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Abstract
In this thesis, we study the low-energy effective theory for the antiferromagnetic quantum

critical metal in two dimensions. The theory has been the subject of intense study for more than

twenty years, due to the novel physics of non-Fermi liquid metals and its potential relevance to

high-temperature superconductors and heavy-fermion compounds.

In the first part of the thesis, we present the perturbative study of the theory in 3 − ε space

dimensions by extending the earlier one-loop analysis to higher-loop orders. We show that the

ε expansion is not organized by the standard loop expansion, and a two-loop graph becomes as

important as one-loop graphs even in the small ε limit due to an infrared singularity caused by an

emergent quasilocality. This qualitatively changes the nature of the infrared fixed point, and the

ε expansion is controlled only after the two-loop effect is taken into account. Furthermore, we

show that a ratio between velocities emerges as a small parameter, which suppresses a large class

of diagrams.We show that the critical exponents do not receive quantum corrections beyond the

linear order in ε in the limit that the ratio of velocities vanishes.

In the second part of the thesis, we present a nonperturbative solution to the theory in two

dimensions based on an ansatz that is inspired by the perturbative analysis. Being a strongly

coupled theory, it can still be solved reliably in the low-energy limit as quantum fluctuations are

organized by the ratio of velocities that dynamically flows to zero in the low-energy limit. We

predict the exact critical exponents that govern the universal scaling of physical observables at

low temperatures.
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Introduction
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Phase transitions are one of the most fascinating topics in physics [1], with a long history

and an application in many seemingly unrelated areas of physics, and even in non-science dis-

ciplines [2]. In condensed matter, they are a central area of research, and will continue to be, as

long as new phases of matter are being discovered.

First order, or discontinuous, phase transitions are not particularly interesting from a theoret-

ical perspective. This is because discontinuous phase transitions contain only a finite correlation

length, and therefore cannot be “universal”, i.e. independent of the microscopic details. Second

order, or continuous, phase transitions, on the other hand, have a divergent correlation length,

and they are believed to have universality: they can be entirely characterized by the symmetries

and topologies of both phases and the dimension. Universality is a very powerful idea, as it en-

ables the characterization of phase transitions in a huge number of systems and materials within

a universality class by the study of a single theory.

Among continuous phase transitions, arguably the most interesting are quantum phase tran-

sitions (QPTs) [3]. QPTs are driven not by the thermal fluctuations, but by the inherent quantum

fluctuations arising from the particle-wave duality, which are present even at zero temperature.

Quantum fluctuations allow for more variety in QPTs, and a very rich set of universality classes

has already been found that have no analogue in classical phase transitions[3, 4]. The critical

behavior at the zero temperature quantum critical point (QCP) controls the physics not only at

the critical point but also within the region at finite temperatures inside the “quantum critical

fan”, as shown in Fig. 1.1.

Figure 1.1: A schematic phase diagram of a quantum phase transition.

QPTs in insulators are relatively simple: at the QCP the only low energy degree of free-

dom is the order parameter. Metals, on the other hand, contain a Fermi surface (FS), whose

low energy excitations can interact with the order parameter. Theories of QCPs in metals must

therefore necessarily include these excitations and interactions, which increases the complexity

of the problem. Here we focus on metals in two spatial dimensions, where quantum fluctuations

are strong at low energies. In metals near QCPs, the order parameter is strongly dressed by the
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particle-hole excitations near the FS, but the behavior of the fermions in turn is expected to be

heavily modified by the interactions with the order parameter. In other words, the conventional

theory of metals, known as Landau Fermi liquid theory [5], is expected to break down due to

the strong quantum fluctuations of the order parameter, leading to a non-Fermi liquid (nFL). In

the rest of chapter we review the essentials of Fermi liquid theory, and the different scenarios

for realizing nFLs at a QCP.

I Fermi Liquids

Landau Fermi liquid theory [5] is the canonical description of conventional metals. The main

assumption is that the interactions are short range, which is valid in most metals, where the

Coulomb interaction is rendered short ranged by screening. Under this assumption, Landau

postulated that the low energy excitations near the FS are quasiparticles, which carry the same

statistics and quantum numbers as the non-interacting fermions, but have a renormalized mass

and a finite lifetime. The lifetime τ of the quasiparticles grows with proximity to the FS as

τ ∝ |~k − ~kF |−2 where k is its momentum and kF is the Fermi momentum, which grows faster

than the timescale associated with its energy that grows as ∝ |~k − ~kF |−1. Therefore, at lower

energies, the quasiparticles are more stable, and Landau’s picture becomes more precise.

The degree of quasiparticle stability can be quantified using the spectral function of the

fermionic excitations,A(ω,~k) ≡ −2ImGR(ω,~k), whereGR(ω,~k) is the retarded Green’s func-

tion. The spectral function can be decomposed asA(ω,~k) = 2πZδ(ω−ε(~k))+A′(ω,~k), where

ε(~k) is the energy of the fermion, and A′(ω,~k) is the incoherent part[6]. Z is called the “quasi-

particle weight” and it is the overlap between the quasiparticle and the bare fermion. Without

interactions, A′(ω,~k) would vanish, and Z = 1. In the presence of interactions Z decreases,

but as long as Z > 0 and there is a finite overlap, the quasiparticle picture put forth by Landau

holds.

Landau’s theory was initially postulated, and only after was properly derived using many-

body techniques [7]. Later, it was also explained using the renormalization group (RG) ap-

proach [8, 9]. Similar to Wilson’s RG [10], fermions with higher energies, i.e. further away

from the FS, are integrated out to renormalize fermions closer to the FS. The energy cutoff of

the fermions Λ is made smaller relative to the size of the FS KF , as in Fig. 1.2.

At low energies, with Λ/KF → 0, all excitations are very close to the FS, and the scat-

tering due to the local four-fermion interaction is highly restricted. Specifically, only forward

scattering and BCS scattering survive, thus leading to coherent quasiparticles which undergo a

superconducting phase transition at low enough temperatures.

Fermi liquid theory predicts scaling forms of many observables at low temperature, such

as the electrical resistivity ρ ∼ ρ0 + AT 2 and specific heat C ∼ γT . These signatures have
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KF⇤

⇤

Figure 1.2: The RG scheme based on Wilson, which is used in Ref. [8]. KF is the Fermi
momentum, and the middle circle denoted to have the radius KF is the Fermi surface. The
inner and outer circles have radiiKF ±Λ, respectively, where Λ is a UV cutoff. The low energy
theory describes excitations in the region between the inner and outer circles. As Λ/KF → 0,

this region shrinks, restricting the phase space available for scattering.

been observed in conventional metals[11], and therefore the experimental observation of differ-

ent scaling forms of resistivity and specific heat are a strong indication that Landau theory is

breaking down[12].

II Non-Fermi Liquids

II-1 Description

Non-Fermi liquids are metallic states that do not fall under the quasiparticle picture. They can

be defined most easily as states with Z = 0. They arise most naturally when an additional

gapless bosonic degree of freedom mediates a singular interaction between fermions. This is

precisely the situation at QCPs, where the gapless boson is the order parameter interacting with

the fermions [13, 14]. Additionally, there are other systems, where the gapless boson is present

in an extended region of parameter space at zero temperature, providing a critical phase: the

gapless boson can be an emergent gauge field interacting with a spinon Fermi surface [15–22],

or a Goldstone mode in a symmetry broken phase where the generators of the broken symmetry

group do not commute with the translation operators, such as a phase where magnetic translation

is broken [23]. From now on we focus on the nFLs at QCPs.

From a theoretical perspective, the most interesting case is that of two spatial dimensions. In
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higher dimensions, the quantum fluctuations of the order parameter are weaker, and the devia-

tion from Fermi liquid behavior is expected to be small. On the other hand, in one dimension,

there are only isolated Fermi points instead of a Fermi surface [24–27]. The same challenges

and new physics that comes with an extensive number of gapless modes are absent in one di-

mension. As a result, the low energy physics of metals in one dimension is often described by

relativistic field theories. The dimension of two is a sweet spot: the strong quantum fluctuations

of the order parameter interact with infinitely many gapless modes, and we expect strong devi-

ations from Fermi liquid theory to arise there. The rest of this thesis is devoted to studying two

dimensional theories.

Various QCPs lead to different classes of nFLs in two dimensions, depending on the proper-

ties of the symmetry broken state, specifically the ordering wavevector ~Q of the order parameter.

If ~Q = 0, the critical fluctuations of the order parameter scatter fermions on all points on the

Fermi surface, thus creating a “hot Fermi surface”. This is the case in ferromagnetic [28] and

nematic [29] QCPs. If ~Q 6= 0, the order parameter scatters fermions only between isolated

points on the Fermi surface that are connected by ~Q, called “hot spots”, at low energies. This

is the case in charge density wave [30] and spin density wave [31–33] QCPs. The latter is the

main subject of this thesis. Before focusing on it, we will review the theoretical progress which

has been made in general nFL theories.

II-2 Summary of past progress

Theories of a two dimensional Fermi surface interacting with a critical boson are notoriously

difficult problems. If one integrates out the boson, and tries to apply the approach of Shankar

[8, 9], the long-range effective interactions between fermions results in the proliferation of non-

forward scatterings, which is hard to keep track of. On the other hand, if one integrates out

the fermions, and tries to study the Ginzburg-Landau type action for the collective mode using

Hertz-Millis theory[13, 14], the gapless fermions induce infinitely many marginal interactions

between the bosons, which renders this approach intractable as well. Therefore, all gapless

degrees of freedom must be kept to describe the low-energy physics based on a local effective

field theory. The form of the interaction between fermions and boson is of the Yukawa type,

g φψ†ψ. The interaction strength g is a relevant coupling in two dimensions, and treating the

theory perturbatively from the Gaussian fixed point is not a viable option. In order to include the

quantum effects in a controlled manner, many approaches have been used, and we summarize

them briefly here, in chronological order.

The first approach has focused on the flavor number N of the fermions [18, 19, 34]. In real

systems, it is fixed to be a small numberN ∼ O(1). However, one can generalizeN to arbitrary

values, and then there are two options. The first is to use N itself as a small tuning parameter

and expand about the N → 0 theory with NkF fixed [18, 35]. This amounts to ignoring the
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physics of the Fermi surface relative to that of the order parameter. However, it is not clear if the

N → 0 results are smoothly connected to the results at N ∼ O(1), because the N → 0 limit

reduces the number of gapless fermion modes to a finite number. The other option is to take the

N →∞ limit, as is standard in relativistic field theories [18, 19, 34]. In this limit the fermionic

excitations would dominate the physics at low energies, which is qualitatively similar to the free

case with g = 0. That is why the 1/N expansion has been used for a long time. However, it

was shown later that for all classes of nFL theories this approach is not feasible, as the number

diagrams at each order in 1/N is infinite, contrary to the naive scaling analysis [36–38].

Other theories have focused an introducing a tuning parameter ε into the kinetic term of the

boson, |~q|2 → |~q|1+ε [21, 39]. This approach reduces the effect of the boson by artificially

reducing its density of states. It also saves the limit of N → ∞, as the theory is controlled at

large N with fixed εN ∼ O(1) [40]. This procedure is appealing for the additional reason that

all the symmetries of the original theory are preserved for all values of ε. However, the non-local

dynamics of the boson will not be renormalized under the RG procedure, and therefore the low

energy physics of the original local theory cannot be correctly captured if the boson acquires an

anomalous dimension, as is generally expected to happen[41].

A final perturbative approach that has recently been developed is dimensional regularization,

where the dimension of space is tuned to the upper critical dimension to make g marginal.

Among them, the co-dimensional regularization scheme of Refs. [42, 43] is the one we choose to

focus on, for reasons explained below. In it, the dimension and shape of the Fermi surface is held

fixed as the dimension of space increases. This gives a theory in general dimensions where the

density of states of the fermions has been reduced. By tuning the theory in this way, fluctuations

of both the fermion and boson are reduced, allowing for a controlled approach. Furthermore,

the theory remains local at all dimensions, which is a significant advantage over the method of

tuning the dynamics. The disadvantage of this extension is that some symmetries of the theory

are broken. In the nFL theories with ~Q = 0, the global U(1) symmetry is broken down to Z2

[42]. In the nFL theories with ~Q 6= 0, the fermion numbers at pairs of hot spots connected

by ~Q are no longer conserved upon extension[43]. In this thesis we use the co-dimensional

regularization of Ref. [43] to study the antiferromagnetic (AF) QCP, as we believe that the

preservation of locality and number of gapless modes is more crucial than the preservation of

the symmetries that are lost in this approach. We will see that the perturbative solution obtained

from the co-dimensional regularization is smoothly connected to the non-perturbative solution

in two dimensions.
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III Antiferromagnetic criticality

The AF QCP is believed to be present in many layered materials. Of the materials, the most

prominent are the electron-doped cuprates [44, 45], iron pnictides [46], and heavy fermion com-

pounds [47, 48]. We show their phase diagrams in Fig. 1.3.

(a) Motoyama et al. (2007)

BaFe2(As1�xPx)2

(b) Hashimoto et al. (2012)

B(T )

(c) Custers et al. (2003)

Figure 1.3: The phase diagrams of the various materials containing an AF QCP. The figures in
(a), (b), (c) are taken from Refs. [45], [46], and [48], respectively.

A key feature of the AF QCP is the FS reconstruction that occurs across the phase transition.

In the disordered phase, the shape of the Fermi surface is determined by the underlying band

structure. At the critical point, the electrons near the hot spots strongly interact with the gapless

AF collective mode. Once the system is tuned into the ordered phase, the electrons at the hot

spots become gapped. This breaks the FS into disconnected pockets. We illustrate this in Fig.

1.4, using the FS that is applicable to the cuprates.

Of the material classes mentioned in this section, the electron-doped cuprates and the iron-

pnictides are more similar, while the heavy-fermion compounds stand out from the other two.

The largest difference is that in addition to the FS and AF fluctuations they contain more de-

grees of freedom in the form of localized spins that interact with the itinerant electrons. This

drastically increases the complexity of the problem. Also, as can be seen in Fig. 1.3(c), the tun-

ing parameter for the transition is often magnetic field, which breaks time reversal symmetry. In
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Tuning parameter
disorderedordered

Figure 1.4: The reconstruction of the FS in momentum space across the AF QCP.

order to avoid these complications, we restrict ourselves to studying the AF QCP in the electron-

doped cuprates[31, 32] and the iron-pnictides[49, 50], which has time reversal symmetry and no

additional degrees of freedom. In order to simplify our study further, we focus on the Fermi

surface specific to electron-doped cuprates shown in Fig. 1.5(a), which has only a single band

and C4 symmetry, and we study the most common scenario where the ordering wave vector is

commensurate.

Now we write down the action for the AF QCP in two dimensions. The form of this action is

dictated by the gapless degrees of freedom, the symmetries present, and the fact that the action

must be local in space. The FS in Fig. 1.5(a) has eight hot spots. We take ~QAF ≡ ~Q = (π, π),

(a)

~QAF

1

v

hot spot 1+:

e
(+)
1 (~k)

(b)

Figure 1.5: a) The first Brillouin zone of a metal in two dimensions with C4 symmetry. The
shaded region represents the occupied states. The AF ordering wavevector ~QAF is denoted by
red arrows. The hot spots are the red dots connected by ~QAF . b) The linearized FS at the hot
spot (1,+). The velocities parallel and perpendicular to ~QAF are set to be 1 and v, respectively.

Other hot spots are linearized according to the C4 symmetry.

which is the most common value of ~QAF seen in experiments[32]. The commensurate order
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ensures that the critical boson field is real. At low energies the relevant degrees of freedom are

the fermions near the hot spots interacting with the critical boson, which scatters the fermions

between pairs of hot spots. The local action is given by

S =

4∑
n=1

∑
m=±

∑
σ=↑,↓

∫
d3k

(2π)3
ψ(m)∗
n,σ (k)

[
ik0 + emn (~k; v)

]
ψ(m)
n,σ (k)

+
1

2

∫
d3q

(2π)3

[
q2

0 + c2|~q|2
]
~φ(−q) · ~φ(q)

+g0

4∑
n=1

∑
σ,σ′=↑,↓

∫
d3k

(2π)3

d3q

(2π)3

[
~φ(q) · ψ(+)∗

n,σ (k + q)~τσ,σ′ψ
(−)
n,σ′(k) + c.c.

]
+
u0

4!

∫
d3k

(2π)3

d3p

(2π)3

d3q

(2π)3

[
~φ(k + q) · ~φ(p− q)

] [
~φ(−k) · ~φ(−p)

]
. (1)

Here, k = (k0,~k) denotes the Matsubara frequency and the two-dimensional momentum ~k =

(kx, ky). ψ(m)
n,σ are the fermion fields that carry spin σ =↑, ↓ at the hot spots labeled by n =

1, 2, 3, 4, m = ±. From now on, we use a rotated axis in which the ordering wave vector

is ~QAF = ±
√

2πk̂x,±
√

2πk̂y up to the reciprocal lattice vectors
√

2π(k̂x ± k̂y). With this

choice the fermion dispersions are e±1 (~k; v) = −e±3 (~k; v) = vkx±ky, e±2 (~k; v) = −e±4 (~k; v) =

∓kx + vky, where ~k is the momentum deviation from each hot spot. This is illustrated in Fig.

1.5(b). The curvature of the Fermi surface can be ignored, since the patches of Fermi surface

connected by the ordering vector are not parallel to each other with v 6= 0. The Fermi velocity

along the ordering vector has been set to unity by rescaling ~k. v is the component of Fermi

velocity that is perpendicular to ~QAF . ~φ(q) is the boson field with three components which

describes the AF collective mode with frequency q0 and momentum ~QAF + ~q. ~τ represents

the three generators of the SU(2) group. c is the velocity of the AF collective mode. g0 is the

Yukawa coupling between the collective mode and the electrons near the hot spots, and u0 is the

quartic coupling between the collective modes. All higher order couplings are irrelevant under

the Gaussian scaling.

The 1/N expansion was initially used to compute the low-energy observables of Eq. (1)

[38, 51–53], and for a long time those results were believed to hold qualitatively at N ∼ O(1).

The results include that i) v → 0 in the low energy limit, and the hot spots become pairwise

nested with each other, ii) both fermion and boson strongly renormalize each other’s dynamics,

and the dynamical critical exponent at the one-loop order is z = 2, iii) higher-loop quantum

corrections further renormalize z. However, in Ref. [38] it was found that the 1/N expansion

breaks down and these results are not reliable. We will see that some of the findings of the 1/N

expansion still hold, but some results are qualitatively modified in the controlled expansion we

employ.
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III-1 Outline of the thesis

The action in Eq. (1) is the subject of this thesis. In Chapter 1, we extend the work of Ref. [43]

in applying the co-dimensional regularization scheme to this problem. We compute the beta

functions to higher-loop order than in Ref. [43] for reasons explained therein. We find that the

theory is only controlled once these higher-loop effects are taken into account. Additionally,

we find a novel control parameter, which suggests that the theory can be controlled even in two

dimensions. In Chapter 3, we expand on this suggestion, and work with the theory directly in

two dimensions. By relying on the intuition from the results in Chapter 2, we use an interaction-

driven scaling and self-consistently show that the theory can indeed be controlled by the new

control parameter. This allows us to extract exact critical exponents and low energy observables.



Chapter 2

Emergence of a control parameter for
the antiferromagnetic quantum critical
metal from the ε-expansion

11
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The work of Sur and Lee [43] attempted to understand the AF QCP in a controlled way by

using the co-dimensional regularization scheme. For the related problem of the nematic quan-

tum critical metal, the co-dimensional regularization scheme was shown to provide controlled

access to the low-energy fixed point [42], unlike the 1/N expansion, which was found to break

down in Refs. [36, 38]. The upper critical dimension for the AF critical metal is d = 3, where

from here on d represents the number of space dimensions. Sur and Lee performed a pertur-

bative calculation in d = 3 − ε to the one-loop order. They found a stable fixed point to the

leading order in ε that is smoothly connected to ε = 0. An important feature of their fixed point,

is that the system exhibits an emergent locality with vanishingly small velocities along some di-

rections, while a ratio of velocities flows to an order one value. However, at this fixed point, the

perturbative expansion is not controlled, as certain higher-loop diagrams are expected to have

divergent coefficients[54]. The divergences are caused by the emergent locality which enhances

quantum fluctuations at low energies.

In this work, we extend the earlier one-loop analysis to include higher-loop effects. We find

that the ε-expansion is not simply organized by the number of loops, and certain higher-loop

diagrams are enhanced by IR singularities caused by the emergent quasi-locality. As a result, a

two-loop diagram qualitatively modifies the nature of the fixed point even to the leading order

in ε[54]. We show that the ε-expansion is controlled with the inclusion of the two-loop effect.

Furthermore, the ratio between velocities is shown to flow to zero in the low energy limit, which

protects the critical exponents from receiving higher-loop corrections. This is similar to the ne-

matic critical point in d-wave superconductors, where an emergent anisotropy in velocities leads

to asymptotically exact results to all orders in the 1/N expansion[55].

Following our work in this chapter, we actually managed to solve the problem exactly in

two-dimensions, using a non-perturbative ansatz[56], which is the subject of Chapter 3. The

ansatz assumes that the structure of the fixed point found in this chapter holds all the way down

to ε = 1, which is not a-priori guaranteed. According to the non-perturbative solution, the AF

collective mode is strongly dressed by particle-hole excitations. In contrast, electrons have zero

anomalous dimension, and exhibit a relatively weak departure from the Fermi liquid with dy-

namical critical exponent z = 1. The non-perturbative solution actually applies to more general

theories, and the same conclusion holds for the AF quantum critical point in the presence of a

one-dimensional Fermi surface embedded in general dimensions, 2 ≤ d < 3[57].

The ε-expansion and the non-perturbative solution[56, 57] are independent and complimen-

tary. The former is a brute-force perturbative analysis, which is straightforward but valid only

near the upper critical dimension. The latter approach is non-perturbative, and it is based on

an ansatz that is confirmed by a self-consistent computation. The agreement of the results from

the two different approaches provides an independent justification of the ansatz used in the non-

perturbative solution.
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I Dimensional regularization

We start by generalizing the theory in Eq. (1) by tuning the number of co-dimensions of the

one-dimensional Fermi surface[42, 43, 58]. For this, we pair fermions on opposite sides of

the Fermi surface into two component spinors, Ψ1,σ = (ψ
(+)
1,σ , ψ

(+)
3,σ )T , Ψ2,σ = (ψ

(+)
2,σ , ψ

(+)
4,σ )T ,

Ψ3,σ = (ψ
(−)
1,σ ,−ψ

(−)
3,σ )T , Ψ4,σ = (ψ

(−)
2,σ ,−ψ

(−)
4,σ )T . In the spinor basis, the kinetic term for

the fermions becomes SF =
∑4

n=1

∑
σ=↑,↓

∫
d3k

(2π)3
Ψ̄n,σ(k)

[
iγ0k0 + iγ1εn(~k; v)

]
Ψn,σ(k),

where γ0 = σy and γ1 = σx (σi being the Pauli matrices), Ψ̄n,σ = Ψ†n,σγ0 with ε1(~k; v) =

e+
1 (~k; v), ε2(~k; v) = e+

2 (~k; v), ε3(~k; v) = e−1 (~k; v), ε4(~k; v) = e−2 (~k; v). The general theory in

d spatial dimensions reads

S =
4∑

n=1

Nc∑
σ=1

Nf∑
j=1

∫
dk Ψ̄n,σ,j(k)

[
iΓ ·K + iγd−1εn(~k; v)

]
Ψn,σ,j(k)

+
1

4

∫
dq
[
|Q|2 + c2|~q|2

]
Tr [Φ(−q) Φ(q)]

+i
gµ(3−d)/2√

Nf

4∑
n=1

Nc∑
σ,σ′=1

Nf∑
j=1

∫
dkdq Ψ̄n̄,σ,j(k + q)Φσ,σ′(q)γd−1Ψn,σ′,j(k)

+
µ3−d

4

∫
dk1dk2dq

[
u1Tr [Φ(k1 + q)Φ(k2 − q)] Tr [Φ(−k1)Φ(−k2)]

+u2Tr [Φ(k1 + q)Φ(k2 − q)Φ(−k1)Φ(−k2)]
]
. (2)

Here we consider SU(Nc) spin and Nf flavors of fermions for generality. k = (K,~k) is the

(d + 1)-dimensional energy-momentum vector with dk ≡ dd+1k
(2π)d+1 . ~k = (kx, ky) still de-

notes the two original momentum components, and K = (k0, k1, ..., kd−2) denotes the fre-

quency and the momentum components along the (d− 2) co-dimensions that have been added.

Γ = (γ0, γ1, ..., γd−2) together with γd−1 are the gamma matrices which satisfy the Clifford

algebra {γµ, γν} = 2Iδµ,ν with Tr[I] = 2. Ψn,σ,j with σ = 1, 2, ..., Nc and j = 1, 2, ..., Nf is

in the fundamental representation of both the enlarged spin group SU(Nc) and the flavor group

SU(Nf ). Φ(q) =
∑N2

c−1
a=1 φa(q)τa is a matrix field for the collective mode, where τa are the

generators of SU(Nc) with Tr[τaτ b] = 2δab. The Yukawa interaction scatters fermions between

pairs of hot spots denoted as (n, n̄) with 1̄ = 3, 2̄ = 4, 3̄ = 1, 4̄ = 2. The Yukawa and quartic

interactions have scaling dimensions (3− d)/2 and (3− d), respectively, at the non-interacting

fixed point. µ is the energy scale introduced to make g, u1, u2 dimensionless. For Nc ≤ 3, u1

and u2 are not independent couplings because of the identity, Tr[Φ4] = 1
2(Tr[Φ2])2.

The energy of the fermions is given by En(k1, ..., kd−2,~k) = ±
√∑d−2

i=1 k
2
i + ε2

n(~k), which

supports a one-dimensional Fermi surface embedded in the d-dimensional momentum space.

To understand the substance of this generalization, it is instructive to look at the theory in

d = 3. There, the γ matrices that satisfy the Clifford algebra are chosen to be (γ0, γ1, γ2) =

(σy, σz, σx), and we identify k1 = kz . The kinetic term of the three-dimensional action for the
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spinors Ψ1, Ψ3 is written in terms of the original fermions ψ(m)
n as

H0 =

Nc∑
σ=1

Nf∑
j=1

∫
dk (vkx ± ky)

[
ψ

(±)∗
1,σ,jψ

(±)
1,σ,j − ψ

(±)∗
3,σ,jψ

(±)
3,σ,j

]
∓ kz

[
ψ

(±)∗
1,σ,jψ

(±)
3,σ,j + h.c.

]
,(3)

and the kinetic term for the spinors Ψ2, Ψ4 is obtained from Eq. (3) using the C4 symmetry.

Eq. (3) describes an AF QCP in d = 3 with a pz-wave CDW. It is therefore itself a physical

theory, which can arise in an experimental setup [43]. The CDW gaps out the Fermi surface in

the z-direction, leaving the one-dimensional Fermi surface embedded in three dimensions. To

illustrate this, we show the resulting spectrum of the theory in d = 3 in Fig. 2.1.

Figure 2.1: The theory in Eq. (2) at d = 3. The Fermi surface is still given by the one-
dimensional blue lines. The planes at each hot spot are the spectral gap proportional to kz ,

which comes from the pz-wave charge density wave with momentum 2~kF in Eq. (3).

The theory in Eq. (2) respects the U(1) × SU(Nc) × SU(Nf ) internal symmetry. It is

also invariant under the C4 transformations in the (kx, ky) plane, the SO(d − 1) that rotates

(k0, ..., kd−2), and time-reversal. When Nc = 2, there is an additional pseudospin symmetry,

which rotates Ψn,σ,j(k) into iτ (y)
σ,σ′Ψ̄

T
n,σ′,j(−k)[38].

In three spatial dimensions both interactions are marginal, which is a fortunate coincidence.

We therefore expand around d = 3 using ε = 3 − d as a small parameter. We use the minimal

subtraction scheme to compute the beta functions, which dictate the renormalization group (RG)

flow of the velocities and couplings. To make the quantum effective action finite in the ultraviolet

(UV), we add counter terms which can be written in the following form,

SCT =

4∑
n=1

Nc∑
σ=1

Nf∑
j=1

∫
dk Ψ̄n,σ,j(k)

[
iA1Γ ·K + iA3γd−1εn

(
~k;
A2

A3
v

)]
Ψn,σ,j(k)

+
1

4

∫
dq
[
A4 |Q|2 +A5 c

2 |~q|2
]
Tr [Φ(−q) Φ(q)]
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+iA6
gµ(3−d)/2√

Nf

4∑
n=1

Nc∑
σ,σ′=1

Nf∑
j=1

∫
dk dq

[
Ψ̄n̄,σ,j(k + q)Φσ,σ′(q)γd−1Ψn,σ′,j(k)

]
+
µ3−d

4

∫
dk1 dk2 dq

[
A7u1Tr [Φ(k1 + q)Φ(k2 − q)] Tr [Φ(−k1)Φ(−k2)]

+A8u2Tr [Φ(k1 + q)Φ(k2 − q)Φ(−k1)Φ(−k2)]
]
, (4)

where

An ≡ An(v, c, g, u; ε) =
∞∑
m=1

Zn,m(v, c, g, u)

εm
. (5)

Zn,m(v, c, g, u) are finite functions of the couplings. The counter terms are computed order by

order in ε. The general expressions for the dynamical critical exponent, the anomalous scaling

dimensions of the fields, and the beta functions of the velocities and couplings are summarized

in Section III.

II The modified one-loop fixed point

(a) (b) (c)

(d) (e)

Figure 2.2: One-loop diagrams.

We begin by reviewing the one-loop RG analysis of Ref. [43]. The conclusion of the anal-

ysis is that the theory flows to a quasi-local non-Fermi liquid state, where c, v flow to zero

as 1/l for d < 3 and as 1/ log(l) at d = 3 in the logarithmic length scale l, with their ratio

fixed to be w ≡ v/c =
NcNf
N2
c−1

in the low energy limit with l → ∞. Along with the emer-

gent quasi-locality, the couplings also flow to zero such that λ ≡ g2/v and κi ≡ ui/c
2 flow to

λ∗ =
4π(N2

c+NcNf−1)

N2
c+NcNf−3

ε and κ∗i = 0 in the low energy limit.

The perturbative expansion is controlled by the ratios between the couplings and the veloci-

ties, and the dynamical critical exponent becomes z = 1 +
N2
c+NcNf−1

2(N2
c+NcNf−3)

ε. With w ∼ O(1) at
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the one-loop fixed point, general diagrams are estimated to scale as I ∼ λ
Vg
2 κVui cVu−Lb+

E−2
2 ,

where Vg is the number of Yukawa vertices, Vu is the number of quartic vertices, Lb is the

number of boson loops, and E is the number of external lines. Because c flows to zero,

magnitudes of higher-loop quantum corrections are controlled not only by λ but also by c.

In particular, the quantum correction to the spatial part of the boson kinetic term becomes

A5 ∼ I/c2 ∼ λ
Vg
2 κVui cVu−Lb−2, where the counter term is further enhanced by a factor of

1/c2 because the velocity in the classical action is already small.

In three dimensions (ε = 0), all higher-loop diagrams are suppressed because λ flows to zero

faster (λ ∼ 1/l) than the velocities (v ∼ c ∼ 1/ log(l)). Therefore, the critical point in three

dimensions is described by the stable quasi-local marginal Fermi liquid [59], where the Fermi

liquid is broken by logarithmic corrections from the one-loop effect[43]. Below three dimen-

sions (ε > 0), however, some higher-loop diagrams cannot be ignored because c flows to zero

while λ∗ ∼ ε. For example, A5 from Fig. 2.3 is divergent at the one-loop fixed point. It might

seem strange that the higher-loop graph suddenly becomes important for any nonzero ε while

it is negligible at ε = 0. This apparent discontinuity originates from the fact that the small ε

limit and the low energy limit do not commute. If the small ε limit is taken first, all higher-loop

graphs are suppressed. However, since we are ultimately interested in the theory at d = 2, we

fix ε to a small but finite value, and then take the low energy limit of the corresponding theory.

In this case, c flows to zero, and the IR singularity caused by the softening of the collective

mode enhances the magnitude of the two-loop graph. Since certain higher-loop diagrams can be

enhanced by the IR singularity in the small c limit, we cannot ignore all higher-order quantum

corrections from the outset even in the small ε limit.

The largest contribution to the renormalization of c comes from the boson self-energy in

Fig. 2.3. We call the addition of this two-loop diagram to the one-loop diagrams (Fig. 2.2)

the “modified-one-loop” (M1L) order. As will be shown later, the flow of c is modified by the

two-loop graph in Fig. 2.3 such that the effect of other higher-loop diagrams is negligible in

the small ε limit. There also exists a two-loop diagram made of quartic vertices contributing

to A5. However, the diagram has no enhancement by 1/c2 because the momentum dependent

self-energy comes with c2 due to the (d + 1)-dimensional rotational symmetry present in the

bosonic sector. The contribution from the quartic vertices are further suppressed because κi is

irrelevant at the fixed point.

Figure 2.3: Two-loop diagram for the boson self-energy.
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Fig. 2.3 gives rise to the quantum effective action whose divergent part is given by

δΓ2L
0,2 =

1

ε

4

NcNf

g4

v2c2
h5(v, c)

∫
dp

1

4
c2|~p|2Tr[Φ(−p)Φ(p)], (6)

where h5(v, c) is given by h5(v, c) = h∗5
v
c with h∗5 ≈ 5.7× 10−4 in the limit v, c, v/c are small.

The full definition of h5(v, c) is given in Appendix A II. The positive sign of Eq. (6) implies

that the two-loop correction prevents c from flowing to zero too fast[54]. If c is small, the

quantum correction makes the collective mode speed up until the quantum correction becomes

O(1), 1
ε

4
NcNf

g4

v2c2
h5(v, c) ∼ 1. Since g2

v ∼ ε, this suggests that g
2

c3
becomes O(1) in the low

energy limit. Once c becomes comparable to g2/3 ∼ v1/3, it flows to zero together with v,

although at a slower rate than v. As a result, w = v/c flows to zero at the M1L fixed point

for ε > 0, unlike at ε = 0. This emergent hierarchy in the velocities plays a crucial role in the

non-perturbative solution[56, 57]. In order to confirm this picture, we examine the RG flow in

the space of {λ, x, w, κi}, where x ≡ g2

c3
is expected to flow to an O(1) value at the fixed point.

The beta functions for the five parameters are expressed in terms of the counter terms as

dλ

dl
= z λ

(
ε+ Z ′2,1 + Z ′3,1 + Z ′4,1 − 2Z ′6,1

)
,

dx

dl
= z x

(
ε+

1

2

(
6Z ′1,1 − 2Z ′3,1 − Z ′4,1 + 3Z ′5,1 − 4Z ′6,1

))
,

dw

dl
=

1

2
z w

(
2Z ′1,1 − 2Z ′2,1 − Z ′4,1 + Z ′5,1

)
,

dκ1

dl
= z κ1

(
ε+ Z ′4,1 + Z ′5,1 − Z ′7,1

)
,

dκ2

dl
= z κ2

(
ε+ Z ′4,1 + Z ′5,1 − Z ′8,1

)
, (7)

where Z ′n,1 ≡
(

1
2g∂g + ui∂ui

)
Zn,1, and z =

[
1 + Z ′1,1 − Z ′3,1

]−1 is the dynamical critical

exponent. In the limit that v, c, v/c are small, the beta functions at the M1L level become

dλ

dl
= z λ

(
ε− 1

4π
λ+

1

2πNcNf
λw

)
, (8)

dx

dl
= z x

(
ε− 3N2

c − 7

8πNcNf
λw +

(N2
c − 1)

2π2NcNf

(λw)
3
2

x
1
2

+
1

8π
λ− 12h∗5

NcNf
λx

)
, (9)

dw

dl
=

1

2
z w

(
− (N2

c − 1)

4πNcNf
λw − (N2

c − 1)

π2NcNf

(λw)
3
2

x
1
2

+
1

4π
λ− 8h∗5

NcNf
λx

)
, (10)

dκ1

dl
= z κ1

(
ε− 1

4π
λ− 8h∗5

NcNf
λx− 1

2π2

(
(N2

c + 7)κ1 + 2

(
2Nc −

3

Nc

)
κ2 + 3

(
1 +

3

N2
c

)
κ2

2

κ1

))
,(11)

dκ2

dl
= z κ2

(
ε− 1

4π
λ− 8h∗5

NcNf
λx− 1

2π2

(
12κ1 + 2

(
Nc −

9

Nc

)
κ2

))
, (12)
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with z =
(

1− N2
c−1

8πNcNf
λw
)−1

. The beta functions exhibit a stable fixed point given by

λ∗ = 4πε, x∗ =
NcNf

32π h∗5
, w∗ = 0, κ∗i = 0. (13)

It is noted that x is O(1), and v, c, v/c all vanish at the fixed point.

Figure 2.4: The RG flow in the space of (λ, x, w) for ε = 0.01 and Nc = 2, Nf = 1. The axes
are scaled as x̄ ≡ x/10, λ̄ ≡ 10λ. The fixed point (λ̄∗, x̄∗, w∗) = (1.26, 3.49, 0) is denoted
as a red dot. The solid curves represent the numerically integrated RG flows, and the dotted

(orange) line represents the one-dimensional manifold given by dx
dl = dλ

dl = 0.

In order to understand the flow near the fixed point, we first examine the beta functions

for x and λ. Although it may seem arbitrary to focus on the flow of x, λ first with fixed w,

this is actually a good description of the full RG flow because the flow of x, λ is much faster

than that of w, as will be shown in the following. From Eqs. (8), (9), the beta functions for

(δλ, δx) ≡ (λ− λ∗, x− x∗) are given by

dδλ

dl
= fλ(w)− ε δλ+ . . . ,

dδx

dl
= fx(w)−

NcNf

32π h∗5

(
48π h∗5εδx

NcNf
+
δλ

4π

)
+ . . .

(14)

to the linear order in the deviation from the fixed point for smallw, where fλ(w) = dλ
dl

∣∣
λ=λ∗,x=x∗

,

fx(w) = dx
dl

∣∣
λ=λ∗,x=x∗

, and . . . represent terms that are higher order in δλ, δx. Eq. (14) implies

that the perturbations in λ and x are irrelevant at the fixed point, and they flow to w-dependent

values exponentially in l. This can be seen from Fig. 2.4, which shows the full numerical

solution to the beta functions for (λ, x, w). Once the RG flow reaches the one-dimensional

manifold given by (λ, x, w) =
(
λ∗ + fλ(w)

ε , x∗ + 2
3ε

[
fx(w)− NcNffλ(w)

128π2 h∗5ε

]
, w
)

, w flows to the

fixed point at a slower rate. To compute the flow within this manifold, we set dλdl = dx
dl = 0 in

Eq. (7) to express Z1,1, Z4,1 in terms of Zn,1 with n = 2, 3, 5, 6. This gives the beta function
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for w within the manifold,

dw

dl
=

2z

3

(
−Z ′2,1 + Z

′
3,1

)
w, (15)

which reduces to
dw

dl
= −

64
√

2h∗5(N2
c − 1)

3(NcNf )3/2
ε3/2w5/2 (16)

to the leading order in w. Because the flow velocity of w vanishes to the linear order in w, w

flows to zero as a power-law in the logarithmic length scale, w ∼ l−2/3. At the fixed point, the

quartic couplings are irrelevant and their beta functions become

dκi
dl

= −εκi, (17)

to the leading order in w and κi. This confirms that the fixed point in Eq. (13) is stable.

In the small ε limit, Eq. (13) does not converge to the one-loop fixed point, λ∗ = 0, x∗ = 0,

w∗ =
NcNf
N2
c−1

, κ∗i = 0, which represents the correct fixed point at ε = 0. Although the beta

functions are analytic functions of ε, the fixed point is not because the low energy limit and the

ε → 0 limit do not commute. One way to understand this non-commutativity is in terms of the

‘RG time’ that is needed for the flow to approach Eq. (13) for nonzero but small ε. In order

for w to decrease by a factor of 1/2, the logarithmic length scale has to change by ∆l ∼ ε−3/2

according to Eq. (16). The fixed point described by Eq. (13) can be reached only below the

crossover energy scale, µ ∼ Λe−ε
−3/2

, where Λ is a UV cut-off scale. This is illustrated in

Fig. 2.5. The crossover energy scale goes to zero as ε becomes smaller, and the fixed point in

0.2 0.4 0.6 0.8 1.0ϵ0.0

0.1

0.2

0.3

μ

Figure 2.5: The crossover scale between the one-loop and M1L fixed points as a function of ε.

Eq. (13) is never reached at ε = 0. A converse issue of non-commutativity arises in 2 + ε′

dimensions[57]. In order to capture the correct physics in two dimensions, one needs to take the

ε′ → 0 limit first before taking the low energy limit. If the other order of limits is taken, some

logarithmic corrections are missed[57].

Although the two-loop diagram in Fig. 2.3 (a) is superficially O(ε2), it becomes O(ε) at the

fixed point because the IR singularity caused by the vanishingly small velocities enhances the

magnitude of the diagram. Formally, a factor of g2 coming from one additional loop is canceled

by an IR enhancement of c−3 in Eq. (6), which makes the two-loop diagram as important as the
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one-loop diagrams in the small ε limit. This is rather common in field theories of Fermi surfaces

where the perturbative expansion is not organized by the number of loops[36, 38, 42, 54].

The breakdown of the naive loop expansion is analogous to the case of the ferromagnetic

quantum critical point[60]. In the disordered ferromagnetic quantum critical metal, the pertur-

bative expansion breaks down even near the upper critical dimension, as a dangerously irrelevant

operator enters in the beta functions of other couplings in a singular manner[61, 62]. In our case,

the velocities play the role of dangerously irrelevant couplings which spoil the naive loop ex-

pansion. Although they are marginally irrelevant, one cannot readily set the velocities to zero

as quantum corrections are singular in the zero velocity limit. This leads to a subtle balance

between the Yukawa coupling and the velocities, making the two-loop diagram as important as

the one-loop diagrams. Then the natural question is the role of other higher-loop diagrams. In

the following, we show that other higher-loop diagrams are suppressed and the ε-expansion is

controlled, as is the case for the SDW critical metal with C2 symmetry[54].

III Emergent small parameter

In this section, we show that the ε-expansion is controlled, by providing an upper bound for the

magnitudes of general higher-loop diagrams at the M1L fixed point. Furthermore, we show that

a large class of diagrams are further suppressed by w, which flows to zero in the low energy

limit. Since κi = 0 at the M1L fixed point, only those diagrams without quartic vertices are

considered. Among the diagrams made of only Yukawa vertices, we first focus on the diagrams

without self-energy corrections. The diagrams without self-energy corrections scale as

I ∼ g2L+E−2

vLf cL−Lf
, (18)

up to potential logarithmic corrections in v and c, where L is the total number of loops, Lf is

the number of fermion loops, and E is the number of external lines. The derivation of Eq. (18),

which closely follows Ref. [63], can be found in Appendix A III.

A diagram whose overall magnitude is given by Eq. (18) contributes to the counter term as

A1,A2,A3,A4,A6 ∼ λL wL−Lf ,

A5 ∼ λL−1 wL−Lf−1 x, (19)

up to logarithmic corrections in v and c, where the relations, g =
(
λ3w3

x

) 1
4 , v =

(
λw3

x

) 1
2

and c =
(
λw
x

) 1
2 are used. A5 scales differently from the rest of the counter terms because

quantum corrections to the spatial part of the boson kinetic term are enhanced by 1
c2

. Since

the classical action c2|~q|2 vanishes in the c → 0 limit, the relative magnitude of quantum
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corrections to the classical action is enhanced as A5 ∼ 1
c2
I . For example, the two-loop di-

agram in Fig. 2.3 is A5 ∼ g4

vc3
. On the other hand, A2 is not enhanced by 1

v , even though

the fermion kinetic term also loses its dependence on kx (ky) for n = 1, 3 (n = 2, 4) in the

small v limit. The difference is attributed to the fact that the fermion self-energy takes the

form of Σ(k) ∼ g2L

v
Lf c

L−Lf
Σ̃(k0, vkx, ky) for n = 1, 3 and Σ(k) ∼ g2L

v
Lf c

L−Lf
Σ̃(k0, kx, vky) for

n = 2, 4. Besides the overall factor of g2L

v
Lf c

L−Lf
from Eq. (18), Σ̃ becomes independent of kx

(ky) for n = 1, 3 (n = 2, 4) in the small v limit. This is because in all fermion self-energy di-

agrams the external momentum can be directed to flow through a series of fermion propagators

of type n = 1, 3 (n = 2, 4) only, and the fermion propagators become independent of kx (ky)

when v = 0. For example, the one-loop fermion self-energy with L = 1, Lf = 0 in Fig. 2.2

is at most Σ ∼ g2

c (vkx − ky) for n = 1. Explicit calculation actually shows that the one-loop

diagram is further suppressed by c for an unrelated reason[43].

, , ,

, ,

, . . .

,

,

,,

Figure 2.6: Some examples in the infinite series of diagrams that survive in the small w limit.

Now we consider the consequences of Eq. (19). We initially ignore the potential logarith-

mic corrections in v, c. First, higher-loop diagrams are systematically suppressed by λ∗ ∼ ε

as the number of loops increases. However, there is an exception to the usual rule that L-loop

diagrams are suppressed by εL. The quantum correction to the spatial part of the boson kinetic

term is suppressed only by εL−1, due to the enhancement by 1/c2. Although Eq. (19) suggests

that the one-loop contribution to A5 scales as λ0w−1x, its contribution to A5 is actually zero

because Fig. 2.2 (a) is independent of momentum. Since all self-energy corrections are at most

O(ε), diagrams with self-energy insertions are further suppressed by ε. This implies that the

ε-expansion is controlled, and the M1L includes all quantum corrections to the linear order in ε.

Second, a large class of higher-loop diagrams are further suppressed by w which flows to

zero in the low energy limit. Unlike ε, which is fixed at a given dimension, w flows to zero

dynamically in the low energy limit. The suppression by w is controlled by the number of non-

fermion loops. The only diagram with L − Lf = 0 is the one-loop boson self-energy in Fig.

2.2 (a). Since A5 from Fig. 2.2 (a) vanishes, the leading order contribution to A5 comes from

the two-loop boson self-energy in Fig. 2.3 at O(w0). Among the diagrams without self-energy

insertions, only Fig. 2.2 (a) and Fig. 2.3 survive in the small w limit. When those self-energy
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corrections are included inside a diagram, the diagram with dressed boson propagators is not

further suppressed by w (although they are suppressed by ε). Other self-energy corrections, in-

cluding all fermion self-energies, are negligible because they are suppressed by w. Therefore,

the complete set of diagrams which survive in the small w limit are generated by dressing the

boson propagator in Fig. 2.3 by the self-energy in Fig. 2.2 (a) and Fig. 2.3. This generates a

series of diagrams, some of which are shown in Fig. 2.6.

Now we turn our attention to the sub-leading corrections that are potentially logarithmically

divergent in v and c in Eq. (19). Diagrams suppressed by at least one power of w still vanish in

the small w limit even in the presence of logarithmic divergences in v or c. However, the effect

of the logarithms on the diagrams in Fig. 2.6 (which are O(w0)) cannot be ignored, and this

can in principle jeopardize the control of the ε-expansion. In Appendix A IV, we demonstrate

that the ε-expansion is still controlled, by showing that all logarithmic corrections that arise at

higher orders in ε can be absorbed into x̃ = x/F (c, v), where F (c, v) is defined such that x̃

flows to x∗ in the low energy limit. Once physical observables are expressed in terms of the new

parameter x̃, they have a well defined expansion in ε. At least for small ε, the theory is free of

perturbative instabilities toward other competing orders [38, 64–68], and it represents a stable

non-Fermi liquid state[42, 54, 69].

(a) (b) (c)

Figure 2.7: Quantum corrections that renormalize the quartic vertices in the small w, ε limit.

Although κi = 0 at the M1L fixed point, the quartic vertices are generated from the Yukawa

vertices. It happens that the one-loop diagram in Fig. 2.2(d) vanishes, and the leading contribu-

tions that source the quartic vertices are shown in Fig. 2.7. Once these diagrams are included,

the beta functions for κi are modified as

dκi
dl

= −ε κi +Aiλ
5
2w

3
2x

1
2 , (20)

where the Ai’s are functions that diverge at most logarithmically in w in the small w limit. As a

result, the quartic couplings flow to zero as κi ∼ w
3
2 up to logarithms of w as w flows to zero.

The small parameter w that emerges in the low energy limit suppresses all higher-loop dia-

grams except for the specific set of diagrams shown in Fig. 2.6. It turns out that w flows to zero

in the low energy limit in any dimensions, 2 ≤ d < 3[56, 57]. This allows one to extract the

exact critical exponents by non-perturbatively summing the infinite series of diagrams through

a self-consistent equation.
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IV Physical Properties

Now, we examine the scaling form of the Green’s functions. The dynamical critical exponent

and the anomalous scaling dimensions at the fixed point are given by

z = 1, ηψ = 0, ηφ =
ε

2
. (21)

These critical exponents do not receive higher-order corrections in ε in the small w limit, as

is shown in Appendix A IV. Indeed, w flows to zero in the low energy limit, and the critical

exponents in Eq. (21) are exact in any 0 < ε ≤ 1[57, 63]. At intermediate energy scales,

the physical Green’s functions receive corrections generated from irrelevant parameters of the

theory. The least irrelevant parameter that decays at the slowest rate is w, which decays as l−2/3

in the logarithmic scale l. This sub-logarithmic flow introduces super-logarithmic corrections in

the Green’s functions. The fermion Green’s function for the n = 1 patch is given by

G1(K,~k) =
1

iFψ(|K|)
×

1

Fz(|K|)Γ ·K + γd−1

[
πNcNf

4ε(N2
c−1)

kx
log(1/|K|) + ky

] (22)

in the limit of small frequency |K| and fixed eIz(l)~k ∼ 1, where Iz(l) = l − 3(N2
c−1)

1
3

2
14
3 (h∗5)

1
3
l
1
3 and

l = log(1/|K|). The universal functions Fz(|K|) and Fψ(|K|),

Fz(|K|) = exp

(
3(N2

c − 1)
1
3

2
14
3 (h∗5)

1
3

(
log

1

|K|

) 1
3

)
, (23)

Fψ(|K|) =

√
log

1

|K|
, (24)

contain the contributions from the deviations of the dynamical critical exponent and the anoma-

lous scaling dimension of the fermion, respectively, from their fixed point values in Eq. (21).

Due to the super-logarithmic correction, the quasiparticle peak is destroyed. All other Green’s

functions are determined by this one through the C4 symmetry of the theory.

The scaling form of the spin-spin correlation function is given by

D(Q, ~q) =
1

|Q|2−εFz(|Q|)2Fφ(|Q|)

×D

(
~q

Fz(|Q|)|Q|
;

NcNf

2
11
3 (h∗5)

1
3 (N2

c − 1)
2
3

1

ε

1

log(1/|Q|)
2
3

)
, (25)
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in the limit of small frequency |Q| and fixed eIz(log(1/|Q|))~q ∼ 1. D is a universal function, and

Fφ(|Q|) = exp

(
− 3(N2

c − 3)

2
11
3 (h∗5)

1
3 (N2

c − 1)
2
3

(
log

1

|K|

) 1
3

)
(26)

is the universal function which captures the contribution from the deviation of the anomalous

scaling dimension of the boson field from its fixed point value in Eq. (21). Unlike the fermion

Green’s function, the boson has a non-trivial anomalous dimension.

V Physical picture

(a) (b)

Figure 2.8: The tilted lines represent patches of Fermi surface connected by the AF ordering
vector, where the red dots denote hot spots. The Fermi surfaces are not parallel because of
non-zero v. (a) Particle-hole excitations of momentum ~QAF can stay within the low-energy
states of energy E < Λf as far as their momenta are within the range of Λf/v from the hot
spots. Therefore the phase space available for Landau damping of the collective mode scales as
1/v in the small v limit. (b) The shaded region denotes the phase space available for a fermion
when scattered by a collective mode of energy less than Λb. Since the energy of the boson with
momentum ~q scales as c|~q|, a boson with energy less than Λb can transfer momentum up to

Λb/c to a fermion. Therefore, the phase space grows as 1/c in the small c limit.

Finally, we provide a simple physical picture for why w = v/c emerges as a control pa-

rameter. The most important factor is the Landau damping which describes the decay of the

collective mode into the particle-hole continuum. As the Fermi surface becomes locally nested

near the hot spots in the small v limit, the phase space for the particle-hole excitations that a

collective mode can decay into increases as 1/v. A single boson with a fixed momentum can

decay into low-energy particle-hole pairs that lie anywhere along the nested Fermi surface of

length Λf/v, where Λf is an energy cut-off for the fermionic excitations. This is illustrated in

Fig. 2.8(a). This results in a large screening, which renormalizes the Yukawa vertex to g2 ∼ εv.

As the Fermi surface gets nested, g flows to zero.

The dispersionless particle-hole excitations near the hot spots renormalize the velocity of
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the collective mode to zero as well, through the mixing between the collective mode and the

particle-hole excitations. As the fluctuations of the collective mode become soft, quantum fluc-

tuations are enhanced at low energies. On the other hand, the enhanced quantum fluctuations

speeds up the velocity of the collective mode through Fig. 2.3, and a balance is formed such that

c3 ∼ g2 ∼ εv to the leading order in ε. As a result, the boson velocity c flows to zero at a much

slower rate than v.

Now let us consider the feedback of the collective mode on the propagation of fermions,

by examining the process where a fermion is scattered by a collecitve mode. With the initial

momentum fixed, the fermion does not have access to the entire Fermi surface. Instead it can

only scatter into a region allowed by the maximum momentum carried by a collective mode.

The available phase space for the scattering scales as Λb/c, where Λb is the energy cut-off of

the collective mode. This is illustrated in Fig. 2.8(b). Therefore, the scattering of fermions is

controlled by g2/c ∼ ε v/c, where g2 ∼ εv is used. As v/c flows to zero in the low energy limit,

the scattering of fermions by collective modes becomes negligible. This explains why fermions

are largely intact in the small w limit, and w emerges as a control parameter.

VI Conclusion

We extended the earlier one-loop analysis of the antiferromagnetic quantum critical metal based

on the dimensional regularization scheme which tunes the number of co-dimensions of the one-

dimensional Fermi surface. We show that the IR singularities caused by the emergent quasi-

locality rearrange the perturbative series such that a two-loop graph becomes as important as

the one-loop graphs in the small ε limit. With the inclusion of this two-loop effect, higher-loop

diagrams are systematically suppressed, and the ε-expansion is controlled. Furthermore, a ratio

between velocities dynamically flows to zero, which has been confirmed in the non-perturbative

solution in 2 ≤ d < 3[56, 57]. The ε-expansion provides an independent justification for the

ansatz used in the non-perturbative solution.
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In this chapter, we present a non-perturbative study of the theory in Eq. (1). We solve the

theory in d = 2 by assuming that the expressions for the critical exponents obtained from the

modified-one-loop computation near three dimensions extend to d = 2. This amounts to assum-

ing that the critical exponents do not receive quantum corrections beyond the linear order in ε.

Although this is a highly non-trivial assumption, we show that this is indeed the case, due to

the fact that v/c flows to zero at low energies and a large class of diagrams are suppressed in

the small v/c limit. Although there are additional logarithmic corrections that arise at d = 2,

these corrections do not modify the critical exponents. The expansion in v/c is not the same as

the perturbative expansion near the Gaussian fixed point. To the leading order in v/c, an infinite

series of diagrams has to be included non-perturbatively, as will be shown later.

Until now, the two-dimensional theory had been deemed intractable. However, the non-

perturbative solution allows us to solve this strongly interacting theory reliably. We predict the

exact critical exponents that govern the scaling of dynamical and thermodynamic observables.

This provides the first exact predictions for the AF QCP in layered materials. Besides its experi-

mental relevance, the exact low-energy solution of this theory is also important from a theoretical

point of view, in that it may open up a route to tackle other strongly coupled quantum field the-

ories non-perturbatively. There are many strongly interacting theories in condensed matter and

other areas of physics, but exact solutions are few and far between. Having as many examples

of exact solutions as possible is important for gaining intuition into non-perturbative physics.

So far, most examples come from theories in 1 + 1 dimensions, where the conformal symmetry

at the fixed point highly restricts the landscape of available solutions, or from supersymmetric

field theories in higher dimensions[70]. In non-relativistic systems, the symmetries of the fixed

point are usually not large enough to be useful in the same way. That is why it is important to

search for new routes to gain non-perturbative access to strongly interacting theories.

I Low-energy theory and interaction-driven scaling

We start by writing the action in Eq. (1) in terms of the two-component spinors Ψn,σ,

S =
∑4

n=1

∑
σ=↑,↓

∫
dk Ψ̄n,σ(k)

[
iγ0k0 + iγ1εn(~k)

]
Ψn,σ(k)

+1
4

∫
dq
[
q2

0 + c2
0|~q|2

]
Tr [Φ(−q) Φ(q)]

+ig
∑4

n=1

∑
σ,σ′
∫
dkdq

[
Ψ̄n̄,σ(k + q)Φσ,σ′(q)γ1Ψn,σ′(k)

]
+u
∫
dk1dk2dq Tr [Φ(k1 + q)Φ(k2 − q)] Tr [Φ(−k1)Φ(−k2)] . (27)

This is done to make contact with the general theory in Eq. (2). However, here we do not

generalize to arbitrary Nf and Nc, but keep the physical values of Nf = 1, Nc = 2. In

two dimensions, the gamma matrices are chosen to be γ0 = σy, γ1 = σx. Here, Φ(q) =
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∑3
a=1 φ

a(q)τa is a 2× 2 matrix boson field and the τa’s are the generators of the SU(2) spin.

Two dimensions is too far from the upper critical dimensional of three for the perturbative

expansion in ε to be reliable in general. However, the emergent expansion parameter w = v/c

at the novel fixed point gives us hope that this is not entirely the case. We therefore assume that

the critical exponents found in Chapter 1 hold all the way down to ε = 1. At the fixed point

in general dimensions, the dynamical critical exponent and scaling dimensions of the fields are

given by

z = 1, [ψ(k)] = −5− ε
2

, [φ(k)] = −(3− ε). (28)

By setting ε = 1, we arrive at our ansatz for the two-dimensional theory,

[k0] = [kx] = [ky] = 1,

[ψ(k)] = [φ(k)] = −2. (29)

Under Eq. (29), the electron keeps the classical scaling dimension, while the boson has an O(1)

anomalous dimension compared to the Gaussian scaling.

The scaling of Eq. (29) amounts to an interaction-driven scaling[69], where the fermion

kinetic term and the Yukawa interaction are chosen to be marginal at the expense of treating

the entire boson kinetic term as irrelevant, which determines all scaling dimensions uniquely.

We could have arrived at such a choice without using the intuition of Eq. (28), since we know

the Yukawa interaction plays a dominant role, and the dynamics of the boson is dominated by

particle-hole excitations near the Fermi surface in the low-energy limit, unless the number of

bosons per fermion is infinite[71]. At this point, Eq. (29) is merely an ansatz. The real test is to

show that these exponents are actually exact, which is the main goal of this paper.

Under Eq. (29), the entire boson kinetic term and the quartic coupling are irrelevant. The

minimal action which includes only marginal terms is written as

S =
∑4

n=1

∑
σ=↑,↓

∫
dk Ψ̄n,σ(k)

[
iγ0k0 + iγ1εn(~k)

]
Ψn,σ(k)

+i
√

πv
2

∑4
n=1

∑
σ,σ′
∫
dkdq

[
Ψ̄n̄,σ(k + q)Φσ,σ′(q)γ1Ψn,σ′(k)

]
. (30)

Here, the fermion-boson coupling is set to be proportional to
√
v by rescaling the boson field.

The Yukawa coupling is replaced with
√
v because the interaction is screened such that g2

becomes O(v) in the low-energy limit[43]. Although g and v can be independently tuned in the

microscopic theory, they rapidly flow to a universal line defined by g2 ∼ v at low energies[72].

Eq. (30) should be understood as the minimal theory that captures the universal physics at low

energies, where the dynamics of the collective mode is dominated by particle-hole excitations

rather than the bare kinetic term, and v is the only dimensionless parameter. In the small v limit,

g also vanishes because a nested Fermi surface provides a large phase space for low-energy
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particle-hole excitations with momentum ~QAF that screen the interaction. Even when g, v are

small, this is a strongly interacting theory because g2/v ∼ 1 is the expansion parameter in

the conventional perturbative series. With g2/v ∼ 1, the leading boson kinetic term which is

generated from particle-hole excitations is O(1), as will be seen later.

Figure 3.1: The exact boson self-energy. The double line is the fully dressed fermion propaga-
tor. The triangle represents the fully dressed vertex.

II Self-consistent solution

Naively the theory is singular due to the absence of a boson kinetic term. However, particle-hole

excitations generate a self-energy which provides non-trivial dynamics for the collective mode.

The Schwinger-Dyson equation for the boson propagator (shown in Figure 3.1) reads

D(q)−1 = mCT − πv
∑
n

∫
dk Tr [γ1Gn̄(k + q)Γ(k, q)Gn(k)] . (31)

Here D(k), G(k) and Γ(k, q) represent the fully dressed propagators of the boson and the

fermion, and the vertex function, respectively. mCT is a mass counter term that is added to

tune the renormalized mass to zero. The trace in Eq. (31) is over the spinor indices. It

is difficult to solve the full self-consistent equation because G(k) and Γ(k, q) depend on the

unknown D(q). One may use v as a small parameter to solve the equation. The one-loop

analysis shows that v flows to zero due to emergent nesting of the Fermi surface near the hot

spots[38, 51, 52, 73]. This has been also confirmed in the ε expansion based on the dimensional

regularization scheme[43, 72]. Of course, the perturbative result valid close to three dimensions

does not necessarily extend to two dimensions. Nonetheless, we show that this is indeed the

case. Here we proceed with the following steps:

1. we solve the Schwinger-Dyson equation for the boson propagator in the small v limit,

2. we show that v flows to zero at low energies by using the boson propagator obtained under

the assumption of v � 1.

We emphasize that the expansion in v is different from the conventional perturbative expansion

in coupling. Rather it involves a non-perturbative summation over an infinite series of diagrams
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as will be shown in the following.

We discuss step 1) first. In the small v limit, the solution to the Schwinger-Dyson equation is

D(q)−1 = |q0|+ c(v)
[
|qx|+ |qy|

]
, (32)

where the ‘velocity’ of the strongly damped collective mode is given by

c(v) =
1

4

√
v log(1/v). (33)

Solving the Schwinger-Dyson equation consists of two parts. First, we assume Eq. (32) with

a hierarchy of the velocities v � c(v) � 1 as an ansatz to show that only the one-loop vertex

correction is important in Eq. (31). Then we show that Eqs. (32) and (33) actually satisfy Eq.

(31) with the one-loop dressed vertex.

We begin by estimating the magnitude of general diagrams, assuming that the fully dressed

boson propagator is given by Eq. (32) with Eq. (33) in the small v limit. In general, the

integrations over loop momenta diverge in the small v limit as fermions and bosons lose their

dispersion in some directions. In each fermion loop, the component of the internal momentum

tangential to the Fermi surface is unbounded in the small v limit due to nesting. For a small

but nonzero v, the divergence is cut off at a scale proportional to 1/v, and each fermion loop

contributes a factor of 1/v. Each of the remaining loops necessarily has at least one boson

propagator. For those loops, the momentum along the Fermi surface is cut off by the energy of

the boson which provides a lower cut-off momentum proportional to 1/c for c� v. Therefore,

the magnitude of a general L-loop diagram with V vertices, Lf fermion loops and E external

legs is at most

I ∼ vV/2−Lf c−(L−Lf ) ∼ v
1
2

(E−2)
(v
c

)(L−Lf )
, (34)

where V = 2L + E − 2 is used. Higher-loop diagrams are systematically suppressed with

increasing (L − Lf ) provided v � c. This is analogous to the situation where a ratio between

velocities is used as a control parameter in a Dirac semi-metal[55] 1. If Eq. (33) holds, the

upper bound becomes I ∼ v
1
2

(E−2)+ 1
2

(L−Lf ) up to a logarithmic correction. It is noted that

Eq. (34) is only an upper bound because some loop integrals which involve un-nested fermions

remain finite even in the small v limit. Some diagrams can also be smaller than the upper bound

because their dependences on external momentum are suppressed in the small v and c limit. A

systematic proof of Eq. (34) is available in Appendix B I.

For v � c, the leading order contribution for the boson self-energy (E = 2) is generated
1 There also has been an attempt to use a different ratio of velocities as a control parameter in non-Fermi liquids

with critical bosons centered at zero momentum [A. Fitzpatrick, S. Kachru, J. Kaplan, S. A. Kivelson, S. Raghu,
arXiv:1402.5413].
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(a) (b)

Figure 3.2: The leading order diagrams for the boson self-energy in the small v limit. Solid
lines are the bare fermion propagators. The wiggly double line represents the boson propagator
consistently dressed with the self-energy in (a) and (b). The dressed boson propagator includes

an infinite series of nested self-energies with a fractal structure.

from Figure 3.2(a), which is the only diagram that satisfies L = Lf . All other diagrams are sub-

leading in v. However, this is not enough because the one-loop diagram gives D(q)−1 = |q0|,
which is independent of spatial momentum. One has to include the next order diagram (Figure

3.2(b)) which generates a dispersion. Therefore, Eq. (31) is reduced to

D(q)−1 = m
′
CT + |q0|

−π
2v2

2

∑
n

∫
dp dk Tr

[
γ1G

(0)
n (k + p)γ1G

(0)
n̄ (p+ q + k)γ1G

(0)
n (q + k)γ1G

(0)
n̄ (k)

]
D(p).

Here m
′
CT is a two-loop mass counter term. We can use the free fermion propagator G(0)

n

because the fermion self-energy correction is sub-leading in v. An explicit calculation of Eq.

(35) confirms that the self-consistent boson propagator takes the form of Eq. (32). The boson

velocity satisfies the self-consistent equation c = v
8c log(c/v), which is solved by Eq. (33) in

the small v limit. c is much larger than v in the small v limit because of the enhancement factor

1/c in the two-loop diagram : the collective mode speeds up itself through enhanced quantum

fluctuations if it gets too slow. We note that the anti-screening nature of the vertex correction

associated with the non-Abelian SU(2) vertex,
∑3

a=1 τ
aτ bτa = −τ b, is crucial to generate

the right sign for the boson kinetic term[54]. This does not hold for Ising-like or XY-like spin

fluctuations[74]. The details on the computation of Eq. (35) are available in Appendix B II.

It is noted that Eq. (35) constitutes a non-perturbative sum over an infinite series of diagrams

beyond the random phase approximation (RPA). The dynamics of the boson generated from the

fermionic sector dominates at low energies. This justifies the choice to drop the bare kinetic

term in Eq. (30).

So far, we have assumed that v is small to obtain the self-consistent dynamics of the AF

collective mode. Now we turn to step 2) and show that v indeed flows to zero in the low-

energy limit. According to Eq. (34), the leading quantum corrections to the local action in Eq.

(30) are the one-loop diagrams for the fermion self-energy and the vertex function. However, the

momentum-dependent one-loop fermion self-energy happens to be smaller than what is expected

from Eq. (34) by an additional power of c ∼
√
v. This is because the dependence on the external
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momentum is suppressed in the small c limit for the one-loop self-energy. As a result, we include

the fermion self-energy up to two loops in order to capture all quantum corrections to the leading

order in v. All other higher-loop diagrams are negligible in the small v limit. The self-energy

and vertex correction are logarithmically divergent in a UV cut-off. Counter terms are added

such that the renormalized quantum effective action becomes independent of the UV cut-off.

The full details on the computation of the counter terms and the beta function can be found in

Appendix B III. The bare action that includes the counter terms is obtained to be

SB =
∑4

n=1

∑
σ=↑,↓

∫
d3k Ψ̄n,σ(k)

[
iZ1γ0k0 + iγ1ε

B
n (~k)

]
Ψn,σ(k)

+iZ6

√
πv
2

∑4
n=1

∑
σ,σ′
∫
d3kd3q

[
Ψ̄n̄,σ(k + q)Φσ,σ′(q)γ1Ψn,σ′(k)

]
, (35)

where εB1 (~k) = Z2vkx + Z3ky, εB2 (~k) = −Z3kx + Z2vky, εB3 (~k) = Z2vkx − Z3ky and

εB4 (~k) = Z3kx + Z2vky with Z1 = 1 − 3
4π

v
c(v) log

(
Λ
µ

)
, Z2 = 1 + 15

4π2 v log
(

1
c(v)

)
log
(

Λ
µ

)
,

Z3 = 1 − 9
4π2 v log

(
1
c(v)

)
log
(

Λ
µ

)
and Z6 = 1 − 1

4π
v
c(v) log

(
c(v)
v

)
log
(

Λ
µ

)
. Here Λ is

a UV cut-off above which non-linear terms in the fermionic dispersion become important.

µ is the scale at which the physical propagators and vertex function are expressed in terms

of v through the renormalization conditions, −i2
∂
∂k0

Tr
[
γ0G1(k)−1

]∣∣∣
k=(µ,0,0)

= 1 + F1(v),

−i
2

∂
∂kx

Tr
[
γ1G1(k)−1

]∣∣∣
k=(0,µ,0)

= v (1 + F2(v)), −i2
∂
∂ky

Tr
[
γ1G1(k)−1

]∣∣∣
k=(0,0,µ)

= 1+F3(v),
1
2 Tr [γ1Γ(k, q)]|q=0,k=(µ,0,0) = 1 + F4(v), where the Fi(v)’s are UV-finite functions of v,

which vanish in the small v limit. The specific form of Fi(v) is unimportant, and they can

be changed by adding finite counter terms in Zi. Gn(k) with n = 2, 3, 4 are fixed from

G1(k) by the four-fold rotational symmetry. The bare and renormalized variables are related

to each other through kB,x = kx, kB,y = ky, kB,0 = Z1
Z3
k0, vB = Z2

Z3
v, ΨB(kB) = Z3

Z
1
2
1

Ψ(k),

ΦB(kB) =
Z

1
2
3 Z6

Z1Z
1
2
2

Φ(k). By requiring that the bare quantities are independent of µ, we obtain

the beta function βv ≡ dv
d log µ , which dictates the dependence of the renormalized velocity on

the scale,

βv =
6

π2
v2 log

(
1

c(v)

)
. (36)

If v is initially small, Eq. (36) is reliable. It predicts that v becomes even smaller and flows to

zero as

v =
π2

3

(
log

1

µ
log log

1

µ

)−1

(37)

in the small µ limit. The way v flows to zero in the low-energy limit does not depend on the

initial value of v. This completes the cycle of self-consistency. Eq. (32) obtained in the small v

limit becomes asymptotically exact in the low-energy limit within a nonzero basin of attraction
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in the space of v whose fixed point is v = 0. The dynamical critical exponent and the anomalous

dimensions are given by

z = 1 +
3

4π

v

c(v)
,

ηφ =
1

4π

v

c(v)
log

(
c(v)

v

)
,

ηψ = − 3

8π

v

c(v)
(38)

to the leading order in v. Here z sets the dimension of frequency relative to momentum. ηφ,

ηψ are the corrections to the interaction-driven tree-level scaling dimensions of the boson and

fermion, respectively. The critical exponents are controlled by w ≡ v/c(v), which flows to

zero as w = 4π√
3

(
log1/2 1

µ log log 1
µ

)−1
in the low-energy limit. This confirms that the scaling

dimensions in Eq. (29) become asymptotically exact in the low-energy limit.

III Comparison of fixed points in d = 2 and d = 3− ε.

Here, we compare the structure of the fixed points found in this chapter and Chapter 2. The first

key difference is that the result in d = 2 is non-perturbative. The second is in the relationship

between c and v. In the case of d = 3 − ε, it is given by c ∼ ε1/3 v1/3, while in d = 2 we

have c ∼ v1/2 up to logarithms of v. The difference in powers of v nearly suggests a general

relationship c ∼ v1/d up to logarithms, which indeed happens to be correct, as shown in Ref.

[57]. The difference between c ∼ v1/3 and c ∼ v1/d ∼ v1/(3−ε) is attributed to the fact that in

the ε expansion we only compute the relationship between c and v to the leading order in ε. This

is described in more detail in Appendix A IV.

The other key differences between the two fixed points is the presence of logarithms of v

and c in several physical observables in two dimensions. In particular, c ∼ v1/2
√

log(1/v),

βv ∼ v2 log(1/c(v)), and ηφ ∼ (v/c(v)) log(c(v)/v), while in d = 3− ε we have βv ∼ v2 and

ηφ ∼ v/c. These logarithmic corrections arise from the fact that d = 2 corresponds to a critical

dimension in the limit that the Fermi surface is nested perfectly. In fact, these logarithms are the

reason for the non-commutativity of the d→ 2 limit of the general d theory and the low energy

limit [57].

IV Physical observables

Although z − 1, ηψ and ηφ vanish in the low-energy limit, the sub-logarithmic decay of w with

energy introduces corrections to the correlation functions at intermediate energy scales, which
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are weaker than power-law but stronger than logarithmic corrections[59]. The retarded Green’s

function for the hot spot 1+ takes the form,

GR1+(ω,~k) =
1

Fψ(ω)

[
ω Fz(ω)

(
1 + i

√
3π
2

1√
log 1

ω
log log 1

ω

)
−
(
π2

3
kx

log 1
ω

log log 1
ω

+ ky

)] (39)

in the small ω limit with the ratio ~k
ω Fz(ω) fixed. Here ω is the real frequency. Fψ(ω) and Fz(ω)

are functions which capture the contributions from ηψ and z at intermediate energy scales. In

the small ω limit, they are given by

Fψ(ω) =

(
log

1

ω

) 3
8

, Fz(ω) = e
2
√

3
(log 1

ω )
1/2

log log 1
ω . (40)

Fψ and Fz only contribute as sub-leading corrections instead of modifying the exponents. How-

ever, they are still parts of the universal data that characterizes the critical point[38]. The ad-

ditional logarithmic suppression in the dependence of kx is due to v which flows to zero in the

low-energy limit. The local shape of the Fermi surface is deformed as ky ∼ kx
log 1/kx log log 1/kx

.

The scaling form of the Green’s function at different hot spots can be obtained by applying a

sequence of 90 degree rotations and a space inversion to Eq. (39). The spectral function at

the hot spots exhibits a power-law decay with the super-logarithmic correction as a function of

frequency, A(ω) ∼ 1
ωFz(ω)Fψ(ω)(log 1/ω)1/2 log log 1/ω

.

The retarded spin-spin correlation function is given by

DR(ω, ~q) =
1

Fφ(ω)

(
−iωFz(ω) + π

4
√

3

|qx|+|qy |

(log 1
ω )

1/2

) (41)

in the small ω limit with fixed ~q
ω Fz(ω) . Fφ(ω) is another universal function that describes the

super-logarithmic correction of ηφ,

Fφ(ω) = e
2√
3
(log 1

ω )
1/2

(42)

in the small ω limit. The factor of
(
log 1

ω

)−1/2 in the momentum-dependent term is due to the

boson velocity which flows to zero in the low-energy limit. Due to the strong Landau damping,

the spin fluctuation is highly incoherent. It will be of great interest to test the scaling forms

in Eqs. (39) and (41) from angle resolved photoemission spectroscopy and neutron scattering,

respectively.

Now we turn to thermodynamic properties. The total free energy density can be writ-

ten as f = 1
2 Tr

[
logD−1 −ΠD

]
− Tr

[
logG−1 − ΣG

]
+ Φ2, where Π, Σ are the self-

energies of the boson and fermion respectively, and Φ2 includes the two particle irreducible

diagrams[75]. Here, the traces sum over three momenta and flavors. To the leading order in
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v, fB = 1
2 Tr[logD−1] and fF = Tr[logG(0)] dominate. The dominant fermionic contri-

bution comes from electrons away from the hot spots, fF ∼ kFT
2, where kF is the size of

the Fermi surface. Naively, the bosonic contribution is expected to obey hyperscaling, because

low-energy excitations are confined near the ordering vector. However, the free energy of the

mode with momentum ~p is suppressed only algebraically as T 2

c(|px|+|py |) at large momenta, in

contrast to the exponential suppression for the free boson. The slow decay is due to the inco-

herent nature of the damped AF spin fluctuations, which have a significant spectral weight at

low energies even at large momenta. As a result, fB ∼
∫
d~p T 2

c(|px|+|py |) is UV divergent. In

the presence of the irrelevant local kinetic term, c20
Λ̃
|~p|2 with c0 ∼ 1, the momentum integra-

tion is cut-off at pmax ∼ cΛ̃, and fB is proportional to Λ̃. From the scaling equation for fB ,[
zT ∂

∂T + Λ̃ ∂
∂Λ̃
− βc ∂∂c − (2 + z)

]
fB(T, c, Λ̃) = 0, we obtain fB ∼ Λ̃T 2Fz(T ) in the low tem-

perature limit. Remarkably, the bosonic contribution violates the hyperscaling, and it is larger

than the fermionic contribution at low temperatures. In this case, the power-law violation of the

hyperscaling is a consequence of the z = 1 scaling rather than the fact that v, c flow to zero[76].

The free energy gives rise to the specific heat which exhibits the T -linear behavior with the

super-logarithmic correction,

cV ∼ Λ̃TFz(T ). (43)

It is noted the deviation from the T -linear behavior is stronger than a simple logarithmic correc-

tion because Fz(T ) includes all powers of
√

log 1
T .

If the system is tuned away from the critical point, the boson acquires a mass term, (λ −
λc)
∫
dqTr [ΦqΦ−q], where λ is a tuning parameter. Due to the suppression of higher-loop dia-

grams, the scaling dimension of Φ2 is −4 in momentum space. This implies that ν = 1 in the

low-energy limit, which is different from the mean-field exponent. The power-law scaling of the

correlation length ξ with λ is modified by a super-logarithmic correction,

ξ ∼ (λ− λc)−1Fξ(λ− λc), (44)

where Fξ(δλ) is a universal function which embodies both the anomalous dimension of the bo-

son and the vertex correction for the mass insertion. The former dominates close to the critical

point, and Fξ(δλ) is the same as Fφ(δλ) to the leading order in small δλ. The derivation of the

scaling forms of the physical observables is available in Appendix B IV.

The scaling forms of the physical observables discussed above are valid in the low energy

limit. At high energies, there will be crossovers to different behaviors. The first crossover is set

by the scale below which the dynamics of the collective mode is dominated by particle-hole ex-

citations, and therefore Eqs. (41) and (43) hold. It is determined by the competition between Eq.

(32) and the irrelevant local kinetic term for the collective mode in Eq. (27). For ω < c(v)2

c20
Λ̃,

the terms linear in frequency and momentum dominate, where Λ̃ is an energy scale associated



36

with the irrelevant kinetic term. The details on the crossover are described in Appendix B. In

the small v limit with c0 ∼ 1, this crossover scale for the boson goes as E∗b ∼ c2Λ̃. The second

crossover scale, denoted as E∗f , is the one below which the behavior of the fermions at the hot

spots deviates from the Fermi liquid one. For a small but non-zero v, the leading order self-

energy correction to the fermion propagator is 3
4π

v
c(v)ω log Λ

ω , which becomes larger than the

bare term for ω < E∗f with E∗f ∼ Λe−
π
3

√
log 1/v
v . Since v flows to zero only logarithmically, the

flow of v can be ignored for the estimation of E∗f . The value of v changes appreciably below

Λe
− 1
v log 1/v as is shown in Appendix C.

At sufficiently low temperatures, the system eventually becomes unstable against pairing.

An important question is how the crossover scales compare with the superconducting transition

temperature Tc. The spin fluctuations renormalize pairing interactions between electrons near

the hot spots, and enhance d-wave superconductivity[31, 65, 77–79]. In the small v limit, how-

ever, the renormalization of the pairing interaction by the AF spin fluctuations is suppressed by
v
c(v) for the same reason that the vertex correction is suppressed. Because the Yukawa coupling

is marginal at the fixed point, it adds an additional logarithmic divergence to the usual loga-

rithmic divergence caused by the BCS instability[32, 64, 80]. The pairing vertex is enhanced

by αvc log Λ
ω log

E∗b
ω with α ∼ 1 at frequency ω. The first logarithm is from the usual BCS

mechanism. The second logarithm is from the gapless spin fluctuations, where E∗b ∼ c2Λ̃ is

the energy cut-off for the spin fluctuations in the small c limit as is shown in Appendix B. This

gives Tc ∼ c
√

ΛΛ̃e−
√

c
α v . Although Tc is enhanced by the critical spin fluctuations, it remains

exponentially small in
√

c(v)
v ∼ v−

1
4 in the small v limit. There is a hierarchy among the en-

ergy scales, E∗f � Tc � E∗b in the small v limit. This suggests that the system undergoes

a superconducting transition before the fermions at the hot spots lose coherence. On the one

hand, this is similar to the nematic quantum critical point in two dimensions where the system

is prone to develop a superconducting instability before the coherence of quasiparticles breaks

down[81, 82]. On the other hand, even without superconductivity, the fermions are only weakly

perturbed by the spin fluctuations in the present case. It is the collective mode that is heavily

dressed by quantum effects. For the collective mode, there is a large window between Tc andE∗b
within which the universal scaling given by Eq. (32) is obeyed. The size of the energy window

for the critical scaling is non-universal due to the slow flow of v, and it depends on the bare

value of v. Our prediction is that there is a better chance to observe the z = 1 critical scaling

above Tc, and the enhancement of Tc by AF spin fluctuations is rather minimal[83] in materials

whose bare Fermi surfaces are closer to perfect nesting near the hot spots.
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V Summary and Discussion

In summary, we solve the low-energy field theory that describes the antiferromagnetic quantum

critical metal in two spatial dimensions. We predict the exact critical exponents which govern

the universal scaling of physical observables at low temperatures. Finally, we comment on ear-

lier theoretical approaches, and provide a comparison with experiments.

Our results are qualitatively different from earlier theoretical works [38, 51–53, 73, 84] which

have invariably predicted the dynamical critical exponent z to be larger than one. In particular,

if one uses the one-loop dressed propagators with z = 2, individual higher-loop corrections are

logarithmically divergent at most. However, this does not imply that the higher-loop corrections

are small. The logarithmic corrections remain important in two dimensions due to the strong

coupling nature of the theory, and they can introduce O(1) anomalous dimensions.

Now we make an attempt to compare our predictions with experiments. Electron doped

cuprates are probably the simplest examples of quasi-two-dimensional compounds that exhibit

antiferromagnetic phase transitions in the presence of itinerant electrons, without having extra

degrees of freedom such as local moments or extra bands. In the normal state of the optimally

doped Pr0.88LaCe0.12CuO4−δ, inelastic neutron scattering shows an overdamped AF spin fluc-

tuation peaked at (π, π) whose width in momentum space exhibits a weak growth with increas-

ing energy[85]. The theoretical prediction from Eq. (41) is that the width of the incoherent

peak scales linearly with energy upto a super-logarithmic correction in the low energy limit.

However, it is hard to make a quantitative comparison due to the limited momentum resolution

in the experiment. In Nd2−xCexCuO4±δ (NCCO), inelastic neutron scattering suggests that

the magnetic correlation length ξ scales inversely with temperature near the critical doping[45],

as shown in Fig. 3.3(a). Furthermore, ξ measured at the pseudogap temperature diverges as
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Figure 3.3: The inelastic neutron scattering data from Ref. [45] on the magnetic correlation
length ξ. (a) The temperature dependence of ξ at various doping concentrations x. The critical
concentration is xc = 0.134. The fit of the data at this doping corresponds to ξ(T ) ∼ 1/T . (b)
The dependence of ξ on (x−xc) along the pseudogap temperature T ∗. The relationship is well

fit by ξ(x− xc) ∼ 1/|x− xc|.

(x − xc)−1, as shown in Fig. 3.3(b). If interpreted in terms of the clean AF quantum critical
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scenario, which may be questionable due to disorder, this is consistent with z = 1 and ν = 1.

Angle resolved photoemission spectroscopy (ARPES) for NCCO shows a reduced quasiparticle

weight at the hot spots[86, 87]. This is in qualitative agreement with the prediction of Eq. (39),

which implies that the quasiparticle weight vanishes at the hot spots, as compared to the region

away from the hot spots where quasiparticles are well defined. Although the spectroscopic mea-

surements are in qualitative agreement with the theoretical predictions, we believe that more

experiments are needed to make quantitative comparisons. On the theoretical side, transport

properties need to be better understood, for which electrons away from hot spots are expected

to play an important role.





Chapter 4

Conclusion

39
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In this thesis, we have studied the low-energy effective field theory for the antiferromag-

netic quantum critical metal in two approaches. The first approach is perturbative, where a co-

dimensional regularization scheme is used to gain controlled access to the low-energy physics.

We found a stable fixed point to the leading order in the perturbation theory, at which a ratio

of velocities flows to zero at low energies. The ratio of velocities can be used as a new control

parameter even in two dimensions, as a large class of diagrams are suppressed at low energies.

In order to solve the theory directly in two dimensions, we construct a non-perturbative

ansatz by a straightforward extension of the critical exponents obtained from the perturbative

analysis. The infinite set of diagrams that survive in the limit the velocity ratio becomes small

is summed through a self-consistent equation that includes a vertex correction. From this, we

show that the non-perturbative ansatz is consistent. The emergent control parameter enables us

to write down exact critical exponents at this fixed point, as well as other observables such as

spin susceptibility and specific heat.

The exact solution of the low-energy theory is an important step towards the full understand-

ing of the layered compounds believed to harbor the AF quantum critical metal. It opens the door

to understanding their physical properties in a controlled way. The most obvious open problem

to be understood in the future is the superconducting instability. The strong correlations are

widely believed to be responsible for the novel superconductivity observed in materials, and a

systematic study of this transition is important to understand physical properties of the com-

pounds. Another very important problem is that of magnetic impurities in the otherwise clean

metal, also known as the Kondo problem. Every system has some impurities, and the presence

of magnetic ones has a particularly stark effect on the resistivity, introducing a logarithmic up-

turn at low temperatures in the case of conventional metals. However, not much progress has

been made for the problem of a magnetic impurity in a non-Fermi liquid, mainly because non-

Fermi liquid states have not been well understood even in the clean limit. Our solution provides

grounds for a controlled approach to this problem, which is of large experimental interest.

Our analysis in this thesis has focused on the regions on the Fermi surface near the hot spots.

Both of the above future directions require a study of the theory that takes into account electrons

away from the hot spot. For these problems in which important scatterings are not restricted to

the hot spots, a functional renormalization group approach is required to take into account the

momentum-dependent renormalization.
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Appendix to Chapter 2

I The beta functions and the anomalous dimensions

In this section we summarize the expressions for the beta functions and the anomalous dimen-

sions derived from the minimal subtraction scheme. More details can be found in Ref. [43]. The

renormalized action is given by the sum of the classical action and the counter terms which can

be expressed in terms of bare fields and bare couplings,

Sren =
4∑

n=1

Nc∑
σ=1

Nf∑
j=1

∫
dkB Ψ̄B;n,σ,j(kB)

[
iΓ ·KB + iγd−1εn(~kB; vB)

]
ΨB;n,σ,j(k)

+
1

4

∫
dqB

[
|QB|2 + c2

B |~qB|
2
]
Tr [ΦB(−qB) ΦB(qB)]

+i
gB√
Nf

4∑
n=1

Nc∑
σ,σ′=1

Nf∑
j=1

∫
dkB dqB

[
Ψ̄B;n̄,σ,j(kB + qB)ΦB;σ,σ′(qB)γd−1ΨB;n,σ′,j(kB)

]
+

1

4

∫
dk1B dk2B dqB

[
u1BTr [ΦB(k1B + qB)ΦB(k2B − qB)] Tr [ΦB(−k1B)ΦB(−k2B)]

+u2BTr [ΦB(k1B + qB)ΦB(k2B − qB)ΦB(−k1B)ΦB(−k2B)]
]
. (A45)

The renormalized quantities are related to the bare ones through K = Z−1
τ KB , ~k = ~kB ,

Ψn,σ,j(k) = Z−
1
2

ψ ΨB;n,σ,j(kB), Φ(q) = Z−
1
2

φ ΦB(qB), v = Z3
Z2

vB , c =

[
Zφ Zd−1

τ

Z5

] 1
2

cB ,

g =
Zψ Z

1
2
φ Z

2(d−1)
τ

Z6
µ−

3−d
2 gB , u1 =

Z2
φZ

3(d−1)
τ

Z7
µ−(3−d) u1B , u2 =

Z2
φZ

3(d−1)
τ

Z8
µ−(3−d) u2B ,

where Zτ = Z1
Z3

, Zψ = Z1 Z−dτ , Zφ = Z4 Z−(d+1)
τ and Zn = 1 +An. The scaling dimension

of ~k is fixed to be 1. By requiring that the bare quantities are independent of the scale µ, we

obtain the dynamical critical exponent, the anomalous dimensions and the beta functions as

z =
[
1 + (Z ′1,1 − Z ′3,1)

]−1
, (A46)
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ηψ = − ε
2
z
(
Z ′1,1 − Z ′3,1

)
+

1

2
z
(
2Z ′1,1 − 3Z ′3,1

)
, (A47)

ηφ = − ε
2
z
(
Z ′1,1 − Z ′3,1

)
+

1

2
z
(
4Z ′1,1 − 4Z ′3,1 − Z ′4,1

)
, (A48)

dv

dl
= −z v

(
Z ′2,1 − Z ′3,1

)
, (A49)

dc

dl
= −1

2
z c
(
2Z ′1,1 − 2Z ′3,1 − Z ′4,1 + Z ′5,1

)
, (A50)

dg

dl
= z g

[
ε

2
+

1

2

(
2Z ′3,1 + Z ′4,1 − 2Z ′6,1

)]
, (A51)

du1

dl
= z u1

[
ε−

(
2Z ′1,1 − 2Z ′3,1 − 2Z ′4,1 + Z ′7,1

)]
, (A52)

du2

dl
= z u2

[
ε−

(
2Z ′1,1 − 2Z ′3,1 − 2Z ′4,1 + Z ′8,1

)]
, (A53)

where l = − lnµ is the logarithmic length scale, and Z ′n,1 ≡
(

1
2 g∂g + ui∂ui

)
Zn,1.

II Computation of the boson self energy at two loops

In this section we compute the quantum corrections to the spatial part of the boson self-energy.

Among the two-loop diagrams, only Fig. 2.3 contributes. It is written as

δΓ2L
0,2 = −µ

2ε

4

4g4

NcNf

∫
dp Υ2L

0,2(p)Tr[Φ(−p)Φ(p)], (B54)

where

Υ2L
0,2(p) =

∑
n

∫
dk dq Tr [γd−1Gn(q + k)γd−1Gn̄(p+ q + k)γd−1Gn(p+ k)γd−1Gn̄(k)]D(q). (B55)

Since we are interested in the momentum-dependent part, we set P = 0. We first perform the

frequency integrations, which introduces four Feynman parameters x1, x2, y1, y2, followed by

the spatial integrations. The final expression is given by

Υ2L;a
0,2 (~p) = −1

ε

h5(v, c)

v2
(p2
x + p2

y) +O(ε0), (B56)

where h5(v, c) is defined as

h5(v, c) = − 2

(4π)2

∫ 1

0
dx1

∫ 1−x1

0
dx2

∫ 1

0
dy1

∫ 1−y1

0
dy2

(
Av2 +B

)
, (B57)

with

A = − 1

128π2

(
4 (b1 + b2 + b3) (2 (1− y1 − y2)− (x1 + x2) (1− 2y1 − 2y2))

√
a1 a2 a3 a4 (1− x1 − x2) (x1 + x2) 2
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−2a1 (b1 + b2 + b3) (a2 a4 d2,3 + a3 (a4 d2,2 + a2 d2,4))

(a1 a2 a3 a4) 3/2
+

4 (d2,5 + d2,6 + d2,7)
√
a1 a2 a3 a4

+
3 (b1 + b2 + b3) (1− y1 − y2) d3,1

√
a1 a2 a3 a

5/2
4 (1− x1 − x2) 2 (x1 + x2) 2

+
a1 (b1 + b2 + b3) (1− y1 − y2) (a3 d3,2 + a2 d3,3)

(a1 a2 a3 a4) 3/2 (1− x1 − x2) 2 (x1 + x2) 2

−2a1 (1− y1 − y2) (a2 a4 (d3,7 + d3,8 + d3,9) + a3 (a4 (d3,4 + d3,5 + d3,6) + a2 (d3,10 + d3,11 + d3,12)))

(a1 a2 a3 a4) 3/2 (1− x1 − x2) 2 (x1 + x2) 2

)
,

B = A with (b2 → −b2, d2,6 → −d2,6, d3,5 → −d3,5, d3,8 → −d3,8, d3,11 → −d3,11).

Here dn,m are defined as

d2,2 = −c1 ((1− x1 − x2) (x1 + x2))−2 (1− y1 − y2) ,

d2,3 = (−1 + x1 + x2 − c2 (−1 + c4 + x1 + x2) + c4 (2− x1 − x2 + c1 (−1 + c4 + x1 + x2)))

× (−1 + y1 + y2) ((1− x1 − x2) (x1 + x2))−2,

d2,4 =
(
c1c

2
5 (−1 + y1 + y2) + (−1 + x1 + x2) (−1 + y1 + y2)− c2

8

(
1− c1c

2
4 − x1 − x2 + c2 (−1 + c4 + x1 + x2)

+ c4 (−2 + x1 + x2 − c1 (−1 + x1 + x2))) (−1 + y1 + y2)− c5 (−1 + x1 + x2 − c8 (−2 + c2 + x1 + x2)

+ c1 (2− x1 − x2 + c8 (−1 + 2c4 + x1 + x2))) (−1 + y1 + y2) + c8

(
−4 + 3x1 + 3x2 + 4y1 − 4x1y1 + x2

1y1

− 4x2y1 + 2x1x2y1 + x2
2y1 + 4y2 − 4x1y2 + x2

1y2 − 4x2y2 + 2x1x2y2 + x2
2y2 + c2 (−2 + x1 + x2) (−1 + y1 + y2)

− c4 (1− x1 − x2 + c1 (−2 + x1 + x2)) (−1 + y1 + y2))
)

((1− x1 − x2) (x1 + x2))−2,

d2,5 =
(
c11 (−c9 + c8c11) (−1 + x1 + x2) (x1 + x2) +

(
c1c

2
5c

2
11 + c1c

2
4 (1 + c9 − c8c11) 2 + c9 (−1 + x1 + x2)

− (−1 + c2) c2
9 (−1 + x1 + x2)− 2c8c9c11 (−1 + x1 + x2) + c5c9c11 (2− x1 − x2 + c1 (−1 + x1 + x2))

+ c2c11 (−1 + c8c11) (−2 + c5 + x1 + x2 − c8 (−1 + x1 + x2)) + c11 (−2− c11 + x1 + c11x1 + x2 + c11x2

− c9 (−2 + x1 + x2) 2 + c2
8c11 (−1 + x1 + x2) + c8

(
1− x1 − x2 + c11 (−2 + x1 + x2) 2

))
− c4 (1 + c9 − c8c11) (−1− c11 + 2c1c11 − 2c1c5c11 + 2c8c11 − c1c8c11 + c2 (1 + c9 − c8c11) + c11x1 − c1c11x1

− c8c11x1 + c1c8c11x1 + c11x2 − c1c11x2 − c8c11x2 + c1c8c11x2 + c9 (−2 + x1 + x2 − c1 (−1 + x1 + x2)))

− c2c9 (−1 + x1 + x2 + c11 (−2 + c5 + x1 + x2 − 2c8 (−1 + x1 + x2)))− c5c11 (−1 + c11 (−1 + x1 + x2

− c8 (−2 + x1 + x2) + c1 (2− x1 − x2 + c8 (−1 + x1 + x2))))) (−1 + y1 + y2)
)

((1− x1 − x2) (x1 + x2))−2,

d2,6 = ((1− x1 − x2) (x1 + x2))−2
(

(−c9c12 + c8c11 (−1 + 2c12)) (−1 + x1 + x2) (x1 + x2) + (((−1 + c2) c8

+ c1 (c5 − c4c8)) (− (−1 + c5) c11 − c4 (1 + c9 − c8c11)) (−1 + c12)− (−1 + c5 − c4c8) (1 + c9 − c8c11

− c2 (1 + c9 − c8c11) + c1 (c5c11 + c4 (1 + c9 − c8c11))) (−1 + c12) + (c8 (1 + 2c11 − c5c11 + c1c5c11

− 2c8c11 + c2 (−1 + (−1 + 2c8) c11)− (−1 + c1) c4 (−1 + (−1 + 2c8) c11)) + c9 (−1 + (−1 + c1) c5 (−1 + c12)

+ 2 (−1 + c2 + c4 − c1c4) c8 (−1 + c12) + 2c12 − c2c12 − c4c12 + c1c4c12) + (−1 + c8) ((−1 + c2 − (−1 + c1) c4) c12

+ c11 (1 + (−1 + c1) c5 − 2 (1 + (−1 + c1) c5 + (−1 + c2 + c4 − c1c4) c8) c12))) (1− x1 − x2)
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− c8c11 (−1 + c12) (−1 + x1 + x2) 2 + (c9 − c8c11) c12 (−1 + x1 + x2) 2
)

(1− y1 − y2)
)
,

d2,7 = ((1− x1 − x2) (x1 + x2))−2
(

((−1 + c12) (c1 (c5 − c4c8) (1 + c5 (−1 + c12)− (−1 + c4) c8 (−1 + c12)− 2c12)

− (1 + c2 (−1 + c4)− 2c4) c2
8 (−1 + c12) + (−1 + c5) c12 + c8 (−2 + c2 (1 + c5 (−1 + c12)− 2c12)− 2c5 (−1 + c12)

+ 4c12 − c4c12))− c8x1 + (1− c2 + (−1 + c1) c4) c2
8x1 + (−1 + c1) c5 (−1 + c8) c12x1 + c8c12x1 − 2c2

8c12x1

− (−1 + c1) c5c8 (−1 + c12) c12x1 + (1− c2 + (−1 + c1) c4) c2
8c

2
12x1 + c12 (−1 + (1 + (−1 + c1) c5) c12)x1

+ c8 (−1 + c12)x2 + (1− c2 + (−1 + c1) c4) c2
8 (−1 + c12) 2x2 + (1 + (−1 + c1) c5) (−1 + c12) c12x2

+ c8

(
(c2 − (−1 + c1) c4) c12 ((−1 + 2c8 + c12)x1 + (−1 + c12)x2)− (−1 + c1) c5

(
x1 + (−1 + c12) 2x2

)))
× (−1 + y1 + y2) + c8 (−1 + c12) c12 (x1 + x2) (3 + (−4 + x1 + x2) y1 + (−4 + x1 + x2) y2)

)
,

d3,1 = c8 (1− c5 + c4c8) (− (−1 + c2) c8 + c1 (−c5 + c4c8)) ,

d3,2 = c1c8,

d3,3 = 1− c5 + c2 (−1 + c5 − 3c4c8) + c4 (3c8 + c1 (1− 2c5 + 3c4c8)) ,

d3,4 = c1c11 (−c9 + c8c11) ,

d3,5 = −c1 (c8c11 (1− 2c12) + c9c12) ,

d3,6 = c1c8 (−1 + c12) c12,

d3,7 = c11

(
(−1 + c2) (−1 + c5) c11 + c1c

2
4 (−2− 3c9 + 3c8c11)

+ c4 (−2− 3c9 + c1c11 − 2c1c5c11 + 3c8c11 + c2 (2 + 3c9 − 3c8c11))) ,

d3,8 = c4 (−1 + c2 − c1c4) (2 + 3c9) c12 − (−1 + c5 − 3c4c8 − c1c4 (1− 2c5 + 3c4c8) + c2 (1− c5 + 3c4c8)) c11 (−1 + 2c12) ,

d3,9 = − (−1 + c5 − 3c4c8 − c1c4 (1− 2c5 + 3c4c8) + c2 (1− c5 + 3c4c8)) (−1 + c12) c12,

d3,10 = c1c
2
4c8 + (1− c5 + c2 (−1 + c5 − 3c4c8) + c4 (3c8 + c1 (1− 2c5 + 3c4c8))) c2

9 + 3c8 (−1 + c5 − c4c8) c11 (1− c2

+ 2 (c1c5 + (−1 + c2 − c1c4) c8) c11) + c9 ((−1 + c2) (−1 + c5 − 2c4c8)− 3 ((−1 + c2) c8 (−2 + 2c5 − 3c4c8)

+ c1

(
c2

5 + c4c8 (2 + 3c4c8)− c5 (1 + 4c4c8)
))
c11

)
− c4 (c1 (−1 + 2c5) c9 + c8 (−1 + c2 + 2 (−1 + c2 − 2c1c4) c9

+ 3 (− (−1 + c2) c8 + c1 (1− 2c5 + 2c4c8)) c11)) ,

d3,11 = −c1 (−1 + c5) c5c9 (−2 + 3c12) + 3c4 (1− c2 + c1c4) c3
8c11 (−3 + 4c12) + c2

8

(
−c1c

2
4 (2 + 3c9) (−2 + 3c12)

+ 3 (−1 + c2) (−1 + c5) c11 (−3 + 4c12) + c4 (4− 9c1c11 + 18c1c5c11 + c9 (6− 9c12)− 6c12 + 12c1c11c12

− 24c1c5c11c12 + c2 (2 + 3c9) (−2 + 3c12))) + c8 ((−1 + c5) (1 + 2c9) (−2 + 3c12)− c2 (−1 + c5) (1 + 2c9)

× (−2 + 3c12) + c1 (c4 (−1 + 2c5) (1 + 2c9) (−2 + 3c12) + 3 (−1 + c5) c5c11 (−3 + 4c12))) ,

d3,12 = 3c8 (1− c5 + c4c8) (− (−1 + c2) c8 + c1 (−c5 + c4c8))
(
1− 3c12 + 2c2

12

)
,
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where an, bn and cn are given by

a1 = −X1 (−1 + y1 + y2)
(
4v2 (−1 + x1 + x2) (x1 + x2)

)−1
,

a2 = −X2 (−1 + y1 + y2) (X1 (−1 + x1 + x2) (x1 + x2))−1 ,

a3 = X3 ((x1 + x2)X2)−1 ,

a4 = X4 ((x1 + x2)X3)−1 ,

b1 = X−1
4 c2x1y1 (−1 + y1 + y2)

(
c2 (−1 + x1)x1y2 +

(
−1 + c2 − v2

)
x2

2y2 + x2

(
−c2 + c2y1 +

(
−1 + 2c2 − v2

)
x1y2

))
,

b2 = −X−1
4 2c2

(
−1 + v2

)
x1x2 (x1 + x2) y1y2 (−1 + y1 + y2) ,

b3 = X−1
4 c2x2

((
−1 + c2 − v2

)
x2

1y1 + c2 (−1 + x2)x2y1 + x1

((
−1 + 2c2 − v2

)
x2y1 + c2 (−1 + y2)

))
y2 (−1 + y1 + y2) ,

c1 = −X−1
1 c2

(
−1 + v2

)
(−1 + x1 + x2) ,

c2 = −X−1
1 4v2x1,

c4 = c1X1X−1
2 x1,

c5 = −X1X−1
2 x2,

c8 = X−1
3 c2

(
−1 + v2

)
x1x2 (−1 + y1 + y2) ,

c9 = X−1
3 c2x1

(
c2 − c2x1 +

(
1− c2 + v2

)
x2

)
(−1 + y1 + y2) ,

c11 = −X−1
4

(
c2
(
−1 + v2

)
x1x2 (x1 + x2) y1 (−1 + y1 + y2)

)
,

c12 = −X−1
4

(
c2x2

((
1− c2 + v2

)
x2

1y1 − c2 (−1 + x2)x2y1 + x1

((
1− 2c2 + v2

)
x2y1 − c2 (−1 + y2)

))
(−1 + y1 + y2)

)
with

X1 =
(
c2 +

(
−4 + c2

)
v2
)
x1 + c2

(
1 + v2

)
(−1 + x2) ,

X2 = c2
(
−1 + c2 − v2

)
x2

1 + c2 (−1 + x2)
(
−c2 +

(
−1 + c2 − v2

)
x2

)
+x1

(
c2
(
1− 2c2 + v2

)
+ 2

(
c4 + 2v2 − c2

(
1 + v2

))
x2

)
,

X3 = c2
(
−1 + c2 − v2

)
x3

1y1 + c2 (−1 + x2)x2

(
−c2 +

(
−1 + c2 − v2

)
x2

)
y1 + x1

((
3c4 + 4v2 − 3c2

(
1 + v2

))
x2

2y1

+c2x2

((
1− 3c2 + v2

)
y1 +

(
−1 + c2 − v2

)
(−1 + y2)

)
− c4 (−1 + y2)

)
+ x2

1

((
c2
(
1− c2 + v2

)
+
(
3c4 + 4v2 − 3c2

(
1 + v2

))
x2

)
y1 + c4 (−1 + y2)

)
,

X4 = c2
(
−1 + c2 − v2

)
x4

1y1y2 + x3
1

((
c2
(
1− c2 + v2

)
+ 4

(
−1 + c2

) (
c2 − v2

)
x2

)
y1 + c4 (−1 + y2)

)
y2

+c2 (−1 + x2)x2
2y1

(
−c2 + c2y1 +

(
−1 + c2 − v2

)
x2y2

)
+ x1x2

(
c2
(
−1 + 2c2 − v2

)
x2y

2
1

+c2 (−1 + y2)
(
−c2 +

(
−1 + c2 − v2

)
x2y2

)
+ y1

(
4
(
−1 + c2

) (
c2 − v2

)
x2

2y2 + c4 (−1 + 2y2)

+c2x2

(
1− 2c2 + v2 +

(
1− 3c2 + v2

)
y2

)))
+ x2

1

(
2
(
3c4 + 4v2 − 3c2

(
1 + v2

))
x2

2y1y2 − c4 (−1 + y2) y2

+c2x2

((
−1 + c2 − v2

)
y2

1 +
(
−1 + 2c2 − v2

)
(−1 + y2) y2 + y1

(
1− c2 + v2 +

(
1− 3c2 + v2

)
y2

)))
.

To extract the leading behavior of h5(v, c) in the limit v, c, w ≡ v/c are small, we approxi-

mate the integrand in h5(v, c) by its leading order term in this limit. This gives h5(v, c) = h∗5w
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10-13 10-10 10-7 10-4 10-1
w

10-17

10-14

10-11

10-8

10-5

h5(v, c)

c = 10
-10

Figure B1: The dots represent h5(v, c) evaluated as a function of w = v/c at fixed c = 10−10.
The line represents L(w) = 5.7 × 10−4 w. It is noted that h5(v, c) deviates from the line

beyond w ∼ 0.1.

with h∗5 ≈ 5.7× 10−4 to the leading order in v, c, w. In Fig. (B1), we show the full h5(v, c) as

a function of w = v
c for a small value of c, which confirms the linear behavior in the small w

limit. The two-loop contribution to the quantum effective action is

δΓ2L
0,2 =

1

ε

4

NcNf

g4

v2c2
h5(v, c)

∫
dp

1

4
c2|~p|2Tr[Φ(−p)Φ(p)] + O(ε0). (B58)

Combining Eq. (B58) with the one-loop quantum effective action obtained in Ref. [43], we

obtain the counter terms as

Z1,1 = − (N2
c − 1)

4π2NcNf

g2

c
h1(v, c), (B59)

Z2,1 =
(N2

c − 1)

4π2NcNf

g2

c
h2(v, c), (B60)

Z3,1 = −Z2,1, (B61)

Z4,1 = − 1

4π

g2

v
, (B62)

Z5,1 = − 4

NcNf

g4

v2c2
h5(v, c), (B63)

Z6,1 = − 1

8π3NcNf

g2

c
h3(v, c), (B64)

Z7,1 =
1

2π2c2

[
(N2

c + 7)u1 + 2

(
2Nc −

3

Nc

)
u2 + 3

(
1 +

3

N2
c

)
u2

2

u1

]
, (B65)

Z8,1 =
1

2π2c2

[
12u1 + 2

(
Nc −

9

Nc

)
u2

]
. (B66)

Here h1(v, c), h2(v, c), and h3(v, c) are given by[43]

h1(v, c) =

∫ 1

0
dx

√
1− x

c2 + (1 + v2 − c2)x
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=
π
(
1 + v2

)
− 2c
√

1− c2 + v2 − i
(
1 + v2

) (
log
(
1 + v2

)
− 2 log

(
ic+
√

1− c2 + v2
))

2 (1− c2 + v2)3/2
,

h2(v, c) = c2

∫ 1

0
dx

√
1− x

(c2 + (1 + v2 − c2)x)3

= −
c
(
−2
√

1− c2 + v2 − ic
(

log
(
−1− v2

)
− 2 log

(
ic+
√

1− c2 + v2
)))

(1− c2 + v2)3/2
,

h3(v, c) =

∫ 1

0
dx1

∫ 1−x1

0
dx2

πc
(
8v2x1x2 + 2c4 (−1 + x1 + x2) 2 − c2 (−1 + x1 + x2)

(
1 + 2x1 + 2x2 + v2 (−1 + 2x1 + 2x2)

))
(4v2x1x2 + c4 (−1 + x1 + x2) 2 − c2 (1 + v2) (−1 + x1 + x2) (x1 + x2)) 3/2

.

From the expressions forZn,1, we obtain the beta functions for λ ≡ g2

v , x ≡
g2

c3
, w ≡ v

c , κi ≡
ui
c2

,

dλ

dl
= z λ

(
ε− λ

4π
+

1

4π3NcNf
λw h3(v, c)

)
, (B67)

dx

dl
= z x

(
ε− 3(N2

c − 1)

4π2NcNf
λw h1(v, c) +

(N2
c − 1)

4π2NcNf
λw h2(v, c) +

λ

8π
− 12

NcNf

λx

w
h5(v, c) +

λw h3(v, c)

4π3NcNf

)
,(B68)

dw

dl
=

1

2
z w

(
− (N2

c − 1)

2π2NcNf
λw h1(v, c)− (N2

c − 1)

2π2NcNf
λw h2(v, c) +

λ

4π
− 8

NcNf

λx

w
h5(v, c)

)
, (B69)

dκ1

dl
= z κ1

(
ε− λ

4π
− 8

NcNf

λx

w
h5(v, c)− 1

2π2

(
(N2

c + 7)κ1 + 2

(
2Nc −

3

Nc

)
κ2 + 3

(
1 +

3

N2
c

)
κ2

2

κ1

))
,(B70)

dκ2

dl
= z κ2

(
ε− λ

4π
− 8

NcNf

λx

w
h5(v, c)− 1

2π2

(
12κ1 + 2

(
Nc −

9

Nc

)
κ2

))
. (B71)

The leading order behavior of hi(v, c) in the limit of small v, c, w are h1(v, c) = π
2 , h2(v, c) =

2c, h3(v, c) = 2π2.

III Upper bound of higher-loop diagrams

Here we estimate the magnitude of higher-loop diagrams without self-energy insertions at the

M1L fixed point. Since κi = 0 at the fixed point, we consider diagrams made of Yukawa vertices

only. The discussion closely follows the one in Appendix B, and we will be brief here. A general

L-loop diagram can be written as

I ∼ gV
∫ L∏

r=1

dpr

 If∏
l=1

1

Kl · Γ + εnl(kl)γd−1

( Ib∏
m=1

1

|Qm|2 + c2(q2
m,x + q2

m,y)

)
. (C72)

Here V is the number of Yukawa vertices. If , Ib are the number of fermion and boson propa-

gators, respectively. pr’s represent the internal momenta. kl (qm) is the momentum that flows

through the l-th fermion (m-th boson) propagator, which is given by a linear combination of the
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internal and external momenta. nl is the patch index of the l-th fermion line. Without loss of

generality, we can focus on diagrams that involve only patches 1 and 3. We are ignoring the γ

matrices coming from the Yukawa vertices as they play no role in the estimation.

The dependence of kl and qm on the internal momenta is determined by the choice of loops.

One can choose the loop momenta such that L−Lf boson propagators become exclusive prop-

agators, in the sense that each of them depends exclusively on only one internal momentum,

where Lf is the number of fermion loops. Since the limit of small v, c, w does not affect the

frequency integrations, we focus on the spatial parts of the propagators. The integrations for

pr,x, pr,y in Eq. (C72) can be written as

I ∼ gV
∫ L∏

r=1

dpr,xdpr,y

L−Lf∏
m=1

1

(cpm,x)2 + (cpm,y)2

 If∏
l=1

1

El(p)

R[p].

Here we have dropped the frequency variables and all the γ matrices. The first group represents

the exclusive boson propagators for the L−Lf non-fermion loops. The second group represents

all fermion propagators, and the energy of the fermion is written El(p) ≡ εl(kl(p)), where kl(p)

is the momentum that flows through the l-th fermion propagator which is a function of internal

momenta. R[p] represents the remaining boson propagators in the diagram.

Now we change variables in a way that the divergence in the small v, c limit becomes mani-

fest. The first L−Lf variables are chosen to be p
′
i ≡ cpi,x with 1 < i ≤ L−Lf . The remaining

L+Lf variables are chosen among {El(p)}. {p′i, El(p)} are expressed in terms of {vpr,x, pr,y}
as



p
′
1

p
′
2
...

p
′
L−Lf

E1

E2

...

EIf



=

(
c
v IL−Lf 0

A V

)



vp1,x

vp2,x

...

vpL−Lf ,x

vpL−Lf+1,x

vpL−Lf+2,x

...

vpL,x

p1,y

p2,y

...

pL,y



. (C73)

Here, Ia is the a × a identity matrix. A is an If × (L − Lf ) matrix whose matrix elements

are given by An,i = 1
v
∂En
∂pi,x

with 1 ≤ n ≤ If and 1 ≤ i ≤ L − Lf . V is an If × (L + Lf )
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matrix whose first Lf columns are given by Vn,a−(L−Lf ) = 1
v
∂En
∂pa,x

for L − Lf + 1 ≤ a ≤ L

while the remaining L columns are given by Vn,b+Lf = ∂En
∂pb,y

for 1 ≤ b ≤ L. In Ref. [63] it

is shown that the L + Lf column vectors of V are linearly independent. Therefore, there exist

L+Lf row vectors of V that are linearly independent, which we label to be the lk-th rows with

k = 1, ..., (L+ Lf ). Let Ṽ be the (L+ Lf )× (L+ Lf ) matrix consisting of these rows. Then

we define p
′
L−Lf+k ≡ Elk with k = 1, ..., (L + Lf ) as the remaining (L + Lf ) integration

variables. The new momentum variables are given in terms of the old variables by


p
′
1

p
′
2
...

p
′
2L

 =

(
c
v IL−Lf 0

Ã Ṽ

)



vp1,x

vp2,x

...

vpL−Lf ,x

vpL−Lf+1,x

vpL−Lf+2,x

...

vpL,x

p1,y

p2,y

...

pL,y



, (C74)

where Ã is the collection of the lk-th rows of A, with k = 1, ..., (L+ Lf ). The Jacobian of this

change of variables is given by Y −1c−(L−Lf )v−Lf , where Y = | det Ṽ| is a numerical constant

independent of v, c. Y is nonzero because Ṽ is invertible. In the new basis, it is manifest that

for every integration variable p
′
r, there is one propagator that guarantees the integrand decays at

least as 1/p
′
r, in the limit c, v → 0. Since there is no sub-diagram with a positive degree of UV

divergence, the integrations over p
′
r are at most logarithmically divergent in the UV cut-off or

v, c. Therefore, the diagram is bounded by

I ∼ gV

vLf cL−Lf
, (C75)

up to potential logarithmic corrections in v and c.

IV Beyond the modified one-loop order

In this appendix, we consider the effects of higher-loop diagrams in the small w limit. To the

leading order in w, the higher-loop diagrams that need to be considered are the M1L diagrams
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in which the boson propagator is dressed with the self-energy insertions in Figs. 2.2(a) and 2.3.

An insertion of the self-energy in Fig. 2.2(a) adds one power of λ to Zn,1, while an insertion of

the self-energy in Fig. 2.3 adds one power of λx, up to logarithmic corrections in c, v for both

insertions. We write the general form of the counter terms from the higher-loop diagrams as

Z1,1 = λw

∞∑
n,m=0

λn+mxman,m(c, v), (D76)

Z2,1 =
(λw)

3
2

x
1
2

∞∑
n,m=0

λn+mxmbn,m(c, v), (D77)

Z3,1 = −Z2,1, (D78)

Z4,1 = − 1

4π
λ, (D79)

Z5,1 = λx
∞∑

n,m=0

λn+mxmhn,m(c, v), (D80)

Z6,1 = λw
∞∑

n,m=0

λn+mxmrn,m(c, v). (D81)

Here, an,m(c, v), bn,m(c, v), hn,m(c, v), rn,m(c, v) are functions that grow at most logarithmi-

cally in c, v. For n = m = 0, they are independent of c, v, and given by a0,0(c, v) = − (N2
c−1)

8πNcNf
,

b0,0(c, v) = (N2
c−1)

2π2NcNf
, h0,0(c, v) = − 4h∗5

NcNf
, r0,0(c, v) = − 1

4πNcNf
. The relation Z2,1 = −Z3,1

still holds because the external momentum can be passed through a single fermion line with the

opposite patch index to the external lines.

We first establish that the fixed point still exists in the presence of general logarithmic cor-

rections in v, c. It is straightforward to check that w∗ = 0 remains as a fixed point. At w = 0,

the beta functions for λ, x read

dλ

dl
= z λ

(
ε− 1

4π
λ

)
, (D82)

dx

dl
= zx

(
ε+

1

8π
λ+

3

2
λx

∞∑
n,m=0

(n+ 2m+ 2)λn+mxmhn,m(c, v)

)
. (D83)

While λ still flows to λ∗ = 4πε, x no longer flows to an O(1) fixed point if hn,m(c, v) diverge

logarithmically in the small v, c limit. This may be regarded as an indication that the theory has

an instability. However, we show that such a runaway flow is an artifact of looking at the wrong

parameter x for general ε. In other words, the relative rate at which v, c flow to zero depends on

ε, and we have to take the ε-dependence into account in choosing the variable that represents the

fixed point. To see this, we define a new variable x̃ ≡ x
F (c,v) with

F (c, v) = 1 +

∞∑
p=1

εp fp(c, v), (D84)
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where we leave open the possibility that fp(c, v) depends on both c, v for the sake of full gener-

ality. The beta function for x̃ is given by

dx̃

dl
= z x̃

[
ε+

(
3 +

∂log(c)F

F

)
Z ′1,1 +

∂log(v)F

F
Z ′2,1 −

(
1 +

∂log(c)F

F
+
∂log(v)F

F

)
Z ′3,1

−1

2

(
1 +

∂log(c)F

F

)
Z ′4,1 +

3

2

(
1 +

∂log(c)F

3F

)
Z ′5,1 − 2Z ′6,1

]
, (D85)

where Z ′n,1 ≡
(

1
2g∂g + ui∂ui

)
Zn,1. The point of introducing x̃ is that we can determine F (c, v)

such that x̃ flows to an O(1) fixed point, x̃∗. The conditions, dλdl = 0 and dx̃
dl = 0 imply

1 + 4π x̃∗

1 +
∞∑
p=1

εp fp(c, v)

 ∞∑
n,m=0

(n+ 2m+ 2) εn+m(x̃∗)m

1 +
∞∑
p=1

εp fp(c, v)

m

h̃n,m(c, v) = 0(D86)

to the leading order in w, where h̃n,m(c, v) = (4π)n+mhn,m(c, v). Eq. (D86) can be solved for

x̃∗ and fp(c, v) at every order in ε. For α = 0, we have

1 + 8πx̃∗h̃0,0 = 0

which gives x̃∗ = − 1
8πh̃0,0

=
NcNf
32π h∗5

= x∗. The equation for general α > 0 contains only fα′

with α′ ≤ α, from which fα is uniquely fixed. For example, the first few equations in the series

read

2h̃0,0f1 + 4x̃∗h̃0,1 + 3h̃1,0 = 0 for α = 1,

2h̃0,0f2 + 6(x̃∗)2h̃0,2 + f1

(
8x̃∗h̃0,1 + 3h̃1,0

)
+ 5x̃∗h̃1,1 + 4h̃2,0 = 0 for α = 2,

2h̃0,0f3 + 4f2
1 x̃
∗h̃0,1 + 8f2x̃

∗h̃0,1 + 8(x̃∗)3h̃0,3 + 3f2h̃1,0 + 7(x̃∗)2h̃1,2

+2f1

(
9(x̃∗)2h̃0,2 + 5x̃∗h̃1,1 + 2h̃2,0

)
+ 6x̃∗h̃2,1 + 5h̃3,0 = 0 for α = 3,

each of which fixes f1(c, v), f2(c, v), f3(c, v), respectively. Therefore, fp(c, v) can be deter-

mined such that x̃ flows to anO(1) value to all orders in ε. At the fixed point with (λ∗, x̃∗, w∗) =(
4πε,

NcNf
32π h∗5

, 0
)

, Eq. (D85) implies that Z ′5,1 = −ε, and Z1,1, Z2,1, Z3,1, Z6,1 in Eqs. (D76),

(D78), (D78), (D81) vanish because x is divergent at most logarithmically in w. The same con-

clusion holds for all other higher-loop diagrams suppressed by w. As a result, the ε-expansion is

well defined, and the fixed point with w∗ = 0 persists to all orders in ε. Furthermore, the critical

exponents in Eqs. (A46), (A47), (A48) do not receive perturbative corrections beyond the M1L

order at the fixed point. This is a rather remarkable feature attributed to w∗ = 0.

The remaining question is whether the non-trivial fixed point remains attractive to all orders

in ε. In the small ε limit this is indeed the case. For general ε, we cannot prove this from the

present perturbative expansion without actually computing the counter terms to all orders in ε.

However, from the non-perturbative calculation[56, 57], it is shown that w indeed flows to zero
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for any 0 < ε ≤ 1.

V Computation of physical properties

Here we provide some details of the derivation of the scaling forms of the Green’s functions.

The fermion Green’s function satisfies the renormalization group equation[43],[
zK · ∂

∂K
+ ~k · ∂

∂~k
− βw

∂

∂w
− βx

∂

∂x
− βλ

∂

∂λ
− (2ηψ + z(d− 1)− d)

]
Gn(k;w, x, λ) = 0,

(E87)

where we have set κi = 0 and βκi = 0. The solution to this equation is given by

Gn(k;w0, x0, λ0) = exp (−Iψ(l))Gn(elK, eIz~k; , w(l), x(l), λ(l)), (E88)

where

Iz(l) =

l∫
0

d`

z(`)
, (E89)

Iψ(l) =

l∫
0

d`

(
2ηψ(`) + z(`)(2− ε)− (3− ε)

z(`)

)
, (E90)

and w(l), x(l), λ(l) are solutions to dw(l)
dl = − βw

z(l) , dλ(l)
dl = − βλ

z(l) , dx(l)
dl = − βx

z(l) with initial

conditions, w(0) = w0, λ(0) = λ0, x(0) = x0. Because all three parameters flow, the full

crossover structure is rather complicated. However, w decays at the slowest rate,

w(l)
l�1
=

NcNf

2
11
3 (h∗5)

1
3 (N2

c − 1)
2
3

1

ε

1

l
2
3

, (E91)

and the crossover at low energies is dominated by the flow of w. To the leading order in w and

ε,

z − 1 =
(N2

c − 1)ε

2NcNf
w −

32
√

2
√
h∗5(N2

c − 1)ε
3
2

N
3
2
c N

3
2
f

w
3
2 , (E92)

ηψ = −(N2
c − 1)ε(2− ε)

4NcNf
w +

8
√

2
√
h∗5(N2

c − 1)(5− 2ε)ε
3
2

N
3
2
c N

3
2
f

w
3
2 . (E93)

Althoughw flows to zero in the low energy limit, the slow decay ofw renormalizes the scaling of

the frequency and the field at intermediate energy scales as Iz(l) =
l∫

0

d`
(

1− (N2
c−1)ε

2NcNf
w(`)

)
=
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l− 3(N2
c−1)

1
3

2
14
3 (h∗5)

1
3
l
1
3 , Iψ(l) = −Iz(l)+

16
√

2
√
h∗5(N2

c−1)ε
3
2

N
3
2
c N

3
2
f

l∫
0

d`w(`)
3
2 = −Iz(l)+ 1

2 log(l). Using the

fact that the fermion Green’s function reduces to the bare one in the small w(l) limit, we obtain

the scaling form of the Green’s function for n = 1 in the low energy limit with eIz(log(1/|K|))~k ∼
1,

G1(K,~k) =
1

iFψ(|K|)
1

Fz(|K|)Γ ·K + γd−1

[
πNcNf

4ε(N2
c−1)

kx
log(1/|K|) + ky

] , (E94)

where

v(l) = w(l)
3
2

√
λ(l)

x(l)
≈

πNcNf

4(N2
c − 1)

1

ε

1

l
(E95)

and Fz(|K|), Fψ(|K|) are given by Eqs. (23) and (24), respectively.

The Green’s function for the boson satisfies the renormalization group equation[43],[
zQ · ∂

∂Q
+ ~q · ∂

∂~q
− βw

∂

∂w
− βx

∂

∂x
− βλ

∂

∂λ
− (2ηφ + z(d− 1)− (d+ 1))

]
D(q;w, x, λ) = 0,

(E96)

which is solved by

D(q;w0, x0, λ0) = exp (−Iφ(l))D(elQ, eIz(l)~q;w(l), x(l), λ(l)). (E97)

Here Iz(l) is defined in Eq. (E89) and

Iφ(l) =

l∫
0

d`

(
2ηφ(`) + z(`)(2− ε)− (4− ε)

z(`)

)
, (E98)

with

ηφ =
ε

2
+

((N2
c − 1)(ε− 4) + 4)ε

4NcNf
w +

16
√

2
√
h∗5(N2

c − 1)(4− ε)ε
3
2

N
3
2
c N

3
2
f

w
3
2 . (E99)

From Iφ(l) = −2Iz(l) +
l∫

0

d`
(
ε− (N2

c−3)ε
NcNf

w(l)
)

= −2Iz(l) + εl − 3(N2
c−3)

2
11
3 (h∗5)

1
3 (N2

c−1)
2
3
l
1
3 , the

scaling form of the boson propagator is obtained to be

D(q;w0, x0, λ0) = exp

(
2Iz(l)− εl +

3(N2
c − 3)

2
11
3 (h∗5)

1
3 (N2

c − 1)
2
3

l
1
3

)
D(elQ, eIz(l)~q;w(l), x(l), λ(l)),

(E100)

where l = log(1/|Q|) with eIz(l)~q ∼ 1.
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Appendix to Chapter 3

I Proof of the upper bound for general diagrams

In this section, we prove the upper bound in Eq. (34), assuming that the fully dressed boson

propagator is given by Eqs. (32) and (33) in the small v limit. Since the boson propagator is

already fully dressed, we do not need to consider boson self-energy corrections within diagrams.

The magnitude of a diagram is not simply determined by the number of vertices because in the

small v limit patches of the Fermi surface become locally nested, and the collective mode loses

its dispersion. When a loop is formed out of dispersionless bosons and nested fermions, the loop

momentum along the Fermi surface becomes unbounded. For small but nonzero v and c, the

divergent integral is cut off by a scale which is proportional to 1/v or 1/c. This gives rise to

enhancement factors of 1/v or 1/c. Our goal is to compute the upper bound of the enhancement

factors for general diagrams. A diagram is maximally enhanced when all the patches of the

Fermi surface involved in the diagram are nested. Since the patches are nested pairwise (1, 3

and 2, 4) in the small v limit, it is enough to consider diagrams that are made of patches 1, 3 to

compute the upper bound without loss of generality. Diagrams which involve all four patches

are generally smaller in magnitude than those that involve only 1, 3 or 2, 4 for fixed L,Lf , E,

where L is the total number of loops, Lf is the number of fermion loops and E is the number of

external legs. We first show that Eq. (34) holds for an example to illustrate the idea that is used

for a general proof in the following subsection.

I-1 Example

The diagram in Figure B.1(a) is a fermion self-energy with one fermion loop and three other

loops, which we call ‘mixed loops’. For simplicity, we set the external momentum to zero.

This does not affect the enhancement factors of 1/c and 1/v which originate from large internal

54
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1 3 1 3 1

3
1

3

1

(a)

p1
p2

p3

p4

(b)

E1

E2 E3 E4

E5

E6

E7

(c)

Figure A1: (a) A four-loop diagram with one fermion loop. The numbers next to the fermion
lines represent the patch indices. (b) The four exclusive propagators are denoted as dashed
lines. The remaining propagators represent the connected tree diagram. Loops (thick solid
colored lines) are chosen such that each loop momentum goes through only one of the exclusive
propagators. (c) The seven internal fermion propagators whose energies are denoted as El with
1 ≤ l ≤ 7. E1, E2, .., E5 are used as new integration variables along with p

′

i = cpi,x with
i = 1, 2, 3, as discussed in the text.

momenta. We label the loop momenta as shown in Figure B.1(b). With this choice, each mixed

loop momentum pi with i = 1, 2, 3 has a boson line that carries only pi, and the fermion loop

momentum p4 has a fermion line that carries only p4. These four propagators, denoted in Figure

B.1(b) by dashed lines, are called ‘exclusive propagators’. In the next section we show that it

is always possible to find such exclusive propagators for every loop momentum in a general

diagram. The diagram in Figure B.1(a) is written as

I ∼ v4

∫ 4∏
r=1

dpr

 3∏
j=1

1

|pj,0|+ c(|pj,x|+ |pj,y|)

×
1

|p1,0 + p2,0 + p3,0|+ c(|p1,x + p2,x + p3,x|+ |p1,y + p2,y + p3,y|)
×

1

ip4,0 + E1

1

ip1,0 + E2

1

i (p1,0 + p2,0) + E3

1

i (p1,0 + p2,0 + p3,0) + E4
×

1

i(p4,0 − p1,0) + E5

1

i(p4,0 − p1,0 − p2,0) + E6

1

i(p4,0 − p1,0 − p2,0 − p3,0) + E7
,

where pr is the set of internal three-momenta, and Ei represents the energy of the fermion in the

i-th fermion propagator as denoted in Figure B.1(c),

E1 = vp4,x + p4,y,
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E2 = vp1,x − p1,y,

E3 = v(p1,x + p2,x) + (p1,y + p2,y),

E4 = v(p1,x + p2,x + p3,x)− (p1,y + p2,y + p3,y),

E5 = v(−p1,x + p4,x)− (−p1,y + p4,y),

E6 = v(−p1,x − p2,x + p4,x) + (−p1,y − p2,y + p4,y),

E7 = v(−p1,x − p2,x − p3,x + p4,x)− (−p1,y − p2,y − p3,y + p4,y). (A101)

Since frequency integrations are not affected by v and c, we focus on the spatial components

of momenta from now on. Our aim is to change the variables for the internal momenta so that

the enhancement factors of 1/v and 1/c become manifest. As our first three new variables we

choose p
′
j ≡ cpj,x with 1 ≤ j ≤ 3. The last five variables are chosen to be p

′
l+3 ≡ El with

1 ≤ l ≤ 5. The transformation between the old variables, written as {vpi,x, pi,y}, and the new

variables is given by


p
′
1

p
′
2
...

p
′
8

 =

(
c
v I3 0

Ã Ṽ

)



vp1,x

vp2,x

vp3,x

vp4,x

p1,y

p2,y

p3,y

p4,y


, (A102)

where Ã and Ṽ are written as

Ã =



0 0 0

1 0 0

1 1 0

1 1 1

−1 0 0


, Ṽ =



1 0 0 0 1

0 −1 0 0 0

0 1 1 0 0

0 −1 −1 −1 0

1 1 0 0 −1


, (A103)

and I3 is the 3× 3 identity matrix. For non-zero v, c, the change of variables is non-degenerate,

and the Jacobian of the transformation is (2c3v)−1. We show in the following section that such

a non-degenerate choice is always possible for general diagrams. An easy mnemonic is that

each fermion loop contributes a factor of 1/v because of nesting in the small v limit, while each

mixed loop contributes a factor of 1/c because of the vanishing boson velocity.
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In the new coordinates, the momentum integration in Eq. (A101) becomes

I ∼ v3

c3

∫ 8∏
i=1

dp
′
i

 3∏
j=1

1

|p′j |+O(c)

( 8∏
l=4

1

p
′
l

)
R̃[p

′
], (A104)

where R̃[p
′
] includes the propagators that are not explicitly shown. Now, we can safely take

the small c limit inside the integrand, because every momentum component has at least one

propagator which guarantees that the integrand decays at least as 1/p
′
j in the large momentum

limit. Therefore, the integrations are UV convergent up to potential logarithmic divergences. To

leading order in small v, the diagram scales as

I ∼
(v
c

)3
∼ v

3
2

up to potential logarithmic corrections.

I-2 General upper bound

Here we provide a general proof for the upper bound, by generalizing the example discussed in

the previous section. We consider a general L-loop diagram that includes fermions from patches

1, 3,

I ∼ v
V
2

∫ L∏
r=1

dpr

 If∏
l=1

1

ikl,0 + vkl,x + (−1)
nl−1

2 kl,y

( Ib∏
m=1

1

|qm,0|+ c(|qm,x|+ |qm,y|)

)
.(A105)

Here V is the number of vertices. If , Ib are the numbers of internal fermion and boson propa-

gators, respectively. pr is the set of internal three-momenta. kl (qm) represents the momentum

that flows through the l-th fermion (m-th boson) propagator. These are linear combinations of

the internal momenta and external momenta. The way kl, qm depend on pr is determined by

how we choose internal loops within a diagram. nl = 1, 3 is the patch index for the l-th fermion

propagator. Since the frequency integrations are not affected by v and c, we focus on the spatial

components of momenta from now on.

It is convenient to choose loops in such a way that there exists a propagator exclusively as-

signed to each internal momentum. For this, we follow the procedure given in Sec. VI of [69].

For a given diagram, we cut internal propagators one by one. We continue cutting until all loops

disappear while the diagram remains connected. First, we cut one fermion propagator in every

fermion loop, which requires cutting Lf fermion lines. The remaining Lm ≡ L − Lf loops,

which we call mixed loops, can be removed by cutting boson propagators. After cutting L lines

in total, we are left with a connected tree diagram. Now we glue the propagators back one

by one to restore the original L-loop diagram. Every time we glue one propagator, we assign

one internal momentum such that it goes through the propagator that is just glued back and the
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connected tree diagram only. This guarantees that the propagator depends only on the inter-

nal momentum which is associated with the loop that is just formed by gluing. In gluing Lf
fermion propagators, the associated internal momenta go through the fermion loops. The Lm
mixed loops necessarily include both fermion and boson propagators. After all propagators are

glued back, L internal momenta are assigned in such a way that for every loop momentum there

is one exclusive propagator.

With this choice of loops, Eq. (A105) is written as

I ∼ v
V
2

∫ L∏
r=1

dpr,xdpr,y

Lm∏
j=1

1

c|pj,x|+ c|pj,y|

 If∏
l=1

1

El(p)

R[p]. (A106)

Here, frequency is suppressed, and IR divergences in the integrations over spatial momenta are

understood to be cut off by frequencies. Our focus is on the UV divergence that arises in the

spatial momentum integrations in the limit of small v and c. The first group in the integrand

represents the exclusive boson propagators assigned to the Lm mixed loops. Each of the Lm
boson propagators depends on only one internal momentum due to the exclusive nature of our

choice of loops. The second group represents all fermion propagators. El(p) is the energy of

the fermion in the l-th fermion propagator which is given by a linear superposition of pr,x, pr,y.

R[p] represents the rest of the boson propagators that are not assigned as exclusive propagators.

Our strategy is to find a new basis for the loop momenta such that the divergences in the small

v and c limit become manifest. The first Lm variables are chosen to be cpj,x with j = 1, 2, .., Lm

while the remaining 2L − Lm variables are chosen among {El(p)}. This is possible because

If ≥ (2L − Lm) for diagrams with E > 0. We express p
′
j ≡ cpj,x and El(p) in terms of

vpr,x, pr,y,



p
′
1

p
′
2
...

p
′
Lm

E1

E2

...

EIf


=

(
c
v ILm 0

A V

)



vp1,x

vp2,x

...

vpLm,x

vpLm+1,x

...

vpL,x

p1,y

p2,y

...

pL,y



. (A107)

Here Ia is the a × a identity matrix. Al,j = 1
v
∂El
∂pj,x

with 1 ≤ l ≤ If , 1 ≤ j ≤ Lm. V
is an If × (2L − Lm) matrix whose first L − Lm columns are given by Vl,i−Lm = 1

v
∂El
∂pi,x
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with Lm + 1 ≤ i ≤ L and the remaining L columns are given by Vl,i+(L−Lm) = ∂El
∂pi,y

with

1 ≤ i ≤ L. Now we focus on the lower-right corner of the transformation matrix which governs

the relation between ~ET ≡ (E1, E2, .., EIf ) and ~P T ≡ (vpLm+1,x, .., vpL,x, p1,y, .., pL,y) when

pj,x = 0 for 1 ≤ j ≤ Lm,

~E = V~P . (A108)

~P represents the x, y components of momenta in the fermion loops and the y components of

momenta in the mixed loops. The matrix V can be viewed as a collection of 2L − Lm column

vectors, each of which have If components. We first show that the 2L−Lm column vectors are

linearly independent.

k

q

k + q

(a) (b)

Figure A2: For a boson momentum ~q, there exists a unique ~k such that ε1(~k) = ε3(~k + ~q) = 0
for v 6= 0.

If the column vectors were not linearly independent, there would exist a nonzero ~P such that

V~P = 0. This implies that there exists at least a one-parameter family of x, y-momenta in theLf
fermion loops and y-momenta in the Lm mixed loops such that all internal fermions lie on the

Fermi surface. However, this is impossible for the following reason. For v 6= 0, a momentum on

an external boson leg uniquely fixes the internal momenta on the two fermion lines attached to

the boson line if both fermions are required to have zero energy. This is illustrated in Figure A2.

Similarly, a momentum on an external fermion leg fixes the momenta on the adjacent internal

fermion and boson lines if the internal fermion is required to have zero energy and only the

y component of momentum is allowed to vary in the mixed loops. Once the momenta on the

internal lines attached to the external lines are fixed, those internal lines in turn fix the momenta

of other adjoining internal lines. As a result, all internal momenta are successively fixed by

external momenta if we require that El = 0 for all l. Therefore, there cannot be a non-trivial ~P

that satisfies V~P = 0. This implies that the column vectors in V must be linearly independent.

Since V is made of (2L−Lm) independent column vectors, it necessarily includes (2L−Lm)

independent row vectors. Let the lk-th rows with k = 1, 2, .., (2L− Lm) be the set of rows that

are linearly independent, and Ṽ be a (2L − Lm) × (2L − Lm) invertible matrix made of these

rows. We choose p
′
Lm+k ≡ Elk with k = 1, 2, .., (2L − Lm) as the remaining (2L − Lm)

integration variables. The transformation between the original 2L momentum variables and the
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new variables is given by


p
′
1

p
′
2
...

p
′
2L

 =

(
c
v ILm 0

Ã Ṽ

)



vp1,x

vp2,x

...

vpL,x

p1,y

p2,y

...

pL,y


, (A109)

where Ã is a (2L − Lm) × Lm matrix made of the collection of the lk-th rows of A with

k = 1, 2, .., (2L − Lm). The Jacobian of the transformation is given by Y −1c−Lmv−Lf . Here,

Y = |det Ṽ| is a constant independent of v and c, which is nonzero because Ṽ is invertible.

In the new variables, Eq. (A106) becomes

I ∼ v
V
2
−Lf c−Lm

∫ 2L∏
i=1

dp
′
i

Lm∏
j=1

1

|p′j |+O(c)

 2L∏
l=Lm+1

1

p
′
l

 R̃[p
′
]. (A110)

Every component of the loop momenta has at least one propagator which guarantees that the

integrand decays at least as 1/p
′
l in the large momentum limit. R̃[p

′
] is the product of all re-

maining propagators. Therefore, the integrations over the new variables are convergent up to

potentially logarithmic divergences. Using L = 1
2(V + 2 − E), one can see that a general

diagram is bounded by

I ∼ v
E−2
2

(v
c

)L−Lf
(A111)

up to logarithmic corrections. Diagrams with large (L − Lf ) are systematically suppressed for

v � c. This bound can be checked explicitly for individual diagrams.

II Derivation of the self-consistent boson self-energy

In this section, we derive Eqs. (32) and (33) from Eq. (35).

The one-loop quantum effective action of the boson generated from Fig. 3.2(a) is written as

Γ1L
(0,2) =

1

4

∫
dq Π1L(q) Tr [Φ(−q)Φ(q)] , (B112)
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where

Π1L(q) = −πv
4∑

n=1

∫
dk Tr

[
γ1G

(0)
n (k)γ1G

(0)
n̄ (k + q)

]
(B113)

and the bare fermion propagator is G(0)
n (k) = −ik0γ0+εn(~k)γ1

k20+ε2n(~k)
and dk ≡ d3k

(2π)3
. The integration

of the spatial momentum gives Π1L(q) = −1
2

∫
dk0

(k0+q0)k0
|k0+q0||k0| . The k0 integration generates a

linearly divergent mass renormalization which is removed by a counter term, and a finite self-

energy,

Π1L = |q0|. (B114)

Since the one-loop self-energy depends only on frequency, we have to include higher-loop

diagrams to generate a momentum-dependent quantum effective action, even though they are

suppressed by powers of v compared to the one-loop self-energy. According to Eq. (34), the

next leading diagrams are the ones with L − Lf = 1. Among the diagrams with L − Lf = 1,

the only one that contributes to the momentum-dependent boson self-energy is shown in Figure

3.2(b). In particular, other two-loop diagrams that include fermion self-energy insertions do not

contribute. Since the two-loop diagram itself depends on the unknown dressed boson propagator,

we need to solve the self-consistent equation forD(q) in Eq. (35). Here, we first assume that the

solution takes the form of Eq. (32) with v � c � 1 to compute the two-loop contribution, and

show that the resulting boson propagator agrees with the assumed one. The two-loop self-energy

reads

Π2L(q) = −π
2v2

2

4∑
n=1

∫
dkdp

 1(
k0 + p0 − iεn(~k + ~p)

)(
k0 − iεn̄(~k)

)
× 1(

k0 + q0 − iεn(~k + ~q)
)(

k0 + p0 + q0 − iεn̄(~k + ~p+ ~q)
)
D(p) + c.c..

(B115)

Here c.c. denotes the complex conjugate. Straightforward integrations over ~k and k0 give

Π2L(q0, ~q) = −πv
8

4∑
n=1

∫
dp

[
|q0| − |p0|

((p0 + q0)− iεn̄(~p+ ~q))((q0 − p0)− iεn(~q − ~p))

]
D(p) + c.c..

(B116)

Since the frequency-dependent self-energy is already generated from the lower order one-loop

graph in Figure 3.2(a), we focus on the momentum-dependent part. This allows us to set the
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external frequency to zero to rewrite Eq. (B116) as

Π2L(0, ~q) =
πv

4

4∑
n=1

∫
dp

[
|p0|

(ip0 + εn̄(~p+ ~q))(ip0 + εn(~p− ~q))

]
D(p). (B117)

After subtracting the linearly divergent mass renormalization, ∆Π2L(0, ~q) ≡ Π2L(0, ~q)−Π2L(0, 0)

is UV finite,

∆Π2L(0, ~q) =
πv

4

4∑
n=1

∫
dp

|p0|F1L(n)(p0, ~p, ~q; v)

(p2
0 + ε2

n̄(~p+ ~q))(p2
0 + ε2

n(~p− ~q))(p2
0 + ε2

n̄(~p))(p2
0 + ε2

n(~p))
D(p),

(B118)

where

F1L(n)(p0, ~p, ~q; v) = (p2
0 + ε2

n(~p))(p2
0 + ε2

n̄(~p))(ip0 − εn̄(~p+ ~q))(ip0 − εn(~p− ~q))

− (p2
0 + ε2

n̄(~p+ ~q))(p2
0 + ε2

n(~p− ~q))(ip0 − εn̄(~p))(ip0 − εn(~p)).
(B119)

Now we consider the contribution of each hot spot separately. For n = 1, the dependence on

qx is suppressed by v compared to the qy-dependent self-energy. Therefore, we set qx = 0 for

small v. Furthermore, the py dependence in D(p) can be safely dropped in the small c limit

because ε1(~p) and ε3(~p) suppress the contributions from large py. Rescaling the momentum as

(p0, px, py)→ |qy|(p0, px/c, py) followed by the integration over py, we obtain the contribution

from the hot spot n = 1,

∆Π2L(0, ~q) =
v

32πc
|qy|

∫
dp0dpx

(1 + p2
0 − 3p2

xw
2)p2

0

(p2
0 + w2p2

x)(p2
0 + (wpx − 1)2)(p2

0 + (wpx + 1)2)

1

|p0|+ |px|
,

(B120)

where w ≡ v/c. In the integrand, we can not set w = 0 because the integration over px is

logarithmically divergent in the small w limit,

∆Π2L(1)(0, ~q) =
v

32πc
|qy|

∫
dp0

1

1 + p2
0

[
−2 log(w)− 2p0 cot−1(p0) + p2

0 log

(
p2

0

1 + p2
0

)
+O(w)

]
.

(B121)

Finally, the integration over p0 gives

∆Π2L(1)(0, ~q) =
|qy|v
16c

[
log

(
1

w

)
− 1 +O(w)

]
. (B122)

In the small w limit, the first term dominates. Hot spot 3 generates the same term, and the

contribution from hot spots 2, 4 is obtained by replacing qy with qx. Summing over contributions
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energy scaling dynamical critical exponent
q0 > Λ̃ q0 ∼ c0q z = 1

c2

c20
Λ̃ < q0 < Λ̃ q0 ∼ c2

0q
2/Λ̃ z = 2

q0 <
c2

c20
Λ̃ q0 ∼ cq z = 1

TABLE B1: The energy dependent dynamical critical exponent for c0 > c.

energy scaling dynamical critical exponent
q0 >

c
c0

Λ̃ q0 ∼ c0q z = 1

Λ̃ < q0 <
c
c0

Λ̃ q0 ∼
√
cΛ̃q z = 1

2

q0 < Λ̃ q0 ∼ cq z = 1

TABLE B2: The energy dependent dynamical critical exponent for c0 < c.

from all the hot spots, we obtain

∆Π2L(0, ~q) =
v

8c
log
( c
v

)
(|qx|+ |qy|) +O

(
1

vc

)
. (B123)

The two-loop diagram indeed reproduces the assumed form of the self-energy which is pro-

portional to |qx|+ |qy| to the leading order in v. The full Schwinger-Dyson equation now boils

down to a self-consistent equation for the boson velocity,

c =
v

8c
log
( c
v

)
. (B124)

c is solved in terms of v as

c(v) =
1

4

√
v log

(
1

v

)(
1 +O

(
log log(1/v)

log(1/v)

))
. (B125)

This is consistent with the assumption that v � c� 1 in the small v limit.

The full propagator of the boson which includes the bare kinetic term in Eq. (27) is given by

D(q)−1 = |q0|+ c(|qx|+ |qy|) +
q2

0

Λ̃
+
c2

0

Λ̃
|~q|2, (B126)

where Λ̃ is a UV scale associated with the coupling. Depending on the ratio between c and c0,

which is determined by microscopic details, one can have different sets of crossovers.

For c0 > c, one has a series of crossovers from the Gaussian scaling with z = 1 at high

energies, to the scaling with z = 2 at intermediate energies and to the non-Fermi liquid scaling

with z = 1 at low energies. In the low energy limit, the system eventually becomes supercon-

ducting. For c0 < c, on the other hand, the z = 2 scaling is replaced with a scaling with z = 1
2

at intermediate energies. This is summarized in Tables B1 and B2.
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III Derivation of the beta function for v

In this section, we derive the beta function for v in Eq. (??). We first compute the counter terms

that need to be added to the local action such that the quantum effective action is independent

of the UV cut-off scale to the lowest order in v. Then we derive the beta function for v and its

solution, which confirms that v flows to zero in the low-energy limit.

III-1 Frequency-dependent fermion self-energy

Figure C3: The one-loop diagram for the fermion self-energy.

According to Eq. (34), the leading order fermion self-energy is generated from Fig. C3 in

the small v limit. The one-loop fermion self-energy for patch n is given by

Σ1L(n)(k0,~k) =
3πv

2

∫
dp γ1G

(0)
n̄ (p+ k)γ1D(p), (C127)

where the dressed boson propagator is D(p) = 1
|p0|+c(v)(|px|+|py |) . We first compute Σ1L(n)(k)

for n = 1. The quantum correction is logarithmically divergent, and a UV cut-off Λ is im-

posed on py, which is the momentum perpendicular to the Fermi surface for n = 1 in the

small v limit. However, the logarithmically divergent term is independent of how UV cut-off

is implemented. To extract the frequency-dependent self-energy, we set ~k = 0 and rescale

(p0, px, py)→ |k0|(p0, px/c, py) to rewrite

Σ1L(1)(k0, 0) = iγ0k0
3πv

2c

∫
dp

p0 + 1

[(p0 + 1)2 + (wpx − py)2] [|p0|+ |px|+ c|py|]
, (C128)

where w = v
c . Under this rescaling, the UV cut-off for py is also rescaled to Λ0 = Λ/|k0|. The

p0 integration gives

Σ1L(1)(k0, 0) = iγ0k0
3πv

2(2π)3c

∫ Λ0

−Λ0
dpy

∫
dpx[

π
2 |py − wpx|

(
1

(py−wpx)2+(−1+|px|+c|py |)2 −
1

(py−wpx)2+(1+|px|+c|py |)2

)
− (py − wpx) arccot(py − wpx)

(
1

(py−wpx)2+(−1+|px|+c|py |)2 + 1
(py−wpx)2+(1+|px|+c|py |)2

)
+ 1

2 log
(

1+(py−wpx)2

(|px|+c|py |)2

)(
1+|px|+c|py |

(py−wpx)2+(1+|px|+c|py |)2 −
−1+|px|+c|py |

(py−wpx)2+(−1+|px|+c|py |)2

)]
.(C129)

The logarithmically divergent contribution is obtained to be

Σ1L(1)(k0, 0) =
3

4π

v

c
log

(
Λ

|k0|

)
iγ0k0 (C130)
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in the small v limit. The self-energy for other patches is obtained from a series of 90-degree

rotations, and the frequency-dependent part is identical for all patches. In order to remove the

cut-off dependence in the quantum effective action, we add the counter term,

4∑
n=1

∑
σ=↑,↓

∫
dk Ψ̄n,σ(k) (Z1,1 iγ0k0) Ψn,σ(k) (C131)

with

Z1,1 = − 3

4π

v

c
log

(
Λ

µ

)
, (C132)

where µ is the scale at which the quantum effective action is defined in terms of the renormalized

velocity v. The counter term guarantees that the renormalized propagator at the scale µ is

expressed solely in terms of v in the Λ/µ→∞ limit.

III-2 Momentum-dependent fermion self-energy

To compute the momentum-dependent fermion self-energy, we start with Eq. (C127) for n = 1

and set k0 = 0. Rescaling px → px
c gives

Σ1L(1)(0,~k) = −3πv

2c
iγ1

∫
dp

wpx − py + ε3(~k)[
p2

0 + (wpx − py + ε3(~k))2
]

[|p0|+ |px|+ c|py|]
. (C133)

The integration over p0 results in Σ1L(1)(0,~k) = Σ1L(1)(~k)
∣∣∣
term 1

+ Σ1L(1)(~k)
∣∣∣
term 2

, where

Σ1L(1)(~k)
∣∣∣
term 1

=− iγ1
3πv

2(2π)3c

∫
dpy

∫
dpx

sgn(wpx − py + ε3(~k))(|px|+ c|py|)π
(py − ε3(~k)− wpx)2 + (|px|+ c|py|)2

,

(C134)

Σ1L(1)(~k)
∣∣∣
term 2

=− iγ1
3πv

2(2π)3c

∫
dpy

∫
dpx

(py − ε3(~k)− wpx) log
(

(|px|+c|py |)2

(py−ε3(~k)−wpx)2

)
(py − ε3(~k)− wpx)2 + (|px|+ c|py|)2

.

(C135)

We first compute the first term. After performing the px integration, we rescale py → |ε3(~k)|py
to obtain

Σ1L(1)(~k)
∣∣∣
term 1

= − 3π2v
2(2π)3c

iγ1ε3(~k)
∫ Λ3

−Λ3
dpy

[
πw

2(1+w2)
(sgn (py − 1 + cw|py|) + sgn (py − 1− cw|py|))

+
sgn(py−1)

1+w2

(
w arctan

(
w(−py+1)+c|py |
py−1+cw|py |

)
+ w arctan

(
w(py−1)+c|py |
−py+1+cw|py |

)
− 2w arctan

(
w−1

)
− log

(
c2w2p2y+(py−1)2+2cw|py−1||py |

w2(c2p2y+(py−1)2)

))]
, (C136)
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where Λ3 = Λ

|ε3(~k)|
. The remaining py integration gives

Σ1L(1)(~k)
∣∣∣
term 1

=
3v(w − c)

4π
log

(
Λ

|ε3(~k)|

)
iγ1ε3(~k) (C137)

to the leading order in v up to terms that are finite in the large Λ limit.

The second term can be computed similarly in the small v limit,

Σ1L(1)(~k)
∣∣∣
term 2

= − 3

2π2
v log

(
1

c

)
log

(
Λ

|ε3(~k)|

)
iγ1ε3(~k) (C138)

up to UV-finite terms. It is noted that the second term is dominant for small v.

(a) (b)

Figure C4: Two-loop diagrams for the fermion self-energy. While (a) is sub-leading in the
small v limit, (b) is of the same order as Figure C3.

According to Eq. (34), the upper bound for the one-loop fermion self-energy is v/c. How-

ever, Eq. (C138) is strictly smaller than the upper bound. The extra suppression by c arises

due to the fact that the external momentum in Figure C3 can be directed to flow only through

the boson propagator, and the diagram becomes independent of the external momentum in the

small c limit. Since this suppression does not happen for higher-loop diagrams in general, the

one-loop diagram becomes comparable to some two-loop diagrams with L − Lf = 2. There-

fore, we have to include the two-loop diagrams for the self-energy in order to capture all leading

order corrections. The rainbow diagram in Figure B.4(a) is smaller for the same reason as the

one-loop diagram. Three and higher-loop diagrams remain negligible, and only Figure B.4(b)

contributes to the leading order. The two-loop self-energy for patch n is given by

Σ2L(n)(k0,~k) =
3π2v2

4

∫
dpdq [γ1Gn̄(k + q)γ1Gn(k + q + p)γ1Gn̄(k + p)γ1]D(q)D(p).

(C139)

It is noted that Σ2L(n)(k0, 0) is strictly smaller than Σ1L(n)(k0, 0), and only Σ2L(n)(0,~k) is of

the same order as Σ1L(n)(0,~k). Therefore, we only compute Σ2L(n)(0,~k). After performing the

integrations over py, qy, the self-energy for patch 1 becomes

Σ2L(1)(0,~k) = − 3v2

28π2c2
iγ1

∫
dp0

∫
dq0 (sgn(p0) + sgn(p0 + q0))(sgn(q0) + sgn(2p0 + q0))×∫

dpx
∫
dqx

2w(px+qx)+(3vkx−ky)
4(p0+q0)2+(2w(px+qx)+(3vkx−ky))2

1
|p0|+|px|

1
|q0|+|qx| . (C140)
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We single out the factor of (3vkx−ky) by rescaling (p0, px, q0, qx)→ |3vkx−ky|(p0, px, q0, qx).

To perform the px and qx integrals, we introduce variables a = 1
2(px + qx), b = 1

2(px − qx).

After the straightforward integration over b, we rescale a→ a
w to obtain

Σ2L(1)(0,~k) = − 3v2

27π2c2
iγ1(3vkx − ky)

∫
dp0

∫
dq0

(sgn(p0) + sgn(p0 + q0))(sgn(q0) + sgn(2p0 + q0))
∫
da 4a+1

4(p0+q0)2+(4a+1)2
×(

log
(

(2|a|+w|p0|)(2|a|+w|q0|)
w2|p0||q0|

)
2|a|+w(|p0|+|q0|) −

log
(

w|q0|
2|a|+w|p0|

)
2|a|+w(|p0|−|q0|) −

log
(

w|p0|
2|a|+w|q0|

)
2|a|−w(|p0|−|q0|)

)
, (C141)

where the frequency integrations are understood to have a UV cut-off, Λ
′
3 = Λ

|3vkx−ky | in the

rescaled variable. In the small w limit, the a integration diverges as (log(w))2. The sub-leading

terms are suppressed compared to the one-loop diagram, and we drop them in the small w limit.

The remaining frequency integrations are logarithmically divergent in the UV cut-off,

Σ2L(1)(0,~k) = −iγ1
3

32π2

(v
c

log
c

v

)2
log

(
Λ

|3vkx − ky|

)
(3vkx − ky) . (C142)

This is of the same order as Eq. (C138) because of
(
v
c log c

v

)2
= 8v log 1

c to the leading order

in v.

The vertex correction in Figure B.4(b) strengthens the bare vertex, and the two-loop self-

energy has the same sign as the one-loop self-energy. In particular, both the one-loop and two-

loop quantum corrections enhance nesting, and drive v to a smaller value at low energies. To

remove the cut-off dependences of Eq. (C138) and Eq. (C142) in the quantum effective action,

we add the counter term

∑
σ=↑,↓

∫
dk Ψ̄1,σ(k) (iγ1(Z2,1vkx + Z3,1ky)) Ψ1,σ(k) (C143)

with

Z2,1 =
15

4π2
v log

(
1

c

)
log

(
Λ

µ

)
,

Z3,1 = − 9

4π2
v log

(
1

c

)
log

(
Λ

µ

)
. (C144)

Counter terms for n = 2, 3, 4 are fixed by the four-fold rotational symmetry.

III-3 Upper bound for self-energy at two loops

In this section, we explicitly check that two-loop self-energy corrections Σ2L(k0,~k) that we did

not compute, i.e. the diagram in Fig. B.4(a) and the frequency contribution of the diagram in

Fig. B.4(b), are sub-leading in v, in agreement with Eq. (34). We take derivatives of Σ2L(k0,~k)
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with respect to k0 and ~k in order to compute the logarithmic divergence for each contribution.

Since we are only interested in verifying Eq. (34) up to logarithmic corrections, we compute

these diagrams by setting all instances of log x→ 1 in the calculation, where x is a function of

the internal momenta and v, c. In particular, after differentiating with the appropriate variable,

this allows us to set all external momenta and frequencies to zero, as well as all instances of c and

w after the factor of 1/c from each mixed loop is scaled out, and ignore all arising logarithmic

UV and IR divergences.

III-3 .1 Fig. B.4(b)

The self-energy from the diagram in Fig. B.4(b) is given by Eq. (C139). In order to find the

contribution to Z1, we set n = 1 for concreteness, rescale px → px/c, qx → qx/c in the usual

way, and set c = 0 and w = 0 in the integrand. We compute

∂Σ2L(1)(k0, 0)

∂k0

∣∣∣∣∣
k0=0

∝ v2

c2
iγ0

∫
dp

∫
dq (C145)

{
−2(p2

0 + p2
y)(p0 + q0)(q2

0 + q2
y)(q0(p2

y + p0(p0 + q0)) + p0q
2
y)

+(p2
0 + p2

y)(q
2
0 + q2

y)(p
2
0 + p2

y + 3p0q0 + q2
0 + pyqy + q2

y)((p0 + q0)2 + (py + qy)
2)

−2(p2
0 + p2

y)q0(q0(p2
y + p0(p0 + q0)) + p0q

2
y)((p0 + q0)2 + (py + qy)

2)

−2p0(q2
0 + q2

y)(q0(p2
y + p0(p0 + q0)) + p0q

2
y)((p0 + q0)2 + (py + qy)

2)
}

(p2
0 + p2

y)
2(q2

0 + q2
y)

2((p0 + q0)2 + (py + qy)2)2 (|p0|+ |px|) (|q0|+ |qx|)
,

(C146)

where the coefficients of proportionality in ∝ are just numerical coefficients. The integrals over

py and qy can be done without a cutoff. The integrals over px and qx require a UV cutoff, but

they give only a logarithmic contribution, which we ignore,

∂Σ2L(1)(k0, 0)

∂k0

∣∣∣∣∣
k0=0

∝ v2

c2
iγ0

∫
dp0

∫
dq0

(p0 + q0)(sgn(q0)sgn(2p0 + q0) + 1)(sgn(p0) + sgn(p0 + q0))

(|q0|+ |2p0 + q0|)3
.

(C147)

We have cut of all divergences with arbitrary functions of the momenta, frequencies, UV cutoffs,

and the velocities, and then set the logarithms of these functions to one. We can bound the

integrand by ignoring the sgn functions,∣∣∣∣∫ dp0

∫
dq0

(p0 + q0)(sgn(q0)sgn(2p0 + q0) + 1)(sgn(p0) + sgn(p0 + q0))

(|q0|+ |2p0 + q0|)3

∣∣∣∣
<

∣∣∣∣∫ dp0

∫
dq0

p0 + q0

(|q0|+ |2p0 + q0|)3

∣∣∣∣ ∝ 1, (C148)



Appendices 69

and therefore

∂Σ2L(1)(k0, 0)

∂k0

∣∣∣∣∣
k0=0

∝ v2

c2
iγ0. (C149)

III-3 .2 Fig. B.4(a)

The self-energy from the diagram in Fig. B.4(a) is given by

Σ2L(n)(k0,~k) ∝ v2

∫
dp

∫
dq γ1Gn̄(k + p)γ1Gn(k + p+ q)γ1Gn̄(k + p)γ1D(q)D(p)

(C150)

Here, in computing this diagram, we do the integrations exactly up to numerical factors, without

setting any logarithms of the integration variables to one. In order to find the contribution to Z1,

we set n = 1, rescale the momenta as usual, set c = w = 0 inside the integrand, and compute

∂Σ2L(1)(k0, 0)

∂k0

∣∣∣∣∣
k0=0

∝ v2

c2
iγ0

∫
dp

∫
dq (C151)

(p2
0 + p2

y)((p0 + q0)2 + (py + qy)
2)(3p2

0 + 2p0q0 + py(py + 2qy))

− 2(p2
0 + p2

y)(p0 + q0)(p3
0 + p2

0q0 − p2
yq0 + p0py(py + 2qy))

− 4p0((p0 + q0)2 + (py + qy)
2)(p3

0 + p2
0q0 − p2

yq0 + p0py(py + 2qy))

(p2
0 + p2

y)
3((p0 + q0)2 + (py + qy)2)2 [|p0|+ |px|] [|q0|+ |qx|]

. (C152)

The proportionality sign∝ indicates that there are purely numerical factors missing. We perform

the integrals over qx, px with the UV cutoffs Λ. Then we perform the integral over py, which

gives

∂Σ2L(1)(k0, 0)

∂k0

∣∣∣∣∣
k0=0

∝v
2

c2
iγ0

∫
dp0

∫
dq0 log

(
1 +

Λ

|p0|

)
log

(
1 +

Λ

|q0|

)

(2p0 + q0)(sgn(p0 + q0) + sgn(p0))

∫
dqy

(2p0 + q0)2 − 3q2
y

((2p0 + q0)2 + q2
y)

3
= 0.

(C153)

Therefore, the contribution of this quantum correction to Z1 is further suppressed by more pow-

ers of v though c and/or w compared to Eq. (34).

As noted below Fig. C4, Σ2L(1)(0,~k) is also further suppressed by a factor of c compared to

Eq. (34). This is because if we pass the external momentum through the top boson line so that

its momentum is p+ k, rescale px → px/c and set c = 0 in the integrand, ~k disappears from the

integral. Therefore, Σ2L(1)(0,~k) comes with an additional suppression in c.
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III-4 Vertex correction at one loop

Figure C5: The one-loop diagram for the vertex correction.

The one-loop vertex correction in Fig. C5 is given by

Γ1L(k, q) =
πv

2

∫
dp γ1G

(0)
n̄ (p+ k + q)γ1G

(0)
n (p+ k)γ1D(p). (C154)

We set all external momenta to zero except for k0, which plays the role of an IR regulator. For

n = 1, it is convenient to rescale (p0, px, py)→ |k0|(p0, px/c, py). The p0 integration gives

Γ1L(1)(k0) =
πv

2c
γ1

1

(2π)3

∫ Λ0

−Λ0

dpy

∫
dpx

[(
(py − wpx)(py + wpx)3 + (−1 + (|px|+ c|py|)2)2

) (
1 + (py − wpx)2 + (|px|+ c|py|)2

)
+

(py − wpx)(py + wpx)
(
1 + 6(|px|+ c|py|)2 + (|px|+ c|py|)4 + (py − wpx)2(1 + (|px|+ c|py|)2)

)
+(py + wpx)2

(
(−1 + (|px|+ c|py|)2)2 + (py − wpx)2(1 + (|px|+ c|py|)2)

)]
log(|px|+ c|py|)


−1

2


(
(py − wpx)2 + (−1 + |px|+ c|py|)2

) (
(py + wpx)2 + (−1 + |px|+ c|py|)2

)
×
(
(py − wpx)2 + (1 + |px|+ c|py|)2

) (
(py + wpx)2 + (1 + |px|+ c|py|)2

)


+


2 arccot(py + wpx)

(
1 + (py + wpx)2 − (|px|+ c|py|)2

)
+(py + wpx) log(1 + (py + wpx)2)(1 + (py + wpx)2 + (|px|+ c|py|)2)

+ π sgn(py + wpx)(|px|+ c|py|)(−1 + (py + wpx)2 + (|px|+ c|py|)2)


2py ((py + wpx)2 + (−1 + |px|+ c|py|)2) ((py + wpx)2 + (1 + |px|+ c|py|)2)

+


2 arccot(py − pxw)(1 + (py − wpx)2 − (|px|+ c|py|)2)

+(py − wpx) log(1 + (py − wpx)2)(1 + (py − wpx)2 + (|px|+ c|py|)2)

+ π sgn(py − wpx)(|px|+ c|py|)(−1 + (py − wpx)2 + (|px|+ c|py|)2)


2py ((py − wpx)2 + (−1 + |px|+ c|py|)2) ((py − wpx)2 + (1 + |px|+ c|py|)2)

,

where the rescaled cut-off for py is Λ0 = Λ
|k0| . After the ~p integration, the logarithmically

divergent contribution is obtained to be

Γ1L(1)(k0) =
1

4π

v

c
log
( c
v

)
log

(
Λ

|k0|

)
γ1 (C155)
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in the small v limit. The vertex corrections for different n are the same. The counter term for

the vertex becomes

Z6,1 i

√
πv

2

4∑
n=1

∑
σ,σ′=↑,↓

∫
dk

∫
dq Ψ̄n,σ(k + q)Φσ,σ′(q)γ1Ψn̄,σ′(k) (C156)

with

Z6,1 = − 1

4π

v

c
log
( c
v

)
log

(
Λ

µ

)
. (C157)

III-5 Upper bound for vertex correction at two loops

In this section, we explicitly check that two-loop vertex corrections are sub-leading in v, in

agreement with Eq. (34). The four quantum corrections to the vertex at two loops are shown in

Fig. C6. As for the two-loop self-energy contributions, we compute these diagrams by setting

(a) (b)

(c) (d)

Figure C6: Two-loop diagrams that contribute to vertex corrections.

all instances of log x→ 1 in the calculation, where x is a function of the internal momenta and

v, c.

III-5 .1 Fig. B.6(a)

The vertex correction from Fig. B.6(a) is

Γ2L
1 (k, q) ∝ v2

∫
dp

∫
dp̃ γ1Gn̄(k + p)γ1Gn(k + p+ p̃)γ1Gn̄(k + q + p+ p̃)
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× γ1Gn(k + q + p̃)γ1D(p)D(p̃). (C158)

As usual, we fix n = 1 for concreteness. We rescale px → px/c, p̃x → p̃x/c in the usual way,

and set c = 0 in the integrand. We set k = q = 0 and w = 0, which gives

Γ
2L,(1)
1 (0, 0) ∝ v2

c2
iγ1

∫
dp

∫
dp̃

(p0p̃0 + p̃ypy)((p0 + p̃0)2 + (p̃y + py)
2)[

p2
0 + p2

y

] [
p̃2

0 + p̃2
y

]
[(p0 + p̃0)2 + (py + p̃y)2]2 [|p0|+ |px|] [|p̃0|+ |p̃x|]

∝ v2 v
2

c2
iγ1

∫
dpxdp̃x

∫
dp̃0

1

p̃0 [|p̃0|+ |p̃x|]

∫
dp0

1

[|p0|+ |px|]
sgn(p0)− sgn(p0 + p̃0)

(p0 + p̃0)

∝ v2

c2
iγ1

∫
dp̃0

∫
dp0

sgn(p0)− sgn(p0 + p̃0)

p̃0(p0 + p̃0)
∝ v2

c2
iγ1,

where we have cut of all divergences with arbitrary functions of the momenta, frequencies, UV

cutoffs, and the velocities, and then set the logarithms of these functions to one.

III-5 .2 Fig. B.6(b)

The vertex correction from Fig. B.6(b) is

Γ2L
2 (k, q) ∝ v2

∫
dp

∫
dp̃ γ1Gn̄(k + p)γ1Gn(k + p+ p̃)γ1Gn̄(k + q + p+ p̃)

×γ1Gn(k + q + p)γ1D(p)D(p̃). (C159)

Again, we fix n = 1 for concreteness, rescale the px and p̃x components of the momentum in

the usual way, and set w = c = 0 in the integrand, as well as k = q = 0. This gives

Γ
2L,(1)
2 (0, 0) ∝ v2

c2
iγ1

∫
dp

∫
dp̃

(p2
0 + p2

y)(p
2
0 + 2p0p̃0 + p̃2

0 + (p̃y + py)
2)[

p2
0 + p2

y

]2
[(p0 + p̃0)2 + (py + p̃y)2]2 [|p0|+ |px|] [|p̃0|+ |p̃x|]

(C160)

∝ v2

c2
iγ1

∫
dp0 sgn(p0)

∫
dp̃0

sgn(p̃0 + p0)

(p̃0 + p0)2
∝ v2

c2
iγ1.

III-5 .3 Fig. B.6(c)

The vertex correction from Fig. B.6(c) is

Γ2L
3 (k, q) ∝ v2

∫
dp

∫
dp̃ γ1Gn̄(k + p)γ1Gn(k + p+ p̃)γ1Gn̄(k + p)γ1Gn(k + q + p)γ1D(p)D(p̃).

As before, this gives

Γ
2L,(1)
3 (0, 0) ∝ v2

c2
iγ1

∫
dp

∫
dp̃

p2
0 + p0p̃0 + py(p̃y + py)[

p2
0 + p2

y

]2
[(p0 + p̃0)2 + (py + p̃y)2] [|p0|+ |px|] [|p̃0|+ |p̃x|]

(C161)
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∝ v2

c2
iγ1

∫
dp0

sgn(p0)

p2
0

∫
dp̃0 sgn(p̃0 + p0) ∝ v2

c2
iγ1.

III-5 .4 Fig. B.6(d)

The vertex correction from Fig. B.6(d) is

Γ2L
4 (k, q) ∝ v2

∫
dp

∫
dp̃ γ1Gn̄(k + p)γ1Gn(k + p+ p̃)γ1Gn̄(k + p̃)γ1Gn(k + q + p̃)γ1D(p)D(p̃).

As before, this gives

Γ
2L,(1)
4 (0, 0) ∝ v2

c2
iγ1

∫
dp

∫
dp̃

p2
0 + p0p̃0 + py(p̃y + py)[

p2
0 + p2

y

] [
p̃2

0 + p̃2
y

]
[(p0 + p̃0)2 + (py + p̃y)2] [|p0|+ |px|] [|p̃0|+ |p̃x|]

∝ iγ1
v2

c2

∫
dp0

∫
dp̃0

(
sgn(p0)sgn(p0 + 2p̃0) + 1

|p̃0|(|p0|+ |p0 + 2p̃0|)
+

sgn(p0 + 2p̃0)(sgn(p̃0)− sgn(p̃0 + p0))

|p0|(|p0|+ |p0 + 2p̃0|)

)
< 2

v2

c2
iγ1

∫
dp0

∫
dp̃0

(
1

|p̃0|(|p0|+ |p0 + 2p̃0|)
+

1

|p0|(|p0|+ |p0 + 2p̃0|)

)
.

v2

c2
iγ1.

(C162)

III-6 The beta function for v

The counter terms in Eqs. (C131), (C143), (C156) are added to the action in Eq. (30) to obtain

the bare action,

SB =
4∑

n=1

∑
σ=↑,↓

∫
dk Ψ̄n,σ(k)

[
iZ1γ0k0 + iγ1ε

B
n (~k)

]
Ψn,σ(k)

+ iZ6

√
πv

2

4∑
n=1

∑
σ,σ′

∫
dk dq

[
Ψ̄n̄,σ(k + q)Φσ,σ′(q)γ1Ψn,σ′(k)

]
, (C163)

where εB1 (~k) = Z2vkx + Z3ky, εB2 (~k) = −Z3kx + Z2vky, εB3 (~k) = Z2vkx − Z3ky, εB4 (~k) =

Z3kx+Z2vky. Here Zn = 1+Zn,1 is given in Eqs. (C132), (C144) and (C157). The bare action

generates the physical quantum effective action which is expressed solely in terms of the renor-

malized coupling v measured at an energy scale µ. The relationship between the renormalized

and bare quantities is given by

kx,B = kx; ky,B = ky; k0,B =
Z1

Z3
k0; vB =

Z2

Z3
v; ΨB(kB) =

Z3

Z
1
2
1

Ψ(k); ΦB(kB) =
Z

1
2
3 Z6

Z1Z
1
2
2

Φ(k).(C164)
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The beta function for v is obtained by requiring that the bare coupling vB does not depend

on µ, (
Z2Z3 + v

(
∂Z2

∂v
Z3 − Z2

∂Z3

∂v

))
βv + v

(
∂Z2

∂ logµ
Z3 − Z2

∂Z3

∂ logµ

)
= 0. (C165)

This gives the beta function which describes the flow of v under the change of the scale µ,

dv

d logµ
=

6

π2
v2 log

[
4

(
1

v log 1/v

) 1
2

]
(C166)

to the leading order in v. Introducing a logarithmic scale ` = − logµ, the beta function can be

rewritten as dv
d` = 3

π2 v
2 log v up to log log v. The solution is given by

Ei[log 1/v(`)] = Ei[log 1/v(0)] +
3

π2
`, (C167)

where Ei(x) is the exponential integral function, which goes as Ei(x) = ex
[

1
x +O(1/x2)

]
in

the large x limit. Therefore, v flows to zero as

v(`) =
π2

3

1

` log `
(C168)

for ` � 1
v(0) log 1/v(0) . For sufficiently large `, v(`) decays to zero in a manner which is in-

dependent of its initial value. The velocity of the collective mode flows to zero at a slower

rate,

c(`) =
π

4
√

3

1√
`
, (C169)

and the ratio w = v/c flows to zero as

w(`) =
4π√

3

1√
` log `

. (C170)

Similarly, the multiplicative renormalization for the frequency and fields in Eq. (C164) gen-

erates the deviation of the dynamical critical exponent from one and the anomalous dimensions

for the fields,

ηφ =
d

d logµ
log

Z 1
2
3 Z6

Z1Z
1
2
2

 , (C171)

ηψ =
d

d logµ
log

 Z3

Z
1
2
1

 , (C172)

z = 1 +
d

d logµ
log

(
Z1

Z3

)
(C173)
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which reduce to the expressions in Eqs. (38) to the leading order in v.

IV Derivation of the scaling forms for physical observables

In this section, we derive the expressions for the Green’s functions and the specific heat in Eqs.

(39), (41) and (43).

IV-1 The Green’s function

We derive the form of the electron Green’s function near hot spot 1+. The Green’s functions for

all other hot spots are determined from that of 1+ by symmetry. The Green’s function satisfies

the renormalization group equation,[
1− 2ηψ − (z − 1)

z
+ k0

∂

∂k0
+

1

z
~k · ∂

∂~k
− βv

z

∂

∂v

]
G1+(k0,~k; v) = 0. (D174)

The solution becomes

G1+(k0,~k; v) = e

∫ l
0

1−2ηψ(v(l
′
))−[z(v(l

′
))−1]

z(v(l
′
))

dl
′

G1+

(
elk0, e

∫ l
0

1

z(v(l
′
))
dl
′

~k; v(l)

)
, (D175)

where v(l) satisfies dv(l)
dl = − βv

z(v) with the initial condition v(0) = v, and z(v) and ηψ(v)

depend on l through v(l). We write 1−2ηψ−(z−1)
z = 1

z − 2η̃ψ, where η̃ψ = 1
2
∂ logZ3

∂ log µ to the

leading order in v. Although η̃ψ is sub-leading compared to 1/z, we keep it because only η̃ψ
contributes to the net anomalous dimension of the propagator. From Eqs. (C168)-(C170), one

obtains the solution to the scaling equation,

G1+(k0,~k; v) = exp

(
l − 2

√
3

√
l

log(l)
− 3

8
log l

)
G1+

(
elk0, exp

(
l − 2

√
3

√
l

log(l)

)
~k,
π2

3

1

l log(l)

)
(D176)

in the large l limit. We choose l = log(1/k0) and take the small k0 > 0 limit with exp
(
l − 2

√
3
√
l

log(l)

)
~k ∼

1. By using the fact that the Green’s function is given by G1+(k0,~k; v) = (ik0 + vkx + ky)
−1

in the small v limit, we readily obtain

G1+(k0,~k; v) = 1

Fψ(k0)

[
ik0 Fz(k0)+

(
π2

3
kx

log 1
k0

log log 1
k0

+ky

)] (D177)
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in the low-energy limit with fixed ~k
k0Fz(k0) , whereFψ(k0) =

(
log 1

k0

) 3
8 andFz(k0) = e

2
√

3

(
log 1

k0

)1/2

log log 1
k0 .

The analytic continuation to the real frequency gives Eq. (39).

Similarly, the Green’s function of the boson satisfies[
1− 2ηφ − (z − 1)

z
+ q0

∂

∂q0
+

1

z
~q · ∂

∂~q
− βc

z

∂

∂c

]
D(q0, ~q; c) = 0, (D178)

where βc = dc
d log µ . Here we view the boson propagator as a function of c instead of v because

it depends on v only through c to the leading order. However, this does not affect any physical

observable since in the end there is only one independent parameter. The solution to the scaling

equation takes the form,

D(q0, ~q, c) = exp

(
l − 2

√
l√

3
− 2
√

3

√
l

log l

)
D

(
elq0, exp

(
l − 2

√
3

√
l

log(l)

)
~q;

π

4
√

3

1√
l

)
.

(D179)

By choosing l = log(1/q0) and using the fact that the boson propagator is given by Eq. (32) in

the limit of small v and c, we obtain

D(q0, ~q) =
1

Fφ(q0)

(
|q0|Fz(q0) + π

4
√

3

|qx|+|qy |(
log 1

q0

)1/2
) (D180)

in the low-energy limit with fixed ~q
q0Fz(q0) . Here Fφ(q0) ≡ e

2√
3

(
log 1

q0

)1/2
is a universal function

which describes the contribution from the boson anomalous dimension. The analytic continua-

tion gives the retarded correlation function in Eq. (41).

IV-2 Free energy

Here we compute the leading contribution to the free energy which is generated from the

quadratic action of the dressed boson,

fB(T ) =

∫
d~k

(2π)2
fB(~k, T ), (D181)

where fB(~k, T ) is the contribution from the mode with momentum ~k,

fB(~k, T ) =
3

2

(
T
∑
ωm

−
∫

dωm
2π

)
log
[
|ωm|+ ε(~k)

]
(D182)



Appendices 77

with ε(~k) = c(|kx|+ |ky|) and ωm = 2πTm. The thermal mass is ignored because it is higher

order in v, and the temperature independent ground state energy is subtracted.

Using the identity log a = −
∫∞

0
dx
x (e−xa − e−x), we write the free energy per mode as

fB(~k, T ) = −3

2

(
T
∑
ωm

−
∫

dωm
2π

) ∞∫
0

dx

x

(
e−x(|ωm|+ε(~k)) − e−x

)
. (D183)

The summation over the Matsubara frequency results in

fB(~k, T ) = −3T

2

∞∫
0

dx

x

(
coth(πTx)− 1

πTx

)
e−xε(

~k). (D184)

For ε(~k)� T , the free energy is suppressed only algebraically,

fB(~k, T ) = −π
2
T 2

ε(~k)

(
1 +O(T/ε(~k))

)
. (D185)

This is in contrast to the non-interacting boson, whose contribution is exponentially suppressed

at large momenta. Due to the relatively large contribution from high momentum modes, the

bosonic free energy becomes unbounded without a UV cut-off. This leads to a violation of

hyperscaling.

fB(T ) ∼ −T 2Λ̃, (D186)

where Λ̃ is a UV cut-off associated with irrelevant terms as is discussed in the Appendix B.

Eq. (D186) is obtained without including the renormalization of the velocity and anomalous

dimensions in Eq. (38), which alter the scaling at intermediate energy scales. In order to take

those into account, we consider the scaling equation for fB ,[(
1 +

2

z

)
− T ∂

∂T
+
βc
z

∂

∂c
− Λ̃

z

∂

∂Λ̃

]
fB(T, c, Λ̃) = 0. (D187)

The solution takes the form,

fB(T, c, Λ̃) = e
−
∫ l
0 dl
′
(

1+ 2

z(l
′
)

)
fB

(
elT, c(l), e

∫ l
0

dl
′

z(l
′
) Λ̃

)
, (D188)

where c(l) satisfies dc(l)
dl = − βc

z(c) with the initial condition c(0) = c. In the large l limit, z ≈ 1

and c(l) is given by Eq. (C169). By choosing l = log 1/T and using the fact that fB is linearly

proportional to Λ̃, we obtain

fB ∼ Λ̃T 2Fz(T ). (D189)
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This is the dominant term at low temperatures because the contribution of free electrons away

from the hot spots only goes as T 2. The contributions from vertex corrections are sub-leading

in v. Therefore, the specific heat in the low temperature limit is given by Eq. (43).
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