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LAY ABSTRACT 

Skeletal muscle health is, in part, maintained by a population of stem cells associated with 

individual muscle fibres.  When muscle is damaged or stressed, these cells become 

activated, aid in muscle repair, and help drive adaptations to exercise.  The central 

purpose of this thesis was to examine the relationship between muscle capillaries and 

muscle stem cells, and determine how that relationship impacts muscle stem cell function.  

We demonstrated that muscle stem cells and capillaries exist in close proximity to each 

other in skeletal muscle.  We observed that a greater muscle capillarization is linked to 

improved muscle stem cell function during muscle repair.  However, we also report that 

the distance between muscle capillaries and muscle stem cells becomes greater in aging, 

and may be a root cause of impaired muscle stem cell function in aging.   
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ABSTRACT 

Skeletal muscle possesses a remarkable plasticity, able to repair, remodel and adapt to 

various stressors.  A population of resident muscle stem cells, commonly referred to as 

satellite cells (SC), are largely responsible for skeletal muscle plasticity.  The loss of 

muscle mass and plasticity typically observed in aging has been attributed to the 

deterioration of SC function.  SC reside in a quiescent state, but following stimuli they 

become active, proliferate and eventually differentiate, fusing to existing muscle fibres.  

The progression of SC through this process, termed the myogenic program, is 

orchestrated by a complex network of transcription factors, termed myogenic regulatory 

factors.  SC function is regulated by various growth factors and/or cytokines.  The 

delivery of these signalling factors to SC is, in part, dependent on their proximity and 

exposure to local microvascular blood flow.  The purpose of this thesis was to examine 

the relationship between skeletal muscle capillaries and muscle SC.  We examined the 

effect of age on the spatial relationship between SC and muscle fiber capillaries, and 

observed that type II muscle fiber SC were located at a greater distance from the nearest 

capillary in older men as compared to their younger counterparts.  We then examined the 

changes in SC activation status following a single bout of resistance exercise, prior to and 

following a 16wk progressive resistance training (RT) program.  We observed that 

following RT, there was an enhanced SC activation in response to a single bout of 

resistance exercise.  This enhanced response was accompanied by an increase in muscle 

capillarization following training.  Furthermore, we investigated the impact of muscle 

fiber capillarization on the expansion and activation status of SC in acute response to 
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muscle damaging exercise in healthy young men.  We observed that muscle 

capillarization was positively related to SC pool activation and expansion.  Taken 

together, we demonstrate that muscle capillarization may be related to the SC response 

following acute resistance exercise or exercise-induced injury, and may be implicated in 

adaptation to RT.  Furthermore, the spatial relationship between muscle capillaries and 

SC is negatively altered by aging. 
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PREFACE 

The notion of tissue regeneration is as ancient and timeless as the Greek mythos. 

In Hesiod’s Theogeny, as punishment for bringing the gift of fire to humanity, the titan 

Prometheus was chained to a rock amongst the Caucasus Mountains. Every day, his liver 

was devoured by eagles, only to be renewed every evening. The term regenerate derives 

its archaic roots from the Latin term regenerare; which means ‘to make over, generate 

again’ or ‘a being born again’. The word conjures up the imagery of the chained titan’s 

organs rapidly repairing themselves at dusk, in this case, a curse of his immortality. In 

this way, Prometheus serves as a metaphor for bringing scientific enlightenment to 

humanity, but also provides us with a poignant example of the seemingly godlike quality 

of regeneration.          

 While the story of biology is considerably less fanciful, the remarkable plasticity 

and the extraordinary abilities of human skeletal muscle to regenerate and repair are no 

less fascinating than the myth. In 1961, Dr. Alexander Mauro discovered a cell that was 

‘wedged between the plasma membrane of the muscle fibre and basement membrane’. 

Mauro asserts that these cells, “intimately associated with the muscle fiber…we have 

chosen to call satellite cells”. With considerable foresight, Mauro predicted that these 

cells, located on the periphery of the muscle fiber “might be pertinent to the vexing 

problem of skeletal muscle regeneration”. With these findings, observed through the lens 

of an electron microscope, the foundation for the field had been set. Their identification in 

humans by Dr. Ruben Laguens in 1963 opened new horizons in human muscle 

physiology.  For the last nearly 60 years, the study of satellite cell biology has progressed, 

inextricably linked with muscle regeneration and repair.      

 Here, we turn to another legend. The fountain of youth, as suggested by Herodotus 

in The Histories, needs no introduction. Considerable evidence exists of an age-associated 

decline in satellite cell content and capacity to regenerate muscle.  In 2005, pivotal work 

would be published suggesting that satellite cell activity of aged muscle could be 

rejuvenated, if the circulation of the aged animal was linked to one more youthful. 

Determining the humoural factors that alter the function of aged satellite cells, and how 

they are delivered through circulation, adds another page in the history of human 

physiology.  

 

Hvar sem fjandinn er þar hefur hann sína.– ‘ a wise man changes his mind, a fool never 

will’ – Icelandic proverb.  
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CHAPTER 1: 

 

INTRODUCTION 
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1.1 OVERVIEW of the Aspects of Skeletal Muscle  

In humans, skeletal muscle comprises ~40% of total body weight, therefore 

constituting one of the largest and most metabolically active tissues.  From a mechanical 

perspective, skeletal muscle maintains posture, facilitates breathing, generates locomotion 

and is associated with independence.  From a metabolic perspective, skeletal muscle 

provides storage for amino acids and carbohydrates, as well as the cellular machinery to 

provide energy for physical activity and the maintenance of homeostasis.    

   Muscle fibres are arranged into bundles, separated by connective tissue, forming 

skeletal muscle.  Muscle fibres are highly vascularized, in order to provide sufficient 

oxygen and nutrient delivery, and are innervated  by type I (slow contracting, fatigue 

resistant, highly oxidative) and type II (fast contracting, low fatigue resistant, highly 

glycolytic) (205) motor neurons.  The relative proportion of these distinct myofibre 

isoforms ultimately determines the contractile property of a muscle.  Irrespective of fibre-

type, the processes for muscle contraction are the same, with action potentials triggering 

actin filaments to slide over the myosin filaments, resulting in contraction (179). Taken 

together, skeletal muscle exists as a functional unit, comprised not only of myofibres but 

also motor neurons, muscle capillaries and extracellular matrix as structural support.  

 Skeletal muscle is one of the most dynamic tissues in the human body, capable of 

remarkable plasticity and adaptation.  Whereas endurance-type exercise generally leads to 

adaptations within skeletal muscle that leads to increased oxidative capacity, resistance 

training is characterized by increases in muscle mass and fibre size leading to increased 

force generation.  Myofibres themselves are post-mitotic and multi-nucleated, and thus 
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derive their extensive plasticity primarily from existing myonuclei and the presence of 

muscle resident stem cells (known as satellite cells).  However, recently discovered cell 

populations such as progenitor interstitial cells (112, 133), side population cells (150, 

185) and even circulating hematopoetic stem cells (56, 106) have been suggested to 

contribute to the remodelling of skeletal muscle tissue.   

1.1.1 Origins of Skeletal Muscle  

During vertebrate embryonic development, the generation of muscle, termed 

‘myogenesis’, is completed in distinct phases (184).  In the early embryonic phase, three 

divergent germ layers; the ectoderm, mesoderm and endoderm, are formed (4).  The 

mesoderm is then further separated, with the paraxial aspect condensing into somites, 

developing from the anterior aspect of the embryo down toward the tail (6).  The growing 

structure of the embryo is altered by fluctuating gene expression (47) and various 

signalling molecules, with the spatiotemporal nature of these morphogens causing 

different cellular responses in different regions of the embryo (75).  These somites, 

following signalling from the Notch, noggin and Wnt pathways, subsequently develop 

both dorsal and ventral compartments (71).  The most dorsal aspect of the somite 

becomes the ‘dermo-myotome’ from which the vast majority of human skeletal muscles, 

minus some muscles of the head, are derived (145).  The expression of the paired box 

transcription factor (Pax) 7 can be observed in cells within the dermomyotome structure 

(93) and this cell population continues to mature into the myotome comprised primarily 

of progenitor cells.  These progenitor cells exhibit heightened expression of MyoD and 

Myf5 (142), both basic helix-loop-helix transcriptional activators belonging to the 
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myogenic regulatory factor (MRF) family that are considered indicators of terminal 

differentiation into the myogenic lineage (151).  From the epaxial aspect of the myotome, 

the dorsal muscles develop (145), whereas the hypaxial aspect develops into the torso 

(36) and limb muscles (145).  Muscles at the extremities, respiratory muscles, muscles of 

the tongue and some facial muscles are derived from cells at the junction of the ventral 

and lateral sides of the myotome from myogenic cells capable of extensive migration 

(194).  Proliferating myogenic cells, originally exhibiting upregulated MyoD and Myf5, 

begin to express the later stage MRFs myogenin and MRF4, terminally differentiating 

and subsequently increasing myofibrillar protein specific genes such as myosin heavy 

chain (MHC), actin and muscle creatine kinase (31).  Thus, the initial ‘template’ of 

multinucleated myofibres are generated during this period, as mononuclear myogenic 

cells fuse together.  Extensive proliferation occurs until the myonuclear content reaches 

homeostasis, and myofibrillar protein synthesis reaches its peak (48).  In this way, 

subsequent waves of proliferation and differentiation continue to develop perinatal 

muscle arranged upon the structural template.        

 During the course of embryonic development of skeletal muscle, a subpopulation 

of myogenic cells do not terminally differentiate and withdraw from the cell cycle, giving 

rise to a population resident satellite cell (SC) that remains mitotically quiescent (97, 

157).  Skeletal muscle, from the perinatal phase through maturation, is dependent on the 

contribution of SC in order to maintain tissue homeostasis (167) by contributing their 

nuclei to existing myofibres throughout the lifespan.  Indeed, SC are unequivocally 

important for the maintenance, repair, and regeneration of myofibres (78, 120, 166) and 
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potentially skeletal muscle remodelling and adaptation in response to hypertrophic (95) 

and non-hypertrophic stimuli (89).  

1.1.2 Muscle stem cells  

Satellite cells were first identified via electron microscopy as mononucleated cells 

residing beneath the basal lamina and in close association with the sarcolemma (118).  At 

the time of their discovery, it was hypothesized they may be involved in skeletal muscle 

regeneration (118).           

 Early radioactive nucleotide labeling experiments revealed that SC were capable 

of mitosis and contributed nuclei to the associated fibre (136, 158).  Work by Snow et al. 

(178) suggested that while SC are normally mitotically quiescent in adult skeletal muscle, 

they can enter into the cell cycle following muscle injury.  Observations from this study 

also suggested that this SC population could yield proliferative myogenic progenitor cells, 

termed myoblasts (178).  Myoblasts had previously been shown to fuse together, creating 

multinucleated myotubes in vitro (100, 207).  Consistent with this, there was a 

proliferation and expansion of the SC pool on isolated damaged myofibres, which was 

subsequently followed by fusion to form functional myotubes (13, 100).  Taken together, 

these early observations support the notion that SC contribute to muscle regeneration and 

repair, via the donation of nuclei to damaged fibres.      

 Stem cells are defined by their ability to differentiate into distinct tissues and by 

their ability to self-renew, referred to as ‘stem-ness’.  SC ‘stem-ness’ was identified 

through an elegant transplantation experiment, whereby ~7-22 SC, along with their intact 

myofibres, were transplanted from healthy mice into the muscles of an immune-deficient 
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muscular dystrophic mouse that had undergone muscle irradiation (40).  Following the 

graft, it was observed that a single myofibre could give rise to ~100 de novo fibres, 

containing ~30,000 myonuclei, and observed a nearly 10-fold increase in the size of the 

SC pool (40).  Similarly, even when single labelled SC were transplanted into the same 

irradiated dystrophic mouse muscle, new myofibres were generated and the progeny of 

the labelled SC remained in the muscle (164).  Taken together, these findings support the 

notion that SC are a population of monopotent stem cells capable of terminal 

differentiation and self-renewal.        

 It is well established that SC are the primary source of progenitor cells in adult 

skeletal muscle.  However, there is some evidence to suggest that muscle, albeit with a 

reduced functionality, is capable of being maintained without the presence of SC in adult 

skeletal muscle.  The notion that non-SC progenitors, such as circulating bone marrow 

derived stem cells and hematopoietic stem cells (56, 106), as well as muscle resident 

CD45+/Sca1+ (50, 150, 185), PW1+ interstitial cells (133), and Twist2+ cells (112), could 

contribute in some capacity to muscle repair and/or maintenance has been suggested.  

However, it is important to note that while these various populations of atypical 

progenitor cells do exist, there is limited evidence to suggest that they play a meaningful 

role in the maintenance and/or repair of skeletal muscle.  More importantly, few of them 

have been observed in human skeletal muscle and their precise function and/or purpose 

remain poorly understood.         

 While many aspects of muscle progenitor function remain nebulous, it is has been 

established that commitment to the myogenic lineage requires the paired box transcription 
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factor, Pax7 (133, 170).  Together, Pax7 and the myogenic regulatory factors play a 

critical role in orchestrating the progression of SC from the quiescent state, through 

proliferation and into terminal differentiation.  

1.1.3 Pax7 and the myogenic regulatory factors  

The Pax7 gene is a member of the paired box (Pax) containing gene family of 

transcription factors and is specifically expressed in quiescent and activated SC (84, 170).  

Pax7 expression also appears to be necessary to maintain stem cell quality of the SC by 

facilitating self-renewal, as well as maintaining quiescence (140).  While the precise 

cellular role of Pax7 has not been elucidated, it also appears that Pax7 plays a critical role 

in the initiation and progression of the myogenic program.  Evidence by McKinnel et al. 

(126) suggests that Pax7 interacts with a specific histone methyltransferase complex that 

in turn directs the methylation of histone H3K4 to induce DNA modifications.  The 

change to the chromatin stemming from this interaction facilitates the transcription of 

Myf5, thus initiating entry into the myogenic program.  The interplay between Pax7 and 

the myogenic regulatory factors also appears to influence the progression of SC through 

the myogenic program.  Indeed, down-regulation of Pax7 appears to be necessary for the 

initiation of myogenic differentiation (140, 141, 170).  Pax7 co-expression with MyoD in 

SC during the proliferative phase appears to end with the down-regulation of Pax7 (212).  

Consistent with this, work by Olguin and colleagues (141) suggests that Pax7 and 

myogenin are reciprocal inhibitors of each other, and thus the down-regulation of Pax7 

must occur in order to achieve terminal differentiation.  Interestingly, during SC 

proliferation, a subpopulation of SC down-regulate Pax7 and thus initiate terminal 
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differentiation while other subpopulations down-regulate MyoD, retracting back to 

cellular quiescence and thus renewing the SC pool (49, 212).  These observations suggest 

that MyoD expression does not necessarily warrant commitment to the myogenic 

program, and thus highlights the importance of Pax7 expression.  The importance of Pax7 

was demonstrated by the development of Pax7 null mice (Pax7-/-). Pax7-/- mice survive 

embryonic development due to an increased activity of a Pax7 orthologue, Pax3 (23).  

However, these animals possess a marginal SC pool that diminishes rapidly during post-

natal development (157) suggesting that Pax7 is critical to the existence and self-renewal 

of the SC pool.  Together, these data would indicate that Pax7 is important for 

maintaining a viable SC population and temporal up- and down-regulation of the gene 

guides the SC through the myogenic program through interactions with the myogenic 

regulatory factors.  The molecular regulation of SC proliferation and differentiation is 

driven by the expression of Pax7 and the myogenic regulatory factor (MRF) family, 

including MyoD, Myf5, myogenin and MRF4 (Figure 1).  Upon exposure to a 

physiological stimuli, SC exit quiescence and become active.  Satellite cell activation can 

be initiated by a number of growth factors and/or signaling pathways (discussed in 

Section 1.2.2).  Activated SC are characterized by the upregulation of MyoD and Myf5 

(42, 66, 206).  In animal models, MyoD appears prior to any other indicator of cell 

proliferation (174) as early as ~12h following injury.    Interestingly, MyoD upregulation 

appears following non-damaging and/or hypertrophic stimulation without the expansion 

of the total SC pool (90) in humans. 
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Figure 1. Schematic representation of the normal myogenic program in response to 

physiological stimuli. Satellite cells are typically mitotically quiescent and reside within 

a specialized niche situated beneath the basal lamina and the sarcolemma of the 

associated myofibre. Following stimuli, satellite cells begin the myogenic program by 

becoming activated and then begin to proliferate, expressing MyoD and Myf5. Following 

proliferation, the satellite cells begin differentiation, down-regulating the paired box 

transcription factor Pax7 and expressing MRF4 and Myogenin. During differentiation, the 

satellite cells fuse to themselves forming new myofibres, fuse to existing myofibres to 

donate their nucleus, or return to their quiescent state, thus renewing the satellite cell 

pool. Various growth factors such as hepatocyte growth factor (HGF), insulin-like growth 

factor-1 (IGF-1), myostatin, platelet derived growth factor-BB (PDGF-BB), vascular 

endothelial growth factor (VEGF) and a number of the interleukin family (IL-4, -6, -10, -

13) have been shown to be regulators of the myogenic program. 
 

  This evidence suggests that the presence of MyoD may indicate that a SC has 

entered into the proliferative phase of the myogenic program, but may not continue all the 
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way into terminal differentiation.  Furthermore, it appears that the early expression of 

MyoD is associated with a set of ‘pre-committed’ satellite cells, capable of differentiating 

without first undergoing proliferation (155), suggesting that there may be subpopulations 

of SC within the overall pool.  Regardless of the implication that there may be 

heterogeneity amongst the SC pool (155), the vast majority of SC express either MyoD or 

Myf5 within 24h and typically co-express these factors within 48 hrs following injury 

(42, 43).  Given that it appears that MyoD and Myf5 are upregulated concomitantly 

suggests that they may have differing functions in adult skeletal muscle.  Work with 

MyoD-/- mice suggests that SC were more driven toward self-renewal as opposed to 

myogenic differentiation, whereas Myf5-/- mice demonstrate a reduced capacity for SC 

proliferation.  Taken together, it appears that the entrance of the SC into various phases of 

the myogenic program is influenced by the expression of MyoD and/or Myf5 (163, 210).  

 Following proliferation, the majority of SC progress into differentiation and fuse 

with each other to create de novo myofibres or fuse with existing myofibres.  

Differentiation is driven by the upregulation of transcription factors myogenin and MRF4 

(43, 206).  The downstream targets of myogenin and MRF4 are genes that code for 

structural and/or contractile proteins essential for myofibrillar formation and functionality 

(12).  Considerable work has established the intrinsic influence of Pax7 and the MRFs in 

orchestrating myogenesis, SC self-renewal and the progression through the myogenic 

program.  However, there are also a number of extrinsic regulators and signaling 

molecules that initiate and influence myogenisis during the lifespan as well.   

1.1.4 The muscle stem cell niche  
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The microenvironment provides important structural and signalling cues to stem 

cells, regardless of tissue type (139).  Satellite cells are situated in a specialized location, 

termed the ‘SC niche’.  This niche is surrounded by microvasculature, is influenced by 

innervation, and is associated with and secured within the extracellular matrix (ECM).  

Within the SC niche, the SC is influenced by cell-to-cell interaction (92), as well as 

autocrine and paracrine signalling.  The upper boundary of the satellite cell niche, the 

basal lamina, is comprised of two primary constituents, collagen type IV and laminin-2 

(α2, β1 and γ1 chains), which assemble into cross-linked networks and are further linked 

by the glycoprotein nidogen (189).  Amongst the basal lamina are a series of bindings 

sites for α7/β1-integrins that anchor the actin skeleton of the SC to the ECM (119) and 

allow for the transduction of mechanical force into biochemical signalling (24), thus 

being crucial for SC regulation.  Resident fibroblasts secrete a number of growth factors 

and facilitate organization of the ECM by the deposition of collagen and other proteins 

(189).  Proliferating cell nuclear antigen (PCNA) was no longer detected in SC following 

muscle denervation, suggesting that loss of motor neuron activity may limit the ability of 

SC to proliferate (105).  Taken together, these findings suggest that cells and structures 

(e.g., fibroblasts, macrophages, motor neurons) associated with the SC niche play an 

indispensable role in regulating SC.  However, the proximity of SC to capillaries, residing 

just outside the niche, and the demonstrated importance of cellular cross talk between 

endothelial cells and SC demands considerable attention. 

Vasculature associated with SC niche 
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To maintain skeletal muscle homeostasis and to respond to increased metabolic 

demands, the delivery of cytokines, nutrients and oxygen via the microvasculature is an 

absolute necessity.  Indeed, work by Christov and colleagues (35) suggests that muscle 

SC may be in close spatial proximity to capillaries and consequently endothelial cells.  

After determining the close physical juxtaposition of endothelial cells and SC across 

species via electron microscopy, this group observed that SC were more frequently 

associated with capillaries, as compared to myonuclei (35).      

 Furthermore, these endothelial cells are capable of stimulating myoblast 

proliferation by the secretion of a number of growth factors (35) such as hepatocyte 

growth factor (HGF), insulin-like growth factor-1 (IGF-1), platelet derived growth factor 

(PDGF-BB), vascular endothelial growth factor (VEGF) and fibroblast derived growth 

factor (FGF) (further discussed in Section 1.2.2).  By co-culturing endothelial cells and 

myogenic cells, there was a marked increase in proliferation in the myogenic population.  

In contrast, when growth factors IGF-1, HGF, bFGF, PDGF-BB, and VEGF were 

specifically inhibited individually, there was a decrease in SC proliferation ~50%, 

however, global inhibition of growth factors resulting in ~90% reduction in proliferation.  

The cross-talk between muscle SC and endothelial cells may be reciprocal for endothelial 

cell proliferation as well, as following incubation of myogenic cell-derived growth 

factors, pro-angiogenic effects and capillary structure formation were observed (35).  This 

relationship between SC and the microvasculature is particularly evident during muscle 

regeneration, with the process of myogenic repair and angiogenesis occurring 

simultaneously (113).  During muscle regeneration, the tissue undergoes extensive re-
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vascularization (72, 77, 192).  The primary driver of angiogenesis is VEGF (20), and the 

overexpression of VEGF can stimulate SC proliferation (5) in vivo, while the inhibition of 

VEGF can result in diminished myoblast differentiation in vitro (22).  While also being 

secreted from endothelial cells, it also appears that VEGF can be produced and secreted 

(34), by primary myoblasts (70), and is upregulated during terminal differentiation (22).  

Furthermore, VEGF can also act on myogenic cells in an autocrine fashion, stimulating 

cellular movement and/or migration and promoting differentiation (33, 34, 70).  Work has 

previously shown that VEGF is capable of stimulating myogenic cell migration (70), and 

can promote the establishment of myofibres with centrally located nuclei (5).  Previous 

work has shown that VEGF receptor mRNA expression (VEGF receptor-1; VEGF 

receptor-2) is also present in myogenic cells, and appears to be upregulated in satellite 

cells following damage (5).  Taken together, these data suggest that there may be critical 

interactions between muscle SC and the microvasculature in skeletal muscle.  This 

suggestion is supported by observations in patients with amyopathic dermatomyositis, in 

which individuals have a reduction in muscle capillaries without myofibre damage (57).  

In this clinical population, a proportionate reduction in muscle SC and capillarization in 

the same muscle has been observed (35).  Importantly, in areas of the muscle cross-

section where capillarization is preserved, there is maintenance of SC quantity (35).  

Taken together, patients with amyopathic dermatomyositis undergo specific SC loss, 

occurring selectively in muscle fibres with a reduced number of supporting capillaries.  

While these limited observations are important, there remains a marked paucity in the 

literature regarding the relationship between SC and the microvasculature in healthy 
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human models, particularly during muscle repair or in the context of aging.  In part, this 

may be due to challenges in accurately identifying the activation status of a relatively rare 

muscle stem cell in vivo.    

1.1.5 The identification of quiescent and active satellite cells in vivo   

Using electron microscopy, Mauro and colleagues (118) first identified SC, 

characterizing their location as beneath the basal lamina and above the sarcolemma of a 

myofibre.  However, the progression of technology and immunohistochemistry has made 

the identification of SC possible via immuoflourescent microscopy.  Schubert and 

colleagues (168) used the glycoprotein Leu-19, and determined that SC were not only 

morphologically different from myonuclei, but confirmed that they resided beneath the 

basal lamina.  Further study of Leu-19 identified that it may be involved in cell adhesion, 

analogous to the function on neural cell adhesion molecule (NCAM)/CD56 on neural 

cells (108), and that both proteins had identical staining patterns.  Thus, the antigen 

NCAM, expressed on the surface of SC, has been used frequently in the identification of 

human SC by various groups (32, 94, 95, 114, 138, 196).  However, there are some 

limitations to the use of NCAM as a SC identifier, as the protein is expressed in other cell 

types including Schwann cells, intramuscular nerves and motor unit end terminals (86, 

128).  In light of this, alternative markers have been utilized to properly quantify SC such 

as c-Met (110, 125), cell adhesion protein M-cadherin (M-Cad), (156, 165), and Pax7 

(117, 125), though each with their own challenges.  C-met is a receptor for hepatocyte 

growth factor  and is present in both quiescent and activated SC (44) but also appears in 

capillaries and some interstitial cells in human skeletal muscle (110).  C-met expression is 
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low in human SC, and may potentially only identify a subpopulation of the overall pool 

and therefore is not considered a good measure of human SC (125).  M-cad is a less 

frequently used marker of SC (175), due to the difficulty in producing a quality antibody 

for use in human tissue, but is remains an identifier of SC that closely mirrors results 

using NCAM (87).         

 In contrast to cell surface proteins, Pax7 is a nuclear marker of SC that is 

expressed in mature muscle (102, 170).  Pax7 has been extensively used to identify SC in 

human tissue (175) and has also been shown to be reliable in mice (211).  Studies 

demonstrate that SC quantification using Pax7 or NCAM/CD56 yield results that are 

within 5% of each other (111, 117, 125, 130, 196).  Some of the variation that exists may 

be due to the differences in the expression of Pax7 or NCAM/CD56 during the early 

(183) phases of terminal differentiation (25).      

 Irrespective of what antibody is used to identify SC, it is the combination of the 

SC marker and its location between the sarcolemma and the basal lamina that is critical in 

accurately determining SC content (110, 111).  Furthermore, accurate enumeration of the 

SC population also requires the analysis of a significant number of myofibres.  Work by 

Mackey et al. (117) illustrated that at least 50 type I and 75 type II muscle fibres are 

required to make a reliable estimation of fibre type specific satellite cell content in 

healthy young men.  However, whether enumerating the same number of fibres will 

provide an accurate estimation of SC content in other populations has not been well-

established.  In a population such as elderly individuals, in which SC content has been 

reported to be significantly lower than in healthy young men (124, 195, 196) the counting 
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of additional muscle fibres (and thus increasing the number of SC including in the 

analysis) may yield a more accurate assessment.  Furthermore, a growing number of 

studies suggest that SC must be enumerated in a fibre type specific manner.  In both 

healthy young and clinical populations, the SC pool at rest can be significantly different 

amongst fibre types (7, 181, 196), including hybrid fibres (89).  The SC pool also appears 

to respond to exercise stimuli in a fibre type specific manner, depending on exercise 

modality (28), highlighting the relevance of fibre-type specific analysis of SC content. 

 While the quantification of the SC pool in a quiescent state is valuable, evaluating 

the responsiveness of the SC pool to a given stimuli (i.e., exercise, muscle damage, 

injury) is equally important.  Therefore, various markers indicative of the cell cycle or of 

their stage of the myogenic program (i.e, quiescence through to proliferation and/or 

differentiation) have been utilized in combination with a SC marker.  In humans, while 

proteins that indicate proliferation such as PCNA; (117), Ki67 (116), or MyoD (90), have 

been utilized, there does not appear to be a consensus regarding which marker best 

describes the proliferating SC pool.  Ki-67 is typically expressed during the early G1 

phase of the cell cycle, increasing through S and G2 and finally peaking in M phase (69).  

On the other hand, PCNA is expressed only in the S-phase and late G1, and is not visible 

in the nuclei in the G2 or M phases (103).  There appears to be a discrepancy in the 

number of Ki-67+ cells as compared to PCNA+ cells following exercise in humans (28).  

This discrepancy may be due to the relatively short (~90 min) half-life of the protein Ki-

67 (79) as compared to the longer (~20 hour) half-life of PCNA (16).   

 The protein MyoD is considered an excellent marker of SC proliferation given the 
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repeated observation that it is a primary driver of myoblast proliferation (99, 129).  MyoD 

may also serve as an excellent marker for the early phase of differentiation, as the 

upregulation of MyoD occurs concomitantly with the downregulation of Pax7 during that 

phase of the myogenic program (210).  When assessing MyoD co-localization with 

nuclear markers (i.e., 4’,6-diamidino-2-phenylindole; DAPI) and anatomical location 

(i.e., the presence of laminin), in the absence of Pax7, it can be used as a marker to 

identify SC that may have moved entirely out of quiescence, through proliferation and is 

in the early phase of differentiation.        

 As immunohistochemistry, flow cytometry and related molecular biology 

techniques have improved over the last decade, the identification of SC cells in various 

stages of the myogenic program has become easier.  However, we are still limited by the 

fundamental shortcomings of these techniques, often amounting to a limitation in the 

number of molecular markers that can be visualized at the same time.  

1.2 MUSCLE STEM CELLS AND EXERCISE  

1.2.1 Acute satellite cell response in humans  

In humans, SC function can be assessed by evaluating the SC pool following an 

acute bout of exercise. Unaccustomed, forced muscle lengthening contractions (i.e., 

eccentric muscle contractions) have been used to induce ultrastructural damage to muscle 

fibres and induce a repair response (8, 62, 153).  A significant expansion of the SC pool 

has been detected as early as 6h following a single bout of eccentric exercise (45, 55, 60, 

121, 122, 130, 138, 190).  A list of findings regarding the expansion of the SC pool 

following eccentric contractions is shown in Table 1.  The increase in satellite cell 
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number following eccentric contractions has been observed as early as 4h post-exercise 

recovery, with the peak typically occurring around 72h post-exercise (175).  While a 

number of the studies in Table 1 analyzed SC content in ‘whole muscle’ (i.e., mixed 

muscle), eccentric exercise, known to preferentially recruit type II muscle fibres (137), 

results in a type II SC expansion in young men, suggesting that this model is also capable 

of inducing a fibre-type specific change in the SC pool (28).  

Similarly, the SC pool response has also been evaluated following non-damaging 

exercise such as a single bout of resistance (RES), moderate intensity continuous (MICT) 

or high intensity interval training (HIIT) exercise.  Following RES, there is a robust 

increase in the activation and expansion of the SC pool (11, 85, 124, 201).  Interestingly, 

it appears that as few as three maximal isometric contractions are capable of upregulating 

myogenin mRNA expression, associated with SC differentiation (2).  While inducing a 

less robust response from the SC pool than either eccentric- or RES exercise, HIIT and 

MICT also induce a SC response even under non-hypertrophic conditions across a range 

of subjects including healthy young and older individuals (90,114).  Regardless of the 

modality, it appears that exercise can activate and/or expand the resident population of SC 

in human skeletal muscle.  Considerably less understood are the growth factors and/or 

cytokines that are released during exercise that may play a role in the guidance of the 

myogenic program.  

 

1.2.2 Satellite cell regulators  
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Eccentric contraction-induced muscle damage as well as other forms of exercise 

are sufficient to prompt a SC response.  However, the precise factors that initiate SC 

activity are not well-understood.  Within the niche, SC can be influenced by a variety of 

factors, including cytokines.   

 

Table 1. Percentage change in satellite cell content in response to a single bout of 

eccentric exercise  

 
Citation Age Exercise 

Protocol 

Fibre 

Type 

1h 3h 4h 24h 48h 72h 96h 120h 196h 

             

 

 

Crameri et 

al., 2004 

25 ± 

3 

50 one 

legged drop 

down jumps  

8 x10 reps, 

30 deg. s-1  

8 x10 reps, 

120 deg. s-1 

 

 

Mixed 

     

 

146 

  

 

192 

  

 

168 

Dreyer et 

al., 2006 

23–

35 

6 x16 reps at 

60 deg. s-1 

Mixed    141  

 

 

    

O’Reilly et 

al., 2008 

 

21 ± 

2 

10x 30 reps, 

180 deg. s-1 

Mixed   5 138  148  119  

McKay et 

al., 2009 

22 ± 

1 

10 x 30 reps, 

180 deg. s-1 

 

Mixed   73 155  185  108  

Mikkelsen 

et al., 2009 

 

23 ± 

3 

200 reps, 

120 deg. s-1 

Mixed         96 

McKay et 

al., 2010 

 

21 ± 

2 

10 x30 reps, 

180 deg. s-1 

Mixed    36      

Toth et al., 

2011 

 

21 ± 

2 

10 x30 reps, 

180 deg. s-1 

Mixed 15 17  27      

   Mixed    25      

Cermak et 

al., 2013 

23 ± 

1 

10 x 30 reps, 

180 deg. s-1 

I    0      

   II 

 

   73      

   Mixed    25      

Hyldahl et 

al., 2014 

23 ± 

2 

196 reps, 

180 deg. s-1 

I    30      
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   II 

 

   25  

 

 

 

    

 

Buford et 

al., 2013 

 

23 ± 

4 

 

110% 1 RM, 

one legged 

plantar 

flexors 

 

 

Mixed 

     

23 

    

19 

A compilation of studies that have assessed satellite cell content in response to a single bout of eccentric 

exercise in adults. Type I, type I muscle fibres; Type II, type II muscle fibers; Mixed, mixed muscle fibres. 

All values are expressed as a percentage increase from the baseline (i.e., prior to eccentric exercise) value. 

 

Cytokines are small secreted proteins released by cells and have a specific effect 

on the interactions and communications between cells, and drive autocrine, endocrine and 

paracrine signaling that orchestrate progression of SC through the myogenic program.  

Regulatory factors such as HGF, IGF-1, myostatin, PDGF-BB, VEGF and IL-6 have been 

shown to be key regulators of the myogenic program (175, 210).  HGF, a stromal 

mesenchymal-derived growth factor is a potent activator of quiescent SC as demonstrated 

in rodents (131, 186, 187).  Consistent with this finding, O’Reilly and colleagues (138) 

reported that 24h following eccentric contraction-induced damage in humans there was a 

concomitant increase in SC number and HGF activator (HGFA) protein content.  Another 

cytokine that has received considerable attention due to its hypothesized involvement in 

SC activation in both rodents (29) and humans (74, 122) is IGF-1, which is produced by 

the liver and muscle alike.  IGF-1co-localizes with Pax7+ SC in human muscle  (74), and 

there is an increase in IGF-1+/Pax7+ cells 24h after eccentric contraction-induced damage 

(122).  Furthermore, three spliced variants of IGF-1 have been described in skeletal 

muscle (i.e., IGF-1Ea, IGF-1Eb, and IGF-1Ec) and are all thought to make contributions 

to skeletal muscle regeneration (29, 162, 208, 209).  IGF-1Ec (i.e., mechano growth 
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factor; MGF) and Myf5 appear temporally linked following eccentric damage suggesting 

that IGF-1Ec may be involved in SC activation/proliferation (122).  Conversely, IGF-1Ea 

and Eb are temporally linked with myogenin expression suggesting that IGF-1Ea and Eb 

may be associated with differentiation or the transition from proliferation to 

differentiation.  Myostatin (Mstn), a member of the transforming growth factor-β (TGF-β) 

family, has long been thought to regulate SC function due to its involvement in muscle 

fibre hypertrophy and/or hyperplasia during muscle growth (127).  In Mstn knock-out 

mice, SC proliferation and pool size are significantly higher as compared to wild-type 

counterparts.  It has also been shown that Mstn is expressed in human skeletal muscle SC, 

and in resting conditions approximately 80% of the SC pool is Mstn+, suggesting that 

Mstn may play a role maintaining SC in the quiescent state (124, 176).  Following a bout 

of resistance exercise, there is a significant decrease in the proportion of SC co-localized 

with Mstn (124, 176).  The decrease in the proportion of SC co-localized with Mstn 

occurs at the same time that MyoD is up-regulated and a greater proportion of SC are in 

the S-phase of the cell cycle (124), which may suggest Mstn downregulation is required 

for SC proliferation.  The interleukin family of cytokines, many of which are known to 

increase during/following exercise (51, 61, 146), can be secreted from skeletal muscle, 

making them potential candidates as SC regulators.  Traditionally known as an 

inflammatory cytokine, IL-6 is the most well characterized interleukin in the context of 

exercise, is known to respond to various forms of exercise (9, 54, 61, 123, 146, 190) and 

importantly is known to play a role in SC function (123, 190).  Signal transducer and 

activator of transcription 3 (STAT3) is a downstream target of IL-6 (191), and following 
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IL-6 binding to the IL-6Rα receptor, JAK2 is phosphorylated and initiates the 

phosphorylation of STAT3 leading to dimerization and translocation of STAT3 to the 

nucleus initiating transcription of downstream targets.  Both IL-6 (121) and STAT3 (190) 

co-localize with SC following an acute bout of eccentric contractions.  The genetic 

knockout of IL-6 has been shown to result in diminished SC proliferation by impairing 

STAT3 activation and expression of its target gene cyclin D1 (171).  Likewise, IL-6 

treatment of rat SC led to increased proliferation, phosphorylation of STAT3 and 

increased cyclin D1 expression (104).  In humans, the temporal response of IL-6 

following exercise appears to differ depending on intensity and duration of exercise 

(147).  In humans, serum IL-6 has been shown to increase rapidly following eccentric 

exercise and remains elevated similar to the time course for SC expansion (121) with a 

peak in IL-6 occurring a few hours post-exercise.  While serum IL-6 concentration may 

not perfectly reflect the cytokine concentration in the SC niche, these data suggest that the 

IL-6 response may play an important role in regulating SC during post-exercise recovery.  

1.2.3 Satellite cells and hypertrophy  

In rodent models, it has been well-established that SC are necessary for successful 

skeletal muscle regeneration and/or repair (120, 166).  However, there is still a healthy 

debate regarding the contributions of SC during muscle fibre hypertrophy.  As a post-

mitotic tissue, skeletal muscle relies on the addition of de novo nuclei from an exogenous 

source, predominately SC.  The nuclei within the muscle (termed ‘myonuclei’) have been 

postulated to be responsible for the governance of a given volume of the myofibrillar 

cytoplasm (76), in what has been termed the ‘myonuclear domain theory’ (3).  
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Hypertrophy,  therefore demands the addition of new myonuclei in order to support 

additional cytoplasm (3, 76). While it appears that minor increases in muscle fibre size do 

not require significant increases in myonuclei (148), sustained and considerable growth in 

fibre size require the accretion of myonuclear content (21), derived from SC activity.  

Early work suggested that mice that had undergone muscle-targeted irradiation (and thus 

presumably damaged the resident SC) were not capable of hypertrophy following 3 

months of synergist ablation, whereas the control non-irradiated mice were able to mount 

a significant response (1).  However, work by McCarthy and colleagues (2011) examined 

the importance of SC during muscle fibre hypertrophy using a Pax7CreER - diphtheria 

toxin A (DTA) strain of rodents, which allows for the controlled ablation of Pax7 cells 

through tamoxifen administration.  This study demonstrated that there were no 

differences in the hypertrophic response to two weeks of synergist ablation-induced 

hypertrophy in animals that underwent SC ablation as compared to wild-type mice.  In a 

follow up study, the same group reported that hypertrophy was not compromised 

following two weeks using synergist ablation, but was indeed affected following a period 

of 8 weeks (64) with impaired growth observed in the Pax7CreER –DTA mouse.  Taken 

together, these studies represent the on-going debate regarding the role of SC during the 

hypertrophic response, as it appears that short term hypertrophy can occur without SC, 

but long term hypertrophy and/or sustained hypertrophy is reduced in the absence of SC.  

While elegantly designed, these studies represent ‘supra-physiological’ conditions, 

achievable only in the animal model.  Therefore, descriptive human studies are required 
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in order to understand the associations between muscle fibre hypertrophy and changes in 

SC content and myonuclear number.  

 In humans, skeletal muscle hypertrophy is achieved through resistance exercise 

training.  In a growing number of studies, it has been observed that an increase in muscle 

fibre size is associated with an increase in SC content and/or myonuclear accretion 

following resistance training (60, 96, 195).  Interestingly, a strong positive correlation 

between the increase in SC content and the hypertrophic response to resistance exercise 

training (i.e., the change in fibre size) is conserved across men and women, regardless of 

age (11, 115, 148, 197).  Furthermore, it appears that muscle hypertrophy is accompanied 

by an increase in myonuclear content  (11, 96, 149), with larger myofibres containing 

more nuclei than smaller fibres (58, 96, 172).  

1.3 AGING MUSCLE 

The progressive loss of skeletal muscle mass and strength is a hallmark of aging and 

is referred to as ‘sarcopenia’.  The impact of sarcopenia is broad, including impaired 

functional capacity, loss of independence, increase in incidence of injury and an increase 

in morbidity (37, 88, 107).  Considering that the world’s population 60 years and older 

will triple within ~50 years, and octogenarians are the fastest growing subpopulation in 

the world (204), sarcopenia represents an immense economic burden in Canada and 

around the world (180).         

 The structural changes associated with human aging are extensive, including 

changes in the size and number of myofibres (109), which leads to a decrease in 

maximum force production (177, 200).  An extensive shift in muscle fibre type 
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distribution toward a greater percentage of type I fibres as compared to type II fibres 

occurs with aging (32, 55, 63, 196).  Furthermore, the prevalence of denervation in older 

human skeletal muscle has also been shown to be associated with fibre type grouping of 

denervated type II myofibres (161, 193).  As a consequence of this fibre type grouping, 

older skeletal muscle may lose the mosaic-like distribution of fibres (161, 193), which has 

been proposed as a possible mechanism for the loss of functional strength observed in 

older individuals (98).  Furthermore, aged muscle is more susceptible to injury (18, 19) 

and demonstrates a diminished capacity for muscle repair/regeneration (73, 91) as 

compared to young muscle.  Due to these impairments in the ability to repair and/or 

remodel skeletal muscle with aging, satellite cells have been implicated as a potential 

factor contributing to sarcopenia.  

1.3.1 Satellite cells and aging  

In studies assessing muscle CSA via histochemical and/or immunohistochemical 

methods, there is a general consensus that while type I muscle fibre size remains 

undiminished with age, there is a loss of type II muscle size (30, 38, 55, 109, 148, 196).  

Furthermore, human studies have repeatedly observed that the loss of type II muscle fibre 

size in older muscle occurs concomitant with a reduction in type II muscle fibre SC 

content (116, 123, 124, 195-199).  Work by Brack and colleagues (14) supports the notion 

that there is a loss of SC content prior to age-related muscle atrophy.  Given that SC are 

the primary source for nuclear addition to existing myofibres, the authors proposed that 

the loss of SC content and thus the inability to contribute new nuclei leads to an increased 

domain size that triggers cytoplasmic atrophy (14) in mice.  In humans, muscle CSA in 
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elderly men was positively correlated with both myonuclear content and SC content, 

supporting the notion that the decline in SC content may play a role in the loss of muscle 

CSA typically observed in aging (197).  However, recent work by Fry and colleagues (65) 

challenges this notion as they used the Pax7CreER –DTA strain of mice to selectively 

ablate muscle SC, thus severely impairing regenerative function and/or remodeling ability 

as compared to wild type mice.  Following a two-year aging period, similar muscle loss 

was observed in both the experimental and wild-type mice, suggesting that the loss of 

muscle SC typically observed with aging may not be a major contributor to the 

progression of sarcopenia (65).  The translation of animal data can be challenging, as 

experimental animals are kept in a controlled environment, primarily sedentary.  Given 

that a major contributor to sarcopenia appears to be adverse events (i.e., illness, 

musculoskeletal injuries, periods of bedrest or even inclement weather) (10, 143, 202), 

the interpretation of results from animal studies must be done with caution, and validated 

in humans when possible.  While not sarcopenia per se, the atrophy or immobilization 

models have been used in humans in order to more fully understand changes to the 

muscle with disuse.  In a study by Suetta and colleagues (182), single leg immobilization 

was applied for 2 weeks, followed immediately by 4 weeks of reloading in a cohort of 

healthy young and old men.  Whereas the loss in muscle size and SC content observed 

with immobilization was recovered in the young men, this was not the case with their 

older counterparts (182).  The authors postulated that a reduction in sensitivity to growth 

factors controlling muscle size and SC function may explain the impairment in recovery 

in older men.  Collectively, these data suggest that not only are elderly individuals 
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undergoing a naturally occurring decline in muscle mass, but may also be at risk for 

singular events that accelerate the loss of muscle mass and function.   

 The age-related decline in muscle size appears to be related in some capacity to 

the loss of SC content.  However, there also appears to be an age-related loss of muscle 

SC functionality and/or ability to progress through the myogenic program, which may 

also contribute to the progression of sarcopenia.  The impact of aging on SC function in 

human skeletal muscle is best demonstrated using a single bout of damaging or non-

damaging exercise to stimulate a SC response.  Following a single bout of eccentric (55, 

201) or resistance exercise (124, 176) the SC response appears to be both delayed and 

blunted in older as compared to younger men. This impaired response is mainly attributed 

to the lack of response in type II muscle SC (124, 176).  Age related dysfunction in SC 

activation, driven primarily by the impaired response of type II muscle SC, is supported 

by experiments examining the cell cycle in both young and older individuals (124).  

Following a resistance bout of exercise, there was a delayed entry into S phase of the cell 

cycle in old as compared to young men, with young men exhibiting a significant increase 

24h post-exercise while the older men did not realize a significant expansion until 48h 

post-exercise recovery.  There also appears to be a diminished number of SC in S phase at 

48h post-exercise in old as compared to the young group.  Taken together, these data 

reinforce the notion that there is a blunted proliferative response in older adults, reflected 

by both cell cycle kinetics and a lack of MyoD up-regulation in the SC pool. 

 Furthermore, while older muscle can hypertrophy following prolonged resistance 

training (195, 197, 199), the response appears to be blunted in older men especially in 
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type II myofibres (101, 148). Taken together, these studies suggest that the activation 

and/or expansion of SC following exercise can be mainly attributed to the reduction in 

function of type II associated SC.  The deficiency in function, paired with the loss of type 

II SC content with aging, may play a role the observed loss of muscle mass with aging.  

In order to combat sarcopenia, a mechanism that might explain the loss of SC must be 

elucidated.  

1.3.2 Age-related loss of muscle capillarization  

Muscle capillaries are responsible for the delivery of oxygen, nutrients and growth 

factors to skeletal muscle.  Lined by endothelial cells, capillaries are suited for gas 

exchange/growth factor delivery due to their thin structure (67, 83, 132).  Through arterial 

stiffening, wall thickening or a decrease in endothelial cells and thus a loss of muscle 

capillaries (i.e., microvasculature), the circulatory system is adversely affected by aging 

(169).  Importantly, the loss and/or alteration of the peripheral microcirculation plays a 

role in age-associated organ damage (132).  With aging there is reduced blood flow (52) 

and vascular conductance (53) to the lower limbs at rest.  Consistent with this, blood flow 

and vascular conductance were attenuated in aged individuals as compared to young (53).  

Furthermore, observations of a blunted microvascular blood flow responses in post-

absorptive and post-prandial conditions following protein ingestion have been reported 

(134, 173).  Taken together, these findings suggest that there is a concomitant loss of 

function with aging, and many groups have identified morphological or content changes 

in capillarization with aging as well.   
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The morphological aspects of the capillaries and their relationship to the size 

and/or tortuosity of the myofibre has been shown to be relevant for the exchange and 

perfusion of circulating factors (80, 82).  Indeed, the quantification of muscle 

capillarization must be performed accurately to assess changes related to diffusion or 

perfusion.  Early work utilized the analysis of capillary contacts (CC), or the individual 

capillary-to-fibre ratio (C/Fi), the latter of which includes a sharing factor (SF) calculation 

in order to determine a fibre-type specific C/Fi  (80,82).  These measurements can be used 

to accurately detect the capillarization of a given area, but fibre area-based measurements, 

such as capillary density (CD) may be a  more appropriate marker to estimate the delivery 

of substrates (59) and/or the removal of waste products (188) from the myofibres via 

primarily passive diffusion.  However, indexes of the capillary-to-fibre surface, such as 

the capillary-to-fibre perimeter exchange (CFPE) index may provide the most substantial 

information regarding the capacity of either oxygen or growth factors reliant on receptor-

mediated processes at the myofibre membrane.  The CFPE is calculated by the equation 

CFPE = C/Fi / P.  The inclusion of the myofibre perimeter (P) as related to individual 

capillary supply to the myofibre is crucial, as P is related to the 3D surface area of the 

fibre.  In contrast, the measurement of fibre area (i.e., CSA) is proportional to the volume 

of the fibre.  Therefore, by using P and not FA, the CFPE index takes into account the 

capillary-to-fibre surface, and thus can accurately assess microvascular supply to the most 

relevant area of oxygen flux and/or growth factor receptors (80, 81).  

While the measurement of capillarization has not been consistent on a study-to-

study basis, it appears that human aging has a deleterious impact on muscle 
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capillarization (144). Coggan and colleagues (38, 39) observed a ~25% decline in both 

number and density of microvascular capillaries in older as compared younger women.  

In a longitudinal study, Frontera and colleagues (63) observed that there was a ~20% 

decrease in CD in men from the age of 65 to 77.  Under closer examination, there also 

appeared to be a fibre-type specific response in the loss of capillaries with age.  Indeed, 

when analyzing both isoforms of type II myofibres (i.e., IIA, IIB), Proctor and colleagues 

(1995) observed a significant decline in capillarization in older adults as compared to 

young individuals.  Consistent with this, a loss of type II myofibre capillarization with 

age have been repeatedly reported (38, 46, 152).  The loss of endothelial function, 

exacerbated by a loss of type II fibre capillarization, may help to explain the ‘anabolic 

resistance’ observed in older adults (17, 135, 203) and may also be an underlying factor 

in the loss of type II CSA observed with aging.  Furthermore, this loss of muscle 

capillarization and/or perfusion may limit the delivery of growth factors and nutrients to 

the muscle SC niche.  While not a model of aging per se, there are other clinical 

populations that highlight the relationship between muscle capillaries and SC. Individuals 

suffering from amyopathic dermatomyositis show a reduction in muscle capillarization in 

the absence of myofibrillar damage (57).  Interestingly, these individuals also exhibit a 

loss of SC content proportionate to the loss of muscle capillarization (35).  Furthermore, it 

appears that in areas of the muscle with preserved capillary content, there is also a 

maintenance of SC content (35).  Taken together, these data indicate that SC loss occurs 

selectively in muscle fibres with a diminished network of capillaries.  The loss of 

capillary content leading to a reduced delivery of SC-regulating growth factors or some 
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combination of both factors may lead to an altered niche and subsequent loss of 

functional SC in aging.  

1.3.3 Implications of an altered SC environment with aging 

An age-related reduction in muscle SC content and function has a considerable 

impact on the preservation of muscle size, as well as the ability for skeletal muscle to 

repair following injury.  There is growing evidence to suggest that the dysregulation of 

SC during muscle repair may stem from extrinsic signaling within the SC niche.  When 

aged muscle is grafted into a youthful environment, there is an improvement in 

regenerative capacity (27, 160) ; in contrast, when young muscle is transplanted into aged 

animals, there is a significant impairment in regeneration (26, 27).  In an elegant 

experiment, Conboy and colleagues (41) demonstrated that when the circulation of an 

aged mouse is paired with a young counterpart (termed ‘heterchonic parabiosis’), there is 

a rescuing of the regenerative potential in the muscle of the aged mice.  These findings 

are reinforced by cell culture experiments observing that when SC from young mice are 

exposed to the serum from aged mice, there is a decrease in their myogenic potential (15, 

27).  The aged environment also appears to impair function in SC derived from young 

animals, therefore suggesting that the systemic environment may determine the cell 

regenerative capacity (15, 154).  Taken together, these observations suggest that there are 

systemic factors that facilitate SC function, and that the absence of these factors may be 

pivotal to the impaired SC response in aged muscle.      

 While the parabiosis model is a powerful model to study the impact of the 

systemic environment with aging, it does not take into account the altered delivery of 
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these circulating cytokines through skeletal muscle that may occur normally with aging.  

This point becomes particularly relevant when considering that the impact of aging on 

skeletal muscle capillarization in rodent models is not entirely clear, with some studies 

reporting a reduction (159), others reporting no change and/or an increase (68).  A loss of 

skeletal muscle capillarization with aging could limit the ability of growth factors and 

nutrients to reach the SC micro-environment.  In the parabiosis model, the exposure of 

old muscle to circulating growth factors/cytokines of the young animal may be sufficient 

to improve SC function.  However, a reduction of either conduction via the 

microvasculature or the concentration of the circulating growth factors likely both 

contribute to impaired SC function under normal aging conditions. Therefore, it is crucial 

more experimental work must be conducted in integrated human models.    

 The loss of myofibre capillarization with aging has therefore been seen as an 

important component for skeletal muscle maintenance and growth.  Given that there are a 

number of cytokines and growth factors  in circulation that have been observed to be 

regulators of SC function, the delivery of these signals to the muscle SC would therefore 

rely, in part, on sufficient perfusion of the myofibres.  Cytokine delivery to the SC niche, 

paired with the cell-cell cross talk observed between endothelial cells and SC (34, 35) 

suggest the importance of muscle capillarization to SC function.      

 The functional relationship between the SC and the muscle microvasculature has 

not been well elucidated.  Furthermore, how this relationship is altered in a population 

suffering from a reduction in SC content concomitant with a reduction in muscle 

capillarization, such as aged individuals, remains an important question.  
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1.4 Content of Thesis 

1.4.1 Purpose of Thesis 

The research experiments contained in the current thesis were designed to investigate the 

relationship between human skeletal muscle capillaries and resident muscle SC. 

i) In Chapter 2, we examined whether the spatial relationship between SC and 

capillaries were relevant for the activation status of the SC pool following a 

single bout of resistance exercise.  To gain insight whether there were any 

changes with this relationship with aging, we compared the relationship 

between SC and the nearest capillary between healthy young and older men. 

ii) In Chapter 3, we examined the activation response of the SC pool following a 

single bout of resistance-type exercise prior to and following 16 weeks of 

progressive resistance training. 

iii) In Chapter 4, we assessed the activation  status and expansion of the SC pool 

following a bout of eccentric contraction-induced muscle damage in a group 

of healthy young men with a broad scaling of muscle fibre capillarization 

1.4.2 Hypotheses  

i) We hypothesized that following exercise, activated SC would be situated in a 

closer proximity to the nearest capillary as compared to their quiescent 

counterparts.  We hypothesized that there would be a greater distance between 

type II associated SC in muscle capillaries in older as compared to younger 

men  
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ii) We hypothesized that following long term RT there would be an enhanced SC 

activation response.  We hypothesized that following training, there would be 

increased markers of capillarization and muscle perfusion that may influence 

SC activation  

iii) We hypothesized that individuals with higher indices of muscle capillarization 

would exhibit a greater activation and/or expansion of the SC pool in response 

to exercise-induced muscle injury.   
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ABSTRACT: 

Factors that determine the skeletal muscle satellite cell (SC) response remain 

incompletely understood. It is known, however, that SC activation status is closely related 

to the anatomical relationship between SC and muscle capillaries. We investigated the 

impact of muscle fibre capillarization on the expansion and activation status of SC 

following a muscle damaging exercise protocol in healthy young men. Twenty-nine 

young men (21±0.5 yrs) performed 300 unilateral eccentric contractions (180 deg s−1) of 

the knee extensors. Percutaneous muscle biopsies from the vastus lateralis and blood 

samples from the antecubital vein were taken prior to (Pre) and at 6h, 24h, 72h and 96h of 

post-exercise recovery. Type I and type II muscle fibre size, capillarization, and SC 

response were determined via immunohistochemistry. There was a significant correlation 

(r= 0.39; p<0.05) between the expansion of SC content (change in total Pax7+ cells/100 

myofibre) 24h following eccentric exercise and mixed muscle capillary-to-fibre perimeter 

exchange index. Subjects were retrospectively stratified based on their mixed muscle 

CFPE index. There was a greater increase in activated SC (MyoD+/Pax7+ cells/100 

myofibre) in the High CFPE group as compared to the Low CFPE group 72h following 

eccentric exercise. The current study provides further evidence that muscle capillarization 

may play an important role in the activation and expansion of the SC pool during the 

muscle fibre repair process.  
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INTRODUCTION: 

Skeletal muscle satellite cells (SC) are indispensable for muscle regeneration and 

repair following injury (Lepper et al., 2011; McCarthy et al., 2011; Sambasivan et al., 

2011). In response to a physiological cue (e.g. exercise), SC activate, proliferate and 

differentiate donating nuclei to existing muscle fibres to aid in repair/adaptation or return 

to a state of quiescence to replenish the basal SC pool (Bentzinger et al., 2012; Yin et al., 

2013).  The process of SC activation through terminal differentiation is orchestrated by a 

transcriptional network, known as the myogenic regulatory factors (MRFs), and is 

collectively referred to as the myogenic program.  Expansion of the SC pool following a 

single bout of exercise or muscle fibre contraction-induced damage has been well 

characterized in humans (Bellamy et al., 2014; McKay et al., 2009; McKay et al., 2008; 

McKay et al., 2013; McKay et al., 2012; Nederveen et al., 2017) with appreciable 

expansion occurring by 24h and peaking 72h post-stimulus (Snijders et al., 2015).  

A number of cytokines and growth factors including, but not limited to, 

interleukin-6 (IL-6), insulin-like growth factor-1 (IGF-1), myostatin and hepatocyte 

growth factor (HGF) are known regulators of SC progression through the myogenic 

program (McKay et al., 2009; McKay et al., 2008; O'Reilly et al., 2008).  Many of these 

factors are produced by skeletal muscle in its function as an ‘endocrine organ’ (Pedersen 

& Febbraio, 2008; Steensberg et al., 2000), or by other organs, tissues or cells (Velloso, 

2008) and then delivered to the SC niche via the vasculature.  Therefore, delivery of these 

factors to the SC niche may be a requirement of the myogenic response.  Indeed, the 



Ph.D. Thesis – J. P. Nederveen; McMaster University - Kinesiology 

 77 

importance of extrinsic factors in regulating SC function has been demonstrated using 

parabiotic pairings of old and young rodents (Brack & Rando, 2007; Conboy et al., 2005).  

Muscle capillaries function as the delivery mechanism for oxygen, fuel, cytokines and 

growth factors that may regulate SC, but may also act as an important modulator of the 

SC response.  We and others have reported an anatomical relationship between muscle 

SC and the microvasculature, with activated SC situated geographically closer to 

capillaries than quiescent SC (Christov et al., 2007; Nederveen et al., 2016; Nederveen et 

al., 2017).  Consequently, it has been proposed that SC content (Christov et al., 2007; 

Emslie-Smith & Engel, 1990) and/or SC activation status (Chazaud et al., 2003; Christov 

et al., 2007; Nederveen et al., 2016) may be related to the extent of muscle fibre 

capillarization as a result of exposure of SC to circulating factors or direct communication 

between endothelial cells and SC during muscle repair (Chazaud et al., 2003; Ochoa et 

al., 2007). However, to what extent the muscle fibre microvascular bed may dictate the 

acute muscle SC response during muscle repair in humans remains unknown.  Therefore, 

in the present study, we assessed the expansion and activation status of the SC pool 

following a single bout of exercise-induced muscle fibre damage in a group of healthy 

young men with varying degrees of muscle fibre capillarization.  We hypothesized that 

individuals with a greater degree of muscle fibre capillarization would demonstrate a 

more rapid and pronounced SC response following a single bout of eccentric exercise.    

METHODS 

Participants. Twenty nine healthy young men (YM: 22 ± 0.5 yr; mean ± SEM) were 

recruited to participate in this study.  Exclusion criteria included smoking, diabetes, the 
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use of nonsteroidal anti-inflammatory drugs (NSAIDs) and/or statins, and a history of 

respiratory disease and/or any major orthopaedic disability.  Subjects were told to refrain 

from exercising throughout the duration of the study, and refrain from the use of NSAIDs 

(Mackey et al., 2016).The study was approved by the Hamilton Health Sciences 

Integrated Research Ethics Board, and conformed to the guidelines outlined in the 

Declaration of Helsinki.  Participants gave their informed written consent prior to 

inclusion in the study.  To assess the impact of muscle fibre capillarization on the muscle 

SC response following a single bout of eccentric exercise and subsequent muscle damage, 

participants were assigned into one of two groups (n = 10 per group) based on mixed 

muscle fibre capillarization (corrected for capillary sharing factor and muscle fibre 

perimeter, also known as capillary-to-fibre perimeter exchange (CFPE) index) for non-

correlative statistical analysis.  This resulted in a group with a relatively low (Low; 

CFPE: 5.2 ± 0.5 capillaries • 1000 µm-1) and relatively high (High; CFPE: 7.6 ± 1.0 

capillaries • 1000 µm-1) mixed muscle fibre CFPE index. Stratification of participants 

resulted in a ‘middle’ group (n = 9) who were not used in non-correlative statistical 

analysis, with the intent to create a clear separation between the Low and High group.  

VO2peak test and anthropometric measurements.  During an initial visit to the laboratory 

participants performed a VO2peak test on a cycle ergometer (model: H-300-R Lode; Lode 

B.V., Groningen, The Netherlands) and had anthropometric measurements recorded. The 

VO2peak test consisted of load-less pedaling for one minute, followed by a step-wise 

increase to 50 watts (W) for two minutes.  After the increase to 50 watts, work rate was 

increased by 30 W/min until the participant reached volitional fatigue (determined by the 
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inability of the participant to maintain a minimum cadence of 60 RPM). Gas exchange 

was collected throughout the test using a metabolic cart (Moxus, AEI Technologies, 

Pittsburgh, PA) and VO2peak was calculated using the highest 30 second average 

VO2 during the final stage of the ramp protocol.  Work rate (WR) was collected 

continuously throughout the test and peak aerobic power (WRpeak) was calculated using 

the average WR from the last 30 seconds of the test. 

Muscle biopsy sampling. Percutaneous needle biopsies were taken, after an (~10h) 

overnight fast (Pre), from the mid-portion of the vastus lateralis under local anesthetic 

using a 5 mm Bergstrom needle adapted for manual suction.  Subjects had not 

participated in any physical activity for at least 96 hours before muscle biopsy collection 

prior to the single bout of eccentric exercise.  The muscle biopsy procedure was repeated 

at 6h, and in the fasted condition (~10h) 24h, 72h and 96h of post-exercise recovery. 

Incisions for the repeated muscle biopsy sampling were spaced approximately 3 cm apart 

to minimize any effect of the previous biopsy.  Upon excision, muscle samples were 

immediately mounted in optimal cutting temperature (OCT) compound, frozen in liquid 

nitrogen–cooled isopentane, while another part was directly frozen in liquid nitrogen, and 

stored at -80° C until further analyses.    

Blood sampling. Blood samples were obtained from the antecubital vein immediately 

prior the muscle biopsy sampling procedure before and after 6h, 24h, 72h and 96h of the 

single bout of eccentric exercise.  Blood (~10 mL) samples were collected in EDTA 

containing tubes and centrifuged at 1500 rpm for 10 min at 4 °C.  Aliquots of plasma 

were frozen in liquid nitrogen and stored at −80°C.  Plasma samples were analyzed for 
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IL-6 protein and creatine kinase activity using commercially available Enzyme-Linked 

ImmunoSorbant Assay (ELISA) (R & D Systems, Inc., USA) and activity assay kits 

(Abcam Inc., Canada), respectively,  following the manufacturer's instructions.  Statistics 

were performed on the raw values, and expressed as a percentage change from baseline.  

Eccentric Muscle Damage Protocol.  Maximal isokinetic unilateral muscle-lengthening 

contractions of the quadriceps were performed using the Biodex dynamometer (Biodex-

System 3, Biodex Medical Systems, Inc., USA) at 180 deg s−1. For each subject, one leg 

was selected randomly to perform the exercise protocol described below.  Movement at 

the shoulders, hips and thigh were restrained with straps in order to isolate the knee 

extensors during the protocol.  Immediately prior to the intervention, subjects underwent 

a brief familiarization with the equipment, involving 5–10 submaximal lengthening 

contractions of the leg to be exercised.  Subjects were required to perform 30 sets of 10 

maximal knee extensions with 1 min rest between sets, for a total of 300 lengthening 

contractions.  During each set, investigators provided verbal encouragement for the 

subjects to complete and exert maximal force during each contraction.  This protocol has 

been previously shown to induce a significant level of skeletal muscle damage (Beaton et 

al., 2002).  

Immunofluorescence.  Muscle cross sections (7µm) were prepared from unfixed OCT 

embedded samples, allowed to air dry for 30 minutes and stored at -80˚C.  Samples were 

stained with appropriate primary and secondary antibodies against specific antigens, 

found in Table 1, as previously described (Nederveen et al., 2016).  Nuclei were labelled 

with DAPI (4',6-diamidino-2-phenylindole) (1:20000, Sigma-Aldrich, Oakville, ON, 
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Canada), prior to cover slipping with fluorescent mounting media (DAKO, Burlington, 

ON, Canada).  The staining procedures were verified using negative controls, in order to 

ensure appropriate specificity of staining.  Slides were viewed with the Nikon Eclipse Ti 

Microscope (Nikon Instruments, Inc. USA), equipped with a high-resolution 

Photometrics CoolSNAP HQ2 fluorescent camera (Nikon Instruments, Melville, NY, 

USA). Images were captured and analyzed using the Nikon NIS Elements AR 3.2 

software (Nikon Instruments, Inc., USA).  All images were obtained with the 20x 

objective, and ≥ 200 muscle fibres/subject/time point were included in the analyses for 

SC content/activation status (i.e., Pax7+/MyoD- or Pax7+/MyoD-), and fibre cross 

sectional area (CSA), and perimeter.  The activation status of SCs was determined via the 

colocalization of Pax7+ and DAPI (Pax7+/MyoD-) and/or the co-localization of Pax7, 

MyoD and DAPI (i.e., Pax7+/MyoD+).  Cell membranes were labelled with Peroxidase 

conjugated Wheat Germ Agglutinin (WGA) (1 ug/mL, Vector PL-1026, Burlington, ON, 

Canada) and realized with a substrate kit (Vector, SK-4700, Burlington, ON, Canada) as 

per manufacturer’s instructions. Slides were blinded for both group and time point.  The 

quantification of muscle fibre capillaries was performed on 50 muscle fibres/subject/time 

point (Porter et al., 2002).  Based on the work of Hepple et al. (Hepple, 1997; Hepple & 

Mathieu-Costello, 2001), quantification of; i) capillary contacts (CC; the number of 

capillaries around a fibre), ii) the capillary-to-fibre ratio on an individual fibre basis 

(C/Fi), iii) the number of fibres sharing each capillary (i.e., the sharing factor) and iv) the 

capillary density (CD) was performed.  The CD was calculated by using the cross 

sectional area (µm2) as the reference space.  The capillary-to-fibre perimeter exchange 
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index (CFPE) was calculated as an estimate of the capillary-to-fibre surface area (Hepple, 

1997).  The SC-to-capillary distance measurements were performed on all SC that were 

enclosed by other muscle fibres, and has been described previously (Nederveen et al., 

2016).  All immunofluorescent analysis were completed in a blinded fashion.   

RNA Isolation.  RNA was isolated from 15–25 mg of muscle tissue using the 

Trizol/RNeasy method. All samples were homogenized with 1 mL of Trizol Reagent 

(Life Technologies, Burlington, ON, Canada), in Lysing Maxtrix D tubes (MP 

Biomedicals, Solon, OH, USA), with the FastPrep-24 Tissue and Cell Homogenizer (MP 

Biomedicals,Solon, OH, USA) for a duration of 40 sec at a setting of 6 m/sec.  Following 

a five minute room temperature incubation, homogenized samples were stored at -80C 

for one month until further processing.  After thawing on ice, 200 ml of chloroform 

(Sigma-Aldrich, Oakville, ON, Canada) was added to each sample, mixed vigorously for 

15 sec, incubated at RT for 5 min, and spun at 12000 g for 10 min at 4C. The RNA 

(aqueous) phase was purified using the E.Z.N.A. Total RNA Kit 1 (Omega Bio-Tek, 

Norcross, GA, USA) as per manufacturer’s instructions.  RNA concentration (ng/ml) and 

purity (260/280) was determined with the Nano-Drop 1000 Spectrophotometer (Thermo 

Fisher Scientific, Rockville, MD, USA).  

Reverse Transcription.  Samples were reverse transcribed using a high capacity cDNA 

reverse transcription kit (Applied Biosystems, Foster City, CA, USA) in 20 l reaction 

volumes, as per manufacturer’s instructions, using an Eppendorf Mastercycler epGradient 

Thermal Cycler (Eppendorf, Mississauga, ON, Canada) to obtain cDNA for gene 

expression analysis. 
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Quantitative real time RT-PCR.  All QPCR reactions were run in duplicate in 25 µl 

volumes containing RT Sybr Green qPCR Master Mix (Qiagen Sciences, Valencia, CA, 

USA), prepared with the epMotion 5075 Eppendorf automated pipetting system 

(Eppendorf, Mississauga, ON, Canada), and carried out using an Eppendorf Realplex2 

Master Cycler epgradient (Eppendorf, Mississauga, ON, Canada).  Primers are listed in 

Supplementary Table 1 and were re-suspended in 1X TE buffer (10mM Tris–HCl and 

0.11 mM EDTA) and stored at −20◦C prior to use.  Messenger RNA expression was 

calculated using the 2−∆∆Ct method, and fold changes from baseline were calculated using 

the ∆∆Ct method (Livak & Schmittgen, 2001).  Briefly, Ct values were first normalized to 

the housekeeping gene glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

(Supplementary Table 1).  Ct values normalized to GAPDH were expressed as delta-Cts 

(ΔCt).  ΔCt values were then normalized to Pre values, expressed as delta-delta Cts 

(ΔΔCt).  Values were then transformed out of the logarithmic scale using the formula: 

fold change = 2−∆∆Ct (Livak & Schmittgen, 2001).  Thus, mRNA values are expressed as 

a fold change from Pre (mean ±sem).  GAPDH expression was not different from Pre at 

any of the post-intervention time-points. 
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Table 1.  Antibody information 

 

Antibody Species Source Details Primary Secondary 

Anti-Pax7 Mouse DSHB Pax7 1:1 Alexa 594, 488 goat-anti mouse 1:500 

Anti- 

laminin 

Rabbit Abcam  ab11575 1:500 Alexa Fluor 488, 647 goat anti-rabbit, 

1:500 

Anti-MHCI Mouse DSHB A4.951 

Slow 

isoform 

1:1 Alexa Fluor 488 goat anti-mouse, 1:500 

Anti-CD31 Rabbit Abcam ab28364 1:30 Alexa Fluor 647 goat anti-rabbit, 1:500 

Anti-MyoD Mouse Dako 5.8A 1:50 goat anti-mouse biotinylated secondary 

antibody, 1:200; streptavidin-594 

fluorochrome, 1:250 

Table 1.  Detailed information on primary and secondary antibodies and dilutions used for 

immunofluorescent staining of the frozen muscle cross sections. 

 

Statistical analysis. Statistical analysis was performed using Sigma Stat 3.1.0 analysis 

software (Systat Software, Chicago, IL, USA).  

Baseline comparisons. Comparisons of participant demographics between the High CPFE 

and the Low CFPE groups are found in Table 2, and were performed via a Student’s t 

test. Baseline comparisons of muscle fibre type specific characteristics between the High 

CFPE and the Low CFPE group were performed using a two-way ANOVA (group x fibre 

type).  

Response to eccentric contractions. One-way repeated measures ANOVA were 

performed separately for each of the ‘Overall’ group, for the High CFPE group and for 

the Low CFPE group, with time (Pre, 6h, 24h and 72h and 96h) as a within group factor.  

These tests were performed to assess the following; the acute change in SC activity status 

(i.e., Pax7+/MyoD+ cells); the acute change in SC content (i.e., mixed muscle, type I 

and/or type II Pax7+ cells separately); the acute change in plasma IL-6 content; the acute 

change in plasma creatine kinase activity; the acute change in quadriceps muscle force 



Ph.D. Thesis – J. P. Nederveen; McMaster University - Kinesiology 

 85 

production and the acute change in MRF mRNA expression, following the bout of 

eccentric exercise induced muscle damage.  In these one-way repeated measures ANOVA 

design for the acute response, post-exercise time points were only compared with baseline 

(Pre) and Bonferonni corrections were applied to account for multiple comparisons.  

Comparing the High CFPE vs. Low CFPE group. A Student’s t test was used to 

determine the differences that existed between the High and Low CFPE at different time 

points.  Specifically, a Student’s t test was utilized to compare the change (i.e., ∆) from 

the Pre timepoint to the timepoint of interest (i.e, Pre vs 6h, Pre vs 24h, Pre vs 72h, and 

Pre vs 96h).  For correlations, Pearson’s correlation analyses were performed where 

appropriate between indices of muscle fibre capillarization and the SC response following 

eccentric exercise. Statistical significance was accepted at p < 0.05. All results were 

presented as means ± standard error of the mean (SEM). 

RESULTS 

Subject characteristics 

Overall: Complete subject characteristics are reported in Table 2.  

Low vs. High CFPE group: There were no differences in age or height between the 

groups (Table 2).  There was a significant difference in bodyweight (p<0.05, Table 2) and 

a trend for BMI (p = 0.06, Table 2) between the groups. Both the VO2max (mL/kg/min) 

and Wpeak (W) was significantly greater in the High as compared to the Low group 

(p<0.05; Table 2). There was no significant difference in force production prior to single 

bout eccentric exercise in the High (272.6 ± 8.8 N·m) compared to the Low (314.4 ± 13.3 

N·m) group (Table 2).  
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Table 2. Demographics and group characteristics 

Variable Overall (n=29) High CFPE Low CFPE 

    

Age (yrs) 22  1 22  1 21  0 

Height (cm) 179.2  1.3 176.8  1.1 179.5  0.9 

Weight (kg) 80.9  2.4 72.5  1.6* 83.9  2.3 

BMI (kg/m2) 25.1  0.6 23.2  0.5 26.0  0.6 

Force Production (N·m) 319.4  13.8 272.6  8.8 314.4  13.3 

VO2 Peak (mL/kg/min) 49.9  2.3 63.1  1.5* 40.5  1.4 

Peak Wattage (W) 339.2  11.8 385.3  8.9* 290.6  11.0 

    

*; significant effect for group.  Mean ± SEM. 

 

Indices of muscle damage following repeated eccentric contractions. 

Overall: Following eccentric contractions, force production (N·m) was significantly 

reduced at 6h (253 ± 15 N·m), 24h (233 ± 16 N·m), 72h (261± 18 N·m) and 96h (270 ± 

17 N·m), as compared to Pre (319 ± 14 N·m) (p<0.05; Supplementary Fig 1A). Following 

the eccentric contraction protocol, plasma creatine kinase activity was significantly 

increased at 24h (103.7 ±  8.2 mU/mL, p<0.05; Supplementary Fig 1C) compared to Pre 

(75.4 ±  6.1 mU/mL), and returned back to baseline at 72h (76.3 ±  6.7 mU/mL) and 96h 

(79.1 ±  6.6 mU/mL).  

High CFPE vs Low CFPE group: In the High group, force production was significantly 

reduced at 6h (211± 15 N·m), 24h (196 ± 17 N·m), 72h (230 ± 21 N·m) as compared to 

Pre (272 ± 15 N·m and was back at baseline levels again at 96h (241 ± 23 N·m) (p<0.05; 

Supplementary Fig 1B). In the Low group, force production was significantly reduced at 

6h (248 ± 29 N·m), 24h (215 ± 34 N·m), 72h (242 ± 37 N·m) and 96h (257 ± 32 N·m) as 

compared to Pre (314 ± 23 N·m) (p<0.05; Supplementary Fig 1B). In the High group, 
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plasma creatine kinase activity was significantly increased 24h (93.3 ±  13.8 mU/mL, 

p<0.05) following eccentric exercise, but was not significantly different at 72h (56.0 ±  

5.4 mU/mL) and 96h (66.4 ±  8.6 mU/mL) as compared to Pre (60.3 ±  8.4 mU/mL) 

(p<0.05; Supplementary Fig 1D). In the Low group, plasma creatine kinase activity was 

significantly increased 24h (107.9 ±  10.7 mU/mL, p<0.05) following eccentric exercise, 

but was not significantly different at 72h (92.9 ±  12.4 mU/mL) and 96h (91.1 ±  14.3 

mU/mL) as compared to Pre (88.4 ±  11.2 mU/mL) (p<0.05; Supplementary Fig 1D). 

Prior to the intervention, there were no significant differences in creatine kinase activity 

in the High compared to the Low group; there were no differences in creatine kinase 

activity changes following eccentric exercise.  

Skeletal muscle fibre characteristics  

Overall: Muscle fibre CSA was significantly greater in type II (7500 ± 355 um2) 

compared to type I fibres (6326 ± 205 um2, p<0.05). Muscle fibre perimeter was 

significantly greater in type II (326 ± 6 um) compared to type I fibres (306 ± 5 um, 

p<0.05). The number of myonuclei per fibre was not different in type II as compared to 

type I (3.7 ± 0.2 vs 3.6 ± 0.2 myonuclei/fibre, respectively). Myonuclear domain size was 

significantly greater in type II as compared to type I muscle fibres (2019 ± 88 vs 1805 ± 

53 um2, p<0.05, respectively). Muscle C/Fi (2.08 ± 0.1 vs. 1.94 ± 0.1 capillaries per 

fibre), CFPE index (6.86 ± 0.2 vs. 6.03 ± 0.23 capillaries per fibre ∙ 1000-1, and CD (655 

± 26 vs. 478 ± 29 capillaries/ mm2) was significantly greater in type I compared to type II 

muscle fibres, respectively (p<0.05). SC distance to nearest capillary was significantly 

greater in type II compared to type I muscle fibres (15.8 ± 0.7 vs 13.9 ± 0.7 um, 
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respectively, p<0.05) at baseline (Pre).  Total Pax7+ cell distance to nearest capillary at 

baseline was negatively correlated to mixed muscle CFPE index (r = -0.49, p<0.05) 

across all participants. Type II muscle fibre associated SC distance to nearest capillary at 

baseline was negatively correlated to type II fibre CFPE index (r = -0.51, p<0.05; Figure 

4D).  

High CFPE vs Low CFPE group: Type II muscle fibre CSA and perimeter were 

significantly greater compared with type I muscle fibre in both groups, with no difference 

between group (p<0.05; Table 3).  Interestingly, the proportion of type I muscle fibres 

was significantly higher in the High group compared with the Low group (p<0.05, Table 

3). Both type I and type II muscle fibre C/Fi, CFPE index, and CC were significantly 

higher in the High as compared to the Low group (p<0.05; Table 3). There were no 

significant differences (p>0.05) in type I or type II myonuclei per fibre and/or myonuclear 

domain size between groups.   

SC distance to nearest capillary across both type I and type II was significantly 

lower in the High group as compared to the Low group (p<0.05, Table 3).   
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Table 3. Muscle fibre capillarization and muscle characteristics 

  High CFPE Group Low CFPE Group 

CC    

 Type I 4.19 ± 0.23# 3.97 ± 0.29 

 Type II 4.53 ± 0.28# 2.31 ± 0.11 

C/Fi    

 Type I 2.41 ± 0.10# 1.66 ± 0.07 

 Type II 2.32 ± 0.11# 1.50 ± 0.06 

CFPE    

 Type I 7.97 ± 0.34*# 5.75 ± 0.17* 

 Type II 7.24 ± 0.35# 4.91 ± 0.17 

 

Fiber Type proportion (%)  

 Type I 56.0 ± 3.1# 33.9 ± 2.1 

 Type II 42.2 ± 3.3 65.8 ± 2.1# 

 

Muscle fiber size 

(μm2) 

  

 Type I 6185 ± 231 5937 ± 376 

 Type II 7121 ± 445* 6626 ± 568* 

 

Myonuclear domain (μm2)  

 Type I 1817 ± 109 1736 ± 85 

 Type II 1896 ± 157 1969 ± 104 

 

Myonuclei per fiber  

 Type I 3.5 ± 0.2 3.5 ± 0.5 

 Type II 3.9 ± 0.2 3.3 ± 0.2 

 

Muscle fiber 

perimeter  

  

 Type I 306 ± 5 293 ± 11 

 Type II 327 ± 8* 308 ± 12* 

 

Satellite cell distance to nearest capillary (μm)  

 Type I 12.1 ± 0.8# 13.9 ± 0.9 

 Type II 13.3 ± 0.9# 17.3 ± 0.9 

 

Satellite cell per 100 myofiber  

 Type I 11.6 ± 1.6 10.5 ± 1.9 

 Type II 11.8 ± 1.3 10.9 ± 1.4 
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*; significant effect within group for fiber type, #; significant effect for group.  Mean ± 

SEM. 

 

Mixed muscle SC response  

Overall: Following the eccentric contraction protocol, total mixed muscle Pax7+ cells/100 

myofibre tended to increase significantly at 6h (14.4 ± 1.1 cells/100 myofibre (p = 0.056), 

increased significantly at 24h (14.9 ± 1.1 cells/100 myofibre; p<0.05) and 72h (15.8 ± 1.0 

cells/100 myofibre; p<0.05) compared to Pre (11.8 ± 0.7 cells/100 myofibre, 

Supplementary Table 2). The change in total mixed muscle Pax7+ cells/100 myofibre 

between Pre and 24h (r = 0.39, p<0.05; Figure 1G) was positively correlated to mixed 

muscle CFPE index across all participants. The activation status of the SC pool was 

assessed by colocalizing SC with MyoD before and after the eccentric contraction 

protocol. Mixed muscle Pax7+/MyoD+ cells/100 myofibres were significantly elevated at 

6h (1.8 ± 0.3 cells/100 myofibre, p<0.05), 24h (2.2 ± 0.2 cells/100 myofibre, p<0.05), 72h 

(1.9 ± 0.4 cells/100 myofibre, p<0.05) and 96h (1.1 ± 0.2 cells/100 myofibre, p<0.05) as 

compared to Pre (0.4 ±  0.1; Figure 2F). The change in total mixed muscle MyoD+/Pax7+ 

cells/100 myofibre between Pre and 6h (r = 0.40, p<0.05; Figure 1G) and Pre and 72 (r = 

0.37, p<0.05; Figure 1H) was positively correlated to mixed muscle CFPE index across 

all participants.  

High vs. Low CFPE Group: Prior to the intervention, there were no differences in mixed 

muscle total Pax7+ cells/100 myofibre (p>0.05) between the High (11.0 ± 1.2 cells/100 

myofibre) and the Low (11.9 ± 1.3 cells/100 myofibre) group.  Compared to baseline, 

total mixed muscle Pax7+ cells/100 fibre were significantly increased at 6h (p<0.05); 24h 

(p<0.05) and 72h ( p<0.05) after the single bout of eccentric exercise in the High group 
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(Figure 1F, Supplementary Table 3).  In contrast, total mixed muscle Pax7+ cells/100 

myofibre was only significantly increased at 72h (p<0.05) during post-exercise recovery 

in the Low group compared to baseline (Figure 1F, Supplementary Table 3). There was a 

significantly greater increase in mixed muscle total Pax7+ cells/100 myofibres from Pre to 

6h (p<0.05); Pre to 24h (p<0.05) and a trend for Pre to 72h (p=0.052) following eccentric 

contractions in the High compared with the Low Group.  

Prior to the intervention, there were no differences in total MyoD+/Pax7+ cells/100 

myofibre in mixed muscle (p>0.05) between the High (0.3 ± 0.2 cells/100 myofibre) and 

the Low (0.2 ± 0.1 cells/100 myofibre) groups.  Mixed muscle Pax7+/MyoD+ cells/100 

myofibres were significantly higher in the High group at 6h (p<0.05), 24h (p<0.05), 72h 

(p<0.05), and 96h (p<0.05) as compared to Pre (Figure 2F, Supplementary Table 3). In 

the Low group, Pax7+/MyoD+ cells/100 myofibres in mixed muscle were only 

significantly elevated at 24h (p<0.05) as compared to Pre (Figure 2F, Supplementary 

Table 3) In comparing the Low and the High mixed muscle SC activation (Pax7+/MyoD+ 

cells) response to eccentric exercise, we observed that there was a significantly greater 

increase in the number of mixed muscle Pax7+/MyoD+ cells/100 myofibre from Pre to 6h, 

and from Pre to 72h post-exercise recovery in the High as compared to the Low group 

(p<0.05, Figure 2F).  
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FIGURE 1 

 

Fig. 1 Fibre type specific satellite cell staining with muscle capillaries. (A) Representative 

image of a MHCI/laminin/CD31/Pax7/DAPI stain of a muscle cross section. Channel 

views of (B) Merge (C) Pax7/DAPI (D) Pax7/CD31 (E) Pax7/MHCI/Laminin (F) 

Characterization of the expansion of the total mixed muscle satellite cell (SC) pool  

before and after 6h, 24h, 72h and 96h following eccentric contractions in the group with a 

High capillary to fibre exchange (CFPE) index and the group with Low CFPE index. *; 

Significantly different compared with Pre (p<0.05), bar indicates that effect of time is 

present for both groups. #; indicates a significantly greater increase with time High vs 

Low group (p<0.05). Data are expressed as mean ± sem. Relationship between the 

expansion of the total SC pool and mixed muscle CFPE following (G) ∆24h post-

eccentric exercise (r = 0.39, p<0.05) and (H) ∆72h-post exercise (r = 0.15, p>0.05) across 

all participants. 
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FIGURE 2 

 

Fig. 2 Mixed muscle staining of satellite cell (SC) activation with muscle capillaries. (A) 

Representative image of a CD31/Pax7/MyoD/DAPI stain of a muscle cross section). 

Channel view of (B) Pax7/DAPI (C) MyoD/DAPI (D) Pax7/CD31 (E) MyoD/CD31 (F) 

Characterization of the activation status of the SC pool before and after 6h, 24h, 72h and 

96h following eccentric contractions in the group with a High capillary to fibre exchange 

(CFPE) index and the group with Low CFPE index. *; Significantly different compared 

with Pre (p<0.05), bar indicates that effect of time is present for both High and Low 

group. #; indicates a significantly greater increase with time High vs Low group (p<0.05). 

Data are expressed as mean ± sem. Relationship between the activation of the SC pool 

(∆MyoD+/Pax7+ cells) and mixed muscle CFPE following (G) ∆6h post-eccentric exercise 

(r = 0.40, p<0.05) and (H) ∆72h-post exercise (r = 0.37, p<0.05) across all participants.  
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Type I and type II muscle fibre SC response  

Overall: Prior to the intervention, there was no significant difference between type I-

associated (11.5 ± 0.9 cells/100 myofibre) and type II-associated Pax7+ cells/100 

myofibres (11.8 ± 1.0 cells/100 myofibre) across all participants (p>0.05, Supplementary 

Table 2). Type I-associated Pax7+ cells/100 myofibres remained unchanged at 6h, 24h, 

96h and  trended towards a significant increase at 72h (p=0.09), as compared to Pre 

(Supplementary Table 2).         

 Type II-associated Pax7+ cells/100 myofibres remained unchanged at 6h and 24h 

but increased significantly at 72h (p<0.05), returning to basal levels at 96h as compared to 

Pre  (Figure 3A).           

 The change in type II-associated Pax7+ cells/100 myofibre between Pre and 6h (r 

= 0.45, p<0.05; Figure 3B) and Pre and 24h (r = 0.42, p<0.05; Figure 3C) following 

eccentric exercise was positively correlated with type II CFPE index across all 

participants.           

 The change in type II associated SC Pax7+ cells/100 myofibre from Pre to 24h (r = 

-0.37, p<0.05; Figure 4B) following eccentric exercise was negatively correlated to type 

II SC distance to nearest capillary at baseline across all participants. There were no 

relationships between type I associated SC and type I SC distance to nearest capillary at 

baseline across all participants. 

High vs. Low CFPE Group: Prior to the intervention, there were no differences in type I-

associated Pax7+ cells/100 myofibre or type II-associated Pax7+ cells/100 myofibre 
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between Low and High groups. (p>0.05; Table 3). Type I Pax7+ cells/100 myofibre was 

not significantly changed at 6h, 24h, 72h, or 96h as following eccentric contractions 

compared to Pre in the High (p>0.05) or Low group (p>0.05, Supplementary Table 3). In 

comparing the Low group to the High group following eccentric exercise, there were no 

differences between Type I Pax7+/100 myofibres between Pre and any post-exercise time 

point. Type II Pax7+ cells/100 myofibre were significantly increased at 6h (p<0.05) 24h 

(p<0.05) and 72h (p<0.05) following eccentric contractions in the High group, as 

compared to Pre (Figure 3A, Supplementary Table 3).  

In the Low group, Type II Pax7+ cells/100 fibre was only significantly elevated at 

72h (p<0.05), as compared to Pre (Figure 3A, Supplementary Table 3). In comparing the 

Low and the High muscle fibre type specific SC response to eccentric exercise, we 

observed that there was a greater change in the number of Type II Pax7+ cells/100 

myofibres from Pre to 6h, and from Pre to 24h post-exercise in the High group as 

compared to the Low (p<0.05, Figure 3A, Supplementary Table 3).  

SC distance to nearest capillary response following eccentric  

Overall: SC distance to nearest capillary in mixed muscle fibres and/or type I/II-

associated SC did not change in response to the single bout of eccentric exercise. 

High vs. Low CFPE Group: Type I SC distance to nearest capillary did not change 

(p>0.05) following eccentric contractions in either the High (Pre: 12.2 ± 0.8 ; 6h: 13.0 ± 

0.9; 24h: 12.4 ± 0.8; 72h: 12.6 ± 0.7; 96h: 11.9 ± 1.2 μm) or the Low group (Pre: 13.9 ± 

0.9; 6h: 12.1 ± 0.7; 24h: 17.0 ± 1.1; 72h: 17.5 ± 1.8;  96h: 15.0 ± 0.9 μm) as compared to 
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FIGURE 3 

 

Fig. 3 Characterization of the expansion of type II fibre-associated satellite cell (SC) pool 

following eccentric contractions before and after 6h, 24h, 72h and 96h following 

eccentric contractions in the group with a High capillary to fibre exchange (CFPE) index 

and the group with Low CFPE index. (A) *; Significantly different compared with  Pre 

(p<0.05), bar indicates that effect of time is present for both groups. #; indicates a 

significantly greater increase with time High vs Low group (p<0.05). Data are expressed 

as mean ± sem. Relationship between the expansion of the type II SC pool and type II 

CFPE following (B) ∆6h post-eccentric exercise (r = 0.45, p<0.05) and (C) ∆24h-post 

exercise (r = 0.42, p <0.05) across all participants.  

 

 

baseline values.  Type II SC distance to nearest capillary did not change (p>0.05) 

following eccentric contractions in either the High (Pre: 13.3 ± 0.8 ; 6h: 13.1 ± 1.3; 24h: 

15.1 ± 1.2; 72h: 16.0 ± 1.0; 96h: 12.5 ± 1.3 μm) or the Low group (Pre: 17.3 ± 0.9; 6h: 

17.0 ± 1.0; 24h: 16.9 ± 0.8; 72h: 20.0 ± 1.5;  96h: 16.8 ± 1.1 μm) as compared to baseline 

values.  
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 FIGURE 4 

 

Fig. 4 Relationship between the expansion of the satellite cell (SC) pool from Pre to 24h 

post-eccentric exercise in a fibre type specific manner and fibre type specific CFPE for 

(A) type I-associated SC (r = 0.05, p = 0.79) and (B) type II-associated SC (r = -0.39, 

p<0.05) across all participants. Relationship between fibre type specific Capillary to fibre 

exchange (CFPE) index and distance of Pax7+ SC to nearest capillary following eccentric 

exercise prior to eccentric damage for (C) type I-associated SC (r = -0.22, p = 0.15) and 

(D) type II-associated SC (r = -0.51, p<0.05) across all participants. 

 

 

Myogenic regulatory factor response  

Overall: MyoD, MRF4 and Myogenin mRNA expression were significantly increased at 

6h (2.2-, 1.8- and 4.4-fold change, respectively), 24h (1.4-, 2.1- and 4.0-fold change, 
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respectively), 72h (1.6-, 1.6-, and 2.0-fold change, respectively) and 96h (1.4-, 2.3- and 

1.9-fold change, respectively) after the single bout of eccentric exercise. Myf5 mRNA 

expression was only significantly increased at 24h (1.6-fold change), 72h (1.6-fold 

change) and 96h (1.9-fold change) following exercise. 

High vs. Low CFPE Group: In comparing the Low and the High myogenic gene mRNA 

expression in response to eccentric exercise, we observed that there was a greater change 

in MyoD mRNA expression from Pre to 72h in the High group as compared to the Low 

group (p<0.05, Supplementary Table 4). We also observed that there was a trend for a 

smaller increase in Myogenin mRNA gene expression from Pre to 24h, in the High group 

as compared to the Low (p=0.055). 

Cytokine response to repeated eccentric contractions 

Overall: Plasma IL-6 concentrations were significantly increased at 6h (2.2 ± 0.2 pg/mL, 

p<0.05, Supplementary Figure 1E) and 24h (1.6 ± 0.1 pg/mL, p<0.05) but at 72h (1.2 ± 

0.1 pg/mL) was not different anymore from Pre (1.1 ± 0.1 pg/mL). The change in plasma 

IL-6 between Pre and 6h (r = 0.42, p<0.05, Supplementary Figure 2A), as well as Pre and 

72h (r = -0.42, p<0.05) following eccentric contractions was negatively correlated to 

mixed muscle CFPE index across all participants.  

High CFPE vs Low CFPE group: Prior to the intervention, there were no significant 

differences in plasma IL-6 concentrations in the High compared to the Low group. In the 

High group, plasma IL-6 concentration was significantly increased at 6h (1.9 ± 0.3 

pg/mL, p<0.05) and 24h (1.8 ± 0.2 pg/mL, p<0.05) but was not significantly different at 

72h (1.2 ± 0.2 pg/mL) as compared to Pre (1.2 ± 0.2 pg/mL). In the Low group, plasma 
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IL-6 concentration was significantly increased at 6h (2.7 ± 0.2 pg/mL, p<0.05) and 24h 

(1.7 ± 0.1 pg/mL, p<0.05) but was not significantly different at 72h (1.3 ± 0.1 pg/mL) as 

compared to Pre (1.2 ± 0.2 pg/mL). In comparing the IL-6 to eccentric exercise in the 

High CFPE as compared to the Low CFPE group, we observed that there was a greater 

change in plasma IL-6 concentrations from Pre to 6h in the Low group as compared to the 

High group (Supplementary Figure 2B; p<0.05). 

DISCUSSION: 

In the present study, we observed that there was an enhanced expansion and 

activation of the SC pool in individuals with high as compared to low capacity for muscle 

perfusion following eccentric contractions.  Therefore muscle fibre capillarization may be 

a critical factor for the activation and expansion of the SC pool in response to muscle 

damage in humans.   

 SC are indispensable for the repair and/or regeneration of damaged muscle in 

rodents (Lepper et al., 2011; McCarthy et al., 2011; Sambasivan et al., 2011). In humans, 

a single bout of high-velocity eccentric contractions results in increased plasma creatine 

kinase, reduced force production and myofibrillar ultrastructual damage (Beaton et al., 

2002; Clarkson & Hubal, 2002; Paulsen et al., 2012).  Consequently, eccentric 

contractions are an effective tool for expansion of the muscle SC pool (Cermak et al., 

2013; Crameri et al., 2004; Dreyer et al., 2006; McKay et al., 2009; McKay et al., 2008) 

though the degree of expansion is dependent on many factors (Snijders et al., 2015).  

However, factors that determine the degree of activation and expansion of the SC pool are 

not well understood. In agreement with previous literature, we report that there is an 
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expansion in the SC pool (as determined by total Pax7+ cells/100 myofibre) and an 

increase in SC pool activation (as determined by MyoD+/Pax7+ cells/100 myofibre) in the 

days following a single bout of eccentric contractions. To better understand factors that 

determine the degree of activation and expansion of the SC pool we examined whether 

muscle fibre capillarization may be a determining factor following an acute bout of 

eccentric contractions in young men. Skeletal muscle capillarization and perfusion is 

necessary for the delivery of oxygen, growth factors and macronutrients to muscle fibres 

and resident cell populations alike. We and others have previously already reported an 

anatomical relationship between muscle SC and capillaries (Christov et al., 2007; 

Nederveen et al., 2016; Nederveen et al., 2017), suggesting that the proximity of SC to 

their nearest capillary may be a determining factor in their activation status (Christov et 

al., 2007; Nederveen et al., 2016). In the present study, there was a positive correlation 

between the expansion of the total SC pool 24h post-eccentric exercise and mixed muscle 

CFPE, an index of muscle perfusion, suggesting that the greatest SC pool size expansion 

was experienced by subjects with the highest capacity for muscle fibre perfusion. When 

participants were retrospectively divided based on their mixed muscle CFPE index into a 

High CFPE and Low CFPE group, we observed that there was a greater expansion of the 

total Pax7+ SC pool in the group with high CFPE (High; CFPE index  7.6 ± 1.0 capillaries 

· 1000 μm-1) as compared to low CFPE (Low; CFPE index 5.2 ± 0.5 capillaries · 1000 

μm-1). This observation was made at 6h (~48% vs. ~1% Pax7+ cells/100 myofibre, 

respectively) and 24h (~73% vs. ~10%  Pax7+ cells/100 myofibre, respectively) post-

eccentric contractions. Work by Christov and colleagues (2007) supports these findings as 
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they observed a correlation between fibre capillarization and SC content in human deltoid 

muscle in the resting state, regardless of muscle fibre type. Furthermore, we observed that 

the High group had a greater activation of the SC pool at 6h (~750% vs. ~450% 

MyoD+/Pax7+ cells/100 myofibre, respectively) and 72h (~750% vs. ~300% ± 

MyoD+/Pax7+ cells/100 myofibre, respectively). Interestingly, although the degree of 

muscle damage was similar between groups (assessed by increases creatine kinase 

activity, reduction in force production), we observed that the force production returned to 

baseline again at 96h post-exercise recovery in the High group, whereas this was not the 

case in the Low group. Together with the greater activation and expansion of the SC pool 

size observed in the High group during post-exercise recovery these data indicate that 

individuals with high CFPE index have an accelerated muscle fibre recovery response 

following an acute bout of damaging exercise. 

In the present study we observed that participants in the High group had a 

significantly greater percentage of type I muscle fibres as compared with the Low group 

(~56% vs ~34% Type I fibres, respectively). Type I  muscle fibres are more oxidative,  

associated with more capillaries and/or are perfused to a greater degree than their type II 

counterparts. Considering that muscle fibre capillaries are shared between the mosaic of 

fibre types in humans, a greater percentage of type I muscle fibres may result in enhanced 

perfusion of neighboring type II muscle fibres. A greater association with shared muscle 

fibre capillaries amongst the muscle fibre type mosaic may contribute to not only a 

greater type II muscle fibre perfusion, but also contribute to a closer proximity between 

type II Pax7+ SC and the nearest capillary observed in the High group. Consistent with 
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this notion, we observed a negative correlation between type II muscle fibre CFPE index 

and type II Pax7+ SC distance to their nearest capillary. Considering that SC distance to 

nearest capillary in type II muscle fibres was negatively correlated with a greater change 

in type II Pax7+ cells/100 myofibre from Pre to 24h following eccentric exercise, we 

propose that the link between a greater SC activation/expansion in response to muscle 

fibre damage may be the reduced spatial proximity to microvascular capillaries. In line 

with this, we have previously observed that type II SC are located at a further distance 

from capillaries in older men as compared to their young counterparts (Nederveen 

JCSM). Older men typically exhibit an impaired expansion and/or activation response to 

exercise (McKay et al., 2012; Snijders et al., 2014), as well as lower basal SC content 

(Verdijk 2007) concomitant with a loss of muscle capillarization (Proctor 2005). Taken 

together, these data support a relationship between muscle capillarization and functional 

SC in humans.  

We also observed that enhanced capacity for muscle perfusion (i.e., muscle CFPE) 

or a reduction in the distance of a SC to its nearest capillary was associated with an 

enhanced activation and expansion of the SC pool in response to eccentric contraction-

induced muscle fibre damage in mixed, type I and type II muscle fibres.  Previously, we 

have reported that following resistance training, there was an increase in muscle 

capillarization and also an enhanced activation of SC in response to an acute bout of 

resistance exercise (Nederveen et al., 2017).  Taken together, this suggests that muscle 

capillarization and the ability of the SC pool to activate and expand following 

exercise/damage are closely linked.  Indeed, it is now well established that activated SC 
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are found at closer proximity to capillaries than their quiescent counterparts (Chazaud et 

al., 2003; Christov et al., 2007; Nederveen et al., 2016).  However, the specific cues for 

induction of the myogenic program in response to muscle fibre damage remain to be 

elucidated.  The process of SC activation, proliferation and/or differentiation is regulated 

by a multitude of cytokines and growth factors (e.g., IL-6, IGF-1, myostatin, HGF) (Kadi 

et al., 2005) considering that CFPE index is regarded as a proxy measure of 

microvascular perfusion (Hepple & Mathieu-Costello, 2001; Weber et al., 2006), 

variations in CPFE index could modify delivery of circulating nutrients and/or growth 

factors and presumably change the local environment of a SC post 

exercise/damage(Brack & Rando, 2007; Conboy et al., 2005). In this capacity, few 

growth factors have been as extensively investigated as the cytokine IL-6, a well 

characterized member of the interleukin family.  IL-6 is known to respond to various 

forms of exercise (Pedersen & Febbraio, 2008), but importantly known to play a role in 

SC function (McKay et al., 2013; Toth et al., 2011).  Furthermore, elevations of IL-6 

concentration has been shown to be associated specifically with SC proliferation in 

response to muscle fibre injury (McKay et al., 2013; Pedersen & Febbraio, 2008; Toth et 

al., 2011).  In the current study, we observed that individuals with a lower mixed muscle 

CFPE index had a greater increase in plasma concentration of IL-6 from Pre to 6h 

following eccentric exercise.  In line with this, we observe that the Low as compared to 

the High group had a greater change in circulating IL-6 from the Pre to 6h (increase of 

~163% vs. ~66%, respectively).  Interestingly, the greater plasma concentration of IL-6 

observed in the Low group occurred simultaneously with a lesser activation of muscle SC 
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(i.e., MyoD+/Pax7+ cells/100 myofibre) over this same time period.  Diminished 

activation of SC in the Low group despite an elevated systemic plasma IL-6 response in 

comparison to the High group suggests that there may be other mechanisms that regulate 

the impact of systemic IL-6 concentration upon SC activation and/or proliferation.  

Previous work has established that the presence of IL-6 can reduce endothelial signalling 

in some physiological situations (Yuen et al., 2009).  Increased plasma IL-6 

concentrations may have implications for an increased local SC niche concentration, and 

may therefore interfere with the observed cellular cross-talk between SC and endothelial 

cells that has been observed (Chazaud et al., 2003; Ochoa et al., 2007).  Previous work 

has suggested that IL-6 is produced by various resident cell types such as macrophages 

(Zhang et al., 2013), fibroblasts (Joe et al., 2010) or endothelial cells (Sironi et al., 1989; 

Yan et al., 1995), the exercising muscle (Pedersen et al., 2008, Steensberg et al., 2000) as 

well as SC themselves (Kami & Senba, 2002).  Future work should continue to address 

the paracrine and autocrine functions of increased IL-6 within the local SC niche.    

 Given the positive relationship between muscle capillarization and the activation 

and expansion of the SC pool we conclude that the SC response is modulated by cross-

talk with endothelial cells within the microvasculature, exposure to circulating signals, or 

a combination of both.  In the future, attention should be focussed on study populations 

who are compromised in terms of relatively reduced muscle capillarization (Coggan et 

al., 1992; Proctor et al., 1995), an impaired SC content at rest and in response to exercise 

(McKay et al., 2012; Snijders et al., 2014) such as those factors found commonly in 

elderly adults.  These future studies may provide insight into whether the blunted post-
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exercise SC response in elderly individuals can be improved with increases in muscle 

fibre capillarization.  In conclusion, the present study shows that skeletal muscle fibre 

capillarization is a major contributing factor to muscle SC activation and pool size 

expansion, thereby accelerating the muscle repair response, following eccentric 

contraction induced muscle damage in healthy young men. 
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SUPPLEMENTARY FIGURES 

 

Supplementary Figure 1 

 

Sup.1 (A) Characterization of the force production (nm) response following eccentric 

contractions in the overall group. *; Significantly different compared with Pre (p<0.05) 

(B) in the group with a high capillary to fibre exchange (CFPE) index and the group with 

low CFPE index. *; Significantly different compared with Pre in the Low CFPE group 

(p<0.05), bar indicates that effect of time is present for both groups. (C) Characterization 

of the creatine kinase activity (CKA; mU/mL) response following eccentric contractions 

in the overall group *; Significantly different compared with Pre (p<0.05) (D) in the 

group with a high capillary to fibre exchange (CFPE) index and the group with low CFPE 

index. . Bar indicates significantly different compared with Pre (p<0.05), present for both 

group. 
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Supplementary Figure 2 

 

Sup.2 (A) Relationship between the change IL-6 concentrations (expressed as a 

percentage) from Pre to 6h post-eccentric exercise and mixed muscle CFPE (r = -0.42, 

p<0.05) across all participants. (B) Characterization of the IL-6 (pg/mL) response 

following eccentric contractions in the overall group *; significantly different compared 

with Pre (p<0.05) (C) Relationship between the change IL-6 concentrations (expressed as 

a percentage) from Pre to 72h post-eccentric exercise and mixed muscle CFPE (r = -0.43, 

p<0.05) across all participants. (D) Characterization of the IL-6 response (expressed as a 

percentage) in the group with a high capillary to fibre exchange (CFPE) index and the 

group with Low CFPE index. Bar indicates significantly different compared with Pre 

(p<0.05), present for both group. #; indicates a significantly greater change with time 

High as compared to the Low CFPE group (p<0.05). 
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SUPPLEMENTARY TABLES 

 

Supplementary Table 1. Primer sequences for quantitative real-time PCR 

 

Gene 

Name 

Forward Sequence (5′-3′)  Reverse Sequence (5′-3′) 

 

Myf5 

 

5′ - ATGGACGTGATGGATGGCTG -3′ 

 

GCGGCACAAACTCGTCCCCAA 

MyoD 5′- GGTCCCTCGCGCCCAAAAGAT-3′ CAGTTCTCCCGCCTCTCCTAC 

MRF4 5′ - CCCCTTCAGCTACAGACCCAA-3′ CCCCCTGGAATGATCGGAAAC 

Myogenin 5′ -CAGTGCACTGGAGTTCAGCG-3′ TTCATCTGGGAAGGCCACAGA 

GAPDH 5′ -CCTCCTGCACCACCAACTGCTT-3′ GAGGGGCCATCCACAGTCTTCT 

   

Supplementary Table 1. MyoD, myogenic determination factor; Myf5, myogenic factor-5; 

MRF4, myogenic regulatory factor-4; GAPDH, Glyceraldehyde 3-phosphate 

dehydrogenase 

 

 

Supplementary Table 2. Satellite cell response following repeated eccentric 

contractions across all participants (n=29) 

     

Time Total Muscle 

Pax7+ SC (per 

100 fibre) 

Total Muscle 

Activated SC 

(MyoD+/Pax7+) 

(per 100 fibre) 

Type I Pax7+ 

SC (per 100 

fibre) 

Type II Pax7+ 

SC (per 100 

fibre) 

 

Pre 11.8 ± 0.7 0.4 ± 0.1 11.5 ± 0.9 12.1 ± 1.1 

6h 14.4 ± 1.0 1.8 ± 0.3* 14.0 ± 1.4 14.7 ± 1.2 

24h 14.9 ± 1.1* 2.2 ± 0.2* 14.2 ± 1.1 15.6 ± 1.6 

72h 15.8 ± 1.0* 1.9 ± 0.4* 14.2 ± 0.9 17.4 ± 1.5* 

96h 11.4 ± 0.8 1.1 ± 0.2* 10.4 ± 0.9 12.4 ± 1.3 

     

*; significant as compared to Pre. Mean ± SEM. 
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Supplementary Table 3. Satellite cell response following repeated eccentric 

contractions in the High CFPE (n=10) and Low CFPE (n=10) groups 

      

Time Group Total 

Muscle 

Pax7+ SC 

(per 100 

fibre) 

Total Muscle 

Activated SC 

(MyoD+/Pax7+) 

(per 100 fibre) 

Type I 

Pax7+ SC 

(per 100 

fibre) 

Type II 

Pax7+ SC 

(per 100 

fibre) 

 

Pre 

 

    

 High 

CFPE 11.0 ± 1.2 0.3 ± 0.2 11.6 ± 1.6 10.5 ± 1.9 

 Low 

CFPE 11.9 ± 1.3 0.2 ± 0.1 11.8 ± 1.3 10.9 ± 1.3 

6h      

 High 

CFPE 16.3 ± 1.3*# 2.6 ± 0.6*# 13.9 ± 1.7 18.8 ± 2.4*# 

 Low 

CFPE 11.9 ± 1.7 1.1 ± 0.4 12.3 ± 2.2 11.4 ± 1.3 

24h      

 High 

CFPE 19.1 ± 2.3*# 2.3 ± 0.4* 17.7 ± 2.1 20.6 ± 3.5*# 

 Low 

CFPE 12.8 ± 1.6 1.9 ± 0.5* 12.7 ± 1.5 12.9 ± 1.3 

72h      

 High 

CFPE 17.3 ± 2.0* 2.6 ± 0.6*# 14.0 ± 1.3 20.5 ± 2.7* 

 Low 

CFPE 15.6 ± 1.5* 0.8 ± 0.2 15.6 ± 1.9 14.4 ± 1.2* 

96h      

 High 

CFPE 11.4 ± 0.8 1.1 ± 0.2* 9.5 ± 1.5 13.2 ± 2.3 

 Low 

CFPE 9.6 ± 1.2 0.6 ± 0.2 9.1 ± 1.3 10.2 ± 2.0 

      

Abbreviations : CFPE; capillary-to-fibre perimeter exchange (CFPE) index . *; significant 

as compared to Pre. #; significantly greater increase from Pre compared to Low. Mean ± 

SEM. 
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Supplementary Table 4. Myogenic regulatory factor mRNA expression following 

eccentric contractions in the High CFPE (n=10) and Low CFPE (n=10) Groups 

 

  Time 

      

Gene Group 6h 24h 72h 96h 

 

MyoD 

     

 High CFPE 2.4* 1.5* 2.1* 1.6* 

 Low CFPE 2.4* 1.2 1.4* 1.9* 

Myf5      

 High CFPE 1.1 1.4 1.4* 1.8* 

 Low CFPE 1.1 2.1* 1.9* 2.7* 

MRF4      

 High CFPE 2.1* 1.9* 1.8* 1.9* 

 Low CFPE 2.4* 3.1* 1.8* 3.2* 

Myogenin      

 High CFPE 4.5* 2.0* 2.1* 2.2* 

 Low CFPE 4.5* 7.9* 2.1* 2.5* 

      

Values are expressed as fold change versus Pre. Abbreviations: MyoD, myogenic 

determination factor; Myf5, myogenic factor-5; MRF4, myogenic regulatory factor-4. *; 

significant versus Pre, within Group. 
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5 INTRODUCTION 

This thesis provides evidence of a relationship between skeletal muscle capillarization 

and the SC response to stimuli.  We first sought to determine the spatial relationship 

between muscle SC and muscle capillaries in young and older men.  We demonstrated, 

for the first time, that SC are located at a closer proximity to capillaries in younger men as 

compared to their older counterparts.  This finding appeared primarily driven by a greater 

distance between capillaries and type II fibre-associated SC in older men. Furthermore, 

quiescent SC are located significantly further away from capillaries than active SC 

following a single bout of exercise (Chapter 2).  We then demonstrated that a 16 wk 

progressive RT program resulted in enhanced activation of SC following a single bout of 

resistance exercise.  This enhanced activation of SC with training was accompanied by 

increases in muscle fibre capillarization (Chapter 3).  Furthermore, we report that muscle 

capillarization in healthy young men appeared to be related to a greater activation and/or 

expansion of the SC pool in response to eccentric exercise-induced muscle damage 

(Chapter 4). Taken together, this thesis demonstrates that muscle capillarization may be 

related to the SC response following acute resistance or exercise-induced injury, and may 

be implicated in adaptation to RT.  Furthermore, the spatial relationship between muscle 

capillaries and SC appears to be altered with aging.  

5.1 SIGNIFICANCE OF THE STUDIES 

The activation, proliferation and/or expansion of the SC pool are central events in 

post-exercise recovery, the maintenance of muscle mass and the acute repair process in 

skeletal muscle.  



Ph.D. Thesis – J. P. Nederveen; McMaster University - Kinesiology 

 118 

Collectively, the studies highlight three novel contributions to the literature: 

i) There is a greater spatial distance between SC and capillaries in OM as 

compared to YM in type II fibres, and this represents a potential mechanism 

underlying age-related SC dysfunction and loss of muscle mass in aging. 

ii) Following long term RT, there is enhanced SC activation in response to a 

single bout of resistance exercise. 

iii) Muscle capillarization appears to be positively related to SC pool activation 

and expansion, concomitant with an accelerated strength recovery, following 

muscle damage.  

SC-capillary distance as a potential mechanism of age-related SC dysfunction  

A loss of skeletal muscle SC content and/or function has been implicated in the 

development of sarcopenia, characterized by loss of muscle size and strength with aging, 

predominately in type II muscle fibres.  SC play a central role in muscle fibre 

maintenance and plasticity (65) as they are the only established source of new myonuclei 

(40). Therefore, the loss of SC content and function observed with aging may be 

responsible, at least in part, for the loss of type II muscle fibre size (46, 50, 72, 73).  We 

observed a lower number of type II associated SC in OM as compared to YM, which is 

validated by previous work (37, 46, 73).  Given that skeletal muscle tissue perfusion is 

critical for sustaining muscle mass, as it is the means of delivering oxygen, growth factors 

and nutrients to the muscle, the loss of muscle perfusion may represent a mechanism for 

impaired SC function and subsequent loss of muscle size with aging.  Age-related 

alterations in blood flow delivery have been attributed to chronic vasoconstriction (12), 
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loss of endothelial wall functionality (74) muscle capillarization (10, 57) and perfusion 

(59). Capillarization appears to decline progressively with age, with a reduction primarily 

observed in type II muscle fibres (10, 22, 25, 54). Therefore, it has been hypothesized that 

the reduction in type II muscle fibre size may be related to the reduction in type II 

associated SC and the reduction in type II fibre capillary content observed with advancing 

age.  In Chapter 2, we reported that there is both a loss of capillarization (C/Fi) and 

muscle perfusion (CPFE; (31)) with aging.  We observed that type II muscle fibre SC are 

located at a greater distance to their nearest capillary in older as compared to young 

adults.  The increased distance between muscle capillaries and SC, paired with the loss of 

muscle perfusion, may translate to an increased diffusion distance of circulating factors 

and/or factors secreted directly from the endothelial cells associated with the capillaries. 

Ultimately, these changes may be an important factor in age-related impaired recovery of 

skeletal muscle following exercise (13, 45, 46, 66).  In Chapter 2, we also reported that 

activated SC are in closer proximity to capillaries as compared to their quiescent 

counterparts, supporting previous work (9).  Older individuals have demonstrated a 

blunted SC activation following acute exercise (46, 66).  The greater distance between SC 

and capillaries observed in OM may serve as a mechanism for this blunted response.  

Recently, Snijders and colleagues (64) reported that elderly men with higher 

baseline capacity for muscle perfusion in type II fibres demonstrated greater muscle 

hypertrophy and a greater increase in the basal SC pool following resistance training.  In 

light of these findings, it stands to reason that a diminished muscle capillarization, 

perfusion and/or greater SC-to-capillary distance may be linked to not only a fibre-type 
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specific loss of muscle mass but also SC content. Interestingly, SC loss has been observed 

to be proportionate to a reduction in microvasculature in humans (9, 14).  The data 

presented in this thesis represents an addition to a growing body of evidence to suggest 

that a spatial relationship between muscle SC and capillaries exists, and we hypothesize 

that capillarization is a critical factor for SC function.  

Enhanced SC activation following long term RT in young men 

 It has been well-established that chronic resistance exercise induces muscle 

remodeling (i.e., hypertrophy) and a concomitant increase in the basal SC pool (65).  

Previous work has shown that a single bout of resistance exercise (65) leads to expansion 

of the SC pool by ~24h, with a peak typically occurring 72h post-exercise (2, 66).  Over 

time, these discrete responses to each training bout contribute to the change in phenotype 

observed in skeletal muscle with training. However, prior to this thesis, little work had 

attempted to compare the acute SC response to an exercise stimulus in an untrained 

versus trained state. In Chapter 3, we  observed an enhanced activation of SC in response 

to a single bout of resistance exercise following chronic training, with a greater number of 

activated (i.e. MyoD+/Pax7+ SC) SC observed 24h post-exercise following 16 wk of RT 

as compared to the untrained state.  Consistent with this observation, we observed an 

increase in MyoD gene expression (~1.4 fold from Pre) 24h post exercise following RT 

as compared to no change in the untrained state.  The relationship between skeletal 

muscle capillarization and SC may play an important role in the activation of SC during 

post-exercise recovery and subsequent muscle fibre adaptation, and therefore we 

examined changes in muscle fibre capillarization.  While RT has been shown to lead to 
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increases in muscle fibre capillarization in healthy young men (24, 29, 41), our findings 

that altered activation of the SC pool was accompanied by increased capillarization is 

novel.  We also observed that the temporal-spatial relationship of both quiescent and 

activated SC in relation to the nearest capillary was changed in response to a single bout 

of exercise 24h following 16 wk RT.  Prior to exercise in both the pre-trained and post-

trained state, active SC were located in closer proximity than quiescent SC. In the pre-

trained condition, this relationship appeared to be conserved until 72h post-exercise, 

during which time the distance between capillaries and both quiescent and active SC were 

not different.  In the post-trained condition, the distance between active and quiescent SC 

was no longer different at the 24h post-exercise period. We speculate that this may be 

due, in part, to circulating growth factors either delivered via muscle capillaries or 

released from capillary associated endothelial cells. In turn, this may cause a more rapid 

activation of SC closer to capillaries, while those at a greater distance (and thus a 

diminished exposure to these factors) remain quiescent. These small changes may be 

indicative of an adaptive response of the spatial relationship between SC and capillaries.  

Muscle capillarization influences expansion of the SC pool following damage 

Using a model of muscle damage (i.e., eccentric contractions), in Chapter 4, we 

were able to expand our knowledge of the relationship between capillaries and SC 

activation during muscle repair. In order to induce ultra-structural damage, we used a 

single bout of muscle-lengthening contractions.  A significant increase in serum CK 

levels and a dramatic reduction in force production indicated that we successfully induced 

myofibrillar damage in the vastus lateralis (1, 21).  We recruited healthy young men with 
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a broad spectrum of muscle capillary content and perfusion, to examine the amplitude of 

the SC response to muscle damage in relation to muscle capillarization. It has been shown 

that SC pool size expands substantially following a single bout of eccentric exercise (13, 

16, 38), particularly in SC associated with type II fibres (6, 21).  In Chapter 4, we 

reported that skeletal muscle capillarization is a major factor contributing to muscle 

repair, as individuals with higher muscle perfusion had a greater SC pool activation and 

expansion following muscle damage.  Furthermore, these individuals with a higher index 

of muscle perfusion as compared to those with a lower index also had an accelerated 

muscle force recovery following damage, suggesting that there is a functional 

improvement in muscle repair as well.  We also observed that SC resided closer to 

capillaries in individuals with a higher capacity for muscle perfusion as compared to 

those with a lower capacity for muscle perfusion, suggesting that this relationship may be 

important for SC function.  Taken together, the primary and novel finding of the current 

thesis is that there is an important relationship between muscle capillarization and the SC 

response to damaging exercise stimuli. Enhanced SC activation following stimuli was 

observed following increased capillarization (i.e., with training), whereas the age-related 

impaired SC activation was accompanied by a decrease in capillarization (i.e., with 

aging). Therefore, these data represent a growing understanding of the relationship 

between muscle capillaries and muscle SC in the context of skeletal muscle adaptation, 

repair, and aging.  

5.2 POTENTIAL IMPACT OF MUSCLE CAPILLARIES ON SATELLITE 

CELL FUNCTION  
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Like other endocrine organs, skeletal muscle can produce and release various 

cytokines that may lead to paracrine-, autocrine-, or endocrine-mediated activation of SC 

(55, 67, 68).  In Chapter 1, cytokines and/or growth factors that may play a role in 

regulating SC function (e.g., IL-6, IGF-1, Myostatin, HGF) were discussed. In Chapter 4, 

we examined changes in IL-6 concentration following exercise-induced muscle damage, 

as an elevation in IL-6 concentration has been shown to be associated with SC 

proliferation in response to muscle fibre injury (17, 43, 45, 55, 70).  While these growth 

factors have been shown to mediate the myogenic process, muscle capillaries may be, in 

part, responsible for the production or delivery of these factors to the muscle and SC 

niche (outlined in Figure 1).  

Cell-cell interaction   

Evidenced by the data in this thesis, there appears to be a close spatial relationship 

between muscle SC and muscle capillaries. Previous work has suggested that there may 

be cellular cross-talk between SC and endothelial cells (8, 9).  Work by Christov et al. (9) 

demonstrated that SC were supported through soluble growth factors stemming from a 

capillary homologue. Importantly, this study indicated that in co-culture, endothelial cells 

were able to promote proliferation in SC-derived myoblasts through the release of growth 

factors such as IGF-1, HGF, FGF and VEGF.  Previous work in humans has shown the 

importance of IGF-1 (27, 44) and HGF (51) on the muscle SC response following 

exercise.  Therefore, growth factors secreted from endothelial cells may be important for 

the function of SC. Consistent with this, it has also been suggested that endothelial cells 

are capable of producing cytokines, with IL-6 (63, 75) and detectable mRNA reported for 



Ph.D. Thesis – J. P. Nederveen; McMaster University - Kinesiology 

 124 

IL-3, IL-7, IL-8, IL-11, IL-14 and IL-15 in microvascular endothelial cells (49), 

suggesting that microvascular capillarization may contribute significantly to the network 

of regulatory pro- and anti- inflammatory cytokines that have been associated with 

muscle SC regulation. Factors being produced may also play a role in promoting 

migration of SC (3, 62).  Indeed, SC located in closer proximity to capillaries and situated 

closer to the site requiring repair or remodeling may be activated quickly, and the 

reduction in SC to capillary distance following exercise may be reflective of muscle SC 

migration.  Taking into account the close spatial proximity of SC to capillaries observed 

in Chapter 2, 3 and 4, it stands to reason that the production of cytokines from endothelial 

cells may play an important role in the activation and regulation of muscle SC.  

Local niche environment 

 Cytokines and/or growth factors produced by various cell populations in the 

environment immediately surrounding the SC niche may also play an important role in 

the activation of SC. It is well documented that inflammatory cells and SC communicate 

with each other (7, 8).  Macrophages promote SC proliferation (5, 8) and fibroblasts are 

known to produce a wide-range of cytokines (61), suggesting that muscle-resident cells 

may play a role in cytokine production following exercise.  The cytokines derived from 

these cell populations may be sufficient to induce an appropriate physiological response. 

The distribution of locally produced cytokines may fall to the microvasculature within 

that muscle area.  Therefore, the microvasculature may play a role in the distribution of 

locally produced cytokines in the area of muscle in which they are produced. 

Interestingly, both blood flow homogeneity and blood transit time through muscle is 
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extended significantly when there is a greater capillary content (33).  By increasing the 

blood transit time through greater microvasculature, there may be a higher concentration 

of cytokines delivered to the local SC niche for extended time periods.  Resident cell 

populations may therefore produce cytokines in concentrations sufficient to induce a local 

SC response, with more complete distribution through the muscle prior to clearance into 

general circulation.  

Delivery of systemic factors 

 While the local production of cytokines may be important, these factors may also 

be derived from other muscles and/or organs and thus appear in general circulation 

following exercise. It has been consistently reported that IL-6  increases in concentration 

in blood plasma following muscle contractions (18, 55), depending on the modality, 

duration and intensity of exercise, up to 8,000-fold (39) representing a considerable 

systemic increase.  The measurement of IL-6 concentrations and hemodynamics across 

the exercising leg via arteriovenous lines suggest that large amounts of IL-6 are cleared 

into general circulation (30, 68) from skeletal muscle.  Evidence suggests that the 

systemic environment may play a significant role in regulating the SC population. Using 

heterochronic parabiosis, where an anastomosis between a young and an old animal is 

formed, effectively blending the circulation of an old with a young animal, Conboy and 

colleagues (2005) reported that the regenerative potential of aged muscle SC is improved, 

implicating key circulating factors in young animals that regulate SC function (11).  

While these data support the notion that circulating factors may be critical for SC 

function, the importance of timing of exposure and concentration is paramount.  For 
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example, the role of IL-6 in the regulation of muscle SC is paradoxical, with IL-6 playing 

an important role in the regulation of SC (68) but elevated systemic levels may also be 

related to a diminished SC response following exercise in the elderly (45).  Transient 

increases in IL-6 during post-exercise time periods may control SC function and cue 

myogenic processes, but chronic exposure to IL-6 can be detrimental to both muscle mass 

(47) and SC function (60). Consistent with this, chronic elevation of IL-6 impairs muscle 

protein synthesis, and is associated with a loss in skeletal muscle mass with age (28, 45) 

and physical inactivity (19, 53).         

 In Chapter 4, we observed that the group with Low CFPE had a greater change in 

circulating IL-6 from Pre to 6h, which occurred concomitantly with a lower content of 

activated (i.e., MyoD+/Pax7+) muscle SC during the same period.  The larger systemic 

increase in IL-6 observed in the Low CFPE group may reflect a much greater IL-6 

concentration at the level of the exercised muscle.  For example, IL-6 concentrations that 

are measured directly at the level of the muscle are different compared to systemic levels 

(15). For example, the concentration of IL-6 is on the order of 5- to 100-fold higher in 

exercising muscle as compared to levels found in general circulation (58).    

 Evidence from Yuen et al. (76) suggests that excessive IL-6 can reduce insulin 

signaling and insulin-mediated increases in capillary recruitment.  Elevated IL-6 

concentrations that we observed in systemic circulation in the Low CFPE group may be 

indicative of a local niche concentration. Ultimately, this may lead to a reduction in the 

cross-talk between muscle SC and endothelial cells that has been previously observed (8, 

52).  
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Figure 1.  Schematic representation of skeletal muscle microvasculature 

and muscle fiber cross sections. (A) Cross-sections of muscle fibers illustrating 

the cell-cell interactions between muscle resident fibroblasts, macrophages and 

various other populations known to secrete growth factors capable of regulating 

satellite cell activity (B) Satellite cells reside in close spatial proximity to 

muscle capillaries. The cross-talk between endothelial cells, as well as the 

exposure to signaling molecules delivered from the local environment via 

capillaries, may be crucial for the regulation of satellite cell activation (C) The 

systemic environment, including blood-borne growth factors and cytokines, can 

be produced in various organs across the body, and while not necessarily 

reflective of the local environment, can influence satellite cell activity through 

prolonged exposure of systemic signals. 
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5.3 LIMITATIONS AND FUTURE DIRECTIONS 

The data presented in the current thesis are novel in their description of the 

relationship between muscle capillaries and skeletal muscle resident SC.  In Chapter 2, 

we observed that type II-associated SC are located at a further distance from the nearest 

capillary in older adults as compared to their younger counterparts. Extending the work of 

Chapter 2, Snijders et al. (64) reported that distance to the nearest capillary was greater in 

type II- as compared to type I-associated SC in older men. However, despite inducing 

hypertrophy via 24 weeks of RT in these older men, there was no increase in type II fibre 

capillarization, nor was there any change in type II SC distance to the nearest capillary.  

This may suggest that the distance to the nearest capillary may not be a limiting factor 

during muscle hypertrophy following RT in older men.  However, this study did observe 

that the increase in type II muscle fibre size following 24 weeks of RT was mainly driven 

by individuals who had a relatively higher muscle capillarization and perfusion prior to 

training. A loss of muscle perfusion and thus an inadequate supply of nutrients has been 

suggested as a mechanism for sarcopenia-related loss of muscle mass and a blunted 

response to anabolic stimuli observed in the elderly (25).  It would be interesting to 

examine whether aerobic training, in order to facilitate an increase in muscle 

capillarization, prior to the initiation of a long-term RT program would improve the 

increase in strength and/or muscle mass in older men above what is already observed 

following RT in older adults (34, 56). Furthermore, there appears to be an enhancement in 

SC activation following long-term RT in young men in response to a single bout of 

resistance-type exercise in healthy young men (Chapter 3).  Future studies should address 
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whether long-term RT ameliorates the delayed SC response to exercise observed in 

elderly men (46, 48, 66).  Previous work has demonstrated that the acute expansion of SC 

following a single bout of exercise translates into long-term changes in skeletal muscle 

mass following resistance exercise training in young men (2). Therefore, by improving 

the acute response to exercise in the elderly, larger muscle mass gains from training may 

be realized.  

By isolating endothelial cells and SC from human skeletal muscle biopsies, and 

co-culturing the cells together in various cell ratios (i.e., high endothelial cells to SC, low 

endothelial cells to SC) or in various distances to each other, the alteration in influence of 

endothelial cells upon SC proliferation could be determined in vitro.  Furthermore, by 

identifying the secretome of endothelial cells, further experiments could determine which 

of the growth factors and/or cytokines are influencing SC activity.  Indeed, there are 

many factors (e.g., IL-6, IGF-1, HGF, myostatin, VEGF) that have been implicated in the 

regulation of SC activation and expansion of the SC pool that may stem from endothelial 

cells. In Chapter 4, we identified only the IL-6 response to eccentric contraction-induced 

muscle damage.  Further studies should address the analysis of IL-6 in the muscle SC 

population, with markers of activation. Colocalization analysis could address this 

limitation by examining the influence of IL-6 upon SC activation, and could expand upon 

the observed difference in responses between individuals with high as compared to low 

muscle perfusion. Indeed, factors that have been well-established as co-localizing with 

SC such as IL-6 (43, 45), IGF-1 (27) and Mstn (46, 66) could be examined at both the 

systemic and cellular level. Future studies should also aim to examine growth factors that 
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may be secreted from the microvasculature.  For example, VEGF and VEGF-receptors 

may play an important role in the content of both SC and muscle capillaries. During 

situations that require full regeneration of muscle (e.g., following myotrauma induced in 

rodents from methods such as the inducing injury via freeze-crush, ischemia and CTX 

injections), the site of injury undergoes extensive re-vascularization (32, 35).  During 

muscle regeneration, extensive angiogenesis is required (26) and this process 

accompanies the restoration of muscle fibre CSA (36).  The administration of VEGF, a 

primary regulator of capillary formation, following muscle injury improves skeletal 

muscle regeneration in mouse (4) and rabbit models (20). Considering that VEGF has 

been observed to function in an autocrine fashion via its receptors present on myogenic 

cells and is capable of stimulating migration, promoting differentiation and preventing 

apoptosis (8, 23), future work should address the influence of VEGF on the SC response 

following exercise in humans.  

While the current thesis examined the spatial relationship between capillaries and 

SC, there are a multitude of other structures and cell types that comprise the SC niche and 

may contribute to SC function. Future work should address other age-related biophysical 

modifications to the SC niche including the ECM, synthesized by resident fibroblasts, a 

structure that is crucially important for integrity of the niche and provides regulatory cues 

to the SC (42, 69, 71). Recent evidence by Mackey et al. (38) points to extensive cross-

talk between fibroblasts and muscle SC during muscle regeneration in humans, and thus 

the spatial relationship between those cell types may be crucial for SC function as well. 
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5.4 CONCLUSIONS         

Skeletal muscle SC are critical for the maintenance of postnatal skeletal muscle 

throughout the lifespan, as they are indispensable for muscle repair following damage.  

Due to their anatomical location within the muscle, SC are exposed to a number of 

growth factors and cytokines that regulate activation and function.  SC may be modulated 

in some capacity by cross-talk with endothelial cells within the microvasculature, 

exposure to circulating signals, or some combination of both.  One of the major findings 

of this thesis is that there is a greater distance between type II muscle fibre associated SC 

and capillaries observed in older men as compared to their younger counterparts.  We also 

observed that enhanced activation of the SC pool, and an altered spatial relationship 

between SC and capillaries occurs in response to a single bout of resistance exercise and 

is accompanied by increased capillarization following 16 wks RT in healthy young men. 

We also found that there is a positive correlation between muscle capillarization and the 

activation and/or expansion of the SC pool following eccentric-contraction induced 

muscle damage.  Furthermore, individuals with higher muscle perfusion recover the loss 

of muscle strength following exercise-induced muscle injury.  In conclusion, the current 

thesis has advanced our understanding of the relationship between human satellite cells 

and skeletal muscle capillaries in the context of aging, adaptation and muscle repair.  

These findings also provide groundwork for future experimentation that will continue to 

expand our understanding of the regulation of human skeletal muscle stem cells.   
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