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Abstract

This thesis proposes several new and useful financial econometric tools to facilitate

risk analysis, portfolio choice and forecasting.

This thesis starts with an introduction in Chapter 1. The research background,

motivation and the structure of the thesis are illustrated in this chapter.

Chapter 2 proposes a class of models that jointly model returns and ex-post vari-

ance measures under a Markov switching framework. Both univariate and multivari-

ate return versions of the model are introduced. Estimation can be conducted under

a fixed dimension state space or an infinite one. The proposed models can be seen as

nonlinear common factor models subject to Markov switching and are able to exploit

the information content in both returns and ex-post volatility measures. Applications

to equity returns compare the proposed models to existing alternatives. The empiri-

cal results show that the joint models improve density forecasts for returns and point

predictions of return variance. Using the information in ex-post volatility measures

can increase the precision of parameter estimates, sharpen the inference on the latent

state variable and improve portfolio decisions.

Chapter 3 offers a new exact finite sample approach to estimating ex-post vari-

ance using Bayesian nonparametric methods. Until now ex-post variance estimation

has been based on infill asymptotic assumptions that exploit high-frequency data. In
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contrast to the classical counterpart, the proposed method exploits pooling over high-

frequency observations with similar variances. Bayesian nonparametric variance es-

timators under no noise, heteroskedastic and serially correlated microstructure noise

are introduced and discussed. Monte Carlo simulation results show that the pro-

posed approach can increase the accuracy of variance estimation. Applications to

equity data and comparison with realized variance and realized kernel estimators are

included.

Chapter 4 extends the third chapter to estimate the ex-post covariance matrix of

asset returns from high-frequency data. As before, pooling is used to improve esti-

mation accuracy and the method does not rely on infill asymptotic assumptions. In

addition, the proposed covariance estimator is guaranteed to be positive definite. Fur-

thermore, a new synchronization method of observations based on data augmentation

is introduced. The Bayesian estimator is made robust to independent microstructure

noise and nonsynchronous trading. According to Monte Carlo simulations, the new

estimator is very competitive with existing estimators. Empirical applications evalu-

ate the new estimator from an economic perspective.

Finally, Chapter 5 concludes and summarizes the contribution of this thesis to the

literature.
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Chapter 1

Introduction

This thesis proposes new and improved approaches of estimating volatility and co-

variation of asset returns from high frequency data and new joint Markov switching

models with ex-post risk measures. This chapter will highlight the research back-

ground, motivation, contribution and structure of this thesis.

Chapter 2 proposes a way of jointly modelling asset returns and ex-post volatility

measures under a Markov switching framework. In the recent decades, the estimation

of volatility has benefited from the availability of high frequency data and financial

econometricians have proposed model-free estimators for ex-post volatility. The most

famous examples are the realized variance by Andersen et al. (2001) and Barndorff-

Nielsen and Shephard (2002) and its multivariate extension: the realized covariance

by Barndorff-Nielsen and Shephard (2004). Those ex-post volatility measures provide

“observable” data for latent volatility, thereby allowing the analysis of volatility data

directly.

Another important econometric tool is the Markov switching model. Markov

switching models and its variations have been widely applied in the field of finance

1
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and economics to analyze stock returns, foreign exchange rates, interest rates and

other macroeconomic variables. Existing Markov switching models only use one series

of data, such as asset returns, as the data input. It is worth investigating if the

additional information contained in ex-post variance measures provides additional

benefits to Markov switching models.

Chapter 2 contributes to the literature by integrating Markov switching models

with ex-post volatility measures. A class of new Markov switching models that can

jointly model both returns and ex-post volatility measures are proposed. The em-

pirical applications show that the proposed joint models outperform the benchmark

model in density forecasts of returns, variance prediction and portfolio choice. The

parameter estimation and the identification of latent state variables are improved

potentially.

Chapter 2 applies existing methods of computing ex-post risk measures and show

those risk measures are beneficial to financial and economics data modelling. The

estimation of ex-post volatility is a very active area of research. Existing methods

rely on infill asymptotic assumptions and require data frequency to be high enough to

get accurate estimates. In other words, the existing estimator works well theoretically

but may not be very accurate in reality, which leaves room for improvement. Chap-

ter 3 and Chapter 4 takes a completely new approach and apply Bayesian financial

econometric tools to develop new and improved ex-post volatility estimators.

With the help of Bayesian nonparametric tools, Chapter 3 proposes an ex-post

variance method that delivers exact finite sample results. Another benefit is the

proposed method allows pooling in the estimation of ex-post variance. Return obser-

vations with similar variance parameter can be pooled automatically by the model for

2
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the purpose of increasing estimation accuracy. The Bayesian nonparametric variance

estimation approach is also extended to fit the data with independent and dependent

microstructure noise.

Based on simulation evidence, the Bayesian nonparametric variance estimator

has lower error in estimating integrated variance and better finite sample results,

especially when the data frequency is low. Empirical applications show that the

forecast of future volatility can be potentially improved, if the volatility measures are

estimated using the proposed method.

In Chapter 4, the univariate Bayesian nonparametric variance estimator intro-

duced in Chapter 3 is extended to its multivariate version to allow pooling in covari-

ance estimation. The estimation of covariance matrix is an important problem since

covariance serves as the key input to many problems in finance and economics. In

practice, the estimation of the covariance matrix suffers from two major challenges,

which are microstructure noise and nonsynchronous trading. Existing works have

proposed different ways of forming covariance estimators and several time schemes to

synchronize irregularly-spaced observations.

As in the univariate case, the Bayesian nonparametric approach of estimating

the ex-post covariance matrix allows pooling in covariance estimation and delivers

exact finite sample results. Another improvement is that the proposed estimator is

guaranteed to be positive definite, which is a desirable property. More than that, a

new synchronization method is proposed to deal with non-synchronous trading. All of

those benefits lead to a more accurate estimator, which is confirmed by Monte Carlo

simulation results. In real data applications, the Bayesian nonparametric estimator

results in better portfolio choice outcomes.

3
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Chapter 3 and Chapter 4 contribute to the literature by providing the first exact

finite sample approach to ex-post volatility estimation. By linking the Bayesian non-

parametric analytical tools with the estimation of ex-post volatility, new versions of

ex-post variance and covariance estimators are introduced. The proposed methods

deliver improved estimators and provide the entire posterior distributions of volatility,

which benefit risk measuring, analysis and forecasting.
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Chapter 2

Improving Markov Switching

Models Using Realized Variance

2.1 Introduction

This chapter proposes a new way of jointly modelling return and ex-post volatility

measures under a Markov switching framework. Parametric and nonparametric ver-

sions of the models are introduced in both univariate and multivariate settings. The

models are able to exploit the information content in both return and ex-post volatil-

ity series. Compared to existing models, the joint models improve density forecasts

of returns, point predictions of realized variance and portfolio decisions.

Since the pioneering work by Hamilton (1989) the Markov switching model has

become one of the standard econometric tools in studying various financial and eco-

nomic data series. The basic model postulates a discrete latent variable governed

by a first-order Markov chain that directs an observable data series. This modelling

approach has been fruitfully employed in many applications. For instance, Markov

5
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switching models have been used to identify bull and bear markets in aggregate stock

returns (Maheu and McCurdy, 2000; Lunde and Timmermann, 2004; Guidolin and

Timmermann, 2006; Maheu et al., 2012), to capture the risk and return relationship

(Pastor and Stambaugh, 2001; Kim et al., 2004), for portfolio choice (Guidolin and

Timmermann, 2008), for interest rates (Ang and Bekaert, 2002; Guidolin and Tim-

mermann, 2009) and foreign exchange rates (Engel and Hamilton, 1990; Dueker and

Neely, 2007). Recent work has extended the Markov switching model to an infinite

dimension. The infinite hidden Markov model (IHMM), which is a Bayesian nonpara-

metric model, allows for a very flexible conditional distribution that can change over

time. Applications of IHMM include Jochmann (2015), Dufays (2016), Song (2014),

Carpantier and Dufays (2014) and Maheu and Yang (2016).

Realized variance (RV), constructed from intraperiod returns, is an accurate mea-

sure of ex-post volatility. Andersen et al. (2001) and Barndorff-Nielsen and Shephard

(2002) formalized the idea of using higher frequency data to measure the volatility of

lower frequency data and show RV is a consistent estimate of quadratic variation un-

der ideal conditions. Barndorff-Nielsen and Shephard (2004b) generalized the idea of

RV and introduced a set of variance estimators called realized power variations. Fur-

thermore, RV has been extended to realized covariance (RCOV), which is an ex-post

nonparametric measure of the covariance of multivariate returns, by Barndorff-Nielsen

and Shephard (2004a). A survey of RV and related volatility proxies is Andersen and

Benzoni (2009).

This chapter is the first to exploit the information content of ex-post volatility

measures in a Markov switching context to improve estimation, forecasting and port-

folio decisions.1 This is done for finite and infinite state models. We assume that

1Other papers that have used high frequency data to improve estimation and forecasting include

6
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regime changes in returns and realized variance are directed by one common un-

observed state variable. Closely related to our approach is Takahashi et al. (2009)

who propose a stochastic volatility model in which unobserved log-volatility affects

both RV and the variance of returns. They find improved fixed parameter and latent

volatility estimates but do not investigate forecast performance or portfolio choice.

There is no reason to confine attention to RV, and therefore we investigate the

use of other volatility measures and in the multivariate setting realized covariance.

Four versions of the univariate return models are proposed. We consider RV, log(RV),

realized absolute variation (RAV), or log(RAV) as ex-post volatility measures coupled

with returns to construct joint models. We then extend the MS-RV specification to

its multivariate version with RCOV.

It is more flexible to drop the finite state assumption and let the data determine

the number of states needed to fit the data. Using Bayesian nonparametric techniques,

we extend the finite state joint MS models to nonparametric versions. These models

allow the conditional distribution to change more flexibly and accommodate any

nonparametric relationship between returns and ex-post volatility.

Markov switching models have been particularly useful at monthly and quarterly

frequencies as the Markov chain dynamics are a dominant feature of the data.2 There-

fore, the proposed joint MS and joint IHMM models are compared to existing models

in empirical applications to monthly U.S. stock market returns including forecasting

and portfolio applications.

Based on the log-predictive Bayes factors, the proposed joint models strongly

Alizadeh et al. (2002), Blair et al. (2001), Shephard and Sheppard (2010), Noureldin et al. (2012),
Hansen et al. (2012) Hansen et al. (2014), Jin and Maheu (2013, 2016) and Maheu and McCurdy
(2011).

2Our models could be applied to higher frequency data but in this case additional structure would
be needed to capture the strong persistence in high frequency volatility Rydén et al. (1998).
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dominate the models that only use returns. Moreover, we find the gains from joint

modelling are particularly large during high volatility episodes. The empirical re-

sults also show that the joint models reduce the error in predicting realized variance.

With the help of additional information offered by RV, RAV and RCOV, posterior

density intervals for parameters are tighter and the inference on the unobservable

state variables is improved. In general, adding RV to a model improves the forecast

performance of any MS model, finite or infinite, but the best performing models are

the joint infinite hidden Markov models.

Exploiting measures of ex-post volatility also lead to better portfolio choice out-

comes. Several portfolio exercises that use the models are considered over two sample

periods. A robust result is larger Sharpe ratios for models that incorporate realized

variance or realized covariance. In addition, investors are always willing to pay a

positive performance fee to obtain forecasts from these models for their investment

decisions.

This chapter is organized as follows. In Section 2.2, we show how to incorporate

ex-post measures of volatility into Markov switching models. The joint MS models are

extended to the nonparametric versions in Section 2.3. Benchmark models used for

comparison are found in Section 2.4. Section 2.5 illustrates the Bayesian estimation

steps and model comparison. A univariate return application to the market index

is found in Section 2.6 while a multivariate return application to equity follows in

Section 2.7. The next section concludes followed by an appendix that gives detailed

steps of posterior simulation.

8
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2.2 Joint Markov Switching Models

In this section, we will focus on simple specifications of the conditional mean but dy-

namic models with lags of the dependent variables could be used. We will first discuss

the four versions of univariate return joint models, then introduce the multivariate

version.

Higher frequency data is used to construct ex-post volatility measures. Let rt,i

denote the ith intraperiod continuously compounded return in period t, i = 1, . . . , nt,

where nt is the number of intraperiod returns. Then the return and realized variance

from t− 1 to t is

rt =
nt∑
i=1

rt,i, (2.1)

RVt =
nt∑
i=1

r2
t,i. (2.2)

Andersen et al. (2001) and Barndorff-Nielsen and Shephard (2002) formalized the

idea of using higher frequency data to measure the volatility of rt. They show that

RVt is a consistent estimate of quadratic variation under ideal conditions.3 Similarly,

for multivariate returns Rt,i is the ith intraperiod d×1 return vector at time t and the

time t return is Rt =
∑nt

i=1 Rt,i. RCOVt denotes the associated realized covariance

(RCOV) matrix which is computed as follows,

RCOVt =
nt∑
i=1

Rt,iR
′

t,i. (2.3)

3We have not made adjustments for market microstructure dynamics since our high-frequency
data consists of daily returns and are relatively clean. Nevertheless, any of the existing approaches
that correct for microstructure dynamics in computing ex-post volatility measures could be used.
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2.2.1 MS-RV Model

We first use RV as the proxy for ex-post volatility to build a joint MS-RV model. The

proposed K-state MS-RV model is given as follows.

rt
∣∣st ∼ N(µst , σ

2
st), (2.4)

RVt
∣∣st ∼ IG(ν + 1, νσ2

st), (2.5)

Pi,j = p(st+1 = j|st = i), (2.6)

where st ∈ {1, . . . , K}. Conditional on state st, RVt is assumed to follow an inverse-

gamma distribution4 IG(ν + 1, νσ2
st), where ν + 1 is the shape parameter and νσ2

st is

the scale parameter.

The basic assumption of this model is that RVt is subject to the same regime

changes as rt and share the same parameter σ2
st .

5 Note, that RVt and the other

volatility measures used in this chapter, are assumed to be a noisy measure of the

state dependent variance σ2
st . Conditional on the latent state, the mean and variance

of RVt are

E(RVt|st) =
νσ2

st

(ν + 1)− 1
= σ2

st , (2.7)

Var(RVt|st) =
(σ2

st)
2

(ν − 1)
. (2.8)

4If x ∼ IG(α, β), α > 0, β > 0 then it has density function:

g(x
∣∣α, β) =

βα

Γ(α)
x−α−1 exp

(
−β
x

)
.

The mean of x is E(x) = β
α−1 for α > 1 and Var(x) = β2

(α−1)2(α−2) for α > 2.
5Formally, the high frequency data generating process is assumed to be rt,i = µst/nt +

(σst/
√
nt)zt,i, with zt,i ∼ NID(0, 1). Then E

[∑nt

i=1 r
2
t,i

∣∣st] = µ2
st/nt + σ2

st ≈ σ2
st when the term

µ2
st/nt is small due to nt being large.

10
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Therefore RVt is centered around σ2
st , but in general, not equal to it. The variance of

the distribution of RVt is positively correlated with the realized variance itself. During

high volatility periods, the movements of realized variances are more volatile. Both

the return process and realized variance process are governed by the same underlying

Markov chain with transition matrix P .

Since σ2
st influences both the return process and RVt process, the model can be

seen as a nonlinear common factor model.6 Exploiting the information content of RVt

for σ2
st can lead to more precise estimates of model parameters, state variables and

forecasts.

2.2.2 MS-logRV Model

Another possibility is to model the logarithm of RV as normally distributed. The

MS-logRV model is shown as follows,

rt
∣∣st ∼ N (µst , exp(ζst)) , (2.9)

log(RVt)
∣∣st ∼ N

(
ζst −

1

2
δ2
st , δ

2
st

)
, (2.10)

Pi,j = p(st+1 = j|st = i), (2.11)

where st ∈ {1, . . . , K}. In this model there are three state-dependent parameters:

µst , ζst and δ2
st , which enable both the mean and variance of returns and log(RVt) to

be state-dependent. ζst − 1
2
δ2
st is the mean of log(RVt) and exp(ζst) is the variance

of returns. Since RVt is log-normal, E[RVt|st] = exp(ζst) which is assumed to be the

variance of returns.

6This is in contrast to linear dynamic factor models such as Forni and Reichlin (1998), Kose et al.
(2003) and Stock and Watson (2010).

11



Ph.D. Thesis - Jia Liu McMaster University - Business

2.2.3 MS-RAV Model

Now we consider using realized absolute variation (RAV), instead of RV in the joint

MS model. Calculated using the absolute values of intraperiod returns, RAV is ro-

bust to jumps and may be less sensitive to outliers Barndorff-Nielsen and Shephard

(2004b). RAVt is computed using intraperiod returns as

RAVt =

√
π

2

√
1

nt

nt∑
i=1

|rt,i|, (2.12)

where rt,i denotes the ith intraperiod log-return in period t, i = 1, . . . , nt. It can be

shown that RAVt provides an estimate of the standard deviation of rt.
7

Consistent with the inverse-gamma distribution to model the variance or its proxy,

we assume RAV follows a square-root inverse-gamma distribution (sqrt-IG). The

density function of sqrt-IG(α, β) is given by

f(x) =
2βα

Γ(α)
x−2α−1 exp

(
− β

x2

)
, x > 0, α > 0, β > 0, (2.13)

and the first and second moments of sqrt-IG(α, β) are given as follows

E[x] =
√
β ·

Γ(α− 1
2
)

Γ(α)
and E[x2] =

β

α− 1
, for α > 1. (2.14)

These results can be found in Zellner (1971).

7As before, if rt,i = µst/nt + (σst/
√
nt)zt,i, with zt,i ∼ NID(0, 1) and µst/nt is small, then we

have E

[√
π
2

√
1
nt

nt∑
i=1

|rt,i|
∣∣st] ≈ √ π

2nt

1√
nt

∑nt

i=1E
[
|σstzt,i|

∣∣st] =
√

π
2

σst

nt

∑nt

i=1E
[
|zt,i|

∣∣st] = σst ,

since for a standard normal variate x, E [|x|] =
√

2
π .
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We define the joint MS model of return and RAV as,

rt
∣∣st ∼ N(µst , σ

2
st), (2.15)

RAVt
∣∣st ∼ sqrt-IG

(
ν, σ2

st

[
Γ(ν)

Γ(ν − 1
2
)

]2
)
, (2.16)

Pi,j = p(st+1 = j|st = i), (2.17)

where st ∈ {1, . . . , K} and ν > 1. As in the MS-RV model, the mean and variance

of both rt and RAVt are state-dependent. In each state, the return follows a nor-

mal distribution with mean µst and variance σ2
st . The mean and variance of RAVt

conditional on state st are given as follows.

E(RAVt
∣∣st) = σst , (2.18)

Var(RAVt
∣∣st) =

σ2
st

ν − 1

[
Γ(ν)

Γ(ν − 1
2
)

]2

− σ2
st . (2.19)

2.2.4 MS-logRAV Model

Similar to the MS-logRV model discussed in Section 2.2.2, the logarithm of RAV can

be modelled as opposed to RAV. The MS-logRAV specification is

rt
∣∣st ∼ N (µst , exp(2ζst)) , (2.20)

log(RAVt)
∣∣st ∼ N

(
ζst −

1

2
δ2
st , δ

2
st

)
, (2.21)

Pi,j = p(st+1 = j|st = i), (2.22)

where st ∈ {1, . . . , K}. The model is close to the MS-logRV parametrization, but

now ζst− 1
2
δ2
st is the mean of log(RAVt) and exp(2ζst) is the state-dependent variance
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of returns. Since RAVt is log-normal, E(RAVt|st) = exp(ζst) which is the standard

deviation of returns.

2.2.5 Multivariate MS-RCOV Model

The univariate return models can be extended to the multivariate setting by including

realized covariance matrices. The multivariate MS-RCOV model we consider is

Rt

∣∣st ∼ N (Mst ,Σst) , (2.23)

RCOVt
∣∣st ∼ IW (Σst(κ− d− 1), κ) , κ > d+ 1, (2.24)

Pi,j = p(st+1 = j|st = i). (2.25)

where st ∈ {1, . . . , K}. Mst is a d × 1 state-dependent mean vector and Σst is the

d×d covariance matrix. RCOVt is assumed to follow an inverse-Wishart distribution

IW(Σst(κ − d − 1), κ), where Σst(κ − d − 1) is the scale matrix and κ is the degree

of freedom.

Σst is the covariance of returns as well as the mean of RCOVt since

E[RCOVt
∣∣st] =

1

κ− d− 1
Σst(κ− d− 1) = Σst , (2.26)

assuming κ > d + 1. The parameter κ controls the variation of the inverse-Wishart

distribution and the smaller κ is, the larger spread the distribution has. Both Rt and

RCOVt are governed by the same Markov chain with transition matrix P .
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2.3 Joint Infinite Hidden Markov Model

2.3.1 Dirichlet Process and Hierarchical Dirichlet Process

All of the Markov switching models we have discussed require the econometrician to

set the number of states. An alternative is to incorporate the state dimension into

estimation. The Bayesian nonparametric version of the Markov switching model is

the infinite hidden Markov model, which can be seen as a Markov switching model

with infinitely many states. Given a finite dataset, the model selects a finite number

of states for the system. Since the number of states is no longer a fixed value, the

Dirichlet process, an infinite dimensional version of Dirichlet distribution, is used as

a prior for the transition probabilities.

There are several benefits to using an infinite Markov chain. First, this flexible

structure can accommodate both recurring regimes as well as structural changes. As

new data arrives if a new state of the market occurs the model can introduce a new

state and associated parameter to account for this. Since the model is applied to

a finite dataset a finite set of states will be used and this is estimated along with

the rest of the parameters. Since as many states can be used as needed the model

is nonparametric in nature and able to capture an unknown continuous density that

changes over time.

The Dirichlet process DP(α,H), was formally introduced by Ferguson (1973) and

is a distribution of distributions. A draw from a DP(α,H) is a distribution and is

almost surely discrete and centered around the base distribution H. α > 0 is the

concentration parameter that governs how close the draw is to H.

We follow Teh et al. (2006) and build an infinite hidden Markov model (IHMM)
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using a hierarchical Dirichlet process (HDP). This consists of two linked Dirichlet pro-

cesses. A single draw of a distribution is taken from the top level Dirichlet processes

with base measure H and precision parameter η. Subsequent to this, each row of the

transition matrix is distributed according to a Dirichlet processes with base measure

taken from the top level draw. This ensures that each row of the transition matrix

governs the moves among a common set of model parameters. In addition, each row

of the transition matrix is centered around the top level draw but any particular draw

will differ. If Γ denotes the top level draw and Pj the jth row of the transition matrix

P then the previous discussion can be summarized as

Γ
∣∣η ∼ DP(η,H), (2.27)

Pj
∣∣α,Γ iid∼ DP(α,Γ), j = 1, 2, .... (2.28)

This formulation provides a prior over the natural numbers (states) such that each

Pj has E[Pj] = Γ.8 For more details and examples of the HDP used in the infinite

hidden Markov model see Maheu and Yang (2016).

Combining the HDP, (2.27)-(2.28), with the state indicator st and the data density,

forms the infinite hidden Markov model,

st
∣∣st−1, P ∼ Pst−1 , (2.29)

θj
iid∼ H, j = 1, 2, ..., (2.30)

yt
∣∣st, θ ∼ F (yt

∣∣θst), (2.31)

8To make this concrete, consider the following simple example. Abstracting from an infinite
chain to a three dimensional one, suppose Γ = (0.51, 0.32, 0.17). Each row of the transition matrix is
obtained as Pj ∼ Dir(Γ) where Dir(Γ) is the Dirichlet distribution with parameter Γ and E[Pj ] = Γ.
Then, for instance, the rows sampled could be P1 = (0.55, 0.2, 0.25), P2 = (0.42, 0.41, 0.17) and
P3 = (0.49, 0.30, 0.21).
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where θ = {θ1, θ2, ...} and F (·|·) is the data distribution. The two concentration

parameters η and α control the number of active states in the model. Larger values

favour more states while small values promote a parsimonious state space. Rather

than set these hyperparameters they can be treated as parameters and estimated

from the data. In this case, the hierarchical prior for η and α are

η ∼ G(aη, bη), (2.32)

α ∼ G(aα, bα), (2.33)

where G(a, b) stands for the gamma distribution with shape parameter a and rate

parameter b.

The models can be estimated with MCMC methods. We discuss the specific

details below for each model.

2.3.2 IHMM with RV and RAV

RV or RAV can be jointly modelled in the IHMM model as we did in the finite

Markov switching models. The joint IHMM is constructed by replacing the Dirichlet

distributed prior of the MS model by a hierarchical Dirichlet process. Hierarchical

priors are used for concentration parameter α and η and allow the data to influence

the state dimension. For example, the IHMM-RV model is given as (2.27)-(2.28),
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(2.32)-(2.33) with

st
∣∣st−1, P ∼ Pst−1 , (2.34)

θj = {µj, σ2
j}

iid∼ H, j = 1, 2, ..., (2.35)

rt
∣∣st, θ ∼ N(µst , σ

2
st), (2.36)

RVt
∣∣st ∼ IG(ν + 1, νσ2

st). (2.37)

The base distribution is H(µ) ≡ N(m, v2), H(σ2) ≡ IG(v0, s0). The parameter σ2
st is

common to the distribution of rt and RVt.

The IHMM-logRV and IHMM-logRAV models are formed similarly by replacing

the fixed dimension transition matrix with infinite dimensional versions with a HDP

prior. For instance, the IHMM-logRV specification replaces (2.35)-(2.37) with

θj = {µj, ζj, δ2
j}

iid∼ H, j = 1, 2, ..., (2.38)

rt
∣∣st, θ ∼ N (µst , exp(ζst)) , (2.39)

log(RVt)
∣∣st ∼ N

(
ζst −

1

2
δ2
st , δ

2
st

)
. (2.40)

The base distribution is H(µ) ≡ N(mµ, v
2
µ), H(ζ) ≡ N(mζ , v

2
ζ ) and H(δ) ∼ IG(v0, s0).

The parameter ζst is common to the distribution of rt and log(RVt). Similarly, the

IHMM-logRAV model, replaces (2.35)-(2.37) with

θj = {µj, ζj, δ2
j}

iid∼ H, j = 1, 2, ..., (2.41)

rt
∣∣st, θ ∼ N (µst , exp(2ζst)) , (2.42)

log(RAVt)
∣∣st ∼ N

(
ζst −

1

2
δ2
st , δ

2
st

)
. (2.43)
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The base distribution is H(µ) ≡ N(mµ, v
2
µ), H(ζ) ≡ N(mζ , v

2
ζ ) and H(δ) ∼ IG(v0, s0).

Now, ζst affects both rt and log(RAVt).

2.3.3 Multivariate IHMM with RCOV

The multivariate MS-RCOV model can be extended to its nonparametric version, la-

belled IHMM-RCOV as follows. In this model (2.27)-(2.28), (2.32)-(2.33) is combined

with

st
∣∣st−1, P ∼ Pst−1, (2.44)

θj = {Mj,Σj}
iid∼ H, j = 1, 2, ..., (2.45)

Rt

∣∣st, θ ∼ N(Mst ,Σst), (2.46)

RCOVt
∣∣st ∼ IW(Σst(κ− d− 1), κ). (2.47)

The base distribution is H(M) ≡ N(m,V ), H(Σ) ≡W(Ψ, τ), where W(Ψ, τ) denotes

Wishart distribution, Ψ are d× d positive definite matrices and κ > d+ 1 being the

degree of freedom. Σst is a common parameter affecting the distributions of Rt and

RCOVt.

2.4 Benchmark Models

Each of the new models are compared to benchmark models that do not use ex-post

variance measures. The benchmark specifications are essentially the same model with

RVt or RAVt omitted. For example, in the univariate application we compare to the
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following MS specification.

rt
∣∣st ∼ N(µst , σ

2
st), (2.48)

Pi,j = p(st+1 = j|st = i), (2.49)

where st ∈ {1, . . . , K}. The IHMM comparison model is given with (2.27)-(2.33) with

(2.30) and (2.31) specified as

θj = {µj, σ2
j}

iid∼ H, j = 1, 2, ..., (2.50)

rt
∣∣st, θ ∼ N(µst , σ

2
st). (2.51)

The benchmark models for the multivariate application are similarly derived by omit-

ting RCOVt.

2.5 Estimation and Model Comparison

For notation, let r1:t = {r1, . . . , rt}, RV1:t = {RV1, . . . , RVt}, y1:t = {y1, . . . , yt} where

yt = {rt, RVt}. We further defineR1:T = {R1, . . . , RT}, RCOV1:T = {RCOV1, . . . , RCOVT}

and Y1:t = {Y1, . . . , Yt} where Yt = {Rt, RCOVt}.

2.5.1 Estimation of Joint Finite MS Models

The joint finite MS models are estimated using Bayesian inference. Taking the MS-

RV model as an example, model parameters include θ = {µj, σ2
j}Kj=1, φ = {ν} and

transition matrix P . By augmenting the latent state variable s1:T = {s1, s2, · · · , sT},

MCMC methods are used to simulate from the conditional posterior distributions.
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The prior distributions are listed in Table 3.1. One MCMC iteration contains the

following steps.

1. s1:T

∣∣y1:T , θ

2. θj
∣∣y1:T , s1:T , φ, for j = 1, 2, . . . , K

3. φ
∣∣y1:T , s1:T , θ

4. P
∣∣s1:T

The first MCMC step is to sample the latent state variable s1:T from the condi-

tional posterior distribution s1:T

∣∣y1:T , θ, P . We follow Chib (1996) and use the forward

filter backward sampler. In the second step, µj is sampled using the Gibbs sampler for

the linear regression model. The conditional posterior of σ2
j is of unknown form and a

Metropolis-Hasting step is used. The proposal density follows a gamma distribution

formed by combining the likelihood for RV1:T and the prior. ν
∣∣y1:T , {σ2

j}Kj=1 is sampled

using the Metropolis-Hasting algorithm with a random walk proposal. Finally, each

row of P is drawn from its conditional posterior, which is a Dirichlet distribution.

Additional details of posterior sampling are collected in the appendix.

After an initial burn-in of iterations are discarded we collect N additional MCMC

iterations for posterior inference. Simulation consistent estimates of posterior quan-

tities can be formed.9 For example, the posterior mean of θj is estimated as,

E[θj|y1:T ] ≈ 1

N

N∑
i=1

θ
(i)
j , (2.52)

9For a good textbook treatment of MCMC estimation see Greenberg (2014).
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where θ
(i)
j is the ith iteration from posterior sampling of parameter θj. The smoothed

probability of st can be estimated as follows.

p(st = k|y1:T ) ≈ 1

N

N∑
i=1

1(s
(i)
t = k), (2.53)

where 1(A) = 1 if A is true and otherwise 0.

The estimation of MS-RAV, MS-logRV, MS-logRAV and MS-RCOV models are

done in a similar fashion. Detailed estimation steps of the models are in the appendix.

2.5.2 Estimation of Joint IHMM Models

In the IHMM-RV model, estimation of the unknown parameters θ = {µj, σ2
j}∞j=1,

φ = {ν, α, η}, P , Γ and s1:T are different given the unbounded nature of the state

space. The beam sampler, introduced by Gael et al. (2008), is an extension of the slice

sampler by Walker (2007), and is an elegant solution to estimation challenges that

an infinite parameter model presents. An auxiliary variable u1:T = {u1, u2, · · ·uT} is

introduced that randomly truncates the state space to a finite one at each MCMC

iteration. Conditional on u1:T the number of states is finite and the forward filter

backward sampler previously discussed can be used to sample s1:T .

The key idea behind the beam sampling is to introduce the auxiliary variable ut

that preserves the target distributions, and has the following conditional density

p(ut|st−1, st, P ) =
1(0 < ut < Pst−1,st)

Pst−1,st

, (2.54)
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where Pi,j denotes element (i, j) of P . The forward filtering step becomes

p(st|y1:t, u1:t, P ) ∝ p(yt|y1:t−1, st)
∞∑

st−1=1

1(0 < ut < Pst−1,st)p(st−1|y1:t−1, u1:t−1, P )(2.55)

∝ p(yt|y1:t−1, st)
∑

st−1:ut<Pst−1,st

p(st−1|y1:t−1, u1:t−1, P ), (2.56)

which renders an infinite summation into a finite one. Conditional on ut, only states

satisfying ut < Pst−1,st are considered and the number of states become a finite num-

ber, say K. The same considerations hold for the backward sampling step.

Each MCMC iteration loop contains the following steps.

1. u1:T

∣∣s1:T , P,Γ

2. s1:T

∣∣y1:T , u1:T , θ, φ, P,Γ

3. Γ
∣∣s1:T , η, α

4. P
∣∣s1:T ,Γ, α

5. θj
∣∣y1:T , s1:T , φ for j = 1, 2, . . . ,

6. φ
∣∣y1:T , s1:T , θ

u1:T is sampled from its conditional densities ut
∣∣s1:T , P ∼ Uniform(0, Pst−1,st) for

t = 1, · · · , T . Following the discussion above, conditional on u1:T the effective state

space is finite of dimension K and s1:T is sampled using the forward filter backward

sampler. Γ and each row of transition matrix follow a Dirichlet distribution after

additional latent variables are introduced. The sampling of µj, σ
2
j and ν are the same

as in the joint finite MS models. Posterior sampling of the IHMM-logRV, IHMM-

logRAV and IHMM-RCOV models can be done following similar steps. The appendix
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provides the detailed steps.

Given N MCMC iterations collected after a burn-in period are discarded, posterior

statistics can be estimated as usual. The estimation of state-dependent parameters

suffer from a label-switching problem. This means that the states and the associated

parameters can be permuted over different MCMC iterations while maintaining the

same likelihood value. Thus, it is not possible to track state j over the MCMC

iterations as the definition of state j can change. Therefore we focus on label invariant

quantities. For example, the posterior mean of θst is computed as

E[θst |y1:T ] ≈ 1

N

N∑
i=1

θ
(i)

s
(i)
t

. (2.57)

2.5.3 Density Forecasts

The predictive density is the distribution governing a future observation given a model

M, prior and data. It is computed by integrating out parameter uncertainty. The

predictive likelihood is the key quantity used in model comparison and is the predic-

tive density evaluated at next period’s return

p(rt+1

∣∣y1:t,M) =

∫
p(rt+1

∣∣y1:t,Λ,M)p(Λ
∣∣y1:t,M) dΛ, (2.58)

where p(rt+1

∣∣y1:t,Λ,M) is the data density given y1:t and parameter Λ and p(Λ
∣∣y1:t,M)

is the posterior distribution of Λ.

To focus on model performance and comparison it is convenient to consider the

log-predictive likelihood and use the sum of log-predictive likelihoods from time t+ 1
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to t+ s given as
t+s∑
l=t+1

log p(rl
∣∣y1:l−1,M). (2.59)

The log-predictive Bayes factor between M1 and model M2 is defined as

t+s∑
l=t+1

log p(rl
∣∣y1:l−1,M1)−

t+s∑
l=t+1

log p(rl
∣∣y1:l−1,M2). (2.60)

A log-predictive Bayes factor greater than 5 provides strong support for M1.

Predictive Likelihood of MS Models

Both parameter uncertainty and state uncertainty need to be integrated out in order

to calculate the predictive likelihood. The predictive likelihood of a K-state joint MS

model can be estimated as follows

p(rt+1

∣∣y1:t) ≈
1

N

N∑
i=1

K∑
st+1=1

N(rt+1

∣∣µ(i)
st+1

, σ2(i)
st+1

)P
(i)

st+1,s
(i)
t

, (2.61)

where µ
(i)
st+1 and σ

2(i)
st+1 are the ith draw of µst+1 and σ2

st+1
respectively, and P

(i)
j1,j2 denotes

element (j1, j2) of P (i) all based on the posterior distribution given data y1:t.

The calculation of the predictive likelihood for the multivariate MS models follows

the same method,

p(Rt+1

∣∣Y1:t) ≈
1

N

N∑
i=1

K∑
st+1=1

N(Rt+1

∣∣M (i)
st+1

,Σ(i)
st+1

)P
(i)

st+1,s
(i)
t

. (2.62)
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Predictive Likelihood of IHMM

For the IHMM models the state next period may be a recurring one or it may be new,

the calculation of predictive likelihood is sightly different and is estimated as follows,

p(rt+1

∣∣y1:t) ≈
1

N

N∑
i=1

N(rt+1

∣∣µi, σ2
i ) (2.63)

where the parameter values µi and σ2
i are determined using the following steps. Given

s
(i)
t , draw st+1 ∼ Multinomial(P

(i)

s
(i)
t

, K(i) + 1).

1. If st+1 <= K(i), set µi = µ
(i)
st+1 , σ

2
i = σ

2(i)
st+1 .

2. If st+1 = K(i) + 1, draw a new set of parameter values from the prior: µi ∼

N(m, v2) and σ2
i ∼ IG(v0, s0).

In multivariate IHMM models, the predictive likelihood is calculated exactly the same

way except that the base measure draw is from a multivariate normal and an inverse-

Wishart distribution.

2.5.4 Point Predictions for Returns and Volatility

In addition to density forecasts we evaluate the predictive mean of returns and the

predictive variance (covariance) of returns. For the finite state MS models, conditional

on the MCMC output, the predictive mean for rt+1 is estimated as

E[rt+1|y1:t] ≈
1

N

N∑
i=1

K∑
j=1

µ
(i)
j P

(i)

s
(i)
t ,j

. (2.64)
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The second moment of the predictive distribution can be estimated as follows.

E[r2
t+1|y1:t] ≈

1

N

N∑
i=1

K∑
j=1

(µ
(i)2
j + σ

2(i)
j )P

(i)

s
(i)
t ,j

, (2.65)

so that the variance can be estimated from

Var(rt+1|y1:t) = E[r2
t+1|y1:t]− (E[rt+1|y1:t])

2. (2.66)

For the multivariate model we have

E[Rt+1|Y1:t] ≈
1

N

N∑
i=1

K∑
j=1

M
(i)
j P

(i)

s
(i)
t ,j

, (2.67)

E[Rt+1R
′

t+1|Y1:t] ≈
1

N

N∑
i=1

K∑
j=1

(Σ
(i)
j +M

(i)
j M

(i)′

j )P
(i)

s
(i)
t ,j

(2.68)

which can be used to estimate

Cov(Rt+1|Y1:t) = E[Rt+1R
′

t+1|Y1:t]− E[Rt+1|Y1:t]E[Rt+1|Y1:t]
′
. (2.69)

For the IHMM models, the predictive mean and variance are derived from the

following.

E[rt+1|y1:t] ≈
1

N

N∑
i=1

µi, (2.70)

E[r2
t+1|y1:t] ≈

1

N

N∑
i=1

(σ2
i + µ2

i ). (2.71)

The parameters µi, σ
2
i are selected following the steps in Section 2.5.3. Similar results
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hold for the multivariate versions.

Finally, estimation and forecasting for the benchmark model follow along the same

lines as discussed for the joint models with minor simplifications.

2.6 Univariate Return Application

Four versions of joint MS models (MS-RV, MS-logRV, MS-RAV and MS-logRAV),

joint IHMM-RV and the benchmark alternatives are applied to model monthly U.S.

stock market returns from March 1885 to December 2013. The data from March

1885 to December 1925 are the daily capital gain returns provided by Bill Schwert,

see Schwert (1990). The rest of returns are from the value-weighted S&P 500 index

excluding dividends from CRSP, for a total of 1542 observations. The daily simple

returns are converted to continuous compounded returns and are scaled by 12. The

monthly return rt is the sum of the daily returns. RVt and other ex-post volatility

measures are computed according to the definitions previously stated. Table 2.2

reports the summary statistics of monthly returns along with the summary statistics

of monthly RVt, log(RVt), RAVt and log(RAVt).

Table 2.1 lists the priors for the various models. The priors provide a wide range

of empirically realistic parameter values. The benchmark models have the same prior.

Results are based on 5000 MCMC iterations after dropping the first 5000 draws.

2.6.1 Out-of-Sample Forecasts

Table 2.3 reports the sum of log-predictive likelihoods of 1 month ahead returns for

the out-of-sample period from January 1951 to December 2013 (756 observations).
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Recursive out-of-sample forecasts are computed beginning at the start of the out-

of-sample period. As new data arrives the models are re-estimated and forecasts

computed one period ahead. This is repeated until the end of the sample is reached.

In each case of a finite state assumption, the joint MS specifications outperform

the benchmark model that do not use ex-post volatility measures. The log-predictive

Bayes factors between the best finite joint MS model and the benchmark model are

greater than 15, which provide strong evidence that exploiting higher frequency data

leads to more accurate density forecasts. Using ex-post volatility data offer little to

no gains in forecasting the mean of returns, however, it does lead to better variance

forecasts as measured against realized variance.

The lower panel of Table 2.3 report the same results for the infinite hidden Markov

models with and without higher frequency data. The overall best model according

to the predictive likelihood is the IHMM-RV specification. This model has a log-

predictive Bayes factor of 20.8 against the best finite state model that does not use

high-frequency data. It has about the same log-predictive Bayes factor against the

IHHM. The IHMM-RV has the lowest RMSE for RVt forecasts. It is 10.6% lower

than the best MS model that uses returns only.

All of the joint models that include some form of ex-post volatility lead to improved

forecasts but generally the best performance comes from using RVt.

Table 2.4 provides a check on these results over the shorter sample period from

January 1984 to December 2013 (360 observations). The general results are the same

as the longer sample, high-frequency data offer substantial improvements to density

forecasts of returns and gains on forecasts of RVt.

Figures 2.1 gives a breakdown of the period-by-period difference in the predictive
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likelihood values. Positive values are in favour of the model with RVt. The overall

sum of the log-predictive likelihoods is not due to a few outliers or any one period

but represent ongoing improvements in accuracy. The joint models do a better job

in forecasting return densities when the market is in a high volatility period, such as

the period of 1973-1974 crash, the period before and after the internet bubble and

the 2008 financial crisis. Table 2.5 reports the log-predictive Bayes factors using data

from four major bear regimes. The data windows are small, nevertheless, the log-

predictive Bayes factors are all positive and support the joint models which exploit

RV.

2.6.2 Parameter Estimates and State Inference

Table 2.6 reports the posterior summary of parameters of the 2 state MS, MS-RV

and MS-RAV models based on the full sample. To avoid label switching issues, we

use informative priors µ1 ∼ N(-1, 1), µ2 ∼ N(1, 1), P1 ∼ Dir(4, 1), P2 ∼ Dir(1, 4) and

σ2
j ∼ IG(5, 5) for j = 1, 2 and restrict µ1 < 0 and µ2 > 0. The results show that

all three models are able to sort stock returns into two regimes. One regime has a

negative mean and high volatility, the other regime has positive mean return mean

along with lower variance. This is consistent with the results of Maheu et al. (2012)

and several other studies.

Compared with the benchmark MS model, the joint models specify the return

distribution more precisely in each state, as can be seen the smaller estimated values

σ2
st . For instance, in the first state the innovation variance is 1.6127 for the MS model,

while the estimates of variance are 0.5633 and 0.6581 in the MS-RV and MS-RAV

models, respectively. The variance estimates in the positive mean regimes drop from
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0.2187 to 0.1556 and 0.1460 after joint modelling RV and RAV. We would expect this

reduction in the innovation variance to result in better forecasts which is what we

found in the previous section.

Another interesting result is that MS-RV and MS-RAV models provide more pre-

cise estimates of all the model parameters. As shown in Table 2.6, all the parameter

estimators have smaller posterior standard deviations and shorter 0.95 density inter-

vals. For example, the length of the density interval of µ1 from the benchmark model

is 0.437, while the values are 0.187 and 0.167 from the MS-RV and MS-RAV models,

respectively.

Figure 2.2 plots E
[
σ2
st

∣∣y1:T

]
for the IHMM-RV and IHMM models. Volatility es-

timates vary over a larger range from the IHMM-RV model. For example, it appears

that the IHMM overestimates the return variance during calm market periods and

underestimates the return variance in several high volatile periods, such as the Octo-

ber 1987 crash and the financial crisis in 2008. In contrast, the return variance from

the IHMM-RV model is closer to RV during these times. The differences between the

models is due to the additional information from ex-post volatility.

Figure 2.3 plots the smoothed probability of the high return state from the 2 state

MS, MS-RV and MS-RAV models. The benchmark MS model does a fairly good job

in identifying the primary downward market trends, such as the big crash of 1929,

1973-1974 bear market and the 2008 market crash, but it ignores a series of panic

periods before and after 1900, the internet bubble crash and several other relatively

smaller downward periods. The joint MS-RV and MS-RAV models not only identify

the primary market trends but also are able to capture a number of short lived market

drops. The main difference is that the joint model appears to have more frequent
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state switches and state identification is more precise. One obvious example is the

joint models identify the dot-com collapse from 2000 to 2002 and the market crash of

2008-2009.

In summary, the joint models lead to better density forecasts, better forecasts of

realized variance, improved parameter precision and minor differences in latent state

estimates.

2.6.3 Market Timing Portfolio

As shown in Section 2.6.1, the joint MS model improves density forecast of returns.

We further investigate if the better forecasts lead to actual economic gain. The

proposed joint models (MS-RV and IHMM-RV) are compared with benchmark models

from a portfolio allocation perspective.

Suppose an investor uses a market timing strategy to manage her portfolio. Let

rmt , rpt and rft denotes the monthly simple return of the market (index), a market-

timing portfolio and the risk-free asset, respectively. The trading strategy is designed

as follows. Each modelM is used to forecast the direction of the market next month.

That is, if P (rmt+1 > rft |M, r1:t, RV1:t) > 0.5, one dollar is invested in the market and

held for one month to receive that month’s return. In this case, the portfolio return

rMt+1 = rmt+1. Otherwise, the risk-free asset is held and the monthly portfolio return

is rMt+1 = rft+1. This is repeated for several different models M1, . . . ,Mp and each

produces its own portfolio of returns, rM1
t , . . . , r

Mp

t , over time.
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The evaluation of portfolios (models) is based on risk-return tradeoff and utility-

based approach. Two types of utility functions are used. The quadratic utility func-

tion used in Fleming et al. (2001) has the following form

Uq(r
M
t ) = (1 + rMt )− γ

2(1 + γ)
(1 + rMt )2, (2.72)

where γ denotes the risk aversion coefficient and is set to be γ = 5.

Following Skouras (2007) and Clements and Silvennoinen (2013), the second utility

function is exponential, given as follows

Ue(r
M
t ) = − exp(−γ(1 + rMt )). (2.73)

The performance fee ∆ that an investor would pay to switch from one portfolio

to another is used to evaluate the competing portfolios. ∆ is a constant equalizing

the ex-post utility from models M1 and M2 in

T∑
t=1

U(rM1
t ) =

T∑
t=1

U(rM2
t −∆). (2.74)

Table 2.7 reports the summary statistics of the portfolio returns. The out-of-

sample market timing is conducted from 1951-2013 and for a shorter sample 1984-

2013. The portfolios based on the joint MS or IHMM models yield higher average

returns, lower risks and result in higher Sharpe ratios in all the cases, compared with

the ones based on models without RV. It is only possible to beat the Sharpe ratio

from the buy and hold strategy if a model uses RV information. For instance, in all

cases except one, the Sharpe ratio from the joint models is higher than from a buy
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and hold strategy. The last two columns of Table 2.7 record the annualized basis

point performance fees that an investor would be willing to pay to switch from the

portfolio based on the 2-state MS benchmark model to the one based on another

model. It shows incorporating RV in MS models always improves the utility level of

an investor with either quadratic or exponential utility. Independent of the number

of states or the sample period an investor is always willing to move from the simple

MS two state model to a specification that exploits RV.

2.7 Multivariate Return Application

We also evaluate the multivariate joint models through multivariate applications to a

vector of equity returns. The daily prices of three equities (stock symbol: IBM, XOM

and GE) listed in NYSE are obtained from CRSP. These firms were chosen since they

have been actively traded over the full sample period, January 1926 to December

2013 (1056 observations). The continuous compounded returns are constructed and

the monthly RCOV is computed using daily values following equation (2.3). The

summary statistics of monthly returns Rt and RCOVt are found in Table 2.9. The

prior specification is found in Table 2.8.

2.7.1 Out-of-Sample Forecasts

Table 2.10 reports the results of density forecasts and the root mean squared error

of predictions based on 756 out-of-sample observations. We found the larger finite

state models are the most competitive and therefore do not include results for small

dimension models. The 8 and 12 state models that exploit RCOV are all superior to
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the models that do not according to log-predictive values. The improvement in the

log-predictive likelihood is 30 or more. Further improvements are found on moving to

the Bayesian nonparametric models. The IHMM-RCOV model is the best over the

alternative models.

As for point predictions of return and realized covariance, the results is similar to

the univariate return applications. The proposed joint models improve predictions of

RCOVt but offer no gains for return predictions.

Figure 2.4 displays the posterior average of active states in both IHMM and

IHMM-RCOV models at each point in the out-of-sample period. It shows that more

states are used in the joint return-RCOV model in order to better capture the dy-

namics of returns and volatility.

2.7.2 Portfolio Performance

Beyond the forecasts of return density and covariance, we also evaluate the out-of-

sample performance of models in portfolio allocation. Suppose an investor forms her

portfolio using three equities (IBM, XOM and GE) and applies the modern portfolio

theory by Markowitz (1952) to select a portfolio on the efficient frontier. The weight

of a minimum variance portfolio given required portfolio return µp can be calculated

by solving the problem below.

min
wt+1

w′t+1Covt+1|twt+1 s.t. w′t+1µ + (1− w′t+11)rft = µp, (2.75)

where wt+1 is the portfolio weight, Covt+1|t denotes the predictive covariance from a

model using data up to time t, 1 is a vector of ones and µ is the return mean vector
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set to the sample average and is the same across models. The solution is

wt+1 =
(µp − rft )Cov−1

t+1|t(µ− r
f
t 1)

(µ− rft 1)′Cov−1
t+1|t(µ− r

f
t 1)

. (2.76)

The portfolio return for modelM is rMt+1 = w′t+1Rt+1 + (1−w′t+11)rft+1. Rt+1 and

rft+1 are all expressed as simple returns. µ is set to be the sample average of returns

and is common to all models.10 Covt+1|t is computed following equation (2.69). The

utility functions and performance fee calculations are the same as in the univariate

portfolio application.

A second portfolio application compares the models on their ability to produce a

global minimum variance portfolio Engle and Colacito (2006). The global minimum

variance portfolio can be determined by solving the following minimization problem.

min
wt+1

w′t+1Covt+1|twt+1 s. t. and w′t+11 = 1. (2.77)

The weight of global minimum-variance portfolio is given by

wt+1 =
Cov−1

t+1|t1

1′Cov−1
t+1|t1

. (2.78)

The model parameters are re-estimated each month after new data arrives and

the out-of-sample period is from 1951–2013 and 1984–2013. Tables 2.11 and 2.12

summarizes the performance of minimum-variance portfolios for two sample periods

based on the benchmark model and proposed joint models. Panel A and B show the

10This is done to focus on the differences in the the predictive covariance. When both the predictive
mean and predictive covariance are used from each model the IHMM-RCOV specification is strongly
favored compared to other models.
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results for required annual portfolio returns of µp = 10% and µp = 20%, respectively.11

The benefit of jointly modelling both return and RCOV is clear. In all the cases

but one using the predictive covariance from a model incorporating RCOV increases

the Sharpe ratio relative to the model without RCOV. The investor is always willing

to pay to move to a model that exploits RCOV information. For instance the investor

using an 8-state MS model would pay 7.08 basis points to use the forecasts from an

8-state MS-RCOV model. In Table 2.12 performance fees are considerably larger for

the more recent sample period.

Finally, Table 2.13 reports the variances of global minimum-variance portfolios

based on competing models over the two sample periods. The specifications that

jointly model returns and RCOV always lead to portfolios with smaller variances,

compared to the model without RCOV, no matter the number of states.

In summary, the joint modelling of returns and RCOV leads to better out-of-

sample forecasts and improved portfolio decisions.

2.8 Conclusion

This chapter shows how to incorporate ex-post measures of volatility with returns

to improve forecasts, parameter and state estimation under a Markov switching as-

sumption. We show how to build and estimate joint nonlinear factor models. Markov

switching can be specified as fixed and finite or countably infinite. In empirical appli-

cations the new models give dramatic improvements in density forecasts for returns,

forecasts of realized variance and lead to improved portfolio decisions.

11Note that the annualized mean return for IBM, XOM and GE are 13.4%, 11.6% and 10.3%,
respectively.
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2.9 Appendix

2.9.1 MS-RV Model

(1) s1:T

∣∣y1:T , θ, φ, P

The latent state variable s1:T is sampled using the forward filter backward sampler

(FFBS) in Chib (1996). The forward filter part contains the following steps.

i. Set the initial value of filter p(s1 = j
∣∣y1, θ, φ, P ) = πj, for j = 1, . . . , K, where

π is the stationary distribution, which can be computed by solving π = P ᵀπ.

ii. Prediction step: p(st
∣∣y1:t−1, θ, φ, P ) ∝

∑K
j=1 Pj,st · p(st−1 = j

∣∣y1:t−1, θ, φ, P ).

iii. Update step:

p(st
∣∣y1:t, θ, φ, P ) ∝ f(rt

∣∣µst , σ2
st) · g(RVt

∣∣ν + 1, νσ2
st) · p(st

∣∣y1:t−1, θ, φ, P ),

where function f(·) and g(·) denote normal density and inverse-gamma density,

respectively.

The underlying states are drawn using backward sampler as follows.

i. For t = T , draw sT from p(sT
∣∣y1:T , θ, φ, P ).

ii. For t = T − 1, . . . , 1, draw st from Pst,st+1 · p(st
∣∣y1:t, θ, φ, P ).

Let nj =
∑T

t=1 1(st = j) denotes the number of observations belong to state j.

(2) µj
∣∣r1:T , s1:T , σ

2
j for j = 1, . . . , K
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µj is sampled using the Gibbs sampling for linear regression model. Given prior

µj ∼ N(mj, v
2
j ), µj is sampled from conditional posterior N(mj, vj

2), where

mj =
v2
j

∑
st=j

rt +mjσ
2
j

σ2
j + njv2

j

, and vj
2 =

σ2
j v

2
j

σ2
j + njv2

j

.

(3) σ2
j

∣∣y1:T , µj, ν, s1:T for j = 1, . . . , K

The prior of σ2
j is assumed to be σ2

j ∼ G(v0, s0). The conditional posterior of σ2
j

is given as follows,

p(σ2
j

∣∣y1:T , µj, ν, s1:T ) ∝
∏
st=j

{
1

σj
exp

[
−(rt − µj)2

2σ2
j

]
· (νσ2

j )
(ν+1) exp

(
−
νσ2

j

RVt

)}
·(σ2

j )
v0−1 exp

(
−s0σ

2
j

)
.

The conditional posterior of σ2
j is not of any known form, therefore Metropolis-

Hasting algorithm is applied to sample σ2
j . Combining RV likelihood function and

prior provides a good proposal density q(·) for sampling σ2
j , which follows a gamma

distribution and is derived as follows,

p(σ2
j

∣∣y1:T , µj, ν, s1:T ) ∝
∏
st=j

{
(νσ2

j )
(ν+1) exp

(
−
νσ2

j

RVt

)}
· (σ2

j )
v0−1 exp

(
−s0σ

2
j

)
∼ G

(
nj(ν + 1) + v0, ν

∑
st=j

1

RVt
+ s0

)
≡ q(σ2

j ).

(4) ν
∣∣y1:T , {σ2

j}Kj=1, s1:T

The prior of ν is assumed to be ν ∼ IG(a, b). The posterior of ν is given as follows.

p(ν
∣∣y1:T , σ

2
st , s1:T ) ∝

T∏
t=1

{
(νσ2

st)
(ν+1)

Γ(ν + 1)
RV −ν−2

t exp

(
−
νσ2

st

RVt

)}
· (ν)−a−1 exp

(
− b
ν

)
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ν is drawn from a random walk proposal and negative draws will be dropped.

(5) P
∣∣s1:T

Using conjugate prior for rows of the transition matrix P : Pj ∼ Dir(αj1, · · · , αjK),

the posterior is given by Dir(αj1+nj1, · · · , αjK+njK), where vector (nj1, nj2, · · · , njK)

records the numbers of switches from state j to the other states.

2.9.2 MS-logRV Model

Forward filter backward sampler is used to sample s1:T . The sampling of P is same

as step (5) in MS-RV model estimation. The sampling of µj is same as step (2) in

MS-RV model except replacing σ2
j with exp(ζj).

Let nj =
∑T

t=1 1(st = j) denotes the number of observations belong to state j.

Assuming the prior of ζj is ζj ∼ N(mζ,j, v
2
ζ,j), the conditional posterior of ζj is given

as follows,

p(ζj
∣∣y1:T , µj, δ

2
j , s1:T ) ∝

∏
st=j

{
exp

[
−ζj

2
− (rt − µj)2

2 exp(ζj)

]
· exp

[
−

(logRVt − ζj + 1
2
δ2
j )

2

2δ2
j

]}

· exp

[
−(ζj −mζj)

2

2v2
ζ,j

]

Metropolis-Hasting algorithm is applied to sample ζj. The proposal density is
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formed as follows,

p(ζj
∣∣y1:T , µj, δ

2
j , s1:T ) ∝

∏
st=j

{
exp

[
−ζj

2
− (rt − µj)2

2 exp(ζj)

]}
· exp

[
−(ζj − µ∗)2

2σ2∗

]

< exp

[
−njζj

2
−
∑

st=j
(rt − µj)2 exp(−µ∗)(−ζj)

2
− (ζj − µ∗)2

2σ2∗

]
∼ N(µ∗∗j , σ

∗2
j ) ≡ q(ζj), where

µ∗j =
v2
ζ,j

∑
st=j

log(RVt) + 1
2
njv

2
ζδ

2
j + δ2

jmζ,j

njv2
ζ,j + δ2

j

, σ∗2j =
δ2
j v

2
ζ,j

njv2
ζ,j + δ2

j

,

µ∗∗j = µ∗ +
1

2
σ∗2

[∑
st=j

(rt − µj)2 exp(−µ∗)− nj

]
.

Using conjugate prior δ2
j ∼ IG(v0, s0), the posterior density of δ2

j is given by

p(δ2
j

∣∣y1:T , µj, σ
2
j ) ∝

∏
st=j

{
1

δj
exp

[
−

(logRVt − ζj + 1
2
δ2
j )

2

2δ2
j

]}
· δ−v0−1

j exp

(
−s0

δ2
j

)

Metropolis-Hasting is used to sample δj with the following proposal

q(δ2
j ) ≡ IG

(
nj
2

+ v0,

∑
st=j

(logRVt − ζj)2

2
+ s0

)
.

2.9.3 MS-RAV Model

The sampling step of s1:T , {µj}Kj=1 and P are same as in MS-RV model estimation.

Let y′1:t = {y′1, . . . , y′t}, where y′t = {rt, RAVt}. {σj}Kj=1 and ν are sampled as follows.

The prior of σ2
j is assumed to be σ2

j ∼ G(v0, s0). The conditional posterior of σ2
j
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is given as follows,

p(σ2
j

∣∣y′1:T , µj, ν, s1:T ) ∝
∏
st=j

{
1

σj
exp

[
−(rt − µj)2

2σ2
j

]
· σ2ν

j exp

[
−
(
σjΓ(ν)

Γ(ν − 1
2
)

)2
1

RAV 2
t

]}
·(σ2

j )
v0−1 exp

(
−s0σ

2
j

)
.

σ2
j
′

is drawn from random walk proposal and negative draws discarded.

The prior for ν is assumed to be ν ∼ IG(a, b). The posterior of ν is given as

follows,

p(ν
∣∣RAV1:T , {σ2

j}Kj=1, s1:T ) ∝
T∏
t=1

{[
σjΓ(ν)

Γ(ν − 1
2
)

]2ν
RAV −2ν−1

t

Γ(ν)
exp

[
−
(
σjΓ(ν)

Γ(ν − 1
2
)

)2
1

RAV 2
t

]}

·ν−a−1 exp

(
b

ν

)
.

Random walk proposal is used to sample ν and negative values discarded.

2.9.4 MS-logRAV Model

The estimation of MS-logRAV model is very similar to that of MS-logRV model except

changing the return variance exp(ζst) to exp(2ζst).

2.9.5 MS-RCOV

See step (1) and (5) in Section 2.9.1 for the estimation of s1:T and P . Let nj =∑T
t=1 1(st = j) denotes the number of observations belong to state j.
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Given conjugate prior Mj ∼ N(Gj, Vj), the posterior density of Mj is given by

Mj

∣∣R1:T , s1:T ,Σj ∼ N(M,V ), where

V =
(
Σ−1
j nj + V −1

j

)−1
, M = V

(
Σ−1
j

∑
st=j

Rt +GjV
−1
j

)
.

The prior of Σj is assumed to be Σj ∼ W(Ψ, τ). The conditional posterior of Σj is

given as follows,

p(Σj

∣∣Y1:T ,Mj, κ, s1:T ) ∝
∏
st=j

{
|Σj|−

1
2 exp

[
−1

2
(Rt −Mj)

ᵀΣ−1
j (Rt −Mj)

]}
·
∏
st=j

{
|Σj|

κ
2 |RCOVt|−

κ+d+1
2 exp

[
−1

2
tr(ΣjRCOV

−1
t )

]}
·|Σj|

τ−d−1
2 exp

[
−1

2
tr(Ψ−1Σj)

]
.

Metropolis-Hasting algorithm is applied to sample Σj. The proposal density qj(·) is

formed as follows,

p(Σj

∣∣Y1:T ,Mj, κ, s1:T ) ∝
∏
st=j

{
|Σj|

κ
2 exp

[
−1

2
tr(ΣjRCOV

−1
t )

]}
· |Σj|

τ−d−1
2 exp

[
−1

2
tr(Ψ−1Σj)

]

∼ W

[(κ− 1− d)
∑
st=j

RCOV −1
t + Ψ−1

]−1

, njκ+ τ

 ≡ qj(·).

Assuming the prior of κ is κ ∼ G(a, b), the posterior density of κ is given as follows,

p(κ
∣∣Y1:T ,Mst ,Σst , S) ∝

T∏
t=1

{
|Σst(κ− d− 1)|κ2

2
κd
2 Γ(κ

2
)

|RCOVt|−
κ+d+1

2

· exp

[
−1

2
tr
(
(κ− d− 1)ΣstRCOV

−1
t

)]}
· κa−1 exp(−bκ).
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Metropolis-Hasting algorithm with random walk proposal is used to sample κ.

2.9.6 Univariate Joint IHMM-RV

Define vector C = {c1, · · · , cK} and another K × K matrix A, which will be used

in sampling Γ and η. The MCMC steps are illustrated as follows. Several estimation

steps are based on Maheu and Yang (2016) and Song (2014).

(1) u1:T

∣∣s1:T ,Γ, P

Draw u1 ∼ Uniform(0, γs1) and draw ut ∼ Uniform(0, Pst−1,st) for t = 2, . . . , T .

(2) Adjust the Number of States K

i. Check if max{P r
1,K+1, · · · , P r

K,K+1} > min{u1:T}. If yes, expand the number of

clusters by making the following adjustments (ii) - (vi), otherwise, move to step

(3).

ii. Set K = K + 1.

iii. Draw uβ ∼ Beta(1, η), set γK = uβγ
r
K and the new residual probability equals

to γrK+1 = (1− uβ)γrK .

iv. For j = 1, · · · , K, draw uβ ∼ Beta(γK , γK+1), set Pj,K = uβP
r
j,K and P r

j,K+1 =

(1 − uβ)P r
j,K . Also, add an additional row to transition matrix P . PK+1 ∼

Dir(αγ1, · · · , αγK).

v. Expand the parameter size by 1 by drawing µK+1 ∼ N(m, v2) and σ2
K+1 ∼

IG(v0, s0).
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vi. Go back to step(i.).

(3) s1:T |y1:T , u1:T , θ, φ, P,Γ

In this step, the latent state variable is sampled using the forward filter backward

sampler Chib (1996). The forward filter part contains the following steps:

i. Set the initial value of filter p(s1 = j
∣∣y1, u1, θ, φ, P ) = 1(u0 < γj) and normalize

it.

ii. Prediction step:

p(st
∣∣y1:t−1, u1:t−1, θ, φ, P ) ∝

K∑
j=1

1(ut < Pj,st) · p(st−1 = j
∣∣y1:t−1, u1:t−1, θ, φ, P ).

iii. Update step:

p(st
∣∣y1:t, u1:t, θ, φ, P ) ∝ f(rt

∣∣µj, σ2
j ) ·g(RVt

∣∣ν+1, νσ2
j ) ·p(st

∣∣y1:t−1, u1:t−1, θ, φ, P ).

The underlying states are drawn using backward sampler as follows.

i. For t = T , draw sT from p(sT
∣∣y1:T , u1:T , θ, φ, P ).

ii. For t = T − 1, · · · , 1, draw st from 1(ut < Pj,st+1) · p(st
∣∣y1:t, u1:t, P, θ, φ).

Then we count the number of active clusters and removing inactive states by making

following adjustments.

i. Calculate the number of active states (states with at least one observation as-

signed to it) denoted by L. If L < K, remove the inactive states by adjusting

the value of states.
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ii. Adjust the order of state-dependent parameters µ, σ2 and Γ according to the

adjusted state s1:T .

iii. Set K = L. Recalculate the residual probabilities of ΓrK+1 for j = 1, · · · , K.

Then set the values of parameter µj, σ
2
j and γj, to be zero for j > K.

(4) Γ
∣∣s1:T , η, α

i. Let nj,i denotes the number of state moves from state j to i. Calculate nj,i for

i = 1, · · · , K and j = 1, · · · , K.

ii. For i = 1, · · · , K and j = 1, · · · , K, if nj,i > 0, then for l = 1, · · · , nj,i, draw

xl ∼ Bernoulli( αγi
l−1+αγi

). If xl = 1, set Aj,i = Aj,i + 1.

iii. Draw Γ ∼ Dir(c1, . . . , cK , η), where ci =
∑K

j=1Aji.

(5) P
∣∣s1:T ,Γ, α

For j = 1, · · ·K, draw Pj ∼ Dir(αγ1 + nj,1, · · · , αγk + nj,K , αγ
r
K+1).

(6) θ
∣∣y1:T , s1:T , ν

See the step (2) and step (3) in Appendix 9.1. for the estimation of state-dependent

parameters µj, σ
2
j , for j = 1, . . . , K.

(7) ν
∣∣y1:T , s1:T , {σ2

j}Kj=1, ν

Same as the step (4) in Appendix 9.1.

(8) η
∣∣s1:T ,Γ, α
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Recompute C vector again as in step (4) and define ν and λ, where ν ∼ Bernoulli(
∑K
i=1 ci∑K

i=1 ci+η
)

and λ ∼ Beta(η+1,
∑K

i=1 ci). Then draw a new value of η ∼ G(a1+K−ν, b1−log(λ)).

(9) α
∣∣s1:T , C

Define ν ′j, λ
′
j, for j = 1, · · · , K, where ν ′j ∼ Bernoulli(

∑K
i=1 nj,i∑K

i=1 nj,i+α
) and λ′j ∼

Beta(α+ 1,
∑K

i=1 nj,i). Then draw α ∼ G(a2 +
∑K

j=1 cj −
∑K

j=1 ν
′
j, b2−

∑K
j=1 log(λ′j)).

2.9.7 Univariate Joint IHMM-logRV and Joint IHMM-logRAV

See step (1) - (5), (8) and (9) in Appendix 9.6 for the estimation of auxiliary variable

u1:T , latent state variable s1:T , Γ, transition matrix P , DP concentration parameter

η and α. The estimation of θ = {µj, ζj, δ2
j}∞j=1 in IHMM-logRV are same as the MS-

logRV model, see Appendix 9.3. The parameter estimation of IHMM-logRAV can be

done similarly.

2.9.8 Joint IHMM-RCOV

See step (1) - (5), (8) and (9) in Appendix 9.6 for the estimation of u1:T , s1:T , Γ, P ,

η and α. The estimation of θ = {Mj,Σj}∞j=1 and κ are same as the estimation of

MS-RCOV model, see Section 2.9.5.

47



Ph.D. Thesis - Jia Liu McMaster University - Business

Bibliography

Alizadeh, S., Brandt, M. W., and Diebold, F. (2002). Range-based estimation of

stochastic volatility models. The Journal of Finance, 57(3), 1047–1091.

Andersen, T. and Benzoni, L. (2009). Realized volatility. In Handbook of Financial

Time Series. Springer.

Andersen, T. G., Bollerslev, T., Diebold, F. X., and Ebens, H. (2001). The distri-

bution of realized stock return volatility. Journal of Financial Economics, 61(1),

43–76.

Ang, A. and Bekaert, G. (2002). Regime switches in interest rates. Journal of Business

& Economic Statistics, 20(2), 163–182.

Barndorff-Nielsen, O. E. and Shephard, N. (2002). Estimating quadratic variation

using realized variance. Journal of Applied Econometrics, 17, 457–477.

Barndorff-Nielsen, O. E. and Shephard, N. (2004a). Econometric analysis of real-

ized covariation: High frequency based covariance, regression, and correlation in

financial economics. Econometrica, 72(3), 885–925.

Barndorff-Nielsen, O. E. and Shephard, N. (2004b). Power and bipower variation

with stochastic volatility and jumps. Journal of Financial Econometrics, 2, 1–48.

Blair, B. J., Poon, S.-H., and Taylor, S. J. (2001). Forecasting S&P 100 volatility:

the incremental information content of implied volatilities and high-frequency index

returns. Journal of Econometrics, 105(1), 5 – 26.

48



Ph.D. Thesis - Jia Liu McMaster University - Business

Carpantier, J.-F. and Dufays, A. (2014). Specific Markov-switching behaviour for

arma parameters. CORE Discussion Papers 2014014, Universit catholique de Lou-

vain, Center for Operations Research and Econometrics (CORE).

Chib, S. (1996). Calculating posterior distributions and modal estimates in markov

mixture models. Journal of Econometrics, 75(1), 79–97.

Clements, A. and Silvennoinen, A. (2013). Volatility timing: How best to forecast

portfolio exposures. Journal of Empirical Finance, 24, 108 – 115.

Dueker, M. and Neely, C. J. (2007). Can Markov switching models predict excess

foreign exchange returns? Journal of Banking & Finance, 31(2), 279–296.

Dufays, A. (2016). Infinite-state Markov-switching for dynamic volatility. Journal of

Financial Econometrics, 14(2), 418–460.

Engel, C. and Hamilton, J. D. (1990). Long swings in the dollar: Are they in the

data and do markets know it? American Economic Review, 80, 689–713.

Engle, R. and Colacito, R. (2006). Testing and valuing dynamic correlations for asset

allocation. Journal of Business and Economic Statistics, 24, 238–253.

Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. The

Annals of Statistics, 1(2), 209–230.

Fleming, J., Kirby, C., and Ostdiek, B. (2001). The economic value of volatility

timing. The Journal of Finance, 56(1), 329–352.

Forni, M. and Reichlin, L. (1998). Let’s get real: A factor analytical approach to

49



Ph.D. Thesis - Jia Liu McMaster University - Business

disaggregated business cycle dynamics. The Review of Economic Studies, 65(3),

453–473.

Gael, J. V., Saatci, Y., Teh, Y. W., and Ghahramani, Z. (2008). Beam sampling

for the infinite hidden Markov model. In In Proceedings of the 25th International

Conference on Machine Learning.

Greenberg, E. (2014). Introduction to Bayesian Econometrics. Cambridge University

Press.

Guidolin, M. and Timmermann, A. (2006). An econometric model of nonlinear dy-

namics in the joint distribution of stock and bond returns. Journal of Applied

Econometrics, 21(1), 1–22.

Guidolin, M. and Timmermann, A. (2008). International asset allocation under

regime switching, skew, and kurtosis preferences. Review of Financial Studies,

21(2), 889–935.

Guidolin, M. and Timmermann, A. (2009). Forecasts of US short-term interest rates:

A flexible forecast combination approach. Journal of Econometrics, 150(2), 297–

311.

Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary

time series and the business cycle. Econometrica, 57(2), 357–384.

Hansen, P., Huang, Z., and Shek, H. H. (2012). Realized GARCH: a joint model

for returns and realized measures of volatility. Journal of Applied Econometrics,

27(6), 877–906.

50



Ph.D. Thesis - Jia Liu McMaster University - Business

Hansen, P. R., Lunde, A., and Voev, V. (2014). Realized beta GARCH: A mul-

tivariate GARCH model with realized measures of volatility. Journal of Applied

Econometrics, 29(5), 774–799.

Jin, X. and Maheu, J. M. (2013). Modeling realized covariances and returns. Journal

of Financial Econometrics, 11(2), 335.

Jin, X. and Maheu, J. M. (2016). Bayesian semiparametric modeling of realized

covariance matrices. Journal of Econometrics, 192(1), 19 – 39.

Jochmann, M. (2015). Modeling U.S. inflation dynamics: A bayesian nonparametric

approach. Econometric Reviews, 34(5), 537–558.

Kim, C.-J., Morley, J. C., and Nelson, C. R. (2004). Is there a positive relationship

between stock market volatility and the equity premium? Journal of Money, Credit

and Banking, 36(3), pp. 339–360.

Kose, M. A., Otrok, C., and Whiteman, C. H. (2003). International business cycles:

World, region, and country-specific factors. American Economic Review, 93(4),

1216–1239.

Lunde, A. and Timmermann, A. G. (2004). Duration dependence in stock prices:

An analysis of bull and bear markets. Journal of Business & Economic Statistics,

22(3), 253–273.

Maheu, J. M. and McCurdy, T. H. (2000). Identifying bull and bear markets in stock

returns. Journal of Business & Economic Statistics, 18(1), 100–112.

Maheu, J. M. and McCurdy, T. H. (2011). Do high-frequency measures of volatility

51



Ph.D. Thesis - Jia Liu McMaster University - Business

improve forecasts of return distributions? Journal of Econometrics, 160(1), 69 –

76. Realized Volatility.

Maheu, J. M. and Yang, Q. (2016). An infinite hidden Markov model for short-term

interest rates. Journal of Empirical Finance, 38, 202–220.

Maheu, J. M., McCurdy, T. H., and Song, Y. (2012). Components of bull and bear

markets: Bull corrections and bear rallies. Journal of Business & Economic Statis-

tics, 30(3), 391–403.

Markowitz, H. (1952). Mean-variance analysis in portfolio choice and financial mar-

kets. The Journal of Finance, 7(1), 77–91.

Noureldin, D., Shephard, N., and Sheppard, K. (2012). Multivariate high-frequency-

based volatility (HEAVY) models. Journal of Applied Econometrics, 27(6), 907–

933.

Pastor, L. and Stambaugh, R. F. (2001). The equity premium and structural breaks.

The Journal of Finance, 56(4), 1207–1239.
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Table 2.1: Prior Specifications of Univariate Return Models

Panel A: Priors for MS and Joint MS Models

Model µst σ2
st ν δ2

st Pj
MS N(0, 1) IG(2, v̂ar(rt)) - Dir(1, . . . , 1)

MS-RV N(0, 1) G(RVt, 1) IG(2, 1) Dir(1, . . . , 1)

MS-RAV N(0, 1) G(RVt, 1) IG(2, 1) Dir(1, . . . , 1)

MS-logRV N(0, 1) N(log(RVt), 5) - IG(2, 0.5) Dir(1, . . . , 1)

MS-logRAV N(0, 1) N(log(RAVt), 5) - IG(2, 0.5) Dir(1, . . . , 1)

Panel B: Priors for IHMM and Joint IHMM Models

Model µst σ2
st ν δ2

st η α

IHMM N(0, 1) IG(2, v̂ar(rt)) - - G(1, 4) G(1, 4)

IHMM-RV N(0, 1) G(RVt, 1) IG(2, 1) - G(1, 4) G(1, 4)

IHMM-logRV N(0, 1) N(log(RVt), 5) - IG(2, 0.5) G(1, 4) G(1, 4)

IHMM-logRAV N(0, 1) N(log(RAVt), 5) - IG(2, 0.5) G(1, 4) G(1, 4)

v̂ar(rt) is the sample variance, RVt, log(RVt) and log(RAVt) are the sample means. All are computed using
in-sample data.
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Table 2.2: Summary Statistics for Monthly Equity Returns and Volatility Measures

Data Mean Median Stdev Skewness Kurtosis Min Max

rt 0.047 0.097 0.612 -0.539 9.123 -4.154 3.884

RVt 0.328 0.156 0.621 6.853 68.499 0.010 8.580

RAVt 0.470 0.394 0.287 2.807 14.358 0.103 2.747

log(RVt) -1.720 -1.856 0.964 0.714 3.992 -4.608 2.149

log(RAVt) -0.882 -0.931 0.476 0.682 3.869 -2.274 1.010

This table reports the summary statistics for monthly returns and various ex-post proxies of
volatility. See the text for definitions. The sample period is from March 1885 to December
2013 and the number of observations is 1542. (Note: Market closed between July 1914 and
December 1914 due to World War I).
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Table 2.3: Equity Forecasts: Jan. 1951 - Dec. 2013

No. of States Models Log-predictive Likelihoods RMSE[rt+1] RMSE[RVt+1]

2 States

MS -548.409 0.5268 0.5285

MS-RV -535.003 0.5242* 0.5338

MS-logRV -534.914 0.5276 0.5229

MS-RAV -533.370* 0.5263 0.5263

MS-logRAV -534.256 0.5269 0.5199*

3 States

MS -538.437 0.5244* 0.5240

MS-RV -523.000* 0.5290 0.5070

MS-logRV -524.754 0.5286 0.5087

MS-RAV -523.171 0.5276 0.5032*

MS-logRAV -525.353 0.5283 0.5048

4 States

MS -535.454 0.5232* 0.5193

MS-RV -520.363* 0.5273 0.5029

MS-logRV -528.631 0.5284 0.4902*

MS-RAV -527.708 0.5277 0.4976

MS-logRAV -530.697 0.5290 0.4920

-

IHMM -535.165 0.5229 0.5348

IHMM-RV -514.662 0.5216 0.4724

IHMM-logRV -516.643 0.5228 0.4647

IHMM-logRAV -517.148 0.5244 0.4775

This table reports the sum of 1-period ahead log-predictive likelihoods of return∑T
j=t+1 log(p(rj |y1:j−1,Model)), root mean squared error for return and realized variance predic-

tions over period from Jan 1951 to Dec 2013 (756 observations). The symbol ∗ identifies the largest
log-predictive likelihood and the smallest RMSE given a fixed number of states. Bold text indicates the
largest log-predictive likelihood and the smallest RMSE in the entire column.

56



Ph.D. Thesis - Jia Liu McMaster University - Business

Table 2.4: Equity Forecasts: Jan. 1984 - Dec. 2013

No. of States Models Log-Predictive Likelihoods RMSE[rt+1] RMSE[RVt+1]

2 States

MS -300.019 0.5542 0.6863

MS-RV -293.311 0.5512* 0.7130

MS-logRV -291.794 0.5563 0.6938*

MS-RAV -290.353* 0.5543 0.7050

MS-logRAV -290.709 0.5553 0.6968

3 States

MS -294.914 0.5522* 0.6817

MS-RV -283.877 0.5570 0.6794

MS-logRV -284.135 0.5568 0.6781

MS-RAV -281.126* 0.5556 0.6764*

MS-logRAV -282.150 0.5561 0.6772

4 States

MS -292.397 0.5506* 0.6755

MS-RV -281.211* 0.5553 0.6749

MS-logRV -285.383 0.5570 0.6564*

MS-RAV -282.523 0.5559 0.6696

MS-logRAV -284.563 0.5580 0.6614

-

IHMM -291.091 0.5529 0.7002

IHMM-RV -279.504 0.5475 0.6344

IHMM-logRV -281.344 0.5503 0.6209

IHMM-logRAV -280.019 0.5529 0.6434

This table reports the sum of 1-period ahead log-predictive likelihoods of return∑T
j=t+1 log(p(rj |y1:j−1,Model)), root mean squared error for return and realized variance predic-

tions over period from Jan 1984 to Dec 2013 (360 observations). The symbol ∗ identifies the largest
log-predictive likelihood and the smallest RMSE given a fixed number of states. Bold text indicates the
largest log-predictive likelihood and the smallest RMSE in the entire column.

Table 2.5: Log-Predictive Bayes Factors for Market Declines

Market Declines Period
∑

log p(rt+1|r1:t,IHMM-RV)
p(rt+1|r1:t,IHMM)

1973-74 stock market crash Feb. 1973 - Dec. 1974 0.2878

Black Monday Oct. 1987 - Dec. 1987 1.4915

Dot-com bubble Jan. 2000 - Dec. 2002 2.3788

Financial crisis of 2007-08 Jul. 2007 - Dec. 2008 1.5615

This table reports log-predictive Bayes factors for the IHMM-RV model versus the IHMM
over several sample periods.
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Table 2.6: Estimates for Stock Market Returns

MS MS-RV MS-RAV

Parameter Mean Stdev Mean Stdev Mean Stdev

µ1
-0.2995

0.1104
-0.0840

0.0354
-0.1372

0.0445
(-0.528, -0.089) (-0.159, -0.020) (-0.229, -0.050)

µ2
0.0875

0.0140
0.1224

0.0139
0.1130

0.0125
(0.060, 0.116) (0.096, 0.149) (0.089, 0.138)

σ2
1

1.6127
0.2630

0.5633
0.0486

0.6581
0.0394

(1.191, 2.217) (0.481, 0.678) (0.597, 0.748)

σ2
2

0.2187
0.0115

0.1556
0.0049

0.1460
0.0044

(0.196, 0.241) (0.143, 0.171) (0.138, 0.154)

ν - -
1.3431

0.0824
2.1529

0.0758
(1.183, 1.501) (2.009, 2.316)

P1,1
0.8775

0.0396
0.9023

0.0193
0.8716

0.0210
(0.793, 0.943) (0.862, 0.937) (0.828, 0.910)

P2,2
0.9849

0.0058
0.9442

0.0099
0.9538

0.0083
(0.972, 0.994) (0.924, 0.962) (0.937, 0.969)

This table reports the posterior mean, standard deviation and 0.95 density intervals (values in
brackets) of parameters of selected 2 state models. The prior restriction µ1 < 0 and µ2 > 0 is
imposed. The sample period is from March 1885 to December 2013 (1542 observations).
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Table 2.7: Performance of Market Timing Portfolios

Panel A: Jan. 1951 - Dec. 2013

Number of states Model Mean St. Dev. Sharpe Ratio ∆q ∆e

Buy-Hold 0.0826 0.5148 0.1604 - -

2 States
MS 0.0663 0.4198 0.1578 - -

MS-RV 0.0720 0.3929 0.1831 92.256 96.192

4 States
MS 0.0690 0.4427 0.1560 -7.188 -4.512

MS-RV 0.0698 0.4040 0.1729 55.860 60.372

-
IHMM 0.0657 0.4414 0.1487 -37.608 -37.884

IHMM-RV 0.0770 0.4348 0.1770 82.392 87.888

Panel B: Jan. 1984 - Dec. 2013

Number of states Model Mean St. Dev. Sharpe Ratio ∆q ∆e

Buy-Hold 0.0911 0.5408 0.1684 - -

2 States
MS 0.0564 0.4755 0.1187 - -

MS-RV 0.0772 0.3909 0.1975 325.536 337.728

4 States
MS 0.0684 0.4845 0.1412 100.476 108.540

MS-RV 0.0645 0.4291 0.1502 145.476 156.852

-
IHMM 0.0563 0.4975 0.1132 -37.212 -37.692

IHMM-RV 0.0794 0.4590 0.1729 247.956 261.276

The summary statistics are based on annualized returns. The values in the last two columns are
annualized basis point performance fees that an investor is willing to pay to switch from the 2-state
Markov switching model. The risk aversion coefficient is γ = 5. Bold numbers indicate the largest
Sharpe ratio and the largest performance fee for a class of models.
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Table 2.8: Prior Specification of Multivariate Models

Panel A: Priors for Multivariate MS Models

Model Mst Σst κ Pj

MS N(0, 5I) IW(Ĉov(Rt), 5) - Dir(1, . . . , 1)

MS-RCOV N(0, 5I) W(1
3
RCOVt, 3) G(20, 1)1κ>4 Dir(1, . . . , 1)

Panel B: Priors for Multivariate IHMM Models

Model Mst Σst κ η α

IHMM N(0, 5I) IW(Ĉov(Rt), 5) - G(1, 4) G(1, 4)

IHMM-RCOV N(0, 5I) W(1
3
RCOVt, 3) G(20, 1)1κ>4 G(1, 4) G(1, 4)

0 denotes zero vector, I is the identity matrix. Ĉov(Rt), and RCOVt are computed using in sample
data.

Table 2.9: Summary Statistics of Returns (IBM, XOM, GE)

Panel A: Summary of Returns

Data Mean Median St. Dev Skewness Kurtosis Min Max

IBM 0.134 0.135 0.824 -0.192 5.169 -3.644 3.635

XOM 0.116 0.096 0.707 -0.152 6.942 -3.930 3.773

GE 0.103 0.088 0.940 -0.324 7.755 -5.265 5.336

Panel B: Return Covariance and RCOV Mean

Covariance of Return Average of RCOV

Data IBM XOM GE IBM XOM GE

IBM 0.678 0.236 0.411 0.742 0.250 0.370

XOM 0.236 0.500 0.338 0.250 0.641 0.394

GE 0.411 0.338 0.882 0.370 0.394 0.970

The panel A of above table reports the summary statistics of the monthly return of IBM,
XOM and GE. The reported data are annualized values after scaling the raw returns by
12. The panel B reports the covariance matrix calculated from monthly return vectors and
the averaged RCOV matrix, which are calculated using daily returns. The sample period is
from Jan 1926 to Dec 2013 (1056 observations).
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Table 2.10: Multivariate Equity Forecasts

No. of States Models
Log Predictive ||RMSE(Rt+1)|| ||RMSE(RCOVt+1)||

Likelihoods

8 States
MS -2294.571 1.2843 2.4230

MS-RCOV -2264.490* 1.2857 2.2049*

12 States
MS -2315.345 1.2849* 2.4979

MS-RCOV -2270.969* 1.2856 2.2320*

-
IHMM -2274.063 1.2877 2.3651

IHMM-RCOV -2262.383 1.2873* 2.1956

This table summarizes the sum of 1 month log predictive likelihoods of return,∑T
j=t+1 log(p(Rj |y1:j−1,Model)), root mean squared errors of mean and covariance prediction

over Jan 1951 to Dec 2013 (totally 756 predictions), when the models are applied to analyze
IBM, XOM, GE jointly. The root mean squared errors provided in this table are matrix norms.

||A|| =
√∑

i

∑
j a

2
ij . The symbol ∗ identifies the largest log-predictive likelihood and the smallest

RMSE given a fixed number of states. Bold text indicates the largest log-predictive likelihood and
the smallest RMSE in the entire column.
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Table 2.11: Performance of Minimum Variance Portfolios (Jan. 1951 - Dec. 2013)

Panel A: Required Annualized Portfolio Return: 10%

Mean St. Dev. Sharpe Ratio ∆q ∆e

8 States
MS 0.1103 0.3296 0.3345 - -

MS-RCOV 0.1090 0.3155 0.3455 7.080 3.888

12 States
MS 0.1103 0.3369 0.3273 -10.704 -10.188

MS-RCOV 0.1084 0.3137 0.3456 3.744 0.900

-
IHMM 0.1081 0.3257 0.3320 -15.924 -16.224

IHMM-RCOV 0.1089 0.3170 0.3436 4.188 0.600

Panel B: Required Annualized Portfolio Return: 20%

Mean St. Dev. Sharpe Ratio ∆q ∆e

8 States
MS 0.1956 0.8916 0.2194 - -

MS-RCOV 0.1962 0.8660 0.2265 106.752 83.784

12 States
MS 0.1934 0.9161 0.2111 -123.468 -116.364

MS-RCOV 0.1970 0.8626 0.2284 128.772 103.104

-
IHMM 0.1933 0.8715 0.2218 56.940 45.876

IHMM-RCOV 0.1985 0.8695 0.2283 116.520 90.996

The summary statistics are based on annualized return (scaled by 12). ∆q is annualized basis
point performance fees that an investor with quadratic utility is willing to pay to switch from
the 8-state MS model. ∆e is the fee for investor with exponential utility. The risk aversion
coefficients are both utility function are γ = 5. Panel A and B shows the results of portfolio with
10% and 20% required return, respectively. Out of sample period: Jan 1951 - Dec 2013, totally
756 months. Bold numbers indicate the largest Sharpe ratio and the largest performance fee for
a class of models.
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Table 2.12: Performance of Minimum Variance Portfolios (Jan. 1984 - Dec. 2013)

Panel A: Required Annualized Portfolio Return: 10%

Mean St. Dev. Sharpe Ratio ∆q ∆e

8 States
MS 0.0907 0.3370 0.2692 - -

MS-RCOV 0.0925 0.3239 0.2856 36.612 33.060

12 States
MS 0.0889 0.3491 0.2545 -36.708 -36.336

MS-RCOV 0.0938 0.3222 0.2912 51.936 48.348

-
IHMM 0.0936 0.3354 0.2791 30.972 33.420

IHMM-RCOV 0.0925 0.3232 0.2860 36.948 32.880

Panel B: Required Annualized Portfolio Return: 20%

Mean St. Dev. Sharpe Ratio ∆q ∆e

8 States
MS 0.1788 0.9140 0.1956 - -

MS-RCOV 0.1833 0.8934 0.2052 128.520 99.360

12 States
MS 0.1728 0.9542 0.1811 -229.368 -217.260

MS-RCOV 0.1869 0.8857 0.2110 195.588 161.340

-
IHMM 0.1871 0.8966 0.2087 153.588 154.812

IHMM-RCOV 0.1831 0.8967 0.2042 113.532 75.228

The summary statistics are based on annualized return (scaled by 12). ∆q is annualized basis
point performance fees that an investor with quadratic utility is willing to pay to switch from
the 8-state MS model. ∆e is the fee for investor with exponential utility. The risk aversion
coefficients for both utility function are γ = 5. Panel A and B shows the results of portfolio with
10% and 20% required return, respectively. Out of sample period: Jan 1984 - Dec 2013, totally
360 months. Bold numbers indicate the largest Sharpe ratio and the largest performance fee for
a class of models.

63



Ph.D. Thesis - Jia Liu McMaster University - Business

Table 2.13: Return Variances of Global Minimum Variance Portfolios

Panel A: Jan. 1951 - Dec. 2013

No. of States Model Variance

8 States
MS 0.31123

MS-RCOV 0.29601

12 States
MS 0.32271

MS-RCOV 0.29191

-
IHMM 0.30325

IHMM-RCOV 0.29675

Panel B: Jan. 1984 - Dec. 2013

No. of States Model Variance

8 States
MS 0.31498

MS-RCOV 0.31112

12 States
MS 0.33399

MS-RCOV 0.30378

-
IHMM 0.31098

IHMM-RCOV 0.31047

This table reports variances of annualized return of
global minimum variance portfolios based on com-
peting models. Bold numbers indicate the smallest
portfolio variance for a class of models.
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Figure 2.1: The top panel shows log (p(rt+1|y1:t, IHMM-RV))−log (p(rt+1|y1:t, IHMM))
over January 1984 to December 2013. The second panel plots the cumulative log-
predictive likelihood difference. The final panel is the time series plot of realized
absolute variation.
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Chapter 3

Bayesian Nonparametric

Estimation of Ex-post Variance

3.1 Introduction

This chapter introduces a new method of estimating ex-post volatility from high-

frequency data using a Bayesian nonparametric model. In contrast to existing clas-

sical estimation methods, such as those applied in Chapter 2, the proposed method

allows the data to cluster under a flexible framework and delivers an exact finite sam-

ple distribution for the ex-post variance or transformations of the variance. Bayesian

nonparametric variance estimators under no noise, heteroskedastic and serially cor-

related microstructure noise are proposed.

Volatility is an indispensable quantity in finance and is a key input into asset pric-

ing, risk management and portfolio management. In the last two decades, researchers

have taken advantage of high-frequency data to estimate ex-post variance using in-

traperiod returns. Barndorff-Nielsen and Shephard (2002) and Andersen et al. (2003)
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formalized the idea of using high frequency data to measure the volatility of lower

frequency returns. They show that realized variance (RV) is a consistent estimator of

quadratic variation under ideal conditions. Unlike parametric models of volatility in

which the model specification is important, RV is a model free estimate of quadratic

variation in that it is valid under a wide range of spot volatility dynamics.1

RV provides an accurate measure of ex-post variance if there is no market mi-

crostructure noise. However, observed prices at high-frequency are inevitably con-

taminated by noise in reality and returns are no longer uncorrelated. In this case,

RV is a biased and inconsistent estimator Hansen and Lunde (2006); Aı̈t-Sahalia

et al. (2011). The impact of market microstructure noise on forecasting is explored

in Aı̈t-Sahalia and Mancini (2008) and Andersen et al. (2011).

Several different approaches have been proposed to estimating ex-post variance

under microstructure noise. Zhou (1996) first introduced the idea of using a kernel-

based method to estimate ex-post variance. Barndorff-Nielsen et al. (2008) formally

discussed the realized kernel and showed how to use it in practice in a later paper

(Barndorff-Nielsen et al. (2009)). Another approach is the subsampling method of

Zhang et al. (2005). Hansen et al. (2008) showed how a time-series model can be used

to filter out market microstructure to obtain corrected estimates of ex-post variance.

A robust version of the predictive density of integrated volatility is derived in Corradi

et al. (2009). Although bootstrap refinements are explored in Goncalves and Meddahi

(2009) all distributional results from this literature rely on in-fill asymptotics.

Our Bayesian approach introduces a new concept to this problem, pooling. The

1For a good survey of the key concepts see Andersen and Benzoni (2008), for an in-depth treat-
ment see Aı̈t-Sahalia and Jacod (2014).
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existing ex-post variance estimators treat the information on variance from all in-

traperiod returns independently. However, the variance of intraperiod returns may

be the same at different time periods. Pooling observations with common variance

level may be beneficial to daily variance estimation.

We model intraperiod returns according to a Dirichlet process mixture (DPM)

model. This is a countably infinite mixture of distributions which facilitates the clus-

tering of return observations into distinct groups sharing the same variance parameter.

The DPM model became popular for density estimation following the introduction of

Markov chain Monte Carlo (MCMC) techniques by Escobar and West (1994). Esti-

mation of these models is now standard with several alternatives available, see Neal

(2000) and Kalli et al. (2011). Our proposed method benefits variance estimation in at

least two aspects. First, the common values of intraperiod variance can be pooled into

the same group leading to a more precise estimate. The pooling is done endogenously

along with estimation of other model parameters. Second, the Bayesian nonparamet-

ric model delivers exact finite inference regarding ex-post variance or transformations

such as the logarithm. As such, uncertainty around the estimate of ex-post volatility

is readily available from the predictive density. Unlike the existing asymptotic theory

which may give confidence intervals that contain negative values for variance, density

intervals are always on the positive real line and can accommodate asymmetry.

By extending key results in Hansen et al. (2008) we adapt the DPM models to deal

with returns contaminated with heteroskedastic noise and serially correlated noise.

Monte Carlo simulation results show the Bayesian approach to be a very com-

petitive alternative. Overall, pooling can lead to more precise estimates of ex-post

variance and better coverage frequencies. We show that the new variance estimators
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can be used with confidence and effectively recover both the average statistical fea-

tures of daily ex-post variance as well as the time-series properties. Two applications

to real world data with comparison to realized variance and kernel-based estimators

are included.

This chapter is organized as follows. In Section 3.2, we provide a brief review of

some existing variance estimators which serve as the benchmarks for later comparison.

The Bayesian nonparametric model, daily variance estimator and model estimation

methods are discussed in Section 3.3. Section 3.4 extends the Bayesian nonparamet-

ric model to deal with heteroskedastic and serially correlated microstructure noise.

Section 3.5 provides an extensive simulation and comparison of the estimators. Ap-

plications to IBM and Disney data are found in Section 3.6. Section 3.7 concludes

followed by an appendix.

3.2 Existing Ex-post Volatility Estimation

3.2.1 Realized Variance

Realized variance (RV), which equals the summation of squared intraperiod returns,

is the most commonly used ex-post volatility measurement. Andersen et al. (2003)

and Barndorff-Nielsen and Shephard (2002) formally studied the properties of RV

and show it is a consistent estimator of quadratic variation under no microstructure

noise. We will focus on variance estimation over a day t but all of the results apply

to other time intervals.

Under the assumption of frictionless market and semimartingale, considering the
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following log-price diffusion,

dp(t) = µ(t) dt+ σ(t) dW (t), (3.1)

where p(t) denotes the log-price at time t, µ(t) is the drift term, σ2(t) is the spot

variance and W (t) a standard Brownian motion. If the price process contains no

jump, the variation of the return over t− 1 to t is measured by IVt,

IVt =

∫ t

t−1

σ2(τ)dτ. (3.2)

Let rt,i denotes the ith intraday return on day t, i = 1, . . . , nt, where nt is the

number of intraday returns on day t. Realized variance is defined as

RVt =
nt∑
i=1

r2
t,i, (3.3)

and RVt
p−→ IVt, as nt →∞ (Andersen et al., 2001a).

Barndorff-Nielsen and Shephard (2002) derive the asymptotic distribution of RVt

as

√
nt

1√
2IQt

(RVt − IVt)
d−→ N(0, 1), as nt →∞, (3.4)

where IQt stands for the integrated quarticity, which can be estimated by realized

quarticity (RQt) defined as

RQt =
nt
3

nt∑
i=1

r4
t,i

p−→ IQt, as nt →∞. (3.5)
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3.2.2 Flat-top Realized Kernel

If returns are contaminated with microstructure noise, RVt will be biased and incon-

sistent (Zhang et al., 2005; Hansen and Lunde, 2006; Bandi and Russell, 2008). The

observed log-price p̃t,i, is assumed to follow

p̃t,i = pt,i + εt,i, (3.6)

where pt,i is the true but latent log-price and εt,i is a noise term which is independent

of the price.

Barndorff-Nielsen et al. (2008) introduced the flat-top realized kernel (RKF
t ),

which is the optimal estimator if the microstructure error is a white noise process2.

RKF
t =

nt∑
i=1

r̃2
t,i +

H∑
h=1

k

(
h− 1

H

)
(γ−h + γh), γh =

nt∑
i=1

r̃t,ir̃t,i−h, (3.7)

where H is the bandwidth, k(x) is a kernel weight function.

The preferred kernel function is the second order Tukey-Hanning kernel3 and the

preferred bandwidth is H∗ = cξ
√
nt, where ξ2 = ω2/

√
IQt denotes the noise-to-

signal ratio. ω2 stands for the variance of microstructure noise and can be estimated

by RVt/(2nt) by Bandi and Russell (2008). RVt based on 10-minute returns is less

sensitive to microstructure noise and can be used as a proxy of
√
IQt. c = 5.74 given

Tukey-Hanning kernel of order 2.

Given the Tukey-Hanning kernel and H∗ = cξ
√
nt, Barndorff-Nielsen et al. (2008)

2Another popular approach to dealing with noise is subsampling. See Zhang et al. (2005), Aı̈t-
Sahalia and Mancini (2008) for the Two Scales Realized Volatility (TSRV) estimator.

3Tukey-Hanning kernel with order 2: k(x) = sin2
[
π
2 (1− x)2

]
.
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show that the asymptotic distribution of RKF
t is

n
1/4
t

(
RKF

t − IVt
) d−→ MN

{
0, 4IQ

3/4
t ω

(
ck0,0
• + 2c−1k1,1

•
IVt√
IQt

+ c−3k2,2
•

)}
, (3.8)

where MN is mixture of normal distribution, k0,0
• = 0.219, k1,1

• = 1.71 and k2,2
• = 41.7

for second order Tukey-Hanning kernel.

Even though ω2 can be estimated using RVt/(2nt), a better and less biased esti-

mator suggested by Barndorff-Nielsen et al. (2008) is

ω̌2 = exp
[
log(ω̂2)−RKt/RVt

]
. (3.9)

The estimation of IQt is more sensitive to the microstructure noise. The tri-power

quarticity (TPQt) developed by Barndorff-Nielsen and Shephard (2006) can be used

to estimate IQt,

TPQt = ntµ
−3
4/3

nt−2∑
i=1

|r̃t,i|4/3|r̃t,i+1|4/3|r̃t,i+2|4/3, (3.10)

where µ4/3 = 22/3Γ(7/6)/Γ(1/2). Replacing IVt, ω
2 and IQt with RKF

t , ω̌2 and TPQt

in equation (3.8), the asymptotic variance of RKF
t can be calculated.

3.2.3 Non-negative Realized Kernel

The flat-top realized kernel discussed in previous subsection is based on the assump-

tion that the error term is white noise. However, the white noise assumption is re-

strictive and the error term can be serial dependent or dependent on returns in reality.

Another drawback of the RKF
t is that it may provide negative volatility estimates,
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albeit very rarely. Barndorff-Nielsen et al. (2011) further introduced the non-negative

realized kernel (RKN
t ) which is more robust to these error term assumptions and is

calculated as

RKN
t =

H∑
h=−H

k

(
h

H + 1

)
γh, γh =

nt∑
i=|h|+1

r̃t,ir̃t,i−|h|. (3.11)

The optimal choice of H is H∗ = cξ4/5n
3/5
t and the preferred kernel weight function

is the Parzen kernel4, which implies c = 3.5134. ξ2 can be estimated using the same

method as in the calculation of RKF
t .

Barndorff-Nielsen et al. (2011) show the asymptotic distribution of RKN
t based

on H∗ = cξ4/5n
3/5
t is given by

n
1/5
t

(
RKN

t − IVt
) d−→ MN(κ, 4κ2), (3.12)

where κ = κ0(IQtω)2/5, κ0 = 0.97 for Parzen kernel function, ω and IQt can be

estimated using equation (3.9) and (3.10).

Note that RKN
t is no longer a consistent estimator of IVt and the rate of conver-

gence is slower than that of RKF
t . If the error term is white noise, RKF

t is superior to

RKN
t , but RKN

t is more robust to deviations from independent noise and is always

positive.

4Parzen kernel function:

k(x) =


1− 6x2 + 6x3, 0 ≤ x ≤ 1/2

2(1− x)3, 1/2 < x ≤ 1

0, x > 1
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3.3 Bayesian Nonparametric Ex-post Variance Es-

timation

In this section, we introduce a Bayesian nonparametric ex-post volatility estimator.

After defining the daily variance, conditional on the data, the discussion moves to

the DPM model which provides the model framework of the proposed estimator. The

approach discussed in this section deals with returns without microstructure noise and

an estimator suitable for returns with microstructure noise is found in Section 3.4.

3.3.1 Model of High-frequency Returns

First we consider the case with no market microstructure noise. The model for log-

returns is

rt,i = µt + σt,izt,i, zt,i
iid∼ N(0, 1), i = 1, . . . , nt, (3.13)

where µt is constant in day t. The daily return is

rt =
nt∑
i=1

rt,i (3.14)

and it follows, conditional on the unknown realized volatility path Ft ≡ {σ2
t,i}nti=1, the

ex-post variance is

Vt ≡ Var(rt|Ft) =
nt∑
i=1

σ2
t,i. (3.15)
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In our Bayesian setting Vt is the target to estimate conditional on the data {rt,i}nti=1.

Note, that we make no assumptions on the stochastic process generating σ2
t,i.

3.3.2 A Bayesian Model with Pooling

In this section we discuss a nonparametric prior for the model of (3.13) that allows

for pooling over common values of σ2
t,i. The Dirichlet process mixture model (DPM)

is a Bayesian nonparametric mixture model that has been used in density estimation

and for modeling unknown hierarchical effects among many other applications. A key

advantage of the model is that it naturally incorporates parameter pooling.

Our nonparametric model has the following hierarchical form

rt,i
∣∣µt, σt,i iid∼ N(µt, σ

2
t,i), i = 1, . . . , nt, (3.16)

σ2
t,i

∣∣Gt
iid∼ Gt, (3.17)

Gt

∣∣G0,t, αt ∼ DP(αt, G0,t), (3.18)

G0,t ≡ IG(v0,t, s0,t), (3.19)

where the base measure is the inverse-gamma distribution denoted as IG(v, s), which

has a mean of (s/v − 1) for v > 1. The return mean µt is assumed to be a constant

over i.

The Dirichlet process was formally introduced by Ferguson (1973) and is a dis-

tribution over distributions. A draw from a DP(αt, G0,t) is an almost surely discrete

distribution which is centered around the base distribution G0,t. Therefore, a sample

from σ2
t,i

∣∣Gt ∼ Gt has a positive probability of repeated values. The concentration

parameter αt > 0 governs how closely a draw Gt resembles G0,t. Larger values of
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αt lead to Gt having the more unique atoms with significant weights. As αt → ∞,

Gt → G0,t which implies that every rt,i has a unique σ2
t,i drawn from the inverse-

gamma distribution. In this case there is no pooling and we have a setting very close

to the classical counterpart discussed above. However, for finite αt, pooling can take

place. The other extreme is complete pooling for αt → 0 in which there is one com-

mon variance shared by all observations such that σ2
t,i = σ2

t,1, ∀i. Since αt plays an

important role in pooling we place a prior on it and estimate it along with the other

model parameters for each day.

A stick breaking representation (Sethuraman (1994)) of the DPM in (3.17) is given

as follows.

p(rt,i
∣∣µt,Ψt, wt) =

∞∑
j=1

wt,jN(rt,i|µt, ψ2
t,j), (3.20)

wt,j = vt,j

j−1∏
l=1

(1− wt,l), (3.21)

vt,j
iid∼ Beta(1, αt), (3.22)

where N(·|·, ·) denotes the density of the normal distribution, Ψt = {ψ2
t,1, ψ

2
t,2. . . . , } is

the set of unique values of σ2
t,i, wt = {wt,1, wt,2, . . . , } and wt,j is the weight associated

with the jth component. This formulation of the model facilitates posterior sampling

which is discussed in the next section.

Since our focus is on intraday returns and the number of observations in a day

can be small, especially for lower frequencies such as 5-minute. Therefore, the prior

should be chosen carefully. It is straightforward to show that the prior predictive
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distribution of σ2
t,i is G0,t. For σ2

t,i ∼ IG(v0,t, s0,t), the mean and variance of σ2
t,i are

E(σ2
t,i) =

s0,t

v0,t − 1
and var(σ2

t,i) =
s2

0,t

(v0,t − 1)2(v0,t − 2)
. (3.23)

Solving the two equations, the values of v0,t and s0,t are given by

v0,t =

[
E(σ2

t,i)
]2

var(σ2
t,i)

+ 2 and s0,t = E(σ2
t,i)(v0,t − 1). (3.24)

We use sample statistics v̂ar(rt,i) and v̂ar(r2
t,i) calculated with three days intraday

returns (day t − 1, day t, and day t + 1) to set the values of E(σ2
t,i) and var(σ2

t,i),

then use equation (3.24) to find v0,t and s0,t. A shrinkage prior N(0, v2) is used for

µt since µt is expected to be close to zero. v2 is small and adjusted according to the

data frequency. Finally, αt ∼ Gamma(a, b).

For a finite dataset i = 1, . . . , nt our target is the following posterior moment

E[Vt|{rt,i}nti=1] = E

[
nt∑
i=1

σ2
t,i

∣∣∣∣{rt,i}nti=1

]
. (3.25)

Note that the posterior mean of Vt can also be considered as the posterior mean of

realized variance, RVt =
∑nt

i=1 r
2
t,i assuming µt is small. As such, RVt treats each σ2

t,i

as separate and corresponds to no pooling. We discuss estimation of the model next.

3.3.3 Model Estimation

Estimation relies on Markov chain Monte Carlo (MCMC) techniques. We apply the

slice sampler of Kalli et al. (2011), along with Gibbs sampling to estimate the DPM

model. The slice sampler provides an elegant way to deal with the infinite states
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in (3.20). It introduces an auxiliary variable ut,1:nt = {ut,1, . . . , ut,nt} that randomly

truncates the state space to a finite set at each MCMC iteration but marginally

delivers draws from the desired posterior.

The joint distribution of rt,i and the auxiliary variable ut,i is given by

f (rt,i, ut,i|wt, µt,Ψt) =
∞∑
j=1

1 (ut,i < wt,j) N
(
rt,i|µt, ψ2

t,j

)
, (3.26)

and integrating out ut,i recovers (3.20).

It is convenient to rewrite the model in terms of a latent state variable st,i ∈

{1, 2, . . . } that maps each observation to an associated component and parameter

σ2
t,i = ψ2

t,st,i
. Observations with a common state share the same variance parameter.

For a finite dataset the number of states (clusters) is finite and ordered from 1, . . . , K.

Note that the number of clusters K, is not a fixed value over the MCMC iterations.

A new cluster with variance ψ2
t,K+1 ∼ G0,t can be created if existing clusters do not

fit that observation well and clusters sharing a similar variance can be merged into

one.

The joint posterior is

p(µt)
K∏
j=1

[
p(ψ2

t,j)
]
p(αt)

nt∏
i=1

1(ut,i < wt,st,i)N(rt,i|µt, ψ2
t,st,i

). (3.27)

Each MCMC iteration contains the following sampling steps.

1. π
(
µt|rt,1:nt , {ψ2

t,j}Kj=1, st,1:nt

)
∝ p (µt)

∏nt
i=1 p

(
rt,i
∣∣µt, ψ2

t,st,i

)
.

2. π
(
ψ2
t,j|rt,1:nt , st,1:nt , µt

)
∝ p

(
ψ2
t,j

)∏
t:st,i=j

p
(
rt,i
∣∣µt, ψ2

t,j

)
for j = 1, . . . , K.

3. π (vt,j|st,1:nt) ∝ Beta (vt,j|at,j, bt,j) with at,j = 1 +
∑nt

i=1 1 (st,i = j) and bt,j =
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αt +
∑nt

i=1 1 (st,i > j) and update wt,j = vt,j
∏

l<j (1− vt,l) for j = 1, . . . , K.

4. π (ut,i|wt,i, st,1:nt) ∝ 1
(
0 < ut,i < wt,st,i

)
.

5. Find the smallest K such that
∑K

j=1 wt,j > 1−min (ut,1:nt).

6. π
(
st,i|r1:nt , st,1:nt , µt, {ψ2

t,j}Kj=1, ut,1:nt , K
)
∝
∑K

j=1 1 (ut,i < wt,j) p
(
rt,i, |µt, ψ2

t,j

)
for

i = 1, . . . , nt.

7. π (αt|K) ∝ p (αt) p (K|αt).

In the first step µt is common to all returns and this is a standard Gibbs step given

the conjugate prior. Step 2 is a standard Gibbs step for each variance parameter ψ2
t,j

based on the data assigned to cluster j. The remaining steps are standard for slice

sampling of DPM models. In 7, αt is sampled based on Escobar and West (1994).

Steps 1-7 give one iteration of the posterior sampler. After dropping a suit-

able burn-in amount, M additional samples are collected, {θ(m)}Mm=1, where θ =

{µt, ψ2
t,1, . . . , ψ

2
t,K , st,1:nt , αt}. Posterior moments of interest can be estimated from

sample averages of the MCMC output.

3.3.4 Ex-post Variance Estimator

Conditional on the parameter vector θ the estimate of Vt is

E[Vt|θ] =
nt∑
i=1

σ2
t,si
. (3.28)
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The posterior mean of Vt is obtained by integrating out all parameter and distribu-

tional uncertainty. E [Vt|{rt,i}nti=1] is estimated as

V̂t =
1

M

M∑
m=1

nt∑
i=1

σ
2(m)
t,i , (3.29)

where σ
2(m)
t,i = ψ

2(m)

t,s
(m)
t,i

. Similarly other features of the posterior distribution of Vt can

be obtained. For instance, a (1-α) probability density interval for Vt is the quantiles

of
∑nt

i=1 σ
2
t,st,i

associated with probabilities α/2 and (1 − α/2). Conditional on the

model and prior these are exact finite sample estimates, in contrast to the classical

estimator which relies on infill asymptotics5 to derived confidence intervals.

If log(Vt) is the quantity of interest, the estimator of E [log(Vt)|{rt,i}nti=1] is given

as

̂log(Vt) =
1

M

M∑
m=1

log

(
nt∑
i=1

σ
2(m)
t,i

)
. (3.30)

As before, quantile estimates of the posterior of log(Vt) can be estimated from the

MCMC output.

3.4 Bayesian Estimator Under Microstructure Er-

ror

An early approach to deal with market microstructure noise was to prefilter with a

time-series model Andersen et al. (2001b); Bollen and Inder (2002); Maheu and Mc-

Curdy (2002). Hansen et al. (2008) shows that prefiltering results in a bias to realized

variance that can be easily corrected. We employ these insights into moving average

5Infill asymptotics refers to the increasing rate of sampling within a fixed time interval.
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specifications to account for noisy high-frequency returns. A significant difference is

that we allow for heteroskedasticity in the noise process.

3.4.1 DPM-MA(1) Model

The existence of microstructure noise turns the intraday return process into an auto-

correlated process. First consider the case in which the error is white noise:

p̃t,i = pt,i + εt,i, εt,i ∼ N(0, ω2
t,i), (3.31)

where p̃t,i denotes the observed log-price with error, pt,i is the unobserved fundamental

log-price and ω2
t,i is the heteroskedastic noise variance.

Given this structure it can be shown that the returns series r̃t,i = p̃t+1,i − p̃t,i

has non-zero first order autocorrelation but zero higher order autocorrelation. That

is cov(r̃t,i+1, r̃t,i) = −ω2
t,i and cov(r̃t,i+j, r̃t,i) = 0 for j ≥ 2. This suggest a moving

average model of order one.

Combining MA(1) parameterization with our Bayesian nonparametric framework

yields the DPM-MA(1) models.

r̃t,i|µt, θt, δ2
t,i = µt + θtηt,i−1 + ηt,i, ηt,i ∼ N(0, δ2

t,i) (3.32)

δ2
t,i|Gt ∼ Gt, (3.33)

Gt|G0,t, αt ∼ DP(αt, G0,t), (3.34)

G0,t ≡ IG(v0,t, s0,t). (3.35)

The noise terms are heteroskedastic. Note that the mean of rt,i is not a constant term
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but a moving average term. The MA parameter θt is constant for i but will change

with the day t. The prior is θt ∼ N(mθ, v
2
θ)1{|θt|<1} in order to make the MA model

invertible. The error term ηt,0 is assumed to be zero. Other model settings remain

the same as the DPM illustrated in Section 3.3. Later we show how estimates from

this specification can be be used to recover an estimate of the ex-post variance Vt of

the true return process.

3.4.2 DPM-MA(q) Model

For lower sampling frequencies, such as 1 minute or more, first order autocorrelation

is the main effect from market microstructure. As such, the MA(1) model will be

sufficient for many applications. However, at higher sampling frequencies, the depen-

dence may be stronger. To allow for a more complex effect on returns from the noise

process consider the MA(q-1) noise affecting returns,

p̃t,i = pt,i + εt,i − ρ1εt,i−1 − · · · − ρq−1εt,i−q+1, εt,i ∼ N(0, ω2
t,i). (3.36)

For returns, this leads to the following DPM-MA(q) model,

r̃t,i|µt, {θt,j}qj=1, δ
2
t,i = µt +

q∑
j=1

θt,jηt,i−j + ηt,i, ηt,i ∼ N(0, δ2
t,i) (3.37)

δ2
t,i|Gt ∼ Gt, (3.38)

Gt|G0,t, αt ∼ DP(αt, G0,t), (3.39)

G0,t ≡ IG(v0,t, s0,t). (3.40)
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The joint prior of (θt,1, . . . , θt,q) is N(MΘ, VΘ)1{Θ}6 and (ηt,0, . . . , ηt,−(q−1)) = (0, . . . , 0).

3.4.3 Model Estimation

We discuss the estimation of DPM-MA(1) model and the approach can be easily ex-

tended to the DPM-MA(q). The main difference in this model is that the conditional

mean parameters µt and θt require a Metropolis-Hasting (MH) step to sample their

conditional posteriors. The remaining MCMC steps are essentially the same. As

before, let ψ2
t,i denote the unique values of δ2

t,j then each MCMC iteration samples

from the following conditional distributions.

1. π
(
µt|r̃t,1:nt , {ψ2

t,j}Kj=1, θt, st,1:nt

)
∝ p (µt)

∏nt
i=1 N

(
r̃t,i|µt + θtηt,i−1, ψ

2
t,st,i

)
.

2. π
(
θt|r̃t,1:nt , µt, {ψ2

t,j}Kj=1, s
t
1:nt

)
∝ p (θt)

∏nt
i=1 p

(
r̃t,i|µt + θtηt,i−1, ψ

2
t,st,i

)
.

3. π
(
ψ2
t,j|r̃t,1:nt , µt, θt, st,1:nt

)
∝ p

(
ψ2
t,j

)∏
t:st=j

p
(
r̃t,i|µt + θtεt,i−1, ψ

2
t,j

)
for j = 1, . . . , K.

4. π (vt,j|st,1:nt) ∝ Beta (vt,j|at,j, bt,j) with at,j = 1 +
∑nt

i=1 1(st,i = j) and bt,j =

αt +
∑nt

i=1 1(st,i > j) and update wt,j = vt,j
∏

l<j(1− vt,l) for j = 1, . . . , K.

5. π (ut,i|wt,i, st,1:nt) ∝ 1(0 < ut,i < wt,st,i) for i = 1, . . . , nt.

6. Find the smallest K such that
∑K

j=1 wt,j > 1−min(ut,1:nt).

7. π
(
st,i|r̃1:nt , st,1:nt , µt, θt, {ψ2

t,j}Kj=1, ut,1:nt , K
)
∝
∑K

j=1 1(ut,i < wt,j)N(r̃t,i|µt+θtηt,i−1, ψ
2
t,j)

for i = 1, . . . , nt.

8. π(αt|K) ∝ p(αt)p(K|αt).
6Restrictions on MA coefficients: all the roots of 1 + θ1B + θ2B

2 + · · ·+ θqB
q = 0 are outside of

the unit circle.
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In steps 1 and 2 the likelihood requires the sequential calculation of the lagged error

as ηt,i−1 = r̃t,i−1 − µt − θtηt,i−2 which precludes a Gibbs sampling step. Therefore,

µt and θt are sampled using a MH with a random walk proposal. The proposal is

calibrated to achieve an acceptance rate between 0.3 and 0.5.

3.4.4 Ex-post Variance Estimator under Microstructure Er-

ror

Hansen et al. (2008) showed that prefiltering with an MA model results in a bias in

the RV estimator.7 In the Appendix it is shown that the Hansen et al. (2008) bias

correction provides an accurate adjustment to our Bayesian estimator in the context

of heteroskedastic noise. From the DPM-MA(1) model the posterior mean of Vt under

independent microstructure error is

V̂t,MA(1) =
1

M

M∑
m=1

(1 + θ
(m)
t )2

nt∑
i=1

δ
2(m)
t,i , (3.41)

where δ
2(m)
t,i = ψ

2(m)

t,s
(m)
t,i

The log of Vt, square-root of Vt and density intervals can be esti-

mated as the Bayesian nonparametric ex-post variance estimator without microstruc-

ture error.

In the case of higher autocorrelation the DPM-MA(q) model adjusted posterior

estimate of Vt is

V̂t,MA(q) =
1

M

M∑
m=1

(
1 +

q∑
j=1

θ
(m)
t,j

)2 nt∑
i=1

δ
2(m)
t,i . (3.42)

7If r̃t = θ1ηt−1 + · · ·+ θqηt−q+1 + ηt, then under their assumptions the bias corrected estimate of

ex-post variance is RVMAq = (1 + θ1 + · · ·+ θq)
2
nt∑
i=1

η̂2
i , where η̂i denotes a fitted residual.
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Next we consider simulation evidence on these estimators.

3.5 Simulation Results

3.5.1 Data Generating Process

We consider four commonly used data generating processes (DGPs) in the literature.

The first one is the GARCH(1,1) diffusion, introduced by Andersen and Bollerslev

(1998). The log-price follows

dp(t) = µdt+ σ(t)dWp(t), (3.43)

dσ2(t) = α(β − σ2(t))dt+ γσ2(t)dWσ(t). (3.44)

where Wp(t) and Wσ(t) are two independent Wiener processes. The values of param-

eters follow Andersen and Bollerslev (1998) and are µ = 0.03, α = 0.035, β = 0.636

and γ = 0.144, which were estimated using foreign exchange data.

Following Huang and Tauchen (2005), the second and third DGP are a one factor

stochastic volatility diffusion (SV1F) and one factor stochastic volatility diffusion

with jumps (SV1FJ). SV1F is given by

dp(t) = µdt+ exp (β0 + β1v(t)) dWp(t), (3.45)

dv(t) = αv(t)dt+ dWv(t) (3.46)

and the price process for SV1FJ is

dp(t) = µdt+ exp (β0 + β1v(t)) dWp(t) + dJ(t) , (3.47)
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where corr(dWp(t), dWv(t)) = ρ, and J(t) is a Poisson process with jump intensity

λ and jump size δ ∼ N(0, σ2
J). We adopt the parameter settings from Huang and

Tauchen (2005) and set µ = 0.03, β0 = 0.0, β1 = 0.125, α = −0.1, ρ = −0.62,

λ = 0.014 and σ2
J = 0.5.

The final DGP is the two factor stochastic volatility diffusion (SV2F) from Cher-

nov et al. (2003) and Huang and Tauchen (2005).8

dp(t) = µdt+ s- exp (β0 + β1v1(t) + β2v2(t)) dWp(t), (3.48)

dv1(t) = α1v1(t)dt+ dWv1(t), (3.49)

dv2(t) = α2v2(t)dt+ (1 + ψv2(t)) dWv2(t), (3.50)

where corr(dWp(t), dWv1(t)) = ρ1 and corr(dWp(t), dWv2(t)) = ρ2. The parameter

values in SV2F are µ = 0.03, β0 = −1.2, β1 = 0.04, β2 = 1.5, α1 = −0.00137,

α2 = −1.386, ψ = 0.25 and ρ1 = ρ2 = −0.3, which are from Huang and Tauchen

(2005).

Data is simulated using a basic Euler discretization at 1-second frequency for the

four DGPs. Assuming the length of daily trading time is 6.5 hours (23400 seconds), we

first simulate the log price level every second. After this we compute the 5-minute, 1-

minute, 30-second and 10-second intraday returns by taking the difference every 300,

60, 30, 10 steps, respectively. The initial volatility level, such as v1t and v2t in SV2F,

at day t is set equal to the last volatility value at previous day, t− 1. T = 5000 days

of intraday returns are simulated using the four DGPs and used to report sampling

properties of the volatility estimators. In each case, to remove dependence on the

8The function s- exp is defined as s- exp(x) = exp(x) if x ≤ x0 and s- exp(x) =
exp(x0)√

x0

√
x0 − x2

0 + x2 if x > x0, with x0 = log(1.5).
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startup conditions 500 initial days are dropped from the simulation.

Independent Noise

Following Barndorff-Nielsen et al. (2008), log-prices with independent noise are sim-

ulated as follows

p̃t,i = pt,i + εt,i,

εt,i ∼ N(0, σ2
ω),

σ2
ω = ξ2var(rt).

(3.51)

The error term is added to the log-prices simulated from the 4 DGPs every second.

The variance of microstructure error is proportional to the daily variance calculated

using the pure daily returns. We set the noise-to-signal ratio ξ2 = 0.001, which is the

same value used in Barndorff-Nielsen et al. (2008) and close to the value in Bandi

and Russell (2008).

Dependent Noise

Following Hansen et al. (2008), we consider the simulation of log-prices with depen-

dent noise as follows,

p̃t,i = pt,i + εt,i,

εt,i ∼ N
(
µεt,i , σ

2
ω

)
,

µεt,i =

φ∑
l=1

(1− l/φ) (pt,i−l − pt,i−1−l) ,

σ2
ω = ξ2var(rt),

(3.52)
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where φ = 20, which makes the error term correlated with returns in the past 20

seconds (steps). If past returns are positive (negative) the noise term tends to be

positive (negative). All other settings, such as σ2
ω and ξ2, are the same as in the

independent error case.

3.5.2 True Volatility and Comparison Criteria

We assess the ability of several ex-post variance estimators to estimate the daily

quadratic variation (QVt) from the four data generating processes. QVt is estimated

as the summation of the squared intraday pure returns at the highest frequency (1

second)

σ2
t ≡

23400∑
i=1

r2
t,i. (3.53)

The competing ex-post daily variance estimators, generically labeled σ̂2
t , are com-

pared based on the root mean squared errors (RMSE), and bias defined as

RMSE(σ̂2
t ) =

√√√√ 1

T

T∑
t=1

(
σ̂2
t − σ2

t

)2

, (3.54)

Bias(σ̂2
t ) =

1

T

T∑
t=1

(
σ̂2
t − σ2

t

)
. (3.55)

The coverage probability estimates report the frequency that the confidence inter-

vals or density intervals from the Bayesian nonparametric estimators contain the true

ex-post variance, σ2
t . The 95% confidence intervals of RVt, RK

F
t and RKN

t reply on

the asymptotic distribution, which are provided in equation (3.4), (3.8) and (3.12).

We take the bias into account to compute the 95% confidence interval using RKN
t .

The estimation of integrated quarticity is crucial in determining the confidence
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interval for the realized kernels. We consider two versions of quarticity, one is to use

the true (infeasible) IQt which is calculated as

IQtrue
t = 23400

23400∑
i=1

σ4
t,i, (3.56)

where σ2
t,i refers to spot variance simulated at the highest frequency. The other

method is to estimate IQt using the tri-power quarticity estimator, see formula (3.10).

The confidence interval based on IQtrue
t is the infeasible case and the confidence

interval calculated using TPQt is the feasible case.

Table 3.1 list the priors specification of models. For each day 5000 MCMC draws

are collected after 1000 burn-in to compute the Bayesian posterior quantities. A 0.95

density interval is the 0.025 and 0.975 sample quantiles of MCMC draws of
∑nt

i=1 σ
2
t,i,

respectively.

3.5.3 No Microstructure Noise

Figure 3.1 plots 500 days of σ2
t and estimates RVt and V̂t based on returns simulated

from the GARCH(1,1) DGP at 5-minute, 1-minute, 30-second and 10-second. Both

estimators become more accurate as the data frequency increases.

In Table 3.2, V̂t has slightly smaller RMSE in 12 out of the 16 categories. For

example, for the 5-minute data V̂t reduces the RMSE by over 5% for the SV2F

data. This is remarkable given that RVt is the gold standard in the no noise setting.

Figure 3.2 plots the difference between RMSE of RVt and V̂t in 100 subsamples for

GARCH(1,1) and SV1F returns at different frequencies. V̂t is superior to RVt in most

of the subsamples, especially for low frequency returns.
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Table 3.3 shows the bias to be small for both estimators. The Bayesian estimator

reduces the bias for data simulated from GARCH and SV1F diffusion, while RVt has

smaller bias in the other cases.

Table 3.4 shows that coverage probabilities for 95% confidence intervals of RVt

and 0.95 density intervals of V̂t. The Bayesian nonparametric estimator produces

fairly good coverage probabilities for both low and high frequency data, except for

the SV2F data. For RVt, data frequencies higher than 5-minutes are needed to obtain

good finite sample coverage when the asymptotic distribution is used.

In summary, under no microstructure noise, the Bayesian nonparametric estima-

tor is very competitive with the classical counterpart RVt. V̂t offers smaller estimation

error and better finite sample results than RVt when the data frequency is low. Per-

formance of RVt and V̂t both improve as the sampling frequency increases.

3.5.4 Independent Microstructure Noise

In this section we compare RVt, RK
F
t , V̂t and V̂t,MA(1). Figure 3.3 displays the time-

series of RKF
t , V̂t,MA(1) along with the true variance for several sampling frequencies

for data from the SV1F DGP. Both estimators become more accurate as the sampling

frequency increases.

Table 3.5 shows the RMSE of the various estimators for different sampling fre-

quencies and DGPs. RVt and V̂t produce smaller errors in estimating σ2
t than RKF

t

and V̂t,MA(1) for 5-minute data. However, increasing the sampling frequency results

in a larger bias from the microstructure noise. As such, RKF
t and V̂t,MA(1) are more

accurate as the data frequency increases. Compared to RKF
t , V̂t,MA(1) has a smaller

RMSE in all cases, except for 30-second and 10-second SV2F return. Figure 3.4 shows
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that V̂t,MA(1) outperforms RKF
t in most of the subsamples.

The bias of the estimators is found in Table 3.6. Again, RVt and V̂t overestimate

the ex-post variance by a significant amount unless the data frequency is low. Both

RKF
t and V̂t,MA(1) produce better results as more data is used. The bias of RKF

t is

smaller than that of V̂t,MA(1), but the differences are minor.

As can be seen in Table 3.7, V̂t,MA(1) has the best finite sample coverage among all

the alternatives except for the SV2F data. For example, the coverage probabilities of

0.95 density intervals are always within 0.5% from the truth. Note that the density

intervals are trivial to obtain from the MCMC output and do not require the cal-

culation IQt. The coverage probabilities of either infeasible and feasible confidence

intervals of realized kernels are not as good as those of V̂t,MA(1). Moreover, RKF
t

requires larger samples for good coverage, while density intervals of V̂t,MA(1) perform

well for either low or high frequency returns.

3.5.5 Dependent Microstructure Noise

The last experiment considers the performances of the estimators under dependent

noise. RKN
t , RVt, V̂t, V̂t,MA(1) and V̂t,MA(2) are compared. Figure 3.5 plots the esti-

mators for different sampling frequencies. It is clear that estimation is less precise in

this setting.

The RMSE of estimators can be found in Table 3.8. Again, RVt and V̂t provide

poor results if high frequency data is used. Except for one entry in the table, a

version of the Bayesian estimator has the smallest RMSE in each case. The V̂t,MA(1)

estimator is ranked the best if return frequency is 30 seconds, followed by V̂t,MA(2)

and RKN
t . For 10 seconds returns, V̂MA(2) provides the smallest error. Compared to
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RKN
t the V̂t,MA(1) and V̂t,MA(2) can provide significant improvements for 30 and 10

second returns. For instance, at 30 seconds, reductions in the RMSE of 10% or more

are common while at the 10 second frequency reductions in the RMSE are 25% or

more. The subsample analysis shown in Figure 3.6 supports these findings.

Table 3.9 shows V̂t,MA(1) and V̂t,MA(2) have smaller bias if return frequency is one

minute or higher.

Table 3.10 shows the coverage probabilities of all the five estimators. The finite

sample results of V̂t,MA(2) are all very close to the optimal level, no matter the data

frequency.

3.5.6 Evidence of Pooling

Figure 3.7-3.9 display the histograms of the posterior mean of the number of clusters in

three different settings. There are: the DPM for 5-minute SV1F returns (no noise),

the DPM-MA(1) for 1-minute SV1FJ returns (independent noise) and the DPM-

MA(2) for 30-second SV2F returns (dependent noise). The figures show significant

pooling. For example, in the 1-minute SV1FJ return case, most of the daily variance

estimates of Vt are formed by using 1 to 5 pooled groups of data, instead of 390

observations (separate groups) which is what the realized kernel uses. This level of

pooling can lead to significant improvements for the Bayesian estimator.

In summary, these simulations show the Bayesian estimate of ex-post variance to

be very competitive with existing classical alternatives.
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3.6 Empirical Applications

For each day, 5000 MCMC draws are taken after 10000 burn-in draws are discarded,

to estimate posterior moments. All prior setting are the same as in the simulations.

3.6.1 Application to IBM Return

We first consider estimating and forecasting volatility using a long calendar span of

IBM equity returns. The 1-minute IBM price records from 1998/01/03 to 2016/02/16

were downloaded from the Kibot website9. We choose the sample starting from

2001/01/03 as the relatively small number of transactions before year 2000 yields

many zero intraday returns. The days with less than 5 hours of trading are removed,

which leaves 3764 days in the sample.

Log-prices are placed on a 1-minute grid using the price associated with closest

time stamp that is less than or equal to the grid time. The 5-minute and 1-minute

percentage log returns from 9:30 to 16:00(EST) are constructed by taking the log price

difference between two close prices in time grid and scaling by 100. The overnight

returns are ignored so the first intraday return is formed using the daily opening price

instead of the close price in previous day. The procedure generates 293,520 5-minute

returns and 1,467,848 1-minute returns.

We use a filter to remove errors and outliers caused by abnormal price records.

We would like to filter out the situation in which the price jumps up or down but

quickly moves back to original price range. This suggests an error in the record.

If |rt,i| + |rt,i+1| > 8
√

vart(rt,i) and |rt,i + rt,i+1| < 0.05%, we replace rt,i and rt,i+1

by r′t,i = r′t,i+1 = 0.5 × (rt,i + rt,i+1). The filter adjusts 0 and 70 (70/1,467,848 =

9http://www.kibot.com
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0.00477%) returns for 5-minute and 1-minute case, respectively.

From these data several version of daily V̂t, RVt and RKt are computed. Daily

returns are the open-to-close return and match the time interval for the variance

estimates. For each of the estimators we follow exactly the methods used in the

simulation section.

Ex-post Variance Estimation

Table 3.11 reports summary statistics for several estimators. Overall the Bayesian

and classical estimators are very close. Both the realized kernel and the moving

average DPM estimators reduce the average level of daily variance and indicate the

presence of significant market microstructure noise. Based on this and an analysis of

the ACF of the high-frequency returns we suggest the V̂t,MA(1) for the 5-minute data

and the V̂t,MA(4) for the 1-minute data in the remainder of the analysis. Comparison

with the kernel estimators is found in Figures 3.10 and 3.11. Except for the extreme

values they are very similar.

Interval estimates for two sub-periods are shown in Figures 3.12 and 3.13. A clear

disadvantage of the kernel based confidence interval in that it includes negative values

for ex-post variance. The Bayesian version by construction does not and tends to be

significantly shorter in volatile days. The results of log variance10 are also provided

with some differences remaining.

The degree of pooling from the Bayesian estimators is found in Figure 3.14 and

3.15. As expected, we see more groups in the higher 1-minute frequency. In this case,

on average, there are about 3 to 7 distinct groups of intraday variance parameters.

1095% confidence intervals using log(RVt), log(RKF
t ) and log(RKN

t ) are based on the asymp-
totic distributions in Barndorff-Nielsen and Shephard (2002), Barndorff-Nielsen et al. (2008) and
Barndorff-Nielsen et al. (2011).
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Ex-post Variance Modeling and Forecasting

Does the Bayesian estimator correctly recover the time-series dynamics of volatility?

To investigate this we estimate several versions of the Heterogeneous Auto-Regressive

(HAR) model introduced by Corsi (2009). This is a popular model that captures the

strong dependence in ex-post daily variance. For V̂t the HAR model is

V̂t = β0 + β1V̂t−1 + β2V̂t−1|t−5 + β3V̂t−1|t−22 + εt, (3.57)

where V̂t−1|t−h = 1
h

∑h
l=1 V̂t−l and εt is the error term. V̂t−1, V̂t−1|t−5 and V̂t−1|t−22

correspond to the daily, weekly and monthly variance measures up to time t − 1.

Similar specifications are obtained by replacing V̂t with RVt or RKt.

Bollerslev et al. (2016) extend the HAR model to the HARQ model by taking the

asymptotic theory of RVt into account. The HARQ model for RVt is given by

RVt = β0 +
(
β1 + β1QRQ

1/2
t−1

)
RVt−1 + β2RVt−1|t−5 + β3RVt−1|t−22 + εt (3.58)

The loading on RVt−1 is no longer a constant, but varying with measurement error,

which is captured by RQt−1. The model responds more to RVt−1 if measurement

error is low and has a lower response if error is high. Bollerslev et al. (2016) provide

evidence that the HARQ model outperforms the HAR model in forecasting.11

An advantage of our Bayesian approach is that we have the full finite sample

posterior distribution for Vt. In the Bayesian nonparametric framework, there is no

need to estimate IQt with RQt, instead the variance, standard deviation or other

11A drawback of this specification is that it is possible for the coefficient on RVt−1 to be negative

and produce a negative forecast for next period’s variance. To avoid this when β1 + β1QRQ
1/2
t−1 < 0

it is set to 0.
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features of Vt can be easily estimated using the MCMC output. Replacing RQt−1

with v̂ar(Vt−1), the modified HARQ model for V̂t is defined as

V̂t = β0 +
(
β1 + β1Qv̂ar(Vt−1)1/2

)
V̂t−1 + β2V̂t−1|t−5 + β3V̂t−1|t−22 + εt, (3.59)

where v̂ar(Vt−1)1/2 is an MCMC estimate of the posterior standard deviation of Vt.

Table 3.12 displays the OLS estimates and the R2 for several model specifications.

Coefficient estimates are comparable across each class of model. Clearly the Bayesian

variance estimates display the same type of time-series dynamics found in the realized

kernel estimates.

Finally, out-of-sample root-mean squared forecast errors (RMSFE) of HAR and

HARQ models using both classical estimators and Bayesian estimators are found

in Table 3.13. The out-of-sample period is from 2005/01/03 to 2016/02/16 (2773

observations) and model parameters are re-estimated as new data arrives. Note, that

to mimic a real-time forecast setting the prior hyperparameters ν0,t and s0,t are set

based on intraday data from day t and t− 1.12

The first column of Table 3.13 reports the data frequency and the dependent

variable used in the HAR/HARQ model. The second column records the data used to

construct the right-hand side regressors. In this manner we consider all the possible

combinations of how RKN
t is forecast by lags of RKN

t or V̂t,MA and similarly for

forecasting V̂t,MA. All of the specifications produce similar RMSFE. In 7 out of 8

cases the Bayesian variance measure forecasts itself and the realized kernel better.

12Data from day t+ 1 would not be available in a real-time scenario. Using only data from day t
to set ν0,t and s0,t gives very similar results.
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3.6.2 Applications to Disney Returns

The second application considers ex-post variance estimation of Disney returns. Trans-

action and quote data for Disney was supplied by Tickdata. The quote data is NBBO

(National Best bid/ask Offer). We follow the same method of Barndorff-Nielsen et al.

(2011) to clean both transaction and quote datasets and form grid returns at 5-minute,

1-minute, 30-second and 10-second frequencies using transaction prices. The sample

period is from January 2, 2015 to December 30, 2015 and does not include days with

less than 6 trading hours. The final dataset has 247 daily observations.

We found weaker evidence of serial correlations in Disney returns and therefore

focus on lower order moving average specifications. Our recommendation would be

to use V̂t for 5-minute and 1 minute data and V̂t,MA(1) for 30-second data.

Table 3.14 displays the summary statistics of daily variance estimators of Disney

returns. The sample average of the different variance estimators is quite different

than the sample variance of daily returns. This is more of a small sample issue than

anything else. We do see that both the kernel and the Bayesian models with MA terms

generally reduce the average variance level compared to the unadjusted versions (RVt

and V̂t).

Figure 3.16 and 3.17 display box plots of the daily variance estimates for the clas-

sical and Bayesian estimators for the 5-minute and 30-second data. There are several

important points to make. First, both estimators recover the same general pattern

of volatility in this period. Second, the Bayesian density interval is often shorter and

asymmetric compare to the classical counterpart. Although there is general agree-

ment, the high variance days of December 15,21 and 22 indicate some differences

particularly in Figure 3.17. Finally, both estimates become more accurate with the
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higher frequency 30-second data and also make a significant downward revision to the

variance estimates on December 21 and 22.

3.7 Conclusion

This chapter offers a new exact finite sample approach to estimate ex-post variance

using Bayesian nonparametric methods. The proposed approach benefits ex-post vari-

ance estimation in two aspects. First, the observations with similar variance levels can

be pooled together to increase accuracy. Second, exact finite sample inference is avail-

able directly without replying on additional assumptions about a higher frequency

DGP. Bayesian nonparametric variance estimators under no noise, heteroskedastic

and serially correlated microstructure noise cases are introduced. Monte Carlo simu-

lation results show that the proposed approach can increase the accuracy of ex-post

variance estimation and provide reliable finite sample inference. Applications to real

equity returns show the new estimators conform closely to the realized variance and

kernel estimators in terms of average statistical properties as well as time-series char-

acteristics. The Bayesian estimators can be used with confidence and have several

benefits relative to existing methods. The Bayesian estimator can capture asymmet-

ric density intervals, always remains positive and does not rely on the estimation of

integrated quarticity.
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3.8 Appendix

3.8.1 Adjustment to DPM-MA(1) Estimator

Let pt,i denotes the latent intraday price and εt,i is the microstructure noise which is

independently distributed and heteroskedastic. The observed intraday price p̃t,i is

p̃t,i = pt,i + εt,i, E(εt,i) = 0 and var(εt,i) = ω2
t,i. (3.60)

The log return process is constructed as follows,

r̃t,i = p̃t,i − p̃t,i−1 = pt,i − pt,i−1 + εt,i − εt,i−1 = rt,i + εt,i − εt,i−1, (3.61)

where r̃t,i and rt,i are the observed return and pure return. The variance and first

autocovariance of {rt,i}nti=1 are

var(r̃t,i) = σ2
t,i + ω2

t,i + ω2
t,i−1, (3.62)

cov(r̃t,i, r̃t,i−1) = −ω2
t,i−1. (3.63)

Consider the following heteroskedastic MA(1) model for the observed r̃t,i,

r̃t,i = µt + θtηt,i−1 + ηt,i, ηt,i ∼ N(0, δ2
t,i), (3.64)

which will be used to recover an estimate of ex-post variance for the pure return

102



Ph.D. Thesis - Jia Liu McMaster University - Business

process, Vt =
∑nt

i=1 σ
2
t,i. The corresponding moments of this process are

var(r̃t,i) = θ2
t δ

2
t,i−1 + δ2

t,i, (3.65)

cov(r̃t,i, r̃t,i−1) = θtδ
2
t,i−1. (3.66)

Equating (3.62) and (3.65), we have

σ2
t,i + ω2

t,i + ω2
t,i−1 = θ2

t δ
2
t,i−1 + δ2

t,i (3.67)

Equating (3.63) and (3.66), we have

− ω2
t,i−1 = θtδ

2
t,i−1 and − ω2

t,i = θtδ
2
t,i. (3.68)

Based on the result in (3.68), the summation of δ2
t,i, over i = 1, . . . , nt, equals

nt∑
i=1

δ2
t,i = − 1

θt

nt∑
i=1

w2
t,i. (3.69)

Plugging both terms in (3.68) into (3.67), yields

σ2
t,i + ω2

t,i + ω2
t,i−1 = −θtω2

t,i−1 −
ω2
t,i

θt
(3.70)

σ2
t,i +

(
1 +

1

θt

)
ω2
t,i + (1 + θt)ω

2
t,i−1 = 0. (3.71)
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Using the results in (3.71), the summation of σ2
t,i, over i = 1, . . . , nt, equals

nt∑
i=1

σ2
t,i +

(
1 +

1

θt

) nt∑
i=1

ω2
t,i + (1 + θt)

nt∑
i=1

ω2
t,i−1 = 0 (3.72)

Vt = −
(

1 +
1

θt

) nt∑
i=1

ω2
t,i − (1 + θt)

nt∑
i=1

ω2
t,i−1. (3.73)

The ratio between (3.69) and (3.73) is

Vt
nt∑
i=1

δ2
t,i

=

−
(

1 +
1

θt

)
nt∑
i=1

ω2
t,i − (1 + θt)

nt∑
i=1

ω2
t,i−1

− 1

θt

nt∑
i=1

ω2
t,i

(3.74)

=

(1 + θt)
nt∑
i=1

ω2
t,i + (θt + θ2

t )
nt∑
i=1

ω2
t,i−1

nt∑
i=1

ω2
t,i

(3.75)

=

(1 + θt)
2
nt−1∑
i=1

ω2
t,i + (1 + θt)ω

2
t,nt + (θt + θ2

t )ω
2
t,0

nt−1∑
i=1

ω2
t,i + ω2

t,nt

(3.76)

= (1 + θt)
2 , if ωt,nt = ωt,0. (3.77)

Finally, we have

(1 + θt)
2

nt∑
i=1

δ2
t,i = Vt, if ωt,nt = ωt,0. (3.78)

3.8.2 Adjustment to DPM-MA(2) Estimator

If the observed intraday price p̃t,i is

p̃t,i = pt,i + εt,i − ρεt,i−1, E(εt,i) = 0 and var(εt,i) = ω2
t,i. (3.79)
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Then log return process is constructed as follows.

r̃t,i = p̃t,i − p̃t,i−1

= pt,i − pt,i−1 + εt,i − ρεt,i−1 − εt,i−1 + ρεt,i−2

= rt,i + εt,i − (1 + ρ)εt,i−1 + ρεt,i−2.

(3.80)

Using the following heteroskedastic MA(2) model for r̃t,i,

r̃t,i = µt + θ1tηt,i−1 + θ2tηt,i−2 + ηt,i, ηt,i ∼ N(0, δ2
t,i) (3.81)

it can be shown the adjustment term is

(1 + θ1t + θ2t)
2

nt∑
i=1

δ2
t,i = Vt, if ωt,nt−1 = ωt,0 and ωt,nt = ωt,−1. (3.82)

Similar results hold for higher order MA models.
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Table 3.1: Prior Specifications of Models

Model µt σ2
t,i Θt αt

DPM N(0, v2) IG(v0,t, s0,t) - Gamma(2, 8)

DPM-MA(q) N(0, v2) IG(v0,t, s0,t) N(0, I)1{|Θt|} Gamma(2, 8)

1. v0,t and s0,t are calculated using equation (3.24).
2. 1{|Θt|} denotes the invertibility condition for the MA(q) model.
3. v2 is adjusted according to data frequency: v =

0.001, 0.0002, 0.0001, 0.00002 for 5-minute, 1-minute, 30-second and
10-second returns.

Table 3.2: RMSEs of RVt and V̂t (No Microstructure Noise Case)

Data Freq. Estimator GARCH SV1F SV1FJ SV2F

5-minute
RMSE(RVt) 0.12352 0.21226 0.21471 0.45601

RMSE(V̂t) 0.12010 0.20608 0.20981 0.43154

1-minute
RMSE(RVt) 0.05368 0.09283 0.09771 0.23296

RMSE(V̂t) 0.05330 0.09228 0.10104 0.22675

30-second
RMSE(RVt) 0.03886 0.06530 0.06741 0.14178

RMSE(V̂t) 0.03867 0.06503 0.07321 0.14021

10-second
RMSE(RVt) 0.02177 0.03601 0.03662 0.09535

RMSE(V̂t) 0.02175 0.03594 0.04747 0.09645

This table reports the root mean squared error (RMSE) of estimating 5000
daily ex-post variances using RVt and Bayesian nonparametric estimator V̂t
under different frequencies and DGPs. Microstructure noise is not consid-
ered.
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Table 3.3: Biases of RVt and V̂t (No Microstructure Noise Case)

Data Freq. Estimator GARCH SV1F SV1FJ SV2F

5-minute
Bias(RVt) -0.00258 -0.00315 -0.00348 -0.00187

Bias(V̂t) -0.00223 -0.00256 -0.00414 -0.01841

1-minute
Bias(RVt) -0.00170 -0.00120 -0.00152 0.00097

Bias(V̂t) -0.00125 -0.00043 -0.00229 -0.00294

30-second
Bias(RVt) -0.00105 -0.00086 -0.00105 0.00159

Bias(V̂t) -0.00051 0.00010 -0.00166 -0.00031

10-second
Bias(RVt) -0.00028 -0.00049 -0.00001 -0.00103

Bias(V̂t) 0.00017 0.00031 -0.00105 -0.00161

This table reports bias estimates using 5000 daily ex-post variances using
RVt and Bayesian nonparametric estimator V̂t under different frequencies and
DGPs. Microstructure noise is not considered.

Table 3.4: Coverage Probability (No Microstructure Noise Case)

Data Freq. Interval Estimator GARCH SV1F SV1FJ SV2F

5-minute
RVt 93.00% 92.90% 92.84% 89.66%

V̂t 94.88% 95.04% 95.10% 87.32%

1-minute
RVt 94.64% 94.42% 94.28% 93.70%

V̂t 95.44% 95.14% 95.22% 91.72%

30-second
RVt 95.20% 95.24% 94.86% 94.72%

V̂t 95.86% 95.76% 95.46% 92.30%

10-second
RVt 95.96% 96.14% 95.84% 95.56%

V̂t 96.42% 96.44% 96.28% 92.80%

This table reports the coverage probabilities of 95% confidence intervals using
RVt and 0.95 density intervals using V̂t based on 5000 days results for different
data generating processes. Microstructure noise is not considered.
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Table 3.5: RMSE of RVt, RK
F
t , V̂t and V̂t,MA(1) (Independent Microstructure Error

Case)

Data Freq. Estimator GARCH SV1F SV1FJ SV2F

5-minute

RMSE(RVt) 0.16003 0.29182 0.30651 0.47509

RMSE(RKF
t ) 0.22988 0.42318 0.43993 0.84092

RMSE(V̂t) 0.15724 0.28671 0.30132 0.46281

RMSE(V̂t,MA(1)) 0.21529 0.38812 0.40768 0.74354

1-minute

RMSE(RVt) 0.48607 0.85374 0.94598 0.59132

RMSE(RKF
t ) 0.11157 0.20184 0.20822 0.46638

RMSE(V̂t) 0.48678 0.85495 0.94626 0.58876

RMSE(V̂t,MA(1)) 0.10530 0.18777 0.19456 0.41457

30-second

RMSE(RVt) 0.95855 1.69544 1.87445 1.10124

RMSE(RKF
t ) 0.08483 0.15200 0.15743 0.26357

RMSE(V̂t) 0.95990 1.69788 1.87556 1.10106

RMSE(V̂t,MA(1)) 0.07882 0.14016 0.15151 0.27695

10-second

RMSE(RVt) 2.86639 5.06382 5.60527 3.26388

RMSE(RKF
t ) 0.05575 0.10097 0.10683 0.16911

RMSE(V̂t) 2.86891 5.06833 5.60855 3.26612

RMSE(V̂t,MA(1)) 0.05374 0.09600 0.10539 0.20980

This table reports the root mean squared error (RMSE) of estimating 5000 daily
ex-post variances using RVt, RK

F
t and Bayesian nonparametric estimators V̂t and

V̂t,MA(1) based on returns at different frequencies and simulated from 4 DGPs.
The price is contaminated with white noise.
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Table 3.6: Biases of RVt, RK
F
t , V̂t and V̂t,MA(1) (Independent Microstructure Error

Case)

Data Freq. Estimator GARCH SV1F SV1FJ SV2F

5-minute

Bias(RVt) 0.09390 0.16795 0.18381 0.11193

Bias(RKF
t ) 0.00075 -0.00355 -0.00621 -0.00011

Bias(V̂t) 0.09427 0.16859 0.18348 0.10298

Bias(V̂t,MA(1)) 0.01784 0.03396 0.03391 -0.00022

1-minute

Bias(RVt) 0.47833 0.83981 0.93104 0.54949

Bias(RKF
t ) 0.00277 0.00509 0.00671 0.00162

Bias(V̂t) 0.47915 0.84124 0.93114 0.54769

Bias(V̂t,MA(1)) 0.00743 0.01270 0.01027 -0.01415

30-second

Bias(RVt) 0.95446 1.68793 1.86666 1.08855

Bias(RKF
t ) 0.00145 0.00240 0.00490 -0.00352

Bias(V̂t) 0.95990 1.69045 1.86771 1.08861

Bias(V̂t,MA(1)) 0.00542 0.00970 0.00662 -0.01960

10-second

Bias(RVt) 2.86404 5.05938 5.60035 3.26016

Bias(RKF
t ) 0.00040 -0.00079 0.00146 -0.00229

Bias(V̂t) 2.86891 5.06392 5.60360 3.26243

Bias(V̂t,MA(1)) 0.00367 0.00763 0.00407 -0.02415

This table reports bias estimates from 5000 daily ex-post variances using RVt,
RKF

t and Bayesian nonparametric estimators V̂t and V̂t,MA(1) based on returns
at different frequencies and simulated from 4 DGPs. The price is contaminated
with white noise.
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Table 3.7: Coverage Probabilities (Independent Microstructure Error Case)

Data Freq. Interval Estimator GARCH SV1F SV1FJ SV2F

5-minute

RVt 87.60% 85.00% 84.42% 22.52%

RKF
t - Infeasible 87.84% 87.66% 87.94% 93.48%

RKF
t - Feasible 84.28% 96.20% 83.68% 97.72%

V̂t 81.18% 78.06% 76.68% 18.80%

V̂t,MA(1) 94.24% 94.48% 94.24% 89.84%

1-minute

RVt 0.46% 0.82% 0.78% 5.64%

RKF
t - Infeasible 88.50% 89.78% 89.02% 93.32%

RKF
t - Feasible 99.30% 97.76% 95.26% 97.86%

V̂t 0.42% 0.07% 0.52% 4.92%

V̂t,MA(1) 94.90% 95.06% 95.00% 86.54%

30-second

RVt 0.00% 0.00% 0.02% 1.86%

RKF
t - Infeasible 89.80% 90.46% 90.74% 92.80%

RKF
t - Feasible 77.44% 99.48% 99.52% 97.94%

V̂t 0.00% 0.00% 0.00% 1.66%

V̂t,MA(1) 94.92% 95.34% 94.88% 85.76%

10-second

RVt 0.00% 0.00% 0.00% 0.04%

RKF
t - Infeasible 92.08% 92.68% 92.90% 92.10%

RKF
t - Feasible 99.98% 99.98% 99.98% 98.62%

V̂t 0.00% 0.00% 0.00% 0.04%

V̂t,MA(1) 94.90% 95.42% 95.12% 82.22%

This table reports the coverage probabilities of 95% confidence intervals using
RVt, RK

F
t and 0.95 density intervals using V̂t and V̂MA(1) based on 5000 days

results for different data generating processes. The price is contaminated with
white noise.
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Table 3.8: RMSE of RVt, RK
N
t , V̂t, V̂t,MA(1) and V̂t,MA(2) (Dependent Microstructure

Error Case)

Data Freq. Estimator GARCH SV1F SV1FJ SV2F

5-minute

RMSE(RVt) 0.21825 0.39266 0.41585 0.58520

RMSE(RKN
t ) 0.23575 0.44343 0.45080 0.89975

RMSE(V̂t) 0.21593 0.38823 0.41013 0.54514

RMSE(V̂t,MA(1)) 0.22309 0.40177 0.42160 0.84072

RMSE(V̂t,MA(2)) 0.29148 0.53858 0.57819 1.17410

1-minute

RMSE(RVt) 0.84121 1.48399 1.60189 1.6954

RMSE(RKN
t ) 0.14158 0.25780 0.26987 0.52030

RMSE(V̂t) 0.84222 1.48565 1.60134 1.67811

RMSE(V̂t,MA(1)) 0.11496 0.20471 0.21227 0.52199

RMSE(V̂t,MA(2)) 0.13738 0.24860 0.26145 0.62091

30-second

RMSE(RVt) 1.66229 2.95397 3.19560 3.37090

RMSE(RKN
t ) 0.11918 0.21559 0.22306 0.42729

RMSE(V̂t) 1.66431 2.95754 3.19640 3.35928

RMSE(V̂t,MA(1)) 0.08864 0.15827 0.16826 0.34777

RMSE(V̂t,MA(2)) 0.10526 0.18883 0.19355 0.39105

10-second

RMSE(RVt) 4.40694 7.81961 8.49852 7.85934

RMSE(RKN
t ) 0.09850 0.18004 0.18376 0.34594

RMSE(V̂t) 4.41064 7.82610 8.50079 7.85264

RMSE(V̂t,MA(1)) 0.16416 0.30819 0.30435 0.89896

RMSE(V̂t,MA(2)) 0.06928 0.12831 0.13609 0.25218

This table reports the root mean squared error (RMSE) of estimating 5000 daily
ex-post variances using RVt, RK

N
t and Bayesian nonparametric estimators V̂t,

V̂t,MA(1) and V̂t,MA(2) based on returns at different frequencies and simulated from
4 DGPs. The observed prices contains microstructure noise that is dependent
with returns.
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Table 3.9: Biases of RVt, RK
N
t , V̂t, V̂t,MA(1) and V̂t,MA(2) (Dependent Microstructure

Error Case)

Data Freq. Estimator GARCH SV1F SV1FJ SV2F

5-minute

Bias(RVt) 0.16032 0.28455 0.30733 0.17262

Bias(RKN
t ) 0.01349 0.02985 0.03232 0.00733

Bias(V̂t) 0.16078 0.28532 0.30711 0.16238

Bias(V̂t,MA(1)) 0.02134 0.03879 0.04075 0.00062

Bias(V̂t,MA(2)) 0.05647 0.10334 0.11660 0.04083

1-minute

Bias(RVt) 0.81057 1.42504 1.54563 0.87166

Bias(RKN
t ) 0.02421 0.04351 0.04360 0.01839

Bias(V̂t) 0.81167 1.42695 1.54552 0.86862

Bias(V̂t,MA(1)) 0.00909 0.01674 0.01661 -0.01113

Bias(V̂t,MA(2)) 0.01724 0.03180 0.02990 -0.00565

30-second

Bias(RVt) 1.61481 2.85837 3.10192 1.72912

Bias(RKN
t ) 0.02791 0.04940 0.05114 0.02369

Bias(V̂t) 1.61861 2.86192 3.10304 1.72808

Bias(V̂t,MA(1)) 0.00740 0.01384 0.00991 -0.01316

Bias(V̂t,MA(2)) 0.01097 0.02012 0.01847 -0.01156

10-second

Bias(RVt) 4.32800 7.65381 8.34221 4.67328

Bias(RKN
t ) 0.04034 0.07209 0.07321 0.04327

Bias(V̂t) 4.33163 7.66022 8.34491 4.65505

Bias(V̂t,MA(1)) 0.10993 0.20159 0.20140 0.13645

Bias(V̂t,MA(2)) 0.00656 0.01333 0.00872 -0.01857

This table reports the bias estimates from 5000 daily ex-post variances using
RV , RKN and Bayesian nonparametric estimators V̂ , V̂MA(1) and V̂MA(2) based
on returns at different frequencies and simulated from 4 DGPs. The observed
prices contains microstructure noise that is dependent with returns.
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Table 3.10: Coverage Probabilities (Dependent Microstructure Error Case)

Data Freq. Interval Estimator GARCH SV1F SV1FJ SV2F

5-minute

RVt 76.22% 74.00% 73.12% 21.14%

RKN
t - Infeasible 87.26% 87.62% 87.64% 76.72%

RKN
t - Feasible 91.16% 91.34% 92.02% 96.42%

V̂t 65.43% 63.34% 73.12% 21.14%

V̂t,MA(1) 94.28% 94.42% 93.94% 89.40%

V̂t,MA(2) 94.72% 94.72% 94.14% 89.74%

1-minute

RVt 0.00% 0.00% 0.10% 0.06%

RKN
t - Infeasible 90.02% 90.40% 89.98% 71.70%

RKN
t - Feasible 99.80% 99.80% 99.70% 99.46%

V̂t 0.00% 0.00% 0.04% 0.04%

V̂t,MA(1) 94.68% 95.08% 94.76% 87.20%

V̂t,MA(2) 94.70% 94.66% 94.34% 86.80%

30-second

RVt 0.00% 0.00% 0.00% 0.00%

RKN
t - Infeasible 91.50% 91.72% 91.26% 70.94%

RKN - Feasible 100.00% 100.00% 100.00% 99.96%

V̂ 0.00% 0.00% 0.00% 0.00%

V̂MA(1) 94.76% 95.30% 94.90% 85.40%

V̂MA(2) 94.90% 94.50% 94.76% 85.84%

10-second

RVt 0.00% 0.00% 0.00% 0.00%

RKN
t - Infeasible 91.90% 92.44% 92.30% 69.72%

RKN
t - Feasible 100.00% 100.00% 100.00% 100.00%

V̂t 0.00% 0.00% 0.00% 0.00%

V̂t,MA(1) 64.94% 65.70% 67.90% 78.84%

V̂t,MA(2) 94.42% 95.34% 95.12% 82.36%

This table reports the coverage probabilities of 95% confidence intervals of RV ,
RKN and 0.95 density intervals of Bayesian nonparametric estimators V̂ , V̂MA(1)

and V̂MA(2) based on 5000 days results. The observed prices contains microstruc-
ture noise that is dependent with returns.
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Table 3.11: Summary Statistics: IBM Variance Measures

Frequency Data Mean Median Var Skew. Kurt. Min Max

Daily
rt 0.0673 0.0656 1.6046 0.2069 8.3059 -6.4095 12.2777

r2
t 1.6091 0.4352 18.9654 13.9087 387.4812 0.0000 150.7429

5-minute

RVt 1.8353 0.9458 11.9867 9.5887 148.2622 0.1032 76.2901

RKF
t 1.6613 0.8447 9.3647 8.5539 124.8480 0.0375 71.9626

RKN
t 1.6670 0.8476 8.8872 8.0467 109.1098 0.0556 66.3995

V̂t 1.7839 0.9211 10.5246 8.5070 116.9235 0.1080 70.2483

V̂t,MA(1) 1.6686 0.8422 9.2512 7.3019 79.49682 0.0284 52.9256

V̂t,MA(2) 1.6997 0.8486 10.1324 8.4690 118.2698 0.0118 72.2393

1-minute

RVt 2.0004 1.0468 13.5019 10.5704 202.6835 0.1535 103.8773

RKF
t 1.7952 0.9163 10.8043 8.3092 113.5727 0.1006 73.8576

RKN
t 1.7425 0.8973 9.6499 7.7187 94.7830 0.0897 60.2024

V̂t 1.9653 1.0306 13.0413 10.7078 209.5183 0.1523 103.2695

V̂t,MA(1) 1.8326 0.9028 11.2766 7.4122 82.9604 0.1077 61.9220

V̂t,MA(2) 1.7895 0.8946 10.8954 8.4448 120.2637 0.1058 75.0062

V̂t,MA(3) 1.7392 0.8814 9.6590 7.8399 102.1530 0.0968 63.0524

V̂t,MA(4) 1.7103 0.8688 9.0700 7.2766 84.7264 0.0971 55.1365

This table reports the summary statistics of ex-post variance estimators based on 5-minute and
1-minute returns, along with the summary statistics of daily return and daily squared return. The
number of daily observation is 3764.
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Table 3.12: HAR and HARQ Model Regression Results Based on IBM Ex-post Vari-
ance Estimators

Data Freq. Parameter
HAR HARQ

RKF
t V̂t,MA(1) RKF

t V̂t,MA(1)

5-minute

β0 0.1322 0.1233 0.1015 -0.0124

(0.0374) (0.0376) (0.0382) (0.0394)

β1 0.1926 0.2432 0.2341 0.4585

(0.0196) (0.0197) (0.0224) (0.0284)

β2 0.5649 0.4871 0.5664 0.4350

(0.0332) (0.0330) (0.0331) (0.0329)

β3 0.1598 0.1929 0.1422 0.1475

(0.0286) (0.0282) (0.0289) (0.0282)

β1Q - - -0.0012 -0.0197

(0.0003) (0.0019)

R-squared 57.74% 59.33% 57.90% 60.45%

Data Freq. Parameter
HAR HARQ

RKN
t V̂t,MA(4) RKN

t V̂t,MA(4)

1-minute

β0 0.1246 0.1297 0.0065 -0.0337

(0.0365) (0.0374) (0.0367) (0.0390)

β1 0.2493 0.2464 0.4464 0.5138

(0.0195) (0.0196) (0.0242) (0.0288)

β2 0.5435 0.5154 0.5033 0.4531

(0.0318) (0.0321) (0.0312) (0.0319)

β3 0.1331 0.1598 0.0708 0.0914

(0.0265) (0.0271) (0.0263) (0.0272)

β1Q - - -0.0031 -0.0328

(0.0002) (0.0026)

R-squared 62.71% 60.38% 64.39% 61.96%

1 This table reports OLS regression results for the HAR and HARQ
model. The results in top panel are based on RKF

t and V̂t,MA(1)

calculated using 5-minute returns and the bottom panel shows the
results of 1-minute RKN

t and V̂t,MA(4). The values in brackets are
standard error of coefficients.

2 Sample period: 2001/01/03 - 2016/02/16, 3764 observations.
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Table 3.13: Out-of-Sample Forecasts of IBM Variance

Panel A: 5-minute Return

Dependent Variable Regressors HAR HARQ

5-minute RKF
t

RKF
t 1.84113 1.84444

V̂t,MA(1) 1.84083 1.81263

5-minute V̂t,MA(1)
RKF

t 1.86262 1.86699

V̂t,MA(1) 1.85581 1.83220

Panel B: 1-minute Return

Dependent Variable Regressors HAR HARQ

1-minute RKN
t

RKN
t 1.87539 1.82881

V̂t,MA(4) 1.87006 1.83173

1-minute V̂t,MA(4)
RKN

t 1.93618 1.88542

V̂t,MA(4) 1.92428 1.87654

1 This table reports the root mean squared forecast error
(RMSFE) of forecasting next period ex-post variance us-
ing both classical and Bayesian nonparametric variance es-
timator. Both HAR and HARQ model are considered. The
forecasting target is the dependent variable one period out-
of-sample.

2 On each day, the model parameters are re-estimated using
all the data up to that day.

3 Out of sample period: 2005/01/03 - 2016/02/16, 2773 days.
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Table 3.14: Summary Statistics: Disney Variance Measures

Frequency Data Mean Median Var Skew. Kurt. Min Max

Daily
rt -0.0389 0.0181 0.9636 -0.5750 5.8989 -4.1621 3.4451

r2
t 0.9651 0.2398 4.6847 4.6843 28.5354 0.0000 17.3236

5-minute

RVt 1.2881 0.8274 4.0558 7.8379 85.1183 0.1740 25.3443

RKF
t 1.2949 0.7435 5.3934 7.9331 83.5863 0.0692 28.54962

V̂t 1.2485 0.7907 3.7617 7.9542 87.3439 0.1812 24.5851

V̂t,MA(1) 1.3119 0.8102 5.7790 8.2469 88.7450 0.0833 30.0731

1-minute

RVt 1.3018 0.9177 2.7262 7.6683 83.5494 0.2024 20.9397

RKF
t 1.2727 0.8019 4.4924 8.7883 102.4300 0.1373 27.8559

V̂t 1.2783 0.8984 2.6164 7.6427 83.0711 0.2033 20.4880

V̂t,MA(1) 1.2587 0.8365 3.6509 8.7573 102.9476 0.1751 25.2803

30-second

RVt 1.3077 0.9536 2.4310 7.2835 76.3258 0.2232 19.3896

RKF
t 1.2558 0.8224 3.3762 8.2074 92.6638 0.1744 23.7206

RKN
t 1.2559 0.8255 3.8733 8.4716 96.7899 0.1352 25.5732

V̂t 1.2876 0.9366 2.3030 7.1143 73.1945 0.2238 18.6778

V̂t,MA(1) 1.2154 0.8546 2.6036 7.5516 80.0820 0.1854 20.1312

V̂t,MA(2) 1.2478 0.8557 3.3850 8.4036 95.4195 0.1618 23.8698

This table reports the summary statistics of ex-post variance estimators based on 5-minute, 1-
minute and 30-second Disney returns, along with the summary statistics of daily return and daily
squared return. Sample period: 01/03/2015 - 12/29/2015.
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Figure 3.1: True Variance σ2
t , RVt and V̂t (No Microstructure Noise Case). From

top to bottom: 5-minute, 1-minute, 30-second, 10-second returns simulated from
GARCH(1,1) DGP without noise.
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Figure 3.2: RMSE(RVt)-RMSE(V̂t) in 100 subsamples (No Microstructure Noise
Case). Left: GARCH(1,1) DGP, Right: SV1F DGP, From top to bottom: 5-minute,
1-minute, 30-second, 10-second returns.
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Figure 3.3: True Variance σ2
t , RK

F
t and V̂t,MA(1) (Independent Microstructure Noise

Case). From top to bottom: 5-minute, 1-minute, 30-second, 10-second returns simu-
lated from SV1F DGP with independent noise.
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Figure 3.4: RMSE(RKF
t )-RMSE(V̂t,MA(1)) in 100 subsamples (Independent Mi-

crostructure Noise Case). Left: GARCH(1,1) DGP, Right: SV1F DGP, From top
to bottom: 5-minute, 1-minute, 30-second, 10-second returns.
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Figure 3.5: True Variance σ2
t , RK

N
t and V̂t,MA(2) (Dependent Microstructure Noise

Case). From top to bottom: 5-minute, 1-minute, 30-second, 10-second returns simu-
lated from SV1F DGP with noise correlated with returns.
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Figure 3.6: RMSE(RKN
t )-RMSE(V̂t,MA(2)) in 100 subsamples (Dependent Microstruc-

ture Noise Case). Left: GARCH(1,1) DGP, Right: SV1F DGP, From top to bottom:
5-minute, 1-minute, 30-second, 10-second returns.
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Figure 3.7: Posterior Mean of the Number of Clusters, K. Model: DPM. Data: 5-
minute return without microstructure noise from SV1F.
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Figure 3.8: Posterior Mean of the Number of Clusters, K. Model: DPM-MA(1). Data:
1-minute return with independent noise from SV1FJ
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Figure 3.9: Posterior Mean of the Number of Clusters, K. Model: DPM-MA(2). Data:
30-second return with dependent noise from SV2F.
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Figure 3.11: RKN
t and V̂t,MA(4) based on 1-minute IBM returns
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Figure 3.14: Posterior Mean of the Number of Clusters, K (Based on 3764 days results
from DPM-MA(1) using 5-minute IBM returns).
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Figure 3.15: Posterior Mean of the Number of Clusters, K (Based on 3764 days results
from DPM-MA(4) using 1-minute IBM returns).
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t and V̂t,MA(1) Based on 30-second Disney Returns in December 2015.
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Chapter 4

Bayesian Nonparametric

Covariance Estimation with Noisy

and Nonsynchronous Asset Prices

4.1 Introduction

The univariate Bayesian nonparametric variance estimator introduced in Chapter

3 is extended to its multivariate version to allow pooling in covariance estimation.

The method delivers exact finite sample inference and the estimated covariance ma-

trix is guaranteed to be positive definite. In addition, a new way of synchronizing

observations based on data augmentation is introduced. The estimator is designed

for regularly or nonsynchronously spaced price data, with or without independent

microstructure noise.

The covariance matrix of asset returns is the key input for many finance problems,

such as portfolio allocation and asset pricing. Since the availability of high frequency
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data, estimation of covariance using intraday returns has become a very active area

of research. An important first step is Andersen et al. (2003) and Barndorff-Nielsen

and Shephard (2004). They formalized the realized covariance estimator and showed

it is an asymptotic consistent estimator of the integrated covariance, under the as-

sumption that observations are free of measurement error. However, in reality, prices

are contaminated with market microstructure noise and transactions arrive nonsyn-

chronously, which lead to poor statistical performance of the realized covariance es-

timator.

Several different approaches have been used to pave the way for covariation esti-

mation of noisy and nonsynchronously spaced prices. One branch of the literature is

based on methods to synchronize returns and adjust the bias of estimators. Zhang

(2011) suggested the optimal sampling frequency in constructing realized covariance

and proposed the two scales estimator. Griffin and Oomen (2011) formally studied

the realized covariance with lead-lag adjustments. Barndorff-Nielsen et al. (2011)

introduced the multivariate realized kernel based on refresh time synchronization.

Aı̈t-Sahalia et al. (2010) proposed the Quasi-maximum likelihood estimator of covari-

ance as well as the generalized synchronization method. The cumulative covariance

estimator proposed by Hayashi and Yoshida (2005) exemplifies another branch of the

literature. Their estimator can be applied directly to raw observations is unbiased

under a no noise assumption. Voev and Lunde (2007) proposed a bias correction

to make the cumulative covariance estimator suitable for noisy prices. Peluso et al.

(2014) introduced a Bayesian estimator of the covariance of noisy and asynchronous

returns based on a parametric model.

This chapter proposes a Bayesian nonparametric approach to estimate the ex-post
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covariance matrix of a vector of asset returns. Instead of using the data independently,

I exploit pooling among observations with a common covariance matrix. This is

achieved with a use of Dirichlet process mixture model. The Bayesian nonparametric

framework allows the number of groups or clusters of covariance matrices to vary

flexibly and to be determined endogenously. To adjust for bias, I use a vector moving

average model for high-frequency data and introduce pooling in this setting. From

this model, a covariance estimator that corrects for market microstructure noise and

nonsynchronous trading is derived based on Hansen et al. (2008).

In related work Peluso et al. (2014) introduced data augmentation based on dy-

namic linear model to synchronize the high-frequency prices. This chapter also uses

data augmentation to synchronize the data but exploits pooling to increase estimation

accuracy. The proposed synchronization method is built on top of the previous-tick

method defined in Hansen and Lunde (2006) but eliminates the zero-return problem

caused by stale prices. Missing observations are augmented as unknown variables and

are estimated conditional on observed data and model structure. With the proposed

synchronization method, the Bayesian nonparametric covariance estimator with mov-

ing average adjustment fully accounts for the nonsynchronous bias.

Another advantage of the Bayesian nonparametric covariance estimator is that

it is guaranteed to be positive definite. Using an inverse Wishart distribution as

the prior guarantees the sampled intraday covariance is always positive definite. In

addition, with synchronization based on data augmentation, the zero returns caused

by stale prices are removed, which ensures non-singular matrices.

Monte Carlo simulation is conducted to compare the Bayesian nonparametric co-

variance estimator with realized covariance and multivariate realized kernel given
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regularly or nonsynchronously spaced data, with or without the influence of inde-

pendent microstructure noise. The results shows the proposed estimator yields lower

root-mean-square-errors and better finite sample results in estimating both diagonal

and off-diagonal elements of the covariance matrix in most cases. Empirical ap-

plications to equity data show the Bayesian covariance estimator captures similar

time series dynamics of correlation and realized beta as the multivariate realized ker-

nel. Using a volatility-timing strategy, the minimum variance portfolio based on the

Bayesian nonparametric estimator outperforms ones based on realized covariance or

multivariate realized kernel in terms of Sharpe ratio and utility level of an investor.

Moreover, the Bayesian approach provides the exact distribution of the covariance,

which allows users to analyze how the optimal weights and return of a portfolio are

influenced by the covariance uncertainty.

This chapter is organized as follows. In Section 4.2, the Bayesian nonparametric

model, daily covariance estimator and model estimation steps are discussed. Sec-

tion 4.3 discusses the model and estimator that account for bias caused by noise and

nonsynchronous trading. Section 4.4 illustrates the synchronization method with data

augmentation. Section 4.5 conducts data simulation and compares the proposed esti-

mator with competing alternatives. Empirical applications are found in Section 4.6.

Section 4.7 concludes followed by an appendix.
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4.2 Bayesian Nonparametric Covariance Estima-

tion

This section starts by defining the target quantity, then illustrates the Bayesian non-

parametric model and the estimator suitable for regularly spaced returns without

microstructure noise.

4.2.1 Ex-post Daily Covariance

Suppose the log-prices of d assets are generated from

dP (t) = µ(t)dt+ Π(t)dW (t), (4.83)

where µ(t) is the drift term, Σ(t) = Π(t)Π(t)′ is the instantaneous covariance matrix

and W (t) stands for a standard Brownian motion vector.

As the true measure of the ex-post daily covariance, the integrated covariance is

the quantity of interest and is defined as

Vt =

∫ t

t−1

Π(τ)Π(τ)′dτ. (4.84)

Let Pt,i = (p
(1)
t,i , . . . p

(d)
t,i ) denotes the regularly spaced log-price vector, where i =

1, . . . , nt and p
(j)
t,i denotes the ith log-price of asset j on day t. Given intraday return

Rt,i = Pt,i − Pt,i−1, the realized covariance (RCt) discussed in Andersen et al. (2003)

and Barndorff-Nielsen and Shephard (2004) is defined as

RCt =
nt∑
i=1

Rt,iR
′
t,i. (4.85)
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Under a no microstructure noise setting, RCt converges to Vt as nt → ∞. In

finite samples, the summation of cross products of intraday returns provides a noisy

estimator of Vt and the finite sample distribution of RCt is unknown and must

be approximated from the asymptotic distribution derived by Barndorff-Nielsen and

Shephard (2004).

Instead of treating all intraperiod returns independently, the proposed approach

allows data to cluster. Returns with similar intraday covariance can be grouped

flexibly under the Bayesian nonparametric framework. Taking advantage of pooling,

the proposed method yields a less noisy covariance estimator, compared with existing

alternatives.

4.2.2 DPM Model

The proposed Bayesian nonparametric model extends the univariate Dirichlet process

mixture (DPM) model used in Chapter 3 to its multivariate version and is given as

Rt,i

∣∣µt,Σt,i
iid∼ N(µt,Σt,i), i = 1, . . . , nt, (4.86)

Σt,i

∣∣Gt
iid∼ Gt, (4.87)

Gt

∣∣G0,t, αt ∼ DP(αt, G0,t), (4.88)

G0,t ≡ IW(Ψt, νt), (4.89)

whereRt,i is assumed to follow a multivariate normal distribution with constant return

mean µt over i and state-dependent intraday covariance matrix Σt,i. The intraday

returns within a day are modelled by a multivariate normal mixture and the data

within a cluster shares the same intraday covariance.

141



Ph.D. Thesis - Jia Liu McMaster University - Business

As the distribution of Σt,i, Gt is a discrete distribution with a varying number

of clusters. This is achieved with the help of Dirichlet process DP(αt, G0,t), which

is the prior distribution of Gt. A draw from DP(αt, G0,t) is centred around the base

distribution G0,t which is an inverse Wishart distribution denoted as IW(Ψt, νt). The

base measure guarantees the positive definiteness of Σt,i as any draw from an inverse

Wishart distribution is positive definite.

The hyperparameters Ψt and νt need to be calibrated day by day as the dynamics

of asset volatility changes across time. The following method is suggested to determine

the values of Ψt and νt. It is known that for matrix Xt ∼ IW(Ψt, νt), the mean of Xt

and variance of diagonal elements of Xt are

E(Xt) =
Ψt

νt − d− 1
and var(X

(j)
t ) =

2(Ψ
(jj)
t )2

(νt − d− 1)2(νt − d− 3)
. (4.90)

Expressing Ψt and νt in terms of E(Xt) and var(X
(j)
t ) yields

Ψt = E(Xt)(νt − d− 1) and νt =
2(E(X

(j)
t ))2

var(X
(j)
t )

+ d+ 3. (4.91)

Substituting E(Xt) and var(X
(j)
t ) with 1

nt
RCt and v̂ar(r

(j)2
t,i ) yields one estimate of

νt. νt is set to be the average of ν
(j)
t based on all d assets. Hyper parameters Ψt and

νt are set to be

Ψt =
νt − d− 1

nt
RCt, (4.92)

νt =
1

d

d∑
j=1

2(RC
(jj)
t )2

v̂ar(r
(j)2
t,i )nt

+ d+ 3. (4.93)

The number of clusters is influenced by the precision parameter αt in the Dirichlet
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process. As αt increases, the number of cluster increases and the effect of pooling gets

diminished. The extreme case is that each observation has its own cluster. In this

case, the proposed estimator is analogous to RCt. To add flexibility, αt is treated as

a parameter and a hierarchical prior Ga(a, b) is placed on it.

Finally, a shrinkage prior N(0,Λ), where Λ is a diagonal matrix with small variance

values, is used for µt.

4.2.3 Model Estimation

The model is estimated using Markov chain Monte Carlo (MCMC) techniques. I

apply the slice sampler of Kalli et al. (2011) to the stick-breaking representation of the

DPM. Expressing the DP prior as the stick-breaking representation by Sethuraman

(1994), the DPM model can be written as

p(Rt,i

∣∣µt, {Φt,j}∞j=1, {wt,j}∞j=1) =
∞∑
j=1

wt,jN(Rt,i|µt,Φt,j), (4.94)

wt,1 = vt,1, wt,j = vt,j

j−1∏
l=1

(1− wt,l), vt,j
iid∼ Beta(1, αt), (4.95)

where wt,j is the weight associated with the jth component and Φt,j denotes the unique

covariance matrix in cluster j.

In the slice sampling, a set of auxiliary variables ut,1:nt = {ut,1, . . . , ut,nt} is intro-

duced to slice the infinite state space to a finite one so that the sampling of model

parameters is feasible. ut,1:nt is sampled along with other parameters and randomly

truncates the state space to Kt =
∑∞

j=1 1(ut,i < wt,j) at each MCMC iteration. The
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joint distribution of Rt,i and ut,i is given by

f
(
Rt,i, ut,i

∣∣µt, {Φt,j}∞j=1, {wt,j}∞j=1

)
=
∞∑
j=1

1 (ut,i < wt,j) N (Rt,i|µt,Φt,j) . (4.96)

The original model (4.94) is recovered by integrating out ut,i.

Next, introduce a set of latent state variables st,1:nt = {st,1, . . . , st,nt} that label

each observation’s cluster. Given st,i ∈ {1, 2, . . . Kt}, then Σt,i = Φt,st,i . Note that

the number of clusters Kt is adjusted over MCMC iterations. A new cluster with

covariance Φt,Kt+1 ∼ IW(Ψt, νt) can be opened and clusters with similar covariances

can be merged.

The Gibbs sampler is used to sample µt and Φt,j for j = 1, . . . , Kt. The estimation

of µt is based on all Rt,i, i = 1, . . . , nt and the sampling of Φt,j is conditional on data

allocated to group j. The concentration parameter αt is sampled using the method

in Escobar and West (1994). The estimation contains the following steps and details

can be found in Appendix 4.8.1.

1. Sample µt
∣∣Rt,1:nt ,Φt,1:Kt , st,1:nt .

2. Sample Φt,j

∣∣Rt,1:nt , st,1:nt , µt for j = 1, . . . , Kt.

3. Sample vt,j
∣∣st,1:nt for j = 1, . . . , Kt.

4. Sample ut,i
∣∣wt,i, st,1:nt for i = 1, . . . , nt.

5. Sample st,i
∣∣R1:nt , st,1:nt , µt,Φt,1:Kt , ut,1:nt , Kt for i = 1, . . . , nt.

6. Sample αt
∣∣Kt.
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Each MCMC iteration yields a set of {µt,Φt,1:Kt , st,1:nt , αt} draws. The model

parameters can be estimated using sample averages of the MCMC outputs, after

discarding the results in a burn-in period.

4.2.4 Bayesian Nonparametric Covariance Estimator

In the Bayesian nonparametric framework, the estimator of Vt is the posterior mo-

ment

E[Vt

∣∣Rt,1:nt ] = E

[
nt∑
i=1

Σt,i

∣∣∣Rt,1:nt

]
. (4.97)

Integrating out all parameter and distributional uncertainty and using M MCMC

outputs, E [Vt|Rt,1:nt ] is estimated as

V̂t =
1

M

M∑
m=1

nt∑
i=1

Σ
(m)
t,i =

1

M

M∑
m=1

nt∑
i=1

Φ
(m)

t,s
(m)
t,i

(4.98)

The posterior distributions of any functions of Vt, such as realized beta or cor-

relation, are readily available from MCMC outputs. For instance, from the sampled

{(
∑nt

i=1 Σt,i)
(m)}Mm=1, a (1-α) probability density interval for the covariance between

asset j and k is interval between the α/2% and (1 − α/2)% quantiles of
∑nt

i=1 Σ
(jk)
t,i .

Note that the exact finite sample estimates can be obtained directly, while the clas-

sical estimator relies on asymptotic distribution to derive the confidence intervals.
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4.3 Extensions

This section considers covariance estimation of noisy prices with nonsynchronous

trading. After a brief discussion of the bias caused by microstructure noise and non-

synchronous trading, the Bayesian nonparametric covariance estimator designed for

prices with independent microstructure noise and nonsynchronous trading is illus-

trated.

4.3.1 Microstructure Noise and Nonsynchronous Trading

Let p
(j)

t,τ jl
denotes the latent intraday log-price of asset j, τ jl denotes the arrival time of

the lth observation of asset j. Contaminated with microstructure noise, the observed

intraday price is

ṗ
(j)

t,τ jl
= p

(j)

t,τ jl
+ ε

(j)

t,τ jl
, ε

(j)

t,τ jl
∼ N(0, ω

(j)2
t ), (4.99)

where ε
(j)

t,τ jl
is independent with p

(j)

t,τ jl
and ε

(k)

t,τ jl
for k 6= j.

Synchronized using a previous-tick scheme with grid length h, the regularly spaced

price is defined as

p̃
(j)
t,i = ṗ

(j)

t,max(τ j |τ j≤ih)
, j = 1, . . . , d. (4.100)

The regularly spaced return vector of the d assets is denoted as R̃t,i = P̃t,i− P̃t,i−1,

where P̃t,i =
(
p̃

(1)
t,i , p̃

(2)
t,i , · · · , p̃

(d)
t,i

)′
.

The presence of independent microstructure noise turns each asset’s return series

into an autocorrelated process. Moreover, the return series based on the previous-tick

scheme have a lead-lag dependence. The summation of cross products of mismatched

intraday returns underestimates the daily covariance between two assets as it covers

only a proportion of the daily interval. In addition, the downward bias gets larger as
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the length of the grid shrinks. This phenomenon is documented as the “Epps effect”

(Epps, 1979). Following Kanatani and Renó (2007), the bias can be attributed to

nonsynchronous bias, which is caused by the mismatched trading time of assets, and

zero-return bias, which is caused by absence of a transaction in one or multiple grid(s).

Due to microstructure noise and nonsynchronous trading, the realized covariance and

the estimator proposed in Section 4.2 are no longer suitable estimators of the ex-post

covariance.

Popular ways of mitigating the influences of microstructure noise and nonsyn-

chronous trading is to add lead-lag adjustment or autocovariance adjustment to the

realized covariance estimator. For example, the multivariate realized kernel (RKt)

proposed by Barndorff-Nielsen et al. (2011) is defined as

RKt =
H∑

h=−H

(
k

(
h

H

) nt∑
i=h+1

R̃t,iR̃
′
t,i−h

)
, (4.101)

where their recommended kernel function k(·) is the Parzen kernel1, the optimal

bandwidth is H = c0n
3/5
t and R̃t,i is synchronized using a refresh time scheme2.

4.3.2 DPM-VMA(1) Model

This chapter adapts the vector moving average with one lag to capture the autocor-

relation and propose a Bayesian nonparametric covariance estimator with pooling for

1Parzen kernel function:

k(x) =


1− 6x2 + 6x3, 0 ≤ x ≤ 1/2

2(1− x)3, 1/2 < x ≤ 1

0, x > 1

2In a refresh time scheme, the prices are sampled at the time that all assets haven been traded.
The return series is irregularly spaced.
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noisy and nonsynchronous prices.

Combining the vector moving average parametrization with the Bayesian non-

parametric framework introduced in Section 4.2 yields the DPM-VMA(1) model.

R̃t,i = µt + Θtηt,i−1 + ηt,i, ηt,i ∼ N(0,∆t,i), i = 1, . . . , nt, (4.102)

∆t,i

∣∣Gt
iid∼ Gt, (4.103)

Gt

∣∣G0,t, αt ∼ DP(αt, G0,t), (4.104)

G0,t ≡ IW(Ψt, νt), (4.105)

where ηt,i−1 = Rt,i−1−µt−Θtηt,i−2, Θt is a d×d matrix and ηt,i = (η
(1)
t,i , η

(2)
t,i , · · · , η

(d)
t,i )′

represents the error term.

The mean of R̃t,i is not a constant vector but has a moving average structure.

µt and Θt are constant for i but will change with the day t. The DPM-VMA(1)

model implies cov(Rt,i, Rt,i−1) = Θt∆t,i−1. Thus, in order to capture both the auto-

correlation and the cross sectional dependence in returns, Θt has to be a d × d full

matrix. The initial error vector ηt,0 is assumed to be a zero vector. Other model

settings remain the same as in the DPM model except ∆t,i is used to denote the

intraday covariance. Note that the DPM-VMA(1) model allows error terms to be

heteroskedastic, so it does not require the covariance of microstructure noise to be

identical.

The priors for parameters µt, αt and ∆t,i are defined the same as in the DPM

model. The prior of the elements of Θt is assumed to be Θ
(jk)
t ∼ N(mθ, v

2
θ) for

j = 1, . . . , d and k = 1, . . . , d.
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4.3.3 Model Estimation

As in the estimation of the DPM model, I apply the slice sampling technique to the

stick-breaking representation of the DPM-VMA(1) model. Because of the moving

average structure, the Gibbs sampler is not feasible to sample µt and Θt. Sampling

high-dimensional parameters such as µt and Θt using Metropolis-Hasting results in

very low mixing and finding good proposals is also challenging. I apply the Hamil-

tonian Monte Carlo method of Neal (2011) to sample µt and Θ as blocks. The

Hamiltonian Monte Carlo adopts the Hamilton dynamics, rather than a probability

distribution, to propose draws in Markov chain. Unlike the random walk proposal, the

Hamilton dynamics produces distant proposals which explore the target distribution

more efficiently, and has a high acceptance rate.

The Gibbs sampler handles the estimation of Φt,j, which represents the unique

values of ∆t,i. The remaining MCMC steps are essentially the same as in the DPM

estimation. Each MCMC run contains the following steps. Appendix 4.8.2 provides

the estimation procedure in detail.

1. Sample µt
∣∣R̃t,1:nt ,Φt,1:Kt ,Θt, st,1:nt .

2. Sample Θt

∣∣R̃t,1:nt , µt,Φt,1:Kt , st,1:nt .

3. Sample Φt,j

∣∣R̃t,1:nt , µt,Θt, st,1:nt for j = 1, . . . , Kt.

4. Sample vt,j
∣∣st,1:nt for j = 1, . . . , Kt.

5. Sample ut,i
∣∣wt,i, st,1:nt for i = 1, . . . , nt.

6. Sample st,i
∣∣R̃1:nt , st,1:nt , µt,Θt,Φt,1:Kt , ut,1:nt , Kt for i = 1, . . . , nt.

7. Sample αt
∣∣Kt.

149



Ph.D. Thesis - Jia Liu McMaster University - Business

4.3.4 Bayesian Nonparametric Covariance Estimator with Bias

Adjustment

Hansen et al. (2008) point out that the covariance estimator based on the moving

average model requires an adjustment in order to obtain an unbiased estimator. In-

corporating their adjustment, the ex-post covariance Vt is estimated as

E[Vt

∣∣R̃t,1:nt ] = E

[
(I + Θt)

nt∑
i=1

∆t,i(I + Θt)
′
∣∣∣R̃t,1:nt

]
. (4.106)

which can be estimated as

V̂MA,t =
1

M

M∑
m=1

(I + Θ
(m)
t )

(
nt∑
i=1

∆
(m)
t,i

)
(I + Θ

(m)
t )′

=
1

M

M∑
m=1

(I + Θ
(m)
t )

(
nt∑
i=1

Φ
(m)

t,s
(m)
t,i

)
(I + Θ

(m)
t )′.

(4.107)

Appendix 4.8.3 proves that the Bayesian estimator provided in equation (4.107)

correctly recovers the ex-post covariance in the presence of independent microstruc-

ture noise and nonsynchronous trading, assuming no zero-return bias.

The proposed estimator is analogous to the realized covariance with one lead and

one lag adjustment3 in that both are adjusted using autocovariance estimates. The

3The realized covariance estimator with one lags and one leads is defined as

RCLL(1, 1) =

nt∑
i=1

1∑
l=−1

R
(1)
t,i+lR

(2)
t,i .
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estimator in equation (4.107) can be decomposed as follows

(I + Θt)
nt∑
i=1

∆t,i(I + Θ′t)

=
nt∑
i=1

(Θt∆t,i−1Θ′t + ∆t,i + Θt∆t,i−1 + ∆t,iΘ
′
t)

=
nt∑
i=1

[
cov(R̃t,i) + cov(R̃t,i, R̃t,i−1) + cov(R̃t,i, R̃t,i+1)′

]
,

(4.108)

where the last equation is derived using cov(R̃t,i) = Θt∆t,i−1Θ′t+∆t,i and cov(R̃t,i, R̃t,i−1) =

Θt∆t,i−1, implied from the vector moving average process in (4.102).

4.4 Synchronization with Data Augmentation

The process of placing observed prices on a grid is referred to as synchronization.

Previous-tick method yields equally spaced data but it results in nonsynchronous

bias and zero-return bias in covariance estimation using high-frequency data. The

refresh time method proposed by Barndorff-Nielsen et al. (2011) produces irregularly

spaced data and the number of data depends on the most illiquid asset.

This chapter proposes a synchronization method based on data augmentation

to improve the previous-tick scheme. The missing observations on common grid

points are treated as unknown variables and are estimated along with other model

parameters under the Bayesian framework. Figure 4.18 provides one example of three

assets to illustrate the mechanism. The solid dots denote the time of transactions

and the dashed line represents the regularly spaced sampling time. In this example,

there is no transaction in interval (i+ 2, i+ 3] for both asset 1 and 2 and in interval

(i, i + 1] for asset 3. In other words, p
(1)
t,i+3, p

(2)
t,i+3 and p

(3)
t,i+1 are missing and need to
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be augmented.

Formally, if b out of d prices are missing for Pt,i, where (1 ≤ b ≤ d), the sampling

of missing price records are conditional on the q = d− b observed prices, the adjacent

prices Pt,i−1 and Pt,i+1, the mean vector µt and the covariance matrices Σt,st,i and

Σt,st,i+1
. The return vectors Rt,i and Rt,i+1 provide the linkage between the model

and the missing observations. First splitting Pt,i, Rt,i, µt and Σt,i into two groups,

one corresponds to the b missing observations in Pt,i, the other matches to the q

observed prices.

Pt,i =

P b
t,i

P q
t,i

 , Rt,i =

Rb
t,i

Rq
t,i

 , µt =

µbt
µqt

 , Σt,i =

Σbb
t,i Σbq

t,i

Σbq′

t,i Σqq
t,i

 .
The conditional distribution of Rb

t,i given observed Rq
t,i is

Rb
t,i

∣∣Rq
t,i = P b

t,i − P b
t,i−1

∣∣Rq
t,i ∼ N

(
µt,i,Σt,i

)
, (4.109)

where µt,i and Σt,i are the mean and covariance of distribution of Rb
t,i conditional on

Rq
t,i. For the DPM model, µt,i and Σt,i are

µt,i = µbt + Σbq
t,i(Σ

qq
t,i)
−1(Rq

t,i − µ
q
t ), (4.110)

Σt,i = Σbb
t,i − Σbq

t,i(Σ
qq
t,i)
−1(Σbq

t,i)
′. (4.111)

For the DPM-VMA(1) model, the conditional mean has a moving average dynamics

and is derived as

µt,i = µbt + (Θtηt,i−1)b + Σbq
t,i(Σ

qq
t,i)
−1(Rq

t,i − µ
q
t − (Θtηt,i−1)q). (4.112)
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µt,i+1 and Σt,i+1 can be derived similarly.

If the prices of d assets are all missing, then µt,i = µt for DPM model, µt,i =

µt + Θtηt,i−1 for DPM-VMA(1) model and Σt,i = Σt,i.

The density of P b
t,i conditional on observed prices and model parameters is given

as

π
(
P b
t,i

∣∣ · · · ) ∝ exp
{
−1

2

[
P b′
t,iΣ

−1

t,i P
b
t,i − 2P b′

t,iΣ
−1

t,i P
b
t,i−1 + µt,i

]
−1

2

[
P b′
t,iΣ

−1

t,i+1P
b
t,i − 2P b′

t,iΣ
−1

t,i+1(P b
t,i+1 − µt,i+1)

]}
∼ N(M b, V b),

(4.113)

where

M b = V b
[
Σ
−1

t,i (P b
t,i−1 + µt,i) + Σ

−1

t,i+1(P b
t,i+1 − µt,i+1)

]
, (4.114)

V b =
(

Σ
−1

t,i + Σ
−1

t,i+1

)−1

. (4.115)

Intuitively, by using observed prices and knowing the model structure, we can infer

the missing prices. The missing prices are estimated and regularly spaced returns are

updated in each MCMC run, resulting in data at all grid points.

A numerical example is provided to illustrate the benefit of augmenting missing

observations. The nonsynchronously spaced prices of 3 assets are simulated and the

observations arrive every 60 seconds, 40 seconds and 30 seconds on average, respec-

tively. The details of the data generating process will be illustrated in Section 4.5. I

set the length of the grid to be 60 seconds and estimate the covariance matrix using the

Bayesian nonparametric method with and without data augmentation. Figure 4.19

plots the 100 days’ covariance estimates between asset 1 and 2, along with the true
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covariance and RCt based on 1-minute previous-tick returns. It shows that the V̂MA,t

without data augmentation and RCt suffer from the “Epps effect” and the estimates

are far from the truth. On the contrary, with data augmentation, the Bayesian non-

parametric covariance estimator recovers the true values very well. The improvement

brought by data augmentation comes from two aspects. For one thing, it fills the

information gap and removes the bias caused by zero-returns. For another, the non-

synchronous bias is reduced as the missing price gap is filled exactly at each grid

point, not prior to it. As a result, only adjacent returns are correlated and one lead

and one lag or MA(1) adjustment are adequate to correct the bias. It implies that the

proposed Bayesian nonparametric estimator V̂MA,t, together with the synchronization

with data augmentation, fully accounts for bias caused by nonsynchronous trading.

4.4.1 Determination of Grid Length

As the previous-tick method, the proposed synchronization method requires setting a

common-time grid. There is a trade-off between the length of the grid and the quality

of the covariance estimator. The larger the grid length, the fewer missing prices need

to be augmented. But that leads to more information loss as the sampling frequency

is lower. Conditional on data, increasing grid frequency results in diminished value

in data augmentation since more grid points contain missing observations and data

augmentation is necessary at more points.

For the purpose of finding the optimal grid length for the Bayesian approach, I use

simulated nonsynchronous data with independent microstructure noise to compare

the accuracy of covariance estimation at different grid lengths. A case with ten

assets is considered and the average intervals between two transactions vary from 5
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seconds to 10 seconds. Figure 4.20 plots the histogram of root mean squared errors

(RMSE)s of diagonal element estimates under different grid lengths. Figure 4.21

provides the RMSEs for ten covariance estimates. Let Dt denotes the average price

change duration of the ten assets on day t. Increasing the length from Dt to 3Dt, the

RMSEs of both diagonal and off-diagonal estimates of the covariance matrix display

U-shape patterns and are smaller than those of RKt in almost all the cases. Setting

1.5Dt as the grid length4 minimizes the error in estimating both diagonal and off-

diagonal elements of the ex-post covariance matrix.

4.4.2 Positive Definiteness

The proposed Bayesian nonparametric covariance estimator is guaranteed to be pos-

itive definite, whereas classical approaches deliver positive semi-definite results. In

the estimation of large covariance matrices, it is possible that the number of available

observations is lower than the number of assets. For example, the number of data

points synchronized using refresh time depends on the most inactive asset and can

be driven to a number below the data dimension. The previous-tick approach can

increase the number of observations by shrinking grid length, but it may result in

many zero returns. In those cases, the covariance matrix calculated using traditional

methods can be singular and not positive definite. The proposed Bayesian nonpara-

metric approach can solve the difficulty. As the missing price gaps can all be filled

using data augmentation, the grid length can be adjusted to ensure that the num-

ber of non-zero return vectors is above the data dimension. In addition, using an

inverse Wishart distribution as the base distribution of intraday covariance ensures

4If the calculated length is not the divisor of 23400, then round it to the smallest number that
makes 23400 divisible.
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the positive definiteness of the covariance estimator.

4.5 Simulation Results

4.5.1 Data Generating Process

Following Barndorff-Nielsen et al. (2011), the fundamental log prices are generated

from the following multivariate factor stochastic volatility model.

dp(j) = µ(j)dt+ ρ(j)σ(j)dB(j) +
√

1− ρ(j)2σ(j)dW, (4.116)

σ(j) = exp(β
(j)
0 + β

(j)
1 v(j)), (4.117)

dv(j) = α(j)v(j)dt+ dB(j), (4.118)

where W and B(j) are standard Brownian motions, cor(dW, dB(j)) = 0 and the values

of the parameters are (µ(j), β
(j)
0 , β

(j)
1 , α(j), ρ(j)) = (0.04,−0.3125, 0.125,−0.025,−0.3)

for j = 1, . . . , d.

Following Barndorff-Nielsen et al. (2011), the error terms are independent of each

other and are added to the fundamental log price as follows

p̃
(j)
t,l = p

(j)
t,l + ε

(j)
t,l , ε

(j)
t,l ∼ N(0, σ(j)2

ω ), l = 1, · · · , Nt, (4.119)

σ(j)2
ω = ξ2

√
1
Nt

∑Nt
l=1(σ

(j)
t,l )4, (4.120)

where ξ2 stands for the noise-signal ratio and is set to be ξ2 = 0.001, which is a

value commonly used in the literature. Assuming the length of daily trading time is

6.5 hours (Nt = 23400), the log prices at every second are simulated. The regularly
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spaced 5-minute, 1-minute and 10-second prices are generated by taking the records

every 300, 60 and 10 steps, respectively.

In the simulation of nonsynchronous prices, the arrival times of observed prices

are simulated from independent Poisson processes. Parameter λ in Poisson process

governs the trading frequency of simulated data. For example, (λ(1), λ(2)) = (30, 10)

means the transactions of asset 1 and 2 arrives every 30 seconds and 10 seconds on

average, respectively.

The estimation target is the true daily ex-post covariance matrix Σt =
∑Nt

l=1 Σt,l,

where Σ
(jk)
t,l =

√
1− ρ(j)2σ

(j)
t,l

√
1− ρ(k)2σ

(k)
t,l .

4.5.2 Precision of Estimation

The comparison starts by assessing the precision in estimating the ex-post covariance

matrix. The benchmark estimators are realized covariance and multivariate realized

kernel. The prior settings for the Bayesian nonparametric estimators are shown in

Table 4.15.

Table 4.16 reports the averaged RMSEs of RCt, RKt and V̂t in estimating both

diagonal and off-diagonal elements of covariance given regularly spaced 5-minute, 1-

minute and 10-second returns. Both a three assets case and a ten assets case are

considered. Panel A shows the results in the ideal case in which prices are free

of measurement error. In that case, RCt provides the “golden” standard as it is

the consistent estimator of the integrated covariance. The Bayesian nonparametric

estimator V̂t, however, offers additional improvement. Using V̂t as the estimator, the

RMSEs of both diagonal and off-diagonal elements are reduced no matter the data

frequency or the number of dimension. The proposed covariance estimator works
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especially well given low-frequency returns. For example, in the 10 assets case given

5-minute returns, switching from RCt to V̂t reduces the average RMSE of variance

estimates from 0.1871 to 0.1567, and the average RMSE of off-diagonal elements from

0.1217 to 0.0992. The comparison suggests that the finite sample approach, together

with taking advantage of pooling, improve the precision of estimation. The results in

Panel B are based on prices with microstructure noise. As the frequency increases,

RCt is not an unbiased estimator for variance estimation as it does not account for the

microstructure noise. Both RKt and V̂MA,t improve as the data frequency increases.

In both the three assets and ten assets cases, V̂MA,t provides lower error in estimating

ex-post covariance than RKt given 1-minute and 10-second returns.

Table 4.17 summarizes the RMSEs of the covariance estimation in a more realistic

scenario with random arrival times. Both a low frequency case with λ(j) ∈ {30, 40, 60}

and a higher frequency case with λ(j) ∈ {5, 8, 10} are considered. RCt is formed using

5-minute return synchronized by previous tick. RKt uses returns based on refresh

time synchronization. The synchronization with data augmentation is used for V̂MA,t

and the grid length is set to be 1.5 times the average duration of price changes.

The RMSEs of the three estimators in the no noise and independent microstructure

noise cases are presented in Panel A and B, respectively. The 5-minute RCt uses

low frequency data to reduce the bias caused by noise and nonsynchronous trading.

As a result, the estimation accuracy is not high since only 78 observations are used.

RKt increases the estimation accuracy but is not as accurate as the proposed Bayesian

nonparametric estimator V̂MA,t. Among the 16 cases, V̂MA,t always yields the smallest

RMSE. For instance, in the high frequency case with 10 assets, the average RMSEs of

diagonal and off-diagonal elements of V̂MA,t are 0.0820 and 0.0541, while the values
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are 0.1109 and 0.0739 if RKt serves as the estimator. The improvement is greater

than 20%.

4.5.3 Finite Sample Results

Existing ex-post covariance estimation approaches do not have finite sample distribu-

tional results and the distributions of estimators are approximated from asymptotic

distributions. Using the asymptotic distributions derived in Barndorff-Nielsen and

Shephard (2004) and Lunde et al. (2015), respectively, the 95% confidence interval

of variance and covariance based on RCt
5 and RKt

6 can be derived. The Bayesian

nonparametric approach offers the exact finite sample results, which does not require

any approximation. The density intervals of V̂t or V̂MA,t can be obtained as the

by-product of MCMC outputs.

Given simulated data, RCt, RKt and V̂MA,t are compared based on coverage fre-

quencies for diagonal and off-diagonal elements of the ex-post covariance. Table 4.18

and Table 4.19 report the 95% coverage frequencies for regularly spaced return and

5 For RCt, the 95% confidence interval of diagonal and off-diagonal elements are[
RCjj

t ± z0.975

√
2
3

∑nt

i=1(rjt,i)
4

]
, (4.121)

[
RCjk

t ± z0.975

√∑nt

i=1(rjt,i)
2(rkt,i)

2 −
∑nt−1
i=1 rjt,ir

k
t,ir

j
t,i+1r

k
t,i+1

]
. (4.122)

6 For RKt, the 95% confidence intervals of diagonal and off-diagonal elements are[
RKjj

t − κ0(RKjj
t )

4
5 (Ω̂jjt )

1
5 (nt)

− 1
5 ± z0.975 · 2κ0(RKjj

t )
4
5 (Ω̂jjt )

1
5 (nt)

− 1
5

]
, (4.123)[

RKjk
t − κ0

(
(RKjj

t RKkk
t )2+(RKjk

t )2

2

√
Ω̂jk

t

nt

) 2
5

± z0.975 · 2κ0

(
(RKjj

t RKkk
t )2+(RKjk

t )2

2

√
Ω̂jk

t

nt

) 2
5

]
,

(4.124)
where κ0 = 0.97. Ωt can be estimated using a HAC estimator with one lag: Ω̂t =

1
2nt

(∑nt

i=1Rt,iR
′
t,i + 1

2

∑nt−1
i=1 Rt,iR

′
t,i+1

)
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nonsynchronous return cases, respectively. The no noise and microstructrue noise

cases are both included. The Bayesian nonparametric estimator produces fairly good

coverage probabilities no matter the data frequency and dimension, especially in the

case with noisy and nonsynchronous data. As shown in Panel B of Table 4.19, the

coverage probability of the 95% density interval of V̂MA,t are closer to 95% than the

95% confidence interval of RKt or the 5-minute RCt in most of the cases.

4.6 Empirical Applications

This section provides applications of estimating ex-post covariances of equity prices

using the Bayesian nonparametric approach. The tick prices and national best bid and

offer (NBBO) prices of 10 equities (stock symbols: AA, BAC, CAT, F, GE, GIS, JNJ,

T, WMT, XOM) listed on the NYSE and the Standard & Poor’s Depository Receipt

(SPY) from July 1, 2014 to June 30, 2016 are obtained from Tickdata. The cleaning

procedure provided by Barndorff-Nielsen et al. (2009) is applied to the data. After

eliminating half-tradings days (before Thanks-giving and Christmas), 499 trading

days are left in the sample.

The 5-minute realized covariance, multivariate realized kernel and the Bayesian

nonparametric covariance estimator based on the DPM-VMA model are applied to

estimate the daily covariance matrix of returns of the ten assets. The synchronization

methods for RCt, RKt and V̂MA,t are previous tick with 5-minute interval, refresh-

time and the proposed synchronization with data augmentation. Because of the

discreteness of transaction prices, real data contain more zero returns than simulated

data. I set the grid length of proposed synchronization to be 3Dt, where Dt is the
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average duration of price changes of d assets on day t. The prior setting are same as

in Section 4.5 and are shown in Table 4.15.

4.6.1 Correlation and Realized Beta

Figure 4.22 to Figure 4.24 plot the correlation series between pairs AA-BAC, CAT-

F and GE-GIS, implied by 5-minute RCt, RKt and V̂MA,t in the 10 × 10 case.

Overall, the three versions of the correlation estimates share similar dynamics. The

correlations based on RKt and V̂MA,t are close to each other and the correlation

implied by 5-minute RCt seems more volatile.

The proposed covariance estimator enables the calculation of a Bayesian nonpara-

metric version of realized beta, which is defined as

βV̂MA
t =

V̂jk
MA,t

V̂jj
MA,t

. (4.125)

Three versions of realized beta for the AA-SPY pair based on RCt, RKt and V̂MA,t

in 2 × 2 case are calculated. Table 4.20 shows the fitted values of the ARMA(1,1)

model for the three versions of realized beta. The estimation result confirms the

strong persistence of realized beta. Comparison of parameter estimates implies βRK
t

and βV̂MA
t share similar time series dynamics.

The traditional way of deriving the distribution of realized beta relies on the delta

method applied to the asymptotic distribution of covariance inference. The Bayesian

nonparametric approach does not require any approximation. The distribution of re-

alized beta can be obtained using the MCMC outputs. Figure 4.25 plots the realized
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beta of the AA-SPY combination provided by RKt and V̂MA,t, along with the cor-

responding 95% confidence (density) intervals in March 2016. In most of the dates,

the Bayesian density interval is shorter, compared with the classical counterpart.

4.6.2 Portfolio Allocation Evaluation

The Monte Carlo experiments illustrated in Section 4.5 show that the Bayesian non-

parametric covariance estimator often outperforms the realized kernel from the statis-

tical perspective. It is worth exploring whether the better statistical properties lead

to economic gains.

Following Fleming et al. (2003), the evaluation is based on the performance of a

minimum-variance portfolio formed using a rolling covariance estimator of 5-minute

RCt, RKt and V̂MA,t, respectively. The stock pool includes ten equities (AA, BAC,

CAT, F, GE, GIS JNJ, T, WMT and XOM) and the evaluation period is from July

2, 2014 to June 30, 2016. Suppose an investor applies the volatility-timing strategy

to adjust the portfolio weights each day by solving the following risk minimization

problem given a desired portfolio return µ0.

Min w′tΣtwt s. t. w′tµ = µ0 and w′t1 = 1, (4.126)

where wt stands for portfolio weights on day t, Σt is the covariance matrix, µ is the

daily return mean of the assets and µ0 is the required return of the portfolio. The

solution of the minimization problem is

wt =
Σ−1
t µ

µ′Σ−1
t µ

µ0. (4.127)
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Based on the ex-post covariance estimates, the next period covariance is predicted

using an exponential smoother.

Σ̂t = exp(−κ)Σ̂t−1 + κ exp(−κ)Ŝt−1, (4.128)

where κ is the decay rate and Ŝt−1 is the ex-post covariance estimator, which can be

RCt, RKt or V̂MA,t. µ is predetermined and is set to be the average of the most recent

5 years’ daily returns. The only difference between each portfolio is the estimates of

Σ̂t used.

A utility-based approach is used to assess economic gains. The same utility func-

tion is adapted as Fleming et al. (2003).

U(rpt ) = W0

[
(1 + rft + rpt )−

γ

2(1 + γ)
(1 + rft + rpt )

2

]
, (4.129)

where rpt = w′tRt is the portfolio return on day t, rft is the daily risk-free rate obtained

from Federal Economic Data and γ stands for the risk aversion coefficient.

The performance of two competing strategies can be evaluated through calculating

the performance fee ∆ that an investor would pay to switch from one to another. ∆

is a constant that satisfies the following equation.

T∑
t=1

U(rp1t ) =
T∑
t=1

U(rp2t −∆). (4.130)

The daily return of the portfolio based on 5-minute RCt is set to be rp1t , which serves

as the benchmark. rp2t can be based on RKt or V̂MA,t.

Table 4.21 shows the Sharpe ratio of the portfolios based on RCt, RKt and V̂MA,t
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under a different decay rate κ and µ0. Portfolios using a rolling estimator based on

V̂MA,t always have the highest Sharpe ratios, followed by portfolios based on RKt and

5-minute RCt. Table 4.21 also lists the annualized basis point fees that an investor

with quadratic utility would like to pay to switch from the 5-minute RCt based

strategy to using RKt or V̂MA,t. Given different decay rates and required portfolio

returns, both a less risk-averse investor (γ = 1) and a more conservative investor

(γ = 10) would be willing to pay a higher performance fee in order to choose portfolio

based on V̂MA,t, instead of the RKt based one. For example, in the case with κ = 0.1

and µ0 = 0.1, an investor with γ = 10 would like to pay almost 20 extra basis points

in order to choose V̂MA,t, rather than the RKt as the covariance estimator to form

the portfolio.

Furthermore, the Bayesian approach provides a method to assess how the esti-

mation uncertainty influences the optimal weights, and thereby the portfolio return.

The classical method provides only a point estimate of the covariance, which esti-

mates the center of the covariance distribution. However, the parameter realization

can deviate from the distribution mean. As a result, the estimated weight may not

equal the true optimal weight and the risk and return of the portfolio are influenced.

Since the Bayesian model delivers an exact finite sample distribution of covariance,

not only the mean estimates of covariance, portfolio weights and return, but also all

the possible outcomes of those quantities can be obtained. Using the results from

5000 MCMC iterations, the histograms of portfolio returns and the weights of the ten

assets on June 29, 2016 are shown in Figure 4.26 and Figure 4.27. For example, due

to the uncertainty in covariance, the weight on BAC varies from -3% to 7% and the

possible portfolio returns lie in the range of 0.65% and 1.1%.
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4.7 Conclusion

This chapter proposes a Bayesian nonparametric method of estimating a covariance

matrix for nonsynchronous prices contaminated with independent microstructrue

noise. The proposed estimator provides at least four benefits in covariance esti-

mation. First, pooling observations with similar covariance increases the precision

of ex-post covariance estimation. Second, the Bayesian approach delivers exact fi-

nite sample results without relying on any infill asymptotic assumption. Third, the

estimated covariance estimator is guaranteed to be positive definite. Last but not

least, a new synchronization method with data augmentation is introduced to con-

vert nonsynchronous observations to regularly spaced data series without zero-return

problem.

Monte Carlo simulation confirms that the Bayesian nonparametric covariance es-

timator is very competitive with existing estimators given both regularly and non-

synchronously spaced data, with and without microstructure noise. Empirical ap-

plication to equity returns shows that the correlation and realized beta implied by

the Bayesian nonparametric covariance estimator have similar time series dynamics

as the multivariate realized kernel. The minimum variance portfolio based on the

proposed estimator outperforms the portfolio formed using realized covariance and

multivariate realized kernel in terms of Sharpe ratios and the utility level.

165



Ph.D. Thesis - Jia Liu McMaster University - Business

4.8 Appendix

4.8.1 Estimation Steps of DPM Model

1. Sampling µt:

Given prior: µt ∼ N(Mµ, Vµ), the conditional posterior of µt is

p(µt
∣∣Rt,1:nt ,Φt,1:Kt , st,1:nt) ∝ p(µt)

nt∏
i=1

p(Rt,i

∣∣µt,Φt,st,i) ∼ N(Mµ, V µ), (4.131)

where V µ = (
nt∑
i=1

Φ−1
t,st,i + V −1

µ )−1 and Mµ = V µ

(
nt∑
i=1

Φ−1
t,st,iRt,i + V −1

µ Mµ

)
.

2. Sampling Φt,j for j = 1, . . . , Kt:

Given prior Φt,j ∼ IW(Ψt, νt), the conditional posterior of Φt,j is

p(Φt,j

∣∣Rt,1:nt , st,1:nt , µt) ∝ p(Φt,j)
∏
st,i=j

p(Rt,i

∣∣µt,Φt,j)

∝
∣∣Φt,j

∣∣− 1
2

(nj+ν+d+1)
exp

[
−1

2
tr(Ψt +Qt,j)Φ

−1
t,j

]
∼ IW(Ψt +Qt,j, nj + νt),

(4.132)

where Qt,j =
∑
st,i=j

(Rt,i − µt)(Rt,i − µt)′ and nj =
nt∑
i=1

1(st,i = j).

3. Sampling st,i for i = 1, · · · , nt:

P (st,i = j
∣∣Rt,i, µt,Φt,1:Kt , wt,1:Kt , ut,i) ∝

Kt∑
j=1

1(wt,j > ut,i)N
(
Rt,i

∣∣µt,Φt,j

)
.

(4.133)

166



Ph.D. Thesis - Jia Liu McMaster University - Business

4. Sampling vt,j and calculate wt,j for j = 1, · · · , Kt:

p(vt,j
∣∣st,1:nt , αt) ∼ Beta

(
1 +

nt∑
i=1

1(st,i = j), αt +
nt∑
i=1

1(st,i > j)

)
. (4.134)

wt,j are computed as wt,1 = vt,1, and wt,j = vt,j
j−1∏
l=1

(1− vt,l).

5. Sampling ut,i for i = 1, . . . , nt:

p(ut,i
∣∣st,1:nt , wt,1:Kt) ∼ Unif(0, wt,st,i). (4.135)

6. Find the smallest Kt such that
Kt∑
j=1

wt,j > 1−min(ut,1:nt).

7. Sampling αt:

Given prior αt ∼ Ga(a, b),

p(αt
∣∣Kt) ∼ q ·Ga(a+Kt, b− log ξt) + (1− q) ·Ga(a+Kt−1, b− log ξt), (4.136)

where q = a+Kt−1
a+Kt−1+nt(b−log ξt)

and ξt ∼ Beta(αt + 1, nt) .

4.8.2 Estimation Steps of DPM-VMA(1) Model

1. Sampling µt:
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Given prior: µt ∼ N(Mµ, Vµ). The posterior of µt is

p
(
µt
∣∣R̃t,1:nt ,Θt,Φt,1:Kt

)
∝ p(µt)

nt∏
i=1

p(R̃t,i

∣∣µt + Θtηt,i−1,Φt,st,i)

∝ exp

{
−1

2
µ′t

(
nt∑
i=1

Φ−1
t,st,i

+ V −1
µ

)
µt − µ′t

(
nt∑
i=1

Φ−1
t,st,i

(R̃t,i −Θtηt,i−1) + V −1
µ Mµ

)}
.

(4.137)

where ηt,i−1 = R̃t,i−1 − µt −Θtηt,i−2.

Define U1(µt) = − log
[
p(µt

∣∣R̃t,1:nt ,Θt,Φt,1:Kt)
]
, we have

U1(µt) =
1

2
µ′t

(
nt∑
i=1

Φ−1
t,st,i

+ V −1
µ

)
µt − µ′t

(
nt∑
i=1

Φ−1
t,st,i

(R̃t,i −Θtηt,i−1) + V −1
µ Mµ

)
.(4.138)

∂U1(µt)

∂µt
=

(
nt∑
i=1

Φ−1
t,st,i

+ V −1
µ

)
µt −

(
nt∑
i=1

Φ−1
t,st,i

(R̃t,i −Θtηt,i−1) + V −1
µ Mµ

)
.

(4.139)

Introduce an auxiliary d-dimensional vector P1 and define function K1(P1) =
d∑
j=1

(P
(j)
1 )2

2
. The leapfrog method is used to approximate the Hamiltonian dy-

namics.

(1) Set µt,0 = µ
(m−1)
t , where µ

(m−1)
t is the value of µt in previous iteration.

Initialize P1 as P
(j)
1 ∼ N(0, 1).

(2) P ′1 = P1 − ε
2

∂U1(µt,0)

∂µt
and µ′t = µt,0.

(3) For l from 1 to L,

a. µ′t = µ′t + εP ′1.

b. If l < L, P ′1 = P ′1 − ε
∂U1(µ′t)
∂µt

.
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c. If l = L, P ′1 = P ′1 − ε
2

∂U1(µ′t)
∂µt

.

Update µ = µ′t with acceptance rate min (1, exp(U1(µt,0) +K1(P1)− U1(µ′t)−K1(P ′1))).

L is the leapfrog step and ε is the the stepsize. I set L = 20 and adjust ε very

10 MCMC iterations. If the average acceptance rate in previous 10 runs is zero,

set ε = 0.9ε. If the average acceptance rate is above 0.8, adjust ε = 1.1ε.

2. Sampling Θt:

Given prior Θt,jk ∼ N(mjk, v
2
jk), the conditional posterior of Θt is

p
(

Θt

∣∣R̃t,1:nt ,Θt,Φt,1:Kt

)
∝ exp

{
−1

2

nt∑
i=1

[
η′t,i−1Θ′tΦ

−1
t,st,i

(
Θtηt,i−1 − 2(R̃t,i − µt)

)]}

·
d∏
j=1

d∏
k=1

exp

[
−(Θ

(jk)
t −mjk)

2

2v2
jk

]
(4.140)

Define U2(Θt) = − log
[
p(Θt

∣∣R̃t,1:nt ,Θt,Φt,1:Kt)
]
, we have

U2(Θt) = −1

2

nt∑
i=1

[
η′t,i−1Θ′tΦ

−1
t,st,i

(
2(R̃t,i − µt)−Θtηt,i−1

)]
+

d∑
j=1

d∑
k=1

[
(Θ

(jk)
t −mjk)

2

2v2
jk

]
(4.141)

∂U2(Θt)

∂Θt

= −
nt∑
i=1

Φ−1
t,st,i

(
R̃t,i − µt −Θtηt,i−1

)
η′t,i−1 +

(Θ
(jk)
t −mjk)

v2
jk

1jk (4.142)

Introduce an auxiliary d×dmatrix P2 and define functionK2(P2) =
d∑
j=1

d∑
k=1

(P
(jk)
2 )2

2
.

(1) Set Θt,0 = Θ
(m−1)
t , where Θ

(m−1)
t is the result from previous iteration.

Initialize P2 that each element is drawn from N(0, 1).

(2) P ′2 = P2 − ε
2

∂U2(Θt,0)

∂Θt
and Θ′t = Θt,0.
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(3) For l from 1 to L,

a. Θ′t = Θ′t + εP ′2.

b. If l < L, P ′2 = P ′2 − ε
∂U2(Θ′t)
∂Θt

.

c. If l = L, P ′2 = P ′2 − ε
2

∂U2(Θ′t)
∂Θt

.

Accept Θ′t with acceptance rate min (1, exp(U2(Θt,0) +K2(P2)− U2(Θ′t)−K2(P ′2))).

3. Sampling Φt,j for j = 1, . . . , Kt:

Given prior Φt,j ∼ IW(Ψt, νt), the conditional posterior of Φt,j is

p(Φt,j

∣∣R̃t,1:nt , st,1:nt , µt,Θt) ∝ p(Φt,j)
∏
st,i=j

p(R̃t,i

∣∣µt + Θtηt,i−1,Φt,j)

∝
∣∣Φt,j

∣∣− 1
2

(nj+ν+d+1)
exp

[
−1

2
tr(Ψt +Qt,j)Φ

−1
t,j

]
∼ IW(Ψt +Qt,j, nj + νt),

(4.143)

whereQt,j =
∑
st,i=j

(R̃t,i−µt−Θtηt,i−1)(R̃t,i−µt−Θtηt,i−1)′ and nj =
nt∑
i=1

1(st,i = j).

4. Sampling st,i for i = 1, . . . , nt:

P (st,i = j
∣∣Rt,i, µt,Φt,1:Kt , wt,1:Kt , ut,i) ∝

Kt∑
j=1

1(wt,j > ut,i)N
(
R̃t,i

∣∣µt + Θtηt,i−1,Φt,j

)
.

(4.144)

5. to 8. Same as step 4 to 7 in the estimation of DPM.
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4.8.3 Proof of the Unbiasedness of DPM-VMA(1) Estimator

Let p
(j)
t,τi denotes the latent intraday log-price of asset j, τi denotes the arrival time.

Contaminated with microstructure noise, the observed intraday price ṗ
(j)
t,τi is

ṗ
(j)

t,τ j
= p

(j)

t,τ j
+ ε

(j)

t,τ j
, ε

(j)

t,τ j
∼ N(0, ω

(j)2

t,τ j
).

where ε
(j)

t,τ j
is independent with p

(j)

t,τ j
and ε

(k)

t,τ j
for k 6= j.

Synchronized using previous-tick scheme with grid length h, the price series is

p̃
(j)
t,i = ṗ

(j)

t,max(τ j |τ j≤ih)
, j = 1, . . . , d.

The regularly spaced return vector of the j assets is denoted as R̃t,i = P̃t,i− P̃t,i−1,

where P̃t,i =
(
p

(1)
t,i , p

(2)
t,i , · · · , p

(d)
t,i

)′
.

Assuming there is no zero-return bias, the variance and first autocovariance of R̃t,i

are

cov(R̃t,i) = Σt,i + Ωt,i−1 + Ωt,i − Γt,i−1 − Γt,i = Ξt,i−1 + Ξt,i, (4.145)

cov(R̃t,i, R̃t,i−1) = −Ωt,i−1 + Γt,i−1 = −Ξt,i−1. (4.146)

where Ωt,i = diag
(

(ω
(1)
t,i )2, (ω

(2)
t,i )2, · · · , (ω(d)

t,i )2
)

, Γt,i is matrix with zero diagonals and

measures the lead-lag dependence between every two assets and Ξt,i = Ωt,i − Γt,i.

Consider the following heteroskedastic VMA(1) model for R̃t,i,

R̃t,i = µt + Θtηt,i−1 + ηt,i, ηt,i ∼ N(0,∆t,i), (4.147)
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which will be used to recover an estimate of ex-post variance for the fundamental

return process, Vt =
∑nt

i=1 Σt,i.

The corresponding moments of this process are

cov(R̃t,i) = Θt∆t,i−1Θ′t + ∆t,i, (4.148)

cov(R̃t,i, R̃t,i−1) = Θt∆t,i−1. (4.149)

Equating (4.146) and (4.149), we have

− Ξt,i−1 = Θt∆t,i−1 and − Ξt,i = Θt∆t,i. (4.150)

Equating (4.145) and (4.148) and using the result in (4.150), we have

Σt,i + Ξt,i + Ξt,i−1 = Θt∆t,i−1Θ′t + ∆t,i

Σt,i + Ξt,i + Ξt,i−1 = −Ξt,i−1Θ′t −Θ−1
t Ξt,i

Σt,i = −(I + Θ′t)Ξt,i−1 − (I + Θ−1
t )Ξt,i

(4.151)

Using the results in (4.151) and (4.150), the summation of Σt,i and ∆t,i, over

i = 1, . . . , nt, are

nt∑
i=1

Σt,i = −(I + Θ′t)
nt∑
i=1

Ξt,i−1 − (I + Θ−1
t )

nt∑
i=1

Ξt,i, (4.152)

nt∑
i=1

∆t,i = −Θ−1
t

nt∑
i=1

Ξt,i. (4.153)
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The ratio between (4.152) and (4.153) is

nt∑
i=1

Σt,i(
nt∑
i=1

∆t,i)
−1 = (I + Θt)

nt∑
i=1

Ξt,i−1(
nt∑
i=1

Ξt,i)
−1Θt + (I + Θ−1

t )
nt∑
i=1

Ξt,i(
nt∑
i=1

Ξt,i)
−1Θt

= (I + Θt)Θt + (I + Θ−1
t )Θt

= (I + Θt)(I + Θt)
′

(4.154)

Finally, we have

Vt =
nt∑
i=1

Σt,i = (I + Θt)
nt∑
i=1

∆t,i(I + Θt), if Ξt,nt = Ξt,0. (4.155)
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Table 4.15: Prior Specifications of Models

Model µt Σt,i Θjk
t αt

DPM N(0, V ) IW(Ψt, νt) - Gamma(2, 4)

DPM-VMA(1) N(0, V ) IW(Ψt, νt) N(0, 0.5) Gamma(2, 4)

νt = 1
d

∑d
j=1

2(RC
(jj)
t )2

var(r
(j)2
t,i )

+d+3 and Ψt = νt−d−1
nt

RCt. V is diagonal

matrix with V (jj) = 0.0012.
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Table 4.16: RMSEs of RCt, RKt, V̂t and V̂MA,t Given Regularly Spaced Returns

Panel A: No Noise Case (ξ2 = 0.0)

RMSE(Σjjt ) RMSE(Σjkt )

Dimension Frequency RCt RKt V̂t RC5m
t RKt V̂t

3 Assets

5-minute 0.1434 0.2648 0.1366 0.0859 0.1561 0.0818

1-minute 0.0594 0.1343 0.0591 0.0379 0.0831 0.0376

10-second 0.0233 0.0623 0.0233 0.0140 0.0394 0.0140

10 Assets

5-minute 0.1871 0.3686 0.1567 0.1217 0.2324 0.0992

1-minute 0.0789 0.1928 0.0783 0.0506 0.1227 0.0502

10-second 0.0329 0.0837 0.0328 0.0205 0.0528 0.0204

Panel B: Microstructure Noise Case (ξ2 = 0.001)

RMSE(Σjjt ) RMSE(Σjkt )

Dimension Frequency RCt RKt V̂MA,t RCt RKt V̂MA,t

3 Assets

5-minute 0.2231 0.3228 0.3641 0.1062 0.1890 0.1936

1-minute 0.7441 0.1921 0.1541 0.0689 0.1056 0.0887

10-second 4.4798 0.1248 0.0774 0.0845 0.0674 0.0436

10 Assets

5-minute 0.2609 0.3245 0.4094 0.1041 0.1742 0.2131

1-minute 0.9197 0.1965 0.1951 0.0666 0.1021 0.0895

10-second 5.6987 0.1384 0.1172 0.1008 0.0723 0.0686

Results are based on 1000 days’ simulation. RMSE(Σjjt ) stands for the average of

RMSEs for diagonal elements of Σt. RMSE(Σjkt ) is the average of RMSEs for off-

diagonal elements. Bayesian nonparametric estimator V̂t and V̂MA,t are estimated
based on on 5000 MCMC runs, after 1000 burn-in.
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Table 4.17: RMSEs of RCt, RKt and V̂MA,t Given Nonsynchronous Returns

Panel A: No Noise Case (ξ2 = 0.0)

RMSE(Σjjt ) RMSE(Σjkt )

Dimension Frequency RC5m
t RKt V̂MA,t RC5m

t RKt V̂MA,t

3 Assets
λj ∈ {30, 40, 60} 0.1262 0.1355 0.1057 0.1112 0.0914 0.0571

λj ∈ {5, 8, 10} 0.4233 0.1471 0.0995 0.1511 0.0598 0.0337

10 Assets
λj ∈ {30, 40, 60} 0.2613 0.3493 0.2178 0.1713 0.1712 0.0913

λj ∈ {5, 8, 10} 0.5685 0.2335 0.1458 0.1553 0.0973 0.0473

Panel B: Microstructure Noise Case (ξ2 = 0.001)

RMSE(Σjjt ) RMSE(Σjkt )

Dimension Frequency RC5m
t RKt V̂MA,t RC5m

t RKt V̂MA,t

3 Assets
λj ∈ {30, 40, 60} 0.3408 0.3474 0.2581 0.1955 0.1964 0.1223

λj ∈ {5, 8, 10} 0.2384 0.0761 0.0563 0.1057 0.0447 0.0363

10 Assets
λj ∈ {30, 40, 60} 0.2715 0.2668 0.2353 0.1544 0.1553 0.0969

λj ∈ {5, 8, 10} 0.2418 0.1109 0.0820 0.1049 0.0739 0.0541

Results are based on 1000 days’ simulation. RMSE(Σjjt ) stands for the average of RMSEs

for diagonal elements of Σt. RMSE(Σjkt ) is the average of RMSEs for off-diagonal elements.

Bayesian nonparametric estimator V̂MA,t is estimated based on on 5000 MCMC runs, after
1000 burn-in.
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Table 4.18: Coverage Probabilities of RCt, RKt, V̂t and V̂MA,t Given Regularly
Spaced Returns

Panel A: No Noise Case (ξ2 = 0.0)

Prob(Σjjt ∈ Interval) Prob(Σjkt ∈ Interval)

Dimension Frequency RCt RKt V̂t RCt RKt V̂t

3 Assets

5-minute 92.97% 87.48% 95.65% 92.44% 79.79% 95.45%

1-minute 95.25% 87.75% 95.78% 94.91% 72.76% 96.05%

10-second 96.92% 91.03% 97.12% 97.46% 67.07% 98.13%

10 Assets

5-minute 92.41% 87.11% 97.69% 91.95% 78.09% 98.09%

1-minute 95.70% 89.64% 95.98% 96.08% 72.65% 96.34%

10-second 96.45% 92.61% 96.61% 96.48% 68.59% 96.59%

Panel B: Microstructure Noise Case (ξ2 = 0.001)

Prob(Σjjt ∈ Interval) Prob(Σjkt ∈ Interval)

Dimension Frequency RCt RKt V̂MA,t RCt RKt V̂MA,t

3 Assets

5-minute 92.03% 86.88% 93.84% 90.29% 53.95% 94.24%

1-minute 0.00% 90.43% 93.17% 92.37% 89.16% 93.31%

10-second 0.00% 93.37% 93.51% 87.55% 95.92% 93.31%

10 Assets

5-minute 92.03% 87.57% 80.44% 92.54% 55.67% 81.07%

1-minute 0.00% 91.57% 89.26% 93.68% 90.13% 89.39%

10-second 0.00% 94.42% 89.25% 93.96% 96.39% 73.01%

Results are based on 1000 days’ simulation. Prob(Σjjt ∈ Interval) stands for the av-
erage of coverage frequencies for diagonal elements of Σt. Prob(Σjjt ∈ Interval) is the
averaged coverage frequencies for off-diagonal covariance elements. Bayesian nonpara-
metric estimator V̂t and V̂MA,t are estimated based on on 5000 MCMC runs, after 1000
burn-in.
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Table 4.19: Coverage Probabilities of RCt, RKt and V̂MA,t Given Nonsynchronous
Returns

Panel A: No Noise Case (ξ2 = 0.0)

Prob(Σjjt ∈ Interval) Prob(Σjkt ∈ Interval)

Dimension Frequency RC5m
t RKt V̂MA,t RC5m

t RKt V̂MA,t

3 Assets
λj ∈ {30, 40, 60} 92.44% 91.10% 96.12% 72.96% 23.63% 94.91%

λj ∈ {5, 8, 10} 93.91% 93.78% 93.04% 91.23% 19.54% 92.17%

10 Assets
λj ∈ {30, 40, 60} 93.11% 91.31% 91.08% 72.76% 21.21% 93.32%

λj ∈ {5, 8, 10} 93.78% 91.33% 86.18% 91.83% 18.80% 87.94%

Panel B: Microstructure Noise Case (ξ2 = 0.001)

Prob(Σjjt ∈ Interval) Prob(Σjkt ∈ Interval)

Dimension Frequency RC5m
t RKt V̂MA,t RC5m

t RKt V̂MA,t

3 Assets
λj ∈ {30, 40, 60} 91.43% 87.15% 94.11% 74.90% 65.80% 95.98%

λj ∈ {5, 8, 10} 90.90% 92.97% 94.44% 91.77% 90.63% 96.53%

10 Assets
λj ∈ {30, 40, 60} 92.97% 88.41% 84.24% 77.75% 64.12% 92.45%

λj ∈ {5, 8, 10} 90.58% 90.38% 91.67% 90.19% 83.41% 89.86%

Results are based on 1000 days’ simulation. Prob(Σjjt ∈ Interval) stands for the average of
coverage frequencies for diagonal elements of Σt. Prob(Σjjt ∈ Interval) is the averaged coverage

frequencies for off-diagonal covariance elements. Bayesian nonparametric estimator V̂MA,t is
estimated based on on 5000 MCMC runs, after 1000 burn-in.

Table 4.20: ARMA(1,1) Model Estimation Results

Parameter RC5m
t RKt V̂MA,t

φ1 0.9729 0.9569 0.9596

(0.0138) (0.0162) (0.0168)

ρ1 -0.8358 -0.5951 -0.6524

(0.0358) (0.0529) (0.0552)

µ 1.3821 1.2570 1.2805

(0.1511) (0.1121) (0.1192)

1 This table reports OLS regression results of
ARMA model: βt = µ + φ1βt−1 + ρ1εt−1 + εt.
The value in the bracket are the standard er-
ror. Realized beta for AA-SPY combination are
calculated using 2× 2 RCt, RKt and V̂MA,t.

2 Sample period: 2014/07/03 - 2016/06/29, 499
observations.
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Table 4.21: Summary of Minimum Variance Portfolio Performance

RC5m
t RKt V̂MA,t

µ0 SR SR ∆(γ = 1) ∆(γ = 10) SR ∆(γ = 1) ∆(γ = 10)

Panel A: Decay Rate κ = 0.05

0.02 0.1486 0.1503 -3.6789 -3.7213 0.1518 6.0936 6.0616

0.05 0.1462 0.1479 -8.6373 -8.7157 0.1494 15.2909 15.2397

0.10 0.1454 0.1471 -15.3342 -15.4778 0.1486 30.8584 30.7705

Panel B: Decay Rate κ = 0.1

0.02 0.1395 0.1456 8.2759 8.2344 0.1465 12.2842 12.2464

0.05 0.1371 0.1432 21.1735 21.0977 0.1441 31.0270 30.9607

0.10 0.1362 0.1424 44.0385 43.8999 0.1433 63.1898 63.0706

Panel C: Decay Rate κ = 0.2

0.02 0.1293 0.1397 17.4046 17.3600 0.1401 19.1291 19.0880

0.05 0.1269 0.1373 43.9367 43.8528 0.1376 48.2247 48.1471

0.10 0.1261 0.1365 89.3768 89.2209 0.1368 97.8582 97.7211

The value listed in this table is the annualized base point fees that an investor with quadratic
utility and risk aversion coefficient γ is willing to pay for switching portfolio based on
5-minute RCt to portfolio based on RKt or V̂MA,t. The period is from 07/02/2014 to
06/29/2016, totally 499 trading days.
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Figure 4.18: Synchronization with Data Augmentation
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Figure 4.19: Covariance Estimates without Data Augmentation
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Figure 4.20: Root Mean Squared Error of Variance Estimates with Different Grid
Length
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Figure 4.21: Root Mean Squared Error of Covariance Estimates with Different Grid
Length

184



Ph.D. Thesis - Jia Liu McMaster University - Business

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

2014/07/01 2014/09/26 2014/12/23 2015/03/24 2015/06/18 2015/09/14 2015/12/09 2016/03/09 2016/06/03

C
o

rr
e

la
ti
o

n

Date

RCt MRKt VˆMA,t

Figure 4.22: Correlation between AA and BAC based on RC5m
t , RKt and V̂MA,t
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Figure 4.23: Correlation between CAT and F based on RC5m
t , RKt and V̂MA,t
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Figure 4.24: Correlation between GE and GIS based on RC5m
t , RKt and V̂MA,t
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Figure 4.26: Histogram of Portfolio Return Caused by Covariance Uncertainty on
June 29, 2016
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Figure 4.27: Histogram of Weights Caused by Covariance Uncertainty on June 29,
2016
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Chapter 5

Conclusion

This thesis proposes new and improved approaches of estimating ex-post variance and

covariance of asset returns from high frequency data based on Bayesian nonparametric

tools. It also develops a class of new Markov switching models that exploit both return

and ex-post volatility measures.

Chapter 2 introduces a way to link ex-post volatility measures with Markov switch-

ing models. The proposed models are able to jointly analyze asset returns and ex-post

volatility measures and extract information from both data series. Parametric and

nonparametric versions of the models are introduced in both univariate and multi-

variate settings. With the help of extra information provided by ex-post volatility

measures, the joint Markov switching models outperform existing ones in density

forecast of returns and prediction of volatility. In addition, the estimation of model

parameters and the identification of the underlying state variable are improved. The

portfolio allocation exercises show the models that incorporate ex-post volatility mea-

sures lead to better portfolio choice outcomes. The proposed joint models can be

viewed as the strengthened version of Markov switching model and can be widely
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applied in the analysis of financial and economic data.

Chapter 3 and Chapter 4 consider the problems of ex-post volatility estimation

from a Bayesian prospective and offer alternative estimators which can be better than

the existing ones in several aspects. Chapter 3 proposes a new ex-post variance es-

timation method which takes advantage of pooling and does not rely on asymptotic

assumptions. Monte Carlo simulation results support that the proposed estimators

are more accurate and have better finite sample results, especially when data fre-

quency is low. Applications to equity returns show that the proposed method leads

to a more realistic distribution of the ex-post variance estimator and better forecasting

of the variance.

Chapter 4 extends the Bayesian nonparametric ex-post variance estimator intro-

duced in Chapter 3 to its multivariate version and makes the estimator suitable for

nonsynchronously spaced data with microstructure noise. As in the univariate case,

the Bayesian nonparametric approach of estimating covariance matrix takes advan-

tage of pooling and delivers exact finite sample results. Another important improve-

ment is that the proposed covariance estimators are guaranteed to be positive definite.

Furthermore, a new synchronization method based on data augmentation is provided.

All of those features make the proposed estimator a better candidate to measure asset

covariation. Empirical applications show that the Bayesian nonparametric measure

of covariance matrix leads to better portfolio choices.

Chapter 3 and Chapter 4 contribute to the literature by introducing a finite sample

approach of estimating ex-post volatility measures. The proposed methods provide

both improved volatility measures and the entire distribution of estimators, which

benefit not only the measurement of risk, but also the study of the uncertainty of risk
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measures.
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