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Abstract

Classifying individuals into binary disease categories can be challenging due to com-

plex relationships across different exposures of interest. In this thesis, we investigate

three different approaches for disease classification using multiple biomarkers. First,

we consider the problem of combining information from literature reviews and a real

data set to determine the threshold of a biomarker for disease classification. We de-

velop a Bayesian estimation procedure for this purpose that utilizes the conditional

probability distribution of the biomarker. This method is flexible compared to the

standard logistic regression approach and allows us to identify a more precise thresh-

old of a biomarker. For example, higher levels of Apolipoprotein B and lower levels of

Apolipoprotein A1 are well-known risk factors for myocardial infarction (MI), but the

threshold at which maximum classification accuracy occurs is not clear. We illustrate

the method finding thresholds of these biomarkers that utilizes the information from

literature reviews and a large case-control study data set.

Second, we consider the problem of identifying a joint threshold for binary

disease classification based on two dependent biomarkers. For example, the creatine

kinase enzyme and cardiac troponin are often used to classify individuals who are at

high risk of developing an acute MI. An independently identified threshold for this
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purpose usually leads to a conflicting classification for some individuals. Based on

the probability distribution function of two dependent biomarkers, we develop and

describe a new method for identifying the joint threshold. We also illustrate the

method using a real data example. Thresholds determined using this approach may

allow clinicians uniquely classify individuals at risk of developing the disease.

Third, we consider the problem of classifying an outcome based on multi-

dimensional complex data sets. For example, gene and miRNA expression data are

often used to classify individuals of having cancer. Linear principal component anal-

ysis (PCA) is a widely used approach to reduce the dimension of such data sets and

utilize the reduced set in a subsequent procedure such as classification or to iden-

tify the association between disease and extracted components. Given that there

may exist some degree of nonlinearity across variables in these data sets, many au-

thors suggest a nonlinear approach such as kernel PCA for this purpose. However,

the performance of kernel PCA over linear PCA in this context has not been well

studied. Based on a real and simulated data sets, we compare these two approaches

and assess the performance of components towards genetic data integration for an

outcome classification. We also develop a simulation algorithm that takes into ac-

count the dependency and nonlinearity observed in these data sets. In general, the

first few kernel principal components show similar performance compared to the lin-

ear principal components in this occasion. Reducing dimensions using linear PCA

and a logistic regression model for classification seems acceptable to deal with high-

dimensional gene or miRNA expression data sets. We also observe that integrating

information from multiple data sets using either of these two approaches lead to a

better performance of classification for the outcome of interest.
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Chapter 1

Introduction and Problem

Statement

In this chapter, we presented our findings from literature reviews and provided an

introduction to the problem we have investigated for data integration and disease

classification. We have also provided a brief outline of three research articles presented

in this thesis.
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Correct classification of a disease is essential to understand the causal pathway to survival

or death. Although the concept of disease classification dates back to the early 15th century

England, death registration first started in mid-15th century Italy (Moriyama et al., 2011). William

Farr first introduced the importance of statistical classification of death in 1839 (Eyler, 1979). This

procedure was formalized based on the classification rules developed in the early 19th century through

the International Statistical Classification of Disease (ICD) (International Statistical Institute, 1899;

US Bureau of the Census, 1901). Since its inception, numerous organizations have used these rules to

classify different diseases for statistical or non-statistical purposes. As a result, these rules are expected

to be updated based on new evidence.

The World Health Organization (WHO) and its collaborating centers continuously work

to update disease classification rules based on revised criteria developed through ongoing research.

Currently, researchers are using the 10th revised version of these rules, called ICD-10, which was

endorsed by the Forty-Third World Assembly in 1990 (World Health Organization, 1992). The next

revision is expected to be released in 2017. In this research, our goal is to shed some light on this area.

In particular, we introduce some new ideas to determine the threshold for disease classification, as well

as to compare and contrast some existing methods for this purpose. We hope that the findings from this

research will be helpful to develop better classification rules for different diseases such as myocardial

infarction (MI), cancer or death due to a specific disease.

The first step of disease classification is to identify markers associated with a particular disease.

Next, it is necessary to determine the threshold at which these markers contribute to the causal pathway

for the disease of interest. Markers obtained from biological specimens are commonly used for this

purpose and referred to as biomarkers. Thresholds for different biomarkers are usually determined

using a clinical or statistical approach (Vasan, 2006). Assuming that biomarkers are independent, these

approaches identify the threshold for one biomarker at a time. However, classification of a disease often

depends on the results obtained from multiple biomarkers called tests, and these tests may be interrelated.

If the assumption of independence is incorrect, the result of two different dependent tests for a particular

disease may lead to a wrong or conflicting classification. Thus, it is essential to develop a method that
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takes into account the dependency between tests to uniquely classify individuals at risk of developing a

particular disease.

Disease-exposure relationships may also suffer from multidimensional complex data

structures, and so it is necessary to consider more sophisticated statistical approaches to identify their

association or for predicting future outcomes. The recent growth and development of computing and

information management systems have allowed scientists to collect and store extensive amounts of

data with complex multidimensional structures. As a result, summarizing or extracting information

from these large data sets to use in subsequent processes is challenging. The number of tests also

grows exponentially with the number of exposures or variables under consideration. For example, the

progression of a disease can be related to biological, behavioral or genetic factors and these data sets

often consist of many variables. The challenge here is to identify the best strategy for utilizing this

information for an outcome classification.

Data integration is a process that allows one to combine information from such data sets. The

concept of data integration varies within the context, such as business intelligence (Haque et al., 2014)

or life sciences (Gomez-Cabrero et al., 2014) to obtain a meaningful summary of information. In either

case, multiple sources of information called domains require data integration to perform a specific task.

For example, integrated information can be used to classify different clinical outcomes such as cancer

or death. In a recent article, Hamid et al. (2009) provided a conceptual framework for data integration

and discussed some methodological challenges in the context of genomic data. In particular, genetic

processes, such as the gene or miRNA expression data, appear in a very high dimension with a relatively

large number of variables as compared to the number of subjects in the sample. These variables are often

highly correlated within and across data sets. Statistical methodology to summarize this information is

not well developed.

Due to the multivariate nature of the data, univariate statistical approaches are not optimal,

and it is necessary to consider appropriate multivariate methodologies. For example, standard statistical

procedures, like linear regression fail to utilize such information for classification, due to a large

number of variables with complex relationships. As a result, reducing the dimension or summarizing

3
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a multidimensional correlated set of exposures is essential to develop the relationship between disease

and risk factors of interest. Thus, integrating data sets in the context of an outcome classification can

be accomplished in two steps: first, by reducing the dimension with meaningful features through a

suitable statistical technique within a domain; second, by developing models to classify the outcome

based on extracted features from the various domains. In the context of genomic data integration, many

authors consider such an approach to dimension reduction and then utilize the reduced set to identify the

association or disease classification (Chang and Keinan, 2014; Yi et al., 2012).

Depending on the relationship between variables within a domain, the two broad classes of

dimension reduction techniques available for use are either the linear or the nonlinear approach. Some

of the linear approaches include linear principal component analysis (PCA), latent class analysis (LCA)

and canonical correlation analysis (CCA). While PCA and LCA can be used to reduce the dimension

of a single set, CCA can be used to reduce dimensions of two correlated sets. The key characteristic

of these approaches is to identify a smaller number of latent variables that can be expressed as a

linear combination of observed variables with maximum variance or correlation. Similarly, some of the

nonlinear approaches include Sammon’s mapping, curvilinear component analysis, nonlinear PCA, and

kernel PCA. These procedures can be considered as a nonlinear generalization of the standard PCA.

Many authors consider linear PCA to reduce the dimension of gene expression data and

subsequently utilize the information to quantify the degree of association between disease and the

extracted principal components (Chang and Keinan, 2014; Yi et al., 2012). This method was also used to

identify a cluster of associated genes (Yeung, 2001), to correct for population stratification in genome-

wide association studies (Price et al., 2006), or to predict an outcome based on the different types of

clinical variables (Ahmadi et al., 2013; Korkeila et al., 2011). Estimation and test results related to this

method depend on the linearity and multivariate normality assumption. However, gene and miRNA

expression data often fail to satisfy these assumptions; as a result, nonlinear dimension reduction

techniques may be optimal in this situation.

In the context of dimension reduction and pattern recognition, Schölkopf et al. (1998)

suggested that pre-processing data using kernel PCA could improve the classification performance.
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For example, this approach performs well for character or face recognition. The author also showed

that a linear classifier is sufficient in this case, as long as features are extracted using the nonlinear

approach. Recently, many authors also proposed kernel PCA to reduce the dimension of a genetic

process (Gao et al., 2011; Liu et al., 2005), but this procedure requires identifying a suitable kernel for

this computation. Based on the analysis of several data sets using different kernel PCA and logistic

regression for classification, Liu et al. (2005) suggest that a polynomial kernel with a degree of two or

three performs better to reduce the dimension of gene expression data. However, the performance of

kernel PCA over linear PCA in the context of data integration and disease classification is yet to be

explored and justified.

In this thesis, we investigate some of the issues discussed above, and a brief outline is given

below. In Chapter 2, we develop and describe a Bayesian approach to determine the threshold of a

biomarker for disease classification. We illustrate that this method utilizes information from literature

reviews of selected biomarkers and a real data set. In particular, we consider the problem of classifying

myocardial infarction (MI) based on Apolipoprotein B (ApoB), Apolipoprotein A1 (ApoA1) and the

ratio of these two biomarkers. Higher levels of ApoB and lower levels of ApoA1 are well-known risk

factors for MI. In a recent epidemiological study, called INTERHEART, elevated ApoB to ApoA1 ratio

appeared to be the most influential predictor for MI (Yusuf et al., 2004). However, the thresholds at which

these biomarkers become a risk for MI are not clear. Applying the method developed, we determine the

threshold of these biomarkers for the classification of MI. During this process, we first construct prior

distributions for location and scale parameters utilizing information from literature reviews, and then

develop classification rules based on the posterior distribution for each of the biomarkers. We also use

the classical and Bayesian approaches to identify the most informative predictor for MI among the three,

as well as estimate the odds ratio for one standard deviation change in each of these risk factors.

In Chapter 3, we consider the problem of classifying disease based on two dependent

biomarkers, where we develop a new method of identifying the joint threshold. This threshold allows

one to classify uniquely patients into a binary disease group. However, this method requires constructing

a joint probability distribution for these biomarkers. We use Frank’s, Clayton’s and Gumbel’s copula for
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this purpose and construct the joint probability distribution with gamma marginals. Based on the joint

probability distribution constructed through copula, we develop the method of classifying patients into

binary disease categories, which takes into account the dependency between biomarkers and leads to a

unique classification. We also develop a simulation algorithm for this purpose and conduct the simulation

study in two steps. In the first step, we evaluate the performance of the joint probability distribution based

on the relative bias and mean squared error for all parameters of interest. In the second step, we utilize

the joint probability density function to determine the joint threshold of creatine kinase and cardiac

troponin for acute MI classification, using a set of parameters identified through literature reviews. We

also assess the classification accuracy of the method across different choices of copulas based on the

empirical distribution of the area under the receiver operating characteristic curve. Finally, we illustrate

the method with an example using a sub-set of the INTERHEART study data for MI. In this example, we

demonstrate how to determine the joint threshold of Apolipoprotein B to Apolipoprotein A1 ratio and

total cholesterol to high-density lipoprotein ratio for the classification of MI.

In Chapter 4, we consider the problem of data integration and an outcome classification based

on high dimensional genomic data sets. In this chapter, we develop a copula-based simulation algorithm

that takes into account the degree of dependence and nonlinearity observed in the expression data. Based

on the algorithm developed, we conduct a simulation study to compare the performance of linear and

kernel approaches in different scenarios. Subsequently, we demonstrate the data integration procedure

using a real data set obtained from the international cancer genome consortium data portal (Zhang et al.,

2011). During this process, we also compare the linear and kernel principal components for reducing

the dimension of larger sets, and their performance towards data integration and death classification

based on logistic regression models. We use percent of variance explained by the top three principal

components, the classification error rate and the area under the receiver operating characteristic curve for

this comparison.

Thus, three research projects we present in Chapter 2-4 describe methods for disease

classification using real data examples and simulation. We consider the second project as a bivariate

extension of the first project. In the third project, we compare methods dealing with multidimensional

6



PhD Thesis - Shofiqul Islam McMaster - Health Research Methods, Evidence, and Impact

complex data sets for disease classification. Overall, we present these three chapters as a univariate,

a bivariate and multivariate statistical methods for data integration and disease classification. Lastly,

in Chapter 5 we present an overview of our main findings, recommendations for future research, and

concluding remarks.
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Chapter 2

A Bayesian Approach of

Developing Classification Rules

The threshold of a biomarker for disease classification is usually determined using a

classical approach. This approach does not allow one to use pre-existing evidence in

the literature. This chapter includes an article published in the “Journal of Applied

Statistics,” where we developed a Bayesian approach to determine the threshold of a

biomarker for disease classification. We illustrated this method utilizing information

from literature reviews of selected biomarkers and a large case-control study data set.

The approach developed in this article can be used to determine the threshold of any

continuous biomarker for a binary disease classification.

Citation: S. Islam, S. Anand, M. McQueen, J. Hamid, L. Thabane, S. Yusuf & J.

Beyene (2016): Classification rules for identifying individuals at high risk of develop-

ing myocardial infarction based on ApoB, ApoA1 and the ratio were determined using

a Bayesian approach, Journal of Applied Statistics, DOI: 10.1080/02664763.2016.1270912.
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1. Introduction

The threshold of a biomarker for a disease classification is usually determined using classical approaches

such as maximum likelihood estimator of a logistic regression model (Hosmer et al., 2013). These

approaches do not allow one to use pre-existing evidence in the literature that may be useful to identify

a more precise threshold. In this article, we combine information from literature reviews and a real data

set to determine the threshold of a biomarker for binary disease classification. We develop a Bayesian

estimation procedure for this purpose that utilizes the conditional distribution of the biomarker. We

illustrate our method using different biomarkers related to myocardial infarction (MI) and a large case-

control study data set, called INTERHEART (Yusuf et al., 2004).

Based on literature reviews, we identify that higher levels of Apolipoprotein B (ApoB) and

lower levels of Apolipoprotein A1 (ApoA1) are well-known risk factors for MI (Lind et al., 2006;

McQueen et al., 2008; Sabino et al., 2008; Holme et al., 2008). Based on the INTERHEART study,

Yusuf et al. (2004) identified abnormal lipids, characterized by the ratio of ApoB to ApoA1 as the most

influential risk factor for MI. The author also showed that the odds ratio increases with the increasing

value of the ratio. However, the threshold at which maximum classification accuracy occurs for these

biomarkers may vary across studies. Therefore, the cut-offs for ApoB, ApoA1 or the ratio of ApoB

to ApoA1, which maximizes the classification accuracy of MI using INTERHEART data set would be

clinically valuable. These thresholds may also vary across different age and ethnic groups.

The primary objective of this paper is to develop a Bayesian estimation procedure to determine

the threshold of a biomarker that maximizes the classification accuracy of a disease. The secondary

objective of this research is to identify the potential best predictors for the disease under consideration.

We construct prior distribution for ApoB, ApoA1, and the ratio of ApoB to ApoA1 for MI classification

and combine with the INTERHEART study data to obtain a posterior distribution for this purpose.

The remaining part of the paper is organized as follows. In the next Section, we describe the

INTERHEART data set, where we present region-specific sample size, mean and standard deviation for

ApoB, ApoA1, and the ratio. In Section 3, we develop and describe the threshold identification procedure
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using a Bayesian approach. We present the results of the analysis and discuss them in Section 4. Finally,

we provide a summary of our findings in Section 5 with some concluding remarks in Section 6.

2. The data

INTERHEART is a case-control study, consisting of 15,152 age- and sex-matched MI cases and 14,280

controls from 52 countries around the world. Here, the term case-control refers to those subjects with the

disease MI(cases) and those without the disease(controls). Due to various reasons, it was not possible

to find exactly matched controls for a small number of cases. Among the 29,432 recruited individuals,

blood samples were collected and analyzed for about 79% of the participants using standardized quality

control criteria for sample transportation, storage and analysis at the central laboratory. As a result,

ApoB (gram/liter) and ApoA1 (gram/liter) were missing for about 21% of the individuals which led to

a breakdown in the matched case and control pair. Additional details on this data set can be found in

Yusuf et al. (2004) and McQueen et al. (2008). Since the primary goal of this paper is to identify the cut-

off for these biomarkers that maximizes the accuracy of classification, we use only a perfectly matched

subset of the INTERHEART data within each region. This subset consists of age- (within five years), and

sex-matched 8084 MI cases and 8084 controls from nine regions in the world. We identify this subset

from the main INTERHEART database and a greedy matching algorithm implemented using a computer

program developed in the SAS software. In this analysis, our interest lies in selected variables, such as

case or control status, age, sex, region, ethnicity, ApoB, ApoA1, and the ratio of ApoB to ApoA1. Due

to strict matching criteria, we have lost about one-fifth of the sample, but the matched subset allows us

to rule out the confounding effect of age, sex, and region on the parameters of interest. In other words,

this may help us identify more precise cut-offs as well as odds ratios of a unit change in each of these

biomarkers.

We present region-specific sample size and the age distribution of selected participants overall,

as well as by sex and their case or control status in Table 1. Note that there are the same number of cases

13



PhD Thesis - Shofiqul Islam McMaster - Health Research Methods, Evidence, and Impact

and controls within each sex across nine regions. Age distribution within each stratum is approximately

the same between cases and controls, representing an entirely balanced data set. We also compute and

present the summary statistics, characterized by mean and standard deviation for each of these biomarkers

in Table 2. In this table, we give the overall estimates, by sex and region, further stratified by their case

or control status. Based on these estimates, we observe that there is a considerable amount of variation in

the means across regions for ApoB, ApoA1, and the ApoB:ApoA1 ratio. We also observe that cases have

a higher mean ApoB and the ratio but a lower mean ApoA1 than controls, an observation consistent with

current literature. Density plots for each of the biomarkers among cases and controls were constructed

and presented in Figure 1. Arrows in these figures indicate the cut-offs that maximize the classification

accuracy for MI, and we discuss the related procedure in Section 3.

Table 1. Overall sample size, mean, and standard deviation of age by region, sex, and by case or control

status

Region Sex Overall Case Control

All Region All 16168 [57.4 (11.9)] 8084 [57.5 (12.0)] 8084 [57.4 (11.9)]

NAmerica/WEurope All 894 [61.3 (11.6)] 447 [61.3 (11.7)] 447 [61.2 (11.6)]
Women 260 [63.9 (12.0)] 130 [64.0 (12.1)] 130 [63.8 (11.9)]
Men 634 [60.2 (11.3)] 317 [60.2 (11.4)] 317 [60.2 (11.3)]

Central/EastEurope All 2056 [60.6 (12.1)] 1028 [60.6 (12.1)] 1028 [60.5 (12.0)]
Women 656 [65.9 (10.8)] 328 [65.9 (10.8)] 328 [65.9 (10.7)]
Men 1400 [58.1 (11.8)] 700 [58.2 (11.9)] 700 [58.0 (11.8)]

MiddleEast/Egypt All 2184 [50.6 (9.95)] 1092 [50.7 (9.93)] 1092 [50.6 (9.97)]
Women 248 [55.3 (9.54)] 124 [55.4 (9.59)] 124 [55.1 (9.53)]
Men 1936 [50.0 (9.85)] 968 [50.1 (9.82)] 968 [50.0 (9.88)]

Africa All 772 [54.0 (11.1)] 386 [54.1 (11.1)] 386 [53.9 (11.1)]
Women 266 [57.0 (11.4)] 133 [57.0 (11.4)] 133 [56.9 (11.5)]
Men 506 [52.4 (10.6)] 253 [52.5 (10.6)] 253 [52.4 (10.6)]

South Asia All 2282 [53.1 (11.2)] 1141 [53.1 (11.3)] 1141 [53.0 (11.2)]
Women 308 [57.7 (11.6)] 154 [57.7 (11.7)] 154 [57.7 (11.6)]
Men 1974 [52.3 (11.0)] 987 [52.4 (11.0)] 987 [52.3 (10.9)]

China/HongKong All 4588 [60.5 (11.2)] 2294 [60.6 (11.3)] 2294 [60.4 (11.1)]
Women 1300 [65.6 (8.58)] 650 [65.7 (8.63)] 650 [65.5 (8.54)]
Men 3288 [58.5 (11.4)] 1644 [58.6 (11.5)] 1644 [58.4 (11.3)]

SEAsia/Japan All 1262 [56.9 (10.9)] 631 [56.9 (11.0)] 631 [56.8 (10.8)]
Women 238 [61.9 (9.86)] 119 [61.9 (9.92)] 119 [61.8 (9.83)]
Men 1024 [55.7 (10.8)] 512 [55.7 (10.9)] 512 [55.6 (10.7)]

Australia/NZ All 344 [59.4 (12.2)] 172 [59.6 (12.3)] 172 [59.3 (12.2)]
Women 66 [63.4 (12.5)] 33 [63.6 (12.5)] 33 [63.2 (12.7)]
Men 278 [58.5 (11.9)] 139 [58.6 (12.0)] 139 [58.3 (11.9)]

SAmerica/Mexico All 1786 [59.6 (12.2)] 893 [59.6 (12.3)] 893 [59.5 (12.2)]
Women 436 [63.1 (11.8)] 218 [63.2 (11.8)] 218 [63.0 (11.8)]
Men 1350 [58.4 (12.1)] 675 [58.4 (12.2)] 675 [58.4 (12.1)]
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Table 2. Overall means and standard deviation of ApoB, ApoA1, and the ratio by region, sex, and by

case or control status

ApoB (gram/liter) ApoA1 (gram/liter) Ratio of ApoB to ApoA1
Region Overall Case Control Overall Case Control Overall Case Control

All Region Overall 0.94(0.26) 0.97(0.27) 0.91(0.25) 1.17(0.27) 1.12(0.24) 1.21(0.28) 0.84(0.30) 0.90(0.31) 0.79(0.29)

NAmerica/WEurope All 0.98(0.24) 0.99(0.24) 0.96(0.23) 1.26(0.27) 1.18(0.24) 1.35(0.27) 0.81(0.29) 0.88(0.32) 0.74(0.24)
Women 0.98(0.24) 1.00(0.25) 0.96(0.23) 1.37(0.29) 1.26(0.25) 1.47(0.28) 0.75(0.28) 0.82(0.27) 0.68(0.27)
Men 0.98(0.23) 0.98(0.24) 0.97(0.23) 1.22(0.25) 1.14(0.22) 1.30(0.25) 0.84(0.29) 0.90(0.34) 0.77(0.22)

Central/EastEurope All 1.00(0.27) 1.04(0.28) 0.96(0.25) 1.23(0.26) 1.22(0.23) 1.24(0.28) 0.85(0.27) 0.87(0.26) 0.82(0.28)
Women 1.02(0.27) 1.06(0.28) 0.97(0.24) 1.29(0.27) 1.29(0.24) 1.30(0.29) 0.82(0.26) 0.85(0.27) 0.79(0.25)
Men 0.99(0.27) 1.03(0.28) 0.96(0.25) 1.20(0.25) 1.19(0.22) 1.21(0.27) 0.86(0.28) 0.88(0.26) 0.83(0.29)

MiddleEast/Egypt All 1.02(0.27) 1.06(0.27) 0.97(0.26) 1.10(0.22) 1.06(0.22) 1.14(0.22) 0.96(0.34) 1.04(0.38) 0.87(0.28)
Women 1.07(0.29) 1.11(0.29) 1.03(0.28) 1.23(0.25) 1.18(0.26) 1.28(0.23) 0.89(0.27) 0.96(0.26) 0.83(0.26)
Men 1.01(0.27) 1.06(0.26) 0.96(0.26) 1.08(0.21) 1.04(0.21) 1.12(0.21) 0.96(0.35) 1.05(0.39) 0.88(0.28)

Africa All 0.94(0.28) 0.99(0.28) 0.88(0.27) 1.15(0.30) 1.10(0.27) 1.21(0.32) 0.87(0.34) 0.94(0.32) 0.79(0.35)
Women 0.97(0.27) 1.00(0.27) 0.93(0.26) 1.22(0.29) 1.15(0.27) 1.30(0.29) 0.83(0.29) 0.91(0.30) 0.75(0.26)
Men 0.92(0.29) 0.99(0.28) 0.86(0.28) 1.12(0.30) 1.08(0.26) 1.16(0.33) 0.89(0.36) 0.96(0.32) 0.81(0.39)

South Asia All 0.93(0.25) 0.96(0.26) 0.90(0.24) 1.04(0.24) 1.01(0.23) 1.07(0.24) 0.93(0.34) 0.99(0.34) 0.87(0.34)
Women 0.95(0.28) 0.98(0.27) 0.93(0.29) 1.13(0.28) 1.09(0.26) 1.18(0.30) 0.89(0.36) 0.94(0.33) 0.85(0.38)
Men 0.92(0.25) 0.96(0.25) 0.89(0.24) 1.03(0.23) 1.00(0.22) 1.06(0.23) 0.94(0.34) 0.99(0.34) 0.88(0.33)

China/HongKong All 0.84(0.22) 0.86(0.23) 0.81(0.21) 1.21(0.27) 1.15(0.25) 1.26(0.29) 0.72(0.23) 0.77(0.23) 0.67(0.21)
Women 0.88(0.24) 0.92(0.26) 0.84(0.22) 1.30(0.29) 1.24(0.27) 1.35(0.31) 0.71(0.24) 0.77(0.26) 0.65(0.20)
Men 0.82(0.21) 0.83(0.22) 0.80(0.21) 1.17(0.26) 1.12(0.23) 1.23(0.27) 0.73(0.22) 0.77(0.23) 0.68(0.21)

SEAsia/Japan All 1.02(0.26) 1.07(0.28) 0.97(0.23) 1.19(0.27) 1.12(0.24) 1.26(0.28) 0.90(0.30) 0.99(0.29) 0.81(0.27)
Women 1.07(0.27) 1.11(0.32) 1.02(0.21) 1.29(0.29) 1.20(0.26) 1.38(0.31) 0.86(0.27) 0.95(0.30) 0.76(0.20)
Men 1.01(0.26) 1.06(0.27) 0.96(0.23) 1.17(0.26) 1.10(0.23) 1.24(0.26) 0.91(0.30) 0.99(0.29) 0.82(0.29)

Australia/NZ All 0.97(0.24) 0.97(0.26) 0.97(0.23) 1.27(0.25) 1.20(0.23) 1.35(0.25) 0.79(0.24) 0.84(0.26) 0.74(0.22)
Women 0.97(0.27) 0.97(0.28) 0.97(0.25) 1.40(0.27) 1.31(0.27) 1.48(0.23) 0.72(0.24) 0.77(0.25) 0.68(0.23)
Men 0.97(0.24) 0.97(0.25) 0.98(0.23) 1.24(0.24) 1.17(0.21) 1.32(0.24) 0.81(0.24) 0.85(0.26) 0.76(0.22)

SAmerica/Mexico All 0.98(0.26) 1.00(0.27) 0.95(0.24) 1.14(0.26) 1.08(0.23) 1.19(0.27) 0.90(0.31) 0.96(0.30) 0.84(0.31)
Women 1.03(0.27) 1.07(0.29) 0.98(0.24) 1.25(0.27) 1.16(0.25) 1.33(0.27) 0.87(0.29) 0.96(0.30) 0.78(0.26)
Men 0.96(0.25) 0.98(0.26) 0.94(0.24) 1.10(0.24) 1.06(0.21) 1.15(0.26) 0.91(0.31) 0.96(0.30) 0.85(0.32)
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Figure 1. Density plot of ApoB, ApoA1, and the ratio of ApoB to ApoA1 from INTERHEART cases and controls
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3. Methods

In this section, we develop and describe statistical methods related to two objectives stated in the

introduction. For this purpose, we consider MI as the disease of interest as well as ApoB, ApoA1,

and the ratio of ApoB to ApoA1 as biomarkers of interest. In Section 3.1, we describe the threshold

identification procedure based on the conditional posterior distribution of each of these biomarkers. In

Section 3.2, we provide a step-by-step computational algorithm. In Section 3.3, we present a Bayesian

approach of estimating the odds ratio using a logistic regression model. Finally, in Section 3.4, we provide

information on methods used for model diagnostics and related software.

3.1. Threshold identification method using a Bayesian approach

In this section, we develop and describe the classification rule for a disease based on a continuous

exposure. Here, the term “classification rule” refers to identifying the threshold at which the maximum

classification accuracy occurs for a given value of the exposure. To facilitate this process, let us suppose

D = 1 indicates presence and D = 0 means the absence of a disease. Let us also assume e is the value

of the continuous exposure E that can be used to classify individuals into binary disease categories.

The cross tabulation of disease and exposure categories then gives us the frequencies a, b, c and d

corresponding to four cells of a 2 × 2 table. Thus, the classification rules can be identified based on

the following table.

Table 3. Cross tabulation of disease and exposure at a given threshold and corresponding cell frequencies

Classification Rule Disease (D) Total

Yes (1) No (0)

Exposure (E) E ≥ e a b a+b

E < e c d c+d

Total a+c b+d N=a+b+c+d
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Using the notation of Table 3, the sensitivity and specificity denoted by P+ and P− can

respectively, be defined as:

P+ = Pr [E ≥ e|D = 1] =
a

(a + c)
,

P− = Pr [E < e|D = 0] =
d

b + d
.

Let us also define false negative Q+ and false positive Q− such that:

Q+ = Pr [E < e|D = 1] = 1 − a

a + c
=

c

a + c
,

Q− = Pr [E ≥ e|D = 0] = 1 − d

b + d
=

b

b + d
.

Note that our goal here is to find the threshold or cut-off e (the value of E) that maximizes

classification accuracy. In the above formulation, we are assuming that a higher value of an exposure

is related to a higher risk for the disease (e.g., ApoB). However, we can also use Table 3 in a situation

where a lower value of a biomarker represents a risk (e.g. ApoA1), by just changing the inequality in the

opposite direction. We refer to this as the classification rule, and the procedure is described below.

Let us assume the conditional probability distribution of each exposure is given by [E|D =

1] ∼ N(µ1, σ1) and [E|D = 0] ∼ N(µ0, σ0). Based on this assumption and the method described by

Pepe (2003), we can express Q− as:

Q− = Pr [E ≥ e|D = 0] = Φ

[
µ0 − e

σ0

]
. (1)

For a given value of Q−, say q−, Equation 1 can be re-arranged as:

e = µ0 − σ0Φ
−1(q−). (2)

Using this information, P+ can be re-expressed as:

P+ = Pr[E ≥ e|D = 1] = Φ

[
µ1 − µ0

σ1

+

(
σ0

σ1

)
Φ−1(q−)

]
. (3)
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Similarly, the area under the receiver operating characteristic (ROC) curve, denoted by AUC, can be

expressed as:

AUC = Pr[(E|D = 1) > (E|D = 0)] = Φ

[
(µ1 − µ0)/σ1√

1 + (σ2
0/σ

2
1)

]
. (4)

In the above set of expressions, Φ is the cumulative distribution function of a standard normal

variate. Note that we are assuming a conditional normal distribution for the exposure in this construction.

We can use the maximum likelihood estimation procedure to solve for µ and σ used in the above set

of expressions. However, it may be useful to utilize prior information from a literature review and

we propose a Bayesian estimation procedure for this purpose. Assuming the prior distribution for the

biomarker is known for both cases and controls, we can combine the prior and likelihood constructing

posterior distributions for the location parameter µ and the scale parameter σ using the following

equations:

p(µ|E) =
p(E|µ) p(µ)

p(E)
and p(σ|E) =

p(E|σ) p(σ)

p(E)
. (5)

We can use these general equations to construct posterior distribution for cases and controls separately

as well as for each biomarker under consideration. In this construction, the location parameter µ can be

considered to have conjugate family of distributions for a given scale parameter σ (Ntzoufras, 2009).

Thus, we assume location parameter µ follows a normal distribution such that µ ∼ N(µI , σI). We

determine hyper parameters µI and σI for each of these biomarkers based on literature reviews and

provide specific values in Section 4.1.1. On the other hand, the scale σ is a nuisance parameter and it is

reasonable to assume a flat prior such as uniform distribution. Based on literature reviews, we observe that

the standard deviation of each of these biomarkers ranges between 0 and 1. Thus, a uniform distribution

for σ within the interval 0 and 1 is a reasonable choice for these biomarkers.
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3.2. Computation algorithm to identify the threshold

We now describe the simulation algorithm to find the threshold of a biomarker that maximizes the

accuracy of classification of a disease. Let us suppose the prior information for location parameter follows

a normal distribution such that µ ∼ N(µI , σI) and the scale parameter σ follows a uniform distribution

on the interval 0 and 1. Utilizing this information and observed data, we can simulate random samples

from the posterior distribution given in Equation 5 for cases and controls separately. For this purpose,

we can use the Markov Chain Monte Carlo (MCMC) simulation procedure available in the WinBUGS

software (Spiegelhalter et al., 2003) and the steps to do so are described below:

(1) Generate random samples from the prior distribution of the location parameter µ1 ∼ N(µI , σI) and

scale parameter σ1 ∼ U(0, 1) for cases.

(2) Compute the likelihood based on case exposure data under normal distribution assumption such

that: [E|D = 1] ∼ N(µ1, σ1).

(3) Combine the prior information and the likelihood to construct posterior distribution for cases.

(4) Repeat steps 1-3 for control data such that [E|D = 0] ∼ N(µ0, σ0).

(5) Specify a grid of points between 0 and 1 and consider those as a given set of points for Q− and

compute the specificity such that p− = 1 − q−.

(6) Compute e using the expression given in Equation (2).

(7) Compute the sensitivity p+ for a given e and generated data from the posterior distribution of µ

and σ using Equation (3).

(8) Identify the maximum sensitivity and specificity from the series obtained in steps 5 and 7.

(9) Identify the cut-off e that corresponds to the maximum sensitivity and specificity.

(10) For each set of generated µ and σ, compute AUC using Equation (4).

(11) Consider the computed set as a sample from the distribution of AUC and then compute median and

95% credible interval for the AUC.
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3.3. Odds ratio estimation method using a Bayesian approach

Suppose that D = 1 indicates presence and D = 0 indicates the absence of a disease of interest. Let pi

be the conditional probability of the disease given the exposure. Then the logistic regression model with

one continuous exposure is given by:

log

(
pi

1 − pi

)
= β0 + β1 ∗ Ei, i = 1, 2, ..., n, (6)

where β0 is the intercept and the slope β1 is the log of the odds ratio for the exposure. In this equation, E

could be any of the three exposures ApoB, ApoA1 or the ratio of ApoB to ApoA1. In this construction,

the non-informative prior for the intercept and informative prior for the slope can be specified by the

normal distribution (Ntzoufras, 2009) such that:

β0 ∼ N(µN0, σN0) and β1 ∼ N(µI1, σI1), (7)

for a given hyperparameter mean µN0 and a standard deviation σN0 (here N denotes non-informative

prior). A large standard deviation leads to a flat or non-informative prior for the intercept. We utilize

information available in the literature to specify the hyperparameter µI1 and σI1 for the prior distribution

of the slope (here I denotes an informative prior). The priors are then combined with the likelihood to

form a posterior distribution for these parameters.

3.4. Model diagnostic methods and related software

We first compute the posterior distributions for each parameter using the MCMC simulation

procedure. We then use autocorrelation plot, history plot and Brooks-Gelman-Rubin (BGR) plots

(Brooks and Gelman, 1998; Gelman and Rubin, 1992) to identify if there is any problem with

convergence of the posterior to a stationary distribution. We also computed BGR (Brooks and Gelman,

1998; Gelman and Rubin, 1992), Heideburger and Welch (Heidelberger and Welch, 1983) and Geweke

statistic (Geweke, 1992) to test formally for non-convergence of the posterior distribution. During this

process, we ran three chains with 3000 iterations each, in addition to 1000 burn-in for each parameter of
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interest. We also use the area under the ROC curve (AUC) to compare classification accuracies across

different biomarkers. Based on the computed logistic regression, we also compare models for different

biomarkers using Akaike Information Criteria (AIC) (Akaike, 1974) for the classical approach and

Deviance Information Criteria (DIC) (Spiegelhalter et al., 2002) in the Bayesian approach. We use the

WinBUGS (Spiegelhalter et al., 2003) and R (R Development Core Team, 2011) software for all analysis

and prepare all figures. In particular, we use R2WinBUGS (Sturtz et al., 2005) and BOA (Smith, 2007)

library to analyze the data simultaneously between these two software packages.

4. Results

In this section, we illustrate our methods described in the previous section using information obtained

from literature reviews and the analysis of the INTERHEART data set. Note that our interest is classifying

MI based on ApoB, ApoA1, and the ratio of ApoB to ApoA1. In Section 4.1, we present the result using a

Bayesian approach and identify the threshold of these biomarkers that maximizes classification accuracy.

In Section 4.2, we present the odds ratio estimates based on the conditional logistic regression model and

corresponding information criteria using both Bayesian and classical approaches. Within the Bayesian

approach, we use a random intercept model to take the effect of matching into account.

4.1. Classification rules for MI

Our goal in this section is to identify the threshold of ApoB, ApoA1, and the ratio of ApoB to ApoA1

that maximizes the classification accuracy for MI. In other words, we need to find the cut-off e, the

value of the exposure E that maximizes the sensitivity and specificity using the algorithm developed in

Section 3.2. Based on the histogram and Quantile-Quantile plot, we assume a normal distribution of each

exposure given the case or control status of the participants. In the next sub-section, we construct the

normal informative prior distribution for the location parameter of each biomarker. We then construct

posterior distributions based on the normal informative prior for the location parameter µ and a uniform
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prior for the scale parameter σ for each of the biomarkers. Finally, we identify the threshold of each

biomarker separately that maximizes the classification accuracy for MI. We also compute the AUC to

identify the best predictor among these three biomarkers.

4.1.1. Prior distributions for the location and scale parameters: We review recent literature and

construct the informative priors for the location and scale parameter of ApoB, ApoA1, and the ratio of

ApoB to ApoA1. We identify a meta-analysis by Thompson and Danesh (2006), which presents the mean

and standard deviation for each of these biomarkers from 23 prospective studies. In this article, the author

considers coronary heart disease and MI as the disease of interest. Selected studies vary by location,

sampling frame, baseline year, end point, age group, fasting status, assay, temperature, and different

methods from manufacturers. Based on the summary of these studies, we construct the prior distribution

for the location parameter µ related to ApoB as µApoB ∼ N(µI = 1.07, σI = 0.1169). Similarly, for the

location parameter for ApoA1 and the ratio of ApoB to ApoA1, the prior distributions are given by

µApoA1 ∼ N(µI = 1.37, σI = 0.204) and µApoB/ApoA1 ∼ N(µI = 0.85, σI = 0.0786), respectively. Note

that in this analysis scale, σ is a nuisance parameter. Thus, assuming a flat uniform prior U(0, 1) for each

exposure seems to be adequate. Given that there is a small difference in the mean of these biomarkers

between cases and controls, we use the same prior distribution for both case and control related model

parameters.

4.1.2. Posterior distributions for the location and scale parameters: Using these prior distributions

and INTERHEART data, we compute the posterior distributions based on Equation 5 and the MCMC

simulation. Looking at the history, autocorrelation, and the BGR, Heideburger-Welch and Geweke tests,

we do not see any problem with convergence of any of the posterior distributions. The computed values

of the BGR test statistic for all parameters are very close to 1, reassuring that there is no problem with

convergence in any of the posterior distributions. We present the density plot for all prior and posterior

distributions associated with the location parameter of different exposures in Figure 2-4. The posterior

median with 95% credible intervals for the location and scale parameters for each of the exposures are
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given in Table 4. Estimates obtained from ApoB, ApoA1, and the ratio among cases are 0.972 (0.966,

0.978), 1.119 (1.114, 1.124) and 0.903 (0.896, 0.906), respectively. We also observe that the median

ApoB among cases is 0.064 of a unit higher, ApoA1 is 0.092 of a unit lower, and the ratio of ApoB to

ApoA1 is 0.117 of a unit higher than controls. However, scale parameter estimates are slightly higher

among cases than controls except for ApoA1, and we observe slightly lower standard deviations among

cases than controls.

Table 4. Posterior median and 95% credible interval for the distribution of µ and σ

Parameters ApoB (gram/liter) ApoA1 (gram/liter) ApoB/ApoA1
Case Control Case Control Case Control

µ 0.972 0.908 1.119 1.211 0.903 0.786
(0.966, 0.978) (0.903, 0.914) (1.114, 1.124) (1.205, 1.217) (0.896, 0.909) (0.780, 0.792)

σ 0.270 0.245 0.244 0.279 0.312 0.285
(0.266, 0.275) (0.241, 0.249) (0.240, 0.248) (0.274, 0.283) (0.308, 0.317) (0.281, 0.290)
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Figure 2. Prior and posterior density for the location parameter of ApoB and corresponding AUC

4.1.3. Threshold for ApoB, ApoA1, and the ratio of ApoB to ApoA1: Applying the algorithm described

in Section 3.2, we identify the threshold of these biomarkers that maximizes the classification accuracy

of MI. Threshold estimates and the corresponding AUC with their 95% credible intervals are given in

Table 5. Since age, sex, and ethnicity are already known to play a significant role in modifying these

biomarkers, we present the cut-off for those sub-groups, along with the overall estimates. In particular,
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Figure 3. Prior and posterior density for the location parameter of ApoA1 and corresponding AUC
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Figure 4. Prior and posterior density for the location parameter of ApoB to ApoA1 ratio and corresponding AUC

we provide the cut-off for younger (men ≤ 55 or women ≤ 65) and older (men > 55 or women > 65)

individuals as well as for each ethnic group.

We identify the overall cut-off for ApoB 0.908 (gram/liter), corresponding to a sensitivity of

59% and a specificity of 50%. Similarly, for ApoA1 we identify the threshold as 1.138 (gram/liter)

corresponding to a sensitivity of 60% and a specificity 53%. Finally, for ApoB to ApoA1 ratio the

threshold is 0.808, corresponding to a sensitivity of 62% and a specificity 53%. Based on the estimates

presented in Table 5, we also observe that the threshold varies slightly across the different ethnic groups

as well as for younger and older individuals. Finally, the median AUC with 95% credible intervals

associated with ApoB, ApoA1, and ApoB/ApoA1 are 0.570 (0.561, 0.578), 0.599 (0.590, 0.607) and

0.608 (0.600, 0.617), respectively.
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Table 5. Posterior median and 95% credible interval for the cut-off of ApoB, ApoA1, and the ratio of

ApoB to ApoA1, and corresponding AUC

Region ApoB (gram/liter) ApoA1 (gram/liter) ApoB/ApoA1
Cut-off AUC Cut-off AUC Cut-off AUC

Overall 0.908 0.570 1.138 0.599 0.808 0.608
(0.883, 0.935) (0.561, 0.578) (1.118, 1.159) (0.590, 0.607) (0.781, 0.838) (0.600, 0.617)

Young 0.937 0.605 1.13 0.601 0.841 0.636
(0.915, 0.961) (0.593, 0.617) (1.1, 1.15) (0.589, 0.613) (0.816, 0.868) (0.624, 0.648)

Old 0.877 0.534 1.15 0.597 0.752 0.58
(0.807, 0.912) (0.522, 0.546) (1.13, 1.17) (0.585, 0.609) (0.698, 0.808) (0.568, 0.592)

European 0.965 0.56 1.22 0.585 0.794 0.589
(0.939, 0.99) (0.542, 0.580) (1.2, 1.24) (0.566, 0.603) (0.762, 0.828) (0.570, 0.607)

Chinese 0.818 0.557 1.18 0.614 0.703 0.618
(0.797, 0.841) (0.542, 0.573) (1.159, 1.2) (0.599, 0.630) (0.687, 0.72) (0.603, 0.634)

South Asian 0.92 0.577 1.02 0.568 0.859 0.591
(0.889, 0.957) (0.556, 0.596) (1.001, 1.05) (0.548, 0.589) (0.775, 0.927) (0.571, 0.610)

Other Asian 0.988 0.588 1.17 0.669 0.843 0.667
(0.959, 1.013) (0.553, 0.619) (1.132, 1.19) (0.637, 0.699) (0.797, 0.883) (0.636, 0.697)

Arab or Persian 0.94 0.591 1.04 0.614 0.909 0.643
(0.87, 0.992) (0.564, 0.616) (0.992, 1.09) (0.588, 0.642) (0.886, 0.929) (0.618, 0.668)

Latin American 0.947 0.567 1.11 0.609 0.807 0.605
(0.917, 0.975) (0.540, 0.593) (1.089, 1.13) (0.582, 0.634) (0.725, 0.866) (0.579, 0.631)

Black African 0.771 0.598 1.05 0.578 0.735 0.598
(0.63, 0.829) (0.526, 0.664) (0.764, 1.13) (0.506, 0.645) (0.552, 0.804) (0.533, 0.663)

Coloured African 0.949 0.613 1.13 0.614 0.86 0.659
(0.872, 0.991) (0.563, 0.663) (1.095, 1.17) (0.561, 0.665) (0.817, 0.894) (0.609, 0.707)

We also conduct a classical ROC analysis overall and for each strata of interest and for all

three biomarkers using a R package called ‘OptimalCutpoints’, selecting the maximum sensitivity and

specificity option. We observe that the threshold and AUC estimates are very similar to those we see in the

Bayesian approach. For example, the overall threshold for ApoB, ApoA1 and the ratio using the classical

approach are given by 0.919, 1.15 and 0.805, respectively. Similarly, the AUC estimates corresponding

to ApoB, ApoA1 and the ratio are given by 0.567, 0.603 and 0.626, respectively.

4.2. Estimation of odds ratios and predictive ability of selected exposures

In this section, we first present the result from a logistic regression model using a Bayesian estimation

procedure described in Section 3.3. We consider the following three biomarkers and standardize them

by subtracting the overall mean and then dividing by the standard deviation: 1) ApoB (Mean=0.94,

SD=0.26), 2) ApoA1 (Mean=1.17, SD=0.27) and 3) the ratio of ApoB to ApoA1 (Mean=0.84, SD=0.30).
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The reason for choosing standardized variables here is to compare the odds ratio of one standard deviation

change in different exposures of interest. We construct posterior distributions based on non-informative

prior for the intercept and normal informative prior for the slope. We also use the classical approach to

obtain parameter estimates based on a conditional logistic regression model and compare results with the

Bayesian approach.

4.2.1. Prior distributions for the intercept and the slope: We consider the non-informative prior for the

intercept β0 and informative prior for the slope β1 given in Equation 7, where the slope represents the

log of the odds ratio for one standard deviation change in ApoB, ApoA1 or the ratio of ApoB to ApoA1.

Reviewing current literature, we construct the informative prior for the slope. It was difficult to find a

reasonable number of recent articles presenting the odds ratio of MI for one standard deviation change

in those risk factors. Since the disease MI and stroke share risk factors and the degree of association with

selected exposure are known to be approximately the same, we also consider stroke during this search. We

identify some articles that report relative risk (Parish et al., 2009; Walldius et al., 2006, 2004), some with

hazard ratio (Holme et al., 2008; Lind et al., 2006) and odds ratio (Sabino et al., 2008; Sniderman et al.,

2006). The goal here is to identify a plausible center and spread for the log of the odds ratio of selected

exposures to construct an informative prior. Based on the summary of selected studies, we construct

prior for log odds ratio of standardized ApoB as β1 ∼ N(µ = 0.2231, σ = 0.1014). Similarly, for the

log odds ratio of ApoA1 and the log odds ratio of ApoB to ApoA1 ratio, the prior distributions are

given by β1 ∼ N(µ = −0.1625, σ = 0.0599) and β1 ∼ N(µ = 0.4055, σ = 0.1669), respectively. Since

the intercept β0 in each model is a nuisance parameter, we consider a non-informative prior such that

β0 ∼ N(0.0, 1.0E + 3).

4.2.2. Posterior distribution for the log of the odds ratio: Using the prior distribution specified above,

as well as the data obtained from INTERHEART study, we compute posterior distributions for the log of

the odds ratio applying the MCMC simulation. Based on the history, autocorrelation and the BGR plots,

we do not find any problem with the convergence of any of these posterior distributions. The computed
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value of the BGR test statistic is very close to 1 for each distribution, indicating that there is no problem

with convergence in any of these posterior distributions. We present the density plot for all posterior

distributions associated with different exposure and priors in Figure 5.
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Figure 5. Prior and posterior density for the odds ratio of ApoB, ApoA1, and the ratio of ApoB to ApoA1

4.2.3. Odds ratio estimates and corresponding information criteria: We present the summary of the

odds ratio estimates of standardized ApoB, ApoA1 and the ratio of ApoB to ApoA1, and corresponding

information criteria in Table 6. We also present the odds ratio estimates obtained from the classical

approach in the same table. The first column of this table shows the standard deviations, and the next

two columns display the posterior medians with a 95% credible interval (Bayesian confidence interval)

from the Bayesian approach for each exposure and selected priors as well as the corresponding DIC. In

the last two columns, we present the odds ratio with 95% confidence interval (classical approach) using

conditional logistic regression models for the same set of exposures and corresponding AIC. We observe

that the estimates obtained using the Bayesian informative prior are slightly lower than those obtained

from the classical approach.

We also observe that the model with ApoB and ApoA1 as independent covariates gave us the

smallest DIC for the Bayesian approach and the lowest AIC for the classical approach. Based on the

estimated odds ratio of one SD change in each of the exposures, we reconfirm that higher levels of ApoB

lead to an increased risk for MI, and higher levels of ApoA1 has a protective effect. Note that ApoA1
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appeared to be more predictive than ApoB for MI based on this analysis. Also, the ratio of ApoB to

ApoA1 seemed to be less informative than both biomarkers in the model as independent predictors in the

Bayesian as well as the classical approaches.

Table 6. Odds ratio for one standard deviation (SD) changes in ApoB, ApoA1, and the ratio of ApoB to

ApoA1, and corresponding information criteria

Bayesian Classical
Exposure SD Posterior Median and 95% Credible Interval Point Estimates and 95% Confidence Interval

Odds ratio DIC Odds ratio AIC

ApoB 0.260 1.29 (1.25, 1.33) 22,169 1.32 (1.28, 1.36) 21,737

ApoA1 0.267 0.70 (0.68, 0.72) 21,898 0.66 (0.64, 0.69) 21,448

ApoB/ApoA1 0.305 1.60 (1.55, 1.67) 21,735 1.65 (1.58, 1.71) 21,287

ApoB and 0.260 1.42 (1.37, 1.47) 21,462 1.45 (1.40, 1.50) 21,190
ApoA1 0.267 0.65 (0.63, 0.67) 0.62 (0.59, 0.64)

5. Discussion

Thresholds for disease classification using biomarkers are typically identified using a classical approach.

However, this approach does not allow one to use pre-existing evidence in the literature. We developed

a Bayesian approach for this purpose using the conditional distribution of the biomarker. This approach

combined information from literature reviews and real data set to determine the threshold. We illustrated

this method using literature review of selected biomarkers related to MI and the INTERHEART study

data set. Based on this study, elevated ApoB to ApoA1 ratio appeared to be the most influential risk

factor for MI. It was also known that higher levels of ApoB or lower levels of ApoA1 are associated with

increasing risk of MI. However, the threshold at which these biomarkers change from protection to risk

was not clear.

To facilitate this process, we first developed a Bayesian estimation procedure to determine

the threshold for ApoB, ApoA1, and the ratio of ApoB to ApoA1 with the maximum classification

accuracy of MI. The overall threshold for ApoB, ApoA1, and ApoB/ApoA1 were estimated to be

0.908 (gram/liter), 1.138 (gram/liter) and 0.808, respectively. We also observed that the threshold varies
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slightly across different ethnic groups and age groups. A classical ROC analysis also produced a very

similar result. However, it would be essential to conduct a systematic review to identify best possible

information from the literature and reconstruct the prior for each of these biomarkers and revise the

threshold accordingly. This procedure will allow us to update and proceed with confidence using these

thresholds in a clinical practice.

We have also used a Bayesian and a classical approach to estimate the odds ratio corresponding

to the standardized ApoB, ApoA1, and the ratio of ApoB to ApoA1. We compared estimates obtained

from these two approaches and identified the most influential of the three predictors. We observed

that estimates obtained from the Bayesian approach were slightly lower than those from the classical

approach. Including ApoB and ApoA1 as independent covariates led to a better model fit for both the

Bayesian and classical models, compared to the ratio of ApoB to ApoA1. Based on this analysis, higher

levels of ApoB appear to be a risk factor and higher levels of ApoA1 seem to be a protective factor for

MI, a finding consistent with current literature. Furthermore, our analysis showed that ApoA1 might be a

better predictor than ApoB for MI. The ratio of ApoB to ApoA1 as a single exposure appeared to be less

informative for predicting MI than the model where we used both of them as independent predictors.

6. Conclusion

In conclusion, the Bayesian approach can be useful to find the threshold of a biomarker combining

information from literature reviews and a real data set. Success of this approach depends on identifying

reliable prior information and corresponding probability distribution. Given that we have used the data

set for illustration purpose only, the results presented will require further investigation for use in clinical

applications. However, the approach developed in this article can be used to determine the threshold for

any continuous biomarker for a binary disease classification.
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Chapter 3

A Copula-based Method of

Classification

Researchers often use more than one dependent biomarker to classify individuals who

are at risk of developing a particular disease. The threshold identified independently

for this purpose usually leads to a conflicting classification for some individuals. This

chapter includes an article under review by the journal of “Statistical Methods and

Applications”, where we developed and described a new method for classifying indi-

viduals into binary disease categories using dependent biomarkers. This method al-

lows us determine joint threshold values of two dependent biomarkers for an outcome

classification. Using this information, clinicians may uniquely identify individuals

who are at risk of developing the disease and plan for early intervention.

33



Research Article

A copula-based method of classifying individuals
into binary disease categories using dependent
biomarkers
S. Islam†§, S. Anand†§¶, J. Hamid §, L. Thabane †§ and J. Beyene§∗

Abstract: Classification of a disease often depends on more than one test, and the tests can be interrelated.
Under the incorrect assumption of independence, the test result using dependent biomarkers can lead to a
conflicting disease classification. We develop a copula-based method for this purpose that takes dependency
into account and leads to a unique decision. We first construct the joint probability distribution of the
biomarkers considering Frank’s, Clayton’s and Gumbel’s copulas. We then develop the classification method
and perform a comprehensive simulation. Based on simulated data sets, we study the statistical properties of
joint probability distributions and determine the joint threshold with maximum classification accuracy. Our
simulation study results show that parameter estimates for the copula-based bivariate distributions are not
biased. We observe that the thresholds for disease classification converge to a stationary distribution across
different choices of copulas. We also observe that the classification accuracy decreases with the increasing
value of the dependence parameter of the copulas. Finally, we illustrate our method with a real data example,
where we identify the joint threshold of Apolipoprotein B to Apolipoprotein A1 ratio and total cholesterol
to high-density lipoprotein ratio for the classification of myocardial infarction (MI). We conclude, copula-
based method works well in identifying the joint threshold of two dependent biomarkers for an outcome
classification. Our method is flexible and allows modeling broad classes of bivariate distributions that take
dependency into account. The threshold may allow clinicians to classify uniquely individuals at risk of
developing the disease and plan for early intervention.

Keywords: Copula; Gamma Distribution; Biomarker; Sensitivity; Specificity; AUC

†Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada.
§Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.
¶Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
∗Correspondence to: Joseph Beyene, Department of Health Research Methods, Evidence, and Impact, McMaster University

1280 Main Street West, Hamilton, ON L8S 4K1; Phone: 905-525-9140, ext. 21333; Email: beyene@mcmaster.ca

34



PhD Thesis - Shofiqul Islam McMaster - Health Research Methods, Evidence, and Impact

1. Introduction

The classification of individuals at risk of developing a disease often depends on more than one test based

on multiple biomarkers, and these biomarkers can be interrelated (Tzimas et al., 2008; Vasan, 2006).

Each biomarker has a separate threshold for disease classification, which is determined using a clinical or

statistical approach such as percentile (Vasan, 2006) or the minimum p-value (Mazumdar and Glassman,

2000). Assuming that the tests are independent, these methods identify the threshold for one biomarker

at a time. If this assumption is incorrect, the test result using two dependent biomarkers can lead to a

wrong or conflicting disease classification for some individuals.

Statistical methodologies that enable unique classification in this situation are not well

developed. Disease classification rules ignoring dependency when it exists results in a conflicting

classification for some individuals. Thus, the rules of classification need to be developed based on

the joint probability distribution of selected biomarkers. In this paper, we consider a copula-based

approach (Nelsen, 2006), which incorporate the dependency between biomarkers. This procedure

requires identification of the marginal probability distribution of each biomarker separately, following

which it combines the marginal distributions using a copula function to construct the joint probability

density function.

The concept of copula was first introduced by the American mathematician Abe Sklar in 1959

(Sklar, 1959) and provided a theorem to build copula-based multivariate distributions. Subsequently,

many authors developed different forms of copulas based on this theorem (Frank, 1979; Clayton, 1978;

Gumbel, 1960). One of the most important features of the copula is that this approach allows one to

construct a joint probability distribution function even if the marginals follow a different probability

distribution. For example, this method is particularly useful when marginal distributions are skewed or

non-normal. The copula has been widely used to develop models for financial risk management (Joe,

1997; Bouyé et al., 2001), but its application in medical research is infrequent, especially in the context

of modeling biomarker dependencies.
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Recently, Kuss et al. (2014) used this method to develop a joint probability distribution of

sensitivity and specificity for the meta-analysis of diagnostic test accuracy studies. We are using a

similar approach constructing the joint probability distribution for multiple biomarkers, but the goal

here is to identify the threshold that maximizes the classification accuracy. Based on the joint probability

distribution constructed through copula, we develop a new method for classifying individuals into binary

diseased-categories that take the dependency between biomarkers into account and leads to a unique

decision. Since there are different choices of copulas, it is also essential to understand the impact on the

classification accuracy of these options.

Thus, the primary objective of this research is to develop a copula-based method of classifying

individuals into binary disease categories based on dependent biomarkers. The secondary objective is to

understand the effect of different values of the dependence parameter across different choices of copula-

based bivariate distribution for this purpose.

We organize the remaining part of this article as follows: we provide two motivating examples

in Section 2. We then describe the copula-based classification method of constructing a probability

distribution followed by the process of identifying the joint threshold in Section 3. In Section 4,

we present simulation results, where we first assess the statistical properties of the joint probability

distribution and then determine the threshold of two biomarkers based on simulated data sets. We

illustrate our method with a real data example in Section 5. Finally, we summarize our findings with

a discussion in Section 6 and some concluding remarks in Section 7.

2. Motivating examples

In this section, we provide two examples, where clinicians usually encounter conflicting classification

for some individuals with an independently developed threshold. However, the method we are proposing

in this article can help researchers identify the joint threshold of two dependent biomarkers, which in

turn may help clinicians uniquely classify individuals at risk of developing the disease.
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2.1. Classification of STEMI using CK and cTn

Creatine kinase (CK) enzyme and cardiac troponin (cTn) are often independently used to classify

individuals at risk of ST-elevation myocardial infarction (STEMI), but they are known to be

dependent (Tzimas et al., 2008; Vasan, 2006). However, the classification rules for STEMI based on

these biomarkers are usually developed separately assuming independence, and lead to a conflicting

classification for some individuals. Thus, these rules need to be developed based on the joint probability

distribution of these biomarkers. Applying the method we are proposing in this article and using

simulated data sets, we demonstrate how to determine the threshold of these biomarkers for the

classification of STEMI in Section 4.

2.2. Classification of MI using ApoB to ApoA1 ratio and TC to HDL ratio

Higher levels of Apolipoprotein B to Apolipoprotein A1 ratio (ApoB/ApoA1) and total cholesterol

to high-density lipoprotein ratio (TC/HDL) are well-known risk factors for myocardial infarction

(MI) (Walldius et al., 2004; Sniderman et al., 2006). These two biomarkers are often used to classify

individuals at risk of developing the disease, and they are dependent on each other. However, thresholds

are determined separately assuming they are independent, which may lead to a conflicting classification

for some individuals. Thus, identifying a joint threshold for these biomarkers is essential and clinically

valuable. In Section 5, we illustrate our method using a real data set to determine the threshold of these

biomarkers, which may allow clinicians uniquely identify individuals at risk of developing MI with

maximum classification accuracy.
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3. Methods

In this section, we first derive the joint probability distribution of two dependent biomarkers based

on copula. Biomarkers introduced in our motivating examples are positively dependent with long tail

marginal distributions. Copulas with positive dependence parameter are adequate for this instance. Thus,

we consider Frank’s, Clayton’s and Gumbel’s copulas in this construction with gamma marginals. We

then develop a new method of identifying the joint threshold for two biomarkers, which allows us to

determine the disease status with maximum classification accuracy. This method takes into account the

dependency between biomarkers and leads to a unique decision.

3.1. Constructing multivariate distribution based on copula

Let X1, X2, ..., Xk be a set of k random variables with marginal cumulative distribution function (CDF)

F (x1) = u1, F (x2) = u2, ..., F (xk) = uk, respectively, where ui’s are uniformly distributed random

variables within the interval 0 and 1. Sklar’s theorem (Sklar, 1959) allows one to construct the joint

probability distribution of this set of random variables using the marginal CDF and a function called

‘copula’ that describes the dependence structure:

H(x1, x2, ..., xk) = C(F (x1), F (x2), ..., F (xk))

= C(u1, u2, ..., uk).

In the above expression, H and F are the joint and marginal CDF of the set of random variables

X1, X2, ..., Xk, respectively, and C represents the copula function. Thus, the copula is a function that

allows one to construct the joint probability distribution of a set of uniformly distributed random variables

(Nelsen, 2006; Jaworski et al., 2009).

Based on Sklar’s theorem, many authors developed different forms of the copula function.

Mainly, there are two families of copulas discussed in the literature: Gaussian and Archimedean,

where a Gaussian copula can be constructed applying probability integral transformation of multivariate

normal distribution. On the other hand, different choices of Archimedean copula have its expression
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(Genest and Rivest, 1993). In this article, we consider the bivariate Archimedean copula, namely Frank’s

(Frank, 1979), Clayton’s (Clayton, 1978) and Gumbel’s (Gumbel, 1960). These copulas are further

investigated by many authors including Joe (1997) and Nelsen (2006). We choose these copulas mainly

due to their simplicity with one dependence parameter and because they allow developing models with

long tail marginal distributions, as well as, the range and shape of real data examples that may fit the

data well. These copulas also allow us to study the effect of different values of dependence parameter θ

in terms of Kendalls τ , a well-understood measure of dependence.

In case of two random variables X1 and X2 such that F (x1) = u and F (x2) = v, Frank’s,

Clayton’s and Gumbel’s family of copula are given by:

Frank : CF (u, v) = logθF
{1 +

(θu
F −1)(θv

F −1)

θF −1
}, θF ∈ (0, ∞), θF ̸= 1

Clayton : CC(u, v) = (u−θC + v−θC − 1)
− 1

θC , θC ∈ (0,∞)

Gumbel : CG(u, v) = exp{−((−log u)θG + (−log v)θG − 1)
1

θG }, θG ∈ [1,∞)

In each of the above expressions, θ is the dependence parameter. Using these formulas, we

construct the joint probability distributions. Suppose Xi, i = 1, 2, are two random variables that follow

gamma distribution with shape parameters αi and rate parameters βi. Then the probability density

function (PDF) of the ith random variable can be written as:

f(xi) =
βαi

i

Γ(αi)
xαi−1

i eβixi , xi ∈ (0,∞), αi > 0, βi > 0, i = 1, 2,

where Γ represent the gamma function. The cumulative distribution function of these random variables

are given by:

F (xi) = Pr(Xi < xi) =
1

Γ(αi)
γ(αi, βixi), i = 1, 2,

where γ(., .) is the incomplete gamma function. Note that we are constructing joint PDF of two random

variables, say X1 and X2 such that Xi ∼ Gamma(αi, βi), i = 1, 2 with F (x1) = u and F (x2) = v and

they are dependent. Thus, the bivariate distribution can be constructed using any of the three copula

functions defined above with gamma marginals.
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3.2. Relationship between Kendall’s τ and the dependence parameter θ in copulas

Frank’s, Clayton’s and Gumbel’s copula functions mainly differ regarding tail probability, and it is

essential to understand the impact of different choices of copulas in this construction. Comparing the

different values of the dependence parameter θ in different choices of copulas with other well-known

rank-correlation based measures of dependence, such as Kendall’s τ and Spearman’s ρ, allows one to

have a better understanding of the joint probability distribution. To facilitate this process, we numerically

evaluate and plot the relationship between Kendall’s τ and the dependence parameters θ from Frank’s,

Clayton’s and Gumbel’s copula. As discussed by Nelsen (2006), these relationships can be evaluated

using the following expressions:

Frank : τ = 1 + 4[D1(θF )−1]
θF

, θF ∈ (0, ∞), θF ̸= 1

Clayton : τ = θC

θC+2
, θC ∈ (0, ∞)

Gumbel : τ = θG−1
θG

, θG ∈ [1, ∞),

where D1(θF ) in Frank’s copula is the Debey function (Luke, 1969) of order 1 as given below:

D1(θF ) =
1

θF

∫ θF

0

t

et − 1
dt.

Using the above relationships, we evaluate Kendall’s τ for a series of the dependence parameter θ in

different copulas and plot those in Figure 1.

We clearly observe that Kendall’s τ varies substantially at a given value of the dependence

parameter θ across different choices of copulas. For example, when θ = 5, calculated value of Kendall’s

τ from Frank’s, Clayton’s and Gumbel’s copula are given by 0.46, 0.71 and 0.80, respectively. Thus,

different choices of copulas represent a different degree of dependence regarding Kendall’s τ at a given

value of the parameter θ. In general, Gumbel’s copula represent a higher degree of dependence followed

by Clayton’s and Frank’s for a given value of θ > 2.
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Figure 1. Relationship between Kendall’s τ and the dependence parameter θ in different copulas

3.3. Classification rules

In this section, we build the classification rule for a disease D based on the joint probability

distribution of two continuous random variables X1 and X2. Suppose D = 1 indicates the presence

and D = 0 indicates the absence of the disease, and we consider two dependent biomarkers to classify

disease status, denoted by X1 and X2, respectively. Our goal here is to find the threshold values of

these biomarkers, say x1 and x2, that give us maximum classification accuracy for the disease of

interest. We define cumulative probabilities from marginal distributions such that Pr [X1 < x1] = p1,

Pr [X2 < x2] = p2 and cumulative probabilities from the joint probability distribution of X1 and X2

such that Pr [X1 < x1 ∩ X2 < x2] = p11, Pr [X1 < x1 ∩ X2 ≥ x2] = p12, Pr [X1 ≥ x1 ∩ X2 < x2] =

p21, Pr [X1 ≥ x1 ∩ X2 ≥ x2] = p22. Note that these four joint probabilities defined here are mutually

exclusive, and we present those in a 2x2 table below:

41



PhD Thesis - Shofiqul Islam McMaster - Health Research Methods, Evidence, and Impact

Table 1. Partitioned joint cumulative probability distribution of two biomarkers

X2 Marginal

X1 X2 < x2 X2 ≥ x2

X1 < x1 p11 p12 p1

X1 ≥ x1 p21 p22 1 − p1

Marginal p2 1 − p2 1

Let us suppose both tests using these two biomarkers need to be weighted equally with

a higher value of each biomarker represents a risk for the disease. Define E as the event that the

test using these two biomarkers jointly indicate the risk of developing the disease with Pr [E] =

Pr [X1 ≥ x1 ∩ X2 ≥ x2], and Ec be the event such that Pr [Ec] = 1 − Pr [X1 ≥ x1 ∩ X2 ≥ x2]. Under

this assumption, we need to find x1 and x2 such that Pr [E] = Pr [X1 ≥ x1 ∩ X2 ≥ x2] as the joint

probability of increased risk of developing the disease using these biomarkers. However, this rule can be

redefined based on the priority of tests and the tail probability for the biomarkers of interest. Using the

definition given above, the cross tabulation of disease and biomarker categories produce frequencies a,

b, c and d corresponding to the four cells, and we present those in the following table:

Table 2. Cross tabulation of disease and biomarkers at a given joint thresholds and corresponding cell

frequencies

Classification Rule Disease (D) Total

Yes (1) No (0)

Biomarkers X1 and X2 {x1, x2} ∈ E a b a+b

{x1, x2} ∈ Ec c d c+d

Total a+c b+d N=a+b+c+d
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Using notations from the table above, we define and denote the sensitivity and specificity by

P+ and P− as follows:

P+ = Pr [{x1, x2} ∈ E|D = 1] =
a

(a + c)
, (1)

P− = Pr [{x1, x2} ∈ Ec|D = 0] =
d

b + d
, (2)

respectively. Note that our goal here is to find the joint threshold values x1 and x2 that maximizes the

classification accuracy, and we describe the procedure below:

Define Q+ and Q− such that

Q+ = Pr [{x1, x2} ∈ Ec|D = 1] = 1 − a

a + c
=

c

a + c
, (3)

Q− = Pr [{x1, x2} ∈ E|D = 0] = 1 − d

b + d
=

b

b + d
. (4)

Assume, [X1, X2|D = 1] ∼ h(Θ1) and [X1, X2|D = 0] ∼ h(Θ0), where h(.) represent the joint

probability density function of X1 and X2 with vector of parameters Θ1 and Θ0 corresponding to the

diseased and non-diseased population, respectively. Under this assumption, we can express Q− as:

Q− = Pr [{x1, x2} ∈ E|D = 0] = 1 − F [x1|Θ0] − G [x2|Θ0] + H [x1, x2|Θ0] , (5)

where F (.) and G(.) are marginal CDF of X1 and X2, respectively, with H(.) as the joint CDF evaluating

at Θ0 for non-diseased population. For a given value of Q−, say q−, we need to solve Equation (5) for x1

and x2. We can easily evaluate this expression using a numerical integration technique or utilizing an R

package called ‘copula’.

Once we know x1 and x2 form the previous step, P+ can be re-expressed as:

P+ = Pr[{x1, x2} ∈ E|D = 1] = 1 − F [x1|Θ1] − G [x2|Θ1] + H [x1, x2|Θ1] . (6)

We can also evaluate this equation using the ‘copula’ package available in R. Since maximum

classification accuracy occurs when both true positive and true negative are maximum, we can find such

joint threshold values x1 and x2, simultaneously solving Equation 5 and 6. A simulation algorithm to

find such threshold using a copula-based joint probability distribution is also described in Appendix A.
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We can also express the area under the receiver operating characteristics curve (AUC) as

follows:

AUC = Pr[({x1, x2} ∈ E|D = 1) > ({x1, x2} ∈ E|D = 0)]. (7)

Given a complex form of the copula-based joint probability distribution, we are not able to find any exact

solution of this equation. However, AUC represents the overall classification performance that can be

obtained computing the area under the curve plotted based on a series of 1-specificity and sensitivity

defined in Equation (5) and (6), respectively. Thus, we can apply numerical integration techniques such

as the Trapezoidal or Simpson’s rule to compute the area under the curve based on a series of sensitivity

and 1-specificity evaluating over the range of possible thresholds.

4. Simulation

In this section, we describe the simulation procedure to find the joint threshold of two dependent

biomarkers that maximizes the classification accuracy of a disease. As indicated in Section 2.1, we

consider the problem of identifying the joint threshold of creatine kinase (CK) and cardiac troponin

(cTn) to classify ST-elevation myocardial infarction (STEMI). To facilitate this process, we simulate

multiple data sets using the joint probability distribution of these two biomarkers for cases and controls

separately and place them together. Thus, each data set represents a case-control study of STEMI with

50% cases and 50% controls. We then apply the method to determine the joint threshold of these two

biomarkers that maximizes the classification accuracy for STEMI.

4.1. Simulation design

Simulation procedure requires starting with a sensible parameter that reflects the disease and biomarkers

of interest. We conduct a literature review and identify an article that describes a small case-control

study for STEMI (Nusier and Ababneh, 2006). Using the information from this article, we specify the
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population means (standard deviation) for CK(U/l)/100 among STEMI cases and control as 8.76 (3.20)

and 7.45 (2.74), respectively. Similarly, we specify the mean (standard deviation) for Cardiac Troponin

- T (µg/l) among cases and controls as 2.76 (1.42) and 1.3 (0.5), respectively. We assume that marginal

distribution of CK follows a gamma distribution with shape α1, rate β1, and cTn with shape α2, rate β2,

along with a dependence parameter θ.

Applying the method of moments, we solve for the shape and rate parameter of the marginal

probability distribution for CK and cTn. Thus, we identify the set of parameters α1=7.5, β1=0.86, α2=3.8,

β2=1.4 for cases and α1=7.4, β1=0.99, α2=6.8, β2=4.2 for controls, to construct the bivariate distribution

for this simulation. Since we do not have any information on the degree of dependence between these

two biomarkers, we conduct the simulation assuming two values of the dependence parameter τ , and

each one corresponds to different values of θ across copulas. Thus, we specify the Frank’s, Clayton’s

and Gumbel’s copula-based bivariate distribution using gamma marginals. We then determine the joint

threshold for these two biomarkers and the algorithm for this simulation given in Appendix A.

Thus, we simulate case-control study data sets using three copula-based joint probability

distribution. We repeat this simulation for 96 sets of parameter combinations using 8 parameter estimates

(shape and rate parameters indicated in the previous paragraph for cases and controls), as well as two

different values of the dependence parameter τ = 0.5 and τ = 0.7 (total number of parameter sets

= 8 × 4 × 3 = 96). Based on the theoretical relationship presented in Section 3.2, when τ = 0.5, the

dependence parameter θ = 5.8 in Frank’s copula, θ = 2.0 in Clayton’s copula and θ = 2.0 in Gumbel’s

copula. Similarly, for τ = 0.7, the dependence parameter θ in Frank’s, Clayton’s and Gumbel’s copula

are given by 11.5, 4.7 and 3.4, respectively. We use the copula (Yan, 2007; Kojadinovic and Yan,

2010; Hofert and Mächler, 2011; Hofert et al., 2014) and CDVine (Brechmann and Schepsmeier, 2013)

package in R for this simulation.

45



PhD Thesis - Shofiqul Islam McMaster - Health Research Methods, Evidence, and Impact

4.2. Evaluating performance

We numerically evaluate the performance of the method based on STEMI classification using CK and

cTn in three steps. During this process, we first visually examine the shape of the marginal and copula-

based joint probability distribution functions using a simulated data set. Next, we simulate 1000 random

samples of size 1000 in each from three copula-based joint probability distribution functions. We then

evaluate the performance of the joint probability density functions based the relative bias and mean

squared error of parameter estimates. To determine the effect of different choices of parameters in this

construction, we repeat this procedure for 96 sets of parameter combinations.

Finally, we utilize the probability distribution functions to determine the joint threshold of CK

and cTn for STEMI classification. We evaluate the effect of different values of the dependence parameter

across copulas based on the area under the receiver operating characteristics curve (AUC). We conduct

this simulation for one set of parameters identified by literature review and two different values of the

dependence parameter. We repeat this procedure for 5000 samples of size 1000 in each (500 cases and

500 controls) and three different choices of copula-based bivariate distributions. Using the Heidelberger

and Welch diagnostic test (Heidelberger and Welch, 1981, 1983), we also assess the convergence of the

threshold for disease classification across different choices of copulas.

4.3. Simulation results

In this section, we present the simulation results following the procedure described above. Here, the first

sub-section includes some visual examination result of the marginal and joint probability distribution of

CK and cTn. In the following sub-section, we present the performance evaluation result of the Frank’s,

Clayton’s and Gumbel’s copula-based bivariate distributions. In the last sub-section, we identify and

present the joint threshold of these two biomarkers that maximizes the classification accuracy of STEMI

across different choices of copulas.
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4.3.1. Marginal and joint probability distributions constructed through copula: We prepare a series of

plots using simulated data sets and examine the shape of the marginal and joint probability density

functions built through different choices of copulas. We present some of these figures in Appendix B.

For example, we prepare and submit a two-dimensional plot of marginal distributions for simulated

CK and cTn in Appendix Figure 6. This figure shows how the distribution of each of these biomarkers

overlaps between cases and controls. We then prepare a plot of Frank’s copula-based joint probability

distribution using both biomarkers separately for cases and controls and present in Figure 7. We also

construct a contour plot superimposing bivariate joint probability density function of cases on top of

controls and display in Figure 8. This figure clearly shows how joint probability distribution of these

two biomarkers overlap between cases and controls in this experiment. We prepare and examine similar

plot for the joint probability distribution function constructed through Clayton’s and Gumbel’s copula as

well, and observe a slightly different shape regarding skewness.

4.3.2. Statistical properties of copula-based joint probability distribution function: During this step,

we assess the unbiasedness of the maximum likelihood estimate (MLE) for each parameter from all

three copula-based bivariate gamma distribution. We present the simulation results for the selected set

of parameters in Table 3. We observe that mean of each parameter estimates is very close to the actual

setting, but slightly higher value representing negligible positive bias for most of the scenarios. In general,

absolute relative bias is less than 0.5%, but few are close to 0.8%. We also observe small MSE for each

set of parameter estimates that represents a better fit of the data.

In addition to the MLE for the dependence parameter θ, we also compute the Kendall’s τ and

Spearman’s rank-correlation coefficient ρ for each simulated sample. We present the summary of these

estimates in Table 4 and observe that MLE of θ is very close to the actual value for all scenarios in

different choices of copulas. Comparing the dependence parameter estimates θ in copulas with Kendall’s

τ , we observe that a given value of the parameter represents higher levels of dependence in Gumbel’s,

followed by Clayton’s and Frank’s. This result is consistent with the relationship observed in Figure 1.

Spearman’s rank-correlation ρ estimates obtained during this simulation also follow a similar pattern
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Table 3. Relative bias in percent and MSE based on 1000 simulated samples of size 1000 in each using

Frank’s, Clayton’s and Gumbel’s copula and gamma marginals

True Parameter Relative Bias % Mean Squared Error

Copula α1 β1 α2 β2 θ α̂1 β̂1 α̂2 β̂2 θ̂ α̂1 β̂1 α̂2 β̂2 θ̂

Frank 7.5 0.86 3.8 1.4 5.8 0.20 0.24 0.15 0.19 -0.06 0.109 0.002 0.026 0.004 0.073
Frank 7.5 0.86 3.8 1.4 11.5 0.15 0.11 0.13 0.08 0.13 0.114 0.002 0.027 0.004 0.160
Frank 7.4 0.99 3.8 1.4 5.8 0.75 0.80 0.37 0.47 -0.12 0.110 0.002 0.027 0.004 0.065
Frank 7.4 0.99 3.8 1.4 11.5 -0.04 -0.01 0.11 0.15 0.05 0.095 0.002 0.027 0.004 0.158
Frank 7.5 0.86 6.8 4.2 5.8 0.31 0.32 0.40 0.44 -0.23 0.114 0.002 0.098 0.041 0.069
Frank 7.5 0.86 6.8 4.2 11.5 0.32 0.32 0.19 0.18 0.01 0.110 0.001 0.087 0.036 0.161
Frank 7.4 0.99 6.8 4.2 5.8 0.37 0.36 0.23 0.25 0.32 0.112 0.002 0.090 0.037 0.065
Frank 7.4 0.99 6.8 4.2 11.5 0.27 0.30 0.19 0.23 0.09 0.099 0.002 0.090 0.036 0.157

Clayton 7.5 0.86 3.8 1.4 2.0 0.20 0.24 0.06 0.09 0.07 0.109 0.002 0.027 0.004 0.013
Clayton 7.5 0.86 3.8 1.4 4.7 0.15 0.11 0.34 0.35 -0.16 0.114 0.002 0.027 0.004 0.056
Clayton 7.4 0.99 3.8 1.4 2.0 0.75 0.80 0.49 0.47 -0.26 0.110 0.002 0.026 0.004 0.014
Clayton 7.4 0.99 3.8 1.4 4.7 -0.04 -0.01 -0.06 -0.03 0.11 0.095 0.002 0.025 0.004 0.054
Clayton 7.5 0.86 6.8 4.2 2.0 0.31 0.32 0.22 0.20 -0.05 0.114 0.002 0.089 0.036 0.015
Clayton 7.5 0.86 6.8 4.2 4.7 0.32 0.32 0.40 0.42 -0.28 0.110 0.001 0.092 0.037 0.055
Clayton 7.4 0.99 6.8 4.2 2.0 0.37 0.36 0.54 0.53 -0.11 0.112 0.002 0.093 0.039 0.015
Clayton 7.4 0.99 6.8 4.2 4.7 0.27 0.30 0.15 0.14 -0.03 0.099 0.002 0.088 0.037 0.049

Gumbel 7.5 0.86 3.8 1.4 2.0 0.34 0.32 0.39 0.42 0.10 0.116 0.002 0.029 0.004 0.004
Gumbel 7.5 0.86 3.8 1.4 3.4 0.28 0.28 0.31 0.36 -0.04 0.102 0.001 0.027 0.004 0.014
Gumbel 7.4 0.99 3.8 1.4 2.0 0.43 0.51 0.52 0.62 -0.10 0.106 0.002 0.028 0.004 0.004
Gumbel 7.4 0.99 3.8 1.4 3.4 0.40 0.40 0.41 0.42 0.09 0.114 0.002 0.029 0.004 0.014
Gumbel 7.5 0.86 6.8 4.2 2.0 0.40 0.47 0.41 0.47 -0.13 0.105 0.001 0.087 0.036 0.004
Gumbel 7.5 0.86 6.8 4.2 3.4 0.41 0.46 0.58 0.64 0.08 0.109 0.002 0.088 0.036 0.015
Gumbel 7.4 0.99 6.8 4.2 2.0 0.31 0.35 0.22 0.31 0.06 0.105 0.002 0.086 0.037 0.004
Gumbel 7.4 0.99 6.8 4.2 3.4 0.42 0.39 0.45 0.39 0.11 0.110 0.002 0.093 0.038 0.015

as we see for Kendall’s τ . These results ensure that simulation from the copula-based joint probability

density functions is working fine with a negligible deviation from unbiasedness.

However, to check the complete unbiasedness of each parameter in different choices of copulas,

we also run the simulation with varying sample size (10,15,20,...,2000), and observe that relative bias for

each parameter converges to zero with the increase in sample size. Due to space limitation, we are not

including these figures in the article.

4.3.3. Determining the joint threshold: During this step, we determine the joint threshold for CK and

cTn together that maximizes the classification accuracy of STEMI, taking into account the dependence

between these two biomarkers. Based on the relationship presented in Section 3.2 and the simulation

results presented in the previous section, we observe that a fixed value of the dependence parameter
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Table 4. Degree of dependence based on 1000 samples of size 1000 in each using Frank’s, Clayton’s and

Gumbel’s copula and gamma marginals

True Parameter Estimated Association Parameter

Copula α1 β1 α2 β2 τ θ θ̂ τ̂ ρ̂

Frank 7.5 0.86 3.8 1.4 0.5 5.8 5.797 0.503 0.697
Frank 7.5 0.86 3.8 1.4 0.7 11.5 11.515 0.702 0.888
Frank 7.4 0.99 3.8 1.4 0.5 5.8 5.793 0.503 0.698
Frank 7.4 0.99 3.8 1.4 0.7 11.5 11.505 0.702 0.888

Frank 7.5 0.86 6.8 4.2 0.5 5.8 5.787 0.503 0.697
Frank 7.5 0.86 6.8 4.2 0.7 11.5 11.501 0.702 0.888
Frank 7.4 0.99 6.8 4.2 0.5 5.8 5.818 0.504 0.699
Frank 7.4 0.99 6.8 4.2 0.7 11.5 11.510 0.702 0.888

Clayton 7.5 0.86 3.8 1.4 0.5 2.0 2.000 0.500 0.680
Clayton 7.5 0.86 3.8 1.4 0.7 4.7 4.690 0.700 0.870
Clayton 7.4 0.99 3.8 1.4 0.5 2.0 1.990 0.500 0.680
Clayton 7.4 0.99 3.8 1.4 0.7 4.7 4.710 0.700 0.870

Clayton 7.5 0.86 6.8 4.2 0.5 2.0 2.000 0.500 0.680
Clayton 7.5 0.86 6.8 4.2 0.7 4.7 4.690 0.700 0.870
Clayton 7.4 0.99 6.8 4.2 0.5 2.0 2.000 0.500 0.680
Clayton 7.4 0.99 6.8 4.2 0.7 4.7 4.700 0.700 0.870

Gumbel 7.5 0.86 3.8 1.4 0.5 2.0 2.000 0.500 0.680
Gumbel 7.5 0.86 3.8 1.4 0.7 3.4 3.400 0.710 0.880
Gumbel 7.4 0.99 3.8 1.4 0.5 2.0 2.000 0.500 0.680
Gumbel 7.4 0.99 3.8 1.4 0.7 3.4 3.400 0.710 0.880

Gumbel 7.5 0.86 6.8 4.2 0.5 2.0 2.000 0.500 0.680
Gumbel 7.5 0.86 6.8 4.2 0.7 3.4 3.400 0.710 0.880
Gumbel 7.4 0.99 6.8 4.2 0.5 2.0 2.000 0.500 0.680
Gumbel 7.4 0.99 6.8 4.2 0.7 3.4 3.400 0.710 0.880

θ represents different degrees of dependency in different choices of copulas. Thus, we also conduct

this part of the simulation assuming fixed value of Kendall’s τ = 0.5 and τ = 0.7 along with other

parameters discussed in Section 4.1. Using the relationship presented in Section 3.2, we then back

calculate θ for three copulas under consideration. In particular, when τ = 0.5, the dependence parameter

θ = 5.8 in Frank’s copula, θ = 2.0 in Clayton’s copula and θ = 2.0 in Gumbel’s copula. Similarly for

τ = 0.7, the dependence parameter θ in Frank’s, Clayton’s and Gumbel’s copula are given by 11.5, 4.7

and 3.4, respectively. These settings allow us to have a fare methodological comparison for threshold

identification procedure using these three copula-based bivariate distributions.

Thus, we repeat the simulation procedure for 5000 samples and three different choices of

copula-based bivariate distributions. Computing the median and 95% empirical confidence interval, we

determine thresholds for CK (U/l)/100 and cTn (µg/l) based on Frank’s, Clayton’s and Gumbel’s copula.
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Applying numerical integration technique (Trapezoidal rule), we also compute the AUC based on each

simulated sample and summarize across different choices of copulas. We present the summary of this

simulation study in Table 5.

Based on the Heidelberger and Welch diagnostic test, we were not able to find any problem

with the convergence of each series regardless of the choices of copulas (p > 0.1 for the test of

each series). Assuming τ = 0.5, threshold estimates of these biomarkers using Frank’s, Clayton’s and

Gumbel’s copula are given by (5.68, 1.49), (5.72,1.54) and (5.36, 1.50), respectively. Similarly, for

τ = 0.7, threshold estimates of these biomarkers are given by (6.85, 1.42), (6.71, 1.45) and (6.59, 1.42),

respectively. We also compare the classification accuracy of these biomarkers across different choices of

copulas. For this purpose, we prepare density plots of these AUC’s from 5000 simulated samples using

three different copulas and present them in Figure 2.

The left panel of this figure represents AUC considering τ = 0.5 and the right panel assuming

τ = 0.7, along with other parameters. Results from this analysis indicate that all three copulas produce

similar classification accuracy of the disease, with a moderate degree of dependence. However, at the

higher levels of correlation, Clayton’s copula shows slightly better performance compared to Frank’s and

Gumbel’s copula. We also observe that classification accuracy decreases with increasing values of the

dependence parameter, regardless of the choices of copulas.

However, in a real experiment the proportion of subjects with the disease may vary. To

determine the effect of this parameter, we repeat the simulation using 20% cases and 80% controls

as well, keeping all other parameters fixed and observe a very similar results compared to 50% cases

and 50% controls. For example, assuming τ = 0.5 in this case, threshold estimates of CK and cTn

using Frank’s, Clayton’s and Gumbel’s copula are given by (5.67, 1.49), (5.72,1.54) and (5.36, 1.50),

respectively. Similarly, for τ = 0.7, threshold estimates of these biomarkers are given by (6.85, 1.41),

(6.71, 1.45) and (6.59, 1.42), respectively.
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Table 5. Empirical median and 95 % confidence interval for the threshold and AUC based on 5000

simulated samples at a given value of Kendall’s τ

τ = 0.5 τ = 0.7

Threshold CK (U/l)/100 Threshold cTn (µg/l) AUC Threshold CK (U/l)/100 Threshold cTn (µg/l) AUC

Frank 5.68 1.49 0.791 6.85 1.42 0.733

(5.33, 6.02) (1.44, 1.55) (0.764, 0.818) (6.58, 7.11) (1.36, 1.46) (0.702, 0.764)

Clayton 5.72 1.54 0.812 6.71 1.45 0.760

(5.51, 5.94) (1.46, 1.61) (0.783, 0.835) (6.52, 6.91) (1.39, 1.53) (0.728, 0.789)

Gumbel 5.36 1.50 0.783 6.59 1.42 0.724

(4.98, 5.73) (1.45, 1.56) (0.752, 0.811) (6.29, 6.91) (1.38, 1.47) (0.692, 0.755)
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Figure 2. Density plot for AUC based on 5000 simulated samples of size 1000 each assuming τ = 0.5 (left) and τ = 0.7 (right)
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5. Real data example

Higher levels of Apolipoprotein B to Apolipoprotein A1 ratio (ApoB/ApoA1) and total cholesterol to

high-density lipoprotein ratio (TC/HDL) are well-known risk factors for myocardial infarction (MI).

In this section, we illustrate the method using a real data set that includes the information on these

biomarkers and the outcome. The data set consists of a subset (n=866) of the INTERHEART study

sample, which is conducted in 52 countries around the world. This is an age- and sex-matched case-

control study of MI, where biological samples are collected and analyzed using strict quality control

criteria (McQueen et al., 2008). The subset we are using for this illustration consists of North American

and European subjects only.

As a first step of the analysis, we apply a univariate approach called ‘minimum p-value’ and

determine the threshold separately for ApoB/ApoA1 and TC/HDL ratio as 0.76 and 4.58, respectively.

However, these two biomarkers are highly dependent, and the Spearman’s rank-correlation coefficient

estimates among cases and controls are given by 0.86 and 0.91, respectively. Thus, applying these

independently determined thresholds to the original sample, we observe that 12% (105/866) individuals

lead to a conflicting classification using these two tests. To overcome this problem, we proceed with

identifying the joint threshold applying the method developed in Section 3.3, which led to a unique

classification for all individuals.

During this process, we first prepare density plots of these two biomarkers stratified by case-

control status and present in Figure 3, which suggest that a gamma distribution for each of these

biomarkers may be adequate. We also conduct Kolmogorov-Smirnov test for fitted gamma distribution of

both biomarkers. P-values corresponding to Case:ApoB/ApoA1, Control:ApoB/ApoA1, Case:TC/HDL

and Control:TC/HDL are given by 0.4, 0.7, 0.06 and 0.07, respectively. Thus we are not able to

find sufficient evidence against the null hypothesis of the fitted gamma distribution. Next, we test the

goodness of fit for three different choices of copulas using marginal gamma distribution for these two

biomarkers. During this process, White’s goodness of fit test statistic values for Frank’s, Clayton’s

and Gumbel’s copula are given by 0.925 (p=0.336), 3.78 (p=0.052) and 0.378 (p=0.528), respectively
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Figure 3. Univariate density plot of ApoB to ApoA1 ratio and TC to HDL ratio separately by case and control
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Figure 4. Bivariate density plot of ApoB to ApoA1 ratio and TC to HDL ratio using Clayton’s copula by case and control status respectively

(Huang and Prokhorov, 2014). The result of this test suggests that any of these copula-based bivariate

distributions may be appropriate for this purpose. However, examining the contour plot of each of these

copula-based bivariate distributions, we feel that Clayton’s copula fits the data better than other copulas.

We provide the summary statistic for these biomarkers along with the parameter estimates in Table 6.

We also present Clayton’s copula-based joint density using gamma marginals in Figure 4, separately for
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cases and controls.

Table 6. Summary of ApoB to ApoA1 ratio and TC to HDL ratio with fitted parameters using gamma

marginals and different copulas

MI Cases (N=430) Controls (N=436)

ApoB to ApoA1 ratio TC to HDL ratio ApoB to ApoA1 ratio TC to HDL ratio

Mean (SD) 0.873 (0.323) 5.38 (2.73) 0.742 (0.238) 4.49 (1.63)

Median (IQR) 0.837 (0.339) 0.837 (0.339) 0.712 (0.288) 0.712 (0.288)

Gamma (Shape α) 9.7 6.5 11.3 9.5

Gamma (Rate β) 11.1 1.2 15.2 2.1

Association parameters

Sparman’s ρ 0.86 0.91

Kendall’s τ 0.69 0.74

Frank’s Copula θF 11.8 13.4

Clayton’s Copula θC 3.71 4.22

Gymbel’s Copula θG 2.52 3.22

Using the joint probability density function and the algorithm described in Appendix A, the

thresholds for ApoB/ApoA1 ratio and TC/HDL ratio are given by 0.725 and 4.37. This joint threshold

corresponds to the maximum classification accuracy of the disease, with a sensitivity and specificity of

60.3% and 58.4%, respectively. The area under the receiver operating characteristic curve to classify MI

using these two biomarkers is given by 0.628. Under certain circumstances, a researcher may also want

to determine the threshold at a given sensitivity or specificity, and this method allows us to identify such

threshold as well. For example, using this approach we also find the threshold for ApoB/ApoA1 ratio and

TC/HDL ratio at 80% specificity as 0.847 and 5.18, respectively, corresponding to 41% sensitivity. In

Figure 5, we present a scatter plot (left panel) of the raw data and corresponding Clayton’s copula-based

bivariate contour plot (right panel) for these two biomarkers. Arrows in this plot represent the threshold

with maximum classification accuracy as well as at a given specificity of 80% with 41% sensitivity.

We also prepare the contour plot of Frank’s and Gumbel’s copula-based bivariate distribution for a

comparison purpose and present in Appendix Figure 9. These figures ensure a better-fitted model for

the data using Clayton’s copula and the threshold of these two biomarkers for the classification of MI.

54



PhD Thesis - Shofiqul Islam McMaster - Health Research Methods, Evidence, and Impact

0.0 0.5 1.0 1.5 2.0 2.5

0
5

10
15

Scatter plot of selected biomarkers

ApoB to ApoA1 ratio

T
C

 to
 H

D
L 

ra
tio

Case
Control

0.0 0.5 1.0 1.5 2.0

0
2

4
6

8
10

12

ApoB to ApoA1 ratio

T
C

 to
 H

D
L 

ra
tio

Contour plot: Gamma marginals and Clayton’s copula

Case
Control

Figure 5. Scatter plot (left) and contour plot (right) for the joint PDF of ApoB to ApoA1 ratio and TC to HDL ratio based on Clayton’s copula and by case and control status

6. Discussion

The classification rule for a disease using multiple biomarkers often developed ignoring dependency that

leads to a conflicting classification for some individuals. We developed a new method of classifying

individuals into binary disease groups using two dependent biomarkers. We first constructed copula-

based bivariate distribution for selected biomarkers using Frank’s, Clayton’s and Gumbel’s copula

functions. We then developed the classification rule based on the joint probability distributions. Literature

review and the density plot of the real data example used in this article motivated us to use marginal

gamma distribution for these biomarkers.

We conducted a simulation study to evaluate the performance of the method and then illustrated

with a real data example. To understand the effect of different choices of copulas for this purpose, we

first evaluated and compared the dependence parameter θ in copulas with Kendall’s τ . We observed

that a given value of the parameter represented higher levels of dependence in Gumbel’s, followed by

Clayton’s and Frank’s copula. This result found to be consistent based on the theoretical relationship

as well as computed values using simulated data sets. Relative bias and the mean squared error of all
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parameter estimates converged to zero with the increase of sample size and for each copula-based joint

probability distributions.

We also determined the joint threshold for CK and cTn that maximizes the classification

accuracy for STEMI using simulated data sets. The threshold for disease classification converged to a

stationary distribution regardless of the choices of copulas. The parameter set-up in this simulation was

determined based on a literature review, but we did not have access to the real data set for this experiment.

Thus, the threshold identified in this section has a very limited clinical interpretation. Given that a fixed

value of the dependence parameter θ represents different degree of dependency in these copulas, we

conducted the simulation fixing Kendall’s τ and back calculating θ across different choices of copulas.

At a higher level of dependency, we observed slightly higher AUC estimate using Clayton’s copula-based

bivariate distribution compared to Frank’s, followed by Gumbel’s. However, these differences found to

be statistically insignificant. We also observed a decreasing tendency in classification accuracy with

the increasing value of the dependence parameter. This is most likely due to less information on the

disease status with higher levels of dependency between biomarkers. We have also examined the effect

of diseased proportion in this simulation and observed almost identical estimates using 20% cases and

80% controls compared to 50% cases and 50% controls.

Using a real data set, we identified the joint threshold of Apolipoprotein B to Apolipoprotein

A1 ratio (ApoB/ApoA1) and total cholesterol to high-density lipoprotein ratio (TC/HDL) for the

classification of MI. White’s goodness of fit test suggested that any of the three copula-based bivariate

distribution may be adequate for this data set. However, the bivariate contour plot with gamma marginals

and Clayton’s copula showed a better fit to the data, as compared to other copulas. Thus, we used

Clayton’s copula-based bivariate distribution to determine the threshold of these two biomarkers. The

joint threshold for ApoB/ApoA1 ratio and TC/HDL ratio were given by 0.725 and 4.37, respectively,

with a sensitivity and specificity of 60.3% and 58.4%, respectively. The area under the receiver operating

characteristic curve was given by 0.628. Under certain circumstances, a researcher may also want to

identify the threshold at a given sensitivity or specificity, and this method allows us to determine such

threshold as well. For example, using this approach, we also found the threshold at 80% specificity as
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0.847 and 5.18, respectively, corresponding to 41% sensitivity. Given that we have used a small data set

for this purpose, result of this analysis may not lead to a generalizable conclusion.

In an experiment, the marginal distribution of different biomarkers may differ, and a standard

set of bivariate distribution may not fit the data well. Thus, introducing copula to construct bivariate

distribution with enormous flexibility is one of the main strength of this approach. This method allows

one to construct broad classes of bivariate distributions with different marginals, which takes dependency

into account and leads to an improved and unique classification. However, this method does not allow

one to determine the joint threshold adjusting for additional confounding factors such as ethnicity or age

group, which may be of interest for a clinician. We can overcome this limitation determining the threshold

unique to each stratum of a confounding factor. The method developed in this article is also restricted to

two dependent biomarkers, but we may encounter more than two biomarkers for a disease classification.

We hope to extend this approach for three or more dependent biomarkers in future research.

7. Conclusion

In conclusion, the copula-based method works well in identifying the joint threshold of two dependent

biomarkers for an outcome classification. This method is flexible and allows modeling broad classes

of bivariate distributions that take dependency into account, which leads to an improved and unique

classification. The threshold identified using this approach may allow clinicians uniquely classify

individuals at risk of developing the disease and plan for early intervention.
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Appendix A: Simulation algorithm for the classification rule

In this section, we provide the simulation algorithm to find the threshold that maximizes the classification

accuracy based on the joint probability distribution of two biomarkers, say X1 and X2. Let us assume the

marginal distribution of two dependent biomarkers follow gamma distribution with shape α1, rate β1 for

X1 and shape α2, rate β2 for X2, along with a dependence parameter θ for the copula under consideration.

We describe the procedure for Frank’s copula, and the other copulas will follow the same steps. Under

this assumption, an algorithm to determine the joint threshold at which maximum classification accuracy

occurs described below:

(1) Generate a random sample of desired size from the non-diseased(control) population using the

Frank’s copula-based joint probability distribution of X1 and X2 such that [X1 X2] ∼ CF (u0, v0|θ0).

Here, [X1] ∼ Gamma(α10, β10) with u0 = F (X1 < x1) and [X2] ∼ Gamma(α20, β20) with v0 =

F (X2 < x2).

(2) Compute the maximum likelihood estimate of all parameters for non-diseased sample.

(3) Follow Steps 1-2 for diseased(case) population such that [X1 X2] ∼ CF (u1, v1|θ1). Here, [X1] ∼

Gamma(α11, β11) with u1 = F (X1 < x1) and [X2] ∼ Gamma(α21, β21) with v1 = F (X2 < x2).

(4) Specify a sequence of q−(1-specificity) within the interval 0 and 1 and then identify x1 and x2

that corresponds to each q− using Equation (5) based on the set of parameters estimated from

non-diseased sample.

(5) Compute the sensitivity P+ using Equation (6) based on those x1 and x2 identified in Step 4 and the

set of parameters estimated from the diseased sample.
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(6) Based on the series of {x1, x2} and corresponding specificity and sensitivity computed in Step 4 and

5, identify the joint threshold {x1, x2} that corresponds to maximum classification accuracy(largest

probability of both true positive and true negative).

(7) Based on the series of 1-specificity and sensitivity obtained in Step 4 and 5, compute AUC applying

Trapezoidal or Simpson’s rule of numerical integration.

(8) Repeat Steps 1-7, s times(number of simulated sample) and create three vectors of estimates such

that {x11, x12, ..., x1s}, {x21, x22, ..., x2s} and {auc1, auc2, ..., aucs}.

(9) Perform Heidelberg and Welch diagnostic test to ensure each series converges to a stationary

distribution with a sufficiently large value of s (Heidelberger and Welch, 1981, 1983).

(10) Compute the median and 95% confidence interval based on the empirical distribution of X1, X2

and AUC.

We prepared the R programming code for all analysis and figures presented in this paper utilizing

some pre-existing packages. In particular, we used copula (Hofert et al., 2014; Yan, 2007;

Kojadinovic and Yan, 2010; Hofert and Mächler, 2011) and CDVine (Brechmann and Schepsmeier,

2013) package for the simulation component of the article.
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Appendix B: Additional figures
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Figure 6. Univariate density plot of a simulated sample by case and control data separately for CK and cTn
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Chapter 4

Methods for Dimension Reduction

and Disease Classification

In general, researchers observe a certain degree of nonlinearity in the gene and miRNA

expression data. In a genetic data integration aimed at disease classification, linear

principal component analysis (PCA) is a widely used approach. However, a nonlinear

PCA might be optimal. This chapter includes an article published in the journal of

“Statistical Applications in Genetics and Molecular Biology”, where we compared two

dimension reduction methods and assessed the contribution of components towards

genetic data integration and an outcome classification. We have also developed a

simulation algorithm for this purpose and evaluated the performance of these methods

with a varying degree of design-level parameters.

Citation: S. Islam, S. Anand, J. Hamid, L. Thabane, J. Beyene (2017): Comparing

the performance of linear and nonlinear principal components in the context of high-

dimensional genomic data integration. Stat Appl Genet Mol Biol. 16(3):199-216.

doi:10.1515/sagmb-2016-0066.
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1. Introduction

Disease exposure relationships often suffer from multidimensional complex data structures. For example,

the progression of a disease can be related to biological, behavioral or genetic factors and some of these

data sets usually consist of many variables. Data integration is a process that allows us to combine

information from such data sets to perform a specific task. For example, integrated information can be

used to classify different clinical outcomes, such as cancer or death. The concept of data integration varies

with the context such as business intelligence (Eaton et al., 2008; Haque et al., 2014) or life sciences

(Gomez-Cabrero et al., 2014; Reverter et al., 2014) to obtain a meaningful summary of information. In

either case, multiple sources of information called domains require integration to perform a specific task.

In an article, Hamid et al. (2009) provided a conceptual framework for data integration and discussed

some methodological challenges in the context of genomic data. In particular, genetic processes such

as the gene or miRNA expression data appear in a very high dimension with a relatively large number

of variables, as compared to the number of subjects in the sample. These variables are often highly

correlated within and across data sets. Recently, Khan et al. (2014) and Bunte et al. (2016) used a

Bayesian group factor analysis approach for joint biclustering of multiple data sources, where exploring

clusters of associated data is the main point of interest. However, our goal is to identify few linear

combination of expressions that captures the majority of variation from multiple data sources, which can

be used in a subsequent procedure such as classification or prediction.

Due to a large number of variables with complex relationships, most of the standard statistical

procedures, such as linear regression, fail to utilize this information for classification. As a result,

reducing the dimension or summarizing a multidimensional correlated set of exposures is essential. Thus,

integrating data sets in the context of disease or death classification can be accomplished in two different

steps. First, reduce the dimension with meaningful features through a suitable statistical technique within

a domain. Second, develop models to classify an outcome based on extracted features from the various

domains. In a recent article, Aguilera et al. (2006) introduced a similar approach known as the principal

component logistic regression (PCLR). This approach allows one to remove the redundancy in the data
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matrix with a smaller number of latent variables, and use the uncorrelated reduced set for subsequent

model building procedure. In the context of genomic data integration, many authors consider such an

approach to reduce the dimension and subsequently utilize the reduced set to identify the association or

disease classification (Chang and Keinan, 2014; Lee et al., 2012; Yi et al., 2012).

Depending on the relationship between variables within a domain, the two broad classes of

dimension reduction techniques available are the linear or nonlinear approaches. Some of the linear

approaches include linear Principal Component Analysis (PCA) (Pearson, 1901; Hotelling, 1933),

Latent Class Analysis (LCA) (Gibson, 1959; Goodman, 1974; Hagenaars and McCutcheon, 2002) and

Canonical Correlation Analysis (CCA) (Hotelling, 1936). While PCA and LCA can be used to reduce

the dimension of a single set, CCA can be used to reduce the dimensions of two correlated sets. The key

characteristic of these approaches is to identify a smaller number of latent variables that can be expressed

as a linear combination of observed variables with maximum variance or correlation. Similarly, some of

the nonlinear approaches include Sammon’s mapping (Sammon, 1969), curvilinear component analysis

(Demartines and Herault, 1997), nonlinear PCA (Scholz et al., 2005) and kernel PCA (Schölkopf et al.,

1998). These procedures can be considered as nonlinear generalizations of standard PCA.

Many authors consider linear PCA to reduce the dimension of gene expression data and

subsequently utilize the information to quantify the degree of association between disease and the

extracted principal components (Lee et al., 2012; Yi et al., 2012; Chang and Keinan, 2014). This method

has also been used to identify a cluster of associated genes (Yeung, 2001; Lu et al., 2011; Skov et al.,

2012), to correct for population stratification in a genome-wide association studies (Price et al., 2006), or

to predict an outcome based on different types of clinical variables (Korkeila et al., 2011; Ahmadi et al.,

2013; Gloi and Buchanan, 2013). Estimation and test results related to this method depend on the

linearity and multivariate normality assumption. However, gene and miRNA expression data often fail to

satisfy these assumptions; as a result, nonlinear dimension reduction techniques may be optimal.

In the context of dimension reduction and pattern recognition, Schölkopf et al. (1998)

suggested that pre-processing data using kernel PCA could improve the classification performance. For

example, this approach performs very well for character or face recognition. The author also showed
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that a linear classifier is sufficient in this case, as long as features were extracted using the nonlinear

approach. Recently, many authors also proposed kernel PCA to reduce the dimension of a genetic process

(Liu et al., 2005; Reverter et al., 2010; Schaid, 2010a,b; Gao et al., 2011; Minnier et al., 2015), but this

procedure requires to identify a suitable kernel for this computation. Based on the analysis of several

data sets using different kernel PCA, Liu et al. (2005) suggested that a polynomial kernel with a degree

of two or three performs well for gene expression data sets. However, the performance of kernel PCA

over linear PCA in the context of data integration and an outcome classification in different scenarios

need to be explored and justified.

The main objective of this research is to compare the performance of the linear and the kernel

principal components towards genetic data integration and an outcome classification. We consider two

steps for this comparison. First, we assess how well these two approaches extract information from a

larger data set to a smaller number of latent variables. Second, we assess the performance of extracted

components to classify an outcome. The secondary objective is to develop a simulation algorithm that

takes into account the degree of dependence and nonlinearity observed in a genetic process. Using this

algorithm, we first evaluate the performance of these methods based on simulated genetic data sets. This

procedure allows us to identify the effect of varying the sample size, the proportion of deceased subjects

in the sample and the degree of dependence within and across data sets. We then apply both the linear

and kernel PCA with a polynomial kernel of degree three to reduce the dimension of gene and miRNA

expression from an open source cancer genomic data set (Zhang et al., 2011). Subsequently, we integrate

selected principal components from these two data sets along with age and sex, based on the logistic

regression model for an outcome classification.

In the next section of this article, we describe the methodological details for dimension

reduction, data integration, and simulation. Simulation results comparing linear and kernel approaches

with varying design level parameters are presented in Section 3. Using the lung cancer genomic data

set, we demonstrate and compare the integration procedure based on these two approaches in Section 4.

Finally, we present a summary of our findings with discussion in Section 5 and some concluding remarks

in Section 6.
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2. Methods

In this section, we describe two dimension reduction methods, namely linear and kernel principal

component analysis. We also briefly describe logistic regression model as a subsequent integration

procedure for the purpose of classification. We then describe the development of a copula-based

simulation algorithm, which allows us to generate data preserving the degree of dependence and

nonlinearity observed within and across data sets.

2.1. Dimension reduction methods

Principal component analysis as it currently used was made popular by Hotelling in 1933. However, the

idea of a principal axis was first introduced by Karl Pearson in 1901 (Pearson, 1901; Hotelling, 1933).

Let X be the centered data matrix of continuous exposures with m rows and n columns, where xij

represents the value for ith gene or miRNA expression and jth individual. Then principal components

can be obtained applying the singular value decomposition (SVD) to the data matrix X , known as SVD

PCA. With this approach, the matrix X can be uniquely expressed as Xm×n = Um×mΛm×nV
T
n×n, where

Λ is the matrix of singular values along with two orthogonal matrices U and V such that UT U = I and

V T V = I . Given that X is centered, the mean vector and covariance matrix can be written as:

µ = 1
m

m∑
i=1

Xi = 0,

Σ = 1
m

m∑
i=1

XiX
T
i .

Under this assumption, principal components can also be obtained by diagonalizing the

covariance matrix Σ such that:

Σv = λv,

where λ is the largest eigenvalue and v is corresponding eigenvector. Assuming the rank of Σ is k, one

can extract as many as k eigenvalues such that λ1 > λ2 > ... > λk and their corresponding eigenvectors.
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In the above formulation, replacing the linear function with a nonlinear one leads to nonlinear

PCA, known as an auto-associative neural network as introduced by Kramer (1991). This procedure

requires one to specify mapping and demapping functions G and H , which are selected to minimize

the Euclidean norm of the residual matrix E; this can be considered as a generalization of linear PCA.

Cybenko (1989) provided details on a function that can be used for this purpose. However, this iterative

procedure of constructing nonlinear mapping and demapping is computationally demanding. Following

a similar procedure, Schölkopf et al. (1998) introduced another nonlinear approach, known as kernel

PCA. This approach starts with mapping X into some high dimensional feature space using a mapping

function Φ(X). We can then apply similar assumptions and procedures for linear PCA, to solve for the

kernel principal components based on the following mean vector and covariance matrix:

µ = 1
m

m∑
i=1

Φ(Xi) = 0,

Σ = 1
m

m∑
i=1

Φ(Xi)Φ(Xi)
T .

One of the main advantages of this approach is that the mapping function does not need to

be known apriori. Those functions can be approximated using a dot product of features space such that

k(x, x
′
) := ⟨Φ(x), Φ(x

′
)⟩, known as a kernel trick. As a result, this procedure does not require one to

consider any nonlinear optimization procedure. While, there are many different types of kernels available

in the literature, the Gaussian or Polynomial kernels are commonly used for this purpose:

Gaussian : k(x, x
′
) = exp(−σ||x − x

′||2),

Polynomial : k(x, x
′
) = (scale. ⟨x, x

′⟩ + c)d.

In the above expression, c is the offset and d is the degree or order of polynomial kernel.

Gaussian is a general purpose kernel used when there is not much information available on the system,

where σ is the scale parameter. Incase of polynomial kernel, higher values of d refers to increasing

dimension of the polynomial that increases the computational complexity. Thus, required degree of the

polynomial need to be carefully assessed and justified depending on the degree of nonlinearity present

in a specific data set. Based on the analysis of several gene expression data sets using different kernel
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PCA, Liu et al. (2005) suggested that polynomial kernel with a degree of two or three perform better

compared to the Gaussian kernel. However, the performance of this approach compared to linear PCA in

the context of the gene or miRNA expression data in different scenarios need to be explored.

Note that both of these approaches are known as an unsupervised learning algorithm, where we

do not use class level information during feature extraction. As a result, first few principal components

extracted from any of these approaches may not be the best for classification of a particular outcome.

However, principal components extracted through these approaches are considered unbiased, and it

provides a fair methodological comparison. We use the MASS package (Venables and Ripley, 2002)

to reduce dimension through linear PCA and the kernlab package (Karatzoglou et al., 2004) to reduce

dimension through kernel PCA.

2.2. Classification method

We use a logistic regression model to integrate information from different domains regarding linear or

kernel principal components. A brief description of the model is given below. Let Y be the vector of

binary responses with 0 represents alive and 1 represents deceased with proportion p. The matrix X of

exposures with substantially reduced dimension consists of n rows and k columns, where n1 observation

from group one and n2 observation from group two with n1 + n2 = n. Then the logistic regression model

can be written as:

log( p
1−p

) = α + β X.

In the above expression, α is the intercept and β is the slope coefficients associated with the design

matrix X . We use the classification error rate (CER) and the area under the receiver operating

characteristic curve (AUC) to assess the performance of linear versus kernel principal components

towards data integration and death classification. We use the hmeasure package in R for this computation

(Anagnostopoulos et al., 2012).
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2.3. Simulation algorithm based on copula

Gene or miRNA expression data are expected to be skewed with a nonlinear relationship across variables.

As a result, we need to consider constructing a multivariate distribution that takes into account long

tail marginal distributions and the degree of dependence across variables. We propose a copula-based

method to construct such distribution. Let X1, X2, ..., Xm be a set of random variables such that

Pr(X1 < x1) = u1, P r(X2 < x2) = u2, ..., P r(Xm < xm) = um, respectively. Thereafter, the Frank’s

family (Frank, 1979) of multivariate distribution was further studied by many authors including Nelsen

(2006). This can be constructed through the following expression:

Cm
F (u1, u2, ..., um) = − 1

θFM

log
[
1 +

m∏
i=1

(e−θFMui − 1)

(e−θFM − 1)n−1

]
, θFM > 0. (1)

In the above expression, θFM represent the multivariate dependence parameter across variables. Suppose

Xi, i = 1, 2, ...,m follows a gamma distribution with shape αi and rate βi. Then the probability density

function of ith random variable can be written as:

f(xi) =
βαi

i

Γ(αi)
xαi−1eβixi , xi ∈ (0,∞), αi > 0, βi > 0, i = 1, 2, ..., m,

where Γ represents the gamma function. The cumulative distribution function is given by:

F (xi) = Pr(Xi < xi) =
1

Γ(αi)
γ(αi, βixi),

where γ(., .) is the incomplete gamma function. Combining these marginals using the copula function

defined above, we construct multivariate distribution with gamma marginals and a dependence parameter

θFM . We prepare an R program utilizing the package called copula (Hofert et al., 2014) for this purpose.

However, the challenging part of this process is to generate data sets that reflect a real

experiment, and we propose the following simulation algorithm for this purpose:

(1) Select an observed set of expression data as the basis of the simulation.

(2) Identify the marginal distribution for each expression and compute maximum likelihood estimates

of all parameters.
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(3) Compute cumulative probabilities based on the fitted marginal distributions.

(4) Compute the maximum likelihood estimate of the dependence parameter fitting Frank’s copula,

based on the cumulative probabilities obtained in the previous step.

(5) Set parameters obtained in step 2 and step 4 as true parameters for the simulation that reflect an

observed experiment.

(6) Generate random data with the desired sample size, proportion deceased, and degree of

dependence, based on the multivariate distribution constructed through Frank’s copula.

Note that this procedure needs to be repeated separately for the deceased and non-deceased

samples to ensure the discriminating ability observed in the real data set. Finally, combine the two sets

and consider the set as a random sample from the target population. The Franks copula-based multivariate

distribution with a gamma marginal approach we use in the simulation allows us to incorporate the degree

of nonlinearity we observe in a real data set. In the supplementary materials of this article, we present a

figure (Figure S1) that illustrates how different degree of nonlinear dependency can be incorporated and

generated using the copula-based multivariate distribution.

3. Simulation

The main goal of the simulation study is to compare the performances of the linear and the kernel

principal component analysis approaches reducing the dimension of a simulated genetic process with

varying sample size, the degree of dependence and proportion of subjects deceased. To facilitate this

process, we develop and apply a copula-based approach to generate data for this simulation. We also

compute relative bias in percentage and corresponding mean squared error (MSE) of different values of

dependence parameter with varying sample size and present in the supplementary materials (Table S2).

Methodological details of this procedure along with a simulation algorithm are presented in Section 2.3.
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3.1. Simulation design

Simulation study requires starting with a sensible set of parameters that reflect a real experiment. We

consider a lung cancer data set as the basis of our simulation (ICGC, 2014). We present details and

an exploratory analysis of this data set for selected domains in the next section (Section 4). Examining

the histogram of each selected gene and miRNA expression data, we observe that most of the marginal

distribution of expressions are highly skewed. A visual examination of the Spearman’s rank correlation

matrix within each domain suggests that running principal component analysis may allow us to remove

redundancy in the observed data within each domain. To understand the relationship between different

variables within each domain, we also examine the quantile-quantile plot for pairs of gene and miRNA

expressions. We present some of these plots in Figure 1. Given that most of the pairs are nonlinearly

related, we expect that nonlinear dimension reduction techniques may provide better information, as

compared to the linear approach.

For the purpose of simulation setup, we select 20 gene and 20 miRNA expressions with a

large interquartile range from the data set to identify suitable parameters for this simulation. We select

this subset based on the largest inter-quartile range (IQR) from the entire gene and miRNA expression

data set. Distance Correlation (DC) is a commonly used measure and test of significance of nonlinear

dependency in gene expression data (Szekely et al., 2007; Guo et al., 2014). We compute each element

and corresponding p-values of DC matrix for selected gene and miRNA expression data. We observe that

102 of 190 upper triangular elements of DC matrix based on 20 selected gene expression data satisfy

significant (p<0.05) nonlinear dependency. Similarly, 69 of 190 elements of DC matrix based on 20

selected miRNA expression data satisfy significant (p<0.05) nonlinear dependency. We present a plot

of these p-values as a supplementary material (Figure S2). Examining the univariate density plot of

the selected set, we use a marginal gamma distribution for each expression. We then apply maximum

likelihood method to estimate the shape and rate parameters for each marginal distribution. We also

compute the cumulative probabilities for each expression and then estimate the dependence parameter

based on Frank’s copula. Finally, we use the estimated set of parameters as the basis of our simulation.

We present the summary of selected gene, miRNA expression and corresponding parameter estimates in
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Figure 1. The relationship between selected pairs of gene and miRNA expressions from ICGC lung cancer data

the Table 1 and 2, respectively.

However, simulation result based on a single set of parameters may not be sufficient for this

comparison. Thus, we conduct this simulation with varying design level parameters such as sample size,

degree of dependence and proportion of deceased subjects in the sample. While varying the sample size

(n = 100, 120, ..., 400), we keep the proportion of deceased subjects in the sample fixed (p = 0.25) and
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Table 1. Summary of selected gene expression data (median and IQR: Interquartile range) from the

deceased and alive sample and corresponding maximum likelihood estimate (MLE) of shape and rate

parameter from the gamma distribution

Deceased Sample (N=33) Alive Sample (N=90)

Gene Name Median ( IQR ) MLE: Shape MLE: Rate Median ( IQR ) MLE: Shape MLE: Rate

SFTPB 849 ( 2503 ) 0.37 1.92 2172 ( 4180 ) 0.64 1.90
RPS18 2827 ( 1789 ) 3.90 13.68 2848 ( 2469 ) 2.32 6.25

SFTPA1 550 ( 2001 ) 0.26 1.03 1278 ( 3417 ) 0.41 1.51
FTL 3113 ( 1843 ) 4.66 14.61 2984 ( 2382 ) 2.62 7.14

CD74 2275 ( 2004 ) 1.66 6.17 2156 ( 2197 ) 2.08 8.22
HLA.B 2501 ( 3003 ) 3.07 9.07 2447 ( 2033 ) 2.46 8.88

B2M 3093 ( 1320 ) 4.68 16.10 2559 ( 2304 ) 3.12 9.93
SFTPA2 304 ( 1759 ) 0.27 1.46 866 ( 2608 ) 0.42 2.04

TPT1 3230 ( 1979 ) 5.72 17.95 3289 ( 2498 ) 3.25 7.66
S100A6 1393 ( 1566 ) 1.60 7.61 1840 ( 1955 ) 1.44 6.11

TMSB10 2167 ( 1442 ) 2.78 9.56 2386 ( 1584 ) 2.87 9.80
RPL41 2159 ( 1060 ) 6.01 27.10 2530 ( 1564 ) 5.89 20.86

EEF1A1 2468 ( 1331 ) 6.63 25.50 2907 ( 1843 ) 4.58 13.73
LOC96610 653 ( 962 ) 0.93 8.46 740 ( 1026 ) 0.93 7.82

RPLP1 1715 ( 877 ) 5.28 26.66 2016 ( 1312 ) 2.97 11.59
RPS6 1229 ( 712 ) 4.42 30.78 1601 ( 1274 ) 2.76 13.88

ACTB 3105 ( 1468 ) 8.32 26.18 2386 ( 1027 ) 7.44 29.77
RPS27 1458 ( 1277 ) 6.07 34.46 1926 ( 1124 ) 5.42 24.82

COL1A2 1161 ( 1953 ) 1.23 6.89 822 ( 1013 ) 1.52 12.70
GAPDH 1625 ( 1696 ) 2.57 11.72 1378 ( 1019 ) 3.41 21.59

degree of dependence fixed (deceased sample θFM = 0.46 and alive sample θFM = 0.49). Similarly,

while varying the degree of dependence in the sample (θFM = 0.5, 1.0, ..., 10.0), we keep the sample

size fixed (n = 200) and fixed proportion of deceased subjects in the sample (p = 0.25). Finally, while

varying the proportion of deceased subjects in the sample (p = 0.20, 0.22, ..., 0.50), we keep the sample

size fixed (n = 200) and fixed degree of dependence (deceased sample θFM = 0.46 and alive sample

θFM = 0.49). The R code for this simulation can be downloaded from the following link: http://beyene-

sigma-lab.com/code/.

3.2. Evaluating performance

At the first step of this simulation, we randomly split the generated data into training and test sets with

50% observations in each. Using the training data set, we ran linear and polynomial kernel of degree three

principal component analysis to reduce the dimension and extract the first three principal components

from each set, and then compute the percent of variance explained by extracted principal components.
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Table 2. Summary of selected miRNA expression data (median and IQR: Interquartile range) from the

deceased and alive sample and corresponding maximum likelihood estimate (MLE) of shape and rate

parameter from the gamma distribution

Deceased Sample (N=33) Alive Sample (N=90)

miRNA Name Median ( IQR ) MLE: Shape MLE: Rate Median ( IQR ) MLE: Shape MLE: Rate

hsa.mir.21 336217 ( 112690 ) 5.14 0.16 320967 ( 170376 ) 7.62 0.23
hsa.mir.143 92607 ( 104750 ) 2.02 0.17 81064 ( 72237 ) 2.48 0.27

hsa.mir.148a 36006 ( 55353 ) 1.63 0.29 63747 ( 51617 ) 2.43 0.37
hsa.mir.22 70687 ( 33276 ) 6.07 0.84 65080 ( 31945 ) 7.88 1.12

hsa.mir.375 8698 ( 14490 ) 0.62 0.29 19019 ( 32217 ) 1.06 0.32
hsa.mir.182 21039 ( 17700 ) 2.42 0.95 26661 ( 22633 ) 3.14 1.12
hsa.mir.30a 16180 ( 12392 ) 2.34 1.10 19423 ( 22965 ) 1.63 0.62
hsa.mir.99b 26873 ( 11872 ) 3.65 1.10 25451 ( 18786 ) 2.75 0.87
hsa.mir.10a 30856 ( 18756 ) 4.24 1.35 23650 ( 16648 ) 1.65 0.49
hsa.mir.183 11312 ( 12920 ) 1.72 1.23 11817 ( 11666 ) 2.58 1.89

hsa.let.7b 13774 ( 9824 ) 6.28 4.08 15827 ( 10158 ) 4.51 2.58
hsa.mir.30d 8186 ( 9415 ) 1.95 1.69 9222 ( 9179 ) 2.39 1.98

hsa.mir.200c 6490 ( 6966 ) 1.45 1.67 8535 ( 7977 ) 2.92 2.98
hsa.mir.10b 7323 ( 10592 ) 0.73 0.48 5669 ( 7178 ) 1.27 1.66
hsa.let.7a.2 15114 ( 8998 ) 4.62 2.73 13779 ( 8178 ) 3.75 2.46
hsa.mir.29a 11470 ( 9300 ) 3.58 3.02 12195 ( 7967 ) 3.99 2.99
hsa.mir.100 7839 ( 6757 ) 1.54 1.46 5967 ( 6390 ) 1.26 1.18
hsa.mir.30e 12690 ( 4426 ) 5.00 3.58 14692 ( 7815 ) 5.45 3.52

hsa.mir.101.1 11210 ( 5136 ) 6.33 5.76 11940 ( 7021 ) 4.42 3.28
hsa.mir.142 3197 ( 5592 ) 1.12 2.74 4091 ( 6053 ) 1.23 2.48

In the second step, we fit a logistic regression model using the principal components obtained from the

training set and validate the performance of classification based on the principal components extracted

from the test set. We use the percent of variance explained by the top three principal components,

classification error rates, and the AUC to measure the performance of each method.

3.3. Simulation results

First, we present the density plot of the observed data sets for gene and miRNA expression (used to

estimate parameters for simulation), separated by the deceased and non-deceased sample, along with a

simulated set of expression data in Figure 2. We observe that the density plot of the simulated data set

is very similar to those of real data for both the deceased and non-deceased sample, as well as for both

the gene and miRNA expression, ensuring a good starting point for this simulation. The Kolmogorov-

Smirnov test of gamma marginals using several simulated samples of different sizes also ensures a

good fit. We present the test result for the fitted gamma distribution and a simulated data set in the
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supplementary materials (Table S3). Although, simulated data set expected to vary during each iteration

but produces a stable result with repetitive sampling.
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Figure 2. Density plot of a set of gene and miRNA expression from observed (top panel) and simulated (bottom panel) lung cancer data sets with gamma marginals

Based on the simulation results using linear and polynomial kernel approaches with varying

sample size, we observe that percent of variance explained by the first three principal components using

kernel approach is higher than the linear approach. We also observe that the classification error rates

are very similar for both models using the linear and kernel principal components. The error rate also

tends to decrease with an increase in the sample size. The median and 95% confidence interval of AUC

estimate for death classification using linear or kernel principal components are given by 0.584 (0.582,

0.586) and 0.567 (0.565, 0.569), respectively. Thus, AUC obtained using linear principal components is

slightly higher compared to kernel principal components (Figure 3).

Similarly, the results based on the simulation with varying degree of dependence shows that

percent of variance explained by first three polynomial kernel principal components explain higher

percent of variance compared to linear principal components. However, the classification error rate

increases with increasing value of the dependence parameter. Following a similar trend, the median

and 95% confidence interval of AUC estimate for death classification using linear or kernel principal
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Figure 3. Trends in cross validated AUC and Notched Box Plot with varying sample size

components are given by 0.596 (0.586, 0.606) and 0.573 (0.571, 0.575), respectively. Thus, AUC from

the linear principal components again produces slightly higher values with an increasing value of the

dependence parameter, compared to the kernel principal components (Figure 4).
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Figure 4. Trends in cross validated AUC and Notched Box Plot with varying degree of dependence

Finally, we conduct the simulation with varying proportion of deceased subjects in the sample.

Percent of variance explained by polynomial kernel principal components remains higher compared to

linear principal components. We also observe that the classification error rates using linear principal
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components are almost identical to the kernel principal components, but with an increasing trend with

the increase of the deceased proportion in the sample. On the other hand, the trend in AUC is not affected

by this variation, but we observe slightly higher values using the linear principal components, compared

to kernel principal components (Figure 5). In this set up, the median and 95% confidence interval of AUC

estimate for death classification using linear or kernel principal components are given by 0.583 (0.580,

0.586) and 0.563 (0.561, 0.565), respectively.
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Figure 5. Trends in cross validated AUC and Notched Box Plot with varying proportion of deceased subjects

During this simulation, we also examine the effect of Gaussian kernel towards data integration

and death classification. We observe that the Gaussian kernel performs slightly better compared to linear

with a lower degree of dependency but performs poorly with a higher degree of dependencies. However,

almost all cases, the percent of variance explained by first few Gaussian kernels are very low with higher

classification error rates compared to the linear and polynomial kernel. We present the comparative study

plot of AUC’s using linear, polynomial and gaussian kernel in the supplementary materials (Figure S3).

Thus, in general, we observe a higher percent of variance explained by the first few polynomial

kernel principal components, compared to the linear principal components in almost all instances. During

the death classification using the linear or polynomial kernel principal components, we observe that

the AUC obtained from either of these two approaches tend to increase with increasing value of the

dependence parameter but remains constant with varying sample size or the proportion of deceased
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subjects in the sample. However, based on AUC, the performance of the linear principal components

is slightly higher with similar error rates towards data integration and death classification. This result

remains consistent with the varying sample size, the proportion of deceased subjects in the sample and

the degree of dependence. Thus, principal components extracted using the linear approach shows slightly

better performance of death classification in this simulation study with varying design level parameters.

4. Application to a real data set

To demonstrate the described method, we use some of the lung cancer data set introduced during the

13th annual international conference on critical assessment of massive data analysis (CAMDA 2014),

as accessed through international cancer genome consortium data portal in January 2014 (ICGC, 2014).

During this process, we compare the performances of the linear and kernel approaches towards data

integration and death classification in two steps. First, we use the linear and polynomial kernel principal

component analysis to reduce the dimension of larger sets. We then compute the percent of variance

explained by first three principal components, a measure of performance to capture information from the

larger set to a smaller number of latent variables. Second, we use a logistic regression model to integrate

extracted features from different domains for classification. We compute the classification error rate

(CER) and the area under the receiver operating characteristic curve (AUC) from each model. Finally,

we compare the performance of the linear and kernel principal components towards data integration and

death classification based on CER and AUC. We also validate results of this analysis using a split-half

validation procedure.

Thus, we integrate information from different domains of lung cancer data set and compare

the performance of these two approaches using the following steps: 1) Cleaning, transformation, and

imputation of missing data. 2) Exploratory analysis such as descriptive statistics and visualization. 3)

Dimension reduction of gene and miRNA expression data based on linear and kernel PCA. 4) Integration

of the three domains based on the reduced set using logistic regression models for classification. 5)
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Compare the performance of these two approaches based on the percent of variance explained by selected

principal components, the classification error rate, and the AUC, with validation.

4.1. The lung cancer data set

This data set consist of information on gene expression (GE), micro RNA expression (miRNA), protein

expression profiles, somatic copy number variation (CNV) and methylation from 395 lung cancer patients

(215 women and 180 men). In addition to the genome sequence data, this data set includes clinical

information such as age, sex and alive or death status as well as blood sample type. We restrict our

analysis to three domains: gene expression, micro RNA, and age & sex from the clinical data set. In

this analysis, death is an outcome of interest, and selected sets of exposures are expected to be highly

associated with the outcome.

The main purpose of this analysis is to explore the performance of linear and kernel PCA in the

context of high-dimensional genomic data integration and death classification. However, each of these

domains consists of information on a different number of subjects. Since the ultimate goal of this analysis

is to integrate information from different domains for classification, we identify and match subset across

the different data sets. During this step, we identify 123 unique subjects with matched gene, miRNA

and clinical data, and we restrict to this subset for the analysis. This sample consists of 33 dead and

90 alive individuals. Thus, the gene expression set leads to a 123x34047 dimensional data matrix and

the miRNA expression set leads to a 123x869 dimensional data matrix. As a first step of the dimension

reduction, we use an R package called genefilter (Gentleman et al., 2015) to filter out noisy genes and

miRNA expressions, as well as the pcaMethods package in R (Stacklies et al., 2007) to impute missing

observations in a data matrix.

4.2. Exploratory analysis of gene and miRNA expression data sets

As an exploratory analysis, first we partition the data sets by chromosome number and run both linear

and kernel PCA to reduce the dimension of gene and miRNA expression data, separately for each
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chromosome. Subsequently, we run the logistic regression to identify the performance of the first

principal component, as a predictor of death classification. We present the results of this analysis in

Table 3, where we report the percent of variance explained by first principal component based on these

two approaches, along with the AUC to classify death. We observe that the percent of variance explained

by the first linear principal component is less than that of the nonlinear principal component for almost

all chromosomes.

Table 3. Percent of variance and the AUC, classifying death based on first linear or polynomial kernel

principal component from gene and miRNA expression data stratified by chromosome number

Gene Expression miRNA Expression

Variance% AUC-Death Variance% AUC-Death

Chr Dimension Linear Kernel Linear Kernel Dimension Linear Kernel Linear Kernel

1 123x3763 51 62 0.55 0.54 123x 73 57 77 0.61 0.60
2 123x2263 67 87 0.64 0.65 123x 46 85 93 0.69 0.69
3 123x2005 68 94 0.60 0.61 123x 44 96 99 0.57 0.57
4 123x1353 61 90 0.60 0.60 123x 33 77 73 0.64 0.64
5 123x1598 51 99 0.55 0.57 123x 34 100 100 0.57 0.57
6 123x2829 51 90 0.57 0.59 123x 24 100 100 0.57 0.57
7 123x1663 55 79 0.64 0.62 123x 37 81 95 0.59 0.59
8 123x1213 92 100 0.61 0.62 123x 37 100 100 0.56 0.56
9 123x1453 72 85 0.61 0.61 123x 36 57 67 0.57 0.57
10 123x1370 96 99 0.60 0.60 123x 34 55 80 0.54 0.57
11 123x2364 25 68 0.55 0.64 123x 42 54 52 0.52 0.51
12 123x1901 37 61 0.58 0.67 123x 32 93 100 0.57 0.57
13 123x606 87 72 0.59 0.59 123x 22 69 88 0.55 0.55
14 123x1151 27 90 0.61 0.51 123x 65 96 100 0.58 0.58
15 123x1113 63 100 0.61 0.60 123x 30 81 95 0.50 0.50
16 123x1481 34 91 0.58 0.53 123x 23 94 99 0.56 0.56
17 123x2128 39 82 0.59 0.62 123x 43 86 71 0.53 0.53
18 123x507 76 100 0.58 0.58 123x 15 89 100 0.57 0.57
19 123x2535 55 99 0.52 0.51 123x 84 99 100 0.56 0.56
20 123x1022 59 100 0.54 0.57 123x 24 82 68 0.51 0.51
21 123x435 52 91 0.59 0.54 123x 11 67 87 0.58 0.57
22 123x821 69 83 0.51 0.51 123x 21 80 91 0.56 0.57

We also observe that the AUC for death classification based on the first principal component

from each chromosome ranges between 51 to 64%. Results from the gene expression data are very similar

to the miRNA expression data and leads us to a conclusion that integrating information from different

domains may lead to a better classification of death.
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4.3. Lung cancer data integration results

In this sub-section we discuss the data integration results from different domains for death classification.

Gene and miRNA expression values usually result in a data matrix with lots of noise. Pre-filtering is a

standard approach to remove genes with very little or no information. Further matching and pre-filtering

gene and miRNA expression data based on interquartile range (IQR) > 1.5 lead us to a data matrix of

dimension 123x1090 and 123x280, respectively.

At this stage, we apply both the linear and kernel approach to extract the top three principal

components that explain most of the variation within each domain. We observe that the percent of

variance explained by the first three linear principal components from gene and miRNA expressions are

54% and 78%, respectively. On the other hand, the first three polynomial kernel principal components

explain about 80 and 83% variance from these two data sets. Next, we run the logistic regression using

all three components together considering death as an outcome. We observe that the AUC estimate

using linear principal components is higher compared to the estimate from polynomial kernel principal

components. This result is counter-intuitive, given that first three polynomial kernel principal components

explain more variance compared to the same for the linear principal components. However, the results

of this analysis may not be surprising since principal components extracted from either approach did not

use the class level information, known as an unsupervised learning algorithm.

We then proceed to the data integration and death classification using eight variables from the

three domains: clinical (Age, Sex), the gene (GPC1, GPC2, and GPC3) and the miRNA (MPC1, MPC2,

and MPC3). Using these variables, we compute the classification performance of gene and miRNA

together and finally all three domains combined, based on logistic regression models. As mentioned

in the methods section, principal components extracted from an unsupervised learning algorithm may

not be the best for classification of a particular disease of interest or death. Therefore, we also identify

the best three principal components, using forward selection procedure and repeat the analysis. During

this step, we identify 34th, 75th and 94th linear principal component as best three. Similarly, we identify

88th, 64th and 45th polynomial kernel principal components as best three. We present the result of this

analysis in Table 4.
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Table 4. The area under the ROC (AUC) classifying death based on top three and best three linear or

polynomial kernel principal components using logistic regression

Model with Multiple variables AUC: Top 3 PC AUC: Best 3 PC

Domain Variables Linear Kernel Linear Kernel

Gene: Model 1 GPC1+GPC2+GPC3 0.72 0.60 0.78 0.70
miRNA: Model 2 MPC1+MPC2+MPC3 0.57 0.55 0.74 0.76

Gene+miRNA: Model 3 GPC1+GPC2+GPC3+MPC1+MPC2+MPC3 0.73 0.60 0.83 0.85
Age,Sex+Gene+miRNA: Model 4 Age+Sex+GPC1+GPC2+GPC3+MPC1+MPC2+MPC3 0.81 0.76 0.86 0.87

Considering each domain separately, we observe that the top three principal components in

multiple logistic regression models improve the performance of death classification with a slightly higher

AUC from the linear, compared to the kernel approach. We also observe that integrating gene and miRNA

leads to a better classification rate regarding AUC, and the conclusion remains the same as we observe

from individual domains. Adding the clinical variables in the model completes the integration of all three

domains, leading to a further improvement in the AUC. However, the classification performance of the

polynomial kernel principal components remains lower than the linear principal components. We observe

similar patterns utilizing the best three principal components in the model, but with a higher classification

accuracy using either of these two approaches.

4.4. Cross validation results

All AUCs reported in Section 4.2 and 4.3 are based on the model classifying the same response used to

develop the model, which may lead to a spurious result. Split half cross validation is standard procedure

to rule out such doubt. To facilitate this process, we split the data into two sets (50% observations

in each) with first part as a training set to develop the model and the second part as a test set for

validation. To obtain a summary estimate of this validation procedure, we randomly split the data set

500 times. Each time we fit models with the six principal components (three from gene and three from

miRNA) extracted from the training set and then classify using the same number of principal components

obtained from the test set. During each step, we first compute the percent of variance explained by

first three principal components. We observe that first three linear and polynomial kernel principal

components explain about 57% (CI: 50%-63%) and 88% (CI: 70%-96%) variation in the gene expression
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data, respectively. Similarly, these two approaches explain about 80% (CI: 76%-87%) and 90% (CI:

76%-97%) variation in the miRNA expression data, respectively. We summarize and present the cross

validated death classification performance result from Model 3 using top three and best three principal

components in Figure 6. Left panel in this figure shows the result of top three principal components,

where the median AUC using linear principal components is given by 0.574 (CI: 0.568, 0.580) and the

AUC using polynomial kernel principal components is given by 0.558 (CI: 0.553, 0.563). Similarly,

the right panel shows the result of best three principal components, where the median AUC using linear

principal components is given by 0.651 (CI: 0.642, 0.660) and the AUC using polynomial kernel principal

components is given by 0.626 (CI: 0.616, 0.636). Thus, the performance of death classification using

best three polynomial kernel principal components remain lower than that of using the linear principal

components, a result similar to what we observe using top three principal components.
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Figure 6. Cross validated AUC based on principal components extracted from gene and miRNA expression (Left panel: Top 3 PC, Right Panel: Best 3 PC)

During this step, we also examine the effect of Gaussian kernel principal components towards

data integration and death classification. The Gaussian kernel shows poor classification performance with

a very small percent of variance explained by first three components, compared to the same for linear

and polynomial kernel. We present the comparative study plot of cross validated AUC’s using linear,

polynomial and gaussian kernel in the supplementary materials (Figure S4).
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4.5. Summary of data integration

Data integration is the process of combining information from multiple sources called domains. During

this process, we often encounter data sets with large dimensions such as the gene or miRNA expression of

a genetic study. Linear principal component analysis is a widely used approach to reduce the dimension

of such data sets. This method relies on the linearity assumption, which often fails to capture the

pattern and relationship inherent in the data. As a result, nonlinear approaches might be optimal in this

situation. However, the advantage of using nonlinear principal components in the context of genomic

data integration and disease classification needs to be explored and justified.

We provided a step-by-step data integration procedure for three domains of a lung cancer

data set obtained from the ICGC data portal. We explored and integrated gene expression, miRNA

expression, age and sex to classify death due to the disease. Exploring the raw data through measures

of location, association, and pairwise quantile-quantile plot suggested that there exists some degree of

nonlinearity across many different pairs of gene and miRNA expression data. We applied the linear and

polynomial kernel principal component analysis to reduce the dimension of these two data sets. We

observed that the first few polynomial kernel principal component carry more information, using percent

variance explained, as compared to the linear principal components. However, integrating information

from different domains based on kernel principal components and using it for classification produced

slightly lower AUC, as compared to the same using linear principal components. Cross validation based

on the polynomial kernel principal components produced a similar result with lower AUC and similar

error rate.
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5. Discussion

The main goal of this research was to compare the performance of the linear and the kernel

principal components towards genetic data integration and an outcome classification. We evaluated the

performance of these two approaches based on simulated and real data sets. We developed a copula-

based simulation algorithm for this purpose. Given that a simulation study is expected to start with

sensible parameters, we used a subset of the lung cancer data set to identify parameters for this purpose.

This procedure allowed us to simulate random samples, which preserved the degree of dependence and

nonlinearity observed within and across gene and miRNA expression of the target population. This

procedure also allowed us to generate data that reflects the gene and miRNA expression of deceased and

non-disease sample related to lung cancer with additional scenarios. Based on the algorithm developed,

we conducted an extensive simulation to compare the performances of these two approaches towards data

integration and death classification. During this simulation, we varied the sample size, the proportion of

deceased subjects in the sample and the degree of dependence, to determine the effect of each design level

parameter towards the performance of these two approaches. We also demonstrated the data integration

procedure and compared these two approaches using some of the lung cancer data set. We accessed the

data set through the data portal of the international cancer genome consortium.

In general, results of this simulation indicated that the first three polynomial kernel principal

components explain a higher percent of variance as compared to the same for the linear principal

components. This result remained consistent with varying sample size, the proportion of deceased

subjects in the sample and different values of the dependence parameter. Comparing the classification

error rate using linear and kernel principal components, we observed that estimates are very similar

across different scenarios. In general, the AUC obtained from either of these two approaches tended to

increase with increasing value of the dependence parameter but remained similar with varying sample

size or the proportion of deceased subject in the sample. However, the AUC obtained using the linear

principal components was almost always higher regardless of sample size, the degree of dependence or

the proportion of deceased subjects in the sample. We have also examined the effect of Gaussian kernel
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towards data integration and death classification. We observed slightly better performance of Gaussian

kernel compared to linear with a lower degree of dependency but performed poorly with high dimension

or a higher degree of dependencies.

During the analysis of the lung cancer data set, we observed a certain degree of nonlinearity

across gene and miRNA expression data. We also observed that the first few polynomial kernel principal

components carry more information on the expression level reducing the dimension of the genetic

process. Integration part of this analysis showed that logistic regression models using the linear principal

components provide better performance of classification, compared to the kernel principal components.

We recognize that the first few principal components extracted from an unsupervised learning algorithm

may not be the best for classification of a particular outcome. However, principal components extracted

from this approach is considered unbiased, and it provides a fair methodological comparison for both the

linear and kernel approaches. A researcher may also be interested in the best three principal component

as opposed to the top three for classification purpose. Thus, we also identified the best three principal

components by applying forward selection procedures and ran similar analysis as conducted for the top

three principal components. As expected, the comparative study result remained unchanged with the

revised set but provided better classification rates using either of these two approaches.

Thus, we observed consistent results based on the simulation study with different scenarios,

as well as, based on the real data analysis. Despite having a larger percent of variance explained by first

few principal components, we were not able to find any benefit of using polynomial kernel principal

components during the disease or death classification, as compared to the linear principal components.

Based on the analysis of lung cancer data, we also observed that integrating information from multiple

data sets using either of these two approaches lead to an increased value of AUC for death classification.

We also recognize that there are several limitations of this study. For example, we were not

able to find any advantages of using kernel principal components on this occasion, but this analysis is

restricted to polynomial and Gaussian kernel only. There are may other kernels available in the literature

that needs to be explored and compared to the linear approach. Kernel approach may also be useful

for other purposes, such as identifying a cluster of genes or other types of data with higher degrees of
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nonlinearity. The sensitivity of the kernel approach for these purposes is yet to be compared with the

linear approach. The data referred to this article includes a few other sets such as protein expression,

somatic CNV, and methylation data. It would be interesting to see how well this information can be

integrated to improve the performance of death classification. Depending on the marginal distributions

of selected expressions, the copula-based simulation algorithm may need to be revised as well, along

with different choices of copulas.

6. Conclusion

In general, the first few kernel principal components show poor performance compared to the linear

principal components in this occasion. Reducing dimensions using linear PCA and a logistic regression

model for classification seems to be adequate for this purpose. Integrating information from multiple data

sets using either of these two approaches lead to an improved classification accuracy for the outcome of

interest. However, the analysis presented in this article is restricted to the polynomial and Gaussian kernel

only, but there are many other kernels available in the literature that needs to be explored and compared

to the linear approach.
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Figure S1. Pair-wise QQ plot of a set of simulated expression data with different shape, rate and dependence parameter using copula-based multivariate distribution

Note: The Franks copula-based multivariate distribution with a gamma marginal approach used in

our simulation allows us to incorporate the degree of nonlinearity observed in the real data set. The

above figure illustrates how different degree of nonlinear data can be incorporated and generated using

copula-based multivariate distribution. In this illustration, we first randomly generate shape, rate and

dependence parameter within the range of the observed set of parameters and then use those parameters

to generate pairs of expression data. We then superimpose 30 pair-wise QQ plot in the same figure.

Deviation of quantiles from the diagonal line in this plot shows the degree of nonlinearity in a specific

pair. For example, the set of parameters (Theta=5.1, Shape1=1.7, Rate1=15.9, Shape2=2.2, Rate2=28.3)

produce linearly dependent expression and the set of parameters (Theta=3.7, Shape1=0.2, Rate1=28.0,
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Shape2=3.9, Rate2=26.9) produce higher degree of nonlinear dependency. In the table below (Table S1),

we also provide 30 set of parameters used in the simulation. Clearly, the degree of nonlinearity in this

multidimensional complex data set depends on many parameters such as dependence, shape, and rate of

each marginal.

Table S1. Randomly generated set of parameters within the observed range of parameters

Dependence Theta Gamma Shape 1 Gamma Rate 1 Gamma Shape 2 Gamma Rate 2

7.0 0.9 25.8 2.1 3.4
8.9 4.1 26.5 3.8 32.2
3.5 2.6 27.2 0.8 26.9
4.2 2.7 33.7 3.9 30.5
3.2 2.6 15.8 4.8 26.8
9.0 1.2 24.4 1.3 11.5
9.1 0.5 3.4 5.6 10.3
9.8 2.3 21.9 2.5 31.1
7.0 0.5 2.4 2.2 4.2
7.7 3.8 15.6 1.4 18.1
5.1 1.7 15.9 2.2 28.3
5.7 1.8 33.2 1.9 18.1
8.1 2.5 27.4 0.6 10.3
3.6 3.1 5.1 2.6 33.0
6.0 1.1 22.6 2.8 22.8
0.2 3.0 8.3 1.8 7.4
2.5 4.9 6.5 4.8 8.7
3.4 0.1 26.5 4.6 30.2
8.0 2.5 30.6 3.0 30.6
5.6 0.4 8.1 4.9 16.3
8.5 4.0 2.1 2.5 25.4
7.0 5.1 5.1 0.3 16.5
0.9 4.7 22.5 3.4 17.5
6.2 2.6 8.6 4.3 17.4
7.5 3.2 28.7 4.2 14.6
2.7 5.1 12.3 4.4 21.1
3.7 0.2 28.0 3.9 26.9
2.0 3.9 13.5 5.9 27.3
9.2 2.6 24.6 5.1 21.1
4.4 2.6 16.8 5.0 31.5
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Figure S2. Plot of p-values for testing the significance of nonlinear dependency between pairs of selected gene and miRNA expression data

Table S2. Relative bias in percentage and corresponding mean squared error (MSE) for different values

of dependence parameter in Franks copula-based multivariate distribution with varying sample size(N)

N=100 N=200 N=300 N=400

Theta Bias% MSE Theta Bias% MSE Theta Bias% MSE Theta Bias% MSE

1 -0.09 0.027 1 0.46 0.008 1 -0.89 0.007 1 -0.50 0.004
2 0.00 0.046 2 1.01 0.015 2 0.58 0.012 2 0.39 0.009
3 -1.13 0.057 3 -1.49 0.032 3 -0.23 0.021 3 -0.59 0.013
4 -0.42 0.070 4 -0.51 0.039 4 0.26 0.021 4 -0.24 0.018
5 -0.70 0.079 5 -0.58 0.050 5 -0.70 0.024 5 -0.91 0.021
6 -0.44 0.104 6 -0.92 0.056 6 -0.63 0.041 6 -0.58 0.027
7 -0.77 0.147 7 -0.94 0.082 7 -0.62 0.050 7 -0.58 0.039
8 -2.00 0.191 8 -1.36 0.107 8 -0.85 0.058 8 -0.66 0.046
9 -2.61 0.271 9 -1.48 0.129 9 -0.88 0.074 9 -0.82 0.053
10 -2.83 0.358 10 -1.66 0.149 10 -1.38 0.104 10 -1.01 0.068

Note: We have used 100 simulated samples from Franks copula-based multivariate distribution to

compute average relative bias in percentage and mean squared error in each set-up. The relative bias

ranges between 0% and 2.83% with smaller MSEs. Bias tends to increase with increasing vales of the

dependence parameter, but decreases with increasing sample size.
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Table S3. Kolmogorov-Smirnov test result for the fitted gamma distribution using selected set of gene

and miRNA expression and a simulated data set

Gene Expression miRNA Expression

Deceased(N=33) Alive(N=90) Deceased(N=33) Alive(N=90)

Gene Name p-value p-value miRNA Name p-value p-value

SFTPB 0.533 0.258 hsa.mir.21 0.877 0.431
RPS18 0.704 0.512 hsa.mir.143 0.255 0.422

SFTPA1 0.446 0.780 hsa.mir.148a 0.582 0.127
FTL 0.589 0.755 hsa.mir.22 0.328 0.935

CD74 0.489 0.135 hsa.mir.375 0.970 0.198
HLA.B 0.226 0.008 hsa.mir.182 0.374 0.374

B2M 0.049 0.032 hsa.mir.30a 0.034 0.966
SFTPA2 0.987 0.609 hsa.mir.99b 0.596 0.808

TPT1 0.908 0.748 hsa.mir.10a 0.433 0.750
S100A6 0.105 0.842 hsa.mir.183 0.746 0.651

TMSB10 0.043 0.094 hsa.let.7b 0.052 0.515
RPL41 0.427 0.916 hsa.mir.30d 0.128 0.810

EEF1A1 0.777 0.139 hsa.mir.200c 0.683 0.514
LOC96610 0.822 0.513 hsa.mir.10b 0.411 0.380

RPLP1 0.786 0.036 hsa.let.7a.2 0.031 0.338
RPS6 0.577 0.978 hsa.mir.29a 0.239 0.362

ACTB 0.817 0.923 hsa.mir.100 0.256 0.520
RPS27 0.350 0.054 hsa.mir.30e 0.485 0.111

COL1A2 0.807 0.484 hsa.mir.101.1 0.937 0.575
GAPDH 0.295 0.002 hsa.mir.142 0.071 0.703

Note: Resulting p-values for each gene and miRNA expression related to deceased and alive subjects

are given in the above table. We observe that almost all p-values are large (>0.05) but few are small

(<0.05). Thus we are not able to find sufficient evidence against the null hypothesis of the fitted gamma

distribution at 5% level of significance.
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Figure S3. Notched Box plot of cross validated AUC for death classification using linear(LN.LAuc), polynomial(PK.LAuc) and Gaussian(RK.LAuc) kernel with varying sample
size, proportion deceased and the degree of dependence using simulated data
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Figure S4. Cross validated AUC based on the logistic regression model using principal components extracted through linear(LN.LAuc), polynomial(PK.LAuc) and
Gaussian(GK.LAuc) kernel from gene and miRNA expression real data
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Chapter 5

Summary and Conclusions

In this chapter, we presented a brief summary of our findings with some concluding

remarks and future directions.
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Correct classification is an essential component of understanding the causal pathway to survival

or death due to a specific disease. This procedure was formalized based on the classification rules

developed in the early 19th century by the International Statistical Classification of Disease (ICD).

However, these rules need to be updated based on new evidence from ongoing research in this area.

Researchers often use a univariate approach for this purpose. Due to complex relationships between

disease and exposures, it is essential to consider multivariate statistical approaches. This procedure

may also require combining information from multiple sources, which we can accomplish through data

integration.

In this research, we shed light on three different aspects of data integration and outcome

classification. First, we have developed and described a method of integrating information from the

published literature and a real data set; this has allowed us to determine the threshold of a biomarker for

the classification of an outcome. Second, we have developed and described a new method of integrating

information from two dependent biomarkers, allowing us to determine the joint threshold for the

classification of an outcome. Third, we compared two dimension reduction methods and demonstrated

how to integrate information from multiple data sets for an outcome classification.

To address the first issue, we have developed a Bayesian approach to determine the threshold

of a biomarker for disease classification. We illustrated this method, utilizing information from literature

reviews of selected biomarkers and a large case-control study data set. In particular, we considered the

problem of classifying MI based on Apolipoprotein B (ApoB), Apolipoprotein A1 (ApoA1) and the ratio

of these two biomarkers. Higher levels of ApoB and lower levels of ApoA1 are well-known risk factors

for MI. However, the thresholds at which these markers are associated with the increased risk of MI

were not clear. Applying the method developed, we have determined the threshold of ApoB, ApoA1, and

the ratio of ApoB to ApoA1 that maximizes the classification accuracy for MI. During this process, we

used the conditional distribution of these biomarkers given the case or control status of the participants.

We first constructed prior distributions using information from literature reviews. We then constructed

the posterior distributions for the location and scale parameters utilizing the prior distribution and the

INTERHEART data set. Finally, thresholds for ApoB, ApoA1, and the ratio were identified as 0.908
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(gram/liter), 1.138 (gram/liter) and 0.808, respectively, that maximized the classification accuracy of MI.

We have also used a classical and a Bayesian estimation procedure to quantify the odds ratio

for one standard deviation change in ApoB, ApoA1, and the ratio, which enabled us to identify the most

informative of the three predictors. Estimates obtained from the Bayesian approach with an informative

prior were slightly lower than those obtained from the classical approach. Based on this analysis, higher

levels of ApoB were shown to be a risk factor and higher levels of ApoA1 were a protective factor for MI,

which is consistent with the current literature. Although ApoB is the most commonly used biomarker for

MI, ApoA1 was more informative than ApoB based on this analysis. However, the clinical explanation

for this finding needs to be explored. It is also noteworthy that the model with the ratio of ApoB to

ApoA1 as a single exposure appeared to be less informative for MI than the model where we used both

of them as independent predictors. Given that we have used this data set for illustration only, these results

will require further investigation for use in clinical applications.

The threshold identification procedure developed in this article is flexible compared to the

standard logistic regression approach and allows one to identify a more precise threshold of a biomarker.

This method can be used to find the threshold of any continuous exposure for a binary disease

classification. However, the ratio of two biomarkers may lead to a skewed distribution, and the normal

distribution assumption needs to be carefully assessed and revised, particularly for a small sample.

To address the second issue, we considered the problem of classifying acute MI based on two

dependent biomarkers, such as creatine kinase (CK) enzyme and cardiac troponin (cTn). Classification

rules for a disease based on dependent biomarkers have often been developed ignoring the dependency

that leads to a conflicting classification for some individuals. To overcome this, we have developed a

new method of classifying individuals into binary disease groups that take into account the dependency

between biomarkers and identifies a joint threshold, which in turn leads to a unique classification. For

this purpose, we constructed bivariate distributions based on Frank’s, Clayton’s and Gumbel’s copula

functions, and then developed the rules for classification using the joint probability distributions.

To understand the effect of different choices of copulas, we first evaluated the relationship

between Kendall’s τ and the parameter θ in copulas, using the theoretical relationships as well as using
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simulated samples. We then conducted an extensive simulation to study the statistical properties of

these joint probability distributions, constructed through different choices of copulas. Comparing the

dependency parameter θ in copula with Kendall’s τ , we observed that a given value of the dependency

parameter represents higher levels of dependency in Gumbel’s, followed by Clayton’s and Frank’s

copula. The simulation study indicated that the relative bias and the mean squared error of all parameter

estimate converged to zero as the sample size increased. Results of this simulation also indicated that the

bivariate distribution constructed through Gumbel’s copula represents a higher degree of dependency,

followed by Clayton and Frank at a given value of the dependency parameter.

Applying the method developed, we have also determined the joint threshold for CK and

cTn using simulated samples and compared the classification accuracy of MI using three copula-based

bivariate distributions. Since a fixed value of the dependency parameter θ represents a different degree

of dependency in these copulas, we conducted this comparison fixing Kendall’s τ and back calculating

θ across different choices of copulas. Repeating this procedure in thousands of simulated data sets, we

observed that the threshold for disease classification converges to a stationary distribution, regardless of

the choices of copulas.

Assuming τ = 0.5, threshold estimates of these biomarkers using Frank’s, Clayton’s and

Gumbel’s copula were given by (5.68, 1.49), (5.72,1.54) and (5.36, 1.50), respectively. Similarly, for

τ = 0.7, threshold estimates of these biomarkers were given by (6.85, 1.42), (6.71, 1.45) and (6.59,

1.42), respectively. At a higher level of dependency, we observed slightly higher AUC estimate using

Clayton’s copula-based bivariate distribution compared to Frank’s, followed by Gumbel’s. However,

these differences were not statistically significant. The classification accuracy also decreased with the

increasing value of the dependency parameter, regardless of the choices of copulas. This was most likely

due to less information on the disease status with higher levels of dependency between biomarkers.

However, the most important feature of this approach is to allow modeling broad classes of bivariate

distributions, which considers dependency and leads to an improved and unique classification.

Finally, we illustrated the method using a real data example, where we identified the joint
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threshold of Apolipoprotein B to Apolipoprotein A1 ratio (ApoB/ApoA1) and total cholesterol to high-

density lipoprotein ratio (TC/HDL) to classify individuals at risk of developing myocardial infarction.

Based on this analysis, the joint threshold for ApoB/ApoA1 ratio and TC/HDL ratio were given by 0.725

and 4.37, respectively, with a sensitivity and specificity of 60.3% and 58.4%, respectively. Under certain

circumstances, a researcher may want to determine the threshold at a given sensitivity or specificity.

Thus, we also identified the threshold at 80% specificity as 0.847 and 5.18, respectively, corresponding

to 41% sensitivity.

To address the third issue, we considered the problem of classifying death due to cancer, based

on gene and miRNA expression data sets. Data integration is a process of combining information from

such data sets with large dimensions. However, it is usually necessary to reduce the dimension of gene

and miRNA data before we can utilize the information in a standard statistical procedure like regression.

Linear principal component analysis is a widely used approach for this purpose. This method relies on

the linearity assumption, which often fails to capture the pattern and relationship inherent in the data.

As a result, a nonlinear approach such as kernel principal component analysis might be optimal in this

situation. However, the advantage of using kernel principal components in the context of genomic data

integration and disease classification needs to be explored and justified.

In Chapter 4, we compared the performances of these two approaches towards data integration

and an outcome classification, based on real and simulated data sets in two steps. First, we used the linear

and kernel principal component analysis to reduce the dimension of larger data sets. Percent of variance

explained by the first few principal components were used to assess how well these two approaches

could extract information from a larger data set to a smaller number of latent variables. Second, we used a

logistic regression model to integrate extracted features from different domains for classification. Finally,

we compared the performance of the linear and kernel principal components based on the classification

error rate and the area under the receiver operating characteristic curve. Results of this analysis were also

validated using the split-half validation procedure.

In this chapter, we have developed a copula-based method of simulating random samples,

which preserved the degree of dependence and nonlinearity observed within and across gene and
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miRNA expression of the target population. Based on the method developed, we conducted an extensive

simulation to compare the performances of these two approaches towards data integration and death

classification. During the simulation, we varied sample size, the proportion of deceased subjects in the

sample and the degree of dependence, allowing us to identify the effect of each design level parameter

towards the performance of these two approaches. Given that a simulation study is expected to start with

sensible parameters, we used a subset of the lung cancer data set to identify parameters for this purpose.

This procedure allowed us to generate data that reflected the gene and miRNA expression of deceased

and non-deceased samples related to lung cancer with additional scenarios. After we generated each data

set, we randomly split the full data set into a training and test set with 50 percent of the observations in

each, for cross-validation.

Applying the linear and kernel principal component analysis, we extracted the first three

principal components from the gene expression set, and the first three from the miRNA expression set

and computed the percent of variance explained by these sets. During this process, we observed that a

higher percent of variance explained by the first few polynomial kernel principal components compared

to the linear principal components. Subsequently, we developed a logistic regression model, using those

principal components obtained from the training set, and classified based on the principal components

obtained from the test set. Comparing the classification error rate using the linear and polynomial kernel

principal components, we observed that the estimates were very similar across different scenarios.

However, the AUC obtained using the linear principal components was always higher regardless of

sample size, the degree of dependence, or the proportion of deceased subjects in the sample. In general,

the AUC obtained from either of these two approaches tended to increase with increasing value of the

dependence parameter but remained constant with varying sample size or the proportion of deceased

subjects.

Next, we provided a step-by-step data integration procedure for three domains of a lung cancer

data set. In particular, we explored and integrated gene expression, miRNA expression, age, and sex

to classify death due to the disease. Exploring the raw data suggested that some degree of nonlinearity

exists across many different pairs of gene and miRNA expressions. We applied the linear and kernel
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principal component analysis to reduce the dimension of these two data sets. We observed that the first

few polynomial kernel principal components carry more information, as compared to linear principal

components, a result similar to what we have seen during simulation study. Integrating different domains

for classification based on polynomial kernel principal components produced a slightly lower AUC,

as compared to the linear principal components. The validation study based on the polynomial kernel

principal components produced similar results with a slightly lower AUC and similar error rates.

Despite having a larger percent of variance explained by top three principal components,

we were not able to find any advantages of using polynomial kernel principal components during

the death classification, as compared to the linear principal components. We recognize that first three

principal components extracted from an unsupervised learning algorithm may not be the most optimal

for classification of a particular outcome. However, principal components extracted through these

approaches is considered unbiased and provides a fair methodological comparison for both the linear

and kernel approaches. A researcher may also be interested in the best three principal components as

opposed to the top three for the purpose of classification. Thus, we also identified the best three principal

components by applying the forward selection procedure and ran a similar analysis as conducted for the

top three principal components. However, the comparative study results remained unchanged with the

revised set but provided better classification rates from both approaches.

This analysis showed that first few polynomial kernel principal components carry more

information on the expression level for reducing the dimension of a genetic process. However, logistic

regression models using linear principal components provided better performance of classification in

different scenarios. Thus, we were not able to find any benefits of using polynomial kernel principal

components to classify death in this occasion, as compared to linear principal components. We also

observed consistent results based on the simulation study with different scenarios, as well as during the

analysis of a real data set. As a result, reducing dimensions using linear PCA and a logistic regression

model for classification seems to be adequate for this purpose. We also observed that integrating

information from multiple data sets using either of these approaches leads to a better classification rate

for the outcome.
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We hope that methods developed in this thesis will allow researchers identify more precise

rules for the classification of an outcome. These rules, in turn, lead to a better strategy to improve our

health through early stage intervention for a disease. We also recognize the several limitations of each

method presented in each chapter that we hope to address in future research. In particular, the method

developed in Chapter 2 depends on the normality assumption, but we might encounter a non-normal data

set during this process, especially with small samples. A method that considers alternative distributions,

such as gamma or Cauchy, needs to be developed for this purpose.

The method developed in Chapter 3 is limited to a bivariate case. However, the number of tests

to identify a particular disease could be more than two, and it would be useful to extend the method

to capture these scenarios. It is important to note that parameters used for the simulation component

of this article were based on a literature review. As a result, the threshold identified for CK and cTn

to classify acute MI based on simulated data sets require careful interpretation. We also illustrated the

method with a real data set to determine the joint threshold of ApoB/ApoA1 ratio and TC/HDL ratio

for the classification of MI, but the sample size was small. Thus, the result of this analysis may not be

generalizable to the target population. However, we hope to use a large data set and apply this method

in a subsequent article, which will allow us to derive a clinically applicable threshold for this purpose.

Depending on selected biomarkers, we will need to identify the copula-based bivariate distribution that

fits the data best.

In the article presented in Chapter 4, we were not able to find any advantages of using kernel

principal components for the classification of death due to lung cancer. However, this procedure might be

useful for other purposes, such as identifying a cluster of genes or other types of data with higher degrees

of nonlinearity. The sensitivity of the kernel approach for these purposes is yet to be compared with the

linear approach. Data used in this article includes a few other sets such as protein expression, somatic

CNV, and methylation data. It might be worthwhile to see how well we could integrate this information

to improve the performance of death classification. Depending on the marginal distributions of selected

expressions, the copula-based simulation algorithm needs to be revised as well, along with an appropriate

choice of copulas.
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In the next step, we hope to develop a multidimensional probabilistic model based on copula

functions to determine the probability of the disease using a set of latent variables from all domains.

This procedure will allow us to determine the joint threshold of extracted features for the disease or

death classification. We also hope to use some of these methods using subject level information, which

might shed some light towards the goal of personalized medicine and rational drug treatment plans for

an individual.
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