforcement. 

The response at the macroscale is obtained via a homogenization procedure that incorporates again 

the volume averaging. The latter incorporates a set of static and kinematic constraints that are 

representative of the response prior to the onset of fracture. After the formation of macrocracks, a 

traction-separation law within the fractured zone is modified by incorporating the Timoshenko 

beam theory in order to assess the stiffness characteristics in the presence of reinforcement. A 

number of numerical examples are given that examine the crack pattern formation and the 

associated fracture mechanism in concrete beams at different intensity of reinforcement.   

The final chapter of this thesis provides an illustrative example of the application of the proposed 

methodology to the analysis of a large scale structure. The focus here is on the assessment of 

structural damage in a hydraulic structure subjected to ASR continuing over of period of a few 

decades. The results, in term of the predicted extent of damage as well as the displacement history 

at some specific locations, are compared with in-situ monitoring.  
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1 Introduction 

 

In this chapter, a summary of research and a brief review of the employed methodologies are 

presented. As implied by the topic of this thesis, the main focus in this work is on numerical 

modeling of crack growth in three-dimensional concrete structures. This thesis is presented in 

article-based format which includes three journal papers in separate chapters as the main 

contributions in this study. The list of publications is as follows: 

 

1. S. Moallemi, S. Pietruszczak, Numerical analysis of propagation of macrocracks in 3D 

concrete structures affected by ASR. ACI Materials Journal (2016); submitted.  

 

2. S. Moallemi, S. Pietruszczak, Z. Mróz, Z, Deterministic size effect in concrete structures 

with account for chemo-mechanical loading. Computers and Structures (2017); 182: 74-

86. 

 

3. S. Moallemi, S. Pietruszczak, Analysis of localized fracture in 3D reinforced concrete 

structures using volume averaging technique. Finite Element in Analysis and Design 

(2017); 125: 41-52. 

 

At the beginning of each chapter, an additional page related to the main contribution in that work 

is also provided. In addition to the aforementioned journal articles, a brief description of an 

industrially-oriented work that deals with the topic of ‘Numerical modeling of damage propagation 

in a large scale structure’ is given in the last chapter of this thesis. 

In what follows, the motivation and goals of the thesis are outlined first. Subsequently, a brief 

history of different methodologies for modeling discontinuities in solids is provided. At the end of 
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the chapter, the techniques for modeling the crack growth, as well as accounting for the presence 

of reinforcements, are briefly discussed.  

 

1.1 Motivation 

 

One of the most important issues in the context of design of concrete structures is an understanding 

of the process of formation and propagation of damage. The experimental evidence indicates that 

concrete, as a material, shows a brittle response in the tension regime and becomes ductile under 

compression, with strength progressively increasing with the increase in confining pressure. Over 

the last few decades, various constitutive models, based on different mathematical frameworks 

that include damage and/or fracture mechanics, plasticity, etc., have been proposed to describe the 

response of concrete (cf. [1-3]).  

The numerical analysis of actual boundary-value problems involving concrete structures is 

typically conducted within the framework of Finite Element Method (FEM) [4-5]. For modeling 

of fracture in concrete several studies have been conducted dealing with the onset of crack 

propagation in tensile region [6-7] and the evolution of damage in compression domain [8-9].  

There are several conceptual difficulties, however, in terms of an adequate analysis associated with 

strain localization. In particular, the problem involves an unstable (strain-softening) response that 

cannot be strictly perceived as a material property and a continuum framework should incorporate 

the notion of a ‘characteristic dimension’ which has a clear quantitative definition. The importance 

of development of a reliable methodology for simulation of damage propagation is quite evident 

in case of large scale structures such as bridges, power plants and dams, where the failure can 

affect both the human lives and the environment.  

The damage in concrete structures can be triggered not only by mechanical load, but also through 

the degradation of properties resulting from continuing alkali silica reaction (ASR). The reaction 

involves aggregate and cement and leads to formation of an expansive silica.  The process can be 

influenced by the humidity and the type of aggregate [10]. According to experimental evidence, 
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the silica gel expands by absorbing water, which leads the expansion of concrete mass. The latter 

induces damage in its microstructure [11] and leads to a significant reduction of concrete strength. 

The kinetics of the reaction depends on time, which needs to be considered in the mathematical 

framework. Therefore, the classical plasticity approach, which is rate independent, cannot be 

employed here. The first general continuum approach, involving the framework of chemo-

plasticity, was developed in ref. [12]. Later, several derivative concepts were proposed that 

included both the macroscale models as well as micromechanical descriptions of ASR-induced 

deformation (cf.[13-14]). The formulation employed here follows the earlier approach (i.e. that 

reported by Pietruszczak [12]), which is enhanced by incorporating the framework for discrete 

modeling of 3D crack propagation.  

In what follows, a brief review of different methodologies for describing the process of crack 

growth in geomaterials is provided first, followed by an outline of the scope of research conducted 

in this thesis. 

 

1.2 Background 

 

The damage growth in concrete structures has been studied for a number of decades now. The 

FEM-based simulations of fracture date back to 1960’s. In the early approaches, the discontinuities 

were taken into account by incorporating node separation along the crack path [15]. In this scheme 

the cracks were assumed to form along the edges of the elements, which resulted in mesh-

dependency of the solution. In order to address this problem, an enhanced approach was developed 

that incorporated a mesh adaptivity [7,8]. In analogy to the original approach, the crack was 

assumed to form along the edge of each element, however the geometry of the FE mesh was 

continuously adapted during the simulation to trace the crack growth in a more realistic way. 

Although the obtained results were reasonably accurate, the computational effort associated with 

this methodology was very high, as it involved multiple nodal data transformation due to updating 
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the mesh and repeated discretization of the domain. This, motivated researchers to develop 

alternative methodologies for crack propagation. 

In the mid of 1980’s and 1990’s a smeared shear-band approach was introduced. The concept was 

first developed within the context of an averaging scheme for a constitutive relation involving a 

localized deformation mode (Pietruszczak and Mroz [16]). Later, this approach was employed 

within the FEM discretization by introducing the discontinuity as a band-width crack in the 

element. It was assumed that the displacement varies linearly within the band, however the 

displacement gradient remains discontinuous [17-18]. This scheme was later modified [19] by 

incorporating the Heaviside step function to model a strong discontinuity, whereby the 

displacement field in the elementary volume remains discontinuous. The strong discontinuity 

approach (SDA) has been widely used, within the plasticity framework, for modeling progressive 

damage and formation of shear band [20,21]. Note that in the context of FEM, the implementation 

of SDA requires an additional degree of freedom to describe discontinuity jump across the cracked 

element, which allows to simulate crack growth without any re-meshing. 

In late 1990’s Belytschko and co-workers modified the strong discontinuity approach by 

developing the so-called Extended Finite Element Method (XFEM). In this scheme, the 

discontinuity is modeled by modifying the shape functions and adding additional degrees of 

freedom based on the concept of portion of unity [22]. Depending on the type of discontinuity, the 

additional shape functions can be modified to capture both week and strong discontinuity within 

the domain [23,24]. Note that the weak discontinuity refers to the continuous displacement field 

and a discontinuity in its gradient over the fractured zone. One of the main issues in XFEM is the 

need for modifying the standard finite element integration. In the revised scheme, the cracked 

element should be subdivided into smaller domains (sub-triangles) to provide Gauss points on both 

sides of the discontinuity, otherwise the predicted jump along the fractured zone would not be 

reliable.  

Even though the use of XFEM is associated with a high computational cost, this approach has been 

used in numerous applications in solid mechanics as well as in multi-phase materials. In early 

works, Belytschko and Black [23], and later Moës et.al [24], modeled the traction-free crack 
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growth in solids. They incorporated additional degrees of freedom for the crack tip elements in 

order to define the stress intensity factors employed in determining the direction of crack 

propagation. The application to cohesive crack growth was first introduced by Wells and Sluys 

[25]. In their work, an exponential function was used to relate the traction along discontinuity to 

the crack opening. This scheme has been later enhanced by Moës and Belytschko [26] by enriching 

the nodes at the crack-tip to provide a more realistic prediction of stress field around the tip. XFEM 

framework has also been used in modeling frictional contacts to avoid the penetration of crack 

surfaces [27]. Other significant applications involve modeling of the multiple crack growth as well 

as intersecting cracks. Daux et al. [28] modified the enrichment and enhanced shaped functions 

based on the superposition concept to capture the branching cracks. Later, Deb and Das [29] used 

this concept in simulation of intersecting faults in jointed rock mass. The XFEM methodology has 

also been employed to model discontinuities in two phase materials. Réthoré et al. [30] 

incorporated the mass balance equation to simulate the fluid flow in the stationary cracks in fully 

saturated domain. In the simulation, the fluid flow has been considered as a weak discontinuity 

whereby the water pressure is identical on both sides of the crack, however the leak-off remains 

discontinuous. This approach was later extended to progressive crack propagation in semi and 

fully saturated porous media for modeling of hydraulic fracturing [31].  

Although the use of XFEM is widely accepted among the researchers, the methodology itself is 

not efficient for simulating practical engineering problems that involve large-scale structures. This 

stems from the need to employ additional degrees of freedom for cracked elements as well as 

special integration techniques. In order to overcome this limitation, the current research 

incorporates the standard FEM methodology combined with the volume averaging technique for 

the description of fractured zone. As mentioned before, in early 1980’s Pietruszczak and Mróz 

[16] developed a homogenization procedure in which the strain softening response was described 

by incorporating an inhomogeneous deformation mode associated with localization into a shear 

band. In this approach, the material within the shear band was assumed to undergo plastic 

deformation, while the intact material, in the region adjacent to the interface, was considered to 

experience unloading (i.e. elastic behavior). The macroscopic deformation was then evaluated as 
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volumetric average of contribution from both constituents. This approach has subsequently been 

extended and applied in the context of analysis of various geotechnical problems, including the 

response of water infiltrated soils [32, 33]. The FE analysis incorporated this approach in a 

‘smeared’ sense. The solution was computationally efficient and mesh-independent; however, it 

often suffered from the loss of convergence when the ultimate load for the structure was attained. 

In order to resolve this issue, Haghighat and Pietruszczak [34] have recently reformulated the 

problem by incorporating a discrete monitoring of the crack trajectory using the level-set method.  

In the present work, the latter technique has been extended to three-dimensional analysis of 

plain/reinforced concrete structures. The proposed modification makes the volume averaging 

technique an attractive candidate to replace XFEM, as the computational effort associated with 

this methodology is significantly reduced in view of the use of standard shape functions and the 

standard numerical integration scheme. 

An important issue which is associated with the description of damage is that of specifying a 

criterion for the onset of localization. The most commonly used technique for the initiation of 

localized deformation in compressive regime is the bifurcation analysis [35]. In tensile zone, 

several different approaches have been employed that can be categorized as local and global 

algorithms [36]. The primary methodologies used in quasi brittle materials include the averaged 

stress criterion, linear elastic fracture mechanics, global tracking algorithm and minimum of total 

energy. The first two, represent local algorithms and the last two are categorized as the global 

schemes. A comparison of these methods can be found in ref [36]. The simplest local scheme 

which is commonly employed is the criterion stipulating that the onset of cracking occurs when 

the maximum principal stress reaches the critical value, i.e. the tensile strength of the material [23-

25].  

The use of local algorithms for predicting the crack orientation can lead to significant errors in 

cases when the ultimate load of the structure is approached. In order to remedy the problem, the 

crack smoothening procedure has been developed, whereby the normal direction of the crack could 

be modified based on the orientation of crack surfaces in the adjacent elements. This scheme has 

been explained in details in ref [37] and it is implemented in this research. 
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1.3 General scope 

 

In this section a brief overview of the material covered in each chapter is provided. As mentioned 

earlier, the individual chapters of this thesis are associated with journal articles that address the 

main research topics.  

In the chapter 2, the mathematical formulation for modeling localized damage in concrete 

structures suffering from continuing ASR is provided. The approach incorporates the framework 

of chemo-elasticity. The kinetics of the reaction is briefly discussed and an enhanced implicit 

integration scheme is developed. The formulation is completed by employing a cohesive law that 

describes the traction-separation behavior in the fractured zone for both loading and unloading 

conditions. In this work the crack is assumed to initiate when the Rankine’s criterion is satisfied, 

while its direction is normal to that of the maximum principal stress. During the propagation 

process, when the external load approaches its ultimate value, the crack orientation is modified 

based on the 3D crack smoothening algorithm. The framework has been verified by a series of 

numerical examples dealing with plain and reinforced concrete structures subjected to various 

loading configurations, including both mechanical load and the chemical interaction. The results 

have been compared with the available experimental data.  

In chapter 3, the previous formulation is enhanced by considering the elasto-plastic behavior of 

concrete and developing an implicit scheme within the chemo-plasticity framework. A complete 

set of governing constitutive relations is derived for both stress and strain-controlled conditions. 

The structure of these relations is such that they employ a superposition of two terms, the first 

representing an instantaneous mechanical response, which is rate-independent, and the second 

related to time-dependent effects of chemical interaction. The constitutive model for concrete is 

based on the work by Pietruszczak et.al. [2], whereby the evolution of yield/loading surface 

depends on accumulated plastic distortion. The crack growth strategy in tensile zone is assumed 

to be similar to that outlined in chapter 2. In the compressive regime, however, the bifurcation 

analysis is employed to determine the direction of macrocrack. It is shown that the inception of 
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strain localization due to ASR alone is possible with its rate controlled by the kinetics of chemical 

reaction. On the other hand, the instantaneous mode occurs when the bifurcation condition, 

associated with singularity of the acoustic tensor, is satisfied. A general FE formulation has been 

outlined, governing the chemo-mechanical process, and an implicit backward Euler integration 

scheme has been developed. 

The presented methodology has been used to investigate the size effect phenomenon. The latter is 

associated with variation of nominal strength as a function of the size in geometrically similar 

structures. The study of size effect has been initiated in the early 1920’s by performing several 

experiments on quasi-brittle materials [38] and developing a semi-empirical relation that predicts 

the ultimate strength of the structure based on the given characteristic dimension. Two different 

approaches have been employed, viz deterministic and stochastic theories. In the former one, the 

material strength is assumed to be uniform and the size effect is attributed to formation of fractured 

process zone. In the second approach, the randomness of material strength is accounted for leading 

to the so-called stochastic size effect. In general, it has been observed that increasing the size can 

significantly reduce the strength of the structure. At the same time, a more ductile behavior can be 

observed when scaling the structural size to a smaller dimension.  

Over the last few decades an extensive research on the size effect had been conducted by Bazant 

and his co-workers and the main results are presented in the monograph [38]. The investigations 

deal with two types of concrete structures, i.e. with and without an initial notch. It has been shown 

that the brittleness of structures which contain an initial discontinuity progressively increases for 

larger sizes. On the other hand, the ultimate strength of structures without notch converges to a 

solution associated with linear elastic fracture mechanics. One of the main problems in relation to 

the proposed size effect laws is the incorporation of a number of empirical parameters which, for 

some cases, cannot be uniquely defined. Therefore, a more constructive way to investigate the size 

effect is the numerical analysis which incorporates an adequate procedure for describing the 

propagation of localized damage. In this work, the proposed volume averaging technique is 

employed. This scheme is verified for both tensile and compressive failure modes and the results 

are compared with the predictions based on size effect laws as well as the experimental data. 
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Moreover, the investigation of size effect phenomenon is extended to chemo-mechanical loading. 

It is demonstrated that a spontaneous failure may occur due to chemical interaction by changing 

the structural dimension under a sustained load.  

In chapter 4, the mathematical framework is further enhanced, by invoking the mixture theory 

[39], to deal with progressive failure in reinforced concrete structures. A sets of static and 

kinematic constrains are incorporated to determine the stress/strain rate in each constituent based 

on the total imposed loading increment. The constitutive model is developed for the reinforced 

region both prior and after of formation of localized zone. For the latter case, the cohesive law in 

the fractured zone is formulated by considering the reinforcements as Timoshenko beams 

embedded in the intact material. The framework has been combined with 3D crack smoothening 

algorithm and used to simulate a number of experimental tests conducted on reinforced concrete 

structures.  

In chapter 5, an illustrative example is provided which deals with the application of the approach 

outlined above to analysis of large scale structures. The example given is focused on the 

assessment of structural damage in a hydraulic structure, made of reinforced concrete, subjected 

to 100 years of continuing chemical reaction (ASR). The results pertain to the power house as well 

as the spillway, and the variation of displacements has been compared with the in-situ 

measurements.  

It should be emphasized that the mathematical formulation presented here has been implemented 

in user material subroutine (UMAT) of the commercial software Abaqus. This includes the 

governing constitutive relations as well as the crack propagation strategies incorporating 3D 

smoothening algorithm.  

Finally, note that given the format of this thesis, which includes three separate journal papers, there 

is a certain overlap in terms of describing the details of the formulation. This cannot be avoided in 

a sandwich type of presentation.  
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2 Numerical analysis of propagation of macrocracks in 3D concrete 

structures affected by ASR 

 

2.1 Contribution 

 

In the article provided below, a mathematical description of three dimensional crack growth in 

concrete structures subjected to mechanical and/or chemical loading is presented. The focus is on 

concrete structures suffering from continuing alkali-silica reaction. The expansion of silica gel and 

the associated degradation of strength/deformation properties are monitored by a scalar parameter 

which describes the progress of the chemical interaction. In order to determine the stress rate at 

the end of each increment an enhanced implicit integration scheme has been implemented.  

The main contribution in this work is the description of discrete crack propagation in concrete 

structures affected by alkali-silica-reaction. In the research conducted so far, the damage has been 

monitored using simplified ‘smeared’ approaches that suffer from numerical instabilities and, 

often, the sensitivity to FE discretization. Here, a rigorous approach is employed which 

incorporates volume averaging and attributes the strain softening to the mechanical characteristics 

within the fractured zone. In addition, the crack smoothening algorithm is developed and 

implemented within the code to increase the accuracy of predicting the crack paths. A series of 

examples is provided to verify the predictive abilities of this framework and the results are 

compared with available experimental evidence.   

 

 

 

 

 



Ph.D. Thesis- S. Moallemi;   McMaster University – Civil Engineering 

14 

 

Numerical analysis of propagation of macrocracks in 3D 

concrete structures affected by ASR 

 

S. Moallemi and S. Pietruszczak 

Department of Civil Engineering, McMaster University, Hamilton, Ontario, Canada 

 

 

 ABSTRACT 

 

In this study an implicit algorithm for modeling of propagation of macrocracks in 3D concrete 

structures suffering from alkali-silica reaction has been developed and implemented. The 

formulation of the problem prior to the onset of localized deformation is based on a chemo-

elasticity approach. The localized deformation mode, involving the formation of macrocracks, is 

described using a simplified form of the strong discontinuity approach (SDA) that employs a 

volume averaging technique enhanced by a numerical procedure for tracing the propagation path 

in 3D space. The latter incorporates a non-local smoothening algorithm. The formulation is 

illustrated by a number of numerical examples that examine the crack propagation pattern in both 

plain and reinforced concrete under different loading scenarios. 

 

 

Key Words: 3D crack propagation; volume averaging; alkali-silica reaction; reinforced concrete 

 

2.2 Introduction 

One of the most important factors which can affect the durability of concrete structures is the 

alkali-silica-reaction (ASR). In recent decades several experimental and numerical studies have 
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been conducted to understand this chemical process and to reduce the vulnerability of important 

structures such as dams and power plants. Although the chemistry behind the reaction is not 

completely understood, it has been generally accepted that in the presence of water the alkaline 

components of cement may react with silica present in the aggregate and produce a silica gel [1].  

The experimental work has shown that the kinetics of this chemical process is a function of relative 

humidity, temperature, type of aggregates as well as the stress state [2-5]. As the silica gel is 

formed and absorbs water, it can expand throughout the concrete mass and induce damage within 

its microstructure. First, the swelling gel fills the pores in the concrete skeleton and subsequently 

the pressure is exerted on constituents which leads to formation of microcracks and the reduction 

of concrete strength.  

The research on development of continuum approaches describing the chemo-mechanical 

interaction started in the mid 1990’s [6, 7].  Later, several derivative concepts were proposed that 

included both the continuum models (e.g. [8, 9]) as well as micromechanical descriptions of ASR-

induced deformation (cf. [10]). It needs to be pointed out that there have only been a few isolated 

attempts to perform large-scale simulations that involved the actual engineering structures. Most 

of these attempts (e.g. [9, 11]) dealt primarily with the assessment of the influence of concrete 

expansion on the structural integrity, without accounting for the reaction-dependent evolution of 

material properties and a rather simplistic description of the onset and propagation of localized 

damage, particularly in compression regime. 

Modeling of the progressive failure within the finite element framework has received a significant 

attention over the last few decades.  A large number of studies have been conducted dealing with 

the onset and propagation of cracks in tensile regime [12, 13] as well as the formation of shear 

bands in compressive zones [14, 15]. The use of the standard finite element methodology has some 

limitations for modeling discontinuities. In order to overcome these limitations, the so-called 

strong discontinuity approach (SDA) was developed [16, 17] in which the mesh sensitivity is 

reduced by embedding the displacement discontinues within the element. In this approach, a 

discontinuity function is added to the consistent part of the displacement field by employing new 

degrees of freedom in enhanced element [18]. Another scheme that incorporates the embedded 

discontinuity approach is known as eXtended Finite Element Method (XFEM). The latter involves 
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the nodes enrichment within the enhanced element and employs the concept of partition of unity 

to update the related shape functions [19-21].  

In this study, a simplified form of strong discontinuity approach based on the concept of averaging 

over a volume adjacent to the macrocrack is examined. The procedure was developed in the early 

1980’s [22] and later modified in ref. [23]. Here, an enhanced approach based on the recent work 

reported by Haghighat and Pietruszczak [24] is employed that allows for a discrete representation 

of the crack propagation. The original methodology outlined in ref. [24] is extended here to 3D 

problems and the problem is reformulated to address the damage induced by continuing ASR. In 

the next section, an implicit formulation for chemo-mechanical interaction in concrete is 

developed. Later on, in section 3, the constitutive relation in the presence of discontinuity is 

discussed. In section 4, the procedure for tracing the path of crack propagation in three dimensional 

domain is explained and a smoothening algorithm is outlined. Finally, in the last section several 

numerical examples of damage propagation in plain and reinforced concrete structures subjected 

to various loading configurations, including chemical interaction and/or mechanical load, are 

presented. 

 

2.3 Research significance  

The integrity of civil structures (e.g., dams, bridges, structures in hydraulic/nuclear power 

generation facilities, etc.) is essential for maintaining their continuing operation. As these 

structures age, a progressive damage takes place due to environmental influences as well as 

continuing chemical interaction. The fundamental aspects addressed in this research deal with 

modelling of the mechanical effects of alkali-aggregate reaction (ASR) and the associated process 

of the onset and propagation of localized failure. 

The importance of ensuring the safety of strategic civil structures cannot be overemphasized. 

Compromising it poses significant risks to the public, to the environment as well as to the economy. 

Therefore, the primary motivation of this work is an understanding of the nature of the damage 

process and its suitable mathematical description. The latter is crucial for forecasting and adequate 

mitigation of the long-term effects of aging-related degradation. 
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2.4 Mathematical description of chemo-mechanical interaction in concrete 

There are two main aspects involved in simulation of ASR in concrete, which are considered in a 

phenomenological framework: (i) the kinetics of the reaction and (ii) the degradation of 

mechanical properties of concrete. The former, i.e. the kinetics of the reaction, may be defined by 

introducing a scalar parameter  which is an explicit function of time and its evolution is affected 

by humidity, temperature and the confining pressure.  In this study, humidity and temperature are 

considered constant, and an exponential relation (cf. ref. [25]) is used to describe the kinetics of 

reaction, viz. 

  11 exp A t      (2-1) 

where 1A  is a  material constant which controls the rate  of the reaction. As it can be seen,   is 

defined within the interval [0,1)  whereas the reaction time varies within [0, ) .  

Degradation of concrete begins as soon as the macrocracks caused by the expansion of silica gels, 

start to appear. This affects both the deformation and strength properties. Restricting ourselves to 

the class of problems that involve failure in the tensile regime, the evolution laws for the modulus 

of elasticity and tensile strength may be expressed in the following form  

    0 01 1E t t fE E G f f G       (2-2) 

where, 
0

E  and 0tf  are the initial values before the onset of the reaction and EG  and 
fG  are 

material constants that control the rate of degradation and can be identified from relevant 

experiments. Within the current framework, the chemical strain ASRε  is defined as a function of 

the kinetics of reaction and the confining pressure, i.e. 
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in which ∞  is the maximum volumetric free expansion for a given alkali content, A2 is a material 

constants, fc denotes the compressive strength of concrete and I  is the  identity tensor. Note that 

B() describes the effect of confinement, which reduces the total ASR-related expansion, as 

reported in the literature [26, 27].  

The constitutive relation may now be formulated within the framework of chemo-elasticity. In this 

case,  

 
e e: : ( )  e ASRσ ε ε ε   (2-4) 

where 
e
 is the elastic stiffness, and ε  and eε  are total and elastic strain, respectively. By 

differentiating of eq. (2-4) with respect to time and also taking into account the variation of 

material properties during the continuing reaction, one can write 

 
1

e e e: ( ) : :


     ASRσ ε ε σ   (2-5) 

where, the rate of change of elastic stiffness and the ASR-induced strain rate can be defined as  
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σ
  (2-6) 

By substituting the above relation into (2-5) the stress rate can be expressed as 
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  (2-7) 

In the numerical integration process, two different schemes can be employed, i.e. either explicit or 

implicit. In the explicit scheme, the stress state at time 1nt  can be determined directly by using the 

values of internal parameters at the previous time step nt ; whereas in implicit scheme, the 

unknowns at time 1nt   can be found through an iterative process by satisfying constrains at the 
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current time [28] . Based on eq.(2-7), the stress increment at each time step t  can be 

approximated by the backward Euler scheme. Thus, 

     
11 e e e: : : :

t t t t t t t tt t t




 
          c

σ σ σ σ ε ε σ   (2-8) 

By solving for t tσ  we have 

  
1

1 1 1: : : , : :e e e

t t t t t


  


           cσ σ ε ε   (2-9) 

where  is the fourth order identity tensor and tσ  is the stress state at the beginning of increment.  

In order to define the tangential stiffness operator, eq. (2-7) may be written as 

  
1

1 e 1 e e: : ( ) : : :t t t t t t tt


 

  
         c

σ σ ε ε σ σ   (2-10) 

which, after some algebraic manipulations, leads to 

    
1

-1 1 e *: : : : :e

t t tt





            c

σ ε ε σ ε ε   (2-11) 

where  is the tangential operator and *ε  is the total strain generated by the chemical reaction. 

 

2.5 Modeling of discontinuous deformation  

In this section a mathematical description for a cracked domain subjected to chemical reaction is 

presented by incorporating a volume averaging scheme. The criterion for the crack initiation and 

the traction-separation law are discussed and an implicit formulation for updating the crack 

characteristics is developed. 
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2.5.1 Description of macrocrack propagation by a volume averaging technique 

Consider a domain contained within the volume  in which d denotes discontinuity surface which 

splits this domain into  andFig 2-1. The unit vector normal to crack is denoted by n   and 

points to .  

 

Fig 2-1- definition of representative elementary volume 

Within this domain, the displacement field, ( , )tu x  can be expressed as a combination of two 

continuous fields ( , )tu x and ( , )tu x  with the discontinuous jump function, ( )H x  as [16] 

 ( , ) ( , ) ( ) ( , )t t H t u x u x x u x   (2-12) 

where, ( )H x is the Heaviside function which is equal to zero for all points in  and is equal to 

unity in the remaining part of the domain 

 
1

( )
0

H




 
 



x
x

x
  (2-13) 

The terms defined in (2-12) are depicted in Fig 2-2 to illustrate the displacement function in the 

context of a one-dimensional problem.  

n

d





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Fig 2-2-decomposition of displacement field for 1-D case 

Here, the dashed line indicates the position of discontinuity. The strain tensor is calculated from 

the gradient of the displacement field (2-12) 

 ( , ) ( , ) ( , ). ( ) ( , ) ( )s s s st t t H t H    ε u x u x u x x u x x   (2-14) 

where the superscript s denotes the symmetric part of the gradient operator. Now, by averaging 

(2-14) over the considered volume yields [24] 

  1 1
d ( , )d ( , ). ( )d ( , ) ( )ds s st t H t H

   
       

    ε u x u x x u x x   (2-15) 

Referring to [16], the gradient of the Heaviside step function is defined by delta Dirac function as 

d
( )H x   n , so that eq.(2-15) can be simplified to 

   
d

d

1 1
d ( , )d ( , ). ( )d ( , ) d

ss st t H t
  

       
    ε u x u x x x nw   (2-16) 

where ( , )txw  indicates the displacement discontinuity. Thus, in terms of the volume average, the 

strain rate within the considered domain can be approximated by  

  d
( , ) ( , ) ( , )

ss st t t
    

        
   

ε u x u x x nw   (2-17) 

Given the expression above, the total strain rate can be interpreted as a superposition of two parts, 

i.e. the strain rate in the intact material, ε , and the strain rate in cracked zone, ε̂ , i.e.  



Ph.D. Thesis- S. Moallemi;   McMaster University – Civil Engineering 

22 

 

 

 

( , ) ( , )
ˆ ;

ˆ ( , )

s

s

t t
where

t

  
        

 

ε u x u x
ε ε ε

ε x nw

  (2-18) 

where   denotes the ratio of the area of the crack over the referential volume. In order to satisfy 

the equilibrium condition, the traction along the crack surfaces should be continuous. Thus,  

 .  n σ t Kw   (2-19) 

where, t  is the traction vector and K is the stiffness of the fractured zone in the global coordinate 

system. Substituting eq. (2-19) into the constitutive relation for intact material (2-11), we have 

      * * *

T T T T
ˆ. : . : . : . .       n ε ε n ε ε ε n ε ε n n Kw w   (2-20) 

Consequently, by solving for w  in eq. (2-20), the velocity discontinuity can be defined as 

      
1*

T T: : ; . .where 


     
 

S n ε ε S K n nw   (2-21) 

Finally, substituting eq. (2-21) into the constitutive relation for intact material, the global relation 

between the total stress and strain rates can be obtained. The latter takes the form 

          * * *

T T T T T: : : : : :             σ ε ε n n S n ε ε ε εw   (2-22) 

where T  is the fourth order tangential operator.  

 

2.5.2 Constitutive relation for the macrocrack 

In this section the constitutive law for the fractured zone is discussed which relates the traction 

rate to the velocity discontinuity. Over the last few decades, different types of cohesive relations 

have been proposed to define the characteristics of crack in different propagation modes. In order 

to obtain a symmetric stiffness operator for tensile cracks, the concepts of equivalent displacement,
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eqw , and equivalent traction, 
eqt , is used here as defined in refs. [29, 30]. The constitutive law is 

taken in the form 

  2 2 2 2

1 2
ˆ ,eq eq eq n s st K w w w w w      (2-23) 

where K̂  is defined as 

 0

0 0
ˆ exp ( )t

f

d f
K K d d

d G
  

 
 
 

  (2-24) 

In the equations above, the scalar parameter   controls the effect of shear sliding on the equivalent 

traction, while nw  and sw  denote displacement jumps in the normal and tangential direction, 

respectively, in the local coordinate system attached to the crack. Furthermore, 0K  is the initial 

stiffness, 0d  denotes the equivalent displacement at which the attenuation of stiffness starts, d  is 

the maximum equivalent displacement during the loading history, tf  represents the tensile strength 

and 
fG  is the fracture energy. It is noted that for 0   the stiffness operator K̂  has the same 

form as that suggested by Wells and Sluys [31]. In order to obtain an explicit form of the 

constitutive relation in terms of normal and tangential tractions, the concept of total equivalent 

work is implemented, viz. 

 1 1 2 2eq eq n n s s s st w t w t w t w     (2-25) 

By evaluating the rate of 
eqw  in eq. (2-23) and using relation (2-25), we have 

 2 21 2
1 2 1 1 2 2

n s s
eq n s s n n s s s s

eq eq eq

w w w
t w w w t w t w t w

w w w
 

 
      

 

  (2-26) 

By comparing the two sides of eq. (2-26) and using (2-23) one can write 

 
2 2

1 1 2 2
ˆ ˆ ˆ, ,n n s s s st K w t K w t K w      (2-27) 
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In order to define now the second order tensor K , viz. eq. (2-19), the rate form of eq. (2-27) should 

be employed, i.e. 

    2 2

1 1 1 2 2 2
ˆ ˆ ˆ ˆ ˆ ˆ; ;n n n s s s s s st K w K w t K w K w t K w K w         (2-28) 

It should be noted that the case of 0d   corresponds to an active loading process, whereby a 

continuing damage takes place, whereas 0d   defines unloading. In the former case, using 

relations (2-24) and (2-28), and noting that eqd w  , leads to a following expression for the  

stiffness tensor K  

 

2

2 2 2

1 2

2 2

2 4 2 4

1 1 1 22

2 2

2 4 4 2

2 1 2 2

ˆ

eq f

n n s n s

f eq t

f eq t eq f

n s s s s

eq f f eq t

eq f

n s s s s

f eq t

w G
w w w w w

G w f

G w f w G
K w w w w w

w G G w f

w G
w w w w w

G w f

 


  


  

 
   

 
  
         
 
 

    

K   (2-29) 

Following the same procedure for the case of unloading, one obtains  

 2

2

1 0 0

ˆ 0 0

0 0

K 



 
 
 
  

K   (2-30) 

2.5.3 Implicit integration for updating the crack characteristics 

For an active loading process, the mechanical response of the macrocrack can be traced by using 

an implicit integration scheme, similar to that outlined in ref. [24]. In this case, the following 

residuals at increment n and iteration k are defined 

 
   *

T T

.

: :

k k

n n

k k

n n


  

     

σ K

σ ε ε

k

1

k

2

R n w 0

R n w 0
  (2-31) 

Employing Newton-Raphson algorithm, these can be approximated as 



Ph.D. Thesis- S. Moallemi;   McMaster University – Civil Engineering 

25 

 

 

1

1

:

:

k k
k k k k

k k
k k k k





 
   

 

 
   

 

δσ δ 0
σ

δσ δ 0
σ

1 1
1 1

2 2
2 2

R R
R R w

w

R R
R R w

w

  (2-32) 

Substituting eqs. (2-31) into (2-32) yields  

 
   

 

1

T

T

. . .

:

k k k

k k






  

  

K

δσ

1 2

k

2

δw n n R n R

n δw R
  (2-33) 

This procedure is continued until the residuals given in eq. (2-31) vanish. Note that at the end of 

each iteration the updated values of stress and crack opening are given by  

 
1

1

;

;

k k k k k

n n n n n n

k k k k k

n n n n n n





    

    

σ σ σ σ σ δσ

w w w w w w
  (2-34) 

2.6 Three dimensional crack propagation strategy 

Referring to Jäger et al. [32], there are three different approaches for tracing the crack path in 3D 

problems, i.e. level set, global tracking and local tracking.  Owing to high computational cost of 

the first two schemes, the local tracking approach is employed in this study. In what follows, the 

main strategy is presented first for 2D case and then extended to 3D applications. Referring to Fig 

2-3, each crack is composed of a number of line segments which pass through elements and cut 

the sides at two points. The location of these points is stored in order to trace the crack and also to 

define the characteristic length parameter, , eq. (2-18). At the end of each load increment, two 

steps are required to update the crack configuration; the first one involves checking the failure 

criterion for the elements next to the crack tip, and the second deals with identifying elements 

which satisfy failure condition to establish a new crack within the domain. In the former case, the 

cut side of the crack tip element is searched to find the new candidate crack element with the joint 

side. If the failure condition is satisfied, the crack will propagate from the cut point (former crack 

tip) in the direction perpendicular to maximum tensile stress (for tensile fracture) to form a new 

crack tip. 
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Fig 2-3- Crack propagation algorithm in 2D problem     

This methodology has been extensively used, as reflected in the existing literature [31,33, 34]. In 

analogy to 2D case, a similar procedure can be implemented for three dimensional problems, 

whereby the triangular elements are replaced by a tetrahedral mesh and the crack segment is 

replaced by the crack surface. Fig 2-4 depicts cracked elements containing a failure plane. As the 

crack propagates, new tip-facets are identified and the neighbor elements become candidate 

elements for the next crack tip. As pointed out in ref. [35], using local tracking algorithm without 

modification cannot give reliable results, thereby a smoothing algorithm is employed here to 

overcome the difficulties related to 3D crack propagation. Here a brief review of this procedure is 

given.  

 

Fig 2-4-Crack surface in tetrahedral elements 

The geometric scheme is shown in Fig 2-5 where the bold lines define the crack edge and the thin 

lines are associated with cut surface in cracked elements. As the failure criterion is met in the crack 

front element, direction of propagation is calculated and compared with that in the adjacent 

element. In some cases the obtained crack segment may not be consistent with the crack surface, 
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hence the smoothening is imposed to modify the crack propagation direction. It is noted that crack 

surface embedded in the new crack tip elements initiates from the point obtained as an average of 

cut facets in neighbor elements (point P). To adjust the normal direction, all points within the 

radius R of the current crack tip, which formed other crack surfaces, are picked to define a new 

surface to approximate normal vector at any point of interest. 

 

Fig 2-5-(a) Crack surface with an inappropriate normal direction in candidate crack;    

(c) Smoothening of crack surface 

In the first step, the centroid of the new surface, referred to as Pc, is obtained. To define the 

equation of the crack surface, the local coordinate system is introduced and placed at the centroid 

point. As discussed in ref. [35], to obtain the local axis, the following covariance tensor is defined 

    
1 : n p

i c i c

i

P P P P


   T   (2-35) 

where Pi is the location of cut points in the cracked surface and np defines number of these points. 

The eigenvectors of this tensor define the local coordinate system located at Pc. To achieve more 

accuracy, the second order approximation is considered for the surface, i.e. 

 
2 2

0 1 2 3 4 5z a a x a y a x a y a xy        (2-36) 

and the coefficients of approximation ai , are determined by minimizing the difference between z  

and iz , where the latter is the  value of the function in equation (2-36) at point Pi.  Therefore, the 

problem can be formulated as a least square problem  
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  
2

1:

minimize
R

i i

i n

z z solve for a


    (2-37) 

Once the solution is obtained, the direction of the normal at point P can be determined by 

calculating the gradient of (2-36), Note that this direction is defined in the local coordinate system 

and it should be transformed to the global frame of reference. 

 

2.7 Numerical examples 

In this section several numerical examples are provided to demonstrate the robustness of the 

constitutive models presented in Sections 2-3, together with the proposed scheme for tracing the 

crack propagation. The constitutive laws have been implemented into Abaqus user subroutine 

UMAT. 

 

2.7.1 L-Shape concrete panel 

In the first example the crack trajectory is investigated in an L-shaped plain concrete panel. The 

geometry and the FE discretization are shown in Fig 2-6. The bottom of the L-shaped specimen is 

fixed and the vertical displacement is applied incrementally to the left edge of the panel.  

             

Fig 2-6 (Left) Geometry and boundary condition of problem; (Right) Finite element discretization (note 

1 m = 39.37 in) 
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This example simulates an experimental set up of Winkler [36] and was previously employed as a 

benchmark for examining the accuracy of different numerical approaches for modeling of the crack 

propagation [29, 32]. The material is considered here as elastic-brittle and the assumed properties 

are (Note that 1MPa = 145 psi and 1N/mm = 5.71 lb/in) 

25.85 ( ), 0.18, 2.7 ( ), 0.1 ( )/t fE GPa f MPa G N mm     

The thickness of the panel is 100mm (3.94 in) and the value of  given in equation (2-23) is set to 

1.5 in order to consider the effects of tangential displacement in cohesive law. Three dimensional 

linear tetrahedral elements are used to discretize the structure, as depicted in Fig 2-6. The loading 

is imposed incrementally and as the principal stress reaches tf , the crack initiates and progressively 

grows as the load increases. By applying the strategy described in the previous section, a smooth 

crack path is obtained, as shown in  Fig 2-7 which is similar to the results presented in [29]. In 

addition, the load displacement curve for the panel is compared here with the experimental data 

given in ref. [36]; clearly the results of simulations incorporating the proposed methodology are 

quite accurate. 

               

Fig 2-7 (Left) load-displacement curve;  (Right) crack path (note 1kN = 224.8 lb) 

 

Displacement (mm)

F
o

rc
e

(k
N

)

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8
Numerical

Experimental



Ph.D. Thesis- S. Moallemi;   McMaster University – Civil Engineering 

30 

 

2.7.2 Crack propagation in reinforced concrete beam  

The next example studied here involves a reinforced concrete beam subjected to a three-point 

bending. This problem was studied experimentally by Bresler and Scordelis [37] using different 

ratios of reinforcements. The reinforcement is considered here in a discrete way using the standard 

Abaqus library.  Fig 2-8  shows the geometry of the problem. Four longitudinal high strength steel 

bars#9 (#29 in metric unit) are placed within the concrete in two layers and the vertical load is 

applied incrementally to the top surface of the beam.  

 

Fig 2-8- Geometry of simply supported reinforced concrete beam (note 1 m = 39.37 in) 

The finite element discretization is provided in Fig 2-9 and the material properties of steel and 

concrete are given below. 

 

Steel:  200 , 0.2, 555s yE GPa f MPa     

Concrete:   23.8 , 0.18, 1.82 , 0.1 , 0.1/c tE GPa f MPa G N mm       

 

 

Fig 2-9- FE discretization by tetrahedron elements 
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As the load increases, the cracks initiate first at the mid-span of the beam as soon as the maximum 

principal stress reaches the strength of concrete. Due to the presence of reinforcement in the tensile 

region of the beam, the cracks cannot propagate further since the steel bars resist the crack opening. 

Consequently, other flexural cracks form at the bottom and propagate upwards as shown in Fig 

2-10.  

 

Fig 2-10- Crack path in beam after 2mm (0.08 in) deflection 

In Fig 2-11, the load-displacement response for the beam is compared with the experimental data 

given in [37]. It is clear that the numerical results are fairly consistent here with the experimental 

evidence. Note that within the considered range of external load, the steel bars didn’t reach the 

yield point, so that the mechanical characteristic remains stable. 

 

Fig 2-11- Load displacement curve for reinforced concrete beam (note 1kN = 224.8 lb) 

 

2.7.3 ASR in reinforced concrete beam 

In the last example dealing with the tensile fracture, the response of reinforced concrete beam 

subjected to ASR is examined. The experimental work has been conducted here by Swamy and 

Al-Asali [38] who investigated the chemical interaction for different percentage of fly ash in 

Displacement (mm)

L
o

a
d

(k
N

)

0 1 2 3 4 5 6
0

100

200

300

400

Experimental result

Numerical result



Ph.D. Thesis- S. Moallemi;   McMaster University – Civil Engineering 

32 

 

concrete mixture. They tested three different sets of beams with different kinds of reactive 

aggregates. The beam was simply supported and its total length was 800 mm (31.5 in). The 

geometry of the problem and position of longitudinal and shear reinforcement are given in Fig 

2-12.  

 

Fig 2-12- Geometry of problem (note 1 m = 39.37 in) 

For this study one of the beams, referred to as “B3” in ref. [38], has been selected and the obtained 

results compared with the experiments. Material properties for concrete and reinforcement are 

summarized in the Table 2-1.  

 

Table 2-1- Material properties of concrete and steel 

(1 kPa = 0.14 psi ) 

The beam was placed in an environment of controlled humidity and temperature for two years. 

The deformation was measured in both the reinforcement and concrete at the set of selected points, 

as shown in Fig 2-13. 

 

Concrete modulus of elasticity  Ec=30 GPa Steel modulus of elasticity  Es=200 GPa 

Concrete Poisson ratio =0.18 Steel Poisson ratio =0.2 

Tensile strength of concrete ft=1.8 MPa Steel yield stress fy=560 MPa 

Concrete ASR constant A1=20 days Maximum free expansion ∞=1% 
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Fig 2-13- (left) Selected points for measuring strain in concrete; (right)  Deformed concrete beam after 

2 years of ASR  

In the first stage of the test, i.e. in the two years’ time interval, no external load was applied. Since 

the longitudinal reinforcement in the tensile region was more intense than that in the compressive 

zone, the beam has initially experienced an upward movement. In addition, as the compressive 

stress was increasing in the bottom layer, less chemical expansion occurred in the longitudinal 

direction, which lead to an increase in the curvature of beam. The final deformation after two years 

of progressive ASR is plotted in Fig 2-13. The numerical simulations give similar results to 

laboratory tests as the total hogging of beam is reported to be about 3 mm (0.12 in). 

In Fig 2-14, the evolution of strain in the longitudinal tensile steel bar is plotted versus time. As it 

can be seen, during the first 100 days of continuing reaction the reinforcement elongates and then 

the expansion stops due to the generation of compressive stress in the bottom layer of the beam. 

The second plot in Fig 2-14 shows the variation of strain within the concrete during the first two 

years of the reaction. Again, the numerical results are quite consistent with the experimental data 

for all point at which the measurements were taken. 

  

Fig 2-14- Strain variation in steel (left) and concrete (right) by time 
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The next stage of the experiment involved four-point bending of a beam affected by ASR as well 

as a beam without any reactive aggregate. The corresponding load-displacement curves are plotted 

in Fig 2-15. The results indicate that, although the reaction leads to a progressive degradation of 

concrete, the mechanical characteristics are not significantly affected, which is primarily due to 

the presence of reinforcement. The numerical predictions are fairly accurate in this respect as well. 

Finally, the predicted crack pattern is shown in Fig 2-15 and Fig 2-16. The most intense damage 

is in the tensile zone in the area adjacent to the reinforcement. 

 

 

Fig 2-15- (left) Load vs displacement curve; (right) crack pattern after loading in 2D 

 (note 1kN = 224.8 lb and 1 m = 39.37 in) 

 

Fig 2-16- Crack pattern in 3D 

2.8 Final remarks 

In this work, the chemo-mechanical formulation for describing the damage propagation in concrete 

affected by ASR has been presented. Within this framework two key effects of the chemical 

interaction, i.e. expansion of silica gel and degradation of strength/stiffness properties of concrete, 
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were taken into account and an implicit algorithm has been presented for integration of the chemo-

elastic constitutive relation. 

The evolution of damage has been described using the concept of volume averaging, which 

discriminates between properties of the intact material and those of the interface and incorporates 

the characteristic length. The Rankine’s criterion was used to define the onset of cracking. For 

tracing the crack path a general three dimensional algorithm has been developed by employing 

tetrahedral elements and assuming that the crack is represented by a planar discontinuity surface 

formed within each element. For macroscopic description of cohesive cracks, the traction-

separation law was formulated using a decaying exponential function which attenuated traction on 

crack faces during an active loading process.  

Three different numerical examples have been provided to illustrate the proposed methodology. 

The first two involved an L-shaped plain concrete panel and a reinforced concrete beam subjected 

to mechanical loads. For both these cases, the load-displacement characteristics and the fracture 

pattern were compared with the experimental data. The last example dealt with examining the 

effects of ASR in a reinforced concrete beam. Again, the results were compared with the 

experimental evidence and clearly demonstrated the predictive abilities of the outlined framework. 
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3 Deterministic size effect in concrete structures with account for 

chemo-mechanical loading 

 

3.1 Contribution 

 

In this article the size effect phenomenon in concrete structures is investigated by employing the 

volume averaging methodology in three-dimensional domain. The mathematical formulation of 

chemo-plasticity framework is presented in detail and it is incorporated in an implicit scheme to 

update the stress state and tangential stiffness. The structure of the derived constitutive relations is 

such that they employ a superposition of two terms, the first representing an instantaneous 

mechanical response, which is rate-independent, and the second related to time-dependent effects 

of chemical interaction. The onset of localization is examined in both tension and compression 

regime. It is shown that the inception of strain localization due to ASR alone is possible with its 

rate controlled by the kinetics of chemical reaction. On the other hand, the instantaneous mode 

occurs when the bifurcation condition, associated with singularity of the acoustic tensor, is 

satisfied. A number of numerical simulations have been carried out. The first set deals with a 

deterministic assessment of the size effect in a series of three-point bending tests as well as 

compression tests. For continuing ASR, it is shown that, by increasing the size of the structure, a 

loss of stability may occur under a sustained load.  The analysis clearly demonstrates that the size 

effect is primarily the result of localized damage that accompanies the structural failure. Therefore, 

an adequate description of this process, which employs physically identifiable parameters and a 

uniquely defied ‘characteristic dimension’, is of a significant importance. 

 

 

 



Ph.D. Thesis- S. Moallemi;   McMaster University – Civil Engineering 

40 

 

Deterministic size effect in concrete structures with account for  

chemo-mechanical loading 

 

S. Moallemi1, S. Pietruszczak1, Z. Mróz 2 

1Department of Civil Engineering, McMaster University, Hamilton, Ontario, Canada 

2Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland 

 

3.2 Abstract 

The work presented here is focused on examining the size effect in concrete structures subjected 

to different loading conditions, which include a chemo-mechanical interaction. The study involves 

extensive three dimensional finite element simulations, which incorporate a constitutive law with 

embedded discontinuity for tracing the propagation of damage pattern. The analysis deals with 

various mechanical scenarios that incorporate both a cohesive and frictional damage mechanism, 

as well as the effects of degradation of concrete triggered by continuing alkali-silica reaction 

(ASR). In the latter case, a chemo-plasticity framework is employed. The first set of simulations 

provides a deterministic assessment of the size effect in a series of three-point bending tests as 

well as compression tests. For continuing ASR, it is demonstrated that, by increasing the size of 

the structure, a spontaneous failure may occur under a sustained load.  The numerical examples 

given here clearly show that the size effect is associated with propagation of localized damage 

whose rate is controlled by a suitably defined ‘characteristic length’. 

 

Keywords: size effect; alkali-silica reaction; 3D crack propagation; embedded discontinuity 

model; bifurcation analysis. 
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3.3 Introduction 

The term ‘size effect’ refers to variation of the nominal strength with size in geometrically similar 

structures. In general, for the quasi-brittle materials, such as concrete and/or rocks, it has been 

shown that the ultimate strength of a structure is significantly reduced by increasing its size [1]. In 

addition, in small structures the response is more ductile than in larger ones. The brittleness is not 

only affected by the size, but also the actual geometry of the structure, the presence of pre-existing 

fractures (e.g., notches) and the fracture energy that controls the stress redistribution.  

The size effect has been documented experimentally as early as 1921 in the work of Griffith [2] 

which dealt with assessment of nominal strength of glass fibers. Soon after, the statistical theories 

began to emerge, which attributed the size effect to the randomness of material strength within the 

considered domain [3-5]. This approach was dominant until mid-1970s when the deterministic 

frameworks started to appear. It was then demonstrated that the major cause of the size effect is 

the stable propagation of damage. A historical overview of different theories is provided, for 

example, by Bazant and Planas in their monograph.[6]. Most of the research has been conducted 

in relation to quasi-brittle materials, in particular on concrete subjected to tensile damage. Two 

types of structures were examined, i.e. with and without a pre-existing fracture, such as an initial 

notch [6]. Several noteworthy studies in this respect have been conducted by Bazant and his co-

workers who developed a general energetic-statistical size effect theory for concrete structures [5-

8]. The size effect phenomenon is not limited to tensile regime. Cusatis and Bazant [9], for 

example, investigated the behavior of concrete columns with and without notch under 

compression; however, in this case the variation of nominal strength with the size of the structure 

was not very significant. In addition, a number of experimental studies have been performed on 

the evaluation of size effect in reinforced concrete structures [10, 11].  

One of the important loading scenarios that has not been considered so far in the assessment of 

size effect, is the degradation of concrete triggered by chemo-mechanical interaction. An example 

here is the alkali-silica reaction (ASR). This reaction occurs in concrete structures which are 

exposed to high humidity environment, such as dams, piers and bridges. The thermodynamic 

aspects dealing with the chemical sequence and the rate of kinetics of ASR have been discussed, 

for example, in refs.[12, 13]. At the same time, the effects of chemo-mechanical interaction have 
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also been extensively studied, both experimentally [14] and numerically at a meso as well as 

macroscale [13,15-17]. The primary objective of this work is to examine the size effect in a broad 

range of loading conditions that also include damage due to continuing ASR. It is clearly 

demonstrated that the size effect is associated with formation of discrete macrocrcaks and that the 

mathematical description of propagation process requires the notion of a ‘characteristic length’. It 

is noted that this parameter was employed in the past research, but its definition remains rather 

ambiguous. In different works, it was loosely interpreted as the ‘size of material inhomogeneities’ 

or that of ‘the fracture process zone’; i.e. no precise quantitative meaning was assigned. Here, 

following earlier work reported in refs. [18-20], the propagation of damage is described in terms 

of an embedded discontinuity approach, which incorporates volume averaging in order to generate 

representative homogenized stiffness moduli. In this approach the characteristic dimension is 

explicitly defined as the ratio of the area of macrocrack to the selected reference volume, the latter 

identified with that of a finite element containing the discontinuity. Thus, for a fixed FE mesh, if 

the size of the structure increases, the ‘characteristic length’ within the elements containing 

discontinuity changes, which in turn affects the rate of damage propagation and, thus, the nominal 

strength of the structure. 

The outline of this paper is as follows. In the next section, a brief overview of the notion of 

deterministic size effects is provided. Later, the mathematical formulation of the problem is 

outlined. This includes the description of both homogeneous and localized deformation, the latter 

associated with the presence of discrete macrocracks. In the follow up section, the results of 

numerical simulations are presented. Those comprise a deterministic assessment of the size effect 

in a series of three-point bending tests as well as compression tests. For continuing ASR, it is 

demonstrated that, by increasing the size of the structure, a spontaneous failure can occur under a 

sustained load below the nominal failure value.   

 

3.4 Size effect in concrete  

The existing analytical expressions which quantify the deterministic size effect have been 

developed for quasi-brittle materials [21, 22]. They deal with geometrically similar structures, with 
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or without large pre-existing fractures/notches, and provide an assessment of nominal strength as 

a function of the characteristic size of the structure. The most commonly used formulae are those 

developed by Bazant and co-workers (cf. ref. [6]) based on their extensive research on this topic. 

In general, the nominal strength is said to be bound for small sizes by the plasticity limit, whereas 

for large sizes by the approximation based on linear elastic fracture mechanics. The proposed 

analytical expressions take the form 

 

1/

1 Type1 (un-notchedstructure)

Type 2 (notchedstructure)
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  (3-1) 

Here, N  is the nominal strength, D is the characteristic dimension of the structure, while  𝑓𝑟
∞ 

represents the strength corresponding to elastic-brittle material for the case when D . The 

remaining constants are largely semi-empirical. The parameters r and lp control the curvature of 

the plot and the transition to perfectly plastic response (for 0D  ), respectively, while Db is said 

to be a ‘characteristic length’ associated with the thickness of the fracture zone. In the second 

equation, ft denotes the tensile strength and B is, again, a geometry-dependent empirical parameter. 

A schematic representation of these two size effect laws in an affined logarithmic space is depicted 

in Fig 3-1. 

 

Fig 3-1- Size effect law for (a) un-notched structure and (b) structure with initial crack(s) 
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It appears that the practical applicability of the existing analytical approximations, such as 

eq.(3-1), is rather limited. Firstly, several of the parameters employed are semi-empirical and there 

is no systematic procedure for their identification. Even the notion of the ‘characteristic length’ 

has a certain degree of ambiguity as it is not precisely defined. Furthermore, the nominal strength 

of a structure is affected by its geometry, boundary conditions and the strength/deformation 

properties of the material. Thus, even for simple geometrically similar structures, the last two 

features may quite significantly impact the strength. Besides, the assessment of maximum nominal 

strength, which is identified with plastic limit, is questionable, as evidenced by examples provided 

later in this paper. Also, for very small sizes (i.e. 0D  ), the use of a continuum formulation is 

rather obscure as the concept of REV is no longer applicable. Therefore, it does not seem feasible 

to establish a unique analytical ‘size effect formula’ with reliable predictive abilities. To compound 

the problem, the extrapolation from the existing formulae to more complex geometries than those 

employed in their development and/or to structures with no geometric similarities is even more 

problematic.  

Given the comments above, it seems that the most reliable approach is an adequate experimental 

and/or numerical assessment. In fact, the design of complex engineering structures (dams, bridges, 

powerhouses, etc.) usually requires a numerical analysis. In this case, the notion of size effect is 

naturally addressed within the analysis itself (i.e., the problem employs the actual geometry and 

boundary conditions), provided that an adequate procedure for describing the damage propagation 

is employed. In what follows, the mathematical framework implemented in this work is briefly 

outlined. Later, the results of numerical simulations are presented addressing a broad range of 

loading conditions and their impact on ultimate strength in relation to the size of the structure. 

 

3.5 Mathematical formulation 

3.5.1 Constitutive relations governing homogeneous deformation in the presence of ASR 

The description of chemo-mechanical interaction incorporates a scalar parameter which is a 

measure of the continuing reaction [17]. In general, the kinetics of the reaction depends on the 
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available alkali content, the humidity (the onset occurs when it exceeds 80%) as well as the 

temperature. The evolution law may be assumed in a linear form 

 0( )   (1 )
t t

e


     
 

       (3-2) 

where   can be interpreted as a value of the state variable   associated with the chemical 

equilibrium and   is a material constant describing rate of the reaction (the latter depends also, 

among others, on the reactive particle size). In the integrated form of eq.(3-2), the constant 0t is 

the initiation time, while <…> are Macauley brackets.  Note that the linear form of the kinetic law 

has a simple interpretation, i.e. the reaction rate   is controlled by the amount of chemical 

components which can still react, the latter being proportional to ( )  . The parameter 

depends, in general, on the temperature and relative humidity, it may also be affected by the 

confining pressure. Note that the value of   is defined within the range [0,1)   so that 

[0, )  . An extensive discussion on the kinetics of ASR is provided, for example, in refs. [13, 

23]. The primary mechanical effects of the reaction involve a progressive volumetric expansion 

and a continuing degradation of strength/deformation properties of the material. For a given alkali 

content, the expansion in the stress-free state may be defined as 

 
1

,
3

c t t       ε I   (3-3) 

where  is the maximum free expansion in the course of ASR and  I is the identity tensor. 

The specification of the constitutive relation follows now the general framework of chemo-

plasticity. In the elasto-plastic regime, the formulation for plain concrete is similar to that 

employed in ref. [24]. The approach invokes a non-associated flow rule and the yield surface is 

expressed in a functional form 
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In the equations above, I is the first stress invariant, 1/2 1 3

2 3
1( ) , sin (3 3 / 2 )

3
J J    , where 

2 3( , )J J  are the basic invariants of the stress deviator and   is the Lode angle. Moreover, cof  is 

the uniaxial compressive strength prior to the onset of ASR, c’s are strength parameters that depend 

on  , 0,1)    represents a hardening function and the internal variable   is a hardening 

parameter that is identified with accumulated plastic distortion. The plastic potential surface is 

taken in the form 

 
0( ) ln( / ) 0cQ g I I I      (3-5) 

where 
3 coI c f I  , 

0I  is defined from the condition Q=0, and c represents the value of  

/ ( )g I    for which a transition from plastic compaction to dilatancy occurs. Note that 

( , )Q Q   , which is the result of the dependence of parameters c on  . 

The continuing alkali reaction triggers a progressive degradation of mechanical properties. The 

primary material parameters affected by the reaction are the Young’s modulus (E), and the 

strengths parameters c, eq.(4). The degradation laws are defined by invoking simple 

approximations 

 1 10 1 2 20 2 3 30 3 0 4(1 ); (1 ); (1 ); (1 )c c G c c G c c G E E G            (3-6) 

in which G’s are material constants. The subscript ‘0’ refers here to properties prior to the onset of 

the reaction, while the final values, for 1  , correspond to the case when the reaction is 

complete. 

In order to derive the constitutive relation, consider first the response in the elastic range. In the 

presence of continuing reaction, the total strain may be expressed as the sum of elastic and 

chemical components, eq.(3-3), so that  

 
1

:
3

e c e     ε ε ε σ I   (3-7) 
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where e  is the elastic compliance tensor. The extension of the above relation to the elastoplastic 

range can be obtained by invoking the additivity of elastic and plastic strain rates. Noting the 

dependence of elastic properties on  , one has 

 
1

: ; : ;
3

e p c e p e p Q
  

 
           

ε ε ε ε σ ε b b I σ ε
σ

  (3-8) 

The inverse relation, which is required for numerical implementation, can be obtained by 

multiplying both sides of eq.(3-8) by 
1

e e


    , so that for an active loading process there is 

 
e : ( )p   σ ε ε b   (3-9) 

In order to specify the plastic strain rates, the standard plasticity procedure is now followed. 

Writing the consistency condition as 

 ( , , ) : 0
f f f

f    
 

  
   

  
σ σ

σ
  (3-10) 

and noting that 
1/2

( ) : ( )p pdev dev    ε ε , where dev refers to deviatoric part of the operator, the 

plastic multiplier can be defined as 

 e e1 1
: : : :
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f f f f f

H H
  
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  (3-11) 

where  

 

1/2

e; : : ; :e p e p

f Q f Q Q
H H H H H dev dev


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                 σ σ σ σ

  (3-12) 

During the plastic deformation process, the Kuhn-Tucker loading-unloading conditions can be 

stated as  0,0,0  ff   . Note that within the considered deviatoric hardening framework, 

the homogeneous deformation is associated with 0pH , while / 0f     corresponds to a 

softening chemical action. Thus, an active loading process should satisfy the inequality 
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f f f f
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where   is the angle between the vectors σ  and 
f

σ
- . Hence, if the stress rate vector is directed 

towards the interior of the yield surface, an active elastoplastic process can occur provided σ  lies 

in the exterior of the conical domain whose size depends on the ratio / σ , i.e. 

 
1 /

cos
/

f

f

 
   


 σ σ
  (3-14) 

Apparently, when / 0 σ , the classical loading condition 2/   is recovered. In general, 

however, the loading-unloading criterion is affected by both the rate of ASR (or any other transient 

process) and the induced stress rate. Similar conclusion can be reached for a strain controlled 

deformation process. 

Substituting now eq. (3-11) into (3-9) one can obtain, after some algebraic transformations, the 

following general form of the constitutive relation  

 
T :   cσ ε D   (3-15) 

where T  and c
D  are the tangential stiffness operators related to mechanical and chemical 

components, respectively: 

 
e e e
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cD b
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  (3-16) 

In order to update the stress state an implicit backward Euler integration scheme is employed, 

according to which the stress increment at each time step t  is defined by t t t  σ σ . 

Substituting the second equation in (3-8) into eq. (3-9) and expressing the result in incremental 

form, one obtains 

  1 1
: : : , :

3

e p e e e

t t t   

 
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where  is the fourth order identity tensor and tσ  is the stress state at the beginning of the 

increment. For an active loading process, the consistency condition given by eq. (3-10) should be 

satisfied. Here, the return mapping algorithm incorporating the elastic predictor–plastic corrector 

strategy is employed. The iterative scheme starts with evaluation of the trial stress increment that 

is based on the elastic approximation, i.e.  

  trial 1 1
: : :

3

e e

t t 



  
        
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σ σ ε I σ   (3-18) 

To obtain the plastic strain increment, the Taylor expansion is employed to enforce the consistency 

condition at time t+Δt, viz. 

 : 0k k k

k k

f f
f 



 
  
 

δσ
σ

  (3-19) 

where, kσ  and 
k  are the corrections for stress and hardening parameter at iteration k  which 

are associated with plastic deformation. Invoking the definition of  , one can write 

 

1/2

1: : : dev : dev 0k k e k

k k k k k

f Q f Q Q
f  



         
      

        σ σ σ σ
  (3-20) 

Solving this scalar equation, the variation of plastic multiplier k can be determined as 

 
1 e: : :

k
k

p

f

f Q
H





 


 σ σ

  (3-21) 

where Hp is defined in (3-12). At the end of the correction stage, the stress state and the plastic 

multiplier are updated, i.e. 

 
1 1;k k k k k k          σ σ δσ   (3-22) 

The iterations continue for subsequent correction steps until 0.f   
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3.5.2 Description of localized deformation  

The constitutive law incorporating the yield function (3-4) describes, in general, a homogenous 

deformation mode, i.e. it remains valid as long as there is no localized damage. In the tensile 

regime, the onset of localization is assumed to be governed by the maximum tensile stress criterion. 

Thus, the macrocrack forms when 1 tf   , where tf   is the tensile strength, and the direction of 

the crack is said to be orthogonal to that of the major principal stress. In the compression regime, 

the transition to localized deformation is assessed based on the bifurcation criterion of Rice and 

Rudnicki [25]. Thus, the onset of frictional damage occurs when the acoustic tensor satisfies the 

following condition 

 Tdet( ) 0  ,     Q Q n n  (3-23) 

where is defined in eq. (3-16) and n denotes the orientation of the localized fracture. 

It should be noted that in case of a chemical interaction, the constitutive relation (3-15) can also 

result in the onset of localized deformation mode starting from a material imperfection. Assume 

that the localized mode involves generation of a velocity discontinuity w , such that   u nw , 

along a surface with unit normal n . For such a mode, the rate of reaction inside the localization 

band vanishes. The equilibrium condition requires now that n σ  remains continuous across the 

discontinuity surface. For the constitutive relation (3-15), the homogeneous stress rate outside the 

band 
0

σ and that inside the band can be expresses in the form 

 0 0 0 0 0 0

T T T T: ; : : :        c cσ ε D σ ε σ σ ε ε D   (3-24) 

Recognizing that at the inception of localization 0

T T  and also   0 / 2    n nε ε w w , one 

can write 

    0 10 0 or          c cn σ σ Q n D Q n Dw + w   (3-25) 

Thus, the inception of strain localization is possible with its rate controlled by the kinetics of 

chemical reaction. On the other hand, the instantaneous mode occurs when the bifurcation 

condition (3-23) is satisfied.  
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The propagation of damage is described by invoking the mathematical framework outlined below. 

Suppose that a crack, or a set cracks, form within the domain subjected to external loading under 

an ongoing chemical-interaction, Fig 3-2(a). For modeling the discontinuous deformation, the 

embedded discontinuity approach, which incorporates volume averaging, is employed here after 

ref. [19,20]. Within this approach, the considered reference volume   comprises a discontinuity 

which divides the domain into two distinct parts  and  , as shown in Fig 3-2(b).  The 

former, i.e   is in the positive direction of the normal n  to the fractured zone.  

          

Fig 3-2- (a) Fractured domain under loading; (b) Discontinuity within the reference volume   

To describe the displacement field within this domain, Heaviside step function, H(x), is employed 

[26], i.e. 

 ˆ( , ) ( , ) ( ) ( , )t t H t u x u x x u x   (3-26) 

where u  and û  are two continuous functions. The strain rate is now defined as a symmetric part 

(.)s of the velocity gradient, corresponding to (3-26), i.e. 

 ˆ ˆ( , ) ( , ) ( , ) ( ) ( , ) ( )s s s st t t H t H    ε u x u x u x x u x x   (3-27) 

Taking the average of eq.(3-27) over the referential volume   and noting that 
d

( )H x   n , 

where   is the Dirac delta function, one obtains [20] 

   
d

d

1 1
ˆd ( , )d ( , ) ( )d ( , ) d

ss st t H t
   

       
    ε u x u x x x nw   (3-28) 

where w  represents again the velocity discontinuity along the interface. Thus, in terms of volume 

averages, the macroscopic strain rate can be expressed as  

(a) (b) 
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  dˆ( , ) ( , ) ( , )
ss st t t

   
        

   
ε u x u x x nw   (3-29) 

The term on the right-hand side can be interpreted as a sum of the strain rate in the intact material 

(ε ) and the deformation due to discontinuous motion along the interface ( ε̂ ), i.e. 

     dˆ( , ) ( , ) ( , ) ;

ˆ

ss t t t        ε u x u x x n

εε

w   (3-30) 

Here, denotes the ratio   /  and is the characteristic length parameter which is defined 

as the ratio of the area of fracture zone and the considered reference volume. The velocity 

discontinuity along the interface can be determined by imposing the condition of continuity of 

traction, i.e.  

   n σ Kt w   (3-31) 

were, t is the traction vector and K defines the stiffness operator of the fractured zone. Substituting 

now relation (3-15) in eq.(3-31) and solving for the velocity discontinuity, one obtains 

    
1

T T: : ; where 


           cS n ε D S K n nw   (3-32) 

The global constitutive relation can be derived by substituting the expression above in 

representation (3-30).  This, after some algebraic transformations, leads to  

 T T T: ; : :and   c c cσ ε D D D   (3-33) 

where 
T

 and 
cD  are the stiffness operators for the domain that contains a strong discontinuity 

and represents the localization tensor defined as 

  :   n S n   (3-34) 

Note again that the relation (3-34), and thus the constitutive equation (3-33), explicitly incorporate 

the characteristic length parameter This parameter, which is defined as d
    , can be 

expressed in an equivalent form as the ratio of the volume fraction of the damaged zone   to its 
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thickness h. Indeed, since dh    , there is / h  . This particular definition stems 

directly from describing the embedded discontinuity response in terms of the rate of traction vs 

velocity discontinuity relationship (cf. [19]). It should be noted that in the earlier paper [18], as 

well as in the recent article by Nguyen et al.[27], the response in the localization zone was defined 

explicitly by a rate form of stress-strain relation, which resulted in identifying the characteristic 

length parameter with  . In general, both approaches, i.e. that incorporating / h   and  , 

generate solutions insensitive to the finite element mesh size; the former one however, which is 

employed in this study, seems physically more appealing as the interface testing involves directly 

the measurements of displacement discontinuities. 

In order to complete the formulation, a constitutive relation for the fractured zone is required that 

relates the rate of traction to the velocity discontinuity. Here, the characteristics of interface in the 

tensile regime have been defined by generalizing the approach outlined in ref. [28]. The latter 

employs an equivalent traction, teq, together with a conjugate measure of displacement 

discontinuity, weq. The initiation of damage may be described by invoking the concept of a damage 

locus that is represented by an elliptic curve 

  
2

1/2
2 2 2

1 20; ; ;s
d eq t eq n s s s

t

t c
F t f t t t t t

f




 
        

 
  (3-35) 

where the components of traction vector t are referred to a local coordinate system  1 2, ,n s s  

attached to the interface, with n and 1 2,s s  specifying the normal and tangential directions, 

respectively. The parameter   represents the ratio of the ultimate shear strength c (i.e. cohesion) 

to the tensile strength tf . A conjugate equivalent measure of displacement discontinuity can now 

be defined as  

  
1/2

2 2 2 2 2

1 2;eq n s s s sw w w w w w      (3-36) 

Differentiating the above equation, the rate of work can be expressed in the form  

 2 21 2
1 2 1 1 2 2

n s s
eq n s s eq eq n n s s s s

eq eq eq

w w w
w w w w t w t w t w t w

w w w
          (3-37) 
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so that 

 2 2

1 1 2 2
ˆ ˆ ˆ ˆ; ; ;n n s s s s eq eqt K w t K w t K w t K w       (3-38) 

The damage process involves a progressive degradation of strength, which can be described by 

introducing an exponential function 

 0
0 0 0

0

ˆ ; exp ( ) ;t t
eq eq eq

f

f f
t K w K D w D

G K


  



 
       

 

  (3-39) 

In the expression above, 0K  is the elastic stiffness, 0  denotes the equivalent displacement at 

which the attenuation of stiffness starts,   is the maximum equivalent displacement attained 

during the loading history, and 
fG  is the fracture energy. Thus, the constitutive relation assumes 

the following form  

 
0 0 0: ˆ: ( ); ( )eq eq eq eq eq eqElastic range t K w for w Softening t K w for w         (3-40) 

For an active loading process, the relation between the rate of traction and the velocity 

discontinuity, can be obtained by differentiating eqs. (3-38). Thus,  

    2 2

1 1 1 2 2 2
ˆ ˆ ˆ ˆ ˆ ˆ, ,n n n s s s s s st K w K w t K w K w t K w K w         (3-41) 

where 

 2 21 2
0 1 2

ˆ
ˆ n s s

eq n s s

w w wK D
K w K w w w 

    

   
    
   

  (3-42) 

The above expression leads, after some algebraic transformations, to the general form of the 

constitutive law, in which the stiffness operator is defined as 
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1

2 2 2

1 2

1

2 2 4 2 40
1 1 1 2

1

2 4 2 4 2

2 1 2 2

n n s n s

n s s s s

n s s s s

D
D w w w w w

K D D
w w D w w w

D
w w w w D w

  


    
  

    








  
  

  
   
   

   
 

      

K   (3-43) 

Note that this operator needs to be transformed to the global coordinate system, before being 

implemented in eq.(3-32). 

In the compression regime, i.e. when the frictional response is dominant, the stiffness operator is 

derived by invoking the plasticity framework, which incorporates strain-softening. In this case, the 

elastic response is defined as 
e e

Kt = w  where the elastic stiffness, referred again to a local 

coordinate system attached to the interface, is given by  

 

0

2

0

2

0

0 0

0 0

0 0

e

K

K

K





 
 


 
  

K   (3-44) 

In the elasto-plastic range, the Coulomb criterion together with a linear form of plastic potential 

function is employed, i.e.  

 tan 0; tan .c s n s nF t t c t t const           (3-45) 

where   is the angle of internal friction, c is the cohesion and   is the dilatancy angle. Note that 

for 0nt   there is st c , which is consistent with representation (3-35). For an active loading 

process,   is assumed to be constant, while cohesion progressively decreases from an initial value 

of 0c . The latter representation is similar to that followed in ref.[29]. The softening effects are 

attributed to the irreversible part of equivalent displacement, i.e. 

    
2 2

20
0 exp( ) ; p p

n s

c

c
c c w w

G
        (3-46) 
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Here, p

nw  is the plastic dilatancy and cG  is the fracture energy in compression regime. Employing 

the consistency condition 0f  , i.e. 

 

1/2
2 2

20 ; 0e

n s

f f f f
f

t t

  
   

 

           
                          

Kt w
t t t

  (3-47) 

and solving eq. (3-47) for  , we have 

  
1/2

2 2; ; tan

e

e

e p

e p

f

f f
H H

H H


  



 
            

    

K

K

w
t

t t
  (3-48) 

where pH  is the plastic modulus. It should be noted that for 0   and 1   there is p

c
H







. 

This case corresponds to p

sw  , i.e. the softening effects are attributed to the irreversible part of 

tangential displacement alone. Following now the standard plasticity procedure, the constitutive 

law for the fractured zone is obtained, viz. 

  

e e

e p e e

e p

f

H H






     
                  

    
  

K K

K K K K
t t

t w w w w w
t

  (3-49) 

Once more, the stiffness operator K  needs to be transformed to the global frame of reference in 

order to specify the localization tensor S  viz. eq.(3-32). It should be noted that K , as defined in 

eq.(3-43) and eq.(3-49), is negative-definite. 

Let us note that the exponential softening rules (35) and (42) applicable to tensile and shear modes 

imply the growth of damage process zone into the elastic material with no propagation of cracked 

zone, as the interface traction does not vanish for large normal or tangential displacement 

discontinuity. On the other hand, frequently used in concrete mechanics linear or bi-linear 

softening rules imply both process zone and cracked zone growth. The definition of process zone 

is therefore different for these two types of softening rules. In fact, for linear softening rules two 
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parameters, namely crack and process zone lengths with their evolutions should be used in the 

analysis of localized damage process. 

 

3.5.3 Comments on the finite element formulation 

 

The description of quasi-static damage propagation in the presence of a chemo-mechanical 

interaction follows a standard finite element procedure. The latter invokes the statement of virtual 

work principle 

 :

t

td d d  
  

        ε σ u t u g   (3-50) 

where u represents the virtual displacement, ε  is the associated virtual strain, t is the traction 

along the surface t (Fig 3-2) and g  denotes the gravitational load. The finite element 

approximation of eq.(3-50) is based on incorporation of a set of shape functions that relate the 

kinematic variables to the nodal degrees of freedom. Employing the matrix notation, the standard 

FEM interpolations take the form  

        N N[ ] [ ]     u N u ε B u   (3-51) 

where [ ]N  is the matrix of element shape functions, [ ]B is the operator employing derivatives of 

these functions and  Nu  are the virtual nodal displacements. By substituting the approximations 

(3-51) into eq. (3-50), the matrix form of the FE formulation can be derived, viz.  

          T T T[ ] ; [ ] [ ]

t

td d d
  

       B σ F F N t N g   (3-52) 

For the chemo-plasticity framework employed in this work, the constitutive relation is defined via 

a differential form (3-33), which can be expressed in matrix notation as 

    T T T[ ] [ ] ; [ ] [ ][ ] [ ] [ ][ ]and   c c cσ ε D D D   (3-53) 
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where 

    
1

[ ] [ ] [ ][ ][ ] [ ] ; [ ] [ ] [ ] [ ][ ]T T 


   I n S n S K n n   (3-54) 

and  [ ]n  is a 6×3 operator defined through relation (31), i.e.      T
t n σ= .  

Differentiating now eq. (3-52) with respect to time and substituting the constitutive relation (3-33) 

the following FE approximation is obtained  

        T N T

T[ ] [ ] [ ] ; [ ] [ ]c cd d
 

 
     

 
  cB B u F F F B D   (3-55) 

Note that the generalized load vector, which appears on the right-hand side of eq.(3-55), results 

from the change in external load as well as from the continuing chemical interaction. The latter is 

an explicit function of time and its evolution is defined via the kinetics law (3-2). 

The above set of non-linear equations can be combined for the complete element assemblage and 

solved using iterative techniques, such as Newton-Raphson scheme. In the numerical analysis, the 

crack paths is traced in a discrete manner using a local tracking approach, as described in ref.[30]. 

Within this scheme, the failure/bifurcation criterion is checked in the candidate elements adjacent 

to the crack tip and, if met, the average direction of propagation is established. In 3D case, in order 

to avoid numerical difficulties associated with an abrupt change in the crack surface orientation, a 

crack smoothening algorithm has been implemented [31]. 

It should be pointed out that in the approach pursued here, the effect of discontinuity is implicitly 

embedded in the functional form of the tangential operator 
T

. This stems from the volume 

averaging scheme, whereby the velocity discontinuity is derived from the macroscopic strain rate 

by defining the localization tensor, eq.(3-32). The present approach is in contrast to other 

methodologies for modeling fracture propagation, such as XFEM. In the latter case, the 

discontinuity is introduced explicitly into the discretized system using an enriched approximation 

space, i.e. enrichments in shape functions and additional degrees of freedom. While the procedure 

for tracing the crack path is analogous to that employed here, the XFEM approach requires an 

enhanced integration scheme with the back triangulation, which impairs its numerical efficiency. 

A direct comparison of both methodologies is provided in ref.[20], which demonstrates that the 
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present framework, which employs standard FEM interpolations, gives results that are virtually 

identical to those obtained using XFEM, while the computational effort is significantly reduced.  

A detailed discussion on the numerical accuracy of the approach presented here is also provided 

in ref.[32], where the concept of  J-integral was employed to evaluate the energy release rate 

around the crack tip and its value was compared with those obtained from Extended FEM 

simulations as well as an analytical solution. Finally, it should be noted that by invoking the 

characteristic dimension  , eq.(30), the numerical solution is virtually independent of the mesh 

size/alignment. This issue was explicitly addressed in both references quoted here, i.e. ref.[20] and 

[32].  

 

3.6 Numerical analysis 

In this section the results of numerical simulations are presented. The analysis is focused on the 

deterministic assessment of the size effect in a series of three-point bending tests as well as 

compression tests. In addition, a structural response under continuing ASR is examined. It is 

demonstrated that, by increasing the size of the structure, a spontaneous failure may occur under a 

sustained load.   

3.6.1 Assessment of size effect in three-point bending of notched/un-notched specimens 

The first case examined here is the evaluation of size effect in concrete beams subjected to three-

point bending. The geometry of the problem is depicted in Fig 3-3(a). The notched beam has a 

varying height D, the span of 3D, while the out-of-plane thickness is fixed at 40mm. The initial 

notch has the depth of 0.1D. The first set of simulations was carried out for three different heights 

of D=80, 160 and 320mm. The primary objective was to verify the performance of the model by 

comparing the results with experimental data reported by Le Bellego et al. [33]. Since the failure 

mode involves a tensile crack propagation, the material was assumed to be elastic-brittle. The key 

material properties were taken from the original reference; in particular, the following values were 

assumed 

E=40,000 MPa, =0.2,  ft=2.9 MPa,  Gf=40 N/m, =1, o=0.001 mm 
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Fig 3-3- Size effect in notched beam; (a) geometry of the beam and (b) load-displacement curves 

The load-deflection characteristics are presented in Fig 3-3(b). It is evident that the deformation 

becomes unstable after reaching the peak, while the ultimate strength is significantly affected by 

the size of the beam. It is noted that all simulations reported here employed the same finite element 

discretization, similar to that shown in Fig 3-4 below. Thus, the structural size effect is directly 

attributed to the size of the referential volume (identified here with the size of the element) that is 

associated with the domains containing the embedded discontinuity. The latter directly affects the 

characteristic length , which defines the localization operator S  in eq.(3-32). The results of the 

simulations are fairly consistent with the experimental data, as evidenced in Fig 3-3(b). 

The next set of simulations pertains to un-notched specimens subjected to the same loading 

conditions. The geometry of the beam and 3D FEM discretization of the problem are shown in Fig 

3-4. This particular example was solved for a set of different values of D ranging from D=20mm 

to D=1600 mm and the thickness of the beam was taken again as 40 mm. The details on sample 

geometries and the predicted values of nominal strength are provided in Table 1. The material 

properties are the same here as those employed in the previous example and the results are 

compared with those for the notched beam. 
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Fig 3-4- Size effect in un-notched beam; (a) geometry of the beam and (b) FE discretization 

The failure mode involves, once again, the formation and upward propagation of a single 

macrocrack. Fig 3-5 shows the fracture mechanism (case #4) superimposed on the distribution of 

the horizontal stress; here, the attenuation of normal stress around discontinuity is clearly visible. 

It should be noted that according to theory of elasticity, the nominal stress for a beam of span L 

under three point bending is defined as Ns=1.5FL/(D2 t), where F is the magnitude of the applied 

load. Fig 3-6 shows the variation of nominal stress with the normalized displacement u/D, where 

u is the maximum deflection, for both notched and un-notched beams. Here, the upper curves, 

which correspond to the smallest sample (D=20 mm), show a ductile response. At the same time, 

for larger specimens the response becomes more brittle.  

Finally, Fig 3-7 shows the variation of nominal strength, i.e., max Ns, versus the characteristic 

dimension D (in logarithmic scale). The results, for both un-notched and notched specimens, are 

supplemented here with the predictions which correspond to elastic -perfectly plastic idealization. 

For the latter case, the nominal strength is independent of the size of the structure, as the framework 

does not account for the localized nature of damage. The predicted upper limits on the strength 

are, in general, higher than those corresponding to small samples (case #1). It should be noted that 

for very small sizes (i.e. 0D  ) the use of a continuum formulation is not appropriate, as the size 

of the specimen becomes comparable to that of the aggregate. It is evident from Fig 3-7 that the 

strength in large un-notched samples is converging to the strength of concrete, i.e. ft=2.9 MPa, 

whereas for the beams with pre-existing notches the nominal strength reduces below this value. 

(a) (b) 
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Fig 3-5- Deformed configurations with the superimposed stress distribution (in MPa)  

 

Table 3-1- Dimensions and the result of three point bending test 

Sample Height Span 
Strength (MPa) 

un-notched 
Strength (MPa) 

notched 

Case 1 20 mm 60 mm 6.86 5.05 

Case 2 50 mm 150 mm 6.13 4.39 

Case 3 100 mm 300 mm 5.39 3.75 

Case 4 200 mm 600 mm 4.67 2.89 

Case 5 400 mm 1200 mm 4.19 2.01 

Case 6 800 mm 2400 mm 3.82 1.29 

Case 7 1600 mm 4800 mm 3.55 ----- 

   

  

Fig 3-6- Variation of nominal stress with normalized displacement in un-notched (left) and notched 

(right) beams 
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Fig 3-7- Variation of nominal strength with the size of structure for both notched/un-notched beams 

 

3.6.2 Size effect in compression regime 

 

The results reported in this section are focused on the assessment of size effect in concrete samples 

subjected to axial compression. The experimental data is taken from ref. [9]. The samples are 

prisms of width D and height 3D while the thickness is 50 mm. In general, four specimens with 

the same aspect ratio and D=50, 100, 200 and 400 mm, were analyzed and the results are presented 

in Fig 3-8-11). The key material properties for concrete were taken as 

E=30,000 MPa, =0.2,  fc=40 MPa, 1 2 3c =1.9, c = 0.6, c = 0.3  

while for the macrocrack: 
0 , , , c

mmc 10 MPa 0 1 G 1.6 N /     .  

Note that the strength parameters 1 2 3, ,c c c  as defined above, cf. eq.(3-4), are primarily a function 

of compressive strength fc and the details on their specification are provided in ref.[24].  
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Fig 3-8- (left) propagation of localized damage (center) deformed configuration of the beam  

(right) cracked elements in 3D 

In the simulations, in order to initiate the crack, an imperfection was introduced in the middle of 

specimen by reducing the compressive strength of concrete by 1%. The analysis was performed 

using 3D tetrahedral elements. The loading process consisted of applying increments of vertical 

displacements at the top of the specimen with no constraints on horizontal motion (i.e. frictionless 

loading platens). The local direction of shear band was assessed by performing the bifurcation 

analysis.  

 
 

Fig 3-9- (a) typical variation of det(Q) with the crack direction; (b) axial stress-strain curves for all 

samples 

Fig 3-9 (a) shows a typical variation of det(Q) with crack orientation; the latter defined as the angle 

between normal to the critical plane and the horizontal axis at the onset of localization. At the same 

time, Fig 3-9(b) presents the average axial stress–strain characteristics for different values of the 
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characteristic size of the structure D.  The deformed configuration and the fracture pattern are 

depicted in Fig 3-8.  

 

  

  

Fig 3-10- Comparison of predicted stress-strain curves versus experimental results;  

(a) D=50mm; (b) D=100mm; (c) D=200mm; (d) D=400mm; 

In order to verify the accuracy of the solution, the results have been compared with the 

experimental data provided by Cusatis and Bazant [9]. The comparison is given in Fig 3-10. Note 

that for each size, 12 different samples were tested and the experimental scatter is indicated by the 

shaded area. It is evident that the ultimate strength is not significantly affected by the size of the 

specimen. At the same time, in small size specimens, the post-peak response shows significant 

ductility, while for large samples the behavior is more brittle. The variation of axial strength with 

the characteristic size of the structure D (in logarithmic scale) is shown in Fig 3-11(a). The 

numerical predictions are fairly consistent here with the experimental data, i.e. it is clear that the 

effect of size of the sample on the ultimate strength is virtually negligible Fig 3-11(b) presents the 

(a) (b) 

(d) (c) 
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variation of normalized post-critical modulus as a function of characteristic dimension D. Here, 

Epc is the secant modulus after the peak load, while E0 is the initial stiffness.  It is evident that the 

brittleness of the structure is increasing linearly (in logarithmic scale) with an increase in size. 

  

Fig 3-11- Size effect in axially compressed specimens 

 

3.6.3 Size effect due to continuing ASR 

 

The primary focus of the analysis reported here is the assessment of size effect in concrete beams 

subjected to continuing ASR. As mentioned earlier, the chemical reaction triggers the swelling of 

the material as well as degradation of its strength and deformation properties. In the study 

conducted here, five different specimens were considered with the height of D, the span of 4D and 

the thickness of 0.5D, as shown in Fig 3-12(a). The simulations were carried out for D=25mm 

(case 1), D=75mm (case 2), D=150mm (case 3), D=300mm (case 4) and D=600mm (case 5). The 

FE discretization employed again the tetrahedral elements, Fig 3-12(b), and the assumed values of 

material parameters are provided in Table 3-2. The beams were analyzed first under the loading 

conditions representing three-point bending (displacement-controlled scheme). For this loading 

stage, the corresponding load-displacement curves are shown in Fig 3-13(a).   

(a) (b) 
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Fig 3-12- (a) Geometry of the beam; (b) Three dimensional FE discretization 

The second stage of analysis involved a continuing ASR under a sustained load. In this case, the 

constitutive relation described in section 3.1 was employed. Two different scenarios were 

considered here that corresponded to different intensities of the vertical load/deflection. In the first 

case, the prescribed load intensity was different for each characteristic size of the beam and was 

equal to 0.97 of the peak load (Fig 3-13 (a)). During the continuing ASR, a progressive degradation 

of properties occurred that triggered the propagation of damage and a spontaneous loss of stability 

of the beam. This is illustrated in Fig 3-13(b) which shows the variation of normalized vertical 

displacement against time. It is evident, once again, that the ductility of the structure increases 

with a decrease in size. In addition, the time to failure strongly depends on the characteristic size. 

For the largest beam considered here (case 5) the failure occurs after 20 days of the reaction, while 

for the smallest size the loss of stability takes place after 130 days.   

Table 3-2- Material properties of concrete 

Material properties 

Modulus of elasticity E=30.5 GPa 

Poisson ratio =0.24 
Fracture energy Gf =50 N/m 
Tensile strength ft =3.6 MPa 
Strength degradation parameter G3 =0.46 
Modulus of elasticity degradation parameter G4 =0.5 
Free expansion  ∞=4×10-5 
Chemical expansion coefficient =0.15 months-1  

(b) (a) 
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Fig 3-13- First loading scenario; (left) normalized load-displacement curves;  

(right) normalized displacement vs time  

In the second loading scenario, the reaction is said to commence at a constant load intensity of 

Nf=Ns/ft=1.2, which is below the value of ultimate load for all cases. This corresponds to a fixed 

value of normalized displacement of 4×10-4, as shown in Fig 3-14. It is evident that, in this case, 

the smaller specimens will maintain stability over the entire period of the continuing ASR (set here 

to 900 days). At the same time, for larger samples, a spontaneous loss of stability occurs and the 

time to failure is affected by the characteristic size of the structure D. 

 

Fig 3-14- Second loading scenario, variation of normalized displacement with time 
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3.7 Concluding remarks 

The objective of this work was to examine the size effect in concrete structures experiencing 

different fracture modes that included tensile failure, formation of macrocracks in compression 

regime as well as damage due to chemical interaction. It was clearly demonstrated that the size 

effect is triggered by the onset and propagation of localized damage; the latter associated with 

strain-softening, whose rate is controlled by a ‘characteristic length’ parameter. Although, this has 

already been recognized in the past, the concept of characteristic length has a certain degree of 

ambiguity and has not been precisely defined. In different works, it was loosely interpreted as the 

‘size of material inhomogeneities’ or that of ‘the fracture process zone’; i.e. no unique quantitative 

assessment was provided. In this work, the notion of the ‘characteristic dimension’ is associated 

with volume averaging in the neighborhood of the interface. The definition of  in eq.(3-30), i.e. 

d
    , stems from expressing the interfacial response in terms of rate of traction and 

velocity discontinuity. The value of this parameter depends on the size of referential volume, 

implying that the tangential stiffness operator is explicitly affected by the size of FE mesh.  

Most of the former studies on size effect dealt with quasi-brittle materials subjected to mechanical 

loading, primarily in tensile regime. Here, more general loading conditions were considered which 

included the degradation of concrete triggered by continuing alkali-silica reaction (ASR). For each 

type of loading, the same finite element discretization was used for different size of the structure. 

Note that, for a fixed finite element mesh, if the size of the structure increases, the ‘characteristic 

length’ represented by process zone varies within the elements containing discontinuity, which in 

turn affects the progress of damage propagation and, thus, the nominal strength of the structure. 

The first set of simulations dealt with the assessment of size effect in a series of three-point bending 

tests as well as compression tests. For continuing ASR, it was demonstrated that, by increasing the 

size of the structure, a spontaneous failure may occur under a sustained load. The evolution of 

process zone length was not studied in this paper. 

It was argued that the existing analytical expressions for defining the size effect in geometrically 

similar structures are restrictive. They employ several parameters which are semi-empirical and 
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there is no systematic procedure for their identification. Furthermore, the nominal strength of a 

structure is affected by its actual geometry, boundary conditions and the strength/deformation 

properties of the material. All these aspects will significantly impact the strength and thus the size 

effect. 
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4 Analysis of localized fracture in 3D reinforced concrete structures 

using volume averaging technique 

 

4.1 Contribution 

 

This article describes a mesoscale approach for modeling of localized damage in reinforced 

concrete structures. The mathematical formulation of the constitutive equations governing both 

the homogeneous and localized deformation is provided. In the former case, a mixture theory is 

employed whereby a set of explicit static/kinematic constraints is imposed to define the response 

at the macroscale as a function of the volume fraction of constituents. The modeling of localized 

deformation is conceptually similar to that used in the former two articles. It employs the 

embedded discontinuity approach incorporating a smoothing algorithm. The constitutive law for 

the fractured zone is modified to include the presence of reinforcement, the latter considered as 

beams of a characteristic length embedded in the intact material. An important contribution in this 

work is the implementation of the proposed methodology in a series of boundary value problems 

that involve modeling of reinforced concrete structures in the presence of evolving discontinuities. 

 It is shown that the proposed approach, which is much simpler in implementation as compared to 

XFEM, is quite adequate in capturing the propagation of macrocracks in reinforced concrete 

domains. 
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Analysis of localized fracture in 3D reinforced concrete 

structures using volume averaging technique 
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4.2 Abstract 

 

In this paper, the propagation of localized damage in reinforced concrete structures is investigated 

in three-dimensional domain. A mesoscale approach is employed whereby the material is 

perceived as a composite medium comprising two constituents, i.e. concrete matrix and steel 

reinforcement. The response at the macroscale is obtained via a homogenization procedure that 

incorporates the volume averaging. After the onset of cracking in concrete, a traction-separation 

law is introduced for the fractured zone, in which the Timoshenko beam theory is used to assess 

the stiffness characteristics in the presence of reinforcement. A general 3D scheme for tracing the 

crack geometry is incorporated, which employs a smoothening algorithm. The mathematical 

formulation is incorporated in Abaqus user subroutine UMAT to verify the performance of the 

proposed methodology against the available experimental data. A number of numerical examples 

are given that examine the crack pattern formation and the associated fracture mechanism in 

concrete beams at different intensity of reinforcement.   

 

Keywords: Reinforced concrete, 3D crack propagation, volume averaging scheme, crack 

smoothening algorithm, interface law 
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4.3 Introduction 

 

Concrete, as a cement based material, has a high compressive strength and a low resistance in 

tension. In case of a low confinement, the behavior of plain concrete is brittle. In order to endow 

ductility and improve the structural performance, the steel reinforcement is often added. The latter 

not only increases the tensile strength, but also reduces the rate of crack opening/sliding due to 

interaction effects. 

The response of a reinforced concrete structure is affected by the mechanical properties of the 

constituents, position and the volume fraction of reinforcement, the bonding between concrete and 

the steel bars and dowel action in the post-cracking region [1]. Over the last few decades, a number 

of experimental tests have been performed on reinforced concrete structures to assess the 

sensitivity to these factors. For example, Collins and co-workers [2, 3] examined the post-cracking 

strength of concrete panels, with different volume fractions of reinforcement, under normal and 

shear loading. Krefeld and Thurston [4] tested more than 200 beams with and without stirrups 

under concentrated and distributed load to determine the maximum shear resistance. Other series 

of tests included those by Mphonde and Frantz [5], who investigated the effect of compressive 

strength of concrete on the maximum shear capacity of beams without transverse stirrups under 

three-point bending. A more comprehensive review of experimental work is provided in various 

textbooks dealing with reinforced concrete design/analysis. 

The numerical simulations of the mechanical response of reinforced concrete structures have been 

carried out by many researchers. Various constitutive models, of different degree of complexity, 

have been employed. An in-depth review of different methodologies can be found, for example, 

in ref.[6]. One of the earliest efforts of using finite element approach in the context of reinforced 

concrete was that of Ngo and Scordelis [7]. Their analysis was carried out for a pre-defined crack 

pattern assuming a linearly elastic response of steel/concrete. Both constituents were represented 

by 2D triangular elements and the bond slip was accounted for by using spring elements along the 

bar length. The frameworks  that were developed later incorporated simplified phenomenological 

approaches largely based on a smeared crack methodology [8-10]. In the literature, two types of 
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smeared crack approaches were introduced; viz. fixed and rotating crack. In the former approach, 

pursued by Cervenka [11] and Pang [12], the orientation of the crack was assumed to remain fixed, 

while in the rotating crack approach the direction of discontinuity was updated based on the current 

stress state [13]. Both these approaches, in particular the latter one, may certainly be questioned in 

terms of the adequacy of the representation. 

A more reliable description can be attained by accounting for the discontinuity in the displacement 

field triggered by the onset of cracking. In this approach, referred to as the strong discontinuity 

approach (SDA), the effect of discontinuity is considered based on traction-separation law which 

governs the response in the fractured zone. Details on this methodology can be found in refs. [14-

15]. The SDA framework has been applied by Oliver et al. [16] to 2D analysis of reinforced 

concrete. In that work, the behaviour of concrete matrix was described using an isotropic damage 

model with strain-softening, while the reinforcement and the bond-slip interface were modeled by 

invoking uniaxial tensile and shear characteristics. Given some similarities of this approach to that 

pursued here, the main differences are highlighted in the last section that provides the final 

conclusions. 

In parallel with this approach, the Extended Finite Element Method (XFEM) was developed 

whereby the presence of macrocrack has been described by adding additional degrees of freedom 

to the enriched elements [17,18]. The literature on modeling of fracture propagation within the 

XFEM framework is quite extensive. A comprehensive overview of the methodology, and its 

implementation in various areas of solid mechanics, is provided in the recent monograph by Khoei 

[19]. Examples of applications to cohesive crack growth include the works reported in refs.[20-

22], which were all focused on modeling of quasi-brittle materials, such as concrete. In ref.[20], 

the macrocrack properties were defined in terms of an exponential relation between the total 

traction and the displacement discontinuity. An enhanced methodology was then presented by 

Moës and Belytschko [21] whereby the description of damage growth employed an enrichment 

scheme to avoid the stress singularity at the crack tip. The later work, reported by Asferg et al. 

[22], dealt with incorporation of additional enrichment functions to allow for the variation in the 

discontinuous displacement field on both sides of the crack. In recent years, the use of XFEM in 

modeling of cohesive crack growth has been expanded to multiphase materials. An example here 
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is a coupled numerical formulation outlined in ref. [23] for describing the hydraulic fracture 

propagation process in porous media. 

The primary focus in this paper is on the modeling of localized damage in reinforced concrete 

structures. The approach employs a methodology which is computationally simpler than XFEM, 

but still accounts for a discrete nature of the fracture propagation process. Within this framework, 

the mechanical properties of reinforced concrete are described using a mesoscale approach that 

incorporates a volume averaging. Prior to the onset of fracture, some explicit static/kinematic 

constraints are imposed on the constituents’ behavior that enable the specification of the tangential 

stiffness operator. This approach is a 3D generalization of a similar methodology employed in 

ref.[24] whereby two orthogonal sets of reinforcements were introduced. After formation of a 

macrocrack, a simplified form of SDA is employed based on an enhanced representation [25] of 

an embedded discontinuity approach [26]. Within this approach, the macrocrack subdivides the 

considered referential volume into intact material and the fractured zone. The interfacial properties 

are defined by relating the traction rate to velocity discontinuity and an implicit integration scheme 

is employed to enforce the continuity of traction along the interface. The general mathematical 

formulation is outlined in section 3, while section 4 describes the strategy for tracing the crack 

propagation path in 3D. The key contribution in this work is the implementation of the outlined 

methodology in a number of boundary value problems dealing with damage propagation in 

reinforced concrete structures. This aspect is addressed in section 5, whereby the predictive 

abilities of the framework are examined for different boundary conditions and intensities of 

reinforcement and the results are compared with the experimental evidence. 

 

4.4 Mathematical formulation  

 

In this section a constitutive relation describing the response of concrete with three orthogonal sets 

of reinforcements is presented. The problem is formulated in two stages involving (i) a 

homogeneous deformation mode prior to cracking of the concrete matrix, and (ii) localized 

deformation associated with formation of macrocracks. For the first stage, a set of explicit static 
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and kinematic constraints is imposed to define the response at the macroscale, while in the second 

stage, an embedded discontinuity approach is employed. The details of the formulation are 

provided below. 

(i) Prior to cracking 

Consider a representative volume of the material that comprises the concrete matrix and three 

orthogonal sets of reinforcing bars. Referring the problem to an arbitrary global coordinate system 

and employing volume averaging analogous to that used in the mixture theory, the overall 

stress/strain rates can be expressed as 

 
1 1 2 2 3 3

1 1 2 2 3 3

c

c

   

   

   

   

c

c

σ σ σ σ σ

ε ε ε ε ε
  (4-1) 

Here, the subscript c refers to concrete matrix, the indexes 1, 2, 3 indicate the respective 

reinforcement’s families and i  denotes the volume fraction of ith constituent in the mixture.  

The local strain rate averages can be related to the overall macroscopic measure ε  (cf. Hill [27]) 

viz. 

 1 1 2 2 3 3   
c c
ε B ε ε B ε ε B ε ε B ε   (4-2) 

where the components of the localization tensors iB are function of properties of constituents and 

their volume fractions. In this work, the operators iB  are estimated based on a simple approach in 

which the diameter of the reinforcement is assumed to be negligible as compared to the spacing. 

The problem is then formulated by imposing some explicit kinematic constraints on the axial 

deformation of both phases (i.e. reinforcement and concrete), while the interaction in the transverse 

direction is largely neglected. As a result, the local stress/strain fields remain uniform. The details 

on the specification of these operators are provided in the Appendix. Incorporating now the 

representation (4-2) in the averaging scheme (4-1), the macroscopic constitutive relation can be 

defined as 

 (c) (1) (2) (3)

1 1 2 2 3 3 : :c             cσ B B B B ε ε   (4-3) 
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(a) 

where (i) is the stiffness of the ith constituent and is the tangential operator for the mixture.  

The representation (4-3) is general and can incorporate different frameworks for defining the 

stiffness operator(s). Note again that this is a meso-scale approach whereby the deformation 

history is traced in all constituents involved. The onset of localization typically takes place in the 

concrete matrix. For problems dealing with compressive stress regime, this is commonly assessed 

using the bifurcation criterion within the context of non-associated plasticity. However, the 

analysis presented here deals with problems involving elastic-brittle response that is associated 

with failure in tensile regime. Therefore, the behaviour of constituents is assumed to be elastic and 

the onset of localization in concrete is described by Rankine’s (i.e. the maximum normal stress) 

criterion stipulating that the direction of macrocrack is perpendicular to the direction of maximum 

tensile stress in concrete. After the inception of localized damage, a simplified form of the strong 

discontinuity approach is employed as outlined in the section below. 

(ii) After the onset of discontinuity 

The propagation of discontinuous damage is described again by invoking an averaging scheme 

within a referential volume. The latter consists now of an intact material and the fractured zone 

intercepted by three orthogonal families of reinforcement, Fig 4-1(a). In this case, the discontinuity 

divides the considered volume, into two sub-domains and  

Fig 4-1- (a) Fractured zone within a referential volume; (b) A set of discontinuities within the entire 

domain subjected to prescribed boundary conditions 

In order to define the displacement field, u(x,t), the following general representation is employed 

[15] 

 ˆ( , ) ( , ) ( ) ( , )t t H t u x u x x u x   (4-4) 

 
 

12







n

n1

n2

n3

d1 d2

d3

(b) 
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where ( , )tu x  and ˆ ( , )tu x  are two continuous functions and H(x) is the Heaviside step function 

describing the discontinuity within the domain. The strain tensor can now be obtained by 

calculating a symmetric part of the displacement gradient [25], i.e.  

 ˆ ˆ( , ) ( , ) ( , ) ( ) ( , ) ( )s s s st t t H t H    ε u x u x u x x u x x   (4-5) 

By taking the average of this expression over the referential volume  , and using the properties 

of delta Dirac function, viz. 
d

( )sH x   n , we have 

   
d

d

1
ˆ( , )d ( , ) ( )d ( , ) d

ss st t H t
 

      
   ε u x u x x w x n   (4-6) 

where w  is the displacement discontinuity along the crack surface. Differentiating now eq.(4-6) 

with respect to time, the macroscopic strain rate can be expressed in terms of respective averages 

as 

    ˆ( , ) ( , ) ( , )s t t t   ε u x u x w x n   (4-7) 

Here,   denotes the volume fraction /, while the parameter  represents a characteristic 

length, which is defined as the ratio of the fractured area to the considered referential volume. The 

above relation can be interpreted as an additivity postulate in which the deformation at the 

macroscale is assumed to be the sum of the strain rate  ˆ( , ) ( , )s t t  ε u x u x in the intact 

material and  ˆ ( , )t ε w x n that defines the strain rate due to the discontinuous deformation 

within the fractured zone. Given this decomposition, the stress rate in the intact material can be 

expressed as 

  :     σ ε w n   (4-8) 

where  is the tangential stiffness operator defined in eq. (4-3). In order to calculate the rate of 

crack opening, w , the continuity condition is employed whereby the traction along the crack 

surface is said to be the same as that within the fractured zone [28], i.e. nσ Kw . By substituting 

this condition in eq. (4-8), the velocity discontinuity can be defined as 
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    
1

T T: : where 


       w S n ε S K n n   (4-9) 

Here, K  is the stiffness operator whose components depend on the properties of constituents and 

the geometric arrangement of reinforcement with respect to orientation of the macrocrack. The 

details on the specification of this operator are provided later in this section. The averaged 

macroscopic constitutive relation is obtained by combing eqs. (4-8) and (4-9), which leads to 

  : : : :      σ n S n ε ε   (4-10) 

where  represents the tangential stiffness of the entire referential volume that contains the 

discontinuity.  

The integration of eq.(4-10) can be carried out using an implicit scheme to calculate the crack 

opening and to update the stress state for each load increment. Employing the Taylor expansion, 

the following residuals can be defined [25] 

  
   

   

   
   

1 ( ) ( )1 1
1 1

1

1 ( ) ( )2 2 2
2 2

: :
:

: :

k k
k k k k

k k
k k k k









  
              

       
  

δσ w
σ ε w n 0 σ w

nσ Kw = 0
δσ w

σ w

= 0

= 0

 
 



  
 

  (4-11) 

where, k denotes the iteration number. Solving above set of equations for δσ  and w , i.e. the 

correction of stress state and the crack opening, we have 

      
1( ) ( ) ( ) ( ) ( ) ( )

2 1 1; :k k k k k k   


         
 

w K n n n σ n w     (4-12) 

and the updated values become 

 
( 1) ( ) ( ) ( 1) ( ) ( );k k k k k k     Δσ Δσ σ Δw Δw w   (4-13) 

The iterations continue until the residuals defined in (4-11), reach a predefined tolerance. 

In order to complete the formulation, the constitutive relation for the fracture zone needs to be 

specified. The fracture zone is a composite medium in itself comprising the concrete interface 

reinforced with steel bars embedded in the matrix. The response of concrete within the damaged 

zone is described here by invoking a strain-softening relation, similar to that used in ref.[20]. 
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Referring the problem to a local coordinate system 1 2{ , , }n s s  attached to the interface, the 

evolution of the normal (n) and tangential (s) components of the traction vector is defined as 

    1 1 2 2exp ; exp ; expt
n t n s s n s s s n s

f

f
t f w t f w w t f w w

G
 

 
       

 
  (4-14) 

Here, ft  is the tensile strength of concrete, Gf  is the fracture energy and ,n sw w  denote the crack 

opening and sliding, respectively. For the shear components, fs is the initial shear stiffness and 

controls the rate of decrease of the shear traction. For an active loading process, both equations in 

(4-14) can be expressed in an incremental form, i.e. 

 

   

   

2

1 1

2 2 2

exp ; exp exp ;

exp exp

t t
n n n s1 s n s n s n s

f f

s s n s n s n s

f f
t w w t f w w w f w w

G G

t f w w w f w w

  

  

 
         

 

    
  (4-15) 

Given these relations, the stiffness operator for concrete within the fractured zone can be defined 

as 

    

   
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1 1 1
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 
 

cK

  (4-16) 

Specification of the constitutive relation for the damaged zone still requires consideration of 

strengthening effect of the steel network. In order to incorporate this effect, the reinforcing bars 

are considered as beams of a characteristic length l fixed at both ends within the intact material 

[24], Fig 4-2. The characteristic length itself is defined by the orientation of the reinforcement 

relative to the interface and the thickness of the damaged zone.  
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Fig 4-2- Reinforcement within the fractured zone  

Referring the problem now to a local coordinate system 1 2{ , , }n s s  along the reinforcement, the 

normal and shear components of the traction vector can be obtained by employing classical 

Timoshenko beam theory. As shown in ref.[29], for a circular cross section with the diameter d, 

and length l, the traction-displacement relation in the elastic range can be expressed in the rate 

form 

 
   

 
2

1 1 2 23 3

12 12 3
; ; ; 1

1 1 2

s s s
n n s s s s s

E E I E I d
t w t w t w

l Al Al l
 

 

      
                      

  (4-17) 

Here, A and I denote the area and the moment of inertia of the rebar’s cross section and Es and s  

are the Young’s modulus and Poisson’s ratio of steel, respectively. It is noteworthy to mention that 

in case of l d , the tangential stiffness approaches 312 /sE I Al , while for short beams the shear 

mode is dominant and the stiffness increases to / 2(1 )sE l .  

The transition from elastic to plastic response is defined based on yield criteria expressed in terms 

of components of the stress resultant system. In mode-I of crack propagation, when the shear force 

is small compared to normal force, the classical approach outlined by Horne is employed [30]. In 

this case, the yield criterion is expressed in a quadratic form 
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where 
yf  is the yield stress in axial tension, M is the bending moment at fixed ends of the beam, 

N is the axial force and Vs1, Vs2 are the shear forces. The latter can be determined by invoking 

eq.(4-17), according to which 

 1 1 2 23 3

12 12
;

(1 ) (1 )

s s
s s s s

E I E I
V w V w

l l 
 

 
  (4-19) 

The yielding associated with mixed mode crack propagation, in which the shear mechanism is 

dominant, is evaluated independently using a maximum shear force criterion [30]  

 
2 2

1 11.0 ;
3

y

s s p

p

A fV
V V V and V

V
      (4-20) 

If any of the above criteria, viz. inequality (4-18) or (4-20), is met, the yielding of steel is said to 

commence. 

The stiffness operator for the steel network within the fractured zone can be formally defined based 

on representation (4-17) and may be expressed in a general form  
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 

i
K   (4-21) 

Here, the ‘damaged state’ refers to the onset of yielding in steel and   is a damage parameter. 

Note that 1  results in a perfectly plastic idealization (i.e., unlimited deformation), while 1   

yields a negative-definite operator (strain softening).  The latter representation has been used in 

several previous studies to address the debonding effect that is typically associated with this stage 

of deformation process ([16],[31]).  

It should be emphasized that a rigorous description of debonding requires the specification of 

interfacial properties and their evolution during all stages of the deformation process. Given the 

difficulties associated with experimental identification of those properties, as well as the 

complexities associated with the geometry of the interface, this remains a rather intricate task. In 
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the existing literature, the loss of bonding is commonly described by invoking simplified one-

dimensional bond-slip models and/or degrading the properties of constituents in the neighborhood 

of the interface (cf. [16], [31,32]). The simple approach adopted here, viz. a negative post-critical 

stiffness modulus, belongs to the latter category. 

Finally, given the stiffness matrices for both constituents, viz. eqs.(4-16) and (4-21),  the 

macroscopic stiffness operator for the fractured area can be defined as 

 
T T

1,2,3

c i i i i

i

 


  cK T K T R K R   (4-22) 

where T and R  are the respective transformation matrices from the local to global coordinate 

systems.  

4.5 Comments on tracing the crack propagation path 

 

Once a macrocrack forms within an element, its position is defined by specifying the unit normal 

vector n at point P located on the discontinuity surface, Fig 4-3. In this work, the numerical 

simulations presented later in section 5 have been carried out by employing tetrahedral elements. 

For failure in tension, the Rankine’s criterion was employed according to which the orientation of 

the crack is orthogonal to the direction of maximum principal stress. As shown in Fig 4-3, the 

crack will cut the element forming a triangular or quadrilateral surface. In order to calculate the 

characteristic length, , viz.eq.(4-7), the area of the crack surface and the volume of the element 

on both sides of discontinuity need to be determined. In the case of a triangular cut, Fig 4-3a, the 

points of intersection along each edge can be identified and the area of the triangle can be 

calculated by using the Heron’s formula, i.e. 

 ( )( )( ) ;
2

a b c
A p p a p b p c p

 
       (4-23) 

where a, b and c are the respective lengths of each side of the triangle. In the case of a quadrilateral 
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(a) 
 

Fig 4-3- Crack surface in 3D element 

cut, Fig 4-3b, the surface area can be divided into two triangles, so that eq.(4-23) can be again 

employed. To calculate the volume on each side of the discontinuity, i.e.   and   , the element 

may be subdivided into tetrahedral domains, the volumes of which (Vt) are defined by 

1/ 3t t tV A h , where At is the area of base and ht denotes the height of each tetrahedral subdivision. 

At the onset of cracking within the domain, the point P is assumed to be located at the centroid of 

the element and the unit normal n is along the direction of maximum principal stress. The same 

procedure is employed if the element is not intercepted by other cracks in the immediate 

neighborhood. For the propagating discontinuity, the location of point P is affected by the 

surrounding crack surfaces. Referring again to Fig 4-3, let two sides of the element be crossed by 

the crack surfaces passing through points A1, A2 and B1, B2, respectively. In this case, the 

coordinates of point P are the averages of the coordinates of the respective midpoints A and B.   

It is noted that the assessment of the direction of unit normal n, which is based on the direction of 

the principal stress triad, may not be accurate when the structure is close to failure. This may lead 

to inconsistencies with the orientation of adjacent crack surfaces (Fig 4-4(a)). In order to remedy 

this problem, a crack smoothening algorithm is implemented as described below (cf. ref. [33]).  

A B
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Fig 4-4- (a) Cracked surface within a sphere of radius R; (b) modified normal direction 

In the first step of this procedure, a sphere of radius R, centered at point P is defined, as shown in 

Fig 4-4(a). The radius R is, in general, a user-selected variable which is typically in the range of 

3-4 times of the new cracked element size [33]. The latter is defined as the average length of the 

edges in element. Denoting now the coordinates of all nodes within the sphere as Pi , Fig 4-4(b), 

the geometric center of the crack surface can be defined as 
1,

/
s

c i s

i n

P P n


  , where ns represents the 

number of nodes within the sphere. Thus, given the location of point cP , a covariance tensor is 

defined based on the distance of each node from this point, i.e. 

    
1, r

i c i c

i n

P P P P


   D   (4-24) 

The eigenvectors of tensor D specify the local coordinate system ( , ,x y z ) with origin at point Pc.  

In order to determine the new normal direction at the cracked element, a second order 

approximation function is employed, viz. 2 2

0 1 2 3 4 5z a a x a y a x a xy a y      , where the 

coefficients ai represent the solution to the following least square problem [33] 

  
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min ( , )
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i i i
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z z x y
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     (4-25) 

Given the values of the approximation coefficients, the new crack surface can be defined. The 

normal direction is then obtained by evaluating the gradient of function z at point Pc, i.e. 

( )cz p*
n . Note that the direction n* is associated with the local coordinate system, therefore a 
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standard transformation is required to define the components with respect to the selected global 

frame of reference. 

 

4.6 Numerical simulations 

 

In this section, a number of numerical examples are provided to demonstrate the predictive abilities 

of the outlined approach. The first example deals with crack propagation in a plain concrete beam, 

whereas the remaining ones involve reinforced concrete structures with different intensities of 

reinforcement. The results of numerical simulations are compared with the experimental data 

reported in the literature. 

 

4.6.1 Crack propagation in a notched plain concrete beam 

 

This example involves simulation of a mixed mode of crack propagation in a notched beam and 

the experimental results come from the work of John and Shah [34]. The geometry of the problem 

is presented in Fig 4-5. The concrete beam has the span of 203.2 mm, the height of 76.2 mm and 

the depth of 25.4 mm. The structure is subjected to a vertical load applied in the middle of the span. 

The experimental tests have been carried out for a number of different loading rates; the results 

used here correspond to a slow rate that is representative of the static conditions. 

 

Fig 4-5- Geometry of the beam and the position of notch 
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The beam has a 19 mm notch, which is located at an offset of (L/2) from the middle of the span. 

The numerical simulations were carried out using the following set of concrete properties taken 

from the original reference, i.e. 

31.37 , 0.2, 2.5 , 60 /c c t f
mE GPa f MPa G N      

For this specific geometry, the crack propagation pattern is strongly affected by the offset 

parameter , Fig 4-5. For 0.73   the crack initiates at the notch, while for larger offsets, the onset 

of fracture occurs in the middle of the span [35]. Here, two sets of simulations have been performed 

for =0.78 and =0.72 and the resulting crack trajectories are shown in Fig 4-6. 

Fig 4-6- Deformed mesh with cracked elements for (a)  =0.78 and (b)  =0.72 

Fig 4-6(a) gives the fracture pattern for =0.78. Here, at the early stages of loading the cracks form 

at the notch as well as in the middle of beam. However, as the load increases, the propagation from 

the notch stops and the dominant crack runs through the middle of the span. For reduced values of 

the offset parameter , Fig 4-6(b), the crack forms at the notch and propagates towards the top of 

the beam in a direction inclined from the vertical. This is consistent with the experimental results, 

as evidenced in Fig 4-7.  

  

Fig 4-7- Inclined crack propagation for =0.72 (a) numerical simulation, (b) experimental result [34] 

  (a) (b) 

(a) (b) 

=26o =30o 
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Fig 4-8 shows the 2D and 3D representation of the crack pattern for both cases considered, i.e. 

=0.78 and =0.72. It should be emphasized that the results presented here are virtually 

independent of discretization, which stems from incorporation of the characteristic length , 

eq.(4-7).  

 

  

=0.78 =0.72 

  

=0.78 =0.72 

Fig 4-8- Crack trajectories for two different offset values in 2D and 3D 

In order to demonstrate the ability of the proposed framework to model the fracture propagation 

in true 3D conditions, an additional example is provided. The example involves again a three-point 

bending; however, in this case the notch is inclined with respect to the loading direction. The beam 

has the span of 240mm, height of 60mm and 20mm depth, while the notch is at the center of the 

span and penetrates the beam depths at 45o (Fig. 9) . The actual geometry is taken from the work 

of Dhont et al. [36]; a similar problem, however, has also been addressed in other references (e.g. 

[37, 38]) using different loading conditions as well as different solution techniques. The latter 

included a modified virtual crack closure integral method [36], adaptive mesh refinement [37] as 

well as XFEM [38]. Here, the beam is discretized using approx. 32,000 tetrahedral elements with 

63,000 nodes (Fig. 9b). 

(a) (b) 

(c) (d) 

(a) 
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Fig 4-9-(a) Geometry of the notched beam (b) 3D Finite element discretization 

 

The selected material properties are similar to those used in ref.[37], viz. E=2300 MPa, =0.3, 

ft=2.5MPa, Gf=0.10 N/mm and =0 mm-1. The load is displacement-controlled and the crack 

propagation is traced using the smoothening algorithm described in Section 4. As the load 

increases, the crack propagation is associated with a progressive twist of the crack surface in the 

direction that is aligned with that of the prescribed displacements. The propagation pattern as well 

as the deformed configuration, corresponding to different stages of loading, are shown in Fig.10.  

The results are consistent with those reported in the references cited earlier 

 

. 

(b) 
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Fig 4-10- Crack path and deformed configuration of the beam at different loading stages 

 

4.6.2 Three-point bending of a high-strength reinforced concrete beam 

 

This example is focused on examining the effect of reinforcement in high strength concrete. The 

experimental data comes from work of Bosco et.al [39] who investigated the variation of ultimate 

strength of reinforced concrete beams as a function of volume fractions of steel rebars. In 

particular, a number of three-point bending tests were conducted on concrete with compressive 
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strength of 90 MPa for 5 different sets of longitudinal reinforcement located in the tensile zone of 

the beam. The details on the steel reinforcement are provided in Table 4-1. All tested beams had a 

span of 600mm with 100mm height and 150mm depth and the vertical load was applied in the 

middle of the span. The analysis was carried out using the following material properties for 

concrete 

 134.3 , 0.2, 90 , 60 , 14/c c c f
mE GPa f MPa G N mm         

The tensile strength for concrete was assessed by employing the empirical formula given in 

ref.[40], i.e. 0.54t cf f , which gives: ft =5.12 MPa . For steel rebars, the yield stress was 

assumed as fy=450MPa while the modulus of elasticity was taken as Es=200 GPa. As mentioned 

earlier, after the onset of localization the reinforcing bars are idealized as beams of a characteristic 

length l, rigidly embedded in the adjacent intact material. Thus, the length l affects the stiffness of 

the reinforcing network within the damaged region, cf. eqs.(4-17). In this work, the thickness of 

the fracture zone itself has been directly identified with the crack opening nw . This gives, in 

general, a conservative estimate of the stiffness of reinforcement. Note that the overall stiffness of 

the damaged zone is also affected by the fracture energy Gf , eq.(4-15), which controls the rate of 

softening of the damaged concrete.  

In view of the symmetry in geometry and the loading conditions, only the half of the beam was 

analyzed, as shown schematically in Fig 4-11. For the 3D simulations, the structure was discretized 

using again the tetrahedral elements. The beam was divided into parts in which different properties 

were assigned, i.e. those of pure concrete and the homogenized properties of composite in the 

vicinity of the embedded reinforcement. The latter part is shown in red colour in Fig 4-12. Note 

that the volume fractions of reinforcement, as reported in Table 4-1, were assessed with respect to 

the selected volume of the composite part, which was taken as 7.75mm thick and 50mm wide. The 

problem was solved as displacement-controlled by incrementally increasing the vertical 

displacement in the middle of the span. 



Ph.D. Thesis- S. Moallemi;   McMaster University – Civil Engineering 

94 

 

 

Fig 4-11- Geometry of the beam and the boundary conditions  

 

Table 4-1- Properties of reinforced concrete beam for different cases 

 Rebars (mm) Area (mm2)  

Case1  0.0 0.0 

Case2 1 12.5 0.03 

Case3 2 39.2 0.11 

Case4 2 100.5 0.26 

Case5 2 157.0 0.41 

 

 

Fig 4-12- 3D discretization with tetrahedral elements 
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Case 1 Case 2 Case 3 

  

                                              Case 4                        Case 5 

Fig 4-13- The load-displacement curves for different volume fractions of reinforcement 

 

Fig 4-13 shows the load-displacement curves for different volume fractions of reinforcement. The 

results are compared with the experimental data reported in ref.[39]. Case 1 corresponds to plain 

concrete and it’s associated with an unstable response after reaching the peak. A qualitatively 

similar characteristic is obtained for a low intensity of reinforcement (Case 2).  In Case 3, the 

yielding of reinforcement in the fractured zone takes place when the load approaches its ultimate 

value. In the last two cases, after formation of a macrocrack in concrete, the reinforcement is 

initially in the elastic range which results in an increase of strength and ductility of the beam.  
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4.6.3 Crack propagation in a heavily reinforced concrete beam 

 

The last set of simulations reported here pertains to the assessment of crack propagation in a four-

point bending of a heavily reinforced deep concrete beam. The experimental data is taken from the 

work of Leonhardt and Walther [41].  The geometry of the problem and the boundary conditions 

are provided in Fig 4-14. Three different cases were considered corresponding to different lengths 

and shear spans, a, as defined in Table 4-2. For all these cases, the height of the beams was 320mm 

and the reinforcement consisted of two longitudinal steel bars#26 that were located in the tensile 

region at the effective depth of 270 mm.  

Table 4-2- details of beams dimensions 

 Beam length  Shear span (a) 

Case 1 900 mm 270 mm 

Case 2 1160 mm 400 mm 

Case 3 1440 mm 540 mm 

 

In the numerical simulations, the thickness of the composite zone was assumed to be 20 mm, and 

the corresponding volume fraction of reinforcement in this zone was calculated as 1 0.28  . 

Again, given the symmetry in boundary conditions, only a half of the beam was analyzed and the 

discretization employed tetrahedral elements. For all cases considered, the following material 

properties were employed after ref. [41]. 

 

120 , 0.2, 2.2 , 200 , 430 , 14c t s yE GPa f MPa E GPa f MPa mm          
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Fig 4-14- Geometry of the deep beam and the position of reinforcement 

 

Based on elementary bending theory, the mid-span of beam is shear free whereas the bending 

moment in this region is maximum. In contrast, the sides of the beam are subjected to maximum 

shear while the bending moment is increasing linearly up to its maximum value at the end of the 

shear span. As the load increases, flexural cracks initiate in the middle of beam; however, their 

propagation is constrained due to the presence of reinforcement. As the shear stress increases 

within the shear span, the diagonal cracks start to appear. The evolution of crack pattern within the 

beam, as a function of increasing load, is depicted in Fig 4-15. The results are consistent with the 

experimental data of ref. [41]. 

   

   

   

Fig 4-15- Evolution of crack pattern (Case#3) 
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It is noted that in the experimental tests the shear cracks start to appear close to the ultimate load 

and propagate very fast, triggering a debonding of the reinforcement along the interface. As 

suggested by Oliver et.al [16] this effect can be accounted for, in a simplified way, by assuming 

that the strength of rebars degrades after yielding (strain-softening). A similar approach was 

implemented here in order to trace the unstable post-peak response in the load-deflection 

characteristics. Such a characteristic is shown in Fig 4-16a for the geometry associated with 

case#3. The results correspond to 1.02  , eq.(4-21), and are, in general, fairly consistent with 

the experimental evidence, i.e. the ultimate load is approximately 230 kN and it is attained at the 

midspan deflection of 4 mm (Fig 16.a). It needs to be pointed out though that the experiments were 

conducted under load-controlled conditions so that the post-peak response could not have been 

traced.  

  

 

Fig 4-16- (a) Load-displacement curve for case# 3; (b) the corresponding 3D crack pattern (Case 3) 

At this point, it may be of interest to examine the influence of both the value of parameter   as 

well as the size of composite zone on the numerical solution. For this purpose, a set of parametric 

studies have been conducted. The analysis employed the values of   within the range 1.0-1.02, 

and different thickness of the composite zone cd . The latter was selected as being equal to 20mm, 

30mm, 40mm and 50mm resulting in the corresponding values of the volume fraction of 

reinforcement of 0.28, 0.19, 0.14 and 0.11, respectively. The numerical results of these parametric 

studies are presented in Fig.17. It is evident that 1.0  gives a perfectly plastic response at the 

macroscale upon the yielding of reinforcement. At the same time, 1  (in this case 1.01 or 1.02) 
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triggers an unstable (softening) response that can be attributed to debonding in the area adjacent 

to the crack. It is noted that the value of   has no effect here on the ultimate strength. The results 

in Fig.17b, which depict the influence of the thickness of the homogenization region, clearly show 

that the solution is virtually invariant with respect to the latter.  In this case, neither the stiffness 

nor the ultimate load are affected by the value of cd .  

 

  

Fig 4-17- Results of parametric studies; influence of (a) the parameter  , eq.(4-21) and  

(b) the thickness of the composite zone cd   

 

Fig 4-18 shows the predicted crack patterns in relation to the experimental results, for all cases 

considered. It is evident that for low aspect ratios, a/d, the shear cracks are dominant. However, as 

the shear span increases more flexural cracks form. In either case, the propagation of shear cracks 

controls the conditions at failure in the beam. It is worth mentioning that for all cases the shear 

cracks propagate from the support towards the point at which the load is applied. 
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Fig 4-18- Comparison of cracking patter; numerical simulations (right) and experimental results(left) 

 

4.7 Conclusions 

 

In this paper, the volume averaging scheme was employed to simulate the response of reinforced 

concrete structures. The mathematical framework was presented for two different cases, i.e. 

homogeneous deformation prior to onset of discontinuity and the localized deformation mode. In 

the former case, some explicit static/kinematic constraints were imposed on the constituents’ 

behavior that enabled the specification of the tangential stiffness operator. The latter was defined 

as a function of volume fractions and properties of both constituents. 

The major part of this work was focused on the description of propagation of macrocracks in the 

reinforced concrete domain. A simplified volume averaging methodology was again employed to 

model the presence of a strong discontinuity. Within this approach, the formation of crack 

subdivides the considered referential volume into intact material and the fractured zone. The 

interfacial properties have been defined by relating the rate of traction to velocity discontinuity 

and an implicit integration scheme was outlined to enforce the continuity of traction along the 

interface. The strategy for tracing the crack propagation in 3D was also outlined. 

Case 2 

Case 3 
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It was noted earlier that this approach bears some similarities to the SDA framework employed by 

Oliver et al. [16]. However, there are several fundamental differences. The primary conceptual 

difference lies in addressing the issue of the response after the onset of discontinuity. In ref.[16], 

the strain-softening effects are attributed to the mechanical behaviour of the matrix and the 

softening modulus is treated as a material property enhanced by a regularization parameter. The 

latter, however, has no explicit physical definition. The crack path is not traced in a discrete manner 

but, instead, it’s identified from displacement contour lines. In the current approach, the softening 

is attributed to discontinuous response within the damaged zone which, as mentioned earlier, is 

defined via the velocity jump vs. the rate of traction relation. At the macroscale, the framework 

incorporates a ‘characteristic length’  , eq.(7), which has a unique definition (i.e. ratio of the 

surface area of discontinuity to the referential volume) and the crack path as well as the 

discontinuity pattern are traced in a discrete way, similar to that employed in XFEM.  

Some differences are also evident in the description of homogeneous deformation, prior to 

localization. In ref. [16], all constituents are assumed to be subjected to the same strain rate 

throughout all stages of the deformation process. The behaviour of concrete matrix is described 

using an isotropic damage model, while the reinforcement and the interface are modeled by 

invoking uniaxial tensile and shear characteristics. In the present approach, both kinematic and 

static constraints are imposed on constituents during the homogeneous deformation stage, and the 

stress/strain rates are defined via the volume averaging.  

The main contribution in this work was the implementation of the proposed methodology in a 

series of boundary value problems that involved modeling of reinforced concrete structures in the 

presence of evolving discontinuities. The predictive abilities of the framework were examined for 

different boundary conditions and intensities of reinforcement and the results were compared with 

the experimental evidence. It was shown that the outlined methodology is quite adequate in 

capturing the propagation of macrocracks in reinforced concrete domains. It should also be pointed 

out that the approach pursued here is much simpler in implementation as compared to XFEM. This 

issue was explicitly addressed in ref.[20-23], quoted earlier in the text. It was demonstrated there 

that the present framework gives results that are nearly identical to those obtained using Extended 

FEM, while the computational effort is significantly reduced. The latter stems from the fact that in 
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XFEM the discontinuity is introduced explicitly into the discretized system by employing 

enrichments in shape functions and additional degrees of freedom. These enhancements 

significantly impair the numerical efficiency as compared to the present methodology which uses 

standard FEM interpolations. 

4.8 Appendix 

In this appendix, a set of explicit kinematic and static constraints is provided, which is required to 

establish the components of the operators B defined in eq.(4-2). It is noted that an analytical 

expression for these matrices was derived in ref.[24] for the case of two orthogonal sets of steel 

bars embedded in concrete. Here, these constraints are modified in order to extend this framework 

to include a set of three families of reinforcement. Referring the problem to the local coordinate 

system along the respective families of rebars, Fig 4-19, and assuming a perfect bonding between 

the constituents, the following kinematic constrains imposed on axial strain need to be satisfied 

 ( ) (1) ( ) (2) ( ) (3)

11 11 22 22 33 33; ;c c c          (4-26) 

The static constraints stem from the requirements of equilibrium and take the form 

 
( ) (1) (2) (3)

( ) (2) (3) ( ) (1) (3) ( ) (1) (2)

11 11 11 22 22 22 33 33 33

; , 1,2,3

; ;

c

ij ij ij ij

c c c

for i j i j   

        

    

     
  (4-27) 

 

Fig 4-19- Reinforcement in 3D in the local coordinate system 

Following now the methodology outlined in ref.[24], i.e. incorporating constraints (4-26) and (4-

27) in the averaging scheme (4-1), the strain rates in constituents can be obtained, viz. eq.(4-2), 
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thereby identifying the individual components of operators Bi. The analytical form of these 

expressions is too complex to be presented here. In practical terms, given the properties of each 

constituent, the components of Bi  can be assessed numerically and stored at the beginning of 

analysis to save the computational cost. 
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5 Numerical analysis of damage propagation in large scale 

structures affected by ASR 

 

This chapter provides an illustration of application of the methodology described earlier, viz. the 

chemo-plasticity framework coupled with embedded discontinuity approach, to the numerical 

analysis of a large scale structure. The scope of the work involved a series of enhancements in the 

mathematical framework itself and its implementation in the FE code (COSMOS and Abaqus) to 

simulate the behavior of a hydraulic power plant structure over its life span. In view of a high 

computational cost of the analysis, the crack propagation was monitored in a ‘smeared’ sense (i.e. 

smoothing algorithm was not employed); instead, the parallel computing algorithm was 

implemented to increase the speed of simulations. This work has been performed in cooperation 

with Hydro-Quebec and was focused on examining the damage distribution in the water intake 

structure, located along Saint-Maurice river in Quebec, over the period of 100 years of continuing 

ASR. The contribution of Dr. Gocevski and Mr. Yildiz from Hydro-Quebec, in terms of 

discretization of the structure and specification of material properties, is gratefully acknowledged. 

In what follows a brief review of the simulations and the key numerical results are provided. 

 

5.1 Introduction 

 

Over the last few decades, a significant amount of research has been devoted to physicochemical 

aspects of ASR in concrete and its influence on the behavior of existing structures [1,2]. In parallel 

with these investigations, a number of experimental studies have been carried out examining the 

kinetics of the reaction and the associated degradation of material properties. The research on the 

development of constitutive models describing the chemo-mechanical interaction started to appear 

in the mid 1990’s. The first continuum approach, involving the framework of chemo-

plasticity/elasticity, was presented in ref. [3]. Later, several other concepts were proposed [4-9] 
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including a micromechanical descriptions of ASR-induced deformation [10-11]. It needs to be 

pointed out that the more recent developments deal with plain concrete only and are, in general, 

inadequate in terms of modelling of localized deformation, which is intrinsic in the type of 

problems considered here. Furthermore, there have only been a few isolated attempts to perform 

large-scale simulations that involved the actual engineering structures. Most of these attempts 

[8,12] dealt primarily with the assessment of the influence of concrete expansion on the structural 

integrity, without accounting for the reaction-dependent evolution of material properties and a 

rather simplistic description of the onset and propagation of localized damage, particularly in 

compression regime.  On the other hand, the chemo-plasticity framework outlined in ref. [3] has 

been applied, as early as 1995, to analysis of various Hydro-Quebec structures including the 

primary and auxiliary structures of Beauharnois powerplant [13, 14] and the results have been 

verified against the in-situ measurements.  

The mathematical formulation employed here follows the approach outlined in chapters 2 and 3. 

The reinforcement is considered in a discrete manner using embedded 1D elements. In what 

follows, the description of the geometry of the problem and the main results pertaining to evolution 

of damage due to continuing ASR are provided. 

 

5.2 Numerical Simulations 

The primary objectives of the numerical studies reported below have been (a) to evaluate the 

present state of damage within the structural components that are affected by ASR and (b) to 

examine the possibility of prolonging the life span of the structure during which an uninterrupted 

production can be maintained. For simulating the intake structure, the standard Abaqus software 

was used to generate the FE model, while the chemo-plasticity framework was implemented via 

Abaqus VUMAT subroutine. The geometry of the analyzed structure is show in Fig 5-1. It is noted 

that the entire hydraulic structure consists of two main sections, i.e. the spillway and the power 

house with six turbines for generating electricity. The length of the structure is approximately 

250m with the height of 50m.  
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Fig 5-1- Geometry of the analyzed hydroelectric power plant structure in different views 

The structure itself is founded on a hard rock that is considered as an elastic medium. The 

simulations were conducted in two main stages, viz. gravity load followed by continuing ASR, 

and included the effect of confinement and humidity on the rate of reaction. For discretizing the 

domain, about 400,000 tetrahedral elements with 740,000 nodes were used and the key material 

properties are provided in Table 5-1.  

In order to increase the numerical efficiency of the simulations, some simplification have been 

introduced. In particular, the onset of localized deformation in both compression and tension 

regime was assumed to take place when the value of the strength parameter   (see eq. (3-4)) 

approached unity (i.e.  =0.99). Moreover, the shear band was assumed to form at the geometric 

center of the element and its discrete propagation (via. the smoothing algorithm) has not been 
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traced. Owing to those simplification, parallel processing was employed which significantly 

increased the speed of analysis.  

Table 5-1- Material properties of concrete 

Concrete modulus of elasticity 17.0 GPa 

Concrete Poison’s ratio 0.18 

Concrete compressive strength 30 MPa 

Concrete tensile strength 2 MPa 

Concrete density 2400 kg/m3 

Fracture energy 100 N/m 

Chemical expansion rate 60 µm/year 

 

The results presented below focus on the water intake structure within the complex shown in 

Fig.5.1. The simulations cover the period of 100 years. The reaction is assumed to have started 5 

years after the construction of the intake structure. The three-dimensional FE discretization is 

shown in Fig. 5.2. The same figure shows the position of section A, which is selected here to 

present the details on the time-history of deformation process. This is one of the critical sections 

where the turbines are located. 

 

Fig 5-2- Three-dimensional discretization and the position of section A 
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As mentioned earlier, the simulations were conducted in two main stages, viz. gravity load and 

continuing ASR, and included the effect of confinement and humidity on the rate of reaction. 

During the simulations the accumulated plastic distortion was stored within each element to assess 

the onset of damage. The direction of crack was calculated based on the local stress state, as 

discussed in Chapter 3. After formation of discontinuity, the cohesive law (viz. eq. (3-41) and eq. 

(3-49)) was used to describe the behavior within the fractured zone.  

The main results of the analysis, including the displacement field and the damage distribution 

during 100 years of the continuing chemical reaction, are provided in figures below. Note that the 

simulations employing parallel processing took about 6-hours on a computer with 16 cores. 

Fig 5-3 shows the distribution of displacement magnitudes, within the section A, at the end of 

analysis. To verify the accuracy of the simulations, the obtained results are compared in Fig 5-4 

with the in-situ measurements. The latter were recorder at the crest of the structure in both in 

vertical and horizontal directions. The agreement between the instruments readings and the 

calculated values is fairly consistent.  

 

 

 

Fig 5-3- Displacement field in section A after 100 years (units in meters) 
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Fig 5-4- Time history of displacement at the crest of the structure (comparison with in-situ 

measurements) 

 

The damage pattern, at the end of the analysis, is shown in Fig. 5.5. The figure presents the 

distribution of damage (in two different views) along the surface of the structure. Here, the value 

of 1   (i.e., SDV2=1) is indicative of the onset of formation of macrocracks, while the values 

exceeding one (shades of red color) signify the highest intensity of damage within the domain. In 

general, the extent and location of damage visible on the surface of the intake structure, is 

consistent with the in-situ observation.  

 

  

Fig 5-5- Displacement and damage distribution at the end of analysis in different views 
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Finally, Fig. 5.6 shows the growth of damage within the section A. The results correspond to the 

time interval from 10 to 100 years. It is evident that the damage is largely confined to the region 

near the surface, so that the overall stability of the structure is not directly affected. Similar 

conclusions can, in general, be drawn by analyzing the results for other sections along the length 

of structure. These results are qualitatively similar and are not shown here for brevity. 

 

 

  

After 10 years After 25 years 

  

After 50 years After 100 years 

Fig 5-6-Damage distribution in section A at different stages of ASR 

 

The provided results serve primarily as an illustration and demonstrate the ability of the employed 

methodology to model the ASR-induced damage propagation in large scale hydraulic structures. 

The main subroutines have been incorporated in available commercial software (i.e. Abaqus and 

COSMOS), so that they can be used for assessing the damage in other reinforced concrete 

structures, such as bridges and piers, due to the mechanical and chemical loading. The main 
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advantages of the volume averaging scheme over other numerical techniques (XFEM and SDA) 

for modeling damage growth in practical engineering problems, include the enhanced speed of 

simulations and the simplicity of implementation, both without compromising the accuracy of the 

solution. 
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6 Conclusions 

In this section the concluding remarks as well as suggestions for future work are presented. The 

main contributions of this study have been identified in the introduction to chapters 2-5. Based on 

a broad range of numerical examples, and the comparison of their results with the available 

experimental data, it was demonstrated that the enhanced embedded discontinuity scheme is a 

quite efficient tool in simulating the mechanical response in the presence of strong discontinuities 

within the domain. For tracing the crack path in a discrete way, the smoothening algorithm was 

implemented. This algorithm helps to maintain the stability and mesh-independency of volume 

averaging scheme and can be applied to a wide range of problems. In contrast to other numerical 

methodologies for modeling propagation of damage, i.e.  the strong discontinuity approach and 

Extended Finite Element method, the proposed framework doesn’t require any special 

enhancements such as additional degrees of freedom, modification of the shape functions and/or 

sub-triangulation for numerical integration. This not only simplifies the implementation in the 

context of finite element, but also increases the speed of simulations, which is of significant 

importance in analysis of large scale structures. 

In the second chapter, the chemo-elastic formulation coupled with the volume averaging 

methodology has been presented. The effects of alkali-silica-reaction were examined by 

considering volumetric expansion as well as a progressive degradation of strength and deformation 

characteristics as a function of time. A return mapping algorithm has been developed which 

improved the stability of the solution and enabled modeling the time-dependent process with larger 

time steps as compared to explicit framework. An enhanced form of traction-separation law (based 

on total equivalent displacement) was employed for the fractured zone. The mixed mode crack 

propagation in a concrete panel was investigated, and the crack trajectory together with the 

corresponding load-displacement response were compared with the experimental results. In 

addition, the predictive abilities of the chemo-mechanical framework have been examined by 

simulating a reinforced concrete beam subjected to continuing ASR.  
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In Chapter 3, a chemo-plasticity framework was discussed as an extension of the formulation used 

in the Chapter 2. In this framework, the total stress rate was resolved into two parts, one related to 

the imposed instantaneous strain increment and the other one associated with the time-dependent 

chemical interaction process. An implicit integration scheme was again developed and employed 

in the numerical simulations. The behavior of intact material was modelled using a non-associated 

plasticity framework with deviatoric hardening and a cohesive law for the fractured zone was 

developed for both tensile and compressive regimes. In the tensile zone, the crack was assumed to 

form in the direction normal to the maximum principal stress, while in the compression regime the 

bifurcation analysis was employed to determine the onset of localized damage. 

In terms of implementation of this framework, the main focus was on investigation of the size 

effect phenomenon. In the first example, a progressive damage in a three-point bending test was 

examined for a number of different sizes in relation to both a notched and un-notched beam. The 

results clearly showed the importance of incorporating the notion of a properly defined 

characteristic length in order to quantify the size effect. The second example involved the 

assessment of the size effect in a specimen subjected to axial compression. It was demonstrated 

that the ultimate load was not sensitive to the characteristic size of the structure. At the same time, 

however, the brittleness in the post-peak response was significantly affected by the structural 

dimensions. 

The most significant contribution in this chapter was the investigation of size effect due to 

chemical reaction (ASR). To examine this, a concrete beam subjected to chemical reaction under 

two different loading conditions was considered. In the first case, a variable high intensity load 

(close to ultimate load for each specific geometry) was imposed and then maintained constant, 

while a progressive chemical interaction continued. In this case, the time to failure was strongly 

affected by the size of the beam, i.e. the failure took place first in the largest structure. In the second 

loading scenario, the reaction was activated at a constant load intensity (corresponding to a fixed 

value of normalized displacement), which was below the value of ultimate load for all sizes 

considered. In this case, the smaller specimens remained stable over the entire period of the 

continuing ASR. At the same time, for larger samples, a spontaneous loss of stability occurred. 
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Overall, the presented results clearly show that the size effect can be adequately simulated by 

employing the advocated approach. This is in contrast to the commonly used approximate 

analytical expressions which incorporate a number of empirical parameters that cannot be easily 

calibrated for new structures. 

In Chapter 4, the embedded discontinuity technique was employed in the context of a mesoscale 

approach for modeling of reinforced concrete structures. In this case, the representative elementary 

volume incorporated concrete with three orthogonal families of reinforcement. Independent sets 

of static and kinematic constrains were imposed in order to relate the local stress/strain rates in 

each constituent to the corresponding macroscopic rate. Prior to onset of crack formation, a perfect 

bounding was assumed between reinforcement and concrete and the mixture theory was employed 

to define the overall response of the composite. Since the focus in this work was on the crack 

growth in tensile regime, the concrete was considered as elastic prior to onset of fracture, while 

the reinforcement was idealized as an elastic perfectly plastic Von-Misses material. After the 

formation of discontinuity, the considered referential volume was subdivided into a fractured zone 

and the intact material. A continuity of traction along the discontinuity was imposed using an 

implicit scheme and the Timoshenko beam theory was employed to assess the stiffness of the 

reinforcement within the fractured area.  

The above framework was implemented to solve a number of boundary value problems. In the 

first example, the crack smoothening algorithm was employed to address a 3D problem involving 

a non-planar crack propagation in a notched concrete beam. The evolution of twisting of the crack 

surface was compared with other numerical methodologies, i.e. XFEM and adaptive re-meshing, 

and gave very similar results. In the follow up examples, the fracture propagation in reinforced 

concrete structures was investigated. The first analysis examined the crack growth in reinforced 

concrete beam for different volume fractions of reinforcement. For an under-reinforced structure, 

the yielding of steel commenced prior to failure of concrete, however by increasing the volume 

fraction of rebars, the failure process was initiated by the onset of macrocracking in concrete. For 

all cases, the load-displacement curves were compared with the relevant experimental data. The 

next set of simulations dealt with the response of reinforced beam under a four-point bending. The 
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failure mechanism involved formation of shear and flexural cracks and the results were compared 

with experiments for three different values of the shear span. It was clearly shown that the results 

are independent of the size of the selected composite zone as the latter affects directly the volume 

fraction of reinforcement. 

The final chapter of this thesis discussed the implementation of the proposed framework in the 

analysis of a large scale structure. In particular, the long-term behavior of a reinforced concrete 

dam subjected to ongoing ASR was examined. The simulations demonstrated the advantage of this 

methodology over the alternative approaches, i.e. XFEM and SDA. The latter require significantly 

more computational effort and have never, in fact, been applied to the analysis of an actual large 

engineering structure. 

 

6.1 Future Work 

 

The current research can be enhanced in several aspects. Concerning the alkali-silica reaction, in 

the next step, a more rigorous formulation can be used for describing the kinetics of the process. 

As the expansion due to ASR can be affected by the stress field, it is likely that this will trigger an 

anisotropic response that could be explicitly incorporated into the volumetric term associated with 

swelling. In addition, the considerations of humidity and temperature, and their interaction with 

structure through the boundary conditions, could be described in a more accurate form.  

Regarding the assessment of size effect resulting from ASR, it appears that the consideration of 

statistical aspects, which might be of significance, could also be examined. The latter are typically 

associated with the randomness of material properties, such as compressive/tensile strength, as 

well as that of maximum expansion and/or the rate of degradation.  

The formulation of the embedded discontinuity approach employed here, was limited to the case 

when the considered referential volume was intercepted by a single discontinuity. This approach 

can be enhanced by considering existence of multiple cracks/faults within the averaging domain. 

Such a framework would be relevant to, for example, analysis of jointed rock masses.  
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Another aspect that could be further addressed in relation to this research is an adequate modeling 

of the debonding process that occurs between concrete and the reinforcement. This would entail 

additional experimental tests examining this phenomenon under different loading scenarios. In 

terms of formulation of the problem, the simplest approach appears to be that associated with 

imposing an evolution law on the characteristic length of the rebars within the fractured zone as a 

function of continuing deformation.  

Finally, it is noted that the volume averaging technique can also be modified to capture weak 

discontinuities, which is relevant in the context of modeling of porous media that undergo a 

thermo-hydro-mechanical interaction. Such a modification would be relevant to the first two terms, 

i.e thermo-hydraulic interaction, while the crack growth in solid phase would still be described by 

the framework proposed in this research. 


