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Abstract

Brain-computer interfaces (BCIs) create a new form of communication and control
for humans by translating brain activity directly into actions performed by a
computer. This new field of research, best known for its breakthroughs in enabling
fully paralyzed or locked-in patients to communicate and control simple devices,
has resulted in a variety of remarkable technological developments. However, the
field is still in its infancy, and facilitating control of a computer application via
thought in a broader context involves a number of a challenges that have not yet
been met.

Advancing BCIs beyond the experimental phase continues to be a struggle.
End-users have rarely been reached, except for in the case of a few highly special-
ized applications which require continual involvement of BCI experts. While these
applications are profoundly beneficial for the patients they serve, the potential for
BCIs is much broader in scope and powerful in effect. Unfortunately, the current
approaches to brain-computer interfacing research have not been able to address
the primary limitations in the field: the poor reliability of most BCIs and the
highly variable performance across individuals. In addition to this, the modes of
control available to users tend to be restrictive and unintuitive (e.g., imagining
complex motor activities to answer “Yes” or “No” questions). This thesis presents
a novel approach that addresses both of these limitations simultaneously.

Brain-computer interfacing is currently viewed primarily as a machine learning
problem, wherein the computer must learn the patterns of brain activity associated
with a user’s mental commands. In order to simplify this problem, researchers
often restrict mental commands to those which are well characterized and easily
distinguishable based on a priori knowledge about their corresponding neural
correlates. However, this approach does not fully recognize two properties of a
BCI which makes it unique to other human-computer interfaces. First, individuals
can vary widely with respect to the patterns of activation associated with how
their brains generate similar mental activity and with respect to which kinds of
mental activity have been most trained due to life experience. Thus, it is not
surprising that BCIs based on predefined neural correlates perform inconsistently
for different users. Second, for a BCI to perform well, the human and the computer
must become a cohesive unit such that the computer can adapt as the user’s
brain naturally changes over time and while the user learns to make their mental
commands more consistent and distinguishable given feedback from the computer.
This not only implies that BCI use is a skill that must be developed, honed, and
maintained in relation to the computer’s algorithms, but that the human is the
fundamental component of the system in a way that makes human learning just
as important as machine learning.

In this thesis it is proposed that, in the long term, a generalized BCI that can
discover the appropriate neural correlates of individualized mental commands is
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preferable to the traditional approach. Generalization across mental strategies
allows each individual to make better use of their own experience and cognitive
abilities in order to interact with BCIs in a more free and intuitive way. It is fur-
ther argued that in addition to generalization, it is necessary to develop improved
training protocols respecting the potential of the user to learn to effectively mod-
ulate their own brain activity for BCI use. It is shown through a series of studies
exploring generalized BCI methods, the influence of prior non-BCI training on
BCI performance, and novel methods for training individuals to control their own
brain activity, that this new approach based on balancing the roles of the user
and the computer according to their respective capabilities is a promising avenue
for advancing brain-computer interfacing towards a broader array of applications
usable by the general population.
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1.1 From Brains to Brain-Computer Interfaces

The mammalian brain has evolved over millions of years as an organ capable
of controlling complex biological systems, such as the human body. With this
remarkable system, we are able to plan and execute multistage goal-oriented tasks,
assess our performance, adjust our behaviour, and respond to unforeseen obstacles
along the way. The brain, in collaboration with the sensory organs with which it
interfaces, enables for us several channels of experiential life, including the senses,
emotions, and most profoundly, consciousness. Together, these functions provide
feedback to the brain about its environment, its actions, and itself.

Though the brain performs a plethora of survival, social, and cognitive tasks
with impressive proficiency, one particular function of the brain stands out as
not only having an exceptionally high degree of utility, but as being profoundly
powerful. That is its ability to learn. The adaptability of the brain, and thus
the organism, is unprecedented in known biology. It is precisely this quality of
the brain and the degree to which it is realized in humans that makes possible
the spectacle that is the ever-receding boundary of human potential in all areas
of life. Yet the power of the brain’s ability to learn is not limited to control
over one’s body and mind. The evolution of the human brain in particular has
allowed our species to cross a critical threshold, whereby we have developed arts
and sciences which have enabled us to transform our environments, our societies,
and ultimately ourselves in ways that are at least partially conscious and directed.

The adaptability of our brains has allowed us to thrive in human-made environ-
ments that are in many ways unlike the environments in which the brain originally
evolved. Rather than becoming separated from nature, humans have extended its
boundaries to include what could previously only be envisioned. We do this pri-
marily by creating new technologies, which in many ways become extensions of
ourselves and of nature while magnifying our ability to transform both.

In just the last few decades, revolutionary technological advances have pro-
foundly changed human life. One of the greatest examples of this is the digital
computer. The computer empowers the brain by allowing us to compute and
manipulate symbolic data beyond our biological capabilities. Combined with the
internet, the computer also grants us unparalleled access to information and com-
munications.

As we continue to use our brains to develop information technologies that
have exponentially increasing capabilities, neuroscientists and biomedical engi-
neers turn those technologies back towards ourselves in order to gain a deeper
and more comprehensive understanding of the very brains which created those
technologies. This evolving cycle has recently led us to somewhere unprecedented,
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for at around the time the majority of the developed world became connected to
the internet, the interdisciplinary field of brain-computer interfacing also began
to emerge [1].

Brain-computer interfaces (BCIs) are systems which create direct communi-
cation and control pathways between brains and computers. Whether achieved
through non-invasive wearable devices or through computer components implanted
directly onto the brain, a BCI and its user form a new kind of biocybernetic sys-
tem. BCIs have been envisioned as clinical tools which can be used to replace and
restore lost or damaged functionality for their users [1], whether cognitive [2, 3],
motor [4, 5], or communicative [6]. Beyond restoring and replacing damaged
functions, BCIs have also been viewed as a pathway towards the enhancement
of existing functions [7, 8]. Perhaps in the future, BCIs will enable entirely new
functionality for humans. Research into this field has only just begun, and the
impact brain-computer interfacing will have on human life can only barely be
imagined.

While the kinds of biocybernetic modifications of humans found in science
fiction might remain a far-off and inaccurately depicted future, the progress made
en route and during tangential explorations of brain-computer interfacing and
BCI-related technologies is poised to make a significant impact on human society
[9]. Given that the field is still in its infancy, the current state of some BCI
applications is interesting and useful enough that there are high expectations for
the future. In the clinical setting (see Figure 1.1), BCIs have already been used to
enable computer use [10, 11, 12, 13] and wheelchair driving [14, 15] for the severely
paralyzed. Research in this field has also led to brain-controlled prostheses for
amputees [16], paraplegics [17, 18], and tetraplegics [19], which have even been
shown to induce some degree of restorative neuroplasticity [20, 21]. While brain-
computer interfacing in non-clinical settings has only recently received significant
attention, BCIs have been used to enhance memory encoding [22, 23, 24] and
response time [25] in humans, as well as in gaming [26, 27, 28]. We can only
speculate on what brain-computer interfacing will bring in the coming decades.

1.2 The Central Theme of this Thesis

Several major breakthroughs in brain-computer interfacing have been made over
the last decade. Since BCIs make heavy use of machine learning, modern brain-
computer interfaces have been greatly empowered by the rapid advancement of
artificial intelligence (AI). In fact, it is not uncommon for brain-computer inter-
facing to be conceptualized as an intersection of neuroscience and AI. Despite this
rapid development, there remain many challenges that must be met before BCIs
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(a) Internet Browsing (b) BCI Wheelchair (c) Neuroprosthesis

Figure 1.1: Three prominent examples of clinical brain-computer interfaces. a): Using
a P300-based BCI to browse the internet (see Section 2.2.3 for more detail on P300-
based BCIs). Image reproduced from a publicly available video associated with [11]
(link provided in [29]). b): A BCI-controlled wheelchair [30]. c): A tetraplegic patient
using a BCI which stimulates muscles based on predicted user intentions in order to
grasp an object. Image reproduced with permission from [31].

can be adopted as mainstream tools in broader society. The central issue prevent-
ing BCIs from moving beyond the laboratory is the high variability in reliability
and usability across users and over time [9].

In this thesis it is argued that a paradigm shift is required to fully address the
main limitations in current BCI technologies. Most progress in brain-computer
interfacing thus far has been made through advancements in the technical compo-
nents of a BCI. However, these advancements have had an insufficient impact on
the fundamental usability of BCIs for the general population. Significant progress
in making BCIs useful beyond highly specialized applications that are fine-tuned
for specific users necessitates moving away from thinking of BCI users as system
operators in the same way that they are operators of other human-computer inter-
faces (HCIs), such as a computer mouse or a keyboard. A BCI is a fundamentally
different kind of HCI where the user is in fact the central component and not just
an external force that inputs commands. Re-framing the relationship between a
BCI and its user in this way has two major implications that are explored in this
thesis.

The first implication of refocusing the BCI on its user is that the user must
be the primary consideration when determining how a BCI is to be operated.
The type of BCI that is of primary interest here is that which is controlled by
specific willful mental activity, referred to as mental commands (e.g., one might
imagine pointing up with their hand, without physically doing so, as a mental
command for scrolling up in an internet browser). For reasons which will be
more deeply discussed in Chapter 2, the choice of mental command(s), which
also determines the specific neurophysiological signals the BCI must recognize, is
extremely important for successful control of a BCI. Considering the user when
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choosing mental commands means that those mental commands must be based on
the user’s background and cognitive profile, as these factors influence which brain
signals they can most easily learn to control. The challenge is that facilitating
this kind of user-centered design requires that different users be able to employ
different brain signals when controlling the same BCI. Meeting this challenge
requires a generalized solution to the problem of translating mental commands
into actionable commands in a computer. Without generalization across a variety
of possible mental strategies, a BCI will not perform reliably for all of its users.
However, this level of generalization has not yet been achieved.

The second implication is that improving methods for training the user to
control a BCI by modulating their own brain activity may be just as important
as developing more generalized translation algorithms. Situating the user at the
center of a BCI comes with the recognition that using a BCI is a skill which must
be learned, honed, and maintained. A BCI will not operate reliably for a user if
that user cannot generate consistent and distinct mental commands, regardless
of how advanced the BCI’s AI. Moreover, in order to be compatible with the
aforementioned need for personalized mental commands, any new approach to
user training must be able to adapt to each user’s unique style of operation rather
than force a user to generate those brain signals that the BCI is pre-designed to
expect, as is the current norm. The challenge, then, is to develop user-training
methods which generalize to user-specific mental commands, even if the system
is blind to what mental commands were chosen, while advancing the ability to
provide specific and useful feedback to the user.

In combining these requirements, a strategy for putting this paradigm into
practice can be put forth. The approach pursued throughout this thesis is to
move towards a fully generalized BCI. This involves more than generalizing the
technical components of a BCI so that it can be controlled using the wide variety of
mental commands that might be employed by its various users. The user of a BCI
must learn to operate the system by modulating their own brain activity directly,
and the system must simultaneously learn to interpret the user’s brain activity.
While this defines two prongs to BCI control that can be addressed independently
to a degree, the approach to generalization proposed here recognizes that these
prongs are ultimately unified to form a single co-adaptive system. Therefore, the
approach to developing a generalized BCI pursued through this thesis is founded
on the perspective that solutions for generalized BCIs must be user-centered and
must solve the generalized problem of co-adaptive human and machine learning.

The progress towards a generalized BCI described in this thesis should be
taken as only the first steps towards solving the generalized problem of co-adaptive
human and machine learning. There is much work to be done to achieve this goal,
and many years of research may be required before BCIs, generalized or not, evolve
to be useful tools for the general public. What this thesis sets out to demonstrate
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is that generalized methods for user-centered brain-computer interfacing are both
a feasible and a promising pathway towards improving the reliability and usability
of BCIs in a way which may lead to BCI applications that can accommodate a
wide variety of users. As such, the primary objective set out for this body of
research was to develop a BCI which could be controlled by a wide variety of
mental commands according to the preferences of each user, and then to propose
methodology for enhancing a user’s ability to learn self-regulation of the neural
activity associated with those mental commands.

1.3 Thesis Overview

This thesis presents a series of studies which aim to put in place the basic compo-
nents needed for a generalized BCI. Studies focused on generalizing the algorithms
which translate brain activity into usable outputs for a computer are presented
first. Following this, the focus is shifted towards the development of improved
user training methods which can be applied to a generalized BCI. Together, these
satisfy the original objectives pursued by this body of work. Following this, a pilot
study is presented that integrates the newly developed generalized brain signal
processing and user training methods into an updated generalized BCI. A more
detailed overview is given below.

Chapter 2 provides the background needed to understand the studies presented
in subsequent chapters. This includes more thoroughly defining what a BCI is and
how a BCI works, as well as providing detailed descriptions of the primary methods
used in this thesis. Technical and conceptual aspects of relevant algorithms and
user-training methods are discussed here, with an emphasis on how these methods
facilitate or impede progress towards a generalized BCI. While some of these
methods are also described in subsequent chapters, the most complete descriptions
are found in Chapter 2.

Chapter 3 presents a study which helps to contextualize the need for a general-
ized BCI. Many modern BCIs are based on the use of intentional mental imagery,
the generation of perceptual experience within the mind, as mental commands.
These are user-driven BCIs, also called spontaneous BCIs [32, 33, 34, 35], as op-
posed to BCIs driven by the user’s reactions to external stimuli or changes in
passive mental states [36, 37, 1, 38]. For a standard, i.e., non-generalized, BCI,
the neural correlates corresponding to a user’s mental commands must be studied
and built into the algorithms (BCIs are often defined by the type of mental com-
mands they allow, as in a “motor imagery BCI”). The study presented in Chapter
3 explores the neural correlates of visuospatial mental imagery and a discussion
on how those findings could be applied in a BCI follows. This study is used to
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illustrate the traditional approach to designing a new BCI and to explain why
this approach is inadequate if the field of brain-computer interfacing is to become
more widely applicable and impactful in society. Thus this chapter motivates
the pursuit of a generalized BCI starting from the viewpoint of traditional BCI
research.

Chapters 4 and 5 present studies which establish and validate two methods
for generalizing the BCI machine learning pipeline and for the recognition of
mental commands and mental states more broadly. Chapter 4 in particular gives
much attention to establishing the paradigm proposed in this thesis as well as
the rationale upon which it is based. More importantly, this chapter presents an
empirical validation of a first-generation generalized BCI which, for the first time,
allowed users to choose their own mental commands within a number of different
sensory modalities. In addition, this research presents evidence of a connection
between the large individual differences in the ability to control a BCI using
mental commands derived from different sensory modalities to training outside
of the BCI context. Such evidence further demonstrates the need for generalized
methods in brain-computer interfacing.

Chapter 5 presents a different way of generalizing the BCI machine learning
pipeline. This approach was developed primarily for BCI implementations that
use hardware for which the methods used in Chapter 4 may not be appropriate.
However, the study presented in Chapter 5 helps to verify the value provided
by generalized methods for BCI, because this alternative generalized method was
successfully applied to the very different problem of detecting emotional states
rather than mental commands. Together these studies show that generalized
methods can be used to expand the possibilities of brain-computer interfacing.

With the generalized methods for identifying mental commands and mental
states empirically validated, Chapter 6 returns to the question of how to train
BCI users to effectively use mental commands to control a BCI. A new method
for implementing neurofeedback, i.e., training control over one’s brain activity
via direct sensory feedback, is defined and empirically validated in the context of
controlling a single feature of brain activity. The rationale behind this approach
and its implications for BCI user training are discussed.

Chapter 7 integrates the findings of all of the previous research chapters into
an updated generalized BCI for answering “Yes” or “No” questions. In particular,
an extension of the user training methodology presented in Chapter 6 to the BCI
context is is presented. The system presented here makes use of all of the general-
ized methods developed throughout this thesis, and is presented as proposed next
steps, since the main goals set out for this thesis had already been achieved. The
results of a pilot study used to fine-tune the design of the system are presented
and discussed.
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Finally, Chapter 8 summarizes the key contributions and the overall impli-
cations of the research presented in this thesis to the field of brain-computer
interfacing. Future directions for further development of a generalized BCI are
outlined in some detail.
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“Gamification of cognitive assessment and cognitive training: a systematic
review of applications and efficacy,” JMIR Serious Games, vol. 4, no. 2, 2016.

[25] P. Yuan, Y. Wang, W. Wu, H. Xu, X. Gao, and S. Gao, “Study on an online
collaborative bci to accelerate response to visual targets,” in Engineering in
Medicine and Biology Society (EMBC), 2012 Annual International Confer-
ence of the IEEE, pp. 1736–1739, IEEE, 2012.
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2.1 A Brief History of Brain-Computer Inter-

facing

The very beginnings of the scientific study of brain-computer interfacing can be
traced to a pair of publications in 1969 by Delgado [1] and Fetz [2]. Delgado cre-
ated an implantable radio-controlled electrode capable of recording and wirelessly
transmitting information about brain activity to a computer while stimulating
brain cells using radio waves. In a famous demonstration, Delgado used this chip
to stop a charging bull in its tracks by stimulating its caudate nucleus and basal
ganglia, brain structures which are important for controlling goal-oriented motor
functions [3]. As Delgado reports, repeatedly stopping the bull mid-charge with
the press of a button had the added effect of making the bull less aggressive for
longer and longer periods of time thereafter. Concurrently, Fetz demonstrated
that monkeys could be trained to control the activity of a particular brain cell
via neurofeedback and an implanted electrode, and thus control a machine that
dispensed food rewards. These demonstrations inspired scientists and engineers to
explore the possibility of human control over electronic devices via brain activity
alone.

The modern conceptualization of BCIs intended for human use was first pro-
posed by Vidal in 1973 [4], and thus he is often credited for initiating the academic
enterprise that is now called brain-computer interfacing. Vidal exhibited an im-
pressive degree of foresight in this seminal paper, in which he proposed a human
BCI based on visual evoked potentials (electrical field potentials resulting from
particular visual stimuli) as recorded from the scalp using electroencephalogra-
phy (EEG). Vidal pointed out that at the time of writing his paper he did not
have the computing technology necessary to create a useful version of the device
(though he did produce a prototype a few years later in 1977 [5]), and that in
the years it would take for such technology to be developed his proposals might
already be obsolete. However, what he proposed included design schematics and
an analytical approach which is in principle close to what is used today for BCIs
based on visual evoked potentials [6]. One notable difference is that a statistical
decision making algorithm was used in place of a more modern machine learning
approach, as machine learning in its modern form did not exist in those days.

Following these very early days of research in brain-computer interfacing, very
few publications on the topic appeared until the 1990s, when a handful of laborato-
ries mainly situated in Germany and the United States began to experiment with
rudimentary BCIs. A confluence of interest, exposure to this pioneering work,
improved computer technology, better neuroscientific equipment and understand-
ing, and the advancement of machine learning led to an explosion of research in
brain-computer interfacing starting in the early 2000s (see Figure 2.1). Suddenly,
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Figure 2.1: The number of BCI publications per year, obtained by searching for “brain-
computer interface” on PubMed. The modest spike which occurs in the year 2000 is
a result of the First International BCI Meeting held in 1999. Figure reproduced from
[7] under the Creative Commons Attribution - NonCommercial-NoDerivatives License.

the idea of humans using BCIs for a variety of tasks became a realistic possibility
for the not-so-distant future.

Despite the possibility of BCI technologies for humans, the justification for
investing in what might have been a scientific and engineering curiosity with
unclear long-term utility was not yet readily apparent. That began to change when
collaborations between medical scientists, psychologists, and engineers, combined
with increased social awareness, led to a broader recognition that individuals
paralyzed or locked-in due to severe neuromuscular disorders, such as amyotrophic
lateral sclerosis (ALS), often retain their cognitive ability [8]. Suddenly there
was great interest in assistive technologies that could enable communication and
control for these individuals. Because these individuals tend to suffer a complete
loss of voluntary control over all muscles, whether gradually or suddenly, only a
system with an interface that did not rely on any muscle activity could be used.
Filling this need became the primary focus of brain-computer interfacing.

Brain-computer interfacing has now become an established field of science and
engineering. There currently exist several classes of BCIs, each with a number of
variations best suited for different applications. The utility of BCIs outside of the
clinical setting is also being actively explored, and commercial recording devices
intended for commercial BCI applications are beginning to enter the consumer
market. BCIs have also become more precisely defined over the last several years.
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A detailed definition and description of a BCI and its parts are given next.

2.2 The Defining Features of a BCI

A brain-computer interface, sometimes referred to as a brain-machine interface
(BMI), is a special kind of communications and control system which interprets
brain signals in order to allow its user to input commands into a computer with-
out activity from the peripheral nervous system or muscles [8, 9, 10]. Due to
the interdisciplinary nature of these systems, the field of brain-computer interfac-
ing requires input from several different areas of research, including neuroscience,
psychology, biomedical engineering, computer science, and statistics. The impor-
tance of each of these disciplines in brain-computer interfacing is expressed in
the design, implementation, and evaluation of a BCI as a whole as well as for its
distinct components.

2.2.1 The Essential Components of a BCI

Several key ingredients are required to create a BCI. Broadly speaking, there are
two main parts to a BCI. The BCI transducer encompasses the signal acquisition,
signal processing, and machine learning components of the system. Connected to
this is the NFB module, which provides feedback to the user and executes the
action of the BCI. These components and their relationships are illustrated by
the BCI loop in Figure 2.2.

A BCI utilizes the mental activity of its user in order to communicate with a
computer. Therefore, the central component of a BCI is the brain that uses it and
the type of mental activity used to control the BCI. The type of mental activity
employed by the user to issue commands through the system determines what
kind of neurophysiological signals the BCI must learn to detect and interpret.
This, in turn, determines how the technical components should be implemented,
especially which specific signal processing and machine learning methods should
be used.

In order for the BCI to access the user’s mental activity, it must have some
means of observation in real time through some brain signal recording hardware.
Most commonly, electroencephalography (EEG) is used, though there are several
other technologies that are used in the field. The type of information about brain
activity obtained through brain recordings depends substantially on the recording
technology used. In turn, the signal processing methods used depend heavily on
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Figure 2.2: The BCI loop. The main components of a BCI, including the user, operate
together and form a closed-loop system. One complete iteration through this loop
describes the user issuing a single mental command, which is translated by the BCI
into a computer-controlled action whose result and corresponding feedback is observed
by the user. The BCI transducer is displayed with blue text and blue arrows, while the
NFB module is displayed with red text. The user is displayed with purple text because
they tie together the BCI transducer and the NFB module.
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the recording technology. Likewise, the recording technology constrains the types
of mental activity that can feasibly be detected and interpreted by a BCI. For
example, it is difficult to precisely localize brain signals with EEG recordings,
especially if the signal is generated deep in the brain. Because of this, an EEG-
based BCI controlled with brain signals which are generated very close together
in space, or which are generated deep in the brain, is likely to perform poorly
compared to the same BCI controlled with brain signals whose sources are spatially
far apart and near the surface of the brain. The recording technologies used in
this thesis are described in Section 2.4.

Given a recording device which can be reasonably expected to provide the
discriminative information needed to distinguish the user’s mental commands, it
remains a complicated task to extract the relevant information and separate it
from any extraneous information. This is the job of the BCI’s signal processing
pipeline. Signal processing serves the dual purpose of preprocessing and denoising
the brain signals (details in Section 2.5) as well as extracting informative values,
or features, from the preprocessed signal (details in Section 2.6).

Once the brain signal has been preprocessed and the relevant information ex-
tracted, the resulting data can be translated into meaningful commands for a
computer. This is accomplished with an adaptive model, typically in the machine
learning sense. The role of the adaptive model is to compare the information pro-
vided by the signal processing pipeline to previous data and make a determination
as to which mental command was issued by the user. The application of machine
learning to BCI and the core methods used in this thesis are discussed in Section
2.7.

The mental command predicted by the adaptive model is passed to a software
module which is designed to interpret each unique mental command as a unique
instruction to the computer. Through this module, the interpretation of the user’s
intentions through the BCI transducer results in an action performed by the BCI.
This computerized action is essential to a BCI both because it closes the BCI loop
by providing feedback to the user regarding how the system had interpreted their
mental activity, and because the set of actions which a BCI can produce defines
its application.

While the previously mentioned BCI components technically form a complete
BCI, the inherent difficulty of learning to control a BCI due to the difficulty
in learning how to generate consistent brain signals as mental commands makes
an explicit neurofeedback (NFB) component a practical necessity for most BCIs.
NFB is especially important for BCIs which are driven by voluntary mental ac-
tivity as opposed to those controlled by reactive brain activity (the distinctions
between the main types of BCIs is further discussed in Section 2.2.3). NFB refers
to a class of techniques used to train an individual to regulate or modulate their
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own brain activity. This is accomplished by providing real-time feedback of a
user’s brain activity with respect to some target brain state [11, 12]. In BCI,
NFB is used to help train the user to produce more consistent and distinct men-
tal commands, thus making control more efficient and reliable [13, 14, 15]. The
target brain state is defined both by the type of information extracted by the sig-
nal processing pipeline and by what patterns of brain activity the adaptive model
expects for each mental command. The topic of neurofeedback and how it relates
to BCI is discussed further in Section 2.3 as well as in Chapters 6 and 7.

2.2.2 BCI Model Training and Evaluation

An adaptive model or a machine learning model requires training before it can
make accurate decisions. Due to this fact, there are typically three main phases of
usage which a user must undergo with any BCI based on mental imagery. First,
a training phase is necessary so that individualized models can be learned for
the user. An evaluation phase is usually recommended after training in order to
estimate BCI performance in a context closer to the use-case scenario. Finally,
the BCI can be deployed for its intended application for the given user.

The training phase is the most important part of BCI development in the
research setting, as BCI performance during training can be used to demonstrate
improvements in BCI methodology. While the training phase can be implemented
in a variety of ways, it typically simulates the BCI’s intended application and is
operated as described by the BCI loop illustrated in Figure 2.2. There is however
one key difference. During training, the user is instructed when to perform each
mental command. This allows the system to compile a dataset for which it is
known which segments of recorded brain activity are associated with each mental
command. This provides the required labeled data to train an individualized
machine learning model.

At the start of the training phase, the models usually begin untrained (al-
though some promising work has been done recently using inter-subject models
to seed and enhance individualized models [16, 17, 18, 19]) and thus the BCI
will respond in a random fashion to the user’s mental commands. However, the
models are updated periodically during training, and thus the accuracy of mental
command recognition should increase over the course of training. Furthermore,
the feedback provided by the system during training should help the user produce
more consistent and distinct mental commands, which contributes significantly to
reliable BCI control.

Sometimes a BCI is evaluated after training by having the user operate the
BCI freely or again by following specific instructions. However, this step is not
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Class Ex. Brain Signal Control Type Control Dimensions ITR
ERP P300 Reactionary Very High 20-30 bits/min

SFBA SCP Voluntary Very Low (2 or 4) 5-12 bits/min
MI SMR Voluntary Very Low (2 to 4) 5-35 bits/min

Table 2.1: A summary of BCI types and the most common brain signals used for
control in each category.

always necessary in the research setting, especially if the goal is to evaluate new
BCI methodology rather than a specific end-user application. In either case, per-
formance metrics are required in order to evaluate and compare BCI implementa-
tions. Classification accuracy (the percentage or proportion of correctly recognized
mental commands) is the most common performance metric used. However, when
an evaluation phase is conducted for a specific BCI application, it is also common
to report the Information Transfer Rate (ITR) [20], where

ITR =
log2K + P log2 P + (1− P ) log2 [(1− P )(K − 1)]

T
(2.1)

for K classes (equivalent to the number of usable mental commands or BCI out-
puts) and probability of correct mental command recognition P over time period
T . The ITR, measured in bits/min. is useful because it takes into account both
classification accuracy and the speed of the BCI. It should be noted that there is
still active discussion as to what standard metrics for evaluating BCI performance
should be adopted in the field [21].

2.2.3 Types of BCIs

Some BCIs are not completely independent of muscle activity. For example, some
early BCIs determined which on-screen object to select based on brain activity
associated with looking at one object over other objects [22, 8], thus requiring
eye movements to help drive the system. However, this thesis is restricted to the
discussion of BCIs which rely solely on activity within the central nervous system.
Such BCIs can be divided into three main categories: those based on event-
related potentials (ERPs), those based on voluntary control over a single feature
of brain activity (SFBA), such as the Slow Cortical Potential (SCP) [23], and those
based on conscious mental imagery (MI). Each of these can be further subdivided
based on the specific brain signal used. The types of BCIs differ in how they
are controlled, how many control dimensions they can support, how frequently
commands can be issued through the system, and which types of applications
they support. This information is summarized in Table 2.1 for the three common
categories of BCI.
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Figure 2.3: An illustration of a common ERP with its different components. The
P300 (also called the P3) is commonly used in BCI. Note that this plot has a reversed
y-axis, which is common in the ERP literature. Image obtained from [24].

This thesis is primarily concerned with BCIs which utilize mental imagery.
However, P300-based BCIs are briefly summarized here because the field of brain-
computer interfacing was established in large part through these systems, and they
led to the later development of mental imagery BCIs.

BCIs Based on Event-Related Potentials

An ERP is a brain response measured with EEG (the MEG equivalent is called
an event-related field, or ERF) and has an onset that occurs within a defined time
interval following a specific sensory, motor, or cognitive event. These events have
stereotypical morphologies which make them particularly amenable to detection
(see for example the P300 in Figure 2.3). In addition, because ERPs can be
produced in reaction to external stimuli in an automatic manner, a user does
not need to be trained to control his/her brain activity in order to use an ERP-
based BCI effectively, though the system itself does still need to be trained for
each user. The main challenge in implementing an ERP-based BCI is that the
characteristic forms of ERPs are usually only visible after averaging several trials
that are temporally aligned to the stimulus event (i.e., time-locked EEG trials).

The P300 evoked potential is the most common ERP used in BCIs. The
P300, illustrated in Figure 2.3, occurs roughly 300ms after a subject is presented
with an unexpected visual, auditory, or somatosensory stimulus [25]. One of the
quintessential BCI applications is the P300 speller, which is displayed in Figure
2.4. The user observes a grid of characters while rows and columns flash at ran-
dom. The user simply has to focus on the character they would like to have typed
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next. A P300 potential is evoked when that character’s corresponding row or
column flashes. Detecting a P300 for both a row and a column uniquely identi-
fies a character, and therefore provides a means for typing on a computer using
attention-driven brain responses [26]. Moreover, the P300 BCI is particularly use-
ful for immobilized patients because it does not depend on gaze direction, as long
as the grid of characters is within view.

While BCI applications using P300 ERPs are usually simple to imagine (for
example, a very similar setup to the P300 speller could be used to play chess [27]
or control a digital painting program [28]) the implementation is challenging. The
main limitation is accurately detecting the P300 ERPs while minimizing the num-
ber of repeated trials needed for averaging [29]. Thus, even though P300-based
BCIs can reach nearly perfect accuracies, they can be slow to use. Very recently,
near-perfect accuracies were achieved with single-trial classification of P300 ERPs
using a novel machine learning method [30]. However, when perfect single-trial
detection of the P300 ERP is achieved, the upper limit of P300-based BCIs will
also have been reached. Therefore, other kinds neurophysiological phenomena are
actively explored as avenues for new BCI applications.

Mental Imagery BCIs

Mental imagery refers to any imagined sensory or cognitive experience, such as
mentally replaying a song, or viewing visual scenes in the mind. BCIs based
on mental imagery have become of greater interest as the field has developed.
While they tend to be more complicated in design and implementation compared
to ERP-based BCIs, MI-BCIs also have the potential to pave the way towards
a greater variety and depth of applications. The reason is simple: the variety
and richness of mental commands based on mental imagery are theoretically only
limited by human imagination. However, interpreting what is being imagined
based on recorded brain activity alone is extremely difficult from neuroscientific,
signal processing, and machine learning perspectives, so there is still a long way
to go before the potential of MI-BCIs are seen.

In order to simplify the problem of mental imagery discrimination, BCI re-
searchers have focused most of their attention on motor imagery, which refers to
kinaesthetically imagining performing actions using the body. For example, it is
common for motor imagery BCIs to be controlled by imagining performing move-
ments or actions using the hands or feet [32]. BCIs based on motor imagery have
dominated the field to such an extent that much of the literature refers to motor
imagery or SMR-BCIs specifically rather than to mental imagery BCIs [8, 10].
The neural correlates of motor imagery are well understood and well character-
ized in the neuroscience literature, in part because very similar activity is seen in
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Figure 2.4: A typical P300 speller. On a two dimensional grid, a row and column
together identify a specific grid position. Flashing a row or column which contains the
letter attended to by the user elicits a P300 brain response. Therefore, a system which
can perform reliable real-time detection of a P300 ERP can be used in conjunction
with an interface which flashes rows and columns of characters on a grid in order
to make a typing application based on brain responses. Image reproduced from [31]
under the Creative Commons Attribution License.
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the sensorimotor cortex when bodily actions are either physically performed or
merely imagined.

Having sufficient a priori neurophysiological knowledge about motor imagery
simplifies the problem of classification. With this kind of knowledge, researchers
can develop specialized strategies for extracting and classifying relevant informa-
tion from brain signals (i.e., specialized implementations of the signal processing
pipeline and adaptive modeling steps illustrated in Figure 2.2). Motor imagery
involving distinct parts of the body is highly spatially localized along the sensori-
motor cortices [33, 34], especially when considering contralateral control pathways
between each hemisphere of the brain and the body [35]. Moreover, motor imagery
produces µ rhythm (activity in the 7-13 Hz band seen in the sensorimotor cortex
during motor planning and execution [36, 37, 38]) and associated β (specifically
18-26 Hz) band desynchronization [39, 40, 41]. Therefore, discriminative spatial
patterns in these frequency bands are usually sought for motor imagery discrim-
ination [8, 32]. These factors combine to make motor imagery an ideal starting
point for studying and developing the underlying technology for BCIs based on
mental imagery.

While the vast majority of MI-BCIs use motor imagery, recent studies have
demonstrated a clear potential for mental commands based on auditory and vi-
sual imagery [42, 43]. There is growing interest in non-motor forms of mental
imagery for BCI control because continued reliance on motor imagery is limiting.
These limitations are discussed in detail in Chapter 4, but the underlying problem
with an over-reliance on motor imagery is that the ability to use motor imagery
effectively in the BCI context varies considerably across individuals [44, 45, 46].
This leaves a sizable proportion of the population unable to easily use a BCI
based on motor imagery, not only because of insufficiently advanced motor im-
agery recognition or user-training methodology, but because their cognitive and
neurobiological profiles are simply not well-suited to modulating those specific
brain signals [47, 48, 49, 50, 46, 43].

Despite such significant limitations, BCIs based on motor imagery have become
the standard and the benchmark for mental imagery BCIs in general. Hence the
importance of motor imagery to MI-BCIs when considering the expansion to other
forms of mental imagery cannot be understated. Furthermore, the user-training
methods and experimental designs used for motor imagery BCIs are still well
suited for BCIs based on other forms of mental imagery. For these reasons, motor
imagery is included in Chapter 4 where alternative forms of mental imagery are
evaluated for their use in BCI control.
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2.3 Using a BCI is a Skill: Neurofeedback for

BCI Training

It has been widely acknowledged for more than a decade that “BCI use is a skill”
[8, 51]. This means that the user of a BCI, especially a mental imagery BCI, must
be trained to produce consistent and reliable EEG patterns in order to successfully
and easily control the system [52, 44]. If the user is not able to generate the
brain activity corresponding to each mental command willfully and in such a way
that they are distinct from one another, then the BCI will fail regardless of the
sophistication of its signal processing and machine learning algorithms. Thus, BCI
users typically develop specific mental strategies (i.e., specific mental activity or
imagery) and undergo training with neurofeedback in order to learn to generate
useful brain activity.

Even though the importance of the user’s skill has been acknowledged and
explicitly stated in most of the widely cited reviews of brain-computer interfacing
to date [8, 13, 9, 10], the BCI community has allocated most of its time and effort
to the perfection of signal processing and machine learning techniques. However,
some argue that perhaps the human user is as important as the machine and that
the ability of humans to learn is under-exploited in BCIs [52, 51, 53, 54].

The idea that the user, or the brain, in the brain-computer interface is as im-
portant as the computer is, from the perspective of psychology and neuroscience,
not a far-fetched one. The brain can be viewed as a biological computer capable of
learning mental and physical behaviours extremely efficiently and often after only
one or two attempts. In contrast, machine learning algorithms typically require
many repetitions or examples of data before they are able to learn meaningful
patterns (machine learning algorithms capable of “one-shot” learning, or learn-
ing from just a few examples, are quite novel in the machine learning literature
[55, 56] and have not yet been applied to BCI).

The current standard in BCI user training is the Graz Protocol [57, 15], with
most user training protocols used in BCI being variations of this approach [54].
The Graz Protocol uses a BCI training phase in which users are instructed when
to produce a mental command and which command to produce using on-screen
cues. After several trials (this can vary between 20 or more than 100 trials),
machine learning algorithms are trained to classify each mental command using
the recorded EEG data. Following this ‘pre-training’ period, the focus is shifted
towards training the user. Here, the trials are repeated as previously described,
but neurofeedback is provided to the user. This feedback can be concurrent in real
time with the trial, or be provided after the mental imagery period of the trial is
completed. In a motor imagery BCI intended to control a cursor on the left-right
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axis, for example, neurofeedback might be displayed as an arrow extending in
either direction, informing the user of which mental command the machine inter-
prets the user as performing, and optionally, how confident the machine is in its
interpretation. This protocol can be repeated across several sessions on different
days in order to train the system and the user to be robust to nonstationarity
within the EEG.

It has recently been shown that the Graz Protocol is a suboptimal method
for training skills, even outside of the BCI context (e.g., for training the motor
skills of drawing triangles versus circles [53, 54]). Several theoretical limitations
have been identified from the instructional design literature [51], but due to the
inherent complexity of brain-computer interfacing, along with the unusual goal
of training a user to control their own brain activity with respect to a linear or
non-linear combination of features directly makes it difficult to incorporate what
is known about training humans in other contexts. Because of the unique context
of brain-computer interfacing, no specific recommendations have been made for
improving user training for BCIs. As a result, there have yet to be new and better
training protocols developed. However, one promising approach to augmenting
BCI user training is discussed in Chapters 6 and 7, and is based on the concept of
shaping from Learning Theory [12], which refers to training an individual towards
a desired goal or behaviour in an incremental and progressive way.

2.4 Reading Brain Activity

Methods of recording brain activity can be categorized by what kind of biological
phenomena they measure. BCIs are generally designed using recording technolo-
gies which either record electrophysiological signals or hemodynamic signals [10].
While functional near-infrared spectroscopy (fNIRS) and, to a lesser degree, mag-
netoencephalography (MEG) are recording technologies which are seen in the
BCI literature, only functional magnetic resonance imaging (fMRI) and electroe-
cephalography (EEG) are discussed here, as only these two technologies were used
in the work presented in this thesis.

2.4.1 Functional Magnetic Resonance Imaging (fMRI)

Functional magnetic resonance imaging (fMRI) non-invasively measures changes
in oxygenated blood flow, most commonly using the blood-oxygen-level dependent
(BOLD) contrast [58]. Associating the BOLD signal with neural activation relies
on data suggesting that the flow of oxygenated blood to a region of the brain
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Figure 2.5: A subject laying on the bench of the fMRI prior to being moved into the
machine’s tube. Stock Photo retrieved from [60].

follows neural activation within that region in order to support the metabolic
needs of the activated neural tissue [59]. The magnetic resonance signal measured
as a result of this process, called the hemodynamic response (HDR), does not
appear until one second or longer after the neural activity of interest because
of the time it takes for the vascular system to respond. Therefore the temporal
resolution of fMRI recordings is quite low (≈ 1 − 2s). Combined with the fact
that fMRI machines are extremely expensive and large, requiring a dedicated
electromagnetically shielded room with the subject lying on a bench inside the
scanner (see Figure 2.5), it is not a practical brain recording device for most brain-
computer interfacing applications. However, the advantage of fMRI is its ability
to acquire signals throughout the brain with fine spatial resolution (≈ 0.5−2mm3,
depending on the strength of the magnet) [10]. Therefore, fMRI can be very useful
for spatial localization of the neural correlates of various kinds of mental activity.
Chapter 3 presents one study of this nature. Once the neural correlates of specific
mental activity are discovered via fMRI, the mental activity becomes potentially
usable as a mental command in a BCI.

2.4.2 Electroencephalography (EEG)

Electroencephalography (EEG), first demonstrated in 1929 [61], is the most pop-
ular method of recording brain activity in the BCI literature [10]. EEG allows
for non-invasive recordings of electrical activity that is produced by the brain and
which reaches the scalp (what are often called brain waves) using an array of
scalp electrodes as illustrated in Figure 2.6. As such, relatively to most recording
methods, EEG is inexpensive and convenient and therefore most often chosen for
laboratory studies involving healthy participants or patients who are not in ex-
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Figure 2.6: A grid of 21 EEG electrodes placed according to the International 10-20
system. Image reproduced from [63] with permission. (Disclaimer: re-use of this
image will require separate permissions obtained from Oxford University Press.)

treme need. Despite the low spatial resolution afforded by EEG (≈ 1cm3, with
decreasing resolution for brain regions further away from the scalp) due to volume
conduction through the cerebrospinal fluid, the skull, and the scalp, as well as any
intermediary brain tissue (see Figure 2.7), EEG signals are useful for real-time ap-
plications because of their high temporal resolution (in the order of 10 − 20ms).
Note that while the temporal resolution of EEG is indeed high, conventional esti-
mates of the temporal resolution of EEG may be somewhat overestimated because
it can also be impacted by volume conduction [62].

EEG signals are reflective of the flow of electrical activity generated by at
minimum many thousands of neurons firing nearly simultaneously, producing an
electromagnetic local field potential large enough to measured at the scalp. Given
the aforementioned limitation of low spatial resolution due to volume conduction,
it is easiest to record activity from brain regions near the surface of the brain
(though this limitation can be partially overcome with spatial localization tech-
niques [65, 66]). Fortunately, much of the neocortex, which is responsible for most
high level conscious mental activity [67, 68] and therefore is of primary interest
for many BCI applications, makes up a large portion of the surface of the brain.

Given the importance of EEG in the field of brain-computer interfacing and for
this thesis in particular, the proceeding sections on signal analysis and machine
learning assume an EEG-based BCI.
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Figure 2.7: An illustration of EEG being produced by the cumulative field potentials
of many active synapses of pyramidal cells. The summative local field potential must
pass through several layers of tissue between the cerebral cortex and the scalp before
reaching the EEG electrode [64].

2.5 EEG Signal Processing for BCI

Signal processing serves two essential functions for BCIs. The first is preprocess-
ing, which involves denoising the raw brain signal and identifying where in the
brain the signals of interest are generated. This is done to maximize the signal-to-
noise ratio (SNR) and facilitate the second function, which is feature extraction.
The second aim of feature extraction is to compute a set of features (also called
variables or functions) which carry the information required for accurate and reli-
able recognition of the different patterns of brain activity used to control the BCI.
This comprises the signal processing pipeline referred to in Figure 2.2.

EEG-based BCIs use a variety of signal processing tools depending on the
specific EEG hardware and the intended application in order to perform the two
functions outlined above. With respect to noise reduction, two key steps are
involved. First is the reduction of environmental noise, various sources of low
frequency noise, and extraneous information using digital filters. Second is the
removale of artifacts which arise mainly from ocular and facial movements.
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(a) Low-Pass Filter (b) High-Pass Filter (c) Notch Filter (d) Band-Pass Filter

Figure 2.8: Exemplar shapes of common digital filters. Response is given on the Y-
axis, while frequency is given on the X-axis. Where the response is high, the signal at
those frequencies is retained. Where the response is low, power at those frequencies
is diminished. Images obtained from the public domain [69].

Digital Filters

Digital filters are used almost ubiquitously in EEG signal processing. Digital
filters are effective as a set of first-pass noise removal tools because they are able
to reduce the magnitude of a signal within specified frequency ranges in order to
enhance the signal in the frequency ranges of interest. This is extremely valuable
for EEG studies, because it is often the case that the brain activity of interest
occurs in a specific frequency band. Moreover, certain sources of noise occur in
specific frequency bands, allowing digital filters to minimize their influence on
subsequent analyses.

Digital filters can be categorized into four main types defined by how they alter
the frequency spectrum of a signal. Low-pass filters retain frequency components
of a signal below a specified frequency while reducing the magnitude of frequency
components above the cutoff. High-pass filters are the opposite; they retain higher
frequency components and reduce low frequency components. Notch filters reduce
the influence of a signal in a narrow frequency band and are used to reduce the
50 Hz or 60 Hz power line noise that is picked up by EEG sensors. Finally, band-
pass filters diminish the signal outside of a specified frequency range. These are
commonly used in EEG data analysis in order to focus on the frequency bands of
interest. Examples of the response curves of common digital filters used for noise
reduction are shown in Figure 2.8.

There are a variety of methods for constructing digital filters. Butterworth
filters were chosen for the work presented in this thesis because they have uniform
response to the passband frequencies and a smooth response dropoff outside of
the passband [70]. One tradeoff, however, is that they have a relatively slow roll-
off, thus allowing more of the signal beyond the frequency cutoffs to be retained.
For the purposes of the data analyses presented here, this drawback is sufficiently
resolved by using, typically, a fourth order Butterworth filter, which performs
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additional computations in order to achieve a much steeper roll-off.

Artifact Detection

Artifacts are extraneous signals that are mixed into EEG signals and distort or
mask the neurophysiological signal of interest. Artifacts in the EEG can be gen-
erated from a number of sources, both physiological and non-physiological. The
most common sources of artifacts are summarized in Table 2.2.

The presence of artifacts in EEG when training or using a BCI system is highly
detrimental to the performance of the system. Because artifacts affect the brain
signal of interest, they have a significant impact on the feature extraction and ma-
chine learning components of a BCI (discussed in more detail in Sections 2.6 and
2.7). Thus, their presence, if correlated with the issuance of mental commands,
could be mistakenly used to control the BCI. This is especially problematic if,
for example, a BCI is being experimentally validated with healthy participants
before being deployed for patients sufferring from paralysis. If the experimental
group succeeds in controlling the BCI by using artifacts, then it remains unclear
whether the system will be successful with a patient group who cannot generate
such artifacts. On the other hand, if the artifacts are not particularly correlated
with the mental commands being used, then they tend to mask those mental
commands and prevent the system from learning useful patterns from the EEG.

Different types of artifacts can be distinguished by their spectral profile and
sometimes their morphology in the time series. Non-physiological signals, such
as power line noise, can typically be precisely characterized because their EMF
outputs are constrained by design. This makes such signals significantly easier
than other types of artifacts to detect and remove from the EEG, e.g., by applying
a 50 Hz or 60 Hz notch filter. On the other hand, physiological signals tend to
be much more difficult to remove because they are much more variable and more
often overlap in frequency with the frequency bands commonly used in EEG
analyses. Furthermore, a greater variety of physiological artifacts compared to
non-physiological artifacts are present in the EEG; some extremely large, and
others very subtle. These artifacts cannot be reliably controlled at the source,
because they are produced by physiological processes which are often involuntary
(e.g., blinking).

Many techniques have been developed to detect and remove artifacts from EEG
signals, both for offline EEG experiments and in the real-time BCI setting [71].
While most non-physiological artifacts are successfully handled using standard
signal processing tools, there is still active research in eliminating physiological
artifacts, which are the most problematic in BCI. In particular, artifacts generated
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Source Type Frequency Range Morphology

Power Line Non-Physiological 50/60 Hz

Electrode Dis-
placement

Non-Physiological Full Spectrum

Eye Blinks Physiological (EOG) 0-12 Hz

Eye Movements Physiological (EOG) 0-8 Hz

Jaw Clenches /
Facial Expressions

Physiological (EMG) >20 Hz

Table 2.2: Some common artifacts which contaminate EEG signals and their dominant
characteristics. Examples of typical artifact morphologies are highlighted in red with
surrounding EEG in blue. Note that frequency ranges are estimates based on standard
EEG experimental setup and may vary according to the hardware and software used
when recording the EEG.

from the electro-oculogram (EOG), such as eye blinks and eye movements, as well
as artifacts generated from the electromyogram (EMG), such as jaw clenches and
facial expressions, continue to be the most difficult and disruptive kinds of artifacts
in EEG.

Two main approaches are used to handle artifacts: first, detection of an ar-
tifact and subsequent removal of the entire affected segment in the time series
is used if the underlying neurophysiologically-derived EEG cannot be recovered
with high confidence, and second, given suitable recording hardware, computa-
tional resources, and a sufficiently large dataset, regression and/or source sepa-
ration methods can be used to filter artifacts and recover the underlying EEG.
For the first approach, a common technique is statistical thresholding (deleting
segments of the EEG which exceed a multiple of the variance in amplitude or
power) of the EEG time series or the power spectrum (e.g., the popular FASTER
algorithm [72]). A specialized method for artifact rejection in the case of real-time
single-channel EEG analysis is described in Appendix A.
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Blind source separation (BSS) is commonly used in the second approach to
artifact detection. In general, BSS methods, such as independent components
analysis (ICA) [73, 74], seek a linear transformation between channel space and
source space [75]. With a sufficient number of electrodes (the exact number de-
pends on the method and the data, but usually a minimum of 14 EEG electrodes
is recommended to achieve a useful level of precision [76]), EOG and EMG sources
can be separated from brain sources. These sources can then be removed from
the computed spatial filter and the remaining sources can be projected back into
channel space with much of the artifact contamination removed [77].

2.6 EEG Feature Extraction

Given that EEG signals are typically highly noisy, nonstationary, and high-dimensional
multichannel time series, even the cleaned signals cannot usually be effectively
used for classification as they are. Instead, a feature extraction stage is necessary
in order to reduce the dimensionality of the input space in a way which accentu-
ates any discriminative information carried by the signals. In fact, in typical BCI
applications, most of the information contained within the signals is irrelevant to
the classification problem at hand, so feature extraction is used in order to isolate
only those signal characteristics which are important for the application [9].

The approach to feature extraction used for a generalized BCI is necessarily
different than what is commonly used in the BCI literature. In fact, the feature
extraction stage is a key area which distinguishes a generalized BCI from standard
BCIs. It is usually desirable to compute only those features which are likely to
be valuable for the machine learning task at hand. Minimizing the amount of
computation required is particularly important for real-time BCI applications.
However, knowing which features to compute requires a significant degree of a
priori information about the problem and the nature of the data being analyzed.
A generalized BCI does not rely upon this kind of information, because it would
require restricting users to predefined mental commands. Instead, the strategy
used in this body of work is to compute a wide variety of features that have been
found to be useful for different kinds of machine learning problems involving EEG
and BCI, and then to select a posteriori which of those candidate features are
most useful for a given subject at a given time.

Broadly speaking, there are two main classes of methods for feature extraction
in the absence of sufficient a priori knowledge for feature engineering. The first
is the most direct implementation of the approach to generalized feature extrac-
tion described above. That is, a long list of features is extracted from the EEG
based on general domain knowledge (i.e., knowledge about how information can
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be extracted from EEG in general) rather than specific domain knowledge (i.e.,
knowledge about how information related to the specific mental activity being
studied can be extracted from EEG). In this thesis, this approach is explored us-
ing spectral analysis, which employs methods developed by the statistical signal
processing community. Since there is a wide variety of spectral methods which
yield different information about a signal, this approach requires minimal assump-
tions about what kind of information will be useful for classification or regression.

The second class of methods is based on feature learning. Feature learning
methods use machine learning algorithms to find discriminative features. Because
features are learned from data rather than computed prior to considering the data,
feature learning methods are often more efficient in the sense that fewer features
need to be computed. However, choosing an appropriate feature learning method
also requires some general domain knowledge. For example, the basic feature
learning method used throughout this thesis and that is most widely used in the
BCI literature is Common Spatial Patterns (CSP) [78]. CSP, when applied to
EEG, assumes that there exists some spatial structure to the signal topology in
at least one frequency band which can be exploited in classification, and thus the
use of CSP in BCI assumes that separable spatial patterns can be found for each
mental command.

2.6.1 Spectral Features: Power Spectral Density

The power spectral density (PSD) is defined for a time-varying signal as the power
in each frequency component, where power is the amount of work performed or
energy consumed per unit time, as it is used in physics [79]. The PSD of a time-
varying signal x(t) is a function of its Fourier Transform. Here the finite-time
Fourier Transform of x(t), x̂T , is used because real-world EEG signals are finite
in time. Thus, at frequency f , the finite time Fourier Transform over the interval
[0, T ] can be written as

x̂T (f) =
1√
T

∫ T

0

x(t)e−iftdt, (2.2)

where i =
√
−1. The PSD at a frequency component f is then defined as

Pxx(f) = lim
T→∞

E
[
|x̂T (f)|2

]
, (2.3)

where E is the expectation operator. Note that this is the time average of the
squared magnitude of the Fourier Transform of x(t). Equivalently, Pxx(f) is the
limit of the second moment of the magnitude of x̂T (f) (in fact, the central second
moment of a signal, or its variance, is simply the integral over Pxx). This fact is
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important for understanding the bispectrum and bicoherence of a signal, which is
discussed in Section 2.6.4 below.

In practice, it is of course impossible to exactly compute the PSD because
this would require integration to infinity at an infinite sampling rate. Instead, the
Fast Fourier Transform (FFT) is commonly used to efficiently compute the dis-
crete Fourier Transform, which is a close approximation to the true Fourier Trans-
form using discrete sampling and windowing [80]. In all computational analyses
performed in this thesis, the PSD refers to the magnitude-squared of the FFT.

For an EEG signal, the PSD at a given electrode site or source can be in-
terpreted as a measure of how much synchronous neural activity is taking place
there at different frequency components. Changes in the PSD are known to be
associated with certain neurophysiological and behavioural phenomena and are
used extensively with EEG [81, 82, 83, 84]. For example, entering a relaxed men-
tal state is known to increase power in the alpha band (generally 8-12 Hz, but
the precise band varies across individuals), whereas beginning to fall asleep can
be detected by a rise in theta power (usually 4-7 Hz). PSD features are used in
a variety of types of BCIs [85, 10], most notably for detecting mental commands
based on motor imagery [86, 87].

The PSD can be used in a variety of ways. In this thesis, PSD features are
sometimes extracted from wide bands in order to reduce the number of features
produced (e.g., in Chapter 5), and at other times narrow bands are used to extract
more fine-grained detail about a signal (e.g., Chapter 4). Yet another approach,
used in Appendix A, takes statistics of the PSD in various frequency bands. Hence,
wide applicability of the PSD and functions of the PSD make its use popular
in BCI and EEG analysis, and have led to it being used throughout the work
presented in this thesis.

2.6.2 Spectral Features: Cross-Spectrum and Coherence

The cross-spectrum is simply a generalization of the power spectrum for a pair of
signals. Given signals x(t) and y(t), the cross-spectral density (CSD) is defined
as

Pxy(f) = lim
T→∞

E [x̂T (f)ŷT (f)] . (2.4)

Note that this is the mixed moment, or the cross-moment, of x̂T and ŷT , which is
also the Fourier Transform of the cross-correlation function of x(t) and y(t).

The coherence, also called magnitude-squared coherence, between a pair of
signals is the magnitude-squared CSD normalized by the product of each signal’s

35



K. Dhindsa - McMaster University, Computational Science and Engineering Ph.D. Thesis

PSD:

Cxy(f) =
|Pxy(f)|2

Pxx(f)Pyy(f)
. (2.5)

Thus, coherence can be interpreted as a measure of linear similarity between two
signals which approaches one as x(t)→ y(t).

The CSD and coherence are included as part of spectral feature extraction in
this thesis because they are simple ways of representing linear pairwise interactions
between two EEG channels or brain sources [88, 89]. These measures, in practice,
can be used in similar ways as the PSD, though they relay a different kind of
information. Coherence has been used in BCIs based on motor imagery (e.g.,
[90]), but is not commonly seen in the BCI context because other kinds of features
are typically considered sufficient for the types of mental commands commonly
used. However, certain kinds of mental activity and states do result in changes in
the CSD and coherence (e.g., [91, 92]). Therefore it is reasonable to include these
features in a generalized BCI, where such mental activity might be used as control
signals. In fact, in the work presented in Chapter 5, the CSD and coherence were
found to be useful for emotional reaction recognition with EEG.

2.6.3 Spectral Features: Cross-Frequency Coupling

Cross-frequency coupling (CFC) describes linear phase-amplitude relationships
between brain oscillations in different frequency ranges and reflects neural inte-
gration and information transfer across spatial and temporal scales [93, 94, 83]. A
particular measure of CFC known as the weighted phase-locking factor (WPLF)
[95] is used in this thesis and is shown to contribute to detection of emotional
states from EEG in Chapter 5. WPLF was chosen over alternative methods be-
cause it measures both the instantaneous coupling strength and the related phase
angle for a pair of signals in a way which is robust to nonstationarity in com-
parison to coherence. In addition, it is a measure of phase-to-phase coupling,
rather than phase-to-amplitude coupling like coherence [96]. Thus WPLF con-
tributes unique information which can be used to discriminate between mental
commands or mental states compared to the other spectral features included in
the SF method.

WPLF is computed as follows: if T is time and θ is the phase difference
between two signals or two frequency components of the same signal, then

WPLF =
1

T

∫ T

0

eiθ(t)dt. (2.6)

This measure has been used to study neurological conditions such as epilepsy [95]
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and schizophrenia [97], but to date, CFC measures have not appeared in the BCI
literature.

2.6.4 Spectral Features: Bispectrum, Bicoherence, and
Quadratic Phase Coupling

The bispectrum of a signal is derived from a mathematical generalization of the
PSD. As noted earlier, the power spectrum is simply the limit of the second
moment of the magnitude of the Fourier Transform of a signal. Theoretically,
related characteristics of a signal could be obtained using its moment-generating
function, Mx(t) = E [etx] or by the cumulant-generating function of a pair of
signals, Cux,y(t) = Mx+y(t). The bispectrum is one particular case of generalizing
time-frequency analysis using such generating functions from theoretical statistics
(higher order spectra can be referred to generally as polyspectra) [98].

The bispectrum B of a signal is obtained by taking a two-dimensional Fourier
Transform of the third-order cumulant generating function [99], where the pair of
signals in Cux,y(t) is represented by the signal x(t) at two frequency components
f1 and f2. Thus, for the Fourier Transform F its complex conjugate F∗,

B(f1, f2) = F∗(f1 + f2)F(f1)F(f2). (2.7)

Bicoherence [100], like coherence, can be defined with respect to n time bins
as

Bc(f1, f2) =
|∑nFn(f1)Fn(f2)F∗n(f1 + f2)|∑

n|Fn(f1)Fn(f2)F∗n(f1 + f2)|
. (2.8)

Since the numerator is the summed magnitude of the bispectrum across the binned
segments of time, it increases monotonically with increasing phase coupling be-
tween the two frequency components and approaches zero for uncorrelated phases.
The denominator is a normalization term equal to the maximum value of the nu-
merator (i.e., the numerator and denominator are equal if the pair of frequency
components exhibit perfect phase coupling).

Quadratic Phase Coupling (QPC) features are obtained by performing an au-
toregressive analysis of the bicoherence of a signal [101]. The QPC features are
simply the autoregression coefficients. These provide information about how bi-
coherence changes with respect to frequency.

The bispectrum, bicoherence, and QPC capture non-linear interactions be-
tween pairs of frequency components in a signal. The bispectrum gives informa-
tion about non-linear interactions with respect to the signal’s magnitude, while
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bicoherence measures the extent of quadratic phase-amplitude coupling (as op-
posed to linear phase coupling as measured by WPLF and related measures).
QPC, on the other hand, provides non-linear phase-phase coupling information
which is not represented in the bicoherence explicitly.

Like the WPLF features described above, features based on the bispectrum
have not previously been used in brain-computer interfacing. However, these mea-
sures have previously been used to analyze sleep EEG [101], EEG signals recorded
from epileptic patients [102], and elsewhere in the clinical EEG literature [103].
These features are interesting and distinct from the other spectral features and
from CSP due to their construction using higher order statistics and their abil-
ity to capture information about non-linear interactions in brain activity. Hence
these were also included as experimental features in parts of this thesis. These
features played an interesting role in the work presented in Chapter 5.

2.6.5 Common Spatial Patterns

Common Spatial Patterns (CSP) is one of the most important methods used in
BCI. While it was originally designed to extract spatially localized abnormalities
in clinical EEG data [104], it is now better known as the most prominent fea-
ture extraction method for BCIs based on mental imagery [105, 78]. CSP has
traditionally been described as a feature extraction method for motor imagery
classification. However, this association appears to be a result of the historical
use of CSP rather than being based on theory. In this thesis, CSP is used for a
variety of mental imagery classification tasks, showing that it can be applied more
broadly than it has been in the past.

In principle, CSP is appropriate for any BCI controlled by mental commands
that have distinct spatial distributions of activity over the neocortex. This is be-
cause CSP is simply a supervised statistical machine learning method for feature
learning that attempts to find discriminative spatial patterns in EEG data. While
it fits well with motor imagery classification because motor imagery is spatially
separable in EEG, there is nothing inherent about CSP that should limit it to
motor imagery. This fact, while still underutilized, has received greater apprecia-
tion over the last few years. Most notably, CSP has been successfully applied to
emotional imagery recognition [106].

CSP uses supervised learning to construct a spatial filter that maximizes the
variance of a signal for one class while minimizing its variance for another class.
Formally, the spatial filter W is obtained by solving the problem posed by the
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following objective function:

W = max
W

‖WX1‖2
‖WX2‖2

, (2.9)

where Xi, i ∈ {1, 2}, is the N × Ti matrix of EEG data comprised of N channels
and the Ti samples belonging to class i in the training dataset. Therefore, W
is solved by maxmizing the ratio of variance in the spatially-transformed EEG
between class 1 and class 2 in the training data.

The solution for W can be found via a simple linear program. In fact, CSP
can be seen as an extension of the more widely known Principle Components
Analysis (PCA) [107, 108] technique to a classification problem. Where PCA
uses the eigendecomposition of a covariance matrix to find components, i.e., linear
combinations of channels, which carry the bulk of the variance of a signal, CSP
uses the eigendecomposition of a ratio of covariance matrices to find components
which instead maximize the ratio of variances between two classes. Therefore CSP
uses a normalized spatial covariance matrix for each class of signals, given by

R1 =
X1X

T
1

trace(X1XT
1 )
, R2 =

X2X
T
2

trace(X2XT
2 )
, (2.10)

where T denotes the transpose of a matrix. In order to make effective use of these
ratios, an extra step is required.

CSP finds components of a signal that maximize the ratio of variances between
two classes in order to differentiate those classes based on the variance in those
components. However, there are two desired properties of covariance matrices
if these ratios are to be meaningfully compared across components and in order
to ensure that these components are not derived merely on the basis of spatial
correlations that exist between the two classes, which can be particularly high for
EEG signals. The whitening transform of the composite covariance Rc provides
both of these properties, because it transforms a signal to have a covariance matrix
equal to the identity matrix.

Given the composite spatial covariance matrix Rc, where

Rc = R1 +R2, (2.11)

and its diagonal matrix of eigenvalues λ and matrix of eigenvectors V given by
the eigendecomposition

Rc = V λV T , (2.12)

the whitening transform Q is obtained by

Q = V
√
λ−1. (2.13)
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The whitened composite spatial covariance matrix can then be computed by tak-
ing QRcQ

T , which equals the identity matrix I .

The reason that whitening transform enables comparisons of variance ratios
across CSP components is because it normalizes the variances across channels.
However, the most important property it provides is derived from the fact that
Q is computed using the sum of the class covariance matrices in Equation 2.11.
This ensures that

R∗1 = QR1Q
T and R∗2 = QR2Q

T (2.14)

have common eigenvectors in V ∗ such that

R∗1 = V ∗λ1V
∗T and R∗2 = V ∗λ2V

∗T . (2.15)

Most importantly, it means that if the rows of V ∗ are sorted in descending order
of the values in λ, then

λ1 + λ2 = I . (2.16)

Achieving this relationship between the eigenvalues of class-specific covariance
matrices is extremely important for two reasons: first, it means the variances
across CSP components can be compared, which allows a machine learning clas-
sifier to use differences in variance to discriminate between classes, and second, it
means that the largest eigenvalues of the whitened covariance matrix of one class
correspond to the smallest eigenvalues of the whitened covariance matrix of the
other class. Therefore, these eigenvalues maximize the ratio of variance between
the classes, meaning the classes can be discriminated on the basis of the variance
of the CSP components.

The CSP filter that satisfies Equation 2.9 is

W = (V ∗TQ)T , (2.17)

and the CSP components of an EEG signal X are obtained by computing

C = WX. (2.18)

Therefore, multiplying X by W whitens the EEG signal X and computes linear
combinations of channels whose coefficients are the rows of V ∗. These two steps
are illustrated in Figure 2.9.

Since V ∗ has its rows sorted in descending order of its corresponding eigen-
values λ, its top M and bottom M eigenvectors will have the highest ratio of
variances between the two classes to be classified, where M ∈ {1, 2, . . . [N/2]} is
a parameter chosen by the experimenter. Therefore, discriminative CSP features
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Figure 2.9: The two key steps of CSP encapsulated by the CSP filter W . Left: Toy
data representing samples from two EEG channels are plotted as points with their
corresponding covariance matrices plotted as ellipsoids. Green and blue data are used
to differentiate between classes, while the grey ellipsoid represents the composite
covariance matrix Rc. Center: Orthogonalization. The covariance matrices are
orthogonalized by the whitening transform given in Equation 2.13. Since whitening
the composite covariance matrix transforms its corresponding covariance ellipsoid into
the unit circle, not only are the class-specific covariance matrices orthogonalized, they
are also made congruent to one another. Right: Rotation. Transforming the whitened
data with the eigenvectors in V ∗ projects the data into a new coordinate space where
the principle axes of variance for each class are aligned to standard coordinate axes.
Since the class-specific covariance matrices are both congruent and orthogonal, this
rotation step ensures that on one axis, variance is maximum for one class and minimum
for the other class, and vice versa for the other axis. In higher than two dimensions,
these axes correspond to the directions given by the first and last eigenvectors. Image
reproduced with permission from [109].

fj, j = 1, . . . , 2M , are computed by taking the log of the normalized variance for
each of the 2M components in Z = {1, . . . ,M,N −M + 1, . . . , N}:

fJ = log

[
var(Cm)∑
i∈Z var(Ci)

]
, (2.19)

where m ∈ Z. It should be noted that in a machine learning experiment, W must
be computed using training data and then applied later to separated test data in
order to avoid overfitting.

Notice, however, that CSP can facilitate the extraction of more than just
the standard CSP features defined by Equation 2.19. In fact, CSP can be used
as a preprocessing step for other feature extraction methods as well. This is
because the matrix C = WX gives the EEG components derived from unique
and discriminative spatial distributions over the scalp, and thus the components
in C can be used as input for further feature extraction methods just like one
might use a set of source signals or a set of channels (e.g., one can make use
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Figure 2.10: Common spatial patterns for foot and right hand motor imagery com-
puted in different frequency bands. Common spatial patterns show the distribution
of discriminative activity in the brain, but these patterns are sensitive to the fre-
quency band chosen when constructing the filter, and typically require a fairly narrow
frequency band. Figure reproduced with permission from [113] (2010 IEEE).

of PSD features from the CSP components or the original channel data, though
these features would not carry the exact same information). Therefore, any feature
extraction method which would normally be applied to the EEG signal in channel
space, X, can also be applied to the EEG signal as represented in CSP space,
C. As will be seen in Chapter 4, this fact is exploited since the BCI presented
relied on PSD features extracted over the CSP components in C in order to better
generalize across various kinds of mental commands.

As a linear spatial filter, CSP also provides a convenient means with which to
visualize the discriminative EEG spatial patterns for each class. In particular, the
columns of W−1 are called the common spatial patterns and are interpreted as
time-invariant EEG source distributions [78, 110, 111]. Examples of these patterns
are shown in Figure 2.10. Note that when M < N , it is more accurate to use as

the spatial patterns the columns of W
−1

= cov(x)×W × cov(C)−1 [112].
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Robustness of the Common Spatial Patterns Algorithm

The CSP algorithm, while powerful for classifying spatially separable patterns in
EEG, electrocorticography (ECoG), or MEG, has a tendency to overfit, or produce
a model which is overly specific with respect to the training data and therefore
generalizes unsatisfactorily to new test data [114]. There are several reasons for
this problem [115]. For instance, CSP is sensitive to artifacts because artifacts
typically cause spikes in variance and covariance in certain regions of EEG topol-
ogy. If there is a correlation between the mental commands and certain artifacts,
this can result in the CSP filter becoming dependent on those artifacts for dis-
crimination. When those artifacts are not correlated with the mental commands,
then they can introduce significant noise in those spatial filters. CSP components
are also not stationary, and this is particularly problematic if only a small amount
of training data is available (e.g., less than 50 trials).

Since the introduction of CSP, several extensions have been developed which
improve upon the base algorithm in one or more ways. For example, the algorithm
has been modified to extend to multi-class analysis [116], to incorporate regular-
ization [117], and to add robustness to nonstationary EEG signals [118]. In this
thesis focus is placed on Filter-Bank Common Spatial Patterns (FBCSP) [119],
which is an especially applicable method for the experiments discussed later in
this thesis because it allows for the discovery of discriminant CSP features with-
out a priori knowledge of the frequency band in which those features should be
found. Therefore FBCSP is the most appropriate for a generalized approach to
BCI.

Filter-Bank Common Spatial Patterns

The ability to classify EEG in a BCI using CSP is highly dependent on construct-
ing W using EEG signals which have been filtered to a narrow band of frequencies
just large enough to contain the brain activity relevant to the mental imagery per-
formed by the BCI user. FBCSP allows one to capture useful CSP components
in narrow frequency bands when the optimal band cannot be determined a priori
[119, 120]. This property makes it especially useful for a generalized BCI. FBCSP
accomplishes this simply by computing a CSP filter Wf for each of a set of band-
pass filters f ∈ F , also known as a filter-bank. CSP features are computed using
each Wf , and a feature selection method (see Section 2.7.2) is applied to choose
features useful for classification. Figure 2.11 shows a schematic of the FBCSP
method.
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Figure 2.11: The FBCSP scheme.

Multiclass Extensions of Common Spatial Patterns

A machine learning method that can only be applied to binary classification would
be extremely limited in its real world application. Since it is of great interest
to develop BCIs with more than just two controls, several extensions of CSP
algorithms to multiclass classification have been developed [116, 121, 122, 120].
Here, two such methods are described, each of which is best applied to one of two
common BCI scenarios. Note that these two methods are not necessarily exclusive
to CSP, but are simply the primary multiclass extensions used with CSP.

The One-Versus-Rest (OVR) approach to multiclass CSP is most applicable
when a BCI uses three or more controls that cannot be organized hierarchically
[122, 120]. For example, if a BCI allows the user to move a cursor in the four
cardinal directions on a screen using four distinct mental commands, the OVR
extension for CSP is a typical choice. In the OVR algorithm, K CSP filters are
computed for a K-class classification problem. Each CSP filter (or set of filters
in the case of FBCSP) is constructed using any version of CSP by treating one of
the K classes as class one and the aggregate of all of the remaining K − 1 classes
as class two. Therefore, each CSP model is designed for binary classification such
that it predicts whether the given data belong in the specific class associated
with that model or one of the other classes. When performing classification, the
choice of which k ∈ K is the most likely true label for the given EEG signal x is
determined by

k = max
k∈K

P (k|x), (2.20)

where P (k|x) is the probability estimate or confidence level of x belonging to
class k. How this probability estimate is determined depends on the specific
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classifier used. Alternatively, the CSP features from each of the K filters can be
aggregated into a single feature vector and K-way classification can be performed
using a single classifier.

In some cases it is more appropriate to use a hierarchical, or tree-based, clas-
sification approach. For example, Chapter 7 discusses a BCI designed to enable a
user to answer “Yes” or “No” questions in real time without requiring time-locked
questions. Therefore, the BCI must also determine when the user is attempting to
answer a question and when the user is simply not engaging with the BCI at all.
This is posed as a three-way classification problem, including the classes “Yes”,
“No”, and “Rest”. Since there is a natural hierarchy to this classification prob-
lem, where the system can first determine whether the user is trying to answer
a question and then determine which answer they are trying to give, the Divide
and Conquer (DC) approach to multiclass CSP is a good fit [123, 120]. Since clas-
sification is hierarchical, instead of K CSP filters as in the OVR approach, only
P < K CSP filters are required, where P is the number of levels in the hierarchy
(in the example given, (in the example given, K = 3 and P = 2).

It is often the case that either the OVR or DC approaches to multiclass CSP
can be used for the same problem. Returning to the first example given here,
controlling a cursor along all four cardinal directions can be posed hierarchically
by first determining along which axis the user is attempting to exert control, and
then determining the direction along that particular axis. The choice is up to
the experimenter. Since the DC approach is less computationally intensive, it
might be preferred here. On the other hand, the DC approach requires two-step
classification before the cursor can move, which might slow down control. It should
also be considered that the user will often wish to move the cursor diagonally on
the screen. This would make the initial choice of axis particularly difficult, as
the desire to reach a button in the top right corner of the screen, for example,
could illicit brain activity for upwards movements and right-wards movements
simultaneously. In the OVR approach, the BCI might, in this scenario, be more
likely to misclassify between up and right movements. However, both of these still
help the user reach their goal. Both methods have their merits and drawbacks for
this application. The choice will depend on what kind of user interface is desired.

2.7 Machine Learning for BCI

Machine learning algorithms are broadly categorized as either being supervised
or unsupervised [124, 125]). Supervised learning means learning with respect to
a known ground truth. In other words, the data are labeled and there are defined
correct answers that the machine must learn to produce or approximate. Super-
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vised learning problems are typically either classification problems or regression
problems. Classification and regression are highly related in the sense that both
require fitting a function which uses input features to predict an output. In the
case of classification, the output is a discrete categorical variable, whereas in re-
gression, the output is a continuous variable.

In contrast, unsupervised learning problems have no such labels from which to
learn and it can be more difficult to objectively measure the algorithm’s perfor-
mance depending on the problem and the particular algorithm. The quintessen-
tial example of unsupervised learning is clustering, which refers to the problem
of identifying naturally occurring subgroups of data points that are more similar
to one another than to members in other groups. This thesis is focused almost
exclusively on supervised learning problems, and so unsupervised machine learn-
ing methods will not be addressed in great detail. The following sections provide
an overview of the supervised learning methods used throughout this thesis for
feature selection, classification, and regression.

2.7.1 Feature Selection

Feature selection is a form of dimensionality reduction particular to classification
problems. In other contexts where dimensionality reduction is used, the goal might
be to find the set of variables, or combinations of variables, which contain the bulk
of the information of the original dataset (e.g., as in PCA). For classification, the
goal is to find only the features that contribute to improved classification accuracy
and to omit the other features.

Feature selection is often very important in classification problems due to an
appropriately named problem called the “Curse of Dimensionality”. Each feature
in a dataset is a dimension in a feature space (i.e., it forms an axis). If the
number of samples is held constant and the number of dimensions is increased, the
data become exponentially sparser in feature space. Machine learning algorithms
attempt to model the relationships between data in feature space in order to
partition this space into regions belonging to different classes. When the number
of features is large compared to the number of number of training samples, the
machine learning algorithm may not have the diversity and density of data needed
to effectively and reliably learn how these data are distributed. Therefore, given
a fixed number of training samples, the predictive power of a machine learning
algorithm decreases as the number of dimensions increases. This is known as
Hughes phenomenon [126].

Dealing with unfavourable ratios of features to training samples is unavoidable
in practice. In most machine learning experiments, the data collection process
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Figure 2.12: An illustration of feature selection.

usually does not consider the needs of the machine learning algorithm. Even when
the data are collected for the purpose of machine learning and the properties of
the algorithm are used to guide data collection, three common factors lead to
the Curse of Dimensionality: 1) if the predictive features needed for classification
are not known a priori, a common approach is to extract many features and find
which of those are useful, 2) it is often simply not practical or possible to collect
a large number of samples, and 3) the data may not be classifiable using only
a small number of features. EEG data and data used in BCI experiments often
suffer from all three of these deficiencies. Feature selection is used to address
the first problem by finding the most predictive features and using only those for
classification. Further attention is given to Minimum-Redundancy, Maximum-
Relevance (MRMR) [127], which is used throughout this thesis.

Minimum-Redundancy Maximum-Relevance

MRMR [127] uses a supervised learning approach to feature selection, and thus
requires a training set FM×N comprised of M candidate features and N training
samples, as well as a vector of class labels Y1×N . MRMR goes beyond select-
ing just those features that best predict Y and also considers which predictive
features contribute distinct discriminative information. As such, MRMR is par-
ticularly useful when the set of candidate features are highly correlated amongst
one another, as is usually the case with EEG.

The objective is to find a subject of features F ′ ∈ F that has maximum joint
mutual information with the true class labels Y , thus satisfying the maximum-
relevance criterion, while simultaneously keeping the mutual information between
the features in F ′ low, satisfying the minimum-redundancy criterion. Further-
more, this min-max problem is solved given the experimenter-determined param-
eter M ′ < M , which is the number of features to include in F ′. These two criteria
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can be combined into one objective function by simply taking the difference

max
F ′|M ′

(D −R), (2.21)

where D is the dependency of Y on F ′ and R is the redundancy within F ′.

The optimal solution for F ′ given M ′ is obtained iteratively by selecting fea-
tures one at a time. The first feature, f1 is found by identifying the feature
xi ∈ F which has the highest mutual information with the class labels in the
training data, i.e.,

f1 = max
i

I (F = {xi, i = 1, . . . ,M};Y ), (2.22)

where I is the mutual information function defined for two random variables Z1

and Z2 as

I (Z1;Z2) =

∫

Z1

∫

Z2

p(z1, z2)log

(
p(z1, z2)

p(z1)p(z2)

)
. (2.23)

Subsequent features f2, . . . , fM ′ are selected by iteratively choosing features from
F which maximize D − R. Here D is defined for the mth matrix F ′m of selected
features as

D = I (F ′m = {fi, i = 1, . . . ,m < M ′};Y ), (2.24)

and is estimated by

D̄ =
1

m

∑

fi∈F ′
m

I (fi;Y ). (2.25)

Similarly, R is defined as
R = I (F ′m;F ′m) (2.26)

and is estimated by

R̄ =
1

m2

∑

fi,fj∈F ′
m

I (fi; fj). (2.27)

These estimates must be used in practice because they avoid computing the com-
putationally expensive or even intractable multivariate joint probability densities
with which D and R are defined. In fact, calculating joint probability densities
with many variables given a finite amount of data is another instance where the
Curse of Dimensionality poses a challenge and may lead to innaccurate estimates
[127].
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2.7.2 Classification and Regression

Much of this thesis revolves around classification of EEG signals, with some use
of regression in Chapter 5. In this section the basic notions of classification and
regression are made clear, and the methods used throughout this thesis are ex-
plained in detail. The classifiers described here are the Support Vector Machine
(SVM) [128] and Logistic Regression with Elastic Net Regularlization (LRE) [129].
The specific regression method described here is the Boosted Decision Tree (BDT)
[130].

Classification Analysis

The purpose of a classifier is to generalize from past or observed labeled data in
order to assign a discrete categorical label to new data. Most often this is done
by finding a ‘classification boundary’ in feature space which optimally separates
previously observed data. For simplicity, begin with the linearly separable two-
class scenario illustrated by Figure 2.13. In the two-class case, once a classification
boundary is determined, classifying new data becomes a simple task. Any datum
that lies on one side of the border is assumed to belong to the class that is
most represented on that side of the border, and vice versa. This is true also
for non-linear classification boundaries (see Figure 2.13), as the curve merely
serves to partition the feature space into two non-overlapping boundaries. Because
optimizing this partitioning is the essential basis for classification, the concept
can easily be extended to more than two classes. In multi-way classification, as
illustrated in Figure 2.13, multiple boundaries can be used to partition the feature
space into one region per class. The question of how to compute these boundaries
given labeled data will be discussed below.

Regression Analysis

Regression analysis is often thought of as a means to find a ‘line of best fit’, for
some definition of ‘best’ (e.g., least squares), to continuously distributed rational
data. However, regression more broadly refers to the prediction along a contin-
uous variable of an output value with respect to a realized set of input values
[131]. One key property of regression that is made more apparent when using its
broader definition is that regression analysis does not need to assume a continuous
polynomial function over its domain. This flexibility is particularly exploited by
machine learning regression methods as opposed to classical statistical regression,
which typically seeks to find a continuous function over the domain of a set of
dependent variables rather than seeking to attribute a continuous-valued number
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(a) Linear Classification (b) Non-Linear Classification (c) Multi-Way Classifica-
tion

Figure 2.13: Illustrated examples of different classification problems. a) An illustra-
tion of a simple classification problem: data from two classes (shown in blue versus
orange dots) are separated by a linear classification boundary. b) An illustration of the
“horseshoe” problem for which non-linear classification is required. c) An example of
multi-way classification, which, rather than finding one classification boundary, uses
multiple boundaries in order to partition the feature spaces into class-defined regions.

to each particular observed data point. This difference is illustrated in Figure
2.14.

Cross-Validation

Cross-validation refers to a set of model validation methods used to evaluate the
results of statistical or machine learning models on independent test data. Cross-
validation can also be used for model selection if model parameters are adjusted
across cross-validation runs [132]. Note that if cross-validation is used for model
selection, an inner cross-validation loop is required to evaluate each unique set of
model parameters.

For predictive models, such as classification and regression models, results
obtained without cross-validation are likely to be biased due to overfitting [132].
This is unsurprising, because if the same data used to train a model is then used
to test the same model, some degree of memorization is likely to be reflected
in any evaluation metric. Cross-validation avoids this source of overfitting by
using mutually exclusive partitioned training and test data. The model is trained
using the training data and the evaluation criterion is estimated by comparing the
predicted values for the withheld test data to its true values. In order to obtain
a representative estimate of model performance, this process is repeated several
times.

Figure 2.15 illustrates a common cross-validation method called K-fold cross-
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(a) Polynomial Regression (b) ML Regression

Figure 2.14: a) Illustration of classical regression analysis. b) Illustration of some
machine learning regression models which do not assume continuity in the domain
(e.g., Boosted Decision Trees [130]). In classical regression, continuity is assumed
along the domain. Therefore, it is possible to interpolate between two observed values
on the x-axis (e.g., if a new data point xnew is halfway between two adjacent previously
observed values x1 and x2, then its predicted value ynew can be estimated to be the
point on the regression curve halfway between x1 and x2). In contrast, certain machine
learning regression models do not interpolate between adjacent values on the x-axis.
That is, since continuity is not assumed in the domain, the predicted value between
any two values on the x-axis is unrelated to the predicted values for those two points.
While forgoing this assumption makes modeling more challenging, it allows for highly
non-linear prediction.
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Figure 2.15: The K-fold cross-validation scheme [133]. Each of the K partitions is
used as a test set once and the remaining K-1 partitions are used for training.

validation. In this approach, the full dataset is divided into K, which is often
set to 10, partitions of approximately equivalent size. Each partition is withheld
as a test set once and the remaining K-1 partitions are used for training. When
the number of samples N is small (e.g., N≤20), K is often set to N so that each
individual sample is used as a test set once. This is referred to as Leave-One-
Out cross-validation. In addition, when the N is sufficiently large and particular
proportions are desired when partitioning the data into training and test sets or
a large number of cross-validation runs is desired, an alternative is to randomly
partition data at the start of each cross-validation run. This latter approach is
used throughout this thesis, typically with test sets making up 25% of the available
data.

Classification with Support Vector Machines

A classifier that is used throughout this thesis is the Support Vector Machine
(SVM) [128]. The SVM is a popular classifier because, for problems where a set
of discriminative features are computed from prior knowledge, it is often one of
the most effective and efficient methods. The SVM is effective because it goes
beyond simply finding a hyperplane that separates two classes in two ways. First,
it also maximizes the margin between the classification boundary and the nearest
data samples on either side (these samples are called the support vectors, because
they define the classification boundary). In addition, the SVM can compute non-
linear classification boundaries by using a kernel, or a transformation function,
applied to the input space in order to make the classes linearly separable in a new
feature space. The linear classification boundary can then be projected back into
the original input space in which it is non-linear using the inverse of the kernel.
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Figure 2.16: An illustration of the kernel method in the SVM, which transforms the
data to become linearly classifiable, and then projects the classification boundary back
into the original feature space. Figure obtained from [134].

Both of these principles are illustrated in Figure 2.16.

The current standard SVM algorithm uses a soft margin approach, because it
generalizes to cases where the data are not linearly separable. Given a dataset
of N samples and P features xi ∈ XN×P , i = 1, . . . , N with labels yi ∈ YN×1
(for the SVM algorithm, Y ∈ {−1, 1}), the goal is to find the maximum-margin
hyperplane w · x − b = 0 that separates the set {xi ∈ X | yi = 1} from the set
{xi ∈ X | yi = −1}. Here w is the normal vector to the hyperplane.

The solution for the maximum-margin hyperplane is given by an optimization
problem with respect to the hinge loss function

hi = max (0, 1− yi(w · xi − b)) . (2.28)

The value of hi is zero if xi is on the correct side of the margin (i.e., if the
prediction ŷi is correct given the margin, or if yi (w · xi − b) ≥ 1). Otherwise, hi is
proportional to the distance between xi and the margin. Therefore, the maximum-
margin hyperplane can be solved using the following optimization problem:

min
w,b

mean(hi)+λ‖w‖2 = min
w,b

[
1

N

N∑

i=1

max (0, 1− yi(w · xi − b))
]

+λ‖w‖2, (2.29)

where λ is a parameter which controls the tradeoff between having a wide margin,
which increases the number of samples that fall within the margin because the
data are inherently not linearly separable, and maximizing the number of samples
which fall on the correct side of the margin.

To extend the SVM to solve for non-linear classification boundaries, the so-
called ‘kernel trick’ is used [135, 136, 128]. The kernel trick is implemented by
transforming the data according to some nonlinear function φ, commonly a Gaus-
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sian radial basis function φ(x) = exp(−λ‖xi‖2). Thus each xi is projected in a
nonlinear way into a new feature space using φ(xi) and w =

∑N
i=1 ciyiφ(xi) with

ci obtained by solving the maximization problem

max
N∑

i=1

ci −
1

2

N∑

i=1

N∑

j=1

yici(φ(xi) · φ(xj))yicj (2.30)

subject to
∑
ciyi = 1 and 1

2Nλ
≥ ci ≥ 0 ∀i. The kernel trick is represented by the

inner product k(xi, xj) = φ(xi) · φ(xj) and serves to linearize a nonlinear classifi-
cation problem by projecting the data into a higher dimensional, and potentially
non-Euclidean, space in which the data are separable by a hyperplane.

Having solved for the maximum-margin hyperplane in the transformed feature
space, new data can be classified by measuring on which side of the classification
boundary they fall:

xnew 7→ sign(w · φ(xnew) + b) (2.31)
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K. R. Müller, and A. Kübler, “Psychological predictors of SMR-BCI per-
formance,” Biological Psychology, vol. 89, no. 1, pp. 80–86, 2012.

[50] A. Vuckovic and B. A. Osuagwu, “Using a motor imagery questionnaire
to estimate the performance of a brain–computer interface based on object
oriented motor imagery,” Clinical Neurophysiology, vol. 124, no. 8, pp. 1586–
1595, 2013.
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scale assessment of a fully automatic co-adaptive motor imagery-based brain
computer interface,” PloS one, vol. 11, no. 2, p. e0148886, 2016.

[88] G. Nolte, O. Bai, L. Wheaton, Z. Mari, S. Vorbach, and M. Hallett, “Iden-
tifying true brain interaction from EEG data using the imaginary part of
coherency,” Clinical neurophysiology, vol. 115, no. 10, pp. 2292–2307, 2004.

[89] M. Murias, S. J. Webb, J. Greenson, and G. Dawson, “Resting state cor-
tical connectivity reflected in EEG coherence in individuals with autism,”
Biological psychiatry, vol. 62, no. 3, pp. 270–273, 2007.

[90] E. Gysels and P. Celka, “Phase synchronization for the recognition of mental
tasks in a brain-computer interface,” IEEE Transactions on Neural Systems
and Rehabilitation Engineering, vol. 12, no. 4, pp. 406–415, 2004.

[91] S. Makeig, T.-P. Jung, and T. J. Sejnowski, “Using feedforward neural net-
works to monitor alertness from changes in EEG correlation and coherence,”
Advances in neural information processing systems, pp. 931–937, 1996.

62



K. Dhindsa - McMaster University, Computational Science and Engineering Ph.D. Thesis

[92] T. Shibata, I. Shimoyama, T. Ito, D. Abla, H. Iwasa, K. Koseki, N. Ya-
manouchi, T. Sato, and Y. Nakajima, “The time course of interhemispheric
EEG coherence during a GO/NO-GO task in humans,” Neuroscience letters,
vol. 233, no. 2, pp. 117–120, 1997.

[93] O. Jensen and L. L. Colgin, “Cross-frequency coupling between neuronal
oscillations,” Trends in cognitive sciences, vol. 11, no. 7, pp. 267–269, 2007.

[94] M. X. Cohen, “Assessing transient cross-frequency coupling in EEG data,”
Journal of neuroscience methods, vol. 168, no. 2, pp. 494–499, 2008.

[95] J.-P. Lachaux, E. Rodriguez, J. Martinerie, F. J. Varela, et al., “Measuring
phase synchrony in brain signals,” Human brain mapping, vol. 8, no. 4,
pp. 194–208, 1999.

[96] A. Hyafil, “Misidentifications of specific forms of cross-frequency coupling:
three warnings,” Frontiers in Neuroscience, vol. 9, p. 370, 2015.

[97] B. J. Roach and D. H. Mathalon, “Event-related EEG time-frequency anal-
ysis: an overview of measures and an analysis of early gamma band phase
locking in schizophrenia,” Schizophrenia bulletin, vol. 34, no. 5, pp. 907–926,
2008.

[98] D. R. Brillinger, “An introduction to polyspectra,” The Annals of mathe-
matical statistics, pp. 1351–1374, 1965.

[99] U. Greb and M. Rusbridge, “The interpretation of the bispectrum and bico-
herence for non-linear interactions of continuous spectra,” Plasma physics
and controlled fusion, vol. 30, no. 5, p. 537, 1988.

[100] S. Hagihira, M. Takashina, T. Mori, T. Mashimo, and I. Yoshiya, “Practical
issues in bispectral analysis of electroencephalographic signals,” Anesthesia
& Analgesia, vol. 93, no. 4, pp. 966–970, 2001.

[101] P. Venkatakrishnan, R. Sukanesh, and S. Sangeetha, “Detection of quadratic
phase coupling from human EEG signals using higher order statistics and
spectra,” Signal, Image and Video Processing, vol. 5, no. 2, pp. 217–229,
2011.

[102] V. Chandran, R. Acharya, C. Lim, et al., “Higher order spectral (HOS)
analysis of epileptic EEG signals,” in Engineering in Medicine and Biology
Society, 2007. EMBS 2007. 29th Annual International Conference of the
IEEE, pp. 6495–6498, IEEE, 2007.

[103] J. W. Johansen and P. S. Sebel, “Development and clinical application of
electroencephalographic bispectrum monitoring,” The Journal of the Amer-
ican Society of Anesthesiologists, vol. 93, no. 5, pp. 1336–1344, 2000.

63



K. Dhindsa - McMaster University, Computational Science and Engineering Ph.D. Thesis

[104] Z. J. Koles, “The quantitative extraction and topographic mapping of the
abnormal components in the clinical EEG,” Electroencephalography and
clinical Neurophysiology, vol. 79, no. 6, pp. 440–447, 1991.

[105] J. Müller-Gerking, G. Pfurtscheller, and H. Flyvbjerg, “Designing optimal
spatial filters for single-trial EEG classification in a movement task,” Clinical
neurophysiology, vol. 110, no. 5, pp. 787–798, 1999.

[106] C. A. Kothe, S. Makeig, and J. A. Onton, “Emotion recognition from EEG
during self-paced emotional imagery,” Proceedings - 2013 Humaine Associ-
ation Conference on Affective Computing and Intelligent Interaction, ACII
2013, pp. 855–858, 2013.

[107] K. Pearson, “LIII. on lines and planes of closest fit to systems of points
in space,” The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science, vol. 2, no. 11, pp. 559–572, 1901.

[108] I. Jolliffe, Principal component analysis. Wiley Online Library, 2002.

[109] S. Lemm, B. Blankertz, T. Dickhaus, and K.-R. Müller, “Introduction to
machine learning for brain imaging,” Neuroimage, vol. 56, no. 2, pp. 387–
399, 2011.

[110] B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K.-R. Muller, “Op-
timizing spatial filters for robust EEG single-trial analysis,” IEEE Signal
processing magazine, vol. 25, no. 1, pp. 41–56, 2008.

[111] B. Blankertz, S. Lemm, M. Treder, S. Haufe, and K.-R. Müller, “Single-
trial analysis and classification of ERP components–a tutorial,” NeuroIm-
age, vol. 56, no. 2, pp. 814–825, 2011.

[112] S. Haufe, F. Meinecke, K. Görgen, S. Dähne, J.-D. Haynes, B. Blankertz,
and F. Bießmann, “On the interpretation of weight vectors of linear models
in multivariate neuroimaging,” Neuroimage, vol. 87, pp. 96–110, 2014.

[113] G. S. G. Sun, J. H. J. Hu, and G. W. G. Wu, “A novel frequency band
selection method for Common Spatial Pattern in Motor Imagery based Brain
Computer Interface,” Neural Networks (IJCNN), The 2010 International
Joint Conference on, pp. 18–23, 2010.
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3.1 Introduction

There is a growing interest in the potential of BCIs based on mental imagery due
to the wide variety of potential mental commands and related applications. Thus,
there is a drive towards making available new kinds of mental imagery for use
in BCIs. In the traditional approach to BCI design, a form of mental imagery
must be selected a priori. If insufficient knowledge about its neural correlates
can be found in the neuroscientific literature, it must be studied further from a
neuroscientific perspective before it can be used in a BCI. This chapter discusses
a study on the neural correlates of visuospatial imagery, which could be used to
inform the fundamentals of a design of a BCI which uses spatial imagery as a
means of control.

The interest in spatial imagery as a way to control a BCI arises from the
enormous potential that might be realized if it can be exploited. For example, if
it were possible to accurately estimate from brain activity just the direction in
space an individual was thinking of, the design of BCIs for controlling wheelchairs,
mouse cursors, exoskeletons, and other devices could be revolutionized. Currently
such devices are typically controlled using motor imagery (e.g., [1]), which is a
more unnatural way to control a device like a wheelchair compared to focusing on
a direction of movement, and at best provides only up to four discrete directions
of control [2]. Therefore, even if a spatial direction could only be resolved with a
wide margin of error of 45 degrees on either side, making it roughly as operable
as a BCI based on motor imagery, it would likely be preferable over a wheelchair
controlled using motor imagery.

Currently, spatial imagery and spatial navigation imagery are used in much
the same way that motor imagery is used for BCIs; as an arbitrary but convenient
distinct thought process that can be differentiated from a completely unrelated
thought process by the brain activity it generates. For example, BCIs have been
developed that can resolve spatial navigation imagery versus musical imagery in
order to move a cursor left or right [3, 4]. Extracting useful information about
more specific features of the user’s spatial imagery, on the other hand, is a much
more difficult problem. The work that follows is an example of the neuroscientific
research that is required in order to determine what features of brain activity
would need to be extracted from data reflecting brain activity in order to use
spatial imagery involving spatial memory and viewpoint transformations.

Rather than translating this work into a BCI based on visuospatial imagery,
however, generalized methods for BCI were pursued instead. This is in part be-
cause the ability to use visuospatial imagery seemed to be quite variable across
individuals, suggesting that only some individuals would be able to use a BCI
based on these brain networks effectively. Indeed, this prompted a review of the
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literature which confirmed that a similar problem was being reported for a wide
variety of brain signals used for BCI control, suggesting that if different users
could employ different mental strategies of control, more people might be able to
successfully control a BCI. In addition, the high-end EEG hardware needed to ex-
tract relevant features of visuospatial imagery from EEG was simply not available
at the time, making it necessary to explore alternative forms of mental imagery.
These factors combined to give rise to the idea that a generalized approach to
BCI would be an important next step for a field. Thus the study presented here
helps to tell the story of how generalized methods for brain-computer interfacing
became a goal in the first place.
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3.2 Examining the role of the temporo-parietal

network in memory, imagery, and viewpoint

transformations

Dhindsa, K., Drobinin, V., King, J., Hall, G. B., Burgess, N., & Becker, S. (2014).
Examining the role of the temporo-parietal network in memory, imagery,
and viewpoint transformations. Frontiers in human neuroscience, 8:709.
doi: 10.3389/fnhum.2014.00709
Article reprinted under the Creative Commons License 4.0.
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The traditional view of the medial temporal lobe (MTL) focuses on its role in episodic
memory. However, some of the underlying functions of the MTL can be ascertained from
its wider role in supporting spatial cognition in concert with parietal and prefrontal regions.
The MTL is strongly implicated in the formation of enduring allocentric representations
(e.g., O’Keefe, 1976; King et al., 2002; Ekstrom et al., 2003). According to our BBB
model (Byrne et al., 2007), these representations must interact with head-centered and
body-centered representations in posterior parietal cortex via a transformation circuit
involving retrosplenial areas. Egocentric sensory representations in parietal areas can then
cue the recall of allocentric spatial representations in long-term memory and, conversely,
the products of retrieval in MTL can generate mental imagery within a parietal “window.”
Such imagery is necessarily egocentric and forms part of visuospatial working memory,
in which it can be manipulated for the purpose of planning/imagining the future. Recent
fMRI evidence (Lambrey et al., 2012; Zhang et al., 2012) supports the BBB model. To
further test the model, we had participants learn the locations of objects in a virtual scene
and tested their spatial memory under conditions that impose varying demands on the
transformation circuit. We analyzed how brain activity correlated with accuracy in judging
the direction of an object (1) from visuospatial working memory (we assume transient
working memory due to the order of tasks and the absence of change in viewpoint,
but long-term memory retrieval is also possible), (2) after a rotation of viewpoint, or (3)
after a rotation and translation of viewpoint (judgment of relative direction). We found
performance-related activity in both tasks requiring viewpoint rotation (ROT and JRD, i.e.,
conditions 2 and 3) in the core medial temporal to medial parietal circuit identified by the
BBB model. These results are consistent with the predictions of the BBB model, and
shed further light on the neural mechanisms underlying spatial memory, mental imagery
and viewpoint transformations.

Keywords: spatial cognition, navigation, learning, fMRI, hippocampus

1. INTRODUCTION
The precise role of the hippocampus in memory has been the sub-
ject of much debate. A large body of evidence points toward a
crucial role for this structure in the formation of allocentric spa-
tial representations, based on rodent and non-human primate
hippocampal place cell recordings, as well as studies of humans
with hippocampal lesions and implanted electrode hippocam-
pal recordings (e.g., O’Keefe, 1976; King et al., 2002; Ekstrom
et al., 2003). However, evidence also points toward allocentric
representations outside of the hippocampus. For example, neu-
roimaging of healthy individuals and studies of individuals with
lesions implicate the retrosplenial and parahippocampal cortices
in memory for scenes and landmarks, navigation to goals and
memory across changes of viewpoint (Bohbot et al., 1998; Epstein
and Kanwisher, 1998; Aguirre and D’Esposito, 1999; Maguire,

2001; Lambrey et al., 2012; Zhang et al., 2012; Sherrill et al., 2013;
Sulpizio et al., 2013).

Considering that information arrives at the sensory recep-
tors in an egocentric frame of reference, e.g., retinocentric in
the case of visual input, a transformation must be carried out
to translate from egocentric to allocentric co-ordinates. Such a
transformation of co-ordinates is a non-trivial calculation for
a neural circuit. It is therefore likely that a hierarchy of mul-
tiple brain regions is involved in carrying out this transforma-
tion, with a gradual emergence of progressively more global,
allocentric representations; this is a key assumption underly-
ing the Byrne, Becker, and Burgess (BBB) model of spatial
memory (Byrne et al., 2007). Moreover, the BBB model sug-
gests a role for hippocampal neurons in learning conjunc-
tions of allocentric boundary and landmark features, as well as
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other non-spatial features, explaining the emergence of context-
modulated place cells (Anderson and Jeffery, 2003). The BBB
model thus sheds light on two major unresolved issues in the
literature concerning the role of the hippocampus in memory:
(1) What is the role of the hippocampus vs. extra-hippocampal
structures in allocentric coding? (2) What is the role of the
hippocampus in conjunctive/episodic (including non-spatial)
encoding?

Central to the BBB model is an egocentric parietal win-
dow that maintains representations of objects, landmarks and
boundaries. The parietal window is postulated to be located
in the precuneus/medial parietal cortex. The contents of
the parietal window can be maintained in working mem-
ory through reciprocal fronto-parietal connections. Additionally,
object/landmark locations within the parietal window can be
continuously updated during real or imagined self-movement
through reciprocal connections with the medial temporal lobe.
These head-centered and body-centered representations formed
in posterior parietal cortex are mapped, via a transformation
circuit, into allocentric spatial representations in the parahip-
pocampal region and hippocampus. An egocentric parietal
window thus allows one to integrate sensory inputs into an
egocentric map, cueing the recall of spatial representations in
long-term memory. Conversely, reciprocal connections from the
hippocampus to posterior parietal regions allow the products
of memory retrieval to generate mental imagery within the
parietal window which can be manipulated for the purpose of
planning ahead and imagining the future. Other non-spatial
contextual features are also integrated at the level of the hip-
pocampus, giving rise to configural memories for places and
events.

The BBB model makes several empirical predictions. The first
step in mapping from egocentric to allocentric representations
involves combining head-centered object representations main-
tained in the parietal window with allocentric head-direction
signals; retrosplenial cortex is anatomically well situated to carry
out this computation, as it is reciprocally connected with pari-
etal and medial temporal regions, and receives inputs from areas
known to carry head-direction information (Wyss and Groen,
1992; Maguire, 2001; Kobayashi and Amaral, 2003). Thus, we
predict that retrosplenial cortex would be engaged whenever
egocentric-to-allocentric mappings (or the reverse) are required.
Egocentric object/boundary representations modulated by allo-
centric head direction are in turn transformed into a map of
allocentric representations of individual boundaries, objects and
landmarks in the parahippocampal cortex. Finally, these object
and boundary features are combined at the level of the hip-
pocampus into allocentric representations of particular places
(place cells). Thus, according to the BBB model, allocentric
coding emerges in at least three levels of representation: in
the retrosplenial cortex, in the parahippocampal cortex and
in the hippocampus. Whether a given allocentric task requires
the hippocampus should depend on whether a conjunction of
object/boundary locations is required to solve the task. Thus,
orienting to a single landmark might engage the retrosplenial
and parahippocampal cortices but may not require the hip-
pocampus. On the other hand, locating an object relative to a

configuration of landmarks and other contextual features, thereby
uniquely placing it in space and context, should be hippocampal-
dependent.

Recent evidence from fMRI studies supports some of the
predictions of the BBB model. When participants performed a
change detection task while viewing object configurations, tri-
als involving imagined changes in viewpoint (involving both a
translation and rotation) were associated with activation of the
precucneus, parieto-occipital sulcus/retrosplenial cortex and hip-
pocampus (Lambrey et al., 2012). Similarly, performance of a
judgment of relative direction (JRD) task activated the parahip-
pocampal and retrosplenial cortices to a greater degree after
learning routes through a virtual town relative to a map-learning
condition (Zhang et al., 2012). To further test predictions of
this model empirically, we investigated spatial memory retrieval
under conditions that impose varying demands on the transfor-
mation circuit.

We employed a virtual reality implementation of the JRD task
with several conditions, each providing less context and placing
a progressively greater burden on memory, mental imagery, and
viewpoint transformation: no viewpoint change (REF), a pure
rotation of viewpoint (ROT), and (as in Lambrey et al., 2012;
Zhang et al., 2012) combined translation and rotation (JRD).
A “baseline” condition involving no viewpoint change but includ-
ing the background scenery and visual feedback was also included
for comparison. After learning a configuration of object locations
in a virtual environment with easily distinguished distal land-
marks, participants underwent fMRI scanning while performing
spatial memory and imagery test trials. On each test trial the
participant was asked point to an object from either a familiar
or novel viewpoint. During REF trials participants were asked
to imagine their position and viewpoint were identical to the
familiar reference viewpoint they had learned previously before
pointing to the cued object. During ROT trials, participants were
asked to imagine their position being identical to the position in
REF, but that they were instead facing one of the objects and asked
to point to a second object. During JRD trials, commonly referred
to as a judgment of relative direction (Shelton and McNamara,
1997), participants were asked to imagine they were standing in
the position of object X, facing object Y, and then to point to a
third object Z.

Thus, in ROT and JRD, participants were asked to imagine
a configuration of objects from a changed perspective, which
should require the egocentric to allocentric transformation cir-
cuit. We analyzed the brain areas which correlated with the
execution of these different tasks, and how brain activity in key
regions of interest correlated with accuracy in judging the direc-
tion of an object after a perspective shift. We hypothesized that
all three conditions would require visuo-spatial imagery and
therefore activate the parietal window/precuneus, but only ROT
and JRD would activate the transformation circuit (retrosple-
nial cortex) and allocentric representation of objects (parahip-
pocampal cortex) and object configurations (hippocampus). We
further predicted that JRD would most strongly activate this
circuit, since it requires the most complex transformation (involv-
ing both the transformation required in ROT as well as a
translation).
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2. MATERIALS AND METHODS
2.1. ETHICS STATEMENT
The study was approved by the ethics review boards at McMaster
University and St. Joseph’s Healthcare Hamilton. All participants
gave written consent to participate in the behavioral selection
experiment, written notice of interest to be considered for scan-
ning, and additional written consent to take part in the fMRI scan
on the day of scanning.

2.2. PARTICIPANTS
Fifteen participants were included in the final analysis after six
were rejected due to excess motion in the scanner and techni-
cal issues with scanning, and one elected to withdraw from the
study during scanning. All participants were male right-handed
McMaster University students (14 undergraduate, 1 graduate)
with normal or corrected vision and were classified as gamers
(minimum of 10 h a week playing video games). Gamers were
chosen due to their experience with operating and navigating in
virtual environments, and males were preferred to avoid sex dif-
ferences in spatial cognition and navigation (Voyer et al., 1995;
Parsons, 2004; Levin et al., 2005).

2.3. SELECTION EXPERIMENT vs. SCANNING EXPERIMENT
Participants performed the experiment twice, first outside of the
scanner (the “selection experiment”) and second, within the scan-
ner 3–5 weeks later. The initial selection experiment, used to select
participants for the scanning session, was run in a quiet testing
room on a Lenovo Thinkpad E430 laptop with a 14′′ 1366 × 768
resolution display.

During the selection experiment, each participant performed
three rounds, each involving a block of each task. A single round
included five consecutive blocks of Collect and Replace for learn-
ing, followed by one block each of VIS, INVIS, REF, ROT, and
JRD, in order (these tasks are defined in detail below). Final JRD
accuracy was used to determine whether a participant was invited
for a follow-up scanning session so as to select only those who
could learn the arena map and infer object-to-object relation-
sihps well. Participants were required to have either an average
JRD error less than one standard deviation below the mean on
the final round of the experiment, or average JRD errors less that

one standard deviation below the mean on each of the first two
rounds of the experiment.

The scanning experiment was conducted at St. Joseph’s
Hospital in Hamilton, Ontario, Canada. Prior to scanning, each
participant performed two complete rounds outside the scanner
as done in the selection experiment to refresh their memory of
the arena map and instructions for each task. Only the last four
pointing tasks (INVIS, REF, ROT, and JRD) were performed in
the scanner.

2.4. EXPERIMENTAL STIMULI AND TASKS
A virtual environment was built in the open-source simulation
platform OpenSimulator (Overte Foundation, 2007). All of the
tasks took place in a circular arena on a flat grassy ground
with visible distal landmarks distributed in the background (see
Figure 1). These landmarks included two uniquely shaped hill
formations, the sun in a fixed location, and a tree. The environ-
ment involved no variation in weather, brightness, or atmosphere.

The circular arena contained four distinct objects set in a con-
sistent spatial configuration used for all tasks and participants.
Object locations were chosen so they did not directly align with
distal landmarks to encourage participants to encode each object
relative to the configuration of landmarks. They were also set so
they did not form the vertices of a simple polygon to discour-
age participants from learning object-to-object spatial relations.
Finally, they were set so that all objects were within the field of
view from the reference viewpoint used in learning and REF.

2.4.1. Experiment overview
The participant was required to perform several different tasks
in this environment. Verbal instructions were given by the exper-
imenter between tasks during the selection experiment. The
selection experiment with verbal instructions was repeated imme-
diately before the scanning session to refresh the participant’s
memory of the object locations and VR controls. No feedback was
given for REF, ROT, or JRD, so object-to-object relations could
not be learned directly.

All input from the participants involved either navigation
using directional keys within the arena (in the selection experi-
ment only) or pointing to objects using an arrow. When navigat-
ing (only during the task Collect and Replace, described below),

FIGURE 1 | Left: Bird’s-eye-view of the layout of the environment used for all experiments (avatar not shown). Contains a red cube, a blue pyramid, a white
taurus, and a pink sphere. Right: View of arena during navigation (only one object visible at a time).
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participants controlled an avatar (a virtual character) from a
third-person view using the keyboard’s directional arrows. When
pointing, the participants rotated an arrow, presented in the
fronto-parallel plane, to identify the direction of the cued object.
In the scanner, participants made pointing responses using but-
tons on a gamepad-like device that was safe for operation within
the scanner. The pointing arrow was rotated clockwise or counter-
clockwise in the fronto-parallel plane using two buttons, and a
response was made with the third button. On all pointing tri-
als, the initial direction of the arrow was randomized to avoid the
interference of proprioceptive memory over visuospatial memory.

During the scanning portion of the experiment, participants
were cued using pictorial instructions in a heads-up display to
inform them of the task that was starting and the goal of each
trial. Prior to each trial onset, a blank screen was displayed for 3 s.
Afterwards, the cue was overlaid on the blank screen for another
3 s (6 and 9 s respectively for the ROT and JRD tasks, whose
cues are described more fully below), followed by another blank
screen for 3 s. Following this second blank gray screen, the point-
ing response arrow appeared on the blank screen to indicate that
a response could be made. Other than the differences in the cues
visually and temporally, all trials across all tasks were presented
identically. Cues and the arrow used for pointing response are
presented in Figure 2 for each condition.

Participants performed the tasks at their own pace, though tri-
als which lasted longer than 25 s were rejected, as it was deemed
likely that the participant had not been sufficiently engaged dur-
ing the trial. Since each trial required the participant to imagine
and reason about the spatial relationships of the objects in the
arena before making a response, no strict response time could
be imposed. Therefore, response time varied from trial to trial,
as evident in Table 1. Given this necessity for self-paced trials,
and the strict time limit on individual scanning sessions imposed
by the institution housing the fMRI scanner (allowing us 21 min
and 48 s per participant), we allowed each participant to complete

as many trials as possible within their allotted time. Participants
were not given any indication of a time limit or any suggestion
that they should perform the trials quickly as to avoid rush-
ing them. The minimum number of rounds completed was 2,
and the maximum was 4, with a mean of 2.73 fully completely
rounds.

Each round contained a block each of REF, ROT, and JRD
(the first two rounds included a block of the baseline task INVIS
to orient the participant within the scanner and to check the
validity of their responses) with four randomly generated trials in
each block. In REF, each object was pointed to once in each block
in a random order, but in ROT and JRD, trials were completely
randomly generated, i.e., the viewpoint direction and/or position
was resampled on each trial. Each round ended with a screen
indicating the end of the round, and participants were able to
start the next round at their own pace by pressing a button on
their input device. On average, 13.6 REF trials, 12.0 ROT trials,
and 10.8 JRD trials were completed within the 25 s rejection
threshold by each participant.

For each round of the experiment, REF, ROT and JRD were
performed in the same order. It was required that REF come first
in order to re-establish the reference viewpoint for the ROT con-
dition, which must follow REF in order make use of this freshly
re-established viewpoint since ROT uses the same position, albeit
a different heading direction. Since the JRD breaks away from
this reference viewpoint, it may interfere with performance of
the ROT trials if it were to be interposed between REF and ROT.
Therefore, there was no counterbalancing of the task order in
this experiment. The order during the selection experiment was
Collect and Replace, VIS, INVIS, REF, ROT, and JRD, while the
order for the scanning eperiment was INVIS, REF, ROT, and JRD.

2.4.2. Collect and replace
Participants performed five rounds of collecting the objects and
returning them to their original locations in order to learn the

FIGURE 2 | Top Left: Cue for VIS, INVIS, and REF. Top Right: Cue for ROT. Bottom Left: Cue for JRD. Bottom Right: Pointing response arrow.
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layout of the arena and distal landmarks. Participants were cued
to collect each object in the arena one by one in a random order
and each object was collected simply by walking to the object.
Participants were instructed that they would need to replace each
object during the next task and that no visual information aside
from the distal landmarks would be avialable during that time,
implying that these landmarks should be carefully observed dur-
ing the collect phase. Only the cued object was visible during each
collect trial so that participants were less able to encode the spatial
relationships between the objects themselves and were needed to
rely on the distal landmarks. All other potential cues were min-
imized by ensuring the shape and textures of the ground, arena,
and sky were consistent throughout.

After each object had been collected, the avatar was teleported
to a random location within the arena with a viewpoint in a ran-
dom direction. With none of the objects visible, the participant
was next required to walk close to the cued object’s original loca-
tion in order to replace it. The object appeared for 1 s when the
avatar was close enough to the location (within two virtual meters
to the object center, which is roughly the height of the avatar) to
provide feedback for learning, and disappeared again before the
next object was cued. After all of the objects were replaced, the
avatar was randomly teleported and the collect phase repeated.
After the fifth collect and replace round was completed, the next
task was initiated.

2.4.3. Pointing While Visible (VIS) and pointing while invisible
(INVIS)

Pointing While Visible (VIS) was a calibration task that simply
asked the participant to point to each successively cued object
using the black pointing arrow (here on a circular white back-
ground superimposed on the avatar to avoid the possibility of
avatar acting as an additional directional cue). This served the
purpose of allowing the participant to establish a familiar view-
point and to become accustomed to the pointing controls. It also
provided an indication of the baseline pointing error, in degrees,
for that participant. These errors were checked to ensure that the
participant correctly performed the task and that performance
was higher on this task than on any of the other more challenging
pointing tasks.

Pointing while invisible (INVIS) was identical to pointing
while visible except that the objects were not visible (all other
aspects of the scene remained visible). The participant was
required to point to the location of each object from memory and
was provided feedback after each response by the brief reappear-
ance of the target object. Note that this reference viewpoint, used
for VIS, INVIS, and REF, had all objects in the field of view, so
visual feedback was always possible.

During scanning, VIS was only used as a means to orient
the participant to viewing the screen and operating the controls
within the scanner, and to check that they were still able to per-
form the trials with similar accuracy as outside of the scanner.
INVIS was used in a similar way, but also for comparison to REF,
since the task is similar but without as much reliance on mental
imagery. For the remainder of the paper, INVIS will generally be
referred to as the baseline task.

2.4.4. Pointing from Imagery (REF)
Pointing from imagery required the participant to point to the
objects from the same viewpoint as in the previous pointing
tasks (the reference viewpoint). However, the entire virtual
environment was now occluded and only the pointing arrow and
cues were visible. Pointing necessarily took place purely from
memory without the assistance of distal landmarks and was done
with a black arrow on a gray background occluding the entire
arena (the same black arrow over a gray background was used for
the ROT and JRD tasks as well).

2.4.5. Pointing with Rotation (ROT)
Pointing with Rotation differed from the previous pointing tasks
in that the participant was instructed to imagine that their point
of view was rotated from the reference view established during the
previous pointing tasks to a view centered on one of the objects.
The environment remained occluded, as in REF, and task struc-
ture was identical except for the extra 3 s given to interpret the cue.
The cue was changed to reflect the need to illustrate two instruc-
tions (Figure 2): which object the participant should center their
viewpoint on, and which object they should point to from that
viewpoint. As in REF, pointing responses were made with a black
arrow on a gray background.

On the first ROT trial of each round, the cue was displayed for
9 s to give the participant extra time to process the cue if they were
not sufficiently prepared. On subsequent trials, the cue was pre-
sented for only 6 s (3 s for each instruction). As seen in Figure 2,
all instructions of the cue were displayed together (similarly for
JRD trials). This additional time was especially important (as
well as the inclusion of this period in analysis of the fMRI data),
because pilot studies and participant surveys both found that
many participants engaged in adjusting their imagined viewpoint
in steps as they read each instruction of the cue.

2.4.6. Judgment of relative direction (JRD)
The final task was a judgment of relative direction (JRD). This
was almost identical to ROT except that a translation was added.
Participants were required to imagine standing at the location
of one object, facing a second object, and then to point to a
third object. A third line of images was added to the cue to illus-
trate all three components of the instructions (Figure 2). This
cue was presented for 9 s. On the first JRD trial of each round,
the cue was displayed for 12 s for the same reasons given above
in ROT.

2.5. fMRI DATA ANALYSIS
Scans were performed with a 3 Tesla General Electric fMRI scan-
ner. A T1-weighted anatomical scan in the axial orientation was
obtained prior to functional imaging. The scanning parameters
for the anatomical image series were: 3D SPGR pulse; fast IRP
sequence; prep time = 450; flip angle = 12; FOV = 240 mm;
TE = 2.2 ms; TR = 7.7 ms; 80 slices; slice thickness = 2 mm,
no skip.

Functional images were were collected in interleaved axial
slices with a GRE-EPI pulse sequence. The field of view was 21 cm
with a slice thickness of 2.9 mm and a slice gap of 0.1 mm There
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were 40 slices per volume with a TR of 2600 ms, totalling 500 vol-
umes and a functional scan time of 21 min and 48 s. The TE was
25 ms and the flip angle was 90◦.

Image processing and statistical analysis were performed
using BrainVoyager QX 2.6 (Brain Innovation, Maastricht, The
Netherlands) (Formisano et al., 2006; Goebel et al., 2006).
Anatomical data were remapped to an iso-voxel size of 1.0 ×
1.0 × 1.0 mm with a cubic spline interpolation and a framing
cube dimension of 256 points. Each data set underwent man-
ual anterior commissure to posterior commissure alignment. The
anatomical 3D data sets were then normalized to Talairach space
using linear affine transformation.

The functional data sets were slice-time corrected, 3D motion
corrected and realigned to the fifth volume in the series, high-
pass filtered at 2 sines/cosines, and normalized to Talairach
space (Talairach and Tournoux, 1988). Funtional data series with
motion greater than the fMRI voxel size were discarded from anal-
ysis as recommended by Formisano et al. (2006). The functional
data were then co-registered with the 3D anatomical data allow-
ing for the creation of a 3D aligned time course. The 3D aligned
time course data was smoothed with a 6 mm full-width at half-
maximum (FWHM) Gaussian filter. Finally, the functional data
was masked to filter out noise in the data that fell outside of brain
tissue.

A general linear model (GLM) was used to model each par-
ticipant’s data individually. Due to the self-paced nature of each
trial and the various possible strategies participants may have
used for producing their responses (we found in a survey that
most performed the necessary mental imagery during both the
cue phase and response phase of the trial), we used the time win-
dow from cue onset to response input to measure brain activation.
For the ROT and JRD conditions, a parametric model was built by
using the standardized pointing errors as an additional regressor.
This weighted the brain activity by trial accuracy (i.e., coefficients
are found for performance/accuracy regressor). The unweighted
brain activity was subtracted from the performance-weighted
activity (the z-scores of all regressors needed to be used here so
that the regressors were similarly scaled prior to subtraction) to
find performance-related activations and to reduce the loss of
information when averaging across strategy differences, individ-
ual skill differences, and trial-by-trial changes in attention, effort,
strategy, and performance. This included the added benefit of fil-
tering brain activations that may have been a result of superfluous

processing not contributing to task performance, including pro-
cessing on-screen visuals. Data from all participants were com-
bined in a random-effects GLM using a participant-averaged
mask and an averaged anatomical.

2.5.1. Correction for multiple comparisons
Where possible, we used the false discovery rate correction (FDR)
of pFDR < 0.05, which is usually thought of as a stricter cor-
rection than the alternatives when activation is sparse, and less
conservative if activated areas are large (Genovese et al., 2002).
When the FDR correction was either too strict or too lenient for
the specific analysis being run, we used a threshold corrected for
family-wise error (FWE) of pFWE < 0.05, which is another stan-
dard. This was done by using Monte Carlo simulations to find
the minimum cluster size needed to achieve significance thresh-
old based on an uncorrected per voxel threshold of p < 0.005
(Forman et al., 1995). The type of correction and the required
minimum cluster size required for each contrast is given in the
tables of results. We found the same, and often additional, areas
of activation using both methods, but the statistically signifi-
cant areas were either extremely large or extremely small when
using either only FDR or FWE for all contrasts, making the
results difficult to interpret without employing each where they
are best-suited.

3. RESULTS
3.1. BEHAVIORAL RESULTS
To investigate the accuracy of the representations used by par-
ticipants to perform the JRD and Rotation tasks, we examined
participants’ average absolute pointing errors from the true object
location (denoted by the center of the object) and their response
times from cue offset. Participants were highly accurate in both
the REF and INVIS conditions, and less accurate in the Rotation
task than the JRD task (see Table 1 and Figure 3). While not

Table 1 | Means (standard error of means) of pointing errors and

response times.

JRD ROT REF INVIS

Absolute pointing
error (◦)

25.56 (4.97) 38.91 (2.64) 6.00 (0.75) 5.27 (0.66)

Response time (s) 15.84 (1.63) 16.47 (1.81) 11.13 (1.08) 12.02 (0.93)

FIGURE 3 | JRD vs. ROT pointing errors (degrees) and response times (seconds) with standard deviations (‘+’ denotes an outlier).
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statistically significant due to the very high variances, there
was a clear trend toward both decreased accuracy and longer
response times for ROT compared to JRD trials, suggesting that
participants found the ROT task to be more difficult.

3.2. BRAIN ACTIVITY
Using the analytic methods described above and the parametric
GLMs with pointing error as an additional regressor, we identified
brain regions that were activated in proportion to performance
on the different tasks performed in the scanner (except for the
REF task, where the small errors and variance made the extra
performance-related regressor unnecessary). Brain areas having
significant task-related activations (a simple contrast with no
parametric modeling) for REF vs. baseline (where participants
pointed from the same viewpoint as REF but were still able to see
the virtual environment, excluding the objects themselves, so that
pointing was not completely from memory), and performance-
related activity for the JRD task and the ROT task are given in
Tables 2–4 respectively.

For both the JRD and the ROT tasks when parameterized
by performance, we found significant performance-related acti-
vations in the hippocampus (Figure 4), the parahippocampal
cortex, the precuneus (however, for the JRD, precuneus activity
was only seen in a non-parametric model where the pointing
errors were not used as a regressor, as would be implied by the
BBB model), the parietal cortex, and the retrosplenial cortex, all
of which are predicted by the BBB model. In both conditions, sig-
nificant task-related activations were also seen in many areas in

Table 2 | Activity during REF task relative to baseline (pFWE < 0.05).

REGION Coord. (mm) Voxels T-score

OCCIPITAL

Inferior occipital LH −40 −74 −6 1050 4.27

LH −52 −68 −6 48 3.60

TEMPORAL

Superior temporal RH 44 −38 3 103 4.29

LH −49 −23 6 2028 4.29

Inferior temporal RH 40 −68 3 785 4.14

RH 38 −41 −18 280 4.79

PARIETAL

Inferior parietal RH 56 −29 18 1471 4.91

RH 53 −41 45 212 4.05

LH −37 −29 42 333 4.28

LH −43 −32 30 1363 5.38

LH −67 −29 21 50 3.84

*Precuneus RH 23 −56 48 134 3.73

RH 8 −44 45 1769 5.70

LH −28 −47 51 49 3.89

Superior parietal LH −28 −56 45 336 5.41

FRONTAL

Precentral gyrus RH 47 −8 45 230 4.15

LH −13 −20 60 1724 6.14

Inferior frontal RH 47 4 14 342 5.19

RH, right hemisphere; LH, left hemisphere; * Main areas of interest.

the occipital, temporal and parietal lobes associated with visual
object processing, working memory and imagery, as well as areas
in the frontal lobe and cingulate cortex associated with cogni-
tive control. Somewhat surprisingly, task-related activation was
seen in the caudate nucleus in the JRD task, and in the primary
somatosensory cortex in the ROT task.

We also assessed the difference in performance-related activa-
tion between the JRD task and the ROT task (Figure 5). When
the JRD task was contrasted with the ROT task, we saw greater
performance-related activation during the JRD task in the left
parahippocampal gyrus, the right and left precuneus, and the
right retrosplenial cortex. Additionally, the inferior temporal
gyrus, middle frontal gyrus, superior frontal gyrus, middle tem-
poral gyrus, precentral gyrus, posterior cingulate, lingual gyrus,
thalamus, medial frontal gyrus, superior and inferior parietal lob-
ules, and the middle occipital gyrus were also significantly more
active during the JRD task than the ROT task (pFDR < 0.05).

There was greater activity in the ROT task contrasted with
the JRD task in the superior temporal gyrus, the postcentral
gyrus, the left middle temporal gyrus, the middle frontal gyrus,
the medial frontal gyrus, the cuneus, and the anterior cingulate
gyrus (pFDR < 0.05). Therefore, the regions identified by the BBB
model were more activated by the JRD task than the ROT task.

When comparing to REF, activity in both the JRD and the
ROT tasks showed significant performance-related activation
(i.e., we first subtracted the unweighted brain activity from

Table 3 | Performance-related activity during JRD task (pFDR < 0.05).

REGION Coord. (mm) Voxels T-score

OCCIPITAL

Cuneus RH 8 −83 3 40 4.42

Lingual gyrus RH 17 −74 −3 26 4.12

RH −1 −92 −9 26 4.69

RH 26 −62 3 201 5.34

LH −25 −77 0 29 4.52

MEDIAL TEMPORAL

*Hippocampus RH 29 −38 3 21 4.32

*Parahippocampus RH 26 −29 −3 86 4.35

LH −49 −29 −12 34 4.53

BASAL GANGLIA

Caudate RH 23 −44 15 253 4.76

TEMPORAL

Middle temporal RH 69 −23 −9 17 6.20

LH −61 −32 −9 17 4.09

PARIETAL

Inferior parietal RH 29 −56 21 721 5.86

CINGULATE CORTEX

Posterior cingulate RH 11 −26 24 103 4.64

LH −22 47 3 894 5.63

*Retrosplenial cortex RH 2 −53 24 45 4.24

Anterior cingulate LH −4 31 12 34 4.15

LH −1 40 15 5 3.89

LH −7 46 3 5 3.92

RH, right hemisphere; LH, left hemisphere; * Main areas of interest.

Frontiers in Human Neuroscience www.frontiersin.org September 2014 | Volume 8 | Article 709 | 7

K. Dhindsa - McMaster University, Computational Science and Engineering Ph.D. Thesis

77



Dhindsa et al. Examining the role of the temporo-parietal network

Table 4 | Performance-related activity during the ROT task

(pFDR < 0.05).

Region Coord. (mm) Voxels T-score

OCCIPITAL

Cuneus RH 11 −98 9 474 3.80

LH −4 −86 15 1447 3.21

Lingual gyrus LH −1 −92 −3 35 2.62

LH −25 −77 −6 51 2.55

Fusiform gyrus RH 56 −14 −24 229 3.62

Middle occipital RH 43 −86 12 90 3.27

MEDIAL TEMPORAL

*Hippocampus LH −31 −14 −9 112 2.95

*Parahippocampus RH 25 1 −10 107 2.89

LH −37 −41 −3 434 3.18

LH −25 −38 3 32 2.45

LH −31 −53 9 308 3.21

LH −43 −8 −15 2732 5.10

Uncus RH 26 −27 −30 34 3.00

LH −22 1 −30 50 2.69

LH −22 −11 −30 47 2.74

TEMPORAL

Superior temporal RH 63 −56 18 1180 3.04

LH −28 10 −33 877 3.60

Middle temporal RH 53 7 −21 258 4.44

Inferior temporal LH −37 −8 −42 59 3.47

LH −67 −59 −9 98 3.27

PARIETAL

Inferior parietal RH 50 −65 45 797 3.40

*Precuneus LH −7 −67 64 21 2.52

Postcentral gyrus RH 29 −23 39 269 3.58

FRONTAL

Insular cortex RH 29 10 −12 414 3.74

Inferior frontal RH 53 25 3 115 3.37

LH −37 31 −3 103 2.83

LH −43 28 −15 645 3.66

Middle frontal RH 50 37 −6 248 3.33

LH −16 43 −18 235 4.47

LH −28 10 54 132 3.09

Medial frontal RH 11 46 15 4589 4.48

LH −43 16 24 54 2.57

Superior frontal LH −16 43 36 3223 4.24

LH −13 71 −3 40 3.21

LH −16 52 48 98 2.91

LH −19 64 9 127 3.29

CINGULATE CORTEX

*Cingulate/Retrosplenial RH 16 −47 18 28995 5.07

Posterior cingulate LH −10 −26 36 137 3.38

RH, right hemisphere; LH, left hemisphere; * Main areas of interest.

the performance-weighted, as in our parametric model, and
then subtracted the REF coefficients) in the right hippocampus,
parahippocampal gyrus (left for JRD and right and left for ROT),
right retrosplenial cortex, and right precuneus as predicted by the
BBB model, as well as activity in the middle frontal gyrus (left and
right), the anterior cingulate (left), and the superior and middle

temporal gyri (left). Visual comparisons between ROT and REF
and JRD and REF are shown in Figures 6, 7 respectively.

4. DISCUSSION
4.1. THE TRANSFORMATION CIRCUIT
The brain regions predicted by the BBB model to be involved in
transforming between egocentric and allocentric representations
(intraparietal sulcus/retrosplenial cortex (RSC), parahippocam-
pal cortex and hippocampus) were active during our mental
transformation tasks. Importantly, these activations correlated
with task performance, consistent with our hypothesis that this
neural circuit subserves the transformation between egocentric
and allocentric representations. Moreover, as predicted, this cir-
cuit was more strongly activated in imagined transformations
involving both rotation and translation of viewpoint (JRD) rel-
ative to transformations involving only a rotation of viewpoint
(ROT). Our results in the JRD condition are consistent with those
of two other recent studies that asked participants to perform spa-
tial memory tasks after imagined viewpoint changes that included
both a rotation of viewpoint and a translation of the observers
location (Lambrey et al., 2012; Zhang et al., 2012). Additionally,
the involvement of the hippocampus in the tasks that involve
retrieval from novel viewpoints, as shown here and elsewhere
(Zhang and Ekstrom, 2013), is consistent with Eichenbaum’s view
of the hippocampal role in relational memory (Eichenbaum and
Cohen, 2001), which could be implemented by a neural circuit
that supports viewpoint transformations as in the BBB model.

As expected, there were additional areas of activation in all
tasks in regions associated with visuo-spatial processing and
cognitive control. Unexpectedly, task-related activation of the
caudate nucleus was also observed in the JRD condition. The
caudate is generally associated with motor planning and goal-
directed behaviors (for a review see Grahn et al., 2008). It has
been implicated in prospective coding of motor responses driven
by egocentric sensory and/or working memory representations
(Postle and D’Esposito, 2003). This could explain the involve-
ment of the caudate in the JRD task, if participants were planning
and imagining mental navigation to the goal location in egocen-
tric co-ordinates. Although the medial temporal lobe and basal
ganglia are often portrayed as having competitive, mutually exclu-
sive roles in spatial memory and navigation, using allocentric
vs. egocentric strategies respecitvely, it is possible that a combi-
nation of the two would be employed in a complex task such
as the JRD. Once an allocentrically stored spatial representa-
tion of the goal location has been retrieved, one could map this
into egocentric co-ordinates to perform planning and mental
navigation.

Interestingly, even though activation in the transformation
circuit was more closely related to performance in the JRD
condition than in the ROT condition, the ROT condition seemed
to be more challenging for participants: response times were
somewhat longer, and errors were somewhat higher, in the
ROT than in the JRD condition (Table 1). Imagining a rotated
viewpoint while holding one’s location constant may pose a
particular challenge to participants due to the cue conflict
between one’s real and imagined heading directions, especially
when the avatar position was identical to the reference position
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FIGURE 4 | Performance-related MTL activations for JRD (top) and ROT (bottom) conditions independently.

in the baseline condition, which is the only position from which
the environment is explicitly learned visually with feedback. This
could introduce interference between the remembered locations
of objects from one’s current location and the target locations of
objects after the imagined view rotation (May, 2004). Consistent
with this sensorimotor interference interpretation, participants’
response times to point to the remembered locations of objects
have been found to increase in proportion to the change in
imagined viewpoint, irrespective of whether there was a change
in location (May, 2004). Furthermore, the ROT condition was
the only one in which task-related activation was observed
in the primary somatosensory cortex. Among other things,
somatosensory cortex represents the position of the eye relative
to the head (Wang et al., 2007) and is activated in humans when
processing changes in head position (Fasold et al., 2007). Thus,
activation in this region may reflect the cue conflict noted above,
as participants attempt to resolve the interference between their
target and actual or imagined head direction.

4.2. A HIERARCHY OF ALLOCENTRIC REPRESENTATIONS
Much debate has been devoted to the precise role of the hip-
pocampus in spatial memory. Is it uniquely responsible for
creating allocentric spatial representations or are other areas

involved? While spatial memory deficits across viewpoint changes
are observed in patients with hippocampal lesions (e.g., King
et al., 2002), lesions to the parahippocampal cortex and ret-
rosplenial cortex are also associated with topographic disori-
entation (Habib and Sirigu, 1987; Takahashi et al., 1997).
The BBB model specifies the distinct contributions of these
different regions to allocentric coding: (1) posterior parietal
cortex forms an egocentric representation of landmarks and
boundaries, (2) posterior cingulate/retrosplenial cortex (RSC)
forms a map of landmark locations modulated by egocen-
tric or allocentric head direction respectively, depending on
whether the circuit is sensory- or memory-driven, (3) parahip-
pocampal cortex (PC) forms an allocentric map of landmark
locations, and (4) hippocampal cortex cells (HC) respond to
places by encoding conjunctions of landmarks, boundaries and
other contextual information. Thus, damage to either the RSC,
PC, or HC could cause deficits in allocentric memory and
orienting.

Another controversy surrounding the role of the hippocam-
pus in spatial coding is whether its role is time-limited, or is it
always required? A challenge for the BBB model, and more gener-
ally for cognitive map theory, is to explain the finding that KC, a
dense amnesic with bilateral damage to the PC and HC, was able
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FIGURE 5 | Significant performance-related activations for JRD vs. ROT (top) and ROT vs. JRD (bottom).

to perform several allocentric judgments from his remote spatial
memories of a familiar environment (Rosenbaum et al., 2000),
including specifying alternative routes between major landmarks
when the direct route was blocked. However, his remote mem-
ory for less salient landmarks was highly impaired. These findings
accord with the pattern of spared and impaired spatial abilities
observed in TT, a London taxi driver with bilateral hippocam-
pal damage, who was able to navigate in a virtual model of
London via major routes but was highly impaired at navigat-
ing via alternative routes (Maguire et al., 2006). The ability to
orient toward salient landmarks in KC and TT could be sup-
ported by spared regions of parahippocampal and retrosplenial
cortices. This would mean that the parahippocampal region,
and not only the hippocampus, encodes associations amongst
landmarks.

4.3. LIMITATIONS AND FUTURE WORK
A limitation of the present study is that participants were drawn
from a narrow demographic: male, right-handed university stu-
dents with computer game experience. It was hoped that selecting
for video game experience would minimize adverse reactions to
immersive VR (e.g., nausea), and would keep learning time to a
minimum, as gamers tend to show greater facility at traversing

and learning VR layouts. The choice of right-handed males
was made to minimize variability in functional activation due
to sex differences and lateralization of functions. These bene-
fits come at a cost to the generalizability of our results. One
of the most well-documented sex differences is in spatial cog-
nition (e.g., Voyer et al., 1995), a difference that often holds
in VR experiments (e.g., Levin et al., 2005). However, sex dif-
ferences do not manifest on all spatial tasks. For example, in
a virtual 8-arm maze task, male and female participants were
equally likely to report the use of spatial vs. response strate-
gies, and both sexes performed equally well when there were
multiple landmarks; only when the environment was devoid
of landmarks was a male advantage evident (Andersen et al.,
2012). Equally, females out-perform males in detecting changes
in object locations, but this advantage is lost when the participant
must move viewpoints between encoding and test (Burgess et al.,
2004).

The environment used in the present study had distal land-
marks clearly visible from all points in the environment that could
serve as global orienting cues. However, to encourage participants
to use global configural cues and form allocentric representations,
there were no local landmarks intermixed with the objects within
the virtual arena. The lack of local landmarks might confer a male
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FIGURE 6 | Performance-related MTL activations for ROT vs. REF contrast.

advantage on our task. Future work is required to explore whether
there are sex differences and/or individual strategy differences in
this specific task, and how they may correlate with use of the
transformation circuit.

Another methodological limitation involves the use of a
response pointer in the fronto-parallel plane. This method of
response was chosen mainly because pilot experiments showed
that pointers, cursors, or sliders in plane with the arena ground
were difficult and/or time-consuming for the participant, espe-
cially with the smaller screen of the scanner, which would have
interfered with both task accuracy and the number of trials avail-
able for analysis. This method of response, however, could have
led to some undesired brain activity, as some participants may
have mentally transformed their planned pointing response into
the co-ordinates of the fronto-parallel plane. We attempted to
minimize this problem by asking participants to imagine point-
ing as if they were immersed in the environment, which may not
always eliminate undesired re-transformation, if it occurs, and
may introduce an imagined transformation of the pointer on the
horizontal plane. Further studies involving JRD-type responses
in a visual or VR paradigm must take into consideration the
pros and cons of different implementations of response input, or
devise a new strategy.

Screen-based testing in a visual VR paradigm also involves one
other important limitation. Since participants needed to watch
the screen for cues, there may be some interference in brain
activations between the actual visual information being seen by
the participant in the scanner and the mental imagery we are
attempting to access. We attempted to minimize this by leaving
the screen blank as much as possible during time-windows of
interest. However, cues and the response pointer were visible dur-
ing some of this time, and there is likely to be at least some brain
activation due to these, since cue complexity varied between REF,
ROT, and JRD (potentially contributing to some increased acti-
vation in JRD compared to ROT). While activations due to the
pointer itself are likely to be mostly filtered out by averaging and
parametric modeling, it is possible that how the cues were pro-
cessed mentally was correlated to some degree with the accuracy
of the responses, introducing some interference. However, since
surveys showed that participants generally began imagining their
cued position, direction, and objects while the cue was present,
this interference is unavoidable with the current visual paradigm
and setup.

Due to the limitation in the scanning time available for each
participant to perform a sufficient number of trials, we were not
able to accommodate an additional task, pointing from a fixed

Frontiers in Human Neuroscience www.frontiersin.org September 2014 | Volume 8 | Article 709 | 11

K. Dhindsa - McMaster University, Computational Science and Engineering Ph.D. Thesis

81



Dhindsa et al. Examining the role of the temporo-parietal network

FIGURE 7 | Performance-related MTL activations for JRD vs. REF contrast.

viewing direction with a translation only (i.e., the opposite half
of the JRD that ROT encompasses). Though this task does not
directly address the questions we have posed for this study, it
would shed light on interesting and related questions on the dif-
ferences between rotation-only and translation-only processing,
and their relative contributions to the JRD task. Future work is
required to tease apart the independent contributions of rota-
tion vs. translation vs. rotation plus translation to behavioral
performance in the tasks reported here, as well as the effects of
rotation and translation magnitude on performance and brain
activity.

We have focused in this paper on the effects of task demands
such as rotation and translation on the neural circuits involved in
imagined pointing responses. Other potential sources of variabil-
ity in participants’ responses in the ROT and JRD tasks are the
degree of imagined heading disparity and object-target disparity.
For example, a well established finding is that tasks requiring a
rotation of imagined perspective incur a reaction time cost in pro-
portion to the degree of heading direction disparity (e.g., Rieser,
1989). This has been taken as evidence of a mental self-rotation
process that continuously updates in proportion to the degree of
imagined rotation. On the other hand, others have called into

question this interpretation and suggested instead that it is the
interference between actual and imagined heading directions that
causes the cost in reaction time (May, 2004; Wang, 2005). Our
current results cannot differentiate whether the mental transfor-
mation processes studied here involve a “jump in viewpoint” that
is independent of degree of rotation or a gradual viewpoint rota-
tion that takes more time for larger angular changes. All we can
conclude is that the same transformation circuit is active in both
the ROT and JRD conditions in proportion to error, suggesting
that the process of transforming one’s viewpoint engages the same
circuit irrespective of the degree of cue conflict. Future work is
required to systematically manipulate heading and object direc-
tion disparity and determine whether these variables would be
additional modulators of activation in the spatial transformation
circuit investigated here.
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3.3 Discussion

The understanding gained through this study of the combined roles of the hip-
pocampus, parahippocampal gyrus, precuneus, parietal cortex, and retrosplenial
cortex in computing viewpoint transformations via spatial imagery could, in the-
ory, be used to drive a BCI. That activity in the temporo-parietal network was
correlated with pointing accuracy after viewpoint transformations suggest infor-
mation specifying pointing direction may be carried by these brain signals. If so,
it would be possible to construct a BCI which is capable of resolving a direction
of focus in 360 degrees around the user with better than chance accuracy.

As discussed at the beginning of this chapter, a BCI based on resolving direc-
tion from visuospatial imagery could provide more natural and more fine control
for virtual or real-world navigation or cursor control than is currently available.
However, a study would have to be carried out in order to determine to what
extent activity in this network can be used to resolve imagined spatial directions,
and furthermore, whether that information could be extracted from EEG as well
as from fMRI. Since it is notoriously difficult to precisely resolve, from EEG, ac-
tivity generated from multiple deep brain structures, like those involved in the
temporo-parietal network identified in this study, extracting relevant features us-
ing EEG in order to facilitate a BCI could be a very challenging problem on its
own. However, translating the results of this study into the BCI context might
be feasible.

While conducting this study, proposals were made for developing a BCI based
on visuospatial imagery in a virtual reality setting. The idea for the experiment
was to have objects appear in a random location around the participant on a plane
parallel to the ground one at a time. The participant would then have to focus on
the direction of the object (an alternative strategy would be to imagine navigating
to that object). In future iterations, the distance between the participant and the
object could be varied, and objects could be made to appear within a sphere
around the participant. This setup would allow for EEG data to be collected
associated with focusing on pointing or moving in a direction in space. The goal
would be to construct a BCI that could resolve a user’s intended pointing direction.
In test phases, a beam would point out from the partipant in the virtual reality
environment, and the participant would be tasked with pointing to the object with
the beam or selecting from a set of objects using the beam via their brain activity.
Thus, the beam would act as real-time feedback for training the participant.

An outline of a strategy for analyzing the EEG data was also developed. First,
a high density electrode cap would be needed in order to construct beamformers
targetting the nodes in the medial temporal network revealed through the study
presented in this chapter. Alternatively, a more robust approach might be to
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use a technique like sLORETA (standardized low-resolution brain electromagnetic
tomography) [5], which maps spatial EEG information into voxels. Such a method
can therefore be used to discover additional locations relevant for classification in
the EEG signal and to address the problem of individual variation in the precise
locations of the hippocampus, parahippocampus, and other relevant brain regions.
The raw EEG signal can then be transformed into a source-space multi-channel
time series, from which features can be extracted using a CSP approach or the
SF approach defined in Chapter 2 and a standard classifier could be used. If
successful, such a system could be used for avatar control, object selection, and
object manipulation in a virtual reality setting, and later adapted for similar
real-world applications.

While a whole body of research could be undertaken in order to extend these
findings to brain-computer interfacing, it was not pursued. Around the time this
work was completed, the standard approach of utilizing such findings to design
a BCI based on specific neurophysiological signals was becoming less attractive,
because it was becoming more clear that the large variability in performance and
reliability of BCIs across individuals was due in part to the fact that different
individuals are better able to control different neurophysiological signals [6, 7, 8].
The large body of work which would have gone into designing a BCI specifically for
a narrow aspect of visuospatial memory would at best be useful only for individuals
who happen to have individual backgrounds and characteristics favourable for
learning control over parts of their temporo-parietal network. It was becoming
clear that a better way to make progress in brain-computer interfacing would be
to move towards a generalized BCI rather than another BCI based on predefined
mental commands.
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4.1 Introduction

In Chapter 3, some applications of spatial imagery to BCI were hypothesized
and the appropriate neural targets were elucidated using fMRI. Studying the
neurophysiological basis of a cognitive task and then using that knowledge to
design a BCI is the standard approach used in the BCI literature. Using this
approach, the BCI community has significantly expanded the number and variety
of BCI applications (e.g., [1, 2, 3, 4]), and, to a lesser extent, allowed for new types
of mental imagery to be used in the control of BCIs [5, 6]. In order to facilitate
the rise in the variety of BCIs, corresponding advances in signal processing and
machine learning methods for BCIs have also taken place [7, 8, 9, 10].

Despite the rapid advancement in BCI technology over the last decade, BCIs
have yet to make significant in-roads to the oft mentioned but rarely reached end
user. BCIs have yet to achieve the speed, reliability, usability, and convenience
needed for practical applications [11]. The most visible evidence for this is the
BCI illiteracy rate [12, 13, 14], which refers to an estimated 15% to 25% of users
who cannot control a given BCI reliably at all. Just as problematic is the fact that
the majority of BCI users only achieve moderate levels of accuracy in BCI control
(between 60% and 85%). While improvements in signal processing and machine
learning methods have increased average BCI performance rates over time, they
have not had as substantial an impact on reducing the BCI illiteracy rate or in
making BCIs reliable enough to be useful whenever alternative methods of control
are available [15].

Users who might have difficulty controlling a BCI with one set of mental com-
mands can often control a BCI reliably using a different set of mental commands,
even if the commands leading to successful control fall under the same category
as commands which led to poor control (e.g., using foot motor imagery instead of
hand motor imagery) [16, 17]. There is evidence to suggest that there are indi-
vidual differences in BCI performance with respect to the category of mental task
as well. For example, some individuals perform well with motor imagery but not
with visual imagery, and others perform well with visual imagery and not motor
imagery [5, 6].

Both of the above sources of variability are related to differing abilities to
voluntarily modulate certain neurophysiological signals, even with training [18, 14,
19]. The implications of these findings lead to the following conjecture: in order
to design a BCI that is suitable for the majority of people, different individuals
need to be able to use different kinds of mental commands. This is only achievable
in any practical way with a generalized BCI.

In this chapter, a step toward a generalized BCI is taken by designing a BCI
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transducer that allows each individual to use a personalized set of mental com-
mands. This is named the open-ended BCI. An open-ended BCI achieves its
flexibility by shifting the burden of finding a good set of personalized mental
commands to the user and requiring the machine learning algorithms to find dis-
criminative patterns of brain activity without access to a priori information about
the user’s chosen mental commands or their corresponding neurophysiological cor-
relates. This type of design, and the more generalized BCI transducer required
to implement it, can be utilized in further developments of a generalized BCI.
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4.2 Open-Ended Brain-Computer Interfaces

Dhindsa, K., Carcone, D., & Becker, S. (2017). Towards and Open-Ended Brain-
Computer Interface: A User-Centred Co-Adaptive Design Approach.
Neural Computation, 29:10.
Accepted pre-published manuscript reprinted with permission.
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Abstract

Brain-computer interfaces (BCIs) allow a user to control a device by in-
terpreting their brain activity. For simplicity, these devices are designed to
be operated by purposefully modulating specific predetermined neurophysi-
ological signals, such as the sensorimotor rhythm. However, the ability to
modulate a given neurophysiological signal is highly variable across individu-
als, contributing to the inconsistent performance of BCIs for different users.
On the other hand, these differences suggest that individuals who experience
poor BCI performance with one class of brain signals might have good results
with another. In order to take advantage of individual abilities as they relate
to BCI control, we need to move beyond the current approaches.

In this paper we explore a new BCI design aimed at a more individualized
and user-focused experience, which we call the Open-Ended BCI. Individual
users were given the freedom to discover their own mental strategies as oppo-
sed to being trained to modulate a given brain signal. Users then underwent
multiple co-adaptive training sessions with the BCI. Our first Open-Ended
BCI performed similarly to comparable BCIs while accommodating a wider
variety of mental strategies without a priori knowledge of the specific brain
signals any individual might use. Post-hoc analysis revealed individual diffe-
rences in terms of which sensory modality yielded optimal performance. We
found a large and significant effect of individual differences in background
training and expertise, such as in musical training, on BCI performance. Fu-
ture research should be focused on finding more generalized solutions to user
training and brain state decoding methods to fully utilize the abilities of dif-
ferent individuals in an Open-Ended BCI. Accounting for each individual’s
areas of expertise could have important implications on BCI training and
BCI application design.

Keywords: mental imagery; brain-computer interface; human learning;
individual factors; co-adaptation; user-centred design; auditory imagery; vi-
sual imagery

1 Introduction

Brain-computer interfaces (BCIs) enable direct communication between a brain and a
computer by interpreting a user’s intentions from brain activity [Wolpaw et al., 2002]. In
contrast to BCIs based upon event-driven potentials, spontaneous (also called asynchro-
nous) BCIs allow the user to generate mental commands at any point in time without
external cues [Mason and Birch, 2000, Millan and Mouriño, 2003, Borisoff et al., 2004, Kus
et al., 2012]. The lack of a well defined time window that encompasses the brain activity
of interest makes segmentation particularly challenging. Moreover, the brain activity of
interest may not follow some characteristic morphology that is consistent across users.
For example, users are often instructed to imagine hand or foot movements to modulate
the sensorimotor rhythm (SMR) when controlling a spontaneous BCI (e.g., [Diez et al.,
2011, Thomas et al., 2013]). Over time, a user’s strategy may shift and they may use
very different patterns of brain activity for control.

Due to the nonstationarity of the user’s brain signals when controlling a spontaneous
BCI (see [Achtman et al., 2007, Sugiyama et al., 2007, Von Bünau et al., 2009, Von Bünau
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et al., 2010]), co-adaptation between the user and the machine is required in order to
provide reliable control. The user must learn to provide clear and consistent brain signals
related to each mental command while the BCI, typically via machine learning, must learn
the patterns of brain activity associated with the user’s intentions. The high variance of
neurophysiological signals, even for the same user engaged in the same mental activity,
means that a BCI must attempt to solve a very complicated translation problem.

In order to simplify the problem, BCI designs traditionally require that the user
issue commands by modulating a predefined brain signal which is well understood from
both physiological and computational perspectives. Even with this simplification, many
users have difficulty achieving a satisfactory level of control. Useful control of a binary-
output BCI is often heuristically defined as above 70% classification accuracy [Kübler
et al., 2001]. By this definition, 15%-25% of users are unable achieve useful control using
traditional BCI approaches, which has been referred to as BCI illiteracy [Blankertz et al.,
2010, Kübler and Müller, 2007]. This persistent problem prevents wider adoption of BCI
in the real world [Neuper and Pfurtscheller, 2010, Allison and Neuper, 2010].

BCI illiteracy rates can be reduced by allowing for some individualization in the mental
commands employed by the user. One such study incrementally trained novice users to
operate a binary motor imagery BCI [Vidaurre et al., 2011a, Vidaurre et al., 2011b]. In
this co-adaptive approach, users performed their first three training sessions with a set
of three classes of motor imagery (left hand, right hand, and foot) which all modulate
the SMR. In subsequent training sessions, users controlled a binary BCI using the pair
of commands which gave the best classification accuracy during the earlier sessions. This
resulted in a 50% reduction in the BCI illiteracy rate.

While the above approach is a promising first step towards more individualized BCIs,
it still restricts users to a single predefined sensory modality and dictates to the user
which specific mental commands to employ. Further individualization might be achieved
by allowing users to employ mental strategies involving different sensory modalities. Ho-
wever, expanding this approach to different sensory modalities may mean that the search
space of possible mental commands would become too large to efficiently find an optimal
subset of commands for each user.

Although it is a challenging problem, there is a pressing need for individualized BCIs
controllable with non-conventional mental commands. A significant contributing factor
for this need is the fact that different individuals are able to control different brain
signals to different degrees. For example, the ability to modulate SMR is affected by an
individual’s background and past experience [Hammer et al., 2012, Randolph et al., 2010,
Randolph, 2011], as well as their cognitive profile [Burde and Blankertz, 2006, Allison
et al., 2010, Vuckovic and Osuagwu, 2013], even after automatization (see [Wolpaw and
McFarland, 2004, Pineda et al., 2003]) of the mental commands has taken place [Scherer
et al., 2015]. Notably, stroke and spinal cord injury patients, who stand to benefit
significantly from advances in BCI technology, tend to perform with significantly less
accuracy when using a motor imagery BCI than do healthy individuals (e.g., [Scherer
et al., 2015]), possibly due to degradation in the sensorimotor cortices [Wolpaw et al.,
2002].

Rather than tackling the problem of unreliable performance for some users by provi-
ding different ways of modulating the same neurophysiological signal, a better long-term
solution may lie in allowing different users to use different neurophysiological signals al-
together [Allison and Neuper, 2010] (see also [del R. Millàn et al., 2002, Nai-Jen and
Palaniappan, 2004] for examples of BCI studies using a variety of mental tasks). This

K. Dhindsa - McMaster University, Computational Science and Engineering Ph.D. Thesis

93



has also been suggested in a study in which different individuals had more classifiable
brain activity with different kinds of mental imagery, illustrating that individual choice
in imagery type might be beneficial for BCI performance [Friedrich et al., 2012]. In fact,
it has been shown before that individual factors including personality and cognitive pro-
file can affect how well someone can perform with a BCI using different kinds of mental
imagery [Jeunet et al., 2015], but the relationship between individual factors and perfor-
mance with a mental imagery BCI has not been thoroughly explored, nor has domain
expertise specifically been linked to abstract user-defined visual and auditory imagery in
an online BCI.

Though restricting users to controlling a BCI with a specific predetermined neurop-
hysiological signal was a design decision that helped make modern BCIs possible, we may
be required to lift this restriction in order for BCIs to provide more consistent perfor-
mance across a variety of users. In order to achieve this new level of individualization, we
propose a BCI which allows the user to explore and define their own mental commands,
and we call this an Open-Ended BCI. Though the traditional BCI approach may be im-
portant for many specific applications meant for specific kinds of users, the development
of an Open-Ended BCI may lead to a wider variety of BCI applications which can be
used by the general population.

Study Purpose

In this paper, we aim to evaluate the feasibility of a simple Open-Ended BCI using
existing BCI methodology and identify whether expertise in different areas relevant to
certain types of mental imagery has an effect on BCI performance. In order to do this,
we trained participants to control a BCI for three tasks, each by using mental imagery
in a different sensory modality, but each using the same user training and computational
methods. Users were free to use any mental commands which they saw fit within each
sensory modality, and were not asked to reveal their choices of mental commands until
after each training session.

2 Methods

Fourteen undergraduate and graduate participants (six females) trained to control an
Open-Ended BCI for three tasks. For one task, the pitch of a tone was controlled using
auditory imagery, for another, the size of an on-screen object was controlled using visual
imagery, and for the third, the position of an object on the screen was controlled using
motor imagery. Each participant completed three 30-minute sessions with each task over
the course of one week, totaling nine sessions over three weeks. The order in which the
three tasks were trained was counter-balanced across participants. Participants recei-
ved monetary compensation for each session and the experiment was approved by the
McMaster Research Ethics Board.

Participants were shown the outputs associated with each task immediately before
their first training session with that particular task. For example, before a participant
began their first training session with the auditory task, the lowest and highest tones
were played to illustrate the range of possible tones. Participants were then given time to
privately create two distinct mental commands within the appropriate sensory modality
which they would use to produce each output. Since participants found it difficult to
produce mental imagery involving only one sensory modality, they were instructed to
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create mental commands such that the correct sensory modality was the main focus of
the command. For example, while auditory imagery may have induced associated visual
imagery during the auditory task, we asked the participant to create mental commands
where the most salient features would be auditory rather than visual. Participants were
asked to keep their mental commands consistent throughout the session, but were able
to change their commands before the second session only if they did not achieve above
chance control during the first session.

2.1 EEG Apparatus

EEG (electroencephalogram) was recorded using the Emotiv Epoc [Emotiv Systems,
2011]. This is a low cost consumer grade EEG headset that has previously been evalua-
ted for its signal quality [Badcock et al., 2013, Duvinage et al., 2013, Lievesley et al., 2011]
and has been used in BCI experiments [Liu et al., 2012, Carrino et al., 2012]. Though
it provides significantly lower SNR (signal-to-noise ratio) than research grade EEG de-
vices, it still provides useful EEG information. Since we are interested in the study and
design of practical general-user BCI applications which might eventually move beyond
the laboratory or clinic we selected this device over a research grade EEG system.

Figure 1: Emotiv Epoc electrode layout.

The Emotiv Epoc consists of 14 saline-
based sensors (located at AF3, F7, F3,
FC5, T7, P7, O1, O2, P8, T8, FC6, F4,
F8, and AF4 according to the internatio-
nal 10-20 system) and two reference elec-
trodes located at P3 and P4 (see Figure
1). The headset records at a sampling rate
of 128Hz and implements a 0.2-45Hz band-
pass filter and 50 Hz and 60 Hz notch filters
in hardware.

2.2 Experimental Procedure

The same experimental protocol was used
for all tasks and sessions were held in a
private room. Data acquisition and pro-
cessing was done in Matlab R2013b [MAT-
LAB, 2013] using Simulink and Psychtool-
box [Brainard, 1997].

After fitting the headset to the parti-
cipant, impedance was assessed for each electrode using the proprietary Emotiv Epoc
Control Panel software, because impedance measures are not given directly with this
device (instead impedance is shown using a colour-coded visual display). The electrodes
were adjusted and the felt tips covering the electrodes were re-moistened with saline so-
lution as needed in order to maximize signal quality. Due to the quality of the hardware,
many sessions began with at least one electrode showing poor impedance. Furthermore,
the quality of the signal decayed significantly throughout most sessions. We also noticed
difficulty achieving and acceptable signal quality for certain participants, as all sessions
for participants P4, P5, and P6 were conducted with at least four electrodes showing
either poor impedance or no signal at all.
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Each session for each task followed the same structure. Text was displayed at the start
of each session explaining the basic instructions of the experiment. Instructions to avoid
blinking, eye movements, head movements, jaw clenches, and other muscular actions
during mental imagery were given both textually and verbally by the experimenter. The
participant was left alone in the experiment room and was free to begin the session
when ready by pressing a key on the keyboard. Every session included ten blocks of
twenty trials, each with balanced classes in a randomized order. The first block of every
session was a pretraining block intended to acquire data with which to establish an initial
classifier. Therefore, no online classification was performed and no feedback was presented
during the pretraining block. Participants were able to take a break at the end of each
block and continued when they were ready. Figure 2 illustrates the structure of each
trial.

Participants completed a brief questionnaire at the end of each session in which they
were asked to describe the mental imagery they used and rate the usability of the system.
Participants were also asked to complete a short questionnaire on their history of athletic
training, visual arts training and musical training (for each, participants were asked how
many hours per week they practice, how many years they have practiced in total, and to
report their overall level of expertise in the area). Note that participants P1 through P6
completed a slightly different questionnaire, and so only their self-rated expertise in each
area is available for analysis.

2.3 The Three Tasks

Figure 2: Trial structure

Each task was designed to be as similar to each other task
as possible, but was differentiated by the outputs of the
BCI, the feedback stimulus, and the type of mental imagery
participants were instructed to use. The experimenters and
the BCI itself were blind to the actual mental commands
used until after the training session.

During the auditory imagery task, participants were
cued with text on each trial to produce either high (A5
at 880Hz) or low (A3 at 220Hz) pure tones. These tones
were played at the start of each block of trials to remind
the participant of the minimum and maximum pitch. The
wide range of tones was chosen in order to allow partici-
pants with untrained pitch perception to more easily hear
differences between the generated output and the target
pitch. The participant was instructed to use auditory ima-
gery to produce a tone as high or low as possible according
to the trial cue. A tone between the low and high tones
was played back as feedback.

In the visual imagery task, the goal was to change the
size of a white circle displayed at the center of the screen.
The circle had a minimum diameter of 50 pixels, a neutral
diameter of 150 pixels, and a maximum diameter of 250
pixels. A circle of variable size was displayed as feedback.

The motor imagery paradigm involved the use of kina-
esthetic motor imagery to move a white circle with a diameter of 100 pixels from the

K. Dhindsa - McMaster University, Computational Science and Engineering Ph.D. Thesis

96



center towards the left or the right of the screen. The circle could be displaced by a
maximum of 500 pixels (approximately 25% of the screen width) in either direction. A
variably displaced circle was displayed for feedback.

2.4 Feedback Approach

Feedback was proportional to classifier confidence. This was measured as the estimated
posterior probability that the issued mental command corresponded to the trial cue (see
[Chang and Lin, 2011, Platt et al., 1999, Wu et al., 2004, Lin et al., 2004, Lin et al.,
2007]). For example, in the motor imagery task, a probability of 0.7 would move the
circle 2(0.7 − 0.5) = 40% of the distance in the correct direction. A probability of 0.5
resulted in feedback exactly halfway between either extreme (no change for motor or
visual imagery, and the tone exactly halfway between the low and high tones in audio
imagery). Probabilities below 0.2 and above 0.8 were rounded to 0 or 1. Real time
feedback was not presenting during the mental imagery period.

We instructed participants to try to produce outputs which were as close as possible
to the target rather than instructing them to produce outputs which were simply in
the correct direction. Thus, participants were training to increase classifier confidence,
which implies that they were training to produce brain activity farther away from the
classification boundary. We chose this approach in order to promote training towards
increasingly separable mental commands in feature space over time in a more direct way
compared to simple binary feedback.

2.5 Data Analysis

The experimental data was analyzed both online during each session, and offline after the
entire experiment had been completed. Each session was treated independently during
online analysis. A new feature space and classifier were created for each session after the
pretraining block, and the feature space and classifier were updated at the end of each
training block using all trials completed within the session. The updated model was used
to classify trials and provide feedback during the following block.

The Open-Ended BCI approach requires generalizable signal processing and machine
learning methods, because the brain activity used to issue commands is not known be-
forehand. A simple approach to finding a useful feature space when limited a priori
knowledge is available is to select an optimal subset of features from a larger set of can-
didate features. Common Spatial Patterns (CSP) [Müller-Gerking et al., 1999, Ramoser
et al., 2000] with power spectral density (PSD) and Filter-Bank Common Spatial Pat-
terns (FBCSP) [Ang et al., 2008] were used for feature extraction in online and offline
analysis respectively. Minimum Redundancy Maximum Relevance (MRMR) [Peng, 2005]
was used for feature selection, and a linear Support Vector Machine (SVM) [Cortes and
Vapnik, 1995] was used for classification with the libSVM Matlab toolbox [Chang and
Lin, 2011]. It is important to note that while participants were trained with non-binary
BCI outputs, the underlying system was set up to solve a binary classification problem.

2.5.1 Common Spatial Patterns

Common Spatial Patterns (CSP) is a PCA-based supervised spatial filter and feature
extraction algorithm originally developed for motor imagery classification with EEG
[Müller-Gerking et al., 1999, Ramoser et al., 2000]. CSP aims to learn a spatial filter
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which is optimal for discriminating between different mental commands; several varia-
tions have been developed that allow for classifying a wider variety of mental imagery
tasks [Blankertz et al., 2008, Kothe et al., 2013, Bobrov et al., 2011, DaSalla et al., 2009].
For online analysis, a CSP filter with four components was constructed after bandpass
filtering the EEG from 8-30 Hz with a fourth order Butterworth filter. This yielded four
CSP features corresponding to the largest two and smallest two eigenvalues from the
eigendecomposition of the whitened class-specific spatial covariance matrices. Since CSP
is a standard algorithm used in BCI, the details are omitted here (see [Blankertz et al.,
2008] for a detailed description of the CSP algorithm). PSD was computed in 1 Hz bins
for each CSP component, providing an additional 88 features. Features were selected
using MRMR via 8-fold cross-validation.

2.5.2 FBCSP

In Filter-Bank CSP (FBCSP) [Ang et al., 2008], the EEG signals to be classified are first
bandpass filtered into a set of L distinct frequency bands. The CSP algorithm is then
applied to each filtered signal to obtain CSP components specific to each frequency range.
The components are then concatenated together to obtain L × M CSP components in
total, each of which contributes a candidate feature for feature selection. For offline
analysis, FBCSP filters were constructed over 4 Hz wide passbands with 2 Hz overlap in
the 6-30 Hz range, resulting in L = 11 filters with M = 4, totalling 44 features. The
offline classification procedure is described in further detail below.

2.5.3 MRMR Feature Selection

The MRMR (minimum Redundancy Maximum Relevance) feature selection method de-
veloped by Peng et al. [Peng, 2005] is an information theoretic approach to feature
selection for supervised classification problems. It aims to maximize the joint mutual in-
formation between a selected subset of features and the true class labels while minimizing
the mutual information among the selected features themselves. The method is effective
for feature sets which include a large number of highly correlated features where only a
relatively small subset contains independent discriminative information.

Features are selected sequentially until K features are selected, where K is a chosen
value. The first feature to be selected, z1, is the feature which has maximum mutual
information with the class labels based in a training set. If X is the matrix of values
of all M candidate features xi for each sample in a training set and Y are the training
labels, then

z1 = max
i
I(X = {xi, i = 1, . . . ,M};Y ),

where I is the mutual information function. Each kth included feature for k = 2, . . . K is
selected by maximizing D −R. D is considered a measure of relevance and is defined as

D = I(Zk = {zi, i = 1, . . . , k};Y ),

which is the joint mutual information between all k − 1 selected features, including the
candidate feature zk, and Y . Similarly, R is taken as a measure of redundancy and defined
as

R = I(Zk,Zk),

which is the mutual information among all selected features, including the candidate
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feature zk.
In practice, D is approximated by

D̄ =
1

k

∑

zi∈Zk

I(zi;Y )

and R is approximated by

R̄ =
1

k2

∑

zi,zj∈Zk

I(zi; zj).

The number of selected features could take on the values K = 5, 10, . . . , 40 in both
online and offline analysis depending on which value of K yielded the greatest cross-
validation accuracy.

2.6 Offline Classification Procedure

Offline analyses were conducted in order to confirm the results of online classification and
to explore more computationally intensive methods of data analysis. Since CSP is more
robust to overfitting when a large number of trials [Reuderink and Poel, 2008] and a small
number of channels [Sannelli et al., 2010] are used, as was the case in our experiment,
we do not expect that overfitting was a significant problem in this study. However, the
offline results further help to ensure that the BCI performance metrics obtained in online
analysis were not due to overfitting. The following procedure was used in offline analysis
in order to classify trials from the same session:

1. The Fieldtrip toolbox [Oostenveld et al., 2011] was used to reject trials containing
artifacts:

(a) Trials containing EOG (ocular) artifacts were removed by applying a fourth
order Butterworth bandpass filter with a passband of 1-15 Hz to the de-trended
and z-scored signal from each channel. Z-value thresholding was applied after
averaging all channels.

(b) Of the remaining trials, those containing EMG (muscular) artifacts were re-
moved by applying a ninth order Butterworth bandpass filter with a passband
of 30-60 Hz to the de-trended and z-scored signal from each channel. Z-value
thresholding over was applied after averaging all channels.

2. The remaining data were then partitioned into non-overlapping training and test
sets, with the test set containing approximately 25% of the trials.

3. The 0.5s to 4s time window was extracted from each trial.

4. FBCSP filters were learned using training data only and then used to extract features
for both the training set and test set.

5. Each FBCSP feature was z-transformed using the sample mean and sample standard
deviation in the training set.

6. The MRMR method was used to select features from the list of candidate FBCSP
features.
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7. A linear SVM was trained to perform classification on the test set using the selected
features.

Steps 2 through 7 were repeated 15 times for each combination of parameters. Re-
garding artifact rejection, all z-value thresholds were chosen per session based on visual
inspection of every trial. These thresholds were chosen conservatively so that some clean
trials were discarded in order to avoid including other trials containing small artifacts in
the final analysis.

3 Results

3.1 Online Experiment

3.1.1 Mental Commands

Participants were asked to describe the specific mental commands used for each task
in post-session questionnaires. The mental commands are summarized in Table 1. The
questionnaire also asked participants to rate their level of interest in the task from one
to ten. Interest in each task was correlated with BCI performance (r = 0.25, p < 0.05).
Task order did not have a significant effect on performance (F2,120 = 0.21, p = 0.81).

3.1.2 Classification Accuracy

Table 2 summarizes the online results by session for each of the 14 participants. The
average classification accuracy for the entire session is reported. Since each session began
with new CSP and classification models, the average accuracy over just the last five blocks
are also reported in order to mitigate the effect of suboptimal models early in each session
on BCI performance estimates. The following analysis is based on the BCI performance
during just the final five blocks of each session.

Nine participants surpassed the 70% heuristic for BCI control using at least one form
of mental imagery. There was also a small effect of sensory modality (F2,120 = 4.26,

p < 0.05, variance explained: ω2 = SSbetween−(k−1)MSE
SStotal+MSE

= 0.05), which was driven by
the comparatively high performance with auditory imagery. The distribution of online
performance results for each sensory modality is shown in Figure 3.

3.1.3 Human Learning

Since classification models were independently constructed for each session (i.e., no data
from previous sessions were used in training the models used in any given session), changes
in performance across sessions could not be attributed to the models themselves. Since
the subject is the only part of the system which is common across sessions, improvements
in BCI performance across sessions within a sensory modality could be taken as a measure
of human learning. We observed that the rate of change in accuracy across sessions was
significantly greater than zero (t40 = 2.55, p < 0.01; t12 = 2.93, p < 0.01 when the
participant had at least one above chance session for that task). Additionally, there
was a small but significant effect of session number on BCI performance (F2,120 = 3.44,
p < 0.05, variance explained: ω2 = 0.03).
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Imagery Motor Visual Auditory
P1 Sweeping right arm

/ Sweeping left leg
Feedback stimulus
itself

Piercing high note
/ Muffled low note

P2 N/A N/A N/A
P3 N/A N/A Opera singer /

Chanting monks
P4 Raising hands /

Bowling
Explosion / Black
hole

Opera / Foghorn

P5 N/A N/A N/A
P6 N/A Feedback stimulus

itself
Hammering /
Kicking a ball

P7 Guitar chord with
left hand / Slap-
ping with right
hand

Growing blue circle
/ Shrinking marble

Buzzy kazoo / Leo-
nard Cohen singing

P8 Boxing with right
hand / Guarding
with left hand

Self expanding /
Shrinking ball in
hands

Jazz trumpet / He-
avy metal

P9 Retracting hand
from hot stove
/ Painting with
brush

Moon getting closer
/ Car driving away

Opera singer /
Chanting om

P10 Punching with
right hand / Stret-
ching right arm to
the left

Withdrew from
study

Singing or playing
high notes / Sin-
ging or playing low
notes

P11 Left and right hand
actions (not descri-
bed)

Feedback stimulus
itself

Feedback stimulus

P12 Lifting Dumbell /
Dribbling basket-
ball

Car driving away/
Balloon expanding

Bell / Foghorn

P13 Singing a high pitch
/ Singing a low
pitch

Feedback stimulus Right dumbell curl
/ Left leg extension

P14 Turning a car right
/ Turning a car left

Inflating a balloon
/ Deflating a bal-
loon

Screeching chalk-
board / Growling
lion

Table 1: Shortened mental commands used by each user for each task, as reported on the
post-session questionnaires. Since participants did not always answer all questions on the
questionnaire or write their responses legibly, missing data was marked with N/A.

3.1.4 Classifier Confidence

Classifier confidence was highly correlated with classification accuracy across all above
chance sessions according to the average of the last five blocks (r = 0.79 ± 0.14, p <
0.0001). In addition, linear regression over the standard deviation of accuracy on each
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Figure 3: Boxplots showing the distribution of BCI performance for each sensory modality.
**p < 0.01

block for sessions that yielded above chance classification reveals that classification be-
came more stable over time (β2 = −0.4, p < 0.005). Figure 4 shows online classification
accuracy and classifier confidence for a high performer in each sensory modality.

3.2 Offline Results

The standard CSP approach as defined in [Blankertz et al., 2008], the methods used in
our online analysis, and FBCSP were tested here. In addition, artifact rejection was
employed. An average of 41.7 ± 25.2 trials per session were omitted from analysis due
to artifact rejection. We found that FBCSP yielded the best results, and therefore we
present only those results here. Offline classification results with FBCSP are shown in
Figure 5.

Above chance classification accuracy was obtained for more sessions offline (50 of 123)
than online (28 of 123). There was no difference between offline and online results for
motor imagery sessions (t82 = 1.17, p = 0.12), but there was a trend towards higher
offline accuracies compared to online accuracies for visual imagery sessions (t76 = 1.60,
p = 0.06) and for auditory imagery (t82 = 1.58, p = 0.06).

Figure 6 shows the discriminatory spatial patterns for the best session of each imagery
paradigm. These are the first and last common spatial patterns. Specifically, these are
estimates of the first and last columns of the inverse of the CSP filter W as discussed in
[Ramoser et al., 2000], [Blankertz et al., 2008], and [Blankertz et al., 2011]). However,
because the number of components used in analysis was less than the number of EEG
channels, the vectors used to produce the patterns shown in Figure 6 are computed using
the method given in [Haufe et al., 2014]. CSP components were computed after artifact
rejection and bandpass filtering from 8-30 Hz, corresponding to the bandpass filter used
in the online experiment.
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(a) P13 Motor Imagery

(b) P9 Visual Imagery

(c) P3 Auditory Imagery

Figure 4: Classification accuracy and classifier confidence for a successful subject in each
sensory modality.
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(a) Motor Imagery
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(b) Visual Imagery
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(c) Auditory Imagery

Figure 5: Offline classification results for all sessions using FBCSP
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Subject Imagery Motor Visual Auditory
Session 1 2 3 1 2 3 1 2 3

P1 All 56 58 57 57 53 71** 49 49 61*
Last 5 53 59 61 54 53 83** 47 49 66**

P2 All 44 52 54 50 49 52 46 53 64**
Last 5 45 52 58 48 52 49 46 54 72**

P3 All 48 53 51 43 46 63** 53 94** 75**
Last 5 48 49 45 41 44 63* 60 95** 85**

P4 All 46 55 47 54 52 46 53 51 49
Last 5 49 58 39 53 48 41 55 53 52

P5 All 48 53 53 45 47 50 50 46 51
Last 5 52 51 53 51 44 54 49 44 54

P6 All 54 44 48 51 50 55 51 50 57
Last 5 50 41 49 50 48 55 50 50 61

P7 All 57 51 54 57 51 54 66** 51 65**
Last 5 67** 56 56 50 52 53 70** 49 71**

P8 All 48 54 49 49 46 59* 59 60* 82**
Last 5 50 57 47 45 46 58 63* 64* 98**

P9 All 57 57 51 54 72** 71** 49 50 45
Last 5 63* 55 55 58 77** 78** 46 52 45

P10 All 68** 83** 81** n/a n/a n/a 70** 79** 97**
Last 5 79** 96** 88** n/a n/a n/a 84** 92** 98**

P11 All 56 51 64** 61* 45 48 52 53 54
Last 5 62 56 64* 65* 46 51 50 49 58

P12 All 47 56 45 58 47 48 47 48 52
Last 5 53 52 58 59 50 46 47 44 55

P13 All 72** 49 76** 53 48 48 78** 70** 61*
Last 5 78** 53 77** 54 47 51 76** 74** 61

P14 All 49 53 53 52 45 58 54 63** 52
Last 5 53 52 62* 49 43 58 70** 68* 52

Table 2: Online classification accuracy across all sessions for each of the 14 participants.
Average across all blocks given in the top row, and the average across just the last five
blocks given in the bottom row. Significance is calculated based on a binomial test using the
classification accuracy and the total number of trials in the session.
* denotes significance at p < 0.01.
** denotes significance at p < 0.001.

Figure 6: Common spatial patterns for the last session of each task for each participant. These
are obtained using an approximation to the inverse of the CSP filter W given by computing
A = Cov(X) ∗W ∗ Cov(S)−1, where Cov(X) is spatial covariance matrix of the original
EEG signal and S is the spatial covariance matrix of the EEG signal after being filtered by the
CSP filter W [Haufe et al., 2014]. The first and last columns of A are shown here. Patterns
corresponding to sessions with above 70% classification accuracy for the last five blocks of
online training are marked by a green box.
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3.3 Background Experience Questionnaire

Before beginning their first session, participants completed a basic questionnaire asking
about any training they may have had in athletics, visual arts, or music. This questi-
onnaire asked participants to approximate the number of hours per week spent training
on athletics, visual arts, or music, the number of years spent training in total, and to
give a self-rating of their level of performance/expertise (i.e., do not participate, novice,
university/varsity level, or professional). In this study we used only their self-reported
level of expertise in each area. These data are summarized in Table 3.

We found that self-reported level of performance or expertise had a significant effect
on BCI performance (F2,120 = 22.4, p ≈ 0, variance explained: ω2 = 0.24) and corre-
lated significantly with BCI performance (r = 0.46, p < 10−6). The difference in BCI
performance at each self-reported level of expertise is shown in Figure 7.

Imagery Motor Visual Auditory
P1 2 1 1
P2 1 1 1
P3 1 2 2
P4 2 1 1
P5 1 2 1
P6 1 1 2
P7 2 1 2
P8 2 1 3
P9 1 3 1
P10 2 2 3
P11 2 2 2
P12 2 2 2
P13 3 1 1
P14 2 2 2

Table 3: Self-rated level of expertise as determined by the background experience question-
naire.
Coding: 1 = Do not practice/perform, 2 = Amateur, 3 = Varsity/University level, 4 =
Professional)

4 Discussion

This study makes contributions to BCI reserach in three major areas: first by assessing
the feasibility of an Open-Ended BCI, second by measuring the contribution of human
learning to performance with mental imagery BCIs, and third, by examining how domain
expertise can affect BCI performance.

4.1 Feasibility of an Open-Ended BCI

The classification accuracies obtained with our participants are consistent with other
studies exploring abstract non-motor imagery with low resolution EEG (e.g., [Bobrov
et al., 2011, Cabrera and Dremstrup, 2008]). Nine out of 14 participants were able to
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Figure 7: Boxplots showing the distribution of BCI performance at varying levels of self-
reported expertise.
*p < 0.05, **p < 0.01, ***p < 0.001

achieve useful BCI control (at least 70% classification accuracy) with at least one sensory
modality during the experiment, and 9 participants had data resulting in at least this
level of accuracy in offline analysis. We anticipate that performance will further improve
with feature extraction methods that allow for better generalization across different kinds
of mental imagery. Nonetheless, these results suggest that there is promise in the concept
of an Open-Ended BCI and it is worthwhile to develop this approach further.

The limitations on performance due to EEG hardware were apparent in this study.
Previous studies have shown that the Emotiv Epoc yielded poorer BCI performance
compared to a research grade EEG device [Bobrov et al., 2011, Duvinage et al., 2013].
However, previous studies had not reported the significant loss in SNR over the course of a
study which we observed. Furthermore, the sparse and non-uniform sensor configuration
is not optimal for an Open-Ended BCI, which must be able to measure a wide variety of
neurophysiological signals. For example, the greater sensor coverage over temporal areas
and poor coverage over motor areas may be the main reason why participants performed
better with auditory imagery than motor imagery on average (motor imagery typically
requires at least C3 and C4 to detect the sensorimotor rhythm). With the Emotiv Epoc’s
electrode configuration, the CSP algorithm would rely mainly on frontal and temporo-
parietal sensors, and it is possible that participants who chose mental commands which
were more distinguishable in these brain regions were to some extent inadvertently more
successful in controlling the BCI. As such, this device would not be ideal for studies focu-
sed on comparing performance across tasks using different sensory modalities. However,
given that our study was focused on showing that an Open-Ended BCI design is possible,
the limitations attributable to this EEG hardware do not detract from the purpose or
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conclusions of this study.
Another limitation was the lack of continuous real time neurofeedback during the

mental imagery period of each trial. It is possible that BCI performance would have
been improved with the inclusion of this neurofeedback approach. However, our results
still support the conclusions that an Open-Ended BCI is a feasible approach for future
BCI applications and that the domain expertise of the individual is likely to impact BCI
performance with mental imagery in a related sensory modality. If continuous neurofeed-
back, or any other improvements to user training, were implemented in this study, we
expect that it would only strengthen these conclusions due to the potentially improved
BCI performance.

The presence of undetected artifacts may have also been a limitation in evaluating BCI
performance in this study. Although offline analysis used a standard artifact rejection
method and resulted in a slight increase in classification accuracy, it has been suggested
previously that even more robust methods may be needed for BCIs [Brunner et al.,
2015]. Because we did not use electromyography (EMG) electrodes on the face, larynx,
and appendages, it is possible that subtle muscle activity or subvocal laryngeal activation
was present during mental imagery, and thus influenced the BCI models.

4.2 The Contribution of Human Learning

There was a significant effect of human learning observed in this study. However, the cur-
rent study cannot precisely determine the cause of improvements in performance across
sessions within a sensory modality, even though, since computational models were inde-
pendent between sessions, we could attribute those changes to the subject. However, we
cannot determine for sure whether these improvements are due to subjects improving in
their ability to produce reliable brain activity (although for some subjects, this may have
been the case, as P10 noted that they had practiced their mental imagery strategies bet-
ween sessions) or due to other factors (e.g., changes in fatigue levels, hunger, distraction,
or motivation).

Though the precise causes of changes in performance across sessions is difficult to de-
termine, the results presented here adds to previous arguments for the need for improved
user training in BCI [Lotte et al., 2013], it is possible that overall classification accuracy
could be enhanced with better user training. However, no user training methods have
been discussed in the literature so far which appear to be particularly suitable for an
Open-Ended BCI. While further sessions may have given participants enough time to
find and practice more optimal personal mental strategies, a suitable neurofeedback ap-
proach which more directly promotes reliable mental commands without prior knowledge
of those mental commands must also be developed.

4.3 Background Experience in BCI Performance

The effect of self-reported level of expertise in athletics, visual arts, and music on BCI
performance found in this study may have important implications for BCI training. Since
BCI performance was not correlated with task order, we can state with confidence that
this was not a confounding factor in this result. Interest in the task was, however, corre-
lated with performance, though to a smaller extent than expertise was. Moreover, some
participants commented on their questionnaires that the task was much more interesting
when the BCI responded accurately, suggesting that interest was not the cause of hig-
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her BCI performance. Therefore, it is likely that the correlation between task interest
and BCI performance was not a significant confounding factor affecting the impact of
expertise on BCI performance.

If it is the case that expertise in an area relevant to the sensory modality used in a
mental imagery BCI is predictive of subsequent BCI performance, then the BCI commu-
nity could take advantage of this fact and cater BCI training to the particular background
of each individual. Furthermore, BCI applications targeting specific groups of individu-
als, e.g., artists, might be able to suggest or specify mental commands using appropriate
sensory modalities.

These results fall very much in line with previous work on personality and cogni-
tive profiles as predictors of mental imagery BCIs [Jeunet et al., 2015, Hammer et al.,
2012, Randolph, 2011, Scherer et al., 2015]. However the results presented in this study
extend the idea that such individual factors can impact BCI performance to the cases
of abstract user-defined visual imagery and abstract user-defined auditory imagery and
suggest specifically that one’s area of expertise can affect BCI performance. Furthermore,
these results show that the idea of giving free and open choice of mental commands [Frie-
drich et al., 2012] has some merit, since on average participants performed best with
mental commands within a sensory modality they found more interesting and which cor-
responded to their prior expertise. In future work, standardized questionnaires assessing
kinaesthetic, visual, and auditory/musical aptitude may provide a clearer indication of
the relationship between BCI performance and domain expertise, and whether specific
variables associated with domain expertise are particularly important.

5 Conclusions and Future Work

As this is the first study on an Open-Ended design to our knowledge, we aimed to
discover key areas where we should focus our attention while developing new methodology
specificallly catered to Open-Ended BCIs. We identified two key areas for future work.

First, more generalizable signal processing and machine learning methods are neces-
sary, as the naive approach of compiling a large set of candidate features from which to
find an optimal subset may not be sufficiently powerful. FBCSP and related variations
are useful because in principle they provide a data-driven approach to differentiate signals
which are separable by their spatio-spectral distributions. However, it is possible that
any combination of specific feature extraction methods may not be consistently successful
in an Open-Ended BCI, because the user may choose mental commands which are not
separable via any possible feature space derived from those feature extraction methods.
Others have discussed the need for generalizable feature extraction methods for BCI due
to the need to accommodate a greater variety of mental strategies [Nurse et al., 2015].
Notably, feature learning has recently been successfully applied in the BCI context [Sto-
ber et al., 2015]. This approach may have the flexibility needed in order to construct a
custom feature space for each user and each task, providing the generalizability needed
for an Open-Ended BCI.

The second key area for future work is the need for improved methods for user trai-
ning. While this is true not only for open-ended BCIs (see [Lotte et al., 2013]), standard
training methods may not be suitable for an Open-Ended BCI. In particular, an appro-
priate training method should assist the user in discovering a strong personalized mental
strategy and then help the user differentiate their mental commands over time without
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knowing what those commands will be in advance. We propose a data-driven approach
which models the class distributions over time and uses neuorfeedback targeting areas
where these distributions overlap in feature space in order to train the user to incre-
ase separation, irrespective of their choice of mental commands. In addition, we have
shown that allowing and encouraging a choice of mental commands which are domina-
ted by a sensory modality correpsonding to an individual’s expertise can improve BCI
performance. Hence training should include a stage of discovering good personal mental
commands within an appropriate sensory modality, and focus on using networks in the
brain which are already trained by the user in other contexts. Whether this effect persists
outside of the forms of mental imagery tested here, and what precise mechanisms explain
this effect are questions that should be probed more deeply, as they may substantially
improve BCI performance by enabling BCIs to better take advantage of individual factors
during training.

We have learned from this study than an Open-Ended BCI is feasible. However,
new methods may be required in order make better use of individual differences in the
ability to modulate different neurophysiological signals. In particular, we must overcome
the unique challenges involved with developing a BCI which can accommodate different
mental strategies and different neurophysiological signals for different users. Given that
individual factors appear to significantly impact BCI performance, developing the Open-
Ended BCI further is a worthwhile endeavour.
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4.3 Discussion

This chapter introduced the idea of an open-ended BCI and demonstrated the
feasibility of a more generalized BCI transducer. The main advancement shown
here is an approach that does not rely on specific knowledge about the mental
commands employed by the user, thus allowing each user to choose their own
mental commands. This was achieved simply by using a combination of existing
methods in a way that would allow for generalization across different neurophys-
ioloigical signals. More specifically, features were extracted in a way that could
accommodate a variety of mental commands, and specific discriminative features
were selected for each case.

The open-ended BCI approach can be contextualized more broadly as a feature
discovery approach to generalized brain-computer interfacing. Concurrent to this
work, a neural network approach for addressing the lack of individualization in
BCI was proposed for motor imagery classification [20]. Similarly, a deep learning
approach was proposed for music imagery classification [21]. However, whether
these approaches can be generalized to mental imagery more broadly has not yet
been tested, and thus cannot be said to achieve the same level of generalization as
the open-ended BCI presented here. Furthermore, while none of these approaches
are especially new in the machine learning literature, they are all novel in the con-
text of brain-computer interfacing, where a commonly held view is that extensive
feature engineering based on a priori knowledge is necessary.

Rather than representing a technological breakthrough, this study was about
validating a paradigm shift in BCI design. The use of predefined mental com-
mands has enabled much progress in the field, but it is a simplification that is not
without its limitations. The transition from restricting users to specified men-
tal commands to giving users the freedom to experiment with different kinds of
mental commands introduces the significant challenge of developing a generalized
BCI transducer. While this challenge may have seemed insurmountable in the
past, the study presented here shows that it is indeed possible to make progress
in this direction and move towards a generalized BCI with current technology. In
doing so, different users can be made free to make use of mental commands which
lead to optimal BCI performance for them as individuals. Though this study did
not result in better BCI performance than the standard approach due to several
limitations in the experimental design and suboptimal hardware, that comparable
classification accuracies were achieved using a variety of novel mental commands
which were only disclosed after each training session demonstrates the promise of
this approach to generalized brain-computer interfacing.

One important question about the methods for generalized brain-computer
interfacing presented in this thesis is how broadly they can be applied. In Chapter
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5, a study using the alternative blind approach to EEG classification summarized
in Chapter 2, the SF approach, is used to predict emotional responses to videos.
This adds confidence to the notion that these methods open up a viable path
towards a truly generalized user-centered BCI.
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J. d. R. Millán, F. Miralles, A. Nijholt, E. Opisso, et al., “BNCI horizon
2020: towards a roadmap for the BCI community,” Brain-computer inter-
faces, vol. 2, no. 1, pp. 1–10, 2015.

[12] B. Allison, T. Luth, D. Valbuena, A. Teymourian, I. Volosyak, and A. Graser,
“BCI demographics: How many (and what kinds of) people can use an
SSVEP BCI?,” IEEE transactions on neural systems and rehabilitation en-
gineering, vol. 18, no. 2, pp. 107–116, 2010.

[13] B. Z. Allison and C. Neuper, “Could anyone use a BCI?,” in Brain-computer
interfaces, pp. 35–54, Springer, 2010.

[14] C. Neuper and G. Pfurtscheller, “Neurofeedback training for BCI control,”
in Brain-Computer Interfaces, pp. 65–78, Springer, 2010.
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Detecting Emotional Reactions
from EEG Using a Generalized
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5.1 Introduction

Methods that generalize well across individuals and a variety of mental commands
do not necessarily generalize well to different types of BCI and EEG classification
problems. In particular, BCI transducers based on CSP or any spatial filtering
method should perform well if different mental states or mental commands are
spatially separable, but only if there are enough EEG electrodes with which to
compute a sufficiently precise spatial filter. Recognizing this limitation, the SF
approach to generalized BCI transducers based on channel-wise spectral analysis
was given in Chapter 2. Since the study presented in this chapter involved only
four EEG channels, the SF approach was used.

The study presented in this chapter is on detecting emotional reactions to
videos from EEG. Even though the same method that was used to develop the
open-ended BCI was not used here, this study still demonstrates that generalized
methods for BCI can be applied to widely different contexts. While the number
of EEG channels was small, there was a sufficient amount of data available to
make the SF approach feasible despite its reliance on a large number of features.
Moreover, certain functions of the power spectrum, such as alpha asymmetries,
are known to be correlated with certain emotional states [1, 2] (therefore approx-
imately 1% of the features used in this study were included based on a priori
knowledge about emotional responses in EEG). Thus, the spectral features ap-
proach was considered most appropriate for this particular study.

Note on artifact detection: The studies presented in this chapter and in
Chapter 6 used the Muse EEG headband1. It was found that standard artifact re-
moval algorithms did not perform adequately for this hardware, and no algorithms
had been developed for real-time applications using such sparsely distributed elec-
trodes (real-time artifact detection was especially needed for the study presented
in Chapter 6). A new artifact rejection method, Filter Bank Artifact Rejection
(FBAR), was developed in order to satisfy this need. FBAR is an algorithm which
can detect even small and subtle artifacts in single-channel EEG in real time with
a high degree of accuracy. See Appendix A for a detailed explanation of the FBAR
algorithm.

1Interaxon Muse. www.choosemuse.com,
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5.2 Emotional Reaction Recognition from EEG

Dhindsa, K. & Becker, S. (In Press: 2017). Emotional Reaction Recognition from
EEG. 7th International Workshop on Pattern Recognition in Neuroimag-
ing 2017. IEEExplore.
Article reprinted with permission.
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Abstract—In this study we explore the application of pattern
recognition models for recognizing emotional reactions elicited by
videos from electroencephalography (EEG). We show that both
the presence and magnitude of each emotion can be predicted
above chance levels with up to 88% accuracy. Furthermore, we
show that there are differences in classifiability for different
emotions and participants, but whether a participant’s data can
be classified with respect to different emotions can itself be
predicted from their EEG. Index Terms– Emotion recognition,
electroenecephalography (EEG), pattern recognition, classifica-
tion, regression, individual differences, affective computing

I. INTRODUCTION

The ability to recognize emotional reactions based on bio-
logical data has a wide variety of applications [1], including
in therapy for mood disorders and in prosthetic devices for
those with communication disorders. In particular, the rapidly
growing field of affective computing is focused on integrating
the emotional states of users into computer applications [2],
[3]. However, more accurate pattern recognition is needed to
make such applications reliable.

Machine learning is a quickly expanding field that trains
data-driven pattern recognition models [4]. In recent years,
machine learning approaches have been used to classify emo-
tional imagination [5], and emotional reactions to pictures [6],
audio samples [7], and videos [8] from electroencephalography
(EEG). However, these studies have typically been limited to
classifying only positive versus negative emotions, and use
research-grade EEG hardware which is costly and impractical
for most real-world applications.

In this study, we extend previous results on classification of
emotional reactions and classify high versus low emotional
experience with respect to 11 different emotions using a
consumer-grade EEG headband. In addition, we show that
we can predict from the same EEG signals whether inter-
subject classification will result in above-chance classification
at all. Finally, we extend our results beyond simple binary
classification and employ machine learning regression analysis
to predict the magnitude of the emotional reaction as well.

II. DATA ACQUISITION

A. Participants and Materials

Forty undergraduate students from McMaster University (24
female) participated in the study. No exclusion criteria were

applied. Participants provided informed consent and the study
was approved by the McMaster Research Ethics Board.

A total of 102 videos acquired through Youtube were used.
The videos varied in length from 51s to 300s with an average
length of 138.7s. Approximately half of the video clips were
from Hollywood movies, and the other half were taken in real
life situations using video cameras.

EEG was recorded with the Muse headband [9]. The Muse
headband has four EEG electrodes located at T9, Fp1, Fp2, and
T10 according to the International 10-20 system. The reference
electrode is situated at Fpz with DRLs (driven right legs) on
both sides. EEG was sampled at 220 Hz with 50 Hz and 60
Hz notch filters implemented in hardware.

B. Experimental Protocol

Data were collected using Matlab R2013b [10] and stimuli
were presented using the Psychophysics Toolbox [11]. Par-
ticipants were set up with an EEG headband and seated in
front of a laptop in a private room. The participants watched
approximately 60 minutes of videos, amounting to 17.2 ±
3.5 videos watched per subject. After each video, participants
rated on a scale of one to ten the extent to which they expe-
rienced the following emotions in response to the video they
just watched: ’Interest’, ’Amusement’, ’Happiness’, ’Sadness’,
’Fear’, ’Disgust’, ’Anger’, ’Hope’, ’Relief’, ’Surprise’, and
’Sympathy’. Videos were pre-labelled as positive or negative
and an approximately equal number of positive versus negative
videos were played for each participant.

III. DATA ANALYSIS

A. Preprocessing

EEG corresponding to each video was de-meaned and
cleaned of artifacts using the Filter-Bank Artifact Rejection
(FBAR) toolbox [12]. For classification analysis, self-reported
emotional ratings were transformed into binary labels by
grouping ratings from 1 to 5 in one class and ratings from
6 to 10 in another class. Emotional ratings were kept in their
original form for regression analysis.

B. Feature Extraction

Fourth order Butterworth bandpass filters were used to ex-
tract the theta (4-7 Hz), alpha (8-12 Hz), beta (13-30 Hz), and
gamma (31-45 Hz) bands from each of the four EEG channels.
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From each of these frequency bands, a wide variety of features
were computed in order to increase the likelihood that a subset
of features would be found to be useful for each emotion and
for each task, including spectral and cross-spectral density,
coherence, cross-frequency coupling, bispectrum, bicoherence,
quadratic phase coupling, and alpha asymmetries. In total, 279
features were computed from the EEG recording during each
video viewing.

1) Power Spectal Density: For each of the four channels,
the power spectral density (PSD) was estimated for the theta,
alpha, and beta bands using the definition

PXX(f) = lim
T→∞

E
[
|X̂T (f)|2

]
(1)

where X̂T (ω) is the finite-time Fourier transform of a signal
X . This yielded 12 features.

2) Cross-Spectrum: The cross-spectral density (CSD) ex-
tends the PSD to the Fourier transform of two signals, X and
Y and is defined as

PXY (f) = lim
T→∞

E
[
X̂T (f)ŶT (f)

]
. (2)

The CSD was computed for the theta, alpha, beta, and gamma
bands for all pairs of channels, resulting in 24 features.

3) Coherence: Coherence between all pairs of electrodes
within the theta, alpha, beta, and gamma bands was computed.
Coherence between two signals X and Y is defined as

CXY (f) =
|PXY (f)|2

PXX(f)PY Y (f)
, (3)

where PXX is the PSD as defined in Eq. 1, and PXY is the
CSD as defined in Eq. 2. In total, 24 coherence features were
computed.

4) Cross-Frequency Coupling: The weighted phase locking
factor (WPLF) [13] was used as a measure of cross-frequency
coupling. WPLF is a measure of coupling strength and the
preferred phase angle for a pair of signals. WPLF is given by

WPLF =
1

T

T∑

t=1

eiθ(t), (4)

where T is time and θ is the phase difference between two
signals. WPLF magnitude and phase angle was computed for
each pair of channels and for each pair of frequency bands,
resulting in 96 features.

5) Bispectrum, Bicoherence, and Quadratic Phase Cou-
pling: The bispectrum of a signal is the 2D Fourier Transform
of the third order cumulant generating function and is given
by

B(f1, f2) = F∗(f1 + f2)F(f1)F(f2), (5)

where F is the Fourier Transform and F∗ is its complex
conjugate [14].

Bicoherence is the normalized bispectrum for a signal in n
bins (32 bins were used here):

Bc(f1, f2) =
|∑n Fn(f1)Fn(f2)F∗n(f1 + f2)|∑
n |Fn(f1)Fn(f2)F∗n(f1 + f2)|

. (6)

Quadratic Phase Coupling features are obtained from the
autoregressive parameters of the bicoherence of a signal. These
parameters provide information about the change in bicohe-
rence over the frequency landscape. A 6th order autoregressive
analysis was performed here.

The bispectrum, bicoherence and QPC are used to capture
non-linear interactions between frequency pairs in a signal
with respect to magnitude, frequency-normalized magnitude,
and phase [14]. The sum and sum-of-squares of the bispectrum
and bicoherence for the theta, alpha, and beta bands of each
channel, and their corresponding QPC autoregressive coeffi-
cients were extracted as features, for a total of 120 features.

6) Alpha Asymmetries: Asymmetric alpha power in the
frontal and temporal cortices is associated with emotional
responses to video [15]. Three alpha asymmetry features were
computed: frontal alpha asymmetry (FAA) using only the
two frontal channels, temporal alpha asymmetry (TAA) using
only the two temporal channels, and global alpha asymmetry
(GAA) using all four channels. Alpha asymmetries were
computed using the formula

AA =
L−R
L+R

(7)

where L and R are left and right alpha power respectively.

C. Feature Selection

From the 279 features extracted, small subsets were selected
for classification using the minimum-Redundancy Maximum-
Relevance (mRMR) feature selection method [16] to reduce
the risk of overfitting. The mRMR method is an information
theoretic approach to feature selection which aims to maximize
the mutual information between the subset of selected features
and the true training labels while simultaneously minimizing
the mutual information among selected features. The number
of features to select is a parameter chosen via cross-validation
from the set K ∈ {4, 8, 16, 32}. Features were selected using
training data only.

D. Classification and Regression

Two classifiers were used in this study: a support vector ma-
chine with a radial basis function kernel (C = 1, σRBF = 1)
[17] and logistic regression (LR) with elastic net regularization
(α = 1

4 ) [18]. The parameter λ was chosen with a nested
validation set comprising 10% of the training data. Regression
analyses were performed using a boosted decision tree with
500 nodes [19].

E. Classification and Regression Tasks

The EEG data recorded during each video were used in
five different tasks. In Task 1, leave-one-subject-out cross-
validation (LOSO-CV) was performed by using each parti-
cipant’s data as a test set once while the remaining parti-
cipants for training. In Task 2, within-subject analysis was
performed with leave-one-video-out cross-validation (LOVO-
CV). In Task 3, LOSO-CV was performed again but this time
using only the participants who had classifiable data (greater
than 60% classification accuracy or statistically greater than
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Fig. 1: Prediction rate of classifiability of participants with
respect to each emotion. In = Interest, Am = Amusement, Ha
= Happiness, Sa = Sadness, Fe = Fear, Di = Disgust, An =
Anger, Ho = Hope, Re = Relief, Su = Surprise, Sy = Sympathy.

zero correlation between predicted and observed emotional
response) in Task 2. In Task 4, data from all participants
were used together to perform regular 10-fold cross-validation
with randomized partitioning of training and test sets with a
75%-25% split. Finally, in Task 5, 10-fold cross-validation was
performed using only the participants who had classifiable data
in Task 2.

IV. RESULTS

Table I shows the classification accuracies for each task
and each emotion. The dominant relevant features were alpha
asymmetries, frontal alpha and beta bicoherence, temporal
theta coupling, and alpha and beta fronto-temporal WPLF.
Similarly, the results of regression analysis are shown in Table
II. Regression results were driven almost exclusively by beta
band QPC features in the frontal channels.

There was a high degree of inter-subject variance in classi-
fication accuracy for each emotion. This was in part driven by
the fact that some participants’ EEG could not be classified
beyond chance levels, while the EEG from others could be
classified with over 90% accuracy. We used the results from
Task 1 to label those for whom greater than 60% classification
accuracy was achieved as ’Classifiable’ and those for whom
less than 50% accuracy was achieved as ’Non-Classifiable’
and trained new classifiers based on these labels. The LOSO-
CV classification accuracy for predicting whether participants
would be classifiable with respect to each emotion is shown
in Figure 1, and the average classifiability across emotions
for each participant is shown in Figure 2. These results were
driven by temporal theta and beta bicoherence, temporal theta
and alpha cross-spectral features, and frontal beta power.

V. DISCUSSION AND CONCLUSIONS

In this study we showed that it is possible to predict
both the presence and magnitude of several different types
of emotional experiences to videos with a consumer-grade
EEG headband. As such, the method developed here may
be more directly applicable to real-world affective computing

Fig. 2: Prediction rate of Classifiability of each participant
averaged across all emotions.

applications. We achieved average classification accuracies of
over 70% when performing LOSO-CV with and without non-
classifiable participants (Tasks 1 and 3), LOVO-CV within
participants (Task 2), and regular 10-fold CV with and without
non-classifiable participants (Tasks 4 and 5). We achieved
over 80% classification accuracy with some emotions, such as
‘Interest’ and ‘Anger’. Furthermore, the regression analyses
resulted in models which could predict the degree of the
reported emotional experience with, in some cases, R > 0.4.

For most emotions, we were also able to predict from
the EEG which participants would be classifiable or non-
classifiable using LOSO-CV. Although the same data were
used in the previous classification analyses, a unique set of
features were selected when determining whether a participant
would be classifiable. This result suggests that it may be
possible in the case of emotion recognition or potentially in
brain-computer interfacing to determine a priori whether or
not a given participants will be easily classifiable. Interestingly,
non-classifiability was less of a problem in regression analysis,
where the amount of training data seemed to be the main
factor in learning accurate models. Further analysis is required
to determine why certain participants were non-classifiable.
One possibility is that these participants represent a subset
of individuals whose emotional reactions produce a different
pattern of brain activity from the majority.
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5.3 Discussion

Accurate detection of emotional states and reactions has interesting applications
in affective computing, psychotherapy, and BCIs (particularly passive BCIs, which
rely on detection of changes in mental states rather than willful mental commands
[3]). For example, one can imagine that the ability to detect fear and disgust can
be used to monitor the individual progress of a patient undergoing treatment for
a phobia. The approach laid out in this work has not yet been tested for real-time
classification, so further research would need to be done in order to evaluate its
efficacy in that context. However, this work does demonstrate that a generalized
approach can be used for the complex task of emotion recognition from EEG.
Moreover, this work shows that generalized methods can be used in the analysis
of a variety of emotions, rather than being fine-tuned for just one or two emotions.

The generalized approach based on SF performed well on many of the emo-
tions studied even though the approach was not specifically designed to detect
emotions at all. The neural correlates as expressed in EEG of each of these emo-
tions have not yet been fully characterized in the literature either, so designing a
specialized feature space specifically for each emotion would require further neu-
roscientific study similar to the study presented in Chapter 3. Given this fact,
this study serves to demonstrate an additional benefit gained by generalized BCI
methods, which is that they can enable applications even if there is insufficient
a priori knowledge with which to develop handcrafted models. Further analysis
on the specific features which are discriminative for each emotion can add new
information to the literature regarding which features of the EEG are relevant to
the classification of various emotional states.

It must be noted that because each emotion was analyzed independently (this
was done because the emotional ratings are highly correlated across emotions given
that multiple emotions could be rated highly per video), it is possible that the
classifiers were actually identifying general arousal levels or video-specific visual
processing rather than the emotions themselves. This explanation seems unlikely,
because upon further analysis the specific discriminative features were different for
each emotion and a variety of videos were associated with each emotion, suggesting
that general arousal or visual aspects of the videos cannot account for the results
that were obtained. However, deeper feature-level analysis is required to confirm
that the classification and regression models truly reflected emotional states and
not some other signal present in the EEG.

One critical limitation in this study is that no method was used to try and
identify where in the EEG time series different emotions were experienced. The
videos were quite long with respect to the usual time windows used in EEG signal
processing. Computing features across these long windows can be unreliable due

129



K. Dhindsa - McMaster University, Computational Science and Engineering Ph.D. Thesis

to nonstationarity in the EEG, which can be seen at timescales as short as several
seconds. A standard approach to EEG analysis would have been to subdivide
the EEG time series recorded during each video into many short (e.g., 2s) epochs
which share the same class label. However, it would not be reasonable to expect
that each epoch would actually reflect the labelled emotion, which would be very
detrimental to the success of any purely supervised method. Therefore, computing
features per video, while reducing the discriminative power of those features due
to smearing across discriminative and non-discriminative time windows within
the time series, was a conservative approach to the problem that at least avoided
introducing even more noise into the class labels.

In order to maximize discriminative power, it would be necessary to use a
semi-supervised approach, which would first identify time windows in which the
emotional experience was present. One idea, which will be experimented with
upon revisiting these data, is to track changes in the features across the video
compared to a baseline measure. More specifically, spectral features could be
computed for short overlapping time windows in order to approximate a contin-
uous time series of feature values. These feature values could be compared to
the average of all feature values across all videos for the given participant, which
would serve as a baseline measure, or centroid, of the feature space. The total
deviation of the feature values over time with respect to the baseline (e.g., the
mean-squared difference) might be useful in determining where the discrimina-
tive information resides in each video, particularly if the feature values deviate
from baseline in a relatively smooth fashion for at least several seconds. Using
a statistical threshold, a segment of the EEG time series corresponding to where
the feature values deviate from the baseline may provide a means to retain the
discimrinative data separate from the extraneous portions of the time series. How-
ever, it may be necessary to introduce some supervision in this proposed method,
since it is also possible that the extracted time segments will be more reflective of
neural processing related to non-emotional features of the video, e.g., audiovisual
features. One option for introducing supervision is to test whether the direction
of the deviation is predictive of the class labels themselves, and to choose time
windows accordingly.
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6.1 Introduction

So far the focus of this thesis has been on developing an appropriate machine
learning approach for a generalized BCI. However, in Chapter 2 it was noted that
redesigning the way the human user is trained to control a BCI is just as important
as making advancements in machine learning. The need for improved methods
for user training may be even greater for generalized BCIs and open-ended BCIs
than for standard BCIs, because there is no guarantee that the user will choose
mental commands which have easily separable neural correlates to begin with.
This chapter, along with the next, address the question of how to advance human
training protocols for BCI.

Humans are trained to use a BCI via neurofeedback (NFB) [1, 2, 3, 4]. NFB
was originally developed as a way to train individuals to modulate or regulate
their own brain activity with respect to a single simple feature (e.g., power in
a specific frequency band) or a ratio of simple features (e.g., the ratio of power
between two bands) usually at a single electrode site [5, 6, 7]. The applicability
of NFB to BCI is clear due to the need for the user to learn to modulate their
own brain activity in order to produce consistent and distinct patterns of brain
activity for BCI control. However, standard NFB methodology may need to be
modified for the BCI context, where the user must learn to willfully control their
brain activity with respect to several features simultaneously.

In current practice NFB is applied in a variety of ways for BCI user training.
However, these methods do not vary widely from the standard methods used in
NFB outside of BCI, with one notable difference. In a traditional NFB protocol
the target brain state is defined either as a specific value for the feature being
trained, or as simply increasing or decreasing that feature. In the BCI context,
NFB targets are instead defined by the machine learning model. Therefore, the
NFB target in a BCI is somewhat amorphous; there is a different target for each
mental command and the targets change as the system adapts to the user. The
targets depend on whatever patterns of brain activity the model recognizes as
belonging to each mental command at the time.

There are several problems with current implementations of classifier-based
NFB (see [4] for a more detailed discussion). First, because each class is usually
not completely separable in feature space unless perfect classification accuracy
is achieved, feedback can be ambiguous near the classification boundary. Near
this boundary, the classifier itself would exhibit low confidence of its classification
prediction and can easily be wrong. Furthermore, since most individuals only
achieve low to moderate degrees of BCI control, classifier-based NFB is not usually
highly reliable. For both of these reasons, there is only a low degree of confidence
that any feedback derived from the classifier would promote changes in brain
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activity in the correct direction.

This problem is even worse in a real-time BCI application with live classifier
updates. In this scenario, the classifier generally begins with very poor accuracy
and improves over time. If a user begins training with NFB derived from a poor
classifier which has not yet established clear patterns for each mental command,
it may be difficult to learn useful strategies during the early, and arguably most
important, stages of training. Moreover, the user may learn counter-productive
strategies which can limit performance in the long term. This problem could be
partially mitigated if there were a clear way to inform the user about which fea-
tures of brain activity need to be adjusted and in which direction. Unfortunately,
and particularly in the case of non-linear classifiers, it is very difficult to deter-
mine exactly why a certain class is selected in the first place. Therefore, simply
determining which features violate the pattern expected by the classifier can be a
very difficult problem which prevents the implementation of feature-specific NFB
training.

Due to the problems in directly applying standard NFB methods to BCI,
there is a growing consensus that user training for BCIs is itself one of the more
serious barriers to improving BCI usability [8, 9, 3, 4]. Recent empirical work
using BCI training methods for non-BCI tasks strongly supports this notion [10,
11]. However, alternative training methods or adaptations of traditional NFB
methodology to better fit the BCI context have not yet been proposed.

Since NFB is central to user training in BCI, the NFB literature was studied
in order to gain insight into how NFB protocols could be modified to better serve
as a tool in brain-computer interfacing. What was discovered was that even in
traditional NFB training, the problem of training someone to change their brain
activity in the correct direction remained unsolved. This could be seen as an
opportunity, because if this problem could be solved in the simpler traditional
NFB setting, then the solution might be adaptable to the more complex BCI
setting.

Current automated NFB methodology (i.e., algorithm-controlled NFB as op-
posed to manual clinician-controlled NFB) lacks a clear and reliable method for
shaping, even though it is in essence based on an operant conditioning paradigm
[7, 12]. Shaping, in Learning Theory, is the use of incremental reinforcement for
progressive approximations or improvements with respect to a task, skill, or be-
haviour to be learned [13]. When implemented well, shaping promotes learning in
a manageable way with specificity, or with a reduced risk of producing extraneous
and erroneous behaviour. Due to a lack of shaping in automated NFB, users often
learn to modulate their brain activity in incorrect or irrelevant ways [3, 14, 15].
The failure rate is surprisingly similar to the BCI illiteracy rate, a parallel which
may or may not be coincidental.
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This chapter presents the results of a new NFB training protocol called Pro-
gressive Thresholding. The version presented here is a specific and simple im-
plementation of the Progressive Thresholding algorithm designed for traditional
and clinical neurofeedback applications. This new user training approach was
first validated in a standard NFB protocol in order to compare it more directly
to current NFB methods. Moreover, extending Progressive Thresholding for BCI
user training involves a more complex algorithm (see Chapter 7), and BCI stud-
ies involve added layers of technical complication which can influence the results.
Moreover, BCI user training involves NFB training with respect to several features
simultaneously, as opposed to traditional NFB training which involves learning
to modulate only one or two features. These factors together suggested that it
would be easier to assess the impact of Progressive Thresholding in a standard
NFB protocol before moving to a BCI study. There is also a clear and present
need for a such a technique for clinical NFB. This gives the following study much
more importance than just as a precursor to a BCI study based on the same
principles, even if improved BCI user training was the original intention behind
developing this new approach.
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6.2 Adaptive Neurofeedback: Training Individ-

uals to Control their Brain Activity

Dhindsa, K., Gauder, K. D., Marszalek, K. A., Terpou, B., & Becker, S. (Revision
under review). Progressive Thresholding: Incorporating Shaping and
Specificity into Automated Neurofeedback Training.
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Abstract

Neurofeedback, a type of biofeedback which trains individuals to modify their own brain activity, has

long been discussed as a promising form of adjunctive non-pharmaceutical treatment for many neurophy-

chological disorders. However, there is an active debate over how efficacious and specific neurofeedback

treatments are, and how to best design and implement them. One of the central issues being debated

is whether reward thresholds, which are meant to provide an essential component of the training signal

by indicating to the patient or trainee when they are changing their brain activity correctly, can be

set automatically by an algorithm or must be set manually by a specially trained clinician. The cur-

rent debate has largely settled on the conclusion that because automatic reward thresholding, as it is

currently implemented, does not involve shaping the trainee’s progress towards the goal, effective and

reliable neurofeedback must be done with manual thresholding.

In this study we weigh in on this debate by suggesting a third option. It is possible to achieve

both the convenience and affordability of automatic thresholding as well as the efficacy and reliability

of manual thresholding simultaneously. The problem with automatic thresholding does not lie in the

fact that it is automatic, but in the fact that current algorithms utilize a flat reward rate and therefore

do not incorporate shaping. Here, we show that automatic reward thresholding is not synonymous

with a flat reward rate algorithm and present a new automatic thresholding algorithm, Progressive

Thresholding, which does away with flat reward rates and instead uses difficulty tuning and inter-session

progress models for each individual in order to simulate the kind of shaping a clinician might perform

when setting reward thresholds manually. We show that Progressive Thresholding leads to far superior

learning outcomes compared to the current standards in automatic reward thresholding.

Keywords: Neurofeedback, Electroencephalography (EEG), Automatic Reward Thresholding, Frontal

Alpha Asymmetry, Learning Theory, Algorithm Design

Introduction

Neurofeedback is the use of classical or operant conditioning to train an individual to regulate or modify

their own brain activity (Sherlin et al., 2011; Thatcher, 2000). This is accomplished by pairing a real-time

display of an individual’s brain activity with some indicator of performance with respect to a defined target

or goal. The combination of these key ingredients enables an individual to associate their own mental states

with changes in the feedback stimulus and then to learn how to generate brain activity in order to maximize

performance.

A neurofeedback protocol typically begins with a feature of brain activity which is to be trained, such

as the sensorimotor rhythm (Wyrwicka & Sterman, 1968) or the difference in frontal alpha activity between

the left and right hemispheres, referred to as frontal alpha asymmetry (FAA) (Allen, Harmon-Jones, &

Cavender, 2001). The goal of training with respect to this neurofeedback target can be defined as increasing

or decreasing the specified activity, or tuning the activity to a certain level, depending on the application.

The feedback stimulus shows trainees their current brain activity with respect to the neurofeedback target,
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and usually also indicates where this feature of brain activity must move in order for trainees to be rewarded.

Setting and updating this threshold is referred to as reward thresholding, and is typically done based on the

intra-session statistics of the target feature of brain activity.

Neuroefeedback is most commonly employed as a neuropsychiatric tool, where the rationale is that

if a patient can learn to change the patterns of brain activity which are associated with, and perhaps

causally related to, their psychiatric condition, their behaviour and cognition may change in a corresponding

way (Angelakis et al., 2007; Heinrich, Gevensleben, & Strehl, 2007). Many studies have reported positive

findings using neurofeedback as a therapeutic agent. e.g., for attention deficit hyperactivity disorder (ADHD)

(Arns, de Ridder, Strehl, Breteler, & Coenen, 2009). Furthermore, studies seeking to shed light on the

mechanisms underlying such improvements seem to indicate that neurofeedback can lead to both short-term

(Ros, Munneke, Ruge, Gruzelier, & Rothwell, 2010; Ghaziri et al., 2013; Kluetsch et al., 2014) and long-

term neuroplastic changes involving the targeted brain areas and deeper brain structures with which they

communicate (Lévesque, Beauregard, & Mensour, 2006; Scheinost et al., 2013; Simkin, Thatcher, & Lubar,

2014). However, other studies have reported mixed or negative results using similar protocols (Lofthouse,

Arnold, & Hurt, 2012; van Dongen-Boomsma, Vollebregt, Slaats-Willemse, & Buitelaar, 2013; Zuberer,

Brandeis, & Drechsler, 2015). While the exact reasons for this serious discrepancy in the literature are

still actively debated (for example, problems with methodology and implementation could account for the

results of some studies (Pigott & Cannon, 2014)), even prominent and optimistic neurofeedback researchers

write that there are some important limitations to current neurofeedback technologies (Sherlin et al., 2011;

Lofthouse et al., 2012; Arns & Kenemans, 2014).

The main limitation preventing clear validation of the efficacy of neurofeedback therapies is the diffi-

culty in designing a double-blind randomized controlled study, and the debate over proper neurofeedback

methodology often centers around the question of how to appropriately design a double-blind controlled

study (Sherlin et al., 2011; Arns & Kenemans, 2014). The reason double-blinding is difficult to implement

is that in order to incorporate shaping, that is, rewarding incremental progress towards the goal, reward

thresholds are typically updated manually by an experimenter or a clinician who monitors progress on a

separate screen (Arns, Heinrich, & Strehl, 2014). Recently, double-blind designs have been proposed using

manual thresholding and multiple testing sites in an attempt to maintain blinding (Kerson, 2013). However,

this is an expensive solution which still leaves patients who might benefit from neurofeedback reliant on

clinicians to dedicate a significant amount of time to overseeing their training. An automated neurofeedback

approach would allow many more to benefit from neurofeedback in a more simple and cost-effective way.

Researchers have attempted to conduct double-blind randomized controlled trials by employing automatic

reward thresholding algorithms. However, it is with these algorithms that results with neurofeedback studies

appear to be particularly mixed or even negative (DeBeus & Kaiser, 2011; Perreau-Linck, Lessard, Lévesque,

& Beauregard, 2010; Lansbergen, van Dongen-Boomsma, Buitelaar, & Slaats-Willemse, 2011; Arnold et al.,

2012; van Dongen-Boomsma et al., 2013; Arns et al., 2014). Prominent neurofeedback researchers have
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argued that the reason for these mixed results is that automatic reward thresholding algorithms currently

do not incorporate shaping (Sherlin et al., 2011; Arns et al., 2014; Strehl, 2014). Instead, automatic reward

thresholding is typically implemented with a flat reward rate. For example, the reward threshold might be

updated in order to maintain a 75% reward rate at all times, regardless of whether the trainee performs

better or worse with respect to the actual goal.

Neurofeedback training with current automatic reward thresholding may actually contribute to an ad-

ditional problem seen in the neurofeedback literature, where approximately 15% to 25% of participants are

either not successful in changing their brain activity, or erroneously change their brain activity in the in-

correct direction (Vollebregt, Dongen-Boomsma, Buitelaar, & Slaats-Willemse, 2014; Zuberer et al., 2015).

This can happen because current automatic reward thresholding algorithms take no account of whether a

participant moves towards or away from the goal and do not consider whether a participant has improved

with respect to their baseline brain activity.

Automatic reward thresholding with a fixed reward rate is still used in the literature (e.g., (van Dongen-

Boomsma et al., 2013; Vollebregt et al., 2014)) because performing manual reward thresholding with a

specially trained clinician is expensive, laborious, and highly inconvenient in practice. Unfortunately, the

unreliability of the current approach to automatic reward thresholding thresholding has led to an association

between automatic reward thresholding and an incorrect application of learning theory (Sherlin et al., 2011;

Arns et al., 2014; Strehl, 2014). As such, it is commonly stated in the neurofeedback literature that automatic

reward thresholding is an ineffective approach to neurofeedback training and is not methodologically sound.

In this paper we aim to disambiguate automatic reward thresholding from reward thresholding with a

fixed reward rate. Here we propose that it is entirely feasible to incorporate both shaping and specificity

in an automatic reward thresholding algorithm by incorporating more sophisticated statistical analysis and

intelligently implementing variable reward rates. We present a new automatic reward thresholding algorithm

called Progressive Thresholding (PT), which incorporates shaping into automatic neurofeedback protocols by

simulating what a clinician might aim to do. We compare PT to the standard automatic reward thresholding

with a flat rate of reward (ST) and show that individuals who were trained with PT were more successful

in learning to control their brain activity.

Experiment Overview

A double-blind randomized controlled trial was conducted in order to compare the learning outcomes of

participants trained to regulate frontal alpha asymmetry (FAA) with either ST or PT. Each participant

underwent a 30min prescreening session in order to determine eligibility to participate in neurofeedback

training. Participants who met the eligibility criteria during prescreening were invited to participate in four

to six weeks of neurofeedback training. When possible, three sessions were completed per week, with at least

one day in between sessions. Each session took approximately 35 minutes and participants were compensated

with money at the end of their participation.
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PT can be implemented with virtually any neurofeedback protocol. In order to focus on the question of

how PT compares to ST in training individuals to modulate some feature of brain activity towards a target

state, it was important to choose an already established neurofeedback protocol for which ST is already

used. Moreover, the use of non-established neurofeedback protocols involves a degree of risk, as undergoing

neurofeedback training can result in changes in behaviour, mood, or cognitive functioning which are not

necessarily positive (Hammond & Kirk, 2007).

The established neurofeedback protocol of reducing FAA (Rosenfeld, Cha, Blair, & Gotlib, 1995; Allen

et al., 2001; Hammond, 2005; Choi et al., 2011; Peeters, Ronner, Bodar, van Os, & Lousberg, 2014; Baehr,

Rosenfeld, & Baehr, 1997, 2001) was chosen primarily for two reasons. First, FAA balancing protocols are

used in the treatment of depression, anxiety and stress because of the established associations between left-

dominant FAA (i.e., greater right frontal activation), mood, motivation, and predisposition to mood disorders

(Henriques & Davidson, 1991; Davidson, 1998; Harmon-Jones, 2003; Harmon-Jones, Gable, & Peterson, 2010;

Lewis, Weekes, & Wang, 2007; Stewart, Coan, Towers, & Allen, 2014). Though our main goal was to evaluate

the efficacy of PT relative to ST, we were also aware that many undergraduate students, who make up our

most reliable pool of potential participants, experience symptoms of, or are at risk of, clinically significant

levels of depression, anxiety, and stress. Therefore, to the extent that FAA neurofeedback protocols are

effective in helping such individuals, we aimed to provide some potential benefit to our participants in

addition to empirically probing our research question.

The second reason for choosing the FAA balancing protocol was that we aimed to make the the neuro-

feedback sessions as simple and convenient for our participants as possible. In addition, we aimed to test

our algorithm in a setting which would be compatible with low-cost and accessible options for neurofeedback

treatments. For these reasons we used low-cost commercial EEG hardware which did not require electrode

gel or long set up times (see the section titled, “EEG Apparatus” below). This device had electrodes posi-

tioned conveniently for measuring FAA, making the FAA protocol the best available option for a first test

of PT versus ST.

Methods

Participants

Participants were recruited through McMaster University’s online experiment recruitment service and with

poster advertisements. A total of 102 participants (80 females) took part in a prescreening session to

determine eligibility for neurofeedback training based on handedness, mood, and baseline resting EEG. Of

the 102 prescreened participants, 21 (16 females) were deemed eligible for neurofeedback training. Of the

21 participants invited for neurofeedback training, 13 completed at least five sessions. One participant’s

data were discarded due to poor signal quality (less than 10% of data from each session survived artifact

rejection).
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Participants were randomly assigned to ST or PT, and completed all of their neurofeedback training

sessions with the same thresholding algorithm. Six (three females) were trained using ST, and six (five

females) were trained using PT. In order to ensure data privacy and blinding, all data were stored in an

anonymized form and all data processing required during neurofeedback training was done automatically.

Analysis of prescreening data was also done automatically, and the acceptance or rejection decision was

passed onto the experimenter without any additional information. Participants were not informed that there

were two training algorithms, and both experimenters and participants were blind to group assignment.

EEG Apparatus

EEG was recorded using the Muse EEG headband (Interaxon, 2014). The Muse Headband is a commercially

available dry-sensor EEG headband with four EEG sensors located at Fp1, Fp2, TP9 and TP10 and with

a reference at Fpz and DRLs (driven right legs) one inch from the reference on either side. This hardware

configuration was used throughout this study. Data was collected from this headset at a 220 Hz sampling

rate with a 0.5 Hz highpass filter and 50 Hz and 60 Hz notch filters applied automatically by the hardware

in order to remove noise from surrounding electrical wires. The EEG sensors used in this device have been

shown to acquire signals which are comparable to those acquired by more traditional research devices (Lee,

Chin, Yi, Lee, & McKeown, 2015; Interaxon, 2015), lending confidence to its use in a research setting.

EEG Processing

All data processing, including FAA computation and neurofeedback thresholding, was performed in MAT-

LAB R2013b (MATLAB, 2013) and all stimulus presentation and experimental instructions were displayed

using Psychtoolbox (Brainard, 1997) in MATLAB. EEG was streamed into MATLAB in real time using the

MuLES toolbox (Cassani, Banville, & Falk, 2015).

On an ongoing basis, the most recent 1s of EEG data from channels Fp1 and Fp2 was used to compute

FAA. EEG from each channel was transformed to have a mean of zero and checked for artifacts using

the FBAR (Filter-Bank Artifact Rejection) toolbox (Dhindsa, 2017). If both frontal channels were free of

artifacts, the signal from each channel was filtered to be between 0.5 Hz and 40 Hz using a fourth-order

Butterworth filter and alpha power (8-13 Hz) was computed for each channel. Segments of EEG which were

marked as contaminated with artifacts by FBAR were not included in analysis or FAA computations.

FAA was computed as follows:

FAA =
L−R
L+R

,

where L is alpha power calculated from the left frontal electrode (Fp1) and R is the alpha power calculated

from the right frontal electrode (Fp2). Note that this formula is simply the negative of the formula commonly

used in the literature, as first defined by (Rosenfeld et al., 1995), meaning that greater left alpha power would

drive feedback to the right side of the feedback stimulus in Figure 1 rather than the left side.
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FAA is a highly variable measure. In order to present interpretable feedback to participants, smoothing

was required. In this study the average of the past 100 FAA computations was presented as feedback. As

FAA was computed approximately 15-20 times per second, the past 100 FAA computations accounted for

the past 5-7s of data. Thus, the feedback signal, while immediately responsive to changes in FAA, moved

smoothly and was influenced by a time frame within which an individual could be expected to associate their

mental activity with the feedback stimulus.

It has been suggested that percent-time with asymmetric alpha (PTAA) is a more reliable measure than

FAA (Baehr et al., 1997). We computed PTAA in addition to FAA in order to determine whether there

would be any significant differences in their correlations to our mood measures or learning outcomes. PTAA

was computed as the proportion of time FAA was below zero.

Prescreening

Participants undergoing prescreening completed the Waterloo Handedness Inventory (WHI) (Steenhuis &

Bryden, 1989), the Oxford Happiness Questionnaire (OHQ) (Hills & Argyle, 2002), and a 10min EEG

baseline recording. Participants were eligible for neurofeedback training if they scored above 20 on the WHI

(indicating that they were strongly right-handed and therefore unlikely to have reversed brain lateralization),

less than four on the OHQ (indicating that they were experiencing below typical levels of happiness) and if

their baseline FAA was greater than 0.05.

We allowed for one exception to these criteria. Individuals scoring above 20 on the WHI and below

three on the OHQ were invited into the study even if their baseline FAA score was between 0 and 0.05.

This exception was made because FAA tends to be an unstable measure, especially for individuals who are

depressed (Debener et al., 2000), suggesting that their level of FAA could not be reliability determined on

the basis of one baseline recording (e.g., their FAA could be high at other times). Moreover, individuals

exhibiting low OHQ scores are also more likely to be depressed and thus are more likely to benefit from FAA

neurofeedback if FAA neurofeedback is indeed beneficial. The OHQ was used instead of a clinical inventory

so that the many participants who underwent prescreening could provide an indication of their happiness

levels through a less invasive questionnaire.

Together, these eligibility requirements were meant to reduce the risk of training individuals who may

have reversed hemispheric functionality, who would not potentially benefit from mood enhancement which

might be derived from neurofeedback training with an FAA protocol, and whose baseline FAA was not left-

dominated. With the exception of those who scored very low on the OHQ (for the reasons mentioned above),

those with right-dominant FAA were not included because depression, anxiety, and clinically significant

degrees of stress are particularly associated with left-dominant FAA, as mentioned earlier. In contrast,

right-dominant FAA is usually associated with positive affect.
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Neurofeedback Sessions

Each neurofeedback session included a 3min pre-session resting baseline EEG recording and a 3min post-

session resting baseline EEG recording. In between the baseline recordings, participants underwent approx-

imately 20mins of neurofeedback training, split into five 4min blocks with 1min breaks in between. On the

first and last sessions, participants completed the Beck Depression Inventory (BDI) (Beck, Ward, Mendel-

son, Mock, & Erbaugh, 1961), the Beck Anxiety Inventory (BAI) (Beck, Epstein, Brown, & Steer, 1988),

and Cohen’s Perceived Stress Scale (PSS) (Cohen, Kamarck, & Mermelstein, 1983). At the end of their

last session, participants were asked to fill out a short questionnaire in which they were asked to rate the

difficulty of the neurofeedback training task and their subjective assessment of how well they were able to

perform on the task, as well as to describe the strategy they eventually settled on in order to perform the

task.

At the end of every session, participants also completed a three-item mood inventory (TIM) based on

depression screening work by Henkel et al. (Henkel et al., 2004). We included the following items in the

questionnaire, which ask the participant how they have felt since their last session: “I have felt cheerful and

in good spirits”, “I have felt active and vigorous”, and “I have felt calm and relaxed”. For each of these

items, participants could respond with six possible responses ranging from “All of the time”, to “At no time”.

Finally, participants were also asked whether any events took place since their last training session which

affected their mood, and whether they were affected positively or negatively. Altogether, these questions

were used to identify whether changes in baseline FAA scores were affected by external circumstances without

probing participants for details about their personal lives.

Neurofeedback Stimulus

Feedback was presented using the colour-coded bar shown in Figure 1. Perfectly balanced FAA was repre-

sented as the yellow line at the middle of the bar, and thresholds were marked symmetrically on either side

by the green target area. Under both PT and ST, a decreased threshold was represented by a narrowing of

the green area, and an increasing threshold was represented by a broadening of the green area. The white line

moved along the bar and represented the participant’s current FAA score. Participants were only instructed

to learn how to control the white line and to keep the white line in the green area as much as possible.

Participants accumulated points while the white line remained in the green target area as a secondary

reinforcer. The rate of point accumulation was increased over 15s from a multiplier of 1× to a multiplier of

4× in a linear fashion if the participant could maintain the white line in the target area without leaving it.

This means that after 15 consecutive seconds of being in the target (green) area, participants accumulated

points at four times the default rate. This multiplier dropped linearly back to 1× over five seconds when

the participant left the target area.
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Figure 1: The feedback stimulus used to present real-time feedback for training.

Standard Thresholding

Standard thresholding was implemented as has been described throughout the neurofeedback literature (e.g.,

(Lansbergen et al., 2011; van Dongen-Boomsma et al., 2013; Vollebregt et al., 2014)). Specifically, ST was

implemented according to the pseudocode given in Algorithm 1. For clarity, the pre-session FAA distribution

refers to the histogram of FAA values observed during the 3min pre-session baseline, and the block FAA

distribution is the histogram of FAA values observed during the given neurofeedback block.

Algorithm 1 Standard Thresholding

1: procedure
2: Dpre(n)← nth percentile of the pre-session FAA distribution
3: Dblock(n)← nth percentile of the current neurofeedback block’s FAA distribution
4: T ← The reward threshold
5: δ ← Time elapsed since last threshold update, in seconds
6: Setting the initial threshold for the session:
7: if New Session then
8: T = Dpre(75)

9: Updating the threshold during training :
10: if δ ≥ 15 then
11: T = Dblock(75)

12: if T < 0.05 then
13: T = 0.05

Progressive Thresholding

Progressive thresholding incorporates two novel features which aim to facilitate specificity and shaping within

sessions and across sessions. Within-session progress is promoted because the algorithm gradually increases

the difficulty of training by decreasing the threshold as the participant succeeds in changing their FAA to

become more symmetric. The difficulty only decreases marginally when a participant fails to reduce the

threshold for an entire block, and is limited to decreasing only as far as the 75th percentile of the pre-session

baseline FAA distribution. In contrast to ST, where the threshold area can theoretically change by any

amount in any direction, PT uses much smoother and gradual transitions of the threshold and the change

in threshold is asymmetric towards increasing difficulty by design. Furthermore, participants are not able to

achieve a 75% reward rate if their FAA scores move farther away from zero compared to when they began

the session.

Progress across sessions is promoted for participants by using their session history to seed the initial

threshold of each new session. A linear regression analysis of the difference between the pre-session and
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post-session baseline FAA scores is performed using data from all of that participant’s previous training

sessions. For participants who have completed more than two sessions, once a new pre-session baseline is

complete, the results of this regression analysis are used to estimate the expected post-session FAA score

for the current session, assuming that their rate of progress will be maintained. The initial threshold is

set to halfway between the current pre-session baseline FAA score and the expected post-session baseline

FAA score, requiring the participant to move closer to the goal compared to previous sessions in order to be

rewarded. Note that this usually corresponds to an initial threshold which is less than the 75th percentile

of the pre-session baseline FAA distribution. For the first and second neurofeeedback sessions, there is

insufficient data with which to compute the regression model, so the initial threshold is set the same that it

is set in ST (using the 75th percentile of the pre-session baseline FAA distribution). An idealized illustration

of the initial threshold setting in PT is shown in Figure 2. The PT algorithm is described in pseudocode in

Algorithm 2. Note that for our experiment, β̂1 is usually less than zero.

Algorithm 2 Progressive Thresholding

1: procedure
2: Dpre(n)← nth percentile of the pre-session FAA distribution for the current session
3: Dblock(n)← nth percentile of the current neurofeedback block’s FAA distribution
4: S ← Session Number
5: FAApre,i ← Average FAA score of the ith pre-session baseline, i = 1, . . . , S − 1
6: FAApost,i ← Average FAA score of the ith post-session baseline, i = 1, . . . , S − 1
7: T ← The reward threshold
8: δ ← Time elapsed since last threshold update, in seconds
9: flag ← set to true if the entire previous block has elapsed without a reduction in T

10: Setting the initial threshold for the session:
11: if S ≤ 2 then
12: T = Dpre(75)

13: if S > 2 then
14: β̂1 =

∑
(S−mean(S))(FAApost,i−FAApre,i−AVG(FAApost,i−FAApre,i))∑

(S−mean(S))2

15: T = mean(Dpre) + β̂1/2

16: Updating the threshold during training :
17: if δ ≥ 15 then
18: if Prop(−T < Dblock < T ) > 0.75 then
19: T = 0.9× T
20: if Prop(−T < Dblock < T ) < 0.75 & flag then
21: T = (1/0.9)× T
22: if T < 0.05 then
23: T = 0.05
24: if T > Dpre(75) then
25: T = Dpre(75)

In both ST and PT procedures, T was set to a minimum of 0.05 in order to prevent the threshold area

from becoming too small visually and to prevent the target from becoming too difficult given the normal

moment to moment variability of FAA.
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Figure 2: An illustration of how Progressive Thresholding promotes progress across sessions in the idealized
case where a participant’s target brain activity moves smoothly in the intended direction.

Participant Instructions

We provided participants with no indication of potential strategies which they could use to perform the

neurofeedback task. Such information was deliberately withheld in accordance with previous research in-

dicating that a lack of a prescribed mental strategy best leads to automaticity, meaning that FAA control

was more likely to become a natural separate willful action (Hardman et al., 1997; Kober, Witte, & Ninaus,

2013; Strehl, 2014). Instead, participants were told that they would have to discover their own strategy for

controlling the feedback signal.

Data Analysis

Offline data analysis was done in MATLAB R2015a (MATLAB, 2015). Before conducting statistical tests,

baseline or session data were removed if less than 25% of the EEG signal survived artifact rejection. Each

statistical test was performed after checking whether the assumptions of that test were valid for the data

being analyzed. For tests of differences in means and variances, the Kolmogorov-Smirnov test of normal-

ity (Stephens, 1974) was used before using tests which assume normality. All p-values are reported after

corrections for multiple comparisons using Holmes-Bonferroni corrections (Holm, 1979) where required.

Results

Prescreening Results

Of the 102 prescreening participants, 78 completed the baseline EEG recording (the remaining 24 were

excluded before reaching the EEG recording stage). The EEG hardware used in this study is a novel
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apparatus and the OHQ is a novel questionnaire for neurofeedback experiments. For this reason we checked

to see whether the OHQ was correlated with FAA and could therefore be used in place of more invasive

clinical questionnaires for prescreening purposes. Sixteen data points were removed from analysis because

less than two full minutes of clean EEG data were available with which to compute FAA, leaving data

from 62 participants. We found that OHQ scores correlated with FAA computed using the two frontal

channels used during neurofeedback training (r(60) = 0.28, p = 0.03) as well as PTAA computing these

same channels (r(60) = −0.28, p < 0.03). Scatter plots of these data are shown in Figures 3 and 4. OHQ

scores did not correlate with temporal alpha asymmetry (TAA) or PTAA scores when they were computed

using the temporal channels, for which only 45 participants passed the signal quality requirement (TAA:

r(43) = −0.18, p = 0.24, PTAA: r(43) = 0.19, p = 0.21) or all channels together (global alpha asymmetry:

r(34) = −0.14, p = 0.38, PTAA: r(34) = 0.14, p = 0.37), suggesting that the correlation is specific to frontal

EEG.
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Figure 3: Scatterplot of Frontal FAA vs. OHQ score.

FAA versus PTAA

Statistics computed using PTAA were equivalent in interpretation to statistics computed using FAA and

provide no additional information (i.e., hypothesis tests using PTAA always led to the same conclusion,

though the exact statistic or p-value might vary slightly). Since participants were trained using FAA rather

than PTAA, we omit reporting statistics with PTAA for the remainder of the paper.
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Figure 4: Scatterplot of Frontal PTAA vs. OHQ score.

Neurofeedback Learning Outcomes

Within-Session Changes

We measured the change in FAA scores between each participant’s pre-session and post-session baselines.

Kolmogorov-Smirnov tests were used to assess whether each variable deviated significantly from normality.

The results of these tests are given in Table 1 and show that we fail to reject the hypothesis that each

variable is normally distributed. Therefore we used paired samples T-tests in order to assess whether there

were significant differences between pre-session and post-session mean FAA within the same group, and we

used independent samples T-tests in order to compare means across the two groups .

We performed a two-factor ANOVA in order to assess the independent and interactive effects of time

and group on the within-session changes in FAA. This analysis revealed that there was an overall effect of

time (pre- versus post-session baseline) on FAA (pre-session baselines: M = 0.059, SD = 0.125; post-session

baselines: M = 0.029, SD = 0.068; F (1, 265) = 6.06, p = 0.0144). There was also a significant group effect

(ST: M = 0.058, SD = 0.108; PT: M = 0.029, SD = 0.093; F (1, 265) = 5.64, p = 0.0183). However, there

was no interaction effect between time and group when analyzing within-session changes (F (1, 265) = 1.33,

p = 0.2492). These data are summarized in Figure 5.

Given the significant effects of time and group, we also performed T-tests in order to further explore

those differences. We used one-sided paired samples T-tests to compare pre-session FAA to post-session

FAA because successful neurofeedback should lead to lower post-session FAA compared to pre-session FAA,

taking into consideration that participants began training with baseline FAA above zero. The ST group

showed no difference between pre-session FAA scores and post-session FAA scores (pre-session baseline:
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M = 0.066, SD = 0.134; post-session baseline: M = 0.050, SD = 0.074; t(66) = 1.08, p = 0.28). However,

a significant reduction in post-baseline FAA scores compared to pre-baseline FAA scores was found for the

PT group (pre-session baseline: M = 0.051, SD = 0.116; post-session baseline: M = 0.007, SD = 0.053;

t(66) = 2.99, p = 0.004). A two-sided independent samples T-test revealed that the post-session FAA scores

were also significantly lower for the PT group versus the ST group (t(133) = 3.84, p = 0.0006). Since there

was no difference in pre-session baselines between the groups (t(132) = 0.68, p = 0.49), the lower post-session

FAA scores in the PT group cannot be attributed to differences in starting FAA scores. All p-values obtained

through tests which use at least one variable in common were corrected with Holmes-Bonferroni corrections

for multiple comparisons.

Measure KS Statistic p
ST Pre-Session FAA 0.188 p = 0.06
ST Post-Session FAA 0.120 p = 0.78
PT Pre-Session FAA 0.103 p = 0.56
PT Post-Session FAA 0.119 p = 0.78

Table 1: Kolmogorov-Smirnov test results for the distribution of FAA scores for pre-session and post-session
baselines for both ST and PT groups.

As a measure of algorithm reliability, we compared the proportion of sessions for which FAA scores

moved towards symmetry using a chi-square test of proportions. The PT group had a greater proportion

of successful sessions, or sessions in which FAA moved towards symmetry rather than away from symmetry

(ST: 0.582; PT: 0.821; χ2(1) = 10.16, p = 0.001). The proportion of successful sessions in the ST group was

not significantly higher than the chance level of 0.5 (χ2(1) = 1.21, p = 0.27), but the PT group did have a

greater proportion of successful sessions compared to the chance level of 0.5 (χ2(1) = 27.60, p < 10−6).

We also tested whether there were reductions in the variance of FAA scores using one-sided two-sample

F-tests for equal variances. Post-baseline FAA scores had a significantly lower variance compared to pre-

session FAA scores in both the ST group (F (66, 67) = 3.23, p < 10−5). and the PT group (F (66, 66) = 4.74,

p < 10−9). Two-sided F-tests were used to compare ST and PT groups in order to avoid the assumption that

one group should have a reduced variance compared to the other. There was no difference in the variance of

pre-session FAA scores between the ST and PT groups (F (66, 66) = 1.32, p = 0.26). However, the PT group

had a significantly reduced variance in post-session FAA scores compared to the ST group (F (67, 66) = 1.94,

p = 0.008). This can easily be seen in Figure 5.

There were no differences in FAA scores between sessions where participants reported that external factors

led to a more positive mood versus a more negative mood (pre-session FAA scores: p = 0.40, post-session

FAA scores: p = 0.78). There was also no correlation between the score on the TIM and pre-session FAA

scores (p = 0.78) or post-session FAA scores (p = 0.25). However, TIM scores were significantly higher for

the PT group (M = 13.3, SD = 1.9) than the ST group (M = 11.4, SD = 2.2) (t(131) = −4.96, p < 10−5).

No difference was found in the proportion of sessions for which positive (ST = 0.03; PT = 0.08; χ2(1) = 0.16,

p = 0.69) or negative (ST: 0.15; PT: 0.17; χ2(1) = 0.076, p = 0.78) moods was reported.
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Figure 5: Distribution of FAA scores for pre-session baselines and post-session baselines for both groups.
Distributions include all sessions belonging to each category.
∗∗ denotes a significant difference in the distribution means with p < 0.005.
∗ ∗ ∗ denotes a significant difference in the distribution means with p < 0.0005.

Changes Across Training

An average of 11.4 (SD = 4.7) sessions were completed (PT: M = 11.50, SD = 3.6; ST: M = 11.33,

SD = 6.0). In order to rule out the above results being influenced by differences in the amount of training,

we assessed the correlation between the number of completed sessions and the change in FAA scores across

training. No significant correlations were found between change in FAA scores across training and the

number of sessions completed (p = 0.59 for pre-session baselines, and p = 0.89 for post-session baselines).

This was true for the ST group (p = 0.65 for pre-session baselines, and p = 0.92 for post-session baselines)

and the PT group (p = 0.56 for pre-session baselines, and p = 0.66 for post-session baselines) when their

data were observed separately.

In order to measure the overall effect of neurofeedback training, we compared FAA scores between the

first and last sessions. The results of Kolmogorov-Smirnov tests performed on each of these variables are

reported in Table 2 and justify the use of T-tests when comparing their means. Pre-session and post-session

baselines were compared separately in order to minimize the influence of within-session effects on these

analyses.

A two-factor ANOVA comparing the first pre-session baseline to the last pre-session baseline across ST

and PT groups revealed no significant group difference (F (1, 20) = 2.60, p = 0.12) and no time difference

(F (1, 20) = 1.77, p = 0.20). However, the interaction between group and time was significant (F (1, 20) =

16.48, p = 0.0006). Comparing post-session baselines revealed no significant group difference (F (1, 20) =

1.21, p = 0.28), time difference (F (1, 20) = 0.26, p = 0.61), or interaction effect (F (1, 20) = 0.01, p = 1.0).

These data are summarized in Figure 6.

A one-tailed paired samples T-test revealed no change between the first pre-session baseline FAA scores
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Measure KS Statistic p
ST First Pre-Session FAA 0.29 p = 1.0
ST First Post-Session FAA 0.20 p = 1.0
ST Last Pre-Session FAA 0.35 p = 1.0
ST Last Post-Session FAA 0.27 p = 1.0
PT First Pre-Session FAA 0.33 p = 1.0
PT First Post-Session FAA 0.24 p = 1.0
PT Last Pre-Session FAA 0.28 p = 1.0
PT Last Post-Session FAA 0.26 p = 1.0

Table 2: Kolmogorov-Smirnov test results for the distribution of FAA scores for the first and last pre-session
and post-session baselines for both ST and PT groups.

and the last pre-session baseline FAA scores in the ST group (t(5) = −1.43, p = 0.89). Likewise, there

was no significant change in the ST group when comparing first and last post-session baselines (t(5) = 0.42,

p = 0.35). In contrast, there was a significant reduction in FAA scores from the first pre-session baseline

to the last pre-session baseline for the PT group (t(5) = 4.47, p = 0.0033), though no change was found

in the post-session baselines (t(5) = 0.30, p = 0.39). Two-tailed Independent-samples T-tests revealed

that the PT group had significantly lower FAA scores in the last pre-session baseline compared to the ST

group (t(10) = 2.43, p = 0.035), but there was no difference in the last post-session baseline (t(10) = 0.80,

p = 0.44). All p-values obtained through tests which use at least one variable in common were corrected

with Holmes-Bonferroni corrections for multiple comparisons.

We also compared the variance in FAA scores between the first and last session as well as between groups

using the two-sample F-test for equal variance. There was no change in variance between the first and last

session FAA scores for the ST group when comparing pre-session baselines (F (5, 5) = 1.57, p = 0.63) and a

trend towards a difference when comparing post-session baselines (F (5, 5) = 0.15, p = 0.059). A significant

difference in variance from the first to the last session was found in the PT group for both pre-session FAA

scores (F (5, 5) = 7.84, p = 0.041) and post-session FAA scores (F (5, 5) = 66.42, p = 0.0003). A trend

towards a difference in variance was observed between the ST group and the PT group when comparing

the last pre-session baselines (F (5, 5) = 5.53, p = 0.084), and the difference was significant for the last

post-session baselines (F (5, 5) = 7.70, p = 0.043).

All six participants from the PT group successfully moved their pre-session baseline FAA scores towards

zero versus only four participants from the ST group. While the difference in proportion only tended towards

significance, (χ2(1) = 3.00, p = 0.08), additional data may lead to a significant result.

Changes in Mood Inventory Scores

Two participants discontinued participation in the study without notification. As a result, mood inventory

data for all twelve participants were available for the first neurofeedback session, but data from only ten

participants were available for the last session. The changes in FAA scores between the first and last training

sessions and the changes in mood inventory scores are summarized below. No correlations were found between
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Figure 6: Comparison between FAA scores from the first neurofeedback training session and the last neu-
rofeedback training session. a) Pre-session baseline FAA during the first training session versus the last
training session for the ST group. b) Post-session baseline FAA during the first training session versus the
last training session for the ST group. c) Pre-session baseline FAA during the first training session versus
the last training session for the PT group. d) Post-session baseline FAA during the first training session
versus the last training session for the PT group. e) Pre-baseline FAA from the last session for the ST group
and the PT group. f) Post-baseline FAA from the last session for the ST group and the PT group.
∗ denotes a significant difference in the distributions (p < 0.05).

changes in pre-session or post-session FAA scores and scores on any of the mood inventories.

We observed the changes in mood inventory scores before and after neurofeedback training for those

participants who had elevated stress, depression, or anxiety scores at baseline. These data are shown in

Figure 7. Pre and post scores are shown for the BDI (including only participants who initially scored 20 or

higher, indicating moderate or severe depression), the BAI (including only participants who initially scored

19 or higher, indicating moderate or severe anxiety) and the PSS (including only participants who initially

scored 20 or higher, indicating high stress). For these participants, scores either decreased or remained

consistent depending on the participant. No difference was observed between ST and PT participants. These

data suggest that studies testing FAA neurofeedback with clinically depressed or anxious participants, or

participants with high stress, may show changes in mood inventory scores related to neurofeedback training.

However, our study, which aimed only to test differences in learning outcomes between ST and PT irrespective

of clinical status, did not find statistically significant differences.
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Figure 7: Changes in mood inventory scores for only those participants who had elevated stress, depression,
or anxiety scores at baseline.

We conducted an exploratory analysis to determine whether any items in the three mood inventories

used were correlated with changes in FAA scores. After correction for multiple comparisons, only one item

of the BDI, related to poor sleep, was found to correlate with change in FAA scores with nearly statistical

significance (r(10) = 0.83, p = 0.06).

Training Questionnaire

Subjective reports of task difficulty were correlated with how much participants were able to reduce their FAA

scores between their first and last sessions (r(9) = 0.78, p = 0.006), with participants who rated the task as

more difficult performing better. The PT group also trended towards reporting higher task difficulty despite

performing better compared to the ST group (ST task difficulty: M = 4.6, SD = 1.9; PT task difficulty:

M = 6.5, SD = 1.6; t(9) = −1.76, p = 0.056). This may have driven the relationship between perceived

task difficulty and performance, since the PT algorithm is designed to provide more difficult training, but

also led to better learning outcomes in this study. Interestingly, change in FAA scores did not correlate with

subjective self-evaluations of how well participants were able to control the feedback cursor (r(10) = 0.19,

p = 0.91), suggesting that participants were not able to evaluate their own performance accurately.
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Discussion

Neurofeedback Training and the Impact of Progressive Thresholding

The goal of this study was to test whether the PT algorithm would lead to better learning outcomes compared

to the ST algorithm, which is the current standard in automatic thresholding. In order to do this, we trained

12 participants to balance the alpha power recorded at two prefrontal EEG electrodes (FAA) over several

sessions using a commercial EEG headband.

In the current study, the PT group completed training with significantly lower FAA scores compared to

the ST group despite the PT group beginning with a higher average FAA score (see Figure 6) and despite

the PT group reporting higher subjective task difficulty compared to the ST group. There was a significant

decrease in the average FAA scores for the PT group, resulting in FAA scores slightly below zero. Though

the change in FAA scores was non-significant in the ST group, this could have been due to the ST group

beginning training closer to an average FAA score of zero rather than the ST algorithm failing to promote

correct change. The PT group also trended towards a smaller variance in FAA scores when comparing

their final pre-session and post-session baselines to their first pre-session and post-session baselines. Thus

we can conclude that on the basis of our sample, neurofeedback with PT was more effective in training

participants to reduce their FAA scores than was neurofeedback with ST. Combined with results of the

two-factor ANOVA, the data suggest that the effect of PT is reflected as improved training over time, which

is expected and desired for a neurofeedback training algorithm.

A commonly cited limitation in automatic neurofeedback training is that the lack of shaping and the

fixed flat reward rate is believed to be associated with the observation that trainees often fail to change their

brain activity correctly, or even erroneously change their brain activity in the wrong direction (Vollebregt

et al., 2014; Pigott & Cannon, 2014). It is extremely important to develop methods which rectify this issue

because incorrect neurofeedback training can lead to detrimental side-effects (Hammond & Kirk, 2007). In

the current study the PT group showed a greater proportion of sessions in which FAA scores were reduced

compared to ST (0.821 for PT versus 0.582 for ST), though we note that this statistic is limited in its

interpretability because baseline FAA scores are meant to change across sessions. However, we also compared

the groups with respect to their changes in FAA scores across training. Given the clear trend for a greater

proportion of PT participants completing training with FAA scores having moved in the desired direction

(6/6 PT participants versus 4/6 ST participants), we expect that with more participants the difference will

be statistically significant. These results suggests that PT more reliably results in correct neurofeedback

training, thereby reducing the risk of erroneous changes in brain activity and unintended effects.

There has been extensive debate over automatic thresholding, with many prominent neurofeedback ex-

perts arguing that automatic thresholding should not be used because it does not apply any shaping mech-

anism (Sherlin et al., 2011; Arns et al., 2014; Strehl, 2014). After Lansbergen’s group introduced automatic

thresholding (Lansbergen et al., 2011), they reverted back to manual thresholding methods but noted that
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in a small sample, there was no differnece between manual thresholding and automatic thresholding (van

Dongen-Boomsma et al., 2013). However, as Pigott explains (Pigott & Cannon, 2014), there may have been

important methodological flaws which led to this conclusion, because instead of using a manual thresholding

method with shaping, they simulated automatic thresholding with manual thresholding (i.e., the clinician

aimed to provide the same flat 80% reward rate that was used in the automatic thresholding algorithm). The

PT algorithm is an example of a new kind of automatic thresholding algorithm which incorporates shaping

by introducing elements of statistical modelling and individualization. This study suggests that the problem

with automatic thresholding is not that it is automatic, as one might assume from reading the neurofeedback

literature, but that a flat reward rate, however it is administered, fails to convey any useful training signal

that could specifically promote progress towards the goal.

The current study should change the debate over automatic reward thresholding in neurofeedback, as we

have demonstrated with Progressive Thresholding that an automatic algorithm can in principle simulate what

a clinician might do manually. We note that the PT algorithm presented here is not the only way PT could

be implemented, and that it is not necessarily the best way to implement PT. Instead, PT is really a class of

neurofeedback reward thresholding algorithms defined by its use of individualized adaptive statistical models

of training progress. The version presented here is one of the most simple implementations of PT, using only

very basic modeling techniques. In addition, PT, like ST, requires no a priori information about the specific

neurofeedback protocol or target, other than whether the goal is to increase the measure provided, decrease

it, or move it to some specific level. For the purpose of this study, we sought only to demonstrate that it

was possible to design an automatic reward thresholding algorithm which incorporated a shaping mechanism

and individualization, which we hope contributes to the development of safe, automatic, affordable, reliable,

and effective neurofeedback-based treatment options in neuropsychiatry. In future work, we aim to validate

the Progressive Thresholding algorithm on other neurofeedback protocols with larger sample sizes, and in

particular, compare it to clinician-controlled manual thresholding. In addition, we intend to experiment with

more advanced machine learning modeling methods in order to improve the efficacy of PT.

Measuring FAA

An issue with FAA neurofeedback which does not often receive sufficient attention in the literature is the high

degree of instability of the FAA score. In our study, the average standard deviation of the FAA score across

participants was M = 0.82, SD = 0.02, combining pre-session and post-session baselines. Additionally, the

standard deviation of the average FAA scores across sessions per participant was M = 0.07, SD = 0.04.

These values are very high considering the range of FAA scores shown in Figure 6 and when considering

the amount of change in FAA scores observed between the first and last sessions. An alternative method of

computing FAA may be required to address the instability of the current FAA formulation.

Baehr, Rosenfeld and Baehr (Baehr et al., 2001) report this variability as their reason for introducing

PTAA as an alternative measure for FAA. However, in our study, analyzing PTAA led to the same results
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as analyzing FAA. More importantly, participants are usually trained with FAA rather than PTAA because

of the loss of amplitude-related information when computing PTAA from FAA. Reporting results using

PTAA, while perhaps preserving the conclusions being drawn, is inconsistent with respect to the measure

with which participants are actually trained. Furthermore, PTAA may not be a reliable replacement for

FAA because the loss of degree of asymmetry means it is possible to score low on PTAA with an average

FAA score suggesting that one is extremely asymmetric (e.g., if a patient’s FAA score followed a positively

skewed normal distribution with a median less than zero). One possible alternative to the FAA computation

used here is to compute FAA using the individual alpha peak frequencies (IAF) (Doppelmayr, Klimesch,

Pachinger, & Ripper, 1998; Klimesch, 1999; Quaedflieg et al., 2015). The IAF is considered to be a relatively

stable measure over time (van Boxtel et al., 2012), suggesting that computing FAA using the IAF may reduce

noise in the FAA signal and may result in more impactful neurofeedback training. This option should be

explored further in future work.

The instability of FAA is perhaps most problematic when considering moment to moment changes in

the FAA score. As we noted in the Methods section, extensive smoothing was required in order to present

a smoothly varying FAA score for feedback. Without such smoothing, the FAA score can appear indis-

tinguishable from pure noise. Even with the extensive smoothing done in this study, the FAA score can

vary enormously. We took a random neurofeedback session from our study and computed the FAA score

in one-second time windows. The FAA score as it is typically reported in the literature is displayed in the

top plot of Figure 8, while the same FAA score with our smoothing function applied to it is displayed in

the bottom plot. It is clear that without extensive smoothing, this participant would have not have been

presented an information-conveying feedback signal. However, details explaining whether similar smoothing

was used for other studies or whether FAA was calculated over wider time windows is often omitted from

other studies (e.g., (Rosenfeld et al., 1995; Choi et al., 2010; Kerson, Sherman, & Kozlowski, 2009), though

such information is included in some studies, e.g., (Peeters et al., 2014)). Therefore, we cannot say whether

our feedback presentation method, and thus our results, are easily comparable to previous studies using

FAA neurofeedback with EEG. More importantly, if similar smoothing was not done in some FAA neuro-

feedback studies, we might expect that participants in those studies would have had poor learning outcomes.

We recommend that precise methods of computing FAA and any smoothing operations applied to generate

feedback signals be reported in full detail in future reports.

Pre-screening Data

A moderate correlation was found between OHQ scores and FAA scores (see Figure 3), suggesting that the

OHQ might be useful as a prescreening tool or as a less invasive substitute for the BDI in some situations.

However, the correlation was in the opposite of the expected direction given what is known about the

association between left-dominant FAA and depression. We suspect that this may be caused by the placement

of the reference electrode on the Muse headband, which is half way between Fp1 and Fp2. Given the close
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Figure 8: Plots of the FAA score as it is typically reported in the literature (top) versus the smoothed FAA
score we used to provide feedback (bottom).

proximity of the reference to these electrodes, it is possible that the reference picks up some of the field

potentials centered at Fp1 and Fp2. If this is the case, when the reference signal is subtracted from each

electrode some fraction of the signals from Fp1 and Fp2 may be swapped, potentially resulting in sign

reversal of our FAA score.

Regardless of the precise reason for the reversal of correlation between OHQ scores and FAA scores, the

fact that the correlation is in the opposite from the expected direction implies that we should not necessarily

expect a reduction in FAA to correspond to a reduction in BDI, BAI, or PSS scores in this study. Further

study on the properties of the Muse headband may be required in order to determine how best to translate

current neurofeedback protocols for this device. However, with more recent software compatible with the

Muse headband, the signals can be re-referenced, for example to the average of TP9 and TP10. This may

resolve the unexpected result of the reversed correlation between OHQ scores and FAA scores.

Mood Inventories

Our study did not find meaningful relationships between FAA scores and the scores of mood inventories. Only

one result, the relationship between FAA change in the post-session baselines of the PT group and the change

in BAI scores, was found to be potentially significant, but after correction for multiple comparisons, the
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statistic was no longer significant. While these results do not support the hypothesis that FAA neurofeedback

is useful for treating depression, we also do not take them as counter-evidence for several reasons.

Since our sample was not restricted to a clinical population, it is not surprising that no significant changes

in mood inventory scores were observed. In Figure 7, we plotted pre-post changes in mood inventory scores

for just those individuals who score high enough to indicate potential clinical pathology. An overall pattern

of stagnant or decreasing mood inventory scores for these individuals suggests that a clinical study might

result in significant clinical improvements with FAA neurofeedback. While these changes could also be due to

external factors in each participants’ life, the fact that there was no worsening of mood scores is encouraging.

Whether the changes can be attributed to neurofeedback can not be determined in our study, as we did not

aim to test FAA neurofeedback in a clinical population.

Measuring changes in mood scores across time points in undergraduate students may be particularly

unreliable due to fluctuations in stress levels as students enter periods of higher or lower work loads. In the

current study, we did not ask students about their work loads, school-related deadlines, exam schedules, or

personal lives, and different participants began and finished the study at different periods in the school term.

In previous work, it has been shown that BDI, BAI, and PSS levels are sensitive to school-related stressors.

Therefore, it is possible that school-related stressors influenced the results of the BDI, BAI, and PSS scores.

Finally, we used a commercial EEG headband due to the growing interest in commercial and low-cost

neurofeedback treatment options. However, the commercial headband we used did not have electrodes at F3

or F4, which are commonly used to measure FAA. Furthermore, the headband did not have an EEG electrode

at Cz and did not have enough electrodes to compute a reliable average reference. FAA is thought to be

best measured using an average reference or a reference at Cz (Davidson, 1998; Baehr et al., 1997; Rosenfeld

et al., 1995). Instead we used the default reference provided by the Muse headband, which is between Fp1

and Fp2. Given that our electrode configuration differed significantly from what is typically used in the

literature, it is possible that our measure of FAA did not carry the same mood-related information as FAA

measures used in other studies.

Given the above, the lack of clinically significant effects in the present study does not rule out the utility

of our approach for clinical populations. Determining whether PT is helpful in a clinical context would

require further study.

Conclusions and Future Work

Here we presented Progressive Thresholding, a new automatic reward thresholding algorithm which incor-

porates shaping in automated neurofeedback training in order to improve learning outcomes. We showed

that participants trained with Progressive Thresholding had greatly improved learning outcomes compared

to participants trained with the standard automatic reward thresholding method. In particular, participants

trained with Progressive Thresholding were more successful in balancing their frontal alpha activity and
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showed a greater proportion of successful neurofeedback sessions. Additionally, only those trained with Pro-

gressive Thresholding showed across-session training effects whereby participants came to their final sessions

already having balanced frontal alpha activity.

In future work, Progressive Thresholding should be validated for different neurofeedback protocols and

with different EEG hardware to ensure that the benefits of this new automatic thresholding method is robust

across different neurofeedback contexts. Progressive Thresholding should also be tested against manual

reward thresholding in order to determine how it compares to neurofeedback with thresholding controlled

by a clinical expert. Finally, Progressive Thresholding should be validated in a clinical population in order

to assess whether the improvements in learning outcomes translate into improvements in clinical outcomes.
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6.3 Discussion

The work presented here clearly demonstrates that even a simple algorithmic
implementation of the core principle of shaping can have a significant impact
on a traditional NFB protocol. However, the core idea behind this particular
algorithm, that progressive, incremental reinforcement and difficulty scaling can
be used to guide a trainee to modulate their brain activity more correctly and
optimally, does not apply trivially to the BCI context. Some modifications are
required, and a new algorithm must be developed.

For a generalized user-centered BCI, shaping is extremely important. Rather
than being prescribed mental commands which, on the basis of a priori neuro-
scientific knowledge, can be expected to be classifiable for many individuals, the
user must be trained to make their chosen mental commands separable and con-
sistent over time. Individually-adapted shaping is what Progressive Thresholding
provided over Standard Thresholding in the traditional neurofeedback context.
Applying this to the BCI context requires an extension of Progressive Threshold-
ing which takes into account the very notion of class separability in an arbitrary
multidimensional feature space with a moving NFB target.
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7.1 Introduction

The work presented in this chapter combines the generalized BCI transducer pre-
sented in Chapter 4 with an extension to the Progressive Thresholding neurofeed-
back algorithm presented in Chapter 6. The goal of the study is to develop a BCI
that can be used to answer “Yes” or “No” questions for severely disabled persons,
as well as to test the usefulness of the new approach to NFB in the BCI context.
Though this study is ongoing, pilot data collected from healthy volunteers are
presented below after further contextualization of this work with respect to the
broader scope of this thesis.

7.1.1 The Need for Generalization and Improved User
Training

The need for a generalized BCI which can accommodate a broader variety of
users and mental tasks has been discussed several times throughout this thesis.
However, generalization serves an additional purpose for severely disabled persons,
especially those who have experienced traumatic brain injuries. Accidents causing
traumatic brain injuries may also involve injuries leaving scarring on the scalp and
loss of brain function that is unique for different individuals. Such scarring, in
addition to injuries and the presence of medical equipment can all interfere with
the placement of EEG electrodes. These factors combine to make it difficult to
construct a BCI based on predetermined kinds of mental imagery for this special
population because such a BCI would require a similar electrode configuration for
all patients. Generalized methods like the ones which have been presented in this
thesis can make it easier to accommodate the needs of each individual patient
since they allow for a variety of patterns of brain signals from different regions of
the brain to serve as control signals.

The need for improved user training has also been discussed throughout this
thesis. NFB is the primary means of training users to control a BCI [1, 2, 3, 4].
Since the goal of user training is to improve the classifiability of mental commands,
the purpose of NFB in the BCI context is to train users to produce a more
consistent pattern in the EEG for each mental command which is distinct from
the patterns associated with other mental commands and other brain activity
not at all associated with BCI control [5]. NFB as it is currently implemented
in BCIs has been shown to be useful in this respect [6, 7, 8, 9]. However, more
recent empirical results have demonstrated that current NFB protocols are far
from optimal for BCI user training [10]. While there is an emerging consensus
regarding the inadequacies of current NFB methodology [4, 11, 10, 12], substantive
proposals for addressing this problem are still lacking [8, 13, 14, 15, 16].

168



K. Dhindsa - McMaster University, Computational Science and Engineering Ph.D. Thesis

Almost all user training methods in brain-computer interfacing can be de-
scribed as variations of the classic Graz Protocol [17, 3, 10]. The Graz Protocol
trains BCI users over a series of structured trials. In each trial, the user is cued
to perform one of their mental commands. Neurofeedback in the Graz Protocol
is entirely machine learning driven. Whether feedback is provided while the user
focuses on the mental command or after the mental command period, some visual
or auditory stimulus is used to inform the user about which mental command
was predicted by the BCI. This tells the user whether or not they produced brain
activity in line with the machine’s expectations, and is therefore useful feedback
for the user. However, it does not tell the user anything about how to adjust
their brain activity. Moreover, this approach does not involve any explicit mecha-
nism for specifically training users to produce more consistent and distinct mental
commands over time, i.e., shaping.

The Graz Protocol is foundational with respect to user training in the field
of brain-computer interfacing. Trial-based user training and NFB derived from a
machine learning model are perhaps unavoidable when training a person to use
a BCI with intentionally generated mental commands. However, it is becoming
increasingly clear that advances to the Graz Protocol are needed to improve BCI
usability in preparation for real-world applications, and that there is much to be
gained by applying principles of learning theory and instructional design [4, 11, 10].
Some advances in this direction have already been made.

Recently proposed improvements to the standard Graz Protocol have focused
mainly on either improving the instructions and feedback for the user or environ-
ment in which training takes place, rather than the NFB algorithm or protocol.
In line with the argument for generalization presented in this thesis, one study
showed that providing mental strategies that were not overly specific, and thus
allowing for some flexibility in the exact mental commands used by each user,
was beneficial in a traditional NFB setting (e.g., in an experiment similar to the
one presented in Chapter 6) [18]. With regards to implementing shaping, one
approach has been developed that trains users with a progressively more com-
plex feature space [19]. Specifically, users were trained by first applying the Graz
Protocol to simple alpha and beta band activity. Users were then trained based
on CSP features from those same frequency bands in subsequent training runs.
This approach led to shorter training times and led to one user overcoming their
previous BCI illiteracy.

While the above approach addresses the problem of providing manageable step-
wise BCI user training, it can only be implemented in a BCI which is designed
for a specific neurophysiological signal. This is because the multiple hierarchical
feature spaces are predefined based on knowledge of the mental commands which
users are instructed to use. In particular, finding a simplified feature space for
the initial training phase when the mental commands are unknown could be a
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very difficult problem to solve. Without a solution to this problem, this approach
is not yet compatible with a generalized BCI, though an adaptation based on
a hierarchy of selected features from a pretraining dataset may serve as a close
approximation. More importantly, this approach is still missing a mechanism with
which to explicitly train users to increase the consistency and distinctness of their
mental commands over time within a feature space.

Without shaping mental commands during BCI user training, improvement in
mental command generation over time is based mainly on guesswork on the part
of the user. As discussed in Chapter 6, the same problem exists in traditional
NFB training. However, the question of how to introduce shaping in BCI user
training is somewhat different than the question of how to introduce shaping into
traditional NFB. Instead of training a user to produce brain activity closer to
some target, shaping for brain-computer interfacing must train users to improve
class (i.e., mental command) separability in a feature space with respect to a
changing classifier. This is even more difficult in a generalized BCI, where the
feature space and mental commands must be treated as arbitrary and potentially
unknown. However, an analogue to Progressive Thresholding might prove to be
useful in the BCI context as well.

Here, a new formulation of NFB specifically designed for BCIs is proposed.
This method, called Progressive Neurofeedback (PNFB) is an extension of the
Graz Protocol for the case of improving class separability in an arbitrary multi-
dimensional feature space inhabited by two or more classes. The formulation of
PNFB is given below.

7.2 Progressive Neurofeedback

The purpose of preprocessing, feature extraction, and feature selection in machine
learning is to maximize class separability by manipulating the feature space. In
contrast, NFB, properly applied to BCI, should support classification by training
the user to produce more separable classes, or mental commands. In other words,
NFB manipulates the data generation process itself rather than just the way those
data are processed. PNFB represents an attempt to improve this function of NFB
by explicitly incorporating a mechanism for shaping.

Restricting the discussion to the usual machine learning problem, where the
features are represented in a space in which Euclidean distance is defined, class
separability depends on a combination of the intraclass variance for each class and
interclass distances in this feature space (note that these two measures together
determine the degree of interclass overlap, which is inversely proportional to class
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separability). Therefore, NFB should train the user to reduce the intraclass vari-
ances relative to interclass distances of their mental commands in feature space
over time in order to maximize class separability. Note that this is a description
of class separability in the linear sense, which, in comparison to non-linear sepa-
rability, is a simpler basis upon which to formulate and test the core idea behind
PNFB.

Class Separability in a Feature Space

The degree of linear class separability in a Euclidean space in statistics and ma-
chine learning is measurable as the degree of class overlap, which is related to the
ratio of interclass distance (here interclass distance refers to the Euclidean dis-
tance between class means, but this concept generalizes to many other definitions
of interclass distance) to intraclass variances (see for example the Davies-Bouldin
Index for evaluating clustering solutions [20]). Maximizing classification accuracy
in the linear sense can be interpreted as maximizing this ratio.

Given an M × Nc data matrix X(c) containing the Nc samples for class c ∈
{1, . . . , C} represented as a set of M × 1 feature vectors {x(c)1 , . . . , x

(c)
Nc
}, the inter-

class distance between any pair of classes c1 and c2 can be simply defined as the
Euclidean distance between class means µ(c1) and µ(c2):

D(c1,c2) = ‖µ(c2) − µ(c1)‖2. (7.1)

It is also possible to define interclass distance as the shortest vector from one class
boundary to another class boundary, but for applications in statistics and machine
learning, this definition is difficult to apply. The difficulty arises from the fact that
the boundary of a random variable’s distribution is typically not precisely defined.
In contrast, the sample mean tends to be a more stable estimate than the class
boundary, including for non-ergodic signals, due to the Central Limit Theorem
[21].

The intraclass variance R(c) is related to the total distance between points
within the class and the class centroid. For example, if R̂(c) is some estimator for
R(c) that needs to be chosen, then one possibility is to use

R̂(c) =
Nc∑

i=1

‖x(c)i − µ(c)‖2. (7.2)

Note that there is a clear similarity in form between this choice of R̂(c) and the
variance of a random variable. However, intraclass variance can also be defined
as the volume of the class’ bounding region, which is mathematically represented
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as an alternative choice for R̂(c):

R̂(c) ≈
∫

D1

· · ·
∫

DM

F (c)(a1, . . . , aM)da1 . . . daM , (7.3)

where F approximates the boundary of class c. Though a data-driven estimate
of F can be obtained by computing a smoothed alpha hull [22], this was found to
be too computationally intensive for a real-time BCI implementation.

After selecting estimators of D(c1,c2), R(c1), and R(c2), the choices for which are
used in PNFB will be defined below, the linear separability between two classes
can be defined as

S(c1,c2) =
D(c1,c2)

R(c1) +R(c2)
. (7.4)

For linear classification problems in Euclidean spaces, maximizing binary classi-
fication accuracy and maximizing S are commensurate. Given this formulation,
higher values of S(c1,c2) mean greater class separability, and vice versa. If the vol-
umes of the class models can be estimated, then a more precise measure of class
separability is the inverse of the overlapping volume between the class models.
However, even with other measures of intraclass variance, the goal of PNFB is
framed as training a user to maximize S in order to simplify the task of the BCI
transducer.

The Setup for PNFB

Given the definition of class separability above, PNFB can be implemented in
a variety of ways. Here, a simple implementation is proposed in order to test
the basic concept of PNFB. First, a more specific measure of class separability is
needed which can be efficiently computed. An approach based on first and second
order statistics is proposed.

The distance between class centroids is used to measure interclass distance D
as in Equation 7.1 due to its simplicity and reliability for changing class models.
A common measure of intraclass variance is the class covariance matrix (here we
simplify the notation and just use R(c) for the measure actually used in PNFB)
[23]

R(c) = v · cov(X(c)). (7.5)

Here v is used as a scaling factor which controls the proportion of the samples
contained by the ellipsoid defined by R(c) and centered on the estimated class
centroid of X(c), X̄(c). R(c) is a confidence region which is used in place of a
true bounding region, and the proportion of the probability mass of X(c) that it
contains is controlled by v (e.g., for normally distributed X(c), v = 2 produces
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an ellipsoid which contains approximately 95% of the samples in X(c)). Note,
however, that X(c) can be non-Gaussian and non-convex. Therefore, R(c) can
sometimes be a poor representation of the boundary of X(c) under non-Gaussian
distributions, high skewness, and for large deviations from convexity. This may
not be highly detrimental because PNFB does not rely heavily on a precise esti-
mate of class boundaries. For the purpose of this study, class models based on
second order statistics are sufficient, but the inclusion of skewness estimators and
non-Gaussian shape estimators can be used in future extensions to PNFB.

Given these choices of D and R, the goal is to design an NFB protocol that
trains the user to maximize D and minimize R, thus maximizing S. This is an
operation that must be performed over time while the BCI is being operated.
Thus PNFB must operate with respect to changing class models, and it becomes
necessary to define X

(c)
t , D

(c)
t , R

(c)
t , and S

(c1,c2)
t as the class data, intraclass vari-

ance, interclass distance, and interclass separability, respectively, at time t. Here
t increments when the models are updated, which depends on the specific design
of the BCI.

Training BCI Users with PNFB

PNFB extends simple classifier-based NFB by presenting NFB based on surrogate
class models that have slightly greater D and slightly lower R compared to the
true class models. Thus the NFB provided to the user with PNFB is based on
a classifier that has been given slightly idealized versions of the class models.
Although the classifier provides feedback to the user in the usual way, because
it is trained with the surrogate models, the user is required to learn to perform
their mental commands as well as the surrogate models would suggest in order
to receive feedback which is as positive as they would normally receive. If the
user is able to learn to generate mental commands which, over a number of trials,
produce similar D and R to the surrogate models, then PNFB generates new
surrogate models with even further improved values for D and R.

The above suggests that PNFB may make training more difficult in comparison
to training with the standard Graz protocol. However, it also creates a series of
progressive training steps that are automatically adapted to the individual user
and that move in the direction of increasing class separability. Furthermore, the
increase in difficulty can be controlled by how different the surrogate models are
compared to the true class models. Even if these differences are kept small in
order to avoid making training too difficult, over several iterations, the effect on
learning and BCI performance are potentially large. The exact implementation
of PNFB proposed for an initial study of this approach is given below.
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Assume a user is being trained to control a two-class BCI. Assume further that
at time t = 0 the first set of models has been trained using a set of pretraining
trials which are represented as feature matrices X

(1)
0 and X

(2)
0 , and that these

models will be used to provide feedback for the next block of trials. With PNFB,
surrogate models which have D̂

(1,2)
0 > D

(1,2)
0 , R̂

(1)
0 < R

(1)
0 , and R̂

(2)
0 < R

(2)
0 are

needed. First, the intraclass variances are reduced relative to the true current
class variances using the simple transformation of the original data given by

X̂
(c)
t =

√
α
(
X

(c)
t − X̄(c)

t

)
+ X̄

(c)
t , ∀c ∈ {1, . . . , C}. (7.6)

Here α is a scaling factor which controls the degree to which intraclass variance is
reduced (0 < α < 1, but values between 0.85 and 0.95 are recommended so that
the surrogate class models remain similar to the true class models). Note that this
transformation simply reduces the covariance structure of the original class data
proportionally such that cov(X̂

(c)
t ) = α · cov(X

(c)
t ), since α · cov(X) = cov(

√
αX).

Hence α is used to control the degree to which the user is conditioned to make
their mental commands more consistent.

Increasing D can also be done using a simple transform. A vector V (c) whose
initial point is the centroid of a given class model and whose direction points away
from all other class centroids can be obtained by computing

V
(c)
t =

∑

∀(i 6=c)∈{1,...,C}
X̄

(c)
t − X̄(i)

t . (7.7)

Taking U
(c)
t to be the unit vector of V

(c)
t , a shift along U that is proportional to

the standard deviation of X̂
(c)
t is given by

σ(X̂
(c)
t )

m
U

(c)
t , (7.8)

where σ denotes the standard deviation and m is a parameter which determines
the magnitude of the shift along U

(c)
t as a factor of σ(X̂

(c)
t ). Thus m can be used to

control the degree to which the user is conditioned to make their different mental
commands unique from one another in feature space.

Combining the two transforms, the surrogate data for class c at time t can be
obtained by transforming X

(c)
t by

X̂
(c)
t =

√
α
(
X

(c)
t − X̄(c)

t

)
+ X̄

(c)
t +

σ(X̂
(c)
t )

m
U

(c)
t . (7.9)

The core concept of this transformation is illustrated in Figure 7.1.

The use of surrogate class models is unconventional in NFB, but it is the
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Figure 7.1: An illustration of the transformation which is used to generate the sur-
rogate class models in Progressive Neurofeedback. Note that this illustration is not
limited to the specific implementation of PNFB used here, as non-Gaussian class
models are displayed.

basis of implementing shaping in PNFB. The transformed data X̂
(c)
t , ∀c ∈ C are

used to construct a surrogate feature space and train a surrogate classification
model. Since the surrogate class models are slightly more separable, classifier-
based NFB using the surrogate classification model assumes the user being trained
is able to produce slightly more reliable mental commands than they can in reality.
Therefore, it should be slightly more difficult for the user to achieve the same
degree of control over the BCI than training without the surrogate models. In
order to achieve the same degree of success as would be achieved with the standard
Graz protocol, the user must learn to produce more reliable mental commands,
because the classifier is “tricked”, or has been “lied to”, about the true reliability
of the user’s ability to generate mental commands. Hence, the user is required to
adapt in the direction of improved class separability. Note that the way shaping
is implemented algorithmically is similar conceptually to how it is implemented
in Progressive Thresholding; progress is promoted with difficulty tuning and an
imposed directionality to the feedback.

Recent evidence suggests that moderate to high difficulty in NFB is beneficial
to learning self-modulation of brain activity, including in a BCI setting, though
extreme levels of difficulty can be detrimental to training [24, 25]. The parameters
v and m control the difficulty in PNFB and therefore should be set so that the
surrogate class models do not deviate so far from the true class models that the
user cannot adapt, but also so that there is enough of an increase in difficulty to
enhance learning. In order to ensure the user is learning correctly, the surrogate
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models are not updated until the user is able to produce true class models which
are very close to the surrogate models in a statistical sense, i.e., their statistics
can no longer be distinguished from one another. Once the user achieves this,
new surrogate models can be generated in order to further train the user towards
increased class separability. In order to train the user to maximize class separa-
bility, the process of generating surrogate models and tracking the user’s progress
over a number of trials is repeated until either the classes become fully separable,
or more likely, until progress plateaus. Once the user is no longer able to improve
their performance, their true data can be used to train the classifier with which
they will actually use the BCI.

7.2.1 PNFB Simulation

A simple simulation with two features can be performed in order to illustrate
how surrogate models change on each iteration under PNFB. Figure 7.2 shows
how PNFB transforms the data over successive iterations. Since new surrogate
models are only generated when the user is able to adjust their mental commands
to approximate the surrogate class models, this simulation assumes the user is
successful in this regard and does not consider how long it takes the user to
accomplish this.

The simulation follows a similar pattern as long as the data are classifiable
beyond chance to begin with, irrespective of along which set of directions the
classes are separable. The particular simulation given here for illustration was
performed with class one (shown in magenta) sampled from a distribution having
mean µ(c1) = (0.9,−0.3) and diagonal covariance matrix with standard deviation
σ(c1) = (0.8, 1.2), class two (shown in green) sampled from a distribution having
mean µ(c2) = (1.2, 1) and diagonal covariance matrix with standard deviation
σ(c2) = (1.5, 0.8), and baseline EEG (shown in blue) sampled from a standard
normal distribution with mean µ(B) = (0, 0) and standard deviation σ(B) = (1, 1).

A divide and conquer multiclass classification scheme, described in Chapter
2 Section 2.6.5, was performed before PNFB and at each iteration, similarly to
the classification scheme used in the BCI experiment described below. In this
classification scheme, baseline EEG versus either mental command class was clas-
sified (referred to as Null classification throughout this chapter), and the data
were classified as belonging to one or the other of the two mental commands in an
independent analysis (referred to as Command classification throughout this chap-
ter). The change in classification error over PNFB iterations in this simulation is
given in Figure 7.3.

The simulation shows that PNFB can gradually improve classification accuracy
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(a) True Class Models (b) PNFB Iteration 2 (c) PNFB Iteration 4

(d) PNFB Iteration 6 (e) PNFB Iteration 8 (f) PNFB Iteration 10

Figure 7.2: The change in class models over successive simulated PNFB iterations.
Displayed are the 2σ ellipsoids of each class model with their means marked with
crosses in subfigure a). A line from the original class means to their new class means
are shown to illustrate the direction in which the surrogate models are shifted. Note
that the class models also become more homoscedastic at higher PNFB iterations.

by reducing intraclass variance and increasing interclass distance. In addition, it
promotes greater homoscedasticity in the class models. This simulation, how-
ever, only serves to illustrate that the surrogate models used in PNFB become
gradually more ideal for classification. The success in PNFB in a BCI depends
primarily on the ability of the user to learn to adjust their mental commands in
order to approximate those surrogate models. Thus the success of PNFB depends
on whether NFB adjusted by the surrogate models helps the user to appropri-
ately adjust their mental commands towards improved separability. This requires
empirical study with a BCI.

7.3 BCI Experiment

A BCI was constructed for the purpose of enabling users to answer “Yes” or “No”
questions using personalized mental commands. This system was piloted with
healthy volunteers using a standard experimental protocol used in BCI research.

The experiment was organized into multiple sessions. The first session was
reserved for pretraining. During pretraining, participants simply answered ques-
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Figure 7.3: The change in Null classification error and Command classification error
across simulated PNFB iterations. Iteration zero refers to the classification errors of
the original true class models.

tions one at a time using their chosen mental commands without feedback. EEG
was recorded during this time and used to train an initial classification model
for each individual participant. In subsequent sessions, denoted training sessions,
participants actively attempted to answer questions through the BCI, with feed-
back, in order to improve the performance of both the user and the computer
algorithms.

7.3.1 Participants and Data Acquisition

Data for the pretraining session of the experiment were collected from three
healthy right-handed volunteers (all three female, ages 20-25). One of these par-
ticipants continued to donate their time to data collection for this experiment
by participating in three further pretraining sessions using different mental com-
mands as well as three training sessions. All sessions using the same type of
mental commands were conducted on different days and the data collected across
different days were combined when training models. This was done in order to
ensure that machine learning models would be required to adapt to day-to-day
changes in the EEG.

EEG was recorded using a 64-channel BioSemi headcap [26] with five external
electrodes used to record EOG and EMG. One external electrode was placed just
lateral to the right eye, and another was placed just superior to the same eye.
These were used to capture the waveforms related to horizontal and vertical eye
movements. One external electrode was placed over each masseter for acquisition
of jaw clench EMG. Finally, one electrode was placed over the larynx in order to
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measure subvocal laryngeal (LSV) activations.

Impedance was checked after equipping the participant with the EEG cap.
Electrodes were adjusted and electrode gel was reapplied as needed until impedance
was below 20 kOhms for as many electrode sites as possible. For each session, be-
tween two and four electrodes had impedance values above this threshold because
the issue could not be resolved in a timely manner. EEG was sampled at 2 kHz
and downsampled to 256 Hz prior to processing.

During EEG recordings the participant was seated in a private room in front
of a standard computer display. Data was collected and processed using Matlab
R2016a [27] and Psychtoolbox [28]. Instructions and visual stimuli were displayed
on the computer display and auditory stimuli were played through standard com-
puter speakers.

7.3.2 BCI Task

Since the motivation behind this study is to develop a BCI as a communication aid
for severely disabled individuals, primarily so they can answer questions posed by
healthcare staff regarding their current condition, we asked participants to provide
a list of 130 questions about themselves (65 to which the answer was “Yes”, and
65 to which the answer was “No”) with the corresponding answers. The first 100
questions were used for training only, and the remaining 30 questions were pro-
vided for testing (i.e., data related to the test questions were never used to train
algorithms used by the BCI, but were instead intended for use as a completely
independent test set). Though the questions were self-selected, participants were
made aware that the experimenters would have access to the questions and an-
swers, and so they should avoid including any personal information which they did
not wish to be revealed. Most of the questions were neutral and generic in nature
(e.g., “Do you have a brother?”, or, “Are you Canadian?”). The questions were
recorded as audio files by a lab member who did not take part in the experiment
in any other capacity.

Both pretraining and training sessions were organized into ten blocks of ten
trials. During training the experiment paused after every block in order to up-
date any models used in classification. Once these updates were completed, the
participant was able to continue training when ready by pressing any key on the
keyboard in front of them. The specific timings of different components of each
trial are given in Table 7.1. In order, each trial was divided into the question
presentation period (QP), the response period (RSP), which was also the NFB
period during training sessions, the predicted response display period (DISP), and
the intertrial interval (ITI).
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Session QP RSP/NFB DISP ITI
Pretraining ≈3s 5s 2s 4s

Training ≈3s Max. 12s 2s 4s
Usage ≈3s Max. 12s 2s 4s

Table 7.1: The amount of time allocated to each period within each trial for the BCI
in pretraining sessions, training sessions, and proposed timings for the final BCI appli-
cation (referred to as “Usage”). QP refers to the question presentation period, RSP
refers to the response period, NFB refers to the response period with neurofeedback,
DISP refers to the predicted response display period, and the ITI refers to the intertrial
interval.

Figure 7.4: The NFB display used during the training sessions. In this example, the
“Yes” response was selected, but the classifier did have moderate confidence in the
“No” response as well.

Two kinds of feedback were provided during the training sessions. First, NFB
was provided while the participant attempted to answer the question in order
to facilitate participant training. NFB was presented in the form of two bars
underneath the words “Yes” and “No”, as shown in Figure 7.4. The classifier
made a prediction of the participant’s answer approximately once every 0.5s. The
bar corresponding to the prediction filled by 1/12th of its total length in order
to indicate to the user how the BCI interpreted their most recent brain activity,
and the speed at which the bar filled reflected the classifier’s confidence in the
corresponding response.

The second kind of feedback was displayed after the response period in order
to indicate the final decision of the BCI. This feedback was based on the state
of the NFB bars at the end of the response period. If one of the bars filled
all the way, the response period was terminated, the font colour for the word
displayed on the computer screen was changed to green, and an audio recording
of the corresponding answer, “Yes” or “No”, was played. If, by the end of the 12s
response period, one of the bars was more than 70% filled and the other was less
than 50% filled, the font colour corresponding to the predicted answer changed to
yellow to indicate low confidence in the predicted response, and no audio response
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was played. Finally, if neither bar was filled past the 70% threshold, then the
screen displayed the text “Unclear Response”.

7.3.3 Mental Commands

The BCI was piloted using four categories of mental imagery. Motor imagery
was used both because it is know to be an effective means of BCI control with
many individuals and because it is the most common strategy for BCI control.
Thus motor imagery serves as a point of comparison with more standard BCI
designs. In accordance with the generalized BCI framework and the broader goal
of bringing personalized mental commands to bear in brain-computer interfacing,
three additional control strategies were used. One strategy was to directly focus
on the answer to the question by mentally repeating the answer to the question as
clearly as possible. This response approach was used in a similar study on a BCI
designed for answering “Yes” or “No” questions, but using fNIRS [29]. A second
alternative to motor imagery involved musical imagery, whereby the participant
chose to imagine two familiar tunes as mental commands. Finally, the third
alternative strategy was based on defining complex lateralized mental commands
based on personal preferences (for example, imagining reaching excitedly for a
favourite food using the right hand to answer “Yes” versus pushing away a disliked
food using the left hand to answer “No”). Participants were given time to choose
their own mental commands within the relevant category at the start of each
pretraining session.

7.4 Data Analysis

7.4.1 Preprocessing

EEG recorded during the QP, RSP/NFB, DISP, and ITI periods of each trial
were stored and preprocessed separately. Denoising and artifact rejection were
performed after each of these recording periods for each trial independently. Each
EEG window was zero-meaned by channel and re-referenced to an average ref-
erence. A 6th order 60 Hz Butterworth notch filter and a 4th order 4-40 Hz
Butterworth bandpass filter were applied to the signals.

Artifact rejection was performed with the ADJUST toolbox [30] in EEGLAB
[31]. EOG artifacts were suppressed using an adaptive filter based on conven-
tional recursive least squares (CRLS) regression [32] with respect to the two EOG
external electrodes [33]. EMG artifacts were removed using an automated blind
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source separation approach seeded with the two EMG external electrodes [34].
Finally, CRLS regression was also used with the LSV external electrode in order
to suppress the intrusion of EMG due to LSV activation. The remaining cleaned
64-channel EEG signals were used for further analysis.

7.4.2 Feature Extraction

The purpose of the pilot experiment is to determine a set of methods which can
be used in a full study focused on the application of the BCI and the utility of
PNFB. Therefore, both of the generalized feature extraction approaches described
in Section 2.6 of this thesis were used to analyze the pilot data. While Filter-Bank
Common Spatial Patterns (FBCSP) [35] is appropriate given the large number
of EEG channels, spectral features (SF) were also tested because the neural ac-
tivity pertaining to direct “Yes” or “No” mental responses is very likely to arise
from neural populations which are highly overlapping and very close together (SF
features were extracted from the top 6 PCA components in order to reduce the
number of features). However, during online analysis that was conducted dur-
ing data acquisition, only FBCSP was used due to its speed in online feature
extraction.

7.4.3 Classification

Classification was performed using logistic regression with elastic-net regulariza-
tion (LRE) [36] to predict the binary class labels. This method was used for its
efficiency in model training and parameter selection during real time experiments.
In addition, elastic-net regularization behaves as an embedded feature selection
method with built-in sparsity constraints that help to avoid overfitting and re-
dundancy. In addition, the number of features chosen for classification can be
restricted. Moreover, elastic-net regularization allows for feature selection by tak-
ing into consideration a feature’s discriminative power in linear combinations with
other features, as opposed to non-embedded sequential feature selection methods,
such as MRMR [37], which only observes the added discriminative power of each
feature on its own. Details of LRE are given below.

Logistic Regression with Elastic Net Regularization

Logistic regression uses a generalized linear model with the logistic link function
in order to estimate the probability that class c ∈ C is the correct class given the
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trial feature vector x:

P (Y = y|x) =
1

1 + e−c(b+βx)
, (7.10)

where b and β are the linear coefficients. The parameters (b, β) were learned using
LRE in the typical fashion using its convex optimization formulation

min
b,β

1

N

∑

i

log(1 + eyi(βxt+b)) + αλ‖β‖1 + α(1− λ)‖β‖2, (7.11)

where α is a parameter which influences model sparsity and λ is the elastic-net
mixing parameter. Note that when λ = 1, the elastic-net regularizer becomes
equivalent to the lasso regularizer. Both parameters were optimized using nested
cross-validation.

The elastic-net penalty accommodates for the fact that adjacent CSP features
and spectral features are likely to be correlated. In particular, the regularized
l2 penalty given by α(1 − λ)‖β‖2 introduces a sparsity constraint at the feature
level which encourages removal or reduced weighting for correlated features. For
additional sparsity, LRE models were constrained to keep a maximum of N/4
features, where N was the number of samples in the training set.

Cross-Validation Scheme

During offline analysis, cross-validation was performed in order to choose values
for λ and α. For each value of λ ∈ {1/8, 1/4, 1/2, 3/4}, 10-fold cross-validation
was executed with 25% of the training data randomly partitioned for model test-
ing. For each model, α was estimated via gradient descent starting from a value
of 0.5 using a nested 10-fold cross-validation loop with an additional 10% of the
training data separated for use as a validation set. Additional offline analyses
were performed treating each session as independent in order to assess whether
within-session analyses and between-session analyses produced substantially dif-
ferent results.

During the online analyses which took place during training sessions, cross-
validation was performed using all previous trials associated with the participant
and the specific mental strategy, including trials from the associated pretraining
session. This was done in an attempt to construct models which could accom-
modate for the day-to-day nonstationarity in EEG and thus generalize across
training days, which is an important feature for BCIs designed for medium-term
or long-term use. In order to reduce the amount of processing time required dur-
ing online classifier updates, the values of α and λ for the LRE model and the
learned FBCSP filters were stored from the previous session and not relearned
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from scratch. The LRE parameters and the FBCSP filters were only updated
again after the session was completed.

The classification accuracies reported below are based on the best model’s
average performance on the withheld test data taken from the training data for
each cross-validation run (not the 30 questions which were withheld for later
testing, as these have not been used in the pilot experiment so far). Since these
test data were used in order to choose λ, the results reported below should be
taken as cross-validation accuracies rather than as true test accuracies. Results
are reported this way because this is the cross-validation scheme used to choose a
model during real time BCI training, where the true test data are the subsequent
trials for which the participant attempts to answer their “Yes” or “No” questions.
Hence the offline classification accuracies are analogous to the metrics which are
used for model selection in the online experiment.

7.5 Pilot Experiment Results

7.5.1 Online Analysis

The results of online classification are given in Table 7.2. Since Participant 3
(referred to as P3) was the only participant whom had completed any training
sessions, online analysis was only ever performed with this participant. P3 com-
pleted two training sessions with the Direct mental command strategy and one
training session with Musical mental imagery.

Participant Strategy Class Train 1 Train 2

P3
Direct

Null 66.5 79.0
Command 49.0 49.5

Music
Null 69.5 –

Command 51.0 –

Table 7.2: Classification accuracy for each session in the pilot experiment using
FBCSP.

7.5.2 Offline Analysis

Results of offline analyses using the session data just as they were used during
the online analysis, i.e., with data from previous sessions using the same mental
strategy combined with data from the given session, are given in Table 7.3 for

184



K. Dhindsa - McMaster University, Computational Science and Engineering Ph.D. Thesis

analysis using FBCSP and in Table 7.4 for analysis using SF features. Similarly,
results of offline analyses with each session treated independently are given in
Tables 7.5 and 7.6 for the FBCSP and SF approaches respectively.

Participant Strategy Class Train 1 Train 2

P3
Direct

Null 68.8 (2.9) 73.2 (2.3)
Command 50.5 (10.1) 49.8 (4.6)

Music
Null 72.2 (6.6) –

Command 51.4 (9.4) –

Table 7.3: Classification accuracy for each session in the pilot experiment using
FBCSP. Here, dependencies across sessions are taken into account, so each result
is based on a machine learning analysis using the data belonging to that particular
session and all previous sessions.

Participant Strategy Class Train 1 Train 2

P3
Direct

Null 61.3 (4.9) 62.9 (4.1)
Command 49.7 (7.4) 50.9 (6.5)

Music
Null 60.9 (7.2) –

Command 49.2 (8.6) –

Table 7.4: Classification accuracy for each session in the pilot experiment using SF.
Here, dependencies across sessions are taken into account, so each result is based on
a machine learning analysis using the data belonging to that particular session and all
previous sessions.

7.6 Discussion

7.6.1 BCI Performance in the Pilot Experiment

Above chance mental command classification was only achieved when each session
was treated as separate. This suggests that the approaches that have been tried so
far fail to generalize across sessions that take place on separate days, even though
they yield low to moderate rates of correct classification in within-session analyses
(with FBCSP outperforming SF overall). This drop in accuracy was not as pro-
nounced for Null classification as it was for Command classification. Command
classification involving data from multiple sessions, in contrast, never resulted in
above chance classification. Even in the case of within-session classification, the
results never surpassed the 70% threshold used as a heuristic for assessing whether
or not a binary BCI is useful [38]. Null classification rates were higher in general,
which suggests that one option for answering “Yes” or “No” questions could be to
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Participant Strategy Class Pre-Train Train 1 Train 2

P1
Motor

Null 67.8 (9.6) – –
Command 58.5 (6.3) – –

Direct
Null 83.3 (4.3) – –

Command 65.0 (7.8) – –

P2 Direct
Null 65.0 (4.8) – –

Command 61.0 (4.4) – –

P3

Direct
Null 63.0 (7.4) 89.0 (5.3) 75.5 (6.0)

Command 64.5 (8.7) 61.5 (7.5) 65.0 (9.4)

Motor
Null 52.5 (10.3) – –

Command 56.0 (5.7) – –

Music
Null 70.5 (6.9) 71.5 (4.1) –

Command 50.5 (5.5) 58.5 (4.6) –

Emotive
Null 66.5 (5.1) – –

Command 51.5 (10.2) – –

Table 7.5: Classification accuracy (and standard deviation) for each session in the
pilot experiment using FBCSP. Here, each session is treated as independent, so each
result is based on a machine learning analysis using only the data belonging to that
particular session.

use an active command for “Yes” and a rest state for “No”. However, this would
require a highly controlled environment in which the patient’s caregiver would
need to turn on the BCI before asking questions, and thus limiting the desired
degree of freedom provided by the BCI.

Since only one participant underwent any actual training to use the BCI, and
BCI performance varies widely across individuals, the reliability of the current
methods cannot be determined. It could be the case that a substantial proportion
of individuals could achieve greater than 70% classification accuracy with at least
one mental strategy with one of the current feature extraction approaches, or it
could be the case that most individuals would have less success than P3. However,
it does appear to be the case that a new strategy needs to be developed in order
to overcome the challenge of generalizing across sessions.

One potential solution is to replace the base CSP algorithm in the FBCSP
scheme with stationary CSP [39] and to include further regularization if needed
(e.g., by removing trials which may be outliers prior to learning the CSP filters
[40]). Since stationary CSP seeks to find a stationary subspace within the EEG
for which to construct a CSP spatial filter, its use may allow for improved gen-
eralization across sessions. Another approach would be to compute SF features
from CSP components, as was done in Chapter 4. A more detailed analysis of
various candidate feature spaces will help to determine which method in par-
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Participant Strategy Class Pre-Train Train 1 Train 2

P1
Motor

Null 64.3 (9.9) – –
Command 52.5 (5.2) – –

Direct
Null 69.0 (6.1) – –

Command 58.5 (4.5) – –

P2 Direct
Null 56.8 (4.2) – –

Command 50.5 (8.9) – –

P3
Direct

Null 61.4 (6.2) 82.5 (4.7) 69.5 (6.1)
Command 57.5 (8.3) 55.0 (7.2) 55.5 (9.8)

Motor
Null 48.8 (9.7) – –

Command 50.5 (8.1) – –

Music
Null 66.8 (5.6) 67.0 (4.9) –

Command 51.0 (6.4) 54.0 (5.1) –

Emotive
Null 59.3 (6.2) – –

Command 50.0 (8.4) – –

Table 7.6: Classification accuracy for each session in the pilot experiment using SF.
Here, each session is treated as independent, so each result is based on a machine
learning analysis using only the data belonging to that particular session.

ticular should be used for future sessions. In particular, it would be useful to
check whether the Emotive strategy produced lateralized brain activity for P3 as
was expected, because lateralized mental commands should be classifiable with
FBCSP.

A great deal of work remains to be done before the BCI presented here develops
into a BCI with which users can reliably answer “Yes” or “No” questions. The
pilot data collected so far have provided valuable information and have allowed
for the systems design to be tested. The pretraining data was paramount in
informing the current implementation of the BCI, especially with respect to the
choice of LRE over the SVM used in Chapter 4. In addition, the few training
sessions conducted so far were indispensable with regards to identifying the need
to craft an approach which is robust to the nonstationary changes in the EEG
across sessions. Unfortunately, the small number of training sessions conducted,
all of which were performed by one participant without above chance results in
the online setting, mean that it is impossible at this time to infer anything about
the utility of PNFB for BCI user training.

7.6.2 The Choice of Mental Commands

The choice of mental commands remains a difficult problem to address. Given
the evidence presented in this thesis and in the literature discussed in previous
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chapters, it would seem helpful to have each participant complete aptitude and
background questionnaires in order to make informed choices about potential per-
sonalized mental commands. For example, the Kinaesthetic and Visual Imagery
Questionnaire [41] was found to be correlated with BCI performance when using
motor imagery in one study [42]. Adding to this evidence, the results presented
in Chapter 4 suggest that a questionnaire probing a user’s past experience in a
variety of fields might help predict the kind of mental strategy with which they
might be successful. How reliable the relationship is between aptitude in differ-
ent domains and BCI performance, as well as how broadly this relationship can
be applied, require further study, but what is known so far can potentially be
exploited in this work.

With the current pilot study, not enough data are available with which to
determine whether certain mental strategies are more promising for further ex-
ploration compared to other strategies. However, the pretraining data acquired so
far suggest that direct mental imagery can be a viable mental strategy for answer-
ing“Yes” versus “No” questions with a BCI. This has been done successfully with
fNIRS [29], but no reports of attempting this with EEG have yet appeared in the
literature. With P3, the Direct mental response strategy was, unexpectedly, the
most successful strategy of the four attempted. This may be a positive finding,
since direct mental “Yes” or “No” responses would usually be the most natural,
intuitive, and desirable set of mental commands for users. However, additional
data might reveal other mental strategies to ultimately be more useful.

7.6.3 Plans for a Full Study Including Clinical Patients

The results presented in this chapter are based on a pilot study which was used to
help develop and test the technical details of the of the BCI and PNFB, as well as
the user interface. Additional pilot data may be needed in order to find an optimal
machine learning strategy for this BCI. After the methodology is finalized, a full
study must be undertaken in order to properly test PNFB and the usability of the
BCI. This will be done in two stages: one experiment with healthy participants,
and one with clinical patients.

Approximately 15-20 healthy participants split into two groups will be needed
in order to evaluate the efficacy of PNFB compared to a standard Graz Proto-
col (implemented in the exact same way but with standard classifier-based NFB
instead of PNFB). Participants will need to complete at least four training ses-
sions plus one pretraining session on different days so that both within-session
and between-session progress can be assessed. If PNFB shows improvements over
standard training methods, an additional follow-up session one month after com-
pleting training would be conducted if possible in order to determine whether
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PNFB also helps participants to better retain the skill of using the BCI in the
long term. Addressing the problem of the long-term reliability of a BCI without
requiring the user to undergo tedious amounts of training and retraining is another
critical issue in developing viable BCIs for real world applications [43, 44].

Once the healthy participant pool has completed training, a deeper analysis of
the online results and exploratory offline analysis will be used to make additional
improvements or modifications to the BCI in order to maximize its expected
utility and reliability. Once this is complete, the system will be deployed as an
assistive communications prosthetic for severely disabled patients in a clinical
setting. With help from caregivers and clinicians, the BCI will hopefully allow
patients to answer queries about the usability, practicality, and reliability of the
system. These data, along with ongoing analysis of the data collected during
active BCI use, would be leveraged in order to continually update the system.
Once the BCI becomes sufficiently reliable, it could be used to aid caregivers and
clinical staff in interacting with severely disabled patients. Most importantly,
the BCI will hopefully provide a significant improvement in the lives of severely
disabled individuals.
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8.1 Contribution to Brain-Computer Interfac-

ing

Brain-computer interfacing has the potential to redefine the relationship between
humans and computers. A great deal of progress has been made, and remains
to be made, using the traditional approach of designing BCIs around mental
commands with known neural correlates. However, BCIs are best controlled via
types of mental imagery and mental processes which are highly developed within
the individual. Therefore, in the long-term, BCIs will need to accommodate a
wide variety of mental commands in order to enable reliable control for the general
population. Until such time that BCIs are able to do this, it is unlikely that BCIs
will become widely adopted as useful human-computer interfaces.

In order to achieve sufficient usability for the general population by the tradi-
tional approach, a separate BCI transducer would need to be developed for each
possible type of mental command. Then the correct BCI transducer, or set of
BCI transducers, would have to be selected for each individual and adapted to
the unique way in which their brain produces those mental commands. Given the
open-ended nature of mental imagery, not only would this approach require an
impractically large number of specialized BCI transducers, but the extent of spe-
cialization required for each BCI transducer risks precluding the flexibility needed
in order to adapt to variations in mental commands over time and across indi-
viduals. That is why it is proposed in this thesis that generalized methods for
brain-computer interfacing are required if BCIs are to become usable and impact-
ful for the majority of people.

A successful generalized BCI transducer is one which can accommodate a wide
range of mental commands. Though this requires a solution to the more difficult
problem of classifying different kinds mental imagery without knowing beforehand
what they are or what their neural correlates are, overcoming this challenge is
necessary for the long-term success of BCIs, especially in moving them outside of
the laboratory and into the clinic and the homes of the general public. Given that
widespread usability, broader applicability, and highly variable performance across
individuals have become central points of discussion in the literature [1, 2, 3, 4], the
need for a substantial shift in methodology is becoming increasingly recognized.
Generalized methods for brain-computer interfacing should be developed in order
to evaluate whether this strategy will serve as part of the solution.
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8.1.1 Progress in Generalized BCI Transducers

This thesis presents some of the first generalized methods for EEG brain-computer
interfacing which have been shown to accommodate a wide variety of mental
commands across individuals. Two approaches to a generalized BCI transducer
were introduced and empirically validated. In Chapter 4, the open-ended BCI was
implemented using a feature learning approach based on Common Spatial Patterns
(CSP). This work showed that with a generalized approach users were more free
to choose their own mental commands compared to a standard approach. This
included several types of mental commands that have never been used to control
BCIs before, yet the generalized BCI transducer acheived comparable performance
to specialized BCI transducers. In addition, new evidence was obtained showing
that the choice of mental commands, including their primary sensory modality,
should take into account the user’s domain expertise and experience outside of
the BCI context (e.g., musicians may perform much better using relevant auditory
imagery than visual or motor imagery). While there were clear advantages to using
this generalized approach, there did not appear to be any significant downsides
compared to using non-generalized methods that were revealed in the studies
conducted so far.

In Chapter 5, a second generalized BCI transducer based on spectral features
(SF) and feature selection was implemented. This approach, which can be com-
bined with the CSP approach by extracting SF features from CSP components,
was developed for BCIs which do not have sufficient spatial resolution with which
to effectively learn spatial filters, and for mental commands that are not spatially
separable. This method was used to determine whether self-reported emotional
reaction to videos was high or low on eleven different emotions with up to 88% ac-
curacy, despite taking into account very little about what is known regarding the
neural processing of various emotions. Interestingly, this method was also useful
in predicting which participants would have classifiable reactions to the videos in
the first place, suggesting that there is significant heterogeneity in neural process-
ing of emotional stimuli. The nature of this difference and its implications require
further study.

The results obtained through the work in Chapter 5 show that a generalized
approach is applicable in a wide variety of applications and opens the door to new
BCI applications without the need for extensive research into the neural correlates
of all mental activity of interest. In this case, a method that was not designed
to detect emotional reactions in particular performed well for that problem, and
could be used to develop affective BCIs for diagnosis, monitoring, and treatment
of certain affective disorders. For example, real-time detection of fearful reactions
to stimuli can help determine which stimuli evoke such reactions for a patient
suffering from post-traumatic stress disorder or a phobia and whether prescribed
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treatments are effective in mitigating those reactions.

Whether or not the methods for generalized BCI transducers presented here
will form the basis of future generalized BCIs remains to be seen. What this thesis
has acheived, however, is to show that the field may need not continue to restrict
itself to the traditional approach of designing a brand new highly specialized BCI
transducer for each variation on mental imagery in many applications. Moreover,
this body of work substantiates the argument that the traditional approach is
not optimal in the long term and that a generalized approach can be expected to
become increasingly necessary as BCIs expand beyond the laboratory.

8.1.2 Improved Neurofeedback for BCI User Training

Taking steps towards a generalized BCI, because it is a fundamentally different
design paradigm, invites one to revisit the very definition of a BCI, its function,
and its purpose. Brain-computer interfacing is a highly multidisciplinary field
which is closely related to the broader field of human-computer interaction. Un-
surprisingly, BCIs are seen through the lens of human-computer interfaces (HCIs).
However, the broader HCI paradigm treats the user as an operator of a system
which must respond to user input. This paradigm is appropriate for most HCIs,
but does not fit the basic concept of a BCI. A BCI is a fundamentally new kind
of HCI.

The current paradigm used in BCI research is borrowed from research on other
types of HCIs. This paradigm encourages BCI researchers to focus on the BCI
transducer in order to improve usability, applicability, and reliability. This does
not contradict the goal of developing a generalized BCI transducer, and should
still be seen as an important aspect of BCI research. However, the field has
focused almost exclusively on developing new BCI transducers until just the last
few years [3, 2] and has neglected to consider the other half of the problem in
a serious way. What must be recognized is that the human is part of a BCI in
a unique way compared to other HCIs. Where in other HCIs, like a keyboard,
the system is static and the human must learn to use it effectively, a BCI is a
dynamic system which must train the user to adapt to it while simultaneously
training itself to respond to the user. This makes a BCI is unique in that it
depends on co-adaptation between the user and the system, which is equipped
with its own adaptive artificial intelligence. This is not to say that elements of
HCI research are not beneficial to BCI research. However, the unique qualities of
a BCI must be taken into consideration.

As noted previously, some researchers have begun to recognize the impor-
tance of this symbiotic relationship [3, 4, 5, 2]. Some approaches to improving
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co-adaptation recognize that the best choice of mental commands depends on
the user, but still focus heavily on the BCI transducer and mental commands
which are chosen by the designer and given to users [6, 7, 8, 9]. Some degree
of generalization is achieved by collecting EEG as the user performs a few dif-
ferent mental commands and using cross-validation techniques to determine the
best pair of mental commands for further BCI training, but this is far from the
level of generalization achieved in the work presented in this thesis. Moreover,
these approaches to co-adaptation do not aim address one of the primary barrier
to optimal co-adaptation, which is the poor approach to neurofeedback (NFB)
training used in BCIs [3, 4, 5, 2].

A proposal for improved NFB for BCIs was given in Chapter 7 based on an
algorithmic formulation of shaping from learning theory. The founding princi-
ples behind this approach was validated in the classical NFB setting in Chapter
6, where participants were much better able to balance their frontal alpha ac-
tivity using the proposed Progressive Thresholding algorithm than with a stan-
dard automated NFB implementation. Moreover, participants in the Progressive
Thresholding group showed balanced frontal alpha asymmetry in their pre-session
baselines (i.e., in their resting EEG prior to beginning training sessions) in their
later sessions, suggesting a greater inter-session effect. With additional data, a
similar effect might be found with Progressive NFB (PNFB) in BCI user training.
PNFB is one of the first proposals for directly tackling the problem of subopti-
mal and inappropriate NFB training for BCIs. However, the question of how to
redesign NFB protocols for BCI user training remains an open question. Nonethe-
less, the need to further incorporate principles of learning theory, such as shaping,
is recognized.

8.2 Limitations and Future Directions

The work presented in this thesis advances brain-computer interfacing both in
terms of generalized BCI transducers and improved NFB training. However, there
are several limitations and shortcomings which must be addressed in future work.
Each of these prongs of the generalized BCI problem represents a full program
of research with applications outside of BCI, including EEG analysis and clinical
NFB, but they are interconnected and support progress towards improved gen-
eralized BCIs. The next steps towards improving on both of these areas of BCI
design are discussed below.
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8.2.1 Further Generalization of the BCI Transducer

The approach to generalizing a BCI presented in this thesis relies heavily on
generalizing the feature extraction component of the BCI transducer. A feature
learning approach based on CSP was presented along with a more classical ap-
proach based on finding optimal subsets after extracting many spectral features
(the SF approach). A great deal of work can be done in improving both of these
approaches, including by combining them in an effective way.

With respect to the spectral feature approach, the main limitation going for-
ward will be minimizing growth in the list of candidate features as new features
are included to capture distinct kinds of information from brain activity (e.g.,
polyspectra based on higher order statistics if enough samples are available for
reliable estimation, or measures of causality, such as partial directed coherence).
As more features are added, feature extraction will become less computationally
efficient and the ratio of useful features to irrelevant features for any given problem
may become increasingly small. Furthermore, the number of candidate features
can easily become large compared to the amount of training data available, leading
to problems associated with the curse of dimensionality [10]. Therefore, strategies
for reducing the number of candidate features need to be developed.

Rather than the variety of features included, the primary reason the SF ap-
proach results in a very large number of candidate features is because an entire set
of features is extracted for each EEG time series. Therefore, a promising way to
reduce the number of features is to reduce the number of EEG time series included
in the analysis. This can be done using channel selection (see for example [11]),
or when enough spatial resolution is available, with spatial filtering (e.g., CSP
or PCA), and source separation (e.g., Independent Components Analysis [12] or
beamforming [13]). If the method used for reducing the number of time series is
compatible with a generalized BCI, as all of the listed examples are, then spectral
features can then be computed over the new smaller number of time series with-
out significant loss of discriminative power. In some cases, for example with CSP,
it may be easier to extract discriminative information from the new time series
compared to the original EEG channels, thus improving the quality of the BCI
transducer.

This extension of the SF method is how the CSP and SF approaches can be
combined, since the CSP features can be added as candidate features to SF fea-
tures computed over CSP components. However, since FBCSP, which is preferred
for generalized BCIs, relies on learning many CSP filters, SF features should only
be used after a few CSP components are selected in order to avoid the same
problem of computing too many candidate features.

199



K. Dhindsa - McMaster University, Computational Science and Engineering Ph.D. Thesis

One approach, which is described here only hypothetically because the method-
ology has not yet been developed, is to take advantage of important discriminative
information which might appear only in combinations of features and not in any
of the features individually. While combinations of features are taken into ac-
count at the classification or regression stages of analysis, they are typically not
taken into account during feature selection. When features are selected one at a
time, as in MRMR [14] and most supervised feature selection methods [15], con-
sideration is only given to whether an individual feature provides unique useful
information on its own. Therefore, there is a mismatch between the needs of clas-
sifiers, which discriminate data on the basis of learned combinations of features,
and non-embedded feature selectors (feature selectors which are independent from
the classifier rather than combined with the classifier, see [15] for more details),
which do not consider the discriminatory value of combinations of features.

Methods for which feature selection is embedded with classification, such as
logistic regression with elastic net regularization [16] described in Chapter 7, do
consider combinations of features in feature selection, but these methods often
must still be preceded with a non-embedded feature selection step in order to
reduce dimensionality, particularly with the SF approach. A non-embedded fea-
ture selection method that could learn the coefficients of maximally discriminative
combinations of features might not only lead to better classification and regression
results, but should also reduce the number of features needed during modeling be-
cause useful information from a large number of features could be represented by
a relatively small number of values. Such a method could not be found in the
literature, and thus developing such a method could be a useful task for future
research.

With respect to the use of FBCSP, there are simple improvements that can be
made. While FBCSP provides the generalization needed for mental imagery BCIs,
it is not necessarily robust to noise or stable over time. Fortunately, FBCSP is
simply a wrapper for the base CSP algorithm. This means that many extensions
to CSP can be used in place of the base CSP algorithm in FBCSP. For example,
regularized CSP [17] can be used to add robustness to noise and stability over time
can be gained through the use of stationary CSP [18] within FBCSP. It is possible
that the results obtained in the work which used FBCSP in this thesis could be
improved by replacing one of these extensions of CSP with the base CSP algorithm
used in FBCSP. An offline analysis comparing implementations of FBCSP using
enhanced versions of CSP should be performed in order to determine which, if
any, should be used in future generalized BCIs.

Finally, one possible path to developing a generalized BCI transducer is through
deep learning classification and regression methods. Deep learning represents an
entirely different feature learning approach [19] which combines learning a hierar-
chy of features with classification or regression in one graphical model. Its success
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in other domains, such as image analysis, suggests that deep learning could im-
prove generalization and reduce the amount of work required on the part of the
designer in brain-computer interfacing. However, it has proven difficult so far to
adapt existing deep learning models for EEG classification. Very few EEG and
BCI-related analyses have been conducted using deep learning methods, and those
that have done so have had only limited success (e.g., [20]). Furthermore, tests
using a multichannel Convolutional Neural Network [21] on the data presented in
Chapter 4 failed to produce classification accuracies better than those achieved
by FBCSP. One reason for this is that deep learning can only be expected to
outperform alternative methods if hierarchical features are useful, which may not
be the case for many kinds of mental imagery. It is possible that a deep learning
approach could prove successful if an appropriate model architecture could be
found, but this alone can be a difficult task. If a deep learning approach does
prove to be successful, the question will remain whether improvements in BCI us-
ability, if any, outweigh the challenge of finding appropriate model architectures
for different individuals and different applications.

In addition to the limitations regarding the software involved in BCIs, the stud-
ies presented here were limited by the availability of EEG hardware. Commercial
EEG hardware was used due to limited access to full EEG caps, and because the
generalized approach to brain-computer interfacing presented here has been espe-
cially designed to enable real-world applications for the general public, which will
typically make use of commercial EEG devices comparable to those used here.
However, these devices are limited in their electrode coverage and often exhibit
poorer signal quality than research-grade EEG hardware. As such, continued de-
velopment of generalized methods would ideally take place with research-grade or
higher quality EEG hardware, a process which has begun with the work presented
in Chapter 7, in order verify the results obtained so far and to improve confidence
in these findings and their implications.

8.2.2 The Adaptive Neurofeedback Framework

The Adaptive Neurofeedback Framework (ANFB) is an overarching framework
for NFB which encompasses both the Progressive Thresholding method studied
in Chapter 6 and its Progressive NFB extension for BCIs proposed in Chapter
7. However, this framework is much broader than these algorithms and includes
further ideas and proposed algorithms for improving NFB in both its traditional
and BCI contexts. The ANFB framework is founded on the idea that machine
learning and statistical modeling can be used to develop dynamic neurofeedback
protocols which adapt to the user throughout training, analogously to how a BCI
adapts to its user. Selected proposed mechanisms for achieving this are outlined
below as avenues for future research.
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One of the fundamental challenges in NFB training is choosing appropriate
features of brain activity to train. For clinical NFB, Z-score neurofeedback ad-
dresses this problem by identifying features in the resting EEG which deviate
significantly from a normalized database and which also have been reported in
the literature to be relevant to the particular disorder to be treated [22]. A multi-
layer extension of this approach might be useful in a generalized BCI. Given an
initial pretraining dataset for a set of mental commands and a set of candidate
features, those features which deviate from baseline or resting EEG form the first
layer of selected features. Of those features, those which deviate across mental
commands would form the second layer of features selected for training. Then,
rather than using NFB training to normalize those features, NFB training could
be applied to further differentiate those mental commands from one another and
from baseline EEG using PNFB.

Suppose an optimal method for selecting features for NFB training was already
available. There is still no method available at the present time which provides
explanatory feedback, i.e., feedback which tells the user which features of brain
activity need to be adjusted and in what way [3, 4, 2]. How to instruct a user
on how to control specific features of brain activity remains an open question.
However, users are likely to find it easier to train to control one feature at a time
rather than learning to control all relevant features simultaneously. Therefore
it may be beneficial to train consistency and separation in mental commands
beginning with the most discriminative feature first and then adding one feature
at a time as a desired level of control is achieved. This may, in turn, reduce
the number of features required for classification if precise control over a small
number of features can be learned by the user. A study testing this approach
should consider whether this would increase training time, since it may take some
time to learn how to control each feature and then to learn to control features
together. In addition, a study testing this approach should consider whether it
would change the user’s mental commands, since training each feature may not
require the original mental commands, and once features are recombined, the
original mental command could be significantly altered.

One question which has arisen multiple times throughout this thesis is the
question of how to choose optimal mental commands in the first place. For a
generalized or open-ended BCI, the choice of mental command is left to the user
rather than determined by the design of the system. While individuals might
self-select “good” mental commands on average (keeping in mind that many may
not), they might not self-select the “best” mental commands. Furthermore, there
is no way to choose different mental commands for a given BCI without restarting
the training process from the beginning, which introduces the risk of interference
from previous training attempts and loss of interest and motivation in the en-
tire endeavor. Therefore finding a good initial set of mental commands prior to
training is extremely important.
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Should a BCI try to predict an optimal set of mental commands for a user, or
should the BCI simply help a user to fine-tune a self-selected mental command?
It may be possible to do both, to a degree. Given what is known about how
cognitive profiles and aptitude in different areas influence which mental commands
yield better BCI control with different individuals [23, 24], including what has
been revealed in Chapter 4, it may be reasonable to measure such individual
factors and suggest to users that they come up with mental commands which
correspond to certain skills they might have in a particular sensory modality.
Given mental commands which have been self-selected with some well-reasoned
constraints, NFB methods which operate directly in the feature space, such as
PNFB, might help to optimize those mental commands for BCI control.

One limitation of the BCIs presented in this thesis is that they do not take
advantage of the fact that the user’s brain will usually produce an error-related
potential when the BCI produces an incorrect output [25]. These potentials can be
detected using techniques similar to those employed in P300 BCIs. The advantage
gained through detection of error-related potentials during BCI training is that
the BCI transducer can avoid being trained with incorrect labels on training
data. For a binary BCI, error-related potentials provide a means to automatically
label incoming brain activity to continually adapt the BCI transducer, since the
detection of an error-related potential indicates that the opposite of the predicted
class label was the true class label.

In addition to errors made by the BCI transducer, the user may also make
errors from time to time. During training, a user may misread the training cue
and produce the incorrect mental command, or simply not pay attention during
the trial and miss producing any mental command at all. In both cases, inclusion
of these data is detrimental to successful adaptation of the BCI transducer. The
first type of error can be partially mitigated with outlier detection (see for example
[26]), especially if the generated mental activity is closer to some other mental
command than it is to the cued mental command. The second type of error could
be mitigated by real-time EEG-based attention monitoring, or mind-wandering
detection [27]. However, reliable methods for doing this need to be developed
before they can be applied to a BCI.

While the Progressive Thresholding improved performance on an NFB task
over standard methods, and PNFB may prove to do the same in the BCI con-
text, an important question remains. Does training with these methods result
in stronger neuroplastic changes that lead to improved NFB and BCI use in the
long term? The problem of enabling long-term BCI use is a challenging one due
to the nonstationarity of the EEG over time. Typically, long-term use requires
frequent retraining (e.g., [28]). The amount of training could be reduced if meth-
ods like PNFB do lead to more stable patterns of brain activity and more stable
neuroplastic changes. This could be tested by observing changes in functional
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connectivity before and after training, as seen in successful clinical NFB training
[29, 30, 31, 32], and by observing changes in the lasting activations resulting from
transcranial magnetic stimulation (TMS), also seen after successful NFB training
in the clinical setting [33].

As with the development of generalized BCI transducers, the work on Pro-
gressive Thresholding presented in Chapter 6 can only be interpreted so far due
to the use of commercial non-standard EEG hardware. While commercial EEG
hardware is ideal for NFB applications from a practical point of view, from a
research perspective, it introduces certain limitations. In particular, the sensor
locations used for measurnig frontal alpha asymmetry were not precisely the same
as is usually reported in the literature. Moreover, the reference electrode was in a
significantly different location. This electrode configuration may have contributed
to the lack of behavioural effects seen in this study, even when NFB training was
successful. However, that is mainly a question about the applicability of this par-
ticular NFB protocol for influencing mood. The main goal was to show that given
a measure of brain activity Progressive Thresholding would lead to better learn-
ing outcomes compared to the current standard automatic thersholding approach,
and this was clearly achieved.

8.3 Conclusions

The successes of brain-computer interfacing have resulted in much-deserved excite-
ment and anticipation within the brain-computer interfacing and neurotechnology
communities. Research in this area has led to markedly improved lives for some
individuals suffering from severe cases of paralysis and ALS. In addition, recent
advances in controlling software and hardware directly by thought have stimu-
lated the imaginations of many scientists and engineers who see brain-computer
interfacing as an unprecedented from of technological progress which could have
significant implications for society at large.

While the successes of the brain-computer interfacing community should be
celebrated, it must be recognized that the field is only in its infancy. BCIs remain
unheard of to the majority of people around the world because they have not
yet made a significant impact outside of research laboratories and experimental
clinical cases. The reality of the current state of BCI research should serve as a
reminder that there is still a long way to go before BCIs are relevant in the lives
of everyday people.

The philosophical underpinning of this thesis is that brain-computer interfac-
ing is unlikely to become a useful tool for the general population until a reliable
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generalized user-centered BCI is developed. Generalization can enable BCIs to
sufficiently account for the enormous variability between the brains of individuals,
and only by recognizing that the role of the user is central to BCI performance
can optimal co-adaptive methods be developed. The empirical research presented
here contributes to the understanding of how humans and machine learning in-
teract to attain reliable BCi performance, introduces new tools for improved user
training through NFB, and illustrates why generalization is a valuable approach
moving forward. Most importantly, this work brings closer the development of
BCIs which can be effective and reliable tools in clinics and homes for a wide
variety of applications and users.
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a  b  s  t  r  a  c  t

Recent  developments  in electroencephalography  (EEG)  have  led  to a variety  of  consumer-grade  EEG
devices  for  brain–computer  interfacing  (BCI)  and  neurofeedback  (NF) equipped  with  only  one  or  a  few
EEG sensors.  With  minimal  electrode  coverage,  most  methods  of detecting  artifacts  in the signal  which
arise  from  non-brain  sources  are not  applicable.  Furthermore,  methods  which  can  be  used on  single-
channel  EEG  are typically  not  sufficiently  accurate  or fast for  BCI  and  NF  applications.  In  this  paper  a
new  highly  accurate  artifact  rejection  method  is  introduced,  called  Filter-Bank  Artifact  Rejection  (FBAR),
which  is designed  for  real-time  EEG  applications  using  just  a few  or even  a single  EEG channel.  FBAR  is
compared  to a current  state-of-the-art  method,  Fully  Automated  Statistical  Thresholding  for  EEG artifact
Rejection  (FASTER).  FBAR  outperformed  FASTER  on  all test  data,  due mainly  to  its ability  to detect  small
artifacts  in  the  presence  of  high  amplitude  EEG.  This  makes  FBAR  particularly  useful  for BCI  and  NF
applications,  which  are  especially  dependent  on  achieving  the  highest  possible  signal-to-noise  ratio  in a
real-time  setting.  A  MATLAB  toolbox  allowing  for  use  and  experimentation  with  FBAR  including  several
customizable  options  is  available  as  a Git  repository  at https://bitbucket.org/kiretd/FBAR.

© 2017  Elsevier  Ltd.  All rights  reserved.

1. Introduction

In recent years, low-cost consumer-grade electroencephalog-
raphy (EEG) devices have entered the market with home-use
brain–computer interfacing (BCI) and neurofeedback (NF) appli-
cations in a variety of areas, including gaming and therapy [1].
NF requires real-time processing of brain recordings in order to
provide real-time feedback enabling users to learn how to regu-
late their own brain activity. The inherent difficulty of learning
to control one’s own brain activity means that NF applications
require precise feedback in order to provide the user with a clear
training signal. If this feedback is contaminated by noise, the learn-
ing process is likely to be compromised, leading to anything from
longer and more tedious training periods to incorrect training and
unintended outcomes [2]. While BCI often incorporates NF, BCI
applications differ in that they involve the extra step of interpreting
user intention from the observed EEG in order to drive a computer
application. BCI typically uses highly tuned machine learning mod-
els to differentiate between patterns of brain activity, which may
differ in only subtle ways. The presence of artifacts in the EEG can
distort the features used in these models and therefore prevent
them from precisely learning the correct patterns [3,4]. For these
reasons, NF and BCI applications are particularly sensitive to noise
in the EEG. In order for these devices and applications to be suc-

cessful, tools are needed to ensure that the quality of the signal
acquired is as high as possible.

As NF and BCI applications enter the consumer market, new
processing methods will be needed to compensate for the dif-
ferences between research-grade and consumer-grade hardware.
Consumer EEG devices are susceptible to the usual sources of arti-
facts found with traditional research devices, including eye blinks
and eye movements (electrooculographic, or EOG, artifacts), as well
as artifacts from jaw clenches, facial expressions, and other muscle
activity (electromyographic, or EMG, artifacts). For research-grade
EEG devices, artifacts are typically removed using spatial filtering
methods [5], such as blind source separation with independent
components analysis (ICA) [6,7], usually requiring at least 14 EEG
channels [8], or with Fully Online and Automated Artifact Removal
for Brain–Computer Interfacing (FORCe), requiring 16 EEG channels
[9]. However, these methods cannot readily be applied to many
consumer devices as the requisite number of sensors are simply
not available. The lack of appropriate artifact rejection methods for
consumer hardware has been identified as one limitations prevent-
ing more widespread adoption of consumer BCI and NF applications
[10–12].

Methods have been developed for EEG applications involving
small-channel or single-channel EEG in order to make applications
with these hardware configurations feasible. These methods, such

http://dx.doi.org/10.1016/j.bspc.2017.06.012
1746-8094/© 2017 Elsevier Ltd. All rights reserved.
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as the current state-of-the-art, Fully Automated Statistical Thresh-
olding for EEG artifact Rejection (FASTER) [13], usually rely on
applying thresholds to statistics of the EEG signal. For epoched
single-channel data, FASTER uses the mean, variance, amplitude
range, and median gradient of the input signal. The statistics for
these features are computed across all epochs, and epochs are
rejected if the value for any of these features exceeds three stan-
dard deviations outside of the mean. However, FASTER and similar
methods in the small-channel or single-channel context may  not
be sufficiently accurate for applications in BCI and NF. In particular,
this approach makes it particularly difficult to accurately identify
artifacts in the presence of high amplitude EEG.

Other methods are able to suppress, or clean, artifacts from EEG.
Recently, a method for cleaning EMG  artifacts in single-channel EEG
has been developed [14]. However, this method does not work on
EOG artifacts, which contaminate the lower frequency bands in the
EEG. Similarly, methods for cleaning EOG artifacts in single-channel
EEG were also recently developed, but they do not clean EMG  arti-
facts [15–17]. These methods are only suitable for a narrow variety
of artifacts and do not handle small artifacts effectively. While it is
possible to use multiple methods sequentially, it is often desirable
to have just one tool for handling artifacts, particularly in a real-
time application where fast processing is necessary for the success
of the application.

In this paper a new method is proposed which performs well
in the new and challenging context of artifact detection for single-
channel or small-channel EEG. Filter-Bank Artifact Rejection (FBAR)
is a fast and highly accurate machine learning based EEG artifact
detection method designed specifically for real-time applications
using small-channel (fewer than four or six EEG channels) or single-
channel EEG and can detect even very small-amplitude artifacts
in the presence of high-amplitude EEG. A MATLAB toolbox allow-
ing for accessible use of FBAR is available at https://bitbucket.org/
kiretd/FBAR.

1.1. Overview of the FBAR approach

FBAR uses amplitude and power statistics in multiple frequency
bands in a feature selection and classification pipeline. While this
is a common approach in the machine learning literature, it has
not been applied to the problem of artifact detection in EEG. The
few existing methods based on machine learning are limited for
the same reasons as most other methods are: they rely on the con-
struction of spatial filters using several EEG channels [18,19]. Here
we take a different machine learning approach in order to fit the
context of detecting artifacts for single-channel EEG.

Since many types of artifacts can be spatially localized in a lin-
ear sense, and because the statistics of EOG and EMG  signals differ
considerably with respect to true EEG signals, spatial filters greatly
simplify the problem of identifying spatial components which are
reflective of artifacts. However, in the single-channel EEG case, the
EEG, EOG, and EMG  signals cannot be unmixed using a spatial fil-
ter. Therefore, it is more convenient in the single-channel case to
frame the problem in terms of identifying segments of the EEG
time-series which are contaminated by artifacts. This can be for-
mulated as finding a function, whether linear or non-linear, which
maps time-series segments to a binary variable indicating the pres-
ence or absence of an artifact. Since artifacts cannot always be
identified on the basis of just one or two features of the signal,
especially in the case of small artifacts present among high ampli-
tude EEG, a combination of features is required. However, even with
an appropriate set of features, determining the optimal combina-
tion of features which define the best mapping from time-series
segments to artifact identification is a non-trivial problem.

Machine learning methods are particularly well-suited to solv-
ing this type of mapping problem [20]. In particular, many modern

machine learning classifiers are able to learn non-linear mappings
from input data to output classes in high dimensional feature spaces
without the need for an analytical solution. This is particularly use-
ful for the case of artifact detection in single-channel EEG where the
presence of a wide variety of artifacts ensure that some artifacts
are indistinguishable from true EEG except for by a combination
of some small subset of features, while other artifacts are indistin-
guishable from true EEG by those same features but are classifiable
based on an entirely different combination of features.

Broadly, there are three machine learning approaches which are
appropriate for the problem at hand. The first is a purely feature
engineering approach, in which a set of features are computed
that are known to be discriminative with respect to clean EEG
and artifacts a priori. The success of this approach depends on
the degree of domain knowledge and a priori information that can
be included in the handcrafted feature space. Since single-channel
artifact detection has not yet been studied deeply enough for com-
plete characterization of an optimal feature space on the basis of a
priori knowledge alone (especially in the case of detecting small-
amplitude artifacts), a purely feature engineering approach would
require several assumptions and educated guesses. It can thus be
expected to result in a suboptimal solution. Furthermore, because
the goal of FBAR is to be applicable for as many kinds of arti-
facts as possible, using purely preselected features would introduce
increased risk of poor generalizability for artifacts which were not
considered (or for which insufficient data were available) at the
outset.

A second approach is to use deep learning [21], which in the-
ory, is capable of learning a set of discriminative features from the
EEG time-series itself [22,23]. While this is a promising avenue for
artifact detection in EEG, deep learning is not without its down-
sides. Of particular relevance to the current problem, deep learning
can be said to replace laborious feature engineering with laborious
architecture engineering (i.e., experimentally finding a good com-
bination of network architecture and hyperparameter settings).
While deep learning avoids the need for a high degree of domain
knowledge, it is often the case that if sufficient domain knowledge
is available, a feature engineering or a feature selection approach
is more efficient and potentially as successful.

Here a third approach was  used, which could be seen as a bal-
ance between a purely feature engineering approach and a deep
learning approach. In the feature selection approach, an engineered
feature space based on available domain knowledge is constructed
just as in the purely feature engineering approach. However, these
are treated merely as candidate features, rather than as the final
set of features used for classification. These candidate features
are passed through a supervised feature selection algorithm in
order to reduce the dimensionality of the feature space in a way
which preserves as much discriminative information as possible.
Compared to the purely feature engineering approach, the feature
selection step has the added benefit of reducing the dimensionality
of the feature space, and thus the classification model, by remov-
ing redundant and irrelevant features. While the feature selection
approach uses some a priori information about how artifacts are
characterized in the EEG time-series, it is more forgiving when
only partial knowledge is available and when some types of arti-
facts are not well-represented in the training data. Since the feature
selection approach provides an efficient means of generating a
discriminative feature space given incomplete domain knowledge
which is not sufficiently fine-grained, it avoids the need for the
expensive model selection experiments which are required in the
deep learning approach.

The feature selection approach still demands that some domain
knowledge is available with which to construct a useful list of can-
didate features to begin with. A discussion of which features were
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included in this list and why they were chosen to be candidate
features is given in Section 2.5.

2. Methods

2.1. The Muse EEG headband

The current study was conducted using Interaxon’s Muse head-
band [24], a recently released commercial EEG headset that comes
paired with an NF application. The Muse headband is a high qual-
ity dry electrode EEG headset with four channels located at Fp1,
Fp2, TP9, and TP10 with reference at Fpz and DRLs one inch from
the reference on both sides. EEG is sampled at 2 kHz and down-
sampled to 220 Hz for analysis. The headband is worn like a pair of
glasses, with the frontal electrodes placed over the middle of the
forehead, and the rear electrodes placed behind the ears. Previous
studies using the Muse headband have shown that high quality EEG
can be obtained (e.g., [25]). Furthermore, simultaneous recording
with the Muse headband and a Brain Vision actiCHamp system [26]
conducted by Interaxon produced a nearly identical signal, while
a simultaneous recording with the Muse headband and a g.Tec
g.USBamp system [27] during a battery cognitive tasks conducted
by McMaster University showed comparable performance between
the two systems [28].

2.2. Data and participants

Data from nine individuals using Muse EEG headbands were
acquired for training, all using the four-channel electrode configu-
ration described above in Section 2.1. Three training sets (referred
to as Datasets 1, 2 and 3 throughout this paper) were collected from
three right-handed male volunteers between the ages of 21 and
27. A different Muse headband was used for data collection with
each participant in order to account for any variability in hardware
performance across headbands. Since these were final-product
manufactured models, little variability was expected. However,
since the goal was to develop an artifact detection method which
would generalize well across users, each potentially using a dif-
ferent headband, multiple Muse headbands were used for data
collection. The volunteers for Datasets 1, 2, and 3 were verbally
instructed to perform different artifact-generating actions on cue,
including various eye movements, blinks, jaw clenches, and facial
expressions.

Six of the training sets (denoted Datasets 4 through 9 throughout
this paper) were obtained from Interaxon’s database of anonymized
EEG data. Thus their genders, ages, and handedness were all
unknown. These data were collected from customers who  had pur-
chased a Muse headband and volunteered to have their data saved
for research purposes. All six of these datasets were acquired from
customers using an application designed to facilitate an eyes-closed
mindfulness meditation exercise with neurofeedback (Datasets 4
through 9 also include some eyes-open data while participants
performed a signal quality check within the meditation applica-
tion). The application also provides clear instructions for wearing
the headband, whose electrode configuration is unchangeable.
Therefore it can be reasonably expected that the same electrode
configuration was used as described above. These datasets con-
tain very high alpha wave activity, leading several existing artifact
detection methods to fail because the amplitudes of the alpha
waves are much higher than typical EEG.

In total, approximately 157 min  of EEG data were included as
training data (average and standard deviation of dataset length:
17.5 ± 7.0 min). Since Datasets 1, 2, and 3 were obtained by having
subjects specifically perform several kinds of artifact-generating
actions, an especially large number and variety of artifacts is

Table 1
A summary of relevant properties of the datasets used for training and testing the
artifact detection model. Length is given in minutes, and proportions are given as
the average proportion of EEG samples labeled as EOG or EMG  across channels for
each dataset.

Dataset Length Prop. EOG Prop. EMG

1 21.9 0.374 0.100
2  22.7 0.194 0.083
3  22.0 0.299 0.046
4  21.9 0.063 0.007
5  13.4 0.061 0.016
6  8.3 0.720 0.026
7  4.2 0.065 0.025
8  21.5 0.049 0.008
9  21.5 0.104 0.036

included in these training data. Table 1 summarizes the length of
each dataset and proportion of artifacts contained therein. Datasets
1, 2, and 3 are available with the FBAR MATLAB toolbox, but because
Datasets 4 through 9 are the property of Interaxon, they cannot be
provided for download.

2.3. Data labeling

FBAR uses supervised machine learning in order to detect the
presence of an artifact. Therefore, labeled training data are required
in order to train an FBAR model. The process of acquiring labeled
data can be laborious, especially if the data is labeled manually,
either in the time-series or in previously windowed EEG. Thus it
is required that someone experienced with EEG data visually scan
through the available data and mark artifacts by hand. While man-
ual labeling is not perfect and cannot be taken as a gold standard,
it is the best method available given that the goal is to develop an
objective method which can automatically label such data.

Manual labeling was  performed by an EEG researcher with
eight years of experience working with EEG, and these labels were
checked and confirmed by a senior researcher with more than 20
years of EEG signal processing experience. The labelers were aware
that the purpose of labeling was  to develop an artifact detection
method appropriate for the Muse headband and similar hard-
ware. However, the labels were provided before beginning work
on developing the method. The labelers were not aware whether
the method would be for single-channel EEG or multi-channel EEG,
whether or not it would utilize a machine learning approach, or
what kind of information would be extracted from the signals
in order to perform artifact detection. Each of these factors were
determined after labeling had been completed.

Since FBAR requires epoched EEG for feature extraction, label-
ing methods which produce labels in the time-series must use a
method to convert those labels into an epoched form. In order to
avoid predominately clean epochs from being mislabeled as con-
taining an artifact, which can occur for epoch containing edges of
artifacts, a cutoff parameter � was  used. The parameter � denotes
the proportion of an epoch which must be labeled as artifactual
in the time-series before that epoch as a whole is labeled as arti-
factual. Small values of � risk labeling as artifactual epochs which
are mostly clean, and may  produce models prone to false positives
(labeling clean epochs as contaminated). However, large values of
� are very liberal with labeling epochs as clean, and may  lead to
models prone to false negatives (labeling contaminated epochs as
clean). The FBAR toolbox leaves � as a parameter to be set by the
experimenter depending on their priorities with respect to leniency
or strictness in artifact detection. The value of � , which should usu-
ally be set between 0 and 0.5, can also be chosen empirically via
cross-validation. Fig. 4 shows that the FBAR models generated with
the datasets used in this paper were not very sensitive to values of
� between 0 and 0.2, but that higher values resulted in worse per-
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Fig. 1. A diagrammatic description of the FBAR processing pipline.

formance. For the purposes of this paper, the value of � was  set to
0.2 throughout.

In the following subsections, the FBAR processing pipeline is
described. This processing pipeline is illustrated in Fig. 1.

2.4. Data preprocessing

Throughout this paper, EEG signals were windowed into one-
second epochs (n = 220 samples per epoch) with a 0.1 s shift, which
mimics many real-time processing schemes. However, the FBAR
toolbox allows for both the window size and and the shift between
windows to be set by the experimenter. Features were computed
for each epoch after the mean of the EEG time series in that epoch
was removed. After computing all of the features in the training set,
each feature was normalized by that feature’s mean and standard
deviation in the training set. The feature statistics computed from
the training set were used to normalize features in any test sets or
validation sets.

2.5. Features

FBAR separates the EEG signal from each epoch into multiple
frequency bands and extracts features from each band. Third-order
Butterworth filters were used to filter the signals. Power-band fea-
tures and amplitude statistics within each band were computed
for each frequency band. While the FBAR toolbox provides exper-
imenters with the options to select custom frequency bands and
features, in this study a standard set of features were used through-
out based on domain knowledge of common sources of artifacts in
EEG. The following frequency bands were used: 0.5–4 Hz, 4–8 Hz,
8–13 Hz, 13–18 Hz, 18–25 Hz, 25–30 Hz, 30–45 Hz, 65–80 Hz and
80–100 Hz. Frequency bands between 45 Hz and 65 Hz were omit-
ted because notch filters were applied at 50 Hz and 60 Hz in the
Muse hardware to reduce environmental noise. The following fea-
tures were extracted from the signal x in each frequency band for
each epoch: mean signal power, standard deviation of signal power,
maximum absolute amplitude, standard deviation of amplitude,
skewness, and kurtosis. In total, 54 features were computed for
each epoch (nine frequency bands with six features in each).

The frequency bands used correspond to the delta (0.5–4 Hz),
theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma
(>30 Hz) bands commonly used in EEG research, with beta and
gamma  broken up in three bands each due to their increased width.

Since there are many subtypes of EOG and EMG  artifacts which can
occur across a wide range of frequencies, a wide range of frequency
bands were used in feature extraction. For example, EOG artifacts
typically have low frequency components which affect the delta
and theta bands, and they sometimes exhibit noise which affects
the alpha band. The goal was  to ensure that enough features would
be computed in order to capture the difference between clean EEG
and any type of artifact. Since with FBAR the number of features
depends on the number of bands used, three roughly evenly spaced
bands which correspond to the delta, theta, and alpha bands com-
monly found in the EEG literature were used to address the problem
of EOG artifacts.

The same reasoning was used for EMG  artifacts, which typically
reside in the beta and gamma  bands. However, since the frequency
range of EMG  artifacts is much larger, wider bands were used to
avoid dedicating a comparatively large number of features to EMG
artifacts. Furthermore, very little EEG activity of interest occurs in
the gamma  range under normal circumstances and for most EEG
research. Moreover, what activity does occur in the gamma band
is usually of small amplitude. Therefore, EMG  artifacts stand out
more easily in these high frequency ranges, and broad frequency
bands could be used without great risk that the features extracted
from these wide bands would not be discriminative.

FBAR can be implemented with different frequency bands, and
the FBAR toolbox allows researchers to define their own filter-bank
so that FBAR can be adapted to different data when needed. It
should be noted that while the combination of frequency bands
and features used here was effective for the data available and pro-
vided a good balance of breadth versus the dimensionality of the
feature space, they may  require some adjustment depending on the
specific application or hardware used.

The specific definition for each feature and the reason they were
included are given below.

2.5.1. Mean power
Signal power X  was calculated as the squared magnitude of the

discrete Fourier Transform using the FFT (Fast Fourier Transform)
algorithm over the Hamming-windowed signal. The mean power
was calculated as

1
KB

KB∑

i=1

XB,

where XB is the power spectrum within a frequency band B and KB

is the number of points in X  which fall within B. Mean power is a
commonly used measure for characterizing both EOG [29] and EMG
[30] signals. These artifacts typically arise from sources closer to the
EEG sensors than the brain and also produce larger electromagnetic
fields. As a result, they produce noticeable spikes in the EEG power
spectrum which affects its first and second order statistics.

2.5.2. Standard deviation of power
Similarly to the mean power, the standard deviation of signal

power was  calculated for each frequency band as

sn =

√√√√ 1
KB − 1

KB∑

i=1

(XBi − X̄B)2
.

As in the case of mean power, the large fluctuations in power intro-
duced by the presence of artifacts can result large differences in the
standard deviation of the power spectrum for contaminated epochs
versus clean epochs, particularly for large artifacts.
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2.5.3. Max  absolute amplitude
The max  absolute amplitude was calculated for the filtered sig-

nal xB as

max  |xB|.
The increases in power that arise due to EOG and EMG  artifacts are
associated with large amplitude changes in the EEG time-series.
For this reason, first and second order amplitude statistics are
commonly used in artifact detection [4], including in FASTER [13].
However, here the max  absolute amplitude was used over the mean
amplitude in order to account for the possibility of large amplitude
artifacts with short durations compared to the length of an epoch.
Such artifacts are more easily noticed with respect to the max  abso-
lute amplitude of the signal, because their short duration may  result
in a negligible impact on the mean of the signal.

2.5.4. Standard deviation of amplitude
The sample standard deviation of amplitude was  calculated as

sn =

√√√√ 1
n − 1

n∑

i=1

(xB,i − x̄B)2,

where n = 220 is the number of samples in each EEG epoch. As
above, this feature was included because the amplitude changes
seen with medium and large artifacts often result in large changes
in the second order statistics of the EEG time-series.

2.5.5. Skewness of amplitude
Corrected sample skewness was calculated as

gn = n2

(n − 1)(n − 2)

1
n

∑n
i=1(xB,i − x̄B)3

[
1
n−1

∑n
i=1(xB,i − x̄B)2]3/2

.

Skewness was included in the list of candidate features because
many artifacts are asymmetric and thus result in deviations from
normality in the EEG signal. Deviations in skewness can be expected
even when the artifact is too small to be detectable based on its first
and second order statistics. In fact, skewness has been found to be
useful when determining which components obtained from ICA
reflect artifacts because of the asymmetry they introduce [31,19].
This is especially true for EOG artifacts.

2.5.6. Kurtosis of amplitude
Finally, corrected sample kurtosis was calculated as

kn = n  − 1
(n − 2)(n − 3)

((n + 1)k1 − 3(n  − 1)) +  3,

where k1 is the uncorrected sample kurtosis given by

k1 =
1
n

∑n
i=1(xB,i − x̄B)4

[
1
n

∑n
i=1(xB,i − x̄B)2]2

.

Like skewness, kurtosis has previously been used as a feature to
identify artifactual components after ICA because EOG artifacts
tend to have high kurtosis while the kutrosis of clean EEG is usu-
ally close to zero [32]. Kurtosis was included in FBAR because small
EOG artifacts should exhibit elevated levels of kurtosis due to their
morphology even if they do not appear unusual in their first and
second order statistics.

2.6. Feature selection

Using a robust feature selection method with FBAR serves sev-
eral purposes. Feature selection reduces the number of features
used in the classification model, thereby reducing computation

Fig. 2. Average cross-validation accuracy (and shaded standard deviation) by num-
ber  of selected features, K, using D = 8. Accuracy is measured by testing on the labeled
dataset which was  not included in training.

time during real-time artifact detection. Feature selection also
allows experimenters to cast a wide net by computing many fea-
tures in many frequency bands when the correct features to use
cannot be determined by a priori knowledge alone. Finally, fea-
ture selection often improves classification accuracy by removing
redundant and noisy features. Minimum Redundancy Maximum
Relevance (MRMR) was used for feature selection in this study (full
details found in [33]). MRMR  is an information theoretic super-
vised feature selection method which aims to maximize the mutual
information between a subset of features in a training set with the
true class labels while simultaneously minimizing the joint mutual
information among the selected features. Features were selected on
the basis of training data alone, and those selected features were
used for testing and validation. The number of features selected,
K, is a parameter that must be chosen by the experimenter or
set experimentally via cross-validation. Fig. 2 shows the results of
cross-validation over K.

2.7. Modeling

For simplicity, results are only presented using a support vector
machine (SVM) with a radial basis function (RBF) kernel. In princi-
ple, any classifier can be used with FBAR. However, earlier analyses
using only Datasets 1, 2 and 3 showed that an SVM with an RBF ker-
nel yielded slightly better classification results compared to other
methods. Nonetheless, the FBAR toolbox includes options for sev-
eral classifiers, including a multi-layer perceptron (MLP), the choice
of SVM kernels and parameters, and linear and quadratic discrim-
inant analysis (LDA and QDA). In addition, no attempt was  made
to optimize SVM hyperparameters, as performance was  already
sufficiently high.

All of the FBAR models presented in this paper were trained
using data from all EEG channels and were built to generalize to
both low frequency and high frequency artifacts. However, the
FBAR toolbox includes options to build separate models for differ-
ent types of artifacts, as well as to build separate models for each
EEG channel, which may  be desirable in some cases. Building sepa-
rate models for low frequency and high frequency artifacts did yield
slightly higher classification accuracy in preliminary analysis with
Datasets 1, 2, and 3 (increases between 0.5% and 2% time-series
accuracy depending on the test set), but at the cost of increasing
classification time since two classifiers were needed rather than
one. Building separate models for each EEG channel is only neces-
sary if different EEG channels have very different characteristics.
This is typically not the case, and the cost is a reduction of training
data available per model by a factor of the number of EEG channels.
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Fig. 3. Average cross-validation accuracy (and shaded standard deviation) by num-
ber  of training sets used, D, using K = 25. Accuracy is measured by averaging test
results on all labeled datasets which were not included in training.

The Muse EEG headset used in this is an exceptional case in that
the frontal channels and the temporal channels are made of dif-
ferent materials, and therefore do show substantially different EEG
statistics and characteristics (the frontal channels generally record
signals with much smaller amplitudes and much lower power).
FBAR was able to generalize across all channels regardless of this
fact, suggesting that models for individual channels may  not be nec-
essary in most cases. With all channels combined, a total of 628 min
of labeled data was available (157 min  times four channels).

Aside from the selection of frequency bands, the most impor-
tant parameters to set with FBAR are the number of features, K,
and the number of training sets, D. An optimal value of K can be
selected based on the error curve across possible values of K, as
shown in Fig. 2. The number of training sets D is mainly important
because a minimum D is desired both to reduce the computational
time required to train the FBAR model, but especially to reduce the
labour involved in labeling data.

Cross-validation results over K are presented in Fig. 2. These
results were obtained using leave-one-out (LOO) cross-validation,
where for each value of K, each dataset was used for testing once
while the other eight datasets were used for training (therefore nine
models were generated for each value of K). The same procedure
was used to obtain cross-validation results over � , shown in Fig. 4,
except that K was fixed to a value of K = 25, corresponding to the
value of K found to be close to optimal.

Cross-validation results over D are presented in Fig. 3 in order
to provide an estimate of how much labeled data is be required
to obtain a sufficiently generalizable artifact detection model with
FBAR. These results were obtained by generating an FBAR model
with every possible combination of d training sets for each value of
d ∈ 1 . . . D, and averaging the test results of every labeled dataset
which was not included in the d training sets. Hence, for each value

of d,

{
D
d

}
models were generated and D − d tests were performed

with each model. Note that for applications using highly controlled
conditions during EEG recording, fewer training sets may  be suffi-
cient compared to what is suggested by Fig. 4. This is because the
nine training sets used here contain a mix  of eyes-open and eyes-
closed EEG collected in both a controlled laboratory setting and in
an uncontrolled home setting while users performed a meditation
exercise. Moreover, some EEG samples were selected specifically
to address the challenge of exceptionally high amplitude alpha EEG
exhibited by some expert meditators. Thus the data used here may
be significantly more varied than what is typically seen in a research

Fig. 4. Average cross-validation accuracy (and shaded standard deviation) over val-
ues of the cutoff parameter, � , using K = 25. Accuracy is measured by testing on the
labeled dataset which was not included in training.

Table 2
Features selected for FBAR trained with D = 9 and K = 25. The same features were
selected by MRMR  for the LOO cross-validation results presented in Tables 4–7.
Selected features are marked with a •.

Filter Mean Pow. SD Pow. Max  Amp. SD Amp. Skewness Kurtosis

0.5–4 Hz • • • • • •
4–8  Hz • • • •
8–13  Hz •
13–18 Hz •
18–25 Hz •
25–30 Hz •
30–45 Hz • • •
65–80 Hz • • •
80–100 Hz • • • • •

setting, requiring a greater degree of generalization in the FBAR
models than would be otherwise needed.

3. Results

3.1. Cross-validation results

The results of each cross-validation experiment are presented
below. Based on the results of LOO cross-validation over K, shown in
Fig. 2, the number of selected features was set to K = 25 for all subse-
quent analyses. The specific features selected by MRMR  are shown
in Table 2. An interesting symmetry emerges from this table, which
could help to reveal a deeper understanding of the structure of var-
ious artifacts in future work. Power statistics were only important
in this model in the lowest and highest frequency bands. Simi-
larly, the maximum and standard deviation of the amplitude was
important for the lowest two and highest three frequency bands,
while not being needed in the middle frequency bands. In contrast,
skewness was an important feature for every frequency band, while
kurtosis was  only used in the two lowest frequency bands. Further
discussion regarding the importance of these features is provided
in Section 4.

Results of cross-validation over the number of training sets used,
D with K = 25 is presented in Fig. 3. AUC approached convergence
after four or five training sets. There was  a sharp decrease in the
variance in AUC from D = 1 to D = 3 because models which were
trained using only the non-meditation EEG datasets usually mis-
classified very high amplitude alpha waves seen during successful
meditation as artifacts. With less than four subjects included in
the training set, some combinations of subjects used for training
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included none of the data acquired during meditation task, thus
resulting in models which generalized poorly to this condition.

As mentioned previously, the cutoff parameter � was set to 0.2
for all analyses done in this paper, as it is included in the FBAR tool-
box only as a heuristic. The effect of � on AUC with K = 25 and D = 8
is shown in Fig. 4. FBAR models do not appear to be very sensitive
to � until � is set to be greater than 0.2 or 0.3.

3.2. Comparison with FASTER and EEGLAB

FASTER [13] was used to detect artifacts in the nine training
sets used in this study. Additionally, FASTER was used in conjunc-
tion with the remaining single-channel artifact detection methods
available in EEGLAB [34] (specifically, EEGLAB’s amplitude and
variance thresholding algorithms, kurtosis-based algorithm, linear
trend algorithm, and spectrum-based algorithm). For simplicity,
the combination of these methods is referred to as FASTER+. The
results are given in terms of time-series accuracy (the percentage of
EEG samples correctly classified), area under the ROC curve (AUC),
false negative rate (FNR) and false positive rate (FPR). These are
shown in Tables 4–7 respectively. FBAR results were obtained using
LOO cross-validation with K = 25.

While FASTER performed well in terms of time-series accuracy
for the eyes-closed datasets, it performed poorly on the eyes-open
datasets, leading to a high variance in the classification accuracy
(grand average 85.2 ± 12.1). More importantly, AUC was  more con-
sistently low across all datasets (grand average 0.713 ± 0.062) with
high FNR (grand average 0.141 ± 0.146) on eyes open datasets, and
high FPR (grand average 0.239 ± 0.169) on eyes closed datasets.
This was especially true for those datasets characterized by high
amplitude alpha EEG during meditation.

Visual inspection revealed that the high FNR was  due to small
artifacts tending to be left undetected by FASTER, but FASTER and
FASTER+ also missed several typical eye blink artifacts in some
datasets (see Fig. 8 for examples). The high FPR in Datasets 4
through 9 were due to the unusually high alpha waves being falsely
marked as artifacts (see Fig. 7 for an example). Both FASTER and
FASTER+ yielded similar results with a similar pattern of misclassi-
fication. Time-series classification accuracy was more consistent
with FASTER+ compared to FASTER, but a slightly lower accu-
racy was obtained on average (grand average 82.5 ± 7.3). However,
the AUC was both higher and more consistent (grand average
0.759 ± 0.038, false negative rate 0.112 ± 0.121, false positive rate
0.432 ± 0.208). Therefore, the exemplars shown in the figures
below focus on FASTER+ rather than FASTER.

FBAR performed better than FASTER or FASTER+ both in terms
of time-series accuracy (grand average 93.3 ± 2.3) and AUC (grand
average 0.923 ± 0.016, FNR 0.024 ± 0.045, FPR, 0.206 ± 0.074) for
every dataset. The difference in performance was especially notable
in terms of the AUC, which was due to the ability of FBAR to simulta-
neously detect small artifacts and recognize the high alpha activity
of meditators as clean EEG. Paired-sample T-tests were used to eval-
uate the differences in performance between FBAR and FASTER or
FASTER+. FBAR significantly outperformed FASTER and FASTER+ in
terms of time-series accuracy (FASTER: t8 = 2.37, p < 0.05; FASTER+:
t8 = 5.35, p < 0.001), AUC (FASTER: t8 = 10.68, p < 10−5; FASTER+:
t8 = 13.45, p < 10−6) and FNR (FASTER: t8 =−3.10, p < 0.05; FASTER+:
t8 =−3.09, p < 0.05). With respect to the FPR, FBAR did not outper-
form FASTER (t8 =−0.61, p = 0.56), but it did outperform FASTER+
(t8 =−3.43, p < 0.01). Therefore, FBAR only failed to outperform
FASTER on one measure, FPR, and outperformed both FASTER and
FASTER+ in every other case. The reason for this is given further
below.

Table 3 displays the results of Kolmogorov–Smirnov (KS) tests
of the normality assumption in order to justify the use of T-tests.
Paired T-tests require that the difference between the paired data is
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Fig. 5. Power spectra for one channel of a new dataset taken from Interaxon’s
research database and not used in training.

normally distributed. Therefore, KS tests of the difference between
of the compared results were conducted. In each case, the test failed
to reject the null hypothesis that the difference was normally dis-
tributed, thus justifying the use of paired T-tests.

In addition to the above results, FBAR was tested on 30 new
datasets after training with all nine labelled datasets. However,
since these new datasets were not prelabeled, visual inspection
was used to confirm that FBAR results in similar changes to the
power spectrum and accurately detects both small and large arti-
facts. Examples of these are shown in Figs. 5 and 8 .

The power spectra of the original EEG signal, the signal marked
clean by FBAR, and the signal marked clean by FASTER+ were com-
pared. Fig. 5 shows the corresponding power spectral densities
(PSD) obtained with a new dataset randomly selected from Inter-
axon’s research database that was not part of the training set. FBAR
greatly reduced power in the low frequencies (particularly 0–8 Hz,
with a mean difference of 4.6 dB, p < 0.01 in a paired-sample T-
test) due to a greater reduction in EOG compared to FASTER+. FBAR
also more significantly reduced power in the high frequency ranges
(40 Hz and above, with a mean difference of 2.1 dB, p < 10−16 in a
paired-sample T-test), where EMG  artifacts typically reside. How-
ever, FBAR and FASTER+ maintain close to the same power in the
alpha (mean difference of 0.5 dB, p = 0.02) and beta (mean differ-
ence of 0.3 dB, p = 0.01) frequency bands. Note that some difference
in the alpha and beta bands is expected because FBAR removes
more artifacts than FASTER+, and thus removes the contribution of
these artifacts to the PSD in the alpha and beta bands. These PSD
results, when taken together with what can be seen from visual
inspection of the EEG time-series, suggests that FBAR is able to
remove EOG and EMG  artifacts without significantly affecting the
true EEG signal more effectively than FASTER+. Additional exam-
ples illustrating how FBAR and FASTER+ compared when viewing
the EEG time-series are given below.

Visual inspection of the EEG signals after they had been marked
by FBAR and FASTER+ provided insight into some of the patterns
seen in the benchmarking tables above. Most notably, FBAR pro-
duced a greater proportion of false positives compared to FASTER in
Datasets 1, 2, and 3 (eyes-open EEG), but a much smaller proportion
of false positives in Datasets 4 through 9 (eyes-closed medita-
tion EEG). The eyes-open datasets contained several small artifacts
resulting from small eye movements and other muscle movements
which were not labeled in the training data, but were marked as
artifacts by FBAR nonetheless, resulting in an inflated false pos-
itive rate. These small artifacts were often missed by FASTER and
FASTER+. It is important to note, however, that there are also exam-
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Table  3
The results of Kolmogorov–Smirnov tests of normality for the difference in results between FBAR and FASTER and between FBAR and FASTER+ with respect to each performance
measure.

Method Accuracy AUC FNR FPR

FBAR–FASTER 0.35 (p = 0.17) 0.28 (p = 0.42) 0.32 (p = 0.26) 0.24 (p = 0.61)
FBAR–FASTER+ 0.17 (p = 0.92) 0.22 (p = 0.72) 0.34 (p = 0.20) 0.14 (p = 0.98)

Table 4
Time-series classification accuracy using all methods. Each value is the average across all four channels.

Method Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Avg. (SD)

FASTER 60.2 83.3 70.1 91.9 91.0 92.1 91.3 95.0 92.1 85.2 (12.1)
FASTER+ 68.5 79.8 78.4 77.8 89.1 81.4 89.5 89.6 88.8 82.5 (7.3)
FBAR  90.2 91.1 90.5 95.1 92.7 93.9 94.4 96.7 94.8 93.3 (2.3)a,b

Bold font denotes the best performance value per column (dataset).
a Denotes FBAR performed significantly better than FASTER.
b Denotes FBAR performed significantly better than FASTER+.

Table 5
AUC using all methods. Each value is the average across all four channels.

Method Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Avg. (SD)

FASTER 0.603 0.743 0.632 0.686 0.775 0.711 0.734 0.750 0.784 0.713 (0.062)
FASTER+ 0.685 0.753 0.748 0.734 0.808 0.761 0.755 0.788 0.801 0.759 (0.038)
FBAR  0.914 0.912 0.906 0.935 0.916 0.944 0.909 0.918 0.950 0.923 (0.016)a,b

Bold font denotes the best performance value per column (dataset).
a Denotes FBAR performed significantly better than FASTER.
b Denotes FBAR performed significantly better than FASTER+.

Table 6
False negative rate using all methods. Each value is the average across all four channels.

Method Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Avg. (SD)

FASTER 0.439 0.177 0.324 0.059 0.046 0.075 0.053 0.027 0.067 0.141 (0.146)
FASTER+ 0.374 0.152 0.237 0.040 0.036 0.049 0.048 0.021 0.056 0.112 (0.121)
FBAR  0.141 0.028 0.013 0.003 0.002 0.003 0.016 0.008 0.006 0.024 (0.045)a,b

Bold font denotes the best performance value per column (dataset).
a Denotes FBAR performed significantly better than FASTER.
b Denotes FBAR performed significantly better than FASTER+.

Table 7
False positive rate using all methods. Each value is the average across all four channels.

Method Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Avg. (SD)

FASTER 0.041 0.123 0.027 0.397 0.420 0.162 0.316 0.480 0.188 0.239 (0.169)
FASTER+ 0.135 0.289 0.154 0.728 0.545 0.516 0.475 0.653 0.396 0.432 (0.208)
FBAR  0.142 0.207 0.192 0.230 0.349 0.236 0.075 0.191 0.233 0.206 (0.074)b

Bold font denotes the best performance value per column (dataset).
a Denotes FBAR performed significantly better than FASTER.

b Denotes FBAR performed significantly better than FASTER+.

ples of genuine false positives, where portions of EEG which appear
clean on visual inspection were marked as artifacts.

Fig. 6 shows an example of small EMG  artifacts in Dataset 2
(produced when participants were instructed to “gentlly smile”)
which were more reliably detected by FBAR compared to FASTER+.
Fig. 7 shows an example from Dataset 4 where FASTER and FASTER+
incorrectly labeled high amplitude alpha activity as artifacts. Exam-
ples of very small EOG artifacts can also be seen, which are typically
generated by small eye-movements that naturally occur while the
eyes are closed. The PSDs for this dataset reveal that even though
FBAR and FASTER+ were equal in most frequencies, only FBAR was
able to maintain the original signal in the alpha and beta frequen-
cies. Finally, Fig. 8 shows an example of a dataset separate from the
training data for which FASTER+ performs poorly, but FBAR suc-
cessfully marks artifacts accurately and precisely. Also in Fig. 8,
examples of small artifacts which are typically not detected by
other methods are visible.

3.3. Online processing speed

A real-time application requires that artifact detection takes
minimal computational resources so that as much CPU time is avail-
able for running the algorithms associated with the application
itself. In order to provide an estimate of how much CPU time is
required by FBAR, the amount of time taken to output the presence
or absence of an artifact for one 1s sample of single-channel EEG
was measured. This included all steps after data acquisition (fil-
tering, feature extraction, normalizing features by the training set
statistics, and classification). A Windows 7 desktop computer using
MATLAB R2013a with an Intel Core i5 3.30 GHz CPU and 12 GB of
RAM was used to run this test. The results are shown in Fig. 9, indi-
cating that FBAR does process data with sufficient efficiency for
real-time applications. However, because channels are processed
independently, processing time will be multiplied for each channel
of EEG, unless parallel processing is performed. Therefore it is rec-
ommended that FBAR only be used in its intended context, which
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Fig. 6. Example of FBAR correctly detecting small EMG  artifacts produced by gentle smiles in Dataset 2. FASTER and FASTER+ are often unable to detect artifacts of this size.
PSDs  of the entire signal are also shown.
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Fig. 7. An example from dataset 4, where FASTER and FASTER+ often mistake high amplitude alpha EEG for artifacts. PSDs of the entire signal are also shown.

is single-channel or small-channel EEG with fewer than five or six
EEG channels.

For comparison, the same test was conducted with FASTER and
FASTER+ in a simulated online setting. The processing time for
FASTER was 0.176 ± 0.012 s and FASTER+ was 0.184 ± 0.009 s per
epoch, which is much higher than FBAR (p ≈ 0 for both compar-
isons based on two-sample T-tests). Thus FBAR is significantly more
efficient for real-time artifact detection.

4. Discussion

The results of this study show FBAR to be a highly accurate
artifact detection algorithm for real-time single-channel or small-
channel EEG. FBAR significantly outperformed the popular FASTER
algorithm, as well as the combination of FASTER and additional
EEGLAB artifact detection tools both on the training data presented
here and on independent test data.
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Fig. 8. Example from a new dataset taken from the Interaxon research database where FASTER+ performs particularly poorly while FBAR performs well. PSDs of the entire
signal  are also shown. True labels are not available because these data have not been given training labels.

Fig. 9. Online processing time (in seconds) required for one single-channel EEG
epoch per number of filters used in FBAR (each filter uses six features). Average
across 1000 trials with shaded standard deviation is shown.

The reason FBAR outperforms FASTER and related methods for
single-channel artifact detection is that FBAR uses a multidimen-
sional numerically optimized model to differentiate artifacts from
clean EEG. FASTER uses mainly low order statistics (though kur-
tosis is included with FASTER+) and looks only for statistically
extreme values. Furthermore, instead of combining features in a
multidimensional model, FASTER+ performs artifact rejection with
respect to one feature at a time in a sequential manner. Thus FASTER
can be viewed as approximating a series of one-dimensional clas-
sifiers which cannot take into account any interaction between
features. This makes FASTER prone to false negatives with respect
to small-amplitude artifacts, especially in the presence of high-
amplitude EEG because they are not well-separable in any one
dimension. In contrast, FBAR can take into account linear and non-
linear interactions between features because it explicitly uses a
multidimensional model. Moreover, FBAR incorporates a wider
variety of features than FASTER+, allowing it to take into consid-
eration additional information about the input signals.

According to Table 2, FBAR makes use of low order statistics only
in the very low frequency and very high frequency bands. These

features have been used in previous artifact detection methods
to successfully classify medium-to-large-amplitude EOG and EMG
artifacts, since they produce extremely large power and ampli-
tude spikes [29,30,4,13]. However, these features are not able to
distinguish small-amplitude artifacts.

Small-amplitude artifacts introduce non-zero skewness and
kurtosis in what is otherwise a close to normally distributed EEG
signal [31,32,19] even though they have little to no impact on
the lower order statistics of the EEG time-series. Therefore, FBAR
must rely on these higher order statistics for detecting these arti-
facts. However, even with these higher order statistics, a statistical
thresholding approach would be inadequate for small-amplitude
artifact detection, as evidenced by the inability of FASTER+ to detect
such artifacts even with the inclusion of kurtosis as a feature. The
reason is that small-amplitude artifacts do not result in statistically
extreme values of skewness or kurtosis. Instead, it is the combi-
nation of slightly elevated skewness, kurtosis, and power which
indicates the presence of a small-amplitude artifact. This requires
a multidimensional model which can taken into consideration such
interactions between features, such as FBAR.

4.1. Limitations and future work

The main disadvantages of FBAR are that it is more labour-
intensive than many artifact detection methods. Given the short
classification time required once a model is built, computational
time will not be a significant issue for real-time applications using
modern computers. However, the model building stage can involve
several hours of CPU time if large amounts of training data are
used and many cross-validation runs and performed. The trade-off,
however, is a much more accurate and reliable artifact detection
tool, especially if small-amplitude artifacts are a concern. There-
fore FBAR is particularly well-suited for BCI and NF applications
where computational efficiency and high accuracy may outweigh
the desire for a more “plug-and-play” tool.

As with many data-driven studies, further development of FBAR
would benefit from a larger training set. As mentioned in Section
2.2, subject characteristics such as age and gender were unknown
for Datasets 4 through 9. Thus, it cannot be claimed that the general

K. Dhindsa - McMaster University, Computational Science and Engineering Ph.D. Thesis

222



234 K. Dhindsa / Biomedical Signal Processing and Control 38 (2017) 224–235

population was well-represented in the training data with which
the current FBAR models were trained. However, there are two
main points to make regarding this limitation. First, the statistics
of EOG and EMG  artifacts vary much more within a subject than
they do between subjects, because they most often arise from basic
and simple involuntary physiological processes, such as eye blinks.
While statistics of the true EEG signal may  change with age or gen-
der [35], the kinds of changes seen would not be expected to be
detrimental for FBAR, which appears to be robust to EEG collected
under different conditions (in this case, eyes-open, eyes-closed, and
meditating, which introduce larger variability in the EEG than do
age or gender). Second, because FBAR is based on a machine learn-
ing pipeline, it has an additional advantage: when a condition is
found for which FBAR fails, it is always possible to add appropri-
ate training data and further optimize its models. In addition, the
FBAR toolbox allows for the inclusion of additional features in case
its users discover cases where FBAR does not perform adequately
even with additional training data. It remains to be seen whether or
where such conditions would arise, excluding incorrectly acquired
EEG data, as it was not found to fail for any of the 9 training sets or
30 test sets used for study.

Currently, FBAR simply removes segments of EEG which are con-
taminated by artifacts. While it is generally preferable to filter out
the artifactual data and recover the underlying EEG signal, this is
difficult to accomplish without spatial filtering and a high number
of sensors. In contrast to recent methods which are able to clean
only a certain kind of artifact [14–17], FBAR can accurately detect
a wide variety of both EMG  and EOG artifacts, even when they are
small compared to the surrounding EEG but cannot recover the
underlying EEG. For applications in which a high density of arti-
facts are expected (e.g., mobile EEG applications or the use of EEG
in an ambulance), using FBAR to remove data segments could result
in an unacceptable amount of rejected data. While the current use
of FBAR may  not be appropriate for these particular applications,
in future work, FBAR could be combined with an artifact suppres-
sion method in such a way that FBAR could be used to detect the
artifact before suppression is applied. Alternatively, FBAR could be
used to provide labels for a supervised learning algorithm trained
to suppress artifacts rather than remove them.

In Section 1.1 the rationale for using a more standard feature
engineering and feature selection approach with an SVM classifier
instead of a deep learning approach was given. While the current
approach is successful and there are logical reasons for its use over
a deep learning approach, the deep learning approach should not
be dismissed. A deep learning approach, though it might require
additional training data, may  be a promising avenue for improve-
ments over FBAR if a suitable combination of network architecture
and hyperparameter settings can be found. To date, no studies on
single-channel artifact detection using a deep learning approach
could be found. A deep learning approach should be explored as
an alternative to FBAR in future work on single-channel artifact
detection.

5. Conclusions

In summary, the FBAR toolbox provides a means to achieve high
performance real-time artifact detection with only one or a few EEG
channels. Most notably, the very low false negative rate of FBAR
suggests that FBAR is less likely to miss artifacts than FASTER or
FASTER+, and FBAR is much more successful in detecting small-
amplitude artifacts, even in the presence of high-amplitude EEG.
While methods which are easier to implement may  be preferable
for certain applications, FBAR may  be preferable for EEG appli-
cations which require exceptionally accurate and precise artifact
detection, such as BCI, NF, or the extraction of small event-related

potentials (ERPs). The FBAR MATLAB toolbox is offered freely and
made available at https://bitbucket.org/kiretd/FBAR.
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