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Lay Abstract

The increasing number of smart devices and Internet-based applications are driving

the demand for higher data-rate wireless communication systems. One way to address

that demand is to use multiple antennas at the base station to enable it to simul-

taneously serve multiple users instead of one. When such a base station is provided

with the channel to each user, it can focus the energy of each data symbol towards

the intended user while reducing the interference imposed on the other users. This

is called beamforming. However, in practice the channel to each user is estimated

and the beamformer design ought to include techniques that mitigate the impact

of the resulting uncertainty. The goal of this thesis is to develop a suite of robust

beamformer design techniques that do so, while also being of low-complexity, able

to handle different power constraints, and being extendable to multi-cell systems in

which multiple base stations may cooperate or coordinate in transmitting data to the

users.
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Abstract

This thesis describes the design of low-complexity robust linear beamforming algo-

rithms for multi-user downlink multiple-input single-output (MISO) communication

systems. The goal of the algorithms is to provide the receivers with specified signal-

to-interference-and-noise ratios (SINRs) with high probability under certain power

constraints. Unfortunately, the SINR outage constraint is intractable, and precise

formulations of these problems are fundamentally hard to solve. The contribution

of this thesis is a suite of algorithms that provide high-quality approximate solu-

tions to a broad range of robust downlink beamforming problems, and do so at low

computational cost. The unifying feature of these algorithms is that they are based,

either explicitly or implicitly, on a transformation of each SINR outage constraint

into a non-negativity constraint on a random variable, and the approximation of that

non-negativity constraint by “offsets” on the mean of the distribution.

The first algorithm is developed for frequency division duplexing systems. Using

a new extension of the S-Lemma, the channel uncertainty model is incorporated into

the design problem using a zero-outage region approach. From that formulation, a

new algorithm that is able to balance between the performance inside and outside the

zero-outage region is developed. The resulting “offset maximization” algorithm has

a low-complexity iterative closed-form solution that provides significant performance
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improvement, and can be extended to time division duplexing systems.

Analysis of the offset structure reveals a refined notion of the offset that incor-

porates information about each user’s channel, and results in a convex semidefinite

relaxation problem. When the channel uncertainty size is small, further approxima-

tions lead to an approximate iterative closed-form solution. When the beamforming

directions are defined in advance, that algorithm provides near-optimal power loading.

Using subgradient methods, variants of the offset maximization algorithms that

can accommodate per-antenna power constraints (PAPCs) are developed. Further-

more, the resulting offset-based power loading method can be combined with the

maximum ratio transmission (MRT) or zero-forcing (ZF) directions, to provide ro-

bust algorithms that satisfy PAPCs with complexities low enough for massive MIMO

applications.

Finally, the principles of the offset maximization algorithm are applied to multi-

cell systems with the centralized cooperation, and with the centralized and decen-

tralized architectures. The resulting algorithms provide significant performance im-

provement over those existing in the literature, and do so at substantially lower com-

putational cost.
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Abbreviations

BS base station

CSI channel state information

FDD frequency division duplexing

iid independent and identically distributed

KKT Karush-Kuhn-Tucker

LMI linear matrix inequality

MIMO multiple-input multiple-output

MISO multiple-input single-output

MRT maximum ratio transmission

MSE mean square error

OFDM orthogonal frequency division multiplexing

PAPC per-antenna power constraint

PAPR peak to average power ratio

QoS quality-of-service

RCI regularized channel inversion

RZF regularized zero-forcing

SB sphere bounding

SDR semidefinite relaxation
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SINR signal-to-interference-and-noise ratio

SOC second order cone

TDD time division duplexing

ZF zero-forcing
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Chapter 1

Introduction

According to the annual visual network index reports that are released by Cisco,

there is now quantitative evidence that the predicted rapid expansion in demand

for wireless data has come to fruition and will continue (Cisco, 2016). This rapid

expansion is mainly driven by the smart devices and the increasing number of ap-

plications. Accordingly, the recent report by Cisco and the forecast therein makes it

plain that an incremental approach will not be enough to meet the network demands

by 2020 (Cisco, 2016). One of the key technologies that next generation systems

can use to meet the higher rate demands is to advance the use of multiple anten-

nas. When the transmitter has many antennas instead of one, the transmitter can

design complex-valued weights that can be applied to the symbols for multiple users

and send those weighted symbols from the antennas in such a way that the signal

adds constructively at the intended receiver, and destructively at other users. This

is called beamforming. Beamforming can significantly increase the spectral efficiency

at the receiver side without the need to change the users’ equipment; a property that

has made beamforming very appealing (e.g., Goldsmith et al., 2003; Gesbert et al.,
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2007; Gershman et al., 2010). Although linear beamforming techniques do not enable

a downlink system to operate at rates approaching the boundary of the capacity re-

gion, the complexity of the non-linear “dirty paper coding” technique (Costa, 1983)

that is capacity achieving (Weingarten et al., 2006) is typically very high. Accord-

ingly, the focus of this thesis will be on linear beamforming techniques. In this thesis,

the focus will be on quality-of-service (QoS) type of problems. The bit error rate,

and the capacity are among the most common QoS metrics, and both are functions

of the signal-to-interference-and-noise ratio (SINR) (Wiesel et al., 2006). In the case

of single-antenna receivers that are coherent, and the channels are memoryless, the

linear QoS design problem can be reduced to optimizing the beamforming matrix

to minimize the power required to satisfy predefined SINR constraints at the re-

ceivers (Schubert and Boche, 2007; Bengtsson and Ottersten, 2001; Rashid-Farrokhi

et al., 1998a,b). As its name suggests, the SINR is the ratio of the power of the

desired component of the received signal to the powers of the interference and noise

components.

1.1 Perfect CSI case beamforming

When the base station (BS) has perfect knowledge of the channel state information

(CSI), many conventional techniques can be used to control the signal and interference

powers. The zero-forcing (ZF) method maximizes the received power of the desired

signal while forcing the interference to be zero (Spencer et al., 2004). The regularized

channel inversion (RCI) method allows for a little interference in order to achieve

higher signal power (Peel et al., 2005). When the target is only to maximize the

received signal power in noise-limited systems, maximum ratio transmission (MRT)

2
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can be used (Lo, 1999). Note that the ZF, RCI, and MRT precoding tackle the

signal and interference powers separately, whereas the goal of the QoS design is to

control the SINR itself. Fortunately, if the CSI at the BS is perfect, the problem of

minimizing the transmitted power under prespecified SINR constraints can be solved,

and an iterative closed-form solution can be derived (Bengtsson and Ottersten, 2001;

Bjornson et al., 2014).

While conventional methods that assume perfect CSI are generally of low com-

plexity, uncertainty in the CSI is inevitable. In frequency division duplexing (FDD)

systems, the BS estimates the required CSI by transmitting training symbols to its

users and then each user estimates the channel coefficients and sends a quantized

version of the estimated channel vector back to the BS. In time division duplexing

(TDD) systems, the BS designs the beamformers for the downlink phase based on

the channel estimates that were obtained in the previous uplink slot, exploiting the

channel reciprocity. In both settings, the BS has only estimates of the CSI and the

performance of conventional beamforming techniques can be quite sensitive to the

resulting uncertainty in the CSI, and consequently the BS’s estimate of the SINRs

at the receivers. Accordingly, the beamformer design ought to explicitly incorpo-

rate measures to mitigate the sensitivity to the estimation error (e.g., Kandukuri and

Boyd, 2002).

1.2 Robust beamforming

There are several ways in which robustness to channel uncertainty can be explicitly

incorporated into the beamforming design problem. The well-known “worst-case”

approach involves finding a region around the estimated channel of each user so that

3
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the true channel lies in that region. Then the optimization problem is designed to

provide a zero outage probability for any channel inside that region (e.g., Zheng et al.,

2008; Shenouda and Davidson, 2007; Chang et al., 2011; Song et al., 2012; Shenouda

and Davidson, 2008a; Huang et al., 2013; Vucic and Boche, 2009a; Ubaidulla and

Chockalingam, 2008; Shenouda and Davidson, 2009). It is not always possible to

find a region to contain the true channel (e.g., a Gaussian error is unbounded) which

complicates the design problem. Alternatively, instead of that worst-case approach,

the uncertainties can be modelled probabilistically and the requirement is then to

minimize the total transmission power subject to the SINR constraints holding with

a given probability. Accordingly, if a region can be defined in which the true channel

lies with probability that is higher than 1−δk in that region, and the beamformers are

designed to provide a zero-outage probability in that region, then the resulting outage

probability would be less than δk (e.g., Shenouda and Davidson, 2008b; Sohrabi and

Davidson, 2016; He and Wu, 2013; Wang et al., 2014). In this case, the intractable

SINR outage constraint is approximated by a zero-outage region constraint.

Both bounding methods use a “zero-outage” region approach, and that region

is typically ellipsoidal. Using that region model, the worst-case or probabilistic ap-

proaches can be converted into convex optimization problems that can be efficiently

solved. However, in most cases the optimization problem is complex and the com-

putational complexity is high. In addition, the zero-outage region is by definition a

conservative way to model uncertainty that provides no control to the performance

outside that region. Accordingly, the resulting optimization problems are often in-

feasible, especially when the uncertainties are large, due to the conservative nature

of the constraint.
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1.3 Robust power loading methods

The intricate nature of the SINR outage constraint has encouraged some authors try

to decouple the problem into simpler problems. One way to do so is by choosing

the beamforming directions in advance, and, then applying a robust power loading

technique (e.g., Pascual-Iserte et al., 2006; Vucic and Boche, 2009b,a; Sohrabi and

Davidson, 2016). Typically, the beamforming directions are chosen by applying a

conventional design technique to the estimated channels. Vucic and Boche (2009b)

suggested an iterative algorithm to minimize the mean square error (MSE) between

the transmitted and received signal. When the uncertainty is additive and Gaussian,

the optimal power loading in terms of the minimum power required by each user to

achieve a certain outage probability can be obtained (Sohrabi and Davidson, 2016).

However, the computational cost of that optimal algorithm is significant.

1.4 Per-antenna power constraints

In practical systems, each antenna at the transmitter has its own power amplifier

which means that per-antenna power constraints (PAPCs) ought be added to the

optimization problem. When the CSI is perfectly known at the BS, algorithms for

incorporating the PAPCs into the conventional beamforming designs that separately

control the signal and interference powers have been developed. Wiesel et al. (2008)

designed beamformers that maximize the received signal power and cause no inter-

ference in addition to satisfying the PAPCs. This can be viewed as PAPCed-ZF

beamforming. Since the ZF solution has a structure where the beamformer of each

user should lie in the null space of other users’ channels, Wiesel et al. (2008) were
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able to formulate the beamformer design problem as a second order cone (SOC) pro-

gram that can be efficiently solved. Feng and Jing (2016) assumed nominal MRT

beamforming and equal power loading, then scaled the beamforming vectors so that

the PAPCs are met. Then they showed that the performance gap to MRT without

PAPCs is negligible when the number of antennas is large. Note that the optimiza-

tion problem of minimizing the total transmitted power under PAPCs to achieve

certain SINR targets can be formulated as an optimization problem, and an iterative

closed-form solution can be derived using subgradient methods (Yu and Lan, 2007).

One might think that the PAPCs can be directly added to the zero-outage based

problems to provide robustness. While it is true that when the underlying optimiza-

tion problem is convex, adding the PAPCs, which are convex constraints, will keep

the problem convex, many of those optimization problems are based on semidefinite

relaxation, and when the PAPCs are added there is no guarantee that the resulting

solution will be close to being of rank one. Even if the resulting solution is rank-one,

the computational complexity will definitely increase.

1.5 Multi-cell case

The single-cell beamforming schemes described above manage the intra-cell interfer-

ence and assume that the interference from the other cells is managed independently,

perhaps through a frequency allocation scheme that avoids reuse in neighbouring

cells. However, there are opportunities to improve the performance of the network as

a whole by allowing denser frequency reuse and jointly managing both the intra-cell

and inter-cell interferences by jointly designing the beamformers that are to be used at

each BS. The topology of the multi-cell scheme may be cooperative, in which multiple
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BSs work together to transmit the same information to each user, or coordinated, in

which case each user is served by a single BS. When the BSs are coordinating, the

beamformer design can be either centralized or distributed. Qiu et al. (2010) assumed

a perfect CSI case, and suggested a bisection distributed algorithm for the maximum

SINR target that can be achieved under a certain total power constraint. Pennanen

et al. (2014) extended the algorithms that mitigate the uncertainty in the channel

using a zero-outage region approach to accommodate for inter-cell interference. The

centralized algorithm is then transformed into a distributed algorithm using dual de-

composition and alternating direction method of multipliers-based approach. While

this method provides robustness, the main draw back is the substantial computational

cost and the conservative nature of the zero-outage region idea.

1.6 Thesis outline

The goal of this thesis is to suggest a new approach for robust downlink beamforming

design, an approach that can provide algorithms with excellent performance and low

computational cost. The design of beamforming vectors has many facets, including

finding the beamforming directions to be used, and the power allocation for each

user. Other facets include the addition of specific power constraints as the total power

constraint or PAPCs, and the management of the inter-cell interference, as well as

intra-cell interference, in different network architectures. Those design aspects should

be addressed using algorithms that have low computational cost, so that they can be

applied in high-rate systems. This thesis addresses the above mentioned aspects

using a new offset-based approach. The proposed approach, in addition to addressing

those aspects, also provides interesting power control and user admission features.

7
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This thesis is prepared in “sandwich” format, containing four self-contained chapters.

Each chapter includes its own abstract, introduction, body, conclusion, and possibly

appendices. For convenience, the references for each chapter are collected in a single

bibliography at the end of the thesis.

Chapter 2 presents the problem of robust beamforming design in FDD systems

using a zero-outage region approach. The design formulation takes into account

the structure of the uncertainty that arises from downlink training and quantized

feedback. By using an extension of the S-Lemma and a semidefinite relaxation, it is

shown that the design problem can be formulated as a convex optimization problem.

That convex optimization problem can be solved using interior point methods such

as those available using the CVX tool in Matlab (Grant et al., 2008). An analysis of

the problem structure reveals that the performance outside the zero-outage region can

be enhanced on the expense of a little performance degradation inside that region. In

doing so, the resulting algorithm showed a better performance and has a structure that

enabled the development of an iterative closed-form solution. The resulting “offset

maximization” algorithm shares the same beamforming directions as the perfect CSI

case (Bengtsson and Ottersten, 2001), but with different power loading. The results

for TDD systems lead to similar conclusions.

Chapter 3 begins with the observation that despite being derived as the result of

an approximation of linear matrix inequality (LMI) constraints, the offset maximiza-

tion algorithm implicitly involves an approximation of the SINR outage constraint.

Further investigation of this new approximation leads to an improved approximation

of that outage constraint. Applying this new offset approximation, and a semidefinite

8
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relaxation, the beamforming design problem can be formulated as a convex optimiza-

tion problem that contains SOC constraints and semidefinite constraints. When the

uncertainty size is small, a further approximation allows for the development of an

iterative closed-form solution. The performance gap between those approximations

and the original formulation is shown to be small. The new offset approximation

also provides a power loading technique when the beamforming directions are defined

in advance. The resulting power loading algorithm performs quite well compared

to the optimal power loading algorithm for additive Gaussian uncertainties (Sohrabi

and Davidson, 2016). The proposed power loading provides an explicit relationship

between the robustness required for each user and the power consumed by that user,

which allows for simple, yet effective, power control techniques. The explicit relation-

ship allows the transmitted power to be reduced when the channel is good, and can

detect users with very weak or closely aligned channels. Such users typically consume

most of the power resources, and may still be in outage. When that happens, the

power can be allocated to other users, and the weak users can be rescheduled in other

time or frequency slots.

Chapter 4 presents the application of PAPCs in the offset maximization frame-

work. The PAPCed offset maximization algorithm makes use of insights from the sub-

gradient methods developed by Yu and Lan (2007) for the perfect CSI case to provide

a solution that satisfies the PAPCs. The near-optimal power loading can be combined

into the design framework to provide robustness against channel uncertainties result-

ing in significant performance gains. The PAPCed offset maximization frame work

can be extended to work with conventional beamforming directions as well. When

the ZF and MRT beamforming directions are combined with the suggested robust

9
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power loading algorithms, the subgradient methods provide lower-computational cost

algorithms that satisfy the PAPCs, while having reduced outage probability. When

the number of antennas is large, the MRT-based PAPCed algorithm can be efficiently

computed using operations that grow only linearly in the number of antennas.

Chapter 5 presents the application of the offset maximization family of algo-

rithms to the multi-cell case. The offset maximization framework extends naturally

to the cooperative case, and is shown to maintain its performance gains and the

low-complexity design. In the coordinated distributed case, the offset maximization

can be adapted to balance between providing better performance inside the cell, and

decreasing the interference to other cells using very limited feedback.

Chapter 6 presents the summary and conclusions of the thesis, and suggests

directions for future work.

10



Chapter 2

Low-Complexity Robust MISO

Downlink Precoder Design Under

Imperfect CSI

Abstract

We consider the design of the linear precoder for a multiple-input single-output

(MISO) downlink system with quality-of-service (QoS) constraints. The broad goal

is to develop low-complexity techniques that mitigate the impact of the uncertainty

in the transmitter’s channel state information (CSI) by incorporating probabilistic

models for the uncertainty into the design. The proposed techniques are developed

for systems based on limited feedback, and they can be easily adapted to systems

that acquire CSI using estimation on the uplink and channel reciprocity. We consider

the conventional problem of minimizing the transmitted power under probability of

outage constraints for a target signal-to-interference-and-noise ratio (SINR), and the

11



Ph.D. Thesis - Mostafa Medra McMaster University - Electrical Engineering

related problem of minimizing the outage probability under a transmitted power con-

straint. By approximating the outage constraint by a zero-outage region, employing

a semidefinite relaxation, and applying an extension of the S-Lemma that is derived

herein, these problems are converted into convex and quasi-convex problems, respec-

tively. Insights into the structure of the solution of those problems are then used to

generate an alternate design formulation that provides greater robustness in the pres-

ence of significant uncertainties and has a quasi-closed-form solution. As illustrated by

simulations, the proposed alternate design provides significantly better performance

than the conventional designs that do not incorporate uncertainty models, and better

performance than existing robust designs in the presence of large uncertainties, and

does so at a computational cost that is close to that of the conventional designs.

2.1 Introduction

In the communication of inelastic data traffic from a base station (BS) to multiple

receivers, an effective strategy for the design of the transmitter is to seek to minimize

the transmission power required to enable reliable communication to each receiver at

the chosen data rates. Given the complexity of implementing the optimal encoding

structure for the downlink (Weingarten et al., 2006), such quality-of-service (QoS)

design problems are typically formulated for linear transmitters (e.g., Bengtsson and

Ottersten, 2001; Rashid-Farrokhi et al., 1998a). In scenarios in which the receivers

have a single antenna and are coherent, and the channels are memoryless, the lin-

ear QoS design problem reduces to optimizing the BS’s precoding matrix so as to

minimize the power required to satisfy signal-to-interference-and-noise ratio (SINR)

constraints at the receivers (Bengtsson and Ottersten, 2001; Rashid-Farrokhi et al.,
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1998a; Schubert and Boche, 2007; Wiesel et al., 2006). In order to perform this de-

sign, the BS must be able to determine the SINRs at the receivers as a function of the

precoder. However, doing so requires the BS to obtain accurate information on the

state of the channels to the receivers; i.e., accurate channel state information (CSI).

In frequency division duplexing (FDD) systems, the BS obtains the required CSI by

sending training symbols to the users and having each user estimate the channel coef-

ficients and send a quantized version of the estimated channel vector back to the BS.

In time division duplexing (TDD) systems, the uplink and the downlink operate in

the same frequency band but in different time slots, and the BS designs its downlink

precoder based on the channel estimate that was obtained in the previous uplink slot.

In both settings, the BS has only estimates of the CSI, and hence can only estimate

the SINR at each receiver. As a result, the precoder design must be performed in the

presence of uncertainty in these estimates (e.g., Kandukuri and Boyd, 2002).

One approach to dealing with the uncertainty in the BS’s estimates of the CSI is

to develop a model for the uncertainty and incorporate that model into the design

problem. One way to do that is to model the actual channel as lying in a compact set

around the channel estimate at the BS, and to design the precoder so that the trans-

mission power is minimized subject to the SINR constraints holding for all channels

in the set (e.g., Zheng et al., 2008; Shenouda and Davidson, 2007; Chang et al., 2011;

Song et al., 2012; Shenouda and Davidson, 2008a; Huang et al., 2013; Vucic and

Boche, 2009a; Ubaidulla and Chockalingam, 2008; Shenouda and Davidson, 2009).

(Analogous designs based on mean square error metrics are also available (Tseng and

Gu, 2015; Zheng et al., 2009; Joham et al., 2012).) An alternative to that “worst-case”

approach is to model the uncertainties probabilistically, and to seek to minimize the
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transmission power subject to the SINR constraints holding with a given probability;

i.e., minimizing the transmission power subject to outage constraints (Shenouda and

Davidson, 2008b; Sohrabi and Davidson, 2016; He and Wu, 2013; Wang et al., 2014).

We will first develop techniques that are directly applicable to that problem. Then

we will focus on the related problem of minimizing the outage probability subject to

a constraint on the transmission power.

Many of the existing design techniques for probabilistic uncertainty models are

based on conservative convex restrictions of the design problem that replace the

chance constraint that enforces the specified outage condition by a deterministic con-

straint that specifies a set of channels over which zero outage is to be guaranteed

(Shenouda and Davidson, 2008b; Wang et al., 2014; Pascual-Iserte et al., 2006). Typ-

ically, the set is contiguous and hence this generates a continuum of constraints, but

doing so enables the application of existing techniques for the worst-case problem.

Unfortunately, these techniques are inherently conservative and their performance

degrades significantly in the presence of larger uncertainties or aggressive SINR tar-

gets. Furthermore, although the resulting design problems are convex, they typically

involve linear matrix inequalities (LMIs), and the computational cost of solving them

can be quite substantial. Finally, most of the existing approaches to this “zero-outage”

conversion of outage-based problems have been developed for cases in which the un-

certainty can be modelled as being additive and Gaussian. In TDD systems that

exploit reciprocity, the Gaussian assumption is often quite reasonable (e.g., Sohrabi

and Davidson, 2016), but in FDD systems that employ structured vector quantization

schemes to feed CSI back to the BS, the Gaussian model is not appropriate.

In this paper we develop precoder design techniques that address these issues.
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We first develop a “zero-outage region” approach to approximating the problem of

minimizing the transmission power required to achieve specified outage constraints

for FDD schemes with structured vector quantization. That approach is enabled by

the derivation, herein, of a variant of the S-Lemma for the complex-valued case. That

technical result is also used to tackle the problem of outage minimization subject to

a power constraint. Insight into the LMIs that arise in that problem enables the

development of an alternate design approach. That approach generates quasi-closed-

form expressions for precoders that provide improved performance outside the zero-

outage region. Our numerical experiments confirm the theoretical insights, and the

resulting performance advantages can be quite significant in the presence of sizable

uncertainties and aggressive SINR targets. The proposed designs extend naturally to

the case of Gaussian uncertainties and similar performance advantages are achieved

in the TDD case.

2.2 System Model

We consider a K-user unicast MISO downlink in which a BS equipped with Nt anten-

nas sends independent messages to K single antenna users. The BS employs linear

beamforming to construct the transmitted signal at each channel use, x =
∑K

k=1 wksk,

where sk is the normalized symbol intended for user k, and wk ∈ CNt is the associated

beamformer. The signal received by the kth user is

yk = hHk wksk +
∑

j 6=k hHk wjsj + nk, (2.1)
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where hHk ∈ CNt denotes the channel between the BS and receiver k, and nk ∈ C

represents the additive zero-mean circular complex Gaussian noise at that user.

2.2.1 Downlink precoding with perfect CSI

We will consider systems in which each user performs single-user detection, with the

interference from other users being treated as noise. If receiver k has obtained hHk wk,

say through a dedicated training step (Caire et al., 2010), then it can perform coherent

detection. If, in addition, the noise and the interference terms in (2.1) are uncorrelated

in time and their sum is approximately Gaussian, then the key performance metric

of the link of user k is the SINR,

SINRk =
|hHk wk|2∑

j 6=i |hHk wj|2 + σ2
k

, (2.2)

where σ2
k is the noise variance. In the case that the channel vectors and noise variances

are known perfectly at the BS, the BS can design the beamformers to achieve a variety

of goals (e.g., Gershman et al., 2010; Bjornson et al., 2014). One simple example is

zero-forcing (ZF) beamforming (Spencer et al., 2004), in which each wk is chosen

such that hHj wk = 0,∀j 6= k and hence the interference is eliminated. A related

beamforming technique is regularized channel inversion (RCI) (Peel et al., 2005). In

this paper we will focus on beamforming techniques that provide a predefined level

of QoS to each user (e.g., Bengtsson and Ottersten, 2001; Rashid-Farrokhi et al.,

1998a; Schubert and Boche, 2007). In particular, we consider the problem in which

the transmitter seeks to find a set of beamformers that minimizes the transmission

power required to achieve certain SINR targets for each user. If we let γk denote the
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target SINR for the kth user, that problem can be written as:

min
{wk}Kk=1

∑
k ‖wk‖2

subject to SINRk ≥ γk, k = 1, 2, . . . , K,

(2.3)

where ‖ · ‖ denotes the Euclidean norm. The formulation in (2.3) is not convex,

but there are several efficient algorithms for finding globally optimum solutions (e.g.,

Bengtsson and Ottersten, 2001; Wiesel et al., 2006).

2.2.2 Principles of robust downlink precoding

In practice, the BS only has an estimate, ĥk, of hk. Although a mismatched design

in which the estimates ĥk are substituted for hk in (2.3) could be attempted, the

sensitivity of the SINR to the channel estimates suggests that it may be more effective

to develop a model for the uncertainty and incorporate that model into the design.

One way to do so is to postulate a conditional distribution pk(hk|ĥk), select an outage

probability δk, then seek to minimize the transmission power subject to the kth SINR

constraint holding with probability greater than or equal to 1−δk, or show that those

specifications cannot be achieved; i.e., solve

min
wk

∑
k ‖wk‖2 (2.4a)

subject to Prob(SINRk ≥ γk) ≥ 1− δk. (2.4b)

In (2.4) and the rest of the paper, we leave it implicit that the constraints hold for

all k ∈ {1, 2, . . . , K} and that the optimization is performed over the design variables

associated with all users. We will also consider the related problem of minimizing the
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outage probability subject to a power constraint P ; i.e.,

min
wk,δk

max
k

δk (2.5a)

subject to Prob(SINRk ≥ γk) ≥ 1− δk, (2.5b)∑
k ‖wk‖2 ≤ P. (2.5c)

In general, problems (2.4) and (2.5) are difficult to solve even for simple distribu-

tions. This is mainly due to the fact that even when deterministic expressions for the

probabilistic constraints can be obtained, they are typically non-convex in the design

parameters; see, (e.g., Sohrabi and Davidson, 2016).

One strategy for finding good solutions to the problem in (2.4) is to find a region

Rk in which the channel hk will lie with a probability of at least 1 − δk and ensure

zero-outage in this region (e.g., Shenouda and Davidson, 2008b; Wang et al., 2014;

Pascual-Iserte et al., 2006). That is, we design wk so that

min
wk

∑
k ‖wk‖2 (2.6a)

subject to SINRk ≥ γk ∀hk ∈ Rk. (2.6b)

In other words, we approximate the chance constraint in (2.4b) by the deterministic,

but semi-infinite, constraint in (2.6b). The constraint in (2.6b) is semi-infinite due

to the continuum of members of Rk. We note that, if Rk contains all the possible

values that hk can take on, then the problem in (2.6) is a typical worst-case problem.

In certain cases, and in particular when Rk is a sphere centered on ĥk, the worst-

case problem in (2.6) can be conservatively bounded and solutions can be efficiently
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found (e.g., Zheng et al., 2008; Shenouda and Davidson, 2007). Although this method

can be quite effective when the uncertainties are small, it is, by its very nature,

conservative, and hence there may be instances in which (2.6) has no solution (i.e.,

(2.6) is infeasible) even though there are solutions to (2.4).

The concept of the zero-outage region can also be applied to the problem in (2.5).

Rather than designing wk to minimize the maximum outage, we can seek to maximize

the volume of the zero-outage region; i.e.,

max
wk,Rk

min
k

vol(Rk)

subject to SINRk ≥ γk, ∀hk ∈ Rk,∑
k ‖wk‖2 ≤ P.

(2.7)

A weakness of this formulation is that it simply attempts to maximize the size of the

zero-outage region without regard for the behaviour outside this region. One of the

main contributions of this paper will be to identify alternative strategies that enable

the designer to balance the performance obtained when the uncertainties are small

with the performance when the uncertainties are larger.

2.2.3 Uncertainty models

The specific techniques that we will develop in this paper are for FDD and TDD

systems with quasi-static channels. We start with the case of an FDD system with

structured vector quantization (Love et al., 2003). In these systems the receiver esti-

mates the channel based on training signals sent by the BS and separately quantizes

the gain and “direction” of the channel. More specifically, if we let h̃k denote the

receiver’s estimate, the receiver quantizes
√
αk = ‖h̃k‖ using a scalar quantizer and
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quantizes h̃nk
= h̃k/‖h̃k‖ using memoryless vector quantization over a Grassmannian

codebook (Love et al., 2003); i.e., if C = {v1,v2, ...,vM} denotes a Grassmannian

codebook of M elements in CNt , the codebook element that characterizes the direc-

tion of the channel is represented by hqk = arg minv∈C 1− |h̃Hnk
v|2. If we assume that

(i) h̃k is estimated accurately, i.e. perfect channel state information at the receiver

(CSIR); (ii) αk is quantized at a high resolution; and (iii) there are no errors in the

feedback path, then the transmitter’s estimate of the channel,
√
αkhqk , is related to

the actual channel by:

hk =
√
αk(hqk + ek), (2.8)

where the statistics of the error ek are dependent on the codebook and the statistics

of the channel. Given the intricate nature of the statistics of ek, even in the context

of randomized codebooks (Jindal, 2006), our initial development will be based on a

model in which ek lies in a region Ek that is a spherical cap on the Grassmannian

manifold of radius ε, centered at hqk ; i.e.,

Ek = {ek ∈ CNt : ‖ek‖ ≤ ε, ‖hqk + ek‖ = 1}. (2.9)

In practice, it is likely that each user in the cell will use a rotated version of the

same codebook (Ding et al., 2007), and hence a common value for ε is appropriate.

However, the techniques below extend naturally to scenarios in which a different ε for

each user would be appropriate. As we will see in Sections 2.3 and 2.4, respectively,

we can incorporate this uncertainty model into both problems (2.6) and (2.7).

In the TDD case, the BS estimates the channel during the uplink training phase.

Assuming that (i) the channel is quasi-static; (ii) that appropriate compensation of
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the RF chain is employed (e.g., Kaltenberger et al., 2010), the transmitter’s estimate

hek can be related to the channel hk as

hk = hek + ek, (2.10)

where ek is a zero mean complex Gaussian random variable, whose covariance is

determined by the statistics of the channel and the training sequence (Poor, 1994).

This uncertainty model will be considered in Section 2.5.

2.3 Zero-outage region approach to the outage con-

strained problem

Let us first consider the problem of minimizing the transmission power subject to

a zero-outage constraint (cf. (2.6)) for an FDD system. By defining Wk ∈ CNt×Nt ,

where Wk = wkw
H
k and applying the uncertainty model in (2.8), the SINR expression

for user k can be written as

SINRk(ek) =
αk(hqk + ek)

HWk(hqk + ek)

αk(hqk + ek)H(
∑

j 6=k Wj)(hqk + ek) + σ2
k

. (2.11)
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Therefore, for a given uncertainty size ε, the worst-case problem in (2.6) can be

written as

min
Wk

K∑
k=1

tr(Wk) (2.12a)

subject to SINRk(ek) ≥ γk, ∀ek ∈ Ek, (2.12b)

Wk � 0, rank(Wk) = 1, (2.12c)

where Ek was defined in (2.9), tr(·) denotes the trace of a matrix, and A � B denotes

that the matrices A and B are Hermitian symmetric and that A − B is positive

semidefinite.

The problem in (2.12) is difficult to solve for two reasons. First, the rank con-

straint is non-convex. Second, the SINR constraints are non-convex and there is an

infinite number of them. We will address the first difficulty by removing the rank

constraint, which results in a semidefinite relaxation (SDR) of the problem (Bengts-

son and Ottersten, 2001; Gershman et al., 2010; Luo et al., 2010). The extraction of

“good” beamformers wk from that relaxation will be discussed below.

To address the second difficulty we rewrite the SINR constraint in (2.12b) as

(hqk + ek)
HQk(hqk + ek)− σ2

k/αk ≥ 0, (2.13)

where Qk ∈ CNt×Nt is defined as

Qk = Wk/γk −
∑
j 6=k

Wj, (2.14)
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and we rewrite Ek in (2.9) as

Ek = {ek ∈ CNt : ‖ek‖2 − ε2 ≤ 0, ‖ek‖2 + 2Re{eHk hqk} = 0}. (2.15)

Here, Re{·} denotes the real part of the argument. By doing so, the constraint in

(2.12b) can be reformulated as requiring (2.13) to hold for all ek satisfying both the

quadratic inequality and the quadratic equality in (2.15). That reformulation enables

the application of the following theorem that precisely characterizes this semi-infinite

constraint in a finite manner. To state the theorem concisely, we let Hn×n denote the

set of Hermitian symmetric matrices of size n× n.

Theorem 1 Let fi(x) = xHAix + 2Re{xHbi} + ci, i = 0, 1, 2, where x ∈ Cn and

Ai ∈ Hn×n, bi ∈ Cn, ci ∈ R, i = 0, 1, 2. Define

Fi =

 Ai bi

bHi ci

 , i = 0, 1, 2. (2.16)

Suppose that F2 is indefinite, and that there exists a vector x0 ∈ Cn such that f1(x0) <

0 and f2(x0) = 0. Then the following two statements are equivalent:

1. f0(x) ≥ 0 for all x satisfying f1(x) ≤ 0 and f2(x) = 0.

2. There exists λ ≥ 0, µ ∈ R such that

F0 + λF1 + µF2 � 0. (2.17)

The above theorem can be viewed as an extension of the S-Lemma (Pólik and Terlaky,

2007) to the complex-valued case with one additional equality constraint. The proof is
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provided in Appendix 2.A. The proof leverages the fact that certain complex-valued

semidefinite programs can be shown to have rank-one solutions (Huang and Zhang,

2007).

To apply Theorem 1 to the problem in hand, we associate the function f0 with

the expression on the left hand side of (2.13), the function f1 with ‖ek‖2 − ε2 and

the function f2 with ‖ek‖2 + 2Re{eHk hqk}. Doing so enables us to transform the semi-

infinite SINR constraint for each user in (2.12b) into a finite matrix inequality of the

form Qk Qkhqk

hHqkQk hHqkQkhqk − σ2
k/αk

+ λk

 I 0

0 −ε2

+ µk

 I hqk

hHqk 0

 � 0. (2.18)

For ease of notation we will write (2.18) as F0k(Qk) + λkF1(ε) + µkF2k � 0, and we

observe that F0k(Qk) and F1(ε) are linear in their arguments, and that Qk is linear

in each Wj.

Employing the above transformation, the relaxation of (2.12) obtained by remov-

ing the rank constraints on Wk can be written as

min
Wk,λk,µk

K∑
k=1

tr(Wk) (2.19a)

subject to F0k(Qk) + λkF1(ε) + µkF2k � 0, (2.19b)

Wk � 0, λk ≥ 0. (2.19c)

The problem in (2.19) has a linear objective, and constraints in the form of scalar

linear inequalities and LMIs. Hence, it is a convex problem and can be efficiently

solved using interior point methods (e.g., Sturm, 1999). Implementations of those
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methods can be conveniently accessed using the Matlab-based CVX interface (Grant

et al., 2008). In the generic case, the remaining step is to use the optimal matrices

{W?
k,SDR} for the problem in (2.19) to generate feasible rank-one solutions to (2.12)

with low objective values using randomization techniques (Wang et al., 2014; Luo

et al., 2010). In Appendix 2.B we adapt derivations used in (Song et al., 2012) to

show that for sufficiently small ε there is guaranteed to be an optimal solution to (2.19)

in which all W?
k,SDR have rank one. Furthermore, consistent with the observations of

others for related problems (e.g., Chang et al., 2011; Song et al., 2012; Wang et al.,

2014), our experience with numerical experiments for larger values of ε has shown

that when the problem in (2.19) is feasible it almost always has a solution in which

each W?
k,SDR has rank one.

To conclude this section we revisit the original goal, which was to develop an

effective algorithm for the outage constrained problem in (2.4) in the case of channel

“directions” feedback. The development was based on the zero-outage region ap-

proach in (2.6). As we will show in our numerical results in Section 2.6, the proposed

approach is indeed effective when the distribution of the uncertainties is concentrated

in a region in which ek is relatively small. (Those observations are consistent with the

observations in related works (e.g., Zheng et al., 2008; Shenouda and Davidson, 2007;

Wang et al., 2014).) However, in the limited feedback systems that have currently

been envisioned, the number of bits allocated to the feedback process is small (e.g.,

Love et al., 2008). Therefore, the quantization codebooks are quite small and, as a

result, the probability of having sizeable uncertainties can be reasonably high. When

the size of the zero-outage regions are increased to cover the bulk of uncertainties in

envisioned systems, the conservatism in the zero-outage approach becomes apparent
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and the relaxed design problem in (2.19) is often infeasible. (That observation is

also consistent with those in related works (e.g., Zheng et al., 2008; Shenouda and

Davidson, 2007; Wang et al., 2014).) For that reason, we will now examine the ap-

plication of the zero-outage region approach, and other ad-hoc approaches, to the

outage minimization problem in (2.5).

2.4 Approaches to outage minimization problem

In this section we develop several approaches for generating good solutions to the out-

age minimization problem in (2.5) for FDD systems. We will begin with an approach

that seeks to maximize a zero-outage region. Insights obtained from that approach

will drive the development of an alternate approach that yields a quasi-closed-form

solution.

2.4.1 Zero-outage region maximization

To apply the zero-outage region maximization approach in (2.7) to the case of FDD

systems we choose the region Ek to contain all ek satisfying (2.9), and we use the

radius ε as a measure of the volume. With those choices in place, the semidefinite

relaxation of (2.7) in the case of FDD systems can be written as
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max
Wk,λk,µk,ε

ε (2.20a)

subject to
K∑
k=1

tr(Wk) ≤ P, (2.20b)

F0k(Qk) + λkF1(ε) + µkF2k � 0, (2.20c)

Wk � 0, λk ≥ 0. (2.20d)

Since (2.20c) contains the bilinear term λk
(

I 0
0 −ε2

)
, the problem in (2.20) is not

convex. However, when ε is fixed the problem is convex in the other variables, and

the feasible sets in (2.20) with increasing values of ε are nested within each other.

Therefore, an optimal solution to (2.20) can be efficiently found by performing a

bisection search on ε in which the problem solved at each step is the feasibility problem

that arises when ε is fixed in (2.20).

As alluded to earlier, a weakness in the zero-outage region maximization approach

in (2.7), and hence a weakness in the formulation in (2.20), is that it attempts to

maximize the zero-outage region without regard for the behaviour outside this region.

In the case of Gaussian uncertainties, the size of the zero-outage region that can be

achieved is relatively small (e.g., Shenouda and Davidson, 2008b; Wang et al., 2014).

As we will see in Section 2.6, that is also true in the limited feedback case. In

the next subsection we will develop an approximation of (2.20) that provides better

performance for larger uncertainties.
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2.4.2 Offset maximization for a given zero-outage region

As stated in the original chance constraints in (2.5b), what we are really seeking is

a set of beamformers {wk} that ensures that for each user k, SINRk ≥ γk with high

probability. Using the notation in (2.13), we can express that constraint as

hHqkQkhqk + 2Re{eHk Qkhqk}+ eHk Qkek − σ2
k/αk ≥ 0 (2.21)

holding with high probability. To gain some insight into how this is achieved in (2.20),

consider the “South-East” block of the LMI in (2.18). This ensures that any feasible

point for (2.20) satisfies

hHqkQkhqk − σ2
k/αk − λkε2 ≥ 0. (2.22)

A comparison between (2.21) and (2.22) shows that for a zero-outage region of a

given size ε, the feasible points of (2.20) with larger values of λk have larger values

for hHqkQkhqk−σ2
k/αk. Therefore, they have greater robustness to uncertainties of size

larger than ε. That is true because the error ek has to make 2Re{eHk Qkhqk}+eHk Qkek

“more negative” in order for (2.21) not to be satisfied. We will now use that insight to

develop an alternate ad-hoc algorithm that yields solutions with a smaller zero-outage

region, but with greater robustness against larger uncertainties.

Let ε? denote the optimal value of (2.20). Our goal now is to give up a little of

the zero-outage region in order to obtain larger values for the offset, λkε
2, and hence

greater robustness to larger uncertainties. If we seek to maximize the minimum offset

for a given value of ε, denoted by ε0, that satisfies ε0 < ε?, the semidefinite relaxation
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of the problem can be formulated as

max
Wk,λk,µk,t

t (2.23a)

subject to
K∑
k=1

tr(Wk) ≤ P, (2.23b)

F0k(Qk) + λkF1(ε0) + µkF2k � 0, (2.23c)

Wk � 0, λk ≥ t, t ≥ 0. (2.23d)

This problem is convex in all the design parameters and can be efficiently solved.

To assess the structure of solutions to this problem, we observe that given ε0 < ε?,

if {µ?k} and {λ?k} denote the optimal values for (2.23) and if Q?
k denotes the value of

Qk for the optimal {W?
k}, then from (2.23c) we have

F0k(Q
?
k) + λ?kF1(ε0) + µ?kF2k � 0. (2.24)

To explore some of the scaling effects we observe that for any a ≥ 1, we can rewrite

the LMI in (2.24) as

F0k(Q
?
k) + aλ?kF1(ε0/

√
a) + µ?kF2k − (a− 1)λ?k

 I 0

0 0

 � 0. (2.25)

Since (a − 1)λ?k ( I 0
0 0 ) is positive semidefinite, this implies that if we reduce ε0 by a

factor
√
a, we can increase λk by at least a factor a while maintaining feasibility. This

implies that if we solve (2.23) for a given ε0 < ε?, then the resulting offset, λ?kε
2
0, will

be at least as large as the corresponding offset provided by the optimal solution to

(2.20). In Section 2.6, we will provide an illustration of how the choice of ε0 provides
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a trade-off between the size of the zero-outage region and the performance outside

that region.

2.4.3 Offset maximization

Although the problem in (2.23) is convex, the K LMIs in (2.23c) impose a significant

computational burden on the solver; see Section 2.4.5. To examine opportunities to

develop an approximation of (2.23) that may be amenable to a more efficient solution,

we observe that the South-East block of (2.23c), which appears in (2.22), is the only

block in which the term λk appears with a negative multiplier. This suggests that this

block, which is only a scalar, may be the dominant block in (2.23c). By using insights

from the Schur Complement Theorem and the scaling arguments in the previous

subsection, it can be shown that as ε0 decreases, the South-East block of the LMI in

(2.23c) does indeed become the dominant component of the constraint. In particular,

the South-East block of the LMI does not depend on µk, and as ε0 is decreased, if the

South-East block of the LMI is satisfied, it becomes increasingly likely that a value of

µk can be found such that the LMI holds. (The details of that argument are implicit

in Appendix 2.C) This observation suggests the following approximation of (2.23) in

which each LMI is replaced by the scalar South-East block (cf. (2.22)). Defining

rk = λkε
2
0, the approximation of (2.23) is

max
Wk,rk,t

t (2.26a)

subject to
∑K

k=1 tr(Wk) ≤ P, (2.26b)

hHqkQkhqk − σ2
k/αk − rk ≥ 0, (2.26c)

Wk � 0, rk ≥ t, t ≥ 0. (2.26d)
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In Appendix 2.C we show that this approximation is asymptotically tight in the sense

that as ε0 → 0 any optimal set {Wk} for (2.26) approaches an optimal set {Wk} for

(2.23).

Further simplification is also possible. Indeed, as we show in Appendix 2.D, there

is an optimal solution of (2.26) in which all the rk’s are equal. As a result, the

following simpler problem generates an optimal solution to (2.26):

max
Wk,r

r (2.27a)

subject to
∑K

k=1 tr(Wk) ≤ P, (2.27b)

hHqkQkhqk − σ2
k/αk − r ≥ 0, (2.27c)

Wk � 0, r ≥ 0. (2.27d)

In Appendix 2.D we use a minor variation of a result of Bengtsson and Ottersten

(2001) to show that the problem in (2.27) has an optimal solution in which each Wk

has rank one, and in Section 2.4.4 below we will show that a rank-one solution can

be obtained in a quasi-closed form.

The SINR constraint in (2.27c) has an interesting interpretation. If we recall that

the BS’s estimate of hk is ĥk =
√
αkhqk , the SINR condition can be rewritten as

ĥHk Wkĥk

ĥHk (
∑

j 6=k Wj)ĥk + σ2
k + αkr

≥ γk. (2.28)

That is, the problem in (2.27) obtains robustness to uncertainties in the CSI by seek-

ing, with a particular affine scaling, the largest noise variances for which a mismatched

design can satisfy the original SINR constraints. The expression in (2.28) also shows

31



Ph.D. Thesis - Mostafa Medra McMaster University - Electrical Engineering

that if the problem in (2.27) is not feasible, then even in the perfect CSI case, there is

no precoder of power less than or equal to P that can satisfy the SINR requirements.

More precisely, the perfect CSI problem in (2.3) with channels hi = ĥk has no feasible

solution with that power constraint.

2.4.4 Quasi-closed-form solution

The expression in (2.28) not only provides an interesting interpretation of the problem

in (2.27), it also facilitates the development of a robust precoder design problem that

has a quasi-closed-form solution. In particular, if r? denotes the optimal value of r in

(2.27), then since (2.27) has an optimal solution with rank one Wk’s, for any r0 ≤ r?

we can directly obtain the beamformers that provide a feasible solution to (2.27) by

solving

min
wk

∑
k

wH
k wk (2.29a)

s.t.
αkh

H
qk

wkw
H
k hqk

αkhHqk
∑

j 6=k wjwH
j hqk + σ2

k + αkr0

≥ γk. (2.29b)

This problem is a variation of the standard QoS problem in (2.3) with mismatched

channels and an affine adjustment of the noise power. That connection enables us

to analyse the KKT optimality conditions of (2.29) in a similar way to the analysis

of Bengtsson and Ottersten (2001); Wiesel et al. (2006); Bjornson et al. (2014) to

obtain a quasi-closed-form solution. In particular, if we rewrite the constraint in

(2.29b) as hHqk

(
wkw

H
k /γk −

∑
j 6=k wjw

H
j

)
hqk − σ2

k/αk ≥ r0 and let νk denote the

Lagrange multiplier for this constraint, then we obtain the following characterization
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of the directions

wk =

(
νk
γk

hqkh
H
qk
−
∑
j 6=k

νjhqjh
H
qj

)
wk, (2.30)

where the Lagrange multipliers must satisfy the fixed-point relation

ν−1
k = hHqk

(
INt +

∑
j νjhqjh

H
qj

)−1

hqk

(
1 + 1

γk

)
. (2.31)

To obtain an optimal solution to (2.29), we first find the values for the Lagrange

multipliers νk in (2.31) using a conventional fixed-point algorithm. Then, the nor-

malized directions w̄k = wk/‖wk‖ can be obtained from (2.30). What then remains

to determine is the power allocation to each user, βk = ‖wk‖2. Using the fact that

at optimality the constraints in (2.29b) hold with equality (Bengtsson and Ottersten,

2001; Wiesel et al., 2006; Bjornson et al., 2014), we obtain a set of linear equa-

tions for the vector β = [β1, β2, ..., βK ]T that takes the form Aβ = c + r01, where

[A]ii = |hHqi w̄i|2/γi, [A]ij = −|hHqi w̄j|2, ∀i 6= j, ci = σ2
i /αi and 1 is a vector of all

ones. Here, [A]ij denotes the (i, j)th element of the matrix A. Therefore, the solution

to (2.29) can be computed by solving that set of equations. That set of equations

also provides the connection between (2.27) and (2.29). In particular, since
∑

k βk is

the transmitted power, for an arbitrary r0 > 0, the solution to (2.29) is optimal for

(2.27) if P =
∑

k βk = 1TA−1c + r01
TA−11. Since 1TA−1c is the power that would

be consumed if the CSI was perfect, this expression quantifies the additional power

required to provide the robustness specified by r0. The inverse of that relation shows

that r?, the optimal value in (2.27), is given by r? = (P − 1TA−1c)/(1TA−11).

The expressions obtained above are in a quasi-closed form because they depend

on the solution of the K scalar fixed point equations in (2.31). The presence of the
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matrix inversion in (2.31) suggests the use of a Jacobi-style scheme, as it would need

only one matrix inversion to be computed in each update cycle of the νk’s. The

presence of the inverse also suggests the value of obtaining a “good” starting point

for the iterations. With that in mind, we observe that if the normalized channel

vectors hqk are nearly orthogonal,
(
INt +

∑
j νjhqjh

H
qj

)−1

≈
∑

j
1

1+νj
hqjh

H
qj

and hence

hHqk

(
INt +

∑
j νjhqjh

H
qj

)−1

hqk ≈ 1
1+νj

. Employing that approximation in (2.31) we get

νk = γk, and we will use that value as a starting point for the fixed-point equations

in (2.31).

An interesting observation from (2.30) and (2.31) is that the beamforming direc-

tions depend on the estimates of the channel directions and the SINR targets, but do

not depend on the channel gains nor the noise power. On the other hand, the power

loading depends on both the channel gains and the noise power in addition to the

directions and targets. (Similar observations have been made in the perfect CSI case,

Bengtsson and Ottersten, 2001; Wiesel et al., 2006; Bjornson et al., 2014).

2.4.5 Computational cost

Employing the quasi-closed-form solution method for the offset maximization de-

sign involves three main operations. First, we need to compute {νk}Kk=1 using the

fixed-point equations in (2.31). In each of the fixed-point iterations we need to in-

vert
(
INt +

∑
j νjhqjh

H
qj

)
once and for each user we have to pre- and post-multiply

that inverse by hqk . As a result, the computational cost per fixed-point iteration is

O(N3
t ) + O(KN2

t ). In our numerical experiments reported in Section 2.6, 5 to 15

fixed-point iterations were sufficient to obtain a solution whose outage performance

is indistinguishable from that obtained by solving the convex problem in (2.27) using
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the state-of-the-art interior point methods that can be accessed from the CVX tool

(Grant et al., 2008). After obtaining {νk}Kk=1, the second step in the quasi-closed-form

solution is to solve the eigen equation in (2.30) for each user to obtain the beamform-

ing directions. This requires O(KN3
t ) operations. The third and final step is the

power allocation step, which is dominated by the inversion of the matrix A to find

r? and β; see the discussion that follows (2.31). Such an inversion can be performed

in O(K3) operations. In summary, if we let M denote the number of fixed-point

iterations, the computational cost of the quasi-closed-form solution contains terms

that are O(MN3
t ),O(MKN2

t ),O(KN3
t ) and O(K3).

The computational cost of the perfect CSI problem in (2.3), (Bengtsson and Ot-

tersten, 2001; Wiesel et al., 2006; Bjornson et al., 2014), shares the same analysis

of that of the offset maximization algorithm above, except for the power allocation

part. In the perfect CSI case we solve Aβ = c, with r set to zero. However, this

operation is still dominated by the inversion of the matrix A. According to the

previous discussion, we can conclude that the offset maximization algorithm offers a

robust precoding design with essentially the same computational cost as that of the

conventional perfect CSI problem.

In contrast to the quasi-closed-form solution, the original formulation of the offset

maximization problem in (2.27) is a semidefinite program with K LMI constraints

of size Nt. Accordingly, solving this problem using a generic interior point method

results in a computational cost per interior-point iteration that is dominated by terms

that are O(K3N6
t ) operations (Ye, 2011). The worst-case number of interior-point it-

erations can be upper bounded by a term that isO(
√
KNtlog(1/ε)), where ε represents

the accuracy of the solution (Ye, 2011). This is a significantly higher computational
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cost than that of the quasi-closed-form solution. Furthermore, the computational

costs of generic algorithms for solving the original zero-outage region maximization

problem in (2.20) and the constrained offset maximization problem in (2.23) have

even higher computational costs, as they share the same K LMI constraints of size

Nt of the problem in (2.27), and also have additional linear and LMI constraints.

2.4.6 Channel magnitude effect

Up until this point, we have considered scenarios in which the dominant quantiza-

tion errors arise from the quantization of the channel “directions”. Hence, we have

assumed that the BS has accurate knowledge of the channel gains αk. To examine

the effect of quantizing αk we rewrite the expression in (2.11) as

SINRk(ek) =
(hqk + ek)

HWk(hqk + ek)

(hqk + ek)H(
∑

j 6=k Wj)(hqk + ek) + σ2
k/αk

. (2.32)

This expression shows that the quantity to be quantized is actually the noise variance

to the power gain ratio, σ2
k/αk. It also suggests that in scenarios in which the inter-

ference dominates the noise, which are common in practice, the effects of quantizing

σ2
k/αk using a scalar codebook will be small. Indeed, as discussed at the end of the

previous subsection, it can be seen from (2.30) and (2.31) that the beamforming direc-

tions w̄k are independent of σ2
k/αk. It is only the power allocation that is dependent

on this ratio. As we will illustrate in Section 2.6, in interference limited scenarios

even if the BS has no knowledge of σ2
k/αk and removes this term from (2.27c), the

resulting beamformers still provide good performance.
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2.5 Extensions to TDD case

In this section, we show how the analysis in the previous section, which was developed

for FDD systems in which the dominant uncertainties are those of channel directions,

can be adapted to TDD systems in which the dominant uncertainties are uplink esti-

mation errors that can be modelled as being Gaussian. In that case, the uncertainty

model takes the form in (2.10), and we will focus on the case in which the elements

of ek are uncorrelated and have the same variance. In that case, a sphere of radius

ε is the appropriate shape for the zero-outage region, and the semidefinite relaxation

of the problem in (2.6) of power minimization subject to a zero-outage constraint can

be written as (Wang et al., 2014)

min
Wk,λk

K∑
k=1

tr(Wk)

s.t.

 Qk Qkhek

hHekQk hHekQkhek − σ2
k

+ λk

 I 0

0 −ε2

 � 0.

Wk � 0, λk ≥ 0.

(2.33)

Similarly, the SDR of the problem in (2.7) of maximizing the volume of the zero-

outage region subject to a power constraint can be written as

max
Wk,λk,ε

ε

subject to
K∑
k=1

tr(Wk) ≤ p

F0k(Qk) + λkF1(ε) � 0

Wk � 0, λk ≥ 0,

(2.34)
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where F0k(Qk) and F1(ε) were defined after (2.18).

As discussed earlier, the weakness of the formulation in (2.7), and hence that in

(2.34), is that the performance of the system under certainties outside the zero-outage

region is not considered. By extending the concept of offset maximization developed

in Section 2.4.3 to the TDD case, we obtain the following variant of the problem in

(2.27)

max
Wk�0,r

r (2.35a)

subject to
∑

k tr(Wk) ≤ P, (2.35b)

hHekQkhek − σ2
k − r ≥ 0. (2.35c)

By making some straightforward modifications to the analysis in Sections 2.4.3 and

2.4.4, it can be be shown that the problem in (2.35) always has an optimal solution

that has rank one and such a solution can be found in a quasi-closed form.

2.6 Simulation studies

In this section we provide simulation results that demonstrate the performance of

the proposed designs, and, in particular, the designs based on the notion of offset

maximization; cf. (2.27) and (2.35). We consider a single-cell downlink system in

which the BS has four antennas and three single-antenna users served concurrently.

An independent Rayleigh fading channel model is used, with the channel from each

BS antenna to each user is modelled as being independent with a circular complex

Gaussian distribution with zero mean and unit variance. The additive noise at each

receiver has a variance σ2
k = 0.01.
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2.6.1 FDD systems

To study the performance of the algorithms proposed for FDD systems, we consider

a Grassmanian feedback scheme (Love et al., 2003) in which each user employs a ran-

domly rotated version of a single 13-bit codebook. That codebook was selected from a

set of codebooks that was generated randomly using the isotropic distribution on the

manifold. The size of the error ek is assessed in terms of the Grassmanian distance

between the quantized and the true channels; i.e., d(ek) = minθ ‖hkejθ/
√
αk − hqk‖.

To illustrate the basic properties of the proposed scheme, we first consider a syn-

thetic example that enables us to visualize the statistics of the quantization errors.

In this example we first picked, at random, three elements of the codebook as the

quantized directions for the three users. Then we generated a sufficient number of

Rayleigh channel realizations so that at least 5000 channel realizations were quantized

to each of the three selected elements of the codebook. The empirical distribution

of the Grassmanian distances of those channel realizations from the corresponding

codebook element is plotted as the lower curve with the right hand axis in Fig. 2.1.

Next, using the quantized channels, we designed a variety of robust beamformers for

a system with a transmission power constraint of P = 1 and an SINR target for

each user of γk = 9dB. The design methods we considered are the zero-outage re-

gion maximization design (ZOR max.) in (2.20), the constrained offset maximization

design (Constr. offset max.) in (2.26) with a value of the zero-outage region size

ε0 = (5/6) ε?, where ε? is the optimal value for the zero-outage region maximization

design in (2.20), and the quasi-closed-form solution developed in Section 2.4.4 for

the offset maximization (Offset max.) problem in (2.27). Those designs were then

evaluated on the actual channels that were quantized to the chosen hqk . In the upper
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Figure 2.1: Satisfaction probability=(1-outage probability) for the synthetic example
involving an FDD system with 4 BS antennas, 3 users, and SINR targets γk=9dB.

curves of Fig. 2.1, we have plotted the probability that each of the considered design

methods satisfies the SINR constraints against the size of the squared Grassmanian

distances. These results outline the basic tradeoffs between the three proposed al-

gorithms. By design, the method that maximizes the zero-outage region maintains

zero-outage for larger uncertainties than the other two designs, but its performance

degrades rapidly as the size of uncertainty grows beyond that point. The constrained

offset maximization design trades a small degradation in the size of the zero-outage

region for better performance under large uncertainties. The offset maximization

approach does not seek a zero-outage region, but provides improved robustness to

large uncertainties, and does so at a much lower computational cost than the other

methods.

Having illustrated the principles of the approaches through the results in Fig. 2.1

for a synthetic experiment, we now consider the practical performance of the proposed
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schemes. We will include as benchmarks the performance of the conventional mis-

matched designs based on ZF and RCI with the regularization coefficient of Ntσ
2
k/P

suggested by Peel et al. (2005), and the mismatched design based on solving (2.3)

under the assumption that the estimated CSI is perfect (cf. Bjornson et al., 2014).

In the experiments, the receivers are assumed to identify the channels with sufficient

accuracy so that the quantized error incurred by using the Grassmanian codebooks

at each user are the dominant errors. The precoders were designed using the quan-

tized channel directions and the SINR of each user was evaluated using the actual

channels. The outage probability was estimated by repeating the experiment over

8,000 channel realizations. In Figs 2.2 and 2.3 we have plotted the outage probability

as a function of the bound on the transmitted power, where in the case of the con-

ventional ZF, RCI and “perfect CSI” precoders, the precoding vectors are scaled to

match the power constraint. In Fig. 2.2 the target SINR was γk = 3dB and in Fig. 2.3

it was γk = 6dB. We observe that the proposed methods provide significantly lower

outage probability than the existing techniques, and that when the SINR targets are

more aggressive (i.e., in Fig. 2.3 relative to Fig. 2.2, or at lower transmission power

in either Fig. 2.2 or 2.3), the offset maximization design provides significantly better

performance than the zero-outage region maximization design. (Recall that the offset

maximization design also has the advantage that it has a quasi-closed-form solution.)

The solid curves in Figs 2.2 and 2.3 illustrate the performance of the various

algorithms with perfect knowledge of the gains αk and the noise variance σ2
k. Actually,

as mentioned in Section 2.4.6, all that is needed is σ2
k/αk. To assess the sensitivity of

the proposed offset maximization algorithm to errors in quantizing σ2
k/αk, the dashed

curves in Figs 2.2 and 2.3 show the performance of the algorithm in the extreme

41



Ph.D. Thesis - Mostafa Medra McMaster University - Electrical Engineering

0.08 0.12 0.16 0.2 0.24 0.28 0.32 0.36 0.4
0

0.05

0.1

0.15

0.2

0.25

Power

O
ut

ag
e 

P
ro

ba
bi

lit
y

 

 

ZOR max.
offset max

Offset max. w/o α
closed form Perfect CSI
RCI
ZF

Figure 2.2: Outage probability for an FDD system with 4 BS antennas, 3 users, and
SINR targets γk=3dB

case in which the BS has no knowledge of σ2
k/αk. In that case, the beamformers are

designed using the variant of (2.27) in which σ2
k/αk is removed from (2.27c). The

fact that the dashed curves are close to the corresponding solid curves confirms the

analysis in Section 2.4.6, which suggests that in interference limited scenarios the

proposed design is quite robust to the quantization of σ2
k/αk.

2.6.2 TDD systems

To illustrate the performance of the variant of the offset maximization algorithm for

TDD systems, we consider the same physical scenario as in the previous experiments,

but now the channel uncertainty takes the form of an additive zero-mean circular

Gaussian random vector with covariance 0.005 INt . The performance of the offset

maximization is compared to that of the sphere bounding approach of Wang et al.
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Figure 2.3: Outage probability for an FDD system with 4 BS antennas, 3 users, and
SINR targets γk=6dB

(2014) (SB algorithm), and the conventional RCI approach. Although the relative

performance gains in Fig. 2.4 are smaller than those for the FDD case, the pro-

posed offset maximization design provides better performance than the SB and RCI

approaches and has a quasi-closed-form solution.

2.7 Conclusion

Although various approaches for incorporating robustness to channel uncertainty in

the design of downlink beamforming schemes are available, none of them is based on

uncertainty models that reflect the nature of the errors that arise in systems with

limited feedback. In Section 2.3 we derived a variant of the S-Lemma for complex-

valued systems that enabled the development of such a scheme. The resulting design
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Figure 2.4: Outage probability for a TDD system with 4 BS antennas, 3 users, and
SINR targets γk=3dB

approach provides excellent performance for small uncertainties. However, as has typ-

ically been the case for the existing approaches, its conservatism results in degraded

performance for larger uncertainties, and it imposes a significantly larger computa-

tional burden on the base station than conventional mismatched designs (in which the

channel estimate is employed as if it were precise). In Section 2.4.3, we used insights

into the structure of the proposed scheme for limited feedback systems to develop

an alternate design formulation that provides greater robustness in the presence of

larger uncertainties, and has a quasi-closed-form solution. Simulation results con-

firmed these theoretical insights and suggest that highly effective robust designs can

be obtained with essentially the same computational effort as conventional designs.
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2.A Appendix: Proof of Theorem 1

Our first step is to prove a homogeneous version of Theorem 1.

Lemma 1 Let

Fi =

 Ai bi

bHi ci

 ∈ H(n+1)×(n+1), i = 0, 1, 2, (2.36)

suppose that F2 is indefinite, and that there exists y0 ∈ Cn+1 such that yH0 F1y0 < 0

and yH0 F2y0 = 0. Then the following two statements are equivalent:

1. yHF0y ≥ 0 for all y satisfying yHF1y ≤ 0 and yHF2y = 0.

2. There exists λ ≥ 0, µ ∈ R such that

F0 + λF1 + µF2 � 0. (2.37)

Proof of Lemma 1: To establish the implication from Statement 2 to Statement

1 we observe that for any y satisfying yHF1y ≤ 0 and yHF2y = 0 and for any

λ ≥ 0, µ ∈ R satisfying (2.37), one has

yHF0y ≥ yH(F0 + λF1 + µF2)y ≥ 0.
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The implication from Statement 1 to Statement 2 is proved as follows. Consider

the semidefinite program (SDP):

min
X

tr (F0X)

subject to tr (F1X) ≤ 0, tr (F2X) = 0,

tr (X) = 1,

X � 0,

(2.38)

where X ∈ H(Nt+1)×(Nt+1). The (Lagrangian) dual problem of (2.38) is

max
λ, µ, ν

ν

subject to F0 + λF1 + µF2 − νINt+1 � 0,

λ ≥ 0,

(2.39)

where λ, µ, ν ∈ R. Let p? and ν? denote the optimal values of the problems in (2.38)

and (2.39), respectively. Suppose that the problems in (2.38) and (2.39) are both

strictly feasible. Then, strong duality holds (i.e., p? = d?), the (shared) optimal

value is finite, and in both problems the optimal value is attained (Ben-Tal and

Nemirovski, 2001, Theorem 2.4.1, Corollary 2.4.1). Therefore, using a specific rank-

one decomposition theorem (Huang and Zhang, 2007; Sturm and Zhang, 2003), there

exists a rank-one solution to problem (2.38).1 Let us denote that rank-one solution

by Y? = y?y?H , where y? ∈ Cn+1. If Statement 1 holds, then we have that

0 ≤ y?HF0y
? = p? = ν?. (2.40)

1Alternatively, the existence of a rank-one solution can be established using the SDP rank reduc-
tion procedure of Huang and Palomar (2010) or the randomized postprocessing procedure of Huang
and Palomar (2014).
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Let (λ?, µ?, ν?) denote the solution to the problem in (2.39). Eq. (2.40) implies that

F0 + λ?F1 + µ?F2 � ν?INt+1 � 0.

Hence, the choice of λ? and µ? satisfies Statement 2.

The above argument is based on the supposition that the problems in (2.38) and

(2.39) are both strictly feasible. To complete the proof we need to establish that

that is indeed the case. To verify the strict feasibility of (2.39) we can choose a small

λ > 0, choose µ = 0 and then find a negative value of ν with a magnitude that is large

enough for F0 + λF1 + µF2 − νINt+1 � 0. To establish the strict feasibility of (2.38)

we use the following argument. First, since F2 is indefinite, we can find Y0 � 0 such

that tr (F2Y0) = 0. Now, recall from the statement of Lemma 1 that there exists y0

such that yH0 F1y0 < 0 and yH0 F2y0 = 0. Using Y0, y0, and an ε ∈ (0, 1) construct

X(ε) = (1− ε) 1

‖y0‖2
y0y

H
0 +

ε

tr (Y0)
Y0.

It can be verified that for any ε ∈ (0, 1), X(ε) � 0, tr(X(ε)) = 1, and tr(F2X(ε)) =

0. Also, it can be checked that for a sufficiently small ε > 0, it holds true that

tr (F1X(ε)) < 0. Therefore, the problem in (2.38) is strictly feasible. �

Having established Lemma 1, we are now ready to prove Theorem 1. We divide

the proof into two steps.

Step 1: Let

A = {F0|yHF0y ≥ 0, ∀y such that yHF1y ≤ 0, yHF2y = 0},

A1 = {F0|f0(x) ≥ 0, ∀x such that f1(x) ≤ 0, f2(x) = 0}.

47



Ph.D. Thesis - Mostafa Medra McMaster University - Electrical Engineering

Suppose that A and A1 are equivalent. Then, using Lemma 1, the two statements

in Theorem 1 can be shown to be equivalent. Specifically, given a vector y ∈ Cn+1,

partition

y =

 x

t

 , (2.41)

and note that

yHFiy = |t|2fi(x/t), i = 0, 1, 2, (2.42)

whenever t 6= 0. Suppose that F0 ∈ A1, and that there exists x0 such that f1(x0) < 0

and f2(x0) = 0. By denoting

y0 =

 x0

1

 , (2.43)

we see that yH0 F1y0 = f1(x0) < 0 and yH0 F2y0 = f2(x0) = 0. Consequently we can

apply Lemma 1 to show that

∃λ ≥ 0, µ such that F0 + λF1 + µF2 � 0

⇐⇒yHF0y ≥ 0, ∀y such that yHF1y ≤ 0, yHF2y = 0

⇐⇒ f0(x) ≥ 0, ∀x such that f1(x) ≤ 0, f2(x) = 0,

where the second equivalence follows from the assumption that A = A1.

Step 2: To complete the proof we now establish the equivalence A = A1. From

(2.41)–(2.42) one can readily see that any F0 ∈ A also lies in A1. (In particular,

set t = 1.) Thus, let us focus on the converse; i.e., F0 ∈ A1 =⇒ F0 ∈ A. Suppose

F0 ∈ A1. We examine two cases, namely, i) t 6= 0 and ii) t = 0.
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For the first case, we see from (2.42) that for any y satisfying t 6= 0, yHF1y ≡

|t|2f1(x/t) ≤ 0 and yHF2y ≡ |t|2f2(x/t) = 0, and we have that yHF0y = |t|2f0(x/t) ≥

0.

For the second case, consider any

y =

 x

0


that satisfies yHF1y ≤ 0 and yHF2y = 0.

We wish to show that yHF0y ≥ 0. To do so, let x0 be an arbitrary vector satisfying

f1(x0) ≤ 0 and f2(x0) = 0, which must exist, due to the fact that F0 ∈ A1. From x0

we construct y0 using (2.43), and note that the corresponding y0 satisfies yH0 F1y0 ≤ 0

and yH0 F2y0 = 0. Also, let

y(ε) = y + εy0, (2.44)

where ε = rejθ 6= 0 (i.e., r > 0). We have

y(ε)HF1y(ε) = |ε|2yH0 F1y0 + 2Re{εyHF1y0}+ yHF1y ≤ 2Re{εyHF1y0}, (2.45)

and

y(ε)HF2y(ε) = |ε|2yH0 F2y0 + 2Re{εyHF2y0}+ yHF2y

= 2Re{εyHF2y0}.
(2.46)

Let yHFiy0 = rie
jθi , i = 1, 2. Then,

y(ε)HF1y(ε) ≤ 2rr1Re{ej(θ+θ1)}, (2.47)
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and

y(ε)HF2y(ε) = 2rr2Re{ej(θ+θ2)}. (2.48)

Observing (2.47) and (2.48), we can take the value of θ as either θ̄ = π
2
− θ2 or

θ̄ = −π
2
− θ2 such that Re{ej(θ̄+θ2)} = 0 and Re{ej(θ̄+θ1)} ≤ 0. Hence we have

y(rejθ̄)HF1y(rejθ̄) ≤ 0 and y(rejθ̄)HF2y(rejθ̄) = 0

for any r > 0. By also noting that the last component of y(rejθ̄) is nonzero, it follows

from the first case that

y(rejθ̄)HF0y(rejθ̄) ≥ 0

for any r > 0. By letting r → 0, one has y(rejθ̄)→ y and yHF0y ≥ 0.

By combining the above two cases, we conclude that F0 ∈ A whenever F0 ∈ A1.

Thus, the proof of Theorem 1 is complete.

2.B Appendix: Bound derivation

We will establish the existence of rank-one solutions for sufficiently small ε by adapting

the analysis of Song et al. (2012) to the problem at hand. To begin, let Uk =(
Yk yk

yH
k ζk

)
∈ H(n+1)×(n+1) denote the dual variable associated with the kth constraint

in (2.19b), and let Zk ∈ Hn×n and ηk denote the dual variables associated with the

constraints in (2.19c), respectively. In addition, let P ? denote the optimal value for
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the problem in (2.19). Then the Lagrangian dual of (2.19) can be written as

max
Yk,yk,ζk

K∑
k=1

ζkσ
2
k/αk (2.49a)

s.t. ηk , ζkε
2 − tr(Yk) ≥ 0, (2.49b)

Uk ,

 Yk yk

yHk ζk

 � 0, (2.49c)

Zk , In −
1

γk

(
Yk + ykh

H
qk

+ hqky
H
k + ζkhqkh

H
qk

)
+
∑
j 6=k

(
Yj + yjh

H
qj

+ hqjy
H
j + ζjhqjh

H
qj

)
� 0, (2.49d)

tr(Yk + ykh
H
qk

+ hqky
H
k ) = 0. (2.49e)

If we were to remove (2.49e), then (2.49) would become the same as the dual problem

studied by Song et al. (2012); cf. (Dε) in (Song et al., 2012). Hence we can adopt

the same principles employed therein to identify instances where (2.49a)-(2.49d) can

be utilized to imply that the primal problem (2.19) has a rank-one solution. Doing

so shows that if ε2 ≤ mink
σ2
kγk

P ?αk
, then there is an optimal solution to (2.19) in which

each W?
k has rank one. It is difficult to use this result to predict whether a particular

instance of the problem in (2.19) is guaranteed to have an optimal solution that has

rank one, because the bound depends on P ?. However, the bound does demonstrate

that for sufficiently small ε there is a rank-one optimal solution.
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2.C Appendix: Offset-maximization algorithm

In this appendix we establish the fact that as ε0 → 0 any optimal set for (2.26)

approaches an optimal set for (2.23). As a first step, we observe that any feasible

point for the problem in (2.23), including the optimum point, is a feasible point for

(2.26). This is due to the fact that the condition in (2.26c) is a necessary condition

for the LMIs in (2.23c) to hold. Next, we consider the following variant of (2.26)

max
Wk,rk,t

t (2.50a)

subject to
∑

k tr(Wk) ≤ P, (2.50b)

hHqkQkhqk − σ2
k/αk − rk ≥ δ, (2.50c)

Wk � 0, rk ≥ t, t ≥ 0. (2.50d)

where δ is a small positive number. Given the optimal solution to (2.50), denoted

{W?
k}, {r?k}, t?, we can construct λk = r?k/ε

2
0. To establish the connection between

(2.23) and (2.26), we will show that as ε0 → 0, for any δ > 0 there exists a set {µk}

such that the collection {W?
k}, {λk}, t? and {µk} represents a feasible point for (2.23).

To establish this fact, we apply the theory of Schur complements to the LMI

condition in (2.23c). This LMI takes the form
(

A b
bH c

)
� 0, and a sufficient condition

for the LMI to hold is A � 0 and s = c − bHA−1b ≥ 0. For the LMI in (2.23c),

A = Qk+λkINt+µkINt . If we let ρk(·) denote the kth eigenvalue of a symmetric matrix,

then ρk(A) = ρk(Qk) + λk + µk, where the power constraints ensures that ρk(Qk)

is bounded (both above and below). With ρk(Qk) being bounded and λk = r?k/ε
2
0,

since (2.50) implicitly maximizes the smallest of the rk’s, for sufficiently small ε0,

the optimal solution for (2.50) will be such that there is a large range of values
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for µk such that A � 0. The Schur complement of A in the LMI in (2.23c) is

s = (hHqkQkhqk−σ2
k/αk−rk)−yHA−1y, where y = Qkhqk +µkhqk . Since the solution

to (2.50) guarantees that hHqkQkhqk − σ2
k/αk − rk ≥ δ > 0, we need to show that for

sufficiently small ε0, there exist a µk such that yHA−1y ≤ δ, while A remains positive

definite. To do so, we observe that when λk is large A−1 will have small eigenvalues,

which will ensure that yHA−1y is small since y is bounded. To show that explicitly,

we observe that if Qk = VkDiag
(
ρk(Qk)

)
VH
k denotes the eigen decomposition of Qk,

we can rewrite yHA−1y = hHqkVkDiag
( (ρk(Qk)+µk)2

ρk(Qk)+µk+λk

)
VH
k hqk . The above arguments

establish that for any given δ, there is a sufficiently small ε0 for which the solution

to (2.50) can be augmented by a choice for {µk} that results in a feasible point for

(2.23). Since (2.23) and (2.26) have the same objective, and the matrices {Wk} in

both problems are bounded, that establishes that as ε0 → 0, any optimal set {Wk}

for (2.26) approaches an optimal set {Wk} for (2.23).

2.D Appendix: Rank one proof

Analysis of the problem in (2.26) reveals that at optimality (2.26c) holds with equality.

Indeed if that were not the case, then we could choose a larger rk and maintain

feasibility. A larger rk would not decrease the objective value. Furthermore, at

optimality all rks are equal. To show that we observe that if, at optimality, r1 was

smaller than the other rks then we could decrease the power of any of Wk, k ≥ 2,

which would retain feasibility and yet allow for a larger value for r1. That would

contradict the assumed optimality.

To establish that (2.27) has an optimal solution that has rank one, we first assume

that we have solved (2.27) for the power constraint P and have obtained the optimal
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value rmax. Now let us consider the problem,

P ? = min
Wk

K∑
k=1

tr(Wk),

hHqkQkhqk − σ2
k/αk − rmax ≥ 0,

Wk � 0.

(2.51)

The optimal value of this problem is P ? = P . If P ? < P , that would contradict

rmax being the optimal value of (2.27), and if P ? > P that would contradict rmax

being feasible for (2.27). Since σ2
k/αk + rmax is a constant, the problem in (2.51) is

precisely in the form of minimizing the transmitted power subject to SINR constraints

in the presence of perfect CSI, but with a mismatched noise variance. That problem

is known to have an optimal solution that has rank one (Bengtsson and Ottersten,

2001).
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Chapter 3

Offset-Based Beamforming: A New

Approach to Robust Downlink

Transmission

Abstract

The design of a set of beamformers for the multi-user multiple-input single-output

(MISO) downlink so that the receivers are provided with prespecified levels of quality-

of-service (QoS) can be quite challenging when the channel state information is not

perfectly known at the base station. The constraint of having the SINR meet or ex-

ceed a given threshold with high probability is intractable in general, which results in

problems that are fundamentally hard to solve. In this paper, we will develop a high-

quality approximation of the SINR outage constraint that enables us to formulate

the precoder design problem as a convex optimization problem that can be efficiently

solved. For systems in which the uncertainty size is small, a further approximation

yields algorithms based on iterative evaluations of closed-form expressions that have
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substantially lower computational cost. Since finding the beamforming directions in-

curs most of the computational load of these algorithms, analogous power loading

algorithms for predefined beamforming directions are developed and their perfor-

mance is shown to be close to optimal. When the system contains a large number

of antennas, the proposed power loading can be obtained at a computational cost

that grows only linearly in the number of antennas. The proposed power loading

algorithm provides an explicit relationship between the outage probability required

and the power consumed, which allows us to precisely control the power consumption,

and automatically identifies users who are consuming most of the power resources .

3.1 Introduction

The directional signalling capabilities of base stations (BSs) that have multiple trans-

mit antennas enable a variety of signalling techniques (Alodeh et al., 2017) for simul-

taneously transmitting independent messages to multiple single-antenna receivers,

including dirty paper coding (Weingarten et al., 2006), vector perturbation precod-

ing (Hochwald et al., 2005), lattice reduction precoding (Windpassinger et al., 2004a),

Tomlinson-Harashima precoding (Windpassinger et al., 2004b), rate splitting (Joudeh

and Clerckx, 2016), per-symbol beamforming (Alodeh et al., 2015), and conventional

linear beamforming (Gesbert et al., 2007). Of these signalling techniques, conven-

tional linear beamforming has the simplest implementation and will be the focus of

this paper. In particular, we will consider scenarios in which the users that have

been scheduled for transmission specify the quality-of-service (QoS) that they expect

to receive. In that setting, the BS designs the set of beamformers to ensure that

the signal-to-interference-and-noise ratio (SINR) at each receiver meets the target
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level that is implicitly specified by that user’s QoS requirements. When the BS has

perfect knowledge of the channel to each user, the beamformers that minimize the

total transmitted power required to achieve the SINR targets can be efficiently found

(Rashid-Farrokhi et al., 1998a; Bengtsson and Ottersten, 2001; Schubert and Boche,

2004). However, in practice these channels are estimated and possibly predicted. In

time division duplexing (TDD) systems the estimation is typically performed during

the training phase on the uplink, whereas in frequency division duplexing (FDD) sys-

tems, each receiver estimates its channel and feeds back a quantized version of that

estimate to the BS. Since the BS has only estimates of the users’ channels, it can

only estimate the receivers’ SINRs. Those estimates are, quite naturally, uncertain

and hence there is a possibility that a design performed using the estimated channels

will fail to meet the SINR targets when the beamformers are implemented.

A prominent approach to designing a precoder that can control the consequent

outage is to postulate a model for the uncertainty in the channel estimates and to

seek designs that control the outage probability under that uncertainty model. In

some cases the approach involves jointly designing the beamforming directions and

the power allocated to these directions (e.g., Kandukuri and Boyd, 2002; Shenouda

and Davidson, 2008b; Wang et al., 2014; Medra et al., 2016), while in other cases the

beamforming directions are designed based on the channel estimates only, and the

uncertainty model is incorporated into the design of the power loading (e.g., Vucic

and Boche, 2009a; Sohrabi and Davidson, 2016; Medra and Davidson, 2015a; Pascual-

Iserte et al., 2006). Unfortunately, in most settings the outage constraint has proven

to be intractable (except for the case in Sohrabi and Davidson, 2016), and hence the

goal has been to develop computationally efficient algorithms that can manage the
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outage probability. One possible strategy for doing so is to seek “safe” or conservative

approximations of the robust optimization problem. When such approximations are

feasible, their solution is guaranteed to satisfy the constraints of the original problem

(Ben-Tal et al., 2009), but these approximations can be quite conservative (e.g., Wang

et al., 2014; Shenouda and Davidson, 2008b). An alternative strategy is to develop

approximations of the outage constraint that typically provide good performance,

but might not necessarily guarantee that their solution is feasible for the original

problem (e.g., Medra et al., 2016; Kandukuri and Boyd, 2002). The approach taken

in this paper falls into that class.

The development of the proposed offset-based approach begins with the rewriting

of the SINR constraint as the non-negativity of a random variable. That random vari-

able is a non-convex quadratic function of the uncertainties, in which the quadratic

kernel is a quartic function of the beamformers. Then, we approximate the non-

negativity constraint on the random variable by the constraint that its mean is larger

than a given multiple of its standard deviation. For the case of Gaussian channel

uncertainty, the mean and standard deviation are quadratic and quartic function

of the beamformers, respectively. That fact enables the application of semidefinite

relaxation techniques to obtain a convex formulation of (a relaxed version of) the ap-

proximated problem. While that design technique has proven to be quite effective, the

computational cost of solving the convex conic program with semidefinite constraints

is significant. By making a further approximation that is suitable for systems with

reasonably small uncertainties, we obtain a design formulation for which the KKT

optimality conditions have a simpler structure. That simpler structure facilitates the
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development of an approximate solution method that only requires the iterative eval-

uation of closed-form expressions. Further approximations reveal a connection with

the low-complexity technique developed by Medra et al. (2016).

An analysis of the computational cost of these precoder design techniques shows

that it is the calculation of the beamforming directions that consumes most of the

required computational resources, and that when these directions are defined in-

advance, the computational load can be significantly reduced. Accordingly, we de-

velop variants of our precoder design algorithms that perform power loading on the

set of fixed beamforming directions. These algorithms have low computational costs,

and provide performance that is close to that of the optimal power loading algo-

rithm (Sohrabi and Davidson, 2016). Furthermore, for systems with a large number

of antennas, (i.e., massive MIMO) in which the channel hardens, we develop a variant

of our power loading algorithm that has a computational cost that grows only linearly

with the number of antennas.

In practice, the BS has limited power available for transmission, and it is possible

that the power required to serve the scheduled users with the required outage prob-

abilities may exceed that limit. In some of these scenarios, some users suffer from

a weak channel, or from having their channels closely aligned with those of other

users. When that happens, such users consume most of the power transmitted by

the BS, and this suggests opportunities to reschedule users. On the other hand, some

users might be close to the BS and experiencing a relatively strong channel; a case

that suggests opportunities for doing some sort of power saving. The proposed power

loading algorithm provides an explicit relationship between the required outage prob-

abilities and the consumed power, which allows us to address those issues. Using
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this explicit power-outage relationship we can reduce the required power when the

resulting increases in the outage probabilities are tolerable, and we can identify users

that consume excessive amounts of power.

3.2 System model

We consider a scenario in which a BS that has Nt antennas communicates with K

single-antenna users over a narrow-band channel. In the linear beamforming trans-

mission case, the transmitted signal can be written as x =
∑K

k=1 wksk, where sk is

the normalized data symbol intended for user k, and wk is the associated beamformer

vector. For later reference we let uk = wk/‖wk‖ denote the beamforming direction

for user k, and let βk = ‖wk‖2 denote the power allocated to that direction. Hence,

wk =
√
βkuk. The received signal at user k is modelled as

yk = hHk wksk +
∑

j 6=k hHk wjsj + nk, (3.1)

where hHk is the vector of complex channel gains between the antennas at the BS and

user k, and nk is the additive zero-mean circular complex Gaussian noise at that user.

Under this model, if we let σ2
k denote the noise variance, then the SINR at user k is

SINRk =
|hHk wk|2∑

j 6=k |hHk wj|2 + σ2
k

. (3.2)

The design of a set of beamformers {wk}Kk=1 so that the SINRs satisfy specified

target values; i.e., SINRk ≥ γk requires the knowledge of the channel vectors {hk}Kk=1.

However, the BS has only estimates of {hk}Kk=1, and its estimates of the SINRs at
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the receivers are uncertain. Accordingly, we will incorporate the channel uncertainty

model into the design process. In particular, we will consider systems in which the

uncertainty can be modelled using the simple additive model,

hk = hek + ek, (3.3)

where hek is the BS’s estimate of the channel to user k, and the uncertainty in that

estimate is characterized by the distribution of the elements of ek. In this paper, we

will focus on scenarios in which ek can be modelled as a circular complex Gaussian

random variable with mean mk and covariance Ck; i.e., ek v CN (mk,Ck). One

scenario in which is model ia applicable is that of a TDD scheme operating in a slow

fading environment, in which the BS estimates the channel on the uplink using a linear

estimator and exploits channel reciprocity. When the channel gains are uncorrelated

and the BS employs the best linear unbiased estimator (BLUE), ek v CN (0, σ2
ek

I),

and we will pay particular attention to that case. (Robust beamforming schemes for

uncertainty models tailored to the FDD case are developed by Medra et al. (2016).)

Now if we let δk denote the maximum tolerable outage probability for user k, the

generic joint beamforming and power loading problem can be written as

min
wk

∑K
k=1 wH

k wk (3.4a)

subject to Prob(SINRk ≥ γk) ≥ 1− δk, ∀k. (3.4b)

This problem is hard to solve due to the intractable probabilistic outage constraint in

(3.4b) even when the uncertainty is Gaussian (Kandukuri and Boyd, 2002; Shenouda

and Davidson, 2008b; Wang et al., 2014). In order to resolve that intractability, a

61



Ph.D. Thesis - Mostafa Medra McMaster University - Electrical Engineering

variety of approximations of the problem in (3.4) by problems that are tractable have

been proposed (Kandukuri and Boyd, 2002; Shenouda and Davidson, 2008b; Wang

et al., 2014; Medra et al., 2016). However, many of those alternate problems are based

on conservative approximations, in the sense that the feasible set of beamformers for

the safe approximation is significantly smaller than the actual feasible set in (3.4b).

3.3 Principles of Offset-based approach

The derivation of the proposed approximation of the outage probability begins by

rewriting SINRk ≥ γk as hHk Qkhk − σ2
k ≥ 0, where

Qk = wkw
H
k /γk −

∑
j 6=k wjw

H
j

= βkuku
H
k /γk −

∑
j 6=k βjuju

H
j .

(3.5)

That is, the probability that SINRk ≥ γk is the same as the probability that the

term hHk Qkhk − σ2
k is non-negative. Under the additive uncertainty model in (3.3),

we observe that hHk Qkhk − σ2
k is an indefinite quadratic function of the uncertainty,

ek. In particular, we can formulate the SINR constraint as follows

fk(ek) = hHekQkhek + 2Re(eHk Qkhek) + eHk Qkek − σ2
k ≥ 0. (3.6)

The key observation that underlies the offset approximation is that for uncertain-

ties ek that are reasonably concentrated, if we design the beamforming vectors so

that the mean value of fk(ek), denoted by µfk , is a significant multiple of its standard

deviation, denoted by σfk , then that user will achieve a low outage probability. If we

let rk denote that multiple for the kth user, then the resulting approximation of the
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SINR constraint, Prob(SINRk ≥ γk) ≥ 1− δk, can be written as

µfk ≥ rkσfk . (3.7)

In order to develop an intuitive rationale for that approximation for the outage proba-

bility, we observe that when ek in (3.3) is Gaussian, fk(ek) has a generalized chi-square

distribution (Al-Naffouri et al., 2016). We also observe that the term that complicates

the calculation of the relevant tail probability (i.e., Prob (fk(ek) < 0)) is the indefinite

quadratic term eHk Qkek in (3.6). To have reasonable outage performance, the norm of

the channel uncertainty ek in (3.3) should be relatively small compared to the norm

of the channel (cf. Jindal, 2006). In that case, the constant and linear terms in (3.6)

will tend to dominate the quadratic term. Furthermore, the distribution of eHk Qkek

is “bell shaped” since Qk generically has one positive and K − 1 negative eigenval-

ues. Now if we approximate the quadratic term eHk Qkek by a Gaussian term of the

same mean and variance, then the distribution of fk(ek) becomes Gaussian and the

constraint in (3.7) provides precise control over the tail probability. In other words,

the constraint in (3.7) provides precise control of the tail probability of the Gaussian

approximation of fk(ek). These insights, and the guidance that they provide on the

choice of rk, are discussed more formally in Appendix 3.A.

To be able to use the offset approximation in (3.7) in a low-complexity design

algorithm, we need to obtain expressions for µfk and σfk in terms of the design
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variables wk =
√
βkuk. As shown in Appendix 3.B, when ek v CN (mk,Ck)

µfk = E{fk(ek)}

= (hek + mk)
HQk(hek + mk)− σ2

k + wH
k Ckwk/γk −

∑
j 6=k

wH
j Ckw

H
j , (3.8a)

σ2
fk

= var{fk(ek)}

= 2(hek + mk)
HC

1/2
k Q2

kC
1/2
k (hek + mk) + tr(C

1/2
k QkC

1/2
k )2. (3.8b)

An important observation is that µfk is a non-convex quadratic function of the

beamformers {wk}Kk=1, but for fixed beamforming directions {uk}Kk=1 it is a linear

function of the power loading {βk}Kk=1. The variance σ2
fk

is a quartic function of

the beamformers, and for fixed directions is a non-convex quadratic function of the

power loading. In scenarios in which the model ek v CN (0, σ2
ek

I) is appropriate, these

expressions simplify to

µfk = hHekQkhek − σ2
k + σ2

ek

(
βk/γk −

∑
j 6=k

βj

)
. (3.9a)

σ2
fk

= 2σ2
ek

hHekQ
2
khek + σ4

ek
tr(Q2

k). (3.9b)

We will focus on this simplified case in the following sections.

3.4 Offset-based robust beamforming

As discussed above, the robust beamforming problem in (3.4) is fundamentally hard

to solve due to the intractability of the probabilistic SINR outage constraint in (3.4b).

If we were to replace that constraint with its offset approximation, µfk ≥ rkσfk , then
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the problem in (3.4) can be closely approximated by

min
wk

∑K
k=1 wH

k wk (3.10a)

subject to µfk ≥ rkσfk , ∀k. (3.10b)

Some insights into the behaviour of solutions to (3.10) can be obtained by observing

that when the values of rk are chosen to be the same, the beamforming vectors are

designed so that users with a large SINR variance are provided with a larger SINR

mean. To do so, those users with a lower SINR variance are not provided with as

large mean SINR as they do not need the same protection against the uncertainty.

To develop an algorithm to obtain good solutions to (3.10), we observe that in

(3.10b) we have the term µfk which is quadratic in wk, and we also have the term

σ2
fk

= 2σ2
ek

hHekQ
2
khek + σ4

ek
tr(Q2

k), which includes the square of the matrix Qk and,

accordingly, is quartic in wk. If we make the substitution Wk = wkw
H
k , then the

functions in (3.10b) become linear and quadratic functions of Wk and the objective

becomes linear. As such, the remaining difficulty in the reformulation of the problem

is the set of rank-one constraints on Wk. If we relax those constraints we obtain the
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following semidefinite relaxation of the problem in (3.10)

min
Wk,d1k,d2k

tr
(∑K

k=1 Wk

)
(3.11a)

s.t. hHekQkhek − σ2
k + σ2

ek
tr(Wk)/γk − σ2

ek
tr
(∑

j 6=k Wj

)
(3.11b)

≥ rk‖[d1k d2k]‖,

d1k ≥
√

2σek‖hHekQk‖, (3.11c)

d2k ≥ σ2
ek
‖Qk‖F , (3.11d)

Wk � 0, ∀k, (3.11e)

where ‖ · ‖F represents the Frobenius norm of the matrix. In this formulation, each

SINR constraint in (3.10b) is replaced by three second order cone constraints (SOCs).

Thus, the problem in (3.11) is a convex conic optimization problem and can be ef-

ficiently solved using interior point methods. Two refined implementations of those

methods are easily accessible through the Matlab-based CVX tool (Grant et al.,

2008). In our numerical experience, the rank of the optimal Wk’s in (3.11) has al-

ways been one. When that occurs, the semidefinite relaxation is tight and the optimal

beamformer vectors wk can be directly obtained from the optimal matrices Wk. This

phenomenon has been established in related beamforming problems (Bengtsson and

Ottersten, 2001; Song et al., 2012; Ma et al., 2017), and has been observed numerically

in a number of other downlink beamforming problems (e.g., Wang et al., 2014).

3.4.1 Low-complexity precoding algorithm

Although the problem in (3.11) is convex, it contains 3K SOC constraints, plus the K

semidefinite constraints. As a result, solving (3.11) incurs a significant computational
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load even for a moderate number of antennas. In this section, we will first show how

a mild approximation of the problem in (3.11) leads to an optimization problem with

only K SOC constraints. We will then use insights from the KKT conditions of that

problem to show that it can be approximately solved using the iterative evaluation

of a sequence of closed-form expressions.

The approximation is based on the observation, made above, that in practical

downlink systems the uncertainty in the channel estimates must be small in order

for the system to support reasonable rates (Jindal, 2006). In such scenarios, the

term in (3.10b) containing σ4
ek

will typically be significantly smaller than the other

term. Accordingly, σ2
fk
≈ 2σ2

ek
hHekQ

2
khek is a reasonable approximation. Applying

this approximation in the context of the problem in (3.10) we obtain the following

approximation of (3.10b)

hHekQkhek − σ2
k + σ2

ek
wH
k wk/γk − σ2

ek

∑
j 6=k

wH
j wj ≥ rk

√
2σek‖hHekQk‖. (3.12)

The semidefinite relaxation of the resulting approximation of the problem in (3.10)

can be written as

min
Wk,dk

tr
(∑K

k=1 Wk

)
(3.13a)

s.t. hHekQkhek − σ2
k + σ2

ek
tr(Wk)/γk − σ2

ek
tr
(∑

j 6=k Wk

)
(3.13b)

≥ ‖dk‖,

dk = rk
√

2σekQkhek , (3.13c)

Wk � 0, ∀i. (3.13d)
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We note that the problem in (3.13) is over parameterized (the vectors dk are not

needed), but this over parameterization will simplify the following analysis.

The problem in (3.13) is another convex conic program, but it has significantly

fewer constraints than that in (3.11); there are K SOC constraints rather than the

3K in (3.11). While it can be solved with less computational effort than (3.11), the

presence of the semidefinite constraints means that considerable effort is still required.

To derive a more efficient algorithm, we examine the Lagrangian of (3.13), assuming

that the matrices Wk are of rank one. If we let νk denote the dual variable for the

constraint in (3.13b), and ψfk
denote the vector of dual variables for the equality

constraint in (3.13c), the Lagrangian can be written as

L(wk,dk, νk,ψfk
) =

K∑
k=1

wH
k wk −

K∑
k=1

νk(h
H
ek

Qkhek − σ2
k + σ2

ek
wH
k wk/γk

− σ2
ek

∑
j 6=k

wH
j wj − ‖dk‖)−

K∑
k=1

ψH
fk

(dk − rk
√

2σekQkhek). (3.14)

From the KKT conditions of the problem in (3.13), we can deduce that

wk =

(
νk
γk

hekh
H
ek
−
∑
j 6=k

νjhejh
H
ej

+
νkσ

2
ek

γk
I−

∑
j 6=k

νjσ
2
ek

I

− rk
√

2σek
γk

Re{ψfk
hHek}+

∑
j 6=k

rj
√

2σekRe{ψjh
H
ej
}

)
wk, (3.15)

which is an eigen equation for the direction uk. Using a similar approach to the

perfect CSI case (Bjornson et al., 2014), we can rearrange this equation to obtain the
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following fixed-point equation for νk,

ν−1
k = hHek

(
I +

∑
j

νjhejh
H
ej
−
νkσ

2
ek

γk
I +

∑
j 6=k

νjσ
2
ek

I+

rk
√

2σek
γk

Re{ψfk
hHek} −

∑
j 6=k

rj
√

2σekRe{ψjh
H
ej
}

)−1

hek

(
1 +

1

γk

)
. (3.16)

The expressions in (3.15) and (3.16) share a similar structure to those obtained for

the corresponding QoS problem in the case of perfect CSI at the BS (Bjornson et al.,

2014), but the matrix components of each equation contain four additional terms

that are dependent on the variance of the channel estimation error. To exploit this

structure and obtain an efficient algorithm for good solutions to (3.13) we observe

that if we were given {ψfk
}, then we could solve the fixed-point equations in (3.16)

for {νk}, and then we could solve the eigen equations in (3.15) for the beamforming

directions {uk}. The solution could then be completed by performing the appropriate

power loading, which will be explained in the following section. Therefore, if we could

find a reasonable approximation for the vectors ψfk
, we would obtain an iterative

closed-form solution. To do so, we observe that the variable dk in (3.13c) appears

in the Lagrangian in the term νk‖dk‖ − ψH
fk

dk. Accordingly, from the stationarity

component of the KKT conditions we have that ‖ψfk
‖ = νk and that dk and ψfk

are

in the same direction; i.e., dk/‖dk‖ = ψfk
/‖ψfk

‖. Accordingly, we can write

ψfk
= νkdk/‖dk‖. (3.17)

Since dk = rk
√

2σekQkhek , ψfk
explicitly depends on the beamforming directions,

which have not yet been determined. However, we observe that if we substitute
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(3.17) into (3.16), the terms involving dk are multiplied by the standard deviation of

the error, σek . As we have already argued in the derivation of the approximations that

lead to (3.11), σek will be small in effective downlink beamforming schemes, and this

suggests that reasonable initial approximations of the directions should yield a good

approximation of {νk}, and hence a good set of beamforming directions. We suggest

the use of the zero-forcing (ZF) directions (Spencer et al., 2004) for the estimated

channels, which we will denote by uzk . When we use that initialization, the initial

direction of dk will be the same as uzk , which allows us to rewrite the fixed-point

equations in (3.16) as

ν−1
k = hHek

(
I +

∑
j

νjhejh
H
ej
−
νkσ

2
ek

γk
I +

∑
j 6=k

νjσ
2
ek

I+

r
√

2σekνk
γk

Re{uzkhHek} −
∑
j 6=k

r
√

2σekνjRe{uzjhHej}

)−1

hek

(
1 +

1

γk

)
. (3.18)

The derivations outlined above are summarized in the sequence of closed-form

operations in Alg. 1. While the initial approximation can be improved by using the

beamformers obtained in step 4 to obtain a refined estimate of the direction of dk and

returning to step 2 of the algorithm, the simulation results in Section 3.6 suggest that

the one-shot approach taken in Alg. 1 produces a solution whose performance is quite

close to that of the first offset-based design formulation in (3.11). That suggests that

in the scenarios that we have considered, the underlying approximations are working

quite well.
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Algorithm 1 Iterative closed-form

1: Find the ZF directions {uzk}.
2: Find each νk using (3.18).
3: Find each uk using the corresponding variant of (3.15).
4: Apply the power loading developed in Section 3.5.

3.4.2 Original constant-offset algorithm (Medra et al., 2016)

As is apparent from the derivation in the previous section, one of the challenges that

complicates the closed-form calculations is the quartic dependence of the variances

σ2
fk

on the beamforming vectors wk. One way in which these complications can

be reduced is to modify the offset approximation in (3.7) so that the mean, µfk , is

constrained to be greater than a constant; i.e., the SINR constraint is replaced by

µfk ≥ rk.

If we make the approximation that the channel estimation errors are small enough

that the third term on the right hand side of (3.9a) can be neglected, the semidefinite

relaxation of the resulting approximation of (3.10) can be written as

min
Wk

tr
(∑K

k=1 Wk

)
(3.19a)

s.t. hHekQkhek − σ2
k ≥ rk, (3.19b)

Wk � 0, ∀k. (3.19c)

Interestingly, this problem arose previously in the context of a low-complexity solution

to the beamforming design in FDD systems, and the semidefinite relaxation was

shown to be tight (Medra et al., 2016).
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The iterative closed-form solution to (3.19) has a similar structure to that in

Alg. 1, but given the simpler structure of the problem, the Lagrange multipliers ψfk

disappear, and the expressions in (3.15) and (3.16) simplify to

wk =

(
νk
γk

hekh
H
ek
−
∑
j 6=k

νjhejh
H
ej

)
wk, (3.20)

ν−1
k = hHek

(
I +

∑
j νjhejh

H
ej

)−1

hek

(
1 + 1

γk

)
. (3.21)

After obtaining the beamforming directions from (3.21) and (3.20), the power loading

in (Medra et al., 2016) is performed based on the fact that the constraints in (3.19b)

should be satisfied with equality at optimality. (If this were not the case for constraint

k, then the power allocated to wk could be reduced in a way that will still satisfy

all the constraints and provide a lower objective value, contradicting the presumed

optimality.) While doing so generates a solution to (3.19), significant performance

gains can be obtained when the beamforming directions obtained from (3.20) are

combined with the power loading algorithm presented in Section 3.5.

3.4.3 Complexity analysis and further approximations

The problems in (3.11) and (3.13) are convex optimization problems with second-

order cone and semidefinite constraints. General purpose interior point methods for

such problems require O(KN6
t ) operation per iteration, which represents a significant

computational load. In contrast, the key computational steps in the iterative closed-

form approximation, Alg. 1, are those in (3.15), (3.18) and the calculation of the

ZF directions that are used in the initialization. The ZF directions can be obtained

in O(N2
tK) operations. The computational cost of solving (3.18) is dominated by
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the matrix inversion required for each user and hence it grows as O(N3
tK). We can

exploit the factorized matrix structure in (3.15) which allows for an efficient use of

the power iteration method. The cost of that step grows as O(NtK
2). We can see

that it is the computation of the Lagrange multipliers (3.18) that requires most of

the resources to compute the beamforming directions.

The original constant-offset algorithm (Medra et al., 2016) that was reviewed in

Section 3.4.2 does not require an initial set of directions and the expression for νk is

significantly simpler. In particular, the matrix to be inverted is the same for each

user, which reduces the number of computations required to O(N3
t ). Furthermore,

additional approximations can be applied to avoid the matrix inversion all together.

When the channels are nearly orthogonal, as they tend to be in massive MISO chan-

nels that “harden” as the number of antennas increases (Hochwald et al., 2004), then

if we let αk = ‖hek‖2, then we can write
∑

j νjhejh
H
ej

as an eigen decomposition∑
j νjαj

hej√
αj

hH
ej√
αj

, and hence,

hHek

(
I +

∑
j νjαj

hej√
αj

hH
ej√
αj

)−1

hek ≈
αk

1+νkαk
.

Accordingly, we can approximate (3.21) by

νk ≈ γk/αk.

To find the channel norms αk = ‖hek‖2 we need only O(Nt) operations. Hence, that

approximation enables us to compute all νks in only O(NtK) operations.
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3.5 Offset-based robust power Loading

In this section, we will show how to apply the offset-based approach to the power

loading problem that remains once the beamforming directions have been designed.

Examples of choices for those directions include the maximum ratio transmission

(MRT), zero-forcing (ZF), or regularized zero-forcing (RZF) directions, which are

calculated from the estimated channels, or any of the directions generated by the

previously described algorithms. Once the directions are chosen, we can rewrite the

problem in (3.10) as

min
βk

K∑
k=1

βk (3.22a)

subject to µfk ≥ rkσfk , ∀k, (3.22b)

where for fixed directions {uk} the expressions for µfk and σfk in (3.9a) and (3.9b)

simplify to

µfk = |hHekuk|
2βk/γk −

∑
j 6=k

|hHekuj|
2βj − σ2

k + σ2
ek

(
βk/γk −

∑
j 6=k

βj

)
. (3.23a)

σ2
fk

= 2σ2
ek

hHek

(
βkuku

H
k /γk −

∑
j 6=k

βjuju
H
j

)2

hek + σ4
ek

tr
(
βkuku

H
k /γk −

∑
j 6=k

βjuju
H
j

)2

.

(3.23b)

To develop an efficient algorithm for finding solutions to (3.22), we observe that at

optimality the constraints in (3.22b) hold with equality. If this were not the case for

constraint k, then βk could be reduced in a way that still satisfies the constraints and

yet provides a lower objective value, which would contradict the presumed optimality.
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To use that observation, we note that if the variances σ2
fk

are fixed, then the set of

equations {µk = rkσfk} yields K linear equations in the K design variables {βk}Kk=1.

If we define β = [β1, β2, ..., βK ]T , σf = [σf1 , σf2 , ..., σfK ]T , σ = [σ1, σ2, ..., σK ]T , and

the matrix A such that [A]ii = |hHeiui|
2/γi + σ2

ei
/γi, and [A]ij = −|hHeiuj|

2 − σ2
ei

,

∀i 6= j, then the set of linear equations can be written as

Aβ = σ2 + σf � rk, (3.24)

in which � represents element by element multiplication. Once the values of {βk}

have been found, we can update the value of σf using (3.23b). That suggests the

iterative linearization algorithm for solving (3.22) that is summarized in Alg. 2.

Algorithm 2 The power loading algorithm

1: Initialize σfk = 1. Compute A and A−1.
2: Find β by solving the set of linear equations in (3.24).
3: Update each σfk using (3.23b).
4: Return to 2 until a termination criterion is satisfied.

By observing the dependence of σf on β in (3.23b), Alg. 2 can be written in the

form of a fixed point technique by writing β = A−1σ2+A−1(σf�rk). The eigenvalues

of A−1 determine the convergence properties for these fixed-point equations. Since

the matrix A typically has large diagonal values representing the signal powers, and

lower values on the off-diagonal elements representing the interference powers, the

eigen values of A−1 will typically be less than one. Our numerical experience not

only confirms this observation, but also suggests that the number of iterations needed

for near-optimal performance is very small. In terms of computational cost, the

initialization step in Alg. 2 requires O(K2Nt) operations to compute A and O(K3)

operations to compute A−1. In each iteration the computational cost for step 2 is
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O(K2) operations, and the cost of step 3 is O(KN2
t ) operations.

3.5.1 Simplifying the SINR variance calculation

The above analysis shows that the only step in Alg. 2 whose computational cost grows

faster than linearly in the number of antennas is the computation of σfk . In massive

MISO systems, the resulting computational load can be significant. To reduce the

required computations, we observe that when the number of antennas is large and the

channels are uncorrelated, the inner product between different channels will typically

be relatively small. Since the beamforming directions will typically be closely aligned

with the channel vectors, the inner product between different beamforming vectors

will likely be small as well. This observation suggests removing the cross terms

uHj uk,∀j 6= k in (3.23b). That would yield the following approximations

hHekQkQkhek = hHek

(
βkuku

H
k /γk −

∑
j 6=k

βjuju
H
j

)2

hek

≈ |hHekuk|
2β2

k/γ
2
k +

∑
j 6=k

|hHekuj|
2β2

j ,

(3.25)

and

tr(Q2
k) = tr

(
βkuku

H
k /γk −

∑
j 6=k

βjuju
H
j

)2

≈ tr
(
β2
kuku

H
k uku

H
k /γ

2
k +

∑
j 6=k

β2
juju

H
j uju

H
j

)
= β2

k/γ
2
k +

∑
j 6=k

β2
j .

(3.26)

The numerical results presented in Section 3.6 indicate that these approximations

result in designs that are very close in performance to those obtained from the original
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formulations, even when the number of antennas is quite small. Furthermore, since

the terms |hHekuj|
2 are already computed in the initialization step that constructs the

matrix A, these approximations reduce the computational cost of updating σf in

step 3 of Alg. 2 from O(N2
tK) to O(K2).

3.5.2 User rescheduling

One of the fundamental characteristics of the original outage constrained beamformer

design problem in (3.10) is that for a certain set of channel estimates the problem

may be infeasible. That is, there may be no set of beamformers that can satisfy the

outage constraints. Furthermore, even when the problem is feasible, the solution may

be impractical in the sense that the minimum transmission power required to satisfy

the outage constraints may exceed the capability of the BS. The approximations of

the original formulation in (3.11), and (3.13) retain these characteristics, and the

power loading problem in (3.22) retains them, too. Fortunately, as we now explain,

for systems in which each user specifies the same value for r, the structure of a

closely related power loading problem provides insights into which users should be

rescheduled in order for the problem in (3.22) to be feasible, and for the solution of the

problem to be within the capabilities of the BS. The auxiliary power loading problem

that we will consider is that of maximizing a common offset coefficient subject to an

explicit power constraint, namely

max
βk,r

r (3.27a)

subject to
∑K

k=1 βk ≤ Pt, (3.27b)

µk ≥ rσfk , ∀k, (3.27c)
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where Pt denotes the maximum transmission power of the BS. This problem is always

feasible whenever all the estimated channels are different. (The value of r can be

decreased until all components of (3.27c) can be satisfied using a power loading that

satisfies (3.27b).) However, negative values and small positive values of r correspond

to cases with high probability of outage. The problem in (3.27) can be solved using an

algorithm similar to that in Alg. 2. However, at the step analogous to step 2 of Alg. 2,

we need an additional equation to determine the value for r. That equation arises

from observing that the power constraint in (3.27b) holds with equality at optimality,

and hence, from (3.24) and (3.27b) we have that

r =
Pt − 1TA−1σ2

1TA−1σf
,

where 1 is the vector with all elements equal to one. This equation clearly demon-

strates the relationship between the power budget and the robustness. More impor-

tantly, it shows that these users that correspond to the largest elements of A−1σ2

are the ones that play the biggest role in constraining the extent of robustness that

can be obtained. That suggests that if the optimal value of r in (3.27) is not large

enough to provide the desired robustness level, one or more of those users correspond-

ing to large values of A−1σ2 should be rescheduled. (We note that the use of good

user selection algorithms (e.g., Yoo and Goldsmith, 2006) prior to the design of the

beamforming directions will reduce the need to reschedule users, but the inherent

capability of the proposed power loading algorithms to perform rescheduling provides

significant performance gains when the initial user selection is imperfect.)

Once the optimal value of the auxiliary problem in (3.27) exceeds the desired value

for r, the power minimization problem in (3.22) can be solved. Since the distribution
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of fk(ek) is dominated by the Gaussian terms, values of r in the range of 2 to 5

would be sufficient to obtain outage probabilities consistent with the expectations of

contemporary applications.

3.6 Simulation results

In this section, we will provide three sets of numerical results. First, we will provide

simulation results that show the validity of the offset-based algorithms and compare

the performance of the algorithms presented here to that of algorithms that obtain

robustness by ensuring that outage does not occur for uncertainties that lie in a

given region. Specifically we will compare with the sphere bounding (SB) algorithm

presented by Wang et al. (2014). Second, we will provide comparison between the

performance of the power loading algorithms proposed in Section 3.5 and the optimal

power loading algorithm by Sohrabi and Davidson (2016). In the third set of simula-

tion results, we will demonstrate the performance gains that can be obtained by using

the user rescheduling, and the power saving capabilities of the offset maximization

framework.

For the simulation setups, we will we consider a downlink system in which a BS

serves three single-antenna users. We will assume that the BS has four antennas, and

the three users are randomly distributed within a radius of 3.2km. The large scale

fading is described by a path-loss exponent of 3.52 and log-normal shadow fading with

8dB standard deviation, and the small scale fading is modelled using the standard

i.i.d. Rayleigh model. The channel estimation error is assumed to be zero-mean and

Gaussian with covariance σ2
ek

I. The receiver noise level is -90dBm, and the SINR

target is set to 6dB. A simple channel-strength user selection technique is employed,
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where users are served only if 100‖hek‖2/σ2
k ≥ γk, where we consider 100 here as the

implicit total power constraint.

To plot the performance curves, we randomly generate a channel realization and

provide a channel estimate and the corresponding error vector. Each of the algorithms

is provided with the channel estimates and a robustness measure. The robustness

measure for the algorithms provided in this paper is the value of the offset rk. For

the sphere bounding algorithm by Wang et al. (2014) it is the size of the zero-outage

region, and for the power loading algorithm by Sohrabi and Davidson (2016) it is

directly the outage probability. Each algorithm is used to design beamformers that

should provide the specified robustness, and from those vectors we decide whether or

not any user in the system with the actual channel realizations is in outage, and we

calculate the corresponding transmission power. By repeating this experiment over

thousands of channel realizations, we can plot the average power versus the outage

probability for the different algorithms when these algorithms provide a feasible solu-

tion; a solution that satisfies the constraints using transmitted power that is less than

100. In fairness to all methods, the average is taken over those channel realizations

for which all methods produce a feasible solution.

In Fig. 3.1, assuming σek = 0.1, we plot the average total transmitted power

versus the outage probability for the algorithms in (3.11), (3.13), Alg. 1, and that of

the original offset maximization directions in Secion. 3.4.2 with the suggested power

loading in Section 3.5. As benchmarks, we plot the performance of the SB algorithm

(Wang et al., 2014), and that of the ZF when combined with the power loading in

Section 3.5. In Fig. 3.2, we repeat the experiment for σek = 0.05. We observe that the

performance gap between the proposed algorithms becomes smaller when the error
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Figure 3.1: The average transmitted power against the outage probability for a system
with 3 users, 4 BS antennas, γ = 6dB, and σek = 0.1.

variance decreases, which justifies the validity of the approximations for small error

size. We also note that the performance of Alg. 1 is very close to that of (3.11), and

both of which are better than the SB-based algorithm. The performance of the ZF

algorithm when combined with the proposed power loading algorithm in Section 3.5

depends on the uncertainty size, where better performance results are shown when the

uncertainty size is larger. The combination of the original constant-offset directions in

Section 3.4.2 with the suggested power loading in Section 3.5 seems to provide worse

performance compared to other offset-based approaches. However, the decoupling

of the beamforming directions design and the power loading can provide significant

improvements in the performance as explained in Section 3.5. The performance gains

come from the ability to control the power precisely, especially when the problem is

infeasible.
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Figure 3.2: The average transmitted power against the outage probability for a system
with 3 users, 4 BS antennas, γ = 6dB, and σek = 0.05.

The second set of simulation results provides the performance gap between the

proposed power loading algorithm in Section 3.5, and the power loading algorithm

by Sohrabi and Davidson (2016). In Fig. 3.3, we plot the average outage probability

versus the average transmitted power for the power loading algorithm by Sohrabi and

Davidson (2016), and the power loading in Alg. 2. While the algorithm by Sohrabi

and Davidson (2016) is optimal in terms of the required power to achieve certain

outage probability over the Gaussian error distribution, the proposed algorithm pro-

vides better average outage probability over time. This performance is achieved while

having iterations no more than 5.

To assess the performance gains that result from the power control capabilities of

the proposed power loading algorithm, we plot the outage probability of the problem

in (3.27) with the offset maximization directions in Section 3.4.2 versus the number
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Figure 3.3: The average transmitted power against the outage probability for a system
with 3 users, 4 BS antennas, γ = 6dB, and σek = 0.1. Here [15] referes to (Sohrabi
and Davidson, 2016).

of antennas. In this case, we set the total power constraint Pt = 1, and the num-

ber of users to six. We plot the offset maximization when the approximations for

obtaining the directions in Section 3.4.3, and those for obtaining the power load-

ing in Section 3.5.1 are applied. We also plot the performance of the proposed user

rescheduling scheme (Alg. Sect. 3.5.2 (a)) and the user rescheduling when combined

with the power saving (Alg. Sect. 3.5.2 (b)). We observe that the proposed approxi-

mations provide almost the same outage performance over the whole range of antenna

numbers. We also observe that the user rescheduling technique greatly enhances the

outage performance, especially when the number of antennas is relatively low, which

can be translated to a greater probability of the channels not being sufficiently or-

thogonal. (In this example, we apply user rescheduling whenever the resulting offset

r in (3.27) is smaller than two, and the rescheduled user(s) are considered in outage.)
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Figure 3.4: The outage probability versus the number of antennas for a system with
6 users, γ = 6dB, and σek = 0.1.

We also observe that the power saving has almost no effect on the outage performance

when we upper bound r by 5. However, significant power can be saved; the average

actual transmitted powers used by the power saving algorithm (Alg. Sect. 3.5.2 (b))

are [0.74 0.71 0.67 0.65 0.62 0.59 0.56 0.54 0.52] compared to 1.

3.7 Conclusion

In this paper, a new offset-based approach is suggested for robust downlink beamform-

ing. The approximation of the SINR outage constraint by an offset-based constraint

enabled the formulation of the design problem as a convex problem. Further reduc-

tions can be obtained when the uncertainty size is small, allowing for an iterative

closed-form solution. When the beamforming directions are defined in advance, the

offset-based approach provide a power loading algorithm that provides significant
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performance and unique power control capabilities while using low number of compu-

tations. The shown performance gains, and the significant difference in computations

suggest using the offset-based approach instead of the sphere bounding approach.

3.A Choice of rk

From Cantelli’s inequality, which is sometimes referred to as the one-sided Chebyshev

inequality, we know that for any random variable X of a mean µx and variance σx,

Prob(X− µx ≤ −rσx) ≤
1

1 + r2
.

Therefore, if we ensure that µx ≥ rσx then Prob(X ≤ 0) ≤ 1
1+r2

. Accordingly, if

we design the beamformers such that µfk ≥ rkσfk then the outage probability is

guaranteed to be less than 1
1+r2k

. However, for most practical applications this bound

is quite loose, and such an approach for choosing rk can be quite conservative. Indeed,

as we explained in Section 3.3, for small uncertainties the distribution of fk(ek) is close

to being Gaussian. If it were in fact Gaussian, then if the beamformers are designed

such that µfk ≥ rkσfk then the outage probability would be Q(rk) = 1
2
erfc( rk√

2
), where

erfc(·) is the complementary error function.

3.B Mean and variance derivations

A Gaussian random variable ek v CN (mk,Ck) can be represented as ek = mk +

C
1/2
k êk, where êk v CN (0, I). Using that representation we can write
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µfk = E{fk(ek)}

= (hek + mk)
HQk(hek + mk)− σ2

k + E{êHk C
1/2
k QkC

1/2
k êk}

= (hek + mk)
HQk(hek + mk)− σ2

k + wH
k Ckwk/γk −

∑
j 6=k

wH
j Ckw

H
j .

(3.28)

The variance can be expressed as

σ2
fk

= var{fk(ek)}

= var{2Re(êHk C
1/2
k Qk(hek + mk)) + êHk C

1/2
k QkC

1/2
k êk

}
= 2(hek + mk)

HC
1/2
k Q2

kC
1/2
k (hek + mk) + var{êHk C

1/2
k QkC

1/2
k êk}+ 0∗

= 2(hek + mk)
HC

1/2
k Q2

kC
1/2
k (hek + mk) + tr(C

1/2
k QkC

1/2
k )2,

(3.29)

where [A]ij denotes the (i, j)th element of the matrix A, and tr denotes the trace

function. At the point marked with the asterisk we have used the fact that the ex-

pectation of the cross terms is equal to zero. This is true because E{2Re(eHk Qk(hek +

mk))(ê
H
k C

1/2
k QkC

1/2
k êk)} consists of terms containing either similar or different com-

ponents from the êk vector. Since êk has a zero mean, all terms with different indices

will have a zero mean, while terms of similar indexes will take the form of a complex

Gaussian raised to the power of three, which also have zero mean.
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Chapter 4

Low-Complexity Robust MISO

Downlink Precoder Design With

Per-Antenna Power Constraints

Abstract

This paper considers the design of the beamformers for a multiple-input single-

output (MISO) downlink system that seeks to mitigate the impact of the imperfec-

tions in the channel state information (CSI) that is available at the base station (BS).

The goal of the design is to minimize the outage probability of specified signal-to-

interference-and-noise ratio (SINR) targets, while satisfying per-antenna power con-

straints (PAPCs), and to do so at a low computational cost. Based on insights from

the offset maximization technique for robust beamforming, and observations regarding

the structure of the optimality conditions, low-complexity iterative algorithms that

involve the evaluation of closed-form expressions are developed. To further reduce

the computational cost, algorithms are developed for per-antenna power-constrained
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variants of the zero-forcing (ZF) and maximum ratio transmission (MRT) beamform-

ing directions. In the MRT case, our low-complexity version for systems with a large

number of antennas may be of independent interest. The proposed algorithms are ex-

tended to systems with both PAPCs and a total power constraint. Simulation results

show that the proposed robust designs can provide substantial gains in the outage

probability while satisfying the PAPCs.

4.1 Introduction

The spatial multiplexing capabilities of base stations (BSs) with multiple antennas

offer the potential for substantial gains in the quality of service (QoS) that can be

offered to users in a downlink system (e.g., Gesbert et al., 2007). In particular, linear

beamforming schemes have been developed to simultaneously serve multiple users

at their requested signal-to-interference-and-noise ratio (SINR) targets (Bengtsson

and Ottersten, 2001; Rashid-Farrokhi et al., 1998a; Wiesel et al., 2006; Schubert and

Boche, 2005; Bjornson et al., 2014). However, the performance of those beamform-

ing schemes can be quite sensitive to the accuracy of the channel state information

(CSI) that is available at the BS. Since that information is typically obtained through

estimation on the uplink (in time division duplexing, TDD, systems) or through es-

timation on the downlink and quantized feedback (in frequency division duplexing,

FDD, systems), the CSI at the BS is inherently uncertain. That observation has

spawned the development of a variety of design strategies that incorporate different

models for the uncertainty into the design. One strategy is to require the requested

SINR to be met for all channels that are within a specified distance of the BS’s model

for the channel (Pascual-Iserte et al., 2006; Shenouda and Davidson, 2007; Zheng
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et al., 2008; Vucic and Boche, 2009a; Shenouda and Davidson, 2008b; Wang et al.,

2014). However, in many scenarios that is a rather conservative approximation of

the outage that occurs in practice. Furthermore, although this strategy, or a mild

approximation thereof, often results in a convex optimization problem for finding

the beamformers, the computational cost of solving those problems can be quite sig-

nificant. Fortunately, different approaches to approximating the outage probability

can yield alternative design strategies that provide excellent performance in practice,

even when the uncertainties in the CSI are quite substantial, and do so in a compu-

tationally inexpensive way. One such strategy is the offset maximization algorithm

(Medra et al., 2016), in which the beamformers are designed to maximize a carefully

structured offset on the performance specification (see Section 4.2.2).

The above-mentioned design strategies seek to jointly design the beamforming

directions and the power allocated to each direction. However, significant reductions

in the computational cost can be obtained by computing the beamforming directions

using a (computationally cheap) conventional technique and then developing a robust

power loading algorithm. The beamforming directions in this approach are typically

chosen to be either the maximum ratio transmission (MRT) (Lo, 1999) or zero-forcing

(ZF) directions (Spencer et al., 2004). For the case of additive Gaussian uncertain-

ties in the BS’s CSI, single-integral expressions for the outage probability can be

obtained (Al-Naffouri et al., 2016) and an effective algorithm for finding the power

loading that minimizes the power required to meet the specified outage constraint

has been developed (Sohrabi and Davidson, 2016). However, that algorithm is rather

computationally expensive. (Medra and Davidson, 2015a) used insights from bounds
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on the cumulative distributive function to develop a new robust power loading tech-

nique that provides performance close to that of the optimal algorithm in (Sohrabi

and Davidson, 2016), but has significantly lower computational cost.

The existing literature on robust downlink beamforming has tended to focus on

designs that impose a constraint on the total power transmitted by the BS. In prac-

tice, each antenna will typically be driven by its own power amplifier, and hence the

design ought to include constraints on the power transmitted from each antenna, as

well as the total power. In the case of perfect CSI, a number of downlink beamform-

ing algorithms that incorporate per-antenna power constraints (PAPCs) have been

developed (Shen and Lok, 2014; Dartmann et al., 2013; Liu and Chen, 2009; Yazarel

and Aktas, 2007; Yu and Lan, 2007). For robust beamforming designs that can be for-

mulated as convex problems (e.g., Zheng et al., 2008; Shenouda and Davidson, 2007;

Wang et al., 2014) and are solved using generic solvers, incorporating these additional

constraints is quite straightforward. However, doing so increases the computational

cost of what are, in comparison to the perfect CSI case, already quite expensive

algorithms. The goal of this paper is to develop robust beamforming designs that

incorporate PAPCs and have reasonable computational costs. Our technique is based

on insights developed from the offset maximization approach to robust beamforming

(Medra et al., 2016), a closely related power loading technique (Medra and David-

son, 2015a), and observations regarding the structure of the optimality conditions for

the design problem. These observations enable us to develop a low-complexity dual

update optimization startegy related to that by Yu and Lan (2007) that involves the

evaluation of a sequence of closed-form expressions. After extending that algorithm
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to systems that have both PAPCs and a total power constraint, we make the obser-

vation that a large fraction of the computational cost arises from the design of the

beamforming directions. To reduce that cost, we develop PAPCed variants of the

ZF and MRT directions, and show how these can be incorporated into our design

approach. Furthermore, we develop a low-complexity version of our PAPCed MRT

beamforming algorithm for “massive MIMO” systems with a large number of anten-

nas. As scaling techniques for large MRT beamformers have been recently proposed

(Feng and Jing, 2016), that algorithm may be of independent interest.

4.2 System model and design approach

We consider a narrowband multiple-input single-output (MISO) downlink in which

an Nt-antenna BS sends independent messages to K single-antenna users. The trans-

mitted signal at a given signalling instant is constructed using linear beamforming

as x =
∑K

k=1 wksk, where sk is the power-normalized data symbol for user k, and

wk is the associated beamformer. In some settings we will refer to uk = wk/‖wk‖

as the direction of the beamformer, and βk = wH
k wk as the power allocated to that

direction. That enables us to write

wk =
√
βk uk.

The received signal at user k can be written as

yk = hHk wksk +
∑
j 6=k

hHk wjsj + nk, (4.1)
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where hHk denotes the channel between the BS and receiver k, and nk represents the

additive zero-mean circular complex Gaussian noise at that user.

In the problems that we will consider, each user specifies the SINR that it will

require in order to support the service that it desires. This constraint takes the form

SINRk =
hHk wkw

H
k hk

hHk (
∑

j 6=k wjwH
j )hk + σ2

k

≥ γk, (4.2)

where σ2
k is the noise variance at receiver k, and γk is the required SINR. We will find

it convenient to rewrite that constraint as

hHk Qkhk − σ2
k ≥ 0,

where

Qk = wkw
H
k /γk −

∑
j 6=k

wjw
H
j . (4.3)

If we denote the signal transmitted from antenna i by xi, then the power constraint

on the BS as a whole can be written as
∑Nt

i=1E{|xi|2} =
∑K

k=1 wH
k wk ≤ Pt, where we

have used the assumptions that the messages are independent and that the symbols

sk are normalized. If we let pi denote the maximum power that can be transmitted

from antenna i, the PAPC can be written as E{|xi|2} =
[∑K

k=1 wkw
H
k

]
i,i
≤ pi, where

[·]i,i denotes the (i,i)th entry of the given matrix.

In order for a BS to be able to evaluate whether a candidate set of beamformers

{wk}Kk=1 satisfies the K SINR constraints in (4.2), the BS must know each channel

vector hk (e.g., Bengtsson and Ottersten, 2001). However, typically the BS will only

have an estimate of each channel, denoted hek . To incorporate the uncertainty in

that channel estimate into the design, we will postulate a conditional distribution,
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p(hk|hek), and convert the deterministic QoS constraint SINRk ≥ γk into the chance

constraint Prob(SINRk ≥ γk) ≥ 1 − δk, where δk is the required outage probability.

In this paper, we will model the uncertainty additively; i.e.,

hk = hek + ek, (4.4)

with ek having zero-mean and being independent of the channel and data. Our results

will focus on the case where ek is a zero-mean circular Gaussian random variable of

covariance σ2
ek

I. Among a number of scenarios, that model is appropriate in certain

TDD systems in which channels are estimated during the uplink training phase.

4.2.1 Design approach

With the uncertainty modeled as described above, one approach to the design of the

downlink beamformers wk is to seek to minimize the probability of outage of the

SINR targets, subject to a total power constraint and PAPCs; i.e.,

min
wk,δk

max
k

δk (4.5a)

s.t.
∑

k wH
k wk ≤ Pt, (4.5b)[∑K

k=1 wkw
H
k

]
i,i
≤ pi, ∀i, (4.5c)

Prob(SINRk ≥ γk) ≥ 1− δk, ∀k. (4.5d)

This problem is hard to solve even without the PAPCs. However, in the case that

the PAPCs are omitted, the offset maximization algorithm (Medra et al., 2016) is a

low-complexity algorithm that has been shown to provide good performance. The
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goal of this paper is to use insights from the development of the offset maximiza-

tion approach to develop an effective low-complexity algorithm for the PAPCed case.

One observation that we will use is that the performance of the offset maximiza-

tion approach can be improved by applying the robust power loading algorithm in

(Medra and Davidson, 2015a) to the beamforming directions generated by the offset

maximization. Doing so reveals that robust beamformers can be obtained with a com-

putational cost that is similar to that of beamformer design in the perfect CSI case.

(Many existing approaches to robust beamforming are much more expensive than the

perfect CSI case (e.g., Shenouda and Davidson, 2008b; Wang et al., 2014).) However,

like the perfect CSI case, it is the computation of the directions that dominate the

computational cost. Therefore, we also propose to apply the principles that underlie

the power loading by Medra and Davidson (2015a) to beamforming directions that

can be computed more efficiently, such as PAPCed variants, derived herein, of the

classical ZF and MRT directions; see Sections 4.4, and 4.5. In the latter case, a fur-

ther approximation that is suitable for scenarios with a large number of antennas at

the BS substantially reduces the computational cost, and has almost the same outage

performance.

To lay the groundwork for the development of the proposed beamforming schemes,

in the following subsections we briefly review the offset maximization approach to

beamformer design under a total power constraint (Medra et al., 2016), and the low-

complexity robust power loading technique for systems with a total power constraint

that was developed by Medra and Davidson (2015a).
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4.2.2 Offset maximization beamforming directions

The offset maximization beamformers (Medra et al., 2016) can be found by solving

the following problem:

r?t = max
wk,r

r (4.6a)

s.t.
∑K

k=1 wH
k wk ≤ Pt, (4.6b)

hHekQkhek − σ2
k − r ≥ 0, ∀k. (4.6c)

It is implicit in (4.6c) that this algorithm tries to find the largest noise-plus-interference

power each user can endure, under the total power constraint. Medra et al. (2016)

developed an efficient method to solve (4.6) by considering the following problem, in

which, for now, it is assumed that the optimal value for (4.6), r?t , is known:

P ? = min
wk

∑
k wH

k wk (4.7a)

s.t. hHekQkhek − σ2
k − r?t ≥ 0, ∀k. (4.7b)

It can be shown (Medra et al., 2016) that the optimal value of the problem in (4.7)

is Pt, and that any set of beamformers that optimize (4.7) are also optimal for (4.6).

Also, at optimality, all the constraints are satisfied with equality.

The advantage of the connection between problems (4.6) and (4.7) is that a highly

efficient algorithm for the problem in (4.7) with r = 0 (i.e., the perfect CSI case) was

developed by Rashid-Farrokhi et al. (1998a); (see also Bjornson et al., 2014). That

algorithm can be extended to jointly find the optimal beamformers and the optimal

offset, r?t , for the problem in (4.6). In particular, if we let νk denote the Lagrange
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multiplier for the SINR constraint in (4.7b), then from the KKT conditions of (4.7)

we can find the offset maximization directions by solving the eigen problem

uk =

(
νk
γk

hekh
H
ek
−
∑
j 6=k

νjhejh
H
ej

)
uk, (4.8)

where the Lagrange multipliers must satisfy the fixed-point relation

ν−1
k = hHek

(
INt +

∑
j νjhejh

H
ej

)−1

hek

(
1 + 1

γk

)
. (4.9)

Since (4.8) can be solved using a power method, the complexity of finding the direc-

tions is dominated by the matrix inversion in (4.9), which requires O(N3
t ) operations.

Having found those directions, the offset maximization power loading and the opti-

mal offset can be found by solving the K + 1 linear equations that arise when the

constraints in (4.6b) and (4.6c) hold with equality.

4.2.3 Robust power loading

The offset maximization algorithm described above uses the same offset r to increase

the robustness of each user to channel uncertainty. The goal of robust power loading

approach by Medra and Davidson (2015a) is to provide a computationally-efficient

way to adapt the offset to the characteristics of each user’s channel. For an arbitrary

set of beamforming directions {uk}, the generic power loading problem can be stated
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as

min
βk,δk

max
k

δk (4.10a)

s.t.
K∑
k=1

βk ≤ Pt, (4.10b)

Prob(SINRk ≥ γk) ≥ 1− δk, ∀k. (4.10c)

The derivation of the algorithm developed by Medra and Davidson (2015a) for

producing good solutions to (4.10) begins by observing the under the additive un-

certainty model in (4.4), the probability that SINRk ≥ γk is equal to the probability

that

fk(ek) = hHekQkhek + 2Re(eHk Qkhek) + eHk Qkek − σ2
k ≥ 0. (4.11)

If we assume that the norms of the errors ek are small, as they will need to be

for reliable operation (Jindal, 2006), then we can approximate the quadratic term

eHk Qkek by a Gaussian random variable of the same mean and variance. In that case,

the distribution of fk(ek) becomes Gaussian. (Recall that we are focusing on the

case where ek is Gaussian, with zero mean and of covariance σ2
ek

I; cf. (4.4).) Under

that approximation, if we design the power loading so that the mean, µfk , of fk(ek)

is a significant multiple of its standard deviation, σfk , then that user will achieve

a low outage probability. Indeed, we can choose a value for that multiple so that

the target outage probability is guaranteed to be satisfied (e.g., Pascual-Iserte et al.,

2006). We also note that the optimal solution of (4.10) has equal values for δk. If

that were not the case, the user(s) with higher outage probability could be allocated

more power and the other user(s) less, which would reduce the objective value, and
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thus contradict the assumed optimality. Therefore, it is natural to choose the same

multiple, r, for each user in the approximation of the outage constraint in (4.10c).

The resulting approximation of the problem in (4.10) can be written as (Medra and

Davidson, 2015a)

max
βk,r

r (4.12a)

s.t.
K∑
k=1

βk ≤ Pt, (4.12b)

µfk ≥ rσfk , ∀k. (4.12c)

From the definition of fk(ek) in (4.11) and the channel uncertainty model in (4.4), it

can be shown that

µfk = hHekQkhek − σ2
k + σ2

eβk (1/γk + 1)− σ2
ePt, (4.13)

which is linear in the design variables {βk}Kk=1. (Recall from (4.3) that Qk = βkuku
H
k /γk−∑

j 6=k βjuju
H
j .) Similarly, we have that

σ2
fk

= var{fk(ek)} = 2σ2
eh

H
ek

Q2
khek + σ4

etr(Q
2
k). (4.14)

The structure of the problem in (4.12) is such that the constraints hold with

equality at optimality (Medra and Davidson, 2015a). Since σfk is not a linear function

in β, that results in a set of non-linear equations for the power loading. The following

iterative linearization technique has been shown by Medra and Davidson (2015a) to

be an effective way to obtain good solutions to (4.12):
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1. Initialize each σfk = 1.

2. Find {βk} and r by solving the set of linear equations that arise from equality

in (4.12b) and (4.12c) for the current values of σfk , where µfk is defined in (5.9).

3. Update each σfk using (4.14).

4. Return to (2) until a convergence criterion is satisfied.

We note that the matrix that relates {βk} to σfk and r in step 2 is constant, and,

accordingly, we need only invert this matrix once (Medra and Davidson, 2015a).

In practice, this algorithm converges quickly with a high probability (Medra and

Davidson, 2015a). Medra and Davidson (2016) showed that this algorithm provides

very similar performance to the optimal power loading by Sohrabi and Davidson

(2016), and at a cost that is dominated by the O(K3) operations that result from the

initial matrix inversion.

4.3 Offset maximization designs with PAPCs

To simplify the development of the proposed robust beamforming technique, we will

first consider the addition of PAPCs to the offset maximization problem in (4.6). We

will then modify the resulting algorithm using insights from the above robust power

loading algorithm.

When we add the PAPCs to the offset maximization problem in (4.6), the design
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problem becomes

r?tpa = max
wk,r

r (4.15a)

s.t.
∑K

k=1 wH
k wk ≤ Pt, (4.15b)[∑K

k=1 wkw
H
k

]
i,i
≤ pi, ∀i, (4.15c)

hHekQkhek − σ2
k − r ≥ 0, ∀k. (4.15d)

Although the formulation in (4.15) is not convex, it can be transformed in a straight-

forward way into a second order cone program, using the technique that was used

for the case of perfect CSI (cf., Wiesel et al., 2006; Yu and Lan, 2007). While that

formulation can be solved using a generic interior point method (e.g., Boyd and Van-

denberghe, 2004), such generic methods do not exploit the structure of the problem,

and the development of tailored algorithms that do exploit the structure offers the

potential for improved computational efficiency.

In the following subsections, we will first develop a low-complexity algorithm for

the case where we have PAPCs only, with no total power constraint. Then we will

tackle the general problem with both types of power constraints. The development

will use insights from algorithms developed for the perfect CSI case (Yu and Lan, 2007)

and insights from the robust power loading algorithm described in Section 4.2.3.
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4.3.1 Dominant PAPCs

If Pt >
∑Nt

i=1 pi, the total power constraint can never be active and the problem in

(4.15) can be rewritten as

r?pa = max
wk,r

r (4.16a)

s.t.
[∑K

k=1 wkw
H
k

]
i,i
≤ pi, ∀i, (4.16b)

hHekQkhek − σ2
k − r ≥ 0, ∀k. (4.16c)

Motivated by the way that a customized algorithm for (4.7) was adapted (Medra et al.,

2016) to solve the problem in (4.6), we consider the following problem in which, for

now, r?pa is presumed to be known,

min
wk,α

α
∑Nt

i=1 pi (4.17a)

s.t.
[∑K

k=1 wkw
H
k

]
i,i
≤ αpi, ∀i, (4.17b)

hHekQkhek − σ2
k − r?pa ≥ 0, ∀k. (4.17c)

In the context of (4.17), the constant term
∑Nt

i=1 pi in the objective is superfluous,

but it will simplify the interpretation of the Lagrangian. Using arguments analogous

to those by Medra et al. (2016); Yu and Lan (2007), it can be shown that any set

of beamformers that is optimal for (4.17) is also optimal for (4.16), and the optimal

value of α in (4.17) is one.

Now, let qi denote the dual variable of the ith condition in (4.17b) and νk denote

the dual variable of the kth condition in (4.17c). Let us also define the diagonal

matrix Q̂, such that [Q̂]i,i = qi. These definitions enable us to write the Lagrangian
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of the problem in (4.17) as

L(wk, α, νk, qi) =
K∑
k=1

νk(σ
2
k + r?pa) + α

( Nt∑
i=1

pi −
Nt∑
i=1

qipi

)
+

K∑
k=1

wH
k

(
Q̂ +

∑
j 6=k

νjhejh
H
ej
− νk/γkhekhHek

)
wk. (4.18)

Using the notion of complementary slackness, since the optimal value of α is one,

at optimality we have that
∑Nt

i=1 pi −
∑Nt

i=1 qipi = 0. Also, at optimality we have

Q̂ +
∑

j 6=k νjhejh
H
ej
− νk/γkhekhHek � 0, with wk lying in the null space of this matrix.

This can be simplified to show that wk and

ŵk =
(
Q̂ +

∑
k

νkhekh
H
ek

)†
hek , (4.19)

where (·)† denotes the Moore-Penrose pseudo-inverse, should be in the same direction.

Further simplifications show that the dual variable νk in (4.19) should satisfy the fixed

point equation

ν−1
k = hHek

(
Q̂ +

∑
j νjhejh

H
ej

)†
hek

(
1 + 1

γk

)
. (4.20)

From (4.20) we observe that if we were given the optimal Q̂, we could find the

optimal values for {νk} using (4.20) and then the optimal directions {uk} by normal-

izing the {ŵk} obtained using (4.19). After doing so, we could complete the solution

of (4.17) by finding the optimal values for βk = ‖wk‖2. That can be done by solving

the set of K linear equations that arise from the fact that at optimality (4.17c) holds

with equality. (If this were not the case for condition k in (4.17c), then the amplitude

of wk could be decreased which would allow a smaller value of α while satisfy all the

other constraints.) To adapt that approach to solve (4.16), in the final step we must
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simultaneously solve for {βk} and r?pa. To do so we observe that r?pa enters linearly

into (4.17c), and hence all we need is one more linearly independent equation. To

obtain that equation we observe that if qi > 0, then the ith component of (4.17b)

holds with equality. By summing over all the active constraints in (4.17b) we obtain

the following equation

∑
i,∀qi 6=0

[∑K
k=1 βkuku

H
k

]
i,i

=
∑

i,∀qi 6=0 pi. (4.21)

In the case that all the qi are positive — a case that happens quite often — the

equation in (4.21) simplifies to
∑K

k=1 βk =
∑Nt

i=1 pi.

To complete the algorithm, we need to develop a technique to determine the

optimal Q̂. One strategy for doing so is to apply the projected subgradient technique

developed by Yu and Lan (2007). That involves applying the update equation Q̂n+1 =

proj
(
Q̂n + tndiag(diag(

∑
i wiw

H
i ))
)
, where proj(·) denotes the projection of a matrix

on the space of diagonal positive semidefinite matrices that satisfy
∑Nt

i=1 qipi =
∑Nt

i=1 pi

and, consistent with the syntax used in Matlab, when diag(·) operates on a matrix

it produces a vector containing the diagonal elements and when it operates on a

vector it produces a diagonal matrix with the elements of the vector on the diagonal.

The initialization parameters used by Yu and Lan (2007) were chosen to be Q̂0 = I

and the step size chosen to be tn = 1/n. Although this strategy converges, it can

be quite slow (Yu and Lan, 2007). In this paper, we will refine the approach in two

ways. First, in Appendix 4.A we develop a computationally cheap quasi-closed-form

expression for the projection of Q̂n+1 in a 2-norm sense. Second, based on insights

from Scutari et al. (2014) we will choose a step size of the form tn = tn−1 − t2n−1/a,

for some positive scalar a. In addition, in Section 4.3.3 we will identify a prediction
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step that can be used in the first iteration to accelerate the algorithm. One simple

termination strategy is to stop the algorithm when [
∑

k wkw
H
k ]i,i − pi < εi,∀i, where

εi is the maximum allowable violation of the power constraint for the ith antenna.

Following the above development, the algorithm can be summarized as shown in

Algorithm 1.

Algorithm 1 Offset maximization with PAPCs

1: Initialize the diagonal matrix Q̂0 such that each element is non-negative and∑Nt

i=1 qipi =
∑Nt

i=1 pi. Set n = 0.
2: while [

∑
k wkw

H
k ]i,i − pi > εi for any i do

3: Find {νk} using (4.20).
4: Solve for the directions {uk} by normalizing the {ŵk} obtained using (4.19).
5: Find the power loading {βk} and r?pa by solving the set of linear equations

arising from (4.17c) holding with equality and (4.21).
6: Update Q̂n+1 using the results in Appendix 4.A.
7: Increment n.
8: end while

Having developed an efficient algorithm for the offset maximization problem with

PAPCs, we now seek to incorporate the principles of the robust power loading dis-

cussed in Section 4.2.3. To do so, we note that in the offset maximization design,

the directions are independent of the offset term r in (4.16c); cf. (4.19) and (4.20).

That suggests that we could simply modify the power loading step. Indeed, once the

directions have been obtained in step 4 of Algorithm 1, we can replace the power

loading in step 5 by the {βk} and r? that solve (4.12). Those values can be found

using the algorithm in Section 4.2.3 (see Medra and Davidson, 2015a). Incorporat-

ing that robust power loading algorithm into the framework of Algorithm 1 results in

Algorithm 2.
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Algorithm 2 PAPCed offset maximization with robust power loading

1: Initialize the diagonal matrix Q̂0 such that each element is non-negative and∑Nt

i=1 qipi =
∑Nt

i=1 pi. Set n = 0.
2: while [

∑
k wkw

H
k ]i,i − pi > εi for any i do

3: Find {νk} using (4.20).
4: Solve for the directions {uk} by normalizing {ŵk} obtained using (4.19).
5: Find {βk} and r? by solving E(hHk Qkhk − σ2

k) = σskr
? and (4.21) using the

method provided in Section 4.2.3.
6: Update Q̂n+1 using the results in Appendix 4.A.
7: Increment n.
8: end while

4.3.2 Total and PAPCed algorithm

Using the principles outlined in Section 4.2.2 and the previous section, we can develop

an algorithm for solving the general problem in (4.15), which has PAPCs and a total

power constraint. In this section, we will focus on the case when Pt is sufficiently

smaller than
∑

i pi to ensure that the total power constraint is active. (Otherwise,

the problem can be solved by the techniques in the previous section.) Similar to

the previous section, we will obtain the beamforming directions by normalizing the

beamformers resulting from the following problem

min
wk

∑K
k=1 wH

k wk (4.22a)

s.t.
[∑K

j=1 wjw
H
j

]
i,i
≤ pi, ∀i (4.22b)

hHekQkhek − σ2
k − r?tpa ≥ 0, ∀k, (4.22c)

and then we will refine the power loading using the method described in Section 4.2.3.

As in the previous development, the Lagrangian of (4.22) plays a key role. It can be
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written as

L(wk, νk, qi) =
K∑
k=1

νk(σ
2
k + r?tpa)−

Nt∑
i=1

qipi+

K∑
k=1

wH
k

(
I + Q̂ +

∑
j 6=k

νjhejh
H
ej
− νk/γkhekhHek

)
wk. (4.23)

Using the KKT conditions, for a given value for Q̂ we can compute the corresponding

directions and then the robust power loading in Section 4.2.3. Furthermore, the

subgradient used in the previous section remains a subgradient in this case. However,

the structure of the KKT conditions is simpler in this case, which results in a more

straightforward projection for the Q̂ matrix. Indeed, since the only constraint on qi

in this case is that it is non-negative, the update equation for Q̂ can be written as

Q̂n+1 = max
(
Q̂n + tndiag

(
diag

(∑
k

wkw
H
k

)
− p

)
,0
)
, (4.24)

where the maximum operator is defined element-wise, and p is the vector whose ith

element is pi. Therefore, we can construct an algorithm that has a similar structure

to that in Algorithm 2. Having said that, in the case of PAPCs only there is a strong

likelehood that the PAPCs will be active at optimality, and hence it makes sense

to initialize the algorithm with a positive definite matrix Q̂0. In the general case,

the PAPCs are less likely to be active at optimality, and hence we will initialize the

algorithm with Q̂0 = 0. The resulting algorithm is provided in Algorithm 3.
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Algorithm 3 Generalized offset maximization

1: Initialize Q̂0 = 0. Set n = 0.
2: while [

∑
k wkw

H
k ]i,i − pi > εi for any i do

3: Find νk using the fixed point equations

ν−1
k = hHek

(
I + Q̂n +

∑
j νjhejh

H
ej

)−1

hek

(
1 + 1/γk

)
.

4: Solve for the directions uk = ŵk/‖ŵk‖, where

ŵk =
(
I + Q̂n +

∑
j ν

n
j hejh

H
ej

)−1

hek .

5: Find {βk} and r? by solving E(hHk Qkhk − σ2
k) = σskr

? and
∑

k βk = Pt using
the method provided in Section 4.2.3.

6: Update Q̂n+1 using (4.24).
7: Increment n.
8: end while

4.3.3 Algorithm acceleration

As will be apparent in the simulations in Section 4.6, the modified update in Ap-

pendix 4.A and the improved step size selection result in a substantial reduction of

the number of iterations required over the number required using the choices made by

Yu and Lan (2007). Furthermore, we have observed that Q̂1 and the corresponding

matrix Q̂n at the termination of the algorithm are typically closely related. If that

relationship can be determined with reasonable accuracy, this observation suggests

that a predictive step could be used to further reduce the number of iterations. As

an example of what can be done, in Section 4.6 we illustrate how replacing Q̂1 with

a simple affine prediction, Q̂1
p, of the terminating matrix Q̂n results in substantial

reduction in the number of iterations.
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4.4 Conventional ZF beamforming with per-antenna

power constraints

Even though the computational cost of each iteration of the PAPCed offset maximiza-

tion beamforming algorithms in the previous section is dominated by terms that are

only O(N3
t ), when the BS has a large number of antennas the resulting computational

load can still be substantial. The dominating components arise from determining the

beamforming directions, and the fact that these directions are updated at each itera-

tion. That suggests that we may be able to develop lower cost algorithms for systems

with a large number of antennas if we could find a way to simplify the computation of

the beamforming directions. In this section we will do that by developing variants of

the nominal ZF directions, and we will integrate them with the robust power loading

technique while ensuring that the required PAPCs are satisfied. In the following sec-

tion we will develop analogous techniques based on variants of the MRT directions.

For the ZF case, the beamforming directions are obtained using techniques devel-

oped by Wiesel et al. (2008), but in the MRT case, the design of the beamforming

directions appears to be new.

To develop PAPCed variants of the conventional ZF and MRT beamformers, we

observe that in contrast to QoS-based designs, in which the SINR is controlled di-

rectly (e.g., (4.15d)), the conventional ZF and MRT designs focus on the desired

signal power and interference components of the SINR separately. In particular,

given that the SINR for user k is SINRk =
hH
k wkw

H
k hk

hH
k (

∑
j 6=k wjwH

j )hk+σ2
k
, if we were to maxi-

mize the minimum nominal received signal power subject to a total power constraint
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(i.e., max{wk}mink hHekwkw
H
k hek subject to

∑
k wH

k wk ≤ Pt) we would obtain beam-

formers that are a particular power loading of the nominal MRT directions. If we

were to add the nominal ZF constraints on the interference into that problem (i.e.,

hHejwkw
H
k hej = 0,∀k 6= j), then we would obtain beamformers that are a particular

power loading of the ZF directions (Wiesel et al., 2008). Due to the structure of the

total power constraint, in many simple beamforming problems the optimization of

the beamforming directions decouples from the power loading. That is indeed the

case for our formulation for MRT and ZF beamforming directions. As an example, if

we were to maximize the minimum value of hHekwkw
H
k hek/‖hek‖2, which is the power

of the signal transmitted in the direction of user k, rather than the power received by

that user, we would obtain a set of beamformers in the MRT or ZF directions, but

with a different power loading.

When the total power constraint is replaced by PAPCs, the optimization of the

beamforming directions becomes coupled with the power loading and hence the choice

of the metric to optimize changes both the power loading and the directions. While

our approach will work for either metric, and indeed for several others, we will focus

on the second metric hHekwkw
H
k hek/‖hek‖2. The rationale for this choice is that while

the received signal power is suitable for the ZF problem in the perfect CSI case,

where the ZF constraints will eliminate the interference (Wiesel et al., 2008), it can

be quite sensitive to the interference incurred due to channel estimation errors. (This

is illustrated in our simulation results in Section 4.6.) Accordingly, we define the

normalized channel directions hnk
= hek/‖hek‖ and we formulate the following generic

problem to obtain PAPCed versions of the conventional beamformers
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max
wk,t

t (4.25a)

s.t.
[∑K

k=1 wkw
H
k

]
i,i
≤ pi, ∀i (4.25b)

hHnk
wkw

H
k hnk

≥ t ∀k, (4.25c)

hHnj
wkw

H
k hnj

≤ ε ∀k 6= j. (4.25d)

The value of ε determines whether the problem is of the ZF type, the MRT type, or

a variant thereof. When ε is negligible compared to the noise power, the formulation

describes a ZF-based approach, and when ε is of the order of the noise power this

represents a regularized ZF-based approach (cf. Spencer et al., 2004). When ε is

sufficiently large, the constraints in (4.25d) become inactive, and accordingly the

formulation describes an MRT-based approach.

One strategy for solving (4.25) is to employ a semidefinite relaxation (Luo et al.,

2010). As in related beamforming methods based on semidefinite relaxation (e.g.,

Bengtsson and Ottersten, 2001), that approach involves the solution of a convex op-

timization problem for a set of matrices and a post-processing step that extracts

good beamformers from these matrices. However, the computational cost of solving

the convex optimization problem is even higher than that of the offset maximiza-

tion algorithm, and that is only the cost of determining the beamforming directions.

Accordingly, in the following sections we will present low-cost algorithms for robust

beamforming with PAPCed variants of the ZF and MRT beamforming directions.
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4.4.1 ZF beamforming with PAPCs only

When ε = 0, the problem in (4.25) involves finding the beamforming vectors that

remove the interference at the receivers under the nominal channel conditions and

satisfy the PAPCs. The essence of this problem was addressed in (Wiesel et al.,

2008) using a re-parametrization technique. In particular, let us define the matrix H

as the matrix whose kth column is hnk
and the matrix ŨZF = H(HHH)−1. The kth

column of ŨZF, denoted ũZFk
is a zero-forcing direction for the kth user with a unit

signal gain; i.e., ũHZFk
hnk

= 1. If we let H⊥ denote a matrix whose columns form a

basis for the null space of H, then the set of all ZF directions for the kth user is given

by the kth column of ŨZF + H⊥M, for an arbitrary scaling matrix M. Accordingly,

the solution to the problem in (4.25) takes the form

wk =
√
t(ũZFk

+ H⊥mk), (4.26)

where mk is the kth column of matrix M (Wiesel et al., 2008). Note that the con-

straints in (4.25c) and (4.25d) (with ε = 0) are automatically satisfied by designing

the precoding vectors wk in the form in (4.26). The conditions that remain to be met

are the PAPCs, and that can be done by adjusting the scaling matrix M. (Wiesel

et al., 2008) formulated this problem as a convex quadratically-constrained program

that can be efficiently solved

min
M,p̂

p̂ (4.27a)

s.t. ‖(ŨZF + H⊥M)H ẽi‖2 ≤ p̂, ∀i, (4.27b)
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where ẽi is the ith column of the identity matrix. To complete the design, we choose

the largest value for t such that tp̂ ≤ pi,∀i, which means that the beamformers of the

form in (4.26) satisfy the remaining constraints; i.e., those in (4.25b).

If we let the (k, k)th entry of the diagonal matrix Q̂ denote the dual variable

of the kth PAPC in (4.27b), then the KKT conditions of the dual problem of (4.27)

show that the scaling matrix should satisfy M = −(HH
⊥Q̂H⊥)†(HH

⊥Q̂ŨZF). Although

such a relation does not allow for a closed-form solution, as we do not know Q̂, it

does allow for the integration of the robust power loading method in (Medra and

Davidson, 2015a), as an alternative to giving all the users the same nominal signal

strength t. Furthermore, the explicit relation between Q̂ and M allows us to use

the sub-gradient algorithm for Q̂ and to calculate M accordingly. The proposed

algorithm is summarized as Algorithm 4.

Algorithm 4 ZF with PAPCs and robust power loading

1: Find H⊥ and ŨZF. Initialize Q̂0 = I. Set n = 0.
2: while [

∑
k wkw

H
k ]i,i − pi > εi for any i do

3: Compute M = −(HH
⊥Q̂nH⊥)†(HH

⊥Q̂nŨZF).
4: Find the beamformers directions {uk} by normalizing ũZFk

+ H⊥mk.
5: Find {βk} and r? by solving E(hHk Qkhk − σ2

k) = σskr
? and (4.21) using the

method provided in Section 4.2.3.
6: Update Q̂n+1 using the results in Appendix 4.A.
7: Increment n.
8: end while

From a computational respective, the key steps in the initialization of this algo-

rithm are the finding of the ZF directions and the null space of H, which requires

O(N2
tK) operations. Each iteration of the algorithm involves the iterative solution

of the K + 1 linear equations in step 5, which, as explained in Section 4.2.3, requires

O(K3) operations, and the matrix operations required to update M in step 3, which
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require O((Nt − K)3) operations. When the number of antennas Nt is close to the

number of users K, the dimensions of the matrix HH
⊥Q̂H⊥ are small, which means

that in that case the computational cost of this algorithm is dominated by finding

the ZF directions and the null space in the initialization step.

4.4.2 Generalized ZF beamforming

The extension of the ZF design with PAPCs to accommodate a total power constraint

is straightforward, and follows the same steps that were used in the generalized offset

maximization problem; see Section 4.3.2. The generalized ZF problem can be formu-

lated by adding the total power constraint
∑K

k=1 wH
k wk ≤ Pt to the constraints in

(4.25). Then we consider the equivalent power minimization problem, assuming, for

now, that the optimal t is known

min
M

t
∑
i

‖(ŨZF + H⊥M)ẽi‖2 (4.28a)

s.t. t‖(ŨZF + H⊥M)H ẽi‖2 ≤ pi, ∀i. (4.28b)

Consistent with our previous analysis, we will let Q̂ denote the diagonal matrix with

the dual variables of the PAPCs on its diagonal. From the KKT conditions we can

then show that M = −(HH
⊥ (Q̂ + INt)H⊥)−1(HH

⊥ (Q̂ + INt)ŨZF). Furthermore, as in

the previous algorithm we replace the uniform power loading, t, with the robust

power loading by Medra and Davidson (2015a). The resulting modified version of

Algorithm 4 is stated in Algorithm 5. As is apparent from Algorithm 5, the order of

its computational cost is the same as that of Algorithm 4.
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Algorithm 5 Generalized ZF

1: Find H⊥ and ŨZF. Initialize Q̂0 = 0. Set n = 0.
2: while [

∑
k wkw

H
k ]i,i − pi > εi for any i do

3: Compute M = −(HH
⊥ (Q̂n + INt)H⊥)−1(HH

⊥ (Q̂n + INt)ŨZF).
4: Find the beamformers directions {uk} by normalizing ũZFk

+ H⊥mk.
5: Find {βk} and r? by solving E(hHk Qkhk − σ2

k) = σskr
? and

∑
k βk = Pt using

the method provided in Section 4.2.3.
6: Update Q̂n+1 using (4.24).
7: Increment n.
8: end while

4.5 Conventional MRT with per-antenna power con-

straints

As we have seen in the previous section, our approach to imposing PAPCs on the

class of ZF beamformers can result in an algorithm of lower computational cost than

that of offset maximization with PAPCs. However, any advantage is dependent on

the size of the null space of the channel matrix. In settings with a large number of

antennas and a small number of users, such as those arise in massive MIMO, the size

of the null space can be quite large. In this section, we will show how the complexity

can be further reduced by using an MRT-based approach rather than the ZF-based

approach.

4.5.1 MRT with PAPCs

In the MRT case, the interference conditions hHnj
wkw

H
k hnj

≤ ε are omitted from the

problem in (4.25), and the problem of finding nominal MRT-based beamformers that
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satisfy PAPCs can be written as

max
wk,t

t (4.29a)

s.t.
[∑K

k=1 wkw
H
k

]
i,i
≤ pi, ∀i (4.29b)

hHnk
wkw

H
k hnk

≥ t, ∀k. (4.29c)

Following a similar analysis to those performed earlier, if we let qi denote the dual

variable for the ith PAPC, define the diagonal matrix Q̂ such that [Q̂]i,i = qi, and

define νk to be the dual variable for the kth condition in (4.29c), then the Lagrangian

of the problem in (4.29) can be written as:

L(t,wk, νk, qi) = −t+
Nt∑
i=1

qi

([ K∑
k=1

wkw
H
k

]
i,i
− pi

)
−

K∑
k=1

νk(h
H
nk

wkw
H
k hnk

− t). (4.30)

Accordingly, we can state the KKT conditions in a simplified form as
∑K

k=1 νk = 1,

t =
∑Nt

i=1 qipi, and Q̂wk = νkhnk
hHnk

wk. The last condition can be re-written as

wk = νkh
H
nk

wkQ̂
−1hnk

, which means that wk and Q̂−1hnk
have the same direction.

We note that at optimality [Q̂]i,i is equal to the ith element of hnk
, scaled by νkh

H
nk

wk,

then divided by the ith element of wk. This equation does not allow any optimal

[Q̂]i,i to be zero except if the channel vector hnk
contains a zero, which, under most

reasonable channel models, is a “zero-probability” event. Since each qi is positive,

the constraints in (4.29b) are all active, and accordingly
∑

k βk =
∑

i pi.

Similar to the analysis of the previous problems, if we know Q̂, then we can
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find the beamforming directions using Q̂−1hnk
and subsequently solve for the power

loading using the linear equations that arise when (4.29c) holds with equality. The

value of t in (4.29c) can be calculated using the KKT equation t =
∑Nt

i=1 qipi. If the

equations in (4.29c) were not satisfied with equality at optimality, we could rescale the

beamforming vectors to get a larger value of t, which would contradict the assumed

optimality. This observation is similar to the observation in the offset maximization

section that enabled the use of the subgradient algorithm to find Q̂. Accordingly, we

can suggest the iterative algorithm in Algorithm 6.

Algorithm 6 Nominal MRT with PAPCs

1: Initialize Q̂0 = I. Set n = 0.
2: while [

∑
k wkw

H
k ]i,i − pi > εi for any i do

3: Solve for the directions using (Q̂n)−1hnk
.

4: Find the beamformer magnitudes {βk} and t using the linear equations that
arise when the constraints in (4.29c) are satisfied with equality and

∑
k βk =∑

i pi.

5: Update Q̂n+1 using Appendix 4.A.
6: Increment n.
7: end while

Algorithm 6 provides an iterative way to find the values of Q̂, and, accordingly,

the optimal precoding vectors. Its complexity per iteration is no more than linear in

Nt. However, we will now develop a closed-form expression that approximates the

optimal solution of Algorithm 6 when the PAPCs are the same; i.e., pi = p,∀i. This

closed-form removes the need for any iterations, which allows for an algorithm that

is suitable for massive MIMO settings. To develop the approximation, we first note

that the PAPCs and the MRT constraints hold with equality at optimality. That
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means that at optimality

[ K∑
k=1

wkw
H
k

]
i,i

=
K∑
k=1

ν2
k |hHnk

wk|2
∣∣∣[Q̂−1hnk

]
i

∣∣∣2
=

K∑
k=1

ν2
kt
∣∣∣[Q̂−1hnk

]
i

∣∣∣2 .
= p.

(4.31)

Now let us define

gi =
K∑
k=1

ν2
k

∣∣[hnk

]
i

∣∣2 . (4.32)

Using (4.31), we can also write gi = pq2
i /t = pq2

i /(
∑Nt

i=1 qip). Accordingly, we can cal-

culate qi from {gi} as qi = (
∑

j

√
gj)
√
gi. The objective of maximizing t =

∑Nt

i=1 qip

is, therefore, equivalent to maximizing
∑

j

√
gj. Since the dual variables ν2

k enter

(4.32) as weighting variables for the power gains of the components of hnk
, the op-

timal values of νk are influenced by the relative values of the elements of each set

{
∣∣[hnk

]
i

∣∣2}Kk=1. When these elements have the same distribution, the optimal values

of νk tend to get closer as the number of antennas grows. Since
∑

k νk = 1, that

suggests the approximation νk ≈ 1/K. Since the approximation only holds in the

limit, there will be discrepancy between the actual power on the antennas and p, but

as the number of antennas grows, that difference decreases. For a finite number of

antennas, we may rescale the result so that the PAPCs are satisfied. That is done in

steps 6 and 7 in Algorithm 7.

Both of the algorithms for the nominal MRT-based approach (Algos 6 and 7) result

in beamformers that satisfy the PAPCs. As we will see in the simulation section, the

resulting beamformers provide similar outage performance even for relatively small
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Algorithm 7 One-shot approximate nominal MRT with PAPCs

1: Approximate νk ≈ 1/K.

2: Calculate gi =
∑K

k=1 ν
2
k

∣∣[hnk

]
i

∣∣2 and t =
∑

j

√
gj.

3: Calculate Q̂ using qi = (
∑

j

√
gj)
√
gi.

4: Calculate the beamformer directions {uk} by normalizing Q̂−1hnk
.

5: Find βk = t/hHnk
uku

H
k hnk

.

6: Form the vector y, such that yi = [
∑K

k=1 wkw
H
k

]
i,i

.

7: Form the correction vector z such that zi =
√
pi/yi.

8: Correct each beamformer vector by element-wise multiplying each wk by the
correction vector z.

number of antennas. However, both of the algorithms are based on nominal perfor-

mance criteria and any robustness that is obtained arises only implicitly. To address

that point, we observe that Algorithm 6 updates Q̂ iteratively using the sub-gradient

algorithm, which allows for the incorporation of the robust power loading described in

Section 4.2.3. The ability to incorporate that power loading can significantly reduce

the outage probability by allocating each user an appropriate amount of power rather

than forcing the nominal signal power of different users to be the same value t. The

resulting algorithm is stated in Algorithm 8. In scenarios in which it is reasonable

to use the same value of t for all users, or when we can pre-define different weights

for the value of t, Algorithm 7 can provide a closed-form solution that is close to the

optimal one, without the need for any iterations.

The complexity of Algorithm 8 is dominated by operations that are linear in the

number of antennas for each user. This means that the complexity per iteration is of

the order of O(NtK) operations. The robust power loading can be effectively approx-

imated in the massive MIMO settings so that it requires only O(NtK) operations,

beside the O(K3) operations for the initial matrix inversion (Medra and Davidson,

2015a).
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Algorithm 8 Robust MRT with PAPCs

1: Initialize Q̂0 = I. Set n = 0.
2: while [

∑
k wkw

H
k ]i,i − pi > εi for any i do

3: Find the beamforming directions {uk} using Q̂−1hnk
.

4: Find {βk} and r? by solving E(hHk Qkhk − σ2
k) = σskr

? and (4.21) using the
method provided in Section 4.2.3.

5: Update Q̂n+1 using Appendix 4.A.
6: Increment n.
7: end while

4.5.2 Generalized MRT

The derivation of the MRT-based algorithm when the total power constraint is added

to (4.29) follows the same steps that were performed in the ZF case and the offset

maximization case. The modified algorithm is presented in Algorithm 9.

Algorithm 9 Generalized MRT

1: Set Q̂0 = 0, and n = 0.
2: while [

∑
k wkw

H
k ]i,i − pi > εi for any i do

3: Find the beamformers directions {uk} by normalizing (INt + Q̂)−1hnk
.

4: Find {βk} and r? by solving E(hHk Qkhk − σ2
k) = σskr

? and
∑

k βk = Pt using
the method provided in Section 4.2.3.

5: Update Q̂n+1 using (4.24).
6: Increment n.
7: end while

4.6 Simulation results

In this section, we will show how the application of PAPCs to substantially reduce

the dynamic range of the power transmitted from each antenna can be implemented

without significantly degrading the outage probability of the system. We consider

a system in which a BS with Nt antennas serves K single-antenna users distributed
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uniformly in a disk of radius 3.2km around the BS. The large scale fading is modelled

using a path-loss exponent of 3.52 and log-normal shadow fading with 8dB standard

deviation. The small scale fading is modelled using the standard i.i.d. Rayleigh

model. We assume an additive channel estimation error of covariance 0.04I, and an

SINR target of γ = 3dB for all users. For the algorithms with PAPCs only, the PAPC

is uniform and is set to pi = Pt/Nt, where Pt is the total power constraint, which is

implicit in this case. For the generalized algorithms with both PAPCs and a total

power constraint (Algos 3, 5, and 9), the PAPCs are set to be slightly larger, so that

the total power constraint is active. For these cases we choose pi = 1.2Pt/Nt. We

assume that each user has a signal sensitivity of -90dBm, and we will consider this

power as the noise power. The termination parameter for the algorithms is chosen

to be εi = 0.1pi, and each experiment is repeated on 20,000 channel realizations.

A simple channel-strength user selection technique is employed, where users having

‖hek‖2Pt/kσ
2
k ≥ γk are served.

To demonstrate the application of PAPCs with offset maximization, in Fig. 4.1

we plot the outage probability versus the total power constraint Pt for six different

algorithms in a scenario in which Nt = 4 and K = 3. The first algorithm is the

nominal PAPCed design algorithm presented by Yu and Lan (2007), with the beam-

forming vectors scaled so that the total power is equal to Pt. This is equivalent to

solving (4.17) when r?pa = 0, then scaling the resulting beamforming vectors. We

compare the performance of Yu and Lan (2007) to the performance of Algo. 1 with

and without the acceleration step, and Algo. 2 with the acceleration step. We note

that while the performance of Algo. 1 is close to that of Yu and Lan (2007), the

application of the robust power loading in Algo. 2 provides a significant reduction
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in the outage probability. To assess the impact of the PAPCs we compare the per-

formance of Algo. 2 to that of the robust offset maximization technique with a total

power constraint only (Medra and Davidson, 2015a). As seen in Fig. 4.1, Algo. 2

achieves a performance close to that of Medra and Davidson (2015a) even though

it imposes PAPCs. As expected, the performance of Algo. 3, which imposes a total

power constraint and weaker PAPCs, falls in between that of Medra and Davidson

(2015a) and Algo. 2.

The convergence rate of the subgradient algorithm strongly depends on how the

step size is chosen and, hence, this should be tailored to the application. Based

on insights from (Scutari et al., 2014) we have chosen a step size that is updated

using tn = tn−1 − t2n−1/1000. Our numerical experience has suggested choosing t0 =

Nt/(PtK). To examine the potential impact of the prediction scheme outlined in

Section 4.3.3, we have implemented a linear predictor of the form Q̂1
p = 2.8 diag(q1)−

1.8I. To show the effectiveness of these choices, we plot in Fig. 4.2 the percentage of

violated PAPCs versus the iteration number for the scenario in which Pt = 40. We set

the violation to one when any antenna is transmitting a power that is more than 10%

higher than pi. (Recall that we set εi = 0.1pi.) We observe from Fig. 4.2 that within

the first few iterations, the PAPCs are met in most cases. We also note that the

acceleration step can reduce the average number of iterations while providing almost

the same outage performance. In order to provide context for these results, we point

out that the average number of iterations required by the nominal algorithm by Yu

and Lan (2007) is much higher. Indeed, as shown by Yu and Lan (2007), it can range

from a few tens to hundreds in analogous settings.

In assesing the performance of the ZF-based PAPCed beamforming algorithms,
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Figure 4.1: Outage probability for a 4 antenna BS serving 3 users with a total trans-
mitted power of Pt. Here [18] refers to Medra and Davidson (2015a), and [23] refers
to Yu and Lan (2007).

rather than examining the outage performance against the transmission power, we will

fix the total power constraint to Pt = 2 and examine the performance as the number

of antennas, Nt, increases. Other than that, the scenario is the same as the previous

one. As performance benchmarks for Algo. 4, we have included the performance of

the algorithm by Wiesel et al. (2008) which maximizes the minimum received signal

power, hHekwkw
H
k hek , and a modified version of the algorithm by Wiesel et al. (2008)

that maximizes the minimum value of hHnk
wkw

H
k hnk

instead. We observe that in the

case of noisy channel estimates, the normalization step significantly reduces the outage

probability. More importantly, the application of the robust power loading in Algo. 4

provides significantly better performance. As a lower bound on the outage achieved

by Algo. 4 we consider ZF beamforming with the nominal ZF directions and robust

power loading with only a total power constraint (Medra and Davidson, 2015a); i.e.,
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Figure 4.2: Convergence behaviour for a 4 antenna BS serving 3 users with a total
transmitted power of Pt. The violation probability measures the fraction of the 20,000
realizations for which at least one PAPC was violated by more then 10% at the given
iteration of the algorithm.
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Figure 4.3: Outage probability for a BS serving 3 users with a total transmitted power
of Pt = 2. Here [18] refers to Medra and Davidson (2015a), and [29] refers to Wiesel
et al. (2008).

without the PAPCs. The resulting comparison shows that the degradation incurred

by imposing the PAPCs is quite small. Finally, as expected, the performance of the

generalized algorithm (Algo. 5) lies in between that of Algo. 4 and that by Medra

and Davidson (2015a).

To assess the performance of the MRT-based PAPCed algorithms, we will allow

for more users, K = 8, and set the total power constraint Pt to be 1. As in the ZF

case, we examine the outage performance versus the total number of antennas, Nt,

but we do so for a larger number of antennas. In Fig. 4.4, the performance of Algos 6,

7, and 8 is compared to the performance of the algorithm by Feng and Jing (2016).

We observe that the performance of Algos 6, and 7 is almost identical to that of the

algorithm presented by Feng and Jing (2016), and that the performance of Algo. 8

is superior. As a benchmark, the performance of the robust MRT beamformer with
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Figure 4.4: Outage probability for a BS serving 8 users with a total transmitted power
of Pt = 1. Here [18] refers to Medra and Davidson (2015a), and [24] refers to Feng
and Jing (2016).

only a total power constraint (i.e., no PAPCs, Medra and Davidson, 2015a) is plotted

in Fig. 4.4. The performance of the generalized algorithm (Algo. 9) is also plotted.

4.7 Conclusion

In this paper, we developed low-complexity algorithms for finding robust beamformers

that provide low outage of target SINRs while satisfying specified per-antenna power

constraints (PAPCs). Initially, we used insights from the subgradient method for

designing PAPCed beamformers in the case of perfect channel state information (Yu

and Lan, 2007) to obtain PAPCed version of the offset maximization algorithm de-

veloped by Medra et al. (2016). Further reductions in the outage probability were

then obtained by incorporating the robust power loading presented by Medra and
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Davidson (2015a) into the design problem. While the proposed algorithms are of

low complexity, we identified the evaluation of the beamforming directions as the

computational bottleneck. To address that, we developed algorithms that employ

PAPCed variants of the conventional zero-forcing (ZF) and maximum ratio transmis-

sion (MRT) directions and incorporate the robust power loading. In the process of

doing so, we developed a closed-form expression for an MRT-based beamformer that

satisfies PAPCs and may be appropriate for massive MIMO systems. Our simula-

tion results revealed that PAPCed beamforming can be achieved without incurring a

significant degradation in outage performance.

4.A Appendix: Q̂ update

To determine the updated value for Q̂n+1, we have to determine the projection,

Q̂n+1 = proj
(
Q̂n + tndiag(diag(

∑
i wiw

H
i ))
)
.

To do so, we let q = diag(Q̂n+1), and qo = diag(Q̂n+ tndiag(diag(
∑

i wiw
H
i ))). That

enables us to write the projection problem as

min
q

‖q− qo‖2 (4.33a)

s.t.
∑Nt

i=1 qipi =
∑Nt

i=1 pi (4.33b)

qi ≥ 0, ∀i. (4.33c)
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If we let ζ denote the dual variable of the equality constraint, then from the KKT

conditions of (4.33) we can show that the optimal qi is

qi = max(qoi − piζ/2, 0),

where ζ/2 =
(∑

i,∀qi 6=0 piqoi −
∑

i pi
)
/
∑

i,∀qi 6=0 p
2
i . Given the nature of dependence of

{qi} and ζ on each other, we will solve for their values using a fixed-point approach.

First, we initialize ζ = 0, and then we iteratively calculate qi and ζ from the provided

equations until their values stabilize.

In the case of equal pi (i.e., pi = p,∀i), and when all the qi are positive (i.e., all

the PAPCS are active), the update equation can be simplified to

Q̂n+1 = Q̂n + tndiag
(
diag

(∑
i

wiw
H
i − pI

))
. (4.34)
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Chapter 5

Low-Complexity Robust Multi-Cell

MISO Downlink Precoder Design

Abstract

This paper develops low-complexity design techniques for robust linear precoders

suitable for various multi-cell multiple-input single-output (MISO) downlink systems.

The goal is to satisfy prespecified SINR requirements for users in multiple cells under

some base station power constraints, in the absence of perfect channel state infor-

mation (CSI). First, we consider the case of full cooperation between base stations

and derive a simple iterative algorithm that achieves the required SINRs with high

probability despite the presence of channel uncertainties. Then we consider the case

of distributed coordination between base stations and develop a simple iterative algo-

rithm that requires only very limited communication among the base stations. Our

simulation results demonstrate that substantial robustness can be obtained at a low

computational cost.
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5.1 Introduction

Managing the interference among clusters of cells has the potential to provide signif-

icant performance gains over wireless networks that avoid interference between cells

(Gesbert et al., 2010; Hong and Luo, 2014). One taxonomy of interference man-

agement schemes classifies them as being centralized or distributed, depending on

where the design decisions are made, and as being cooperative or coordinating. In

cooperative schemes multiple base stations (BSs) work together to transmit the same

information to a receiver, whereas in coordinating schemes each receiver is assigned

to a single BS, but the design of the transmissions from each BS is coordinated with

that of the other BSs.

Among the many scenarios that could benefit from cooperation or coordination,

we will focus on the multiple-input single-output (MISO) downlink case in which a

cluster of BSs seek to cooperate or coordinate in the transmission of messages to

multiple receivers each with a single antenna. We will focus on linear transmission

schemes and hence the design variables are the shape of the beam transmitted to

each receiver and the power allocated to that beam. Based on the assumption that

sufficiently accurate channel state information (CSI) can be made available at the

design nodes, a number of techniques for multi-cell downlink beamforming have been

developed (e.g., Dahrouj and Yu, 2010; Tolli et al., 2011; Pennanen et al., 2011;

Hong and Luo, 2014; Mirza et al., 2015; Qiu et al., 2010). More recently, efforts

have been made to mitigate the sensitivity of those techniques to the uncertainties

in the CSI that inevitably arise from the estimation and transmission of CSI (e.g.,

Shen et al., 2012b; Tajer et al., 2011; Pennanen et al., 2014; Vucic and Boche, 2007;

Zhang et al., 2015; Shen et al., 2012a; Tshangini and Nakhai, 2013). However, many
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such techniques require the solution of optimization problems that incur significantly

greater computational cost than that of the original designs for the perfect CSI case

(some of which are, themselves, quite computationally costly).

In this paper, we will develop low-complexity iterative algorithms for the beam-

forming directions and the power loading in both a centrally-design cooperative mutli-

cell MISO downlink, and for a coordinated multi-cell MISO downlink that is designed

in a distributed manner. Using insights from recent work on the isolated single-cell

MISO downlink (Medra et al., 2015; Medra and Davidson, 2015b,a), we develop de-

signs that provide substantial robustness to uncertainties and can be obtained using

simple iterative algorithms. In our simulation experiments, these straightforward

designs provide significantly lower outage rates than existing designs.

5.2 System Model

The system that we consider consists of a total of K-users each with a single antenna

served by a cluster of B BSs. User k is served by a subset of the BSs, Bk, where Bk

consists of only one BS index in the case of distributed precoding and contains all the

BS indices in the case of full cooperation. We assume that each BS is equipped with

Nt antennas and is provided with an imperfect version of the CSI of the users. We

use the notation hjk ∈ CNt to denote the channel between the BS j and user k. we let

wj
k denote the designed precoding vector for transmission from BS j to user k, and let

sk denote the intended normalized data symbol for that user. To unify the notations

for the full cooperation and distributed cases, we define hk = [h1
k
T
,h2

k
T
, · · · ,hBk

T
]T as

the stacking of all the channel vectors to user k, and we define wk analogously. We

also let
√
βk denote the Euclidean norm of wk and uk denote its normalized direction;
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i.e., wk =
√
βkuk. With that notation, we can write the received signal of user k in

the following simplified form:

yk = hHk wksk +
∑

i 6=k hHk wisi + nk, (5.1)

where nk is the zero mean circular Gaussian noise of variance σ2
k at user k. We will

translate each user’s quality-of-service (QoS) constraint into an SINR requirement

SINRk ≥ γk. By defining Wk = wkw
H
k , we can write the SINR expression for user k

as

SINRk =
hHk Wkhk

hHk (
∑

i 6=k Wi)hk + σ2
k

. (5.2)

For a BS or a cluster management centre to calculate the SINR at each user,

it needs to know the actual channel vectors {hk}. However, in practice only an

estimate of those vectors will be available. In this paper we will model the uncertainty

additively; i.e., hjk = hjek + ejk, and with ejk being an independent zero-mean circular

Gaussian random variable of covariance (σjek)2I. Among a number of scenarios, this

model is appropriate in certain time division duplexing (TDD) systems in which

channels are estimated during the uplink training phase.

In the following sections, we will first review an existing approach to precoding

for intra-cell interference mitigation in an isolated cell. We will then show how that

approach can be integrated with inter-cell interference mitigation techniques that

capture different levels of coordinations among the BSs.
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5.3 Offset-maximization for the single cell case

In the case of the downlink of an isolated cell, the task of satisfying the users’ QoS

constraints involves managing the interference imposed on one user due to simultane-

ous transmissions to other users in the same cell (i.e., managing intracell interference),

and doing so in the presence of uncertainty in the BS’s estimates of the channels to

the users. Among many possible approaches to this problem, (including Zheng

et al., 2008; Shenouda and Davidson, 2007, 2008b; Wang et al., 2014), we will review

the offset maximization approach to robust precoding, which was initially developed

by Medra et al. (2015), was extended to the case of per-antenna power constraints

by Medra and Davidson (2015b) and enhanced with an alternative power loading by

Medra and Davidson (2015a). A key advantage of that approach and its enhanced

power loading is its low computational cost.

For the single cell case, the offset maximization approach is based on the obser-

vation that under our additive model for the uncertainty in the CSI, the constraint

SINRk > γk can be rewritten as

hHekQkhek − σ2
k + hHekQkek + eHk Qkhek + eHk Qkek ≥ 0. (5.3)

where Qk = Wk/γk−
∑

j 6=k Wj. This expression suggests that if we were to maximize

the deterministic “offset” term in (5.3), we would obtain robustness against the terms

that involve the error in the CSI. If we do so, with a total power constraint Pt, the
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semidefinite relaxation of the problem can be written as

r? = max
Wk,r

r (5.4a)

s.t.
∑K

k=1 tr(Wk) ≤ Pt, (5.4b)

hHekQkhek − σ2
k − r ≥ 0, (5.4c)

Wk � 0, k = {1, 2, ..., K}, (5.4d)

Although the problem in (5.4) is a semidefinite program and can be solved in a

polynomial time, a closed-form solution was obtained by Medra et al. (2015). That

solution also demonstrates that the semidefinite relaxation that led to (5.4) is tight.

The derivation of the closed-form solution by Medra et al. (2015) is based on the

following problem

min
Wk

∑K
k=1 tr(Wk) (5.5a)

hHekQkhek − σ2
k − r? ≥ 0, (5.5b)

Wk � 0, k = {1, 2, ..., K}, (5.5c)

where r? is the optimal value of (5.4). Problems (5.4) and (5.5) are equivalent in the

sense that the optimal value for (5.5) is Pt and that an optimal solution set {Wk}

for one is also optimal for the other. The key to the derivation of the closed form is

the similarity in structure between (5.5) and the power minimization problem for the

perfect CSI case (Bengtsson and Ottersten, 2001; Wiesel et al., 2006; Bjornson et al.,

2014). In particular, we first solve the following fixed point equations for the dual
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variables for the constraints in (5.5b)

ν−1
k = hHek

(
I +

∑
j νjhejh

H
ej

)−1

hek
(
1 + 1/γk

)
. (5.6)

Then we can find the beamforming directions using the eigen equation

uk =
(
(νk/γk)hekh

H
ek
−
∑

j 6=k νjhejh
H
ej

)
uk. (5.7)

Having found those directions, we then determine the power loading. The original

power loading method by Medra et al. (2015) is based on solving the linear equations

that arise from the fact that at optimality the constraints in (5.5b) hold with equality

and that the optimal objective value is Pt; i.e.,
∑

i βi = Pt. This results in K + 1

linear equations for {βk}Kk=1 and r?. That method gives the same “robustness” r to

all users.

The enhanced power loading method by Medra and Davidson (2015a) is based on

providing greater robustness to “weaker” users, and accordingly having comparable

outage probabilities for all users. The notion of weakness is measured using the

variance, σ2
sk

, of hHk Qkhk − σ2
k. The users with higher σsk should be provided with

more robustness, or offset, than other users with lower σsk . Accordingly, the algorithm

proposed by Medra and Davidson (2015a) is based on finding {βk} and r? such that

E(hHk Qkhk − σ2
k) = σskr

?, and
∑

k βk = Pt. With such a strategy, the power loading

algorithm allocates power such that the mean value of the rearranged SINR expression

in (5.3) is proportional to its standard deviation. Although E(hHk Qkhk−σ2
k) is linear

in each βk, σsk is not, and thus complicates the problem. Medra and Davidson

(2015a) adopted an iterative linearization technique in which σsk was determined
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from the values of {βk}Kk=1 and r? at the previous iteration. That algorithm converges

with high probability (Medra and Davidson, 2015a). The resulting power allocation

provides similar outage performance for each user, and in the numerical experiments

by Medra and Davidson (2015a) it provided improved overall outage performance.

5.4 Network MIMO offset-maximization

In the case of full cooperation, the BSs are all connected to a central processing unit,

and all the CSI and the users’ data are shared. In such a case, the system resembles

a single BS with many distributed antennas and can be treated as a single cell but

with different power constraints. Here we will consider the total power constraint

and per-BS power constraints. If we define Λi to be a diagonal matrix with ones on

the elements corresponding to the antennas of the ith BS and zeros elsewhere and

Pi to be the power constraint on the ith BS, then the offset maximization precoding

problem can be stated as

max
Wk,r

r (5.8a)

s.t.
∑K

k=1 wH
k Λiwk ≤ Pi, i = {1, 2, ..., B}, (5.8b)∑K

k=1 tr(Wk) ≤ Pt, (5.8c)

hHekQkhek − σ2
k − r ≥ 0, k = {1, 2, ..., K}. (5.8d)

This problem can be solved with generic convex optimization techniques. Although

those techniques are effective in that they produce an optimal solution in polynomial

time, the computational cost can still be quite high. In the following sections we
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consider two special cases of the problem in (5.8) in which we can develop tailored

algorithms to solve the problem more efficiently. The first special case arises when

Pt < Pi, ∀i, in which case the condition in (5.8b) can never be active and can be

removed. The second special case arises when Pt >
∑

i Pi, in which case the condition

in (5.8c) cannot be active.

5.4.1 Dominant total power constraint

In the absence of (5.8b), the problem in (5.8) is in the same form as (5.4) and hence

the existing techniques can be applied directly. The difference between the single-cell

case and the multi-cell case lies in the fact that the channel vector hk is the stacking

of all the channel vectors from all the BSs to a certain user k, and, accordingly, those

channel vectors have different error vectors with different error variances. In this case,

we can derive the mean and variance of hHk Qkhk − σ2
k as

E(hHk Qkhk − σ2
k)

= hHekQkhek − σ2
k + βku

H
k Γeuk/γk −

∑
j 6=k βju

H
j Γeuj.

(5.9)

σ2
sk

= var
(
hHekQkhek + 2Re(eHk Qkhek) + eHk Qkek − σ2

k

)
= 2hHekQkΓeQkhek + tr(Γ2

eQ
2
k),

(5.10)

where Γe = E(eie
H
i ) and is diagonal by assumption. Since each Qk is linear in β, the

expression for the mean in (5.9) is linear in β. Therefore, we can adapt the iterative

linearization technique that was developed for the single case (Medra and Davidson,

2015a) to produce the following algorithm

1. Calculate the beamforming directions uk using (5.6) and (5.7).
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2. Initialize σsk = 1.

3. Update r?, and {βk} using E(hHk Qkhk − σ2
k) = σskr

? and
∑

k βk = Pt, where

the expected value is given in (5.9).

4. Update each σsk using (5.10).

5. Evaluate a termination criterion and return to 3 if not satisfied.

5.4.2 Dominant per-base station power constraints

When the constraint in (5.8c) is inactive, we can simplify the formulation in (5.8) to

r? = max
wk,r

r

s.t.
∑K

k=1 wH
k Λiwk ≤ Pi, i = {1, 2, ..., B},

hHekQkhek − σ2
k − r ≥ 0, k = {1, 2, ..., K}.

(5.11)

As we will see, dealing with all the BSs together as a one virtual BS then applying per-

BS power constraints is analogous to dealing with one BS and applying per-antenna

power constraints. Accordingly, the derivation for the closed-form solution for the

problem in (5.11) will follow the same steps for the offset maximization algorithm

with per-antenna power constraint (Yu and Lan, 2007; Medra and Davidson, 2015a).

We will briefly summarize it here for completeness. Following what was done for the
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single case, we will consider the following equivalent problem

min
wk,α

α
∑B

i=1 Pi (5.12a)

s.t.
∑K

k=1 wH
k Λiwk ≤ αPi, i = {1, 2, ..., B}, (5.12b)

hHekQkhek − σ2
k − r? ≥ 0, k = {1, 2, .., K}. (5.12c)

The equivalence here means that both problems share an optimal solution. This can

be verified by observing that substituting the optimal solution of (5.11) in (5.12) will

give us a value of α = 1, and by observing that the optimal α can not be smaller

than one, as that would mean that we could rescale the precoding vectors and have a

larger r? which contradicts the presumed optimality; i.e., problems (5.11) and (5.12)

share the optimal solution with α = 1. If we define qi and νi to be the dual variables

for the constraints in (5.12b) and (5.12c) respectively, and Q̂ =
∑B

i=1 qiΛi, then we

can write the Lagrangian of (5.12) as

L(wk, α, νk, qi) =
∑K

k=1 νk(σ
2
k + r?) + α

(∑B
i=1 Pi −

∑B
i=1 qiPi

)
+
∑K

k=1 wH
k

(
Q̂ +

∑
j 6=k νjhejh

H
ej
− νk/γkhekhHek

)
wk.

The Lagrangian now has the same form as the Lagrangian in the case of one BS with

per-antenna constraints presented by Medra and Davidson (2015b). Accordingly, we

suggest using an analogous iterative quasi-closed form solution. In the case of equal

Pi that algorithm can be summarized as

1. Initialize Q̂0 such that
∑
qi = B. Set n = 0.

2. Find νnk using the fixed point equations
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(νnk )−1 = hHek

(
Q̂n +

∑
j ν

n
j hejh

H
ej

)−1

hek

(
1 + 1/γk

)
.

3. Solve for the directions uk = ŵk/‖ŵk‖, where

ŵk =
(
Q̂n +

∑
j ν

n
j hejh

H
ej

)−1

hek .

4. Find r?, and {βk} by solving E(hHk Qkhk − σ2
k) = σskr

? and
∑

k βk =
∑

i Pi.

5. Update Q̂n+1 using qn+1
i = qni + tn(

∑K
k=1 wH

k Λiwk − Pi), where tn is the step

size used.

6. Increment n, check whether
∑K

k=1 wH
k Λiwk−Pi < δi, where δi is the maximum

allowable violation of the power constraint for the ith BS. If the test fails, return

to 2.

5.5 Distributed algorithm based on virtual users

Implementing the centralized processing and data sharing system described in the

previous section can be a challenging task no matter how the beamformers and the

power allocation are determined. Therefore, there is considerable interest in dis-

tributed systems that coordinate their signals via limited backhaul communications

(Gesbert et al., 2010). In a distributed coordinated system each user is served by a

single BS, and we will assume that that assignment has been made. We consider a

system in which each BS obtains estimates of the channels to users that have been

assigned to it, and also obtains estimates of the channels to users assigned to neigh-

bouring BSs upon which the BS may impose significant interference. If we let hbek

denote the estimate of the channel from BS b to a user k that is not assigned to that

BS, then one way in which BS b could manage the interference it imposes on user
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k would be to enforce a constraint of the form ‖(hbek)H
∑

j wb
j‖2 < ε. Such “soft-

shaping” constraints (e.g., Scutari et al., 2008) are convex and can be incorporated

into a variety of precoder design formulations (e.g., Hong and Luo, 2014; Scutari et al.,

2008) and effective beamforming vectors optimization can be obtained using generic

convex tools. However, the structure of those constraints results in dual formulations

that do not appear to be amendable to the analysis that we developed for the cen-

tralized case. In our quest for low-complexity algorithms for the distributed case, we

will instead consider an alternative design approach that takes into consideration the

interference imposed on users in other cells by treating them as virtual users when

designing the normalized beamformers in the cell of interest (Park and Lee, 2009;

Lee and Shin, 2011; Mirza et al., 2015). This principle was implemented using a

zero-forcing (ZF) approach by Park and Lee (2009); Lee and Shin (2011), and the

regularized zero-forcing approach by Mirza et al. (2015). In this section we propose

a scheme in which the normalized beamformers are designed using the closed-form

solutions of the offset maximization approach in (5.6) and (5.7) and the power loading

is designed using the simple iterative algorithm by Medra and Davidson (2015a).

To describe that approach, we let the setKi denote the indices of the users assigned

to BS i and let K̃i denote the union of that set and the indices of the users to which

BS i should mitigate its interference. We will discuss the selection of Ki and K̃i below.

The number of users in these sets are denoted by Ki and K̃i, respectively. With the

goal of computation efficiency in mind, each BS designs the normalized beamformers

as if it were designing them for all users in K̃i. It then designs the power loading for

the users in Ki. That procedure is as follows

1. Find νk for all users in K̃i using (5.6).
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2. Solve for the directions for the users in Ki using (5.7).

3. Initialize σsk = 1.

4. Find the power loading for the users in Ki and r? using (5.9) and the power

constraint
∑

k∈Ki
βk = Pi.

5. Update σsk using (5.10).

6. Return to 4 until an appropriate stopping criterion is satisfied.

Although the design of the beamforming directions and the power loading in the above

algorithm is distributed, the BSs within a cluster coordinate their designs through the

selection of the users in K̃i. While many strategies are possible, one simple strategy

that keeps the amount of information to be shared between the BSs in the cluster

small is to first select Ki using a conventional BS assignment technique for cell-by-cell

operation and then have the neighbouring BSs inform BS i of the users in their cells

that are to have interference mitigated. BS i would acquire the CSI for these users

as if they were assigned to the ith cell.

The above algorithm provides implicit control over the influence that the users

in K̃i \ Ki have on the beamforming directions in cell i. This is provided through

the target SINR for those virtual users. As can be seen from (5.6), νk scales in an

approximately inverse fashion with γk, and as can be seen in (5.7), νk controls the

influence of the channel to user k on all the beamforming directions. This kind of

flexibility is not present in the ZF and RZF techniques by Park and Lee (2009); Lee

and Shin (2011); Mirza et al. (2015).
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5.6 Simulation results

To illustrate the performance of the proposed algorithms we consider a system con-

sisting of two BSs separated by a distance of 2.4km, each with 4 antennas, serving a

total of 4 users. Half of the users are uniformly distributed in a circle of radius 1.5km

around the first BS, the other half are similarly distributed around the other BS. We

assume a large scale fading model described with a path-loss exponent of 3.52 and

log-normal shadow fading with 8dB standard deviation. The small scale fading is

modelled using the standard i.i.d. Rayleigh model. We assume a TDD system with

a channel estimation error variance σ2
e = 0.04, and an SINR target of γ = 3dB for

all users (including the “virtual users” in the algorithms of Section 5.5). The per-BS

power constraint is Pi = PtKi/K. We assume that each user has a signal sensitivity

of -90dBm, and we will consider this power as the noise power. In Fig. 5.1, we plot the

outage probability versus the total power constraint Pt for the cooperative algorithms

with total power constraints (Section 5.4.1) and per-BS power constraints (Section

5.4.2). We also assess the performance of the distributed algorithms in Section 5.5;

once with the users assigned to the BS for which they were generated and another

time with BS selection according to the channel norm (i.e., the user is assigned to the

BS that has a channel vector with bigger Euclidean norm).

We will compare our algorithms to two centralized algorithms and one distributed

algorithm from the literature. The first is an adaptation of the robust centralized

coordination algorithm by Pennanen et al. (2014, Equation (5)) for the considered

scenario. In the adaptation a binary search on the zero-outage region size is per-

formed to find the largest “zero-outage” region for which a problem with a total

power constraint is feasible. That problem is convex, but involves many linear matrix
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inequality constraints. The second comparison is with the robust centralized coor-

dination algorithm by Qiu et al. (2010, Equation (5)) with per-BS power constraint

Pi = Pt/2. This algorithm involves repeated solutions of modified perfect-CSI prob-

lems. In these two cases, each BS is assigned to the users in its area (no BS selection),

and the processing is done in a centralized manner.

From Fig. 5.1 we observe, as expected, that the centralized cooperative algorithms

proposed in Sections 5.4.1 and 5.4.2 provide the best performance. Perhaps the more

interesting observations from Fig. 5.1 are that the proposed distributed coordination

algorithm provides better performance than the existing centralized coordination al-

gorithms by Pennanen et al. (2014) and Qiu et al. (2010). This is despite the fact that

the centralized algorithms by Pennanen et al. (2014) and Qiu et al. (2010) incur sig-

nificantly larger computational costs. A comparison of the distributed algorithms in

Fig. 5.1 shows that the proposed distributed coordination algorithm outperforms the

original versions of the distributed coordination RZF-based algorithm by Mirza et al.

(2015) that uses the regularization factor described by Mirza et al. (2015, Equation

(52)). Furthermore, when the proposed algorithm is augmented with a simple BS

selection scheme it also outperforms a variant of the algorithm by Mirza et al. (2015)

that employs the power loading developed by Medra and Davidson (2015a). (That

variant significantly improves the performance of Mirza et al., 2015). This is despite

the fact that the proposed algorithm is based on a simple iterative algorithm. For

reference, Fig. 5.1 includes the performance of the power loaded offset maximization

approach (Medra et al., 2015) applied to each cell individually. In the low power

regime this approach performs well, whereas at higher power levels, where the impact

of the interference increases, its relative performance degrades.
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Figure 5.1: Outage probability for 4 users, 4 antennas, γ=3dB, σ2=-90dBm, σh = 0.2.
Here [6] refers to Mirza et al. (2015), [7] refers to Qiu et al. (2010), and [10] refers to
Pennanen et al. (2014).

5.7 Conclusion

In this paper we proposed multi-cell MISO downlink algorithms that can provide

substantial robustness against channel uncertainties. We proposed a centralized co-

operative algorithm that has significant performance gains compared to other algo-

rithms in literature, and has lower computational complexity. We also provided a

distributed coordination algorithm that needs very limited backhaul communication,

and incurs an even lower computational cost, and yet can provide better performance

than several existing methods.
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Chapter 6

Summary, conclusions and future

work

6.1 Summary

This thesis focused on the design of low-complexity robust linear beamforming algo-

rithms for multi-user downlink multiple-input single-output (MISO) communication

systems. The algorithms were designed either to provide certain SINR levels with

prespecified probabilities using the least possible transmitted power or to minimize

the outage probability under certain power constraints.

Chapter 2 introduced a zero-outage region approach for robust downlink beam-

forming in frequency division duplexing (FDD) systems. By analyzing the structure

of the semidefinite relaxation of the design problem, a scalar approximation of the

linear matrix inequalities (LMIs) was developed and this led to a low-complexity

algorithm that provides a balance between the performance inside and outside the
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zero-outage region. This approach was shown to extend naturally to time division du-

plexing (TDD) systems. Further analysis of the approximation of the LMIs revealed

that the proposed approach implicitly generates an offset-style approximation of the

SINR outage constraint. That offset-based approach plays a key role in this thesis.

That interpretation motivated the work in Chapter 3, where improved offset-based

approximations for the SINR outage constraint were introduced, and low-complexity

algorithms were derived. A near-optimal robust power loading technique was also in-

troduced. The beamformers designed using the offset maximization framework were

shown to provide significant performance gains and to possess several design flexibil-

ities, in addition to being of low complexity.

In Chapter 4, per-antenna power constraints (PAPCs) were introduced to the

offset maximization framework. Consistent with the theme of the thesis, the suggested

algorithms enable the management of the outage probability at low computational

cost, thus allowing the usability in different applications. Beyond the introduction of

PAPCs to the offset-maximization directions, the PAPCed variants of conventional

beamforming methods, such as zero forcing (ZF) and maximum ratio transmission

(MRT) were also developed. When the number of antennas is large, the computational

cost of the MRT-based algorithm grows only linearly in the number of antennas,

making it suitable for massive MISO systems.

The previous discussion focused on intra-cell interference, and the interference

from other cells was assumed to be managed independently. In Chapter 5, the off-

set maximization algorithm was extended in the multi-cell case and provided joint

robustness against inter-cell and intra-cell interferences. The proposed multi-cell al-

gorithms provide a trade-off between the amount of cooperation or coordination and
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the outage performance.

6.2 Conclusions

This thesis has presented a suite of algorithms that provide high-quality approximate

solutions to a broad range of robust downlink beamforming problems with quality-of-

service constraints. The unifying feature of these algorithms is that they are based,

either explicitly or implicitly, on a transformation of each SINR outage constraint

into a non-negativity constraint on a random variable, and the approximation of

that non-negativity constraint by various forms of “offset” on the mean of the dis-

tribution. It was shown that this approach can generate robust beamformers that

provide significant performance gains, and that it can do so at low computational

cost. A feature of the offset-based approach is that it facilitates the separation of

the design of the beamforming directions and the power loading; providing compu-

tationally cheap algorithms for the directions and a near-optimal algorithm for the

power loading. The approach is also quite flexible, as demonstrated by its ability to

accommodate different power constraints, including the PAPCs and the total power

constraints. That flexibility was further demonstrated by the extension to multi-cell

environments in which intra-cell interference is managed in addition to the inter-cell

interference. Moreover, the offset maximization framework provides significant in-

sights into the trade-off between power consumption and outage probability. Perhaps

most importantly, the family of the offset maximization algorithms was shown to

admit further approximations that result in even lower computational cost. That

enables the application of the approach to envisioned systems with a large number of

antennas. Accordingly, this thesis suggests the use of offset maximization principles
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to tackle the channel uncertainties in downlink beamforming problems, rather than

the conservative zero-outage region-based ideas that are abundant in the existing

literature.

6.3 Future work

This thesis presents the offset maximization technique as a framework for robust

downlink precoding, and provides many problems that can be efficiently solved using

this framework. However, there are several additional design challenges that could

benefit from being viewed within that framework.

1. The work done in this thesis focused on quality-of-service (QoS) kind of prob-

lems, where users specify the required SINR targets for proper operations. A

related problem of interest is that of maximizing the sum rate of the system.

The extension of the low-complexity offset maximization framework to maxi-

mize the sum rate in the presence of channel uncertainty appears to be worthy

of investigation. When the quality of the channel state information (CSI) at the

BS scales linearly with the signal-to-noise (SNR), the slope of the sum rate curve

(versus the SNR, in decibels) can be the same as the perfect CSI case (Jindal,

2006). However, the curve will have an offset which might be reduced using the

proposed framework. More improvements are possible when the CSI quality is

kept constant or when the quality does not improve linearly in the SNR. When

the system is narrow-band, the sum rate maximization might not provide each

user with the required rate for proper operation, and weighted versions of the
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sum rate maximization can be used. When the system is wide-band, and or-

thogonal frequency division multiplexing (OFDM) is used to transform the wide

frequency selective channel to many flat fading channels, then maximizing the

sum rate can be beneficial in terms that each user is provided higher rate, on

average, on different frequency bins. However, the large scale fading of the user

channel can cause the far users to have lower rates on all the allocated frequency

bins, in which case, some sort of fairness control should be introduced.

2. The PAPCs in Chapter 4 were designed for a narrow-band system. In many

practical applications, the system is typically a wide-band system that uses

OFDM techniques, or variants thereof, to provide multiple narrow bands that

have flat fading instead of frequency selective fading. The OFDM block does

not change the input signal power, however, it suffers from high peak to average

power ratio (PAPR). The PAPR is a well known problem in OFDM literature,

and significant efforts were done to reduce that ratio (e.g., Rahmatallah and

Mohan, 2013). However, the literature in the case of beamforming is not as

rich (e.g., Arvola et al., 2016; Joung et al., 2007). The extension of the offset

maximization framework to accommodate for PAPCs in the case of OFDM

signalling while providing low PAPR is interesting. Since the offset-based power

loading algorithm provides explicit relationship between the power required for

each user and the outage probability of that user, this relationship might be able

to be used to suggest some sort of power allocation over the different frequency

bins. This power allocation can be designed to reduce the PAPR.

3. The channel modelling in this thesis was represented by small and large scale

fading. The small scale fading was described by Rayleigh fading channel, with
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the channel from each BS antenna to each user being modelled as indepen-

dent with a circular complex Gaussian distribution with zero mean and unit

variance. The large scale fading is described by a path-loss exponent and log-

normal shadow fading. The channel uncertainty models discussed are that of

additive Gaussian errors that typically appear in time division duplexing (TDD)

systems, and that arise from downlink training and quantized feedback in fre-

quency division duplexing (FDD) systems. Recently, there has been great in-

terest in using the millimeter waves as it has plenty of available spectrum in

that frequency range. The channel models of the millimeter waves are different

from those of conventional microwave links, in terms of the parameters of large

scale fading, and the nature of the small scale fading. The small scale fading

was measured by Samimi et al. (2016) and shown to be rather Rician than

Rayleigh even in the non line-of-sight case. The high attenuation nature of the

millimeter waves provide channel matrices that might be sparse (e.g., Sun et al.,

2014). The adaptation of the offset maximization for that frequency range can

be of great importance.

4. The offset maximization framework relied on having channel estimates to pro-

duce low-complexity robust beamforming. Those channel estimates rely on the

small scale and large scale fading. The large scale fading typically changes very

slowly as it depends on the distance between the base station (BS) and the

user, whereas, the small scale fading can change very frequently. The appli-

cation of offset maximization to produce beamforming vectors that are based

on large scale fading only would allow those vectors to be used for many time

blocks. While there might be some performance degradation due to using the
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large scale fading only, the channel estimation will be required less frequently

and the overall degradation might be negligible.

5. In this thesis, the users are assumed to have single antenna. When the user

has multiple antennas, that opens the opportunity to improve the performance

in two different ways. The BS can send multiple data streams to that user,

and the user can apply a multiple-input multiple output (MIMO) detector to

regenerate the transmitted symbols. However, the significant complexity of

the optimal detector suggests the use of simpler sub-optimal linear detectors.

Using such a spatial multiplexing strategy can provide higher rates to the user.

Another possible strategy is using the multiple antennas at the BS to send the

same data to the user. When using spatial diversity, the reliability and the

resulting SINR can be improved by designing a receiver beamforming vector at

the user side. While single-antenna users require beamforming processing at the

BS side, in multi-antenna users case, detection algorithms should be deployed at

the user side as well. In the later case, the low-complexity algorithms are more

important as the computational power of the user equipment is significantly

lower than the BS.

6. In this thesis the multi-cell case were addressed according to two different sce-

narios. The cooperative scenario, and the coordinated distributed scenario.

Another network architecture that might be of interest is that coordinated cen-

tralized scheme, where each user is assigned to one BS only, and the beam-

forming design for the users is done jointly so that the inter-cell and intra-cell

interferences are minimized. The adaptation of offset maximization to this case

may be of considerable interest.
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