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Preface
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Paper 3: “Steric self-assembly of laterally confined organic semiconductor molecule
analogues”, A.D. Ortiz, B. Arnold, M. Bumstead, A. Turak, Physical Chemistry Chemical
Physics, (2014)

Paper 4: “Similar morphology but different molecule shape: self-assembly simula-
tions with varying steric potentials”, M. Bumstead, A. Turak, In Preparation for Special
Issue Publication: “Advances in Computational Methods for Soft Matter Systems”, European
Physical Journal E (EPJ E) with Submission Before: 15th December 2017
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Abstract

Mechanisms for charge transport in organic electronics allows them to perform with disordered
internal morphology, something which is not possible for traditional crystalline semiconductors.
Improvements to performance can occur when the materials change their relative positions to
each other, resulting as a different spatial dispersion with lower electrical loss over the device
area.

A numerical method has been developed using interaction models for molecules from colloidal
self-assembly. Colloids are rigid particles with a volume which is embodied by their shape and
their collective behaviour depends on its density. The self-assembly mechanism used is conden-
sation, which increases the density by removing the spaces between molecules while they lose
thermal energy due to the increasing steric interactions with neighbours. The molecular chemical
structure determines the spatial probability of electron orbitals that (for a given energy) outlines
their geometric shape. Because these shapes are localized onto the molecule, their intermolecular
positions determine how close these orbitals can be to each other which is important for electron
charge transport.

During operation, the organic active layer may have thermal energy to cause molecular reor-
ganization before cooling, which increases the probability to find disordered states within the
device. A comprehensive suite of tools has been developed which can classify disorder in the
physical characteristics of morphology; such as density, internal spacing, and angular orientation
symmetry. These tools where used to optimize the experimental preparations for depositing
nanoparticle dispersions on surfaces within organic electronic devices. These have also been
used to quantify the statistical variations in structure between configurations produced from our
Monte Carlo method and a similar molecular dynamics approach. Simulated self-assembly within
highly confined areas showed repeatedly sampled microstates, suggesting that at thermodynamic
equilibrium confined particles have quantized density states. We conclude with morphologies re-
sulting from non-circular shapes and systems of donor-acceptor type molecules.
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Chapter 1

Introduction

1.1 Organic Electronic Devices and Intermolecular
Dispersion

Organic electronic devices such as organic photovoltaics (OPV) and organic light emitting diode
(OLED) are technologies with emerging popularity. Recent portable electronics, such as mo-
bile phones, demand their components to be as thin and lightweight as possible. Electronic
components based on organic molecules can be extremely thin and is a desired trait when used
for technologies such as solar energy collection and mobile communication devices. Silicon and
GaAs require the regular internal structure of a lattice to function at peak performance which
poses a challenge to manufacturing microscopic components. Organics on the other hand, can
still perform with a disordered internal morphology resulting from a simpler self-assembly fab-
rication method. Mechanisms of charge transport in organic electronics allows for this benefit,
which is not possible with traditional crystalline semiconductors. An additional benefit is the
reduced toxicity of organic molecules compared to other semiconducting materials such as gal-
lium, arsenide, tellurium, and antimony, [1, 2] making organic material an attractive alternative
for consumer goods with planned obsolescence.

The main drawback on these systems is that they are currently much less efficient than
silicon-based devices [3, 4]. Silicon-based semiconductors still dominate the market due to the
natural abundance of raw material and the highly refined manufacturing processes of crystalline
silicon [5, 6]. Optimization of organic electronic devices often involves selecting new molecules
and subjecting them to many expensive experiments inside highly controlled environments. This
leaves the technology undesirable for companies, since these preparation techniques are too costly
for large scale fabrication.

Self-assembly of components is an attractive solution because it means that molecules use
their own internal properties to naturally form into useful macromolecular arrangements rather
than needing to be intensionally placed into the correct positions. For OPV devices that use
the interface between acceptor and donor molecules to separate charges, the way that these
molecules self-assemble can have a large impact on the efficiency [7]. The device is made up of
many different interfacial connections between active materials and by varying the morphology of
the material, the device characteristics will change [8]. Thus, it is important to explore methods
that can optimize the efficiency from tuning the organization of the composite material [9].

Bulk heterojunctions are devices that can utilize donor/acceptor molecules by mixing the two
at their interface and has shown to increase device performance over non-mixed films [10, 11,
12, 13, 14, 15]. One approach that has been explored to improve the amount of donor-acceptor
interfacial area by choosing candidate materials which are complementary shaped. One reported
device uses the spherical geometry of fullerenes to create a ball which sits inside the socket joint
shaped molecule of hexabenzocoronene [12]. The interlocking between ball and joint shapes
of the molecules improves device performance by geometrically linking more donor/acceptor
pairs, causing increased dissociation of excitons. Additional experiments have been performed
by depositing varying amounts of donor/acceptor type molecules onto planar metallic substrates
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and depending on the ratio amounts of molecule species used, their tiling patterns show different
configurations [16]. This gives an indication that shape of the acceptor and donor molecules can
be consciously selected to effect a wide range of possible geometric distributions. Experimental
evidence also suggests that the orientation of these organic molecules may effect the charge
mobility [17]. The thermodynamic binding energy changes depending on the which side of the
molecule interacts with the substrate. This would be yet another indication that geometry of
objects has a wide implication on organic devices.

The overall focus of this thesis is to quantify the role that shape has on morphology by
isolating the steric potential and observing its influence on self-assembled molecular analogs
via Monte Carlo simulation. It can simulate the condensation of polydisperse molecules which
interact through a steric potential on a planar substrate which results in a static glassy state
morphology. This protocol forms the basis of simulation algorithms which we used to explore the
influence of molecular shape on the resulting morphology by explicitly limiting the amounts and
types of interactions. The ability to distinguish between different morphologies can be done by
classifying the internal arrangements of molecules with structural signatures and order metrics.
This thesis describes how I have integrated various analysis methods together into comprehensive
suite of tools which can classify different physical characteristics of the morphology; such as
density, internal spacing, and angular orientation symmetry. This distributable package can
quantify variations in morphological outcomes and inform which experimental methods lead
to dispersions desired self-assembled patterns. Both the simulation and analysis package open
the door to novel explorations of unique and undiscovered molecular arrangements with the
capability of predicting possible morphologies of highly complex molecular geometry. Quantifying
nanoparticle dispersions and optimizing molecular morphology has been at focus for researchers
at the Organic Electronic Interfaces lab in the Department of Engineering Physics at McMaster
University, many of which have benefited directly from the work outlined in this thesis.

1.2 Brief Outline of Thesis

This document is meant to be a combination of a traditional and sandwich thesis, and consists
of four (4) published manuscripts. Each of the chapters are meant to encapsulate a central topic
of scientific contribution. Chapters start with a visual abstract figure to introduce the overar-
ching topic covered in the chapter, with any additional research not included in the publication
presented before finally finishing with the manuscript. The final chapter outlines unpublished
work done documenting simulations, data, benchmarking, and highlights of new advancements
from the development of Monte Carlo simulations that model polydisperse molecules. The thesis
is finished by suggesting possible starting points for continuation into planar morphologies of
condensed material.

Chapter 1: Introduction.
Chapter 2: Literature and Motivations.
Chapter 3: Method used to Simulate Organic Molecules.
Chapter 4: Publication: “disLocate: tools to rapidly quantify local intermolecular structure to
asses order in self-assembled systems” in Review - 2017.
Chapter 5: Publication: “Reproducing morphologies of disorderly self-assembling planar molecules
with static and dynamic simulation methods by matching density” in Physica A - 2017.
Chapter 6: Publication: “Steric self-assembly of laterally confined organic semiconductor
molecule analogues”, in Physical Chemistry Chemical Physics - 2014.
Chapter 7: Manuscript: “Similar morphology but different molecule shape: self-assembly sim-
ulations with varying steric potentials”, In Preparation for Special Issue Publication (EPJ E) -
2017.
Chapter 8: Simulating Morphologies with Multiple Molecular Species
Chapter 9: Summary and Outlook.



Chapter 2

Literature and Motivations

2.1 Quantifying Interfacial Morphology

Figure 2.1: Cross section of an organic photovoltaic device. (a) Nanoparticles are introduced
to modify the interfacial work function. (b) Organic active layer consisting of donor/acceptor
materials. Adapted with permission from [18]. Copyright (2007) John Wiley and Sons.

To predict the influence that localized spatial arrangements of nanoparticles has on electronic
devices, we must rely on the ability to accurately classify the type and amount of ordering
observed from self-assembly. The ability to quantify order is important because the dispersion
of nanoparticles at an interface can change the electronic properties. A typical schematic of an
OPV device is shown in Figure 2.1 with two of the interfaces explored within the thesis where
the device can improve performance by modifying (a) the electrode interface with nanoparticles
[8] and/or b) controlling the morphology of molecules within the organic active layer [9].

The collective arrangement of nanoscale objects can change the interfacial properties of ma-
terials to produce macroscopic phenomena. Engineered nanostructures that mimic those found
on the exterior membranes of biological entities have been shown to have super wetting prop-
erties which relate to the arrangement of these features [19]. The ability for liquid material
to adhere to a surface (wettability) can be changed using nanoscale structures with repeated
structures that form 2D Bravais lattice patterns [20]. Their internal spacing and relative size
can be used to define a surface roughness which has been theorized to describe observed contact
angles of a droplet [21, 22, 23]. An important test of this claim came from an experiment that
compared the contact angle of a droplet resting on nanoparticles within a small area directly
underneath the center of the droplet to both full and empty surface coverages [24]. In this case,
the contact angles from both empty and partially covered surfaces were the same, implying that
the nanoparticles changed the water droplet shape at a location of the 3-phase interface contact
line [25]. Nanostructures with radial dispersions have been compared to the square lattice to
investigate the effect on contact angle and found that the droplets were pinned to the posts as

3



Ph.D. Thesis - Matt Bumstead - McMaster University - Engineering Physics 4/129

Figure 2.2: Self-assembled morphologies land somewhere between highly ordered systems (i)
and one with very low density (ii). Two key factors at classifying disorder are simultaneously
in competition with each other: limitations on perception misguides us into seeing patterns in
randomness while our imprecise ability to distinguish between similar patterns misses subtle
differences. To remove unwanted bias, numerical order metrics are utilized to characterize the
morphology located at particle positions: pair correlation function (a & d), Voronoi tessellations
(b & e), and the bond order parameter (c & f).

the liquid evaporated [26]. Additionally, this triple line has shown to produce square lattice con-
figurations of nanoparticles from the motion caused by evaporation [27]. This is a direct example
of how knowing the surface morphology and dispersion of objects is critical to understanding the
underlaying physical mechanisms directing interfacial material properties.

Different experimental preparation methods can produce intermolecular dispersions which
are seem visually similar to each other and there needs to be a meaningful way to quantify
the differences between morphologies to judge whether their configurations are actually similar.
Multiple specific types of ordering needed to be quantified and analyzed together since two
patterns can show disordered structure metrics in one domain of order but not another. This case
is exemplified in liquid crystals which can have angular order without also having translational
order [28, 29, 30]. This high level of analysis allows for deep quantification and detection of slight
differences that might be missed by causal observers. In Chapter 4, we discuss the parameters
that can be used to quantify the organization of planar objects in relation to the expected results
for highly ordered states in 2D.

Figure 2.2 highlights the analysis tools which I have coded together into a cohesive package
that can quantify differences in morphologies. Each metric has a set of expected values for the
densest known phase of circular particles in the plane (the hexagonal lattice) which is shown
in Figure 2.2 i). These images show planar arrangements of micelle nanoparticles deposited
onto silicon and imaged using Atomic Force Microscopy (AFM). Since the hexagonal arrange-
ment is the densest possible pattern for spheres in the plane, deviations away from these values
characterize the amount of quantifiable disorder within the system. This disordered pattern is
represented in Figure 2.2 ii) and can be clearly distinguished from the ordered state i) by the ap-
parent difference in number density. Numerical methods outlined Figure 2.2 are best used when
two images have similar density but slightly recognizable differences in the order. In this case,
computation routines remove any observer bias to define internally consistent metrics between
samples. More detail on how these analysis metrics work is outlined in the publication (under
peer-review) within Chapter 4.

2.2 Entropy Driven Condensation of Particulates

The main property that describes the internal morphology is the density, and as such, there is
much overlap between the behaviour of the hard-sphere model and granular material [31, 32].
This system of particles is considered to be a granular material and it consists of a large number
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Figure 2.3: Self-assembly can be directed by imposing boundaries onto the system. By reducing
the area, the particles arrange into discrete patterns which limits the variation of expected
particle positions.

of hard particles that interact through collisions. Granular particles are typically macro-sized
objects that can have collective motions which resemble flow of a liquid but also settle into static
states that resemble solids [33]. The classic example of this would be silica sand, which can be
poured from a height and results with a sand pile that forms a stable cone-like static structure.

Density is a property that describes the amount of objects there are within a given amount
of volume. When particles with shape are described, their volume must be factored in to the
density to fully encompass the amount of free space for the particles to move within. The
simplest geometric shape that embodies volume is a sphere and that each entity with volume
cannot embody the same regions of space. This simplification provides insight into the role of
density by minimizing the influence of anisotropic particle volumes.

Several ideas developed from granular materials can be used across fields to expand our
ability to classify the morphology of planar particles. If objects with volume and complementary
shape (i.e. lego blocks) were able to fill the contents of a drawer by the deposition method
of randomly tossing them within the confined area, the resulting microstate would be one of
the many possible equilibrium state configurations where in which these particles could have
assembled differently while still at this density. Imagine however, taking out these objects and
then consciously changing the arrangement by stacking them into an ordered arrangement with
positions that minimizes the distance between sequential additions. In this case, we would get the
same density (objects per area) but the distribution of free space would be maximized to allow
for more particles if necessary. At a certain point, particles embody enough excluded-volume
to prevent the sequential addition of another particle because the available “free”-volume is less
than the space needed to fit this particle into. At this point, the density describes not only
information about how many particles fit into confined spaces, but also the local arrangements
these particles needed to take when reaching this density. This example highlights the entropic
component for self-assembly of objects with shape. The configuration we obtain is dependent on
the probability of all possible microstates for that given volume fraction.

Simulations are a robust way to access experimental information that may remain inaccessible
during fabrication processes [34]. Using computational methods and models, these various pos-
sible complex dynamics of particle interactions can be isolated to determine which interactions
produce the types of morphologies observed in experiment [35]. We have been exploring the
role of molecular shape as the main intermolecular interaction that drives resulting morphology.
To do this, we have made simulations of molecular self-assembly by substituting the complex
dynamical equations of motions of particles with randomized displacements of molecules. This
model allows for arbitrarily-shaped particles to be simulated on the same level footing as simple
circularly-shaped ones.

Our approach is one based on a Monte Carlo simulation where particles’ shapes are approx-



Ph.D. Thesis - Matt Bumstead - McMaster University - Engineering Physics 6/129

imated by planar polygons [36], and the interactions are modelled by purely geometric, hard
wall potentials. This approach has the advantage of modelling particles with complex shapes
when the implementation of excluded-volume interactions poses serious challenges for molecular
dynamics due to the non-smooth (non-analytical) nature of particles shapes (for instance, ones
that resemble fractals). An important aspect of implementing such an approach is to validate it
against standard techniques in limiting cases.

Event-driven molecular dynamics (EDMD) is a simulation technique that uses kinematic
equations of motion to collide sets of condensing hard spheres within a container [37, 38]. This
method is good enough if the molecules of interest are symmetric. The circular approximation
breaks down at some point when the geometry of the molecules become the driving impact on
morphology. In Chapter 5, we test the validity of our Monte Carlo approach against event-driven
molecular dynamics to study if the different approach to modelling molecular movement leads to
a quantifiable difference in morphology. This is done by finding a comparable set of simulation
outcomes that have probability density distributions of molecular covering density (area fraction)
which are similar. This manuscript highlights the importance of open access software and data
for researchers who might not be able to generate their own sets of statistical samples.

One key approach to improving the efficiency of organic electronic devices is by directing the
supramolecular self-assembly to obtain preferred morphologies [39, 40, 41, 15]. Confinement is
one possible way to direct the self-assembly of molecules into desired configurations [36]. This
long-range effect shows the importance of morphological control on varying length scales, not
just at the level of intermolecular interaction. Figure 2.3 shows how the external influence of
confinement changes the resulting morphologies of circular molecules when the available space for
objects to self-assemble into is limited. In Chapter 6, circular molecular analogs are simulated
under the influence of confinement and its potential utility as an external influence to direct
self-assembly is discussed. We find that specific patterns can be found by using the channel walls
to limit the possible free-volume these molecules can occupy and have a stable configuration.
By understanding these types of confining effects, new possibilities emerge for optimization of
nano-sized electronic devices that have lengths of only a few semiconducting molecules. The
manuscript highlights the reduction in possible microstates into finite and countable patterns
as the available area decreases from bulk systems. Sections within this chapter include details
on optimizing pattern matching algorithm and how it was used to detect faults in the previous
versions of our Monte Carlo simulation code which miscalculated molecular centroids of complexly
shaped molecules.

2.3 The shape of an excluded-volume region

The shape of an object may seem self-evident since objects are sometimes used synonymously
for their shape. For example, the word “bell” describes both colloquial use of a unique shape
(“bell curve”), but also whose reference could be identified either in context of a shape (Gaus-
sian distribution) or an object (Liberty Bell). However, unlike the Liberty bell, shape is not a
unique quality of only one object since many objects of different material properties can have
similar shapes. Shape is also scale invariant since the relative structure defined by the objects
constituents can span across varying length scales. This intertwine between a physical object
and a generalized notation of shape suggests that a precise definition is needed.

Physical objects embody volume. Shape manifests as a physical property of objects through
partitioning the surrounding volume with geometric contours that confine the spatial distribu-
tions of material as a localized aggregate which collectively acts a single body. The interface
between the surrounding environment and the excluded-volume of the object defines a conformal
outline of the shape. Shape is a result of the collective behaviour of all constituents that compose
of the material that acts as a single object. For instance, the iron atoms can collectively form
intermolecular bonds into a rigid shaped object at the macroscale implying the material should
also have similar rigidity until the size of the shape becomes comparable to the length scales of
the bonds.

A particle is steric if it acts as a rigid body. This property implies that the intermolecular
bonds connecting the internal pieces of the object are strong relative to the external object
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(a) (b) (c) (d) (e)

Figure 2.4: Maximally dense packing of a) pentagons b) “fat crosses” c) convex curved triangles
d) concave curved triangles e) “moonlike shape”. The darker colour set of shapes indicates the
unit cell. Adapted with permission from Ref. [53]. Copyrighted by the American Physical
Society.

interactions (collisions between grains) and these bonds are stable on timescales which are longer
than the time needed to observe any internal fluctuation of its constituents (bending/vibration).
This applies consistently as the sizes of the objects shrink until the length scales at which the
steric interactions become comparable to atomistic intermolecular influences.

What happens when the objects interact at a distance and can a steric potential (shape) still
be defined as an excluded-volume interaction? There has been a lot of work describing potentials
that use intermolecular distances to define physical properties within a system of many particles
[42, 43, 44]. Models like density functional theory calculates potentials by using a correlation
function between atoms to form a description of the charge density in molecular orbitals [45].
This has is practical importance for organic electronic devices since it is able to calculate HOMO
and LUMO energy states. These energy states can have areas of high probability of occupation
that are separated spatially from each other. Particles that act at a distance through repulsive
potentials can have a steric potential drawn using contours of constant energy potentials [46].
Molecular orbital contours are then accessible from experimental techniques since individual
molecules can be imaged using scanning tunnelling microscopy [47]. These contours are what we
would consider to be the molecular shape.

Supramolecular modelling using molecular dynamics (MD) [48, 49, 50] and Monte Carlo
(MC) [49, 51, 52] approaches to atomistic interactions have been fairly successful in predicting
molecular tiling patterns for a variety of molecules. However, these simulations rely on com-
putationally expensive calculations for the interaction potentials, typically modelling each atom
in the system, limiting the approach to small unit cells and fairly simple molecules [48, 49,
50, 52]. This not only includes the deposition material, but also the substrate in which the
particles are adsorbed onto. One successful simulation code, Self Assembly of Nano Objects
(SANO) [52], uses this such method. Molecular movements are chosen using a grand canonical
Monte Carlo scheme that minimizes the configurational energy and maximizes entropy. Both
chemical potential and temperature are set constants for these simulations. Systems of inter-
ests are modeled by including potential energy calculation for both substrate and molecule.
This simulation technique has reported success in modeling different organic molecules, such
as: octachloro-zinc-phthalocyanines (ZnPcCl8), copper-phthalocyanines-fluorinated (CuPcF16),
penta-tert-butylcorannulene (PTBC), and di-indenoperylene (DIP). The surfaces that are ex-
plored are silver (Aup111q) as well as gold (Agp111q ). Using this method, it is possible to explore
how the substrate can affect the morphology.

The use of a grid is one way to model highly complex interaction potentials by restricting
the shape to only occupy quantized spaces and translations. However, this comes at the cost
of limiting the positional degrees of freedom, constraining the molecules to occupy only select
grid points. This limitation of single gird point occupation can also form the basis of molecule
shape. In this case, particles fixed to the grid have predefined morphology from grid-point
locations. Because of this limitation on positional freedom, the possible permutations for a set
of particles can be completely enumerated. This method can allow for the inclusion of many
different interaction potentials to move molecules around on the grid, however, the grid mainly
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Figure 2.5: a) Circular approximation to molecular shape with simulated morphology. b) Com-
plex polygon approximation of the star-shaped chemical structure. c) STM image of star-shaped
organic molecule oligo(p-phenylenevinylene)-substituted hexaarylbenzene on 1-phenyloctane-
HOPG. Reproduced with permission from [64]. Copyright 2007 American Chemical Society.

acts as the geometric link between intermolecular interaction potential and the thermodynamic
microstates allowable for particles of that shape and density.

Three-armed organic molecules have been modelled as rigid planar objects that occupy po-
sitions on a grid [54]. The molecule that was explored is 1,3,5-tris-(1,1-biphenyl-4-yl)benzene
(TBB). These molecules move around a triangular lattice, with segment points that align the
molecule with the grid points. The interaction energy from the surface and the molecule is as-
sumed to be zero, which simplifies the simulations. Randomly chosen Monte Carlo moves are
accepted if the segments of the molecule do not share the same lattice points as another molecule.
These conditions produce a system that is an example of the excluded-volume model. Another
organic molecule that has been explored using a grid method has been pentacene [55]. The
motivation for this study was to explore how the molecules arrange themselves on the surface
of substrates after thermal deposition. This molecule has an elongated shape and can occupy
two spots on a rectangular grid. Molecule-substrate and molecule-molecule density functional
theory interactions are solved with Gaussian software for potential energies used with Monte
Carlo acceptance.

For organic molecules with “almost circular” chemical structures, such as fullerene and
coronene, circles can be used to as a first order approximation to their shape [56, 57]. How-
ever, molecules that have potential use in photovoltaic devices, such as pentacene [58, 59] and
PTCDA (3,4,9,10-perylene- tetracarboxylic-dianhydride) [60], are observed to have a shape that
resembles an ellipsoid [61, 62]. As a result, molecules of complex shape have the possibility self-
assemble into configurations of localized states that would not be seen in systems of molecules
with simple circular shape [63]. Figure 2.4 shows a series varying shapes that have been explored
through adaptive shrinking cell simulation method. These configurations have been generated
using a randomized movement scheme that rejects movements that result in overlapping objects
while the confining area geometrically transforms to minimize the density (packing fraction) [53].
The goal was to explore the maximally dense packing configurations that correspond to these
various shapes, with each unit cell shown as darkened objects inside each section in Figure 2.4.
Understanding the crystallization unit cell is important when trying attribute order in systems
with non-circular particles. If this can be qualitatively solved, then it is possible to develop
algorithms that are able to detect positional and angular arrangement of these maximally dense
regions in disordered states.

Circular approximations are commonly used to represent particles within simulations, since
this geometry can model many symmetric objects. However, organic molecules do not necessarily
have this kind of circular shape associated with their chemical structure. The electronic orbitals
of the molecule create an interaction volume that can resemble a shape that can be similar to
its chemical structure [65]. One of the reasons that this Monte Carlo method was developed was
to explore disordered states beyond those assembled using simple circles into morphologies from
molecules with arbitrarily complex shapes. For instance, one molecule that can be modelled is
the six-sided molecule (Figure 2.5 c), which has a shape that differs from a circle (Figure 2.5



Ph.D. Thesis - Matt Bumstead - McMaster University - Engineering Physics 9/129

Figure 2.6: Schematic outlining the influence that a change the morphology from a) linearly
ordered pattern to b) a “checker-board” pattern could have on charge extraction. Excitons
(spark-shape) are formed when photons are absorbed and disassociate to produce electron-hole
charge carriers that move through the pathway as indicated by the arrows. a) Molecules may
form long pathways for charges to move easily between or b) cause excess intermolecular orbital
hopping which increases likelihood of recombination. Insets are STM images adapted from [15].

a) and cannot accurately be described by this approximation. We can further introduce more
geometric complexity by using a polygon defined from approximations to what is observed (Fig-
ure 2.5 b). While approximating these molecules with circles may be a good starting point, the
influence of molecular arrangement caused by any anisotropic shape is not captured properly
with the circular approximation. We ultimately wish to explore analog particles that resemble
the observed molecular shape as closely as possible. In Chapter 7, we explore bulk systems of
monodisperse complexly shaped molecules that were chosen to approximate the molecule shown
in Figure 2.5 c). Each candidate we explore has a unique geometric deviation from a circle that
could also possibly represent this molecules shape. The chapter reveals how the space-filling
method used in our Monte Carlo simulations requires a standard calibration for measuring inter-
molecular distance to accurately compare across ensembles of analog candidates. This distance
directly relates to the strength of the intermolecular steric interaction between neighbouring
molecules. Similarly, the standard definition of the packing fraction loses meaning for particles
with complex shape due to the degeneracy of covering area between differently shaped molecules.
This problem is solved by utilizing Voronoi tessellations to define a local number density which
incorporates structural information into their probability density distributions.

2.4 Polydisperse Distributions of Molecules

Organic photovoltaic devices work on the same principle as typical silicon-based photovoltaic
devices, the only difference is the absorbing material [66]. Incident photons are absorbed within
the organic active layer which results in an energetic excitation of an electron into a higher energy
state. The electron leaves the highest occupied molecular orbital (HOMO) and enters the lowest
unoccupied molecular orbital (LUMO) resulting in the formation of an exciton [13]. This exci-
ton may separate into corresponding electron/hole pairs at the interface of the donor/acceptor
type materials and can be collected as energy before these charge carriers quench within the
material. This interface becomes important for charge transport [12] since there are many dif-
ferent permutations of positional arrangement possible for organic molecules. Molecules with
anisotropic shape can be rearranged differently relative to each other (i.e. rotated) and this
different placement can change the interface between donor/acceptor molecules [17]. The LUMO
and HOMO energy states of the donor/acceptor molecules have particular spatial distributions
within the molecule, meaning the charge separation can potentially be improved from reposi-
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tioning molecules such that these states are geometrically closer together.
The utility of complementary shapes can be seen at the macroscale in everyday objects within

the system of a lock and key. Here, the proper arrangement of excluded-volume contours along
one edge (i.e. the teeth on the keys) is the determining factor for selecting access through the
lock. These two objects form a system of complementary shapes that allows for their features
to interdigitate between grooves, where the reduction of intermediate free-area between these
shapes lets them come together such that the rotating mechanism of the lock allows the key
to turn without resistance. Imagine that the incorrect key was entered into the lock, the steric
influence between mis-matching jagged edges would prevent the combination to collapse into the
correct state for rotation. The interlocking features of steric contact between the donor/acceptor
molecules forms an interface that should also be considered as a means for device improvement.

Not only is the interface important, how the charge moves through the device after disasso-
ciation can also affect the performance [10]. Figure 2.6 outlines two different morphologies with
the same ratio of donor/acceptor molecules while changing only their relative intermolecular po-
sitional arrangement and angular orientations. In both panels of Figure 2.6, scanning tunnelling
microscopy (STM) images of deposited organic molecules are shown along with the representative
schematic [15]. This imaging technique can detect positions of individual molecules and allows
for experimental observation of how molecules self-assemble into particular patterns depending
on substrate and intermolecular interactions. To produce current in the device, percolation of
the charge carriers needs to occur from inside the active layer and out to the electrodes. For this,
there needs to be a path for the charge to follow without being allowed to recombine and quench
at another interface [67]. In each configuration of molecules, the patterns that form may result in
different charge mobilities through the morphology, which will in turn affect the performance of
the electrical device [66]. Figure 2.6 a) shows a stripe pattern with linear rows of molecules which
create pathways for each of the charge carriers to move through. Bulk heterojunction devices
have been fabricated with similar striped pattern of donor/acceptor material and the increased
performance is attributed to the smoothed paths for charge carriers, even when the separated
active layers are micrometres in length [68]. As the morphology changes, so will the ability for
charge carriers to move within the active layer. Figure 2.6 b) shows a different morphology of the
same material, however, molecules are arranged such that the interfaces between donor/acceptor
molecules impedes the direct movement of charges through the device. In this case, the charge
carriers must manoeuvrer around adjacent donor/acceptor molecules while travelling to the elec-
trodes. Since the paths each carrier takes is dependent on the neighbouring molecule position,
each move increases the possibility for recombination at the molecule interface [60]. Performance
in these devices will depend on how the molecules self-assemble into patterns, which can be
improved through morphological tuning [69].

One unique feature of organic material is that different molecules can have the same effective
shape (geometric structure) but are chemically and electrically distinct. For instance, the same
flower shape pattern is seen from STM images from Copper phthalocyanine (CuPc) [70] and
Zinc phthalocyanine (ZnPc) [71]. This has the potential to optimize the electrical properties of a
system by selecting a different molecule but keeping the same effective shape. Device performance
can change by swapping out one molecule for another with favourable electrical properties without
changing the expected tiling pattern. Conversely, it is likely that a change in chemical structure
will change the molecule-surface interaction resulting in a different morphology. For example,
the flower shaped molecules in each inset of Figure 2.6 are different, with a) having F16CuPc and
b) CuPc and with both morphologies STM imaged on gold Au(111). In this case, the observed
molecular dispersions are a result of the difference in surface interactions between the fluorine
atoms in F16CuPc and the hydrogen terminated ends in CuPc molecules. This can be further
supposed with the observation of different morphologies produced when the same molecule is
deposited onto different substrates [72]. From this perspective, it is crucial to understand how
the shape of the molecules will influence the molecular configurations when the intermolecular
interactions are stronger than the substrate-molecule interactions. In this way, it is possible
to predict how the molecules will self-assemble according to their effective shape and choose
donor/acceptor molecules with complementary chemical permutations that will most likely favour
charge separation and movement.
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Understanding the interactions that govern how these objects behave can pave a way into
directing their self-arrangement by exploiting the molecular shape. The complex interactions
between molecules and the substrates need to be separated and analyzed separately to gain full
information on the molecular self-assembly. Separating the influence that intermolecular and
substrate-molecule interactions has on the self-assembly is not a trivial task since both poten-
tials are always present in nature. Computer simulations can provide insight into systems that
may be inaccessible to direct observation, such as self-assembly during thermal evaporation and
deposition. Numerical modelling of molecular self-assembly can help predict which interactions
dictate the resulting morphologies, since these interactions can be artificially turned off and ex-
plored using simulations in a way that cannot be done experimentally. In Chapter 8, the details
on the newest iteration of our Monte Carlo simulation code is outlined in terms of its algorithm
and new improvements which allow for greatly expanded systems which were not possible in
previous versions. Molecular polydispersity, new boundaries, and additional interactions are
described by contextualizing the actions taken to implement these constraints into a working
simulation. Benchmarking of this new simulation code, named “morphologies”, is conducted
against the previous version “gransim” and is shown to execute at a faster speed with all other
protocols being similar.



Chapter 3

Method used to Simulate Organic
Molecules

3.1 Monte Carlo Condensation

Figure 3.1: Monte Carlo simulation method to generate condensed dispersions of planar organic
molecules. (A) The initial state A has density φA. (i) Density is increased by inflating particles.
(ii) Monte Carlo displacement of particle. (iii) Trial move results in overlap so it is rejected and
another move is selected. (iv) Other particles find accepted positions. Translational, rotational,
or a mixture of both operations can occur. (B) The result is the condensed microstate B with a
higher density φB

The simulations begin by preparing the systems of polygon-rendered particles in the dilute
phase, i.e., N particles are randomly deposited in a simulation box of area A while avoiding
overlaps (see Figure 3.1 (A)). For a general polygonal shape, each particle is defined by the
position of its geometric center ri and its orientation θi (i=1,. . . , N).

The order in which the different steps are applied during the simulations is as follows: First
an increase of density is performed. We have found that changes in the simulation box size
can be easily achieved by introducing a rescaled set of coordinates, i.e., mapping the particles
positions and polygon vertexes to a unit square simulation box. In other words, to increase the
particle density each particle is expanded within a fixed simulation box size (see Figure 3.1 (i)),
instead of shrinking the simulation box for a fixed particle size. This rescaling of coordinates
greatly simplifies the implementation of the various boundary conditions. Naturally, the rate of
compression of the box is directly related to the rate of expansion of the polygonal particles.

If the increase in density results in overlaps, allN particles are randomly displaced and rotated
in an attempt to remove the existing overlaps. Since we are considering systems with only hard-
core interactions, the acceptance criterion of our Monte Carlo method is straightforward: All
moves are accepted when they do not result in overlaps.1 In order to sample the phase space,
for a constant number of particles and area of the simulation box, we have implemented two

1That is, overlaps between molecules or between a molecule and the container wall.
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types of Monte Carlo trial moves: translation and rotation. The magnitude of the translational
displacement vector is calculated as δri=pδxi, δyiq with elements pδxi, δyiq chosen randomly from
probability distributions P pδxiq, P pδyiq uniquely defined for translational x-y dimensions. The
simulations use non-uniform probability distributions to incorporate diffusive motion into the
Monte Carlo selector by. This motion can be captured with Gaussian distributions with zero
mean and standard deviations σr and σθ.

δri “
“

δx2i ` δy
2
i

‰1{2
(3.1a)

ppδxiq “
1

σr
?

2π
exp

ˆ

´δx2i
2σ2

r

˙

, (3.1b)

ppδyiq “
1

σr
?

2π
exp

ˆ

´δy2i
2σ2

r

˙

, (3.1c)

The amplitude of the rotational displacement δθi is also selected with a Gaussian probability.

ppδθiq “
1

σθ
?

2π
exp

ˆ

´δθ2i
2σ2

θ

˙

, (3.2a)

This move is accepted if it does not produce any overlaps between the particles or between the
particles and container walls in the case of hard-wall boundary conditions. When a move results
in an overlap (Figure 3.1 (ii)), it is rejected and a new position is sampled (Figure 3.1 (iii)).
There are set number of trial attempts to find an acceptable move after which the object is left
at its current position if none are found. If the simulation cannot reposition any of the particles,
the order in which each particle is shaken is randomly permuted and the scheme is repeats.
The process of increasing the density and removing the overlaps by displacing the particles is
repeated until the density cannot be increased further. That is, the density will increase until
the total overlap, defined as the sum of overlapping areas between pairs of polygons, cannot be
resolved below a given threshold. The result is a dispersion of N particles with area A that were
randomly arranged on a surface area Abox with characteristic density φ “ NA{Abox (Figure 3.1
(B) ).

The magnitude of the trial displacement moves δri=pδxi, δyiq and δθi are allowed to change
during the runs according to the following rule: The initial displacements are kept until the
density cannot be increased further, at this point they are reduced to one tenth of their current
values and the simulation continues. This reduction to the randomized displacement mimics
the loss of thermal energy when cooled and allows the system to transition into a glass phase
where the particles are maximally packed together. This process is repeated until no significant
densification between two consecutive reduction cycles is achieved where usually 4 to 6 reduction
cycles, involving ca. 106–107 Monte Carlo steps, are necessary to achieve dense configurations.

For the biased MC method, the initial conditions for all system sizes were set from those
optimized for 1024 particles. These were chosen by determining which parameters allowed the
large system to produce a disordered yet densified state. These were: a translational shaking
amplitude (σr) that is proportional to the particle diameter and rotational amplitude (σθ) is
proportional to one molecular rotation 2π. A growth rate which scales the molecular size by
adding 10´5 radii per step was used. The number of trial shakes per particle (k) was set to 1000.
The number of shaking cycle permutations was set to 10 per inflation step.

3.2 Entropy Driven Microstates

The model used for the simulation is based off properties of systems that have minimal interac-
tions (short range) and are described statistically. The excluded-volume model of particles has
the same properties of many models of gas. An ideal gas has the property of uniform structure
throughout the volume it is contained within and its thermodynamic equation of state can be
solved with entropy states using the mircocanonical ensemble. A lattice gas would be the next
model that explicitly forbids particles from occupying the same volume by only allowing one
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gas particle to be on a single gird point. Here, the particles have an implied volume that is the
equal distribution of volume left from excluding the number of unoccupied points from the total
number possible. The equation of state can be solved for a specific density (number of particles
per total available positions) and implies that the volume of a particle relative to the interior
unoccupied free space determines the number of microstates expected at this density.

Since we are using a Monte Carlo scheme, the configuration produced should be one randomly
selected from the possible equilibrium states. The entropy is the driving factor for molecular
assembly and the systems can be solved for the number of possible permutations of particle
positions. The mircocanonical ensemble accounts for all possible variations to positions at equi-
librium by having each microstate possess a different spatial dispersion of particles within. By
continually sampling all the possible permutations available at this density, an average of the in-
termolecular structure can be extracted. In this sense, every accepted Monte Carlo configuration
adds to the an equilibrium states for an excluded-volume gas with constant density.

3.3 Modelling Molecules with Polygons

The objects that are simulated are represented as polygons, which are input as two dimensional
arrays of x-y coordinates. This list of coordinates defines the outline of the polygon and its volume
comes from the continuous linear interpolation between sequential entries. Since the simulated
objects are stored as arrays, all actions or influences done to the molecules can be solved using
linear algebra. Simulated movements are functions that apply a displacement vector to the
current position of the polygon. There are only two operations applied to model displacement,
that being a radial translation away from the centroid and a rotation about its axis. To model
condensation, increasing the density is mapped into the particles using a scaling operation to
change their volume relative to the simulation area. The correct order to apply these operations
in to: Scale, Rotate, then Translate.

Define the input polygon (M) as a constant 2d matrix with n vertices. The scale transform
s is a scalar value that multiplies the vertices to change relative size of the molecules while
retaining its shape. This operation simplifies to a scalar multiplication when the polygon has a
center of mass at the origin (0, 0). The polygon rotates by applying the rotation transform R
by the randomly selected angle (θ) onto the euclidean coordinates of the scaled polygon. The
translation transformation adds the components of the displacement vector r to the vertices of
the scaled rotated polygon. The resulting Monte Carlo trial polygon P is represented in the
equation:

PMC “ Rp~θqrsPs ` d~r (3.3)

3.4 Resolution of Polygons: Circular Approximation

The number of points that make up the polygon has a significant impact on the polygon overlap
detection in our Monte Carlo scheme, leading to increased simulation time. As the number of
sides of a polygon increases, it become a better approximation of a mathematically perfect circle.
To gauge how well a regular polygon describes a circle, in addition to a visual inspection, one can
use the area ratio and the rolling resistance (µ “ 1

4 tanpπ{2nq [73, 74]. As can be seen in Figure
3.2, visually, iscosagons are virtually indistinguishable from circles, with an area ratio of 0.9959
and resistance of 0.0787. However, there may be an impact of even such small deviations on the
densified configurations and resultant particle density distributions. Due to the similarity of the
particle density distributions above 100 sides, we chose the resolution of 100 sides to approximate
circles.

If the initial polygon is off-center, the scaling causes a skew to the shape, the rotation will
cause precession of the centroid around the origin, and the translation will miss by the distance of
the origin offset. Figure 3.3 shows the resulting polygon that results from normalizing the polygon
to have the longest distance to a vertex equal to one unit length. Two variations of polygon
definitions exist, one that has the last point in the list equalling the first (closed) and without
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15 20 40 100
pentadecagon

0.9927
0.1051

icosagon
0.9959
0.0787

tetracontagon
0.9990
0.0392

hectogon
0.9998
0.0157

circle
1.0000
0.0000

Figure 3.2: Regular polygons approximating a mathematical circle. In each case, the number
of sides (n) is displayed within the polygon while the name, the normalized (to the circle) area,
and the rolling resistance, respectively, are listed below. In all counts, hectogons and even
tetracontagons, are indistinguishable from analytic (mathematical) circles.

Figure 3.3: The effect of normalizing the shape to have its farthest point be at a distance of 1
for closed and open definitions of polygons. (a) Circular polygon with 100 sides and (b) Rodonea
curve with 36 points.

this point (open). The initial version of the Monte Carlo code only normalizes open polygons
properly and causes skew with closed ones. This has been changed in latest implementation,
which can handle either definition and removes the rescaling of shape by keeping the lengths
of the input polygon instead. This allows for polygons with size polydispersity (same shape,
different lengths) to be simulated together while keeping their relative size ratio constant.



Chapter 4

Quantifying disorder in planar
systems

A series of AFM images of monolayer micelles prepared with varied experimental methods. The
quantification of disorder provides information about the impact each step has on directing
the self-assembly. The variance of order within each configuration defines the reliability of the
technique. Without this unbiased quantification of order, an observer might not be able pick out
the subtle differences in dispersion.

16
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4.1 My Contributions

My contributions for this publication came in the form of developing a package of tools to
quantify disorder, determining the expected values these tools should provide, writing sections
of the manuscript, and producing the figures. The other authors (besides: Matt Bumstead, Ayse
Turak) were instrumental in providing the experimental outcomes and helped find bugs in the
code that was used for the analysis and results. My work has brought together complementary
metrics and combined them into a Mathematica package that will produce easily interpreted
visual representations of complex intermolecular structure. Developing this package consisted
of bringing together and testing numerical techniques which characterize structural order (see
Chapter 5). This lets users quickly assess the order in self-assembled systems without reliance
on observer interpretation or mathematical/technical ability.

One large contribution I made was to generate sets of expectation values for highly ordered
intermolecular dispersions. Gathering and/or generating these expected values provides a concise
reference of values for which others can use to gauge planar disorder from. Expectation values
for these order metrics had been used and reported on in 3D [75, 76, 77, 78, 79], and had
comparatively less emphasis on planar 2D systems. These values were used to benchmark the
algorithms that I wrote for the Mathematica functions in “disLocate.m” and were a key factor
in optimizing these tools for speed. My work has brought a wider range of structural descriptors
together into a single place.

Another contribution I worked on was building a model of planar morphology that can clas-
sify the amount of disorder in planar arrangements of objects relative to a desired pattern. This
model utilizes the most ordered configuration for planar spheres, the hexagonal lattice, and ex-
tracts the deviation in the order metrics relative to it. The variance uses the Voronoi tessellations
to partition the space surrounding each particle to build a statistical sample from within a single
pattern. This is beneficial for experimental images since scanning probe techniques (e.g. AFM)
will require a long time to accurately rasterize surface features. This can impose a limit to
the amount of positional data available for analysis to only one sample. This hard limitation
was the main motivation to build a set of tools that can describe the probability for variation
within intermolecular dispersions. This package has seen success in helping members of the Or-
ganic Electronic Interfaces lab determine methods which optimize monolayer coverage of micelle
nanoparticles. These tools have resulted in faster development and prototyping of novel organic
devices by rejecting experimental variations that do not favour a desired morphology in favour
of those that can direct the self-assembly into specific arrangements of particles.

Another contribution that I made was to introduce a novel way to define neighbours of edge
particles. The main motivation for this was to ensure accuracy of the order metrics in finite
systems. The finite size effects are enhanced in these order metrics because only a small number
of particles are often resolved when imaged using AFM (e.g. between 50 - 500). Many of these
metrics rely on accurate positions of neighbouring particles, which poses a problem for particles
near the edge. These particles have neighbours that extend outside the image area, which means
they were not directly observed. I have worked on implementations of boundary conditions that
can correct for this issue by removing their influence on the order metrics. One contribution I
make is that the influence of neighbours can be inferred and included in these metrics for confined
morphologies. My implementation of how edge neighbours in confined boxes can be defined is
outlined in this chapter.

4.2 Overview of Manuscript (in Submission - 2017)

Observers may perceive that two separate images look the same but actually have quantifiably
different intermolecular dispersions. This is due to our limited ability to differentiate deviations
between two images that have similar densities of particles. The manuscript that follows outlines
how we can quantify the internal structures of planar arrangements of particles simply by knowing
their centroid positions relative to each other. The goal of this manuscript was to concatenate
the tools that would best be able to quantify flat planar dispersions of particles and to implement
them into an easily recognizable format where only a basic understanding of the metric will be
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Figure 4.1: Mapping colour onto particle positions to indicate local order. a) Standard rendering
of monochromatic molecules gives no additional information. However, variations of local Voronoi
tessellations can quantify (b) the bond order parameter relative to the hexagonal lattice, (c)
number of neighbours as defined by number of Voronoi facets, (d) the angle each molecule is
orientated at relative to the x-axis, and (e) the area deviation from an expected hexagonal
lattice with the same number density.

sufficient to interpret the results. The resulting outcome is a Mathematica package that focuses
on the visualization of translational, entropic, and angular order metrics. In this publication,
we outline how to use and interpret these structure metrics. The manuscript also describes a
way to rank disorder between similarly dense patterns by using the local descriptions to obtain a
statistical mean and variation. This benefits experimentalists by providing information on how
changes to sample preparation impacts the intermolecular dispersion and separation distances
of particles. This is meant to improve experimental techniques and methods which can direct
self-assembly into specific desired patterns.

The sections below highlight portions of my research that did not appear in the manuscript
and/or were part of the supporting information associated with this publication. Chapter 4
expands on the interpretation and implementation of the “disLocate” tool set. The importance
of visualizing the local order metrics is discussed in section 4.3. Background for each metric is
in section 4.4 which also presents the expected values for the highly ordered states from which
disordered patterns can be ranked against. Section 4.5 discusses the influence of varying the
boundary definition before applying the metrics and the influence it produces. The chapter
finishes with the manuscript (in review).

4.3 The importance of visualization: mapping physics
onto molecules using colour schemes

The power of mapping physical information onto particles is really the ability to highlight exactly
the regions that deviate from the expected norm. A single picture or graph can be powerful
enough to prove or disprove an entire scientific conclusion [80]. The quality for a well thought out
picture or graph should be its ability to quickly and effectively convey the exact information the
user is querying. For planar morphologies, additional information can be added to configurational
renderings by overlaying physical information onto molecules by colouring them with a colour
scheme that highlights structural deviations. This need for colourful visualization has been
emphasized in a review of modern techniques for analyzing dislocations of deformed crystal
structures, which showed that all twelve methods studied presented structural information with
some kind of colour overlay [81]. To maximize the utility of this mapping technique, the choices
of colour schemes should relate to the physical interpretation of the physical properties being
explored and should naturally express the bounds and limitations of the analysis metrics.

Defining appropriate colour mappings is not a trivial task, as not only the physical parameters
themselves must be considered, but also the possible range for expected variation. This concept
is outlined in Figure 4.1, which shows different analysis metrics mapped onto a configuration of
pentagonal molecules. In Figure 4.1 a) the monochromatic grey colour is assigned to each par-



Ph.D. Thesis - Matt Bumstead - McMaster University - Engineering Physics 19/129

ticle and leaves all information regarding intermolecular structure up to observer interpretation.
Parameters with a continuous values should make use of gradient colour transitions as visual
cues. For example, the bond order parameter is a scalar quantity that ranges from zero to one
(i.e. complete disorder to maximum order) [75]. In Figure 4.1 b), the value of the bond order
parameter is overlaid onto each molecule by converting the numerical value into a gradient scale.
The localized bond order of each particle can be represented easily with a grayscale mapping,
having the colour dark if it has little to no order while white represents a molecule in the or-
dered expectation state. The gradient colour scheme provides visual contrast between disordered
darker coloured particles from the more ordered lighter coloured particles, with grain boundaries
of the polycrystalline sites becoming visually distinguished from the bulk phase particles.

However, different order parameters might benefit from a different colouring scheme if their
values are discrete or multidimensional. The local coordination number takes on discrete values,
allowing for each value to be represented by a unique colour and is shown in in Figure 4.1 c).
Each particle has a unique colour that is distinct and easily differentiated from the other possible
values. The downside is that this colour scheme may not be as useful when there are too many
discrete values to map colours onto.

Multiple mappings can been creatively combined by assigning colour to the Voronoi tessel-
lations using a gradient to represent the local bond order parameter, while then also overlaying
a discrete mapping of the coordination number as coloured centroids [82]. This presents the
two metrics together on a single figure, allowing for regions of angular disorder and disclination
lines (grain boundaries) to become visually correlated. In another example, local properties of
Voronoi area fraction, bond order, and particle displacement have been used with binned colours
to indicate their local values are within certain physical bounds [83].

In some cases, the order metric might be continuous, however, a preselected discrete number of
colouring bins are chosen instead for practical reasons. The angular orientation of each molecule
and the local Voronoi area deviation were both chosen to bin specific amounts of deviation
together into a single colour. In Figure 4.1 d), molecules are coloured by their the angular
orientation. The angle at which each pentagon is pointing relative to the box is a continuous
function (between 0 and 2π), but is chosen to be represented with four discrete bins. The use of
four colours represents set of perpendicular reference vectors that bins the angles into quadrants.
This provides the distinction between neighbouring up-down pentagon pairs (seen as stripes of
Red-Green/Yellow-Blue lines) which are associated with its crystal structure of the pentagonal
molecules [84].

The Voronoi tessellations produced from dilute or disordered configurations will have local
area partitions that are distributed around the expected Voronoi area of a hexagonal lattice
with the same global number density [85]. A parameter that can have both negative or positive
deviation from a mean should not use a gradient scale but instead use a colour metric that
incorporates both possibilities. Figure 4.1 e) shows molecules coloured by the amount of area
deviation each local Voronoi tile has with respect to a hexagonal lattice with the same number
density. In this case, the colour scheme of Blue to Red was selected due to its physical inter-
pretation from granular statistical mechanics, which utilizes the use of local volume as a proxy
for local temperature [86, 87]. This is a reasonable metric to use since these steric particles do
not fluctuate on noticeable timescales. High area deviation from the hexagonal pattern allows
the local molecule more room to move and therefore more susceptible to particle displacement
(more movement = “hotter”), whereas molecules with lower area deviations are expected to be
in the closed-packed phase and unable to move (i.e. colder). As objects heat up, they change
colour via black body radiation and eventually emit into the visible spectrum with red being
the first colour seen. The sections of higher density-disorder appear in Orange and Red, colours
which naturally stands out as being hotter from higher entropic movement. Particles in a non-
hexagonal non-disordered state, such as the square lattice, binned with colours of Green and
Yellow with this particular arrangement having an expected value for the Voronoi area deviation
of 15.47%. The colour Blue is commonly interpreted with cold systems, which subconsciously
links the behaviour of freezing liquids into a solid, glassy arrangement of molecules. Dark Blue
sections describe local densities close to the expected result of a hexagonal lattice with the same
number density. Any small deviations are likely local density frustration and not a physically dif-
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Figure 4.2: (a) Expected radial distribution functions from a hexagonal lattice, a square lattice,
and a hexatic lattice. Insets show particle configurations as well as the radial width associated
with the neighbour shells. (b) Fourier transforms of the particle positions that produced the
associated pair correlation functions.

ferent type of disorder, thus these are coloured as a lighter shade of blue (more thermal agitation,
not as “cold”). Naturally, these colour schemes are subjective and highly dependent on common
human experience, however, they provide a stepping point in which artistic interpretation can
be fused with investigation of physical phenomena. The next section outlines how these analysis
metrics are calculated before colour mapping is applied.

4.4 Expectation values for global planar structure metrics

4.4.1 Pair Correlation Function - gprq

The pair correlation function is one method that can quantify the translational order of inter-
molecular morphology. This function describes the probability to find other particles at varying
distances away from each particle. The centre of each particle is chosen as the origin to measure
the distance from. A circular shell of width dr expands from the centre to a radius distance r.
Any particles inside a circular shell of width ∆r are counted together and binned to produce the
neighbour probability nnprq as a function of distance. This probability is then normalized by
the density of the configuration ρ, which then describes its deviation from an ideal gas. Since
particles of an ideal gas have equal probability to be at any distance, its pair correlation function
gprq is a flat line with slope 0 with probability 1.

gprq “
nnprq

2πr∆rρ
(4.1)

This function is sometimes referred to as “the radial distribution function”, since it counts the
distribution of neighbours over the radial dimension outwards from each particle. Short and long
range translational order can be seen by the peaks in this distribution and provide probabilis-
tic information about the relative intermolecular spacings between molecules, with minimums
between peaks commonly denoting the boundaries of nearest neighbour “shells”. Pair correla-
tion functions for highly ordered planar patterns are shown in Figure 4.2 a) for the triangular
lattice, square lattice, and a disordered hexatic state and highlights the positions of each of the
first three neighbouring shells. In highly ordered states, the internal structure is evenly spaced
out at specific distances, meaning the pair correlation function of a periodically ordered array
will produce delta functions at distances matching the length between lattice points. The dis-
tances between particles for hexagonal and square planar lattices are shown in Table 4.1 and are
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normalized by the radius of particles at the densest configuration (non-overlapping). In mor-
phologies that are in this hexatic state (i.e. randomly jammed glass), intermolecular distances
vary throughout the configuration by only small deviations away from the expected lattice po-
sitions, causing the broadening of peaks. Figure 4.2 b) shows the Fourier transform of the same
morphology, highlighting positional ordering of the lattices with bright spots and disordered
states as distributions.
The equation below gives the exact values for the distances expected as peaks for the hexagonal
lattice [88]:

r “ pm2 `mn` n2q1{2 (4.2)

where r is the radial distances, and m and n are integers (i.e. lattice vectors) that range from
p0, 0q to pm,nq. Exact values for the distances expected as peaks for the square lattice [88]:

r “ pm2 ` n2q1{2 (4.3)

Diameter 1 2 3 4 5 6

Lattice
Hex. 1 1.732 2 2.645 3 3.461 4 4.358 5 5.196 6 6.082

4.582 5.291 6.245
5.567 6.557

6.928

Square 1 1.414 2 2.236 3 3.1622 4 4.123 5 5.099 6 6.082
2.828 3.605 4.242 5.385 6.324

4.472 5.656 6.403
5.830 6.708

Table 4.1: Comparison of peak positions of the Radial Distribution Function for exact lattices
(hexagonal and square) with normalized first neighbour distance as 1 diameter.

4.4.2 Voronoi tessellations and local area variation

Intermolecular spacing and area fluctuation: A Voronoi tessellation partitions the sub-
strate into sections by using the centroids of the particles. Each tile is defined by the set of
perpendicular bisecting lines that are an equal distance between objects and with facets that
occur at the midpoint of the line directly connecting the central particle to its neighbours [89].
This procedure produces localized partitions that express the maximum space each molecule can
potentially posses. Disordered systems can be analyzed by comparing the Voronoi tessellations of
observed configurations to those expected from highly ordered patterns. In disordered systems,
one would expect to see a distribution in the size and shape of the local Voronoi tiles [90]. A
set of closed packed circular particles will produce Voronoi tiles that are hexagonal and with an
apothem equal to the twice the particle radius 2rhex [91]. The expected mean radius of particles
within the morphology 2rρ can be directly calculated generically from the global number density
ρ [91]:

2rρ “

b

2{p
?

3ρq (4.4)

with the density pρ “ n{Aq being the total number of objects n over the total area A. The
expected area each particle should encompass is determined by the equipartition of volume for
all particles: pAexp “ 1{ρq. The Voronoi area deviation is calculated as the absolute percent
difference the local value is from the expected equipartition area:

∆A “ |pAvor ´Aexpq{Aexp| (4.5)
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Figure 4.3: Effect of random displacements away from lattice positions. (a) Pair correlation
function for the hexagonal and hexatic lattice. Inset shows the relative displacement needed to
broaden the g(r) peaks. (b) A series of hexatic lattices with increasing mean square displacement.
Lines directly connect the g(r) to the (c) Voronoi tessellations of the displaced hexatic lattice.
Tiles are colour coded (left to right): area deviation from an expected hexagonal lattice with
the same number density, coordination number of neighbours as defined by number of Voronoi
facets, and the bond order parameter relative to the hexagonal lattice.

A similar radius can be calculated using the local area density instead. This can provide a
distribution of local intermolecular distances using the volume fluctuations from the expected
state. The hexatic radius can be found from the area of a tile pAvorq [92].

rhex “
a

Avor{p6 tanpπ{6qq (4.6)

with similar consideration to the expected square lattice:

rsqr “
?
Avor{2 (4.7)

The intermolecular spacing d is calculated from the mean of the expected lattice diameters,
d “ Meanp2rlatticeq. If the observed objects are close to the lattice configuration, the calculated
gprq should have its first peak close to this distance. The hexatic lattice disorder parameter can
be found using the variance in the local radius distribution (not diameters).

∆r2 “ Varprvorq (4.8)

This value describes the approximate width of the gprq. The benefit of this is that the amount
of hexatic disorder can be calculated as a function of local distributions in area without using
the explicit center-to-center distance. This can become important when particle positions have
a large approximate error from experimental observation. Figure 4.3 a) shows the gprq from
random displacements of the hexagonal lattice particles with probability to move this distance
using a Gaussian probability distribution. As this distance increases, the pair correlation function
spreads out, mimicking a liquid. Figure 4.3 b) shows the differences in gprq between patterns with
random displacements of the hexagonal lattice particles of varying intensities. As the hexatic
lattice disorder parameter rises, the broadening becomes clear in the peaks of the gprq. Figure
4.3 b) shows the sequence of increasing disorder in the structural order as visualizations overlaid
onto the Voronoi tessellations of each configuration. The area deviation and bond order q6 are
sensitive to the random fluctuations of points around their center, however the coordination
number shows almost no change by keeping 6 neighbours throughout the fluctuations.

4.4.3 Bond order parameter - q`

The bond order parameter pqlq is a local structure metric that describes the spatial positions
of neighbours as a function of relative angular distribution between a central particle and its
adjacent neighbours [75]. Classifying arc-symmetry is key for understanding melting and phase
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transitions of colloids [93, 94, 95] and has led to the detection of a “hexatic” phase in spherical
gases [96]. Appropriate selection of neighbours is crucial when describing localized disorder, as
the number of neighbours selected can influence the resulting analysis of the system. When
selecting an appropriate distance for neighbour definition, it is possible to overshoot the closest
neighbours in the first neighbour shell and take into account second shell neighbours. One
method that has been used is to utilize a cutoff radius which defines neighbours as any particles
within that intermolecular distance and excludes neighbours past [97, 98, 78]. This distance
can be defined using a multiple of the particles diameter (usually 1.2 or 1.4 times) [75] or with
the first minimum in the radial distribution function found between the first and second peaks.
In submonolayer dispersions of nanoparticles, it is possible to acquire configurations where the
distance between objects is much larger than the particles themselves. The use of a constant
cutoff radius can provide inaccurate results by accounting for too many or too little numbers of
neighbours. This would be a situation where the use of the radial distribution may not produce
an accurate estimation of nearest neighbour distance. To overcome this issue, the Voronoi tile
weighted definition of the bond order parameter [78] has gained our attention.

Voronoi tessellations can be used to help define the bond order parameter for very dilute
systems [78]. The angle that each molecule has toward the central object can be weighted by the
length of the Voronoi facet. This model allows for a continuous bond order when dealing with
dilute systems. In this factor, A(f) is the surface area of the Voronoi facet pfq separating the
two neighbouring particles, and Avor “

ř
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The densest configuration of circular particles is a hexagonal lattice which has six nearest neigh-
bours around every particle at a regular interval of 2π{6 radians. However, particles could
arrange themselves into configurations with other symmetries than six-fold. Table 4.2 shows
absolute values for the Voronoi weighted bond order parameter q` for n “ ` neighbours spaced
evenly at 2π{` angles. These results provide an expectation value for this maximum symmetry
pattern and can be used to normalize localized values by to gauge the angular deviation from. A
particle that has a normalized bond order with the least deviation (closest to one), will provide
information about what kind of arc-symmetry is most probable within that configuration. This
normalization factor and the use of symmetries other than ` “ 4 and 6 is useful in separating
types of arc-symmetric angular ordering of particles that can be misclassified as disordered states.

q3 q4 q5 q6 q7 q8

0.7905 0.8290 0.7015 0.7408 0.6472 0.6837

Table 4.2: Absolute values of Voronoi weighted bond order parameter for varying symmetry `
for n “ ` neighbours spaced evenly at 2π{` angles.

4.5 The Relation Between Edge Effects and Neighbours

Directing self-assembly can be done through molecular containment [36]. Larger volumes allow
particles to settle into equilibrium states, whereas hard walls impose boundaries that frustrate
internal particles. In many systems, the boundary conditions will influence the morphology
inside the container. Analysis tools that rely on neighbour definitions, such as the bond order
parameter, will provide inaccurate results when assumptions are made about objects that lay
outside the boundary. In the “dislocate” package, the default edge definition is to ignore particles
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Figure 4.4: Edge definitions of virtual particles effect the statistics of disorder metrics (a)
coordination number, (b) bond order q6, and (c) Voronoi area deviation

that have Voronoi tiles which extend outside the container. In this case, they still count toward
metrics for particles within the bulk, but do not contribute the error associated with their
unknown neighbours outside the observation window. This is the most accurate way to quantify
experimental systems.

Truncated edges are ones in which objects on the boundaries are removed from the calcula-
tion. Here we make no assumptions about any unseen objects or the nature of the morphology
outside the image. Figure 4.4 shows an example of how the edge particles are removed. Typi-
cally, particles are dispersed over a large area, however, only a small fraction of the morphology
is actually contained within image. In this case, neighbours are calculated for all of the par-
ticles visible, however only a subset of those are used for calculating the structural signatures.
Particles with Voronoi tiles that touch or extend outside the boundary are removed from the
metric statistics but still contribute as neighbours to the interior. This is done to reduce errors
associated with the unknown dispersions outside the image.

Periodic boundary conditions are ones in which objects on or near the edge are translated
by a set of periodic basis vectors toward the opposite side. Figure 4.4 b) shows an example
of how the Voronoi tessellations are influenced by periodic boundaries. Instead of truncation
with calculating neighbours along the edge, periodic boundaries include virtual particles outside
the image and are identical to the ones on the opposite side. This causes the tiles to protrude
outside of the image box and is represented in Figure 4.4. One thing to note is that even though
local tiles may extend outwards, the change in shape does not influence the global area, causing
the sum total area of the Voronoi tiles to be exactly similar to the original area of the image
itself. This seems to cause the order metrics to recognize these virtual particles as having more
hexagonal order. This is because the periodic translations cause the particles to keep their local
structure, with most particles already in the hexagonal state.

Hard boundary conditions are ones in which there is a fixed container that holds the samples.
This correction changes the number of neighbours that objects on the boundary have. For some
analysis methods, it is crucial that the number of neighbours is properly defined. This hard edge
correction imposes a set of virtual particles outside of the boundary that are equidistant and
perpendicular to the wall. Conceptually, this is similar to the method of image charges. For
the electric field to be zero at the boundary of a conductor, the system can be estimated by
substituting in a virtual particle with opposite charge that is equidistant from the boundary. In
this case, the constraint of the container can be replaced with objects outside that would produce
the same steric influence as a hard box. This neighbour definition forces the Voronoi tessellation
to exactly calculate tiles that are within the container. This essentially mimics clipping an
unbounded Voronoi tessellation into an area but adds information about neighbours outside the
image and is shown in Figure 4.4. The added information from these virtual particles provides
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a more accurate idea of how neighbouring particles need to be arranged such that they impose
the same steric influences as the box. This seems to influence the order metrics to recognize
these virtual particles as causing more disorder. This is because the reflecting translations cause
particles to mirror flip their local structure, which produces a fixed shape to one side of the
Voronoi polygon. This seems to remove the two facets which appear with periodic boundary
conditions.

Defining Neighbours using Method of Image Charges

The method of image charges was borrowed from the concept developed for electromagnetic
physics problems [99]. The idea is that a charge that is close to a perfectly conducting wall
(metal) will induce a mirror-charge that is opposite in charge and equidistant away from the
conductor boundary. This produces satisfactory boundary conditions that exactly sets the elec-
tric field to zero at the conductor interface. This method can be extended into the excluded-
volume potential. Instead of image particles inducing a charge, they induce a volume-interaction
which equally and oppositely imposes the particles at the boundary. This has been a very use-
ful concept when conceptualizing and numerically implementing hard boundary conditions for
analyzing intermolecular dispersions. In “disLocate”, the boundaries are replaced with a set of
virtual particles that have the exact same influence as the container, allowing for a more accu-
rate understanding of confined morphology. This is the proper procedure in how to generate
image charge virtual particles. Any particles within one or two particle radius of a hard wall
edge are moved perpendicularly and equidistant away from the edge. This cutoff is needed to
reduce computational cost, but to also reduce any errors that could come from having a complex
boundary (concave polygon sections) that could move image particles onto of each other. This
accounts for most of the system, but the most important part is to include image charges that
produce the sharp corners. To do this, for every corner take the absolute closest particle and
apply the same procedure using the corner point as the mirror edge. This will result in Voronoi
tiles at the edges that are exactly similar in shape to the container.

4.6 Publication: “disLocate: tools to rapidly quantify
local intermolecular structure to asses order in
self-assembled systems” (Submitted - 2017)
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ABSTRACT

Order classification is particularly important in photonics, optoelectronics, nanotechnology, biology, and biomedicine, as
self-assembled and living systems tend to be ordered well but not perfectly. Engineering sets of experimental protocols that can
accurately reproduce specific desired patterns can be a challenge when (dis)ordered outcomes look visually similar. Robust
comparisons between similar samples, especially with limited data sets, need a finely tuned ensemble of accurate analysis
tools. Here we introduce our numerical Mathematica package disLocate, a suite of tools to rapidly quantify the spatial structure
of a dispersion of objects. The full range of tools available in disLocate give different insights into the quality and type of order
present in a given dispersion, accessing the translational, orientational and entropic order. The utility of this package allows for
researchers to extract the variation and confidence range within finite sets of data (single images) using different structure
metrics to quantify local variation in disorder. Containing all metrics within one package allows for researchers to easily and
rapidly extract many different parameters simultaneously to make robust conclusions on the order of a given system, quantifying
the experimental trends which produce desired morphologies and engineer novel methods which can direct self-assembly.

1 Introduction

1.1 Structural order drives properties
Order is particularly important in a wide variety of fields ranging from optics and nanotechnology, to biology and biomedicine.
Self-assembled nanoscale systems with low interaction, such as colloids, tend to long range, yet not perfect, order due to
the competition between kinetic and thermodynamic driving forces1. The same is true in nature, as living systems tend to
be ordered well but not perfectly2. Such deviations from perfect order have widespread implications from enhancing optical
transmission using quasi-periodic3 or slightly disordered4 arrays of holes, controlling the plasmonic response using disorder
in two-dimensional arrays of nanoparticles5, or weevils producing two-colour bands on their wings from a quasi- rather than
perfectly ordered photonic crystal6. Understanding and harnessing such effects rely on the accurate quantitative description of
the extent of order in a given spatial arrangement.

The texturing of surfaces with dispersions of nanoscale objects (e.g. nanoparticles, micelles, quantum dots) is a particularly
effective design strategy for controlling surface properties. The number, availability and spatial arrangement of such objects has
been used to control metamaterial polarizatability7, cell growth and apopotis8, plasmonic enhancement5, cell spreading and
locomotion9, 10, transparent oxide surface work function11, photovoltaic conversion efficiency12, cell attachment on a variety of
substrates13–15, and templated nanowire growth16.

The ability to quantitatively describe relative structure and ordering is highly valuable particularly to those who rely on
image analysis to understand and probe experimental systems. A precise quantitative description of the local and global
arrangement are critical to consistently reproducing the correct spatial patterns for a given application. Figure 1 shows a set of
AFM images of polystyrene-block-poly-2-vinylpyridine (PS-b-P2VP) diblock copolymer micelles distributed on a Si wafer
surface with three different deposition approaches. Such micelle nanoreactors are typically used to form two dimensional arrays
of a variety of nanoparticle materials17–20. It is relatively easy for observers to identify that these patterns are not in a perfectly
hexagonal arrangement (highly ordered) nor are they arranged with complete randomness. The distributions of particle spacing
appear to land somewhere between these two extremes.

Variations in preparation methods have an influence on the density or relatively spatial distribution of the objects (see for
example21–23). Techniques such as varying the deposition spin speed is known to have this effect with diblock copolymer
micelles21, 23. In such experiments, the observable outcomes can look visually similar, as suggested by the inset Fourier
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transforms in Fig. 1 for these three micrographs. However, most observers can also perceive some intuitive difference in order
among the three images2, even if it is not immediately apparent what those differences are.

Assessing these differences requires an accurate and unbiased detection of the structural features of the objects. A common
practice in image analysis is to make decisions on the relative order through a combination of user choice and computationally
driven filtering, with a program such as ImageJ24. However, human observers often perceive order from randomness, a
psychological phenomena called apophenia. Even when order does exist, human perception has difficulty in distinguishing
between relatively similar ordering2. In order to overcome this limitation, convenient computational techniques can be used to
automate research. Allowing the computer to make value judgments about experimental observations is a powerful way to save
time while producing a reliable and constantly unbiased analysis. However, though computational approaches are efficient in
selecting an easily measurable global mean or expectation value, the effect of variances or local descriptions still rely largely on
human interpretation25.

Self-assembling molecular or nanoparticle systems always contain a certain amount of variation, from unavoidable
measurement errors or imperceptible variations in variables at the macroscale that have visible ramifications at the micro or
nanoscale. In general, rather than a perfect crystal, many self-assembling and biological systems have a polycrystalline structure
– areas of high order, separated by defects and localized disorder, analogous to grain boundaries in an atomic crystal– or
mesophases such as liquid crystals or plastic-crystalline systems where some of the degrees of freedom are lost26–29. Thus their
quantification poses an issue: distinguishing any real trends can be challenging if there are limitations on sample preparation or
replication due to the high cost of materials, limited quantities, or long processing times. Optimization of protocols and recipes
require highly accurate quantitative justification for how likely a system is to have predictable and reproducible outcomes, and
how much those outcomes vary naturally, in response to changes in experimental methods. The quantitative classification of
naturally occurring limits thereby provides a road-map to reproducibly produce a desired result.

In this contribution, we outline a series of tools and metrics that can be used for a fine grained understanding of both
global and local spatial order patterns, within the package ”disLocate” (Detecting Intermolecular Structure Located at particle
positions). This provides a convenient tool, using a variety of numerical techniques, for researchers to quantify the relative
disorder of objects and engineer desired outcomes to a higher degree of specificity. This approach goes beyond common
techniques by providing access to a combination of structural metrics which estimate the amount of intermolecular order, and
also introduces a way in which local fluctuations of disorder can be used as confidence range to rank protocols and experimental
interventions against each other.

To outline the utility of these tools, we use an illustrative fictitious goal for spatial organization: to determine if it is possible
to direct the self-assembly of our diblock co-polymer micelles from solution shown in Fig. 1 into a polycrystalline hexagonal
periodic arrangement with internal spacing of two micelle diameters between particles using the spin coating speed. In this
example, we use the realistic scenario where the data set from which to draw conclusions is limited to AFM micrographs from
three experiments of varying spin speed. This leaves the next possible experiment within three choices to achieve our goal: 1)
decrease the spin speed below 2000rpm, 2) refine the spin speed between 2000 and 8000 rpm or 3) increase the spin speed
above 8000 rpm. Each of the tools available in the package will be used consecutively on the experimental data, described in
relation to a conclusion based solely on observation, contrasted against an interpretation based on the numerical metrics. Using
the full range of information available in ”disLocate”, we are able to distinguish between the three images with a degree of
specificity that allows us to determine if it is feasible to reach our fictitious goal with this experimental procedure.

Based on the procedure described in the following sections, we were able to use disLocate to identify that increasing
speed will increase the intermolecular spacing at the expense of the angular periodicity, and that an intermediate speed may be
sufficient for our purposes. The full range of tools available in disLocate gave different insight into the quality and type of
order present in the various samples. Using disLocate for spatial analysis would also allow us to quickly change experimental
tactics if necessary (such as modifying solvents, temperature, or polymer) by providing an accurate trend with a limited amount
of data.

2 Brief overview of ”disLocate”
The disLocate package was developed to provide a series of automated tools to quantify the varying degrees of order that can
exist within a given spatial distribution pattern. Though highly ordered patterns are relatively easy to classify, disordered or
nearly ordered states as exist in a variety of biological and nanoscale systems are much more difficult to distinguish effectively.

Additionally, the trend in nanoscale research is for higher resolution images of smaller surface features. This limits the
number of objects observed, which truncates the information each image has and decreases the effectiveness of a statistical
approach. The resulting loss of information from limited long range order curtails the use of standard numerical techniques.
It is entirely possible for researchers to mis-classify and assign a false positive to the reproducibility of their experiments by
simply adapting generally used metrics designed for systems of many objects. This issue can be avoided by adopting a new set
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of techniques which consist of structural metrics that can distinguish local differences in the observable structural order rather
than solely relying on global averages of samples (though those are also available directly from the package if so desired).

Order on the local scale can be sub-categorized into three distinct types:

• Translational order occurs when every particle in the system has an exact position that repeats at a specific distance,
defined by a specific translation period.

• Entropic order is the the amount of free volume (sections unoccupied by particle mass) encompassed by the system,
where highly ordered systems have the lowest possible free volume (maximum density).

• Angular order relies on relative arc-separation of the ”bonds” between a particle and its neighbours.

The expectation value for complete periodicity occurs when neighbours for any give particle have the same arc symmetry as
well as being equidistant, with maximized covering area due to the equivalent position of each particle relative to all others. If
any one of these types of order are not met, the system can be considered in a mesophase28, such as that observed for plastic
crystals (limited orientational or rotational order, but long range translational order)30) or liquid crystals (limited translational
order but long range angular order)31.

Each of these types of order requires a different tool to extract the desired information, as shown schematically in Figure
2. Positional order can be described probabilistically using the pair correlation function32 (Fig.2 a & d). This tool counts
the number of objects within a small shell at a distance away from a central particle and averaged over all particles in the
system. Local free volume and the complementary metric, covering area33, can be calculated by partitioning the substrate
into a Voronoi tessellation around each individual particle (Fig. 2 a & d)34. This routine draws a perpendicular line at the
midpoint along the line-of-sight vector connecting nearest neighbours around every particle. Angular order can be calculated
by using the bond order parameter35, which compares the angle between the central particle and its closest neighbours against a
specified symmetry basis vectors (Fig. 2 c & f). All of these methods have been widely used to characterize disorder, identify
polycrystalline and disordered sections, and extract the probability of intermolecular spacings36, 37.

For comprehensive analysis, all of these techniques are bundled together as a set of tools in a freely distributable Mathematica
package (disLocate.m) (available in the Supporting Information) to build sets of hierarchal metrics that can distinguish
morphological subtleties. Table 1 outlines specific physical parameters that describe types of structural order within planar
morphologies that can be analyzed with this package. The main thread that ties these tools together is the partitioning of space
into local Voronoi tessellations around each particle as a basis for critical decision making on extent of order. The variation in
each of the above metrics can be provided by the information contained within the Voronoi polygons unique to each particle.
This provides the statistical basis for quantifying different dispersions with a confidence range that may be unaccessible due to
the limited numbers of prepared samples.

3 Results
3.1 It is harder to distinguish differences in positional order when experiments have similar density
When defining order, the most common feature that humans consider quantifying is the positional structure – i.e. the relative
distances between objects arranged in a particular pattern. Variations in density are typically the first noticeable feature observed
between sets, before confirmation with counting of each individual object. Standard analytics such as number count (N), mean
radius hri, and the covering area (f) are global structure metrics that describe density of a morphology on a surface. Table SI
(Supporting information) outlines the calculated global values for the micelle system extracted from ImageJ. In each case, the
number and covering density decrease with spin speed, but that is all the information we can extract. To extract the positional
and symmetry data, a standard approach is to take the fast fourier transform (FFT) of the image38, 39. However, systems where
these features are similar, such as the micellar systems in Fig. 1, require other tools to describe the varying types of order.

The positional structure of a dispersion describes how the number density of objects behave as a function of relative
distances. One of the key measures is the average internal spacing between the centroid of objects. If the objects are evenly
spaced out at specific distances by lateral translations of a repeated unit (unit cell), the periodic order can be easily understood
and quickly recognized by observers. For two dimensional systems, these translations are limited to one of five Bravais lattices.
For our fictitious goal to quantify and objectively distinguish the ideal experimental condition, the aim is to form a hexagonal
(triangular) disperse lattice. In such hexagonal lattice, the distance between the object centres are all of the same length,
separated by an angle of 2p/6, such that a single object is surrounded by six equidistant neighbours. If the objects are touching
(i.e. in a closed-packed array) the distance to finding another object is easily determined as twice the radius of the particle.
This distance sets the minimum separation that can be between spherical objects. As the objects are not exactly touching in
our desired arrangement, the centre to centre distance can instead be described by an effective radius (rhex), half the distance
between the object centres.
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If the objects are arranged in a predictable lattice pattern (see Fig. 2i, the local density is identical to the global average
density of particles, and is correlated to this radius. However, if there is no correlation between positional arrangement and
density (as in Fig. 2 ii), the pattern corresponds to a condition of complete spatial randomness. In such a condition, the position
of each object is unrelated to any of the neighbour positions, suggesting no interactions between objects. The mean density does
not correlate to any important structural feature, and as the pattern is arbitrary, there is no expectation that any experimental
intervention will be able to reliably reproduce the observed pattern.

In between these two extremes, the spatially disordered systems can be characterized by internal distances between particles
which vary slightly throughout the system. This implies that the density changes at a localized scale while retaining the average
global density.

The pair correlation function g(r) describes the radially averaged density as a global function of positional distance away
from every particle (see Fig. 2a&d and Methods 4.4). In a perfect hexagonal lattice, this would result in delta functions with no
positional variation at radial distances where neighbours are located on the unit lattice with known values40 (see Fig. 3).

One way of quantifying the inter-object spacing is to use the maximum of the first peak of the pair correlation function,
which are plotted in Figure 3(a). The values for these are outlined in Table SII (Supporting Information) which shows a trend of
increasing spacing as the spin speed is increased, as expected. However, we require an accurate and reproducible value for this
spacing to determine if our goal has been met in increasing the spacing to two micelle diameters. Instead of relying only on
a single global value of probable spacing from the g(r), we also implement a set of routines that can extract the mean local
spacing from the Voronoi tesselations. Voronoi tessellations partition the space into sections that encompass the centroids of the
objects in the system. This produces localized partitions that express the maximum space each particle can potentially posses.
Each individual particle will produce a unique tessellation that corresponds directly to the relative position of its neighbours,
which can give information on localized preferential structural order (see also section 3.2).

This method can be used to extract the mean expected spacing h2rvor
hexi using the local density without measuring any

distances between particles. The area of the Voronoi cells can additionally be used to directly calculate the effective radius
2rhex that a hexagonal lattice would have to possess to have the same local Voronoi area.

This approach based on local Voronoi areas also provides a statistical distribution in the local density for which the variance
in localized translational disorder can be extracted. We designate the intermolecular variance using the density located at
particle positions as the bond disorder parameter (Dr). This variance information is generally difficult to extract directly from
the g(r).

As seen in Table SII (Supporting information), the mean expected localized spacing, h2rvor
hexi is larger than the globally

derived spacing from the effective radius or the g(r). This is a direct result of global edge artifacts. As the particles in the image
represent a subunit of a larger surface, the particles on the edge have neighbours outside the image that should contribute to
the calculation of density. With an unknown local area outside of edge of the image, including edge particles resulting in an
artificially lower total particle number and density, due to the increased ratio between the number of particles and the observed
area. The Voronoi tessellation reduces the error associated with particles on the image edge, by allowing for the removal of
such edge particles, to more accurately define the intermolecular area located at particle positions.

Using this refined effective intermolecular spacing, we observe that increasing the spin speed to 6000rpm achieves a
value ˜100 nm (see supporting information Table SII). As each micelle has an approximate diameter of 50 (nm) (supporting
information Table SI), this spacing corresponds to our goal of achieving a sparse lattice of approximately two micelle diameters.

Having established that increasing the spin speed beyond 6000 rpm is effective in increasing the spacing, which was
relatively easy to determine even using only the global metrics from the pair correlation function, one now needs to establish
how well the translational order was preserved under those same conditions.

One key metric for order comes from the pair correlation function: the extent or degree of order can be inferred from
the number of peaks that appear — each peak corresponds to another further neighbour. A delta function at twice, three or
more times the effective radius, for example, would suggest that the order is long range. High probability of finding further
neighbours where the lattice translations would predict them to be, as shown by peaks in the g(r), is suggestive of order. As can
be seen in the rest of Figure 3 (a), none of the g(r) distributions for the micelles systems under different experimental conditions
conform to a perfectly ordered lattice at the bottom (calculated using the number density of the 2000 rpm micelle image).
However, as the density for each image is slightly different, it is difficult to make direct comparisons of the pair correlation
function to judge any changes to the ordering from the change to the spin speed.

To accurately determine the degree of order, it is necessary to separate the information regarding relative spacing of particles
from their probability for translational disorder. By normalizing the real-space distances to the intermolecular effective radius
(the first nearest neighbour effective radius expectation value), it is possible to evenly quantify the deviation in positional order
amongst samples. Figure 3 (b) outlines this normalization, such that all functions now share the first maximum peak at the
same distance. The package automatically extracts the residual difference spectrum, Dg(r),41 (figure 3 (b) top panel), which
allows researchers to quickly determine the relative amount of positional fluctuation of particles relative to any reference data
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set. Areas above the curve indicate more probability for particles to be at this normalized distance compared to the reference.
The maximum Dg(r) difference between the reference lattice occurs when the data has complete spatial randomness (i.e. no
spatial correlation) and is minimized when the data exactly matches the reference.

As the hexagonal lattice is strictly defined by exact spatial translations in two dimensions, deviations necessarily mean that
positional order is lost. However, with only slight disorder, the global features of near order are easily recognizable to most
human viewers. It is common for researchers to use the spatial order classifications of “quasi-hexagonal”42 and “hexatic”43, 44

to define systems that are close to hexagonal, often using spatial symmetry to define such a system (see section 3.3). In the pair
correlation function, slight deviations of the particles in the vicinity of the global lattice positions will not change the mean
particle spacings, and hence the neighbour peak positions; however, each of these peaks do experience a broadening of the peak
widths to account for how the small fluctuations increase the chance for neighbours to be found at a different distance. The
approach to determining the h2rvor

hexi intermolecular spacing provides a powerful tool to understand this behaviour. With the local
Voronoi areas, a statistical distribution in the local density is found for which the variance in localized translational disorder can
be extracted. We designate this as the bond disorder parameter (Dr). We propose, therefore, that the pair correlation function
can also be used to quantitatively distinguish differences between patterns by systematic normalization to a new lattice: the
“hexatic” lattice.

Using our tool set, a “hexatic” lattice is determined through an ensemble average of a hexagonal lattice which has been
modified by randomly displacing the particles from their center with a mean distance relative to a normal probability distribution.
The lattice disorder parameter (Dr) directly relates the random intermolecular displacement to the expected hexagonal spacing.

A larger value of Dr between one sample relative to another indicates more translational disorder (i.e. less positional
correlation) by having higher spreads in the intermolecular distances. This way it provides a model to use the local density for
quantifying random displacements located at particle positions. For the series of micelles deposited at different spin speeds, the
lattice disorder parameter (Dr) (supporting information Table SII) increases with greater spin coating speed, suggesting that
peaks are broadening in the pair correlation function, as is observed.

A single overlay comparison between a simulated hexatic lattice with the disorder parameter and an experimental micelle
g(r) is shown in Fig. 3 (c) with the distances normalized by the expected hexagonal spacing. To quantify differences in disorder
outside the first neighbours, the g(r) functions are also normalized by their maximum value (i.e. highest probability is at first
neighbour diameter). The Dg(r), pair correlation difference spectrum, again gives a snapshot view of how the experimental data
deviates from the reference spectrum, in this case the slightly disordered hexatic lattice.

Hexagonal ordering has a unique feature in the g(r) that corresponds to a splitting of the second shell of neighbours into
two peaks, seen in Fig. 3 for both the hexagonal and hexatic lattices. If the second neighbour peaks overlap almost completely,
and there are peaks in the pair correlation function centred around 1.75 and 2 normalized diameters, the system is much
more likely to have long-range global hexagonal periodic order. This feature can be used as a quick test to determine if a
pattern is likely to be hexatic, rather than possess another type of order. However, this examination is not definitive, as defects,
polycrystallinity and disorder can also lead to splitting in the pair correlation function peaks45–47. Fig. 3(c) suggests that
the 2000 rpm micelle data has hexatic order as indicated by large overlap between functions at both the second neighbour
expected hexagonal spacings. The splitting of the second order peak exists, though the fitting is not as good for the peak centred
around 2 normalized diameters, suggesting some sections that may have other spatial symmetries (square lattice, twinning
defects, etc)45–47. The appearance of a peak close to that expected for the third nearest neighbour is also suggestive of global
hexagonality, but the deviations between the experimental data and the hexatic lattice grow more pronounced as the distances
increase, suggesting a large number of defects and grain boundaries. In data sets of limited particles, the pair correlation
begins to fail at long distances, due to the missing information of particles who have intermolecular distances which lie outside
the image. The region between the first and second neighbour shells (cross-hatched area in Fig. 3 (c)) also suggests that the
micelles have more disorder than a pure hexatic lattice at these distances. Overall, the comparison to the hexatic lattice for the
micelle data does suggest that there is a high degree of “hexatic” character for 2000 rpm spin speed, at least to the level of the
second nearest neighbour shell, but with some defects.

For spin speed as a parameter, the local fluctuations in spatial postions increase as the hexagonal lattice spacing increases,
leading to less “hexatic” character. The best fit ”hexatic” lattice for the other spin speeds is given in supporting information
Figure S1. With such a large Dr for 8000 rpm, the hexatic peaks broaden to the extent that there is almost an equal likelihood of
finding a particle at any distance, similar to a liquid or glass. This is also supported by the average mean square displacement
from the difference spectra, Drms which increases as the hexagonal lattice spacing increases, due to the relative broadening
of all the g(r) peaks (Dg(r) spectrum Fig. 3). This behaviour suggests that the spin-speed has multiple effects on the spatial
order: the higher centripetal forces with increasing spin speed increases the intermolecular spacing while also increasing
the amount of fluctuation between neighbours distances. This might suggest that the positional order is somewhat sacrificed
when increasing the spacing using this approach. This is most evident for the highest spin speeds, which achieves the goal of
increasing the spacing to twice the micelle radius, but appears to completely lose most of the positional hexagonal order. Lower
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spin speeds, however, retain a hexatic formation while increasing the spacing by a lower amount. Using a combined method of
implying both local and global density metrics, it is possible to amplify the key influence that experimental variation has on
intermolecular spacing.

3.2 Extracting entropic force information by grouping particles with similar local bond structures
As described in section 3.1, the translational separation within point patterns is relatively easily recognized by both human and
algorithmic observers if the metric is relaxed enough to allow for some small fluctuations. The variance in positional order
is particularly helpful in determining the usefulness of particular experimental interventions. The lattice disorder parameter,
however, only gives a global metric relating the deviations from a perfect lattice. It does not reveal if the deviations are uniformly
dispersed, if these systems are polycrystalline – systems with areas of local order separated by defects – or if they exist in a
mesophase, where some type of order (translational, entropic, or angular) is not satisfied.28, 48. Though spatial disorder is fairly
intuitive to classify, distinguishing between systems consisting of other types of order can be challenging for researchers.

The entropic order is related to the unoccupied areas in a given dispersion, that is, the free volume available. Necessarily,
when the free volume is in the lowest possible state (i.e. maximum density), the system is in a highly ordered state. The drive to
minimize the free volume, the entropic order, can therefore be harnessed to drive self-assembly, as has been observed recently
for a variety of systems29, 48–52.

Particularly, in anisotropic systems (i.e. with non-spherical shapes48, 51, 53 or asymmetrically functionalized coated
spheres52, 54), there is a driving force that aligns faceted or functionalized particles so as to maximize the system entropy
by minimizing the free volume50, 53. The so called directional entropic force51, 55 drives systems to complex structures. The
anisotropic probability distribution describing the likely positions of neighbouring particles is analogous to that observed for
chemical valence states53.

In chemical systems, the valence defines the coordination number of an object: i.e. the number of neighbours to which the
object is bonded. In the absence of bonds, as in our micelle systems, the entropic force yields a similar “coordination number”
defined through the number of nearest neighbours. The drive to maximize local entropy is therefore related to the number of
nearest neighbours, even for systems without any intrinsic anisotropy.

Observers have a hard time distinguishing the extent to which the free volume is minimized in a particular system. Due
to the various neighbour definitions that exist56, defining the neighbours correctly also poses challenges. The selection of
neighbours is truly a binary selection criteria: it either fits the definition and is counted as a neighbour or it is rejected from
analysis. Utilizing numerical methods allows for a more refined and accurate detection of neighbours than achievable by an
observer alone. However, subtle differences in particle positions (i.e. numerical accuracy) can lead to the computer providing a
neighbour list that may differ from ones provided by the qualitative decisions of an observer, leading to large differences in the
classification of structures.

To achieve consistency in algorithmic classification, methodological numerical consistency should be favoured across
comparators rather than variable definitions57 that can change depending on the sample. In our package, the Voronoi tessellation
are chosen as a robust method to calculate neighbours due to their invariability with respect to particle size and shape. Such
an approach yields an unbiased definition for the coordination number for each object when the distance between particles is
much larger than its size (low density)56. The coordination number is defined through the number of Voronoi cell facets which
contain the particle (see Fig. 2b & e). By partitioning each particle, Voronoi tessellations can be used to accurately calculate the
entropic order through the minimization of the free volume around each particle.

Figure 4 outlines probability histograms for local coordination numbers for each spin speed of our micelle system, defined
for ease of identification at the far left-hand side. Above (left hand side for each panel), the Voronoi tessellations for each
image used to generate the histograms are shown. They are overlaid on a representation of the particle centroids, plotted using a
colour scheme that highlights the positional arrangement of particles with similar coordination number.

For our micelle systems, which have roughly hexagonal symmetry arrangements, the coordination number for each particle
is expected to be six (6) indicated in gray. All three systems show regions with the gray Voronoi cells of high hexagonal
entropic order, within a larger area that is not globally perfectly hexagonal, (as already seen from the pair correlation analysis
from section 3.1). With defects or local disorder, the steric frustration at the boundaries between large hexagonal sections will
form pairs of Voronoi cells with alternating 5 and 7 sides. These are the so called “disclination” defects58, where the local
number of neighbours is violated. In an analogy with dislocations, which is a defect in positional order, a collection of such
defects can define “grain boundaries” or areas of higher local free volume, between entropically ordered sections of the spatial
distribution59 (see Figure 5b). Further frustration of the free volume minimization can result in even further deviations from the
ideal coordination number, with 4 or even 8 neighbour particles suggesting large entropic disorder.

The coordination histograms from Fig. 4 indicates that the lowest spin speed (2000 rpm) results in relatively more six
neighbour particles than at higher spin speeds, supporting the finding from the positional order that the system is basically hexatic.
Using the coordination number frequency alone, however, suggests that the higher spin speeds are basically indistinguishable
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since the probability between having six neighbours and either 5 or 7 neighbours are similar.
The first neighbour maps (top right hand side) in Figure 4 shows how likely it is for the configuration to have particles with

neighbours in a specific arc symmetry. This bond order52 or entropic valence48 diagram is a similar representation to a 2D pair
correlation function31 and has been used to measures disordered magnetic moments60.

To build such a map, all particles are moved to a common origin, bringing with them the relative structure of neighbouring
entropic “bonds” i.e. the coordination number and arc-separation angle. For each particle, each neighbour contributes a set of
points to build up a probability distribution in space. The rigid objects that describe the entropic distributions are then rotated to
have a common orientation. The position and angle of each neighbour is then plotted as a probability map, outlining the areas
of preferred relative positions. The number of points each particle contributes is equal to its local coordination number. Regions
of bright spots indicate higher chances of neighbours being at these positions.

Using the probability maps in Fig. 4 (top-right panel), it is now clear that the highest spin speeds lead to an isotropic
distribution of particles, with the probability spread with little trends in angular order. On the other hand, the samples prepared
with 2000 rpm and 6000 rpm spin-speeds are in a hexatic state as shown by the evenly spaced intensity of points around the
particle at angles of 2p/6.

The highest density entropic order is found if each neighbour is spaced evenly at angles of q = 2p/` (also known as
the angular order, described in more detail in section 3.3). In such cases, the coordination number, ` defines an expected
arc-periodicity for neighbours, and can be used to determine the angular symmetry of the system.

This angular map can be further broken down by isolating subsets of particles based on their coordination number and
grouping them together for analysis of the relative structure of set numbers of neighbours. This can allow for a high level
comparison between the specific angular ordering that happens at the local particle level. This is particularly useful for the 5-
and 7-fold disclination defects to indicate if there is some correlation between defects, through their angular distribution. Using
this approach, therefore, exposes the hidden rotational symmetry of defects. These subset entropic valence maps are shown for
the 5-, 6- and 7-neighbour angular distributions in the middle panels of Fig. 4. The common origin is coloured to identify the
expected coordination number, using the colour scheme from the Voronoi tessellations.

For both the lowest and highest spin speeds, the five fold defects have no clear separation of intensity at the expected angles,
suggesting that they are randomly distributed over the surface. However, the intermediate spin speeds, some symmetry can be
observed for the five fold defects. This suggests that the defects are clustered together, leaving large areas of entropic hexagonal
order in the system.

Using this entropic order analysis based on the coordination number and entropic valence maps, the various structures
can be classified as follows: the low spin speeds yield a mesophase structure of high hexatic order, with random defects. The
intermediate spin speed results in a “polycrystalline” system, with defects segregated to “grain boundaries” between regions of
higher order. The Voronoi tessellation diagram indicates that there is one large hexagonal region, surrounded on three sides
by areas of higher free volume. Higher speeds ultimately prevent the formation of even those regions, with random defects
distributed randomly over the surface.

By using the Voronoi tessellations and entropic valence maps, it is clear that lower speeds are more favourable to extracting
a mesophase hexatic system, where entropic order is preserved even though translational order is lost, as we desired in our
fictitious goal. By segregating the ensemble into portions using the coordination number, the amount and distribution of defects
can be extracted to separate specific local information from the ensemble average.

3.3 Detecting angular symmetry using the localized bond order
As discussed above, the highest density entropic order is found if each neighbour is spaced evenly at angles of q = 2p/`, where
` is the entropically or enthalpically derived coordination number. Angular orientation order describes the likelihood of finding
an object at a given angular arc-separation between neighbouring particles, most commonly thought of as the symmetry state of
a system.

Symmetry can be understood in the context of periodical translational order, where objects are separated by fixed distances,
in a given direction. The Bravais lattices are defined by type, number and direction of the allowable translations defining the
symmetry space group (i.e. in a square lattice, objects can have a neighbour above, below, to the left or to the right, yielding
four-fold symmetric allowable translations). Similar to the description of entropic order, the coordination number or number
of nearest neighbours, `, drives the angular order, and this was taken advantage of in the previous section to describe the
correlation of defects. Unlike for entropic order, which was related to the minimization of free space, the angular order relaxes
the condition of maximal density; however, it imposes the condition that each neighbour is spaced evenly at angles of q = 2p/`.

Humans are particularly adept at recognizing symmetry, as it is the basis of human pattern recognition61, 62. If there
are only a few particles or the positions have not deviated too far from the expected lattice positions, observers can usually
extrapolate and distinguish if there is a different local symmetry at a given point (see Fig. 2 (c & f). This perception and correct
classification is highly dependent on a robust and consistent definition of the coordination number. However, as described in
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section 3.2, algorithms are sometimes limited in their ability to distinguish neighbours by interpolating localized periodicity in
the same way an observer might. Simultaneously, observers may introduce bias by selecting or rejecting improper neighbours
though inconsistency. Unwanted bias by either approach can be introduced using only bond-network neighbour descriptions,
such as the Delaunay neighbour definition for the coordination number56. To overcome this problem, the bond order parameter
q` can be utilized together with the coordination neighbours to explicitly distinguish particles which have the arc-symmetry
we wish to tailor experiments toward. Specifically, we use the Voronoi-weighted Minkowski definition of the bond order
parameter56, which reduces the influence from neighbours that have metastable edges.

Defining the bond order in this way provides a benefit for researchers who are exploring particles arrays that have ordering
arc-symmetries other than that for ` = 4 (i.e. square lattices) and ` = 6 (i.e hexagonal lattice). Sections of particles with
local 5-fold symmetry have been observed along disordered edges of self-assembled hard-spheres63, 64. Also, planar arrays
of colloidal particles subjected to quasiperiodic light fields of 5-fold arrangement of lasers have been shown to direct the
self organization into quasicrystalline colloids65, 66. These are dispersions of particles where the mix of multiple odd-integer
symmetries of the lattices form complex structures that could easily be mis-classified by observers. In the next example, we
emphasize a model system with two types of order to highlight the utility of using the bond order in ”disLocate” to explore
these hidden symmetries as ` is varied. This is done to precisely outline this complex behaviour, since in disordered material
the effects are much more difficult to resolve.

In Figure 5(a), we present a simulated configuration of (N = 256) micelle particles under square confinement41. This type of
self-assembly causes internal frustration of the particles and leads to a different ordering in the center than that around the wall67.
Hexagonal ordering can be observed at the walls while the square configuration imposed by steric frustration is in the center.
As before, Voronoi tessellation of the centroids was taken and plotted using the colour scheme that highlights the coordination
number (Fig. 5b). The majority of the system turns gray (6 neighbours) while disclination lines of alternating green/orange (5
and 7 neighbours respectively), separate the ordered “grains”, originating at the corners. The steric frustration from interacting
neighbours at arc-angles different than the expected 2p/6 results in the local defects with 5 and 7-fold rotational symmetry.
One thing that clearly stands out is the lack of Voronoi cells with 4 sides (dark blue) at the center. One consequence of using
the coordination number definition for neighbours is that it may incorrectly over-count due to the metastable square Voronoi
cell68. In this case, subjective classification of local symmetry due to steric frustration is quickly seen while the numerical
definition inaccurately identifies false neighbours using the expected particle spacings.

Fig. 5(c) shows an overlay of the the bond order parameter in symmetry basis ` = 4,5,6,7. These values are normalized by
the expectation value for the given symmetry (see last entry of Table SIII (Supporting information) onto the same Voronoi
tessellation shown in the coordination map shown in Fig. 5(b). Here, the dark shade represents bond order parameters that are
heavily deviated away from the expected value while lighter and whiter sections are ones where in which they are closer to
expectation values in that symmetry basis. Separating the rotational symmetries allows for an observer to judge the reliability
of the internal structure as described by metrics using the coordination definition of neighbours. The expectation values for the
hexagonal and square lattices are given in Table SIII (Supporting information).

In general, 6-fold bond order values (q6) are reported in research without consideration for other symmetry values, as
close packing of circles yields a hexagonal configuration. Looking only at q6 in Fig. 5, most of the system is closer to
white, suggesting that the system is relatively hexagonal as expected. The mean bond order parameter value in Table SIII
(Supporting information) also gives a similar indication – that the system is mostly hexagonally ordered, with some disorder.
One consequence with using only q6, however, is that disordered sections can take on values similar to that of the square pattern
in the center, making it difficult to classify if there is angular ordering other than the 6-fold – all are just deviations from the
expected value of q6 for a hexagonal lattice. Table SIII (Supporting information) shows how different symmetry operations can
take on non-zero values even for perfect lattices. Using the Voronoi tesselation coloured by 4-fold bond order values, q4, the
4-fold square configuration in the center can be isolated, as shown in the left-most panel of Fig. 5c.

However, disordered systems have variations in their intermolecular structures. There will be high probability for particles
with coordination other than six, dispersed throughout the sample. Disordered states should produce bond orders values that
converge towards a similar value in all symmetry basis. Table SIII (Supporting information) lists the values for a simulated
dispersion of (N = 5000) pseudo-random point-particles to show the possible values when examining the fully disordered
system. When dealing with disordered states with partial internal ordering, however, there can be correlations or distributions
that are not captured solely by the single mean value (see Fig. 4). Experimentally, 5-fold localized structures have been
observed to have correlations in partially disordered systems where 6-fold symmetry is expected69. The exploration of multiple
different symmetry types can reveal information often missed by either observers and/or computers70 (also see section 3.2). In
Fig. 5c, the 5-fold pentagonal configurations, q5 matches almost exactly to the calculated 5 sided Voronoi cells. The 7-fold
bond order parameter similarly targets the cells with coordination number of 7. The combination of 5 and 7-fold bond orders
highlight the disordered boundaries that separate the square and hexagonal crystallites from each other, targeting the transition
between highly ordered hexagonal and square states.
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With that general framework, we can apply the same approach to the experimental micelle spin-speed series data. Table
SIII (Supporting information). reports the mean values for the normalized bond orders for the three experimental data sets. For
any given data set, the values do not seem very different from the randomly generated pattern. However, the trend in changing
bond order parameters as the spin speed increases does give some insights into the angular ordering behaviour.

Using only q4 and q6, as would be a common approach in the literature, suggests that low spin-speed produces relatively
hexagonal packings with some low probability for square packing. By increasing this speed, the limited data set would suggest
that the system transitions from hexagonal into a square lattice (as determined by the decrease in q6 and increase in q4).
However, it is clear that q5 and q7 also increase with increasing spin speed. In general, if there is an increase in order or
the transition from one type of order to another, higher ordered states will converge to the expected value for the maximum
symmetry while decreasing all others. On the other hand, disordered states will produce bond orders values that converge
towards a similar value in all symmetry bases, due to the broken local symmetry. This would also appear as an isotropic
distribution of intensity in the entropic force map (see top panels of Fig. 4) for disordered systems; for ordered systems, the
new symmetry state would emerge in the probability map (i.e. a square pattern would emerge if there were a transition from
hexagonal to square). Therefore, from the trend of all four parameters, it can be concluded that increasing speeds cause a loss
of hexagonal order in favour of more localized disorder, supporting the conclusions using the previous tools.

For the experimental data, the Voronoi maps coloured with the localized bond order (see supporting information Fig. S2)
reflect the trends already identified – lowest spin speeds result in the largest regions of hexagonal order; as spin speed increases
the disorder becomes randomized. The q7 map, which is more useful in highlighting grain boundaries, gives a little more
insight compared to the entropic analysis alone – the random defects at the lowest spin speed are actually more like a “grain
boundary’ separating two large hexagonal regions.

By using the Voronoi tessellations and bond order parameter, it is again clear that lower speeds are more favourable to
extracting a mesophase hexatic system, where angular symmetry is preserved, as we desired in our fictitious goal. By examining
the ensemble with both global and local bond order parameters of various arc-symmetry, the nature of the defects at lower
speeds can be determined to be analogous to “grain boundaries” separating regions of higher order; at high speeds, due to the
random distribution of defects, these dispersions are closer to complete spatial randomness.

4 Concluding remarks on combining numerical methods and visualizations
Structural characterization is a key aspect of reproducible experiments which allows for critical insight into the external factors
which drive self-assembly. Robust comparisons between similar samples, especially with limited data sets, need a finely
tuned ensemble of accurate analysis tools. We have combined a range of tools as a freely distributable Mathematica package
(disLocate.m) which can be applied to any data set that contains spatial information.

Using the full range of tools available in disLocate, we examined as a representative example of AFM images of polystyrene-
block-poly-2-vinylpyridine (PS-b-P2VP) diblock copolymer micelles distributed on a Si wafer surface with three different
deposition approaches. From an analysis of the structures, we are able to distinguish them with a high degree of specificity, from
a variety of perspectives. To illustrate the power of the tools in allowing a user to come to critical decisions about experimental
protocols based on limited information, we established a fictitious goal: can the spin speed alone be used to increasing the
internal spacing of two micelle diameters between particles, while maintaining mostly hexagonal angular order, separated
by limited regions of disorder or defects, making the surface polycrystalline. Based on our analysis of all the global mean
and local variance information on the structure of each data set, it is clear that further experiments with varying spin speeds
would not lead to our desired outcome, due to the conflicting influences on the various types of order in the micellar system.
The slower spin speeds encourage the formation of a nearly hexagonal order, with some contained defects, but brings the
particles closer together to increase the entropic order. Higher spin speeds are able to increase the spacing, but at the expense of
angular order, resulting in a system that appears almost like complete spatial randomness. An intermediate spin speed seems to
fulfill most of the requirements set out. Even though there are similar numbers of defects as at higher speeds, there are still
regions of high hexatic order. However, this number of defects may be too high, as the hexagonal regions are about the same
size as the disordered regions. Each piece of information gained by the tools gave different insight into the type and quality
of the order. Based on the analysis provided by disLocate, we were able to narrow our the choices for next methodological
improvement depending on the desired importance of each ordering. If hexagonal dispersions are highly desired, then slower
spin speeds are needed. If the priority is for larger intermolecular spacing, then higher speeds are necessary. To achieve different
types of ordering with a density that was observed, then other factors may need to accompany the refinement in spin speeds
(like temperature, or solvents) when it is set between these two ranges. By identifying that increasing speed will increase
the intermolecular spacing at the expense of the angular periodicity, using disLocate for spatial analysis allows us to quickly
change experimental tactics by providing an accurate trend with a limited amount of data.

Using the tools in the disLocate package, different structure metrics of single image patterns can be compared to quantify
local variation in disorder through a variety of methods. Though researchers may use one or some of the tools outlined in this
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contribution, the complete package allows one to easily and rapidly extract all of the different parameters in Table 1 to make
robust conclusions on the order of a given system. Each state variable can be defined either as a single global description or as a
local average value with uncertainties determined using internal variation as suits the intended purpose. We strove to remove
unintentional user-introduced bias by advocating and implementing metrics based on the local variation in Voronoi tessellations
as a way to promote consistency within the numerical analysis and interpretation of state variables between experimental
setups. This package has been made available freely online. Using this package, researchers can quickly and easily quantify the
experimental trends which produce desired morphologies and engineer novel methods which can direct self-assembly.

Methods
4.1 Software Availability
The code included with this manuscript is written as a (*.m) Mathematica Package. It currently supports Version 10 and above.
Some highly optimized functions may require a local C compiler (such as Visual Studio, Clang, etc) for execution at full speed.
Calling the package may cause a warning to appear, but these functions will still run without the compiler. The user manual is
included with the package.

4.2 Data Availability
The raw AFM data that was used in this manuscript is bundled as example data inside the dislocate.zip file in Supporting
Information. It also includes the xy positions extracted from imageJ and the height profiles from post-processing.

4.3 Experimental details
Polystyrene-block-poly-2-vinylpyridine (PS-b-P2VP) diblock co- polymer (Polymer source, P1330-S2VP) was dissolved in
o-xylene (CALEDON) to form core–corona reverse micelles and kept under vigorous stirring for 18 h. Dynamic spin-coating
(Speciality Coating Systems, SCS G3) at 2000, 6000 and 8000 rpm was used to produce an 2D monolayer array on 1cm Si(100)
substrates with native oxide, diced from 6” wafers. The substrates were cleaned with acetone and ethanol in an ultrasonic
bath, rinsed with deionized water, and dried in an N2 stream. Images of the micelle dispersions were analyzed using atomic
force microscopy (AFM) in air in tapping mode with a phase locked loop (PLL) dynamic measurement board (NanoScopeIIIa,
Veeco). The non-contact silicon tips were PPP-FMR-50 (NanosensorsTM) with a resonance frequency of 45-115kHz, a force
constant of 0.5-9.5N/m and a tip radius of curvature ¡10 nm. The AFM images were processed with WSxM (NanoTec).

4.4 Pair Correlation Function
The pair correlation function is a tool to analyze positional order. It is calculated using the probability of all distances between
particles internal to the system. Every particle has a list of distances from its center to ts sequential nearest neighbouring shells.
An initial central particle a is chosen as the origin. A circular shell of width dr expands from the center to a radius distance r.
Any particles inside a circular shell of width Dr are counted together and binned to produce the neighbour probability nn(r) as a
function of distance.

g(r) =
nn(r)

2prDrr
(1)

As such, this function is sometimes described as ”the radial distribution function”, since it counts the distribution of
neighbours over the radial spatial dimension. With this definition, information on angular orientation is lost in favour of
positional probability.

The pair correlation function is not very well defined when samples consist of less than a few hundred particles. The micelle
samples analyzed here are these kind of systems. To overcome these challenges, we’ve implemented a bootstrap technique to
generate artificial systems that slightly deviate between them. This benefit allows for the smoothing of sharp features in the
g(r) which are artifacts of the finite number of intermolecular distances. Each micelle configuration was subjected to the same
hexatic lattice procedure, where the molecules are randomly displaced around their centers by a fixed standard deviation. This
value is associated with the experimental error, where particle centers are uncertain to within one pixel. Ensembles can be
generated from randomly displacing the particles by the experimental error. For the micelle case, this ensemble was generated
with 1000 independently shaken patterns with a Gaussian probability distribution using variance of half the experimental
pixel size width (2.44 nm/pixel). This technique produces data that is analogous to multiple observations of the same area
over different time periods. Slight variations in each observation will produce a set of particle coordinates that are not exactly
identical. This is a key aspect in removing spurious peaks in the pair correlation function caused from finite data sets. These
ensembles are solved together in a global average g(r), the small displacements allow particles to hop between bins which
smooths the probability distribution.
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4.5 Hexatic Lattice
Density is correlated to the average intermolecular spacing between particles. Generating a proper periodic point pattern for an
accurate comparison reference depends on a few key components. One is the number of particles (N) inside the window and
the other is the area encompassed by that window (Abox). This number of particles per area defines the intensity (l ) and can be
used to calculate the average spacing between neighbouring particles in the hexagonal state. l = N

Abox
The goal is to find the radius of circular particle that would produce a Voronoi cell with exactly similar area to the one

solved at the particle location.
The distance between two objects can be represented as close-packed (touching) circles with diameter (2rhex) can be solved

geometrically for the hexagonal lattice spacing. This equation is derived by solving for the apothem of a hexagon with area

equal to the local Voronoi cell. 2rhex =
q

2/(l
p

3)

The total area of all the Voronoi cells must equal the total area from which the number of particles has been observed.
l = ÂN 1

Avor
The resulting variation in local Voronoi volumes translates into a distribution of possible particle sizes, which can be

estimated with a mean and variance. This mean is effective distance where in which intermolecular interactions and density are
equalized. The variation in this effective distance represents the relative positional agitation of each particle at their location (i.e.
the entropic portion of random local movements). The number of particles is constant while the the area changes. The local
hexagonal radius at location i is a function of local Voronoi area (Avor) only.

ri
hex =

q
Ai

vor(2
p

3)�
1
2 (2)

The uncertainty in mean intermolecular distance (Dr) can be calculated using a method of error propagation, using the
Voronoi cell areas as the independent variable in the lattice spacing function (rhex) and the standard deviation (Dur).

Dr =

s✓
∂ (rhex)

∂Avor
Dur

◆2

(3)

The result can be modeled as a system where particles have a global mean spacing (2rhex) but also fluctuate around the
center (r0 = 0) with a mean square displacement proportional to the local density variation.

(Dr)2 = hr� r0i2 = Var(rhex)

4.6 Bond Order Parameter
The bond order parameter uses the angles between neighbours to calculate a metric that describes their arc distribution relative
to a central particle. A reference frame needs to be chosen to properly assign angles and typically the horizontal (x)-axis is a
common choice. Rotational symmetry can be exploited to define the bond order parameter in terms of any arbitrary axis using
spherical harmonic functions. Consider a particle a which has a set of nearest neighbours nn = (b,c,d, ...). Each neighbour is
at an angle qa(nn ) relative to the reference frame vector and the neighbour vector.

q`(i) =

"
4p

2l +1

`

Â
m=�`

|Y`m|2
#1/2

, (4)

where Y`m is spherical harmonic function with degree ` and order m.

|Y`m|2 =

����
nn

Â 1
nn

Ylm(q ,f)

����
2

(5)

In the case of neighbours being defined using Voronoi coordination, the value of nn (i.e. 1 / the number of classified
neighbours) is replaced by a weighting function, determined by the length of the Voronoi facet (pa) passing though its bond
vector. This is then divided by the total sum of Voronoi facets from neighbours (pab)/Â(pann )

56, so that the total probability
remains at unity. In two dimensions, the sum of Voronoi facets is the perimeter of the Voronoi cell and each facet is the line
segment between central particle and its neighbour. The configuration average is the mean value of each local bond order
associated with the particles in the system.

hq`i =
1
N

N

Â
i

q`(i) (6)
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The normalized bond order is solved by dividing the mean bond order by the bond order associated with the highest
neighbour configuration symmetry qsym

` which has ` neighbours with arc separation angle (q = 2p/`).
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Figure 1. (colour online) Atomic force micrographs of diblock copolymer reverse micelles (PS-b-P2VP) with varying
spin-coating spin-speed (a) 2000 RPM, (b) 6000 RPM, and (c) 8000 RPM, showing varying spatial order. AFM images are
inset with Fourier transforms of the micelle centers, showing similar planar topographies.

Table 1. Summary of physical observables and the tool within ”disLocate” that has the ability quantify them. The global
observable refers to an invariant between different observers, either by simplicity of counting or common routines. The mean
local reference utilizes the internal properties of the single data set to determine an expected mean for the physical properties.
The variations are products of defining these metrics with as localized parameters. It should be noted that additional confidence
in specific metrics can be enhanced by capturing the structural variation from another one of the analysis tools, since the
variation will have a correlated influence between these through the Voronoi partitions.
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Figure 2. (left) Self-assembled morphologies land somewhere between highly ordered systems (top) and one with very low
density (bottom). Two key factors at classifying disorder are simultaneously in competition with each other: limitations on
perception misguides us into seeing patterns in randomness while our imprecise ability to distinguish between similar patterns
misses subtle differences. To remove unwanted bias, numerical order metrics are utilized to characterize the morphology
located at particle positions: pair correlation function (a & d), Voronoi tessellations (b & e), and the bond order parameter (c &
f).

Figure 3. (colour online) Pair correlation functions of centroids obtained from AFM images of diblock copolymer reverse
micelles PS-b-P2VP. (a) Measurements of objects shows that the peak positions are misaligned. This implies the average
spacing between micelles changes. (b) Normalizing the distance to the average spacing (2rhex) of a hexagonal lattice with the
same number density (located at particle positions) collapses the distributions into a shared spatial reference frame where peak
positions can easily be compared. (c) The differences in g(r) is shown as red thatched sections on an overlay of both functions
from 2000 rpm micelle distributions and the best matched hexatic lattice. The widths of these peaks correspond to the average
mean displacement each particle has relative to this expected spacing. The inset above (b) and (c) shows the difference
spectrum, which is the subtraction between a pair correlation function and the hexatic lattice.
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Figure 4. (colour online) Angular classification of coordination neighbours within micelle configurations observed by AFM.
Coordination numbers are calculated using the Voronoi tessellations (top panels left), given in a histogram of the probabilities
for each coordination number (bottom panels). Particles are translated to have a common origin so as to build a planar
probability map of first neighbour (entropic force map) in relation to the particle center (top panels right). Particles are then
separated by their coordination number and remapped to observe correlation between the expected angular symmetry (shown
on the far left) and the rotational order of neighbours (middle panels). Bond-structures are rotated to have a common
orientation (y-axis) so to show disordered states as blurred rings at the bottom (negative y-axis) and ordered states as sharp
bright spots. Experimental spin speeds (a) 2000 rpm (b) 6000 rpm (c) 8000 rpm.

Figure 5. (colour online) (a) Simulated micelles in a confined square boundary. An observer may expect for particles in the
center to have 4 neighbours, but this is not the case for the coordination number. (b) Voronoi tessellation of the micelle
centroids coloured by the number of shared facets. (c) Voronoi tessellations coloured by the normalized bond order parameter
for the type of symmetry (above). Whiter areas indicate particles that have high angular order in that symmetry basis. Particles
with 5 and 7 neighbours highlight the grain boundaries and dislocation lines in their respective symmetry basis. The separation
between square and hexagonal configurations are not detected in the Voronoi tessellation as having 4 neighbours, however it
can be seen in the bond order with symmetry ` = 4.
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Chapter 5

Comparing morphology between
ensembles of many configurations
with similar density

Comparing morphologies from two simulation methods: Monte Carlo (blue) and Event-Driven
Molecular Dynamics (red). When the density is fixed, will the resulting morphologies of bulk
phase particles and confined patterns show similar structural trends?

43
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5.1 My Contributions

My contributions to this publication was mainly in developing the simulation experiment to
answer the question: do these two simulation methods (event-driven molecular dynamics and
Monte Carlo) produce the same morphologies? The reason that this question needed to be
answered is to gain confidence that our previously developed Monte Carlo simulation was ac-
curately representing the natural phenomena of steric self-assembly. The main motivation was
to simulate the condensation of molecules and observe the influence that molecular shape has
on the resulting morphology. If it is not producing morphologies consistent with nature, then
this method should be rejected in favour of one that does. The result of this investigation was a
publication in Physica A that summarizes our findings.

Dr. Ayse Turak, Dr. Alejandro Diaz Ortiz, and Matt Bumstead collectively decided to bench-
mark our Monte Carlo code against a similar method that uses event-driven molecular dynamics
(EDMD) to evolve the system [100]. The EDMD protocol tracks collisions with event-integrated
positional movement of particles as the global density is reduced. Our Monte Carlo simulation
interprets the positional uncertainty between sequential observations (simulation inflation steps)
as being caused by thermal motion and implements random trial displacements surrounding
the previously accepted positions to acquire an equilibrium microstate with higher density. It
was unclear if our statistical mechanics approach to modelling condensation as a series of static
states was continuously in equilibrium. If these two methods produce similar outcomes in the
limit where they simulate the same objects to have the same density distribution, then we can
say that when the objects are changed to embody complex shape then the resulting morphology
should also be predictable with molecular dynamics techniques. In the work that I did for this
manuscript, I determined that this was true for circular particles. This provided evidence that
our Monte Carlo simulations are properly exploring the thermodynamic phases and allowed for
new investigations into how morphology changes with molecular shape.

A set of criteria that can be normalized across both simulation methods was needed to iso-
late the influence of each simulation method by removing the influence from variations between
protocols. Since each simulation has a different algorithmic implementation, there is no a set of
standard protocols (user inputs, initial conditions) which represents the same assembly phenom-
ena. Phase changes in hard glassy colloidal systems are density dependent [31], which suggests
that density is main parameter which determines the resulting morphology. This observable
parameter was used as a constant standard across each simulation to test the deviations between
internal morphology. Large ensembles of configurations from both methods were produced such
that the probability for them to generate patterns with the same density was statistically simi-
lar. By using an iterative optimization approach to generate ensembles with varying protocols, I
found a set for EDMD which produced patterns that minimized the differences between covering
density profiles from each of the two methods (see Section 5.3.1).

To assess structural similarity in both ensembles, I used analysis metrics such as the bond
order parameter [97], the pair correlation function [101], and Voronoi tessellations. These tools
were from external research groups and had open source implementations that where written in
different coding languages, making them laborious to utilize fully and challenging to distribute
updates to routines amongst the research group at the Organic Electronic Interfaces lab. Also,
these single set functions were not exactly consistent among implementations and did not seem to
work well when used together. My work has brought these different tools together to use in this
publication and to start building our own tool set package “disLocate” (See: Chapter 4). This
was a key component of my work since these external codes allowed me to test and benchmark
the newer routines involving equations relating to new structure metrics. What we concluded was
that the statistical description of the varying types of morphological order was similar between
simulation methods in the case where the density distributions of tested configurations were
fixed.
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Figure 5.1: Optimizing folders for large data sets to search parameter space. (a) Varying two
parameters X and Y by ˘∆ creates a grid. (b) Data is more accessible when it is stored within
a hierarchical subfolder system of protocols.

5.2 Overview of Manuscript (Physica A - 2017)

Numerical simulations can provide a unique insight into the self-assembly of molecules. However,
it is critically important that these simulations accurately describe behaviour observed in nature.
The morphologies produced from simulations may not be fully physical and may lead to incorrect
models. To make sure our own simulation method is correct, we benchmarked it against event-
driven molecular dynamics [100] using the same internal restrictions, like number and shape
of the particles. This was done to prove that for simple shapes, both codes would reproduce
morphologies that are similar to each other. If these simulations produce the same morphologies
with circular particles, then we have confidence that the configurations produced with complexly
shaped particles would be one that is accurately described by natural process.

This manuscript outlines how we were able to quantify the internal structures of molecular
dispersions produced using both simulation methods. Statistical ensembles of many indepen-
dently run simulations were generated under a common protocol and their configurations where
grouped together for analysis. Finding a common set of initial conditions between the two sim-
ulation methods was dropped in favour of protocols which could produce morphologies with
the density and with the same probability. Once we were able to do this, structural analysis
tools were used to directly compare the resulting morphologies by mapping the order-space of
ensembles. We conclude that when the densities are the same, Monte Carlo and EDMD simula-
tions modelling excluded-volume particles will produce configurations with similar intermolecular
structure.

The sections below highlight portions of my research that did not appear in the manuscript
and/or were part of the supporting information associated with this publication. Section 5.3
highlights information about the EDMD simulation and our experience with it. These topics
include: how the density distributions were matched using an iterating protocol search, the
behaviour of varying EDMD protocols, and the instability of EDMD and its execution timing.
Section 5.4 presents the set of protocols we found for EDMD that produced configurations with
similar densities and at similar frequencies to those generated with the Monte Carlo method.
Section 5.5 outlines one noticeable difference in the morphologies which suggests it is unlikely
for Monte Carlo to simulate point defects. These are also hard to quantify numerically, but
extremely easy to find in the visual rendering of the pattern. Since this is clearly impractical to
try to quantify with ensembles of over 4000 patterns, the bond order parameter might be able
to detect these without observation.
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5.3 Event-Driven Molecular Dynamics simulations

5.3.1 Finding Protocols that Produce Similar Area Fraction
Probability Distributions

The goal here was to tune the initial conditions of the EDMD simulation (such as number of
events, growth rate, and stopping pressure) to obtain a similar probability density function
(PDF) of area fraction that was generated using our Monte Carlo method. Our motivation was
not to find protocols that produced exact matches in this PDF, but to find a set that minimized
this difference as much as possible. To compare similar results, the PDFs of area fractions were
subtracted from each other and the root mean square of this difference was used as a metric to
gauge similarity. The lower this value, the closer the particle density probabilities were to each
other.

This quickly became an exercise in big data storage and management since we were looking
to vary the protocols heavily and produce over 4000 configurations with each variation. To make
the data easily accessible, I set these simulations to output data to a fractal-like hierarchy of file
folders based on the protocol values. Figure 5.1 shows a schematic for the procedure, with a)
showing how the change in protocol values from initial values (x,y,...) by adding/subtracting a
small value p∆x,∆y, ...q forms a grid in the parameter space of the simulation. Data from each
simulation ensemble would normally be placed in its own unique folder. Instead, this fractal-based
system stores all the ensembles with similar protocols together (Figure 5.1 b), allowing them to
be easily accessed by data harvesting algorithms. One other benefit for this type of system is that
it allows for easy addition to the ensembles. By determining how many final configurations are
contained in the folder, the program can continue from the last known run number and update
the ensemble if a bigger database is needed for analysis. For initial comparisons, ensembles of
about 1000 runs were used to gauge the approximate distribution in particle densities. These
were then expanded to 4032 simulations once protocols were found to have sufficiently close
outcomes.

5.3.2 Changes in Area Fraction from varying EDMD initial
conditions

This section outlines the general trends of how the change to one parameter will influence the
resulting area fraction probability distribution (PDF). Pressure: This parameter greatly influ-
ences the particle density since it is used as the one of the halting conditions for EDMD [102].
In Figure 5.2 (a), as the pressure is varied, an increase to the pressure shifts the distribution to a
higher particle density. When this parameter is set at a low value pă 10q, we observe the system
rarely produces a fully densified state where the particles do not fully expand and the simulation
is stopped in a dilute phase. When this is set to a higher value, the simulation produces very
crystalline states and changes the yield to prefer these states. Since this is used as the primary
stopping condition, the simulation undergoes many more collisions when this has a large value.
Events per Cycle: This parameter also has an impact on the overall particle density but much
less than the pressure. In Figure 5.2 (b), as the events are tuned from low to higher values,
the relative intensity (structure) of the PDF does not vary drastically but instead does shift
the particle density to a higher value. When this parameter is set high, the particles in the
simulation can reach an equilibrium state quicker, allowing for smoother transitions to denser
configurations. This is consistent with what has been observed previously as this parameter is
used to define the halting condition for detection of the jammed state [102].
Growth Rate: This parameter is one that controls the morphology of the internal structure,
with low growth rates producing crystalline dispersions [102] as is what we observe here. In
Figure 5.2 (c), the growth rate is varied by increasing by a factor of 2 for each ensemble. This
parameter does not seem to shift the overall structure of the area fraction PDF, however, it greatly
enhances the probabilities for localization to a specific state, indicated by the sharpening of peaks
at area fractions φ “ 0.771 and φ “ 0.785. By having a smaller expansion rate between cycles,
the simulation allows particles to equilibrate the energy imposed from densification (pressure



Ph.D. Thesis - Matt Bumstead - McMaster University - Engineering Physics 47/129

Figure 5.2: Effect on the PDF for area fractions using non-optimized parameters with 36
particles. (a) Effect of pressure with constants: events=120 and growth=0.01. (b) Effect of
events with constants: pressure=400 and growth=0.01. (c) Effect of growth with constants:
pressure=1000 and events=80.

from the reduction of free-volume), allowing for the particles to occupy the most energetically
favourable configuration (i.e. least pressure and most dense) [103].

5.3.3 Discussion of Performance and Parallel Execution

One thing that has been noticed during usage is that EDMD is comparatively faster than our
Monte Carlo simulations. The time taken to simulate 1024 particles with periodic boundaries
takes approximately less than one second running on modern consumer grade desktop computers.
When parallelized in a large group, the only restricting factor comes from the time separation
between sequential runs. The published implementation uses a time seed for the generation of
randomized initial positions and velocities of the spheres. If any of the nodes on a cluster have
the same CPU time, the resulting configurations and distributions will match exactly as should
be expected with a deterministic simulation method. This problem was overcome by amending
this method to have the random number generator seed add the configuration number to the
time (i.e. time + run number 1 of 4000). This allowed for ensemble generation on a single local
machine running multiple instances of EDMD rather than outsourcing it onto supercomputer
clusters.

When these systems become quite dense, EDMD spends a lot of time trying to determine an
allowable position from the particle trajectories. For hard boxed boundary conditions, this time
increased quite a bit and caused many of the simulations to crash. In EDMD, the growth rate
needed to be considerably lower to allow for the interactions of the molecules and boundary. If the
particles grow too fast between collisions, then they might expand outside the boundaries, causing
unphysical overlap and will crash the simulation. This happened quite frequently when exploring
the protocol space and the solution was to rerun the simulations until enough configurations were
generated for the ensemble.

Specifically for the low particle limit, we found that exponentially more simulations from
EDMD were needed to find disordered states. The fewer the amount of particles contained in the
system, the harder it is for EDMD to result in a jammed metastable microstate. In the case of 9
particles, over 3.5 million EDMD simulations were launched and only 382 configurations resulted
in a low probability microstate. Most of the molecular dynamic simulations for n “ 9 particles
produced the 3ˆ3 square array. This is compared to our Monte Carlo method which was able to
find 119 low density configurations in only 4032 runs. From this, it can be said that metastable
configurations are much more easily found with our Monte Carlo method rather than EDMD. We
attribute this to the static nature of the Monte Carlo microstate configurations. Since the Monte
Carlo particles are not moving, patterns which are the result of balanced confinement pressures
are not impacted by collisions from loose rattler particles which can disturb the metastability of
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Figure 5.3: Probability density distributions (PDF) of the area fractions pφq of circular molecules
contained within square boundaries. Above are the root mean square residual spectra which were
used to determine the relative closeness in probability. The numbers of molecules are: a) 16, b)
25, c) 36, d) 49, e) 64, and f) 81.

the microstate.

5.4 Matched Protocols

Monte Carlo Protocols: The initial conditions (protocols) that were used were: a shaking
amplitude (σ) that is proportional to the particle diameter and an inflation growth rate of 10´5

times the molecular area per simulation step. The number of trial shakes (k) was set to 1000
with a number of cycles (ω) to 10. These parameters can be redefined within the “defaults.dat”
file. One thing to note when importing polygon files, is make sure that the polygon is open (first
and last vertex are different). When it is closed, it may cause the normalization of the polygon
(longest length = 1) to have a centre of mass different from the origin (0,0). More information
on technical details can be found within the document: [104] also available at:
http://organicelectronics.mcmaster.ca/ResearchFiles.html

Release versions of the event-driven molecular dynamics (EDMD) code can be downloaded from:
http://cherrypit.princeton.edu/Packing/C++/
An outline and tutorial of their code can be found on the website.
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Particles (N) Pressure Events Growth Repressurization Cycles ∆pφqrms

Periodic
1024 70 60 0.025 — 4.93

Confined
81 600 60 0.010 — 1.20
64 600 64 0.010 — 3.82
49 1,000,000 49 0.010 7 6.54
36 70 60 0.025 11 4.44
25 1000 100 0.100 5 2.45
16 70 60 0.025 6 11.5

Table 5.1: Optimized parameters of EDMD found to match ensembles produced from Monte
Carlo. For N “ 64 and 81 particles, systems were not found to have minimized area fraction
difference p∆φrmsq with repacking cycles. Note that N “ 16 contains finite a localized states at
the nˆn square lattice with a discrete value for the area fraction, therefore ∆φrms is meaningless
(discontinuous PDF), and only coincidence of the area fractions at those values were considered.

5.5 Monovacancies and the Bond Order Parameter

Figure 5.4: A configuration from event-driven molecular dynamics that contains point defects.
(Left) Rendering of the configuration using the bond order colouring scheme, with darker colour-
ing representing a lower value for local hexagonal packing: qi6{q

hex
6 . (Right) Voronoi tessellations

of the same configuration with a colour scheme that describes the area fluctuation as a percent
deviation from the expected hexagonal lattice of the same density. Monovacancies are highlighted
in red circles on both configurations.

This topic of was briefly mentioned in the manuscript but expanded here as a brief study on using
the bond order parameter (BOP) to detect these monovacancies. One notable difference that can
be seen between the two simulation methods is the appearance of point defects or monovacancies.
Molecular dynamics simulations tend to produce configurations with these defects; however, these
are almost never seen in Monte Carlo simulations. When these configurations are viewed (Figure
5.4), the monovacancies are easily recognized as empty voids where particles should be. Red
circles are plotted around the regions where the monovacancies are found. As can be seen, the
Voronoi tiles of these neighbouring particles show long tails toward the defect, creating a 6 lobe
flower-shape. Nearest neighbour particles around the point defect show an unexpected change in
the bond order parameter for q6. To classify the relative frequency of occurrence, these defects
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Figure 5.5: Voronoi tiles of (a) perfect hexagonal lattice, (b) monovacancy at lattice site 1, (c)
two monovacancies at lattice site 1 and 2. Blue lines indicates the boundaries of the Voronoi
tiles corresponding to each particle. The red lines are the associated Delaunay triangulations
that define nearest neighbours for the bond order parameter. Insets visually define the particle
positions and where point defects are.

would need to be detected within ensembles of over 4000 configurations and searching for them
by eye is unfeasible. Delaunay triangulation and Voronoi tessellations have previously been used
to track monovacanies [105] but the exact method in which this is done remains unclear. The
authors seem to consider the identifiable characteristics of these vacancies as a ring of neighbours
with alternating 5-7 coordination [106]. This is a characteristic of dislocation lines, however it
does not necessarily distinguish monovacancies.

The Voronoi tessellation and Delaunay triangulation in Figure 5.5 shows a (a) perfect hexag-
onal lattice as well as (b) one and (c) two particle point defects. In this figure, there is indeed
the 5-7 alternating coordination numbers at neighbouring sites. However, neighbours with a
zero-length Voronoi edges and neighbours with Delaunay connectors crossing Voronoi edges not
associated with that bond are removed from the list of neighbours. This leaves the ring of caging
particles to have only 5 neighbours instead of 6.

Particle Site 2 3 4 5 6 7

Monovacancies
Hexagonal pq6q

Zero 0.7408 0.7408 0.7408 0.7408 0.7408 0.7408
One 0.7652 0.7652 0.7652 0.7652 0.7652 0.7652
Two 0.5768 0.7652 0.7652 0.7652 0.5768

Square pq4q
Zero 0.375 0.375 0.375 0.375 0.375 0.375
One 0.4591 0.4591 0.4591 0.4591 0.4591 0.4591
Two 0.5948 0.4591 0.4591 0.4590 0.5948

Table 5.2: Absolute (non-normalized) local bond order parameter pq`q with symmetry ` cor-
responding to each particle within the configuration shown in Figure 5.5. See Eqn. 4.9 for
calculation details.

One method we propose to detect point defects is to look at the bond order parameter of
neighbouring particles. One hypothesis is that since a particle was missing, the BOP of nearest
neighbours around the point defect should have a different value than q6 for a hexagonal lattice.
Table 5.2 outlines the non-normalized values of the local bond order parameter for each particle
position in the configurations outlined in Figure 5.5. What can be seen is that neighbouring
particles have local bond order values which change as a function of neighbours. In the case of
monovacancies, the neighbour particles change from having six coordination neighbours to five.
Routines that calculate the bond order using a fixed cutoff radius for neighbour definition are
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unable to differentiate this subtlety since the monovacancy is neglected as a neighbour and the
hexagonal arrangement of neighbours surrounding the particle dominates the calculation.

When solved using the weighted sides of the Voronoi tile, the value for q6 around the mono-
vacancy actually increases above the value for the hexagonal configuration. The bond order
parameter in 2D has an expectation value of qhex6 “ 0.7408 for particles in a triangular lattice
(see Chapter 4.4.3 for all expectation values). However, in the case when the central particle is
removed, the bond order parameter becomes qmono

6 “ 0.7652. This is surprising since a higher
value of BOP usually implies a more crystalline configuration. The weighting of angles between
neighbours using the Voronoi tile edges creates a bias toward neighbouring sites, manifesting
as a long sided tile where the monovacancy is. Similarly, the particles on opposite sides of the
point defects have an edge size equal to zero which removes their influence on the bond or-
der calculation. Point defects studied using the cut-off radius definition of neighbours resulted
in non-detection of the vacancies, giving local bond order equal to the hexagonal expectation
q6 “ qhex6 . When two point defects are removed in series, the local bond order of neighbours at
the centre points between monovacancies is reduced by the removal of Voronoi tile edges while
the outer neighbours continue to show this heightened value of qmono

6 .
In conclusion, the Voronoi weighted bond order parameter may be a possible way to determine

if monovacancies are contained in a configuration. This can be done by determining if the particles
which have local q6 with a value higher than one expected for hexagonal patterns with a absolute
value of qmono

6 “ 0.7652. When using the normalized version of the bond order is considered, the
monovacancy caging particles can be identified with a q6 value above one: pqmono

6 {qhex6 “ 1.033q
In the case of a singular monovacancy point defect, the number of particles with this higher
bonder order should be six.

5.6 Publication: “Reproducing morphologies of
disorderly self-assembling planar molecules with
static and dynamic simulation methods by matching
density” (Physica A - 2017)
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a b s t r a c t

Monte Carlo and molecular dynamics simulations are the two main numerical approaches
to modeling molecular self-assembly and ordering. Conceptually, however, each method
explores different paths through the thermodynamic landscape. Molecular dynamics
depends on the position and momentum terms. Monte Carlo is a static set, and thus the
momentum term is replaced with an energy term that is dependent on the volume and
entropy. Until now, it was unclear if a stochastic process of densifying particles would
have the same internal structure as morphologies produced from classical mechanics.
This paper provides a systematic (i.e., statistical) analysis of the outcomes of 4032
simulations for hard-core circular objects as a function of the number of molecules and the
boundary conditions. Structural classification of the resultant ensembles (averaged pair
correlation function, bond-order parameter, translational order parameter, and Voronoi
diagrams) shows that stochastic and dynamic approaches do not alter the morphology
of the steric molecules. We conclude that when the probability density of covering area
fractions are matched, the ensembles produced from the two methods will show the
same level of structural disorder and positional patterns. The resultant morphology from
both models, therefore, is not a product of dynamic unrest, but that of the relaxation
of entropic frustration from macromolecular crowding. Although statistically the two
methods produce similar configurations, nuances arise from the static and dynamic nature
of modeling. As a result, Monte Carlo is slightly better suited to modeling systems when
the desired morphology is represented by a metastable state; molecular dynamics on the
other hand is more suited to finding defects that can arise in morphologies. Regardless, a
fixed density will result in similar morphologies from both techniques, driven by similar
configurational entropy.
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1. Introduction

The control of supramolecular self-assembly and morphology, especially of donor–acceptor pairs, is a key feature
of molecular electronics [1]. The optimized movement of charge in such systems is heavily influenced by molecular
organization and morphology [2–5]. The assembly of molecules into the desired ordered and continuous phases, however,
poses a significant challenge. Predictive modeling of the phase diagram of possible supramolecular architectures is a critical
tool in developing the next generation of device structures [6–8].

The interplay between molecule–substrate and intramolecular interactions yielding various morphologies are most
complex in the first monolayer on the substrate surface. As such the molecular tiling of a single layer of planar molecules
is the focus of significant interest in modeling to predict supramolecular organization. Both molecular dynamics [9–11]
and Monte Carlo [10,12,13] approaches have been successful in predicting molecular tiling patterns for a variety of planar
molecules. When these two approaches are used to model similar interaction potentials and planar environments, the final
properties and final states are often taken as equivalent. The conceptual basis for each method is, however, very different.
Monte Carlo (MC) simulations describe the structure of the systemby stochastically yet statically sampling the configuration
space. This is done by reorganizing molecules (displacing and/or rotating) to minimize an energy function under certain
acceptance criterion for a fixed number of molecules and fixed volume (canonical ensemble). Molecular dynamics (MD), on
the other hand, describes the time evolution of all the molecules in a deterministic way by solving dynamical equations of
motion until the system reaches equilibrium.

Although it has been normally assumed that both methods provide equivalent static properties, to the best of our
knowledge, a systematic analysis for statistically comparing these methods has yet to be explored. A comparison between
MC and MD simulations cannot be based solely on fixing the same simulation conditions across methods. The Hamiltonian
of each method is substantially different. Molecular dynamics depends on the position and momentum terms. Monte Carlo
is a static set, and thus the momentum term is replaced with an energy term that is dependent on the volume and entropy.
Due to their unique implementations of the initial parameters (e.g. the densification rate, molecule shape and number, or
interaction), building sets of reproducible results from MC and MD is an involved process resting on the understanding of
how the parameters can influence the production of states. Instead of the initial state being fixed, we explored systems
where in which the final outcomes are the same. If the structural characteristics of these configurations are the same, then
the morphology is not a product of dynamic unrest, but that of the relaxation of entropic frustration from macromolecular
crowding.

The supramolecular patterns that arise from the self-assembly of molecules are the consequence of a wide variety of
interactions which are possible in semiconducting organic molecular assemblies. In any simulation approach, there are
many possible interaction potentials that can be chosen to model molecular behavior [14]. The inclusion of each additional
potential will fundamentally change the morphology that is produced by the simulation, and increase the complexity of
comparison across approaches [15].

The simplest implementation for a potential that represents the cooperativity of planar molecules on substrates is the
steric interaction. In the same way the Ising model of a two-state ferromagnet is the simplest one used to describe phase
transitions [16–19], this potential is the simplest that describes the self-organization of planar molecules, based on the
basic principle of the lattice gas. The microstates of the lattice gas are occupied lattice points that are restricted to only
having one particle. These occupied sites are excluded from the total available volume for which any particle canmove into.
The entropy can then be calculated from the multiplicity of all occupied lattice points. Sometimes denoted as the excluded
volume interaction or hard-core potential, this steric interaction therefore excludes all complex interactions, leaving only the
entropic description of the system to determine the energy. Entropically driven self-assembly refers to the rearrangement
of molecules resulting from the relaxation of entropic frustration imposed by reducing the available free volume [20,21].

Entropy has been seen to drive phase behavior as rich and complex as that seen in enthalpy driven systems [22].
Though entropy driven control of morphology is not a new concept [23], pathways to exploiting entropic control for large
aromatic ⇡-systems [24] or fullerenes [25,26] are an emerging direction in morphology control. Fullerene miscibility, a key
issue for bulk heterojunctions, is often described by such excluded volume potentials [27,28,26]. For planar systems, the
subtle interplay between entropy and energy driven by the steric interactions have been exploited to produce switchable
supramolecular structures of naphthalenediimides [21] and arylene ethylene macromolecules [29]. Steric interactions also
played a key role in the amplification of a chiral morphology in trioctyl-functionalized triazatriangulenium molecules [30].
Though limiting the complexity in the description of the intermolecular potential focuses the comparison to the simulation
methods representing the morphology, these entropically driven systems are also of technological interest in morphology
control.

As structural order is the main property of interest when comparing configurations, a further necessary simplification
is to focus on monodispersed circular shapes for the molecules. By simplifying the shape of the molecule to a circle, it is
possible to gauge the resulting localized structures against themost ordered state of disks. These patterns are generally well
characterized and freely available for comparison across a variety of system sizes [31]. One system of particular interest
for organic electronics that can be described by such circular excluded volume approximations are buckminsterfullerenes
(C60) [32]. Other non-covalently bonded macromolecules, such as micelles or colloids [33], are also well described by
such approximations. Particularly in a monolayer, these systems resemble mono-dispersed circular disks, with weak steric
interactions.
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For this study, dense polycrystalline and disordered states were purposely sampled for the comparison for two main
reasons. Firstly, such systems closely resemble the morphological distributions of molecules in devices. Secondarily,
disordered systems provide a large basis of different configurations, rather than a limited set of crystalline packings. This
allows a greater flexibility in drawing information about how initial conditions influence the outcomes in each simulation
method, and gives more confidence in the reproducibility of the comparison. However, in general, it is more difficult to
identify and classify disorder within morphology, rather than recognizing order. As such, we utilize a variety of analysis
metrics and known states to benchmark structural order between the two simulation methods.

The reliability of these metrics allows us to judge to what extent systems have structural/physical properties that are
similar and reproducible across various systems sizes and boundary conditions. Practices of reproducibility and reliability
are important notions to consider within the realm of computational science, especially when dealing with different
approaches to simulations [34–38]. These allow for transparency, re-use, and sharing of approaches among different
disciplines. Simulation outcomes also often depend on technical choices (random-number generation, overlap detection,
integration of the equations ofmotions, for instance), thusmaking available the information about data collection andmodel
implementation [39] is vital for reproducibility. On the other hand, simulation outcomes and comparisons across methods
need to be as independent as possible of idiosyncratic factors (e.g., unintentional bias on the selection of the outcomes) [40].
We addressed the latter by following a statistical approach to the comparison between MC and EDMD for the systems of
interest, that is, by producing a large number of runs from each method for a given set of simulation parameters. To address
the former, in the spirit of transparency, the computational parameters and methods are accessible along with the full raw
data, as described in SI:Sec(A,B).

The layout of the rest of the paper is as follows: In Section 2.1 we briefly present the details of Monte Carlo and
event-driven molecular dynamics of planar steric disks. Bulk systems are investigated in Section 3 where the different
structural functions used to compare the simulation approaches, i.e., covering area fraction, pair correlation function, bond
and translational order parameters, and Voronoi cells are introduced. Section 4.1 is devoted to finite systems in containers
with hard squarewalls. In such systems, the analysis tools used for bulk systems become inaccurate due to boundary effects,
so we explore enumeration of expected microstates by shape-matching the resulting patterns produced from positions of
molecular centroids. We close the paper with a discussion of observed differences between methods and a summary of the
structural order metrics within the prospect of repeatable results in Section 5.

2. Method

2.1. Simulation approaches: similarities and fundamental differences

In our systems for the purposes of this paper, themolecules thatwe are interested inmodeling are represented by circular
steric objects. One possible approach when describing the self-organization of steric objects is event-driven molecular
dynamics (EDMD) [41–46], which is often denoted as ‘‘Lubachevsky–Stillinger’’ molecular dynamics, named after the
authors. Another approach uses Monte Carlo methods (MC) [47–49] to simulate molecules. The approach to representing
these molecules are slightly different yet important. Event driven molecular dynamics uses perfectly circular particles
(excluded volume point particles) that have no angular momentum (spin). To approximate molecules, MC uses rasterized
polygons that can freely rotate. To avoid confusion, throughout the manuscript, if the MD method is what is solely being
described, EDMD objects are referred to as particles. If it is MC, objects are referred to as polygons. For all references to MC
and EDMD at the same time, simulation objects are referred to as the more generic term: molecules or objects.

Both MC and EDMD approaches use a similar packing directive for objects to achieve an equilibrium configuration but
vary in the approach towards the displacement of objects. Full details on both methods can be found in the supporting
information (SI:Sec(B)). Briefly, objects start off dilute within the square simulation area, and then are allowed to self-
assemble under densification. Instead of reducing the simulation area while holding a fixed object size, the alternative
approach is to inflate the objects [50] in a fixed reference frame. In this way, the shape and center of mass (centroids)
of all objects are mapped into a unit simulation box.

It is important to stress here that a main difference between schemes is how the objects move between densification
steps. The behavior for EDMD is outlined in Fig. 1(b) where the three small light gray disks inflate (1) and collide, causing
their trajectories to change (emphasized by the red dotted lines (2)). The particle at (4) continues uninterrupted during this
event. The inflation rate for this event is dependent on the speeds of trajectories from the colliding molecules. If the speeds
are lower, it takes longer for the particles to meet and thus will allow for more expansion between events. As the particles
become denser, they will encounter more collisions. The inflation between event cycles soon becomes negligible as these
collisions become more frequent, causing particles to converge to a densified final size where the method eventually halts.

Instead of deterministic trajectories, the Monte Carlo method displaces polygons randomly, where a MC trial move
resulting in an unallowable amount of overlap is analogous to a collision event. In Fig. 1(a), the three small light-gray
polygons (2) are discretely inflated and randomly displaced (outlined by the blue dotted lines (2)). When an overlap is
encountered (red area in the center) the move is rejected and will undergo another MC trial move. If all positions are
accepted (3), the polygons are discretely inflated again and the procedure repeats. Again, the polygon at (4) is one that
does not encounter an event during this simulation step. The program halts after the set of all attempted moves for all
simulated molecules are rejected. Note that the molecules in Fig. 1(a) are exaggerated to emphasize the polygonal nature

Ph.D. Thesis - Matt Bumstead - McMaster University - Engineering Physics 54/129



304 M. Bumstead et al. / Physica A 471 (2017) 301–314

Fig. 1. (Color online) Schematics of (a) Monte Carlo (MC) and (b) event-driven molecular dynamics (EDMD) simulations on 3 molecules. Molecules start
off dilute (1), and expand until an event is encountered (2). At this event a new random position is sampled (MC) or new trajectories are calculated (EDMD).
In this case, both methods produce accepted configurations (3). The molecule at (4) is one that does not encounter a collision event during the simulation
step. (c) Schematics of simulation growth rates as a function of number of simulation steps. Event-driven molecular dynamics (red line) expand rapidly
during the initial part of the simulation swiftly converging as molecules become large enough to encounter many collisions during the same inflation rate.
Monte Carlo molecules expand at a constant rate at every simulation step (blue line). Note: Molecules rendered in MC are exaggerated to emphasize their
polygonal nature.

of the representation of objects in MC. In the simulations described in subsequent sections, molecules were rendered as
tetracontagons (40 sides) or hectagons (100 sides), which are indistinguishable from analytic circles [7] (see SI:Sec(H) for
details).

Final states of these simulations are often assumed to be similar. However, the path taken through the thermodynamic
states is quite different. In order to highlight the fundamental differences between MC and EDMD simulations of steric
objects, however, it is useful to consider a typical densification cycle in both approaches under the same object inflation
rate. In EDMD, the particles grow continuously between collisions. This physical phenomena translates into a non-constant
rate of compression. By contrast, in MC simulations, polygons change size by a discrete inflation and only after all moves
have been accepted (under the appropriate weight), the inflation procedure repeats. This discrete step mimics a system
under constant compression and since the stochastic system has no internal force structure, the constant compression is a
constant rate of volume change. This fundamental difference is reflected in the two different effective densification curves,
i.e., linearly for MC and exponentially for EDMD (see Fig. 1(c)). This is a very delicate issue in comparing approaches, as the
densification rate is a key parameter in both MC and EDMD simulations. It is often the main control of the state of order in
the equilibrium structure. Generally speaking, the faster the densification rate is, the less crystalline the outcome becomes,
and larger the probability of the system will be caught in a metastable state where simulations can become unstable.

2.2. Comparing large number of simulations will remove sampling bias

Comparing different simulation runs of steric molecules stemming from either different initial conditions or between
methods is frequently performed by comparing one or a few simulation outcomes [51]. Possible unintentional selection bias
from such an approach can be overcome by instead adopting a statistical approach, where a large number of copies under
the same initial conditions are examined [7,40]. This can allow determination of, for example, protocols that preferentially
determine metastable states in the system, and provide an unbiased approach to comparing different simulation protocols.
The set of all initial parameters required for the simulation to uniquely generate an ensemble of configurations is what we
define as a protocol. All protocols used for the simulations discussed in the following sections can be found in the supporting
information (SI:Sec(B)).

Such a statistical approach allows for a comprehensive analysis of the way phase space is sampled under a particular
simulation protocol. However, a fully exhaustive enumeration of all possible microstates for a protocol may be impractical,
especiallywhen themost probable outcomes are of interest. Substantially comprehensive ensembleswill generate internally
reproducible morphologies, such that for the same protocol, the same configuration has a chance to be sampled more than
once. When there is variance between outcomes within the ensemble, the resulting morphologies can be reduced into a
set of averaged localized attributes to allow for the global comparison between simulation methods and protocols. In the
following sections, single configurations are presented to illustrate the local structural descriptions and the related ensemble
averaged parameter are used in the comparison of simulation approaches.

2.3. Making statistical ensembles of dense polycrystalline disordered configurations

Wehave chosen as a statistical ensemble size the smallest one forwhich the probability distribution of themolecular area
fraction (i.e. the fraction of simulation area covered by molecules, �) does not change significantly with further increases
in ensemble size. Additionally, the ensemble size should be high enough to find low probability configurations without
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Fig. 2. (Color online) Comparison of different metrics for bulk systems (1024 molecules) with periodic boundary conditions. (a) Probability density
functions for the covering area fractions � of the ensembles of 4032 configurations. (b) Ensemble-averaged pair correlation function (offset for clarity).
Gridlines indicate peak positions of hexagonal close-packed disks. In each case, the difference spectrum is plotted on top along with the root mean square
difference. (c) Order map, i.e., translational order parameter t as a function of normalized average local bond-order parameter hq6i/qhex6 .

having to over-sample the most probable outcomes. For MC, ensembles with 4032 (full runs) configurations satisfied these
conditions [7] and thus, the same number was set for both methods.

In order to provide a stringent comparison between the twomethods, we have chosen to focus on protocols that produce
very dense yet polycrystalline configurations. In the case of MC, we have achieved this by implementing a biased approach
to MC simulations where k moves per particle are tried in an effort to increase the acceptance rate [52–55]. We found this
protocol combined with a constant inflation rate at each step favored dense disordered states [7]. These protocols can be
transferred between bulk and confined systems to generate the desired configurations [7]. EDMD simulations structures
are directed by controlling the expansion rate, number of events per cycle, and the internal pressure. Dense disordered
configurations were achieved by sequentially generating multiple ensembles with slightly varying initial conditions. The
probability of area fractionwas compared to theMC ensemble distribution at each iteration of protocols. The set of protocols
that produced the lowest difference were kept and set as the next input for slight variation. This fractal-like protocol search
allowed for the unbiased convergence of similarly dense configurations from both simulation techniques. However, there
is no guarantee that the ensemble we report on will exactly match; only that is the best converged. It is possible that these
could be a local minimum in protocol space.

3. Structural characterization of bulk systems of planar molecules

3.1. Determining a qualitative set of disordered configurations for comparison by matching the probability density functions of
the area fraction

Bulk systems are most commonly explored by setting periodic boundary conditions on the simulation box to avoid
boundary effects. Statistical ensembles of systems with 1024 molecules were simulated using both EDMD [45] and MC
methods. To determine which protocols would be suitable for comparison across simulation methods, the surface coverage
of molecules (�) was the initial criterion.

� = N
A�
Abox

. (1)

The parameter �, also referred to as the area fraction, represents the fraction of simulation area (Abox) covered by N
objects having area (A�), within the unit box of area Abox = (1 ⇥ 1) (see Fig. 1(a) and (b)).

The area fractions are extracted from each configuration in the ensemble and used to build probability density function
(PDF) distributions, denoted as f (�). These are shown in Fig. 2(a). In order for the configurations from each method to
be comparable, as described above, we focus our results on producing ensembles with similar probabilities of area fraction.
Optimized protocols were those that produced the smallest deviation in the PDF for the full ensemble (4032 configurations).

As can be seen, the two distributions overlay almost entirely and are roughly Gaussian in shape, suggesting that both
simulation techniques are producing similarly dense patterns at the same probability. The mean of these distributions are
approximately � = 0.854. This density is comparable to systems of planar colloids in the hexatic phase [56]. Table 1 shows
that the ensemble averaged mean area fraction and standard deviation are identical to three significant figures. However,
slight differences remain. The top inset of this graph shows the difference spectrum between the two PDFs,

(1PDF) ⇡ kf (�EDMD) � f (�MC)k.
A quantitative figure of merit, �RMS, can be derived based on a root mean squares analysis of the residual function when

one distribution is subtracted from the other. Exact similarity would provide an �RMS = 0. For bulk systems, this difference
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Table 1

Ensemble average values (over 4032 bulk configurations) of the covering area fraction �, the first minimum of the pair
correlation function g(r)1min, the normalized average local bond order parameter for hexagonal and square symmetries
hq6i/qhex6 and hq4i/qsq4 , the mean translational order parameter hti, and percentage of Voronoi areas with deviation under
5%, (A5%

vor ). Systems with 1024 molecules with periodic boundary conditions where used to simulate the bulk. In each case
the uncertainty is given by the standard deviation.

h�i hq6i/qhex6 hq4i/qsq4 hg(r)1mini hti A5%
vor

MC 0.854 ± 0.004 0.9046 ± 0.0023 0.4597 ± 0.0002 1.43 ± 0.04 0.116 ± 0.005 57.7%
EDMD 0.854 ± 0.004 0.8846 ± 0.0025 0.4611 ± 0.0002 1.44 ± 0.04 0.110 ± 0.005 51.9%

metric, calculated between optimized protocols forMC and EDMD,was�RMS = 4.93. However, taking the rootmean square
of the difference will over-estimate the error, allowing for sections with more deviation to become pronounced.

As the probability density function is by definition the derivative of the cumulative distribution function (CDF), with a
probability of one over all packing fractions, the CDF for a range of� can also be utilized as ametric of comparison. In the case
where the PDF’s are completely dissimilar, the cumulative probability would be 2. For those that are completely overlapped,
the value would be expected to be 0. Integrating over the residuals, 1PDF, approximates the difference in CDF.

To approximate this residual function, we integrate the root mean square difference over the range of � similar to a full
width half max method, where in residual spectrum difference �RMS is the height:

(1PDF)
Z

@� ⇡ (�RMS)(�max � �min).

For our optimized protocols for dense, polycrystalline, disordered configurations, this yielded

(4.93)(�max � �min) ⇡ 0.192.

This value was deemed to be sufficiently low to justify the conclusion that these ensembles are representative of
configurations with statistically similar densities and have a broad distribution of possible outcomes.

3.2. Quantifying the local structure of configurations with varying density using the pair correlation function, translational &
bond-order parameters, and Voronoi tessellations

Having established a suitable ensemble of configurations for comparison, the configurations themselves can now be
compared. For this study, dense polycrystalline, disordered states were purposely sampled to draw information on how
protocols influence the outcomes in each simulation method. With protocols aimed to produce crystalline patterns, the
hexagonally close-packed state (triangular lattice) is the expected configuration of highly ordered circular disks in the
bulk. This limits the comparison between simulation approaches to a very small subset of configurations. If simulations,
on the other hand, produce disordered systems, there are a wealth of configurations to choose from upon which to base a
comparison. Reproducible and reliable metrics for disorder are therefore necessary to compare different approaches.

The PDFs of the area fractions described in the previous section offer a coarse view of the overall outcomes for the
structure as predicted from MC and EDMD simulations. A more detailed view of local and long-range ordering is furnished
by the pair correlation function g(r)which provides the probability to find anothermolecule within a certain distance r . The
description used in this analysis comes from the spatial distribution of Ripley’s K function (described in SI:Sec(C)), which is
the cumulative pair separation of all neighbors. The pair correlation function is the distance normalized spatial derivative
of Ripley’s K function, [57,58].

Fig. 2(b) shows the (4032 full runs) ensemble average of the g(r)’s. The one forMChas been offset for clarity and distances
were normalized by the diameter of the molecules to allow for direct comparison. As with the PDFs of the area fractions, a
more quantitative figure of merit is given by the RMS of the differences between the MC and EDMD predicted g(r)’s. Short
and long range order are quite similar among configurations in the ensembles as indicated by the peak positions showing
only slight deviation and the number of the peaks remaining constant between methods while the distance is increased.
When applying the same root mean square metric to these functions, the1g(r)RMS = 0.05 emphasizing that there is sparse
deviation.

The g(r) function can be used to define the translational order parameter t [59,60],

t =
Z sc

0
|g(s) � 1| ds, (2)

where s = r/d is a dimensionless distance based on the diameter of the molecules d. In this case, sc was taken to be six
times the object diameter. For polycrystalline disordered systems, this maximumdistance incorporates themost prominent
components of the g(r) while neglecting uncorrelated long-range structural order. For a completely uncorrelated system,
g(s) = 1, and thus t = 0. For systems with long-range order, g(s) will oscillate over large distances rendering t large as a
consequence. The parameter t quantifies the pair-distance distribution, that is, the preferential molecular separations [61].

A complementary account of the local structures can be obtained by analyzing the local orientational order of the
molecules with respect to its ‘‘nearest neighbors’’ [62]. Among the many different ways to define nearest neighbors, here
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Fig. 3. (Color online) Most probable configurations as predicted by (a) Monte Carlo and (b) event driven molecular dynamics for 1024 molecules with
periodic boundary conditions. Each molecule is colored by the value of its normalized local bond-order parameter, q6(i)/qhex6 . (c) Normalized average local
bond-order hq6i/qhex6 as a function of covering area fractions �.

we shall considered nearest neighbors those molecules within a fixed cut off radius, which is uniquely defined for each
microstate in the statistical ensemble by solving the first minimum of the pair correlation function. In this way, we arrive
to a local bond-order parameter q`(i) assigned to each molecule i defined as follows [63]:

q`(i) =
"

4⇡
2l + 1

X̀

m=�`

|Y`m|2
#1/2

, (3)

where Y`m is spherical harmonic function with degree ` and orderm. A configurational average local bond-order parameter
can be defined as:

hq`i = 1
N

NX

i=1

q`(i), (4)

where N is the number of molecules in the simulation box. Limiting value of Eq. (4) occurs when themolecules are arranged
in the hexagonal (qhex6 = 0.741) lattice. Other lattice configurations can be classified in a similar way using the appropriate
symmetry parameter i.e. a square lattice would have a qsq4 = 0.829.

Projecting this information into the t�qhex6 plane provides a useful and systematic approach to study the structural order
in partially disordered systems. This representation of both orientational and translational order is known as an ‘‘order
map’’ [64]. Fig. 2(c) shows the order map of the full 4032-runs for bulk systems (1024 molecules in a box with periodic
boundary conditions) for both MC and EDMD. It is interesting to observe that both MC and EDMD overlap over large part
of the map, with MC displaced towards larger t and qhex6 values, i.e., configurations are slightly more ordered than those
coming from EDMD.

It can also be instructive to illustrate how the local bond-order parameter can manifest at the molecular level within
microstates. Fig. 3 shows two of the ‘‘most probable’’ configurations, i.e., two microstates at the peak of the PDF of the area
fractions for both MC and EDMD simulations. Each molecule i has been colored relative to its local bond-order parameter
q6(i). This visualization method highlights grain boundaries between crystallites, appearing as large white domains while
boundaries show up as darker red molecules. Expanding the bond-order parameter to the level of the ensemble removes
unintentional confirmation bias when comparing simulation methods. Each configuration provides its own unique value,
giving us a range of values for molecular orientational order. Instead of just one value calculated for a single configuration,
this distribution is what is characterized to gauge the similarity between methods. In Fig. 3(c), the local bond-order
parameter is averaged and normalized for each configuration then plotted against the covering area fraction. The nature
of discretized inflation of the MC method can be clearly seen as stripes along constant density �. For configurations with
the same density, the MC method tends towards patterns that have more hexagonal order. The lower q6 for EDMD can be
interpreted at the microstatelevel as a decrease in hexagonal order due to more stacking defects in-between and internally
to crystallite regions. These can be seen in the center of Fig. 3(b).

Voronoi tessellations provide another efficient and powerful way to analyze the local structure of each molecule as a
bridge to understand themacroscopic properties of the system. AVoronoi tessellation orVoronoi diagramcanbe constructed
for a set of points (the center of mass for each molecule) with a cell area of Avor. Voronoi cell areas represent the amount
of free volume available for each molecule to occupy. In particular, it is useful to consider the deviation of Avor from the
expected area of a hexagonal cell Ahex = (2

p
3)r (corresponding to the Voronoi cell of hexagonally closed-packed disks of

lattice constant 2r). The Voronoi area associated with a configuration forms the lowest free volume state for objects. The

Ph.D. Thesis - Matt Bumstead - McMaster University - Engineering Physics 58/129



308 M. Bumstead et al. / Physica A 471 (2017) 301–314

Fig. 4. (Color online) Sample Voronoi tessellation for bulk systems (1024 molecules) with periodic boundary conditions. (a) Voronoi tessellation of the
configuration in Fig. 3 corresponding to having the most probable density in the ensemble. Each cell is colored by percent deviation off the expected cell
produced from hexagonal packing. (b) Histograms of Voronoi deviations for the entire ensemble of 4032 configurations.

higher this deviation becomes, the larger the distance between neighbors, and thus, the greater likelihood that themolecule
is in a disordered state.

Fig. 4(a) and (b) show the Voronoi tessellations of the configurations in Fig. 3(a) and (b), respectively. The color map
is based on the percent deviation from the hexagonally close-packed state. Histograms for the entire ensemble are shown
in Fig. 4(c) for both MC and EDMD simulations. Each simulation method contains over half of their molecules within 5%
deviation from hexagonal configurations, dropping off by about half with each sequential binning of +5%. Again, MC is
shown to sample higher crystalline states more often than EDMD, for the same reason, due to stabilized defects within the
configuration that would be avoided with trial moves approach of MC.

Overall, structural signatures of bulk systems are similar over the range of these four separate methods of measuring
configurational order. This evidence suggests that a stochastic system under constant rate of compression will have static
patterns that are structurally similar to equilibrium states of dynamical systems at the same density. This underscores the
importance of the entropy in driving the realized morphologies.

4. Structural characterization of planar disks in containers with hard walls

4.1. Differences between static and dynamical sampling of confined dense disordered patterns

Extended systems are ideal ground to understand structural phenomena due to the simplicity in the treatment (i.e., there
is periodicity in all directions). In reality, however, all systems have boundaries and a finite number of molecules. Surface
and finite-size effects add new dimensions to the structural analysis, as most of the order metrics require modifications to
account for the lack of translational symmetry in one ormore directions. Confinement, that is, the interplay between surface
and finite size, also brings new possibilities to direct self-assembly by stabilizing unique configurations that otherwise are
inaccessible to bulk systems. Thus, comparing the equilibrium structures predicted byMonte Carlo andmolecular dynamics
under confinement provides another avenue for benchmarking the simulation approaches.

Such cases are also interesting from an electronic device point of view. Under confinement effects, the walls impose
anisotropic frustration between molecules, which can be utilized to direct the self-assembly of planar molecules [65].
Confinement is a critically important route to controlling morphology in a variety of organic systems [66–68]. Particularly
for organic transistors, the channel can have length scales on the order of a few molecular diameters [68], and the
optimal morphologies are heavily influenced by confining effects [69]. Predicting these configurations from simulation and
optimizing the channel widths to ones which result in highly desirable patterns can be an effective strategy to improve
efficiency for new electronic devices.

As in the case of periodic boundaries, an exploration of protocol space to determine suitable ensembles is important to
have a meaningful comparison. Dense polycrystalline disordered states in confined systems are not a trivial case to sample.
The competition between the frustration from the symmetry of the confining container and the objects’ own symmetry
yields a wealth of crystalline states. Previous work has shown that dense disordered states can be purposely sampled with
the Monte Carlo method by holding protocols constant from bulk systems [7]. The same parameters used for bulk periodic
systems can be transferred directly to confined systems with a finite number of molecules and still produce disordered
states. However, it is unclear if EDMD simulations can similarly transfer protocol parameters to confined systems with low
particle numbers. To examine this, the parameter space of EDMD (expansion rate, number of events, and pressure) at each
system size were explored and the resultant PDFs of the area fraction compared against the previously derivedMC states. To
minimize the deviation from the PDF of area fraction for MC, as was described for the bulk systems, the initial conditions for
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Fig. 5. (Color online) Probability density histogram profiles of covering area fraction � for 16, 25, 36, 49, 64, 81 circular molecules inside hard walls
using ensembles of 4032 configurations. The green dashed line is included to represent the covering ratio of the square lattice configuration at � = ⇡/4.
Configurations with the highest density are included above showing that the N ⇥ N lattice is not the most dense in systems of N > 36. Below are Point
Cloud maps to show the collective result of 4032 simulations by plotting all molecular centroids together. (top/blue) Monte Carlo, (bottom/red) event-
driven molecular dynamics.

EDMD needed to be modified (SI:Sec(B,F)). This modification allows for the systems to evolve entropically towards a set of
configurations that possess the same density and further emphasizes the complexity and non-trivial nature of transferring
simulation protocols, even within the same method.

Metastable states rely on the internal pressure being equal in magnitude to the pressure imposed by the container.
For the EDMD method, pressure is dependent on the trajectories of the particles. One simulation pattern might provide
a force balance though contact networks of the particles. However, if we move the simulation forward with another event
step, a loose particle (rattler) can traverse the box during that time and provide the necessary momentum to break the
global jammed state. This then cascades into a transition to a new metastable state. After a sufficient amount of time, this
pattern tends towards its densest state. With MC, any rattlers in the metastable state will not transfer momentum. Since
MC simulations sample static states, there is effectively no pressure from the molecules and container. This is one of the
reasons that protocols can be easily transferred among simulation environments. Metastable states are commonly sampled
with Monte Carlo.

4.2. Using the density of confined microstates to quantify the probability of disordered morphologies

When a system is under confinement, the walls impose an anisotropic frustration between molecules, which can
disrupt the hexagonal close packing of bulk systems [7]. This competition between the symmetry of the container and the
excluded-volume frustration of molecules in can be utilized for directing self-assembled systems, similar to that observed
experimentally [68,69].

Wehave compared EDMDandMC simulations for confined systems on square containerswith n⇥nnumber ofmolecules.
As with our previous work [7], the focus on n ⇥ n was deliberate, as was the focus on circular objects in square containers,
due to their tendency to form easily recognizable patterns under confinement [31]. As the order metrics used for extended
systems become less descriptive with increasing confinement, as described in Section 4.3, the use of systems with easily
recognizable patterns allows us to take advantage of real-space descriptions to classify disorder.

Fig. 5 shows a distribution chart of the area fraction probability histograms (cf. Fig. 2(a)) for a variety of system sizes. In
the case of confined systems, the mean and standard deviation of � are not enough to accurately describe the behavior of
molecular arrangement. Confinement imposes specific patterns which are in pressurized equilibrium with the container
(i.e. metastable). This causes a localized probability around the area fraction � of that metastable state as it becomes
frequently sampled. In Fig. 5, thickerwidths of these bins correlate to a higher probability of configurations at those densities.
This representation allows a gauge across ensembleswith varying numbersmolecules at a glance. The effects of confinement
result in the same net overall outcome such that Monte Carlo and event driven molecular dynamics can both be tuned to
generate disordered states for low numbers ofmolecules.While not exactly the same, there exists a high degree of similarity
in the distribution of probabilities. Both techniques have protocols that can produce a similar probability of configurations
of a given area fraction within an ensemble of 4032 runs (SI:Fig(3)).
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The expected densest patterns [31] are included in Fig. 5 along the top of the histograms, scaled to have the same
molecular diameter for easy comparison. Dotted horizontal lines connect the patterns to the area fraction associated with
it to highlight the place where these patterns are found in the probability distribution. For instance, in systems N  36, the
n ⇥ n lattice is a distinct state from all other patterns, and in fact, forms the densest possible configuration. The disordered
states are clearly separatemicrostateswith lower area fraction.When the system increasesN > 36, the correlation between
expected area fraction and the lattice microstate becomes blurred. The molecules have enough volume to rearrange into
states denser than the n⇥ n. As is well known and documented for circles under square confinement [31], these objects can
densify by re-positioning into non-trivial sections of hexagonal sub-patterns with disordered grain boundaries.

These highest density patterns are also a good benchmark to confirm if the chosen simulation method is accurately
modeling natural patterns. If these patterns are never sampled within an ensemble, then the protocol is not accurately
representing all possible physical states, and could be nonphysical. Both MC and EDMD are able to sample these expected
patterns using the optimized protocols.

4.3. The discontinuousmorphology in confined systems causes failures in structural classification using bulk techniques and forces
classifying individual configurations into equivalent patterns using shape-matching techniques

Most of the analytical tools described previously are not well suited to characterize the structure of finite systems under
confinement. Edge effects dominate as the number of molecules decreases. This poses a large problemwhen trying to define
neighbors to those molecules on the boundaries. For larger confined systems, this error can be reduced by neglecting those
in contact with the boundary. However, as the number of objects in confined systems decreases, this error will dominate.

In the case of the pair correlation function, the issue comes from the assumption of molecular positioning outside the
simulation box. In periodic boundaries, each molecule can be moved by the periodic translational basis vectors as many
times as needed. This approximation implies that density outside the simulation space is the same as inside. However, in
confined systems, there are nomolecules outside the boundary. As the distance around themolecule increases, a significant
portion of the area sampled by the pair correlation function will lie outside the simulation box, causing large errors. Because
of this, the pair correlation function is only accurate to the first diameter (or less if the molecule is in a corner). This issue
translates over to the translational-order parameter, as it is directly related to the g(r). The bond-order parameter suffers
from the same shortcoming as well. Molecules that populate the container walls will only have neighbors inside the box.
Highly ordered systems of finite size can be misclassified with a lower average local bond order parameter to the system,
attributed solely to the edge effects.

However, small confined molecular systems have the advantage of allowing direct real-space methods to characterize
their state of ordering. The presence of square walls introduce a reference frame against which molecule positions can be
measured. In the case of periodic boundaries, rotational and translational symmetry prevent such an absolute reference
frame from being utilized between configurations in the ensemble, requiring the more probabilistic approach to structure
described previously.

We have applied a method of shape matching to classify and collect the different patterns appearing in the statistical
ensembles [70,71]. A point-matching descriptor using the center positions of the molecules were used to partition the data
into parcels, that is, all microstates consistent with the same pattern. We deliberately chose the set of n ⇥ nmolecules due
to their tendency to form n ⇥ n square lattices. The square lattice is a configuration that can be pattern matched with the
most accuracy, since it is exactly the same under all symmetry operations. This sets the confidence interval for the precision
of the pattern matching routine.

We considered three primary cases for the comparison ofMC and EDMD approaches, as expressed in Table 2: the densest
patterns as predicted by literature [31], the n ⇥ n square lattice, and the most probable pattern. The parcel with the most
members can be considered as the most probable pattern. If the n ⇥ n configuration is the most probable, the table reports
the parcel size of the next most populous disordered state.

Across the board, we notice that molecular dynamics tends towards more densified states. In pattern matching the n⇥n
and densest configurations, MC consistently shows fewer counts. However, these expected states are consistently sampled,
albeit with low probability. Given thatMC ismore likely to yieldmetastable states for systems under confinement, sampling
of these states supports the notion that MC is accurately modeling realistic systems.

As the number of molecules increases so too does the configurational entropy associated with the ensemble. This results
in more variation between each outcome, where similarly dense patterns can have many different positional permutations.
Above (N � 49), the square lattice is overtaken by a new configuration as the most dense(cf. Fig. 5). Even though this lattice
is still an available static state, the probability of sampling it drops heavily. This phenomena is captured by both simulation
methods, where n ⇥ n configurations are virtually unsampled above (N � 49) (see Table 2). As the number of matched
states drop by increasing N , the most probable pattern sampled by each simulation method can also vary. In this case, both
methods will generate similar patterns but with different yields.

Each ensemble is comprised of dense disordered configurations. To remove unintentional bias of favoring onemicrostate
over any other, we combine the positions of all patterns together to show the confinement space most traversed by the
molecules. The centroids of all configurations in the ensemble can be plotted together to produce a point cloud map, i.e., a
visual description of all positions visited by every molecule in the ensemble of configurations. To focus solely on disordered
states, the n ⇥ n and/or most dense state patterns parceled are removed from this point cloud map.
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Table 2

Number of patterns classified from shape-matching routines using a tolerance similarity criteria of (0.975). Ensembles
contain 4032 dense disordered patterns confined in square container.

Pattern 4 ⇥ 4 5 ⇥ 5 6 ⇥ 6 7 ⇥ 7 8 ⇥ 8 9⇥ 9

MC Densest [31] 3157 1543 154 2 6 49
EDMD 3778 1683 380 5 247 193
MC n ⇥ n 3157 1543 154 0 0 0
EDMD 3778 1683 380 3 0 3
MC Most probable 231 475 165 121 41 56
EDMD (non n ⇥ n) 61 212 119 197 191 194

As can be seen in Fig. 5(c), not all the available space in the simulation box is sampled during the simulations. The excluded
volume of the molecule causes specific spaces to be physically forbidden (i.e. unable to come within one radius of the wall)
and leads to a similar type of geometric frustration of molecules in the interior. For all system sizes, the point clouds are
consistently similar for both simulation methods. Even though the most probable pattern can differ between simulations,
the global result of confinement remains constant between simulation methods.

5. Noticeable differences between simulation approaches and summary of statistics: are they really the same?

In order to systematically compare Monte Carlo and event driven molecular dynamics, in this study, we focused on a
simplified system of circular objects with hard-core potential interactions. Based on an analysis of ordermetrics in extended
systems of 1024molecules, and on positional classification of confined systems of up to 81 molecules, we can conclude that
when the probability density of covering area fractions arematched, the ensembles produced fromMC and EDMDwill show
the same level of structural disorder and positional patterns. Though they are based on a fundamentally different conceptual
basis – static vs dynamic – in a statistical large set of simulations, the overall outcomes are indeed similar. Though thismight
not be unexpected from the perspective of the central limit theorem, drawing an accurate comparison across methods
was not trivial, requiring careful selection of parameters, establishment of appropriate metrics, and examination of many
configurations.

Table 1 summarizes the values of the order metrics as extracted from the full set of 4032 configurations for both MC
and EDMD approaches. The global expectation values for all these parameters are within the variance, accurately predicting
that the systems will develop a mostly hexagonal close-packed configuration (q6 ⇡ 90% of a triangular lattice), with some
disordered grain boundaries that reduce the overall surface covering fraction (⇡95% density of a full dense triangular lattice
with no defects). Voronoi analysis also supports this claim. Both methods have just over half of all molecules possessing
Voronoi area deviation to within 5% of the hexagonal expectation value. The pair wise distances distributions of molecules
has an almost identical g(r), with a �RMS of only 0.05. Given the same density, MC slightly tends more towards organized
systems than EDMD, as seen by the ordermap in Fig. 2(c), and local bond order Fig. 3(c). However, there is still a large degree
of overlap between the two approaches which indicates similar structural signatures across methods.

Though all the parameters examined are quite similar for the two approaches, there is one difference in the observed
morphology that rests on the fundamental difference between the two approaches. There are specific morphologies that
arise from the EDMDmethod that are unseen in MC configurations. This is mainly in the form of monovacancies (i.e., point
defects) and stacking faults. This leads to a tendency to samplewith greater frequency slightlymore organized configurations
in extended bulk-like systems due to the lack of stabilized defects. In MC, random displacements will cause molecules to
move into free space, preventing the stabilization of this particular configuration. This results in a probability for less than
one defect in 4032 samples. In contrast, these are highly probable to find in EDMD, varying from zero to six point defects
in a single configuration. However, this lack of internal pressure, means that for confined systems, there is a tendency
to form less dense metastable states. One simulation pattern might provide a force balance through a contact networks
of particles. However, loose particles (rattlers) can traverse the box and transfer the necessary momentum to break the
global jammed state. This then cascades into a transition into a new metastable state. After a sufficient amount time, this
pattern tends towards its densest state. With MC, any rattlers in the metastable state will not transfer momentum. Since
MC simulations sample static states, there is effectively no pressure from the molecules and the container. This is one of the
reasons that protocols can be easily transferred among simulation environments. Therefore, Monte Carlo as an approach
is slightly better suited to modeling systems when the desired morphology is represented by a metastable state (i.e. low
probability morphologies that can be directed by manipulating the object); molecular dynamics on the other hand is more
suited to finding defects that can arise in morphologies.

For directed self-assembly of finite systems of molecules, Fig. 5 summarizes the similarities between the two approaches
in finding global outcomes. Though protocol parameters of bulk EDMD simulations could not be transferred to confined
systems, it was possible to find a suitable population of configurations for comparison through an examination of the
parameter space for EDMD.Once the probability density of area fractions arematched, the ensembles produced fromMCand
EDMD do show the same positional patterns in square confinement. Though the direct pattern matching yielded different
frequencies of a particular configuration (cf. Table 2) being sampled, the global effects were the same for both approaches.
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Occurrence of specific patterns can be low or hard to classify, but the structures of the point clouds indicate that all are
sampled within both ensembles. Additionally, after the molecular number goes above 36, there is a drop in the number
of n ⇥ n lattice configurations found. This can be explained by the frustration between the effects of confinement and the
self-assembly of the molecules favoring less free area. At this size, the competition between square and hexagonal patterns
manifests as additional disordered states that are more dense than n ⇥ n but less than the known densest pattern. In the
case of both MC and EDMD, this pattern all but disappears (3 and less per 4032) for molecule numbers greater than 49.

The discrepancy in the frequency of configurations in the most dense and most probable parcels in Table 2 between
MC and EDMD can have two possible explanations. One, as described above, is related to the dynamic nature of EDMD.
The collective vibration of particles that are very close allows for the simulation to explore the localized free area in a
relatively small amount of time. This allows the particles to slip into the densest states, which are easily classifiable. Another
is related to the polygonal nature of the circular renderings in MC. Sight deviations in the molecular centroids can have an
impact on the accuracy of the pattern matching routine. Minimizing the difference between the radius and apothem of
the regular polygon is critical in producing accurate positions for the centroids used to pattern match. In contrast, EDMD
objects are defined by an exact radius, which creates less variation between neighboring particle distances, simplifying their
classification. For confined MC simulations, 100-sided polygons are used to mimic circles. In bulk systems, where there is
much more computational stress due to the large number of molecules, a polygon of 40 sides was used. The covering area
fraction, in particular, was found to be sensitive to these differences [7]. While this difference was not significant for global
metrics (40-sided and 100-sided regular polygons will produce similar distributions of structural parameters g(r), q6, and
t), this was seen to affect the number of configurations assigned to particular parcels in the patternmatching algorithm (see
SI:Sec(H)). A combination of both effects could be magnifying the differences between individual configuration during the
comparison.

Such an effect also underscores the need to compare protocols and simulation methods on a statistical scale, rather than
at the limit of one or a few configurations. In general, the focus on a few patterns makes the comparison unreliable. By
scaling up to a statistical ensemble, unintentional selection bias is eliminated and the true similarities and differences are
highlighted.

A final general finding comparing the two approaches links back to the concept of reproducibility of simulation
results. Reliability and repeatability hinges on simulation stability. As noted previously, protocol parameters of bulk EDMD
simulations could not be transferred to confined systems and still produce dense disordered configurations. This can be
attributed to the growth rate. When the simulations have low-molecule numbers, particles can expand so rapidly that their
radius expands outside of the hard container. These overlaps cannot be resolved by repositioning of the particles along
their trajectories, and thus, the program can crash. On the other hand, the MC method is based on rejected moves. This
allows it to sample the same nonphysical states as static objects but continue after rejecting the move. This makes it much
easier to achieve a meaningfully large ensemble of configurations from MC than from EDMD, where the simulation has to
be restarted continuously or a high number set initially in the hopes that sufficient numbers are able to fully densify (in one
instance over 3 million configurations were started to achieve a set of 4032 configurations). However, this leads to another
caveat regarding computational resources. Computational time becomes important when dealing with large ensembles,
especially when the execution time for each method is quite different. Due to the stochastic nature of the MC method, it
will require many rejected trial moves before converging to a solution. Each random displacement requires the polygon
clipping routine to check over all other molecules in the simulation. This begins to stack quite heavily for bulk systems of
several thousands of molecules. Conversely, EDMD numerically integrates the deterministic equations of motion which is
much less computational work. We note here that to generate ensembles within a reasonable time, MC method needed to
be distributed amongmodern high performance computing centers, whereas EDMD could be generated on consumer grade
computers.

The major advantage of using MC lies in its ability to directly explore molecules with exceedingly complex geometric
descriptions (polygons) by using the same implementation and protocols as with circles. Rotation and anisotropic
descriptions of particle dynamics are complex to solve analytically, making EDMD less attractive as shapes become more
complicated. Sampling free areas by random rotations and translationswith polygons can remove the complexity. The order
metrics described throughout this contribution are also broad enough that, if a different shape is used, the same tools can
be utilized against the crystalline configuration of that shape (i.e. square molecules can be compared against square lattice
configurations). This provides a robust, reliable and stable approach to simulating complex morphologies.

6. Concluding summary

We report that stochastic and dynamic simulations of hard-core circular molecules will have the same structure if they
have the samedensity, driven by the configurational entropy. In this contribution,we systematically compared the outcomes
from event driven molecular dynamics and Monte Carlo approaches to investigate the reproducibility and validation
betweenmethods. Ensembles of 4032 configurationswere gathered to generate statistical sets to compare how the influence
of simulation directives effects the physical properties of outcomes. To emphasize the need for reproducible simulations,
the positional data obtained from these two simulation methods has been made freely available (see the SI:Sec(A)).

Monte Carlo explores systems with slowly varying density, which is a weak but constant pressure. Event-driven
molecular dynamics has a varying pressure, meaning a non-constant rate of compression. Each method explores different
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paths through the thermodynamic landscape; however, dense arrays of planar molecules were shown to produce similar
outcomes in bulk periodic systems, as well as in confining square boundaries. Structural classification of these systems
(averaged pair correlation function, bond-order parameter, translational order parameter, and Voronoi diagrams) shows
that stochastic and dynamic approaches do not alter the morphology of the steric molecules. Similar morphologies with a
fixed density are a result of entropic packing. The role of the entropy in driving self-assembly can be exploited to produce
novel morphologies for the next generation of organic devices.

Acknowledgments

The authors would like to thank the staff at Compute Canada in helping with and providing the computational resources
that were essential to this study. This workwasmade possible by the facilities of the Shared Hierarchical Academic Research
Computing Network (SHARCNET: www.sharcnet.ca) and Compute/Calcul Canada. The authors also thank A. Diaz-Ortiz for
helpful discussions and suggestions. This research was supported by 436100-2013 RGPIN and 384889-2010 CREAT.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.physa.2016.12.075.

References

[1] Z.B. Henson, K. Mullen, G.C. Bazan, Design strategies for organic semiconductors beyond the molecular formula, Nature Chem. 4 (2012) 699–704.
[2] A. Turak, M. Nguyen, F. Maye, J. Heidkamp, P. Lienerth, J. Wrachtrup, H. Dosch, Nanoscale engineering of exciton dissociating interfaces in organic

photovoltaics, J. Nano Res. 14 (2011) 125–136.
[3] S.H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J.S. Moon, D. Moses, M. Leclerc, K. Lee, A.J. Heeger, Bulk heterojunction solar cells with internal quantum

efficiency approaching 100%, Nat. Photonics 3 (2009) 297–303.
[4] H.-C. Chen, Y.-H. Chen, C.-C. Liu, Y.-C. Chien, S.-W. Chou, P.-T. Chou, Prominent short-circuit currents of fluorinated quinoxaline-based copolymer

solar cells with a power conversion efficiency of 8.0%, Chem. Mater. 24 (2012) 4766–4772.
[5] Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, For the bright future–bulk heterojunction polymer solar cells with power conversion efficiecy

of 7.4%, Adv. Energy Mater. 22 (2010) E135–E138.
[6] S.A. Ayoub, J.B. Lagowski, Optimizing the performance of multilayered organic polymer devices using computational dimer approacha case study, J.

Phys. Chem. C 120 (2016) 496–507.
[7] A. Díaz Ortiz, B. Arnold, M. Bumstead, A. Turak, Steric self-assembly of laterally confined organic semiconductor molecule analogues, Phys. Chem.

Chem. Phys. 16 (2014) 20228.
[8] T.J. Roussel, E. Barrena, C. Ocal, J. Faraudo, Predicting supramolecular self-assembly on reconstructed metal surfaces, Nanoscale (2014) 7991–8001.
[9] M. Yoneya, M. Kawasaki, M. Ando, Molecular dynamics simulations of pentacene thin films: The effect of surface on polymorph selection, J. Mater.

Chem. 20 (2010) 10397.
[10] P. Clancy, Application of molecular simulation techniques to the study of factors affecting the Thin-Film morphology of small-molecule organic

semiconductors, Chem. Mater. 23 (2011) 522–543.
[11] S. Reddy, V.K. Kuppa, Molecular dynamics simulations of organic photovoltaic materials: Investigating the formation of ⇡-stacked thiophene clusters

in oligothiophene/fullerene blends, Synth. Met. 162 (2012) 2117–2124.
[12] T. Neumann, D. Danilov, C. Lennartz, W. Wenzel, Modeling disordered morphologies in organic semiconductors, J. Comput. Chem. 34 (2013)

2716–2725.
[13] T.J. Roussel, L.F. Vega, Modeling the self-assembly of nano objects: Applications to supramolecular organic monolayers adsorbed on metal surfaces, J.

Chem. Theory Comput. 9 (2013) 2161–2169.
[14] I.G. Kaplan, Model potentials, in: Intermolecular Interactions, John Wiley & Sons, Ltd., 2006, pp. 183–254.
[15] I.G. Kaplan, Nonadditivity of intermolecular interactions, in: Intermolecular Interactions, John Wiley & Sons, Ltd., 2006, pp. 141–182.
[16] N.G. Fytas, V. Martín-Mayor, M. Picco, N. Sourlas, Phase transitions in disordered systems: The example of the random-field ising model in four

dimensions, Phys. Rev. Lett. 116 (2016) 227201.
[17] G. Korniss, C.J. White, P.A. Rikvold, M.A. Novotny, Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kinetic ising

model in an oscillating field, Phys. Rev. E 63 (2000) 016120.
[18] A.M. Ferrenberg, R.H. Swendsen, New monte carlo technique for studying phase transitions, Phys. Rev. Lett. 61 (1988) 2635–2638.
[19] D. Boulatov, V. Kazakov, The ising model on a random planar lattice: The structure of the phase transition and the exact critical exponents, Phys. Lett.

B 186 (1987) 379–384.
[20] I. Nakamura, A.-C. Shi, Study of entropy-driven self-assembly of rigid macromolecules, Phys. Rev. E 80 (2009) 021112.
[21] Y. Miyake, T. Nagata, H. Tanaka, M. Yamazaki, M. Ohta, R. Kokawa, T. Ogawa, Entropy-controlled 2D supramolecular structures of N,N0-Bis(n-

alkyl)naphthalenediimides on a HOPG surface, ACS Nano 6 (2012) 3876–3887.
[22] P.P.F. Wessels, B.M. Mulder, Entropy-induced microphase separation in hard diblock copolymers, Phys. Rev. E 70 (2004) 031503.
[23] D. Frenkel, Entropy-driven phase transitions, Physica A 263 (1999) 26–38.
[24] D. Görl, X. Zhang, V. Stepanenko, F.Würthner, Supramolecular block copolymers by kinetically controlled co-self-assembly of planar and core-twisted

perylene bisimides, Nature Commun. 6 (2015) 7009.
[25] A.D. de Zerio Mendaza, A. Melianas, S. Rossbauer, O. Bäcke, L. Nordstierna, P. Erhart, E. Olsson, T.D. Anthopoulos, O. Inganäs, C. Müller, High-entropy

mixtures of pristine fullerenes for solution-processed transistors and solar cells, Adv. Mater. 27 (2015) 7325–7331.
[26] R. Dattani, J.T. Cabral, Polymer fullerene solution phase behaviour and film formation pathways, Soft Matter 11 (2015) 3125–3131.
[27] D. Banerjee, M. Dadmun, B. Sumpter, K.S. Schweizer, Theory of the miscibility of fullerenes in random copolymer melts, Macromolecules 46 (2013)

8732–8743.
[28] C.I. Wang, C.C. Hua, Solubility of C60 and PCBM in Organic Solvents, J. Phys. Chem. B 119 (2015) 14496–14504.
[29] L. Xu, L. Yang, L. Cao, T. Li, S. Chen, D. Zhao, S. Lei, J. Ma, Effect of bulky substituents on the self-assembly and mixing behavior of arylene ethynylene

macrocycles at the solid/liquid interface, Phys. Chem. Chem. Phys. 15 (2013) 11748–11757.
[30] N. Hauptmann, K. Scheil, T.G. Gopakumar, F.L. Otte, C. Schtt, R. Herges, R. Berndt, Surface control of alkyl chain conformations and 2D chiral

amplification, J. Am. Chem. Soc. 135 (2013) 8814–8817.
[31] E. Specht, Packomania, (’’28-Oct-2015’’). URL http://http://www.packomania.com/ (accessed: 10.08.16).
[32] D. Gruznev, A. Matetskiy, I. Gvozd, A. Zotov, A. Saranin, {C60} adsorption onto the one-atomic-layer in films on si(111) surface, Surf. Sci. 605 (2011)

1951–1955.

Ph.D. Thesis - Matt Bumstead - McMaster University - Engineering Physics 64/129



314 M. Bumstead et al. / Physica A 471 (2017) 301–314

[33] P. Song, B.K. Olmsted, P. Chaikin, M.D. Ward, Crystallization of micrometer-sized particles with molecular contours, Langmuir 29 (45) (2013)
13686–13693.

[34] A. Morin, J. Urban, P.D. Adams, I. Foster, A. Sali, D. Baker, P. Sliz, Shining light into black boxes, Science 336 (2012) 159–160.
[35] V. Stodden, F. Leisch, R.D. Peng (Eds.), Implementing Reproducible Research, first ed., Chapman and Hall/CRC, 2014.
[36] S. Buck, Solving reproducibility, Science 348 (2015) 1403.
[37] B. Alberts, R.J. Cicerone, S.E. Fienberg, A. Kamb, M. McNutt, R.M. Nerem, R. Schekman, R. Shiffrin, V. Stodden, S. Suresh, M.T. Zuber, B.K. Pope, K.H.

Jamieson, Self-correction in science at work, Science 348 (2015) 1420–1422.
[38] B.A. Nosek, G. Alter, G.C. Banks, D. Borsboom, S.D. Bowman, S.J. Breckler, S. Buck, C.D. Chambers, G. Chin, G. Christensen, M. Contestabile, A. Dafoe, E.

Eich, J. Freese, R. Glennerster, D. Goroff, D.P. Green, B. Hesse, M. Humphreys, J. Ishiyama, D. Karlan, A. Kraut, A. Lupia, P. Mabry, T. Madon, N. Malhotra,
E. Mayo-Wilson, M. McNutt, E. Miguel, E. Levy Paluck, U. Simonsohn, C. Soderberg, B.A. Spellman, J. Turitto, G. VandenBos, S. Vazire, E.J. Wagenmakers,
R. Wilson, T. Yarkoni, Promoting an open research culture, Science 348 (2015) 1422–1425.

[39] V. Stodden, S. Miguez, Best practices for computational science: Software infrastructure and environments for reproducible and extensible research,
J. Open Res. Softw. 2 (2014) 1–6.

[40] V. Stodden, Reproducing statistical results, Ann. Rev. Stat. Appl. 2 (2015) 1–19.
[41] M. Allen, D. Frenkel, J. Talbot, Molecular dynamics simulation using hard particles, Comput. Phys. Rep. 9 (1989) 301–353.
[42] S. Miller, S. Luding, Event-driven molecular dynamics in parallel, J. Comput. Phys. 193 (2003) 306–316.
[43] A. Donev, S. Torquato, F.H. Stillinger, Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. i. algorithmic

details, J. Comput. Phys. 202 (2005) 737–764.
[44] A. Donev, S. Torquato, F.H. Stillinger, Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. ii. applications to

ellipses and ellipsoids, J. Comput. Phys. 202 (2005) 765–793.
[45] M. Skoge, A. Donev, F.H. Stillinger, S. Torquato, Packing hyperspheres in high-dimensional euclidean spaces, Phys. Rev. E 74 (2006) 041127.
[46] M. Skoge, A. Donev, F.H. Stillinger, S. Torquato, Publisher’s note: Packing hyperspheres in high-dimensional euclidean spaces, Phys. Rev. E 75 (2007)

029901(E).
[47] L. Filion, M. Marechal, B. van Oorschot, D. Pelt, F. Smallenburg, M. Dijkstra, Efficient method for predicting crystal structures at finite temperature:

Variable box shape simulations, Phys. Rev. Lett. 103 (2009) 188302.
[48] J. de Graaf, R. van Roij, M. Dijkstra, Dense regular packings of irregular nonconvex particles, Phys. Rev. Lett. 107 (2011) 155501.
[49] J. de Graaf, L. Filion, M. Marechal, R. van Roij, M. Dijkstra, Crystal-structure prediction via the floopy-box monte carlo algorithm: Method and

application to hard (non)convex particles, J. Chem. Phys. 137 (2012) 214101.
[50] D. Frenkel, B. Smit, Understanding Molecular Simulation, second ed., Academic Press, 2001.
[51] S. Torquato, Y. Jiao, Robust algorithm to generate a diverse class of dense disordered and ordered sphere packings via linear programming, Phys. Rev.

E 82 (2010) 061302.
[52] D. Frenkel, G.C.A.M. Mooij, B. Smit, Novel scheme to study structural and thermal properties of continuously deformable molecules, J. Phys.: Condens.

Matter 3 (1991) 3053–3076.
[53] J.I. Siepmann, D. Frenkel, Configurational bias monte carlo: A new sampling scheme for flexible chains, Mol. Phys. 75 (1992) 59–70.
[54] J.J. de Pablo, M. Laso, U.W. Suter, Estimation of the chemical potential of chain molecules by simulation, J. Chem. Phys. 96 (1992) 6157–6162.
[55] M. Laso, J.J. de Pablo, U.W. Suter, Simulation of phase equilibria for chain molecules, J. Chem. Phys. 97 (1992) 2817–2819.
[56] A.H. Marcus, S.A. Rice, Phase transitions in a confined quasi-two-dimensional colloid suspension, Phys. Rev. E 55 (1997) 637–656.
[57] A. Baddeley, R. Turner, spatstat: An r package for analyzing spatial point patterns, J. Stat. Softw. 12 (6) (2005) 1–42. URL

http://www.jstatsoft.org/v12/i06/.
[58] R Core Team,R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2013. URL

http://www.R-project.org/.
[59] T.M. Truskett, S. Torquato, P.G. Debenedetti, Towards a quantification of disorder inmaterials: Distinguishing equilibrium and glassy sphere packings,

Phys. Rev. E 62 (2000) 993–1001.
[60] J.R. Errington, P.G. Debenedetti, Relationship between structural order and the anomalies of liquid water, Nature 409 (2001) 318–321.
[61] Z. Yan, S.V. Buldyrev, N. Giovambattista, H.E. Stanley, Structural order for one-scale and two-scale potentials, Phys. Rev. Lett. 95 (2005) 130604.
[62] P.J. Steinhardt, D.R. Nelson, M. Ronchetti, Bond-orientational order in liquids and glasses, Phys. Rev. B 28 (1983) 784–805.
[63] Y. Wang, S. Teitel, C. Dellago, Melting of icosahedral gold nanoclusters from molecular dynamics simulations, J. Chem. Phys. 122 (2005) 214722.
[64] A.R. Kansal, S. Torquato, F.H. Stillinger, Diversity of order and densities in jammed hard-particle packings, Phys. Rev. E 66 (2002) 041109.
[65] D.G. de Oteyza, E. Barrena, H. Dosch, Y.Wakayama, Nanoconfinement effects in the self-assembly of diindenoperylene (dip) on cu(111) surfaces, Phys.

Chem. Chem. Phys. 11 (2009) 8741–8744.
[66] S. Himmelberger, J. Dacuña, J. Rivnay, L.H. Jimison, T. McCarthy-Ward, M. Heeney, I. McCulloch, M.F. Toney, A. Salleo, Effects of confinement on

microstructure and charge transport in high performance semicrystalline polymer semiconductors, Adv. Funct. Mater. 23 (2013) 2091–2098.
[67] X. Yang, A. Alexeev, M.A.J. Michels, J. Loos, Effect of spatial confinement on the morphology evolution of thin poly(p-

phenylenevinylene)/methanofullerene composite films, Macromolecules 38 (2005) 4289–4295.
[68] T.-S. Kim, S. Hyun Kim, M. Jang, H. Yang, T.-W. Lee, Charge transport and morphology of pentacene films confined in nano-patterned region, NPG Asia

Mater. 6 (2014) e91.
[69] M. Aryal, K. Trivedi, W.W. Hu, Nano-confinement induced chain alignment in ordered P3HT nanostructures defined by nanoimprint lithography, ACS

Nano 3 (2009) 3085–3090.
[70] A.S. Keys, C.R. Iacovella, S.G. Glotzer, Characterizing structure through shape matching and applications to self-assembly, Ann. Rev. Condens. Matter

Phys. 2 (2011) 263–285.
[71] A.S. Keys, C.R. Iacovella, S.G. Glotzer, Characterizing complexparticlemorphologies through shapematching:Descriptors, applications, and algorithms,

J. Comput. Phys. 230 (2011) 6438–6463.

Ph.D. Thesis - Matt Bumstead - McMaster University - Engineering Physics 65/129



Chapter 6

Directing Self-Assembly with
Confinement

As electronic components become smaller, so does the amount of volume available for molecules
to self-assemble within. The influences from both the container walls and interior quantized space
impose restrictions onto molecules to prefer particular arrangements within the box. The series
of possible metastable molecular dispersions can be enumerated for confining systems with low
numbers of molecules and their probability of occurrence can be approximated by how frequently
similar patterns reoccur within the ensemble.

66
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6.1 My Contributions

My contributions to this publication were from actively collaborating to develop methods to
test the effects of confinement and evaluated edits to drafts with author Dr. Ayse Turak. Dr.
Alejandro Diaz Ortiz is the main author of the manuscript and Bjorn Arnold had input on
initial development coding for the Monte Carlo simulation method used (named “gransim” - for
granular simulation). My main focus for this publication was to develop ways for improving the
pattern matching scheme we used to classify the big data sets. My work has been to analyze and
expand the use of the dataset presented here by using it in another publication shown in Chapter
5. I added to the value of this set of data by sharing what we acquired using the computational
resources at the Texas Advanced Computing Center.

My work focused on improving the speed of this algorithm, expanding its capabilities to
classify systems of more particles. This has allowed us to explore the role that molecule shape
has on directing the formation of patterns within a box. Classifying these datasets were too time
consuming for studying systems with more particles under confinement. For example, I worked
to reduce the time required for the pattern-matching routine to classify all configurations within
an ensemble of N=36 molecules down from the previous acceptable time-limit of a week, to
completing within an hour on consumer grade desktop computers. Because of this improvement,
we opened up the number of new systems that can be explored. This pattern matching routine
included and fully integrated into the “disLocate” analysis package (Chapter 4).

It also allowed me to uncover a deficiency in the original “gransim” algorithm which produced
unclassifiable patterns for certain shapes. The way I found it was to analyze the simulated
ensembles using complex (non-circular) shaped particles with the pattern matching tool. Initial
observations suggested that similar parcels were classified as different patterns, leading to the
possibility that low recurrence of expected patterns could be the result of off-center molecules
instead of miscalculations within the pattern matching routine. My work revealed that the
“gransim” algorithm was internally redefining the shape of the molecules, resulting with particles
with displaced molecular centre of mass. This caused an unnoticeable skew to the output polygon
shape (which went undetected by human perception in renderings of configurations) but caused
enough deviation to the centroids for common patterns to be mismatched. If this error was
not caught, it could have propagated out into the data used in Chapter 7 and would have
provided incorrect results for all analysis methods that rely on molecular centroids to classify
dispersion. This would not have been found if this pattern matching tool was not used. Detecting
and correcting this numerical deficiency was the result of my contribution toward improving
the routines used in the manuscript. These changes allowed us to expand our research into
simulating complex molecules with confidence that the resulting morphologies will be generated
with accurate representations of molecules.

6.2 Overview of Manuscript (PCCP - 2014)

Self-assembly takes advantage of the natural thermodynamic pathway that molecules take on
their way to producing planar patterns. The resulting patterns of particles are a product of the
initial preparation methods and various environmental influences, such as temperature, deposi-
tion rate, and number of objects in the system. One external influence we explore here is the role
confinement has on the possible intermolecular structures allowable for molecules to assemble
within.

Large ensembles of simulated morphologies with many particles were generated to gauge the
bulk properties of steric molecules. The simulations were then changed from periodic boundaries
into a hard square container. The influence becomes clear as the container produces a shift
toward morphologies with densities lower than the unconstrained bulk system. We then reduce
the number of particles allowed to self-assemble together within the container to observe the effect
of the box. What was observed is that there is a competition between the steric hindrance of
the walls and the intermolecular frustration of neighbouring particles. Particles align themselves
along the walls of the box, which form specific boundary conditions and this influence propagates
into the centre of the channel as particles condense. Wall particles tend to impose a square lattice
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Figure 6.1: Reducing an ensemble of configurations into parcels of patterns. (a) Global effect of
confinement can be seen in the point cloud where all centroids of all molecules of all configurations
are combined and plotted together. (b) Individual configurations which were successfully classi-
fied as similar by pattern matching are grouped together into a parcel. These configurations can
still be jumbled (i.e. pre-symmetry operations). (c) Configurations in the parcel are rotated and
mirrored relative to each other so their positions have the lowest amount of deviation. Finally,
the characteristic parcel pattern emerges at the end, showing the spatial distributions molecules
are directed into by confinement effects.

packing which comes into conflict against the densest packing of circles, the hexagonal lattice.
This interplay between influences causes metastable states to appear, limiting the number and
probability for variations in disordered states.

These states provide a basis for understanding the breadth of possible arrangements that
molecules can self-assemble into. The manuscript details the resulting probability distributions
of particle densities, positional probability, and frequency of pattern occurrences as a function
of varying particle numbers from bulk systems of N=1024 particles to the highly contained
system of N=9 particles through the series of decreasing square numbers pN “ n2q. We find the
emergence of finite and repeated microstates within ensembles of 4032 independently generated
Monte Carlo simulations of circular particles of numbers less than N “ 52.

The sections below highlight portions of my research that did not appear in the manuscript
and/or were part of the supporting information associated with this publication. Chapter 6
starts with a brief overview of the manuscript in Section 6.2. Section 6.3 highlights the pattern
matching algorithm and the optimizations I made to the routine. It also outlines the relevance
of these point cloud probability maps and frames them in terms of a visual representation of the
partition function. Section 6.4 discusses the confinement effects in relation to a varying molecule
shape. The system is held at a constant 49 molecules while the self-assembly of regular polygons
and 6-sided molecules are analyzed. The error that caused centres of mass for complex polygons
is outlined here.

6.3 Pattern Matching Microstates into Parcels

A pattern matching scheme is an appropriate method to search for similar configurations in
statistically large datasets. Figure 6.1 a) shows how the point cloud is build from configurations
within the ensemble of confined molecules. All physically sampled states are combined into a
single plot by fixing the container size between configurations so the centroids can be overlaid
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together. This visually outlines the global probability for N molecules to arrange themselves into
finite sets of patterns when confined in a square. It represents a type of identifier or fingerprint
that is specific to the molecular shape and number.

Briefly, as shown schematically in Figure 6.1, our point-matching approach classifies the geo-
metric centres of all microstates into patterns where the identity of the particles has been removed
(Figure 6.1(a)). A series of symmetry operations consistent with the boundary conditions of the
simulation box are then performed on the candidate patterns (Figure 6.1(b)). This limits the
parcelling to only be usable with confined configurations inside the 1x1 box and applies the 8
different symmetry operations from the hard square boundaries. This process is applied to all the
elements of the ensemble. A major improvement in this routine was found from pre-calculating
the symmetry operations of each pattern into the ensemble prior to the shape-matching routine.
A mean-square-root distance of the geometric centres is measured after every symmetric trans-
formation for every pair of candidate patterns. If the difference between two patterns is less than
a user set threshold for the matching criteria, then these are considered similar patterns and are
grouped together into a parcel.

Notwithstanding its conceptual simplicity, the point-matching method is not without sub-
tleties. The most important one is that structural characterization is based on patterns and not
on microstates. Finding matches among the latter would be the simplest of tasks, amounting
at a trivial point-by-point distance calculation. Such an approach will render two identical nˆn
structures as different because of a different indexing of the particles (see, for instance, Figure
6.1(a)). Thus, a point-matching descriptor requires an assignment of coordinates to determine
the optimal correspondence between particles’ centre of mass for all structures to be compared.
In other words, all structures to be matched should have the particles indexed in a way that, for
instance, the particle located at the lower left corner of the cavity, always has the same assigned
index. The pattern matching routine has been optimized to attempt multiple sortings of particle
index to improve accuracy.indexing of particle As such, the number of configurations that are
parcelled into a pattern can prove a first order approximation to the probability of microstates.

One important aspect is that of the similarity criterion to classify the different structures.
The similarity or cut-off criterion needs to be stringent enough to not miss similar structures
and yet lax enough to allow for small distortions. In our case, we have used the mean-square-
root distance as the similarity measure between structures. As can be seen in Figure 6.1(c),
relaxation of the acceptance criterion allows recognition of patterns that would otherwise be
wrongly classified due to the existence of rattlers (i.e., mobile particles in a defect cavity of an
otherwise rigid structure). Interested readers are directed to Ref. [107] for a current review on
structure matching in self-assembled systems and to Refs. [108, 109, 110, 111] for more technical
accounts.

Each final configuration in the ensemble samples the allowable energy mircostates within
the confining channel. The frequency of each pattern can be explicitly enumerated by pattern
matching and can be used as the probability for this microstate. The partition function Z
describes the probability of each state has energy Ei in the statistical ensemble.

Z “
ÿ

i

e´βEi (6.1)

The pattern matching gives the energetic microstate pΩiq and the probability of it appearing in
the statistical ensemble P pΩiq. The complete summation of all parcels and probability gives the
thermodynamic partition function of confined molecules.

Z “ P pΩ1qe
´βE1 ` P pΩ2qe

´βE2 ` ... (6.2)

One thing that is quantifiable is the percent yield of repeated configurations. When the number
of particles is increased, there is more availability for different configurational permutations.

Figure 6.2 shows an example of the registry maps and sample configurations of the parcels
found within the ensemble of N=25 confined circular molecules. The registry maps show his-
togram data of the places within the container where particle centroids are more likely to be
constrained to. It is used here instead of the probability map because the pattern matched
parcels contain precise positions of molecule centroids and would remain unseen. The colour



Ph.D. Thesis - Matt Bumstead - McMaster University - Engineering Physics 70/129

Pattern: 1 2 3 4 5 6 All Else

Count 1543 481 160 134 128 76 1510
Probability 0.3826 0.1192 0.0396 0.0332 0.0317 0.0188 0.3745

Table 6.1: Enumeration and probability for microstates shown in the top row of Fig 6.2 (left
to right Ñ 1 to 6). Data is from ensembles of 4032 randomly generated microstates of N=25
circular molecules in a square container.

Figure 6.2: Enumeration of microstates with non-zero parcel sizes for N=25 circular molecules
confined within a box. The pattern with the most parcel members is in the top left - the square
packed configuration. Parcels decreasing in size are shown left to right, where the bottom right
has the fewest members. The registry map to the left of the configuration shows the planar
probability of centroids for that parcel as coloured histograms.

of each square indicates how probable it is to find a centroid in that area. Darker Purple and
Blue tones suggest low probability, where Red indicates a higher probability. The free area is
indicated as White and shows places with zero probability to find molecule centroids.

As can be seen, the pattern that has the most entries is the square lattice (in the top left) and
is also enumerated in Table 6.1. The results are for the top six panels in Figure 6.2, outlining
the more probabilistic parcels. The trend gives a clear decline in number of entries within each
parcel, as the square lattice pattern dominates with 1543/4032, while the sixth most probable
parcel has only 76/4032 entries. As the number of particles within the area increases, so does the
number of different positional arrangements each particle can take. This increase in positional
entropy is manifested here as a decrease in the number of entries within each parcel.

6.4 Confined Molecules of Varying Shape

A series of complexly shaped molecules confined within a box were simulated with the same
self-assembly protocols used for circular particles. Figure 6.3 (a-f) shows these shapes and their
most probable configuration with colours mapping to the local bond order parameter q6. The
row below shows the point clouds for each ensemble of 4032 configurations. One noticeable
feature is that these point clouds are relatively similar between molecular analogs, except for
Figure 6.3 (f) the Rodonea shape. This is caused the interdigitation of its arms and results in
morphologies that have more disorder within the area. The result is interpreted as the Rodonea
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Figure 6.3: The influence of confinement on 49 complexly shaped molecules confined within
a square box. Polygons include: (a) Circle, (b) Reuleaux, (c) Epicycloid, (d) Alhambra, (e)
Hypocycloid, (f) Rodonea. The most common pattern found within the ensemble is shown on
top. Point clouds of superimposed molecular centroids from 4032 configurations are plotted
below.

shape influencing its own self-assembly by resisting the confinement effect of the walls (localized
positions at the center of the box) and retaining an intermolecular dispersion that resembles a
confined fluid.

The pattern matching algorithm was applied to these datasets to enumerate recurring pat-
terns. Table 6.2 details the numbers of patterns inside the most populated parcel (plotted in
Figure 6.3) for these complex shapes. The Rodonea shape shows that no two configurations
in the ensemble that were similar enough to be patterned matched. All other molecule shapes
produce ensembles which contain repeating patterns, however they are also quite sparse.

(a) Circle (b) Reuleaux (c) Epicycloid (d) Alhambra (e) Hypocycloid (f) Rodonea

45 22 18 5 7 1

Table 6.2: Enumeration of the most probable microstate shown in Figure 6.3. Data is from
ensembles of 4032 randomly generated microstates of 49 complexly shaped molecules in a square
container.

6.5 Publication: “Steric self-assembly of laterally
confined organic semiconductor molecule analogues”
(PCCP - 2014)
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Steric self-assembly of laterally confined organic
semiconductor molecule analogues†

Alejandro Dı́az Ortiz,*ab Björn Arnold,c Matt Bumsteada and Ayse Turak*a

Self-assembly of planar molecules can be a critical route to control morphology in organic optoelectronic

systems. In this study, Monte Carlo simulations were performed with polygonal disc analogues to planar

semiconducting molecules under confinement. By examining statistically the molecular density and

configurations of such analogues, we have observed that the symmetry of the confining medium can have

a greater impact on the final densified particle configurations than the intramolecular interactions. Using

the steric frustration imparted by confinement, novel self-assembled (partially) ordered phases are

available. Our Monte Carlo simulations suggest new avenues to control ordering and morphology of

planar molecules, which are critical for high-performance organic optoelectronic devices.

1 Introduction
The control of supramolecular self-assembly and morphology,
especially of donor–acceptor pairs, is a key feature of molecular
electronics.1 Ideally, long-range ordered molecular arrays with
high symmetry and periodicity on the order of typical exciton
diffusion lengths (B5–20 nm) are desired.2–6 Tailoring mole-
cular organization can heavily impact the performance of
nanostructured devices, such as organic photovoltaics (OPVs),
organic light emitting diodes (OLEDs), and organic transistors
(OTFTs). OPV device performance, in particular, is heavily
influenced by the morphology.7–9 While optimal performance
in organic devices is often the result of a complex balance of
charge carrier flow and emission/absorption locations, many
of the recent advances in OPVs have been achieved through
morphological tuning.10–12

The assembly of molecules into ordered and continuous
phases to yield high charge-collection-efficiency poses a signi-
ficant challenge. The interplay between molecule–substrate
and intermolecular interactions that control molecular self-
assembly is most complex in the first monolayer at the sub-
strate surface. The self-assembly on this layer can be tuned by
the use of nanostructured surfaces with confinement leading to
preferential absorption sites13–15 and polymorphic ordering.16–18

Exciting new possible directions for developing optimal morpho-
logies for device structures emerge in systems where the substrate

(normal) interactions are negligible and lateral confinement
controls the morphology.

Predictive modeling, based only on the steric interactions
between molecules, should therefore be an effective tool to
examine the range of morphologies that can be obtained and,
in future, implemented in a device structure. In this paper, we
are motivated by the supramolecular self-assembly of conducting
organic molecules on flat and stepped (confined) substrates. As a
first approximation, we have used polygonal approximants to
circular discs to describe the configurational behavior of sym-
metric molecules. We have focused on the confinement effects of
densified systems that self-assemble into a disordered (random)
bulk phase. Introducing a statistical ensemble, i.e., producing a
large set of identical copies of the system under the same
simulation conditions, allowed us to discriminate the surface
and finite-size effects brought about by the confinement from
the ordering trends inherent to a monodispersed system of
polygonal particles. At the core of our work is the concept of
anisotropy in the confinement as imposed by a boundary with
inequivalent points (for example, a square boundary where edges
are different from corners). We have identified the nature of the
confinement, whether it is soft or hard, isotropic or anisotropic,
as a key ingredient to direct steric self-assembly.

2 Method
Our method is based on a Monte Carlo simulation where particle
shapes are approximated by polygons.19 The hard-core inter-
action between polygonal particles is handled by a polygon-
overlap detection algorithm.20 This approach has the advantage
of modeling particles with both complex and simple shapes on
the same footing, including cases where the implementation of
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excluded-volume interactions poses serious challenges due to
the nonsmooth (i.e., non-analytical) nature of particle shapes –
for instance, planar molecules with concave shapes.

The simulations begin by preparing the systems of polygon-
rendered particles in the dilute phase, i.e., N particles are
randomly deposited in a simulation box of area A while avoid-
ing overlaps (see Fig. 1(a)). For a general polygonal shape, each
particle is defined by the position of its geometric center ri

and its orientation yi (i = 1,. . ., N). In order to sample the phase
space, for a constant number of particles and area of the
simulation box, we have implemented two types of Monte
Carlo trial moves: translation and rotation of the particles
(see Fig. 1(c)). As we are considering systems with only hard-
core interactions, the acceptance criterion of our Monte Carlo
method is straightforward: all moves are accepted when they do
not result in overlaps.‡

We have found that changes in the simulation box size can
be easily achieved by introducing a rescaled set of coordinates,
i.e., mapping the particle positions and polygon vertexes to a
unit square simulation box. In other words, to increase the
particle density each particle is expanded within a fixed simula-
tion box size (see Fig. 1(b)), instead of shrinking the simulation
box for a fixed particle size. This rescaling of coordinates greatly
simplifies the implementation of the various boundary condi-
tions. Naturally, the rate of compression of the box is directly
related to the rate of expansion of the polygonal particles.

The order in which the different steps are applied during the
simulations is as follows: first an increase of density is per-
formed. This move is accepted if it does not produce any
overlaps between the particles or between the particles and
container walls in the case of hard-wall boundary conditions.
If the increase in density results in overlaps, all N particles are
randomly displaced and rotated in an attempt to remove the
existing overlaps:

ri - ri + dri, yi - yi + dyi, i = 1,. . .,N, (1)

where dri = (dxi,dyi) and dyi are random variables following
Gaussian distributions

p dxið Þ ¼ 1

sr
ffiffiffiffiffiffi
2p
p exp

$dxi2

2sr2

" #
; (2a)

p dyið Þ ¼ 1

sr
ffiffiffiffiffiffi
2p
p exp

$dyi2

2sr2

" #
; (2b)

p dyið Þ ¼ 1

sy
ffiffiffiffiffiffi
2p
p exp

$dyi2

2sy2

" #
; (2c)

with zero mean and standard deviations sr and sy, respectively.
The rotational move is generated by rotating the particle (i.e.,
its vertexes) along an axis perpendicular to the particle’s plane
and passing through its geometric center.

The process of increasing the density and removing the
overlaps by displacing the particles is repeated until the density
cannot be increased further. That is, the density will increase
until the total overlap, defined as the sum of overlapping areas
between pairs of polygons, cannot be resolved below a given
threshold. To determine the overlap polygon, we have used the
general polygon clipping library from Murta20 with the area
determined using the Shoelace or the Gauss formula.

The values of the trial moves dri = (dxi,dyi) and dyi are
allowed to change during the runs according to the following
rule: the initial displacements are maintained until the density
cannot be increased further; at this point they are reduced to
one tenth of their current values and the simulation continues.
This process is repeated until no significant densification
between two consecutive reduction cycles is achieved. Usually
4 to 6 reduction cycles, involving ca. 106–107 Monte Carlo steps,
are necessary to achieve dense configurations.

We have found that random and dense aggregates are
consistently obtained for small densification rates when imple-
menting a biased Monte Carlo approach, i.e., biasing the moves
by k trial displacements.21–24 This approach increases the
acceptance rate but also the computational effort. We have
found that the biased Monte Carlo approach is effective down
to systems with only a few particles. This occurs without the
stability complications of the more traditional approach of
keeping single-trial moves together with large densification
rates in order to produce disordered configurations.25 For very
small densification rates, our biased Monte Carlo approach
converges to the crystalline state as expected.

It should be noted that similar approaches exist in the
literature.26–29 The floppy-box Monte Carlo27,28 and the adaptive
shrinking cell29 schemes share some of the ingredients of our
method, e.g., approximating the (complex) particle shape by poly-
gons (two-dimensional systems) or polyhedra (three-dimensional
systems) coupled with a Monte Carlo sampling of the phase space.

3 Results
We have applied the method described in Section 2 to simulate
disordered aggregates of planar circular molecules on sub-
strates with only steric interactions. For systems with fairly

Fig. 1 Schematic representation of the different simulation steps. (a) The
systems are prepared in the diluted phase with no overlaps. (b) An increase
in density might result in overlapping particles. (c) In such a case, the
overlaps are resolved by randomly displacing and rotating all particles
according to Gaussian distributions (cf., eqn (2)). Notice that, in principle,
rotation or translation Monte Carlo trial moves could increase the overlap
between particles. However, only those trial moves that remove overlaps
are accepted. The system undergoes cycles of increasing density until
there are no more acceptable Monte Carlo moves.

‡ That is, overlaps between molecules or between a molecule and the container
wall.
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short-ranged isotropic intermolecular interactions (such as
phthalocyanines, coronenes, or perylenes), for the sake of
simplicity, we model the intermolecular interaction as a hard-
body potential. Due to their planar nature and isotropic sym-
metry, such conductive molecules can be effectively represented,
in a first approximation, by circular disks, i.e., 100-sided poly-
gons in our case.

3.1 Large systems of disordered disk-shaped molecules

Our interest in systematically achieving random and dense
aggregates in the bulk stems from the fact that it allows the
separation of surface and finite-size effects (confinement-induced
ordering, for instance) from the ordering trends inherited from
a crystallizing bulk. We have found that using a biased Monte
Carlo approach with 1000 trial displacements – Gaussian-
distributed with s in eqn (2) equal to the particle diameter –
and a low particle expansion rate of 10$5 systematically produced
dense disordered systems.

A typical configuration obtained with our method is shown
in Fig. 2(a) for a system of 1024 particles. The particles were
deposited on a laterally nonconfining substrate, modeled by
the use of periodic boundary conditions on the simulation box,
and color coded to reflect the distortion of their associated
Voronoi cells as a measure of the difference from the crystalline
(triangular) state. For instance, particles showing a linear distor-
tion of less than 5% of their hexagonal Voronoi cells are displayed
in dark blue. Particles showing distortions between 5 and 10% of
their Voronoi cells are colored blue while distortions between 10
and 20% are colored light blue, and so on for green, yellow and
orange. Particles that have Voronoi cells with less or more than six
sides are colored red.

Notice that although there are patches of crystalline arrange-
ments (in shades of blue), the configuration is fairly disordered
as seen by the extension of the red, orange and yellow dis-
ordered patches. In order to gauge the configuration yield of
our method, we have estimated the probability distribution
function of the particle density distribution from a statistical

ensemble of 4032 (full densification) runs. The resulting prob-
ability distribution, shown in Fig. 2(b), has a single peak of a
roughly Gaussian profile.

3.2 Finite-size and surface effects: molecules on confining
substrates

There are several advantages to adopting a statistical approach
for analyzing confinement effects. In the statistical ensemble, a
large number of copies of the system under the same condi-
tions are examined. Rather than focusing on a single or a few
selected configurations, such an ensemble allows compre-
hensive analysis of the phase-space sampling under a particular
simulation protocol. This can distinguish between, for example,
procedures that preferentially determine metastable states in
the system. The size of the statistical ensemble should be as
large as possible, within the constraints imposed by computa-
tional resources and simulation efficiency. We have chosen the
ensemble size as the smallest one for which the probability
distribution of the particle density does not show significant
changes with a further increase of the statistical ensemble size.
By testing this pragmatic approach for the smallest and largest
system sizes, we found that statistical ensembles with 4032
provide reliable results.

As confinement effects result from the impact of the surface
(i.e., the physical boundaries containing the system) com-
mingled with the finite size (i.e., the number of particles in
the system), we could further explore confinement effects by
systematically changing the number of particles in systems
contained by hard walls.

Fig. 3(a) shows the result of confining a system of 1024
particles by setting hard-wall boundary conditions. The shift of
the probability distribution towards lower particle densities is
due to the frustration brought about by the symmetry of the
confining substrate (square) on systems that crystallize on a
triangular lattice. However, there is a further shift in the distribu-
tion in Fig. 3(b) as a function of the system size, from bulk-like
systems of 1024 particles to systems of very few (e.g., nine)
particles. This trend is naturally understood in terms of the surface
and finite-size effects that dominate in small systems while large
systems are controlled by bulk behavior.

For very small systems on confined substrates, there are,
however, a series of changes in the particle density distribu-
tions that go beyond the mere shifting in particle density. This
can be seen clearly for systems with 36 particles, where a
satellite peak appears at a particle density of 0.785 (to the right
of the dominant part of the distribution). As can be seen, this is
a localized state with zero width. For systems with 25 particles,
this localized state is comparable in frequency to the main part
of the distribution, and for systems with 16 and fewer particles
this localized state is the dominant contribution of the particle
density distribution. For the smallest systems analyzed here
(9 particles), the particle density distribution seems mostly
composed of localized states. The localized state appearing at
a particle density of p/4 B 0.785 is associated with particle
configurations with square symmetry (i.e., an n % n pattern).
Such a confinement induced feature is easily characterized by

Fig. 2 (a) Typical configuration of a densified system of 1024 particles on
a nonconfining substrate (periodic boundary conditions) with a particle
density of 0.851. The coloring scheme is such that red (dark blue) signals
particles whose local environment departs the most (least) from its ideal
2D triangular crystal structure. Inset: Fourier transform of the particles’
geometric centers. (b) Probability density function (arbitrary units) of the
particle density distribution as estimated from an ensemble of 4032
densification runs, roughly Gaussian with a mean of 0.857 and standard
deviation of 0.004.
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examining, therefore, a series of n % n system sizes. Though the
impact of confinement is most easily tracked for such a series,
the results are also generally applicable to an arbitrary number
of particles. However, the densest configuration for planar disk
molecules inside a square cavity for particle numbers less than
49 is in fact n % n.30

The present results bear some resemblance to those obtained
for diindenoperylene confined on Cu substrates, where structural
polymorphism has been observed.2 With the confinement of the
molecules to narrow terraces, a transition occurs from the short-
range ordered structures seen on wide terraces (roughly triangular)
to strong long-range ordered structure (roughly rectangular).
Confinement to the terrace forces the molecules into a tightly
packed crystalline state to achieve roughly the same molecular
density (i.e., particle density) as that observed on the large terraces.
As the terrace is narrowed, the molecular density of the short-range
ordered structure is reduced due to the poor packing quality
required to attach at the edges. The crystal facets of the molecule
can nicely follow the step edge, allowing an optimized surface
coverage to be obtained by the imposition of long-range order.

It is important to stress, however, the differences between
the two physical situations. In the terraces, confinement occurs
along one of the two possible directions, the system remaining
open (i.e., infinite) along the other one. Additionally, the axial
symmetry of the molecules tends to exaggerate the confinement
effects on narrow terraces and leads to long-range disorder in
the large terraces. In the present system, on the other hand, the
self-assembly occurs within a two-dimensional closed cavity
whose geometry imposes, in general, symmetry restrictions to the
formation of a triangular array upon densification. In our case,
finite-size and boundary effects dominate the structural land-
scape of these quasi-zero-dimensional systems. For large and
dense systems, configurations are determined by the competing
effects of the square symmetry and the triangular lattice.

A good insight into the configurational space sampling is
gained by superimposing the final (i.e., densified) configura-
tions of each of the statistical ensembles (see ESI†). Such point
clouds (lower halves of Fig. 4) can be interpreted in a probabi-
listic way, that is, the higher the density of points, the higher
the probability of a particle occurring in that position (upper
halves of Fig. 4). It is thus interesting to see that for systems
with a large number of particles (i.e., 1024 in Fig. 4(a)), there is
a density modulation along the walls that dies out at the center
of the cavity. Each parallel wall, however, induces its own
density-modulation front (hereafter referred to as a layer) with-
out destructive interference from the others.

For lower particle numbers (e.g., N = 64 and 81 in Fig. 4(c)
and (b), respectively), there is a constructive interference between
the different density modulation fronts that renders n high-
density nodes along the layer closest to the boundary but n + 1
for the rest (the number of particles is N = n % n). The additional
nodes in Fig. 4(a)–(e) have two sources. The first one is the
tendency of the bulk to accommodate a triangular array of
particles to increase density. In other words, by shifting the bulk
from square to triangular symmetry, extra rows of nodes are
possible. This is apparent when inspecting the high-density nodes
between the first (closer to the boundary) and second layers. By
the same mechanism, larger systems (with a larger bulk region,
for instance, systems with 256–1024 particles (only 1024 shown)),
can display n + 2 high density nodes. The second source of extra
nodes is the statistical nature of the point clouds, which associ-
ates high density nodes with particle positions on average. That is,
not all the high-density nodes are associated with particles at the
same time. Most interesting is that such a pattern retains the
square symmetry of the cavity while attempting to accommodate a
triangular array. In other words, the interior of the cavity is not as
uniformly visited by the particles as expected in terms of the
number of possible microstates.

Fig. 3 (a) Probability density histogram (in arbitrary units) of the particle density for systems with 1024 particles on confining (hard-wall boundary
conditions) and nonconfining (periodic boundary conditions) substrates. (b) Probability density (in arbitrary units) of the particle density for a number of
systems on confined substrates. The number of particles is indicated in each case (bold labels). Very small systems (i.e., with less than 49 particles) show
localized states in their probability distributions. For the sake of clarity, the height of the localized states has been clipped out. In each case, the probability
distribution was estimated from 4032 densification runs.
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For even lower particle numbers (e.g., 36 and 25 in Fig. 4(e)
and (f), respectively), the point clouds and density plots evolve
towards more convoluted patterns where the loci of rolling
particles on top of each other are fairly visible around the corners
of the cavity. In addition to their complexity, the patterns are
more localized in space, in agreement with the structure of their
probability distributions (cf., Fig. 3(b)). This is quite clear for the
smallest systems investigated here (9 and 16 particles, Fig. 4(h)
and (g), respectively), where the densified systems sample only a
very small region of the cavity.

The impact of the cavity square geometry is readily seen by the
high density spots at the corners, followed by slow decay parallel
to the walls. It seems that for confined systems, regardless of the
interparticle potential details, the geometry of the container is a
key element in understanding the self-assembly of particles.

3.3 Characterization of different structures via pattern
matching

The probability distribution of the particle density (Fig. 3) and
point-cloud data (Fig. 4) offer some clues about the number
and type of structures for the different particle configurations.
However, with the exception of the localized states that can be
easily recognized as the n % n pattern, the other possible
structures are difficult to infer from either representation of
configurations.

We have applied the methods of shape matching to classify
and collect the different patterns appearing in the statistical
ensembles.31 A point-matching descriptor (see the ESI†) is ideal

for the classification of two-dimensional symmetric molecules
where the geometric center contains all the necessary configu-
rational information. Structure matching based on point clouds or
sets of coordinates is a conceptually simple yet powerful approach
for small systems and/or small-to-moderate sized datasets.

We have used the above point-matching scheme to classify the
different patterns appearing in a statistical ensemble of 4032 runs
for small confined systems. We have focused on systems with less
than 49 particles, since their probability distributions of the
particle density show the most interesting features. For the
smallest systems, i.e., 9 particles, the distribution of patterns is
clearly dominated by the formation of 3 % 3 arrays, as can be
inferred from the particle density distribution (Fig. 3(b)) and
point-density (Fig. 4(h)) plots. There is a very small fraction
(2%) of structures that make the secondary peak in the prob-
ability distribution of the particle density (highlighted in the
inset of Fig. 3). Though such a small set of secondary features is
not statistically representative, the appearance at particular
values suggests confinement strategies to self-assemble distinc-
tive configurations with quantifiable yields.

Such a possibility is realized in larger systems (i.e., systems
with 16 and 25 particles), where the occurrence of patterns
different from the n % n motif increases notably. In some cases,
for instance systems with 16 particles (the first row in Fig. 5), the
secondary patterns are highly symmetric with a relative substan-
tial yield, considering that no attempt was made to direct the self-
assembly towards a particular pattern. In some other cases, e.g.,
systems with 25 particles, the 5 % 5 and non-5 % 5 motifs have

Fig. 4 Point clouds (lower half) and point densities (upper half) of 4032 superimposed densified configurations for (a) 1024, (b) 81, (c) 64, (d) 49, (e) 36,
(f) 25, (g) 16, and (h) 9 particles confined in hard-wall cavities (solid square). The point clouds are more localized in space for systems with fewer particles.
For systems with particle numbers between 81 and 1024 the point clouds are qualitatively the same (not shown). For point-density plots (upper half), the
color scheme is such that red (blue) indicates a high (low) density of points (particle centers). Purple indicates zero or near-zero density.
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comparable proportions, yet highly symmetric patterns appear
less frequently (see Fig. 5, second row). For a system with 36
particles, non-6 % 6 configurations dominate, occurring 96% of
the time, resulting in hundreds of different patterns. Among so
many possible configurations, there is a consequent decrease in
their frequencies (o5%). Though the 6 % 6 pattern still has the
most frequent occurrence (4%), the next two most frequent
patterns (third row in Fig. 5) appear with similar frequency (3%).

4 Discussion
The results presented so far were obtained using a biased
Monte Carlo approach that allowed us to successfully transfer
the simulation parameters through a large range of system
sizes, i.e., from less than 10 particles to several thousands. Our
interest was on the impact of confinement, necessitating the
examination of disordered systems in the bulk. Had we chosen
simulation parameters that consistently produced crystalline or
almost crystalline morphologies in the bulk, the true effect of
the confinement in encouraging crystalline states would have
been masked.

There is a second part of our method that involves the
rendering of molecule shapes as polygons. We have used
hectogons (i.e., 100-sided regular polygons) to model planar

molecules with only steric interactions. Using finer resolutions,
i.e., a larger number of sides (see ESI†) or molecular dynamics
with perfect circular discs (see ref. 32), showed that a regular
polygon with 100 sides can be considered as a circle for all
intents and purposes.

Real conducting molecules, even low-molecular-weight oligo-
mers, tend to have complex, often anisotropic shapes (see for
example ref. 2, 4, 33). Thus, the results obtained here, with very
little interaction between molecules, suggest that confinement
can be even further exploited as a route to directing self-assembly
of planar molecules on confining substrates. Though the mole-
cules were approximated by discs as a first approximation, further
interesting aspects of confinement are expected as the complexity
of the shapes and their ability to interact geometrically increase.
Previous results for systems confined in thin two-dimensional
channels have the same global behavior (e.g., reentrant layering
transitions, orientational and spatial ordering) for a variety of
systems with a range of interparticle interactions from hard-core34

to inverse power law p r$12 (see ref. 35) to magnetic dipolar36 to
Coulombic37,38 potentials. It is likely that confinement-induced
ordering observed in this article is representative of a broader
class of systems, since the details of the interparticle interaction
are overshadowed by the nature of the confinement.

Whether the confinement is soft or hard, isotropic or aniso-
tropic, seems to play a more important role than the particularities
of the interactions or even the scale of the system. For instance,
finite Coulomb systems under circular (isotropic) confinement39,40

display the same qualitative features as dusty-plasma clusters41 or
colloids in confined geometries.42 Anisotropic confinement, as in
the square cavities studied here, brings an additional complexity
since the probability density is no longer homogeneous for each
shell or layer as in the case of isotropic confinement.43 Straight
corners act as nucleation sites promoting the formation of inter-
mediate ordered structures, as we have seen in the case of systems
with 16 and 25 particles.

This is especially interesting for organic molecules, as the
nature of the interactions, either intramolecular or with the
substrate, can take on a variety of forms. As the interactions can
range from strong covalent linkages to weaker secondary bonding
or electrostatic interactions to weak van der Waals interactions,
modeling them in real systems is especially challenging. If the
confinement medium plays a greater role than the specific inter-
molecular potentials, as is suggested in this paper, novel morpho-
logies can be controlled purely through geometric frustration.
Knowledge of the importance of the steric hard-body interactions
in ordering phenomena opens up a new route to self-assembly.

5 Summary and conclusions
A structural analysis of two-dimensional planar molecules on
confining substrates has been performed using Monte Carlo
simulations. We have found that disordered bulk systems dis-
play several degrees of ordering when self-assembled under
anisotropic confinement. By investigating statistical ensembles
of densified particles under quasi-zero-dimensional confinement,

Fig. 5 Point-density plots (first column) and representative structures of
the two most frequent non-n % n patterns (second and third columns) for
systems with 16 to 36 particles. The point-density plots were obtained by
superposing all the uncorrelated configurations different from the n % n
motif. The frequency (percentage) is indicated below each plot. The n % n
appearance frequency goes from 80% to 4% upon increasing the size of
the system from 16 to 36 particles.
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we were able to gain good insight into the regions in phase
space often visited by the system.

The impact of confinement was readily seen through the
analysis of point-cloud data, which showed high probability
densities at the corners with an oscillating decay in density
towards the center of the cavity. The particle density also showed
a layered structure parallel to the walls. Within each layer, the
particle density decreases monotonically until the midpoint. As a
consequence, a grid-like density modulation appears in all but
the smallest system (i.e., with less than 49 particles).

The most promising size range to self-assemble symmetric
configurations in square cavities is between 16 and 25 particles.
In this range, the probability distributions for the particle density
show a transition from single- to double-peaked distributions,
making it highly probable for the system to crystallize into one of
the several possible states. This is a consequence of the fluctua-
tions in small systems that underscore their importance as a
variable to direct molecular self-assembly.

We have investigated densified systems, since our interest
lies in the self-assembly of conducting two-dimensional mole-
cules. As a first approximation, circular discs, as used in the
present study, can describe the ordering behavior driven by
steric interactions of symmetric molecules. The strength of the
approach described in this contribution lies in the ability to
model the more complex steric interactions that arise when the
molecular shape is included. By expanding even further into
multiple molecule shape types, as would be seen with donor–
acceptor mixtures, critical insights into morphology and phase
separation can be gained. As morphology is critical to OPV,
OTFT, and OLED performance, such insights can allow us to
tailor device properties in the next generation devices.
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30 P. Szabó, M. Markót, T. Csendes, E. Specht, L. Casado and
I. Garcı́a, New Approaches to Circle Packing in a Square,
Springer, 2007.

PCCP Paper

Pu
bl

is
he

d 
on

 0
7 

A
ug

us
t 2

01
4.

 D
ow

nl
oa

de
d 

by
 M

cM
as

te
r U

ni
ve

rs
ity

 o
n 

08
/0

9/
20

14
 1

7:
48

:3
5.

 

View Article Online

Ph.D. Thesis - Matt Bumstead - McMaster University - Engineering Physics 78/129



This journal is© the Owner Societies 2014 Phys. Chem. Chem. Phys., 2014, 16, 20228--20235 | 20235

31 A. S. Keys, C. R. Iacovella and S. G. Glotzer, Annu. Rev.
Condens. Matter Phys., 2011, 2, 263–285.

32 B. Arnold, M. Bumstead, A. Dı́az Ortiz and A. Turak,
J. Electrochem. Soc., submitted.

33 B. C. Popere, A. M. Della Pelle, A. Poe and S. Thayumanavan,
Phys. Chem. Chem. Phys., 2012, 14, 4043–4057.

34 D. Chaudhuri and S. Sengupta, Phys. Rev. Lett., 2004,
93, 115702.

35 A. Ricci, P. Nielaba, S. Sengupta and K. Binder, Phys.
Rev. E: Stat., Nonlinear, Soft Matter Phys., 2007, 75,
011405.

36 R. Haghgooie and P. S. Doyle, Soft Matter, 2009, 5,
1192–1197.

37 L.-W. Teng, P.-S. Tu and L. I, Phys. Rev. Lett., 2003,
90, 245004.

38 G. Piacente, I. Schweigert, J. Betouras and F. Peeters, Phys.
Rev. B: Condens. Matter Mater. Phys., 2004, 69, 045324.

39 V. M. Bedanov and F. M. Peeters, Phys. Rev. B: Condens.
Matter Mater. Phys., 1994, 49, 2667–2676.

40 M. Kong, B. Partoens, A. Matulis and F. Peeters, Phys. Rev. E:
Stat., Nonlinear, Soft Matter Phys., 2004, 69, 036412.

41 A. Melzer, M. Klindworth and A. Piel, Phys. Rev. Lett., 2001,
87, 115002.

42 R. Bubeck, C. Behinger, S. Neser and P. Leiderer, Phys. Rev.
Lett., 1999, 82, 3364–3367.

43 W. K. Kegel, J. Chem. Phys., 2001, 115, 6538–6549.

Paper PCCP

Pu
bl

is
he

d 
on

 0
7 

A
ug

us
t 2

01
4.

 D
ow

nl
oa

de
d 

by
 M

cM
as

te
r U

ni
ve

rs
ity

 o
n 

08
/0

9/
20

14
 1

7:
48

:3
5.

 

View Article Online

Ph.D. Thesis - Matt Bumstead - McMaster University - Engineering Physics 79/129



Chapter 7

Morphologies of Molecules with
Anisotropic Steric Interactions

Morphology of six-sided complex organic compounds can be explored with STM at molecular res-
olution. Do molecules with complex shape self-assemble with a dispersion that is similar to ones
expected from circular objects? To analyze the role that shape can have at directing particular
patterns, the expected intermolecular characteristics of self-assembled morphologies should be
classified for many candidate molecules. Adapted with permission from [112]. Copyright (2009)
American Chemical Society.

80
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7.1 My Contributions

My contributions to this section include, writing the manuscript, finding and building a library
of polygons for potential use, selecting interesting test cases, and running the simulations to
acquire the data for this publication. I am the main author of this manuscript. My supervisor
Dr. Ayse Turak and I conceptualized this topic together with Dr. Alejandro Diaz Ortiz, who
made a major contribution to this topic through thoughtful discussions about the self-assembly
differences of pentagonal and circular particles. One goal was to answer the question about how
the self-assembled morphology changes when the resolution of sides defining a circular molecule
decreases to its minimum (triangle) and what types of order show a deviation from the expected
states of circles? I explore this question in the manuscript by quantifying differences in simulated
morphologies for a monodisperse set of complex molecular analogs. The expected results for
circular particles are also contrasted against the configurations generated using the set of regular
polygons for molecular shape.

My work focused on developing the ideas for using complex shapes to represent molecules.
One decision I made was to choose a set of images that show molecular dispersions of organic
molecules on flat surfaces that could potentially be simulated with a polygonal representation of
their observed shape. I did this for the series of regular polygons [113, 114, 115, 116, 117].

Another one of my contributions was to set up the mathematical framework to explore com-
plexly shaped molecular analogs. An overview of literature into simulations and experiments
using hard-body particles showed that structural properties are dependent on the density, which
is defined in excluded-volume models as the total area of all particles within a measured volume.
I pose here a question about how to account for the volume degeneracy between varying shapes,
from which I was unable to find a satisfactory solution to within literature. How can the volume
fraction account for shape when two distinctly dissimilar molecules have the exact same volume?
The reason this problem is that the density is used to predict the global behaviour of the system
and expected self-assembled structures, however these predicted outcomes do not change with
different molecular (i.e. volume degeneracy). My work was to solve this question so that we
could compare morphologies between simulations of several complex six-sided molecules. I did
this by defining the global density in terms of local Voronoi area fractions, which decouples the
particle volume from density in favour of encoding local structural characteristics instead.

Section 7.2 contains a brief overview of the manuscript. Section 7.3 examines systems of
molecules with circular shapes with lowering polygonal resolution. The work regarding complex
molecular shapes is contained within the manuscript in Section 7.4. This work is in progress to be
submitted before Dec. 15, 2017 to “The European Physical Journal E Soft Matter and Biological
Physics” - Special Issue: Advances in Computational Methods for Soft Matter Systems.

7.2 Overview of Manuscript (For Submission - 2017)

All objects that exist will embody volume and this volume is distributed within space. These two
conditions define the physical parameter of density which has key importance in describing and
predicting the behaviour in self-assembling particles. The excluded-volume model restricts the
number of intermolecular potentials to a single repulsive interaction. Allowable microstates are
dependent on the “free-volume” or unoccupied space between particles available for objects to
move within. This creates a problem when attempting to use the density as a metric to compare
dispersions of molecules with same the volume but different structure. An accurate definition
for density is needed since any two shapes can be rescaled using geometric transformations to
have exactly similar volume. The current excluded-volume model suggests that the macromolec-
ular dispersions produced from particles with different shape but same area fractions will have
common morphologies.

To test this behaviour, six-sided symmetric molecular analogs of distorted steric interaction
potentials (effective shape) are simulated using a Monte Carlo excluded-volume routine to gen-
erate statistical ensembles of disordered morphologies of varying density. Complexly shaped
six-sided molecule analog shapes were compared against circular molecules to observe diver-
gences in behaviour associated with small geometric alterations to the circular shape. Structural
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Figure 7.1: Planar configurations of polygonal shaped molecules as viewed using STM. Above
each image is the chemical structure associated with that molecule as well as its geometric
approximation. Chemical names: a) star-shaped 2,4,6-tris(4,4,4-trimethylphenyl)-1,3,5-triazine
[113] b) Copper phthalocyanine [114] c) pentachloro- corannulene derivative [115] d) Coronene
[116] e) C60 fullerene [117].

comparisons needed to have the area fraction and intermolecular spacing normalized across sim-
ulated morphologies in order to properly determine commonality. In the case of assessing the
structural dissimilarity, many of the standard analysis tools can fail to detect differences and
thus need finely-grained definitions. We address how modelling molecules not as circles, but as
anisotropic shapes, leads to a disconnect between density and structural order. We show that
distances between molecular neighbours need to be normalized to allow for a fair comparison
of pair correlation functions between molecular analogs . Finally, we conclude with the study
of structure metrics with showing that the angular descriptions of neighbouring molecules (i.e.
bond order q6) can fail to detect chirality imposed by geometric frustration.

7.3 Morphology of Circular Molecules with Low
Resolution

For many of the molecules that have high symmetry, circles can be used as a first order ap-
proximation to describe their interaction volume. This approximation to molecular shape has
an isotropic influence on molecule-molecule interactions. To see the effect of introducing shape,
the circular approximation can be varied slowly by truncating the number of sides the circle has.
A transition in the description of molecular analogs from “almost circular” to being considered
a non-circular shape will occur when the resulting morphologies change significantly from one
produced from circles.

To quantify this role, we begin by exploring simulated systems of molecules with shapes that
resemble regular polygons. Figure 7.1 shows a series of molecules which are possible choices for
regular polygons with sides varying from 3 to 6. A geometric analog of each molecule is shown
with the chemical structure in Figure 7.1 as well as an example of the molecular morphology
when observed from STM. The molecules which are represented in Figure 7.1 are: a) star-shaped
2,4,6-tris(4,4,4-trimethylphenyl)-1,3,5-triazine [113] b) Copper phthalocyanine (CuPC) [114] c)
pentachloro-corannulene derivative [115] d) Coronene [116] e) C60 fullerene [117].

The STM images for these molecules often show molecular tilings that are semi-pristine,
implying that the molecules arrange into crystalline forms on the surface. These are typically
done below room temperature to allow very little molecular movement during the rasterization of
the STM image. Thermal agitation of the molecules can cause excessive diffusive motion which
prevents single molecule imaging. However, in electronic devices such as photovoltaic cells,
the operation temperature is that or above the temperature of the global outside environment.
Solar panels are subjected to weather effects which can result in molecules rearranging locally
to dissipate the energy of sudden temperature gradients from intense sunlight or small drops of
rain water. Disorder in morphology could result within the device by energy transfer through
the networks of adjacent molecules. This is why disordered states are just as important to study,
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Figure 7.2: Statistics of bulk systems of molecules (N=1024) defined by simple steric potentials.
(a-f) Simulated configurations of ”almost circular” molecules in bulk phase. Colour overlaid as
the local bond order q6. (e) Probably distribution of area fractions for ensembles with 4032
patterns. (f) Pair correlation functions with intermolecular distances being normalized by the
length of the largest distance from the molecular centroid to vertex of the regular polygon.

since their probability of occurring can be higher than crystalline patterns.
To model this disordered state, we used Monte Carlo simulations to explore the steric con-

tribution of the interaction potential on the morphology of organic molecules. The method
simulates a set number of rigid molecules which undergo random displacements as the amount of
free volume available to molecules is removed at a fixed rate until the morphology forms a glass
state [118, 36, 119]. The resulting morphologies are a result of the molecular ability to explore
the unoccupied volume which is not embodied by other objects already on the surface and the
local geometric frustration caused from the caging influence of surrounding neighbours.

Circles are the simplest shape that provides insight into the mechanisms of planar self-
assembly. For organic molecules with symmetric chemical structures (such as fullerene and/or
coronene), circles can be used to as a first order approximation to their shape [56, 57]. However,
molecules used in photovoltaic devices, such as pentacene [58, 59] and PTCDA (3,4,9,10-perylene-
tetracarboxylic-dianhydride) [60], are observed to be elongated and whose shape which resembles
an ellipsoid [61, 62]. As a result, molecules of complex shape have the possibility to self-assemble
into configurations with localized states that would not be seen in systems of molecules with
simple circular shape [63]. To isolate the effect shape has on self-assembled morphology, we start
by analyzing dispersions for circles before varying the number of sides toward lower resolutions
to observe the influence of limited variation to the shape.

Figure 7.2 shows an example configuration of the regular polygon series: a) triangle b) square
c) pentagon d) hexagon e) septagon and (f) circle. Each molecule as been colour coded by its
local bond order parameter pq6q which describes how closely neighbouring molecules are arranged
around the central particle relative to a hexagonal lattice. As the molecules loose polygonal, the
local angular arrangement stays relatively similar until the molecular shape transitions from
being circular into a square. Polycrystalline domains are distinguished using the bond order by
the emergence of dark red dislocation lines of molecules along the domain perimeters. Figure
7.2 shows that a) triangles and b) squares both drop in the 6-fold angular order, denoting that
the global behaviour has changed from one expected from circles. This intuitively makes sense
since square molecules will prefer to self-assemble into square configurations. Triangles will form
patterns that have a triangular basis for neighbours, but the six surrounding neighbours do not
have equal distances among them like circles do.

The structural characteristics of self-assembled regular polygons have been independently
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simulated using discrete element method (DEM) and their structural characterization has been
reported on using the same metrics of area fraction and pair correlation function [120] as we
show in Figure 7.2. The discrete element method (DEM) is a numerical technique that models
particulate matter as hard objects and describes their motion using equations of motion [121].
The momentum of particles is governed by the contact forces, which is calculated using the
overlapping areas between colliding objects [122] and can be modified to incorporate non-spherical
shapes [123, 124, 120]. In their model, particles of regular polygons pack vertically inside a
container with horizontal periodic boundaries and allowed to compact under the influence of
gravity and friction [120]. Although their simulation method includes additional interaction
potentials, their results for regular polygons show very similar outcomes to ours.

The area fraction pφq for each ensemble is shown in Figure 7.2 g) as probability distributions
and contains information from 4032 independently simulated morphologies of bulk (N=1024)
periodic regular polygons. In this case, each regular polygon produces ensembles with area
fraction probability distributions that are similar in shape but with different mean values. It
is no surprise that triangles (φ “ 0.937), squares (φ “ 0.926), and hexagons (φ “ 0.910) have
the highest mean value of area fraction, since these shapes are known to tile surfaces completely
(i.e. φ “ 1). However, these results are interesting when compared to the trends reported
using DEM, which shows hexagons forming the highest area fraction (φDEM “ 0.93), followed
by squares (φDEM “ 0.92), then triangles (φDEM “ 0.89) [120]. This trend runs counter to our
results which shows the reverse effect and may be attributed to different condensation protocols
between simulation methods (i.e. thermal agitation vs. gravitational compaction).

While our Monte Carlo simulations show the ensemble of circles self-assembling with a mean
density of pφ “ 0.854q, pentagons result in area fraction much higher with pφ “ 0.864q and
septagons having lowest value at pφ “ 0.848q. This value of covering area suggests that ensembles
of pentagons have self-assembled through their reported first order phase transition at φ “
0.84 into a distorted triangular cell [84, 125]. However, ensembles of septagons suggest that
they remain in the hexagonal phase since their phase transition has been reported to occur at
φ “ 0.87 [125], which is at a density greater than we observed. Both of these support our
findings in Figure 7.2, where both c) pentagons and e) septagons globally act as circles when
at high density but reveals that pentagons have slightly lower bond order due to this distorted
triangular configuration. Further evidence is found from reported simulations of hard pentagons
and septagons with these area fractions, which have been observed to have bond order parameters
at or above pq6q “ 0.9 [125]. This trend is also seen in the results presented from DEM, although
the difference we report here is more profound.

Translational probability is quantified in Figure 7.2 h) showing the pair correlation function
for configurations plotted above. To compare across the sets, intermolecular distance was nor-
malized using the largest radius of the regular polygon. The dashed lines denote the expected
positions for the peaks associated with the hexagonal lattice. These results are in good agree-
ment with previously reported random packings of regular polygons [120], with pair correlation
functions showing similar peak positions and features unique for each polygon. Certain struc-
tural features characteristically define circular behaviour and is observed as a splitting of the
two peaks at the distances between the first and second nearest neighbour shells. These peaks
have been observed experimentally in dispersions of microscale pentagonal tablets undergoing
Brownian motion with area fractions as low as 0.74 [126]. This feature is common among the
simulated configurations of almost circular shapes, with exceptions being systems of square and
triangular particles. Pair correlation functions for planar square colloids have been observed to
contain features resembling the merging of the hexagonal first-second shell peaks when in a dilute
phase (φ “ 0.62), however upon further condensation, the dispersion shifts into one with that
produces the unique features associated with square lattice at pφ “ 0.74q [127]. Overall, analysis
with the pair correlation function suggests that the intermolecular spacing between molecules of
circular shape (sideą 4) are similar to each other, however, these peaks appear shifted relative
to each other when the internal distances are normalized to the largest radius.

In conclusion, the self-assembling behaviours for low resolution circles were analyzed for
structural differences within a statistical ensemble of many independently simulated morphologies
for each shape. The results show that there is a transition that breaks rotational anisotropy
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between simulated septagons (7 sides) and hexagons (6 sides). Another transition occurs between
hexagons and pentagons (5 sides), with the collective behaviour acting similarly to circles but
also preserving the directional configuration of their crystalline form. Below pentagons, the
square (4 sides) and triangle (3 sides) act as unique shapes, preferring tiling patterns which are
quantifiably different from expected morphology of circles. Assessment of this lower limit to to
the circular approximation of molecules can provide justification for utilizing a smaller number
of vertices to reduce extraneous computational cycles for routines that use polygons to define
objects.

In these cases, the traditional approach to structural quantification leads to a perceived vari-
ation in relative dispersion, when in reality, the morphology across samples are relatively similar.
For the pair correlation function, similar features are shared with molecules with more than 4
sides but they do not appear at the same intermolecular distance. Also, the distributions of area
fractions are relatively similar in shape, however, their means are offset with respect to circu-
lar molecules. These two metrics, give conflicting results which suggest that the morphological
behaviour of similarly shaped particles should produce different intermolecular structures. Our
results show that circular behaviour remains consistent for self-assembled morphologies of regu-
lar polygons, with complete divergence occurring when the resolution of a circular approximates
has lower than 5 sides.

7.4 Publication: “Similar morphology but different
molecule shape: self-assembly simulations with
varying steric potentials” (For Submission - 2017)
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I. ROLE OF MOLECULAR SHAPE IN
SELF-ASSEMBLY

Self-assembly of organic molecules is a complex dy-
namical process that incorporates many di↵erent com-
plex interactions between deposited molecules and the
substrate [1]. Advanced imaging techniques with AFM
are able to resolve the electronic orbitals of dispersed
single molecules [2, 3], revealing the geometric shape of
potential candidate molecules for device inclusion. For
instance, the same flower shape pattern is seen from
STM images from Copper phthalocyanine (CuPc) [4, 5]
and Zinc phthalocyanine (ZnPc) [6]. Conversely, organic
molecules can have di↵erent shapes with the exact same
chemical composition Isomerization of alkene molecules
have been investigated with STM and at low tempera-
tures on copper, the trans-cis variation shows distinct
di↵erences in observed structure [7]. From this perspec-
tive, it is crucial to predict how the e↵ective shape in-
fluences the molecular configurations, since it is possible
that many semiconducting molecules can not only share
a common shape but also have multiple atomistic permu-
tations. If we can understand this phenomena, then it is
possible to direct the self-assembly just by choosing cor-
rect ratios of donor-acceptor molecules, and/or confining
the system in set geometric boundaries (eg. etched sur-
face) to produce morphologies that favour e�cient charge
separation and transport.

To do this, possible candidate molecules need to be se-
lected for on the basis of how close their observed struc-
ture is to interesting complex shape profiles. Experimen-
tally, this is a challenge since molecules of di↵erent shape
can consist of di↵erent chemical elements, resulting in an
inconsistent control variable of a commonly controlled
interaction between all candidate molecules. Computer
simulations can be used to explore self-assembling sys-
tems that depend solely on the influence of molecular
shape on self-assembly in a way that is challenging to do
experimentally. In nano-scale systems such as the orga-
nization of organic molecules in devices, many di↵erent
potential interactions may arise. Intermolecular and sub-
strate interactions within systems of organic molecules
can be very complex [1] and this method provides a way
to decouple the influences that molecule-molecule inter-
actions and molecule-substrate interactions from the re-
sulting morphologies

⇤ Corresponding author; bumstema@mcmaster.ca
† Corresponding author: turaka@mcmaster.ca

A key aspect in numerical modelling molecules is
choosing the appropriate interaction potential to accu-
rately reproduce the phenomena of interest. Typically,
including as much detail as possible into a system will
provide a more accurate representation of the true na-
ture in question. However, its is possible to reduce the
complexity and concentrate on only the most important
features of the phenomena of study. With the proba-
bilistic nature of quantum phenomena, first principle ac-
counts for interactions may not be able to fully capture
all of them.

Systems can approximated by reducing the number
and types intermolecular interaction potentials into one
that captures the main contribution to self-assembly.
The excluded-volume model of particle self-assembly pro-
vides a way to isolate the influence of molecule-shape
interactions and observe its roll on morphology using nu-
merical simulations by varying the shape of molecules
from simple to arbitrarily complex. The term ”excluded-
volume” is used to define systems that manifest physical
properties mainly as the density of the particles varies.
The steric potential simply implies that that each entity
is rigid with a volume and that particles cannot embody
the same regions of space as others.

Our main motivation is to understand how accurately
the steric approximation to shape is at describing the
self assembly of intermolecular morphology. This is done
by use of excluded-volume Monte Calro simulations of
condensing steric analogs. Since all objects that occupy
space have a geometric shape associated with it, these
types of simulations should be broad enough to incorpo-
rate an arbitrary definition for particle shape while also
accurately representing particles of varying length scales.
Also, since individual molecules can be resolved in planar
monolayer morphologies using STM [8], we can make the
assumption that there is a set of molecular orbitals that
do not completely overlap and thus represent a steric
shape to the molecule. Because of these reasons, it is
acceptable to conclude that the steric interaction makes
some contribution to the thermodynamic energy poten-
tials [9] and that the molecular shape has a influence on
the resulting morphology.

Each organic molecule has a geometric shape that cor-
responds to its chemical structure. The electronic or-
bitals of the molecule creates an interaction volume that
can resemble a shape this is likely similar to its chem-
ical structure. Since it is possible that the influence of
the steric potential can extend past than the outline of
the molecule observed in STM, this calibrated distance
explicitly describes the repelling interaction strength be-
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tween molecules. Understanding both of these issues
leads to a better framework for which slight di↵erences
in the intermolecular morphology caused by varying the
organic molecules from simple circular shapes to complex
ones.

Physical objects embody volume. Shape manifests as
a physical property of objects through partitioning the
surrounding volume with geometric contours that confine
the spatial distributions of material as a localized aggre-
gate which collectively acts a single body. The interface
between the surrounding environment and the excluded-
volume of the object defines a conformal outline of the
shape. Terms such as volume and area may sometimes
used synonymously here as they both relate to an amount
of geometric space that is physically embodied by the
molecules in either 3D or 2D systems.

The property of volume exclusion is common within
varying length scales, and can be seen from nanometer
scale to macrosize objects. Shape is a result of the col-
lective behaviour of all constituents that compose of the
material that acts as a single object. Granular material
is an example of steric particulates that collectively to
from static states with physical properties which depend
on excluded-volume fraction of the system.

The simplest geometric shape that embodies volume
is a sphere which can interact locally though hard-body
collisions. This simplification provides insight into the
role of density by minimizing the influence of anisotropic
particle volumes. These properties form the basis of the
hard-sphere model [10], which is successful in predicting
the behaviour of material such as liquid crystals [11], col-
loidal nanoparticles [12–14], and macromolecular crowd-
ing in cells [15].

What happens when the object interactions act at the
distance and can a steric potential (shape) still be defined
as an excluded-volume interaction? Lenard Jones fluids,
and electromagnetic charged fluids show the same be-
haviour as the hard-body case, and has been theoretically
proposed that all these interaction potentials are limiting
cases of an overlying potential that manifests through re-
pulsion interactions [16]. Particles that act at a distance
through repulsive potentials can have a steric potential
drawn using contours of constant energy potentials [9].
Molecular orbital contours are then accessible from ex-
perimental techniques since individual molecules can be
imaged using scanning tunnelling microscopy [17] There
has been a lot of work describing intermolecular poten-
tials that use this function to define physical properties
within a system of many particles [18–20]. Models like
density functional theory (DFT) calculates a potential by
using a correlation function between atoms to form a de-
scription of the charge density in molecular orbitals [21].
It is practical importance for organic electronic devices,
since it is able to calculate energy states of molecular
orbitals such as the highest occupied (HOMO) and low-
est unoccupied molecular orbital (LUMO). These energy
states act similarly to the conduction and valence band
energies for traditional semiconductors [22]. These in-

teraction potentials are calculated based on the distance
between pairs of points (i.e. two particle interaction).
Work has been done to expand this to incorporate higher
orders of pairs using a more general correlation function
which is defined as a truncated expansion of the between
multiple pairs of particles [23, 24].

In systems of organic molecules with complex shapes,
steric interactions between molecules can prevent inter-
digitation of dangling alkoxy side chains [25], hinder the
self-assembly of hydrophobic domains of dendrimers [26],
and produce chirality in intermolecular dispersions from
rotations caused by increased density [27]. It has also
been used explain the observed morphologies of amino
acid derivatives [28], the confinement e↵ect of macro-
molecular crowding in biological systems [29, 30]. Sub-
strates can also cause steric influence on molecules by
preventing movement of molecules at step edges [31].
Molecules with chemical structures that in 3D can be
sterically influenced by the substrate. The steric interac-
tion between the substrate and molecules’ rigid chemical
bonds prevent them from laying flat on the surface which
can cause parts of molecule to extend out of the plane
causing a change to the lateral interaction volume/shape
felt by adjacent molecules [17, 26, 32].

To explore complexity, six-sized symmetric molecular
analogs of distorted steric interaction potentials (e↵ec-
tive shape) are simulated using a Monte Carlo excluded-
volume routine to generate statistical ensembles of dis-
ordered morphologies of varying density. In the case of
assessing the structural dissimilarity, many of the stan-
dard analysis tools can fail to detect di↵erences and thus
need finely-grained definitions. We address how mod-
elling molecules not as circles, but as anisotropic shapes,
leads to a disconnect between density and structural or-
der. We show that distances between molecular neigh-
bours need to be normalized to allow for a fair com-
parison of pair correlation functions between molecular
analogs . Finally, we conclude with the study of struc-
ture metrics with showing that the angular descriptions
of neighbouring molecules (i.e. bond order q6) can fail to
detect chirality imposed by geometric frustration.

II. MODELLING COMPLEX 6-SIDED
MOLECULE

The simplest shape that can be used to model a
molecule is shown in Figure 1 a) as the circle. In this
case, the molecule is treated as an isotropic steric po-
tential, one in which relative molecular orientation can
be neglected. Small variations to the steric potential
may break rotational symmetry, resulting in Figure 1 b)
Reuleaux Polygon [33]. With odd number of sides (i.e.
3,5,7,.. ), Reuleaux polygons have the unique ability that
allows for the object to rotate freely within a square due
to its constant width [33]. The steric potential of a con-
vex molecule does not allow any interconnections between
molecules.
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FIG. 1. Steric interaction potentials that might approximate molecular structure seen in STM. The simplest description of
the molecule can be done using (a) Circle. Small variations to the steric potential may break rotational symmetry, resulting
in (b) Reuleaux Polygon [33]. Angular symmetry is broken from 2⇡/6 (c) Hypocycloid [34] to 2⇡/3 (d) Super Ellipse [35] by
extending a subset of its sides. Chirality is introduced along molecular arms, breaking mirror symmetry of (e) Rhodonea curve
[36] into a (f) Chiral-Alhambra shape and finally the (g) chemical structure for complex 6-fold symmetric organic molecule
with STM image below [37].

Another approach is to modify this circular steric po-
tential into one that emancipates possible free volume
from between arms, and concave polygons fit this de-
scription. The space between the arms of the six-sided
symmetric molecules can be approximated in di↵erent
ways. Long oligamer chains hang o↵ the arms can be
distinguished in STM and thought of as being part to
the molecules steric potential. This implies that the vol-
ume between molecular arms is completely excluded from
probe-able space. The hypocycloid [34] is show in at
Figure 1 c) and provides a geometric description which
implies less interaction volume at the very ends of the
arms and most of the mass is represented in the bulky
centre. If there is an additional excluded-volume inter-
actions on the molecule (such as longer 3 ligands longer
than the rest) the steric equivalence will cause a change
represented in Figure 1 e) as the Super Ellipse [35] which
exaggerates the e↵ect of the Hypocycloid arms. The
Rhodonea curve [36] in Figure 1 e) is one that most accu-
rately fits outline as seen in STM [37, 38]. This molecule
has also been observed to have chiral self-assemblies [39]
so we also include a chiral modification to the arms as
seen in Figure 1 e) as the Chiral-Alhambra curve. Fi-
nally, Figure 1 e) shows the chemical structure of this
6-sided complex molecule.

Consider the Circles and Reuleaux polygons shown
in Figure 2 (a-b). The local bond order is mapped di-
rectly onto the molecules, where deep red indicate disor-
der while white represents configurations that are close
to having q6 similar to that of hexagonally closed-packed
disks. Both molecular analogs seem to produce similar
probabilities of q6, however, the neighbour map shows
clearly that molecules prefer to be at certain orientations
relative to each other. This small deviation in the circular
steric potential shows the impact that breaking angular
symmetry can direct orientational self-assembly.

One method to explore the influence of molecular ori-
entation is to build a probability map of neighbouring
molecules. To start, neighbours are assigned to each
molecule if they share a Delaunay connection. The neigh-
bours’ vectors are re-orientated around the molecular
analog to explore angular and probability over some dis-
tance. In Figure 2, the probabilty maps show the clos-
est molecular centers and are re-orientated around the
symmetry axis of each particle. This visual description
describes the probability to find molecules at both r and
✓ directions along a molecular axes. It may be useful
to think of these insets as 2d pair correlation g(r) maps
[40]. When assessing only the first nearest neighbours,
we refer to this as the bond order probability maps.

What can be seen is that shape will break the isotropic
angular distribution of neighbours into places that mini-
mize the distance between molecules. The neighbour dis-
tribution around the (a) circle is isotropic which should
be the cause if we are using a circle to minimize the en-
tropic influence due to shape. It also implies that the cir-
cle has no way to tell its relative orientation from the po-
sitions of its neighbours and thus chirality is not possible
at the particle level. For the case of the (c) hypocycloid,
and (f) chiral alhambra, the probability map of neigh-
bours shows packing chirality by having the bright spots
slightly o↵ center from the apothem distance. The (b)
Reuleaux shape however keeps its symmetric distribution
of six neighbours to the middle of molecular analog side.
This may be the influence of its convex apothem relative
to the convex others.

The (bottom) section of Figure 2 displays the local
bond order parameter q6 being visually mapped onto a
sample configuration with the density that is most proba-
ble for each ensemble of molecule analogs. The (a) circle
and (b) Reuleaux shape show similar dislocation lines
within sections of hexagonal domains. Similar features
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FIG. 2. Bond order parameter comparison of steric molecule analogs as outlined in Figure 1 (a-f). Bright areas indicate high
probability for positional arrangement of neighbours relative to molecular structure. Simulations of 200 molecules are coloured
with the local bond order q6/qhex

6 below.

are between (c) and (f) which show hexatic behaviour
and (d) and (e) which present more disorder that the
rest, as indicated with deeper red areas.

III. CHARACTERIZATION OF DENSITY AND
INTERMOLECULAR SEPARATION DISTANCES

BETWEEN MOLECULAR ANALOGS

Position and orientation of molecules relative to one
another can e↵ect charge transport in organic optoelec-
tronics. Simulations have been successful in describ-
ing monodisperse systems (only one chemical species)
and with the goal being to predict possible morphologies
that can arise. Unlike typical semiconducting materials
(i.e. point particles), interactions of local neighbours will
cause frustration in organic systems which leads to disor-
dered states. In locally disordered regions, there may be
a higher probability for the recombination of charge car-
riers. Conversely, long-range order is needed to extract
charges after the disassociation of excitons. As such, ro-
bust metrics that can characterize disorder are needed to
distinguish subtle morphological di↵erences that result
from a change in the e↵ective steric potential.

Figure 3 shows a set of molecules self-assembled on a
substrate. All those inside the box (orange) are consid-
ered for structural analysis. Molecules outside the box
(green) influence the morphology inside, but cannot be
fully investigated. Analogous to the frame size of a photo,
the box here represents a snapshot of bulk-phase mor-
phology (i.e. periodic boundary conditions). Figure 3
(b) shows Voronoi tessellations are built from centroids
of molecules and partition the simulation area into lo-
calized amounts for each molecule. Figure 3 (c) shows
how using periodic boundary conditions ensures that the

total area of the Voronoi cells will be exactly the same
as the square image area. Molecular shape can then be
separated from the density. Figure 3 shows how the lo-
calized area fraction �ˇ can be broken up into i) the
e↵ective excluded-volume interaction (molecule) and ii)
the resulting available free volume (cell). Each Voronoi
cell is associated with a localized number density (i.e.
only one molecule per cell).

The area fraction �, represents the fraction of simula-
tion area covered by N total objects with the simulation
space being a unit box of area Abox = (1 ⇥ 1).

� = N
Amol

Abox
, (1)

However, as the geometric shape changes between
molecules so does their area. To define the area fraction
as general as possible allows it to be utilized to compare
across di↵erent geometrical descriptions of steric poten-
tials (i.e. polydisperse systems or non-circular shapes).
Each candidate molecule i has an excluded-volume po-
tential with area Aˇ(i). The sum of all objects is the
total excluded area

P
Aˇ(i).

� =
1

Abox

NX

i

Aˇ(i) (2)

One might notice that two candidate molecules can
have di↵erent geometric shape but have degenerate area
Aˇ (i.e. di↵erent shape, same area). The becomes an
issue when trying to describe the density in this manner.
A more robust metric is needed to study the intricate
details that di↵erentiate candidate molecules.

Voronoi tiles have the property of tessellating the space
completely. Instead of using the total simulation box
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FIG. 3. Separating molecular structure from area fraction using Voronoi tessellations. (a) Molecules self-assemble on a
substrate but only those inside the area box (orange) are considered for structural analysis. (b) Voronoi tessellations are built
from centroids of molecules. (c) The area of the substrate is partitioned into localized amounts defined by morphology of the
surrounding molecules. (d) Molecular shape is separated from the density. Localized area fraction (�ˇ) can be broken up
into the e↵ective excluded-volume interaction (molecule) and the resulting available free volume (cell). Density distributions of
molecular analogs: (e) probability distributions of the area fractions � associated with ensembles of molecule analogs. (f) Local
number density N defined by using areas of the Voronoi cells, defined by the centroids of molecular analogs. Number density
is normalized by the number of molecules in the system (N=200 in simulations) to compare the mean local density rather than
the global average.

area, all space is locally partitioned into distributions
that are defined by the structural self-assembly of each
candidate molecule. In this case, the sum of all Voronoi
tiles will return the total simulation area Abox =

P
Avor.

For every molecule i in the system, each has a local area
fraction �ˇ

� = Aˇ

NX 1

Avor
, (3)

This can be expressed as a local number density, where
N = 1/Avor :

The sum of the local area fractions returns to the origi-
nal global area fraction. Normalized by the equipartition
of the total area between all objects analyzed. This re-
sult tells us that the global area fraction parameter can
be partitioned into localized area fluctuations for each
molecule instead and that the probability distribution
of local number density for each particle in the statisti-
cal ensemble will provide information about the internal
structure.

What can be seen in Figure 3 (e) is the area fraction
probability distribution for each molecular analog using
5000 independently run configurations. The removal of
internal excluded-volume from between the ligands that
define the complex molecular analogs leads to area frac-
tions have values where their ranges do not overlap with
each other. From this, one might conclude that they do
not produce the same morphology. However, this is an in-
fluence of shape-volume degeneracy. The intermolecular
structures can be extracted independently of the molecu-
lar shape, using the centre of mass to define the molecules
position. Figure 3 (f) shows the probability distributions
for the local number density for each of the molecular
shape analogs. The results show that similar shapes like
the circle and Reuleaux shape collapses into relatively
similar distributions for in both range and peak prob-
abilities. The hypocycloids show a similar distribution
features to the circles
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A. Distance renormalization for determining
magnitude of the steric interaction

Self-assembly is numerically modelled by increasing
density of molecules while reducing molecular thermal
energy. Rather than shrinking the simulation area,
molecules are inflated. This is done by mapping the dis-
tances inside simulation box onto the size of the molecules
[41]. When the simulation stops, stochastic nature of the
method imposes that the density of the system will vary
between runs. As such, area fraction directly corresponds
to molecular radius and distances between neighbours.

There are three ways to normalize distance to allow
comparison across ensembles of varying polygonal poten-
tials. This first is use the radius of the molecule as a ruler.
The radius (furthest distance from centre to polygon) of
all shapes can be set to r=1. This implies that the in-
teraction potentials are always contained within what is
seen in the STM molecule. The STM probes the elec-
tron clouds of the molecule. These can cause a screening
e↵ect on electrical potentials , causing truncation of its
influence as it penetrates the clouds. The geometric de-
scription of these clouds can vary as external influences
probe and distort these clouds through complex interac-
tions. Structures seen from this will provide a unique
starting point to estimate geometric descriptions of the
steric potential.

A circle provides an isotropic steric potential. How-
ever, the molecules seen in STM experiments 1 have non-
circular shape. Many have 6 branches, but are seen to
vary slightly between 5 and 7. Even though this molecule
looks 6-sided, the associated steric interaction potential
can undertake any shape. To explore this, the molecule
analogs in this study are chosen such that most each po-
tential could be argued to be possible candidate. Each
shape is subjected to undirected self-assembly simula-
tions. Statistically large sets of results from each outcome
are combined and analyzed together. This unbiased ap-
proach allows for the most probable morphologies to be
compared evenly. The resulting morphologies that di↵er
across simulations is a direct function of the steric poten-
tial chosen to represent the molecule. We compare this to
a physically representative sample molecule in di↵erent
interaction potentials.

One main tool to gauge structural order within mor-
phology is the pair-correlation function g(r). This metric
describes the probability to find neighbouring molecules
within a shell of dr at a radial distance of r from another.
Distance between molecules needs to be normalized for an
accurate comparison. It is possible that molecules with
varying steric potentials could produce similar structure.
If a metric is based on the subtraction between pair-
correlation functions, then it might mis-classify similar
morphology at di↵erent length scales. This normaliza-
tion provides insight into the magnitude of the steric po-
tential required.

To illustrate this, take the example of the case of the
hypocycloid and super ellipse in Figure 4. The method

to determine the magnitude of the steric potential. In
cases where there is high thermal energy, molecules will
undergo rotation, e↵ectively reducing their shape into a
circle. This radius of this suggests the physical represen-
tation of the molecule that neighbouring objects feel. Av-
erage distance between molecules can be larger than the
molecule. Similar to a liquid crystal, circular molecules
on a substrate might form angularly ordered patterns,
but are not hexagonally closed packed (i.e. not touch-
ing). In this case, an e↵ective steric potential analog to
molecules in this system could be estimated as a disk,
extending outside the molecule and fully encapsulating
it. Geometry of this e↵ective interactions can vary de-
pending on the environment.

When we want to use the molecular size to normal-
ize the distance, there are di↵erent points we can use to
define the radius. Fig. 1(a) shows this e↵ective rotation
volume when the molecule candidate undergoes a skew to
its sides with changes the rotational symmetry. The in-
teraction volume for the hypocycloid extends outside its
radius of gyration. In this case, the steric potential of the
hypocycloid is not felt. By defining the radius from the
hypocycloid, the excluded volume potential is smaller.
Fig. 1(b) shows the largest radius of gyration that can
be defined that completely encapsulates the hypocycloid.

In simulations, the distance is only a relative scale mea-
sure between molecular centroids. Granular and steric
objects have a wide range of available length scales in
which they hold the same properties. The same possi-
ble distributions of planar colloids can be sampled using
macroscopic objects such as billiard balls. This length-
scale super position places steric objects within the com-
plete range of distances between quantum and gravita-
tional realms. As a result, conclusions drawn from mod-
elling steric objects can be widely transfered between
scientific disciplines with ease. By accumulating vast
amounts of self-assembled configurations, a data base of
all possible configurations can be built. Time depen-
dant flows of steric objects is important when dealing
with small macroscopic objects, like gains of sand. How-
ever, the steady state configurations is also important.
This is the final configurations after the self-assembly of
molecules onto a surface, once the thermal energy dissi-
pates and molecules are contained inside the device. At
this point, the molecules are fixed at their current lo-
cations. Mass production of planar organic electronics
is bound to produce slight variations between products.
Simulations of disordered states allows for probing these
possible deviations without the need to run costly experi-
ments aimed at categorizing the many varying morpholo-
gies. By understanding the probability for molecules to
arrange into specific configurations, it is possible to engi-
neer and optimize the outcomes to maximize reliability.

Steric molecules are described by the geometric struc-
ture, which is a property unique to its chemical species.
These can range from being simple (planar disk) or
as complex as possible (dendrimers). Here we note
that molecules can have very di↵erent shapes, but exert
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FIG. 4. Renormalization of the intermolecular distance using di↵erent magnitudes of steric potential. (a) Intermolecular
distance is scaled by the maximum observable diameter, and (b) the minimum internal feature size to define the shape. (c)
The mean distance of the centriod-to-perimeter distance integrated over 2⇡ rotational angle.

the same volume. If the resulting configurations mod-
elled by an excluded-volume potential is only a func-
tion of volume, then one should expect to see same pat-
terns with di↵erent shapes. However, having di↵erent
shapes changes the gradient of excluded-volume around
the molecule, causing the entropic repositioning around
molecules to change. We predict that since the simula-
tions are driven by entropic densification and that molec-
ular volumes remove free-volume, then since the molecu-
lar geometry defines the volume, resulting morphologies
should be influenced by molecular shape.

There are two parts to describe the reduction of in-
teractions into an e↵ective steric potential. The shape of
the molecule will influence the distribution of local neigh-
bour molecules. This can be thought of as the angular
component of the potential. The second one is the rela-
tive scale this e↵ect has on molecules, the magnitude or
radius of influence. If it is thought of as a mean field po-
tential, this would encompass the number of influencing
neighbours.

The radius of influence is a key parameter to justify
steric descriptions of molecules. If geometric descriptions
of molecules have no influence on the morphology, then
it is quite possible for these simulations to all produce
exactly similar morphologies. If the relative distance be-
tween molecules is set to produce exactly similar density,
then we would expect the resulting structural signatures
to collapse across ensembles of varying polygons as well.
However, when this was explored, we report that there
was indeed di↵erences between ensembles. This indicates
shape has an influence on steric frustration.

IV. CONCLUSIONS

Complexly shaped six-sided molecule analog shapes
were simulated to observe divergences in behaviour as-

sociated with molecular structural alterations. The cir-
cle is altered into a six-sided Reuleaux polygon [33] and
compared to other six-sided molecular analogs such as,
Hypocycloid [34], Super Ellipse [35], Rhodonea curve
[36], Chiral-Alhambra. Structural comparisons needed
to have the area fraction and intermolecular spacing nor-
malized across simulated morphologies in order to prop-
erly determine commonality.

Our results show that density and intermolecular struc-
tures commonly seen with dispersions of self-assembled
molecular analogs can exemplify circular behaviour in
one set of order metrics but deviate once these account
for the influence of complex shape. We found that cir-
cles and the Reuleaux polygon share a common distri-
bution of probable local Voronoi number densities but
this distribution is not shared amongst the other molec-
ular analogs. This would be expected since their shapes
have the most similarity. The Hypocycloid does produce
a probability distribution which is similar in features to
the circle, but it is spread out over a larger range of lo-
cal number densities. The Super Ellipse, Rhodonea, and
Chiral-Alhambra analog share similar probability with
the disordered Voronoi distributions of granular parti-
cles[], but also that the Rhodonea analogs condense closer
than the other two. With the intermolecular distances
normalized, the pair correlation functions g(r) of the sim-
ulated molecular analogs of the Reuleaux, and Hypocy-
cloid showed similarity in structural of that of circles.
The Rhodonea analog could be considered as possibly
similar, since the g(r) shows a splitting of the double
peak in at the second neighbour shell. We also confirm
this by using the correlation cloud, which showed hexatic
packing of neighbours with Reuleaux, and Hypocycloid.
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Chapter 8

Simulating Morphologies with
Multiple Molecular Species

The self-assembled morphology changes with the introduction of different molecular species,
boundaries, and interactions. A simulated bulk system of two molecules (CuPC - orange flower
and DIP - blue ellipse) is shown here and highlights new features like hexagonal periodic bound-
aries, and assembly under an external background field.

95
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8.1 Morphological Variation in Organic Electronic
Devices

Organic electronic devices can have a large variation in possible candidate molecules as the
photon absorption active layer. Tuning the intermolecular structure has been shown to increase
the efficiency in photovoltaic devices. Devices like bulk heterojunctions combine two separate
donor and acceptor molecules to form the devices active layer [10, 11, 12, 13, 14, 15]. The interface
between the donor and acceptor molecules has an influence on how the much of the absorbed
photons are converted into energy [10, 69]. The excited charge carriers need to be extracted from
the interior organic active layer once the photon energy is collected. To do this, there needs to
be an accessible percolation path that allows the charges to move within. To minimize the loss in
energy due to recombination, there needs to be a balance between having enough donor/acceptor
interfaces to split excited excitons while also limiting the number of interfaces that charges will
encounter on its way to the electrodes.

A system of two or more molecules is referred to as polydisperse, while ones that only contain
a single molecular species are considered monodisperse. For instance, the molecular combination
of CuPc and DIP appear as a four lobed shape and ellipse respectively when imaged using STM
[15]. Organic molecules are built from basic chemical building blocks which can have many per-
mutations of atoms and chemical species. In some instances, the replacement of atoms can result
in a chemical that has similar bond structure to the original but with different intermolecular in-
teractions with the substrate and other molecules due to the new chemical species. For instance,
the same flower shape pattern is seen from STM images from Copper phthalocyanine (CuPc) [70]
and Zinc phthalocyanine (ZnPc) [71]. This has the potential to change the electrical properties
of a system by selecting different molecule, but keeping the same effective shape of the molecule.
Device performance can change by swapping out one molecule for another with favourable elec-
trical properties without changing the tiling pattern. The way that these molecules arrange
themselves with respect to each others geometric shape is something that has yet to be explored
with excluded-volume simulations.

This opens up a different question when we plan to simulate polydisperse particles. The
definition of density depends on the covering area of the molecule. In a system of two or more
molecules, each species can have a very different and complex shape, however the total volume
they occupy can be exactly similar. In this case, relying on the density to determine the expected
morphology can be a challenge. We hypothesize that these interactions manifest as a change
to the geometry of the molecule and its“effective steric shape” is what drives the manifested
arrangement seen in STM.

8.2 Expansions to the Monte Carlo Simulation Method

Monte Carlo methods are a common simulation approach that utilizes random numbers to sim-
ulate complex phenomena. The main problem that my thesis explores is how to incorporate
this method for modelling molecules as steric objects and to quantify how close this approxi-
mation can be. Simulations are used to predict the self-assembly, reducing the need to perform
costly and time consuming experiments. However, it is possible that other interactions effect the
self-assembly of planar organic molecules. STM images currently are the best way to verify the
positional order of molecules we use to build devices. Simulation outcomes can be compared to
directly with experiment, suggesting that we can link a polygonal shape directly to model that
molecule.

One of the main motivations for developing a new version of this software was the desire
to simulate multiple types of molecules, each defined by their unique shape. An example of
polydisperse simulations that would be previously inaccessible is shown in Figure 8.1. In Figure
8.1 (a), the the two particle model of CuPc and DIP has been simulated inside a hexagonal
homeotropic boundary. The internal patches of donor/acceptor molecules makes this a good
example to show off the motivation for developing this simulation method. Charge extraction
is a key component to optimizing organic photovoltaic devices. The path the charge carries
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Figure 8.1: Example output configuration from simulating CuPc + DIP molecules (N=100
each) inside a hexagonal container with homeotropic boundarie walls. (a) Rendered configura-
tion with CuPc in orange and DIP in blue. (b) Charge percolation paths for each molecular
species is plotted on top of the configuration. Black indicates the donor path while green is the
acceptor. (c) Objects are removed for clarity, showing the regions of charge favourability and
donor/acceptor interfaces. Thicker percolation paths indicate higher steric overlap - leading to
a higher probability for charges to transfer between those molecules.

take after being generated by photon absorption will effect the efficiency. Charges that meander
throughout the device not only take longer to reach the electrodes but also have a higher chance
of recombination at the donor/acceptor interface. Both of these reduce the amount of electricity
that can possibly be harvested.

In Figure 8.1 (b) the percolation paths for this configuration has been solved and plotted over
top. The black colours indicate the path of the CuPc charges, which green lines show the route
for DIP. The thickness of these lines show the relative probability for charges to jump from one
molecule to another; where thick lines are interpreted as having higher steric-force interactions
with its neighbour, and therefore suggests an increased probability to hop locally between these
molecules.

In Figure 8.1 (c), the molecules are removed from the background for clarity. Here we can
now observe the preferred path of charge carriers, having some long paths which connect from
one edge to the other. The understanding the movement of charge inside the device is a key
component to increasing the efficiency in photovoltaic devices and the overlap network gives a
quick visual description into the likely pathways that are possible for a given morphology.

To fully produce useful results that can extrapolated for use in photovoltaic devices, the
simulation needs to be able to handle more than one molecular shape at the same time. The
addition of multiple molecular shapes into the simulation would be a powerful tool to fully
understand the self-assembly of donor/acceptor organic molecules.

8.2.1 Types of Systems that can be Simulated

Initial version of the code (entitled “gransim”) kept a very rigid subset of simulatable con-
ditions, forcing users to simulate monodisperse particles inside either periodic or hard square
boundaries. One major limitation of this program is that it is only able to simulate monodisperse
morphologies. Generating configurations for polydisperse monolayers is currently not possible
for the “gransim” versions of the software. The solution for this was a new application (enti-
tled “Morphologies”) that builds upon the previous work of Bjorn Arnold and expands the base
capability to explore a more realistic description of molecular environments within photovoltaic
devices. A list of the changes made to this program is outlined in Table 8.1. There have been
3 major releases of this program with each iteration adding more features. The last release was
written from the ground up to include polydispersity in the simulations. Many sections of the
original code were improved upon within the new framework of exploring new environments with
polydisperse particles. The core of this code was patched by me in version 1.11 to accommodate
the user input of non-square boundaries as well as an automatic repacking stage (denoted as
cooling at jamming). However, we soon found that patching in expansions would take much
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Release Info gransim 1.0.9 gransim 1.11 Morphologies 1.0

Developer: Bjorn Arnold Matt Bumstead Matt Bumstead
Year: 2009 2014 2017
Published Data: Papers [36, 119] Chapter 7 Chapter 8
External Codes
Overlap Library: Murta Clip. Lib.[128] Murta Clip. Lib.[128] Boost Geometry [129]
RNG Library: Intel Intel Boost Random [129]
Matrix Library: MKL MKL None (removed)
Compiler: icc icc icc/gcc/clang

Molecules Monodisperse Monodisperse Polydisperse

Boundary
Hard Square Polygonal Variable Polygonal
Homoeotropic Square Polygonal Variable Polygonal
Periodic Square Square Square / Hexagonal

Interactions Thermal Agitation Thermal Agitation Thermal Agitation
Glass Transition Glass Transition

Background Potential

Table 8.1: List of major release features and their limitations over various iterations of our
Monte Carlo simulation method.

more effort than re-writing the simulation code with polydispersity in mind. As such, the new
code was designed with optimization in mind, with quick rejections and fast clipping methods
to reduce computational cost associated with Monte Carlo trials. This improvement in speed al-
lowed for development of additional features like interactions and complex boundaries that would
be impractical otherwise. Without the test implementations as patches to the source code, many
of the key efficiencies may have easily been overlooked.

Sections of Table 8.1 display the external routines, codes, and compliers needed to run the
simulations. The initial version of the code random number generator and linear algebra libraries
are propriety libraries of Intel. These were removed and replaced with the open source Boost
Library [129]1 to ensure more accessibility to researchers who do not own these licences. Initial
testing also suggested that the Intel linear algebra routines used to translate and rotate the
polygon vertices were also slower than expected because they have been optimized for large array
manipulations. These were removed and replaced with similar a function without optimization.
Overall, this change focuses more on improving the autonomy of the code while not having to
sacrifice computation time in the process.

Sections of Table 8.1 outline the progress on the types of environments that molecules can be
simulated under. Another limitation of the initial source code was that the systems ware confined
to having a simulation area that was always defined to be in a 1x1 unit square. We explored the
effect of these square boundaries on how finite numbers of particles arrange themselves with its
available volume (Chapter 6). This is fine for basic simulations but it limits the type of results
that can be explored in a laboratory setting. In the realm of nano electronics, channels for
charge transport can be etched out to create a cavity on a substrate [130]. These cavities are not
necessarily square and might have much geometric complexity to them. The patch to the initial
code expanded the boundary conditions to include any arbitrary shape which can be defined
as a polygon. A new periodic boundary using hexagonal basis translations were developed for
reducing CPU calculation cycles and are included within the new code.

The final expansion to the initial code was the inclusion of non-steric interaction potentials
between simulated particles. The initial source code only simulates particles acting through

1Module used on Sharcnet: boost/intel1503-openmpi187std/1.59.0
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Figure 8.2: Flow chart of the “Morphologies” simulation procedure.

repulsive interactions that occur when the molecules in the system overlap. This defines an
infinite interaction potential inside the molecule and zero potential outside the boundary of the
polygon. Thermal agitation is modelled as a series of randomized trial displacements with equal
probability to move in any direction. Once overlaps are detected, the move is rejected and the
object is repositioned with a different randomized displacement. The new simulation includes
a way to model additional interaction potentials through biasing the Monte Carlo moves. The
system can mimic interaction potentials by biasing the probability to pick random displacements
in the direction of the net force on the particle. This allows for particle-particle interactions and
also model for forces that are imposed by an external field.

8.2.2 Overview of the Main Algorithm

Figure 8.2 shows a flowchart for the “Morphologies” simulation algorithm. It is based heavily
on the work developed by Bjorn Arnold in his Masters thesis [118]. As such, the method will
be briefly outlined with a focus on new implementations or key developments while additional
information can be found in our previous published work [118, 36, 119].

The exact summary of the newest implementation is outlined in Table 1. This algorithm table
describes (in words) how the simulation is coded and provides a quick reference that outlines the
procedure for those who might not be as computational savvy. The first thing needed to use the
simulation is to set initial conditions within the input files. These parameters tell “Morphologies”
the types of environment to simulate. Properties such as: the rate of condensation, the spatial
and angular range for thermal motion, the amount of allowable molecular overlap, the type of
boundary conditions, and the number of Monte Carlo trials are all set withing this document.
An additional input file is needed to link in the polygons that are intended to be simulated. This
link file is a text file that consists two columns: the number of particles and the directory path
to the polygon file to be read. Since any number of different particles can be input as shapes,
keeping this separate from “defaults.dat” seemed the easiest to implement while maintaining
ease of use for the user. Input abbreviations for user inputs are kept over from Bjorn as common
colloquia associated with each variable.

There are three basic components to this simulation routine: to inflate the particles, then to
shake them until a move is accepted. The first inflation step is key to the self-assembly, since it
represents the densification of the molecules (reduction of free volume) and sets the path particles
take through static equilibrium states. The inflation represented in Figure 8.2 (blue) and shows
the change in molecule size from one simulation step to the next. The second is the shaking
portion and this simulates the movement of the particle. The molecular shaking is represented
in Figure 8.2 (green) and shows a set of possible Monte Carlo moves that the grey molecule
can take, with the choices in opaque red. External influences and other potentials that depend
on particle position can be included or modified in this section. The final step is to check the
resulting move from shaking for physical validity. The acceptance criteria is represented in Figure
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8.2 (pink) and shows the two conditions that need to be met to be physical. The main criteria
for acceptance is to check of particles satisfy the boundary conditions; which can be periodic,
homeotropic, or hard walls. I have paid special attention into ways that each type of boundary
condition works and have implemented many functions that are designed to quickly reject moves
before unneeded overlap calculations are done between particles. This was done in order to
reduce the time of each simulation and works quite well at limiting calculations. Finally, any
move that results in an unallowable amount of overlap between two objects is rejected and a new
move is sampled. This rejection function needs to be looped over all particles in the simulation,
which is why it is checked last. These procedures are repeated for every simulation step until
the simulation cannot generate anymore acceptable moves wherein which the simulation writes
the final details regarding the morphology to data files and then halts.

Procedure of “Morphologies”

The algorithm is the backbone of the simulation method. It has been developed with both
speed and large-scaling of particle number in mind. The main focus has been emphasize routines
that determine the rejection criteria, so that unnecessary computations are skipped instantly if
overlaps are detected. Reducing computational time it is possible to run more complex systems.
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Input: Total Number of Molecule pNtotq, Molecule Steric Potential pP q, Number of
Molecules of Shape pNpq, Number of Monte Carlo Attempts pωq, Ensemble
Number pensq

1 Begin Simulation from Terminal:
2 ./RunMorphologies
3 Initialize(); Import: defaults.dat and polygons.dat
4 Imported Correctly? Ñ ptrue ‖ falseq Ñ if (false) then Halt
5 Start: Morphologies
6 while Molecule Moves Ñ? Accepted do
7 Inflate(); Update Ñ SimStep++;
8 Update Current BoostPolygon List Ñ Apply Inflation;
9 QuickRejection(); if (Global Overlap ă Allowable) Ñ Skip Shaking and Inflate

Again
10 Shake(); Test Random Movement of Molecules
11 for Monte Carlo Cycles do
12 for Molecule Index piq Ñ 1 to Ntot do
13 RandomizedInteraction();
14 Generate pωq Random Displacements: Br “ tBx, By, Bθu
15 for Monte Carlo Attempts Ñ 1 to ω do
16 PositionDisplacedMolecule(); txÑ x`Bxu, ty Ñ y`Byu, tθ Ñ θ`Bθu
17 TestForSatisfiedBoundaries();
18 for translations Ď ÝÝÑvpbc do
19 for All Boundary Edges do
20 Homeotropic Ñ ptrue ‖ falseq
21 Hard Wall Ñ ptrue ‖ falseq

22 if (Any Boundaries ‰ Satisfied) then
23 Reject Move
24 else
25 ParticleOverlap();
26 for particle pj ‰ iq Ð 1 to Ntot do
27

ř

Overlapping Area

28 if (Overlap ă Allowable) then
29 Accept Move and Break (Monte Carlo Cycles) Loop

30 Accept();
31 if (Overlap ă Allowable) then
32 Update Accepted Centroids;
33 else
34 Reset to Previous Accepted Move
35 Reduce Shaking Amplitude Ñ Increase Repacking Step

36 if (RepackingStep ą Allowable) then
37 Halt;

38 Final Halt
Output: Files: “conf 1.dat” - Positional Centroids, “container.dat” , Boundary Polygon,

“polygon 1.dat” Molecule Polygons

Algorithm 1: “Morphologies” Algorithm
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8.3 Molecular Confinement and Boundary Conditions

Boundary conditions are crucial components in numerical experiments. This parameter sets
the limits on what can be simulated and dictates the type of phenomena that can be observed
and modelled. “Morphologies” has two types of possible boundary choices: confining walls
and simulated particle edges. Confining walls disallow any Monte Carlo move that displaces a
molecule outside of its bounds. A subset of this boundary is called homeotropic boundaries,
where instead of the complete molecular area being confined, it is instead the molecular centroid
that must remain inside [131]. While being procedurally similar, the homeotropic boundary
condition has been shown to produce drastically different morphologies than purely hard walls
when elongated (ellipsoidal) particles were simulated inside the cavities [132, 133, 134]. In reality,
both these methods are specific types of confinement effects that manifest their influence by
changing steric interactions at the boundary edge. The simulated particle edge boundary is
more commonly known as periodic boundary conditions, which is implemented to remove as
much influence as possible from the limitations of simulated self-assembly. These differences in
outcomes builds the basis for a hierarchy of steric influences that the simulation walls have on
the internal molecules.

The boundary with the most influence on particles is the hard boundary, which produces large
steric frustration against any movement by disallowing any excluded-volume of the molecule from
leaving the box. The second is the homeotropic boundary, where molecules are confined by their
center of masses. This allows them to have more rotational freedom, since parts of the molecule
may leave the box to find steric relaxation from the internal molecular pressure. The third
is the periodic boundary. This type of boundary is used to minimize any influence from the
numerical simulation container by allowing molecules that leave the box to be translated back to
the opposite periodic edge. This hierarchy of steric influence is what allows for quick rejection
algorithms that appear in morphologies. In the following sections, the case will be made for how
the morphology from each subcategory can be reproduced using a geometric transform of the
boundary with more steric influence.

In Chapter 5, we showed that if steric simulations produce ensembles where the density is
matched, the structural metrics will be (on average) similar. We expand this idea to bench-
mark “Morphologies”. This simulation should be able to reproduce everything that the initial
simulation “gransim” will when under the same restrictions (i.e. thermal motion and monodis-
perse particles). In the next sections, we highlight the types of boundaries and compare the
configuration outcomes using initial conditions which are as close as possible to each other.

“Morphologies” also needs to be benchmarked against comparable systems from “gransim” to
authenticate physical validity. To benchmark each method, we create large ensembles of typical
outcomes from varying initial positions. These ensembles represent a large statistical framework
from which comparison of physical properties is possible. This is done to remove unintentional
bias of comparing metastable and/or rare configurations as commonly sampled states. False
classification of similar/dissimilar states can result in erroneous falsification between methods.
Large statistical ensembles of many outcomes can be gathered from simulations to obtain a set
of typical outcomes that are possible. This section outlines the benchmarking as the boundaries
are varied.

8.3.1 Hard Boundary Condition - (hard)

The most influence is the hard boundary condition, where any Monte Carlo moves that result in
the molecule moving outside are rejected. This sets very large restrictions on the translational
and rotation degrees of freedom, essentially removing about half the total allowable movements.
In the “Morphologies” procedure, this boundary condition is checked first. This is because of
the rigorous rejection of anything that lands outside the boundary. When this is checked first, a
move has the potential to be rejected before any unneeded computations are done. An example
of an unoptimized procedure would be to check the overlap between all particles first. Any move
can satisfy the particle-particle overlap but all of the overlap calculations are done in waste if
it results in a boundary overlap. By selecting the hard condition first, the method cuts down
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Figure 8.3: Comparing Monte Carlo simulations under confined boundaries. (a) Area frac-
tion distributions of confined circular particles. (b) Point clouds associated each distribution.
Ensembles contain 4032 configurations.

on computational time and allows for more particles to be simulated in the time frame as the
inefficient method.

A comparison of the different Monte Carlo simulations are shown in Figure 8.3. These
simulations were run with the same initial conditions to provide as much consistency between
each implementation as possible. In Figure 8.3 a), the area fraction probability distributions are
plotted together, similarly to the comparison in Chapter 5. These probability distributions match
fairly well. However it does seem that for N “ 49, “gransim” produces configurations where are
denser, as indicated by a thicker section at higher packing fractions. This can be attributed to
the different acceptance criteria in “gransim” which favours acceptance rather than rejections.
In Figure 8.3 b) the point clouds are plotted with the density map overlaid. In this case, the two
methods produce planar probabilities which seem identical.

8.3.2 Homeotropic Boundary Condition - (soft)

A weaker set of confinement is the homeotropic boundary conditions, which allow molecules
more freedom by only confining them by their center of mass. This boundary accounts for a
force normal perpendicular to the walls which acts on the molecular centroid [131] and detaches
the rotational and translational steric influence of the container by changing the how pressure
is applied to the system [135]. In this case, the system equalizes the pressure by preferring
configurations that maximize density at the container-molecule interface. This liberates the
rotational degree of freedom, putting only the restrictions on translational motion. Since the
thermal agitation randomly rotates the molecules around their center of mass, this homeotropic
boundary mimics a “pinning effect”, where the molecule looks as if held down in the center but
allowed to rotate by the steric force of its neighbours [133].

A comparison between from “gransim” and “Morphologies” is shown in Figure 8.4 a) as prob-
ability distributions from ensembles of homeotropic boundaries. The shape of each distribution is
similar, however, “Morphologies” shows a slightly higher density. Figure 8.4 b) shows final con-
figurations of molecules and how this boundary pins the centoids of molecules. The are fraction
is calculated using only the molecules within the box area and is highlighted with blue. In both
simulations, the molecules pack tight at the edges with a large portion of their volume outside of
the container, however, the area fractions suggest that molecules simulated with “Morphologies”
prefer to distribute themselves inside the box rather than outside. In Figure 8.4 (c), the cen-
troids of circular molecules are confined within a square container but extend toward the edges.
This result highlights the hierarchical confinement effect of homeotropic boundaries, since the
point clouds show the same features of hard boundary confinement when compared to the point
clouds of Figure 8.3 b). Another explanation for this difference would come from the “gransim”
data used for this comparison. The data shown here was collected prior to the inclusion of the
repacking method used in “Morphologies”. This repacking allows for the molecules to expand
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Figure 8.4: Comparing Monte Carlo simulations under homeotropic boundaries. (a) Area
fraction distributions for 25, 36, and 49 circular particles. (b) Example of the most probable
configuration from “Morphologies”. Area fractions are calculated using only the potions of
molecules contained within the square box, denoted as blue sections. (c) Point clouds from
“Morphologies”. Ensembles contain 4032 configurations.

to reduce spurious area between them without changing the internal structure by reducing the
thermal agitation such that the Monte Carlo moves sample displacements that are closer to their
centroid. Taking this into account would suggest that these two routines are fairly similar under
homeotropic boundaries.

8.3.3 Periodic Boundary Condition

Periodic boundaries are often thought of as having least influence on particles and being the
best representation of large systems. In simulation, this periodic boundary is a subset of the
homeotropic boundary that results in multiple instances of virtual particles that reside on the
opposite side of the soft boundary. For every set of periodic translations, there is always ex-
actly one movement that results in the molecular centroid being contained within the original
simulation area. This is the reason it is a subset of the homeotropic boundary.

Square Periodic Boundaries - (periodic)

Square periodic boundaries are the most commonly used boundary conditions. Any objects
close to a periodic edge cause a virtual particle to be placed with the boundary causing an
opposite influence. This means that the boundary produces an influence onto the molecules by
conservation of volume. In Figure 8.6 (a), the orange molecule close to the periodic container
edge causes eight (8) virtual particles. Periodic boundaries have the most influence on the system
when molecules land the corners. When a molecule translates outside the container, the system
adjusts to an equalization equilibrium by reducing the available volume for other molecules equal
to that of the molecular volume outside. This results in three (3) virtual particles in the mirror-
edge corners that all influence relatively spatially separated parts of the simulation area. The
method is to test all possible translations and accept the one that successfully moves the moleule
without overlapping any neighbours. This allows for the wrapping around effect of molecules
moving their center of mass outside the container.

Figure 8.5 shows the results from benchmarking bulk systems of circular particles. The cov-
ering area distributions in Figure 8.5 a) shows that for “Morphologies”, the covering area is lower
than “gransim” which implies the configurations are less dense. Figure 8.5 b) shows the pair
correlation function of the configuration that has a mean area fraction that is at the peak of the
distribution (i.e. most probable). The difference spectrum between the two curves indicates that
these patterns are actually quite similar in translational order even with different density. Angu-
lar order of neighbours is outlined in Figure 8.5 c) with the bond order parameter pq6q displayed
in histograms and locally coloured Voronoi tessellations. Higher amounts of angular order for
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Figure 8.5: Comparison between Monte Carlo simulations of 1024 circular molecules within
periodic boundaries. (a) Density profile of the covering area. (b) Pair correlation function and
(c) Voronoi tessellations with bond order colouring for the most probable configuration

Number of Molecules: 25 36 49 1024 (pbc)

Time (sec):
- gransim 711.7 2119.2 2410.2 42866.6
- morphologies 418.7 679.3 1005.8 27916.8

RAM (MB):
- gransim 11.9 11.1 10.1 9.0
- morphologies 9.1 8.6 8.5 12.1

Table 8.2: Examining execution time and RAM usage for Monte Carlo simulations of circular
molecules inside both a hard and periodic square.

“gransim” can be interpreted from the histograms. The lower angular order in “Morphologies”
can be attributed to the lower density of the ensemble, since high hexagonal order depends on
high density. The looser the particles, the more chance for slight positional fluctuations which
causes deviation in the hexagonal bond order.

Hexagonal Periodic Boundaries - (hexagonal)

The hexagonal periodic boundary condition has many computational benefits over the tradition-
ally used square boundary. One reported advantage these have over square boundaries is that
artifacts will form at large packing fractions due to the corner translations [136]. This causes the
excluded volume of the virtual molecule to be split between periodic mirror edges. If one were
to examine at the amount of orange volume that extends outside of the dark gray container and
compare it to the total volume of the both green molecules inside the container, you will notice
that they are the same. Another benefit is that it requires two less translation basis vectors,
which immediately removes 1/4 of the calculations needed to calculate a particle interaction and
Monte Carlo displacement rejection. Reduction in computational complexity comes from the
reduction of virtual particle interactions. In Figure 8.6 (b), the orange molecule close to the
periodic container edge causes only six (6) virtual particles. The four (4) gray virtual molecules
are translated outside the range to sterically interact with the particles at the boundary edge and
can be removed from the calculations. Even with the benefits over traditional square boundaries,
hexagonal tiles have not seen wide use in planar simulations.

8.3.4 Benchmarking CPU Times for Confined Monodisperse Systems

It is important to compare the execution time and RAM usage in between simulations which
can be seen in Table 8.2. The goal is to produce a faster and more streamlined version of
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Figure 8.6: Periodic boundaries that are available in “Morphologies”. (a) Square and (b)
Hexagonal periodic tiling. The orange particle inside the centre dark gray areas are translated
by a set of basis vectors, adding and placing virtual particles that influence the rejection criteria
for the Monte Carlo displacement. Note that only the green virtual particles influence the
molecules inside the container, with the opaque gray particles being translated too far outside
the system to interact sterically and thus can be ignored.

“gransim” which can reproduce the same phenomena. In previous sections, we quantified that the
morphologies are similar in confined and bulk systems. When comparing across computational
times, “Morphologies” has a drastic reduction in simulation time almost by a factor of 2. This
reduction in simulation time can allow for larger numbers of particles to be simulated together
for the same amount of time “gransim” would take. Secondly, we notice that both methods are
quite light on RAM usage and are practically similar among each other. This information is
beneficial for our use on super cluster computers since it allows us to schedule jobs with lower
RAM meaning shorter queue wait times.
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Figure 8.7: Example of how the probability distribution of possible Monte Carlo trial is spatially
displaced to incorporate the effect of a constant background field (along the x-axis). a) No field.
b) Constant field.

8.4 Molecular Monte Carlo Interactions

A major part of the new simulation being built is one that can incorporate different interactions.
All sorts of different interaction potentials are possible. To describe the new method, we can
relate this to the mean-field Ising model. The Ising model is one in which neighbouring particles
influence individual particles. A Monte Carlo in the Ising model step is one where a) the energy
required to flip a spin is calculated from the states of its neighbours then b) a random number
is selected from an exponential distribution of possible outcomes. This random number is con-
sidered to be the thermal energy of the particle at that specific time. If this random number
is above the energy required to change its spins (as dictated by the neighbours), the move is
accepted and flipped.

Now consider a single Monte Carlo step proposed for new molecular modelling scheme. A
molecule in the simulation is selected for the Monte Carlo move. The first step is to calculate
the energy (or force) that this molecule will experience. This can be a sum of interaction
potentials from neighbours (i.e. Lennard-Jones or Coulomb interactions) but is not limited to
this. An arbitrary amount of potentials can be included, given by the user. The addition
of each interaction changes the spatial distribution of possible probabilities for random number
generation. Figure 8.7 displays a schematic for possible types of interactions. Monte Carlo sample
displacements are in transparent, while solid colours indicate current positions of molecules.
The current description of thermal motion is in Figure 8.7 (a) with the probability distribution
above the real-space simulation. Random samples have a higher probability to move the object
small deviations from the center, while the farther moves tail off in the probability distribution.
External fields are introduced in Figure 8.7 (b). Consider a charged particle in an electric field.
The molecule will move in the direction of that field. If the field is on the same order of that
thermal energy, the molecule will continue to move randomly (Brownian motion), but will also
be pulled by the field. The net result of having both types of motion will manifest as described
in Figure 8.7 (b). It is possible to model this by shifting the probability distribution.

Molecule-molecule interactions can be included the same way. The magnitude and direction
of the interaction potential can be calculated by an arbitrary number of neighbours. The result is
a net force/interaction as defined by the state of the neighbouring molecules. A super position of
these interactions are then built, and manifests as a change in the random number distribution.
Figure 8.7 (c) shows that the sum of two oppositely charged molecules (blue) results in a force
that is in the direction directly between them. The magnitude is proportional to the calculated
interaction. By including the thermal motion, we include the possibility for the molecule to
move opposite of the field. This effect is similarly seen in devices using organic molecules, where
charge percolations can temporarily move opposite to the field in order for current to flow.
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Figure 8.8: Example configuration with a constant background field (along the x-axis) with
N=1024 molecules (512:512). Blue particles have an opposite charge to the Orange ones, hence
the segregation of molecules. Field strengths relative to the thermal agitation: (a) Zero field (b)
0.1 kT, (c) 0.2 kT



Chapter 9

Summary and Outlook

9.1 Concluding Remarks

This thesis brings together many aspects of self-assembly in attempt to understand the role of
molecular shape on the resulting morphology. The ability to accurately detect differences in these
systems has been investigated by building and applying tools to characterize the localized disorder
of molecules relative to a highly ordered hexagonal state. This quantification allows for the ex-
traction of hidden structural subtleties that can be missed by causal observers. Excluded-volume
of simulations were built to explore the effect of shape by isolating the steric interaction potential
within systems dictated by the density. We show that Monte Carlo methods can produce the
same morphology as event-driven molecular dynamics for bulk and confined systems. In these
confined systems, morphologies are statistically quantized into parcels of similar patterns. When
the particle number decreases, we observe the emergence of quantized patterns in a metastable
equilibrium state. The shape of molecules were explored in relation to steric molecular analogs
that have geometries that resemble those observed in scanning tunnelling microscopy. Finally,
polydispersity is touched on by highlighting the features of the new excluded-volume simulation
code.

The entirety of this thesis incorporates many different aspects of self-assembly from various
scientific fields. Due to the limited nature of the project, some of the possible research directions
were unable to be fully explored. A few different parts were discussed internally, however, they
are not currently fully implemented as complete sections. As such, this chapter is dedicated
to projects that were researched from literature surveys, quickly implemented with crude algo-
rithms, and tests on small sample sets of data.

Although the ground-work for classifying dispersion is outlined here, there are many other
tools that provide very interesting analysis. Many build upon the methods utilized in the thesis
by adding or combining different order metrics to produce a finely-grained description of mor-
phology. In last section of the thesis, some of the initial research on these topics are presented.

109
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Figure 9.1: Examples of Voronoi tessellations and boundary corrections. (a) Configuration of
37 circular particles simulated inside a circularly confining boundary. (b) Truncated boundaries
are applied as usual, with tiles extending outside the automatically detected binding box being
excluded. This removes the outer particles in touch the channel walls, causing the particles under
steric frustration to be neglected. (c) Periodic boundaries introduces large Voronoi tiles at the
corners, causing errors in both the expected shape and expected number density. (d) Regular
image charge boundaries within “disLocate” explicitly assume a rectangular confinement space.
(e) The general routine for image charge boundaries is applied showing that Voronoi edges
approximate the box at the boundary.

9.2 Expanding Upon this Research

9.2.1 Image Charge Boundary and Circular Confinement

Image charge boundaries have provided quite a robust way to circumvent the limitations of
categorizing morphology in confined areas. This routine assumes neighbours outside of the
confining space by placing virtual particles an equidistant length away from the box edge. The
result is that Voronoi tessellations are forced to have edges exactly at the container edge. In the
“disLocate” package (see Chapter 4), image charge boundaries are implemented assuming that
the box is rectangular. In reality, the boundaries that confine particles in can be quite complex.
In Figure 9.1, we show how this boundary can be expanded into a more general method. A
circular confining box was chosen to hold simulated molecules and does well at illustrating the
details of the method.

9.2.2 Voronoi Coordination Shells and the Pair Correlation

The pair correlation function is a one metric that essentially collapses all translational order into
a one-dimensional function of distance. It describes a global average of the particle arrange-
ment. A portion of this thesis was to quantify local disorder in planar systems and to quantify
the variance. Disordered systems create broad peaks in the pair correlation function, implying
that there is less positional order at specific positions than a hexagonal lattice with the same
mean intermolecular spacing. The methods that we developed really focus on the first shell of
neighbours. These neighbours cause local frustration and cage the internal particle. This effect is
analogized as a main influence in the glass transition. When the particles are cooled too fast, they
do not have time to relax and thus the caging particles lock in their positions as disordered states.

One tool we have begun exploring is the separating the pair correlation function as a function
of the neighbour shells [137]. As the distance expands radially from the centre, the caging
molecules become the ones who are contained in the next layer directly behind them. This effect
is outlined in Figure 9.2 (a). Defining each shell is a trivial task once the Delaunay triangulation
has been calculated. This function assigns neighbours to every particle in the system. To start,
the Delaunay triangulation is the first shell of neighbours. The next step can be repeated as many
times as desired to obtain the influence of the “n-th” neighbour shell. Here we describe how to
calculate the second shell. For all particles in the first shell, assign a group of particles that form
the Delaunay neighbours for those particles in the first shell. Then, remove all the particle which
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Figure 9.2: (a) Voronoi tessellations of a disordered packing. The central particle is surrounded
by a series of “neighbour shells”. (b) The pair correlation function can be subdivided to capture
the information about specific caging influences. Colours of the shells in the Voronoi diagram
represent the g(r) of the same colour.

are in the previous group (i.e. the first shell particles) and then delete any duplicate entries.
Particles on either side of each member will generate a group with two entries that are similar,
since each particle inside the second shell has two neighbours directly beside each other. That is
it. Continue this process of assigning groups to the full coordination neighbours and removing
the previous entries or shells.

Once groups of neighbouring particles are defined, the pair correlation function can be solved
using only that subset of neighbours. This can allow for a high degree of accuracy when trying
to determine the influences of self-assembly. To see how this works, consider the pair correlation
function as an infinite sum of shells. Each shell piq adds to the total probability of particles in
the system.

gprq “
8
ÿ

i“1

giprq (9.1)

At some point the function is truncated, either due to the limited information of particles
within an image (finite number effect) or no more useful information is gained as we expand
outward (disorder turns into gas phase). This will produce an estimated function of the gprq
that is quite close to the global definition. For instance, if we consider the first 3 shells, then
gprq becomes:

gprq “ g1prq ` g2prq ` g3prq ` ... (9.2)

Figure 9.2 (b) shows the pair correlation function as well as the split between neighbour shells.
One interesting thing to note is that the shells will often cause the tail-ends of the functions to
blend into each other. This can be interpreted as a breaking of radial translational symmetry.
If you follow a shell angularly around the central particle, you might notice that the disordered
morphologies have shells which are not exactly circular. They vary in both distance and angular
separation from what might be expected in hexagonal packing. When particles are disordered,
the ability to determine which shell it is in becomes quite unclear. This is important if we
want to quantify other parameters. For example, the bond order parameter commonly uses
the first minimum of the pair correlation function to define neighbours. If this was used with
the global gprq, it is possible that particles from the second shell will leak into our numerical
analysis and disturb the true result. With this method we can easily extract coordination shells
unambiguously and use only those particles of interest.
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