
LiDAR Based Perception System: Pioneer Technology for Safety Driving

LiDAR Based Perception System: Pioneer
Technology for Safety Driving

By

Zhongzhen Luo, B.Eng.

A Thesis Submitted to the School of Graduate Studies in the Partial
Fulfillment of the Requirements for the Degree Doctor of Philosophy

McMaster University c© Copyright by Zhongzhen Luo September
25, 2017

http://www.mcmaster.ca/

McMaster University

Doctor of Philosophy (2017)

Hamilton, Ontario (Department of Computing and Software)

TITLE: LiDAR Based Perception System: Pioneer Technology for Safety Driving

AUTHOR: Zhongzhen Luo (McMaster University)

SUPERVISOR: Dr. Martin von Mohrenschildt and Dr. Saeid Habibi

NUMBER OF PAGES: xx, 213

ii

http://www.mcmaster.ca/
http://www.cas.mcmaster.ca/
http://www.mcmaster.ca/

Abstract

Perceiving the surrounding multiple vehicles robustly and effectively is a very

important step in building Advanced Driving Assistant System (ADAS) or au-

tonomous vehicles. This thesis presents the design of the Light Detection and

Ranging (LiDAR) perception system which consists of several sub-tasks: ground

detection, object detection, object classification, and object tracking. It is believed

that accomplishing these sub-tasks will provide a guideline to a vast range of poten-

tial autonomous vehicles applications. More specifically, a probability occupancy

grid map based approach was developed for ground detection to address the is-

sues of over-segmentation, under-segmentation and slow-segmentation by non-flat

surface. Given the non-ground points, point cloud clustering algorithm is devel-

oped for object detection by using a Radially Bounded Nearest Neighbor (RBNN)

method on the static Kd-tree. To identify the object, a supervised learning ap-

proach based on our LiDAR sensor for vehicle type classification is proposed. The

proposed classification algorithm is used to classify the object into four different

types: “Sedan”, “SUV”, “Van”, and “Truck”. To handle disturbances and motion

uncertainties, a generalized form of Smooth Variable Structure Filter (SVSF) in-

tegrated with a combination of Hungarian algorithm (HA) and Probability Data

Association Filter (PDAF), referred to as GSVSF-HA/PDAF, is developed. The

developed approach is to overcome the multiple targets data association in the con-

tent of dynamics environment where the distribution of data is unpredictable. Last

but not the least, a comprehensive experimental evaluation for each sub-task is

presented to validate the robustness and effectiveness of our developed perception

system.

iii

Acknowledgements
First and foremost I would like to express my sincere gratitude to my advi-

sors Dr.Martin von Mohrenschildt and Dr.Saeid Habibi for providing me with the

opportunity to pursue PhD degree. Dr.Martin von Mohrenschildt has taught me

both consciously and unconsciously on how good programming skills are. It is

not often to find an advisor that always finds the time for listening to the little

problems and roadblocks that unavoidably crop up in the course of performing

research. His technical and editorial advice was essential to the completion of this

thesis and has taught me innumerable lessons on my research. Also I am deeply

indebted to my co-supervisor Dr.Saeid Habibi for his fundamental role in my doc-

toral work. He provided me with every bit of guidance, assistance, and expertise

that I needed during my PhD study. Without his valuable inspiration, advice,

and encouragement, this research would not have been achievable. I appreciate

all his contributions of time, ideas, and lessons to make my PhD experience more

productive.

Besides my supervisors, I would like to thank my committee members: Dr.Ridha

Khedri and Dr.Fengjun Yan, for their insightful comments and encouragement, but

also for the hard questions and vast knowledge in several discussions which guided

me through this important period of my life.

My sincere thanks also goes to our industry expert: Cam Fisher. Without

his precious support and thoughtful guidance, it would not be possible to access

research facilities and conduct this research.

I am also grateful for my colleagues from CMHT, for the endless discussions

iv

and collaborations, and for all the days we were working together, and for all the

fun we have had in the last five years.

Last but not the least, I would like to thank my parents for supporting me

spiritually throughout my studies aboard and my life in general.

v

Contents

Abstract iii

Acknowledgements iv

Declaration of Authorship xix

1 Introduction 1

1.1 Motivation and Objectives . 1

1.2 Problem Description . 7

1.3 Novelty of the Research . 12

1.4 Overview of the Thesis . 14

2 Technology: LiDAR Sensor 16

2.1 Introduction . 16

2.2 LiDAR . 18

2.3 LiDAR Position . 21

3 The Algorithm: Design of Ground Detection System 28

3.1 Introduction . 29

3.2 Related Work . 31

3.3 Methodology . 33

vi

3.3.1 Data Acquisition and Preprocessing 34

3.3.2 Probability Occupancy Grid Map Modeling (OGM) 37

3.3.3 Weighted Linear Regression 47

3.4 Experiment and Result . 52

3.5 Conclusion . 56

4 The Algorithm: Design of Object Detection System 58

4.1 Introduction . 59

4.2 Related Work . 60

4.3 Spatial Data Structure . 62

4.3.1 Kd-tree . 62

4.3.2 Nearest Neighbor Search in Kd-tree 64

4.4 Clustering Analysis . 66

4.4.1 Review of Different Cluster Analysis Criteria 68

4.5 RBNN Based Clustering using Kd-tree 75

4.5.1 Experiment and Result . 79

4.6 Conclusion . 83

5 The Algorithm: Design of Object Classification System 84

5.1 Introduction . 85

5.2 Related Work . 86

5.3 The Proposed Classification System 88

5.3.1 Feature Extraction by PCA 89

5.3.2 Binary Classification by SVM 97

5.3.3 Kernel Functions . 102

5.3.4 Vehicle Types Classification By CNN 105

vii

5.4 Experiments and Analysis . 112

5.4.1 Data Preparation . 112

5.4.2 Parameter Selection for SVM 113

5.4.3 Parameter Selection for CNN 114

5.4.4 Performance Evaluation . 115

5.5 Conclusion . 121

6 The Algorithm: Design of Tracking System 122

6.1 Introduction . 123

6.2 Related Work . 127

6.3 Tracking Strategy . 129

6.3.1 The Kalman Filter Filter . 129

6.3.2 The Extended Kalman Filter 134

6.3.3 The Smooth Variable Structure Filter 136

6.3.4 Generalized SVSF . 142

6.4 Data Association Strategy . 147

6.4.1 Hungarian Algorithm . 147

6.4.2 Probabilistic Data Association Filter 154

6.5 Proposed GSVSF-HA/PDAF Approach 159

6.5.1 GSVSF-HA . 160

6.5.2 GSVSF-PDAF . 163

6.5.3 GSVSF-HA/PDAF . 166

6.6 Experimental Result . 167

6.7 Conclusion . 172

7 Overview of Real Time System and its Implementation 174

viii

7.1 Introduction . 174

7.2 Modules . 177

7.2.1 Preprocessing Module . 177

7.2.2 Ground Detection Module 178

7.2.3 Object Detection Module . 179

7.2.4 Object Classification Module 180

7.2.5 Object Tracking Module . 181

7.2.6 Graphical User Interface (GUI) Module 182

7.3 Inter-Module Communication . 183

7.4 Matlab Development . 186

7.5 C++ Development . 189

8 Conclusion and Future Work 191

8.1 Conclusion . 191

8.2 Future work . 193

8.2.1 Behaviors Prediction . 194

8.2.2 Integration with Other Sensors 194

A Supplementary 195

A1 LiDAR UDP Packet Structure . 195

ix

List of Figures

1.1 The cycle of autonomous system 3

1.2 Sensors comparison in autonomous driving 5

1.3 Ford’s blind spot information system 7

1.4 Some highway scenarios of intelligent or autonomous vehicle crashes 9

1.5 The process of our perception system 13

2.1 32 radially oriented lasers embedded inside the LiDAR sensor . . . 19

2.2 Two types of LiDAR configuration 22

2.3 The Velodyne HDL-32E LiDAR setup 24

2.4 The real time experiment with our developed LiDAR perception

system . 25

2.5 The LiDAR raw point cloud data 26

2.6 Three different scenarios . 27

3.1 The process of ground detection system 28

3.2 The example of ground points detected as non-ground points 30

3.3 The data flow of ground detection system 34

3.4 Non-planar surface . 35

3.5 Points from inner rings versus from outer rings 36

3.6 Mapping of 3D LiDAR points to the bin 38

x

3.7 The process of OGM . 39

3.8 The attributes of grids . 45

3.9 Front-Rear area vs Right-Left area 49

3.10 Slope estimation: Red represents the outliers, Blue represents the

estimated slope . 52

3.11 The experimental result of the most challenged scenario: high traffic 54

3.12 Black represents ground points. Red represents non-ground points. . 56

4.1 The result of object detection system 58

4.2 The Kd-tree in 2D space . 63

4.3 An 3D Kd-tree example . 64

4.4 An examples of 2-NN and 5-NN queries 65

4.5 Clustering of points . 67

4.6 Different number of clusters for the same set of points 68

4.7 An example of K-mean clustering 70

4.8 The concepts of DBSCAN . 72

4.9 The steps of DBSCAN algorithm 73

4.10 The steps of RBNN algorithm . 74

4.11 The flow diagram of clustering . 77

4.12 3D bounding box around the cluster 79

4.13 An example of our methods on real time data 80

5.1 The result of object classification system 84

5.2 The result of object detection system 86

5.3 The data flow of our approach . 88

5.4 The features extraction from clusters 93

xi

5.5 The data flow of binary SVM . 97

5.6 Optimal separating hyperplane with maximum margin 99

5.7 The circles and diamonds are not linearly separable in the input

space ; they can be linearly separable in feature space. 103

5.8 3D view is projected into x-y, x-z, yz planes 105

5.9 The data flow of CNN . 106

5.10 The example of convolution layer 107

5.11 The example of max pooling layer 109

5.12 The example of fully connected layer 110

5.13 The data set for classification . 112

5.14 K-fold cross validation . 113

5.15 Classification produces four outcomes – true positive, false positive,

true negative, and false negative. 116

5.16 The most two confusing classes . 119

6.1 The result of tracking system . 122

6.2 The ring-like pattern . 124

6.3 The process of tracking system . 125

6.4 Example of measurement rejection due to gating failure from the

same target . 129

6.5 Predictor-Corrector cycle . 130

6.6 The process flow of Kalman filter 133

6.7 State estimation toward the true trajectory 138

6.8 The smooth boundary layer concept [81] 140

6.9 The visualization of our tracking system 147

xii

6.10 The bipartite graph and its assignment 148

6.11 The ellipsoidal validation region of a target centered at its predicted

measurement ẑk|k−1 represented by dot. Three measurements have

fallen within the validation region represented by star. 155

6.12 The data flow of proposed GSVSF-HA/PDAF approach 159

6.13 The GSVSF-HA filter . 160

6.14 The GSVSF-PDAF filter . 163

6.15 Different experimental scenarios . 169

6.16 GSVSF-HA/PDAF method . 172

7.1 The overall real time system . 175

7.2 The GUI main window . 183

7.3 Example of initial data flow diagram 183

7.4 The inter-modules communication 185

7.5 The GUI communication . 186

7.6 The Matlab profiler report . 187

7.7 One of our applications developed by Matlab 188

7.8 Qt creator framework . 189

7.9 The real time implementation by C++ 190

xiii

List of Tables

1.1 Functional requirement of the system 11

2.1 LiDAR Specification . 20

2.2 Comparison between LiDARs . 23

2.3 The Evaluation Experimental Scenarios 27

2.4 The Processing Platform . 27

3.1 The occupancy indicator . 46

3.2 The posterior probability and its associated status 47

3.3 Comparison in different scenarios 55

4.1 Evaluation Result: Scenario 1 . 82

4.2 Evaluation Result: Scenario 2 . 82

4.3 Evaluation Result: Scenario 3 . 83

5.1 Summary of kernel functions . 104

5.2 The vehicle data set . 113

5.3 Grid-search result comparison . 114

5.4 The CNN parameter selection . 115

5.5 The confusion matrix . 118

5.6 The analysis of classification result 118

5.7 The comparison of classification result 119

xiv

6.1 List of Important Nomenclature and Parameters 126

6.2 The parameters of proposed methods 168

6.3 The performance of state estimation 169

6.4 The performance evaluation of trackers 171

7.1 The preprocessing module . 177

7.2 The ground detection module . 178

7.3 The object detection module . 179

7.4 The object classification module . 180

7.5 The object tracking module . 181

7.6 The graphical user interface module 182

A1.1 The UDP packet structure . 195

xv

List of Abbreviations

LiDAR Light Detection and Ranging

NHTSA National Highway Traffic Administration

BLS Blind Spot Information System

TLD Tracking Leaning Detection

MTT Multiple Target Tracking

ACC Adaptive Cruise Control

FOV Field Of View

VDC Volts Direct Current

ADAS Advanced Driver Assistance System

DARPA Defense Advanced Research Projects Agency

PDDP Principal Direction Divisive Partitioning

MST Minimum Spanning Tree

RANSAC RANdom Sample Consensus

GPINSAC Gaussian Process INcremental SAmple Consensus

NN Nearest Neighbor

DBSCAN Density Based Saptial Clustering of Applications with Noise

RBNN Radially Bounded Nearest Neighbor

DBI Davies Bouldin Index

DI Dunn Index

xvi

PCA Principle Component Analysis

SVM Support Vector Machine

ANN Artificial Neural Network

CNN Convolutional Neural Network

FCN Fully Convolution Network

SIFT Scale Invariant Feature Transform

ReLU Rectified Linear Units

C-SVC C-Support Vector Classification

RBF Radial Basis Function

TP True Positive

FP False Positive

TN True Negative

FN False Negative

NPV Negative Predictive Value

FPR False Positive Rate

FDR False Discovery Rate

FNR False Negative Rate

KF Kalman Filter

EKF Extended Kalman Filter

SVSF Smooth Variable Structure Filter

GSVSF Generalized Smooth Variable Structure Filter

GVBL Generalized Variable Boundary Layer

HA Hungarian Algorithm

PDAF Probability Data Association Filter

JPDAF Joint Probability Data Association Filter

xvii

IMM Interacting Multiple Model

RMSE Rooty Mean Square Deviation

CT Correctly Tracked

FT Falsely Tracked

GUI Graphical User Interface

UDP User Datagram Protocol

IDE Integrated Development Environment

xviii

Declaration of Authorship

I, Zhongzhen Luo, declare that this thesis titled, “LiDAR Based Perception Sys-

tem: Pioneer Technology for Safety Driving” and the work presented in it are my

own. I confirm that:

• This work was done wholly or mainly while in candidature for a research

degree at this University.

• Where any part of this thesis has previously been submitted for a degree or

any other qualification at this University or any other institution, this has

been clearly stated.

• Where I have consulted the published work of others, this is always clearly

attributed.

• Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed

myself

xix

“The first autonomous cars date back to the late 20th century. But recent increases

in sophistication and reductions in cost - reflected, for example, in cheap LIDAR

systems, which can ’see’ a street in 3D in a way similar to that of the human eye

- are now bringing autonomous cars closer to the market.”

Carlo Ratti

xx

Chapter 1

Introduction

1.1 Motivation and Objectives

Autonomous vehicles are a promising evolution of current vehicle technology for

enhanced road safety, improved road efficiency, reduced cost of congestion and

decreased fuel consumption, while improving mobility and liability and hence ac-

cident saving. The self-driving demo car has been getting much attention, due

to significant development efforts and dramatic progress made by companies such

as Google. Research on autonomous vehicles has been growing rapidly in recent

years and encompasses different domains, including robotics, computer science,

and engineering. Furthermore, it should be noted that scientific advances have

been made by car manufacturers who do not always publicly disclose the details

on their approaches or algorithms, owing to commercial sensitivity. Although gen-

eral use of autonomous vehicles for widespread use on public roads is likely years

away, these vehicles are already being operated in a limited form on highways or

suburban district.

1

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Autonomous vehicles are partially or fully controlled by computer programs,

which may eventually require no human driver at all. Technological advancements

have made possible the progression from traditional human-driven vehicles to com-

pletely autonomous vehicles. National Highway Traffic Administration (NHTSA)

has established a definition of autonomous vehicles by level of automation [1].

According to NHTSA, the definitions are summarized as the following:

• Level 0 (No Automation) - The driver is in complete control of the primary

vehicle controls at all times such as brake, steering, throttle, and motive

power.

• Level 1 (Function-specific Automation) - One or more specific control func-

tions are automated independently. The driver is fully engaged and respon-

sible for overall vehicle control.

• Level 2 (Combined Function Automation) - At least two control functions are

automated such as adaptive cruise control in combination with lane keeping.

The driver disengages from active control in certain limited driving situa-

tions, and is still responsible for monitoring the roadway and safe operation.

• Level 3 (Limited Self-Driving Automation) - The driver cedes full control of

all safety-critical functions under certain traffic or environmental conditions,

relying heavily on the vehicle to sense changes in those conditions that require

the driver to take back control within a comfortable transition time.

• Level 4 (Full Self-Driving Automation) - The vehicle is designed to perform

all safety-critical driving functions and monitor roadway conditions for an

2

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

entire trip. The driver is not expected to operate at any time or else the

vehicle can be unoccupied.

Following the regulation guidelines by NHTSA, current vehicles are increas-

ingly moving toward the goal of simplifying the driver’s job and automating parts

of the driving process. For instance, the newest 2017 Cadillac ATS introduces a

driver assist package that includes automatic collision preparation, front and rear

automatic braking, full-speed range adaptive cruise control, lane keep assist, front

pedestrian detection and rear cross-traffic alert [2]. Based on the level of automa-

tion by NHTSA, the current level of automation for Cadillac is Level 2, slowly

approaching Level 3.

Figure 1.1: The cycle of autonomous vehicle system

Among the many technologies which make autonomous vehicles possible is a

combination of sensors and actuators and powerful processors. The autonomous

vehicle employs “Perception-Plan-Action” cycle which is the fundamental to many

other intelligent system (See Figure 1.1). For a fully autonomous vehicle system,

3

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

the sensors firstly percept the environment and location of the vehicle. Then the

developed algorithms interpret and process the sensory information, identify the

situations and plan the trajectories so as to exert the full control such as brake,

steer, change lanes or throttle. There are dozens of subsystems and hundreds

of specialized sensor channels for these three steps. The four different types of

sensors will help to provide external and immediate information to autonomous

and semi-autonomous vehicles:

• Radar - the object detection system that uses radio waves to determine the

range, angle, or velocity of objects.

• Ultrasonic - the object detection system which emits ultrasonic sound waves

and detects their return to determine distance.

• Camera - the use of passive cameras and sophisticated object detection al-

gorithms to understand what is visible from the cameras.

• LiDAR - a surveying technology that measures distance by illuminating a

target with a laser light.

Many vehicles now have employed radar sensors for obstacles detection due to

small size, inexpensive and good range (See Figure 1.2A). They also work equally

well in dark conditions, and are able to better sense through fog, rain, and snow.

Radar is very effective at determining relative speed of objects. Although the

size of radar makes it better for near-proximity detection, poorer resolution than

other sensors limits the usage to stationary objects and precise range measure-

ment. Ultrasonic sensors actively emit high frequency sound (See Figure 1.2B).

4

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

(a) Radar (b) Ultrasonic

(c) Camera (d) LiDAR

Figure 1.2: Sensors comparison in autonomous driving

As sound waves are comparatively slow, so measurement in less than centimeter

are detectable. So these sensors are excellent for very-near-range three-dimensional

mapping, and they are effective regardless of light conditions. Due to their short

range, they also work well in conditions of snow, fog, and rain. However, they are

not useful for measurement of speed because of their short range. Vision based

sensors have become very cheap, small, and with increasing resolution in recent

years (See Figure 1.2C). Their color, contrast, and optical-character recognition

capabilities give them a new powerful feature compared to other sensors. But they

are less useful for very close proximity detection. For longer distance, their range

and performance degrades, as human eyes do, contingent on light intensity. In very

bright conditions, it is possible for some implementations to not identify objects

5

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

against bright skies, which was reported as the main cause in the May 2016 Tesla

Autopilot-related fatality in Florida.

Light Distancing and Ranging (LiDAR), on the other hand, are currently large

and expensive systems but increasingly used in the autonomous vehicle applica-

tions (See Figure 1.2D). For example, the Google self-driving car has mounted and

utilized a LiDAR senor on its roof. Current implementations have improved range

substantially from 20 meter up to 200 meter which has turned cars into machines

capable of mapping their surroundings with high resolution as well. Current Li-

DAR sensors work well in all light conditions, but start failing in snow, fog, rain,

and dust particles in the air. At present, despite the fact that LiDAR is a supe-

rior technology, there is universal agreement that the technology is currently too

expensive for wide deployment. However, the difference in price between LiDAR

and other sensors could become negligible as the technology evolves. Quanergy

system promises to release a solid-state LiDAR in the next couple of years that

will be less than $100, bringing costs in line with cameras or radars while offering

better perceptive ability.

For autonomous driving, LiDAR will never be a standalone solution. The sys-

tem will most likely be used in conjunction with other sensors such as cameras

to identify color. Because the LiDAR sensor is superior at detecting and measur-

ing object, utilizing its own strengths will be more reliable which making them a

requirement for a complete autonomous system.

6

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

(a) (b)

Figure 1.3: Ford’s blind spot information system

1.2 Problem Description

One of the arguments for autonomous vehicle is that they will be safer than con-

ventional vehicles. According to NHTSA [3], 94% of car crashes are caused by

human error which include speeding, distraction, drunk driving and so on. In

recent years, although amount of active safety technologies (eg., advance driving

assistance system, adaptive cruise control) have been developed for intelligent vehi-

cle or self-driving, the number of traffic accidents because of individual differences

in the way of driving are still significant. For example, the new 2017 Ford Fusion

Series has been equipped with radar sensors for Blind Spot Information System

(BLIS) which is designed to detect vehicles that may have entered the blind spot

zone (See Figure 1.3a). The detection zone is on both sides of the vehicle, extend-

ing rearward from the exterior mirrors to about 3 meters beyond the bumper (See

Figure 1.3b). The system aims to alert the driver if certain moving vehicles enter

the blind spot zone while driving. However, the BLIS has limitations that may

limit BLIS detection including [4]:

• Certain maneuvers of other vehicles as they enter and exit the blind zone.

7

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

• Vehicles passing through the blind zone at very fast speeds.

• Several vehicles forming a convoy and passing through the blind zone.

Over the past few years, Google autonomous vehicles have been involved in a

number of minor accidents, but up until now all of them were caused by other

human driven vehicles not Google’s vehicle itself [5]. When Figure 1.4 shows some

highway scenarios that the car accident is likely to occur even when equipped

with cutting-edge detection systems. In Figure 1.4A, for example, both the red

car and the green car are planing to change lane to the middle. In this case, the

passive detection system would not trigger an alert since there is no vehicle in the

detection zone until the distance between two cars becomes small. If this happens

in a highway situation, it is too late for the driver or the autonomous vehicle to

react because of their high speed. Likewise, two cars may collide as the failure of

detection system in Figure 1.4B. Figure 1.4C illustrate certain maneuvers such as

zig-zag driving which will also put nearby vehicles into dangerous spot.

Therefore a comprehensive environment perception in a safe manner that de-

tects, classifies and estimates the motion states of surrounding vehicles would have

an enormous potential to enhance road safety by proactively reacting to traffic con-

ditions or hazardous situations. Bear in mind that there exists no sensor which can

perceive the intentions of drivers. Since direct observation of environmental states

are limited to position, velocity and other basic geometric features and therefore

processing of acquiring data is needed. Hence reliable and efficient perception of

the dynamic and complex environment is one of the unsolved problems in the au-

tonomous vehicle application. Specifically, the ability to identify the surrounding

8

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

(a) (b) (c)

Figure 1.4: Some highway scenarios of intelligent or autonomous
vehicle crashes

vehicles, pedestrians, road lanes, traffic lights, traffic signs, and others are critical

to performance [6].

To realize the potential of autonomous driving and to achieve proactive accident

avoidance, the system needs to be as reliable and effectively as possible. These

requirements are particularly important due to complexity, diversity of environ-

ments and varying choices for driver response in urban traffic. One of the limiting

factors is usually the time budget for decisions. If the intervention strategy of a

vehicle system clashes with the intentions and actions of the driver, the resulting

ambiguities could lead to delays, missing the window of opportunity for mitigating

a traffic conflict. Hence, inferring the driver’s intentions and predicting their re-

sponses to a hazardous situation as early as possible are of central importance for

coordinated driver assistance. As such, the expected outcomes can be explained

by the following table which specify what the system must do. As requirement

specification can be view as a high-level design specification of the system to be

9

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

built, so the expected results from our system are listed in Table 1.1 according to

the following priority levels.

Priority Definitions: The following definitions and Table 1.1 are intended as

a guideline to prioritizing requirements.

• Priority 1 – The requirement is a “must have” as outlined.

• Priority 2 – The requirement is needed for improved processing, and the

fulfillment of the requirement will create immediate benefits.

• Priority 3 – The requirement is a “nice to have” which may include new

functionality.

10

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Reference Functional Requirement Priority

RF01
The system shall provide three dimensional point cloud

map of surrounded environment on screen.
1

RF02
The system shall detect the ground points in a non-

planar surface
1

RF03
The system shall detect object without priori knowledge

within field of view.
1

RF04 The system shall category object into different types. 1

RF05

The system shall track motion states of nearby vehicles

simultaneously and provide tracked vehicles’ informa-

tion such as relative speed(h/km), relative distance(m).

1

RF06

The system shall yields an estimated driving direction of

multiple vehicles to alert the driver for proactive avoid-

ance.

1

RF07
The system shall be capable of operating on both online

and offline mode.
2

RF08
The system shall be capable of storing real time data to

hard drive for offline playback.
2

RF09

The communication time and data processing time of

the system shall be less than the measurement device

sampling rate (10Hz).

1

Table 1.1: Functional requirement of the system

11

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

1.3 Novelty of the Research

In this research, given the measurements coming in the form of a point cloud from

a LIDAR mounted on the roof of a vehicle, a perception system is developed in

order to obtain a consistent and meaningful representation of the environment.

The design of our perception system is decomposed in different sub-tasks.

1. Ground Detection

2. Object Detection

3. Object Classification

4. Object Tracking

5. Real Time System Implementation

Figure 1.5 demonstrate the process of our perception system that to solve each

sub-tasks in sequence. Although parts of the sub-tasks have been done before,

it does not appear that anyone has ever brought it all together into one single

project. In this following chapters, the design of algorithms are discussed to solve

the sub-tasks step by step.

12

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Figure 1.5: The process of our perception system

The contributions of this thesis will cover multiple areas.

The first contribution of this research is the design of a novel framework that

decomposes the long-term task into several sub-tasks: segmentation, clustering,

classification, tracking and estimation. Each sub-task is addressed by using several

novel algorithms.

The second contribution of the search is the innovative strategy used for iden-

tifying both flat ground and non-flat ground. This fast and effective techniques

provides a significant improvement in terms of the accuracy for overall system

performance.

The third contribution follows the ground segmentation in which the non-

ground points are obtained. We present clustering and classification methods to

detect, recognize and identify multiple moving objects. The captured discrimina-

tive information of each identified vehicle will help to improve the estimation of

motion states.

13

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

The LiDAR data includes both dense data and sparse data, which is challenges

to perception system, i.e., deciding which measurement is associated to which tar-

get and which measurements are clutter originated. To address this problem, the

forth contribution of the research is a proposed generalized smooth variable struc-

ture filter using a hybrid approach for multiple targets tracking and estimation.

Last but not the least, the fifth contribution of the research is the implemen-

tation of the real time system by illustrating how to build a real-time long-term

system based on this framework. It is also shown that the developed system could

be extended for multiple sensors’ fusion.

1.4 Overview of the Thesis

The following is a brief account of the contents of this thesis. Chapter 2 pro-

vides an introduction to sensor technology and implementation the LiDAR and

our real time plat form. The application of LiDAR sensor in autonomous industry

is discussed. Chapter 3 introduces the design of ground detection in detail. The

Chapter 4 follows the result of Chapter 3 and the design of object detection is

discovered. Chapter 5 introduces the design of the classification system. Several

machine learning techniques are described and used in this chapter. Chapter 6

will demonstrate the design of our tracking and estimation system. Two different

data association techniques that are used for ether dense and sparse LiDAR data

are discussed. Chapter 7 details the design and implementation of our proposed

perception system. Both MATLAB and C++ versions of the algorithms are pre-

sented to illustrate the development and prototyping of our system and its real

14

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

time application. Chapter 8 provides the conclusions and contributions of the

thesis.

15

Chapter 2

Technology: LiDAR Sensor

2.1 Introduction

The sensors provide sensed information for representing the surrounding environ-

ment. Therefore, they are of the most important factors for decision making

for autonomous vehicles. This chapter considers the latest research on vehicle

perception systems. It also introduces the setup of our LiDAR sensor and our

experimental platform.

Sensors based perception systems require sophisticated algorithms. For in-

stance, Zdenek developed famous Tracking-Leaning-Detection (TLD) algorithm

for real time tracking of unknown objects in video streams [7]. The TLD works

very well when the motions of object is inside a bounding box are consistent.

However, if the transformations are complicated or the bounding box includes a

large portion of the background, TLD is likely to fail in the object tracking the

task. Although camera based systems have outstanding features with low cost,

16

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

they are less effective under complex circumstance such as bad weather conditions

[8]. They must also deal with light intensity variations and they need illumination

at night where headlights might not be enough.

Gokhan et al. [9] presented performance comparison of several tracking algo-

rithms for a ground based radar. Most of the existing perception techniques using

Radars have been compared in terms of track loss and estimation errors. Among

these published strategies [10, 11, 12], Radar detection and tracking using the

Interacting Multiple Model Probabilistic Data Association Filter (IMM-PDAF)

algorithm with no a priori knowledge of the target motion has performed better

than all other algorithms even compared to the ones that assume knowledge of

the target maneuverer. Lingmin et al. [13] combined the conventional Kalman

filtering techniques with probabilistic data association methods to improve the de-

tection by radar. However, his algorithm could only apply to one track. In [14],

Glenn et al. discussed the technical and practical issues in the integration of a

fully operational Adaptive Cruise Control (ACC) system on a vehicular platform

by using either the Radar or the LiDAR technology, as operating under the exact

same environmental conditions (e.g.: traffic patterns, roadway geometry/surface,

weather conditions, etc.). The main drawback of radar is narrow field of view and

reduced angular resolution compared with LiDAR [15].

The LiDAR has been widely used in autonomous applications due to its high

precision and range information to detect object with wide fields of view, low pro-

cessing requirements and its capability in adverse weather conditions [16, 25]. In

[17], Dominguez et al. present a LiDAR based perception solution for autonomous

vehicles. The LiDAR sensor captures and represents objects by measuring position

17

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

and elevation of each single point as three dimensional coordinates. The points

are recorded in an unorganized structure due to the nature of the scan, requiring

specific data organization and processing techniques which are significantly dif-

ferent from the existing image processing algorithms. Jaebum Choi et al. [18]

present a robust algorithm for Multiple Target Tracking (MTT) using a 3D Li-

DAR. They introduced feature based object geometry for precise estimation of the

system state in order to compensate the unintended dynamics caused by shape

change or occlusion. A real time intersection detection approach is proposed in

[19] based on 3D LIDAR. Two different shaped of intersections are distinguished

with the performance of above 80% at a real-time classification rate of 5Hz.

2.2 LiDAR

The word “lase ” stands for “light amplification by stimulated emission of ra-

diation‘’. A laser is a device which generates a stream of high energy particles

(photons) within an extremely narrow range of wavelengths. A laser light source

forms the basis for a LiDAR system. The wavelength chosen for most lasers is 1064

nanometers, which is in the near-infrared band of the electromagnetic spectrum

[20].

The essential measurement made by a LiDAR sensor is of time, the time that

elapses from the moment the pulse is emitted until it returns after being reflected

by the target surface. The laser pulse travels at the speed of light, and time can

18

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

be directly converted to distance, by the following equation

Distance = (elapsed time)× (speed of light)
2 (2.1)

Figure 2.1: 32 radially oriented lasers embedded inside the Li-
DAR sensor

The Velodyne HDL-32E LiDAR, depicted in Figure 2.1, is an ultra compact

and cost effective LiDAR sensor. The dimensions of this sensor is 8.5cm×8.5cm×

15cm(L×W ×H) and the net weight is 1.3 kg. The HDL-32E comprises a vertical

array of 32 radially-oriented lasers with an effective 41.3◦ vertical field of view

(FOV) from +10.67◦ to -30.67◦. This entire sensor can spin about its vertical axis

at speeds of 10 Hz, resulting in a full 360◦ azimuthal field of view. According to

the user manual [20], the limitation of range measurement is up to 70m and the

sensor generates 700,000 points per second. The detail specification of HDL-32E

LiDAR is shown at Table 2.2.

19

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Specification Velodyne HDL-32E LiDAR

Laser
• 905 nm wavelength

• Time of flight distance measurement

• Measurement range 70m (1m up to 70m)

Sensor
• 32 laser/detector pairs

• −30.67◦ to +10.67◦ vertical FOV

• 360◦ horizontal FOV

• 10 Hz frame rate

• Operating temperature: −10◦C to +60◦C

• Storing temperature: −40◦C to +105◦C

• Accuracy: < 2 cm

• Vertical angular resolution: 1.33◦

• Horizontal angular resolution: 0.16◦ at 600 RPM

Mechanical
• Dimension: 149.86mm x 85.3mm

• Weight: 1kg (plus 0.3kg for cabling)

Output
• Approximately 700,000 points/second

• 100 Mbps Ethernet connection

• UDP packets (distance, intensity, rotation angle)

Table 2.1: LiDAR Specification

20

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Because our LiDAR produce User Datagram Protocol (UDP) network packets

to transmit data over Ethernet for each of the lasers in the device. The structure

of UDP packet generated by our LiDAR is shown in Appendix A1.

Let one frame be defined such that a LiDAR has scanned a full 360◦ coverage.

With UDP packets decoding, a set of point cloud data from each frame can be

denoted by P which is given by:

P =



ρjθcos(αj)sin(θj)

ρjθcos(αj)cos(θj)

ρjθsin(αj)


∣∣∣∣∣∣1 ≤ j ≤ 32; 0 ≤ θ < 2π

 (2.2)

where αj represent the fixed vertical angle of laser beam j. ρjθ represent the

range measurement from laser beam j at scanning position θ.

2.3 LiDAR Position

The fully autonomous vehicles developed by companies like Google and Baidu all

rely on LiDAR to perceive and map the world. The maps are critically imple-

mented as they provide environmental context for the vehicles and let them focus

their computing power on transient obstacles like cars, pedestrians, and cyclists.

There are two common LiDAR configurations in autonomous vehicles: 1) installed

around the vehicle at a low height based on a planar LiDAR configuration and 2)

mounted on the roof of the vehicle based on one single 3D LiDAR. In [21],Figure

2.2 presented a comparison using these two types of configuration.

21

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

(a) Two LiDARs are mounted on the two front corners, and
the third one covers the back side

(b) One single 3D LiDAR mounted on the top

Figure 2.2: Two types of LiDAR configuration

22

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

From Figure 2.2, both configurations generate a 360◦ scan. The qualitative

results from [21] are summarized in the following Table 2.1.

Attributes Planar LiDAR 3D LiDAR

Accuracy ++ +

Robustness + ++

Integration + ++

Calibration + ++

Cost ++ +

Direct 3D Perception + ++

Table 2.2: Comparison between LiDARs

In the static environment, the planar LiDAR performs slightly better than the

3D LiDAR as the scans are less noisy. But an extra calibrate step is needed to

merge multiple local coordinates into one global coordinate system before process-

ing the data. There are other advantages of using a single 3D LiDAR including

robustness, simplicity of installation, and general setup, as presented in [22].

The LiDAR used in our research (the HDL-32E LiDAR) is mounted vertically

above the roof surface of a Ford Escape as shown in Figure 2.3.

23

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Figure 2.3: The Velodyne HDL-32E LiDAR setup

Experiments based on our configuration was performed to collect and validate

the robustness and effectiveness of our developed real time system [24]. The LiDAR

raw data were acquired from actual driving on the highway linking two cities:

Toronto and Hamilton in Ontario, Canada. The vehicle acquired data at an average

vehicle speed of about 120 km/h under a low traffic scenario, 80km/h under a

medium traffic scenario and 60km/h under a high traffic scenario. The LiDAR

was connected to a PC for data collection and processing which had an Intel i7

CPU and a 16 GB RAM. Due to hardware constrain, the Region of Interest (ROI)

observed by our system was set to 40m× 20m.

24

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Figure 2.4: The real time experiment with our developed LiDAR
perception system

The resulting point cloud from one single scan of our LiDAR sensor consisted

of dense and sparse data as shown in Figure 2.5.

25

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Figure 2.5: The LiDAR raw point cloud data

The developed perception system will be evaluated on different scenarios with

noisy data: low traffic to high traffic as shown in Figure 2.6 and Table 2.3. Be-

cause the high traffic is characterized when a volume of traffic demand for space

approaches the capacity of a road. The common scenario is vehicles driving at

slower speeds, longer trip times, and increased vehicular queuing. These different

driving maneuvers can change in rapid succession. Consequently, the high traf-

fic lead to a strong degradation on the quantity and quality of data which is a

great challenges for our perception system. The roadway of experiment has been

conducted on the Queen Elizabeth Way expressway (QEW) linking two cities:

Hamilton and Toronto and highway 6: Hamilton to Waterloo. The total acquired

data size is 20 GB, the total number of LiDAR points is about 28 million. There

are two computers being utilized as our processing platform as shown in Table

2.4. The first computer is used for algorithms design and implementation and the

26

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

second one is used for storing data.

Figure 2.6: Three different scenarios

Scenarios Scenario 1 Scenario 2 Scenario 3
Traffic Info Medium Traffic High Traffic Low Traffic

Average Speed 60 km/h 30km/h 100km/h
Time 10 min 20 min 10min
Points 7 million 14 million 7 million

Data Size 5 GB 10 GB 5 GB
Roadway Highway Expressway Expressway

Table 2.3: The Evaluation Experimental Scenarios

Computer PC 1 PC 2
CPU i7-4800 (2.7GHz) i3-5157 (2.5GHz)
RAM 16GB 4GB
GPU Nvidia 650M Intel 4000

Table 2.4: The Processing Platform

27

Chapter 3

The Algorithm: Design of

Ground Detection System

Figure 3.1: The process of ground detection system

28

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

3.1 Introduction

In this chapter, a real time gourd detection system based on a single LiDAR sensor

is proposed in order to classify the ground points and model the slope of the road in

various conditions. Reliable and efficient ground segmentation plays an important

role in the sequence of data processing for autonomous vehicle applications, as it

can help to reduce the size of data to be processed and further decrease the overall

computational time. To address these characteristics, a novel method based on

probability occupancy grid map is proposed to achieve high accuracy as well as

efficiency. The system is composed of three sub-modules: (i) data acquisition and

prepossessing, (ii) probability occupancy grid map modeling, and (iii) weighted

linear regression. The core part of the whole system is the partition of data for

either training or processing in every frame. The real time experiments were

conducted in order to validate the effectiveness and robustness of our proposed

system. Figure 3.1 show the overview of ground detection system.

The perception system for autonomous vehicles usually require a variety of sen-

sors to acquire data such as LiDAR, radar, camera and so on. To process the vast

amount of data collected from these different sensors is a great challenge for real

time processing. At present, ground segmentation is a necessary intermediate step

to eliminate redundant data and to reduce computation complexity. Ground seg-

mentation is achieved by partitioning data into several sets for different functions

such as tracking, prediction, or driving assistance system. Majors issue of segmen-

tation systems are over-segmentation, under-segmentation or slow-segmentation

[23]. These issues have a strong influence on the performance of the perception

29

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

system [24]. For example, a false segmentation of non-ground points would result

in them being classified as object (Figure 3.2). In other words, having a reliable,

efficient and noise-free ground segmentation algorithm is of a great importance for

the reliability and computational complexity of the system.

Figure 3.2: The example of ground points detected as non-ground
points

In this chapter, a real time approach for ground segmentation is proposed and

implemented to efficiently and robustly estimates the ground position and slope

by taking of advantages of the geometry of the roof mounted LiDAR sensor as

30

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

described in Chapter 2. The proposed real time system is based on probability oc-

cupancy grid map and weighted linear regression for ground segmentation in order

to achieve high accuracy results as well as efficient computation. The proposed

system is composed of three elements:

1. The raw LiDAR point cloud is partitioned into low distortion data set and

high distortion data set because the points from close region has relatively

lower distortion. The low distortion data is used to develop the ground

estimation model. The high distortion data set is segmented based on a

ground model.

2. The ground estimation model is developed by computing approximate pos-

terior estimates from an occupancy grid map which address the problem

by generating maps to represent the environment from noisy and uncertain

sensor measurement data.

3. A recursively weighted linear regression to estimate the slope of the road

from the low distortion data set.

4. The developed ground segmentation model is then used to segment the sparse

data.

3.2 Related Work

Segmentation on grid map is one of the most popular methods that convert point

cloud into a grip map and evaluate data on each grid by attributes. A simple

31

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

solution is to project the data into a two and a half occupancy grid [26]. Frank

and Oliver [23] presented a segmentation algorithm based on the concept of lo-

cal convexity and compared their attributes such as normal vector. Kammel et

al. [28] proposed an algorithm to assess vertical displacement in each grid. If

the displacement exceeds a given threshold then the grid is marked as occupied.

Himmelbach et al. [29] mapped data in to a polarized grid map and used a non-

parametric ground model to fit ground plane. Guo et al. [30] manipulated the

grid map as a graph by using Markov Random Field to label each grid into four

different attributes: the reachable region, the drivable region, the obstacle region

and the unknown region.

Point cloud segmentation on the undirected graph structure is recently another

fast and efficient methods. Since each of the lasers has a fixed pitch angle, and

thus would sweep out a circle of a fixed radius on a flat ground plane as the sensor

rotates. Montemerlo et al. [27] segmented the non-ground points by comparing

the range returned by two adjacent laser beams, where “adjacent” is measured in

terms of the pointing angle of the beams. Sloped terrain locally compresses these

rings, causing the distance between adjacent rings to be smaller on flat terrain.

However, this ring-like pattern evaluation system will probably fail on the non-flat

ground. Douillar et al. [31] proposed a set of segmentation methods designed for

various densities of 3D point clouds. Among these methods, the Gaussian Pro-

cess Incremental Sample Consensus (GP-INSAC) algorithm is selected with an

additional outliers rejection capability for ground surface estimation. However, its

computation time is unrealistic for real time application. Anguelov et al. [32] ap-

plied machine learning techniques to the segmentation problem under a supervised

32

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

learning framework: Markov Random Field. Although the result is good, inferring

point labels by Markov Random Field for large amount of data can not be done

in real time.

As mentioned above, the segmentation step is the intermediate process in order

to accurately classify and track potential targets. The most important contribu-

tion from segmentation is to eliminate the redundant points as much as possible

in order to reduce the computation time in real time applications and improv-

ing reliability of algorithms such as artificial neural network for classification or

interactive multiple models for tracking [33].

3.3 Methodology

Figure 3.3 illustrates the overall approach implemented by our real time system

that is comprised of three steps: (a) data acquisition and preprocessing for extract-

ing points from raw LiDAR data; (b) mapping and evaluation for determining the

ground points and non-grounding points; and (c) weighted linear regression for

estimating the slope of the road in order to guarantee fast filtering as well as

maintaining higher accuracy for segmentation. These are explained in the follow-

ing sections.

33

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Figure 3.3: The data flow of ground detection system

3.3.1 Data Acquisition and Preprocessing

LiDAR data arrives in UDP packets at a rate of approximate 10 Hz via 100 MBit

Ethernet. As the pitch angles of the lasers are fixed, each of the lower lasers

produce a ring of point measurements in a horizontal plane. To segment the ground

points, a set of raw data acquired from LiDAR via UDP packets is converted from

spherical coordinates to Cartesian coordinates according to Eq.(2.2). A naive

approach could discard all points which are under a certain predefined height.

A slightly better approach fits a horizontal plane is accomplished through the

application of the Random Sample Consensus (RANSAC) for fitting of models in

the presence of many data outliers [34]. The RANSAC algorithm is very simple

34

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

and it consisted of 4 steps:

1. Select random samples of to fit model.

2. Compute the model from sample set.

3. Compute the set of inliers to this model from whole data set.

4. Repeat step 1-3 until model with the most inliers over all samples is found.

The problems in both methods arises when they encounter a non-planar surface,

or noisy data. Figure 3.4 shows a non trivial example in which simple fitting based

filter fails.

Figure 3.4: Non-planar surface

Given the geometry of LiDAR which is mounted on the roof of vehicle, the

frame is processed through the ring-like patterns as it is the natural way for this

type of sensor. Thus it is possible to estimate the slope of the ground by only

processing points from inner rings given that the points from inner rings have

lower distortion relative to the points from outer rings as shown in Figure 3.5.

Taking advantage of the geometry of the LiDAR, reasonable and efficient par-

titioning can be achieved by projecting data into the x-y plane and mapping them

into a two dimension torus consisting of a discrete number of sections as shown in

Figure 3.6. Let ∆θ be the range of the angle in each segment Sn, where n is the

35

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Figure 3.5: Points from inner rings versus from outer rings

index of segments and the total number of segment is 2π
∆θ . Then each segment is

divided into several bins Bn
m, where m represent the index of bins in one segment.

Because only the the inner rings of point cloud were to be processed, the minimum

and maximum range search are decided by rmin and rmax and the the minimum

and maximum width of each bin were also decided by rmin
m and rmax

m respectively.

Let ∆r = rmax
m − rmin

m be the width of each bin so that the total number of bins in

one segment is rmax−rmin
∆r .

In addition, let θmin
n and θmax

n be denoted the minimum and maximum horizontal

angular position of each segment, where ∆θ = θmax
n − θmin

n (e.g. ∆θ = 36◦).

36

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Therefore, a bin Bn
m by laser beam j at scanning position θk is given by:

Bn
m = {pi|rmin

m <
√

(xjk)2 + (yjk)2 ≤ rmax
m ,

θmin
n < θk ≤ θmax

n }
(3.1)

where θk = atan2(yjk, x
j
k). Once all points have been mapped to a corresponding

bin, a new set of points PB in terms of bins is defined:

PB = {Bn
m|0 < n ≤ 2π

∆θ , 0 < m ≤ rmax − rmin

∆r } (3.2)

where m and n are the indexes of the bin. Since the rmax (e.g. 4m) and rmin

(e.g. 1m) are the points which are not located inside the range. They are collected

to be processed later.

3.3.2 Probability Occupancy Grid Map Modeling (OGM)

The basic idea of occupancy grid map is to represent the surrounding environment

as an evenly spaced field of binary random variables indicating the presence of an

obstacle at that location (See Figure 3.7). First of all, an occupancy grid map

M = {Bn
m} is defined, where n and m are indexes of a bin in the map, with each

bin being one of two states: ground or non-ground.

37

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

(a)

(b)

Figure 3.6: Mapping of 3D LiDAR points to the bin

A standard approach is to average the height values of the points in each cell

and define it as a part of “non-ground” if its feature value exceeds a predefined

threshold. One of the advantages of the grid map is that it is robust to measure-

ment noise [35].

In this section, a probability occupancy grid map is proposed and described as

38

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Figure 3.7: The process of OGM

shown in Figure 3.7. The goal of the probability occupancy grid map problem is

to estimate the state of each bin Bn
m given the historical sensor measurements z1..t

and the position of sensor p1..t:

Pr(Bn
m|p1..t, z1..t) (3.3)

Unfortunately, the dimensionality of the problem to be solved is huge since

there are 2|M | possible states (in the case of our LiDAR system, M = 700). But

since the bins are independent of each other, the complexity can be reduced to

2|M |. Because the events are independent of each other, the problem of estimating

the states of all bins from the given map is decomposed into reconstructing the

products of each bin’s probability in terms of the marginal probability [36]:

Pr(M |p1..t, z1..t) =
∏
Pr(Bn

m|p1..t, z1..t) (3.4)

39

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Then for each sensor reading, the occupancy probability is recursively estimated

giving the measurements by using the Bayes’ rule:

Pr(Bn
m|p1..t, z1..t)

= Pr(zt|p1..t, z1..t−1, B
n
m)Pr(Bn

m|p1..t, z1..t−1)
Pr(zt|p1..t, z1..t−1)

(3.5)

From Markov assumption and Bayes’ rule the above equation is further simpli-

fied as [37]:

Pr(Bn
m|p1..t, z1..t−1, B

n
m) = Pr(zt|pt, Bn

m)

= Pr(Bn
m|pt, zt)Pr(zt|pt)
Pr(Bn

m|pt)

(3.6)

And substituting into Eq.(3.5), then:

Pr(Bn
m|p1..t, z1..t)

= Pr(Bn
m|pt, zt)Pr(zt|pt)Pr(Bn

m|p1..t, z1..t−1)
Pr(Bn

m|pt)Pr(zt|p1..t, z1..t−1)

(3.7)

40

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

where Pr(Bn
m|pt) is the prior probability of each occupancy cell and is indepen-

dent of the current position Pr(Bn
m|pt) = Pr(Bn

m). Hence:

Pr(Bn
m|p1..t, z1..t)

= Pr(Bn
m|pt, zt)Pr(zt|pt)Pr(Bn

m|p1..t, z1..t−1)
Pr(Bn

m)Pr(zt|p1..t, z1..t−1)

(3.8)

The equation can be expanded once again for Pr(zt|p1..t, z1..t−1) using Bayes’

rule to get:

Pr(Bn
m|p1..t, z1..t−1)

= Pr(pt|p1..t−1, z1..t−1, B
n
m)Pr(Bn

m|p1..t−1, z1..t−1)
Pr(pt|p1..t−1, z1..t−1)

(3.9)

Substituting into Eq.(3.8)

Pr(Bn
m|p1..t, z1..t)

= Pr(Bn
m|pt, zt)Pr(zt|pt)Pr(pt|p1..t−1, z1..t−1, B

n
m)

Pr(Bn
m)Pr(zt|p1..t, z1..t−1) ×

Pr(Bn
m|p1..t−1, z1..t−1)

Pr(pt|p1..t−1, z1..t−1)

(3.10)

41

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Using the same proof, a matching update rule for the complementary state

estimate Pr(B̄n
m|p1..t, z1..t) can be derived as:

Pr(B̄n
m|p1..t, z1..t)

= Pr(B̄n
m|pt, zt)Pr(zt|pt)Pr(pt|p1..t−1, z1..t−1, B̄

n
m)

Pr(B̄n
m)Pr(zt|p1..t, z1..t−1)

×

Pr(B̄n
m|p1..t−1, z1..t−1)

Pr(pt|p1..t−1, z1..t−1)

(3.11)

Next, dividing Eq.(3.10) by Eq.(3.11):

Pr(Bn
m|p1..t, z1..t)

Pr(B̄n
m|p1..t, z1..t)

= Pr(Bn
m|pt, zt)Pr(B̄n

m)Pr(pt|p1..t−1, z1..t−1, B
n
m)

Pr(B̄n
m|pt, zt)Pr(Bn

m)Pr(pt|p1..t−1, z1..t−1, B̄n
m)
×

Pr(Bn
m|p1..t−1, z1..t−1)

Pr(B̄n
m|p1..t−1, z1..t−1)

(3.12)

Because the current sensor position pt is known:

Pr(pt|p1..t−1, z1..t, B
n
m) = Pr(pt|p1..t−1, z1..t−1, B̄

n
m) (3.13)

42

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Therefore, Eq.(3.12) is simplified to

Pr(Bn
m|p1..t, z1..t)

Pr(B̄n
m|p1..t, z1..t)

= Pr(Bn
m|pt, zt)Pr(B̄n

m)Pr(Bn
m|p1..t−1, z1..t−1)

Pr(B̄n
m|pt, zt)Pr(Bn

m)Pr(B̄n
m|p1..t−1, z1..t−1)

(3.14)

As is common practice, the log odds of this probability can be computed instead

of the probability itself [38]. Because Bayesian state update in log odds form using

the log odds equation reduces the numerical errors from multiplying minuscule

floating point numbers, as it assumes values from −∞ until +∞ instead of using

just the interval between 0 to 1 where values close to 0 or 1 may cause numerical

problem. Therefore, Eq.(3.14) can be transformed into:

log Pr(B
n
m|p1..t, z1..t)

Pr(B̄n
m|p1..t, z1..t)

= log Pr(B
n
m|pt, zt)

Pr(B̄n
m|pt, zt)

+ log Pr(B̄
n
m)

Pr(Bn
m)

+ log Pr(B
n
m|p1..t−1, z1..t−1)

Pr(B̄n
m|p1..t−1, z1..t−1)

(3.15)

Let L(x) be defined as:

L(x) = log Pr(x)
1− Pr(x) (3.16)

43

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Then Eq.(3.15) can be simplified as

L(Bn
m|p1..t, z1..t) = L(Bn

m|pt, zt)− L(Bn
m) + L(Bn

m|p1..t−1, z1..t−1) (3.17)

or in short

Lt = L(Bn
m|pt, zt) + Lt−1 − L0 (3.18)

where L(Bn
m|pt, zt) is called the inverse sensor model. The inverse sensor model

specifies a distribution over the state variables as a function of measurement zt.

Considering a uniform prior probability which is Pr(B̄n
m) = 0.5. As a result, the

term L0 = 0 . So the final formula is:

Lt = L(Bn
m|pt, zt) + Lt−1 (3.19)

As expressed in Eq.(3.19), the update function uses an inverse measurement

model. Figure 3.8 demonstrates the attributes of each grid. To estimate the grid

to be ground or non-ground, the mean height, the variance and the number of

points are investigated for each grid. Let hnm denote the average height and µnm

denote the standard deviation of height in the current grid, Nn
m is the number of

points of each bin.

44

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

(a) Average of height (b) Standard deviation of height

(c) Number of points in each grid

Figure 3.8: The attributes of grids

An function Anm is proposed here as a weighted sum of the partial evidences in

terms of the sigmoid function.

Anm = w1

1 + eα1(hnm+β1) + w2

1 + eα2(µnm+β2)

+ w3(1− 1
1 + eα3(Nn

m+β3))
(3.20)

where w1+w2+w3 = 1, ᾱ = {α1, α2, α3} and β̄ = {β1, β2, β3} are the predefined

parameters respectively to adjust the sensitivity of the activation function. Based

on real time experiments, the parameters are selected as ᾱ = {−6,−4,−4} and

β̄ = {−0.5,−2.5,−10}. Because the distribution of 3D point cloud is not uniform,

45

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

the less the number of points in the grid, the harder to determine the grid to be

ground or non-ground. So this problem is overcome by the third term of Eq.(3.20).

The smaller of Nn
m, the higher of the value of Anm.

So the ternary occupancy indicator are defined as:

L(Bn
m|zt) =



Lground Anm ≤ 0.2

Lnon−ground Anm ≥ 0.8

Lunknown 0.2 < Anm < 0.8

(3.21)

where the value of Lground, Lunknown, and Lnon−ground is show at Table 3.1:

State Lground Lunknown Lnon−ground
L(Bn

m|zt) -1.39 0 1.39

Table 3.1: The occupancy indicator

In practice, the occupancy indicator of Lground = −1.39 and Lnon−ground =

1.39 are computed from the probabilities of Pr = 0.8 and Pr = 0.2 respectively

according to Eq.(3.16).

One disadvantage of the update policy presented in Eq.(3.19) is that it requires

to accumulate as many observations as possible before obtaining the current state.

In order for the system to respond to dynamic changes in the environment imme-

diately and overcome the overconfidence, the upper bound Lmax and lower bound

Lmin is defined using a clamping update policy introduced by [39].

Lt = max(min(L(Bn
m|zt) + Lt−1, Lmax), Lmin) (3.22)

46

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

where the clamping values are Lmax = 3.5 and Lmin = −2 corresponding to

maximum probability of 0.98 and minimum of 0.02. Therefore, the estimated

posterior occupancy probability is computed in terms of Eq.(3.16):

Pr(Bn
m|p1:t, z1:t) = 1− 1

1 + eLt
(3.23)

The associated posterior occupancy probability value to conclude status of bin

is as following:

Pr(Bn
m|p1:t, z1:t) 0 ∼ 0.3 0.3 ∼ 0.6 0.6 ∼ 1
Status Ground Unknown Non-ground

Table 3.2: The posterior probability and its associated status

3.3.3 Weighted Linear Regression

Once the ground points have been labeled by OGM, the next aim is to estimate the

slope of the ground. Linear regression is used in this section which is widely used

in statistical estimation for predicting the value of a dependent variable from an

independent variable when the relationship between the variables can be described

with a linear model [40].

Given data {(y1, z1),, (yn, zn)}, the problem is transformed to find the best

fit straight line z = β1 + β1y such that the following equation is minimized:

S(β0, β1) =
n∑
i=1

[zi − (β0 + β1yi)]2 (3.24)

47

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Therefore, the objective is find the estimation of β̂0 and β̂1 that minimize the

error by computing differentiation such that ∂S
∂β0

= 0 and ∂S
∂β1

= 0. Thus Eq.(3.24)

is computed by rewriting the equations:

(n∑
i=1

y2
i

)
β̂1 +

(n∑
i=1

yi

)
β̂0 =

n∑
i=1

yizi(n∑
i=1

yi

)
β̂1 +

(n∑
i=1

1
)
β̂0 =

n∑
i=1

zi

(3.25)

In order to calculate for α and β, Eq.(3.26) can converted into the following

matrix equation:


∑n
i=1 yi

∑n
i=1 y

2
i∑n

i=1 1 ∑n
i=1 yi


 β0

β1

 =


∑n
i=1 yizi∑n
i=1 zi

 (3.26)

Thus, the best fit line is obtained by solving above matrix by:

 β0

β1

 =


∑n
i=1 yi

∑n
i=1 y

2
i∑n

i=1 1 ∑n
i=1 yi


−1 

∑n
i=1 yizi∑n
i=1 zi

 (3.27)

Solving for the matrix yield the least squares parameter estimates:

β̂0 =
∑n
i=1 y

2
i

∑n
i=1 zi −

∑n
i=1 yi

∑n
i=1 yizi

n
∑n
i=1 y

2
i − (∑n

i=1 yi)2

β̂1 = n
∑n
i=1 yizi −

∑n
i=1 yi

∑n
i=1 zi

n
∑n
i=1 y

2
i − (∑n

i=1 yi)2

(3.28)

48

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Figure 3.9: Front-Rear area vs Right-Left area

From the observation of the raw data in Figure 3.9, the point located near front-

end area of the ego-vehicle has less noise than the right-left side area. In other

words, the ground points may not be equally reliable. To address the reliability

problem, one common solution for the weighted linear regression problem is called

iteratively re-weighted linear squares (IRLS) [41]. As a result, Eq.(3.24) is modified

to minimize the weighted sum of squares at time step t such that :

St(β0, β1) =
n∑
i=1

(wi)t[(zi)t − ((β0)t + (β1)t(yi)t)]2 (3.29)

49

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Suppose the difference between the observed values and the corresponding fitted

values in term of estimated β̂0 and β̂1 at time step t are the residuals:

(êi)t = (zi)t − (β̂0)t − (β̂1)t(yi)t (3.30)

The solution of IRLS is to assigns a different weight to each case depending on

the size of their residuals at time step t and thus minimizes the the weighted sum

of squares until there’s no “significant” change.

min
n∑
i=1

(wi)t(e2
i)t (3.31)

where wi ≥ 0 is the iterative weight of the ith observation and is defined distance

function by:

(wi)t = 2
(d2
i)t

(3.32)

where di is a distance between the ith point and the fit line at time step t. The

calculated new (β̂0)t+1 and (β̂1)t+1 with respect to weights wt are used to generate

new weights wt+1, which in turn are used in the next stage of IRLS until the

convergence criterion is met.

Let δ and ε are the threshold values for convergence and tolerance of error

respectively. Overall, the pseudo code of the IRLS implemented in our method is

as following:

50

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Data: Ground Points
Result: Estimated Slope Function
Initialization;
Compute weights for each point;
Project points into y-z coordinate system;
while the distance between the computed line and the points is greater than
ε do

Select random points;
Set their weights to 1 ;
Set other points to 0;
Do RANSAC Algorithm;
Do least squares weighted fit on these random picked points;
while the difference between the computed solution and the previous one
is greater than δ do

Re-compute the weights for all points by Eq.(3.32) ;
if all weights are 0 then

set all weights to 1
end
Normalize the weights so that their sum is 1;
Do least squares weighted fit for all points to the line;

end
if the last found solution is better than the current best solution then

Save it as new best solution;
end

end
Return the best solution;

In Figure 3.10, the result of slope estimation by our proposed method is demon-

strated continuously robustness under different number of outliers. The red color

represents the outliers while the blue color represent the slope estimation.

51

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

(a) Little number of out-
liers

(b) Medium number of
outliers

(c) Large number of out-
liers

Figure 3.10: Slope estimation: Red represents the outliers, Blue
represents the estimated slope

3.4 Experiment and Result

To validate this ground points identification strategy, experiments were conducted

on our real time platform to verify the robustness and effectiveness of the proposed

approach according to the scenarios of Table 2.3. The performance of each scenario

was evaluated according to the following metrics: computation time, accuracy and

robustness.

The developed algorithm is implemented in C++ to achieve real time capa-

bility, with additional speed-ups possible through the parallelization of the data

acquisition modules. Figure 3.11 demonstrate the experimental result of the most

challenged scenario: high traffic scenario. From Figure 3.11(A), the average pro-

cessing time is about 1.3ms (769 Hz) which has significantly improved compared

to [23, 31, 42]. In [23], the average processing time per frame was 250ms for

ground segmentation. The fastest segmentation method proposed in [31], referred

52

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

as GPINSAC, was 170ms. The real time 3D point cloud segmentation proposed in

[42] cost about 150ms. Figure 3.11(C) shows the amount of non-ground data after

processed by our proposed method with average of 5837 points while the input

size of LiDAR raw data is about 55680 points at every frame. As a result, the

number of data size to be processed has drop by 89.5% while retaining the most

important information of raw data.

53

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

(a) The error between the estimated fit line and the
ground points

(b) Real time computation time

(c) The post processing size of data

Figure 3.11: The experimental result of the most challenged sce-
nario: high traffic

54

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Table 3.3 illustrates the accuracy and robustness results. The data set is

provided from our experiments contains manual labeled scans of different traf-

fic scenes: high traffic scenario, medium traffic and low traffic. Each point has a

label either ground or non-ground before preprocessing in order to compare our

result to ground truth.

Traffic Condition Light Traffic Medium Traffic High Traffic
Computation Time (ms) 0.536 1.22 1.30

of Ground Points 21638 20127 20319
of Non-Ground Points 5590 5707 5837

Precision 96.32% 94.6% 94.2%

Table 3.3: Comparison in different scenarios

In pattern recognition with binary classification, precision, also known as posi-

tive predictive value, is defined as:

Precision = tp

tp+ fp
(3.33)

where tp is the number of correctly labeled ground points and fp is the number

of non-ground points mislabeled as ground points. Precision provide an insight

in the performance of the proposed system. Low precision means that many non-

ground points are classified as ground. From Table 3.3, the performance from the

most challenged scenario: high traffic scenario has achieved a precision of 94.2%.

This is because the data from the scans are collected in the express way where the

terrains are usually very flat. As a result, the average processing time from both

cases has significantly low computational complexity (1.02 ms in average) and the

the average error from computed line and ground points is only approximately

0.04m as illustrated in Figure 3.11(B).

55

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Additionally, Figure 3.12 shows the visualization of real time ground segmen-

tation results by our proposed method in high traffic scenario. The black points

represent the estimated ground points and the red points represent the non-ground

points whereas the blue line illustrate the slope of the road.

(a) Apply estimated linear model for all
points - top view

(b) Apply estimated linear model for all
points - side view

Figure 3.12: Black represents ground points. Red represents non-
ground points.

3.5 Conclusion

In this chapter, a novel real time occupancy grid map based ground detection

approach has been presented. The approach can be divided into three phases.

LiDAR raw points acquisition and preprocessing, occupancy grid mapping and

weighted linear regression. Ground points are extracted in the first module while

Cartesian coordinates representation is computed simultaneously for each single

point. Through the first module, these points are separated into two set: dense

56

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

data set and sparse data set. The dense data set fused in the occupancy grid map

for building a probability map and weighted linear regression module for estimate

the slope of the road. The complete segmentation of road area is done on the rest

of sparse data set by applying regression model. Experiments are performed in

real time in order to test the proposed method. From the experimental results,

the proposed method on our real time LiDAR system demonstrates its robustness

and efficiency under different scenarios. The extension based on our proposed

system can be utilized to developed furthers algorithms for control or autonomous

application to meet the real time criteria.

57

Chapter 4

The Algorithm: Design of Object

Detection System

Figure 4.1: The result of object detection system

58

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

4.1 Introduction

This chapter present an introduction to clustering methods and describes our pro-

posed clustering algorithm. Our proposed method use the static Kd-tree as our

spatial data structure to manage nearest search operation due to its higher effi-

ciency form experiments. Taking advantage of Kd-tree, a radially bounded nearest

neighbor (RBNN) clustering method is proposed to segment the LiDAR points into

different clusters. Our method is validated by its application to our real time Li-

DAR system and comparatively analysis. Figure 4.1 shows the overview of our

developed object detection system in which the red color represents the object.

Object detection is a critical step in perception. Given the non-ground points

from our ground detection system, the next step is to spatially cluster points with

similar properties into single object. Point cloud clustering algorithm is a funda-

mental issue in processing LiDAR data and the quality of clustering algorithms

largely determines the success of feature retrieval described later in Chapter 5.

Most existing clustering methods have encountered two difficulties. First, project

3D range point cloud map into lower dimension leads to information loss. Sec-

ond, process large volume of point cloud for real time application is a considerable

computation complexity problem. In this chapter, we investigate the strategies of

spatial data structure and develop LiDAR clustering methods.

59

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

4.2 Related Work

Most participants in DARPA Urban Challenge were projecting a three dimensional

point cloud into lower dimension. For example, researchers in [26, 27] used an 21
2

occupancy grid to map the environment around a vehicle as a field of uniformly-

distributed binary variables showing the status of grids (occupied or empty). One

of the advantages is that the occupancy grid map allows for integration of sev-

eral sensors into a unified representation, and the mapping strategy will become

straight-forward.

Spatial data structures are hierarchical in nature, such as Kd-tree [43] and oc-

trees [44]. Elseberg et al. [45] demonstrated different implementations of octree

and Kd-tree for iterative closest points. Hornung et al. [46] presented a proba-

bilistic and memory-efficient implementation of octree for mapping applications.

However, Bentley et al. [47, 48] evaluated different methods of radius neighbor

search and concluded that the Kd-tree is the most efficient and flexible spatial

data structure for arbitrary dimensions. Jing Shen et al. [49] employed Kd-tree

to manage the airborne LiDAR data after elimination of low and high outliers by

using the elevation information.

The extracted dense data is clustered to identify target. A suitable solution

can utilize spatial neighborhood relationships to compute the similarity between

points. Shen et al. [50] leveraged a 3D Voronoi diagram to provides a reason-

able description for the spatial topological neighborhood relationships. Other ap-

proaches try to cluster points by matching them to geometrical templates [51].

However, such model-based matching algorithms can only succeed if the point

60

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

cloud is already reasonably segmented.

One of the difficulty for LiDAR data clustering is that no a priori knowledge

on the distribution of points is available. Hence, classical supervised clustering

methods are not useful. To overcome this problem, Frigui et al. [52] proposed a

partitioning method which considers as much points as isolated clusters and then

eliminates iteratively irrelevant clusters until reaching the correct number of clus-

ters. Boley et al. [53] used Principal Component Analysis (PCA) to divide the

point cloud which is also called Principal Direction Divisive Partitioning (PDDP).

Frederick et al. [54] developed an algorithm to merge ellipsoids into larger ellip-

soids by using a Minimum Spanning Tree (MST) algorithm. However, additional

analysis is needed to recover relatively small holes which may be ignored in the

model. Therefore, this method is not yet suitable for our application.

In [55], an algorithm is presented that efficiently segments a given 3D point

cloud using a radially bounded nearest neighbor (RBNN) method while maintain-

ing its ability for real time processing based on the static Kd-tree. The point

cloud clustering technique is also based on our previous work in [24], which is a

combination of RBNN and bounding box.

61

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

4.3 Spatial Data Structure

4.3.1 Kd-tree

A Kd-tree is a data structure used in computer science for organizing points in a

k-dimensional space [43]. A Kd-tree is a generalization of a binary search tree that

stores points in k-dimensional space. Each non-leaf node divides the space into

two parts, known as subspaces. Points to the left represent the left subtree of that

node and points to the right are represented by the right subtree. In other words,

every level of a Kd-tree implicitly generates a splitting hyperplane. However, each

node in the tree is associated with one of the k-dimensions, with the hyperplane

perpendicular to that dimension’s axis. Figure 4.2 below shows an example of

Kd-tree in the 2-dimensional space. Red squares are dataset points, black lines

are splits. The thinner the line is, the deeper is the node which corresponds to the

split.

Kd-tree is very useful for searching nearest neighbor. Considering the number

of dimensions k is fixed (k = 3), and dataset size is n, the complexity of the most

important operations with Kd-tree is estimated:

• Building a Kd-tree has O(n log n) time complexity and O(kn) space com-

plexity

• Nearest neighbor search - close to O(log n)

• m nearest neighbors - close to O(m log n)

62

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Figure 4.2: The Kd-tree in 2D space

It’s easier to understand how a Kd-tree works by seeing an example. Figure 4.3

is a Kd-tree that stores points in a three-dimensional space.

Notice that in each level of the Kd-tree, if a pivot element such as x-axis is

chosen, all points in the subtree with a smaller x value than the pivot will appear

in the left subtree and all points with a larger x value will be in the right subtree.

For instance, in Figure 4.3, the node (2, 3, 7), the value of y-axis is shown in bold.

Therefore, for all the nodes that are in its left subtree, their value of y-axis is less

than 3.

The most efficient way to build a Kd-tree is to use a partitioning method to

place the median point at the root and everything with a smaller one dimensional

value to the left and larger to the right. Then repeat this procedure on both

the left and the right of subtrees, until the last subtrees is only composed of one

element. One of the advantage of Kd-tree is that it has been proved its usefulness

63

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Figure 4.3: An 3D Kd-tree example

in the reduction of complexity of already existing three-dimensional models in an

automatic and unsupervised way [56].

4.3.2 Nearest Neighbor Search in Kd-tree

The nearest neighbor (NN) search problem is a fundamental computational prob-

lem in computer vision, graphics, data mining, machine learning, and many other

fields. Assume that the dataset is composed of N points p1, p2, ..., pn. Given a

query point pq the NN query asks for the point pnn 6= pq which is closer than any

other point in the dataset. A more general form of the query is to ask for the k

nearest points instead of just the closet one. So the k-NN query asks for the k

points that are closest to pq. The output of a k-NN query is a list of points sorted

in increasing distance order from the query point.

Since the NN query retrieves answers according to the proximity of the points,

a distance metric is required. The common used distance metric is the Euclidean

64

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

distance [?]. Figure 4.4 shows examples of a 2-NN and a 5-NN queries with a fixed

query point by using Euclidean distance.

(a) NN query for k=2 (b) NN query for k=5

Figure 4.4: An examples of 2-NN and 5-NN queries

The similarity between the range query and the NN query is apparent. In

contrast, the maximum distance is defined to the query point, whereas the number

of points that satisfy the criteria is not known in advance. For range search in

Kd-tree, the tree is recursively descended depth-first, travel as far as possible from

neighbor to neighbor within the maximum distance before backtracking. At the

leave node, the distances of the point to the query vector are computed explicitly,

and any point with a distance less than d is added to the list of results. The

other side of children nodes are also being searched with the same procedure. The

65

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

pseudo code of range search in Kd-tree is as follow:

Data: 3D Point Cloud

Result: Point Set

Initialization;

Query distance is d, start at root node;

v, w be left and right children nodes;

if v a leaf then
report cell(v) ∩ d;

if cell(v) ∈ d then
report all points of cell(v);

end

if cell(v) ∩ d = ∅ then
skip;

end

end

else
search subtree of v recursively ;

end

do the same for w;
Algorithm 1: Range search in Kd-tree

4.4 Clustering Analysis

Clustering analysis has been an important area of research in the domain of com-

puter science for data mining and patterns recognition in various kinds of data.

This process can identify major patterns or trends without any supervisory infor-

mation such as data labels. Broadly specified, the goal of clustering is to group

66

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

a set of points into clusters such that points within the same cluster have high

similarity to each other than to those in other clusters. In other words, it divides

a set of objects into clusters each of which is a representative of a meaningful

sub-population.

Before explaining the concepts of clustering algorithm, it is useful to formalize

the clustering of point cloud data problem. Given n points in a k-dimensional

space. The aim is to find m clusters cj, j = 1, 2, ...,m such that all clusters are dis-

joint ci∩ cj = ∅,∀i 6= j and each cluster has at least one point ∀i = 1, 2, ...,m, ci 6=

∅. For the scope of LiDAR data, a 3-dimensional space is concerned in which

the significant features of points are their spatial locations along the three Carte-

sian axes. So ∀i = 1, 2, ..., n, pi = {xi, yi, zi}, where x, y, z are the locations on

three axes respectively. Assume the distance between two points pi and pj is

dij = ||pi − pj||2. The following Figure 4.5 shows the clustering of point cloud

data. Three different color labels distinguished clusters and the grey line indicates

the distance between every two points.

Figure 4.5: Clustering of points

67

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

In many applications, the notion of a cluster is not well defined. Figure 4.6

shows a set of points and three different ways of partition based on the number of

clusters. The shapes of the markers represent cluster membership.

(a) Original data (b) Two clusters

(c) Four clusters (d) Six clusters

Figure 4.6: Different number of clusters for the same set of points

4.4.1 Review of Different Cluster Analysis Criteria

As a branch of statistics, data clustering has been studied for many years. Hier-

archical and partitional are two such classes of clustering algorithms. Hierarchical

clustering algorithms break up the data into a hierarchy of clusters. Paritional

algorithms divide the data set into mutually disjoint partitions. Typically, parti-

tional clustering is faster than hierarchical clustering. Therefore, The focus here

will be on partitional clustering. A number of partitional clustering algorithms

have been proposed to solve point cloud clustering problems. In this section, the

three important techniques are used to introduce many of the concepts involved

in cluster analysis, namely: K-mean, DBSCAN, and RBNN.

68

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

K-mean

K-mean is a simple partitional clustering technique that attempts to find a set of

user-specified k clusters. These clusters are represented by their centroids. It has

been used across a large range of application areas in different fields. The K-mean

algorithm is to estimate the unknown cluster centers M = {m1, ...,mk} based on

the dataset P = {p1, p2, ..., pn}. The K-mean algorithm aims to choose centroids

that minimize the sum of squared criterion

n∑
i=1

min(||pi −mi||2) (4.1)

where mi is the closet cluster center to pi. The most common algorithm, in

Figure 4.7, uses an iterative refinement approach, following these steps:

1. Clusters the data into k clusters where k is predefined.

2. Select k points at random as cluster centers.

3. Assign points to their closest cluster center according to the Euclidean dis-

tance function.

4. Calculate the centroid or mean of all points in each cluster.

5. Repeat steps 2, 3 and 4 until the same points are assigned to each cluster in

consecutive rounds.

69

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Figure 4.7: An example of K-mean clustering

These steps are repeated until a certain intra-cluster similarity objective func-

tion and inter-cluster dissimilarity objective function are optimized. Sensible ini-

tialization of centers is a very important factor in obtaining quality results from

partitional clustering algorithms. Although K-mean is relatively efficient and ro-

bust when the data sets are distinct or well separated from each other, since in

our application, the number of vehicles is unpredictable in dynamic environment,

K-mean is not considered as clustering algorithm for our system.

70

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

DBSCAN

Density-based spatial clustering of applications with noise (DBSCAN) is a data

clustering algorithm proposed by Martin Ester et al. in 1996 [57]. It is a density-

based clustering algorithm because it finds a number of clusters starting from the

estimated density distribution of corresponding nodes. DBSCAN is one of the

most common clustering algorithms and also most cited in scientific literature.

Before describing the DBSCAN algorithm, some concepts must be explained.

It uses the concept of directly density reachability, density reachability and

density connectivity (See Figure 4.8). DBSCAN is formed by two parameters:

ε, which specifies how close points should be to each other to be considered a part

of a cluster; and minPts , which specifies how many neighbors a point should

have to be included into a cluster.

Directly Density Reachability - A point pi is directly density reachable from

a point pj with respect to ε and minPts if the distance between pi and pj is less

than ε.

Density Reachability - A point pi is density reachable from a point pj with

respect to ε and minPts if there is a chain of point p1, p2, ..., pn and p1 = pi, pn = pj

such that pi+1 is directly density reachable from pi.

Density Connectivity - A point pi and pj are said to be density connected if

there exist a point pk such that both pi and pj are density reachable from pk with

respect to ε and minPts.

71

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

(a) Directly density reachability (b) Density reachability

(c) Density connectivity

Figure 4.8: The concepts of DBSCAN

According to the above definition, a set of data points can be separate into two

groups: the border points which are located on the extremities of the cluster,

and the core points, which are located its inner region. The DBSCAN algorithm

steps are described below:

1. Arbitrary select a point pi.

2. Retrieve all points density reachable from pi with respect to ε and minPts

3. A point pi is a core point, if at least minPts points are within distance ε.

72

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

4. A point pi is a border point, if no points are density reachable from pi.

5. Continue the process until all of the points have been processed.

Figure 4.9: The steps of DBSCAN algorithm

Figure 5.9 provide a depiction of the DBSCAN algorithm in a step by step

form. As can be seen from the last step image, there might be some points not

belonging to any of the generated clusters, those points are outliers (noise).

RBNN

Matching 3D point clouds to geometrical shapes such as planes, cylinders or cube

can only succeed if the point clouds are already reasonably segmented. For large

73

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Figure 4.10: The steps of RBNN algorithm

3D point clouds obtained from complicated geometry, graph-based approaches are

the most popular class of algorithm for robust and efficient segmentation of 3D

laser data, because it can capture arbitrarily shaped clusters. Klaas et al. [55]

presents an algorithm called radially bounded nearest neighbor (RBNN) by only

using the concept of local neighborhood.

In RBNN every point in a cluster is connected to all neighbors that lie within

a predefined radius r which is ∀pi, pj, i 6= j, dij < r. The main advantage of this

method is that RBNN do not actually have to perform a nearest neighbor query for

every point and consequently no graph cutting and rearranging of graph structures

involved. So it is not even necessary to build a graph structure. This is in contrast

to the K-mean which connects every point to its k nearest neighbors regardless of

distance. Furthermore, RBNN also do not need initialization about the number

of clusters which is one of the necessary conditions for evaluating in an unknown

dynamic environment. Only two parameters, radius and the number of minimum

points in one cluster, are needed to be initialized. The algorithm can be described

by the following steps as shown in Figure 4.10:

1. Scan through all points from the data set.

74

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

2. For a current point which is not assigned to any cluster:

• Search all neighboring points within a predefined radius.

• If any of these neighbors are already assigned to a cluster, assign the

current point to the same cluster.

• If no neighboring points are assigned, then create a new cluster. Thus

assign both current point and neighbors to the new cluster.

3. For a current point which is assigned to cluster:

• Search all neighboring points within a predefined radius.

• If there exists neighbor assigned to a different cluster, merge the cluster.

• If no neighboring point is assigned, assign neighboring point to the

cluster of the current point.

In RBNN, if neighbor points lies within a predefined radius, all the neighbor

points are made to belonging to the same group. If the number of points in one

cluster is less than our predefined minimum number, that cluster is considered an

outlier.

4.5 RBNN Based Clustering using Kd-tree

The RBNN based clustering algorithm is nonparametric which means that the

method does not need initialization. The pseudo code of our proposed clustering

75

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

algorithm are shown below:

Data: 3D Point Cloud

Result: Cluster Set

Initialization;

Scan through each point;

if not end of set then
Search neighbor points within radius;

if current points has beed labeled then
Ifneighbor point label different Merge label and assign label to

other unlabelled neighbor point;

else
Label other unlabelled neighbor point;

end

end

else if neighbor point labelled then
Assign same label to current point and other neighbor points;

end

else
Create a new label and label current point and the nighbor points;

end

end

else
Scan through generated clusters;

if Size of cluster within range then
Keep current cluster;

end

else
Discard current cluster;

end

end
Algorithm 2: Pseudo code of our method

76

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Figure 4.11: The flow diagram of clustering

The flowchart of the pseudo code is shown at Figure 4.11 which can be described

as following:

1. Build a Kd-tree from the non-ground point cloud so that each point is rep-

resented by node.

2. Assign label to every node and initial the value of label as “not a number ”

(NaN).

3. Iterate through each node and check for label.

77

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

4. If the label of current node is NaN:

• Range search within predefined distance and return neighbor nodes.

• If the value of label of any neighbor node is not NaN, copy the value of

label to current node and other neighbor node.

• If the value of label of all neighbor nodes are NaN, create new value

and assign to all node from range search.

5. If the label of current node is not NaN:

• Range search within predefined distance and return neighbor nodes.

• If the value of label of all neighbor nodes are NaN, assign this label to

all node from range search.

• If the value of label of any neighbor nodes has different value, merge to

the same value.

6. Project the clusters to 3D bounding box.

7. If the size of bounding box is over the threshold value:

• Discard

8. Store the bounding boxes as vehicle-like cluster sets.

Figure 4.12 shows a bounding box is generated for each cluster in order for

object features extraction as explained in the next chapter.

78

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Figure 4.12: 3D bounding box around the cluster

4.5.1 Experiment and Result

To validate the proposed clustering strategy, experiments were conducted on our

real time platform to verify the robustness and effectiveness of the proposed ap-

proach according to the scenarios of Table 2.3 from Chapter 2. Figure 4.13 shows

the results of clustering algorithm from one frame. As can be seen from Figure

4.13(A), the set of non-ground data is rendered to color red. While Figure 4.13(B)

demonstrates that seven distinct clusters with different colors are identified by our

clustering algorithm.

79

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

(a) Object labeled by red color

(b) Clusters with different colors

Figure 4.13: An example of our methods on real time data

80

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Evaluation clustering algorithms usually involves “internal" evaluation and “ex-

ternal" evaluation. Because the proposed algorithm is evaluated based on our

real time data, so the candidate algorithm can not be compared with an exist-

ing “ground truth” classification. So the clustering analysis result is evaluated as

“internal” evaluation.

The following methods can be used to assess the quality of clustering algorithms

in terms of internal evaluation:

The Davies–Bouldin index (DBI) is computed by the following formula [58]:

DBI = 1
n

n∑
1
maxi 6=j

σi + σj
d(ci, cj)

(4.2)

where n is the number of clusters, σi is the average distance of points in cluster

to centroid ci and d(ci, cj) is the distance between centroid ci and cj. The DBI

measures the average of similarity between each cluster. As the clusters should be

compacted and separated, the lower DBI means better clustering result.

The Dunn index (DI) is given by [59]:

DI = min1≤i≤j≤n d(ci, cj)
max1≤k≤n δk

(4.3)

where d(ci, cj) represent the distance between the centroids and δk calculate the

maximum distance between the farthest two points inside a cluster. The aim of

DI is to identify sets of clusters that are compact and well separated. For a given

assignment of clusters, a higher Dunn index indicates better clustering.

81

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Table 4.1, Table 4.2 and Table 4.3 illustrate evaluation results. Since the main

objective of our application is to detect vehicle, in practices, MinPts = 50 which is

the minimum number of points to determine the type of cluster, and Radius = 1

are selected because the distance between moving vehicle is hardly below 1 meter.

Method DBSCN Our Method

Average DBI 1.042 1.0551

Average DI 1.49 1.231

Average Computation Time (s) 0.14587 0.06214

MinPts 50 50

Radius 1 1

Table 4.1: Evaluation Result: Scenario 1

Method DBSCN Our Method

Average DBI 1.0451 1.0546

Average DI 1.4112 1.233

Average Computation Time (s) 0.16123 0.07412

MinPts 50 50

Radius 1 1

Table 4.2: Evaluation Result: Scenario 2

82

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Method DBSCN Our Method

Average DBI 1.041 1.06

Average DI 1.50 1.21

Average Computation Time (s) 0.03361 0.02932

MinPts 50 50

Radius 1 1

Table 4.3: Evaluation Result: Scenario 3

From the value of DBI and DI in above comparison table, although DBSCAN

has a slightly better performance than RBNN, the computation cost of DBSCAN

does not meet our real time criteria, whereas the processing time of RBNN is only

0.02932s in light traffic, 0.06214s in medium traffic, and 0.07412s in heavy traffic.

4.6 Conclusion

In this section, an RBNN based clustering algorithm is proposed by using static

Kd-tree. The performance is evaluated by using LiDAR raw data sets under

different traffic scenarios. The proposed algorithm was compared against the well

known clustering technique DBDCAN. To effectively assess the performance of

the proposed clustering algorithm, the Davies–Bouldin index (DBI) and the Dunn

index (DI) which evaluate intra-cluster similarity and inter-cluster differences are

computed. As illustrated by the results, the average values of both DBI and DI

are robustness under different scenarios.

83

Chapter 5

The Algorithm: Design of Object

Classification System

Figure 5.1: The result of object classification system

84

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

5.1 Introduction

In this chapter, a vehicle type classification approach is proposed using the convo-

lutional neural network for the LiDAR system. In order to increase differentiation

of information of vehicles and improve the performance accuracy, principle compo-

nent analysis (PCA) is introduced to obtain the significant features of clusters by

taking advantage of 3D data acquired from LiDAR. In addition, a support vector

machine (SVM) is employed to identify the “Vehicle” cluster among other cluster

data sets. Unlike conventional end-to-end classification methods, our method is

able to discriminate type of vehicles in measured data. The data is collected and

built from real time experiments which have included 5320 clusters with more than

2,660,000 points. The real time experimental results demonstrate the effectiveness

and robustness of the proposed method. Figure 5.1 shows an example of the results

of our proposed object classification system.

The development of a vehicle classification system is to help our LiDAR per-

ception system to determine the geometry of its surrounding vehicles. The results

from object detection system always include false clusters as shown in Figure 5.2

and its therefore necessary to recognize and classify the surrounding vehicles. To

address this problem, real time vehicle classification techniques have been devel-

oped which aim to improve the accuracy of detection. In this chapter, an effective

supervised learning approach is presented for vehicle classification on our real time

LiDAR system.

85

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Figure 5.2: The result of object detection system

5.2 Related Work

Several machine learning approaches were proposed to solve vehicle classification

problems. Amongst them, two typical methods have had a large impact on the

research community: Support Vector Machine (SVM) and Artificial Neural Net-

work (ANN). An SVM is a kernel based classification technique which was first

introduced in 1995 by Cortes and Vapink [60]. This machine learning approach has

become popular recently and has been applied to vehicle classification problems.

In a number of publications, SVM and PCA have been used to classify vehicle

objects [66, 67]. Zhang et al. [61] implemented PCA-SVM to distinguish objects

86

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

into trucks, passenger cars and vans. Although the result has achieved high ac-

curacy, the processing time is not suitable for real time problems. Furthermore,

most proposed strategies assume that there are to be no shadow conditions making

them infeasible for application at night when shadow, and reflections are always

present.

Zhiming et al. [62] leveraged SVM and PCA classifiers for vehicle detection.

They divided measurements into training and testing set and performed vehicle

recognitions using Scale Invariant Feature Transform (SIFT) method. Several

other approaches utilizing PCA and SVM were mentioned in Zehang et al. [63].

However, SVM based approaches were designed for binary classification. How to

effectively extend it for multiple classes classification is still an on-going research

issue.

A number of artificial neural network (ANN) based technologies have been

developed for vehicle classification. One of the most recent and very promising

solutions is Convolutional Neural Networks (CNN). The CNN’s strength is its

ability to classify mutiple classes of objects. Krizhevsky et al. [64] applied CNN

to classify the 1.2 million images into 1000 categories in the ImageNet Large Scale

Visual Recognition Challenge (ILSVRC) competition. Other advantages of CNN

are their relative robustness towards noise. Attila et al. [65] presented context

based CNN for object classification such as for pedestrians and vehicles. Bo li et

al. from Baidu research lab [33] used the CNN technique on 3D range scan data.

They projected and discretized the range data into a 2D point maps and used a

single 2D end-to-end Fully Convolution Network (FCN) to predict the confidence

of vehicle and the bounding boxes simultaneously. A big disadvantage, is its long

87

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

training time and the need for a large training data set that of their method would

cover all classes of vehicles.

An efficient supervised learning approach is proposed for our real time LiDAR

system. Our approach involves cascading a feature extractor PCA with a fixed

kernel function SVM and a multiple layer perception CNN, referred as PCA-SVM-

CNN. In comparison to individual classification algorithms such as SVM or CNN,

experiments show that the proposed algorithm is able to deliver superior perfor-

mance.

5.3 The Proposed Classification System

Figure 5.3: The data flow of our approach

88

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Our approach to real time LiDAR classification system involves three main steps:

(i) features selection, (ii) “vehicle” and “non-vehicle” classification, and (iii) vehicle

types classification. In Figure 5.3, the proposed classification system, referred as

PCA-SVM-CNN, is presented, which is described as following sections.

5.3.1 Feature Extraction by PCA

The use of PCA is to reduce dimensions and extract features from clusters [66]. It

convert a set of observations into a set of values of linearly uncorrelated variables

called principal components [68]. The first principal component is required to

have the largest possible variance and the second component is computed under the

constraint of being orthogonal to the first component and to have the second largest

possible variance. The other components are computed likewise. Overall, PCA

compresses data by reducing the number of dimensions without losing significant

information and finds patterns in transformed feature space. The following are the

steps to process LiDAR data by using PCA:

Suppose P is the input data set with n points and m features. pji represent the

ith point and jth feature. So P is represented by the following matrix

P =



p1
1 p2

1 . . . pj1

p1
2 p2

2 . . . pj2
...

...

p1
i p2

i . . . pji


(5.1)

89

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

For example, given n points of LiDAR data set where each point is represented

by Cartesian coordinate system, then P matrix is defined as

P =



x1 y1 z1

x2 y2 z2

... . . .
...

xn yn zn


(5.2)

The mean value of each dimension is µ = {µx, µy, µz}. Because the covariance

is measured between 2 dimensions to see if there is a relationship between the 2

dimensions. For example, the formula of covariance matrix for variable x and y is

computed by:

Cov(x, y) =
∑n
t=1(xi − µx)(yi − µy)

n− 1 (5.3)

As the definition for the covariance matrix for a set of data with n dimensions

is

Covn×n = {Covij|Covij = Cov(Dimi, Dimj)} (5.4)

where Covn×n is a matrix with n rows and n columns, Dimi is the ith dimension.

Because only 3 dimensional LiDAR data is processed in our application. Repre-

senting the covariance between dimensions as a matrix, e.g. for a 3 dimensional

data set (x,y,z), is calculated by measuring the covariance between the x and y

dimensions, the y and z dimensions, and the x and z dimensions. Therefore, the

90

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

covariance matrix Cov has 3 rows and 3 columns:

Cov(x, y, z)3×3 =


Cov(x, x) Cov(x, y) Cov(x, z)

Cov(y, x) Cov(y, y) Cov(y, z)

Cov(z, x) Cov(z, y) Cov(z, z)

 (5.5)

What PCA solves next step is the following eigenvalue problem of covariance

matrix Covn×n:

Covn×nvi = λivi (5.6)

where λi are the eigenvalues and vi are the corresponding eigenvectors. The eigen-

values is in order from largest to smallest so that it gives us the components in

order or significance. Here comes the dimensionality reduction part. To represent

compressed vectors, the p eigenvectors corresponding to those p largest eigenvalues

where p ≤ n is computed.

Φ = [v1, v2, ..., vp]

Λ = diag[λ1, λ2, ..., λp]
(5.7)

Then

CΦ = ΦΛ (5.8)

91

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

The parameter v denotes the approximation precision of the p’s largest eigen-

vectors so that the following relation holds.

∑p
i=1 λi∑n
i=1 λi

≥ v (5.9)

Note that the first principal component has the largest possible variance, and

each succeeding component in turn has the highest variance possible under the

constraint that it is orthogonal to the preceding components. Next a feature

vector is formed which is a matrix of the selected eigenvectors.

Once the eigenvectors is selected, the feature vector is transposed and left mul-

tiplied it with the transpose of scaled version of original dataset. Thus the final

matrix consisting of the principal components is shown below:

Pf = ΦT × P T (5.10)

One of the main challenges of extracting meaningful features from point cloud

for each bounding box is to find a compact representation that is differentiated from

others as shown in Figure 5.4. In other words, compact representation can thereby

dramatically reduce dimensionality of computation compared to the original data.

Otherwise, the resulting classifier would not run in real time. On the other hand,

discarding too much of the original information may cause the classifier to make

a wrong decision.

Most studies use features exacted from the individual point of LiDAR data

92

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Figure 5.4: The features extraction from clusters

[42, 69, 70, 71] such as a histogram of point distribution or point positions. In our

application, because the points have been clustered, the features are not restricted

to “point” properties. Instead, some of the features should also be captured from

“cluster” properties. For example, the sensor provide the intensity of laser reflec-

tion for the range of value from 0 to 255 according to [20]. Other approaches such

as using 3D geometric features derived from the local covariance matrix [70, 71].

The point distribution features are described by the corresponding eigenvalues λ1,

λ2, λ3 computed from PCA to extract the features including dimensionality (lin-

earity, planarity and sphericity). Therefore, both “point” and “cluster” features

are extracted.

93

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

1. The “cluster” Feature:

• Object volume (V), computed from object length (L), width(W) and

height(H)

V = L×W ×H (5.11)

• Number of points (N)

• Number of laser ID (Nid)

• Density center (Pd = {xd, yd, zd})

Pd =


xd

yd

zd

 =



∑N
i=1 xi
N∑N
i=1 yi
N∑N
i=1 zi
N

 (5.12)

2. The “point” Feature:

• Maximum point intensity (Imax)

Imax = fmax({I1, I2, ..., In}) =



I1 single sequence

fmax({I2, I3, ..., In}) I1 ≤ I2

fmax({I1, I3, ..., In}) otherwise
(5.13)

94

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

• Minimum point intensity (Imin)

Imin = fmin({I1, I2, ..., In}) =



I1 single sequence

fmin({I2, I3, ..., In}) I1 ≥ I2

fmin({I1, I3, ..., In}) otherwise
(5.14)

• Mean point intensity (Imean)

Imean =
N∑
i=1

Ii
N

(5.15)

• Variance point intensity (V ar(I))

V ar(I) =
∑N
i=1(Ii − Imean)2

N
(5.16)

• Height variance of point (V ar(H))

V ar(H) =
∑N
i=1(Hi −Hmean)2

N
(5.17)

• Distance variance of point (V ar(d))

V ar(d) =
∑N
i=1(di − dmean)2

N
(5.18)

95

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

• Sphericity (Sλ); Linearity (Lλ); Planarity (Pλ)

(a) Cov(P) =
∑N
i=1(pi − p̄)(pi − p̄)T

N

(b) Compute eigenvalues ~λ = {λ1, λ2, λ3} by Cov(P)~v = ~λ~v

(c) Lλ = λ1 − λ2;Pλ = λ2 − λ3;Sλ = λ3

Thus the feature vector is defined as:

~F =(V,N,Nid, Pd, Imax, Imin, Imean,

V ar(I), V ar(H), V ar(d), Lλ, Pλ, Sλ)
(5.19)

Because the feature vector ~F has dimension of thirteen. PCA is utilized to

reduce the dimensions required for classifying new data and to produces a set of

principal components, which are orthonormal eigenvalue/eigenvector pairs. This

reduces the dimensionality of our data by restricting attention to those direc-

tions in the feature space in which the variance is greatest. PCA is applied on

the original feature vector set of the data. Based on our experiments for the

trade-off between accuracy and computation complexity, the most four signifi-

cant principle components is selected so that the feature vector of the ith cluster

is: ~Fi = (F 1
i , F

2
i , F

3
i , F

4
i). The new feature vector set Fpca is thus formed by

Fpca = {~Fi|0 < i ≤ n}, where i is the index of cluster and n is the number of

clusters.

Therefore, the selected feature vector of the object is evaluated by SVM classifier

in terms of the corresponding category based on the object’s location. So each

detected object could be assigned one of the labels “vehicle” or “non-vehicle”.

96

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

5.3.2 Binary Classification by SVM

In this section, SVM is briefly described for binary classification problems as shown

in Figure 5.5. The output of SVM is a vehicle cluster set which will be classified

into different types of vehicles by the CNN as showed in the next section.

Figure 5.5: The data flow of binary SVM

Let the label of ith cluster yi be one of two values such that

yi =


+1 vehicle

−1 non-vehicle
(5.20)

97

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Then there exists a hyperplane that separates the positive from the negative

training examples such that

~Fi · ~w + b ≥ 0 when yi = +1

~Fi · ~w + b ≤ 0 when yi = −1
(5.21)

where ~w is the normal to the hyperplane and b is the perpendicular distance of

the hyperplane to the origin, this gives the function

f(~Fi) = ~Fi · ~w + b (5.22)

f(~Fi) can be interpreted as the functional distance of an instance from the

hyperplane. For f(~Fi) < 0 the point would be classified as “non-vehicle”, and

“vehicle” if f(~Fi) > 0.

To solve this, Canonical hyperplane [73] is defined which separates the data

from the hyperplane by a “distanc” of at least 1. That is, considering the equation

that satisfy:

~Fi · ~w + b ≥ +1 when yi = +1

~Fi · ~w + b ≤ −1 when yi = −1
(5.23)

98

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

or more compactly:

yi · (~Fi · ~w + b) ≥ +1 (5.24)

Let a feature vector in such hyperplane is represented by a data point. Thus

the data points for which the equality condition in Eq.(5.24) holds are called the

support vectors showed in Figure 5.5 by extra circles.

Figure 5.6: Optimal separating hyperplane with maximum mar-
gin

To obtain the geometric distance d from the hyperplane to a given data point,

~w is normalized by the magnitude so that the distance of ith data point:

d(~w, b, ~Fi) = yi · (~Fi · ~w + b)
||~w||

≥ 1
||~w||

(5.25)

99

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

From the Eq.(5.25), the optimal hyperplane is given by maximizing the margin,

ρ, subject to the constraints of Eq.(5.24). The margin is given by

ρ = 2
||~w||

(5.26)

Hence the hyperplane that optimally separates the data is accomplished by

minimizing 1
2 ||~w||

2, subject to the constraints of Eq.(5.24). The solution to this

optimization problem is given by introducing Lagrange multiplier [72]. The La-

grangian is formed by multiplying the constraints by the positive Lagrange multi-

plier ~β = {β1, β2, ..., βk}, where k is the number of solutions that Eq.(5.25) holds.

This gives the following Lagrangian:

L(~w, b, ~β) = 1
2 ~w

T ~w −
k∑
i=1

βi[~Fi · ~w + b− 1] (5.27)

The Langragian L has to be minimized with respect to the primal variable ~w

and b. The solution for our primal problem is a differentiated L with respect to ~w

and b is given by:

∂L

∂ ~w
(~w, b, ~β) = 0

∂L

∂b
(~w, b, ~β) = 0

(5.28)

100

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Solving the Eq.(5.28) leads to:

~w =
k∑
i=1

βiyi ~Fi

k∑
i=1

βiyi = 0
(5.29)

Substituting Eq.(5.29) into Eq.(5.27), so the problem is eventually transformed

into the dual problem which eliminates the variables ~w and b:

minimize: L(~β) = −
k∑
i=1

βi + 1
2

k∑
i=1

k∑
j=1

yiyjβiβj ~Fi ~Fj

subject to:
k∑
i=1

yiβi = 0,∀i, βi ≥ 0
(5.30)

So given a training set, L has to be minimized by finding the optimal Lagrange

multipliers in ~β∗. Once the optimal solution ~β∗ is obtained, the optimal variable

~w∗ and b∗ is calculated by:

~w∗ =
k∑
i=1

~β∗yi ~Fi

b∗ = −1
2(~w∗ · x+ + ~w∗ · x−)

(5.31)

101

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

where x+ and x− are obtained by taking any “positive" or “negative" support

vector that satisfying:

(~w∗ · x+ + b∗) = +1

(~w∗ · x− + b∗) = −1
(5.32)

The decision function of an input feature vector ~Fnew is then determined by:

fd(~Fnew) = ~Fnew · ~w∗ + b∗

=
k∑
i=1

~β∗yi ~F
T
i
~Fnew + b∗

=


1 (“vehicle”) if fd(~Fnew) ≥ 0

−1 (“non-vehicle”) if fd(~Fnew) < 0

(5.33)

5.3.3 Kernel Functions

For non-linear SVM, finding a linear separating hyperplane in a multi-dimensional

space solves the non-linear classifier problem. Suppose that an input feature vector
~F is mapped into feature space F with the mapping function Φ. Figure 5.7 illus-

trate the objective of the transformation to feature space. A problem that is not

linearly separable in the input space can be linearly separable by a transformation

to a feature space.

102

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Figure 5.7: The circles and diamonds are not linearly separable
in the input space ; they can be linearly separable in feature space.

Therefore, the non-linear model is built by two steps: firstly, a non-linear map-

ping projects the data into a feature space F, and secondly a linear model is used

to do classification in the feature space. So the decision function from Eq.(5.33) is

transformed into:

fd(~Fnew) =
k∑
i=1

~β∗yi〈Φ(~Fi)T ,Φ(~Fnew)〉+ b∗ (5.34)

where Φ : ~F → F is a non-linear map from the input space to feature space

and 〈., .〉 denotes the inner product. Note that both Eq.(5.34) and Eq.(5.34) only

depend on the mapped data through dot products in the feature space F. Let K(.

, .) be defined the kernel function as:

K(~Fi, ~Fnew) = 〈Φ(~Fi)T ,Φ(~Fnew)〉 (5.35)

103

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

The mapping function Φ become unnecessary when a kernel function is defined

which directly calculates the value of the dot product of the mapped data points in

the feature space F. The advantage of such a kernel function is that the complexity

of the optimization problem remains only dependent on the dimensionality of the

input space and not of the feature space. Then the decision function is rewritten

to:

fd(~Fnew) =
k∑
i=1

~β∗yiK(~Fi, ~Fnew) + b∗ (5.36)

A kernel function can be interpreted as a kind of similarity measure between

the input objects In practice, the following kernel functions in Table 5.3 are used

for most of the applications.

Kernel Type Kernel Function

Linear K(F i, F j) = F iF j

Polynomial K(F i, F j) = (aF iF j + θ)d

Radial Basis Func-
tion (RBF)

K(F i, F j) = e−
|Fi−Fj |2

2σ2

Sigmoid K(F i, F j) = tanh(aF iF j + θ)

Table 5.1: Summary of kernel functions

104

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

5.3.4 Vehicle Types Classification By CNN

CNN are primarily used for 2D image recognition, so the architecture of CNN is

illustrated on a 2D image consisting of pixels which contain the color information

represented by multiple channels such as RGB channels. In our application, the

3D point cloud data is projected into 2D planes of size 128×128 as shown in Figure

5.8. Each pixel value is ether 0 or 1 which represents whether it contains point or

not. For the sake of simplicity, only the side view (y-z projection) is considered

while explaining the model. Our approach to vehicle types classification involves

processing several layers of CNN. This section will discuss the network architecture

of CNN.

Figure 5.8: 3D view is projected into x-y, x-z, yz planes

A CNN is typically comprised of three main types of layers: (i) the convolution

105

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

layers, (ii) the max pooling layers, and (iii) the fully connected layers. The layers

of CNN are arranged in a feed forward structure: each convolution layer is followed

by a max pooling layer, and the last fully connected layer is followed by the output

as shown is Figure 5.9. The output consists of 4 different results: Sedan, SUV,

Van, and Truck. The convolution and max pooling layers are 2D layers, whereas

the fully connected layer is considered as a 1D layer. In CNN, each layers is made

up of several planes, a plane is a 2D array of neurons for the convolution and max

pooling layers, and 1D array of neurons for the fully connected layers. The output

of a plane is called a feature map.

Figure 5.9: The data flow of CNN

1. The Convolutional Layer: In a convolutional layer, each plane is con-

nected to one or more feature maps of the preceding layer. Each plane first

computes the convolution between its 2D inputs and its adjustable weights.

Thus the convolution outputs are summed together and added to an ad-

justable bias term. an activation function is applied to the result of convo-

lution output to obtain the output feature map as shown in Figure 5.10. A

convolution layer produces one or more feature maps. Each feature map is

then connected to one plane in the next max pooling layer.

106

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Figure 5.10: The example of convolution layer

Suppose the size of input feature map yl−1
i is Hl−1×Wl−1 at layer l, and wli,j

be denoted as the convolution mask from feature map yl−1
i in layer l − 1 to

feature map ylj in layer l. The size of weight wli,j is pl × ql. Thus the feature

map ylj in layer l is calculated as:

ylj = fl(blj +
∑
j

wli,j ⊗ yl−1
i) (5.37)

where blj is the adjustable bias term, and ⊗ denotes the convolution oper-

ator. The activation function fl is usually implemented as rectified linear

units (ReLU) which is shown to operate more robustly and efficiently [74].

107

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

However, the ReLu function is not differentiable at the origin, which makes

it hard to use with back propagation training. Instead, a smooth version

called the Softplus function is used in practice:

f(x) = ln(1 + ex) (5.38)

where the derivative of the softplus function is the sigmoid function, as below:

f ′(x) = d(ln(1 + ex))
dx

= ex

1 + ex
= 1

1 + e−x
(5.39)

Because zero padding for the input feature map is not performed in our

application, so the size of output feature mapylj is (Hl−1− pl + 1)× (Wl−1−

ql + 1).

2. The Max Pooling Layer: The max pooling layer is used after the con-

volution layer. The operation performed by this layer is also called “down-

sampling”, as the reduction of spatial dimension leads to loss of information

as well. However, such a loss is beneficial to the network for two reasons:

(a) the decrease in size leads to less computational time for the upcoming

layers of the network.

(b) it work against over-fitting.

the max pooling layer takes a sliding window or a certain region that is moved

across the input feature map by taking the maximum value in the window as

108

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

shown in Figure 5.11. The size of sliding window in our application is 2× 2.

Therefore, for a input feature map ylj which has a size of Hl ×Wl, the size

of output feature map yl+1
j is Hl+1 = Hl

2 , and Wl+1 = Wl

2 .

Figure 5.11: The example of max pooling layer

3. The Fully Connected Layer: The fully connected layer is configured

such that every feature map from the last max pooling layer is connected to

every layer of the fully-connected layer as shown in Figure 5.12. The fully

connected layers are typically used in the last stage of the CNN to construct

the desired number of outputs.

109

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Figure 5.12: The example of fully connected layer

Let wl+1
n,m denote the weight from feature map n of the last max pooling

layer to the neuron m of the fully connected layer l + 1, and let bl+1
m be the

bias term. The output yl+1
m of the neuron m of the fully connected layer is

computed as:

yl+1
m = fl(

n∑
1
wl+1
n,m · yln + bl+1

m) (5.40)

The output layer L follows the result of the fully connected layers. In our

application, the output layer consists of 4 neurons. Therefore, the neurons

110

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

of the output layer is calculated as:

yL1 = fl(
n∑
1
wLn,1 · yL−1

n + bL1)

yL2 = fl(
n∑
1
wLn,2 · yL−1

n + bL2)

yL3 = fl(
n∑
1
wLn,3 · yL−1

n + bL3)

yL4 = fl(
n∑
1
wLn,4 · yL−1

n + bL4)

(5.41)

111

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

5.4 Experiments and Analysis

5.4.1 Data Preparation

Figure 5.13: The data set for classification

To validate the proposed method, there are 2,660,000 points and 5320 clusters are

collected manually to prepare for the ground-truth of vehicle types as shown in

Figure 5.13. The data were collected by our real time system which is described

in Chapter 2. The data sets used in our experiments are summarized in Table 5.2.

112

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Training Set Validation Set Testing Set

Sedan 40 100 2332

SUV 40 100 1375

Van 40 100 1047

Truck 40 100 316

Table 5.2: The vehicle data set

5.4.2 Parameter Selection for SVM

The C-Support Vector Classification (C-SVC) is used to allow imperfect separation

of classes with penalty multiplier C for outliers [60]. The performance of the C-SVC

depends on two parameters: c is a penalty parameter for weighting classification

errors and g is a kernel function parameter. As it is not known beforehand which c

and g are best for a given problem. One of the versions of this procedure is known

as K-fold cross validation as shown in Figure 5.14.

Figure 5.14: K-fold cross validation

113

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

In K-fold cross validation, the training set is divided into k subsets of equal

size, and one subset is tested trained on the remaining k−1 subsets. For each grid

cell, one pairs of (c, g) values are tried and evaluated and the one with the best

K-fold cross validation accuracy is picked. A practical method to choose c and g

values is trying exponentially growing sequences (for example, c = 2−5, 2−3, ..., 25,

g = 2−15, 2−13, ..., 23). The grid-search procedure is compared at shown in Table

5.3:

Linear Polynomial RBF Sigmoid

c 0.0625 2 4 0.0625

g 1 1 0.000976 0.000976

Time (s) 0.01 0.1 0.015 0.37

Accuracy 90.75% 91.2% 94.39% 91.96%

Table 5.3: Grid-search result comparison

From the Table 5.3, the RBF has obtained the best accuracy result while still

maintaining fast processing time. Therefore, Radial Basis Function(RBF) is chosen

as our kernel function.

5.4.3 Parameter Selection for CNN

Different network structures are investigated for the CNN classifier.

• Input size: 32x32, 64x64, 128x128.

• Activation function: Linear, ReLu, Softplus.

114

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

• Number of feature maps in each layers: 32, 64, 128.

• Learning Rate: 0.01, 0.05, 0.1, 0.7.

For each parameters listed above, the CNN network was constructed. In total,

108 networks were created and trained. After training, the 108 networks were

evaluated on the validation set, and the best network was selected as shown in

Table 5.4.

Learning Rate 0.05
Layer Input Size Kernel Size Output Size

Convolution 128× 128× 1 1× 1 128× 128× 64
Max Pool 128× 128× 64 2× 2 64× 64× 64

Convolution 64× 64× 64 1× 1 64× 64× 128
Max Pool 64× 64× 128 2× 2 32× 32× 128

Fully 32× 32× 128 - 1× 1× 2048
Fully 1× 1× 2048 - 1× 1× 2048

Output 1× 1× 2048 - 1× 4

Table 5.4: The CNN parameter selection

5.4.4 Performance Evaluation

This classification produces four outcomes – true positive, true negative, false

positive and false negative as shown in Figure 5.15:

• True positive (TP): correct positive prediction

• False positive (FP): incorrect positive prediction

• True negative (TN): correct negative prediction

• False negative (FN): incorrect negative prediction

115

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Figure 5.15: Classification produces four outcomes – true posi-
tive, false positive, true negative, and false negative.

The quantitative performance of our PCA-SVM-CNN model are analyzed using

the metrics in Equation 5.42 to 5.47 [75].

1. Sensitivity: Sensitivity (SN) is calculated as the number of correct positive

predictions divided by the total number of positives:

SN = TP

TP + FN
(5.42)

2. Specificity: Specificity (SP) is calculated as the number of correct negative

predictions divided by the total number of negatives:

SP = TN

FP + TN
(5.43)

116

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

3. Precision: Precision (PREC) is calculated as the number of correct positive

predictions divided by the total number of positive predictions:

PREC = TP

TP + FP
(5.44)

4. False Positive Rate : False Positive Rate (FPR) is calculated as the num-

ber of incorrect negative predictions divided by the total number of negatives:

FPR = FP

FP + TN
(5.45)

5. F-score : F-score is a harmonic mean of precision and recall:

F-score = 2× TP
2× TP + FP + FN

(5.46)

6. Error rate: Error rate (ERR) is calculated as the number of all incorrect

predictions divided by the total number of the dataset:

ERR = FP + FN

TP + TN + FP + FN
(5.47)

In classification analytics, a table of confusion is a table that reports the number

of false positives, false negatives, true positives, and true negatives. This allows

more detailed analysis than the general accuracy. So the confusion matrix and the

performance results are shown in Table 5.5 and Table 5.6, respectively:

117

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Predicted

Actual

Sedan SUV Van Truck

Sedan 2268 44 13 7

SUV 30 1004 328 13

Van 15 41 980 11

Truck 14 25 24 253

Table 5.5: The confusion matrix

Metrics Sedan SUV Van Truck

TP 2268 1004 980 253

TN 2237 3501 3525 4252

FP 59 110 365 31

FN 64 371 67 63

SN 97.25% 75.02% 93.60% 80.06%

SP 97.43% 96.95% 90.62% 99.28%

PREC 97.46% 90.13% 72.86% 89.08%

FPR 2.57% 3.05% 9.38% 0.72%

F-score 97.36% 80.67% 81.94% 84.33%

ERR 2.66% 9.86% 9.75% 2.04%

Overall Accuracy 88.87%

Table 5.6: The analysis of classification result

From the prediction result of confusion matrix, the most challenged pair is the of

class “SUV” and class “Van”. This is because they have quite similar appearances

118

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

in terms of shape and size as shown in Figure 5.16. From Table 5.6, the best result

of vehicle types classification is the class of “Truck” and “Sedan”. This is because

the shape and size of these two types are quite different from others vehicle types.

(a) The “SUV” class (b) The “Van” Class

Figure 5.16: The most two confusing classes

The conventional classification methods, namely an end-to-end CNN, end-to-

end SVM is used to compared with our proposed method as shown in Table 5.7.

• End-to-end CNN: The original data are trained by CNN directly to predict

the vehicle types.

• End-to-end SVM: The original data are trained by CNN directly to predict

the vehicle types.

• PCA-SVM-CNN: The principle features are selected by CNN from the orig-

inal data and classified as either “Vehicle” or “Non-vehicle”. Then the “Ve-

hicle” data set are trained by CNN to

Approach Overall Accuracy

End-to-end CNN 83.23%

End-to-end SVM 74.54%

PCA-SVM-CNN 88.87%

Table 5.7: The comparison of classification result

119

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

From Table 5.7, the results demonstrate the improved performance of the pro-

posed PCA-SVM-CNN classification approach for LiDAR based system. The rea-

sons that integrating PCA and SVM lead to better performance are as follows.

1. Although the real time experiment is performed on highway scenarios where

the surrounding clusters are most likely “Vehicle” clusters, the cluster sets

often contain some “Non-vehicle” objects. These “Non-vehicle” cluster might

be bushes along the road, insufficient number of points from distance or

incomplete clusters because of partially block by objects. Because the “Non-

vehicle” clusters vary in shape, size, density, intensity and so on. It is difficult

to define the “Non-vehicle” class to be trained by CNN. As a result, the

performance of the end-to-end CNN or end-to-end SVM is degraded when the

collected data set contains “Non-vehicle” clusters in a dynamics environment.

2. To better accomplish the classification task, the feature extraction methods

such as PCA is used to extract the significant features of vehicles and as

a preprocessing tool in the the binary classification using SVM. As a re-

sult, the “Non-vehicle” clusters are eliminated which will certainly improve

performance accuracies for vehicle types classification on the “Vehicle” data

sets.

120

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

5.5 Conclusion

In this chapter, a supervised learning approach based on our LiDAR sensor for

vehicle type classification is proposed. This approach is referred to the PCA-

SVM-CNN. The proposed approach was implemented on our real time LiDAR

system. The method takes the results from previous chapter as the input and

outputs the vehicle types. The different types of vehicle determine the accurate

center location of the vehicle which is used for the position estimation.

121

Chapter 6

The Algorithm: Design of

Tracking System

Figure 6.1: The result of tracking system

122

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

6.1 Introduction

The measurements from sensors provide information on the surrounding environ-

ment, also contains clutter data and noise. To handle disturbances and motion

uncertainties, the Smooth Variable Structure Filter (SVSF) can be used as in-

troduced in 2007. The SVSF is designed based on the sliding mode concept and

manages to maintain the estimated states within a subspace of true states. A gen-

eralized version of SVSF (GSVSF) is developed to handle vehicle tracking when

there are fewer number of measurements than states in real time scenarios. The

LiDAR 3D data consists of both dense and sparse data in each scan that makes

the data processing and object tracking more challenging. Therefore, a gener-

alized SVSF based method is proposed that is a combination of the Hungarian

algorithm (HA) and Probability Data Association Filter (PDAF) referred to the

GSVSF-HA/PDAF. The proposed hybrid method is applied to our LiDAR real

time system. In addition, a comparative analysis is implemented to compare the

proposed method with Kalman filter (KF) based methods. Figure 6.1 shows an

example of the results of our proposed tracking system.

In order to monitor the surrounding of vehicles and to proactively react to

potential traffic infringements, it is necessary to track the motion states of sur-

rounding vehicles. Given the geometry of the LiDAR that is mounted on the roof

of a vehicle as described in Chapter 2, the frame is processed through a ring-like

pattern as shown in Figure 6.2. However, each scan of LiDAR data includes both

dense data and sparse data as shown in Figure 6.3, is a challenge for LiDAR sensor

to decide results of originated in noise. Noise in turn degrade the capability that

123

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

continuously and reliably detecting objects, and recursively estimating the state

of the surrounding vehicles. To address this problem, a generalized SVSF based

hybrid approach is presented for real time traffic tracking and estimation with our

LiDAR System.

Figure 6.2: The ring-like pattern

124

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Figure 6.3: The process of tracking system

Table 6.1 lists the parameters and their associated definition that are used in

the following sections.

125

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Parameters Definition

x State vector

z Measurement (system output) vector

w System noise vector

v Measurement noise vector

A Linear system transition matrix

B Linear input gain matrix

H Linear measurement (output) matrix

K Filter gain matrix

P State error covariance matrix

Q System noise covariance matrix

R Measurement noise covariance matrix

ê Measurement (output) error vector

γ SVSF memory term

φ SVSF smoothing boundary layer

diag[a] Diagonal of some vector or matrix a

sat() Saturation function

|a| Absolute value of a

aT Transpose of the vector a

◦ Denotes element-by-element multiplication

k|k − 1 The a priori state

k|k or k − 1|k − 1 The a posteriori state

Table 6.1: List of Important Nomenclature and Parameters

126

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

6.2 Related Work

In real time application, measurements are often contaminated by clutter and

noise. As such the tracking strategy needs to be robust to remove noise and un-

certainties. The well-known Kalman filter (KF) was introduced in the 1960s and

yields a statistically optimal solution for linear estimation problems in the presence

of Gaussian noise [76]. It is formulated in a predictor-corrector manner, and is im-

plemented recursively. The optimality of the KF comes at the price of stability and

robustness [77]. For vehicle tracking, different approaches have been proposed in

the literature. Many of them rely on the implementation of an Extended Kalman

filter (EKF) [78] [79] [80]. The performance of the EKF is reliable in many practi-

cal situations, but the non-linear state equations may lead to instability problems

when dealing with the problem of maneuvering targets in a densely cluttered en-

vironment. To address the modeling uncertainty problem, the Smooth Variable

Structure Filter (SVSF) was introduced in 2007 [81]. It is a recursive predictor-

corrector filter based on the sliding mode concept [82]. The significant features

of SVSF are its robustness, multiple indicators of performance, and its ability

to identify the source of uncertainty. Attari et al. [83] presented a generalized

variable boundary layer (GVBL-SVSF), which has the optimal characteristics of

the KF, while maintaining the robustness against modeling uncertainties inherited

from SVSF.

The essence of multiple targets association is to deal with uncertainty that oc-

curs when the sensor provides noisy measurements that is clutter-originated. In

other word, it should be decided which measurement is associated to which target

127

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

and which measurements are noise. In [84], detection and tracking were handled

in a coupled manner by use of the Hungarian algorithm (HA). The HA is for

assigning targets by a one-for-one matching to identify the lowest-cost solution.

The one-for-one matching algorithms such as HA have been shown that they works

reasonably well in dealing with measurement origin uncertainty of sparse scenarios

from previous studies [85]. The Probabilistic Data Association Filter(PDAF) and

the Joint Probabilistic Data Association Filter(JPDAF) were proposed to han-

dle the measurement to target association problem in a probabilistic manner and

consider all of the measurements that are falling into the validation gate [86]. Al-

though JPDAF has less bias than the PDAF in a clean environment, it has been

shown to have more coalescence and rejection bias phenomenon than PDAF in

a cluttered environment [87]. However, the JPDAF method has an exponential

increase in computational time with an increase in the number of tracked targets

that makes it a less practical in real time applications [87].

Due to the assumption of PDAF/JPDAF that at most one measurement is

originated from each target, gating failures arising when the new measurements

does not lie within the gate cased by occlusions or frames lost. As a result, the

PDAF/JPDAF tends to reject this measurement and generate a new track to han-

dle it which leads to reduced accuracy and increase computation time. Figure 6.4

shows an example of gating failure that the measurement zk does not lie within

the gate of the track xk. Therefore, a new track is assigned to handle the measure-

ment zk. In order to robustly track multiple targets in the real time environment

where occlusions or frames lost are usually occurs, and to implement an effective

real time LiDAR based tracking system, a method based on a combination of HA,

128

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

PDAF, and SVSF is proposed.

Figure 6.4: Example of measurement rejection due to gating fail-
ure from the same target

6.3 Tracking Strategy

6.3.1 The Kalman Filter Filter

The Kalman Filter is essentially a set of mathematical equations implement under

a predictor-corrector cycle as shown in Figure 6.5, that is optimal in the sense

that it minimizes the trace of the estimated state as covariance matrix when some

presumed conditions are met.

The general problem is to estimate the state vector x ∈ <n of a discrete time

dynamic system. Such a system is defined by using a set of linear stochastic

129

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Figure 6.5: Predictor-Corrector cycle

difference equations as follows:

xk = Axk−1 +Buk + wk

zk = Hxk + vk

(6.1)

• xk ∈ <n is the state

• uk ∈ <l is the input vector

• wk ∈ <p is the measurement noise

• zk ∈ <m is the measured output

• vk ∈ <p is the process noise or disturbance

Note that the n × n matrix A relates its system matrix, the m × n matrix H

130

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

relates its output matrix, and the n× l matrix B is the input matrix. The wk and

vk represent the process and measurement noise which assumed to be white noise

zero mean and with normal probability distributions such that:

p(w) ∼ N(0, Q)

p(v) ∼ N(0, R)
(6.2)

Define x̂k|k−1 ∈ <n as the a priori state estimate at step k given information at

step k − 1. Also define x̂k|k ∈ <n as a posteriori state estimate at time k given

measurement zk. Thus the a priori and the a posteriori state estimation errors are

defined as:

êk|k−1 = xk − x̂k|k−1

êk|k = xk − x̂k|k
(6.3)

The a priori estimation error covariance and the a posteriori estimation error

covariance are then defined as:

P̂k|k−1 = E[êk|k−1ê
T
k|k−1]

P̂k|k = E[êk|kêTk|k]
(6.4)

131

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

The a posteriori state estimate x̂k|k is computed as a linear combination of

the a priori estimated state x̂k|k−1 and a weighted difference between the actual

measurement zk and the predicted measurement Hx̂k|k−1, as in Eq.(6.5).

x̂k|k = x̂k|k−1 +Kk(zk −Hkx̂k|k−1) (6.5)

where êIk|k−1 = zk−Hx̂k|k−1 is the measurement innovation term which reflects the

discrepancy between the predicted measurement and the actual measurement. So

when the innovation term is equal to zero, it means that these two are in complete

agreement. Kk is defined as the Kalman gain at current step k that minimizes the

a posteriori estimation error covariance in Eq.(6.4). The optimal gain Kk can be

obtained as [88]:

Kk = P̂k|k−1H
T (HP̂k|k−1H

T +R)−1

= P̂k|k−1H
T

HkP̂k|k−1HT +R

(6.6)

From Eq.(6.6), it can be observed that if the measurement noise covariance, R

approached zero, then lim
R→0

Kk = 1
H
, and in the KF, then the actual measurement

is trusted more than the predicted state using a model. On the other hand, as the

a priori estimation error covariance P̂k|k−1 approaches zero, then lim
P̂k|k−1→0

Kk = 0,

and the actual measurement is trusted less than the predicted state using a model.

132

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

The process of KF can be divided into 2 steps: (i) time update, and (ii) mea-

surement update. The time update involves using a system model to project its

estimate states one step forward to obtain the a priori estimates. So this step can

be thought of as the predictor. The second part, the a priori states are used to

predict the output, and this preidction is then compared to the actual measure-

ments to obtain the a posteriori estimates. So this part can be thought of as the

corrector as shown in Figure 6.6.

Figure 6.6: The process flow of Kalman filter

The KF equations are presented below where I represents the identity matrix:

Time Update

x̂k|k−1 = Ax̂k−1|k−1 +Buk

P̂k|k−1 = AP̂k−1|k−1A
T +Q

(6.7)

133

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Measurement Update

Kkf
k = P̂k|k−1H

T (HP̂k|k−1H
T +R)−1

x̂k|k = x̂k|k−1 +Kkf
k (zk −Hx̂k|k−1)

P̂k|k = (I−Kkf
k H)P̂k|k−1

(6.8)

6.3.2 The Extended Kalman Filter

Unfortunately, system are rarely linear in practice. The Extended Kalman filter

(EKF) relaxes the linearity assumption of KF. In the EKF the state transition and

measurement probabilities are defined as nonlinear stochastic difference equations

such that:

xk = f(xk−1, uk, wk)

zk = h(xk, vk)
(6.9)

where xk is the state vector, zk the measurement vector, w ∼ N(0, Q) and v ∼

N(0, Q) all at time step k.

The Taylor series expansion [78] is used to linearize the nonlinear function f(x)

around the most recent state estimation x̂ as follows:

f(x) = f(x̂) + ∂f

∂x
(x− x̂) + 1

2
∂2f

∂x2 (x− x̂)2 + 1
6
∂3f

∂x3 (x− x̂)3 + . . . (6.10)

134

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

This can be written as

f(x) = f(x̂) + ∂f

∂x
(x− x̂) + higher order terms (6.11)

For x sufficiently close to the equilibrium point x̂, the higher order terms are

assumed to be negligible and then:

xk ≈ f(x̂k−1) + A(xk−1 − x̂k−1) + wk

zk ≈ h(ẑk) +H(xk − x̂k) + vk

(6.12)

where A is the Jacobian of function f with respect to x evaluated at x̂k−1 and C

is the Jacobian of function h with respect to x evaluated at x̂k

A = ∂f

∂x
(x̂k−1, uk, 0)

C = ∂h

∂x
(x̂k, 0)

(6.13)

Therefore, the EKF algorithm can be summarized as follows:

135

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Time Update

x̂k|k−1 = f(x̂k−1|k−1, uk, 0)

P̂k|k−1 = AP̂k−1|k−1A
T +Q

(6.14)

Measurement Update

Kekf
k = P̂k|k−1H

T (HkP̂k|k−1H
T +R)−1

x̂k|k = x̂k|k−1 +Kekf
k (zk − h(x̂k|k−1, 0))

P̂k|k = (I −Kekf
k H)P̂k|k−1

(6.15)

where Ak is the Jacobian matrix of partial derivatives f with respect to x̂k−1|k−1

and Hk is the Jacobian matrix of partial derivatives h with respect to x̂k|k−1.

6.3.3 The Smooth Variable Structure Filter

The smooth variable structure filter (SVSF), similar to the Kalman filter, has a

predictor-corrector cycle, and is based on sliding mode concepts for state estimation[81].

The algorithm can guarantee stability given bounded uncertainties. This estima-

tion method includes an inherent switching functions. The estimated states will

converge towards the true state trajectory and then remain within an existence

136

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

subspace around the trajectory. The basic estimation concept of the SVSF is

shown in Figure 6.7.

Consider the following system where f can be either linear or nonlinear and H

is a linearized output matrix.

xk = f(xk−1, uk) + wk

zk = Hxk + vk

(6.16)

Where xk is the system’s state, uk is the input, wk is the system noise, zk is the

measurement output and vk is the measured noise. At each time step, the SVSF

starts by calculating the a priori state estimates:

x̂k|k−1 = f(x̂k−1|k−1, uk) (6.17)

The corresponding predicted measurement ẑk|k−1 and the measurement error

ek|k−1 are computed as:

ẑk|k−1 = Hx̂k|k−1

êk|k−1 = zk − ẑk|k−1

(6.18)

137

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

The next step is the calculation of the SVSF corrective gain. In Figure 6.7, the

estimated states are forced towards the true state trajectory by a corrective gain

KSV SF . The estimated states would chatter and slide along the true trajectory

while remaining within a neighborhood referred to as the existence subspace. The

existence subspace width is a function of uncertainties and is time varying.

Figure 6.7: State estimation toward the true trajectory

The SVSF’s stability is proven by using a discrete Lyapunov function [81]. As a

result, the estimation error decreases as the estimation process proceeds and both

the estimated states and the estimated output will eventually converge. Using the

Lyapunov function, the corrective gain is designed such that it makes sure that the

estimation error keeps getting smaller by each iteration. Therefore, the estimation

process is stable if

|êk|k| < |êk−1|k−1| (6.19)

138

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

In order to satisfy this condition, the corrective gain is formulated as:

KSV SF
k = H−1(|êk|k−1|+ γ|êk−1|k−1|)sign(êk|k−1) (6.20)

where γ is the memory term, with a value between 0 and 1. The sign function

generates chattering. However, the chattering can be removed by introducing

a smoothing boundary layer φi. The selection of the width of the smoothing

boundary layer reflects the level of uncertainties in the filter. The effects of the

smoothing boundary layer are shown in Figure 6.8.

139

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

(a) Smooth estimated trajectory

(b) Chattering effect

Figure 6.8: The smooth boundary layer concept [81]

The width of the existence subspace β in Figure 6.8 reflects the amount of

uncertainties in the estimation process in terms of modeling errors or noise. Typ-

ically, when the width of smoothing boundary layer is defined larger than the

140

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

existence boundary φ > β, the estimated state trajectory is smoothed. But when

φ < β, chattering effects remain because of the uncertainties being underestimated.

Therefore, the sign function is replaced by a saturation function as follow:

KSV SF
k = H−1(|êk|k−1|+ γ|êk−1|k−1|) ◦ sat(

êk|k−1

φ
)

sat(êk|k−1

φ
) =


êk|k−1
φ

for|êk|k−1| ≤ φ

sign(êk|k−1
φ

) for|êk|k−1| > φ

(6.21)

The performance of SVSF is significantly affected by choice of φ. If φ is cho-

sen too large, the SVSF gain would approach zero. The a posteriori estimation

therefore simply equals to the predicted state. As a conservative choice, φ can be

chosen as the upper bound of the system uncertainty.

φ = Ãmax(H−1
max(zmax − vmax)) + B̃maxumax + wmax (6.22)

The parameter Ãmax, Hmax and B̃max are the maximum error of the system and

the measurement models. This is also called fixed smoothing boundary layer since

the selected boundary layer width φ is larger than the existence subspace width β.

Consequently, the estimated states are remaining within the boundary layer and

the chattering effect is removed by applying the saturation function in Eq.(6.21).

Overall, the main steps of SVSF process are as following:

141

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

1. Prediction of the states and measurements

x̂k|k−1 = f(x̂k−1|k−1, uk)

ẑk|k−1 = Hx̂k|k−1

(6.23)

2. Calculation of the measurement error

êk|k−1 = zk −Hx̂k|k−1 (6.24)

3. Calculation of the corrective gain

Ksvsf
k = H+(|êk|k−1|+ γ|êk−1|k−1|) ◦ sat(

êk|k−1

φ
)

sat(êk|k−1

φ
) =


êk|k−1
φ

for|êIk|k−1| ≤ φ

sign(êk|k−1
φ

) for|êk|k−1| > φ

(6.25)

4. Update the state estimate

x̂k|k = x̂k|k−1 +Ksvsf
k

êk|k = zk −Hx̂k|k
(6.26)

6.3.4 Generalized SVSF

Utilizing a multiple model strategy with SVSF will increases the overall accuracy

of the estimation process. A revised form of the SVSF was introduced in [89] such

that the covariance matrix is included. Because it is unnecessary and expensive

142

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

to have measurements associated with each of the states in the system. In [90]

a generalized version of SVSF (GSVSF) is introduced to handle the cases when

there are fewer number of measurements than states.

In practice, where the number of measurements are less than the order of the

system, it is possible to obtain reduced order observers, refer as Luenberger Ob-

server [91].

Assume that the state equation xk can be partitioned and transformed into two

parts: available and unavailable. Therefore, the state vector is transformed by

using a transformation matrix, T such that:

Txk =

xuk
xlk

 =



x1
k

...

xmk

−−−

xm+1
k

...

xnk



(6.27)

where the upper segment xuk is the direct measurements and the lower segment xlk

is the unmeasured states. Based on this division, the transformed state transition

matrix is obtained as follows:

Φk = TAkT
−1 =

Φ11
k Φ12

k

Φ21
k Φ22

k

 (6.28)

143

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

The corresponding measurement matrix Hk is of dimension m× n, where m is

the number of measured states and n is the rank of the system such that m < n

is given by:

Hk =
[
H1 H2

]
(6.29)

where H1 is of dimension m ×m and H2 is a null matrix of dimension m × (n −

m). Then the state space equation should be revised for the estimation of states

associated with H.

The a priori state error covariance matrix corresponding with the partitioned

state vector is given by:

P̂k|k−1 =

P̂ 11
k|k−1 P̂ 12

k|k−1

P̂ 21
k|k−1 P̂ 22

k|k−1

 (6.30)

The corresponding partitioned of corrective gain is given as follow [81]:

Ksvsf
k =

Ku
k

K l
k

 (6.31)

144

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

where Ku
k is defined as

Ku
k = H−1

1 × diag
[
(|êk|k−1|+ γu|êk|k−1|) ◦ sat(

diag(êk|k−1)
φ

)
]

× diag
[
êk|k−1

]−1
(6.32)

where γu is an m×m diagonal matrix and the lower portion corrective gain K l
k is

defined as:

K l
k = diag

[
|Φ22

k (Φ12
k)−1êk|k−1|+ γl|(Φ12

k)−1êk−1|k−1|
]

◦ sat(Φ22
k (Φ12

k)−1diag(êk|k−1)
φ

)

× diag
[
Φ22
k (Φ12

k)−1êk|k−1
]−1

Φ22
k (Φ12

k)−1

(6.33)

where γl is a (n−m)× (n−m) diagonal matrix. Overall, the GSVSF state update

equation is as follows:

x̂k|k = x̂k|k−1 +Ksvsf
k êk|k−1

=

x̂uk|k
x̂lk|k

 =

x̂uk|k−1

x̂lk|k−1

+

Ku
k

K l
k

 êk|k−1

(6.34)

145

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

and the a posteriori state error covariance matrix with fewer measurements than

states is computed as:

P̂k|k = P̂k|k−1 −

Ku
k

K l
k

HP̂k|k−1 − P̂k|k−1H
T

Ku
k

K l
k


T

+

Ku
k

K l
k

Sk
Ku

k

K l
k


T

(6.35)

where Sk = H1P̂
11
k|k−1H

T
1 +Rk. Then the proposed Eq.(6.34) and Eq.(6.35) has in-

cluded the measured and non-measured states. This strategy enables the iterative

computation of the error covariance matrixes as given in Eq.(6.35) that is need for

data association. The implementation of data associations are explained in the

following sections. Figure 6.9 illustrates the visualization of our GSVSF tracking

system.

146

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Figure 6.9: The visualization of our tracking system

6.4 Data Association Strategy

6.4.1 Hungarian Algorithm

In tracking targets with measurement in the presence of cluttered data, data asso-

ciation techniques are required to determine which of the received measurements

are to be uses to update the trajectories of the targets. Suppose there are n tracks

of vehicles and n observations of vehicles are available. The problems is how to

assign each tracks to each observations so that the total cost is minimized. In our

application, the cost is computed by using the Euclidean distance [?] between each

track and each observation.

147

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

(a) G = (V,U,E) (b) Ĝ = (V,U, Ê)

Figure 6.10: The bipartite graph and its assignment

Consider G = (V, U,E) be a bipartite and weighted graph as shown in Figure

6.10, where V and U are the sets of nodes, and n is the number nodes in each set

so that |V | = n and |U | = n. E is the set of edges. The edge weights may be

stored in a cost matrix as ~c as shown

C =



c11 c12 ... c1n

c21 c22 ... c2n

...

cn1 cn2 ... cnn


(6.36)

where cij is the cost of ith track assigned to jth observation. Because G is bipartite

graph, V and U are two non-overlapping sets such that there are no edges with

both endpoints in V and no edges with both endpoints in U . Therefore, the

148

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

assignment problems is described as finding a min-weight matching in graph Ĝ as

shown in Figure 6.10.

Assume the nodes from set U represents the number of tracks in our current

track list and the nodes from set V represents the number of measurements at

current frame. Let Mij de defined the matching matches ith node from U to jth

node from V . So mathematically the assignment problem associated with the

min-weight matching problem is:

min
Mi,j

n∑
i=1

n∑
j=1

wijMij (6.37)

Mij =


0, if ith track is not assigned the jth measurement

1, if ith track is assigned jth measurement

subject to

n∑
i=1

Mij = 1

n∑
j=1

Mij = 1

Since this problem is a relaxation of the min-weight perfect matching problem,

it follows that this vector corresponds to an optimal perfect matching. Thus, the

149

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

next step is to find that matching. This is exactly the concept our algorithm takes.

One of the most well-known algorithms for solving the assignment problem is

the Hungarian algorithm (HA) [92]. The HA involves the following four steps.

The first two steps are executed once, while Steps 3 and 4 are repeated until an

optimal assignment is found. The input of the algorithm is a n by n square matrix

with only nonnegative entries. Consider an example where the set of track list

T = {t1, t2, t3, t4} need to matched by the set of measurements O = {o1, o2, o3, o4}.

So the cost matrix C below shows the distance ci,j between the ith track to the jth

measurement.

C =



c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44


=



8.2 8.3 6.9 9.2

7.7 3.7 4.9 9.2

1.1 6.9 0.5 8.6

0.8 0.9 9.8 2.3


(6.38)

where the distance are measurement by meter. Below the Hungarian algorithm is

explained using this example.

1. Subtract Row Minima: For every row, find the lowest element and sub-

tract this from every element in that row. For example, the smallest element

in the first row is 6.9. So 6.9 is subtracted from each element in the first

150

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

row. Then the result of matrix C is:

C =



1.3 1.4 0 2.3

4.0 0 1.2 5.5

0.6 6.4 0 8.1

0 0.1 9.0 1.5


(6.39)

2. Subtract Column Minima: For every column, find the lowest element

and subtract this from every element in that column. Similarly, the result

of cost matrix is:

C =



1.3 1.4 0 0.8

4.0 0 1.2 4.0

0.6 6.4 0 6.6

0 0.1 9.0 0


(6.40)

3. Cover All Zeros with a Minimum Number of Lines: Draw lines

through the row and columns that have the 0 entries such that the fewest

lines possible are drawn.

• If there are n lines drawn, an optimal assignment of zeros is possible

and the algorithm is finished.

• If the number of lines is less than n, then the optimal number of zeros

is not yet reached. Go to the next step.

151

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Because the number of lines required is 3 as shown in above matrix, which

is lower than the size of the matrix (n=4), so Step 4 is processed.

4. Create Additional Zeros: Find the smallest entry not covered by any

line. Subtract this entry from each row that is not crossed out, and then add

it to each column that is crossed out. The result of the cost matrix is:

C =



0.7 0.8 0 0.2

4.0 0 1.8 4.0

0 5.8 0 6.0

0 0.1 9.6 0


(6.41)

Then, go back to Step 3.

The minimum number of lines required to cover all zeros in the matrix is

now determined by 4 lines:

152

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Because the number of required lines is 4, which is equals the size of the

matrix (n=4), the algorithm stops. Therefore, the following zeros cover an

optimal assignment:

C =



0.7 0.8 0 0.2

4.0 0 1.8 4.0

0 5.8 0 6.0

0 0.1 9.6 0


(6.42)

This corresponds to the following optimal assignment in the original cost

matrix:

C =



8.2 8.3 6.9 9.2

7.7 3.7 4.9 9.2

1.1 6.9 0.5 8.6

0.8 0.9 9.8 2.3


(6.43)

Therefore, track t1 is associated to measurement o3, track t2 is associated to

measurement o2, track t3 is associated to measurement o1, and track t4 is

153

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

associated to measurement o4. The total distance of this optimal assignment

is to 6.9 + 3.7 + 1.1 + 2.3 = 14.

6.4.2 Probabilistic Data Association Filter

The probabilistic data association filter (PDAF) uses a Bayesian approach to com-

pute the association probabilities by weighting the influence of the various can-

didate measurements. Instead of choosing the nearest neighbor as the case in

HA, the standard PDAF is to evaluates each measurement that falls in a gate

around the predicted measurement [93]. As for PDAF, there are generally three

assumptions [94]:

• only one target of interest is present.

• no more than one measurement can originate from a target.

• the track has been initialized.

• the past information about the target is approximated by

Pr{xk|z1:k} = ℵ{xk; x̂k|k−1, P̂k|k−1} (6.44)

where ℵ{xk; x̂k|k−1, Pk|k−1} is the the normal probability density function

with argument xk, mean xk|k−1 and covariance matrix P̂k|k−1.

To avoid searching the entire measurement set for the measurements originated

from a specific target, an ellipsoidal gate is set up for each target, and such a gate

is called a validation region as shown in Figure 6.11.

154

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Figure 6.11: The ellipsoidal validation region of a target centered
at its predicted measurement ẑk|k−1 represented by dot. Three
measurements have fallen within the validation region represented
by star.

The probability which the target-originated measurement falls within the vali-

dation region is called the gate probability PrG [97]. If more than one measurement

falls within the gate, then an association uncertainty arises. It is required to decide

which measurement is originated form the target and therefore should be used to

update the track.

The validation region Rk is defined as follows:

Rk = {[zk − ẑk|k−1]TS−1
k [zk − ẑk|k−1] ≤ rg} (6.45)

where rg is the gate threshold and Sk is the covariance of the innovation term.

155

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Suppose the set of measurements at time k is

Zk = {zik}mi=1 = {z1
k, z

2
k, ..., z

m
k } (6.46)

where m represents the number of measurements at time k. So the cumulative set

of measurements through time k is as below.

Z1:k = {Z1,Z2, ...,Zk} (6.47)

In addition, suppose the association event is denoted as:

=i
k =


zik is the measurement originated i = 1, 2, ...,m

= no correct measurement is present i = 0
(6.48)

By using the total probability theory [95] with respect to Eq.(6.44), the condi-

tional mean of the state at time k can be written as

x̂k|k = E{xk|Z1:k} =
m∑
i=0

E{xk|=i
k,Z1:k}Pr{=i

k|Z1:k}

=
m∑
i=1

x̂ik|kβ
i
k

(6.49)

where x̂ik|k is the updated state conditioned on the event that the ith measurement

is correct and βik is the association probability. Let the probability of the target

156

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

detections occur independently over time be PrD. Thus βik is obtain from the

PDA with the Poisson clutter model [96] as below:

βik =


£i
k

1− PrDPrG +∑m
i=1 £i

k

i = 1, 2, ...,m

1− PrDPrG
1− PrDPrG +∑m

i=1 £i
k

i = 0
(6.50)

where PrG is the gate probability, and:

£i
k = ℵ{zik; ẑk|k−1, Sk} (6.51)

is the likelihood ratio of the measurement zik being originated from target.

As the association events are mutually exclusive ∑m
i=0 β

i
k = 1. Then the inno-

vation term is given by:

I ik = (êk|k−1)i = zik −Hx̂k|k−1 (6.52)

Then the corresponding total combined innovation term is:

Êk|k−1 =
m∑
i=1

βik(êk|k−1)i (6.53)

157

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Hence, the estimation equation is expressed by:

x̂k|k =
m∑
i=0

βikx̂
i
k|k = x̂k|k−1 +KkÊk|k−1 (6.54)

As one can see from the above equations, if there are no measurement falling

into the validation region, namely i = 0, the state estimation is simply updated by

state prediction x̂0
k|k = x̂k|k−1. The error covariance associated with the updated

state estimation can be expressed as follows:

P̂k|k = P̂k|k−1β
0
k + [1− β0

k]P̂ c
k|k + P̃k (6.55)

where P̂ c
k|k represents the standard state estimation error covariance, as below:

P̂ c
k|k = (I−KkH)P̂k|k−1 (6.56)

and P̃k captures the effect of uncertain associations:

P̃k = Kk[
m∑
i=1

βikI
i
k(I ik)T − Êk|k−1(Êk|k−1)T](Kk)T (6.57)

158

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

6.5 Proposed GSVSF-HA/PDAF Approach

Figure 6.12: The data flow of proposed GSVSF-HA/PDAF ap-
proach

159

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

As presented in Figure 6.12, the proposed GSVSF-HA/PDAF strategy makes use

of two filters: (i) GSVSF-HA, and (ii) GSVSF-PDAF. These two filters are ex-

plained in the following sections.

6.5.1 GSVSF-HA

Figure 6.13: The GSVSF-HA filter

Figure 6.13 shows the flowchart of GSVSF-HA Filter. The proposed GSVSF-

HA algorithm consisted of the following steps:

160

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

1. Prediction

In the first step, the predicted state and measurements are computed by using

the system and measurement models. Thus the a priori state estimates are

calculated.

x̂1
k|k−1 = f(x̂1

k−1|k−1, uk)

ẑ1
k|k−1 = h(x̂1

k|k−1, vk)

P̂ 1
k|k−1 = AP̂ 1

k−1|k−1A
T +Qk

(6.58)

2. Measurement Matching

The cost function Ci,j simply depends on the Euclidean distance between the

ith track and the jth measurement where 0 < i < n and 0 < j < m as shown

from Eq. (6.36) :

Ci,j =



c1,1 c1,2 ... c1,m

c2,1 c2,2 ... c2,m

...

cn,1 cn,2 ... cn,m


(6.59)

3. Data Association

Let’s define the assignment matrix Asgi,j ∈ {0, 1}, and the optimal assign-

ment in the cost matrix is computed by satisfying the following formulations

161

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

min
Asgi,j

n∑
i=1

Asgi,jCi,j.

subject to
m∑
j=1

Asgi,j = 1;
n∑
i=1

Asgi,j = 1
(6.60)

Additional checks are performed to reject the large distance. So the assign-

ment matrix is modified by setting Asgi,j = 0 if and only if Ci,j > r, where r

is the threshold distance (i.e. 5m) between ith track and the jth measurement.

4. Update

The measurement errors are computed based on the assignment matrix gen-

erated from the HA:

êk|k−1 = zk −Hẑ1
k|k−1 (6.61)

Then the SVSF corrective gain is calculated by Eq.(6.33). Thus the state es-

timates are updated corresponding to Eq. (6.34) and Eq.(6.35) respectively:

x̂1
k|k = x̂1

k|k−1 +Ksvsf
k êk|k−1

P̂ 1
k|k = P̂ 1

k|k−1 −K
svsf
k HP̂ 1

k|k−1 − P̂ 1
k|k−1H

T (Ksvsf
k)T

+Ksvsf
k Sk(Ksvsf

k)T

(6.62)

162

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Therefore the state estimates are updated, Step 1-4 will be repeated when the

new set of measurements being obtained.

6.5.2 GSVSF-PDAF

Figure 6.14: The GSVSF-PDAF filter

The second GSVSF based tracking and data association filter is proposed in

this subsection. Figure 6.14 demonstrates the flowchart of GSVSF-PDAF filter.

The proposed GSVSF-PDAF algorithm is as followings:

163

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

1. Prediction

Within the PDAF algorithm, the state vector, the measurement and the

state error covariance are predicted:

x̂2
k|k−1 = f(x̂2

k−1|k−1, uk) + wk

ẑ2
k|k−1 = Hx̂2

k|k−1 + vk

P̂ 2
k|k−1 = AP̂ 2

k−1|k−1A
T +Qk

(6.63)

The innovation covariance matrix corresponding to the correct measurement

is also computed

Sk = HP̂ 2
k|k−1H

T +Rk (6.64)

2. Measurement Matching

The validation gate equation from Eq.(6.45) is set up for each time step to

determine the candidate measurements for association :

Rk = {[zk − ẑ2
k|k−1]TS−1

k [zk − ẑ2
k|k−1] ≤ rg} (6.65)

where rg is the gate threshold. Thus the volume of the gate is given by [94]

VolRk = Cnzr

nz
2
g |Sk|

1
2 (6.66)

where nz is the dimension of the measurement and cnz is the volume of the

nz-dimensional unit hypersphere. For example, c1 = 2, c2 = π and c3 = 4π
3 .

164

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

3. Data Association

The association probabilities βik and the combined innovation term Êk|k−1

are computed by Eq.(6.48) and Eq.(6.53), respectively.

4. Update

The state update equation of PDAF is

x̂2
k|k = x̂2

k|k−1 +Ksvsf
k Êk|k−1 (6.67)

where Ksvsf
k is the corrective gain from Eq.(6.31). Corresponding to [99] the

SVSF covariance matrix is computed by:

P̂ svsf
k|k = [I−Ksvsf

k H]P̂k|k−1[I−Ksvsf
k H]T

+Ksvsf
k Rk(Ksvsf

k)T
(6.68)

The updated state estimation covariance is calculated by:

P̂ 2
k|k = β0

kP̂
2
k|k−1 + [I− β0

k]P̂
svsf
k|k + P̃k (6.69)

where P̃k is the effect of uncertain associations. The the posteriori measure-

ment error is obtained by:

Êk|k = [I−HKsvsf
k]Êk|k−1 (6.70)

Therefore the state estimates are updated, Step 1-4 will be repeated when the

new set of measurements being obtained.

165

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

6.5.3 GSVSF-HA/PDAF

Overall, the steps of proposed method GSVSF-HA/PDAF consists of four steps:

1. State and Measurement Predictions: Given the set of state estimate

X̂k−1|k−1 from previous time step, the predicted measurement is computed

as:

x̂k|k−1 = f(x̂k−1|k−1, uk)

ẑk|k−1 = Hx̂k|k−1 + vk

(6.71)

2. Gating for Filter Selection: Then the distance `k between from the pre-

dicted state ẑk|k−1 to the measurement zk for each target is defined as a

stochastic distance as:

`k = [zk − ẑk|k−1]TS−1
k [zk − ẑk|k−1] (6.72)

where Sk is the covariance of the innovation term. Let rg be the gate thresh-

old. Then the set of states for GSVSF-HA and the set of states for GSVSF-

PDAF is specified by the following two conditions:

(a) At current time step k, if the measurements are located within the gate

region, `k < rg, then the data assassination strategy is implemented by

PDAF. Therefore, the GSVSF-PDAF filter is used to update the state

estimate.

166

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

(b) At current time step k, if the measurements are located outside the gate

region, `k > rg, then the data assassination strategy is implemented

by HA. Therefore, the GSVSF-HA filter is used to update the state

estimate.

3. Filtering Processing: The two filters: GSVSF-HA and GSVSF-PDAF

described from previous subsections are processed independently to update

the state estimates. The sets of updated state estimates of the two filters

are X̂1
k|k and X̂2

k|k, and the The sets of covariance matrix of the two filters

are P̂ 1
k|k and P̂ 2

k|k, respectively.

4. Combination: The overall state estimate X̂k|k and the covariance P̂k|k are

combined from the results of state estimation of two filters:

X̂k|k = X̂1
k|k ∪ X̂2

k|k

P̂k|k = P̂ 1
k|k ∪ P̂ 2

k|k

(6.73)

6.6 Experimental Result

Table 6.2 illustrates the parameter values as used by our proposed methods where

n is the length of state vector and m is the length of measurement vector:

A series of experiments were performed to verify the robustness and effectiveness

of the proposed method. The data were collected by our real time system which is

described in Chapter 2. The proposed methods are evaluated using three scenarios

167

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

GSVSF-HA/PDAF
Method GSVSF-HA GSVSF-PDAF

Process noise covariance 0.5*eye(n) 0.5*eye(n)
Measurement noise covariance 0.5*eye(m) 0.5*eye(m)

SVSF Gain Parameter 0.1 0.1
SVSF boundary layer Width 15 15

Gate threshold N/A 4.61
Gate probability N/A 0.9

Detection probability N/A 0.98

Table 6.2: The parameters of proposed methods

that spanning different scenarios from heavy traffic to light traffic as shown in

Figure 6.15. The heavy traffic scenario consists of much more targets than light

traffic scenarios. There are 20% less traffic between high and medium traffic while

there are 80% less traffic between medium and light traffic. The comparative

study also includes Kalman Filter based HA and Kalman filter based PDA. The

following tables show the evaluated performances of the proposed methods in the

three scenarios where σ represents the variance of RMSEs of the state estimates.

In total, the RMSEs of state estimation process are computed over 1900 frames

of run, for the three different scenarios: light traffic, medium traffic, and heavy

traffic. Because our real time data were collected while driving on the highway, the

motion dynamics of vehicles were mostly in the y-direction and hence modeling

uncertainty is larger in the y direction. Therefore, the RMSE in y direction is the

key factor for modeling uncertainties.

168

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 6.15: Different experimental scenarios

Method GSVSF-HA/PDAF GSVSF-PDAF GSVSF-HA KF-PDAF KF-HA

Scenarios 1

RMSE 0.2414 0.2610 0.2940 0.2839 0.3764

σ(RMSE) 0.0664 0.0770 0.0212 0.0182 0.0282

Scenarios 2

RMSE 0.1318 0.1595 0.3124 0.2971 0.3932

σ(RMSE) 0.0409 0.0801 0.0792 0.1900 0.0398

Scenarios 3

RMSE 0.2390 0.2410 0.2440 0.2447 0.2855

σ(RMSE) 0.0606 0.0602 0.0614 0.0982 0.0813

Table 6.3: The performance of state estimation

Due to the robust characteristics of Generalized SVSF, the RMSE of GSVSF

based methods are considerable lower than KF based methods. More specifically,

in Scenario 1, the RMSE of GSVSF-PDAF is 8.06 % lower than KF-PDAF, and

the RMSE of GSVSF-HA is 21.8% lower than KF-HA. In Scenario 2, the RMSE

of GSVSF-PDAF is 26.1 % lower than KF-PDAF, and the RMSE of GSVSF-HA

169

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

is 20.5% lower than KF-HA. In Scenario 3, the RMSE of GSVSF-PDAF is 1.51 %

lower than KF-PDAF, and the RMSE of GSVSF-HA is 14.5% lower than KF-HA.

For data association strategy, the RMSE of our proposed HA/PDAF based

method is lower than either PDAF or HA based methods. From Scenarios 1 of

Table 6.3, the RMSEs of GSVSF-PDAF/HA is 7.5 % lower than GSVSF-PDAF

and 17.89% than GSVSF-HA. In Scenario 2, the RMSEs of GSVSF-PDAF/HA

is 15.95% lower than GSVSF-PDAF and 57.81% than GSVSF-HA. In Scenario 3,

where the data of the traffic is less than the previous two scenarios, the RMSEs of

GSVSF-PDAF/HA is comparable to GSVSF-PDAF and GSVSF-HA.

The HA algorithm considers all measurements and uses only the nearest one

to update the state, whereas PDAF uses a weighted sum of all of measurements

within each gate to update the state. So, the performance of HA deteriorates

in the case of multiple targets located closely, i.e., in the heavy traffic scenario

as shown in Figure 6.15(B). This is evident from the results in Table 6.3 where

the performance of GSVSF-HA and KF-HA are the worst amongst the scompared

methods.

Table 6.4 shows he number of correctly tracked targets(CT), the number of

falsely tracked targets(FT), the rate of true positives (TP), the rate of false posi-

tives (FP), and the computation time:

Figure 6.16(A) illustrates the multiple tracks to same target problem that

leads to increase computation time and reduced accuracy. However, our pro-

posed GSVSF-HA/PDAF method has shown to reduce the computation time while

170

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Scenarios 1
Total Frames: 690
Total Vehicle: 63

Method GSVSF-HA/PDAF GSVSF-PDAF GSVSF-HA KF-PDAF KF-HA
CT 59 59 56 59 56
FT 4 4 7 4 7
TP 93.65% 93.65% 88.88% 93.65% 88.88%
FP 6.35% 6.35% 11.12% 6.35% 11.12%

Time(ms) 13.22 23.84 16.23 18.13 12.21
Scenarios 2

Total Frames: 702
Total Vehicle: 79

Method GSVSF-HA/PDAF GSVSF-PDAF GSVSF-HA KF-PDAF KF-HA
CT 75 75 72 72 70
FT 4 4 7 7 9
TP 94.9% 94.9% 91.13% 91.13 % 88.6%
FP 5.1% 5.1% 8.87% 8.87% 11.4%

Time(ms) 15.12 25.74 19.43 20.86 12.342
Scenarios 3

Total Frames: 546
Total Vehicle: 8

Method GSVSF-HA/PDAF GSVSF-PDAF GSVSF-HA KF-PDAF KF-HA
CT 8 8 8 8 8
FT 0 0 0 0 0
TP 100% 100% 100% 100% 100%
FP 0% 0% 0% 0% 0%

Time(ms) 10.43 13.10 12.53 11.13 7.242

Table 6.4: The performance evaluation of trackers

maintaining acceptable and comparable performance amongst methods as shown

in Table 6.4 and Figure 6.16(B).

171

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

(a) PDAF based methods
(b) Scenario 2

Figure 6.16: GSVSF-HA/PDAF method

6.7 Conclusion

In summary, this chapter presents a generalized form of SVSF integrated with two

different data association algorithms, referred to as GSVSF-HA/PDAF. To investi-

gate the performance of the proposed method, a comparative analysis is performed

to evaluate the robustness and effectiveness of the method against other popular

tracking methods and data association methods in different real time scenarios.

To evaluate the performance of the tracker, the proposed method is also investi-

gated in terms of CT, FT, TP, FT and computation time and compared with other

methods. The proposed algorithm has demonstrated to be a more reliable track-

ing algorithm for real time applications, based on the comparison criteria. The

SVSF-based method benefits from the robustness of the SVSF strategy. Therefore,

172

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

it is able to reduce the effects of modeling uncertainties as evident by comparing

the RMSE in state estimation results. Because the robustness of the PDAF-based

method degrades when gating failure exist in the association between the targets

and the measurements.Therefore, our proposed hybrid method is developed to

address this problem while still maintaining the effectiveness for real time applica-

tion. In order to further monitor the dynamic movements of surrounding vehicles,

the future work should be focused on developing behavioral patterns for vehicles

as symbolic representations of context-dependent motion primitives that a vehicle

is able to conduct.

173

Chapter 7

Overview of Real Time System

and its Implementation

7.1 Introduction

In this chapter, the overview of the real time system and its implementation is

presented. The overall data flow is shown in Figure 7.1. The entire system is

divided into seven main modules. Each module contains several task-specific sub-

modules. The modular structure allows for flexible construction for specific tasks

by configuring and including an appropriate set of modules.

For flexibility, our developed system is decomposed into several modules. One

of our main object is to enable the flexible construction of system by composing

existing sets of modules. Because dependencies between modules mean that one

module cannot be activated and executed without the other, dependencies are

174

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Figure 7.1: The overall real time system

175

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

needed to be minimized to the extent possible. In the next section, the implemen-

tation of the system structure is described.

176

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

7.2 Modules

7.2.1 Preprocessing Module

Module Name Preprocessing

Input LiDAR raw data

Output A set of points in Cartesian coordinate system

Processing Time average 5ms

Description The preprocessing module is designed to read different calibration files

for different types of LiDAR sensor which is described in Chapter 2.

The LiDAR raw data uses the polar coordinate system to represent

the three dimensional space. Therefore, this module can also convert

the polar coordinate system to Cartesian coordinate system [98].

Flowchart

Table 7.1: The preprocessing module

177

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

7.2.2 Ground Detection Module

Module Name Ground Detection

Input A set of points in Cartesian coordinate system

Output A set of points labeled as “Non-ground” or “Ground”

Processing Time average 1.5ms

Description The ground detection module provides efficient and robust estimates

of the ground position and slope by taking advantage of the geometry

of a roof mounted LiDAR sensor. The design of the ground detection

module is described in Chapter 3.

Flowchart

Table 7.2: The ground detection module

178

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

7.2.3 Object Detection Module

Module Name Object Detection

Input A set of points labeled as ether “Ground” or “Non-ground”

Output A set of clusters

Processing Time average 55ms

Description The object detection module is to examine a collection of non-ground

points, and group the points into clusters according to Euclidean dis-

tance as presented in Chapter 4. The threshold value of distance for

separating clusters is a trade-off between accuracy and computation

time. In addition, the size of the clusters is constrained by a prede-

fined 3D bounding box in order to get rid of large objects or small

objects which are usually considered as debris.

Flowchart

Table 7.3: The object detection module

179

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

7.2.4 Object Classification Module

Module Name Object Classification

Input A set of clusters

Output A set of data labeled as “Sedan”, “SUV”, “Van”, and “Truck”

Processing Time training time: 6 hours, and classification time: 100ms

Description The object classification module is presented in Chapter 5. Any cluster

be recognized and classified is considered as non-vehicle object. The

classification result can be used to determine parameters for high level

control systems such as autonomous driving.

Flowchart

Table 7.4: The object classification module

180

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

7.2.5 Object Tracking Module

Module Name Object Tracking

Input A set of data labeled as “Sedan”, “SUV”, “Van”, and “Truck”

Output A set of state estimates: position, velocity, and turn rate

Processing Time average 12.9ms

Description Given the classification results, the object tracking module is used to

analysis the motion state of tracked objects, as described in Chapter

7. The estimated motion states such as position and velocity can be

extended for future work

Flowchart

Table 7.5: The object tracking module

181

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

7.2.6 Graphical User Interface (GUI) Module

Module Name GUI

Input
• A set of points in Cartesian coordinate system

• A set of points labeled as ether “Ground” or “Non-ground”

• A set of clusters

• A set of data labeled as “Sedan”, “SUV”, “Van”, and “Truck”

• A set of state estimates: position, velocity, and turn rate

Output Visual representation of data

Processing Time average 26ms

Description The graphical user interface (GUI) Module is to visually represent the

results from other modules as shown in Figure 7.2.

Flowchart

Table 7.6: The graphical user interface module

182

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Figure 7.2: The GUI main window

7.3 Inter-Module Communication

Figure 7.3: Example of initial data flow diagram

183

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Figure 7.3 illustrates an example of the initial data flow diagram where each module

follows the result from previous module. However, the overall computation time

by this initial data flow design is not meeting our real time criteria. Because

the object classification module usually consume a lot of time to process due to

the complex neural network, so the object tracking module is being inactive until

the object classification module has finished its processing. Therefore, the inter-

module communication has been modified such that each module is no longer

depending on the previous module. Instead, modules are decoupled by using

publish-subscribe communication mechanism [101].

In the publish-subscribe communication, modules which are sending data are

called publishers, and modules which are receiving the data are called subscribers.

A publisher can send data to multiple subscribers, and a subscribers can receive

data from multiple publishers. However, a publisher has no direct link to sub-

scribers. The interactions between publishers and subscribers are controlled by

data brokers as shown in Figure 7.4. Therefore, data is sent from publishers to

the data broker, and then the data broker forwards the data to the subscribers.

Figure 7.4 show an example of the modified data flow diagram. The Object

Detection Module publishes Data A to the Data Broker. Since both the Object

Classification Module and the Object Tracking Module have subscribed to the

Data Broker, then each module receiver a copy of Data A from the Data Broker.

184

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Figure 7.4: The inter-modules communication

Continuing with the example of Figure 7.4, the Object Tracking Module is

being processed whenever a new set of clusters is sent from the Object Detection

Module. The set of classification data published by Object Classification Module

is used to manger the track list from the tracking system. Because the Data

Broker is designed such that If a subscriber is under processing, the broker does

not retain data for it. Therefore, frames lost for Object Classification Module is

unavoidable. In our application, the average number of frames lost is about 3

frames per iteration, which has minimum effects on the Object Tracking Module.

In order for users or high level control systems to immediately know the results

from each module such as ground points or positions of targets, a GUI Module

is also designed by using publish-subscribe mechanism for data sharing. Figure

7.5 show an example of the modified GUI communication. The Ground Detec-

tion Module send a set of points labeled as “Non-ground” or “Ground” to the

185

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Object Detection module and GUI Module. The high level systems can get this

information for control operation from the GUI Module without waiting for other

modules.

Figure 7.5: The GUI communication

7.4 Matlab Development

Matlab is a computer program that provides the user with a convenient environ-

ment for rapid prototyping. The Matlab profiler [102] provides a way to measure

the program execution time. After identifying which functions are consuming the

most time, the possible performance improvements were evaluated. Knowing the

execution time of the code could help us to debug and optimize it.

186

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Figure 7.6: The Matlab profiler report

Using the Matlab to explore the proposed system structure decides how to

optimize algorithms. Matlab profiler was used to see how long of each module are

needed to execute. The profiler will indicate the bottleneck areas and how they

should be modified for developing a more efficient algorithm.

One of application based on our proposed algorithm is shown at Figure 7.7.

There are 4 panels in this figure. On the bottom left panel, the front view camera

recording the flow of traffic is displayed.The top left window shows the raw LiDAR

187

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

3D point cloud. The top right frame shows the perception of surrounding of our

host vehicle. The bottom right panel shows the results of our tracking algorithm.

This display has many innovated features, for example, it can identify vehicles

going over the speed limit as indicated in the bottom right window by using a red

square.

Figure 7.7: One of our applications developed by Matlab

188

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

7.5 C++ Development

Figure 7.8: Qt creator framework

Fast and reliable communications is a basic requirement in almost all modern ap-

plications, but real time systems take it to extreme and require real time responses

from the network. In particular, our LiDAR uses a lean protocol over the UDP

transport layer. Because UDP does not need to retransmit lost packets, sending

data incurs less delay. So the UDP-based network communication provides for

extremely fast message transmission. Therefore, C++ has an outstanding perfor-

mance for fast and efficient implementation of communication strategies. There-

fore, all code from Matlab was re-implemented to C++ in order to operate under

a real time environment.

Writing in C++ also enables great control, making the possibility of working

with open source libraries such as the STL, Boost and so on [103]. The code is

189

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

compiled to native binaries that will run at full speed without the need for a virtual

machine.

Qt Creator was implemented as an Integrated Development Environment (IDE)

for our GUI application development because of its easy GUI programming. The

main reason for selecting Qt is that the rendering framework is vector based, thus

allowing multiple composition modes.

Figure 7.7 demonstrated our real time implementation of developed LiDAR

perception system by using C++.

Figure 7.9: The real time implementation by C++

190

Chapter 8

Conclusion and Future Work

8.1 Conclusion

This chapter discusses the main conclusions and contributions derived from the

research, followed by recommendations for future work that can complement this

work.

In this research, a real time LiDAR perception system was developed for au-

tonomous vehicle application. Being prerequisites for implementation of autonomous

vehicle, the LiDAR perception system plays a significant role for decision making.

Keeping with the goal to achieve a fast, robust and reliable solution to the percep-

tion problem, our approach has been presented, validated, and demonstrated by

real time implementation. The summarized conclusion of each chapter is presented

in the following.

Chapter 3 presented a probability occupancy grid map based approach for

ground segmentation to address the issues of over-segmentation, under-segmentation

191

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

and slow-segmentation because of non-flat surfaces. Ground segmentation is a

necessary intermediate step to partition using data into several sets with different

requirements. Experiments on real-life traffic data have shown that our proposed

algorithms can robustly and efficiently perform a real-time ground segmentation

in different scenarios.

With the ground segmentation algorithm presented in Chapter 3, Chapter 4

proposed an algorithm that is efficiently segments a given 3D point cloud using

a Radially Bounded Nearest Neighbor (RBNN) method while maintain its abil-

ity for real time processing based on the static Kd-tree. The proposed algorithm

was tested on different urban traffic scenarios and the evaluations showed com-

parable results against the clustering technique DBDCAN, but over 50% lower in

computation time.

A supervised learning approach based on our LiDAR sensor for vehicle type

classification is proposed in Chapter 5. The proposed approach, which is referred

as PCA-SVM-CNN, was trained and tested on our real time LiDAR system. The

real time experimental results had demonstrated the effectiveness and robustness

of the proposed method.

Chapter 6 presented a generalized form of SVSF integrated with two different

data association algorithms, referred to as GSVSF-HA/PDAF. A comparative

analysis is performed to evaluate the robustness and effectiveness against other

tracking methods. Based on the comparison results, The proposed algorithm has

demonstrated to be a more reliable tracking algorithm while still maintaining its

feasibility for real time application.

192

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

In Chapter 7, our overall structure of our real time system using the LiDAR

sensor was presented. The publish-subscribe communication was used to decouple

the modules. This publish-subscribe communication structure allows for flexibility

construction by subscribing the appropriate modules for specific requirements. In

order for high level control systems to immediately know the results from each

module, a GUI Module is also designed by using publish-subscribe mechanism for

data sharing. MATLAB profiler was used to measure the program execution time

and decide how to optimize algorithms while C++ was used for implementation

of our system for real time application

This thesis presents a real time robust and efficient LiDAR based perception

system for autonomous vehicle applications. The design of ground detection, ob-

ject detection, object classification, and object tracking had demonstrated the

effectiveness and robustness in real time dynamics environment . The proposed

framework provides a structure for building autonomous vehicles.

8.2 Future work

In this section, possible future work directions are discussed for our intelligent

vehicle application

193

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

8.2.1 Behaviors Prediction

Inexperienced drivers are not as good as experienced drivers in predicting what

will happen next in a driving scene. So behavior prediction of other drivers would

provide more time for planning and reaction for intelligent vehicles. In order

to anticipate how the driving scene is going to evolve, a prediction algorithm is

needed. An intelligent vehicle equipped with a behavior perdition system can warn

its driver if another vehicle is likely to influence its behavior. Therefore, the driver

can avoid potential dangerous situation. For this reason, one of the strategies

to utilize is the Interacting Multiple Models (IMM) [100] to represent different

behaviors. Another approach would be to combine machine learning techniques

for estimating trajectories associated with behaviors.

8.2.2 Integration with Other Sensors

The developed algorithms are designed to be expandable with multiple sensors.

The camera is the first choice to be integrated with our LiDAR perception system.

It could be used for developing lane detection algorithms. In addition, analyzing

thermal images taken with an infrared thermal camera can help detecting vehicles

robustly under poor conditions such as snow and thick fog.

194

Appendix A

Supplementary

A1 LiDAR UDP Packet Structure

Table A1.1 shows the structure of the UDP packet produced by our LiDAR sensor

[20]. Note that LSB is short for least significant byte and MSB is short for most

significant byte.

Table A1.1: The UDP packet structure

Bytes Description

1-4 4 bytes timestamps (seconds)

5-8 4 bytes timestamps microseconds

9-12 4 bytes number of octets of packet saved in file

13-16 4 bytes actual length of packet

Ethernet frame

17-22 Ethernet Destination address

Continued on next page

195

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Table A1.1 – continued from previous page

Bytes Description

23-28 Ethernet Source address

29-30 Ethernet message type (IP)

31-34 Header + Field Service + Total Length

35,36 ID

IP packet

37 Flag

38 Offset

39 TTL

40 IP Protocol ID

41-42 IP Checksum

43-46 IP Source address

47-50 IP Destination address

UDP packet

51-52 MSB, LSB Source port number

53-54 MSB, LSB Destination port number

55-56 Length

57-58 UDP Checksum

Shot 1

59-60 Laser Block ID (0-31)

61-62 Angle

63-64 Distance (Laser 0)

Continued on next page

196

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Table A1.1 – continued from previous page

Bytes Description

65 Intensity (Laser 0)

66-67 Distance (Laser 1)

68 Intensity (Laser 1)

69-70 Distance (Laser 2)

71 Intensity (Laser 2)
... ...

156-157 Distance (Laser 31)

158 Intensity (Laser 31)

Shot 2-11
... ...

Shot 12

1159-1160 Laser Block ID (0-31)

1161-1162 Angle

1163-1164 Distance (Laser 0)

1165 Intensity (Laser 0)

1166-1167 Distance (Laser 1)

1168 Intensity (Laser 1)

1169-1170 Distance (Laser 2)

11 71 Intensity (Laser 2)
... ...

1256-1257 Distance (Laser 31)

Continued on next page

197

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Table A1.1 – continued from previous page

Bytes Description

1258 Intensity (Laser 31)

Total of (12 shots) × (32 lasers)

1259-1260 Ethernet status

1261-1264 Ethernet checksum

198

Bibliography

[1] “Preliminary Statement of Policy Concerning Automated Vehicles”,

National Highway Traffic Safety Administration, 2013. [Online]. Available:

https://www.nhtsa.gov/staticfiles/rulemaking/pdf/Automated-Vehicles-

Policy.pdf.

[2] “2017 Cadillac ATS Product Information”, Ford, 2016. [Online]. Available:

http://media.cadillac.com/media/us/en/cadillac/vehicles/ats/2017.html.

[3] “Critical Reasons for Crashes Investigated in the National Motor Vehicle

Crash Causation Survey”, National Highway Traffic Safety Administration,

2015. [Online]. Available:

https://crashstats.nhtsa.dot.gov/Api/Public/View-Publication/812115.

[4] “Blind Spot Information System with Cross Traffic Alert ”, 2017. [Online].

Available: https://owner.ford.com/how-tos/vehicle-features/safety/blind-

spot-information-system-with-cross-traffic-alert.html.

[5] “Google Self-Driving Car Project Monthly Report”, Google, 2016. [Online].

Available: https://www.google.com/selfdrivingcar/reports/report-0916.

[6] R. Wallace, and G. Silberg, “Self-Driving Cars: The Next Revolution, ”

199

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Connected Vehicle Technology, 2012.

[7] Z. Kalal, K. Mikolajczyk, and J. Matas,“Tracking-Learning-Detection, ”

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,

vol. 34, no. 7, pp. 1409-1422.

[8] M. Malik, and S. Majumder,“An Integrated Computer Vision Based

Approach For Driving Assistance To Enhance Visibility In All Weather

Condition, ” International and National Conference on Machines and

Mechanisms, 2013, Roorkee, India.

[9] G. Soysal, and M. Efe,“Performance Comparison of Tracking Algorithms

For A Ground Based Radar, ” The IEEE Seminar on Target Tracking:

Algorithms and Applications , 2006, pp. 1-16, Tandogan, Ankara.

[10] J. Besada, J. Garcia, G. De Miguel, A. Berlanga, J. Molina, and J.

Casar,“Design of IMM filter for radar tracking using evolution strategies, ”

IEEE Transactions on Aerospace and Electronic Systems, 2005, vol. 41, pp.

1109-1122.

[11] Z. Ding, and H. Leung,“Evaluation of two IMM-based Algorithms in Real

Radar Tracking Environments, ” Canadian Conference on Electrical and

Computer Engineering , 2008, pp. 1569-1574, Niagara Falls, ON, Canada.

[12] K. Li, X. Chen, and G. Zhou,“Maneuvering Target Tracking in Constraint

Coordinates with Radar Measurements, ” IEEE Radar Conference

(RadarConf), 2016, Philadelphia, PA, USA.

200

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

[13] L. Meng, W. Grimm, and J. Donne,“Radar Detection Improvement by

Integration of Multi-Object Tracking,” Proceedings of the 5th International

Conference on Information Fusion, IEEE Computer Society, 2002, vol. 2,

pp. 1249-1255.

[14] G.R. Widmann, M. K. Daniels, L. Hamilton, et al., “Comparison of

Lidar-Based and Radar-Based Adaptive Cruise Control Systems, ” SAE,

Society of Automotive Engineers, vol. 109, pp. 126–139, Detroit, Michigan,

2000

[15] D. Gohring, M. Wang, M. Schnurmacher, and T. Ganjineh, “Radar/Lidar

Sensor Fusion for Car-following on Highways,” The 5th International

Conference on Automation, Robotics and Applications, pp. 407-412,

Wellington, New Zealand , 2011

[16] S. Laible, Y. N. Khan, and K. Bohlmann, “3D LIDAR- and Camera-Based

Terrain Classification Under Different Lighting Conditions, ” Autonomous

Mobile Systems, 2012, pp. 21-29.

[17] T. Bucher, C. Curio, and J. Edelbrunner, “ Image Processing and

Behaviour Planning for Intelligent Vehicles, ” IEEE Transactions on

Industrial Electronics, 2003, vol. 50, pp. 62-75.

[18] J. Choi, S. Ulbrich, B. Lichte, and M. Maurer, “Multi-Target Tracking

using a 3D-Lidar Sensor for Autonomous Vehicles, ” Proceedings of the 16th

International IEEE Annual Conference on Intelligent Transportation

Systems , 2013, The Hague, The Netherlands.

201

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

[19] Q. Zhu, L. Chen, Q. Li, M. Li, A. Nuchter, and J. Wang, “3D LIDAR

Point Cloud based Intersection Recognition for Autonomous Driving , ”

IEEE Intelligent Vehicles Symposium , 2012, pp. 456-461, Alcalá de

Henares, Spain.

[20] “Velodyne HDL-32E User’s Manual”, Velodyne, 2016. [Online]. Available:

http://velodynelidar.com/lidar/products/manual/63-9113%20HDL-

32E%20manual-Rev%20G.pdf

[21] S. Nobili, S. Dominguez, G G, P. Martinet, “16 Channels Velodyne Versus

Planar LiDARs Based Perception System for Large Scale 2D-SLAM, " The

Workshop on Planning, Perception and Navigation for Intelligeng Vehicles,

2015, pp. 6.

[22] J. Wei, J. Snider, J. Kim, et al., “Towards a Viable Autonomous Driving

Research Platform,” IEEE Intelligent Vehicles Symposium, Proceedings,

2013, pp. 763-770.

[23] F. Moosmann, O, Pink, and C, Stiller, “Segmentation of 3D Lidar Data in

non-flat Urban Environments using a Local Convexity Criterion,” IEEE

Intelligent Vehicles Symposium, Proceedings, 2009, pp. 215-220.

[24] Z. Luo, S. Habibi, and M. Mohrenschildt, “LiDAR Based Real Time

Multiple Vehicle Detection and Tracking,” International Journal of

Computer, Electrical, Automation, Control and Information Engineering,

2016, vol. 10, no. 6.

[25] L. Huang, and M. Barth, “Tightly-coupled Lidar and Computer Vision

202

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Integration for Vehicle Detection,” IEEE Intelligent Vehicles Symposium,

2009, pp. 604-609.

[26] S. Kammel, J. Ziegler, B. Pitzer, and M. Werling, “Team AnnieWAY’s

Autonomous System for the DARPA Urban Challenge 2007,” Internatinal

Journal of Field Robotics Research, 2008.

[27] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, and S. Thrun, “Junior:

The Stanford Entry in the Urban Challenge,” Journal of Field Robotics,

2008, vol. 8, pp. 69-597.

[28] S. Kammel, and B, Pitzer, “Lidar Based Lane Marker Detection and

Mapping,” IEEE Intelligent Vehicles Symposium, 2008, pp. 1137-1142.

[29] M. Himmelsbach, F. Hundelshausen, and H. Wuensche, “Fast

Segmentation of 3D Point Clouds for Ground Vehicles,” IEEE Intelligent

Vehicles Symposium, 2010, pp. 560-565.

[30] C. Guo, W. Sato, and L. Han, “Graph Based 2D Road Representation of

3D Point Clouds for Intelligent Vehicles,” IEEE Intelligent Vehicles

Symposium, 2011, pp. 715-721.

[31] B. Douillard, J. Underwood, and N. Kuntz, “On the Segmentation of 3D

LIDAR Point Clouds,” IEEE International Conference on Robotics and

Automation, 2011, pp. 2798-2805.

[32] D. Anguelov, B. Taskar, V. Chatalbashev, D. Koller, D. Gupta, G. Heitz,

and A. Ng, “Discriminative Learning of Markov Random Fields for

203

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Segmentation of 3D Scan Data,” IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 2005, pp. 169-176.

[33] B. Li, T. Zhang, and T. Xia, “ Vehicle Detection from 3D Lidar Using Fully

Convolutional Network,” Baidu Research – Institute for Deep Learning.

[34] M. A. Fischler, and R. C. Bolles,“Random Sample Consensus: A Paradigm

for Model Fitting with Applications to Image Analysis and Automated

Cartography,” Communications of the ACM, 1981, pp. 381-395.

[35] D. Bagnell, “Occupancy Mapping: An Introduction,” 2016. [Online].

Available: http://www.cs.cmu.edu/ 16831-f14/notes/F14/16831-lecture06-

agiri-dmcconac-kumarsha-nbhakta.pdf.

[36] B. S. Everitt, and A. Skrondal, “The Cambridge Dictionary of Statistics,”

Cambridge University Press, ISBN 0-521-81099-X.

[37] Z. Ghahramani, “An Introduction to Hidden Markov Models and Bayesian

Networks,” International Journal of Pattern Recognition and Artificial

Intelligence, 2001, pp. 9-42.

[38] E. Ivanjko, and I. Petrovic, “Experimental Evaluation of Occupancy Grid

Map Improvement by Sonar Data Corrections,” International Symposium

on Mediterrean Conference on Control and Automation, 2005.

[39] Y. Manuel, A. Olivier, and L. Christian, “Update Policy of Dense Maps:

Efficient Algorithms and Sparse Representation,” Field and Service

Robotics, 2008, pp. 23-33.

204

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

[40] C. Shalizi, “Extending Linear Regression: Weighted Least Squares,

Heteroskedasticity, Local Polynomial,” 2016. [Online]. Available:

http://www.stat.cmu.edu/ cshalizi/350/lectures/18/lecture-18.pdf.

[41] D. Bellhouse, “Generalized Least Squares Iteratively Reweighted Least

Squares,” 2016. [Online]. Available:

http://www.stats.uwo.ca/faculty/bellhouse/Generalized%20Least%20Squares-

DaeroKim.pdf.

[42] M. Li, Q. Li, “Real-time Road Detection in 3D Point Clouds using Four

Directions Scan Line Gradient Criterion,” Velodyne, 2009. [Online].

Available: http://velodynelidar.com/lidar/hdlpressroom/pdf/Articles/.

[43] A. W. Moore, “An Intoductory Tutorial on Kd-trees,” Technical Report

No. 209, Computer Laboratory, University of Cambridge, 1991.

[44] E. Nevala, “Introduction to Octrees,” Game Programming, 2014.

[45] J. Elseberg, S. Magnenat, R. Siegwart, and A. Nuchter, “Comparison of

Nearest-Neighbor-Search Strategies and Implementations for Efficient

Shape Registration,” Journal of Software Engineering for Robotics, 2012,

vol. 3, no. 1, pp. 2–12.

[46] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,

“OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on

Octrees,” Autonomous Robots, 2013, vol. 34, no. 3, pp. 189–206.

[47] J. L. Bentley, and J. H. Friedman, “Data Structures for Range Searching,”

205

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

ACM Computing Surveys, 1979, vol. 11, no. 4, pp. 397-409.

[48] P. J. Besl, and N. D. McKay, “A Method for Registration of 3-D Shapes,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992,

vol. 14, no. 2, pp. 239–256.

[49] J. Shen, J. Liu, R. Zhao, and X. Lin, “A Kd-tree-based Outlier Detection

Method for Airborne LiDAR Point Clouds,” IEEE International

Symposium on Image and Data Fusion , 2011, pp. 1-4.

[50] S. Ying, G. Xu, C. Li, and Z. Mao, “Point Cluster Analysis Using a 3D

Voronoi Diagram with Applications in Point Cloud Segmentation,”

International Journal of Geo-Information , 2015, pp. 1480-1499.

[51] Y. Yu, J. Li, H. Guan, F. Jia, and C. Wang, “Three-Dimensional Object

Matching in Mobile Laser Scanning Point Clouds,” IEEE Geoscience and

Remote Sensing Letters , 2014, pp. 492-496.

[52] H. Frigui and R. Krishnapuram, “Clustering by Competitive

Agglomeration,” Pattern Recognition Journal, 1997, pp. 1109-1119.

[53] D. Boley, “Principal Direction Divisive Partitioning,” Data Mining

Knowledge Discovery, 1998, pp. 325-344.

[54] F. Pauling, M. Bosse, and R. Zlot, “Automatic Segmentation of 3D Laser

Point Clouds by Ellipsoidal Region Growing,” Australasian Conference on

Robotics and Automation, 2009, pp. 1-10.

206

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

[55] K. Klasing, D. Wollherr, and M. Buss, “A Clustering Method for Efficient

Segmentation of 3D Laser Data,” IEEE International Conference on

Robotics and Automation, 2008, pp. 4043-4048.

[56] D. Dworak, “3D Points Cloud Reduction Using Modified K-D Tree

Method,” 2009.

[57] M. Ester, H. Kriegel, J. Sander, and X. Xu, “A Density-Based Algorithm

for Discovering Clusters in Large Spatial Databases with Noise,”

International Conference on Knowledge Discovery and Data Mining, 1996.

[58] D. Davies, and D. W. Bouldin, “A Cluster Separation Measure,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, 1979.

[59] J.C. Dunn, “Well Separated Clusters and Optimal Fuzzy Partitions,”

Cybernetics, 1974, pp. 95-104.

[60] C. Cortes, and V. Vapnik, “Support-Vector Networks,” Machine Learning,

1995, pp.273-297.

[61] C. Zhang, X. Chen, and W. B. Chen, “A PCA-Based Vehicle Classification

Framework,” IEEE International Conference on Data Engineering, 2006,

pp. 17-17.

[62] Z. Qian, H. Shi , J. Yang and L. Duan, “Video-Based Multiclass Vehicle

Detection and Tracking,” IJCSI International Journal of Computer Science

Issues, 2013, vol. 10, no. 3.

207

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

[63] S. Zehang, G. Bebis, and R. Miller, “On-Road Vehicle Detectionusing

Evolutionary Gabor Filter Optimization,” IEEE Transactions on

Intelligent Transportation Systems, 2005, pp.125-137.

[64] A. Krizhevsky, I. Sutskever, G. E. Hinton, “Imagenet Classification with

Deep Convolutional Neural Networks,” In Advances in neural information

processing systems, 2012, pp.1097-1105.

[65] A. Börcs, B. Nagy, and C. Benedek, “Instant Object Detection in Lidar

Point Clouds,” IEEE Geoscience and Remote Sensing Letters, 2017, pp.1-5.

[66] M. Kirby and L. Sirovich, “Application of the Karhunen-Lokve Procedure

for the Characterization of Human Faces,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, 1990, pp.103–108.

[67] S. Gupte, O. Masoud, R. F. K. Martin, and N. P. Papanikolopoulos,

“Detection and Classification of Vehicles,” IEEE Transactions on

Intelligent Transportation Systems, 2002, vol. 3, no. 1, pp. 37-47.

[68] I.T. Jolliffe,“Principal Component Analysis, second edition”, Springer,

2002.

[69] R. Blomley, M. Weinmanna, J. Leitloffa, and B. Jutzi, “Shape Distribution

Features for Point Cloud Analysis - A Geometric Histogram Approach on

Multiple Scales,” ISPRS Annals of the Photogrammetry, Remote Sensing

and Spatial Information Sciences, 2014.

[70] J. F. Lalonde, N. Vandapel, D. Huber, and M. Hebert, “Natural Terrain

208

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Classification Using Three-Dimensional Ladar Data for Ground Robot

Mobility,” Journal of Field Robotics, 2006, pp.839-861.

[71] N. Vandapel, D. F. Huber, A. Kapuria, and M. Hebert, “Natural Terrain

Classification using 3-D Ladar Data, ” IEEE International Conference on

Robotics and Automation, 2004, vol. 5, pp. 5117-5122.

[72] V. Vapnik, “The Nature of Statistical Learning Theory,” Springer-Verlag,

1995, ISBN 0-387-98780-0.

[73] L. Wang, “Support Vector Machines: Theory and Applications,” Springer,

2005.

[74] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ ImageNet Classification

with Deep Convolutional Neural Networks,” Advances in Neural

Information Processing Systems, 2012.

[75] M. Hossin, and M. N. Sulaiman, “ A Review On Evaluation Metrics For

Data Classification Evaluations ,” International Journal of Data Mining

and Knowledge Management Process , 2015, vol.5, no.2.

[76] R. E. Kalman “A New Approach to Linear Filtering and Prediction

Problems ,” ASME, Vol. 82, pp. 35–45,1960.

[77] M. S. Grewal and A. P. Andrews “Kalman Filtering: Theory and Practice

Using MATLAB,” Wiley, 2008, New York, USA.

[78] P.A. Boysen, and H. Zunker “Low Cost Sensor Hybridisation and Accuracy

Estimation for Road Applications,” ESA Conference Navitec, 2004.

209

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

[79] C. Boucher, A. Lahrech, and J.C. Noyer “Non-linear Filtering for Land

Vehicle Navigation with GPS Outage,” IEEE International Conference on

Systems, Man and Cybernetics, 2004.

[80] S. Rezaei, and R. Sengupta “Kalman Filter Based Integration of DGPS

and Vehicle Sensors for Localization,” IEEE Transactions on Control

Systems Technology , 2007, vol. 15, no. 6.

[81] S. R. Habibi “The Smooth Variable Structure Filter,” IEEE Invited Paper,

2007, vol. 95, no. 5.

[82] V.I. Utkin “Sliding Mode Control Design Principles and Applications to

Electric Drives,” IEEE Transactions on Industrial Electronics, 1993, vol.

40, no. 1.

[83] M. Attari, Z. Luo, and S. R. Habibi, “An SVSF-Based Generalized Robust

Strategy for Target Tracking in Clutter,” IEEE Transactions on Intelligent

Transportation Systems, 2016, vol. 17, no. 5.

[84] N. Hoyningen-Huene, and M. Beetz, “Robust Real-Time Multiple Target

Tracking,” Asian Conference on Computer Vision, 2009, pp. 247-256.

[85] K. Oksuz and A. T. Cemgil, “The Comparison of the Performances of

Global Nearest Neighbor and Probability Hypothesis Density Filter for

Varying Clutter Rates,” Signal Processing and Communication Application

Conference, 2016, pp. 677–680.

[86] C. Rasmussen, and G.D. Hager, “Probabilistic Data Association Methods

210

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

for Tracking Complex Visual Objects,” IEEE Transactions on Pattern

Analysis and Machine Intelligence , 2001, vol. 23, no. 6.

[87] Z. Ding, and L. Hong , “Bias Phenomenon And Compensation for

PDA/JPDA Algorithms” Mathematical and Computer Modelling , 1998,

vol. 27, no. 12.

[88] R. Kalman“A New Approach to Linear Filtering and Prediction Problems,”

Transaction of the ASME, Journal of Basic Engineering. 1982, pp. 35.

[89] S. A. Gadsden, “Smooth Variable Structure Filter: Theory and

Application,” McMaster University, 2011.

[90] M. Attari, S. A. Gadsden, and S. R. Habibi, “Target Tracking Formulation

of the SVSF with Data Association Techniques,” IEEE Transactions on

Aerospace and Electronic Systems, 2014.

[91] D. G. Luenberger, “Introduction to Dynamic Systems,” New York: Wiley,

1979.

[92] H. W. Kuhn, “The Hungarian Method for the Assignment and

Transportation Problems,” Naval Research Logistics Quarterly, 1995, pp.

83-97.

[93] Y. Bar-Shalom, and E. Tse, “Tracking in Cluttered Environment with

Probabilistic Data Association,” Automatica, 1975, vol. 11, no. 5.

[94] Y. Bar-Shalom, F. Daum, and J. Huang, “The Probabilistic Data

Association Filter, Estimation in the Presence of Measurement Origin

211

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

Uncertainty,” IEEE Control Systems, 2009, vol. 29, no. 6, pp. 82-100.

[95] D. P. Bertsekas, “Introduction to Probability,” Sections 1.3-1.4.

[96] T. Kirubarajan, and Y. Bar-Shalom, “Target Tracking Using Probabilistic

Data Association Based Techniques with Applications to Sonar, Radar,

and EO Sensors,” CRC Press, 2011, ISBN 978-0-8493-2379-9.

[97] Y. Bar-Shalom, and X. R. Li, “Multitarget-Multisensor Tracking:

Principles and Techniques,” Storrs, CT: YBS Publishing, 1995.

[98] D. A. Brannan, M. Esplen, J. J. Gray, “Geometry,” Cambridge University

Press, ISBN 0-521-59787-0.

[99] M. Attari, S. A. Gadsden, and S. Habibi, “Target Tracking Formulation of

the SVSF as a Probabilistic Data Association Algorithm,” American

Control Conference , 2013.

[100] H. A. Blom, and Y. Bar-Shalom, “The Interacting Multiple Model

Algorithm for Systems with Markovian Switching Coefficients," IEEE

Transaction on Autonomous Control, 1988, pp. 780-783.

[101] C. Esposito, A. Castiglione, F. Palmieri, M. Ficco, and K. R. Choo, “A

Publish/Subscribe Protocol for Event-Driven Communications in the

Internet of Things," IEEE International Conference on Pervasive

Intelligence and Computing, 2016, Auckland, New Zealand.

[102] “Profile to Improve Performance”, MathWorks, 2017. [Online]. Available:

212

Ph.D Thesis — Zhongzhen Luo McMster Univeristy — Software Engineering

https://www.mathworks.com/help/matlab/matlab-prog/profiling-for-

improving-performance.html

[103] I. Culjak, D. Abram, T. Pribanic, H. Dzapo, M. Cifrek, “A Brief

Introduction to OpenCV,” IEEE Proceedings of the 35th International

Convention, 2012, Opatija, Croatia.

213

	Abstract
	Acknowledgements
	Declaration of Authorship
	Introduction
	Motivation and Objectives
	Problem Description
	Novelty of the Research
	Overview of the Thesis

	Technology: LiDAR Sensor
	Introduction
	LiDAR
	LiDAR Position

	The Algorithm: Design of Ground Detection System
	Introduction
	Related Work
	Methodology
	Data Acquisition and Preprocessing
	Probability Occupancy Grid Map Modeling (OGM)
	Weighted Linear Regression

	Experiment and Result
	Conclusion

	The Algorithm: Design of Object Detection System
	Introduction
	Related Work
	Spatial Data Structure
	Kd-tree
	Nearest Neighbor Search in Kd-tree

	Clustering Analysis
	Review of Different Cluster Analysis Criteria

	RBNN Based Clustering using Kd-tree
	Experiment and Result

	Conclusion

	The Algorithm: Design of Object Classification System
	Introduction
	Related Work
	The Proposed Classification System
	Feature Extraction by PCA
	Binary Classification by SVM
	Kernel Functions
	Vehicle Types Classification By CNN

	Experiments and Analysis
	Data Preparation
	Parameter Selection for SVM
	Parameter Selection for CNN
	Performance Evaluation

	Conclusion

	The Algorithm: Design of Tracking System
	Introduction
	Related Work
	Tracking Strategy
	The Kalman Filter Filter
	The Extended Kalman Filter
	The Smooth Variable Structure Filter
	Generalized SVSF

	Data Association Strategy
	Hungarian Algorithm
	Probabilistic Data Association Filter

	Proposed GSVSF-HA/PDAF Approach
	GSVSF-HA
	GSVSF-PDAF
	GSVSF-HA/PDAF

	Experimental Result
	Conclusion

	Overview of Real Time System and its Implementation
	Introduction
	Modules
	Preprocessing Module
	Ground Detection Module
	Object Detection Module
	Object Classification Module
	Object Tracking Module
	Graphical User Interface (GUI) Module

	Inter-Module Communication
	Matlab Development
	C++ Development

	Conclusion and Future Work
	Conclusion
	Future work
	Behaviors Prediction
	Integration with Other Sensors

	Supplementary
	LiDAR UDP Packet Structure

