
Repeats in Strings and Application in

Bioinformatics

REPEATS IN STRINGS AND APPLICATION IN

BIOINFORMATICS

BY

A S M SOHIDULL ISLAM, M.Sc., (Computer Science and Engineering)

BUET, Dhaka,Bangladesh

a thesis

submitted to the School of Computational Science & engineering

and the school of graduate studies

of McMaster university

in partial fulfilment of the requirements

for the degree of

PhD

c© Copyright by A S M Sohidull Islam, July 2017

All Rights Reserved

PhD (2017) McMaster University

(School of Computational Science and Engineering) Hamilton, Ontario, Canada

TITLE: Repeats in Strings and Application in Bioinformatics

AUTHOR: A S M Sohidull Islam

M.Sc., (Computer Science and Engineering)

BUET, Dhaka, Bangladesh

SUPERVISOR: Dr. William F. Smyth and Dr. Brian Golding

NUMBER OF PAGES: xv, 135

ii

To my family and friends

Abstract

A string is a sequence of symbols, usually called letters, drawn from some alphabet.

It is one of the most fundamental and important structures in computing, bioinfor-

matics and mathematics. Computer files, contents of a computer memory, network

and satellite signals are all instances of strings. The genome of every living thing

can be represented by a string drawn from the alphabet {a, c, g, t}. The algorithms

processing strings have a wide range of applications such as information retrieval,

search engines, data compression, cryptography and bioinformatics.

In a DNA sequence the indeterminate symbol {a, c} is used when it is un-

clear whether a given nucleotide is a or c, We could then say that {a, c} matches

another symbol {c, g} which in turn matches {g, t}, but {a, c} certainly does not

match {g, t}. The processing of indeterminate strings is much more difficult because

of this nontransitivity of matching. Thus a combinatorial understanding of indeter-

minate strings becomes essential to the development of efficient methods for their

processing. With indeterminate strings, as with ordinary ones, the main task is the

recognition/computation of patterns called regularities . We are particularly inter-

ested in regularities called repeats, whether tandem such as acgacg or nontandem

(acgtacg).

In this thesis we focus on newly-discovered regularities in strings, especially the

iv

enhanced cover array and the Lyndon array, with attention paid to extending the

computations to indeterminate strings. Much of this work is necessarily abstract in

nature, because the intention is to produce results that are applicable over a wide

range of application areas. We will focus on finding algorithms to construct different

data structures to represent strings such as cover arrays and Lyndon arrays. The

idea of cover comes from strings which are not truly periodic but “almost” periodic

in nature. For example abaababa is covered by aba but is not periodic. Similarly the

Lyndon array describes the string in another unique way and is used in many fields of

string algorithms. These data structures will help us in the field of string processing.

As one application of these data structures we will work on “Reverse Engineering”;

that is, given data structures derived from of a string, how can we get the string back.

Since DNA, RNA and peptide sequences are effectively “strings” with unique

properties, we will adapt our algorithms for regular or indeterminate strings to these

sequences. Sequence analysis can be used to assign function to genes and proteins

by observing the similarities between the compared sequences. Identifying unusual

repetitive patterns will aid in the identification of intrinsic features of the sequence

such as active sites, gene-structures and regulatory elements. As an application of

periodic strings we investigate microsatellites which are short repetitive DNA pat-

terns where repeated substrings are of length 2 to 5. Microsatellites are used in a

wide range of studies due to their small size and repetitive nature, and they have

played an important role in the identification of numerous important genetic loci. A

deeper understanding of the evolutionary and mutational properties of microsatellites

is needed, not only to understand how the genome is organized, but also to correctly

interpret and use microsatellite data in population genetics studies.

v

Acknowledgements

I would first like to express my sincere gratitude to my supervisor Dr. William F.

Smyth. Your great expertise and understanding of algorithms, constant encourage-

ment and enormous support of my research has been the key for the publications

and majority of my current thesis. You have consistently offered brilliant insights

into my research or writing and encouraged me to think and solve research problems

independently. Your priceless advice on graduate life helped me enjoy a fulfilling and

wonderful time on the path of learning and discovery.

I would like to take the opportunity to thank my co-supervisor Dr. Brian Gold-

ing. Your constant support helped me understand different topics of Bioinformatics.

Thank you for always be there to give me the research directions.

I would also like to thank the rest of my thesis committee: Dr. Frantisek Franek

and Dr. Jonathon Stone. Thank you Dr. Franek for your time with me for the

frequent discussions on my research problems. I would like to thank Dr. Stone as

well for his help with my comprehensive exam report.

Thanks also go to my dearest friends and my family. Thank you for your endless

support, encouragement and love. I am extremely lucky to have you all in my life.

vi

Declaration

I declare that my thesis contains the following published materials that I was one

of the co-authors. My contributions have also been stated. This work was done

during my Ph.D. research and constitutes an integral components of this thesis. The

copyright holder has agreed to grant an irrevocable, non-exclusive licence to McMaster

University and the National Library of Canada to reproduce the material as part of

the thesis.

Ali Alatabbi, A. S. M. Sohidull Islam, M. Sohel Rahman, Jamie Simpson, and W.

F. Smyth. Enhanced covers of regular and indeterminate strings using prefix tables.

Journal of Automata, Languages and Combinatorics, 21(3):131-147, 2016.

Contribution by me: I was involved in the design of a series of new algorithms to

compute Enhanced covers and its variants using prefix tables. I was also involved in

the implementations of the algorithms.

Frantisek Franek, A. S. M. Sohidull Islam, M. Sohel Rahman, and W. F. Smyth.

Algorithms to compute the lyndon array. In Proceedings of the Prague Stringology

Conference 2016, Prague, Czech Republic, August 29-31, 2015, pages 172-184, 2016.

Contribution by me: I was involved in the design of three new algorithms to

compute Lyndon array without using suffix array. I was also responsible for imple-

mentation and testing of the algorithms.

vii

Daykin, J. W., Frantisek Franek, Jan Holub, A. S. M. Sohidull Islam, W. F. Smyth.

Reconstructing a string from its Lyndon arrays. Theoretical Computer Science (2017).

Contribution by me: I was involved in the design of a new algorithm to Reconstruct

a string from its Lyndon arrays. I was also involved in the analysis and the proof of

the algorithm.

viii

Contents

Abstract iv

Acknowledgements vi

Declaration vii

1 Introduction 1

1.1 Major Contributions . 4

1.2 Thesis Outline . 7

2 Preliminaries and Definitions 8

2.1 Basic Definitions . 8

2.2 Definitions of Various Regularities . 10

2.3 Data Structures Used in this Thesis 12

3 Enhanced Covers of Regular & Indeterminate Strings using Prefix

Tables 19

3.1 Introduction . 19

3.2 Methodology . 21

3.3 Correctness & Complexity of Compute MEC 23

ix

3.3.1 Combinatorics on the border length 26

3.3.2 Average case analysis . 29

3.4 Enhanced Left Covers and Left Seeds 30

3.4.1 Minimum Enhanced Left Cover Array (MELC) 31

3.4.2 Minimum Enhanced Left Seed Array (MELS) 32

3.5 Comparing Border-Based and Prefix-Based Algorithms 35

3.6 Indeterminate Strings . 36

3.7 Future Research . 38

4 Construction of Lyndon Array 39

4.1 Introduction . 39

4.2 Preliminaries . 40

4.3 Basic Algorithms . 43

4.3.1 Folklore — Iterated MaxLyn 43

4.3.2 Recursive Duval Factorization: Algorithm RDuval 45

4.3.3 NSV Applied to the Inverse Suffix Array 47

4.4 Elementary Computation of λx by Comparing Ranges 49

4.5 Computation of λx Using Ranges and NSV Idea 55

4.6 Experimental Results . 60

4.7 Future Work . 61

5 Reconstructing a String from its Lyndon Arrays 62

5.1 Introduction . 62

5.2 When is L∗ a Valid Lyndon Array of Some String? 65

5.3 Reconstructing a String from its Lyndon Arrays 69

x

5.4 Future Research . 76

6 Microsatellite Evolution 79

6.1 Introduction . 79

6.2 Models and Parameters . 82

6.3 Inter Species Comparison for Microsatellite with Repeat Length 2 . . 86

6.3.1 Analyzing the parameters for Model PL2 90

6.4 Inter Species Comparison for Microsatellite with Repeat Length 2 . . 97

6.4.1 Data Contain 10 Population (Single alleles) 97

6.4.2 Data Contain 10 Population (2 alleles) 99

6.4.3 Data Contain 5 Population (Single alleles) 100

6.4.4 Data Contain 8 Population . 103

6.4.5 Bootstrap Analysis . 106

6.5 Microsatellites with Repeat Length 3 108

6.6 Conclusion . 110

7 Summary and Future Work 112

7.1 Future Work . 114

A Additional Results for Microsatellite Evolution 116

xi

List of Figures

2.1 An example string . 9

2.2 Border Array β, Prefix Table π and Cover Array γ 13

2.3 x′ = {a, g}{a, t} (or {c, g}{c, t}) is a border of x; but neither x′′ =

{a, g} nor {a, t} is a border of x[3..4], and neither x′′ = {c, g} nor

{c, t} is a border of x[1..2]. 15

2.4 Suffix Array and Inverse Suffix Array 18

2.5 For i = 3, we have two Lyndon words starting at the position: aab and

aabab. Since aabab is longest, therefore λ[3] = 5 18

3.1 Computing MNC from the prefix array π[1..n] and the cover array γ[1..B]. 22

3.2 All the arrays required to compute MEC and CMEC arrays 23

3.3 Computing MEC amd CMEC from the prefix array π. 24

3.4 Computing MELS amd CMELS from the prefix array π. 33

3.5 The maximum number of operations performed by the Border-Based

(ECB) [45] and Prefix-Based (ECP) algorithm (i.e., Compute MEC)

to compute the Minimum Enhanced Cover array, for all strings on the

binary alphabet. 36

xii

3.6 Ratio of the total number of operations performed by the Border-

Based (ECB) [45] and Prefix-Based (ECP) algorithms to the length n

of the string, for all strings on the binary alphabet. Note the linear

behaviour of ECP compared to the slightly supralinear behaviour of

ECB. 37

4.1 Algorithm MaxLyn . 45

4.2 Apply NSV to ISAx . 47

4.3 Algorithm RangeLyndon computes Lx of x = x1x2 · · ·xm. Only

at critical points jL = c(r, r′) does it need to do pattern-matching;

otherwise all Lr,j are computed in constant time. 50

4.4 Compute L for all positions j such that xr[j] > xr+1[1]. 50

4.5 Find the next critical point jL = c(r, r′) to the left of the current

position jR in xr, updating r′ as required. 51

4.6 Compute Lr,j for all positions j ∈ 1..c(r, r′), taking account of the

Monge property that arcs (xr[j],Lr,j) cannot intersect (Observation 1). 52

4.7 Computing λx using modified NSV 57

4.8 Five algorithms compared on all binary strings of lengths n ∈ 11..22:

the average processing time for each n is given in 10−4 seconds. For all

the algorithms except RDuval, the pre-processing time is independent

of length n. So the increase of time is very small which results very

small amount of slope for the corresponding lines. 61

5.1 Given a valid Lyndon array L∗ and an ordered alphabet Σ = {1, 2, . . . , n},

in O(n) time construct a string x on Σ whose Lyndon array is L∗. . . 65

xiii

5.2 Construct a string x on a subset of Σ = {1, 2, . . . , n} with Lyndon

array L∗. 67

5.3 Determine whether (TRUE) or not (FALSE) a given integer array L∗ is

a Lyndon array of some string. 69

5.4 Lyndon arrays based on rotated orders for σ = 3. 72

5.5 Constructing a string from rotated Lyndon arrays. 75

5.6 x = adbc and its Lyndon arrays: consideration of fewer than four

rotations of the alphabet may not allow x to be reconstructed. 77

6.1 Model Description. K denotes the number of free parameters. The

fixed parameter(s) for each set of models is/are shown above branch

leading to it . 85

6.2 Comparision of parameter m for different datasets of Table 6.5 . . . 92

6.3 Comparision of parameter s for different datasets of Table 6.5 92

6.4 Comparision of parameter u for different datasets of Table 6.5 93

6.5 Comparision of parameter m for data with outliers and data without

outliers of different datasets of Table 6.5 94

6.6 Comparision of parameter s for data with outliers and data without

outliers of different datasets of Table 6.5 94

6.7 Comparision of parameter m for original data and bootstrap data of

different datasets of Table 6.5 . 96

6.8 Comparision of parameter s for original data and bootstrap data of

different datasets of Table 6.5 . 96

6.9 Tree for the Pop10 data . 97

6.10 Tree for the Pop5 data . 101

xiv

6.11 Tree for the Pop8 data . 104

xv

Chapter 1

Introduction

Thousands of research papers have been written by mathematicians and (over the

last half century) also computer scientists that relate in some way to periodicity, or

its variants, in strings. A word that has recently been brought into service to de-

scribe these variants is “regularities” which was first introduced by Iliopoulos and

Mouchard in [58]. Various forms of regularity are central to the recognition of im-

portant patterns in performing retrieval from massive data sets. Perhaps the most

conspicuous regularities in strings are those that manifest themselves in the form of

repeated subpatterns; that is, repeats, multirepeats, tandem repeats, runs and others.

Algorithms for computing regularities have myriad applications. For example, one

of the earliest and still widely used compression algorithms is gzip. Regularities in

the form of repeating substrings were the basis of gzip, which still remains central to

other compression approaches. Repeats and repetitions of lengthy substrings in DNA

and protein sequences are important markers in biological research. We will discuss

this further later on. Email spam, also known as junk email, is a type of electronic

spam where unsolicited messages are sent by email. The proportion of spam email

1

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

was approximately 80% of all email messages sent in the first half of 2010. Some

methods for detecting spam are mainly based on similarity calculations on strings.

In addition various forms of regularity are central to the recognition of important

patterns in retrieval from massive data sets.

In this thesis we investigate mathematical and algorithmic aspects of regularities in

strings. In particular, we have developed novel algorithms for computing regularities

which are both time and space efficient. We begin by introducing the basics of

strings. A string is a sequence of symbols drawn from an alphabet which is a finite

set of distinct symbols. There are numerous examples of alphabets and strings in

our world. One of the most common example is human language. An English word

is a string drawn from the English alphabet which has 26 letters (or 52 including

upper case letters). Strings also exist in a computer system, where essentially all the

information is represented in the form of strings. Because an electronic computer

is built on electrical circuits that usually have only two states, namely low voltage

and high voltage, all the strings in computer systems are in essence drawn from a

simple and natural “binary” alphabet {0, 1}. In biology, it is well known that DNA

is made up of nucleotides, which can be modeled by strings. The DNA sequence can

be represented by a string drawn from an alphabet of four basic letters a, c, t, g. DNA

directs the activity of cells and is responsible for creating a particular organism with

its own unique traits.

The notion of periodicity in strings and its many variants have been well-studied

in many fields like combinatorics on words, pattern matching, data compression,

automata theory, formal language theory, and molecular biology. But the notion of

periodicity is too restrictive to provide a description of a string such as x = abaababa,

2

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

which is covered by copies of aba, yet not exactly periodic. To fill this gap, the

idea of quasiperiodicity was introduced [11]. Quasiperiodicity enables the detection

of repetitive structures that would be ignored by the classical characterisation of

periods. The most well-known formalisation of quasiperiodicity is the cover of a

string; in the above example aba is a cover of abaababa. While covers capture very well

the repetitive nature of extremely repetitive strings, nevertheless most strings, and

particularly those encountered in practice, will have no cover, and so these measures

of repetitiveness break down. Therefore new and more natural and applicable forms

of quasiperiodicity need to be invented. The promising idea of an enhanced cover

was introduced recently in [45] which is a form of quasiperiod. Further, on the analogy

of the cover array, the authors proposed a minimum enhanced cover array and

presented an algorithm to compute it by using a variant of the border array.

An interesting aspect of DNA is the frequency of microsatellites. They are com-

posed of short DNA sequences of length 2 − 5 characters (“base pairs”) that are

repeated in tandem; for example cgacgacga. In genomes, perfect or near-perfect tan-

dem iterations of short sequence motifs of this kind are extremely common. Between

closely related species, their distribution and density in genomes can vary greatly. In

the case of the human genome, they are found at hundreds of thousands of places along

chromosomes [64]. Every possible motif of mono-, di, tri- and tetranucleotide repeat

is found frequently in the genome. Also referred to as short tandem repeats (STRs)

or simple sequence repeats (SSRs), the ubiquitous occurrence of microsatellites was

first reported in the 1980s [65]. Supported by direct observations it is assumed that

mutations must occur frequently among microsatellites. However, despite the exten-

sive study of microsatellites over the past 25 years, it is clear that many theoretical

3

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

models fail to accurately explain allele frequency distributions in natural populations.

Importantly, it seems that microsatellite evolution is a far more complex process than

was previously thought.

1.1 Major Contributions

In this thesis we explore theoretical and algorithmic aspects of the computations of

regularities in strings. We describe the following results in subsequent chapters.

In the first part of this thesis we introduce a new algorithm and data structures

to compute the minimum enhanced cover array from the prefix table, and illustrate

the ideas with examples. Computing the minimum enhanced cover array from the

prefix table rather than from a variant of the border array allows us to extend the

computation to indeterminate strings. We provide a proof of the algorithm’s correct-

ness, as well as an analysis of its complexity, both worst and average case. We extend

the basic algorithm to enhanced left covers and enhanced left seeds. We discuss the

practical application of our algorithms, in terms of time and space requirements, and

compare our prefix-based implementation with the border-based implementation of

[45]. Our algorithms, in addition to being faster in practice and more space-efficient

than those of [45], allow us to easily extend the computation of enhanced covers to

indeterminate strings. Both for regular and indeterminate strings, our algorithms

execute in expected linear time. Along the way we establish an important theoretical

result: that the expected maximum length of any border of any prefix of a regular

string x is approximately 1.64 for binary alphabets, less for larger ones. We show

how to extend the various enhanced cover array algorithms to indeteterminate strings

and give a summary of our results and future research directions.

4

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Computing all the periods of a string is one of the most challenging problems in

the field of stringology. Bannai et al. [15] described a linear-time algorithm which

does not rely on the Lempel-Ziv parsing of the string for computing all runs in a

string. Their result thus may help pave the way to the algorithms for computing

all runs in a string which are faster in practice. In the second part of our thesis,

at first we outline three algorithms to compute the Lyndon array for which no clear

exposition is available in the literature. Two of them require O(n2) time in the worst

case, of which one is very fast and apparently linear in practice, the other supralinear

in practice and O(n log n) in the average case on binary strings. The third algorithm

is simple and worst-case linear-time, but requires suffix array construction and so is

a little slower.

Next we formulate two new approaches to find the Lyndon array of a string.

Both approaches use only elementary data structures (no suffix arrays). The first

approach has two variants: one variant requires O(n2) time in the worst case, the

other guarantees O(n log n) time, but with no clear advantage in processing time. In

this approach we will process the string from left to right and use a “stack” data

structure. In the second approach we will process the string from right to left to

compute the Lyndon array. Finally after implementing these algorithms, we will

show that all of them run in Θ(n) time in practice.

An interesting topic is to establish a “reverse engineering” result for Lyndon ar-

rays: that is, to reconstruct the string from its Lyndon array. Since the Lyndon array

is an array of positive integers, it is natural to ask under what conditions a given

integer array is a Lyndon array. In the third part of the thesis, we present necessary

and sufficient condition that a given integer array is a Lyndon array of some string

5

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

on some alphabet. We then describe a linear-time algorithm to evaluate these condi-

tions for a given array. We establish a “reverse engineering” result for Lyndon arrays;

that is, given certain Lyndon arrays, based on orderings of a given alphabet of size

σ, what can be said about the corresponding string? This kind of problem was first

introduced in [46, 41] for the border array, then later considered for various common

string data structures; for example, prefix tables [25, 24], KMP arrays [42, 50, 51],

cover arrays [29], and many others. We present an O(σn)-time algorithm to compute

the unique string determined by the Lyndon arrays computed for σ rotations of the

alphabet, where σ is the size of the alphabet. We also briefly discuss the possibility

of using fewer than σ rotations to determine x.

In [78], the authors presented a group of models based on three sets of contrasting

features in the existing models of microsatellite evolution. We work on those models

with different datasets acquired from Human and Chimp genomes. We will describe

the models and parameters. We will try to find the dynamics of the evolution of

microsatellite with repeat length 2 by using Human and Chimp data. We present our

work on intra-species analysis where we consider different Human populations. We

will also try to find the differences between mutation based on the position (inside

or outside exon regions) of microsatellites in the genome. We implement the models

proposed by Sainudiin et. al [78] to analyze the dynamics of microsatellite evolution.

We work on Human and Chimp DNA for inter species comparison and different human

populations for intra species comparison. We compare the models using statistical

methods and try to find the model which fits the data best.

6

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

1.2 Thesis Outline

The remainder of this thesis consists of the following chapters.

Chapter 2 introduces the related background and basic definitions and data struc-

tures used in the proposed algorithms.

Chapter 3 consists of our work on quasiperiodicity. We introduce a new algorithm

and data structures to compute the minimum enhanced cover array from the prefix

table. We will show how to extend the algorithms for indeterminate strings.

Chapter 4 focuses on algorithms to compute Lyndon arrays. We describe the

existing algorithms as well as new ones. We also show the comparison of running

time between these algorithms.

In Chapter 5, we describe the “reverse engineering” method to find the unique

string implied by a collection of Lyndon arrays.

We study microsatellite evolution in Chapter 6, as an application of periodic

strings.

Chapter 7 gives some concluding remarks and suggestions for future work.

7

Chapter 2

Preliminaries and Definitions

In this chapter, we give the notation and terminology used in this thesis. Basic string

terminology in this thesis follows [80].

2.1 Basic Definitions

We identify a finite set Σ called an alphabet, whose elements are letters. The

cardinality of an alphabet denoted by σ = |Σ| is the number of distinct letters in the

alphabet. A string x is a sequence of elements drawn from Σ. If every entry in x

consists of exactly one element in Σ, then it is called a regular string. Here in this

thesis, in general when we talk about string we mean regular string. We represent x

as an array x[1..n] of n ≥ 0 letters where n = |x| is called the length of the string.

We refer to x as an array x[1..n] where x has n elements x[1],x[2], ...,x[n]. The

empty string of length zero is denoted by ε. For a given Σ, let Σ+ be the set of all

possible nonempty finite letters of Σ. For example if Σ = {0, 1}, then Σ+ consists of

all distinct nonempty finite sequence of bits (0 or 1). We define Σ∗ as Σ∗ = Σ+ ∪{ε}.

8

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

1 2 3 4 5 6 7 8
x = a b a a b a b a

Figure 2.1: An example string

An example string is given in Example 1 which will be used throughout this section.

Example 1 Let Σ = {a, b}, so σ = 2. A string x drawn from Σ = {a, b} is shown

in Figure 2.1

For i = 4, x[i] = x[4] = a.

Corresponding to any pair of integers i and j that satisfy 1 ≤ i ≤ j ≤ n we define

a substring u = x[i..j] as u = x[i]x[i+ 1]...x[j − 1]x[j]. If i = j then x[i..j] = x[i];

if i > j, then by convention u = ε. If u is substring of x then x is a superstring of

u. We say that u occurs at position i of x with length j − i+ 1. If j − i+ 1 < n,

then u is called a proper substring. For the string x in Example 1, a substring

u = x[4...6] = aba.

Given two strings u[1..m] and v[1..n], the concatenation of u and v produces

a new string x by appending v to u. In other words, |x| = m+n, x[1..m] = u and

x[m+1...m+n] = v. The concatenation of u and v is denoted by uv.

Two special kinds of substring u have particular importance. If a string x = uvw,

then v is a substring of x and any of u, v and w may be the empty string ε. If u = ε,

then v is also a prefix of x. If w = ε, then v is also a suffix of x. A string x is

a substring, prefix and suffix of itself. If v is a substring, prefix or suffix of x and

|v| < |x|, then we call v is a proper substring, prefix or suffix of x as appropriate.

So in Example 1, x[1..3] = aba is a prefix of x and x[5..8] = baba is a suffix of x.

Here the prefix is also a proper prefix and the suffix is a proper suffix of x.

9

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

If x = x[1..n] has a proper (though possibly empty) prefix u that is also a suffix

of x, then u is said to be a border of x. In Example 1, u = aba is a border or x,

since it is both suffix and prefix of x. If for some p ∈ 1..n, x[i] = x[p + i] for every

i ∈ 1..n− p, then x is said to have period p. Thus x always has the empty border ε

and trivial period n. We have the following observation between border and period.

Observation 2 x has period p if and only if it has a border of length n−p.

Since x has border with length k, then x[1..k] = x[n − k + 1..n], according to

definition of border, which indicates x has period of length p = n−k. In Example 1

we have a period p = 5 = 8− 3 for x, since it has border x[1..3] = x[6..8] of length 3.

2.2 Definitions of Various Regularities

The term regularity was introduced by Iliopoulos and Mouchard in [58] indicating

substrings that occur in some regular pattern inside strings. In this section we de-

fine various regularities in strings which we borrowed from [81]. A repeat in x is

a maximum cardinality collection of identical substrings of x that are not necessar-

ily adjacent and occur more than once. A repeating substring in x is a proper

nonempty substring u of x that occurs more than once. In Example 1, u = aba is a

repeating substring of string x. A repeat in x is a tuple

Mx,u,r = {u; i1, i2, ..., ir} (2.1)

where u is the repeating substring that occurs at positions i1, i2, ..., ir, with 1 ≤ i1 <

i2 < ... < ir ≤ n−|u|+1. In Example 1, Mx,ab,3 = {ab; 1, 4, 6} and Mx,aba,3 =

{aba; 1, 4, 6} are both repeats in x.

10

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

A repetition is a maximum length sequence of adjacent repeating substrings;

that is, a repetition in x is a repeat (Equation 2.1) which meets the following two

constraints on the occurrences of the repeating substring u,

1. adjacent, thus ij+1−ij = |u| for every j ∈ 1..r−1

2. maximal, thus x[i−|u|..i−1] 6= u and x[i+r|u|..i+(r+1)|u|−1] 6= u

Of course x itself may be a repetition. If a string or substring is not a repetition,

we say that it is primitive. A repetition is fully specified by a triple (i, p, r), where

• u = x[i..i+p−1] is the repeating substring and primitive

• p = |u| is the period of the repetition ur

• and r is the number of occurrences of u or exponent of the repetition

If r = 2, the repetition is a square and if r = 3, then it is cube. In Example 1 we

have a repetition z = (i, p, r) = (1, 3, 2), since aba is repeated twice and primitive.

Also it is a square and we can write z = (aba)2.

A run [80] (or maximal periodicity [67]) in x is a 4-tuple (i, p, r, t) which meets

the following three conditions:

1. (i, p, r) is a repetition

2. (i− 1, p, r) is not a repetition

3. t ∈ 0..p−1 is the maximum integer such that x[i+rp..i+rp+t−1] = u[1..t]

We call t the tail of the run. In Example 1, both (3, 1, 2) and (1, 3, 2) are repetitions

(also runs with t = 0), while (4, 2, 2, 1) is a run that implies two repetitions (4, 2, 2)

11

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

and (5, 2, 2). Note that (5, 2, 2, 0) cannot be a run since it does not meet the second

criterion ((4,2,2) is a repetition). So in a string, two repetitions can overlap but two

runs of the same period cannot overlap. We have the following observation based on

runs and repetitions.

Observation 3 Computing all the runs determines all the repetitions.

Every repetition is either a prefix, suffix or substring of a run. So computing all

the runs will compute all the repetitions implicitly.

2.3 Data Structures Used in this Thesis

A border array is an integer array β[1..n] in which for every i ∈ 1..n, β[i] is the

length of the longest border of x[1..i]. An O(n) time algorithm was given to compute

β in [4], which was called the “failure function” algorithm. The following observations

of border array are taken from [80].

• β[1] = 0 (since ε is the longest border of x[1..1])

• for 2 ≤ i ≤ n, if x[1..i] has a border of length k > 0, then x[1..i − 1] has a

border of length k − 1; thus, in particular if 1 ≤ i ≤ n− 1, β[i+ 1] ≤ β[i] + 1;

• for 1 ≤ i ≤ n− 1, β[i + 1] = β[i] + 1 if and only if x[1+i] = x[β[i] + 1] (since

β[i] + 1 is the position of x immediately to the right of the prefix x[1..β[i]]

which is the longest border of x[1..i])

• given that b is a border of x, then b′ is a border of b if and only if b′ is a border

of x

12

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

1 2 3 4 5 6 7 8 9 10
x = a b a b a a b a b a
β = 0 0 1 2 3 1 2 3 2 5
π = 10 0 3 0 1 5 0 3 0 1
γ = 0 0 0 2 3 0 0 3 0 5

Figure 2.2: Border Array β, Prefix Table π and Cover Array γ

For example, in Figure 2.2, for string x = ababaababa, ababa is a border of x and

a is a border of ababa, so a is a border of x.

A prefix table is an integer array π[1..n] in which for every i ∈ 1..n, π[i] is the

length of the longest substring at position i of x that equals a prefix of x. Figure 2.2

shows prefix table π for string x = ababaababa. An O(n) time construction algorithm

for the prefix table was first described some 30 years ago in the Main & Lorentz all-

repetitions algorithm [68]. The same algorithm is given in [27], but then a modified

construction algorithm was proposed in [28]. Two other distinct algorithms on a

“compressed prefix” table are described in [82]. The prefix table gives rise to an easy

and efficient pattern-matching algorithm: given pattern u and text v, form x = uv

and compute π; then for i ∈ |u|+1..|x|, x[i..i+ |u|−1] = v[i−|u|..i−1] is an occurrence

of u in v if and only if π[i] > |u|.

Since for every i ∈ 2..n, π[i] = 0 if and only if x[i] 6= x[1], the number of nonzero

elements in π is exactly m, where m is the number of occurrences of x[1] in x other

than at position 1. The expected value of m is m/σ−1, a quantity less than n/2

for σ ≥ 2. This led to the idea of compressed prefix array using integer arrays

POS[1..m] and LEN [1..m], defined as follows

π[POS[j]] = LEN [j]

13

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

iff the jth nonzero entry in π occurs in position POS[j] and takes the value LEN [j].

Sometimes the compressed prefix array is called the POS/LEN version of the prefix

array. For larger alphabets, the compressed form of the prefix array saves considerable

storage space compared to the border array or the uncompressed prefix array. In [82],

the authors introduced the idea of compressed prefix array and give an algorithm to

compute π in compressed form POS/LEN .

It has long been folklore that β and π are “equivalent”, but it has only recently

been made explicit [19] that each can be computed from the other in linear time.

However as we discuss below, this equivalence holds only for regular strings x in

which each entry x[i] is constrained to be a single element of the underlying alphabet

Σ.

A letter δ drawn from alphabet Σ = {`1, `2, . . . , `σ} is said to be regular if δ = `j

for some j ∈ 1..σ; otherwise, if δ = Σk, a subset of Σ of size k > 1, then δ is said to

be indeterminate. We say that two letters δ1 and δ2 match, written δ1 ≈ δ2, if and

only if δ1 ∩ δ2 6= ∅; thus regular letters match if and only if they are equal, while for

indeterminate letters this is not true. Two strings x[1..n] and y[1..m] are equal to

each other if and only if m = n and for all 1 ≤ i ≤ n, x[i] = y[i]. Two strings x[1..n]

and y[1..m] match each other if and only if m = n and for all 1 ≤ i ≤ n, x[i] ≈ y[i].

In fact, “match” is in general nontransitive, as the following example shows:

δ1 = `1, δ2 = `2, δ3 = {`1, `2} =⇒ δ1 ≈ δ3 ≈ δ2 but δ1 6≈ δ2.

Similarly, a string x on Σ is said to be indeterminate if at least one of the letter

x[i], 1 ≤ i ≤ n, is indeterminate. But note that a string — for example, x =

{c, g}, a, t, {c, g} — may be indeterminate but at the same time give rise only to

14

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

transitive matches; such strings are called essentially regular. Strings with letters

restricted to either single elements `j of Σ or else Σ itself (called a hole or don’t care

letter) were introduced in [44] and have been intensively studied as partial words

since 2003 by Blanchet-Sadri (see [18]). In the 1980s Abrahamson [3] dealt with the

general case defined above (which he called “generalized strings”); in this century,

beginning with [55], there has been continued interest in indeterminate strings — for

example, [56, 83].

An important consequence of the nontransitivity of match is that the border array

no longer correctly describes all of the borders of x: it is no longer necessarily true,

as for regular strings, that if u is the longest border of v, in turn the longest border of

x, then u is a border of x. An example is given in Figure 2.3. On the other hand, the

prefix array retains all its properties for indeterminate strings x and, in particular,

correctly identifies all the borders of every prefix of x [19]. [82] describes algorithms

to compute the prefix table of an indeterminate string; conversely, [24] proves that

there exists an indeterminate string corresponding to every feasible prefix table, while

[2] describes an algorithm to compute the lexicographically least indeterminate string

determined by any given feasible prefix table. There is thus a many-many relationship

between the set of all strings, whether indeterminate or regular, and the set of all

prefix tables.

1 2 3 4

x = {a, g} {a, t} {c, g} {c, t}
βx = 0 1 1 2

Figure 2.3: x′ = {a, g}{a, t} (or {c, g}{c, t}) is a border of x; but neither x′′ = {a, g}
nor {a, t} is a border of x[3..4], and neither x′′ = {c, g} nor {c, t} is a border of
x[1..2].

15

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

In 1990 Apostolico & Ehrenfeucht [11] introduced the idea of quasiperiodicity:

a cover of a string x is a proper substring u of x such that every position in x

is contained in an occurrence of u; u is then said to cover x, which is said to be

quasiperiodic with quasiperiod |u|. Thus, for example, u = aba is a cover of

x = ababaaba. The cover array is denoted by γ, where γ[i] gives the length j

of the longest cover of x[1..i]. Several linear-time algorithms were proposed for the

computation of covers [12, 20, 71, 72] culminating in an algorithm [66] to compute

the cover array γ. Since the longest cover of x[1..j] is also a cover of x[1..i], γ

implicitly specifies all the covers of every prefix of x. A recent paper [8] extends the

computation of γ to indeterminate strings. Figure 2.2 shows cover array γ for string

x = ababaababa. This array tells us that x has cover u = ababa of length 5, but also,

since γ[γ[10]] = γ[5] = 3, cover v = aba of length 3.

For indeterminate strings, there are two natural analogues of cover. A string x is

said to have a sliding cover of length κ if and only if

1. x has a suffix v of length κ; and

2. x has a proper prefix u, |u| ≥ |x|−κ, with suffix v′ ≈ v; and

3. either u = v′ or else u has a cover of length κ

A sliding cover requires the adjacent or overlapping substrings of x to match.

However it leaves open the possibility that nonadjacent elements of cover do not

match because of the nontransitivity of matching. For example,

x = {a, b}c{a, c}{a, c}ca

16

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

has a sliding cover of length κ = 2 because {a, b}c ≈ {a, c}{a, c} ≈ ca, but {a, b}c 6≈

ca. An indeterminate string x may have a sliding cover v which is not a substring

of x. This motivated the idea of rooted cover of length κ, where every covering

substring is required to match, not the preceding entry in the cover, but rather the

prefix x of length κ. A rooted cover is defined simply by changing “suffix” to “prefix”

in the second condition of the above definition of sliding cover. The string

x = {a, b}c{a, c}{a, c}ac

has both a sliding cover and rooted cover of length 2.

If Σ is ordered, then lexicographic order (dictionary order) is the corresponding

induced order on the elements of Σ∗. The formal definition is given in Definition 4.

Definition 4 Suppose we are given two strings x = x[1..n] and y = y[1..m], where

n ≥ 0,m ≥ 0. We say x < y (x is lexicographically less than y) if and only if one of

the following (mutually exclusive) conditions holds:

• n < m and x[1..n] = y[1..m]

• x[1..i− 1] = y[1..i− 1] and x[i] < y[i] for some integer i ∈ 1..min(n,m)

For a given alphabet Σ = {a, b} with a < b, then for strings aba and abb, according

to lexicographic order, aab < abb.

The suffix array SA of x is defined by SA[i] = j, 1 ≤ i ≤ n, where x[j..n] is

the ith smallest suffix of x in lexicographic order. It is one of the prominent data

structures in string algorithms since its introduction in [69, 70]. Given a suffix array,

SA, and the corresponding inverse suffix array, ISA, is defined by ISA[i] = j iff

17

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

1 2 3 4 5 6 7 8
x = a b a a b a a b

SA = 6 3 7 4 1 8 5 2
ISA = 5 8 2 4 7 1 3 6

Figure 2.4: Suffix Array and Inverse Suffix Array

1 2 3 4 5 6 7 8 9 10
x = a b a a b a b a a b
λ = 2 1 5 2 1 2 1 3 2 1
L = 2 2 7 5 5 7 7 10 10 10

Figure 2.5: For i = 3, we have two Lyndon words starting at the position: aab and
aabab. Since aabab is longest, therefore λ[3] = 5

SA[j] = i. So for a position i, ISA[i] gives the position in the list of sorted suffix

of the suffix x[i..n]. In Figure 2.4, ISA[6] = 1, which means, x[6..8] = aab is least

among all the suffices of x.

If x = uv for some u and nonempty v, then vu is said to be the |u|th rotation of

x, written vu = R|u|(x). A primitive string x that is lexicographically least among

all its rotations Rk(x), k = 0, 1, . . . , |x| − 1, is said to be a Lyndon word. For

example, if x = aab, then it has two other rotations namely aba and baa. Since aab

is least among all of them and primitive, therefore aab is a Lyndon word. Note that

if x is not primitive (for example, x = abab), then there cannot be a single rotation

that is lexicographically least.

The Lyndon array λ = λx[1..n] (equivalently, L = Lx[1..n]) of a given

nonempty string x = x[1..n] gives at each position i the length (equivalently, the

end position) of the longest Lyndon word starting at i. Figure 2.5 depicts both λx

and Lx for string x = abaababaab.

18

Chapter 3

Enhanced Covers of Regular &

Indeterminate Strings using Prefix

Tables

The contents of this chapter have been published in [38].

3.1 Introduction

The concept of periodicity is fundamental to combinatorics on words and related al-

gorithms: it is difficult to imagine a research contribution that does not somehow

involve periods of strings. Nevertheless, only few strings have a period other than the

trivial period. And even though the cover of a string can provide useful information,

quasiperiodic strings are on the other hand infrequent among strings in general. An-

other approach to string covering was therefore proposed in [59]: a set Uk = Uk(x) of

strings, each of length k, is said to be a minimum k-cover of x if every position in

19

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

x lies within some occurrence of an element of Uk, and no smaller set of k-strings has

this property. Thus U2(abaababab) = U2(ababaaba) = {ab, ba}. In [26] the computa-

tion of Uk was shown to be NP-complete, though an approximate polynomial-time

algorithm was presented in [57].

Recall that a border of x is a possibly empty proper prefix of x that is also a suffix:

every nonempty string has a border of length zero. Recently the promising idea of

an enhanced cover was introduced [45]; that is, a border u of x = x[1..n] that

covers a maximum number m ≤ n of positions in x. Then the minimum enhanced

cover mec(x) is the shortest border u that covers m positions, and [45] presented

an algorithm to compute mec(x) in Θ(n) time. Thus for x = abaababab, mec(x) =

ab. Further, on the analogy of the cover array defined above, the authors proposed

the minimum enhanced cover array MECx — for every i ∈ 1..n, MECx[i] =

|mec(x[1..i])|, the length of the minimum enhanced cover of x[1..i] — and showed

how to compute it in O(n log n) time. In this chapter we introduce in addition the

CMEC array, where CMEC[i] specifies the number of positions in x covered by the border

of length MEC[i]. Thus, for example, MECabaababab = 001123232 and CMECabaababab =

002346688.

In order to compute MECx, the authors of [45] made use of a variant of the border

array. In this chapter we adopt a different approach to the computation of MECx,

using, instead of a border array, the prefix table π = π[1..n].

In Section 3.2 we outline the basic methodology and data structures used to com-

pute the minimum enhanced cover array from the prefix table, while illustrating

the ideas with an example. Then Section 3.3 provides a proof of the algorithm’s

correctness, as well as an analysis of its complexity, both worst and average case.

20

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Section 3.4 defines enhanced left covers and enhanced left seeds and describes ex-

tensions of the basic MEC algorithm to compute these. In Section 3.5 we discuss the

practical application of our algorithms, in terms of time and space requirements, and

compare our prefix-based implementation with the border-based implementation of

[45]. Section 3.6 shows how to extend the various enhanced cover array algorithms to

indeterminate strings, while Section 3.7 summarizes our results and suggests future

research directions.

3.2 Methodology

In this section we describe the computation of MECx, the enhanced cover array of

x, based on the prefix array π. Since every minimum enhanced cover of x is also a

border of x, we are initially interested in the covers of prefixes of x. For this purpose

we need arrays whose size is B, the maximum length of any border of any prefix

of x. Noting that B must be the maximum entry in the prefix array π, we write

B = max2≤i≤n π[i].

Definition 1 In the maximum no cover array MNC = MNC[1..B], for every q ∈ 1..B,

MNC[q] = q′, where q′ is the maximum integer in 1..q such that the prefix x[1..q′] has

no cover — that is, such that γ[q′] = 0.

As shown in Figure 3.1, once B is computed in Θ(n) time from the prefix array

π, MNC can be easily computed in Θ(B) time using the cover array γ[1..B] of x[1..B].

Note that the entries in MNC are monotone nondecreasing with 1 ≤ MNC[q] ≤ q for

every q ∈ 1..B. The following is fundamental to the execution of our main algorithm:

21

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Observation 2 If a prefix v = x[1..q] of x has a cover u, then v 6= mec(x) (since

|u| < q and u covers every position covered by v).

procedure Compute MNC(n,π; B,γ, MNC)
B← π[2]
for i← 3 to n do

B← max(B,π[i])
. Compute γ[1..B] of x[1..B] using
. the algorithm Compute CPR of [8].
Compute CPR(B,π; γ)
. Note that MNC can overwrite γ.
for q ← 1 to B do

if γ[q] = 0 then MNC[q]← q
else MNC[q]← MNC[q−1]

Figure 3.1: Computing MNC from the prefix array π[1..n] and the cover array γ[1..B].

Thus MNC[q] specifies an upper bound q′ ∈ 1..q on the length of a minimum

enhanced cover of x. Two other arrays are required for the computation, both of

length B:

Definition 3 For every q ∈ 1..B:

• PR[q] is the rightmost position in x at which the prefix x[1..q] occurs;

• CPR[q] is the number of positions in x covered by occurrences of x[1..q].

An example of the arrays introduced thus far is given in Figure 3.2. Note that for

x[1..9] and x[1..10], there are actually two borders that cover a maximum number of

positions; in each case the border of minimum length is identified in MEC.

The algorithm Compute MEC is shown in Figure 3.3. In the first stage, B and MNC

are computed and the arrays CMEC, PR and CPR are initialized. Then every position

i > 1 such that q = γ[i] > 0 is considered. Using MNC, the longest prefix Q′ = x[1..q′]

22

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

1 2 3 4 5 6 7 8 9 10
x = a b a b a a b a b a
π = 10 0 3 0 1 5 0 3 0 1
γ = 0 0 0 2 3

MNC = 1 2 3 3 3
PR = 10 8 8 6 6

CPR = 6 8 10 8 10
MEC = 0 0 1 2 3 1 2 3 2 3

CMEC = 0 0 2 4 5 4 6 8 8 10

Figure 3.2: All the arrays required to compute MEC and CMEC arrays

of x[1..q] that does not have a cover is identified; for prefixes of x[1..q] that do have a

cover, the appropriate PR and CPR values have already been updated. There are two

main steps in the processing of Q′:

• Since i has now become the rightmost occurrence of Q′ in x[1..i], we must set

PR[q′]← i and increment the corresponding number CPR[q′] of positions covered.

• If the number CPR[q′] of positions covered by occurrences of Q′ exceeds CMEC[i+

q−1], then CMEC and MEC must be updated accordingly.

These steps are repeated recursively for the longest proper prefix of Q′ that does not

have a cover.

3.3 Correctness & Complexity of Compute MEC

We begin by proving the correctness of Compute MEC, which depends on the prior

computation of π = πx [19]. Consider first procedure Compute MNC, where B is

computed, followed by the cover array γ[1..B]. Then for every q ∈ 1..B, MNC[q] ← q

whenever there is no cover of x[1..q], with MNC[q] ← MNC[q−1] otherwise, an easy and

straightforward calculation.

23

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

procedure Compute MEC(π; MEC, CMEC)
n← |π|
Compute MNC(n,π; B,γ, MNC)
MEC← 0n; CMEC← 0n; PR← 1B

for q ← 1 to B do CPR[q]← q

for i← 2 to n do
q ← π[i]

. x[i..i+q−1] = x[1..q].
while q > 0 do

. x[1..q′] is the longest prefix of x[1..q] without a cover.
q′ ← MNC[q]

. x[1..q′] also occurs at i: update CPR[q′] & PR[q′].
if i−PR[q′] < q′ then

CPR[q′]← CPR[q′]+i−PR[q′]
else

CPR[q′]← CPR[q′]+q′

PR[q′]← i
. Update MEC & CMEC accordingly for interval i..i+q′−1.

if CPR[q′] ≥ CMEC[i+q′−1] then
MEC[i+q′−1]← q′

if CPR[q′] > CMEC[i+q′−1] then
CMEC[i+q′−1]← CPR[q′]

q ← q′−1

Figure 3.3: Computing MEC amd CMEC from the prefix array π.

Compute MEC then independently considers positions i = 2, 3, . . . , n for which

π[i] > 0; that is, such that a border of x of length q = π[i] begins at i. The internal

while loop then processes in decreasing order of length the prefixes Q′ = x[1..q′] of

x[1..q] that have no cover — and that therefore, by Observation 2, can possibly be

minimum enhanced covers of x[1..i+q′−1]. Thus, for every i ∈ 2..n, all such borders

x[1..q] = x[i..i+q−1] are considered and, for each one, all such prefixes Q′. For each

q′:

• the number CPR[q′] of positions covered by Q′ is updated, as well as the position

PR[q′] = i of rightmost occurrence of Q′;

24

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

• MEC[i+q′−1] and CMEC[i+q′−1] are updated accordingly for sufficiently large

CPR[q′].

We claim therefore that

Theorem 4 For a given string x, Compute MEC correctly computes the minimum

enhanced cover array MECx and the number CMECx of positions covered by it, based

solely on the prefix array πx.

We have seen that in aggregate Compute MEC processes a subset of the nonempty

borders of every prefix x[1..i], devoting O(1) time to each one. As we have seen, each

border Q′ in each such subset is constrained to have no cover. We say that a string v

is strongly periodic if it has a border u such that |u| ≥ |v|/2; otherwise v is said

to be weakly periodic. Observe that the borders Q′ must all be weakly periodic; if

not, then they would have a cover u with |u| ≥ |v|/2. In [45] the following result is

proved:

Lemma 5 [45] There are at most log2 n weakly periodic borders of a string of length

n.

It follows then that for each i ∈ 2..n, there are at most log2 i borders considered, thus

overall requiring O(n log n) time.

The space requirement of Compute MEC, apart from the π, MEC and CMEC arrays,

each of length n, consists of three integer arrays (MNC (overwriting γ), PR, CPR), each

of length B < n. Thus

Theorem 6 In the worst case, Compute MEC computes MEC and CMEC from π using

(a) O(n log n) time;

25

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

(b) three additional arrays 1..B of integers 1..n, (MNC, PR, CPR) thus Θ(B log n) bits

of space.

Now we would like to analyze the expected (average) case behaviour of Com-

pute MEC. To do this, we prove and make use of a combinatorial result of indepen-

dent interest. We first discuss this new interesting result in Section 3.3.1 and then

we use it to complete the average case analysis in Section 3.3.2.

3.3.1 Combinatorics on the border length

Here we show that the expected length of the longest border of a string x approaches

a limit as |x| tends to infinity, the limit depending on the alphabet size. For a binary

alphabet it is approximately 1.64. We use the following notation: σ = |Σ| is the

alphabet size, B(w) is the length of the longest border of string w, and Bk(w) is the

length of the longest border of string w which has length at most k (so ignoring any

borders longer than k). Thus if x = babaabababbabaabab, then B(x) = 8, since x

has longest border babaabab, and B4(x) = 3, since the longest border of x which has

length at most 4 is aba. Let Wn be the set of all strings of length n on an alphabet

of size σ. Since W0 contains only the empty string, we have |W0| = 1. We start with

describing the nested intervals theorem.

Theorem 7 If a1, a2, ...an and b1, b2, ..., bn are real numbers and

[a1, b1] ⊇ [a2, b2] ⊇ [a3, b3] ⊇ . . .

26

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

is a sequence of nested closed intervals, then

∞⋂
n=1

[an, bn] 6= ∅.

If also lim
n→∞

(bn−an) = 0, then the infinite intersection consists of a unique real

number.

We need the following lemma.

Lemma 8 (Jamie Simpson)The number of strings of length n on an alphabet of size

σ which have a border of length exactly k (not necessarily the longest border) is σn−k.

Proof. A string with border of length k is periodic with period n − k and so is

determined by its length n− k prefix. This prefix can be chosen in σn−k ways. �

We also need the following formula (obtainable using a computer algebra system):

Lemma 9
∑b

i=amσ
m = σb+1(σ (b+1)−σ−b−1)

(σ−1)2
− σa(aσ−a−σ)

(σ−1)2
.

Clearly |Wn| = σn. The expected size of the longest border of a string of length

n on an alphabet of size σ is therefore

B(n) =
1

σn

∑
w∈Wn

B(w). (3.1)

Similarly, the expected size of the longest border not exceeding k is

Bk(n) =
1

σn

∑
w∈Wn

Bk(w). (3.2)

Clearly B(w) ≥ Bk(w) so

B(n) ≥ Bk(n). (3.3)

27

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Note that if n ≥ 2k then Wn = {uvw : u ∈ Wk, x ∈ Wn−2k, v ∈ Wk} and so

Bk(n) =
1

σn

∑
u∈Wk

∑
x∈Wn−2k

∑
v∈Wk

Bk(uxv). (3.4)

Now Bk(uxv) = Bk(uv) so if n ≥ 2k,

Bk(n) =
1

σn

∑
u∈Wk

∑
v∈Wk

Bk(uv)
∑

x∈Wn−2k

1 (3.5)

=
σn−2k

σn

∑
u∈Wk

∑
v∈Wk

Bk(uv)

=
1

σ2k

∑
w∈W2k

Bk(w)

= Bk(2k).

With (3.3) we then have, for n ≥ 2k,

B(n) ≥ Bk(2k). (3.6)

Now any border that is counted in the right hand side of (3.1) but not counted

on the right hand side of (3.2) has length at least k + 1. The sum of the lengths of

such borders is, by Lemma 8,
n∑

m=k+1

mσn−m.

28

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

So, by Lemma 9 and (3.5),

B(n) ≤ 1

σn
(
∑
w∈Wn

Bk(w) +
n∑

m=k+1

mσn−m) (3.7)

= Bk(n) +
1

σn
(
σn−k+1k + σn−k+1 − σn−kk − σ n− σ + n

(σ − 1)2)

< Bk(n) +
σ−k+1k + σ−k+1 − σ−kk − σ

(σ − 1)2

= Bk(2k) +O(kσ−k).

Thus for all n ≥ 2k,

Bk(2k) ≤ B(n) ≤ Bk(2k) +O(σ−k),

so B(n) is contained in a sequence of nested intervals whose lengths have limit 0. By

Theorem 7, this means the limit of Bn exists. �

Using (3.3) and (3.7) with k = 11 we find that limn→∞B(n) lies in the interval

(1.6356, 1.6420) for binary alphabets. For ternary alphabets using k = 6 the limit lies

in (0.6811, 0.6864).

3.3.2 Average case analysis

With the combinatorics of Section 3.3.1 at our disposal, we can easily complete the

average case analysis of Compute MEC. Clearly, this depends critically on the ex-

pected length of the maximum border of x[1..n]; that is, the expected value of B.

Now, from Section 3.3.1 we know that for a given alphabet size, B approaches a limit

as n goes to infinity. The limit is approximately 1.64 for binary alphabets, 0.69 for

ternary alphabets, and monotone decreasing in alphabet size. Thus

29

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Theorem 10 In the average case, Compute MEC requires O(n) time and Θ(log n)

additional bits of space.

3.4 Enhanced Left Covers and Left Seeds

In [45] the authors extended the concept of the enhanced cover to the notion of

enhanced left covers and enhanced left seeds as follows. A proper prefix u of x =

x[1..n] is an enhanced left cover (respectively, enhanced left seed) of x if u

has at least two occurrences in x and the number of positions in x that lie within

occurrences of u in x (respectively, a superstring of x) is the maximum over all such

prefixes. For example, x = abaabab has enhanced left covers u = ab and aba, both

covering six positions in x, with both occurring twice in x; but its only enhanced left

seed is u = aba, which lies three times in the superstring xa and so covers all seven

positions of x.

Thus, like the minimum enhanced cover array, we can analogously consider the

minimum enhanced left cover (MELC) array and the minimum enhanced left seed

(MELS) array. In fact, [45] provides an O(n log n) algorithm for computing the MELC

array and an O(n2) algorithm for computing the MELS array. Both of these algo-

rithms are extended from the border-based algorithm of [45] that computes MEC. In

this section, we discuss how we can extend our (prefix-based) Compute MEC algo-

rithm to compute the MELC and MELS arrays.

30

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

3.4.1 Minimum Enhanced Left Cover Array (MELC)

We first consider the computation of the MELC array. As before, we also compute

an associated array CMELC, analogous to the CMEC array; that is, CMELC[i] counts the

number of positions in x covered by the prefix of length MELC[i]. Here, for clarity

of presentation, we describe the algorithm assuming that the MEC and CMEC arrays

are already computed. However, in practice we will compute MELC and CMELC on

the fly as part of the computation of MEC and CMEC in Compute MEC. The essential

thing to note is that for MELC we only need to consider a prefix rather than a border

of x. The central argument for the computation of the MELC array from the MEC

and CMEC arrays is presented in Proposition 11 below. For this purpose, we need to

define two functions, MaxCount and CorLen, that work in tandem on a prefix of CMEC,

with MaxCount returning the maximum value in the prefix and CorLen returning the

corresponding value in the MEC array. Importantly, in case of a tie for the maximum

value, CorLen will return the value from the MEC array that is lower. For example,

consider Figure 3.2 and suppose that we are considering CMEC[1..6]. Then MaxCount

will return CMEC[3] = 5 and CorLen will return MEC[3] = 3. Notice that we have

CMEC[8] = CMEC[9] = 8. So, if we consider CMEC[1..9], then MaxCount will return 8 and

CorLen will return 2, because MEC[9] = 2 is lower than MEC[8] = 3.

Proposition 11 Suppose MEC and CMEC have been computed for x. Then MELC and

CMELC are computed according to the following equations:

CMELC[i] = MaxCount(CMEC[1..i]), (3.8)

MELC[i] = CorLen(CMEC[1..i]). (3.9)

31

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

To see that Proposition 11 is correct, we only need to recall that now the cover

need not be a border and hence its last occurrence may end before the (prefix of the)

string under consideration. Clearly this extra work does not change the asymptotic

behaviour of the algorithm: Theorems 6 and 10 hold also for the computation of

MELC.

3.4.2 Minimum Enhanced Left Seed Array (MELS)

The computation of the MELS array is more complicated. The complication arises

because now not only are we looking at the prefix (as opposed to a border) but also

considering a superstring to cover rather than the original string. To comprehend the

new setting let us recall how Compute MEC actually works (see Figure 3.3). The

heart of the computation is the while loop where we fix on a prefix and continue to

work on the shorter prefixes that can cover that prefix. Note that during this while

loop we remain on a particular index i and we only update index i + q′ − 1 of the

MEC and CMEC arrays, where q′ is the length of the prefix we are considering. This

works fine when the prefix under consideration also has to be a border, because then

we know that it must occur at the end aligning with the end of the prefix of the

string under consideration. But for a left seed, more work is required. Now we are

interested in the interval i..i + q′ − 1. Clearly, for the index i + q′ − 1 — that is, for

the string x[1..i+ q′ − 1] — the occurrence of the prefix under consideration — that

is, the prefix of length q′ — is also a border. But for x[1..i+ `− 1] with q′ < ` ≤ B,

x[1..i + l − 1] is a superstring and the prefix of length ` is a left seed. Therefore,

we need to update MELS and CMELS for i+ q′ − 1 based on which prefix covers most,

whereas in Compute MEC we only need to update the index i+ q′− 1 with only one

32

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

procedure Compute MELS(π; MELS, CMELS)
n← |π|
Compute MNC(n,π; B,γ, MNC)
MEC← 0n; CMEC← 0n; PR← 1B

for q ← 1 to B do CPR[q]← q

for i← 2 to n do
q ← π[i]

. x[i..i+q−1] = x[1..q].
while q > 0 do

. x[1..q′] is the longest prefix of x[1..q] without a cover.
q′ ← MNC[q]

. x[1..q′] also occurs at i: update CPR[q′] & PR[q′].
if q′ = q then

if i− PR[q′] < q′ then
CPR[q′]← CPR[q′] + i− PR[q′]

else
CPR[q′]← CPR[q′] + q′

else
q′ ← q

mpf ← B
. New inner while loop starts here

while mpf > q′ do
mp←MNC[mpf]
if mp = q′ then

break
if PRS[mp] > 1 && i+ q′ > PRS[mp] +mp then

if i− PR[mp] < mp then
S1 ← CPR[mp]−mp+ i− PR[mp] + q′

else
S1 ← CPR[mp]+q′

if S1 ≥ Sp then
maxp← mp
Sp ← S1

mpf ← mp− 1
. Update S2 and q′′ depending on Maximum of Sp and CPR[q′]

S2 ← Sp or CPR[q′]
q′′ ← maxp or q′

. Update CMELS & MELS accordingly.
if S2 ≥ CMELS[i+q′−1] then

MELS[i+q′−1]← q′′

if S2 > CMELS[i+q′−1] then
CMELS[i+q′−1]← S2

if PR[q′] = 1 then
PRS[q′]← i

PR[q′]← i
q ← q−1

Figure 3.4: Computing MELS amd CMELS from the prefix array π.

33

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

prefix.

The correctness of Compute MELS readily follows from the above discussion.

However, the running time increases due to the newly introduced inner while loop at

line 17 within the outer while loop. Now if we recall the time complexity analysis of

Compute MEC, we realize that the only change between the two algorithms is that

in the former for each prefix considered we need to do the update on only one index

(that is, index i+ q′ + 1) with one prefix q′, whereas in the latter, we need to update

one index while considering all the prefixes larger than q′. Notice that each prefix

with length ` for a particular substing x[1..i + l − 1] is considered ` times since the

substring can be a superstring of `− 1 substrings of x. There are O(log n) of weakly

periodic prefixes of a string each of which can at most be equal to B. Therefore, a

straightforward analysis gives us a running time of O(nB log n) for Compute MELS.

Recall from Section 3.3.1, that for a given alphabet size, B approaches a limit as n

goes to infinity and monotone decreasing in alphabet size. This ensures that the

running time remains linear in the average case:

Theorem 12 In the average case, Compute MELS requires O(n) time and Θ(log n)

additional bits of space.

However, a more careful analysis of the worst case running time of Compute MELS

can be performed as follows. We have already used the fact from [45] that there are

at most log2 n weakly periodic borders of a string of length n (Lemma 5). However,

this is a consequence of the fact that a weakly periodic border of a string of length

n can be of size at most n/2. Now recall that we are only handling weakly periodic

prefixes in Compute MELS in the inner while loop. And the number of superstrings

involved with each weekly periodic prefix is the length of the current prefix under

34

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

consideration. Summing the lengths of these prefixes yields a geometric series up to

log n that adds up to O(n). This implies that the total work done by the for loop

within the while loop during the complete execution of the algorithm remains O(n).

Hence:

Theorem 13 In the worst case, Compute MELS computes MELS and CMELS from π

using O(n2) time and Θ(B log n) bits of space.

3.5 Comparing Border-Based and Prefix-Based Al-

gorithms

As mentioned above, in order to compute MECx, the authors of [45] made use of the

border array. On the other hand Compute MEC is based on the prefix table. As

we have seen, Compute MEC requires only three additional arrays 1..B of integers,

compared to 4n for the algorithm of [45]. In the next section we will see how use of

the prefix table enables Compute MEC to be extended to indeterminate strings, not

a possibility for a border-based algorithm. Here we compare the time requirements

of the two algorthms, referring to our algorithm as ECP and to the border-based

algorithm as ECB.

We implemented ECP in C# using Visual Studio 2010. We got the implemen-

tation of ECB from the authors of [45]. However, ECB was implemented in C. To

ensure a level playing ground, we re-implemented ECB in C# following their imple-

mentation. Then we ran both the algorithms on all binary strings of lengths 2 to 30.

The experiments were carried out on a Windows Server 2008 R2 64-bit Operating

System, with Intel(R) Core(TM) i7 2600 processor @ 3.40GHz having an installed

35

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

memory (RAM) of 8.00 GB. The results are illustrated in Figures 3.5 and 3.6.

Figure 3.5 shows the maximum number of operations (assignment, comparison,

etc.) carried out by each algorithm. Figure 3.6 shows the ratio of the total number of

operations performed by ECB and ECP to the length n of the string, over all strings

on the binary alphabet. As is evident from the figures, ECP outperforms ECB and

in fact it shows linear behaviour, verifying the claim in Theorem 10 above.

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

m
ax

im
u

m
 n

u
m

b
e

r
o

f
o

p
e

ra
ti

o
n

s

ECB vs. ECP

n x 10

ECB

ECP

length

Figure 3.5: The maximum number of operations performed by the Border-Based
(ECB) [45] and Prefix-Based (ECP) algorithm (i.e., Compute MEC) to compute the
Minimum Enhanced Cover array, for all strings on the binary alphabet.

3.6 Indeterminate Strings

In Sections 3.2 and 3.3 we describe an algorithm to compute the minimum enhanced

cover array MECx of a given string x, based only on the prefix array πx. Then we

have extended this algorithm for minimum enhanced left cover array and minimum

enhanced left seed array in Section 3.4. As noted in the Introduction, since the prefix

36

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ra
ti

o
 o

f
to

ta
l n

u
m

b
e

r
o

f
o

p
e

ra
ti

o
n

s

ECB vs. ECP

log n ECB ECP

length

Figure 3.6: Ratio of the total number of operations performed by the Border-Based
(ECB) [45] and Prefix-Based (ECP) algorithms to the length n of the string, for all
strings on the binary alphabet. Note the linear behaviour of ECP compared to the
slightly supralinear behaviour of ECB.

array can be computed also for indeterminate strings [82], this immediately raises the

possibility of extending the MEC calculation to indeterminate strings.

The nontransitivity of matching inhibits implementation of a sliding cover, but

[8] shows how to compute all the rooted covers of indeterminate x from its prefix

array in O(n2) worst case time, Θ(n) in the average case. Thus it becomes possible

to execute Compute MNC for rooted covers, simply by replacing the function call to

Compute CPR by a function call to PCInd of [8]; that is, to compute the rooted cover

array γ
R

[1..B], hence MNC[1..B] and thus MECx, all for indeterminate strings. Let us

call this new algorithm Compute MEC Ind. We recall now a lemma from [16] stating

that the expected number of borders in an indeterminate string is bounded above

by a constant, approximately 29. Therefore, also for indeterminate strings, B can be

treated as a constant, and we have the following remarkable result:

37

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Theorem 14 In the average case, Compute MEC Ind requires O(n) time and Θ(log n)

additional bits of space.

Clearly, these results can be similarly extended for the MELC and MELS arrays to

indeterminate strings.

3.7 Future Research

In this chapter we have described prefix array based algorithms to compute minimum

enhanced cover arrays, minimum enhanced left cover arrays and minimum enhanced

left seed arrays. The advantages of our prefix array based algorithms are threefold.

Firstly, our prefix-array based algorithms exhibit the same worst case running time

as the border-based algorithms of [45] but are shown to be faster in practice. Sec-

ondly, our algorithms exhibit superior space efficiency. And finally, because of the

robustness of the prefix array, our algorithms, in addition to being faster in practice

and more space-efficient than those of [45], allow us to easily extend the computa-

tion of enhanced covers to indeterminate strings. Additionally, both for regular and

indeterminate strings, our algorithms execute in expected linear time. We have also

established an important theoretical result which we believe is of independent inter-

est: that the expected maximum length of any border of any prefix of a regular string

x is approximately 1.64 for binary alphabets, less for larger ones.

As a future work it is worthwhile to design POS/LEN (compressed prefix array)

version of Compute MEC. Another natural question of course is to investigate whether

the MEC array can be computed in linear time.

38

Chapter 4

Construction of Lyndon Array

Most of the contents of this chapter come from [47].

4.1 Introduction

Recall that, from Chapter 2 that the Lyndon array λ = λx[1..n] (equivalently, L =

Lx[1..n]) of a given nonempty string x = x[1..n] gives at each position i the length

(equivalently, the end position) of the longest Lyndon word starting at i. It has

recently become of interest since Bannai et al. [15] showed that it could be used to

efficiently compute all the maximal periodicities (“runs”) in a string. In this chapter

we describe five algorithms to compute λx, three of them shown experimentally to be

running in Θ(n) time in practice. Section 4.2 makes various observations that apply

generally to the Lyndon array and its computation. In Section 4.3 we describe three

algorithms, two that require O(n2) time in the worst case, of which one is very fast

and apparently linear in practice, the other supralinear in practice and O(n log n)

in the average case on binary strings. The third algorithm is simple and worst-case

39

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

linear-time, but requires suffix array construction and so is a little slower. Section 4.5

describes two variants of a new algorithm that uses only elementary data structures

(no suffix arrays). One variant is O(n2) in the worst case, the other guarantees

O(n log n) time, but with no clear advantage in processing time. Section 4.6 describes

the results of preliminary experiments on the algorithms; Section 4.7 outlines future

work.

4.2 Preliminaries

We begin the section with a “Monge property”. The vectors (i,L[i]) satisfy a Monge

property that is exploited by Algorithm NSV∗ (Section 4.5):

Observation 1 [Monge Property]: Suppose positions i, j in x[1..n] satisfy 1 ≤

i < j ≤ n. Then either L[i] ≤ j or L[i] ≥ L[j]: the vectors (i,L[i]) and (j,L[j]) are

nonintersecting.

Proof. Suppose two such vectors do intersect. Then the maximum-length Lyndon

words w1 = x[i..L[i]] and w2 = x[j..L[j]] have a nonempty overlap, so that we can

write w1 = uv, w2 = vv′ for some nonempty v. But then, by well-known properties

of Lyndon words, w1 < v < w2 < v
′, implying that w1v

′ is a Lyndon word, contra-

dicting the assumption that w1 is maximum-length.

We have the following observation which follows from the Lemma 1 that apply to

the algorithms described below.

Observation 2 Let x = w1w2 · · ·wk be the Lyndon decompostion [23, 40] of x,

with Lyndon words w1 ≥ w2 ≥ · · · ≥ wk. Then every Lyndon word x[i..L[i]] of

40

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

length λ[i] is a substring of some wh, h ∈ 1..k.

Proof. For some h ∈ 1..k−1, consider wh with nonempty proper suffix vh, and for

some t ∈ 1..k−h, consider wh+t with nonempty prefix uh+t. Since wh is a Lyndon

word, wh < vh, and by lexicographic order (see Chapter 2), uh+t ≤ wh+t. Thus

vh > wh ≥ wh+t ≥ uh+t, and so vhwh+1 · · ·wh+t−1uh+t cannot be a Lyndon word

for any choice of h or t.

Therefore to compute Lx it suffices to consider separately each distinct element wh

in the Lyndon decomposition of x. Hence, without loss of generality suppose x is a

Lyndon word and write it in the form x1x2 · · ·xm, where for each r ∈ 1..m, |xr| = `r

and

xr[1] ≤ xr[2] ≤ · · · ≤ xr[`r], (4.1)

while for 1 ≤ r < m,

xr[`r] > xr+1[1]. (4.2)

We call xr a range in x and the boundary between xr and xr+1 a drop. We identify

a position j in range xr, 1 ≤ j ≤ `r, with its equivalent position i in x by writing

i = Sr,j =
∑r−1

r′=1 `r′+j.

Observation 3 Let i = Sr,j be a position in x that corresponds to position j in range

xr.

(a) If xr[j] = xr[`r], then L[i] = i.

(b) Otherwise, L[i] = i′, where i′ is the final position in some range xr′ , r
′ ≥ r;

that is, i′ =
∑r′

s=1 `s.

41

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Proof. (a) is an immediate consequence of (4.1) and (4.2). To prove (b), suppose

that x[i..L[i]] is a maximum-length Lyndon word, where L[i] falls within range r′ but

L[i] < i′. Since by (4.1) x[L(i)] ≤ x[L[i]+1], there are two consecutive Lyndon words

x[i..L[i]],x[L[i]+1] that by the Lyndon decomposition theorem [23] can be merged

into a single Lyndon word x[i..L[i]+1]. Thus x[i..L[i]] is not maximum-length, a

contradiction.

We see then that if xr[j] < xr[`r], then xr[j..`r] is a (not necessarily maximum-length)

Lyndon word, and for i = Sr,j, L[i] ≥ Sr,`r :

1 2 3 4 5 6 7 8 9 10 11 12 13

x = a a a b | a a b | a b | a a b b

L = 13 13 4 4 9 7 7 9 9 13 13 12 13

(4.3)

Expressing a string in terms of its ranges has the same useful lexicographic order

property that writing it in terms of its letters does:

Observation 4 Suppose strings x and y are expressed in terms of their ranges:

x = x1x2 · · ·xm, y = y1y2 · · ·yn. Suppose further that for some least integer

r ∈ 1..min(m,n), xr 6= yr. Then x < y (respectively, x > y) according as xr < yr

(respectively, xr > yr).

Proof. If xr < yr, then either

(a) xr is a nonempty proper prefix of yr; or

(b) there is some least position j such that xr[j] < yr[j].

42

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

In case (a), if r = m, then x is actually a prefix of y, so that x < y, while if r < m,

then by (4.2), xr+1[1] < yr[|xr|+1], and again x < y. In case (b) the result is

immediate. The proof for xr > yr is similar.

4.3 Basic Algorithms

Here we outline three algorithms for which no clear exposition was available prior

to [47]. We remark that the Lyndon array computation is equivalent to “Lyndon

bracketing”, for which an O(n2) algorithm has been described [79].

4.3.1 Folklore — Iterated MaxLyn

For a string x of length n, recall that the prefix table π[1..n] is an integer array

in which for every i ∈ 1 . . n, π[i] is the length of the longest substring beginning at

position i of x that matches a prefix of x. Given a nonempty string x on alphabet

Σ, let us define x′ = x$, where the sentinel $ < µ for every letter µ ∈ Σ.

Observation 5 x is a Lyndon word if and only if for every i ∈ 2 . . n, x′[1 + k] <

x′[i+ k], where k = π[i].

This result forms the basis of the algorithm given in Figure 4.1 that computes the

length max ∈ 1 . . n−j+1 of the longest Lyndon factor at a given position j in x[1..n].

The algorithm has long been existed in the literature but never properly used the word

“Lyndon” (hence the term “Folklore” is used). Its efficiency is a consequence of the

instruction i ← i + k + 1 that skips over positions in the range i + 1 . . i + k − 1,

43

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

effectively assuming that for every position i∗ in that range, i∗ + π[i∗] ≤ i+k. The

following result justifies the strategy employed in Algorithm MaxLyn (Figure 4.1):

Lemma 6 Suppose that for some position i in a Lyndon word x[1..n], k = π[i] ≥ 2.

Then for every j ∈ i+ 1 . . i+ k − 1, π[j] ≤ i+ k − j.

Proof. The result certainly holds for i+k = n+1, so we consider i+k ≤ n. Assume

that for some j ∈ i+ 1 . . i+ k − 1, π[j] > i+ k − j. It follows that

x[1 . . i+ k − j + 1] = x[j . . i+ k], (4.4)

while x[j−i+1 . . k] = x[j . . i+k−1]. Since x is Lyndon, therefore x[1+k] < x[i+k],

and so we find that

x[j − i+ 1 . . 1 + k] < x[j . . i+ k]. (4.5)

From (4.4) and (4.5) we see that x[1..k + 1] has suffix x[j − i + 1..k + 1] satisfying

x[j− i+1..k+1] < x[1..i+k−j+1], contradicting the assumption that x is Lyndon.

Simply repeating MaxLyn at every position j of x gives a simple, fast O(n2) time

and O(1) additional space algorithm to compute λx.

Recent work on the prefix table [19, 24] has confirmed its importance as a data

structure for string algorithms. In this context it is interesting to find that Lyndon

words x can be characterized in terms of πx:

Observation 7 Suppose x = x[1 . . n] is a string on alphabet Σ such that x[1] is the

least letter in x. Then x is a Lyndon word over Σ if and only if for every i ∈ 2 . . n,

44

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

procedure MaxLyn(x[1 . . n], j,Σ) : integer
i← j + 1; max← 1
while i ≤ n do
k ← 0
while x′[j + k] = x′[i+ k] do
k ← k + 1

if x′[j + k] < x′[i+ k] then
i← i+ k + 1; max← i− 1

else
return max

Figure 4.1: Algorithm MaxLyn

(a) i+ πx[i] < n+ 1; and

(b) for every j ∈ i+ 1 . . i+ πx[i]− 1, j + πx[j] ≤ i+ πx[i].

4.3.2 Recursive Duval Factorization: Algorithm RDuval

Rather than independently computing the maximum-length Lyndon factor at each

position i, as MaxLyn does, Algorithm RDuval recursively computes the Lyndon

decomposition into maximum factors, at each step taking advantage of the fact that

L[i] is known for the first position i in each factor, then recomputing with the first

letters removed. By Observation 2, whenever x = x[1..n] is a Lyndon word, we

know that L[1] = n. Thus computing the Lyndon decomposition x = w1w2 · · ·wk,

w1 ≥ w2 ≥ · · · ≥ wk, allows us to assign λ[ij] = |wj |, where ij is the first position

of wj , j = 1, 2, . . . , k.

Algorithm RDuval applies this strategy recursively, by assigning λ[ij] ← |wj|,

then removing the first letter ij from each wj to form w′j , to which the Lyndon

decomposition is applied in the next recursive step. This process continues until each

Lyndon word is reduced to a single letter.

45

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

The asymptotic time required for RDuval is bounded above by n times the max-

imum depth of the recursion, thus O(n2) in the worst case — consider, for example,

the string x = an−1b. However, to estimate expected behaviour, we can make use of

a result of Bassino et al. [17]. Given a Lyndon word w, they call w = uv the stan-

dard factorization of w if u and v are both Lyndon words and v is of maximum

size. They then show that if w is a binary string (Σ = {a, b}), the average length

of v is asymptotically 3|w|/4. Thus each recursive application of RDuval yields a

left Lyndon factor of expected length |w|/4 and a remainder of length 3|w|/4 to be

factored further. It follows that the expected number of recursive calls of RDuval is

O(log4/3 n). Hence

Lemma 8 On binary strings RDuval executes in O(n log4/3 n) time on average.

Example 9 For

1 2 3 4 5 6 7 8 9 10 11 12

x = a a b a a b b a b b a b

λ = 12 2 1 9 3 1 1 3 1 1 2 1

the factors considered are first 1–12, then

• 2–3 and 4–12 in the first level of recursion;

• 3, 5–7, 8–10 and 11–12 in the second level;

• 6, 7, 9, 10, 12 in the third level.

Positions are assigned as follows: λ[1] ← 12;λ[2] ← 2,λ[4] ← 9;λ[3] ← 1,λ[5] ←

3,λ[8]← 3,λ[11]← 2;λ[6]← 1,λ[7]← 1,λ[9]← 1,λ[10]← 1,λ[12]← 1.

46

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

4.3.3 NSV Applied to the Inverse Suffix Array

The idea of the “next smaller value” (NSV) array for a given array (string) x has

been proposed in various forms and under various names [9, 43, 74, 52].

Definition 10 (Next Smaller Value) Given an array x[1..n] of ordered values,

NSV = NSVx[1..n] is the next smaller value array of x if and only if for every

i ∈ 1..n, NSV[i] = j, where

(a) for every h ∈ 1..j−1, x[i] ≤ x[i+h]; and

(b) either i+j = n+1 or x[i] > x[i+j].

Example 11

1 2 3 4 5 6 7 8 9 10

x = 3 8 7 10 2 1 4 9 6 5

NSVx = 4 1 2 1 1 5 4 1 1 1

As shown in various contexts in [52], NSVx can be computed in Θ(n) time using a

stack. Our main observation here, touched upon in [54], is that λx can be computed

merely by applying NSV to the inverse suffix array ISAx. Here we present the very

simple Θ(n)-time, Θ(n)-space algorithm for this calculation:

procedure NSVISA(x[1 . . n]) : λx[1 . . n]
Compute SAx (see [73, 77])
Compute ISAx from SAx in place (see [77])
λx ← NSV(ISAx) (in place)

Figure 4.2: Apply NSV to ISAx

The following theorem as well as the proof is due to Jamie Simpson based on

discussion with W. F. Smyth, that justifies Algorithm 4.2:

47

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Theorem 12 For a given string x = x[1..n] on totally ordered alphabet Σ, λx =

NSVISAx.

Proof. Consider the longest Lyndon word beginning at x[i] which is x[i..i+λ[i]−1].

Since it is Lyndon we have

x[i..i+ λ[i]− 1] < x[j..i+ λ[i]− 1] (4.6)

for each j ∈ [i+ 1..i+ λ[i]− 1] and therefore

x[i..n] < x[j..n]

for j ∈ [i+1..i+λ[i]−1]. This means that for j ∈ [i+1..i+λ[i]−1], ISA[j] > ISA[i],

hence if there exists a value of ISA[j] smaller than ISA[i] with j > i then it must

occur with j ≥ i+λ[i], so NSV[i] ≥ λ[i]. Suppose we have strict inequality here which

means ISA[i + λ[i]] > ISA[i]. Which leads to the following

x[i+ λ[i]..n] > x[i..n]

and

x[i+ λ[i]..i+ λ[i]] > x[i..i+ λ[i]]

that means Equation 4.6 holds for j ∈ [i+1..i+λ[i]]. This means that x[i..i+λ[i]] is a

Lyndon word, which is a contradiction. We conclude that NSV[i] ≥ λ[i] for i = 1, ..., n

and we are done.

If there is no value ISA[j] smaller than ISA[i] with j > i then NSV[i] = n+1−i.

Therefore x[j..n] > x[i..n] for all j ∈ [i + 1..n], hence x[i..n] is Lyndon and λ[i] =

48

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

n+ 1− i = NSV[i].

4.4 Elementary Computation of λx by Comparing

Ranges

Consider ranges xr and xr′ in x, 1 ≤ r < r′ ≤ m, and let fr′ be the frequency of

xr′ [1]; that is, the largest integer such that xr′ [fr′] = xr′ [1]. Let c be the largest

integer such that xr[c..c+fr′−1] = xr′ [1..fr′], or c = 0 if there is no such integer.

We call c = c(r, r′) the critical point of range xr with respect to xr′ — that is, of

range match (r : r′).

Observation 13 For every j ∈ 1..c− 1, xr[j..`r] < xr′; for every j ∈ c+ 1..`r,

xr[j..`r] > xr′.

Thus only at a critical point j = c(r, r′) is it necessary to do pattern-matching in

order to determine whether xr[j..`r] >,=, < xr′ , r
′ > r. This processing requires

at most min(`r, `r′) ≤ `r letter comparisons. Since for each range xr′ , fr′ can be

determined by linear-time preprocessing, we have

Observation 14 For every choice of r and r′ satisfying 1 ≤ r < r′ ≤ m, and over

all j ∈ 1..`r, the `r comparisons

xr[j..`r] : xr′

can be performed in O(`r) total time.

49

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

We now describe a simple algorithm that makes use of the ranges to compute the

Lyndon array Lx of a given string x = x[1..n]. The outline is given in Figure 4.3.

procedure RangeLyndon(x, n,m)
for r ← m downto 1 do
. RHS computes L[i] for the righthand positions j in xr
. such that xr[j] > xr+1[1]; it returns the rightmost position jR,
. if any, such that xr[jR] ≤ xr+1[1]; otherwise, zero.
jL ← jR ← RHS(r); r′ ← r+1

. The main loop for xr computes the critical points jL = c(r, r′) for

. successive values of r′ until Lr,j is computed for every j. FIND

. and COMP identify subranges xr[jL..jR] of equal letters that

. match a maximum-length prefix of xr′ ; only for substring pairs

. beginning at xr[jR+1] and xr′ [fr′+1] is pattern-matching required.
while jL > 0 do

(jL, jR, r
′)← FIND(r, jL, jR, r

′)
if jL > 0 then (jL, jR, r

′)← COMP(r, jL, jR, r
′)

Figure 4.3: Algorithm RangeLyndon computes Lx of x = x1x2 · · ·xm. Only at
critical points jL = c(r, r′) does it need to do pattern-matching; otherwise all Lr,j are
computed in constant time.

procedure RHS(r)
j ← `r
while j > 0 and xr[j] = xr[`r] do
Lr,j ← Sr,j; j ← j−1

while j > 0 and xr[j] > xr+1[1] do
. Recall xm+1 = $.
Lr,j ← Sr,`r ; j ← j−1

return j

Figure 4.4: Compute L for all positions j such that xr[j] > xr+1[1].

To simplify description of the algorithm, we suppose that the given string x is

bracketed by the sentinel $, a letter less than any other letter in the alphabet. Thus,

for abbacd, we suppose x = $abbacd$. Further, for accesses xr[0], we suppose that

for r > 1, xr[0] = xr−1[`r−1], while x1[0] = $.

50

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

procedure FIND(r, jL, jR, r
′)

EXIT← FALSE

while jL > 0 and not EXIT do
. Count matches with xr′ [1]; initially xr[j] = xr′ [1], jL ≤ j ≤ jR.
count← jR − jL + 1
. Skip segments starting at r′ greater than segments starting at r.
while (count > fr′ and xr[jL] = xr′ [1]) or xr[jL] < xr′ [1] do
i′ ← Lr′,1+1; r′ ← S−1

i′

if r′ = m+1 then
. Special case: end of input string.
while jL > 0 do Lr,jL ← Sm,`m ; jL ← jL−1
return 0, 0, r′

. Identify the “critical range” jL..jR.
while (jL > 1 and count < fr′ and xr[jL−1] = xr′ [1])
or xr[jL] > xr′ [1] do
. Count the number of letters which represent xr[jL]:
. if the letter changes, adjust jR and set count← 1.
count← count+1; Lr,jL ← Sr′,1−1; jL ← jL−1
if xr[jL] < xr[jL+1] then jR ← jL; count← 1

if count = fr′ then EXIT← TRUE xr[jL..jR] = xr′ [1..fr′].
elsif xr[jL] = xr′ [1] then
. xr[jL..jR] > xr′ [1..fr′]: position jL not critical for this r′.
Lr,jL ← Sr′,1−1; jL ← jL − 1; jR ← jL

return jL, jR, r
′

Figure 4.5: Find the next critical point jL = c(r, r′) to the left of the current position
jR in xr, updating r′ as required.

Algorithm FIND computes Lr,j in constant time per position j that is greater than

the current critical point jL = c(r, r′) — initially r′ = r+1. When position j = jL

is critical, COMP performs pattern-matching to determine the relationship between

xr[jL..`r] and xr′ — or, more precisely, between substrings beginning xr[jR+1..`r]

and xr′ [fr′+1..`r′], respectively. Then, for j such that xr[j..`r] < xr′ , as must be

true for every j ∈ 1..c(r, r′)−1, FIND and COMP may be called again to continue

checking against the appropriate xr′ , r
′ > r+1.

51

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

procedure COMP(r, jL, jR, r
′)

EXIT← FALSE

repeat
. MATCH returns δ = −1, 0,+1 according as

. (for r′ = r + 1) xr[jR + 1] . . .xr′−1[`r′−1] <,=, > xr′ [fr′ + 1] . . .;

. (else) xr[jL] . . .xr′−1[`r′−1] <,=, > xr′ [1] . . . — taking account

. of range boundaries and end condition xm+1 = $.
δ ← MATCH(r, jL, jR, r

′)
if δ = 1 then

if r′ = r+1 then Lr,jL ← Sr,`r else Lr,jL ← Lr′−1,1

jL ← jL−1
if xr[jL] < xr[jL + 1] then jR ← jL
return jL, jR, r

′

elsif (δ = 0 and (Lr′,1 − Sr′,1 + 1) = (Sr′,1 − Sr,jL)) then
Lr,jL ← Sr′,1 − 1; EXIT← TRUE

else
Lr,jL ← Lr′,1

. Recompute r′ for next match.
i′ ← Lr′,1+1; r′ ← S−1

i′

until EXIT
jL ← jL−1
if xr[jL] < xr[jL + 1] then jR ← jL
return jL, jR, r

′

Figure 4.6: Compute Lr,j for all positions j ∈ 1..c(r, r′), taking account of the Monge
property that arcs (xr[j],Lr,j) cannot intersect (Observation 1).

Thus RangeLyndon performs pattern-matching between ranges xr and xr′ only

from the critical point jL = c(r, r′) (if it exists). Note that if the substring starting

at xr[j] is less than or equal to a substring starting at xr′ , then so a fortiori is the

one starting at xr[j−1] — this condition is the basis of the Monge property that arcs

(xr[j],Lr,j) are nonintersecting (Observation 1).

Observation 15 For range matches (r : r+1), 1 ≤ r ≤ m−1, the maximum total

number of letter matches performed by RangeLyndon is n−`m, based on m−1 range

matches.

52

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Thus if no matches (r : r′), r′ > r+1, are performed, RangeLyndon executes in Θ(n)

time. Indeed, if only range matches (r : r+1) and (r : r+2) occur, then RangeLyndon

will have a maximum 2(n−`m)−`m−1 letter matches, and so will again execute in

linear time. We see that if there exists a positive integer t, independent of n, such

that no matches (r : r′), r′ > r+t, are performed, then in this case also RangeLyndon

is linear. For range xr in x, let RMr denote the number of right range matches

(r : r′), r′ > r, performed by RangeLyndon.

Lemma 16 For r ∈ 1..m, the maximum value of RMr is dlog2(m−r+1)e.

Proof. The maximum will be achieved if ranges are initially compared in pairs, then

in pairs of pairs, and so on. Thus range xr will be matched against ranges xr+h,

h = 2j, for every j ≥ 0 such that r+h ≤ m. Accordingly, for ranges xm,xm−1, . . .,

the number of right matches will be 0, 1, 2, 2, 3, 3, 3, 3, . . .; in general dlog2(m−r+1)e,

as required.

Lemma 17 Let RM∗(k) denote the maximum number of range matches needed by

Algorithm RangeLyndon to compute λx, where x has length n with m = 2k ranges,

k = 0, 1, Then RM∗(k) = m(log2m−1)+1 ∈ Θ(n log n).

53

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Proof. From Lemma 16, we may write

RM∗(k) =
k∑
j=1

j2j−1

=
k−1∑
j=1

j2j +
k−1∑
j=0

2j

=
(
(k − 1)(2k+1−2k)−2k+2

)
+ (2k−1) [61, p. 33]

= (k − 1)2k+1,

and so RM∗(k) = m(log2m−1)+1. Since every range xr is compared with range

xr+2, we may assume without loss of generality that range length is a constant `.

Thus n = m` and RM∗(k) ∈ Θ(n log n), as required.

We may construct strings yk whose range matches achieve the maximum of Lemma 17.

For some integer q > 0, let y0 = aqb0, and then for k ≥ 1, let yk = yk−1y
′
k−1, where

for 0 ≤ h ≤ k−1, y′h is identical to yh except that bh+1 replaces bh. We suppose

b0 < b1 < · · · < bk. Then for y1 = aqb0a
qb1 with 21 ranges and matches {1, 0}, and

for y2 = aqb0a
qb1a

qb0a
qb2 with 22 ranges and matches {2, 2, 1, 0}; and in general for

yk with 2k ranges, it is easy to see that the range matches are greatest possible. Note

that |yk| = (q+1)2k. Thus:

Lemma 18 Algorithm RangeLyndon requires Ω(n log n) time in the worst case.

As stated, Lemma 17 applies only to strings formed from ranges whose num-

ber is an exact power of 2. Nevertheless, in view of Lemma 16, the general result

of Lemma 17, that RM∗ ∈ O(n log n), must hold also for strings formed from any

54

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

intermediate number of ranges: the detailed calcuation will merely be more compli-

cated. Furthermore, without loss of generality, we can make two other simplifying

assumptions:

• Every critical point occurs at the beginning of its range. This assumption

ensures that in any range match (r : r′), every position in range xr will require

a letter match, thus maximizing letter matches with respect to string length.

• Every range match goes to the end of the range, again with the effect of maxi-

mizing letter matches.

In view of the fact that all adjacent ranges are compared, these two assumptions

imply that the number of letter matches in each individual range match equals (is

bounded by) constant range length `.

4.5 Computation of λx Using Ranges and NSV

Idea

In this section we describe an approach to the computation of λx that applies a

variant of the NSV idea to the ranges of x. Figure 4.7 gives pseudocode for Algorithm

NSV∗ that uses the NSV stack ACTIVE to compute λ. The processing identifies ranges

in a single left-to-right scan of x, making use of two range comparison routines, COMP

and MATCH. COMP compares adjacent individual ranges xr and xr+1, returning

δ1 = −1, 0,+1 according as xr < xr+1, xr = xr+1, xr > xr+1. MATCH similarly

55

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

returns δ2 for adjacent sequences of ranges; that is,

Xr = xrxr+1 · · ·xr+s, for some s ≥ 1;

Xr+s+1 = xr+s+1xr+s+2 · · ·xr+s+t, for some t ≥ 1.

Algorithm NSV∗ is based on the idea encapsulated in the proof of Theorem 12,

the main basis of the correctness of Algorithm NSVISA. We process x from left to

right, using a stack ACTIVE initialized with index 1. At each iteration, the top of

the stack (say, j) is compared with the current index (say, i). In particular, we need

to compare sx(i) with sx(j), where sx(i) ≡ x[i..n]. As long as sx(i) � sx(j),

NSV∗ pushes the current index and continues to the next. When sx(i) ≺ sx(j), it

pops the stack and puts appropriate values in the corresponding indices of λx. As

noted above, especially Observations 2–1, ranges are employed to expedite these suffix

comparisons.

Two auxiliary arrays, nextequal and period, are required to handle situations in

which MATCH finds that a suffix of a previous range at position j equals the current

range at position i. Thus, when δ2 = 0, the algorithm assigns nextequal[j]← i before

i is pushed onto ACTIVE. Then when a later MATCH yields δ2 = 0, the value of

period — that is, the extent of the following periodicity — may need to be set or

adjusted, as shown in the following example:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x = a a a b a a b a a b a a b a b

nextequal = 0 5 0 0 8 0 0 11 0 0 0 14 0 0 0

period = 0 12 0 0 9 0 0 6 0 0 0 4 0 0 0

56

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

procedure NSV* (x,λ)
nextequal← 0n; period← 0n

push(ACTIVE)← 1

. x[n+1] = $, a letter smaller than any in Σ.
for i← 2 to n+1 do

prev← 0; j ← peek(ACTIVE)
. COMP compares suffixes specified by i, j of two ranges.
δ1 ← COMP(x[j],x[i]); δ2 ← 1

while (δ1 ≥ 0 and δ2 > 0) do
if δ1 = 0 then δ2 ← MATCH(x[j],x[i])
if δ2 > 0 then

if prev = 0 or nextequal[j] 6= prev then λ[j]← i−j
else
λ[j]← offset← prev−j
if period[prev] = 0 then

if λ[prev] > offset then
λ[j]← λ[j]+λ[prev]

else
if nextequal[j] = prev and offset 6= λ[prev] then
λ[j]← λ[j]+period[prev]

if λ[prev] = offset then
. Current position is a part of periodic substring

if period[prev] = 0 then
period[j]← period[prev] + 2× offset

else
period[j]← period[prev]+offset

pop(ACTIVE)
prev← j; j ← peek(ACTIVE)
. Empty stack implies termination.
if j = 0 then EXIT

δ1 ← COMP(x[j],x[i])
. Finished processing i — it goes to stack.

if δ2 = 0 then nextequal[j]← i
push(ACTIVE)← i

Figure 4.7: Computing λx using modified NSV

57

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

A straightforward implementation of COMP and MATCH could require a num-

ber of letter comparisons equal to the length of the shorter of the two sequences of

ranges being matched. However, by performing Θ(n)-time preprocessing, we can

compare two ranges in O(σ) time, where σ = |Σ| is the alphabet size. Given

Σ = {µ1, µ2, . . . , µσ}, we define Parikh vectors Pr[1..σ], where Pr[j] is the number

of occurrences of µj in range xr. Since ranges are monotone nondecreasing in the

letters of the alphabet, it is easy to compute all the Pr, r = 1, 2, . . . ,m, in linear time

in a single scan of x. Similarly, during the processing of each range xr, any value

Pr,j, the Parikh vector of the suffix xr[j..`r], can be computed in constant time for

each position considered. Thus we can determine the lexicographical order of any two

ranges (or part ranges) xr and xr′ in O(σ) time rather than time O(max(`r, `r′)).

The variant of NSV∗ that uses Parikh vectors is called PNSV∗; otherwise NPNSV∗ for

Not Parikh.

Here we describe a simple data structure that yields an alternative approach to

Algorithm NSV∗, based on the comparison of longest Lyndon factors as described in

Proof of Theorem 12. The dictionary of basic factors [28, 30] of string x[1..n]

consists of a sequence of arrays Dt, 0 ≤ t ≤ log n. The array Dt records information

about factors of x of length 2t — that is, the basic factors. In particular, Dt[i] stores

the rank of x[i..i+ 2t − 1], so that

x[i..i+ 2t − 1] � x[i..i+ 2t − 1]⇔ Dt[i] ≤ Dt[i].

This dictionary requires O(n log n) space and can be constructed in O(n log n) time

as follows. D0 contains information about consecutive symbols of x and hence can be

computed in O(n log n) time by sorting all the symbols appearing in x and mapping

58

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

them to numbers from 1 and onward. Once Dt is computed, we can easily compute

Dt+1 by spending O(n) time on a radix sort, because u[i..i + 2t+1 − 1] is in fact a

concatenation of the factors u[i..i+ 2t − 1] and u[i+ 2t..i+ 2t+1 − 1].

Once this dictionary is computed, we can compare any two factors by comparing

two appropriate overlapping basic factors (i.e., factors having length power of two),

which is done by checking the corresponding D array from the dictionary. This will

require constant time and hence each suffix-suffix comparison can be done in constant

time.

Now consider the worst case behaviour of Algorithm NSV∗. Given the initial string

x0 = ahbahc0, h ≥ 1, c0 > b > a, let x
(h)
k = xk = xk−1x

∗
k−1, k = 1, 2, . . . , with x∗k−1

identical to xk−1 except in the last position, where the letter ck > ck−1 replaces ck−1.

Then xk has length n = (h+1)m, where m = 2k+1 is the number of ranges in xk.

Consider the vectors formed in the proof of Lemma 16 that count range matches.

Each position in the righthand vector (1, 0) is clearly largest possible over all selec-

tions of ranges, as are the preceding positions (2, 2). Similarly, none of the values in

(3, 3, 3, 3) can possibly be greater than 3: in each case the three matches result from

inequalities in the last positions of the ranges being matched. We see that in fact

the vector corresponding to xk must be maximal, and so, when each range match

requires constant time (proportional to σ):

Lemma 19 Algorithm PNSV∗ computes λx in O(n log n) time for all x.

Consider now the execution of NPNSV∗ on the strings xk. Instead of one comparison

per range match by PNSV∗, now h+1 letter comparisons are required. For h = 1, the

number of comparisons per range match is therefore 2, a multiple by a constant factor,

thus still linear time per match. For arbitrary h > 2, the number of comparisons

59

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

increases by a factor of h, but at the same time range length (and therefore string

length) increases by a factor of (h+1)/2, so that still O(n log n) ranges are processed

in O(n log n) time. Thus

Lemma 20 Algorithm NPNSV∗ computes λx in O(n log n) time for all x.

4.6 Experimental Results

We have done preliminary tests on the algorithms described above, including the

two variants of NSV∗. The equipment used was an Intel(R) Core i3 at 1.8GHz and

4GB main memory under a 64-bit Windows 7 operating system. Figure 4.8 shows

the results of exhaustive tests of the algorithms on all binary strings of lengths 11–

22, with all but RDuval displaying linear-time behaviour. MaxLyn and NPNSV∗ are

roughly equivalent in time requirement, with NSVISA several times slower, PNSV∗

perhaps 10 times slower.

We have also tested the linear average-case algorithms on much longer binary

strings, several megabytes in length, both random and highly periodic [48]. On ran-

dom strings, PNSV∗ and NPNSV∗ are comparable in speed and fastest by a factor of 2

or 3, while on the periodic strings, MaxLyn has an advantage by approximately the

same margin. More testing needs to be done, especially on strings defined on larger

alphabets, but of the current collection, it appears that the two new O(n log n)-time

algorithms are the algorithms of choice.

60

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

0.00

0.25

0.50

0.75

12.5 15.0 17.5 20.0 22.5
Length

T
im

e

Algorithm

NSVISA

MaxLyn

NPNSV*

PNSV*

RDuval

Figure 4.8: Five algorithms compared on all binary strings of lengths n ∈ 11..22: the
average processing time for each n is given in 10−4 seconds. For all the algorithms
except RDuval, the pre-processing time is independent of length n. So the increase
of time is very small which results very small amount of slope for the corresponding
lines.

4.7 Future Work

There is reason to believe [62] that the Lyndon array computation is less hard than

suffix array construction. Recently an algorithm is proposed in [13, 14], that computes

the sorted Lyndon Array in linear time using elementary methods. However the

algorithm requires a deal of space. Thus a space-efficient linear-time algorithm is a

high priority and left open as a possible future research direction.

61

Chapter 5

Reconstructing a String from its

Lyndon Arrays

The contents of this chapter have been published in [7].

5.1 Introduction

Recall from Chpater 2, a primitive string x that is lexicographically least among all its

rotations is said to be a Lyndon word. As a consequence of their interesting properties,

Lyndon words have been much studied: the existence of a unique factorization x =

w1w2 · · ·ws of a string into Lyndon words w1 ≥ w2 ≥ · · · ≥ ws was demonstrated

some 60 years ago [23] and a simple linear-time algorithm to compute the Lyndon

factorization was proposed a quarter-century later [40].

In fact, Lyndon words are a special case of Unique Maximal Factorization Families

(UMFFs), that over the last 15 years have also been studied extensively [32, 33, 35,

34]. When every factor wj , 1 ≤ j ≤ s, of a (not necessarily Lyndon) factorization

62

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

of x belongs to a specified set W , we say that it is a factorization of x over W ,

denoted by FW(x). Then a subset W ⊆ Σ+ is a factorization family (FF) if and

only if for every nonempty string x on Σ there exists a factorization FW(x). If W is

an FF on an alphabet Σ, then W is said to be a unique maximal factorization

family (UMFF) if and only if there exists a unique factorization FW(x) for every

string x ∈ Σ+. We expect that the results given here for Lyndon arrays can be

generalized to UMFFs.

The Lyndon array λ = λx[1..n] (equivalently, L = Lx[1..n]) of a given x = x[1..n]

gives at each position i the length (equivalently, the end position) of the longest (or

maximal) Lyndon word starting at i. Thus Lx[i] = λx[i] + i− 1. Apparently

first introduced as “Lyndon bracketing” [79], the Lyndon array has recently become

of interest because of the central role it plays in the surprising and simple proof

[15] that the maximum number ρ(n) of maximal periodicities (runs) in any string

of length n satisfies ρ(n) < n. In the previous chapter we showed algorithms to

compute λx, exhibiting several that apparently execute in linear expected time, while

conjecturing that there exists a worst-case linear-time algorithm to compute λx that

is “elementary” — not a precise term, but we intend by it an algorithm that computes

local features of a string while avoiding prior computation of global data structures

such as the suffix array. Indeed, such an algorithm has recently been found [13, 14] as

a first step in a two-step non-recursive linear-time suffix array construction algorithm.

63

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Here is an example of a Lyndon array, taken from [47]:

1 2 3 4 5 6 7 8 9 10

x = a b a a b a b a a b

λx = 2 1 5 2 1 2 1 3 2 1

Lx = 2 2 7 5 5 7 7 10 10 10

(5.1)

Since λ and L are arrays of positive integers, it is natural to ask under what con-

ditions a given integer array is a Lyndon array. In Section 5.2 we give necessary

and sufficient conditions that a given integer array L∗ is a Lyndon array Lx of some

string x on some alphabet Σ. We then describe linear-time algorithms that compute

a string x corresponding to a given Lyndon array L∗ — the problem of computing a

lexicographically least such string on a minimum-size alphabet appears to be compu-

tationally difficult. Finally we describe a linear-time algorithm to determine whether

or not a given integer array is a Lyndon array of some string.

In Section 5.3 we go on to establish a “reverse engineering” result for Lyndon

arrays; that is, given certain Lyndon arrays Lx based on orderings of a given alphabet

Σ of size σ, what can be said about the corresponding string x? This kind of problem

was first introduced in [46, 41] for the border array, then later considered for various

common string data structures; for example, prefix tables [25, 2, 24], KMP arrays

[42, 50, 51], cover arrays [29], and many others. Section 5.3 also presents an O(σn)-

time algorithm to compute the unique string x determined by the Lyndon arrays

computed for σ rotations of the alphabet. In Section 5.4 we discuss a variety of open

problems arising.

64

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

5.2 When is L∗ a Valid Lyndon Array of Some

String?

Observation 1 from Chapter 4 tells us that a nonintersecting, or Monge-like, property

necessarily holds for the arcs (i,L[i]) determined by the Lyndon array Lx of every

string x. To see that this property is also sufficient, consider an integer array L∗[1..n]

in which i ≤ L∗[i] ≤ n for every i ∈ 1..n, and where either L∗[i] < j or L∗[i] ≥ L∗[j]

for every 1 ≤ i < j ≤ n. Suppose an alphabet Σ = {µ1, µ2, . . . , µn} is given, with

µ1 < µ2 < · · · < µn. We now outline an algorithm (see Figure 5.1) that assigns the n

letters of Σ to positions in x in such a way that Lx = L∗.

procedure SimpleAssign (L∗, n,Σ, σ;x)
Radix sort pairs (L∗[i], i), 1 ≤ i ≤ n, in ascending

order of i within descending order of L∗[i]
to form sorted positions I = I[1..n].

for j ← 1 to n do
x[I[j]]← j

Figure 5.1: Given a valid Lyndon array L∗ and an ordered alphabet Σ = {1, 2, . . . , n},
in O(n) time construct a string x on Σ whose Lyndon array is L∗.

This algorithm ensures that arcs (i,L∗[i]) are processed in descending order of

L∗[i] — specifically, so that for all i1, i2, . . . , im such that

L∗[i1] = L∗[i2] = · · · = L∗[im], i1 < i2 < · · · < im,

it follows that x[i1] < x[i2] < · · · < x[im]. Thus for each choice of L∗[i], we ensure

that L∗[i] = Lx[i]. The descending order, together with the nonintersecting property,

then guarantees that this identity holds for all i, and so the nonintersecting property

is sufficient to ensure that L∗ is the Lyndon array of some string — in particular x.

65

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Thus:

Lemma 1 Suppose that L∗[1..n] is an integer array such that 1 ≤ L∗[i] ≤ n for all

i ∈ 1..n. Then L∗ is a Lyndon array Lx of some string x if and only if for all i, j

such that 1 ≤ i < j ≤ n, either L∗[i] < j or L∗[i] ≥ L∗[j].

For the example (5.1), Algorithm SimpleAssign yields the following:

1 2 3 4 5 6 7 8 9 10

L∗ = 2 2 7 5 5 7 7 10 10 10

I = 8 9 10 3 6 7 4 5 1 2

x = 9 10 4 7 8 5 6 1 2 3

(5.2)

In an effort to construct a string x on a smaller alphabet, we employ a strategy

(see Figure 5.2) that for each range of increasing values in I (that is, for each maximal

Lyndon word of length at least two):

• chooses an initial letter one greater than the initial letter in the immediately

following maximal Lyndon word;

• assigns the same letter to consecutive positions at the beginning of the current

maximal Lyndon word — but excluding the final position;

• thereafter increments the letter by one at each successive position.

For example, in (5.2), after selecting x[8..10] = 112, we choose

x[3] = 2, x[6] = 3, x[7] = 4,

66

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

corresponding to I[4..6] = 367 and ensuring that Lx[5] ≤ 5. Then, for I[7..8] = 45,

we choose

x[4] = 4, x[5] = 5,

finally yielding x = 3424534112, on an alphabet of size 5 rather than 10, but still

far from the minimum of 2 (x = 1211212112). Clearly Algorithm BetterAssign also

executes in O(n) time; it yields the same worst-case result as SimpleAssign (when

I = n, n−1, . . . , 1), but otherwise finds a string x on a smaller alphabet.

procedure BetterAssign (L∗, n,Σ, σ;x)
Compute I[1..n] as in SimpleAssign
I[n+1]← 0;h← 1; i← 1
while i ≤ n do
. Assign letters to range of increasing values from I[i].

repeat
. Consecutive positions at start of range are identical.

x[I[i]]← h; i← i+1
until I[i+1] 6= I[i]+1
if I[i+1] < I[i] then
. End position in range must be incremented.

x[I[i]]← h+1; i← i+1
else

repeat
. Elsewhere in range every position is incremented.

h← h+1; x[I[i]]← h; i← i+1
until I[i] < I[i−1]

. Reset h depending on the next range in x.
if i ≤ n then

j ← i
while I[j+1] > I[j] do j ← j+1

h← x[I[j]+1]+1

Figure 5.2: Construct a string x on a subset of Σ = {1, 2, . . . , n} with Lyndon array
L∗.

67

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

We know of no approach other than brute force (trial and error) to the computa-

tion of x on a minimum alphabet consistent with L∗. Hence

Problem 2 Given a valid Lyndon array L∗, what is the complexity of the problem of

constructing a string x on a minimum alphabet consistent with L∗?

We turn now to the problem of determining whether or not a given integer array

L∗ is valid; that is, whether or not it is a Lyndon array of some string. To solve this

problem we introduce Algorithm CheckLyndon (see Figure 5.3), based on Lemma 1.

It processes the segments (i,L∗[i]) in ascending order of position i and places the

“end” of each nontrivial segment on the stack. Before doing so, it checks to see if

any previous end lies within the current segment: if so, L∗ cannot be a Lyndon array.

If not, then either the previous entry ended before the current range and so can be

deleted from the stack, or else it includes the current range and so must be kept in

the stack to be tested against later segments. Note that entries in the stack have

all been tested against preceding segments. We claim therefore that CheckLyndon is

correct.

To see that the algorithm executes in linear time, observe that segment i is either

wholly contained in a preceding segment, so that access to the stack is terminated, or

else the current stack entry is deleted. Thus the total time requirement of the while

loop is O(n). We have:

Lemma 3 Algorithm CheckLyndon correctly determines in O(n) time whether or not

a given integer array L∗[1..n] is a Lyndon array.

68

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

function CheckLyndon (L∗, n)
STACK← ∅
for i← 1 to n do

if L∗[i] < i or L∗[i] > n return (FALSE)
if L∗[i] > i then

end← 0
while STACK 6= ∅ and end < L∗[i] do

end← peek(STACK)
if end < i then pop(STACK)
elsif end < L∗[i] then return (FALSE)

push(STACK,L∗[i])
return (TRUE)

Figure 5.3: Determine whether (TRUE) or not (FALSE) a given integer array L∗ is a
Lyndon array of some string.

5.3 Reconstructing a String from its Lyndon Ar-

rays

Suppose an alphabet Σ = {`1, `2, . . . , `σ}, σ ≥ 2, is given with initial global order

R1: `1 < `2 < · · · < `σ. For j = 2, 3, . . . , σ, the jth rotation Rj of R1 is the order

`j < `j+1 < · · · < `σ < `1 < · · · < `j−1. Thus `j is the least letter, and for j > 1 `j−1

is the largest, in the rotation Rj. The collection of σ rotations is denoted by RΣ.

In this section we deal with the problem of identifying a unique string on alphabet

Σ corresponding to RΣ. We begin with an observation from [47], that we can write

x in the form x1x2 · · ·xm, where for each r ∈ 1..m, |xr| = lenr and

xr[1] ≤ xr[2] ≤ · · · ≤ xr[lenr], (5.3)

while for 1 ≤ r < m,

xr[lenr] > xr+1[1]. (5.4)

69

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

We call xr a range in x, and we identify a position j in range xr, 1 ≤ j ≤ lenr,

with its equivalent position i in x by writing i = Sr,j =
∑r−1

r′=1 lenr′+j. Then, again

from [47], we have the following:

Observation 4 Let i = Sr,j be a position in x that corresponds to position j in range

xr.

(a) If xr[j] = xr[lenr], then Lx[i] = i.

(b) Otherwise, Lx[i] = i′, where i′ is the final position in some range xr′ , r
′ ≥ r;

that is, i′ =
∑r′

s=1 lens.

Based on these remarks, for the special case σ = 2, we can now prove:

Lemma 5 Let Lx be the Lyndon array of a string x[1..n] on Σ = {a, b}, a < b.

Then, provided that λx 6= 1n, x is determined uniquely by Lx.

Proof. First observe that λx = 1n if and only if x = bman−m for some m ∈ 0..n

— thus in this case the corresponding Lx = 12 · · ·n corresponds to n+1 choices

for x. Otherwise, let n′ be the smallest index such that for every i ∈ n′..n, there

exists no j < i such that Lx[j] = i. If there is no such n′, then Lx[j] = n for some

j < n; in this case, set n′ = n+1. Then for every i ∈ n′..n, Lx[i] = i, which, since

x 6= bn by hypothesis, implies that x[i] = a; that is, x[n′..n] = an−n
′+1. Since, again

by hypothesis, x 6= an, it follows that n′ > 2 and x[n′−1] = b. More generally, by

Observation 4, for every i < n′, x[i] = b if and only if Lx[i] = i. Therefore, for all

other i, x[i] = a. Thus x is uniquely determined by Lx, as required.

Suppose then that σ ≥ 3. In this case, corresponding to RΣ, we assume that

Lyndon arrays λΣ = {λ1, λ2, . . . , λσ} are given, where λj, 1 ≤ j ≤ σ, is based on

70

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

rotation Rj of the alphabet and determined by some (unknown) string x = x[1..n].

Then for j ∈ 1..σ, i ∈ 1..n, λj[i] is the length of the maximal Lyndon word at position

i in x based on rotation Rj of the alphabet. We say that position i in x, 1 ≤ i ≤ n,

is covered by λj if and only if there exists a position i′ < i such that i′+λj[i
′] > i

(alternatively, Lj[i
′] ≥ i).

We now prove the following result, enabling us to uniquely determine x from RΣ:

Theorem 6 Suppose that x is a string on an alphabet Σ of size σ ≥ 3, whose Lyndon

arrays λΣ are given based on rotations RΣ. Let

λ+[i] = max(λ1[i], λ2[i], . . . , λσ[i]), 1 ≤ i ≤ n,

and let P [i] be the nonempty ascending sequence {j1, j2, . . . , jk} of indices j that specify

all the rotations Rj for which λ+[i] = λj[i]; that is, that yield the maximum Lyndon

word at position i. Then

1. |P [i]| = 1 =⇒ x[i] = `j1.

2. 1 < |P [i]| < σ =⇒ x[i] = `jh, where jh is the unique (leftmost) entry in P [i]

such that j(h+1) mod σ 6∈ P [i].

3. |P [i]| = σ ⇐⇒ λ+[i] = 1, and x[i..n] = `n−i+1
jh

, where i is the least integer such

that λ+[i] = 1 and jh is the unique entry in P [i] such that x[i] is not covered

by λjh.

We remark that, since the assignments to positions in x made here under Cases 1–3

are unique, therefore x must be the only string on Σ that satisfies the constraints

given by λΣ. In Figure 5.4 the various cases of Theorem 6 are illustrated:

71

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

i = 1 2 3 4 5

λ1 = 1 4 3 2 1 (a < b < c)
λ2 = 2 1 3 2 1 (b < c < a)
λ3 = 1 3 1 1 1 (c < a < b)
λ+ = 2 4 3 2 1
k = 1 1 2 2 3
x = b a b b c

Figure 5.4: Lyndon arrays based on rotated orders for σ = 3.

• in columns i = 1, 2, the respective maximum values λ2[1] = 2, λ1[2] = 4 occur

only once, so that Case 1 applies, and x[1] = b, x[2] = a;

• in column i = 3, we find k = 2 < σ, so Case 2 applies, and since 2 ∈ P [3], 3 6∈

P [3], we choose x[3] = `2 = b;

• similarly in column i = 4, Case 2 appies and again we choose x[4] = b;

• of course in column i = n = 5, Case 3 applies, and we set x[5] = c because,

while position 5 is covered by preceding entries in λ1 and λ2, it is not covered

by any preceding entry in λ3.

In order to prove Theorem 6, we first need the following:

Lemma 7 Let i ∈ 1..n be a position in x such that x[i] = `j ∈ Σ for some j ∈ 1..σ,

σ ≥ 3. Then λ+[i] = λj[i] ≥ λj′ [i] for every `j′ ∈ Σ.

Proof. Assume the contrary. Then there exists j′ 6= j (`j′ 6= `j) such that λj′ [i] >

λj[i]. Suppose now that for some position h satisfying i < h < i+λj[i] (in the range

of the Lyndon word corresponding to Rj that begins at i), x[h] = `∗, where `∗ is a

letter such that `∗ < `j in Rj′ . But this implies that λj′ [i] < λj[i], contradicting our

original assumption. Thus every letter ` that occurs in the range x[i..i+λj−1] must

72

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

satisfy ` ≥ `j in both Rj and Rj′ . Since the same condition holds for both rotations,

therefore λj′ [i] can be at most equal to λj[i].

If now we suppose, as in Case 1 of Theorem 6, that there exists a single j1 such

that λj1 [i] is maximum, then it follows immediately from Lemma 7 that, for every

rotation Rt, t ∈ 1..σ, except t = j1, x[i] 6= `t. Thus x[i] = `j1 , establishing Case 1.

The next result gives us a basis for establishing Case 2 by providing a simple

characterization of the entries in P [i] when 1 < |P [i]| < σ:

Lemma 8 Suppose that j1 is the least value and j2 > j1 the greatest value (with

j2−j1 < σ−1) such that for some i ∈ 1..n, λ+[i] = λj1 [i] = λj2 [i]. Then P [i] contains

exactly one of

P1 = j1, j1+1, . . . , j2−1,

P2 = j2, j2+1, . . . , σ, 1, 2, . . . , j1−1,

where we auppose that the sequence 1, 2, . . . , j1−1 is empty if j1 = 1.

Proof. By hypothesis x∗ = x[i..i+λ+[i]−1] is a Lyndon word in both orders Rj1 and

Rj2 . Therefore every letter in x∗ must be greater than or equal to x[i] in both orders

J1 = {j1 < j1+1 < · · · < j2−1},

J2 = {j2 < j2+1 < · · · < σ < 1 < 2 · · · < j1−1},
(5.5)

where again we must take account of the special case j1 = 1. We can write Rj1 ≡

J1{j2−1 < j2}J2 and Rj2 ≡ J2{j1−1 < j1}J1. Now observe that if x∗ contains letters

from both J1 and J2, there must be at least one letter in one of the two orderings

73

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

that is less than x[i], and so x∗ cannot be a Lyndon word in one of Rj1 , Rj2 . Thus

x∗ contains letters from exactly one of P1, P2, as required.

In the context of Lemma 8, consider a maximal sequence of entries

j′, j′+1, . . . , j′+t, t > 0, (5.6)

in λ+[i], where (j′+ t+1) mod σ 6∈ λ+[i] — as in Lemma 8, we suppose that the

sequence is circular, so that 1 follows σ. Recall that Rj′+1 is the rotation of Rj′ that

turns the least letter `j′ of rotation Rj′ into the greatest letter of rotation Rj′+1. Thus

the occurrence of j′+1 in the sequence λ+[i] ensures that the letter `j′ cannot be the

first letter of the Lyndon array at position i — if it were, then in Rj′+1, we could

have only λj′ [i] = 1, certainly not maximum. It follows that only the final letter `j′+t

in the sequence (5.6) can be the first letter of the Lyndon array at i, because it is

the only letter that is not rotated. Noting that in both of the two possible orders

given in (5.5) j′ + t will be the leftmost occurrence in P [i], we thus establish Case 2

of Theorem 6.

In order to deal with Case 3, we first need:

Lemma 9 |P [i]| = σ ⇐⇒ λ+[i] = 1.

Proof. Suppose |P [i]| = σ. Since every letter in Σ occurs on the right in some

rotation Rj of the alphabet, and so is maximum, it follows that λj[i] = 1 for some j.

But since every such j yields a maximum λj[i], it follows that λ+[i] = 1. Conversely,

if λ+[i] = 1, then every rotation Rj yields λj[i] = 1, so that |P [i]| = σ.

74

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

procedure ConstructString (λ, σ, n; x)
i← 1; cover ← σn

while i < n do
maxlen← 0 — Length of maximum λ[1..σ, i]
freqmax← 1
for j ← 1 to σ do

. Treat λ as a two-dimensional array; find final

. letter jmax & frequency freqmax for maxlen.
if λ[j, i] > maxlen then

maxlen← λ[j, i]; jmax← j; freqmax← 1
elsif λ[j, i] = maxlen then

jmax← j; freqmax← freqmax+1
. Recompute maximum range covered by letter j.

cover[j]← max(cover[j], j+λ[j, i])
if freqmax < σ then

. Cases 1 and 2 — Lemmas 7 & 8.
x[i]← jmax; i← i+1

else
. Case 3 — Lemma 9.

j′ ← 1
. Find the letter that yields no cover of position i.

while j′ ≤ σ and i < cover[j′] do j′ ← j′+1
x[i]← j′; i← i+1

. In accordance with Lemma 10, extend to position n.
while i ≤ n do x[i]← j′; i← i+1

Figure 5.5: Constructing a string from rotated Lyndon arrays.

75

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Now consider i = n, and note that for every rotation Rj, λj[n] = 1, so that λ+[n] = 1.

Note also that in this case x[n] will be covered by λj[i] for every position i < n that

marks the rightmost occurrence of `j in x — except for j such that `j = x[i] = x[n].

Thus the letter `j satisfies exactly one of two conditions:

• either `j does not previously occur in x; or

• under rotation Rj, at any position i < n such that x[i] = `j, λj[i] does not cover

x[n].

Hence Case 3 provides the basis for assigning x[n]. To complete the proof of Theo-

rem 6, we need one more result:

Lemma 10 If |P [i]| = σ for i < n, then |P [i′]| = σ for every i′ ∈ i..n.

Proof. We know x[i] = `j, a minimum letter under rotation Rj, and from Lemma 9

we know that λ+[i] = 1. This is possible only if the same minimum letter occurs also

at positions i+1, i+2, . . . , n, as required.

Therefore Case 3 identifies strings x with suffix `n−i+1 for some i and some `.

Theorem 6 justifies Algorithm ConstructString, shown in Figure 5.5, that inO(σn)

time constructs the unique string x on a given ordered alphabet Σ, based on σ

rotations of a given Lyndon array λ.

5.4 Future Research

In this chapter we have started to analyze the relationship between a string and its

Lyndon arrays corresponding to cyclic orderings of the underlying alphabet. Many

76

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

i = 1 2 3 4

x = a d b c
λ1 = 4 1 2 1 (a < b < c < d) I
λ2 = 1 1 2 1 (b < c < d < a) II
λ3 = 1 2 1 1 (c < d < a < b) III
λ4 = 1 3 2 1 (d < a < b < c) IV

Figure 5.6: x = adbc and its Lyndon arrays: consideration of fewer than four rotations
of the alphabet may not allow x to be reconstructed.

problem areas remain:

1. As indicated by Problem 2, we know of no efficient algorithm to compute a

string on a minimum alphabet consistent with a given valid Lyndon array L∗.

2. Similarly, as we have seen, it appears to be difficult to reconstruct a string ex-

actly from Lyndon arrays. In Section 5.3 we have presented an algorithm to

reconstruct a string x on an alphabet of size σ given Lyndon arrays of x based

on σ rotations of the alphabet. It appears that indeed in the worst case σ such

rotations are required, as shown by the example in Figure 5.6.

If in Figure 5.6 only rotations I–III are considered, then the selection x[2] = c

rather than d would be made; if rotations II–IV were used, no determination

could be made for x[1]; and if rotations I, III, IV were used, column i = 3 would

become an instance of Case 2(b), and x[2] = b could not be selected. Thus it

appears that, on an alphabet of size σ > 2, the Lyndon array does not strongly

determine the underlying string.

3. Thus it would be of interest to determine minimal criteria for the reconstruction

of x — the least number of rotations or the size of the smallest alphabet. Is

77

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

there any hope of reconstructing a string based on fewer than σ permutations

of the alphabet?

4. The study of UMFFs has led to the idea of V -words, analogous structures to

Lyndon words, derived from a global non-lexicographic ordering of strings called

V -order [31, 36, 37, 5]. Also, linear-time algorithms for computing Lyndon

border and Lyndon suffix arrays have recently been proposed [6]. There is

scope to extend the results of this chapter to the UMFF based on V -order [32],

then further to UMFFs in their full generality [33, 35, 34].

78

Chapter 6

Microsatellite Evolution

6.1 Introduction

Microsatellites are composed of short DNA sequences between 1 − 6 bp in length

and repeated in tandem. In eukaryotic genomes, perfect or near-perfect tandem

iterations of short sequence motifs of this kind are extremely common. Between

closely related species, their distribution and density in genomes can vary greatly. In

the case of the human genome, they are found at hundreds of thousands of places along

chromosomes [64]. Every possible motif of mono-, di, tri- and tetranucleotide repeat

is found frequently in the genome. Also referred to as short tandem repeats (STRs)

or simple sequence repeats (SSRs), the ubiquitous occurrence of microsatellites was

first reported in the 1980s [65].

The analysis of DNA sequence variation is of major importance in genetic studies.

In this context, molecular markers are a useful tool for assaying genetic variation

and have greatly enhanced the genetic analysis of organisms. Because of their repro-

ducibility, multiallelic nature, codominant inheritance, relative abundance and good

79

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

genome coverage, STR markers are chosen over different classes of molecular mark-

ers for a variety of applications in genetics and breeding [75]. STR markers have

been useful for integrating the genetic, physical and sequence-based maps in differ-

ent species. They also have provided breeders and geneticists with an efficient tool

to link phenotypic and genotypic variation [53]. Microsatellites are also suitable for

the study of population structure and pedigree analysis. PCR (polymerase chain

reaction) for microsatellites can be automated for identifying simple sequence repeat

polymorphisms. Small amounts of blood or alcohol preserved tissue is adequate for

conducting microsatellite analyses. Most microsatellites are noncoding, and therefore

variations are independent of natural selection. These properties make microsatellites

ideal genetic markers for conservation genetics.

Over 20 unstable microsatellite repeats have also been identified as the cause of

neurological disease in humans [21]. Microsatellite instability (MSI) is the condition

of genetic change that results from impaired DNA mismatch repair (MMR). Addi-

tionally, high-level microsatellite instability is responsible for a subset of colorectal

cancers. Unstable repeats can be located in the coding or the non-coding region of a

gene. Understanding the pathogenic mechanisms underlying these diseases may help

to find remedy of these diseases. By expanding and contracting in length (increas-

ing or decreasing the length), microsatellites can increase or decrease levels of gene

expression when found near a gene’s transcription start site, i.e., in the ‘promoter’.

Microsatellites in these regions can regulate gene expression by forming unusual DNA

secondary structures [85].

A mutation model of microsatellite evolution is needed if allele frequency data

from two groups of individuals (for example, populations or species) are to be used

80

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

for estimating the genetic distance between them. A wide range of models of the

evolutionary dynamics of microsatellites has been presented, most of which derive

from the stepwise mutation model (SMM) [60] in which, upon a mutation, 1 repeat

unit is either gained, resulting in an expansion, or lost, resulting in a contraction.

However, recent data on germline microsatellite mutation events confirm that single-

step changes are the most common class of mutations, but that changes involving two

to five repeat units do occur as well [86, 76]. The two-phase model (TPM) of DiRienzo

et al. [39] addresses this by allowing infrequent large jumps in repeat number while

keeping most mutations as single-step changes. Under these models microsatellites

are expected to grow or contract unconstrained over time as there is no bias toward

an expansion or a contraction.

An attractive model of microsatellite evolution holds that a genome-wide distri-

bution of microsatellite repeat length that is at equilibrium results from a balance

between length and point mutations [63, 22]. According to this model, two opposing

mutational forces operate on microsatellite sequences. The rate of length mutations

increases with increasing repeat count and help loci to attain arbitrarily high values.

Point mutations break long repeat arrays into smaller units. A balance these two

mutations results an equilibrium distribution. To explain the presence of a linear

bias, Garza et al. [49] proposed a target or focal length; microsatellites below the

focal length tend to expand, and those above it tend to contract. Since it can explain

differences in microsatellite distribution among species and provides an elegant solu-

tion to the problem of why microsatellites do not expand into enormous arrays this

model, or derivatives thereof, has been well received in recent years.

81

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

From the above discussion we can say that we have three sets of contrasting fea-

tures in the existing models of microsatellite evolution. The first is one-phase vs

two-phase mutations. Which indicate whether the microsatellites expand or contract

by one unit or more. The second is mutation rate proportionality vs rate equality i.e.

the repeat length of microsatellites affect the mutation rate or not. And the final one

is the presence or absence of mutational bias. This encompasses the probability of ex-

pansion or contraction depending on the repeat length of the mutating microsatellites.

In [78], the authors presented a group of models based on these these observations.

They addressed only two different biases, constant bias, where the probability that a

mutation results in an expansion is constant for all alleles, and linear bias, where this

probability varies linearly with repeat length. We will work on those models with

different dataset. In Section 6.2 we will describe the models and parameters. We

will try to find the dynamics of the evolution of Microsatellite with repeat length 2

by using Human and Chimp data in Section 6.3. Section 6.4 contains the work on

intra-species analysis where we consider different Human populations. In Section 6.5

we focus our attention for Microsatellites with repeat length 3. Finally we conclude

in Section 6.6.

6.2 Models and Parameters

The data D for our study are a d×N matrix of microsatellite allele lengths from N loci

homologous in d population. When d = 2, then we consider only humans and chimps

(inter species comparison). When d > 2, then we consider different populations of

humans (intra species comparison). We model the distribution of D by superimposing

d+1 Markov chains, on the ancestral and d populations branches, respectively, of the

82

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

d-taxa tree τ . The Markov chains have truncated state space S = {κ, κ + 1, . . . ,Ω}.

Where κ is the smallest repeat number in the data and Ω is set to 40. The likelihood

for given Data Di = (Ci, Hi) at locus i, is

Li(Θ, λ|Di) :=
∑

j∈S
π

(a)
j P

(c)
j,Ci

(λc)P
(h)
j,Hi

(λh) (6.1)

For number of loci N assumed to be independent, the likelihood of total data D

L(Θ, λ|D) :=
N∏
i=1

Li(Θ, λ|Di) (6.2)

For an ergodic continuous-time Markov chain, its transition probability matrix

P(λ) := (Pi,j)
Ω
i,j=κ = exp{Qλ}, where Q := (qi,j)

Ω
i,j=κ. Q is defined in Equation 6.3.

qij =

β(i, s)α(u, v, i)(p+ (1− p)γ(m, i, j)) i = j − 1

β(i, s)α(u, v, i)(1− p)γ(m, i, j) i < j − 1

β(i, s)(1− α(u, v, i))(p+ (1− p)γ(m, i, j)) i = j − 1

β(i, s)(1− α(u, v, i))(1− p)γ(m, i, j) i = j − 1∑
i 6=j qij i = j

(6.3)

Where γ(m, i, j) is defined by Equation 6.4

γ(m, i, j) =

m(1−m)|i−j|−1

1− (1−m)Ω−1
κ ≤ i < j ≤ Ω

m(1−m)|i−j|−1

1− (1−m)i−κ
κ ≤ j < i ≤ Ω

(6.4)

Also, β(i, s) = µ(1 + (i − κ)s) is the mutation rate of allele i and α(u, v, i) =

max(0,min(1, u−v(i−κ))) is the probability that a mutation results in an expansion.

83

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

The details of the parameters are given below.

• When p = 1, any microsatellite allele mutates, is set(i.e., expands or contracts)

by only 1 unit of repeat at 0. But when p < 1, it mutates by 1 or more unit(s) of

length with probability 1− p and by 1 unit of length with probability p. Given

that an allele i undergoes a multistep mutation, the probability of expanding

or contracting by k units is given by γ(m, i, j). It is possible to obtain the one-

phase models from Equation 6.3 by setting p = 0 to allow mutations of length

1 and setting m = 1 to force the geometric distribution in Equation 6.4 to put

all its mass on one-step mutations. When m < 1 we have multi-step mutation

models. In our experiments we set p=0 for all the models.

• The proportional dependence of mutation rate is captured by the proportional

rate parameter s ∈ (−1/(Ω − κ + 1),∞ in β(i, s). When s = 0 alleles of all

lengths have the same mutation rate µ = (0,∞) of allele i. Thus, s represents

the strength of length dependence of the mutation rate.

• In the function α(u, v, i), the constant bias parameter is u ∈ [0, 1] and the linear

bias parameter is v ∈ (−∞,+∞). If u = 0.5 and v = 0, then the mutational

process is symmetric and unbiased in which the probability that a mutation is

an expansion or a contraction is equal. If v = 0 then α(u, v, i) = u ∈ [0, 1] for

any allele i and the model will have constant mutational bias. Setting v 6= 0 will

result in a linear mutational bias. If 0.5 < u < 1 and (u−0.5)/(Ω−κ) < v <∞

then the probability of contraction will be equal of expansion in the focal length

84

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Figure 6.1: Model Description. K denotes the number of free parameters. The fixed
parameter(s) for each set of models is/are shown above branch leading to it

f = ((u− 0.5)/v) + κ towards which the mutational process is linearly biased.

So when i < f the mutational bias is upward toward f and when i > f the

mutational bias is downward toward f .

We will compare the Models through a second order Akaike information criterion

(AICc) [84]. The best candidate model with a total of K parameters in (Θ, λ) is the

one that minimizes the quantity

AICc = −2 logL(Θ, λ|D) + 2K +
2K(K + 1)

N −K − 1
(6.5)

From Equation 6.5, it can be seen that for large N and small K, the value of AICc

mainly depends on logL(Θ, λ|D). For example if Model A has 1 more parameter than

Model B and LA > LB + 1, then Model A is statistically better than Model B. We

will use this technique to compare Models, throughout this chapter.

The Models and their associate parameters are shown in the Figure 6.1.

85

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

6.3 Inter Species Comparison for Microsatellite with

Repeat Length 2

To find the homologous loci in the pair of human and chimp, at first we obtain the

repeat data of human Chromosome 1 from UCSC table browser. Here we only consider

repeats which have repeat length 2. We add 200 bp flanking sequence to each repeats.

To do that we first locate the repeat in chromosome and then add 100 bp upstream

and 100 bp downstream from the sequence of chromosome. Then we perform BLAST

[10] against chimp genome. To filter the data we used very low E-value. After getting

aligned chimp sequences (inside chromosome 1) we perform BLAST against human

genome to get the sequences. After getting the sequences we find the repeats by

using ‘Tandem Repeat Finder(TRF)’. We discard the pair of microsatellites if it start

before 40 base pairs and has more than 1 mutation interruption inside the repeats.

Now we have the following data sets.

H65k15 We start with human repeats from UCSC table browser. Each repeat has more

than or equal to 15 repeat units. To filter the alignment in BLAST we use

E-value= 10−65. After getting repeats from TRF if a sequence contain multiple

repeats then we keep the repeats which started closer to 100bp. After meeting

all the criteria we got 854 homologous loci of human and chimp.

H75k12 We start with human repeats from UCSC table browser. Each repeat has more

than or equal to 12 repeat units. To filter the alignment in BLAST we use

E-value= 10−75. After getting repeats from TRF if a sequence contain multiple

repeats then we keep the repeats which started closer to 100bp. After meeting

all the criteria we got 1420 homologous loci of human and chimp. If we discard

86

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

the microsatellites having repeat length 12 from H75k12, then we get the

dataset H75k13. It contains 1232 homologous loci.

H100k12 We start with human repeats from UCSC table browser. Each repeat has more

than or equal to 12 repeat units. To filter the alignment in BLAST we use E-

value= 10−100. After getting repeats from TRF if a sequence contain multiple

repeats then we discard the sequence. After meeting all the criteria we got 1010

homologous loci of human and chimp. If we discard the microsatellites having

repeat length less than 15 from H100k12, then we get the dataset H75k15.

It contains 672 homologous loci.

From the Table 6.1 it is clear that model EL2 is better than model EL1 (p-value is

0.0381969) and model PL2 is better than model PL1 (p-value is 0.02169683). However

Model PL1 and PL2 is not significantly better than EL1 and EL2 repectively. Both

EL2 and PL2 shows m < 0.61 which indicate multistep mutation has occurred. In all

tables, the parameters that are fixed for a given sub-model are shown in italics.

From the Table 6.2 we can see that model EL2 and PL2 perform slightly better

than model EL1 and PL2 respectively. However those are not statistically significant.

Also Model PL1 and PL2 is not significantly better than EL1 and EL2 repectively.

Both EL2 and PL2 shows m is very close to 1 which indicates very few multistep

mutation has occurred.

87

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Table 6.1: The parameters and maximum log-likelihood of the models for Data set
H65k15

MLEs of parameters
Model u v m s λ logL
EU1 0.5 0 1 0 9.477747 -4942.479
EU2 0.5 0 0.9662729 0 8.6001109 -4942.384
EC1 0.4554651 0 1 0 11.4673813 -4372.733
EC2 0.4551573 0 0.9999 0 11.4639361 -4372.733
EL1 0.54654453 0.01462743 1 0 12.82262596 -4198.652
EL2 0.5994591 0.0374068 0.5994591 0 3.608965 -4197.082
PU1 0.5 0 1 0.3148298 3.9154823 -4598.895
PU2 0.5 0 0.9999 0.3148122 3.9144643 -4598.904
PC1 0.454222123 0 1 -0.003928135 11.75537043 -4372.593
PC2 0.454214244 0 0.9999 -0.003927578 11.75178532 -4372.605
PL1 0.548346787 0.014650464 1 0.006972567 12.32528835 -4198.628
PL2 0.61604671 0.03746592 0.60649362 -0.02617842 4.3543008 -4196.588

Table 6.2: The parameters and maximum log-likelihood of the models for Data set
H75k12

MLEs of parameters
Model u v m s λ logL
EU1 0.5 0 1 0 10.24138 -8513.941
EU2 0.5 0 0.9999 0 10.23844 -8513.946
EC1 0.4634821 0 1 0 11.2357507 -7700.951
EC2 0.4634755 0 0.9999 0 11.2324682 -7700.971
EL1 0.54918232 0.01135839 1 0 12.37011564 -7396.052
EL2 0.5508148 0.01169873 0.98673212 0 11.903285 -7396.042
PU1 0.5 0 1 0.2333258 4.4847323 -8037.264
PU2 0.5 0 0.9999 0.2333138 4.4835513 -8037.28
PC1 0.462297161 0 1 -0.004801283 11.61683271 -7700.462
PC2 0.462290366 0 0.9999 -0.004801309 11.6133044 -7700.482
PL1 0.54631861 0.01135739 1 -0.01061397 13.29309011 -7395.874
PL2 0.54877562 0.01192654 0.97812494 -0.01111524 12.51892366 -7395.848

88

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Table 6.3: The parameters and maximum log-likelihood of the models for Data set

H75k13

MLEs of parameters

Model u v m s λ logL

EU1 0.5 0 1 0 9.764473 -7292.017

EU2 0.5 0 0.947058 0 8.376018 -7291.713

EC1 0.4602567 0 1 0 10.9562861 -6532.692

EC2 0.4602496 0 0.9999 0 10.9530227 -6532.706

EL1 0.54364174 0.01177458 1 0 12.09168528 -6295.519

EL2 0.58467035 0.02144355 0.73253313 0 5.36193455 -6291.607

PU1 0.5 0 1 0.2813063 3.9891771 -6828.961

PU2 0.5 0 0.9999 0.2812887 3.9881584 -6828.972

PC1 0.459327823 0 1 -0.003821075 11.23854245 -6532.471

PC2 0.459320697 0 0.9999 -0.003820442 11.23518866 -6532.485

PL1 0.5829222 0.01404689 1 0.2075976 5.88534139 -6295.181

PL2 0.584803803 0.021425937 0.732908657 0.000486644 5.352619778 -6291.607

From the Table 6.3 we can see that model EL2 and PL2 perform significantly

better than model EL1 and PL2 respectively (p-values are 0.0025 and 0.00375 respec-

tively). Also Model PL1 is not significantly better than EL1. Both EL2 and PL2

shows m < 0.74 which indicates multistep mutations has occurred.

From the Table 6.4 we can see that model EL2 and PL2 perform slightly better

than model EL1 and PL2 respectively. However those are not statistically significant.

Also Model PL1 and PL2 is not significantly better than EL1 and EL2 repectively.

89

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Table 6.4: The parameters and maximum log-likelihood of the models for Data set
H100k15

MLEs of parameters
Model u v m s λ logL
EU1 0.5 0 1 0 7.695878 -3856.103
EU2 0.5 0 0.9999 0 7.693698 -3856.104
EC1 0.455832 0 1 0 8.541308 -3426.291
EC2 0.4558243 0 0.9999 0 8.5388034 -3426.302
EL1 0.56120423 0.01692352 1 0 9.70166664 -3268.856
EL2 0.57542694 0.02048119 0.91344832 0 7.5523883 -3268.642
PU1 0.5 0 1 0.3035354 3.1098652 -3596.299
PU2 0.5 0 0.9999 0.3035196 3.1090622 -3596.307
PC1 0.455243502 0 1 -0.002470078 8.670865923 -3426.25
PC2 0.455235858 0 0.9999 -0.002469133 8.668248542 -3426.261
PL1 0.57840616 0.01765735 1 0.07143109 7.06699983 -3268.504
PL2 0.58670537 0.02022688 0.93067037 0.05061027 6.26142232 -3268.384

Both EL2 and PL2 shows m is quite close to 1 which indicates some multistep mu-

tations has occurred. From these results we can see that the value of parameters m

and s are different from [78]. So we focus our attention mainly on model PL2. This

model contain parameters m, u, v, s and λ.

6.3.1 Analyzing the parameters for Model PL2

To work more on Model PL2 we are going to create some more dataset. We start with

extracting tandem repeats with repeat number greater than 9 from Chromosome 1 of

Human genome (found in [1]). Then we perform BLAST against chimp genome. To

filter the data we used very low E-value. After getting aligned chimp sequences (inside

chromosome 1) we perform BLAST against human genome to get the sequences. After

getting the sequences we find the repeats by using ‘Tandem Repeat Finder(TRF)’.

If a sequence contain more than one tandem repeats with repeat length greater than

90

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

9 then we discard the sequence. After getting the sequence which contain human

and chimp repeats we find the pairs. We discard the pair of microsatellite if it start

before 40 base pair and have more than 1 mutation interruption inside the repeats.

The datasets are summarized in Table 6.5. The column name “MinLength” indicates

the minimum repeat lengths of microsatellites in the data. Column “Evalue” contain

the negative power of 10 of the e-value when performing BLAST operation. Column

“N” represents the number of pairs of microsatellites of the dataset. We fit these data

on Model PL2. The parameters are shown in Table A.1, A.2 and A.3.

Table 6.5: Summary of Datasets
DataSet MinLength Evalue N
E65NN10 10 65 1820
E65NN11 11 65 1604
E65NN12 12 65 1390
E65NN13 13 65 1190
E65NN14 14 65 1013
E65NN15 15 65 860
E75NN10 10 75 1805
E75NN11 11 75 1591
E75NN12 12 75 1378
E75NN13 13 75 1180
E75NN14 14 75 1003
E75NN15 15 75 852
E100NN10 10 100 1240
E100NN11 11 100 1162
E100NN12 12 100 1066
E100NN13 13 100 968
E100NN14 14 100 855
E100NN15 15 100 739

Figure 6.2, 6.3 and 6.4 show the MLEs of parameters m, s and u for different

dataset. It can be seen that u does not change much for datasets (0.55 to 0.62)

where the reported value of u is 0.82 in [78]. The parameters are largely same for the

91

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Figure 6.2: Comparision of parameter m for different datasets of Table 6.5

Figure 6.3: Comparision of parameter s for different datasets of Table 6.5

datasets with evalue 10−65 and 10−75. In both case s is close to 0 and m is between

0.8 to 0.9. Where the reported value of m is 0.55 in [78]. However for the datasets

with evalue 10−100, there are some cases where m reaches to approximately 1 which

in turn results higher value of s. But it is still lower than corresponding s = 0.76

reported in [78].

Outliers and Related Results

We perform the analysis on first 12 Datasets from Table 6.5. At first I find the

absolute value of the difference of the length of homologous loci of human and chimp

microsatellite. Then I find the mild upper threshold of the data by using 2nd and

92

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Figure 6.4: Comparision of parameter u for different datasets of Table 6.5

4th quantiles. And finally if the difference of a pair is greater than the mild upper

threshold then I discard the pair. Table A.4 and A.5 contains the parameters for the

data. From Figure 6.5 and 6.6 it can be seen that after discarding outliers, the MLE

of parameters for datasets follow closely to each other.

93

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Figure 6.5: Comparision of parameter m for data with outliers and data without
outliers of different datasets of Table 6.5

Figure 6.6: Comparision of parameter s for data with outliers and data without
outliers of different datasets of Table 6.5

94

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Bootstrap Results

For bootstrapping I re-sampled the data with replacement. For each dataset I have

done the re-sampling 1000 times. The bootstrap average of the parameters and the

MLEs of the parameters are shown in Table A.6 and A.7. The rows BootMean

contains the mean of the parameters of 1000 iteration of the dataset indicated by

previous rows. Table A.8 and A.9 contain the bootstrap variance of the parameters

for various data. From Figure 6.7 and 6.8, it can be seen that the m and λ have higher

variance compare to other parameters. But overall the variances of the parameters

are quite low.

95

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Figure 6.7: Comparision of parameter m for original data and bootstrap data of
different datasets of Table 6.5

Figure 6.8: Comparision of parameter s for original data and bootstrap data of dif-
ferent datasets of Table 6.5

96

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

6.4 Inter Species Comparison for Microsatellite with

Repeat Length 2

6.4.1 Data Contain 10 Population (Single alleles)

The data Pop10 contains microsatellite data of 10 samples from different populations

from East Asia (2 pop), AFrica (3 pop), Europe (3 pop) and America (2 pop). Table

6.6 shows the different parameters for different models for this data. For this data

we used star tree with 10 tips, each represent a population. We assume that each

branch has same branch length. The tree is depicted in Figure 6.9. In Figure 6.9 EA

represents East asian populations, E represents European populations, AM represents

American populations and A represents African populations.

Figure 6.9: Tree for the Pop10 data

In Table 6.7, the bold number indicates the value of the parameter reached the

lower limit. For parameter u it was set to 0.500001. For all microsatellites, only

AC microsatellites and only AG microsatellites all the two-phase models perform

significantly better than the corresponding one-phase models. Among the two phase

models, PL2 is significantly better than PC2 and EL2, whereas EL2 is significantly

better than EC2. The value of m for three different data is between 0.6 to 0.65 which

indicates a fair number of multistep mutations has occurred. But it is still less than

97

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Table 6.6: Parameters for Data Pop10
Model Data u× 10−1 v × 10−2 m× 10−1 s× 10−1 λ× 10−2 L

EC1
All 4.2451 0 10 0 24.8428 -43388.254
AC 4.2802 0 10 0 28.7908 -37620.507
AG 4.0876 0 10 0 10.0300 -4803.941

EC2
All 3.6795 0 6.5041 0 15.7006 -38464.893
AC 3.7305 0 6.4882 0 17.9459 -33426.384
AG 3.5474 0 6.9901 0 7.0907 -4350.493

EL1
All 5.0000 1.4269 10 0 24.4194 -43456.417
AC 5.0000 1.3281 10 0 28.3670 -37629.709
AG 5.0000 2.0372 10 0 9.7660 -4832.029

EL2
All 5.0000 3.0042 6.1901 0 15.1327 -38147.757
AC 5.0000 2.8327 6.1975 0 17.3568 -33118.455
AG 5.0000 4.0408 6.3171 0 6.7384 -4324.458

PC1
All 4.5593 0 10 3.1043 12.7278 -42620.217
AC 4.5820 0 10 3.0134 14.7249 -36963.054
AG 4.2791 0 10 1.1860 7.5807 -4786.059

PC2
All 4.0076 0 6.4907 1.2211 11.294 -38257.028
AC 4.0468 0 6.4823 1.1720 12.9372 -33250.490
AG 3.6552 0 6.9614 0.3297 6.4857 -4348.324

PL1
All 5.3831 1.3660 10 5.5143 9.2748 -42338.715
AC 5.4489 1.4118 10 5.4372 10.6401 -36697.996
AG 5.0000 1.3155 10 2.6023 5.8354 -4776.746

PL2
All 5.5877 3.1653 6.1825 2.2737 8.8787 -37816.045
AC 5.7055 3.2493 6.1934 2.1726 10.1998 -32845.549
AG 5.0000 3.3449 6.3326 0.9334 5.4245 -4313.573

the value of m = 0.55 for model PL2 reported in [78]. The value of parameters for all

microsatellites and AC microsatellites is quite similar for all models. However for AG

microsatellites λ is quite small compare to AC microsatellites and all microsatellites

(for all models).

98

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

6.4.2 Data Contain 10 Population (2 alleles)

The data Pop20 contains microsatellite data of 10 samples from 10 different popula-

tions from East Asia (2 populations), Africa (3 populations), Europe (3 populations)

and America (2 populations). For this data we used same tree topology as in Pop10.

However this tree contains 20 tips. Each sample’s two allele is represented by two

tips of the tree. Table 6.7 shows the different parameters for different models for this

data.

In Table 6.7, the bold number indicates the value of the parameter reached the

lower limit. For parameter u it was set to 0.500001. For all microsatellites, only

AC microsatellites and only AG microsatellites all the two-phase models perform

significantly better than the corresponding one-phase models. Among the two phase

models, PL2 is significantly better than PC2 and EL2, whereas EL2 is significantly

better than EC2. The value of m for three different data is between 0.57 to 0.61 which

indicates a fair number of multistep mutations has occurred. But it is still less than

the value of m = 0.55 for model PL2 reported in [78]. The value of parameters for all

microsatellites and AC microsatellites is quite similar for all models. However for AG

microsatellites λ is quite small compare to AC microsatellites and all microsatellites

(for all models).

99

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Table 6.7: Parameters for Data Pop20
Model Data u× 10−1 v × 10−2 m× 10−1 s× 10−1 λ× 10−2 L

EC1
All 4.2796 0 10 0 27.2918 -81824.127
AC 4.3159 0 10 0 31.8481 -71751.320
AG 4.1226 0 10 0 10.2496 -8087.904

EC2
All 3.6659 0 5.9776 0 15.9102 -68807.519
AC 3.7211 0 5.9646 0 18.2657 -60602.042
AG 3.5038 0 6.4414 0 6.7105 -6899.520

EL1
All 5.0000 1.1632 10 0 26.8606 -82137.439
AC 5.0000 1.0719 10 0 31.4199 -71958.046
AG 5.0000 1.8080 10 0 10.0163 -8133.889

EL2
All 5.0000 2.6716 5.8133 0 15.3836 -68467.206
AC 5.0000 2.5082 5.8076 0 17.7274 -60270.911
AG 5.0000 3.8605 6.0859 0 6.3874 -6850.787

PC1
All 4.6832 0 10 6.1577 9.4413 -78917.721
AC 4.7049 0 10 6.1250 10.8065 -69216.413
AG 4.3996 0 10 2.1744 6.4571 -8012.766

PC2
All 4.1439 0 5.9597 2.1401 9.3967 -68032.206
AC 4.1817 0 5.9584 2.0589 10.8005 -59939.565
AG 3.6974 0 6.3864 0.5982 5.7343 -6889.132

PL1
All 5.4332 1.1331 10 9.3499 7.0898 -78569.796
AC 5.4810 1.1419 10 9.4033 8.0443 -68895.666
AG 5.0000 1.0888 10 3.3626 5.3510 -7998.107

PL2
All 5.9049 3.3311 5.7800 3.4768 7.3474 -67422.572
AC 5.9869 3.3488 5.7867 3.2983 8.5181 -59396.613
AG 5.0000 3.1980 6.0476 0.9890 5.0683 -6830.233

6.4.3 Data Contain 5 Population (Single alleles)

The data Pop5 contain 5 samples from 5 different populations from Africa (3 pop-

ulations) and America (2 populations). Figure 6.10 depicted the tree topology used

for this data. Table 6.8 and 6.9 shows the different parameters for different models

for this data.

In Table 6.8, the bold number in column u indicates the value reached the lower

100

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Figure 6.10: Tree for the Pop5 data

limit 0.500001. And in column m1 the bold number indicates the value reached the

upper limit 0.9999. The value of m1 for all Microsatellites and AC microsatellites

is quite high for all the models compare to m2 and m3. In model PL2 the values

are more than 0.8. But for AG microsatellites the m2 is higher than m1 and m3.

This suggests for AC microsatellites and all Microsatellites before the divergence

of African and American population from their respective common ancestors there

were few multistep mutations occurred. From that point more multistep mutations

occurred. If we consider only AG microsatellites then we can see that fewer multistep

mutations occurred after the divergence of American populations compare to other

branches.

101

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Table 6.8: Parameters u, v and ms for Data Pop5
Model Data u× 10−1 v × 10−2 m1 × 10−1 m2 × 10−1 m3 × 10−1

EC1
All 4.2350 0 10 10 10
AC 4.2669 0 10 10 10
AG 4.0952 0 10 10 10

EC2
All 4.2165 0 9.9050 6.0629 5.9202
AC 4.2598 0 9.9990 5.9745 5.9007
AG 4.0227 0 9.5249 8.3786 6.6283

EL1
All 5.0000 1.5045 10 10 10
AC 5.0000 1.4078 10 10 10
AG 5.0000 2.0593 10 10 10

EL2
All 5.0000 2.3639 7.7521 6.2311 5.9282
AC 5.0000 2.0933 8.0803 6.1317 5.9068
AG 5.0000 4.3083 6.1076 8.4059 6.7072

PC1
All 4.5009 0 10 10 10
AC 4.5244 0 10 10 10
AG 4.2192 0 10 10 10

PC2
All 4.3772 0 9.9237 6.0962 5.9680
AC 4.4054 0 9.9990 6.0080 5.9509
AG 4.0919 0 9.5345 8.3770 6.6311

PL1
All 5.4359 1.5172 10 10 10
AC 5.5059 1.5710 10 10 10
AG 5.0000 1.3212 10 10 10

PL2
All 5.3361 2.0261 8.2488 6.2782 6.0150
AC 5.4032 2.0645 8.2898 6.1839 6.0012
AG 5.0000 2.7784 7.0477 8.4004 6.7036

From Table 6.9 we can see that for all microsatellites, only AC microsatellites

and only AG microsatellites all the two-phase models give much higher maximum

likelihood corresponding one-phase models. For example the difference between log

likelihood of PL1 and PL2 is more than 2000 for all Microsatellites. Among the

two phase models, PL2 is significantly better than PC2 and EL2, whereas EL2 is

significantly better than EC2. For all models and different kind of microsatellites λ2

and λ3 similiar to each other. However λ1 is smaller than than other two branches.

102

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Table 6.9: Parameters s and λs for Data Pop5
Model Data s× 10−2 λ1 × 10−3 λ2 × 10−2 λ3 × 10−2 L

EC1
All 0 31.3235 17.8960 24.3754 -26475.780
AC 0 34.4947 21.3051 28.5401 -22783.701
AG 0 16.3487 5.6244 9.1726 -3112.932

EC2
All 0 21.5973 11.5299 15.0181 -24027.746
AC 0 24.5881 13.3035 17.2246 -20627.996
AG 0 9.5962 4.8619 6.6990 -2966.000

EL1
All 0 30.8617 17.5567 23.9505 -26469.276
AC 0 33.9935 20.9491 28.1176 -22737.526
AG 0 16.4500 5.4733 8.8959 -3128.999

EL2
All 0 22.2908 11.0494 14.6281 -23904.679
AC 0 25.4732 12.7586 16.8319 -20497.214
AG 0 11.4098 4.7515 6.2673 -2956.451

PC1
All 21.9373 18.7701 10.7206 14.5935 -26170.462
AC 21.4002 20.6374 12.7240 17.0358 -22517.874
AG 6.6214 13.8050 4.7675 7.7713 -3108.913

PC2
All 9.3956 16.7551 8.9271 11.6413 -23954.903
AC 8.6566 19.3334 10.4022 13.4929 -20568.959
AG 2.9169 8.8892 4.5010 6.2020 -2965.090

PL1
All 53.8163 11.8910 6.8157 9.3246 -25902.184
AC 53.7357 12.8856 7.9834 10.7539 -22265.025
AG 25.4533 9.6592 3.3085 5.3879 -3097.621

PL2
All 23.1887 13.1778 6.4897 8.6169 -23738.055
AC 21.6281 15.2442 7.5843 10.0384 -20368.390
AG 11.9339 8.1927 3.6100 4.8300 -2948.462

Also the branch lengths are smaller for AG microsatellites compare to others. This

indicates smaller mutation rates for AG microsatellites compare to AC microsatellites.

6.4.4 Data Contain 8 Population

The data Pop8 contains 8 samples from 8 different populations from East Asia (2

populations), Africa (3 populations) and Europe (3 populations). Table 6.10, 6.11

and 6.12 show the different parameters for different models for this data. Figure 6.11

103

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Figure 6.11: Tree for the Pop8 data

depicted the tree topology used for this data. The parameters m and λ adjacent to

a branch indicates that parameters are working on that particular branch.

In Table 6.10, the value of m1 for all Microsatellites and AC microsatellites is

quite high for all the models compare to m2, m3, m4 and m5. In model PL2 the

values are more than around 0.77. But for AG microsatellites the m5 is higher than

m1 for EL2 and PL2. This suggests for AC microsatellites and all Microsatellites

before the divergence of African, East Asian and European population from their re-

spective common ancestors there were few multistep mutations occurred. From that

point more multistep mutations occurred. For all Microsatellites and AC microsatel-

lites the rate for multistep mutation is quite similar for all populations, but for AG

microsatellites the rate is higher for African populations and lower in East Asian pop-

ulations. Among the models, PL2 is significantly better than PC2 and EL2, whereas

EL2 is significantly better than EC2.

From Table 6.11, it can be seen that for all models and different kind of microsatel-

lites λ1 and λ2 are similar, whereas λ3, λ4 and λ5 have similar values. However smaller

values of λ1 and λ2 is indicates the populations diverged quickly from their common

ancestors. Also all the branch lengths are smaller for AG microsatellites compare

104

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Table 6.10: Parameter ms for all, AC and AG Microsatellites for Pop8
Model Data m1 × 10−1 m2 × 10−1 m3 × 10−1 m4 × 10−1 m5 × 10−1 L
EC2 All 9.6119 5.3982 6.0685 6.1117 5.9345 -32449.483
EC2 AC 9.7442 5.3302 6.1695 6.1441 5.9090 -28046.264
EC2 AG 9.2200 6.0380 5.1562 6.2547 6.6626 -3826.452
EL2 All 7.4009 5.6531 6.0387 6.1165 5.9762 -32315.497
EL2 AC 7.6766 5.6099 6.1405 6.1475 5.9476 -27900.696
EL2 AG 6.1173 6.1323 5.1632 6.2828 6.7145 -3818.698
PC2 All 9.7360 5.3594 6.1133 6.1500 5.9810 -32317.000
PC2 AC 9.8188 5.3154 6.2140 6.1875 5.9596 -27937.353
PC2 AG 9.2317 6.0288 5.1680 6.2559 6.6699 -3824.592
PL2 All 7.7067 5.5905 6.1123 6.1754 6.0444 -32076.454
PL2 AC 7.7329 5.5629 6.2117 6.2120 6.0262 -27711.663
PL2 AG 6.5593 6.1011 5.1869 6.2685 6.7211 -3807.009

to AC microsatellites. This indicates smaller mutation rates for AG microsatellites

compare to AC microsatellites. From Table 6.12 we can see that, for all microsatel-

lites, only AC microsatellites and only AG microsatellites all the two-phase models

give much higher maximum likelihood corresponding one-phase models. For exam-

ple the difference between log likelihood of PL1 and PL2 is more than 3000 for all

Microsatellites.

From above results we can see that two phase models always gives higher maximum

likelihood values compare to one phase models for different kind of datasets. For

more complex trees it can be seen that multistep mutations occurred more after the

populations diverged from their respective common ancestors and have larger branch

lengths. Whereas initially fewer multistep mutations occurs and branch lengths are

also small. Also, AG microsatellites have less mutation rates compare to AC mutation

rates (branch lengths are smaller).

105

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Table 6.11: Parameter λs for all, AC and AG Microsatellites for Pop8
Model Data λ1 × 10−2 λ2 × 10−2 λ3 × 10−2 λ4 × 10−2 λ5 × 10−2

EC1
All 3.4483 4.4065 17.8353 19.9125 24.6296
AC 4.0584 5.1071 20.4956 22.6012 28.7325
AG 1.1315 1.5490 7.8894 9.4407 9.5962

EC2
All 2.3497 2.8452 11.1064 12.4196 15.2367
AC 2.7372 3.3112 12.7367 13.9558 17.4397
AG 0.8433 1.0045 4.7082 6.4714 6.9800

EL1
All 3.4091 4.3724 17.5071 19.5419 24.1963
AC 4.0073 5.0788 20.1673 22.2362 28.3085
AG 1.1613 1.5225 7.6643 9.1908 9.2920

EL2
All 2.4110 2.6739 10.8896 12.1431 14.8500
AC 2.8141 3.1051 12.5270 13.6777 17.0473
AG 0.8800 0.9693 4.5600 6.3158 6.6951

PC1
All 1.8318 2.3625 9.6250 10.7245 13.3268
AC 2.1498 2.7420 11.0546 12.1590 15.5536
AG 0.8458 1.1593 5.9022 7.0692 7.1782

PC2
All 1.7138 2.0945 8.1606 9.1265 11.2298
AC 2.0281 2.4471 9.4368 10.3412 12.9584
AG 0.7662 0.9131 4.2828 5.8857 6.3479

PL1
All 1.2742 1.6575 6.7411 7.5089 9.3880
AC 1.4760 1.9082 7.6706 8.4315 10.8730
AG 0.6479 0.8705 4.4193 5.3062 5.3730

PL2
All 1.4201 1.5968 6.5100 7.2528 8.9075
AC 1.6720 1.8641 7.5359 8.2176 10.2915
AG 0.6641 0.7553 3.5586 4.9046 5.2204

6.4.5 Bootstrap Analysis

We have performed bootstrapping for all the different tree (except 5 pop simple tree).

We performed bootstrapping on Models EC1, EC2, EL1, EL2, PC1, PC2, PL1 and

PL2. Table A.10, A.11, A.12 and A.13 contains the result. The column “data”

indicates the Microsatellies under consideration (ALL microsatellites, only AC, only

AG). The results are summarized below.

106

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Table 6.12: Rest of the Parameters for Pop8
Model Data u× 10−1 v × 10−2 s× 10−1 L

EC1
All 4.2387 0 0 -36581.518
AC 4.2723 0 0 -31565.499
AG 4.0889 0 0 -4239.735

EC2
All 4.1811 0 0 -32449.483
AC 4.2332 0 0 -28046.264
AG 3.9637 0 0 -3826.452

EL1
All 5.0001 1.4587 0 -36625.702
AC 5.0001 1.3610 0 -31556.627
AG 5.0001 2.0380 0 -4265.463

EL2
All 5.0001 2.4988 0 -32315.497
AC 5.0001 2.2325 0 -27900.696
AG 5.0001 4.2893 0 -3818.698

PC1
All 4.5392 0 2.7828 -36012.623
AC 4.5614 0 2.6933 -31079.180
AG 4.2869 0 1.2378 -4223.289

PC2
All 4.3842 0 1.1544 -32317.000
AC 4.4154 0 1.0801 -27937.353
AG 4.0516 0 0.3609 -3824.592

PL1
All 5.3859 1.3939 5.3936 -35741.971
AC 5.4505 1.4403 5.3129 -30825.079
AG 5.0001 1.2747 2.8458 -4211.087

PL2
All 5.3695 2.2682 2.2016 -32076.454
AC 5.4599 2.3352 2.0803 -27711.663
AG 5.0001 3.1464 1.0840 -3807.009

• Pop10: From Table A.10 we can see that, the bootstrap variance is quite low

for all the parameters. The variance for u, v and λ is lower than m and s. Also

the variance is almost always higher for AG microsatellites for all parameters in

all models. However for model PL1 and PL2 u is lower for AG microsatellites.

• Pop20: From Table A.10 we can see that, the bootstrap variance is quite similar

to the results for data Pop10. The variance is little bit higher than previous

data.

107

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

• Pop5: Here in Table A.12, we can see that the variance for m1 is higher than

m2 and m3 for model EL2 and PL2 and lower for EL1 and PL1. And variance

of λ1 is lower than λ2 and λ3 (the value of λ1 was lower than the other λs).

• Pop8: In Table A.13 we can see that, the variance for m2 is highest among

other ms, except for model PL2 where variance for m1 is higher. In most of the

cases the variance for AG microsatellites is higher than other two data.

So we can say that the variance for all the parameters are quite low for AC, AG

and All microsatellites. The variances for AG microsatellites are higher than other

two data in most of the cases.

6.5 Microsatellites with Repeat Length 3

To find the homologous loci in the pair of human and chimp, at first we obtain the

repeat data of human Chromosome 1 from UCSC table browser. Here we only con-

sider repeats which has repeat length 3 and at least repeated 3 times. We add 200

bp flanking sequence (100 bp upstream and 100 bp downstream) to each repeats.

Then we perform BLAST against chimp genome. To filter the data we used very low

E-value. After getting aligned chimp sequences (inside chromosome 1) we perform

BLAST against human genome to get the sequences. After getting the sequences we

find the repeats by using ‘Tandem Repeat Finder(TRF)’. We discard the pair of mi-

crosatellite if it start before 40 base pair and have more than 1 mutation interruption

inside the repeats. After finding the dataset we find the repeats which lied in the

exon region of Human genome. So in the end we have two dataset, one containing

all the repeats (AllRepeat henceforth) and repeats inside the exons (ExonRepeat

108

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Table 6.13: Parameters for Data AllRepeat
Model u v m s λ − logL
PU1 0.5 0 1 38.2236 0.003813 20476.2
PU2 0.5 0 0.6271 30.0097 0.002739 20144.37
PC1 0.47884 0 1 30.0113 0.004859 19985.59
PC2 0.47582 0 0.7754 30.0102 0.003099 19828.36
PL1 0.66999 0.03844 1 70.0099 0.002219 19212
PL2 0.99999 0.11844 0.5759 96.0099 0.000862 18785.54

henceforth). The data AllRepeat contains 29216 pairs of microsatellites and Exon-

Repeat contains 1814 pairs of microsatellites.

With these data on hand we start testing on the models. We find that the test

results in high value for parameter s and the models which have s = 0 results in

very small likelihood. So we focus our attention on Models which involve parameter

s (PU1, PU2, PC1, PC2, PL1 and PL2). From the Table we can see that model PL2

outperform rest of the models for both dataset. Also it is interesting to note that value

of λ for data AllRepeat is about four times higher than value of λ for data Exon-

Repeat. Which indicate that mutation rate of microsatellites inside exon is smaller

than microsatellites outside the exons. Very high value of s for both dataset indicates

the mutation rate strongly increases with the increase in length of microsatellites.

The value of m is quite lower than 1 for both dataset which indicates multistep mu-

tations. Also higher m for microsatellites inside the exons indicate lower multistep

mutations than microsateliites outside the exons. The value of u and v assures that,

microsatellites with repeat length more than 5 has higher probablity of contraction

towards repeat length 4.

For the analysis of variance we only work on Model PL2. For AllRepeat, we

randomly divided the data into 25 smaller groups. 24 of them has 1169 pairs each,

109

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

while the other one has 1160 pairs. The results are summarized in Table A.14. For

ExonRepeat, we randomly divided the data into 20 smaller groups. 19 of them

has 91 pairs each, while the other one has 85 pairs. The results are summarized in

Table A.15. Table A.16 contains the Mean and Standard Deviations (SD) of data

from Table A.14 and A.15. The Mean values for the parameters follow quite well to

the parameters of original data for Model PL2. The standard deviation is also quite

low for the data generated from AllRepeat. But since each group has considerably

lower amount of data for ExonRepeat standard deviations are higher.

Table 6.14: Parameters for Data ExonRepeat
Model u v m s λ − logL
PU1 0.5 0 1 64.6873 0.00126 957.0287
PU2 0.5 0 0.9199 60.1858 0.00119 952.1032
PC1 0.4886 0 1 65.0063 0.00126 949.5265
PC2 0.4856 0 0.9273 60.2740 0.00121 944.7132
PL1 0.6563 0.0416 1 66.0265 0.00128 883.865
PL2 0.9999 0.1280 0.7273 176.706 0.00029 863.9047

6.6 Conclusion

Microsatellites are used in a wide range of studies due to their small size and repetitive

nature, and they have played an important role in the identification of numerous im-

portant genetic loci. For previously neglected species, novel technologies have enabled

the development of markers through the generation of new sequences and a more re-

fined search in databases. Microsatellites are also very suitable for analyzing forensic

specimens. As microsatelllite repeat instability leads to various diseases, understand-

ing the pathogenic mechanisms will give better chance to find treatments for those

diseases. In multiple species, microsatellites also have been shown to modulate levels

110

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

of gene expression as they expand and contract. Perhaps for their ability to mod-

ulate gene expression, some microsatellites have been conserved in vertebrates over

long evolutionary time periods, and many promoter microsatellites are conserved in

mammals. Investigating other conserved promoter microsatellites will help determine

whether microsatellites can be conserved as sources of variation in gene expression.

From our Analysis we can make following remarks:

• For microsatellites with repeat length 2 (for Human and Chimp comparison),

two-phase model performs better than one phase models, which indicates mul-

tistep mutations. The bootstrap variance is quite low for all the parameters.

• When comparing among human populations, we can see that AG microsatel-

lites have slower mutation rate compare to AC microsatellites. The bootstrap

variances for parameters for AG microsatellites also higher than that of AC

microsatellites, although overall the variances are quite low. According to the

best Model (PL2), probablity of multistep mutations is quite high, especially in

the early stage of divergence.

• For microsatellites with repeat length 3, Microsatellites inside the exons have

lower mutation rates than those outside exons. Longer microsatellites tend to

mutates more often due to high value of s. The probability of having multistep

mutations is quite high, especially for microsatellites outside the exons.

111

Chapter 7

Summary and Future Work

In this thesis we investigate mathematical and algorithmic aspects of regularities in

strings, with emphasis on indeterminate strings, and study microsatellite evolution.

In the first part of this thesis we have introduced a new algorithm and data

structures to compute the minimum enhanced cover array from the prefix table.

Computing the minimum enhanced cover array from the prefix table rather than from

a variant of the border array allows us to extend the computation to indeterminate

strings. We have provided a proof of the algorithm’s correctness. We also provided

an analysis of its complexity, both worst and average case. We have extended the

basic algorithm to enhanced left covers and enhanced left seeds. We have discussed the

practical application of our algorithms, in terms of time and space requirements. After

comparing our prefix-based implementation with the border-based implementation

of [45] we found that our algorithm is faster in practice and more space-efficient

than those of [45]. Our algorithms also allowed us to easily extend the computation

of enhanced covers to indeterminate strings. Both for regular and indeterminate

strings, our algorithms have executed in expected linear time. Along the way we have

112

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

included an important theoretical result: that the expected maximum length of any

border of any prefix of a regular string x is approximately 1.64 for binary alphabets,

less for larger ones. We also showed how to extend the various enhanced cover array

algorithms to indeteterminate strings.

We have outlined three algorithms to compute the Lyndon array for which no

clear exposition is available in the literature. Two of them require O(n2) time in the

worst case. The first one is very fast and apparently linear in practice. The second

one is superlinear in practice and runs in O(n log n) time in the average case on binary

strings. The third algorithm is simple and worst-case linear-time, but requires suffix

array construction and so is a little slower. Then we have two new approaches to

find the Lyndon array of a string. We have used only elementary data structures (no

suffix arrays) for both of the approaches. The first approach has two variants, one

variant is O(n2) in the worst case, the other guarantees O(n log n) time, but with no

clear advantage in processing time. We have processed the string from left to right

and use a “stack” data structure in the first approach. In the second approach we

have processed the string from right to left to compute the Lyndon array. Finally

after implementing these algorithms, we have showed that all of them run in Θ(n)

time in practice.

In the third part of the thesis, we have presented necessary and sufficient condition

that a given integer array is a Lyndon array of some string on some alphabet. We

then described a linear-time algorithm to evaluate these conditions for a given array.

We presented an O(σn)-time algorithm to compute the unique string determined by

the Lyndon arrays computed for σ rotations of the alphabet, where σ is the size of

the alphabet. We also briefly discussed the possibility of using fewer than σ rotations

113

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

to determine x.

In the final part of the thesis we work on the group of models presented in [78]

based on three sets of contrasting features in the existing models of microsatellite

evolution. We implemented these models with and fit different datasets acquired from

Human and Chimp genomes. We find the dynamics of the evolution of microsatellite

with repeat length 2 by using Human and Chimp data. We present our work on intra-

species analysis where we consider different Human populations. We also find the

differences between mutation based on the position (inside or outside exon regions)

of microsatellites in the genome. We work on Human and Chimp DNA for inter

species comparison and different human populations for intra species comparison.

We compared the models using statistical methods and find the model which fits the

data best.

7.1 Future Work

There are several open problems and research directions worth considering by future

researchers.

1. It is worthwhile to design POS/LEN (compressed prefix array) version of Com-

pute MEC. Another natural question of course is to investigate whether the

MEC array can be computed in linear time.

2. We know of no efficient algorithm to compute a string on a minimum alphabet

consistent with a given valid Lyndon array L∗. Finding such algorithm certainly

requires some attention.

3. It would be of interest to determine minimal criteria for the reconstruction

114

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

of x — the least number of rotations or the size of the smallest alphabet.

Reconstructing a string based on fewer than σ permutations of the alphabet is

still considered an open problem.

4. The study of UMFFs has led to the idea of V -words, analogous structures

to Lyndon words, derived from a global non-lexicographic ordering of strings

called V -order. Also, linear-time algorithms for computing Lyndon border and

Lyndon suffix arrays have recently been proposed [6]. There is scope to extend

the results of this chapter to the UMFF based on V -order [32], then further to

UMFFs in their full generality.

5. There is still a lot to do in the field of microsatellite evolution. For inter species

analysis we have only worked on the data of chromosome 1 (for both human

and chimp). A natural extension of this work is to consider the data obtained

from the whole genome of the species. Considering more than two species of

mammal leads to another direction of research.

115

Appendix A

Additional Results for

Microsatellite Evolution

Table A.1: Parameters of model PL2 for Human to Chimp data with e-value 10−65

MLEs of parameters
Data u v m s λ logL
E65NN10 0.56 0.01 0.88098 0.0475 6.26 -9931.4
E65NN11 0.555 0.011 0.86733 0.01427 7.507 -8641.133
E65NN12 0.5638 0.0134 0.83523 0.01056 7.1016 -7385.217
E65NN13 0.586 0.0157 0.8375 0.0688 5.2355 -6220.207
E65NN14 0.5799 0.0171 0.8494 0.0266 6.95 -5207.949
E65NN15 0.5833 0.0186 0.8599 0.04313 6.83 -4336.723

116

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Table A.2: Parameters of model PL2 for Human to Chimp data with e-value 10−75

MLEs of parameters
Data u v m s λ logL
E75NN10 0.5564 0.01 0.8706 0.0253 6.704 -9822.613
E75NN11 0.5527 0.0114 0.8621 0.0006 7.9 -8544.562
E75NN12 0.5616 0.0138 0.8349 -0.0021 7.484 -7294.744
E75NN13 0.5838 0.0165 0.8164 0.0389 5.442 -6142.476
E75NN14 0.5778 0.0179 0.8455 0.0075 7.333 -5130.689
E75NN15 0.5807 0.0196 0.8532 0.0161 7.337 -4271.771

Table A.3: Parameters of model PL2 for Human to Chimp data with e-value 10−100

MLEs of parameters
Data u v m s λ logL
E100NN10 0.6205 0.013 0.999 0.5426 1.444 -6605.075
E100NN11 0.6097 0.013 0.999 0.3589 2.257 -6136.965
E100NN12 0.5874 0.0125 0.999 0.1307 4.4895 -5573.632
E100NN13 0.5855 0.0134 0.999 0.1344 4.8352 -4986.754
E100NN14 0.5844 0.0166 0.916 0.0419 5.773 -4331.986
E100NN15 0.589 0.0181 0.9428 0.0722 5.663 -3668.606

Table A.4: The parameters for the data without outliers
Data u v m s λ logL N
HE65k10 0.5492 0.0089 0.9298 0.0258 7.7651 -9843.563 1811
HE65k11 0.5492 0.0106 0.8929 0.0018 8.4841 -8580.957 1598
HE65k12 0.5589 0.0131 0.8567 -0.0004 7.8459 -7334.141 1385
HE65k13 0.581 0.0154 0.8528 0.0522 5.6974 -6178.11 1186
HE65k14 0.5774 0.0177 0.844 0.0087 7.4095 -5182.319 1011
HE65k15 0.5819 0.0196 0.8485 0.0198 7.2291 -4311.096 858

Table A.5: The parameters for the data without outliers
HE75k10 0.5468 0.0089 0.9294 0.0147 8.1465 -9747.141 1797
HE75k11 0.5481 0.0108 0.8911 -0.0049 8.686 -8497.448 1586
HE75k12 0.5576 0.0132 0.8593 -0.0067 8.0722 -7256.979 1374
HE75k13 0.5779 0.0158 0.8406 0.0305 5.9437 -6113.571 1177
HE75k14 0.5759 0.018 0.8461 -0.001 7.6665 -5118.914 1002
HE75k15 0.5779 0.0198 0.8531 0.0037 7.7665 -4260.042 851

117

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Table A.6: Bootstrap Mean of parameters with original MLEs
Data u v m s λ
E65NN10 0.56 0.01 0.88098 0.0475 6.26
BootMean 0.5614 0.099 0.9036 0.077 6.4934
E65NN11 0.555 0.011 0.86733 0.01427 7.507
BootMean 0.561 0.011 0.8759 0.0217 7.6496
E65NN12 0.5638 0.0134 0.83523 0.01056 7.1016
BootMean 0.5611 0.0134 0.8432 0.0147 7.276
E65NN13 0.586 0.0157 0.8375 0.0688 5.2355
BootMean 0.584 0.0152 0.8727 0.0105 5.5799
E65NN14 0.5799 0.0171 0.8494 0.0266 6.95
BootMean 0.5801 0.0172 0.859 0.0355 7.187
E65NN15 0.5833 0.0186 0.8599 0.04313 6.83
BootMean 0.5943 0.0211 0.8407 0.0568 6.717

Table A.7: Bootstrap Mean of parameters with original MLEs
Data u v m s λ
E75NN10 0.5564 0.01 0.8706 0.0253 6.704
BootMean 0.5597 0.0101 0.8976 0.063 6.7961
E75NN11 0.5527 0.0114 0.8621 0.0006 7.9
BootMean 0.5541 0.0138 0.8706 0.0089 8.045
E75NN12 0.5616 0.0138 0.8349 -0.0021 7.484
BootMean 0.5622 0.0138 0.8429 0.0021 7.6423
E75NN13 0.5838 0.0165 0.8164 0.0389 5.442
BootMean 0.5849 0.0159 0.8612 0.01 5.5859
E75NN14 0.5778 0.0179 0.8455 0.0075 7.333
BootMean 0.5788 0.0178 0.8593 0.0199 7.5704
E75NN15 0.5807 0.0196 0.8532 0.0161 7.337
BootMean 0.5834 0.0195 0.8777 0.0488 7.6609

Table A.8: Bootstrap variance of parameters for data generated by e-value 10−65

Data u v m s λ
E65k10 0.00022 0.0000024 0.00548 0.00654 3.78689
E65k11 0.00011 0.0000028 0.00385 0.00112 2.81897
E65k12 0.00009 0.0000028 0.00329 0.00062 1.73653
E65k13 0.00022 0.0000042 0.00581 0.01104 1.97419
E65k14 0.0002 0.0000077 0.00507 0.00237 2.92911
E65k15 0.00152 0.0000682 0.01686 0.00485 5.56942

118

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Table A.9: Bootstrap variance of parameters for data generated by e-value 10−75

Data u v m s λ
E75k10 0.00027 0.0000025 0.00532 0.00788 4.55715
E75k11 0.00013 0.0000023 0.00365 0.00156 3.33778
E75k12 0.00009 0.0000028 0.0031 0.00056 1.92929
E75k13 0.00026 0.0000042 0.00642 0.01716 2.35129
E75k14 0.00019 0.0000059 0.00416 0.00327 3.16054
E75k15 0.00063 0.0000174 0.00701 0.01005 5.88444

Table A.10: Bootstrap variance of parameters for tree 10pop
Model M u× 10−5 v × 10−5 m× 10−4 s× 10−3 λ× 10−5

1
All 0.083617 0 0 0 5.859859
AC 0.090300 0 0 0 8.570779
AG 0.726428 0 0 0 8.287492

4
All 0.543265 0 0.849113 0 1.400563
AC 0.525031 0 0.969364 0 1.878841
AG 3.858454 0 6.70091 0 2.820408

7
All 0 0.010316 0 0 5.689152
AC 0 0.010359 0 0 8.331206
AG 0 0.145220 0 0 7.855364

10
All 0 0.068828 0.942256 0 1.302372
AC 0.048744 0.066638 1.054005 0 1.746395
AG 0 1.076928 9.75446 0 2.514218

13
All 0.193306 0 0 0.731373 2.578319
AC 0.222778 0 0 0.824936 4.238369
AG 3.046808 0 0 1.976508 7.489087

16
All 0.652487 0 0.91231 0.124076 1.225253
AC 0.686034 0 1.025494 0.142051 1.880466
AG 5.730569 0 7.076667 0.348493 3.220305

19
All 2.940856 0.069072 0 3.179191 2.931216
AC 3.367083 0.074061 0 3.809749 4.9716
AG 0.120333 0.172743 0 3.874215 5.2662

22
All 8.522772 0.325311 1.061442 0.586543 1.712359
AC 9.077616 0.319 1.156817 0.663833 2.688786
AG 0.230172 1.668241 10.640485 1.269306 3.393445

119

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Table A.11: Bootstrap variance of parameters for tree 20pop
Model Data u× 10−5 v × 10−6 m× 10−4 s× 10−3 λ× 10−5

EC1
All 0.10618 0 0 0 7.49109
AC 0.11504 0 0 0 11.55062
AG 0.79354 0 0 0 10.40822

EC2
All 0.65017 0 0.87168 0 1.42101
AC 0.67525 0 1.01971 0 2.04282
AG 4.1442 0 7.79766 0 2.75304

EL1
All 0 0.10046 0 0 7.27548
AC 0 0.10175 0 0 11.61393
AG 0 1.625 0 0 9.98254

EL2
All 0 0.68257 0.92894 0 1.33346
AC 0.0483 0.68973 1.07079 0 1.91054
AG 0.09488 8.08346 8.40386 0 2.45954

PC1
All 0.16157 0 0 2.49301 1.91326
AC 0.17853 0 0 2.80129 3.14466
AG 4.1945 0 0 6.19529 8.68535

PC2
All 0.78595 0 0.93974 0.33556 1.27542
AC 0.8714 0 1.09683 0.35221 2.03207
AG 8.20286 0 8.48603 0.80346 3.27171

PL1
All 3.36386 0.62582 0 10.44524 93.05365
AC 3.32496 0.69655 0 9.3096 3.31223
AG 1.71302 2.01889 0 10.72871 6.62691

PL2
All 13.68657 0.50637 1.03321 1.29865 1.65239
AC 16.13145 5.722 1.18584 1.35653 2.67336
AG 23.17498 20.10449 9.36832 2.30834 3.79356

120

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Table A.12: Bootstrap variance of parameters for tree 5pop
Model Data u× 10−5 v × 10−5 m1 × 10−3 m2 × 10−3 m3 × 10−3 s× 10−3 λ1 × 10−5 λ2 × 10−5 λ3 × 10−5

EC1

All 0.0776 0 0 0 0 0 1.2027 7.1586 8.2727
AC 0.0846 0 0 0 0 0 1.8481 10.926 12.061
AG 0.7093 0 0 0 0 0 2.4543 5.4537 10.938
AT 12.385 0 0 0 0 0 18.947 23.862 55.108

EC2

All 0.4453 0 0.1961 0.3392 0.2469 0 0.6363 1.8545 1.8289
AC 0.2331 0 0.0801 0.3877 0.2317 0 0.8698 2.5409 2.6714
AG 3.0041 0 0.9839 2.2350 2.2208 0 1.0112 3.5407 4.1949
AT 40.759 0 7.0326 32.091 32.009 0 5.0359 9.0236 16.387

EL1

All 0 0.0111 0 0 0 0 1.1709 6.9129 8.0671
AC 0 0.0107 0 0 0 0 1.8152 10.609 11.828
AG 0 0.1438 0 0 0 0 2.4343 5.1582 10.311
AT 0 4.2116 0 0 0 0 16.674 21.18 48.457

EL2

All 0 0.1648 0.7613 0.3329 0.2498 0 0.4408 1.6111 1.7227
AC 0 0.1713 10.203 0.3975 0.2334 0 0.6866 2.3405 2.5632
AG 0.9893 4.7169 3.9321 2.0919 2.2043 0 1.0509 3.4175 3.5587
AT 2499 16306 21.04 31.063 31.541 0 6.8763 9.5433 16.821

PC1

All 0.2454 0 0 0 0 0.4787 0.5256 4.1966 4.1823
AC 0.2059 0 0 0 0 0.438 0.7128 4.8786 5.4262
AG 2.6582 0 0 0 0 1.1207 1.8445 4.9527 8.8517
AT 44.967 0 0 0 0 31.154 10.383 20.639 47.92

PC2

All 0.3555 0 0.1452 0.3391 0.2488 0.0962 0.4026 1.3669 1.6014
AC 0.2861 0 0.0785 0.3901 0.2336 0.1045 0.5621 2.0354 2.5138
AG 3.6839 0 0.9693 2.2464 2.2251 0.4027 0.8768 3.3352 3.9878
AT 68.057 0 7.1456 32.385 32.108 13.907 3.5715 7.6036 16.612

PL1

All 3.5249 0.0876 0 0 0 2.9067 0.2226 2.275 3.0912
AC 3.605 0.0927 0 0 0 3.3899 0.3428 3.6383 4.9609
AG 0.2926 0.1346 0 0 0 3.0728 0.921 2.7285 5.2119
AT 25.042 4.2878 0 0 0 98.766 3.0242 6.4067 14.829

PL2

All 7.272 0.5027 1.3964 0.3397 0.2523 0.7195 0.1948 1.3852 2.0418
AC 9.1239 0.6657 1.945 0.4060 0.2371 0.757 0.3066 2.1909 3.3543
AG 18.217 10.396 13.732 2.0922 2.1959 2.5287 0.7426 3.2851 3.9224
AT 1253.9 2772.6 41.374 34.886 32.711 104.52 1.2187 3.146 8.1527

121

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Table A.13: Bootstrap variance of parameters for tree 8pop
Model Data u10−5 v10−6 m110−3 m210−3 m310−3 m410−3 m510−3 s× 10−3 λ110−5 λ210−5 λ310−5 λ410−5 λ510−5

EC1
All 0.0768 0 0 0 0 0 0 0 1.3433 2.1475 7.5073 6.2545 8.0251
AC 0.0878 0 0 0 0 0 0 0 1.8581 3.2941 10.992 8.6166 12.547
AG 0.6812 0 0 0 0 0 0 0 2.0945 2.9152 17.767 11.879 10.999

EC2
All 0.8004 0 0.3876 1.474 0.3848 0.2363 0.2258 0 0.6644 0.5701 1.6643 1.5148 1.8932
AC 0.6734 0 0.3391 1.5993 0.3901 0.2779 0.2455 0 0.8797 0.828 2.3908 1.9352 2.6482
AG 5.1908 0 1.5675 13.662 6.6044 2.194 2.4153 0 0.9664 0.9643 3.2283 3.7535 4.3772

EL1
All 0 0.0989 0 0 0 0 0 0 1.3438 2.1242 7.2638 6.0596 7.8209
AC 0 0.1088 0 0 0 0 0 0 1.8605 3.2788 10.685 8.3963 12.211
AG 0 1.3502 0 0 0 0 0 0 2.1112 2.8076 16.783 11.302 10.407

EL2
All 0 1.8875 0.8045 1.6013 0.3884 0.2362 0.2261 0 0.5116 0.5148 1.6075 1.4495 1.7993
AC 0 1.9309 1.0558 1.7528 0.3954 0.2784 0.2417 0 0.6794 0.7311 2.3228 1.8492 2.4844
AG 0.3097 39.449 4.0175 13.872 6.6018 2.1804 2.4254 0 0.8586 0.8776 3.0173 3.5926 4.0332

PC1
All 0.1731 0 0 0 0 0 0 0.5269 0.4123 0.6439 2.5761 2.372 3.2436
AC 0.2097 0 0 0 0 0 0 0.6422 0.5774 1.0539 3.9651 3.3969 4.7749
AG 3.0221 0 0 0 0 0 0 1.9831 1.2668 1.7178 9.5611 9.8041 9.2009

PC2
All 0.5097 0 0.2405 1.4477 0.3871 0.2368 0.2264 0.1493 0.38 0.3239 1.2833 1.2845 1.7708
AC 0.4541 0 0.2034 1.5791 0.3898 0.2788 0.2475 0.1565 0.4994 0.4863 1.9408 1.7718 2.4394
AG 6.5892 0 1.5972 13.653 6.6387 2.1977 2.4193 0.5516 0.8125 0.8531 3.0983 4.013 4.9347

PL1
All 2.8067 0.6611 0 0 0 0 0 2.7544 0.2337 0.3663 2.1015 2.2385 3.1584
AC 3.4429 0.8033 0 0 0 0 0 3.5387 0.3409 0.6239 3.3474 3.3395 5.0678
AG 0.5714 1.6102 0 0 0 0 0 4.0184 0.7416 0.9799 5.9535 6.0936 5.706

PL2
All 9.6962 8.4698 2.0388 1.5937 0.3911 0.2374 0.2287 0.6472 0.2248 0.2301 1.3933 1.528 2.1871
AC 12.225 9.8229 2.4073 1.7719 0.3942 0.2792 0.2443 0.7231 0.3037 0.3578 2.1843 2.2395 3.2559
AG 3.3595 68.798 8.1909 13.823 6.6645 2.1911 2.4122 1.9329 0.5544 0.6001 2.7168 3.9545 4.5649

122

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Table A.14: Parameters for Divided Data of AllRepeat for Model PL2
u v m s λ× 10−3 − logL
0.999989 0.108443 0.5758661 96.00984 1.1504 883.8795
0.99999 0.12844 0.5758647 96.0099 0.8291 695.3902
0.999988 0.128442 0.5758659 96.00983 1.1163 675.0056
0.99999 0.11844 0.5758647 96.0099 0.8309 793.7988
0.99999 0.10844 0.5758647 96.0089 0.9091 822.4733
0.99999 0.11844 0.5758646 96.0099 0.9226 747.6269
0.99999 0.11344 0.5758647 96.0099 0.8090 781.7875
0.999989 0.118442 0.5758665 96.00887 1.0288 727.5234
0.99999 0.118439 0.5758631 96.00989 1.1053 806.7188
0.999989 0.118441 0.5758644 96.0099 0.8781 684.2596
0.999989 0.12344 0.5758646 96.0099 0.8235 816.8429
0.999989 0.11844 0.5758646 96.0099 0.8309 711.3938
0.99999 0.11844 0.5058647 96.0089 0.9190 741.7655
0.99999 0.11844 0.5758649 96.0099 0.9462 757.9068
0.99999 0.11344 0.5758647 96.0099 0.8162 739.8546
0.99999 0.118441 0.575865 96.0099 0.8697 768.5873
0.99999 0.11844 0.5958647 96.0089 0.8165 751.9211
0.99999 0.11544 0.5958647 96.0099 0.8137 795.2097
0.99999 0.12344 0.5958647 96.0099 0.8101 731.8490
0.99999 0.12344 0.575865 96.00889 0.8802 719.2459
0.999989 0.12344 0.5758647 96.00889 0.8209 623.4584
0.999989 0.12344 0.5758647 96.00889 0.8211 715.8899
0.9999 0.11544 0.5758647 96.0089 0.8092 712.4332
0.99999 0.11844 0.5758646 96.0089 0.8161 844.0381
0.999989 0.118441 0.5758648 96.0089 0.8368 725.9261

123

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

Table A.15: Parameters for Divided Data of ExonRepeat for Model PL2
u v m s λ× 10−4 − logL
0.98747 0.13607 0.76227 177.3814 1.21484 36.65764

0.99999 0.06475 0.40541 180.729 0.65025 56.61255
0.99999 0.12704 0.75917 177.1831 0.98702 45.01081
0.99999 0.12789 0.72723 176.7069 3.66850 43.79702
0.99999 0.12789 0.72723 176.7069 2.95931 29.19192
0.99999 0.13801 0.73844 176.8565 0.60128 52.6082
0.96946 0.12609 0.74899 176.7763 1.28097 40.8808
0.99999 0.12789 0.72723 176.7069 2.91102 31.25482
0.99999 0.12789 0.72723 176.7069 2.91208 37.50659
0.99997 0.13223 0.72559 176.7695 0.10000 33.066
0.99997 0.10392 0.74721 176.7069 1.09584 50.14624
0.99999 0.13894 0.74723 176.7069 2.91455 39.56728
0.99863 0.12924 0.74774 176.7057 1.41421 36.58562
0.99788 0.14295 0.74789 176.7078 14.2822 40.63495
0.99999 0.12789 0.75723 176.7069 3.00199 44.55519
0.99923 0.13749 0.80286 177.755 2.09211 58.86397
0.99794 0.13709 0.73749 176.8275 0.10000 36.37067
0.99612 0.13628 0.83784 178.7766 0.69854 48.32215
0.99996 0.13070 0.74724 176.7069 1.02964 49.23896
0.99999 0.13524 0.77339 176.4691 1.26452 35.80277

Table A.16: Mean and Standard Deviation of data from Table A.14 and A.15
u v m s λ× 10−4

MeanAllRepeat 0.999986 0.118801 0.575465 96.00949 8.883972
SDAllrepeat 0.000018 0.004957 0.015937 0.000498 1.040247
MeanExonRepeat 0.997331 0.127776 0.734748 177.1296 2.258943
SDExonRepeat 0.007159 0.016879 0.082216 0.993910 3.028124

124

Bibliography

[1] http://hgdownload.cse.ucsc.edu/goldenpath/hg19/chromosomes/.

[2] Ali A., M. S. Rahman, and W. F. Smyth. Inferring an indeterminate string from

a prefix graph. Journal of Discrete Algorithms, 32:6–13, 2015.

[3] K. Abrahamson. Generalized string matching. SIAM Journal of Computing,

16(6):1039–1051, 1987.

[4] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of

Computer Algorithms. Addison–Wesley, 1974.

[5] A. Alatabbi, J. W. Daykin, J. Kärkkäinen, M. S. Rahman, and W. F. Smyth. V-

Order: new combinatorial properties & a simple comparison algorithm. Discrete

Appl. Math., 215:41–46, 2016.

[6] A. Alatabbi, J. W. Daykin, and M. S. Rahman. Linear algorithms for computing

the Lyndon border array and the Lyndon suffix array. 2015. arXiv:1506.06983.

[7] A. Alatabbi, A. S. M. Sohidull Islam, M. S. Rahman, J. Simpson, and W. F.

Smyth. Enhanced covers of regular and indeterminate strings using prefix tables.

Journal of Automata, Languages and Combinatorics, 21(3):131–147, 2016.

125

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

[8] A. Alatabbi, M. S. Rahman, and W. F. Smyth. Computing covers using prefix

tables. Discrete Applied Mathematics, 212:2–9, 2016.

[9] S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe. Nearest common ancestors:

a survey and new distributed algorithm. In Proc. 1th Annual ACM Symp. on

Parallel Algorithms & Architectures, pages 258–264, 2002.

[10] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local

alignment search tool. Journal of molecular biology, 215(3):403–410, 1990.

[11] A. Apostolico and A. Ehrenfeucht. Efficient detection of quasi–periodicities in

strings. Technical Report 90.5, The Leonardo Fibonacci Institute, Trento, Italy,

1990.

[12] A. Apostolico, M. Farach, and C. S. Iliopoulos. Optimal superprimitivity testing

for strings. Information Processing Letters, 39:17–20, 1991.

[13] U. Baier. Linear-time suffix sorting — a new approach for suffix array construc-

tion. M.Sc. Thesis, University of Ulm, 2015.

[14] U. Baier. Linear-time suffix sorting — a new approach for suffix array construc-

tion. In Roberto Grossi and Moshe Lewenstein, editors, 27th Annual Sympo-

sium on Combinatorial Pattern Matching (CPM 2016), volume 54 of Leibniz

International Proceedings in Informatics (LIPIcs), pages 23:1–23:12, Dagstuhl,

Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[15] H. Bannai, T. I, S. Inenaga, Y. Nakashima, M. Takeda, and K. Tsuruta. The

“runs” theorem. 2014. arXiv:1406.0263v6.

126

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

[16] M. F. Bari, M. S. Rahman, and R. Shahriyar. Finding all covers of an indeter-

minate string in o (n) time on average. In Stringology, pages 263–271, 2009.

[17] F. Bassino, J. Clément, and C. Nicaud. The standard factorization of Lyndon

words: an average point of view. Discrete Mathematics, 290(1):1–25, 2005.

[18] F. Blanchet-Sadri. Algorithmic Combinatorics on Partial Words. Chapman &

Hall CRC, 2008.

[19] W. Bland, G. Kucherov, and W. F. Smyth. Prefix table construction and con-

version. Proc. 24th IWOCA, pages 41–53, 2013.

[20] D. Breslauer. An on–line string superprimitivity test. Information Processing

Letters, 44(6):345–347, 1992.

[21] J. R. Brouwer, R. Willemsen, and B. A. Oostra. Microsatellite repeat instability

and neurological disease. Bioessays, 31(1):71–83, 2009.

[22] P. Calabrese and R. Durrett. Dinucleotide repeats in the drosophila and human

genomes have complex, length-dependent mutation processes. Molecular biology

and evolution, 20(5):715–725, 2003.

[23] K. T. Chen, R. H. Fox, and R. C. Lyndon. Free differential calculus. iv. the

quotient groups of the lower central series. Annals of Mathematics, 68(1):81–95,

1958.

[24] M. Christodoulakis, P. J. Ryan, W. F. Smyth, and S. Wang. Indeterminate

strings, prefix arrays and undirected graphs. Theoretical Comput. Sci., 600:34–

48, 2015.

127

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

[25] J. Clément, M. Crochemore, and G. Rindone. Reverse engineering prefix tables.

In Proc. 26th STACS, pages 289–300, 2009.

[26] R. Cole, C. S. Ilopoulos, M. Mohamed, W. F. Smyth, and L. Yang. The com-

plexity of the minimum k-cover problem. Journal of Automata, Languages and

Combinatorics, 10(5-6):641–653, 2005.

[27] M. Crochemore, C. Hancart, and T. Lecroq. Algorithmique du texte. Vuibert

Informatique, 2001.

[28] M. Crochemore, C. Hancart, and T. Lecroq. Algorithms on Strings. Cambridge

University Press, New York, NY, USA, 2007.

[29] M. Crochemore, C. S. Iliopoulos, S. P. Pissis, and G. Tischler. Cover array string

reconstruction. In CPM, volume 6129, pages 251–259. Springer, 2010.

[30] M. Crochemore and W. Rytter. Jewels of stringology. World Scientific, 2002.

[31] T.-N. Danh and D. E. Daykin. The structure of V –order for integer vectors.

Congressus Numerantium, 113:43–53, 1996.

[32] D. E. Daykin and J. W. Daykin. Lyndon–like and V –order factorizations of

strings. J. Discrete Algorithms, 1(3–4):357–365, 2003.

[33] D. E. Daykin and J. W. Daykin. Properties and construction of unique maximal

factorization families for strings. Internat. J. Found. Comput. Sci., 19(4):1073–

1084, 2008.

[34] D. E. Daykin, J. W. Daykin, C. S. Iliopoulos, and W. F. Smyth. Generic al-

gorithms for factoring strings. In Proc. Memorial Symp. for Rudolf Ahlswede,

128

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

H. Aydinian, F. Cicalese & C. Deppe, (eds.), volume 7777 of Lecture Notes in

Comput. Sci., pages 402–418. Springer-Verlag, 2013.

[35] D. E. Daykin, J. W. Daykin, and W. F. Smyth. Combinatorics of unique maximal

factorization families (UMFFs). Fund. Inform. 97–3, Special Issue on Stringol-

ogy, R. Janicki, S. J. Puglisi & M. S. Rahman (eds.), pages 295–309, 2009.

[36] D. E. Daykin, J. W. Daykin, and W. F. Smyth. String comparison and Lyndon–

like factorization using V –order in linear time. In 22nd Annual Symp. on Combi-

natorial Pattern Matching, volume 6661 of Lecture Notes in Computer Science,

pages 65–76. Springer-Verlag, 2011.

[37] D. E. Daykin, J. W. Daykin, and W. F. Smyth. A linear partitioning algorithm

for hybrid Lyndons using V –order. Theoret. Comput. Sci., 483:149–161, 2013.

[38] J. W. Daykin, F. Franek, J. Holub, A. S. M. Sohidull Islam, and W. F. Smyth.

Reconstructing a string from its lyndon arrays. Theoretical Computer Science,

2017.

[39] A. Di Rienzo, A. C. Peterson, J. C. Garza, A. M. Valdes, M. Slatkin, and N. B.

Freimer. Mutational processes of simple-sequence repeat loci in human popula-

tions. Proceedings of the National Academy of Sciences, 91(8):3166–3170, 1994.

[40] J.-P. Duval. Factorizing words over an ordered alphabet. J. Algorithms, 4:363–

381, 1983.

[41] J.-P. Duval, T. Lecroq, and A. Lefebvre. Border array on bounded alphabet.

Journal of Automata, Languages and Combinatorics, 10(1):51–60, 2005.

129

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

[42] J.-P. Duval, T. Lecroq, and A. Lefebvre. Efficient validation and construction of

Knuth-Morris-Pratt arrays. In Proc. Conference in Honour of Donald E. Knuth,

2007.

[43] J. Fischer, V. Mäkinen, and G. Navarro. An(other) entropy-based compressed

suffix tree. In 19th Annual Symp. on Combinatorial Pattern Matching, volume

5029 of Lecture Notes in Computer Science, pages 152–165. Springer, 2008.

[44] M. J. Fischer and M. S. Paterson. String matching and other products. In R.M.

Karp, editor, Complexity of Computation,, pages 113–125. American Mathemat-

ical Society, 1974.

[45] T. Flouri, C. S. Iliopoulos, T. Kociumaka, S. P. Pissis, S. J. Puglisi, W. F.

Smyth, and W. Tyczynski. Enhanced string covering. Theoretical Computer

Science, 506:102 – 114, 2013.

[46] F. Franek, S. Gao, W. Lu, P. J. Ryan, W. F. Smyth, Y. Sun, and L. Yang.

Verifying a border array in linear time. J. Combinatorial Math. & Combinatorial

Computing, 42:223–236, 2002.

[47] F. Franek, A. S. M. Sohidull Islam, M. S. Rahman, and W. F. Smyth. Algorithms

to compute the lyndon array. In Proceedings of the Prague Stringology Conference

2016, Prague, Czech Republic, August 29-31, 2015, pages 172–184, 2016.

[48] F. Franek, R. J. Simpson, and W. F. Smyth. The maximum number of runs in

a string. Proc. 14th Australasian Workshop on Combinatorial Algorithms, pages

26–35, 2003.

130

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

[49] J. C. Garza, M. Slatkin, and N. B. Freimer. Microsatellite allele frequencies

in humans and chimpanzees, with implications for constraints on allele size.

Molecular Biology and Evolution, 12(4):594–603, 1995.

[50] P. Gawrychowski, A. Jeż, and L. Jeż. Validating the Knuth-Morris-Pratt failure

function, fast and on-line. In Proc. 5th Annual Computer Science Symposium in

Russia, volume 6072 of Lecture Notes in Comput. Sci., pages 132–143. Springer-

Verlag, 2010.

[51] P. Gawrychowski, A. Jeż, and L. Jeż. Validating the Knuth-Morris-Pratt failure

function, fast and on-line. Theory of Computing Systems, 54:337–372, 2014.

[52] K. Goto and H. Bannai. Simpler and faster Lempel-Ziv factorization. In Data

Compression Conference, pages 133–142, 2013.

[53] P. K. Gupta and R. K. Varshney. The development and use of microsatellite

markers for genetic analysis and plant breeding with emphasis on bread wheat.

Euphytica, 113(3):163–185, 2000.

[54] C. Hohlweg and C. Reutenauer. Lyndon words, permutations and trees. Theor.

Comput. Sci., 307(1):173–178, 2003.

[55] J. Holub and W. F. Smyth. Algorithms on indeterminate strings. Proc. 14th

AWOCA, pages 36–45, 2003.

[56] J. Holub, W. F. Smyth, and S. Wang. Fast pattern-matching on indeterminate

strings. Journal of Discrete Algorithms, 6(1):37–50, 2008.

[57] C. S. Iliopoulos, M. Mohamed, and W. F. Smyth. New complexity results for

the k-covers problem. Information Sciences, 181(12):2571–2575, 2011.

131

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

[58] C. S. Iliopoulos and L. Mouchard. Quasiperiodicity and string covering. Theo-

retical Computer Science, 218(1):205–216, 1999.

[59] C. S. Iliopoulos and W. F. Smyth. On-line algorithms for k-covering. 1998.

[60] M. Kimura and T. Ohta. Stepwise mutation model and distribution of allelic fre-

quencies in a finite population. Proceedings of the National Academy of Sciences,

75(6):2868–2872, 1978.

[61] D. E. Knuth. The Art of Computer Programming, Volume I: Fundamental Al-

gorithms, 2nd edition. Addison-Wesley, 1973.

[62] D. Kosolobov. Lempel-Ziv factorization may be harder than computing all runs.

In Proc. 32nd STACS, 2015. arXiv:1409.5641.

[63] S. Kruglyak, R. T. Durrett, M. D. Schug, and C. F. Aquadro. Equilibrium

distributions of microsatellite repeat length resulting from a balance between

slippage events and point mutations. Proceedings of the National Academy of

Sciences, 95(18):10774–10778, 1998.

[64] E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody, J. Baldwin,

K. Devon, K. Dewar, M. Doyle, W. FitzHugh, et al. Initial sequencing and

analysis of the human genome. Nature, 409(6822):860–921, 2001.

[65] G. Levinson and G. A. Gutman. High frequencies of short frameshifts in poly-

ca/tg tandem repeats borne by bacteriophage m13 in escherichia coli k-12. Nu-

cleic Acids Research, 15(13):5323–5338, 1987.

[66] Y. Li and W. F. Smyth. Computing the cover array in linear time. Algorithmica,

32–1, 95–106, 2002.

132

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

[67] M. G. Main. Detecting leftmost maximal periodicities. Discrete Applied Maths.,

25:145–153, 1989.

[68] M. G. Main and R. J. Lorentz. An O(n log n) algorithm for finding all repetitions

in a string. J. Algorithms, 5:422–432, 1984.

[69] U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches.

Siam Journal on Computing, 22(5):935–948, 1993.

[70] U. Manber and G. W. Myers. Suffix arrays: a new method for on-line string

searches. In Proc. First Annual ACM-SIAM Symp. Discrete Algs., pages 319–

327, 1990.

[71] D. Moore and W. F. Smyth. An optimal algorithm to compute all the covers of

a string. Inform. Process. Lett. 50, 239-246, 1994.

[72] D. Moore and W. F. Smyth. Correction to: An optimal algorithm to compute

all the covers of a string. Inform. Process. Lett. 54 101-103, 1995.

[73] G. Nong, S. Zhang, and W. H. Chan. Linear suffix array construction by almost

pure induced–sorting. Data Compression Conference, 0:193–202, 2009.

[74] E. Ohlebusch and S. Gog. Lempel-Ziv factorization revisited. In 22nd Annual

Symp. on Combinatorial Pattern Matching, volume 6661 of Lecture Notes in

Computer Science, pages 15–26. Springer, 2011.

[75] W. Powell, G. C. Machray, and J. Provan. Polymorphism revealed by simple

sequence repeats. Trends in plant science, 1(7):215–222, 1996.

133

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

[76] C. R. Primmer, H. Ellegren, N. Saino, and A. P. Moller. Directional evolution

in germline microsatellite mutations. Nature genetics, 13(4):391–393, 1996.

[77] S. J. Puglisi, W. F. Smyth, and A. H. Turpin. A taxonomy of suffix array

construction algorithms. ACM Comput. Surv., 39(2):1–31, July 2007.

[78] R. Sainudiin, R. T. Durrett, C. F. Aquadro, and R. Nielsen. Microsatellite muta-

tion models: Insights from a comparison of humans and chimpanzees. Genetics,

168(1):383–395, 2004.

[79] J. Sawada and F. Ruskey. Generating Lyndon brackets: an addendum to “Fast

algorithms to generate necklaces, unlabeled necklaces amd irreducible polynomi-

als over GF(2)”. J. Algorithms, 46:21–26, 2003.

[80] W. F. Smyth. Computing Patterns in Strings. Pearson/Addison–Wesley, 2003.

[81] W. F. Smyth. Computing regularities in strings: a survey. European Journal of

Combinatorics, 34(1):3–14, 2013.

[82] W. F. Smyth and S. Wang. New perspectives on the prefix array. Proc.

15th SPIRE, Lecture Notes in Computer Science, LNCS 5280, Springer Ver-

lag, 27:133–143, 2008.

[83] W. F. Smyth and S. Wang. A new approach to the periodicity lemma on strings

with holes. Theoretical Computer Science, 410(43):4295 – 4302, 2009.

[84] N. Sugiura. Further analysts of the data by akaike’s information criterion and

the finite corrections: Further analysts of the data by akaike’s. Communications

in Statistics-Theory and Methods, 7(1):13–26, 1978.

134

PhD Thesis - A S M Sohidull Islam McMaster - School of CSE

[85] G. Wang and K. M. Vasquez. Z-dna, an active element in the genome. Frontiers

in bioscience: a journal and virtual library, 12:4424–4438, 2006.

[86] J. L Weber and C. Wong. Mutation of human short tandem repeats. Human

molecular genetics, 2(8):1123–1128, 1993.

135

