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Abstract 

 It is common to use the electron density to partition a molecular system into 

atomic regions. The necessity for such a partitioning scheme is rooted in the 

unquestionable role of atoms in chemistry. Nevertheless, atomic properties are not well-

defined concepts within the domain of quantum mechanics, as they are not observable. 

This has resulted in a proliferation of different approaches to retrieve the concept of 

atoms in molecules (AIM) within the domain of quantum mechanics and in silico 

experiments based on various flavors of model theories.  

 One of the most popular families of models is the Hirshfeld, or stockholder, 

partitioning methods. Hirshfeld methods do not produce sharp atomic boundaries, but 

instead distribute the molecular electron density at each point between all the nuclear 

centers constituting the molecule. The various flavors of the Hirshfeld scheme differ 

mainly in how the atomic shares are computed from a reference promolecular density and 

how the reference promolecular density is defined.  

 We first establish the pervasiveness of the Hirshfeld portioning by extending its 

information-theoretic framework. This characterizes the family of f-divergence measures 

as necessary and sufficient for deriving Hirshfeld scheme. Then, we developed a 

variational version of Hirshfeld partitioning method, called Additive Variational 

Hirshfeld (AVH). The key idea is finding the promolecular density, expanded as a linear 

combination of charged and neutral spherically-averaged isolated atomic densities in their 

ground and/or excited states, that resembles the molecular density as much as possible. 

Using Kullback-Liebler divergence measure, this automatically guarantees that each atom 

and proatom have the same number of electrons, and that the partitioning is size 

consistent. The robustness of this method is confirmed by testing it on various datasets. 

Considering the mathematical properties and our numerical results, we believe that AVH 

has the potential to supplant other Hirshfeld partitioning schemes in future. 
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1  Introduction 
 

 

1.1 Background 

 The periodic table of elements is the touchstone of chemistry. It encapsulates the 

idea that atoms are the building blocks of molecules, and that the properties of molecules 

are determined by the identity of their constituent atoms. Unfortunately, there is no 

universally accepted definition for an atom within a molecule.1-5 This has induced a 

proliferation of methods for decomposing molecules into atomic subsystems. These 

methods can be classified based on whether they partition the molecule by dividing the 

wavefunction in Hilbert space (e.g., the orbital-based approaches of Mulliken6-9, 

Löwdin10-12, Moffitt13, Weinhold14-15, Ruedenberg16-18, and Knizia19) or by dividing a 

molecular descriptor in real space (e.g., the electron-density-based approaches of 

Politzer20, Hirshfeld21, and Bader22-23).  These methods can also be classified based on 

whether they are binary (i.e., points in real space, or basis functions in Hilbert space, are 

fully assigned to a single atom) or fuzzy (i.e., points/basis functions can be shared by 

several atoms).  

 Given this imbroglio, it becomes desirable to establish guidelines for developing 

and assessing atoms-in-molecules (AIM) methods. It is our view that, given the 

preeminence of the periodic table in chemistry, AIM should be chosen to resemble the 

isolated atoms enshrined in the periodic table to the greatest possible extent, subject to the 
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defining constraint that the AIM provide an exhaustive partitioning of the molecule. If, as 

is conventional, we choose to use the electron density as the fundamental descriptor, then 

we wish to minimize the dissimilarity D between the electron density of the AIM, 

   
ρA(r){ }A=1

Natoms , and the corresponding electron density of the reference pro-atoms, 

   
ρA

0(r){ }
A=1

Natoms , 

 
atoms

0

1
,

N

A A
A
D ρ ρ

=

⎡ ⎤⎣ ⎦∑   (1.1) 

subject to the constraint that the sum of the electron densities of the AIM is equal to the 

molecular density,   ρmol(r) , 

 ( ) ( )
atoms

mol
1

N

A
A

ρ ρ
=

= ∑r r   (1.2) 

and possibly other constraints. In this framework, different partitioning approaches are 

distinguished by their choice of reference pro-atoms, dissimilarity measure, and imposed 

constraints on the minimization in Eq. (1.1). Among these measures of dissimilarity, 

those based on information theory are privileged because they regard the electron density 

as a probability distribution function, rather than merely a function in Hilbert (or, 

preferably, Banach) space.24-27 As we shall see, this imparts desirable features upon 

information-theoretic partitionings. Many of these desirable features are inherited by the 

somewhat more general class of dissimilarity measures known as the f-divergences. 28-29 

 In this introductory chapter, we will first establish sets of criteria that are believed 

to make an AIM method preferable. In section 1.3, we will discuss various information-

theoretic partitioning methods, emphasizing the Hirshfeld family of methods, where the 
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pro-atom densities are commonly built from the electron densities of the isolated atoms 

and their ions. In section 1.4, we briefly overview the other popular ways of determining 

the densities and/or populations of AIM. These are used in section 1.5 to compare atomic 

populations from different approaches for a few molecules, which we chose to 

demonstrate key strengths and weaknesses of different methods. Section 1.6 outlines our 

various efforts to remedy the shortcomings of current Hirshfeld partitioning schemes, 

which constitutes the content of this thesis.  

1.2 Desirable Traits of Atoms In Molecules 

 Because the atom-in-a-molecule is not a physically observable object, but merely 

a human-defined object of conceptual utility, it is impossible to say that any specific 

definition of an AIM is “better” than any other. One can only indicate that a specific 

definition is more useful in a certain context. (Even so, an atomic partitioning’s utility is 

often strongly dependent on the priorities and biases of the assessor.) The perceived 

utility of a partitioning method for a given purpose will depend on a balance between its 

mathematical features (its desirable formal properties) and its chemical utility (its ability 

to reify chemical intuition and/or elucidate new chemical phenomena). Some partitioning 

methods are mathematically beautiful but challenge many chemists’ intuition. (Bader’s 

Quantum Theory of Atoms in Molecules (QTAIM) is one example.22, 30) Other 

partitioning methods seem somewhat contrived mathematically but apparently give 

results in excellent agreement with what chemists expect. (The most recent versions of 

the Density Derived Electrostatic and Chemical (DDEC) net atomic charges are 
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examples.31) To set the stage for developing, assessing and comparing partitioning 

methods, a list of mathematical, chemical and computational desiderata is introduced 

below. This, admittedly biased, set of characteristics are what we believe makes the AIM 

properties reliable. Some of these features resemble the performance goals set by Manz 

et. al. in the recent development of the DDEC6 charge partitioning algorithm.32-33 The 

fundamental difference in our methodologies is the strategy one employs to comply with 

these features, whereas Manz et. al. develop methods using a scientific 

engineering/design approach, we aspire to mathematical elegance and sound theoretical 

reasoning. 

1.2.1 Desirable Mathematical Features 

Universality: The AIM partitioning should be definable for any system (including 

molecules, infinite periodic solids, and infinite disordered systems; including 

neutral closed-shell molecules, charged systems, and systems with unpaired 

electrons; including ground and excited electronic states; including equilibrium 

geometries and strained structures). The partitioning should be computable from 

any reasonable quantum-mechanical method (Slater-determinant-based methods, 

correlated wavefunction methods, quantum Monte Carlo, etc.) and any reasonable 

representation of the molecular wavefunction (basis-set expansion, values on a 

numerical grid, etc.). Using pseudopotentials and/or taking relativistic effects into 

account (using the Dirac equation or one of its simplifications) should not be 

problematic. Going beyond the Born-Oppenheimer approximation or considering 
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exotic systems should not cause any problem either. (Consider, e.g., recent work 

extending quantum theory of atoms in molecules (QTAIM) to systems composed 

of various types of quantum particles.34-35) After the atomic partitioning has been 

performed, every atomic property—not just atomic populations and higher 

electrostatic moments—should be defined in a way that is consistent with the 

precepts of quantum mechanics. 

Foundation in Quantum Mechanics: The AIM partitioning method should have a firm 

grounding in quantum mechanics. Ideally one should be able to construct a full 

quantum mechanical framework for the atomic subsystems, as attempted in the 

quantum theory of atoms in molecules (QTAIM).22, 30, 36 Failing this, the AIM 

partitionings should at least be rigorously defined in terms of quantum mechanical 

observables. (Methods based on quantum-mechanical observables generally meet 

the aforementioned stipulation of “universality.”) Among these, the electron 

density is special; it quantifies the probability of observing an electron at a point 

in space, so it is conceptually appealing to define the probability of observing an 

electron on an atom (i.e., the atomic population) using only the electron density. It 

also ensures that one’s partitioning has a quantum-mechanical basis and, in 

particular, that all quantum-mechanical observables of an AIM can be computed 

(using the framework of density-functional theory37-39). Extensions of the electron 

density (e.g., to other types of particles) allow exotic molecules and non-Born-

Oppenheimer effects to be included.34-35, 40-43 

Variational Optimality: The AIM should be the “best possible atoms” in some specified 
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way. This guides potential users: if an atomic partitioning method is optimal in the 

way one finds beneficial, it is a good choice for one’s problems. If not, then one 

can seek a partitioning method whose philosophy is more aligned with one’s 

needs. At a practical level, when AIMs are defined by a variational principle, it is 

straightforward to add constraints. (For example, it is sometimes useful to force 

the charges on amino acid residues in a polypeptide to be integers, or to force the 

charges on some atoms to equal their values from a molecular mechanics force 

field). It is preferable for the optimization problem to be convex, so the variational 

principle does not have multiple local minima. 

Uniqueness: The partitioning should fully and uniquely specify the AIM.  One should not 

have multiple solutions to the equations, or multiple minima in the objective 

function(s) defining the AIM. This is not only mathematically desirable, but 

avoids the numerical difficulties and computational expense associated with 

global optimization. In addition, it eliminates the biased disposal of undesirable 

solutions, like discarding well-defined Quantum Divided Basins (QDB) in 

QTAIM in favour of topological atoms.44-45 A unique solution leaves no room for 

imposing (possibly controversial) chemical intuition in selecting the relevant 

answer. 

Bias-free: The partitioning method should not require any input beyond the identity of 

the system being partitioned and its wavefunction. This ensures that the method is 

immune from any bias that a user may have, and makes it impossible to fudge 

results. If reference data (e.g., reference densities or reference wavefunctions for 
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atoms) are necessary, these reference functions should be directly determined by 

the identity of the atoms that compose the molecule. That is, the reference 

functions should be prescribed by a simple and physically-motivated procedure 

that is amenable to automation, and which is not subject to human intervention or 

bias. 

 Elegance: The principle of Occam’s razor indicates that among all methods with similar 

performance, the simplest and most elegant method is to be preferred. While 

mathematical elegance is impossible to quantify, conceptually simple methods 

that have a compact mathematical description (even if the actual implementation 

is quite complicated) tend to be elegant. Methods based on variational principles 

are elegant. Elegant methods work “out of the box,” requiring no special 

knowledge or experience. When intrinsically elegant methods are combined, 

elegance is compromised. Elegance is also compromised when one must engineer 

corrections or modifications to an underlying algorithm to explicitly account for 

“boundary cases” or “exceptions.” (Not only is this inelegant, it is also dangerous: 

the unfathomable diversity of chemistry means that no one can possibly anticipate 

all the potential problems. If one must explicitly correct for one sort of problem, 

there are probably other, unanticipated, problems still lurking.) In general, an 

elegant method can be explained completely in a sentence or two, so much so that 

one can fully implement the method from its verbal description.  

The next two criteria are most relevant to information-theoretic partitioning methods, 

though similar considerations are sometimes pertinent for other partitioning strategies. 
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Non-interacting Limit of AIM: If one builds the molecular density by superposing the 

densities of the isolated atoms (or molecular fragments), then the AIMs’ 

populations should revert to the populations of the pro-atoms (or fragments). That 

is, if the molecular density is equal to the promolecular density, then the AIMs’ 

densities should be equal to the pro-atoms’ densities. This requirement imposes 

size-consistency (partitioning a molecule composed of noninteracting fragments 

gives the same results as partitioning the fragments separately), ensuring that 

separated-atom/fragment limits are sensible and that weak chemical interactions 

do not induce large shifts in atomic charges. 

Distributive Property of Dissimilarity Measure: Since the sum of the AIM densities is 

the molecular density and the sum of the pro-atomic densities is the promolecular 

density, the sum of the dissimilarities between the AIMs and pro-atoms should 

equal the dissimilarity between the molecule and the promolecule. I.e., 

  
  
D ρmol;ρmol

0⎡⎣ ⎤⎦ = D ρAA=1

Natoms∑ ; ρA
0

A=1

Natoms∑⎡
⎣⎢

⎤
⎦⎥ = D ρA,ρA

0⎡⎣ ⎤⎦
A=1

Natoms

∑   (1.3) 

 Since the raison d’être of atomic partitioning is to quantify and guide chemists’ 

intuition about atomic properties, the ultimate test of an atomic partitioning is its utility 

and consistency with respect to chemical observations and the intuitive framework 

employed by chemists. This leads to the following desiderata, reflecting the chemical 

application and computational practice of atomic partitioning methods: 
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1.2.2 Desirable Chemical Features 

Chemical Robustness: Atomic charges should be in broad agreement with chemists’ 

expectations based on empirically established atomic electronegativities and 

oxidation states. That is, the atomic partitioning method should give sensible 

results for neutral and charged molecules (even highly-charged molecules) as well 

as molecular excited states. Exact integer charges should never occur, except 

where required by symmetry or in the infinite separation limit. Atomic 

partitioning is commonly combined with reactivity indicators to determine the 

regioselectivity of molecular sites. It is expected for the AIM charges to comply 

with experimental data on functional group reactivity. Without these features, an 

atomic partitioning method is unlikely to be useful for elucidating chemical 

trends.5, 46 

Transferability: The most important chemical trend is the transferability of atoms and 

functional groups between similar molecular environments. (This is, in fact, the 

original motivation for the concept of molecules as being composed of atoms, and 

it is the primary reason for the utility of the periodic table.) Simply stated: atoms 

and functional groups in similar environments should have similar properties, and 

these properties should vary in a systematic way in response to changes in the 

molecular environment. 

Conformational Stability: In accord with chemical intuition, changes in molecular 

conformation, especially torsional motions and relatively unhindered rotations 
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around bonds, should not cause large fluctuations in the charges or other 

properties of the atoms. This property is essential when a partitioning method is 

used to parameterize a molecular mechanics force field.  

Locality and Sensible AIM Densities: The AIMs should be localized around the atomic 

nucleus, and should not have intricate structures far from their defining nuclear 

center. This requirement is usually necessary, albeit insufficient, for chemical 

transferability and conformational stability. It is also expected that each AIM’s 

density should have one and only one cusp, located at the position of the atomic 

nucleus.47-48 As one moves away from the atomic nucleus, the atomic density is 

expected to decrease monotonically.49 Far from the atomic nuclei, all the atomic 

densities should share the same asymptotic decay rate, in accord with the 

electronegativity equalization principle.50-52 

Accurate Electrostatic Potential:  Since the AIMs’ “partial charges” are most 

commonly used to identify the positive and negative regions of a molecule, the 

electrostatic potential approximated by the AIM charges should accurately 

approximate the true molecular electrostatic potential on and outside molecular 

van der Waals surface, 

 
    

ZA

r − R AA=1

Natoms

∑ −
ρmol ′r( )
r − ′r

d ′r∫ ∼
ZA − N A

r − R AA=1

Natoms

∑   (1.4) 

where the AIM’s population corresponding to atomic number ZA at position RA is 

defined as 
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N A = ρA r( )dr∫   (1.5) 

 and the AIM’s partial charge is therefore  

 A A Aq Z N= − .  (1.6) 

Moreover, if Eq. (1.4) is refined by including contributions from the atomic 

multipole moments, the electrostatic potential determined by the atomic multipole 

expansion should rapidly converge to the true molecular electrostatic potential. 

This, in practice, means that the AIM densities must be nearly spherical. Only 

atomic partitioning methods that accurately reproduce the long-range portion of 

the molecular electrostatic potential are convenient for parameterizing molecular 

mechanics force fields. Partitioning methods that satisfy the distributive property 

of the dissimilarity measure, Eq. (1.3), tend to give accurate electrostatic 

potentials. 

This feature is specifically important as the primary quantitative application of 

AIM methods is the parameterization of molecular mechanics (MM) force fields 

to model electrostatic interactions.53 Much chemical intuition is based on the 

picture of a molecule as composed of atomic sites with partial charges, linked by 

spring-like bonds and bond angles, along with rocking motions and hindered 

rotations around bonds. It is desirable that an AIM partitioning be consistent with 

this description. The preceding desirable chemical features are also strongly 

linked to the applicability of a partitioning method for MM parameterization. 

Note, however, that for degenerate ground states, one needs not just one molecular 

density (and its underlying atomic densities and charges54), but all the possible 
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degenerate molecular densities in order to successfully model the electrostatic 

potential.54-57 

1.2.3 Desirable Computational Features 

Computational Robustness: The partitioning method should be insensitive to changes in 

computational parameters. For example, the method should be robust to changes 

in the electronic structure method (Hartree-Fock, Kohn-Sham DFT, post Hartree-

Fock, etc.) and changes in the molecular basis set (even pernicious choices like 

single-center expansion). (One exception: if improving the electronic structure 

method or the basis set causes the molecular electronic density to qualitatively 

change, the atomic properties may also change qualitatively.) The method should 

not be overly sensitive to the choice of initial guess, optimization strategy, and 

numerical integration grid. Indeed, ideally all integrals could be performed 

analytically. 

Computational Efficiency:  The equations that define the atomic partitioning can be 

solved efficiently and rapidly. Gigantic integration grids should not be required; 

systems of (non)linear equations that arise should be well-conditioned and have 

unique solutions; iterative procedures should converge quickly and inexorably to 

the solution. In addition, partitioning methods should be applicable to large 

systems like bulk solids, biological networks, and molecular dynamic simulations. 

In this regard, the possibility for localizing the algorithm or parallelizing the 

method boosts the performance and applicability. 
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 We know of no single method that possesses all of these desirable properties and, 

indeed, we suspect that no such method exists. One is forced to compromise. This is why 

an axiomatic approach to atomic partitioning exists—first specify the features one finds 

most desirable; then find the partitioning method(s) that possess those features.27  

However, as will be established in the following sections, the information-

theoretic partitioning methods fulfill many of these desiderata: they are universally 

defined; they are founded in quantum mechanics (though not as fundamentally as claimed 

by Bader’s QTAIM); they are electron-density based; the AIM are uniquely defined by a 

variational principle. Information-theoretic approaches tend to satisfy the distributive 

property of dissimilarity measure and the non-interacting limit of AIM constraint 

whenever these constraints are sensible. While no single information-theoretic method 

possesses all of the remaining virtues, most information-theoretic methods possess the 

majority of these features. One exception is the requirement of sensible atomic densities: 

information-theoretic methods typically have atomic densities with very small, but 

nonetheless spurious, cusps on other atoms. 

1.3 Information-Theoretic Partitionings 

1.3.1 The Hirshfeld Partitioning 

The genesis of information-theoretic partitioning methods can be traced back to 

the 1970 paper of Politzer and Harris, who defined a binary real-space partitioning of 

linear molecules based on the promolecular density.20 They designed their method so that 

if the molecular density were equal to the promolecular density, the AIM charges would 
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match the pro-atom charges. Inspired by this work, in 1977 Hirshfeld proposed a fuzzy 

real-space partitioning, with the AIM densities, 
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He proposed this definition by analogy to the way that the profit (loss) is shared between 

the stockholders of a corporation. I.e., if the molecule gains (loses) electron density at 

point r relative to the promolecule, then the AIM gain (lose) molecular electron density in 

proportion to their contribution to the promolecular density at point r.21  

 In 2000, Nalewajski and Parr derived the information-theoretic AIM by 

minimizing the Kullback-Leibler divergence between the AIM and isolated neutral pro-

atoms,  
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leading to the AIM density 
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This is equivalent to the Hirshfeld definition, Eq. (1.7).25-26 A detailed derivation of this 

foundational result is provided in Appendix 7.1. Nalewajski and Parr’s information-

theoretic approach provides a general theoretical framework for developing new 

partitioning methods. These methods differ in their choice of (1) dissimilarity measure, 

(2) reference pro-atoms, and (3) imposed constraints.  

 Hirshfeld AIM density and charges are well-defined and unique, but the choice of 
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neutral reference pro-atoms is arbitrary and results in very small charges for Hirshfeld 

atoms. In addition, as elaborated in Appendix 7.2, Nalewajski and Parr’s formulation does 

not fully comply with the spirit of information theory. To fix these shortcomings, various 

Hirshfeld-inspired partitioning methods have been developed. In the following sections, 

we will briefly discuss some of the corresponding algorithms, and the relationships 

between them. Several related, but more-or-less ad hoc, partitioning approaches do not 

perfectly fit into this information-theoretic framework, so they are not elaborated in 

detail. Examples of this sort of method include the ever-expanding family of Density 

Derived Electrostatic and Chemical (DDEC) methods31-32, 58 and Charge Model 5 (CM5) 

(developed by mapping Hirshfeld charges onto a new set of charges providing a more 

accurate monopole approximation of electrostatic potential).59  

1.3.2 Hirshfeld-I and Hirshfeld-Iλ  

 The first, and most prevalent, variant of Hirshfeld methods is the iterative 

Hirshfeld (Hirshfeld-I or HI) partitioning method of Bultinck et al..60 This method lifts 

the arbitrary selection of neutral pro-atoms criterion, and refines the pro-atoms self-

consistently so that, at convergence, the pro-atoms and the AIM have the same 

population. To perform Hirshfeld-I partitioning, 

1. Initialization (n = 0). Obtain initial AIMs using the Hirshfeld partitioning, (1.9), with isolated 

neutral atom densities as pro-atoms. In practice, the Hirshfeld-I method is insensitive to any 

reasonable initial guess for the pro-atom populations. 

2. Iteration. Until the atomic populations converge (e.g., until 
   
max
A∈atoms
! N A

n − N A
n−1( ) < ε ), 

a. Update each pro-atom so that it has the same population as the AIM in the previous step, 
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n – 1: 
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b. Repeat the Hirshfeld partitioning, (1.9), with the updated pro-atom densities. 

 

Step 2a uses the fact that the only size-consistent way, and therefore the only chemically-

sensible way, to define a density with a noninteger number of electrons, N, is to define it 

as a weighted average of the same system’s densities with the next-lower-integer number, 

N⎢ ⎥⎣ ⎦ , and the next-higher-integer number,  N⎡⎢ ⎤⎥ , of electrons.61-64 E.g., the density of a 

system with 9.4 electrons is a linear combination of the 9-electron and 10-electron 

systems with the same external potential,  

 ( ) ( ) ( )9.4 9 100.6 0.4N N Nρ ρ ρ= = == +r r r   (1.11) 

This elegant refinement results in a set of chemically intuitive reference pro-atoms 

and produces quality AIM charges. In addition, it provides a simpler information-

theoretic interpretation because, at convergence, the AIM and the corresponding pro-atom 

densities have the same normalization. Numerous studies testify that Hirshfeld-I fulfills 

many of the desired features, including insensitivity to level of theory,46 accurate 

electrostatic potential approximation,65 and applicability to solids.66-68 Hirshfeld-I has 

been extended to Fractional Occupation Hirshfeld-I (FOHI)69 to calculate atomic spin 

population and FOHI-D70 to calculate the atomic charge and atomic dipole self-

consistently.  

However, the Hirshfeld-I method is not perfect—it is not variational and it gives 

erratic results for negatively-charged nitrogen atoms and atoms in high oxidation states. 
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The main issue is that Hirshfeld-I very often requires unbound pro-atom densities; i.e. 

(di)anions in which the extra electron(s) are not bound to the isolated atom, resulting in 

AIM densities that extend too far from the nucleus.71 The first attempt to partially solve 

these issues was the Hirshfeld-Iλ method, where the Hirshfeld-I form of the pro-atom 

density of   N A
0 -electron system is stipulated, 

 ( ) ( ) ( ) ( ) ( )0 0
0 0 0 0 0 0 0

; ;A A
A A A A AA N A N

N N N Nρ ρ ρ⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎣ ⎦

⎢ ⎥ ⎡ ⎤= − + −⎣ ⎦ ⎢ ⎥r r r , (1.12) 

but the atomic density and the pro-atom populations are both selected by minimizing the 

information loss under the constraint that AIM and pro-atoms have the same population, 
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Theoretically, Hirshfeld-Iλ selects its pro-atoms variationally and adheres to the 

information-theoretic spirit. (Note, however, that Eq. (1.9) does not hold in Hirshfeld-Iλ.) 

Unfortunately, Hirshfeld-Iλ is numerically challenging to converge because the objective 

function is discontinuous at integer pro-atomic populations, it is sensitive to the choice of 

basis set, and the charges from Hirshfeld-Iλ fail to accurately reproduce the molecular 

electrostatic potential.72  

1.3.3 Variational Hirshfeld-I  

 Lifting the constraint that the pro-atomic and atomic populations be equal, but 

guaranteeing a correctly normalized promolecule, gives a method we refer to as 

variational Hirshfeld-I, 
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Variational Hirshfeld-I seems to give results that are closer to Hirshfeld-I than Hirshfeld-

Iλ, but the optimization is challenging because of the derivative discontinuity in the 

objective function. In addition, the final pro-atoms do not have the same charges as the 

AIM, making the information-theoretic argument less elegant. 

1.3.4 Extended Hirshfeld (Hirshfeld-E) 

 The poor performance of the Hirshfeld and Hirshfeld-I partitionings for molecules 

containing atoms in high oxidation states motivated the Hirshfeld-E method.73 Hirshfeld-

E is based on the decomposition of the N-electron density as a sum of the Fukui 

functions64, 74-76 
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This motivates the idea of using the spherically-averaged atomic Fukui functions of the 

isolated atom as a basis set for expanding the pro-atomic density,  
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where the sum runs over the Fukui functions of all bound electronic states. In Hirshfeld-

E, step 2a in the Hirshfeld-I algorithm is replaced by:  
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2a’. Update each pro-atom by performing a least-squares fit of Eq. (1.17) to the atomic density, subject 

to the constraint that the pro-atom and atom have the same population and that the coefficients of 

expansion are nonnegative, 
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The Hirshfeld-E method is more robust for highly-charged atomic sites, but like 

Hirshfeld-Iλ, the charges from Hirshfeld-E vary erratically with basis set.73 

1.3.5 Iterative Stockholder Analysis (ISA)  

 Conceptually, the least appealing aspect of Hirshfeld-I-like partitioning methods is 

the need to specify a functional form for the pro-atom density. Lillestolen and Wheatley 

proposed an alternative approach, called iterative stockholder analysis (ISA) to remedy 

this feature.77-78 The main idea in ISA is that the pro-atom density is the spherical average 

of the atomic density,  

 ( ) ( )20

0 0
sinA A A Ar d d

π π
ρ ρ θ θ φ= − = −∫ ∫r R r R   (1.19) 

By doing this, the need for a set of spherically-averaged reference pro-atom densities is 

avoided; the reference atom is built as a set of density values on a radial grid and updates 

in every iteration according to Eq. (1.19). The ISA method is calculated by  

1. Initialization. n = 0. Obtain initial AIMs using the Hirshfeld partitioning, (1.9), with isolated 

neutral pro-atom densities, or spherically symmetric pro-atom densities using, for example, Eq. 

(1.20) or (1.21). 
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2. Iteration. Until the atomic populations converge, 
   
max
A∈atoms
! N A

n − N A
n−1( ) < ε , 

a. Perform the Hirshfeld partitioning, (1.9), with the specified pro-atoms. 

b. Update each pro-atom by setting it equal to the spherical average of the atomic density, 

Eq. (1.19). 

Since ISA is a variational method with a unique minimum for pro-atom density; the final 

partitioning does not depend on how one initializes the pro-atoms.79 Recognizing this, and 

desiring to avoid the need for reference atomic densities in the initialization step, 

Lillestolen and Wheatley suggested using the very simple choice,  
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With this initialization, ISA converges quite slowly, typically requiring several times 

more iterations than Hirshfeld-I. To try to improve matters, we replaced the average 

density on each spherical shell with the shell’s minimum density,  

 
    
ρA

0 r( ) = min
θ ,φ
!ρmol r − R A ,θ ,φ( )   (1.21) 

While our alternative initialization converges slightly faster, the improvement is not 

dramatic. In cases where a database of atomic densities is available, it is best to initialize 

the ISA algorithm with spherically-averaged pro-atom densities or the AIM density of 

Hirshfeld or Hirshfeld-I methods.  

 At a chemical level, ISA is not robust when a central atom is surrounded by a 

spherical shell of other atoms. In this case, the AIM density of the central atom tends to 

have a blip at the location of the next shell(s) of atoms. This causes the central atom to 

have too large (often wildly too large) population and leads to an atomic density that is 
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nonmonotonic, violating the “sensibility” requirement.79 ISA is also not conformationally 

stable: a small breaking of the molecular symmetry (so atoms surrounding the central 

atom lie on the surface of an ellipse, rather than the surface of a sphere) causes the density 

and population of the central atom to become sensible again.80 

 To overcome these results, one can “hammer down” the spurious blips in the ISA 

atomic densities, forcing the atomic densities to be monotonic by requiring that the (n+1)st 

point on a radial grid emanating from the atomic nucleus be no larger than nth point. 

Mathematically, this replaces Eq. (1.19) with 

 
    
ρA

0 r( ) = min
r−R A ≤r
! ρA r − R A( )sinθ dθ dφ

0

π

∫0

2π

∫( )   (1.22) 

A more numerically efficient approach is to approximate the pro-atomic density from 

(1.19) as a linear combination of monotonically decreasing basis functions like s-type 

Gaussians,80 

 ( ) ( )0 2expA k k
k

r c rρ α≈ −∑   (1.23) 

The coefficients can be determined by least-squares fitting subject to the constraint ck ≥ 0. 

This Gaussian-ISA (GISA) method has sensibly monotonic atomic densities, but it still 

tends to exaggerate the population of atoms at the center of a spherical shell of other 

atoms. The pro-atom density, instead of descending to a small value and then rising again 

on the surface of a spherical shell, descends slowly until the spherical shell of atoms is 

encountered, and descends rapidly thereafter. Because of these slowly-descending atomic 

densities, the atomic charges are not very transferable and conformational stability is low. 

The results are also quite sensitive to the choice of the Gaussian expansion functions: for 



 
 

22 

short expansions, results often seem satisfactory, but in the basis-set limit one recovers 

the problematic “hammered down” version of ISA in Eq. (1.22).80 

1.3.6 Density Derived Electrostatic and Chemical (DDEC) Partitioning 

 ISA variants define AIM that are “as spherical as possible” by some criterion, and 

therefore the AIM of ISA-related methods have small dipole and higher-order-multipole 

moments. This ensures that the charges from ISA-type methods provide an excellent 

description of the molecule’s electrostatic potential. One would like to somehow combine 

this feature of ISA with the favorable transferability and conformational stability features 

of Hirshfeld-based methods that employ explicit atomic reference densities. This has been 

attempted in DDEC methods by defining atomic weight function as a weighted-geometric 

average of the two methods’ pro-atomic densities, specifically,31-32, 58, 81 

 
   
wA r( ) = ρA

0;ISA r( )( )1−χ ρA
0;Hirshfeld-I r( )( )χ   (1.24) 

Unfortunately, this method does not fully remedy the problems of conformational 

stability and spherical-shell bias associated with ISA. Subsequent refinements of the 

DDEC family of methods have removed these problems, but these refinements involve a 

complicated hand-tuning of the method and intuitive but nonphysical revisions to the pro-

atom densities (especially for anions) to meet certain performance goals. The resulting 

DDEC methods are inelegant by the criteria of “capable of being compactly described 

with words alone” and do not satisfy some of the mathematical requirements we believe it 

is desirable for information-based partitioning methods to possess (e.g., the recovery of 

the non-interacting limit of AIM and the satisfaction of the distributive property of 
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dissimilarity measure). This does not diminish the practical utility of the latest DDEC 

methods for applications, especially in the solid state, where they have been more 

thoroughly tested than any of the other approaches we discuss.  

1.3.7 Minimal Basis Iterative Stockholder (MBIS) Partitioning 

The most recent variant proposed by Verstraelen, et al. called Minimal Basis 

Iterative Stockholder (MBIS) method takes a new strategy for modeling pro-atoms.82 It 

expands each pro-atom as a weighted sum of normalized s-type Slater functions, 

sA,i r,σ A,i( ) sA,i r,σ A,i( )dr = 1∫{ }
i=1

mA

, centered on the atoms, 

 ρA
0 r = r −RA( ) = NA,isA,i r,σ A,i( )

i=1

mA

∑ =
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8πσ A,i
3

⎛
⎝⎜

⎞
⎠⎟
e

−
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σ A ,i

⎛

⎝⎜
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⎠⎟

i=1

mA

∑   (1.25) 

where σ A,i  and NA,i  denote the width and weight of the ith s-type normalized Slater 

function on atom A. The number of Slater functions mA  is dictated by the number of 

electron shells in an atom with atomic number ZA , in this regard, the weights NA,i{ }i=1
mA  

can be perceived as shell populations. (One must limit the number of Slater functions 

because as the number of Slater functions increases, this method approaches “hammered-

down” ISA.) The shell widths and populations in MBIS are optimized alongside the AIM 

densities by constrained minimization of the Kullback-Leibler information loss,  
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The constraint requiring the pro-atom and AIM to have the same population 

makes MBIS appealing from the information-theoretic point of view, but couples the 

minimization of AIM and pro-atoms. However, unlike Hirshfeld-Iλ, the minimization 

simplifies to the stockholder formula because of the special form of the pro-atoms, and 

the shell population and shell width of each atom is given by 

 

NA,i =
NA,isA,i r,σ A,i( )

ρmol
0 r, NA,i{ }, σ A,i{ }( ) ρmol (r)∫  dr

σ A,i =
1

3NA,i

NA,isA,i r,σ A,i( )
ρmol

0 r, NA,i{ }, σ A,i{ }( ) r −RA ρmol (r) dr∫
  (1.27) 

The identities obtained for pro-atom parameters are specific to the Kullback-Leibler 

divergence measure, and are used for optimizing the pro-atoms self-consistently. 

1. Initialization. n = 0. Obtain initial AIMs using the Hirshfeld partitioning, (1.9), with pro-atom 
densities modeled in Eq. (1.25). The initial value of the NA,i  parameter is set to the number of 

electrons in the ith shell of atom A. The initial value of σ A,i  is set to 
  

a0

2ZA

 and 
  

a0

2
 for the 

innermost and outermost shell of atom A, respectively, where for the intermediate shells, it is 

assigned by geometric interpolation σ A,i =
a0

2ZA
1− i−1

mA−1( ) . 

2. Iteration. Until shell parameters converge:

   

max
A∈atoms
i∈[1,!,mA ]

" N A,i
n − N A,i

n−1( ) < ε  and 

   

max
A∈atoms
i∈[1,!,mA ]

" σ A,i
n −σ A,i

n−1( ) < ε   

a. Perform the Hirshfeld partitioning, Eq. (1.9), with the specified pro-atoms, Eq. (1.25) 

b. Update each pro-atom by computing its shell widths σ A,i{ }i=1
mA

 and shell populations 

NA,i{ }i=1
mA

 parameters, Eq. (1.27). 

The objective function in Eq. (1.26) is not convex, so the choice of initial guess in step 1 
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can affect the resulting MBIS charges. The iterative procedure to refine the pro-atoms can 

easily be implemented with a linear-scaling computational cost for applications to 

supramolecular systems. In addition, the Slater functions describing the valence electron 

density of AIM allow better approximations of the electrostatic interaction in force 

fields.82-83 

1.4 Other Population Analysis Methods 

 Although the focus of this work is information-theoretic population analysis 

methods, we will compare the results to other approaches. For each general family of 

methods—orbital-based population analysis, topological partitioning, and electrostatic 

fitting—we have chosen one to compare to what we feel is the best widely available 

method of that family. 

1.4.1 Orbital-Based Population Analysis  

 Orbital-based partitioning was pioneered by Mulliken.6-9 Each natural molecular 

orbital can be expressed as a sum of atomic basis functions,  

 ( ) ( )
atoms

;
1

N

p p Ai Ai
A i A

cψ χ
= ∈

= ∑∑r r   (1.28) 

where ( )Aiχ r  denotes the ith basis function on atom A. To divide this molecular orbital 

into contributions from the atomic basis functions, note that  

 
   
1= ψ p r( ) 2

dr∫ = cp;Ai
* cp;BjSAi,Bj

j∈B
∑

i∈A
∑

B=1

Natoms

∑
A=1

Natoms

∑   (1.29) 

where the overlap matrix between the atomic basis functions has been defined as  
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 ( ) ( )*
,Ai Bj Ai BjS dχ χ= ∫ r r r   (1.30) 

Mulliken proposed decomposing Eq. (1.29) into the (net) populations of the atomic basis 

functions, 

 
2

; , ; ,p Ai Ai p p Ai Ai Ain c Sν =   (1.31) 

and “bonding” populations associated with the overlaps between different atomic basis 

functions, 

 ( ) ( )* * *
; , ; ; , ; ; , ; ; ,2 Rep Ai Bj p p Ai p Bj Ai Bj p Ai p Bj Bj Ai p p Ai p Bj Ai Bjn c c S c c S n c c Sν = + =   (1.32) 

Here we have denoted the occupation number of the pth natural molecular orbital as pn . 

To assign atomic populations, one needs to divide the bonding population between the 

atomic basis functions between the contributing atoms. In the absence of any other 

information, all one can do is divide the bonding population half-and-half between the 

contributors, giving the gross populations of the atomic basis functions,  
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1
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p Ai Bj
B j B

π ν ν ν

ν

≠
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=

∑

∑ ∑
  (1.33) 

Summing this contribution over all the molecular orbitals and all the basis functions 

assigned to a given atom gives that atom’s population,  

 
orbitals

;
1

N

A p Ai
p i A

n π
= ∈

= ∑ ∑   (1.34) 

This can be recast in matrix language by defining the molecular density matrix as  
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orbitals

*
, ; ;

1

N

Ai Bj p p Ai p Bj
p

P n C C
=

= ∑   (1.35) 

and then the charge-bond matrix as  

 , , ,Ai Bj Ai Bj Ai BjM P S=   (1.36) 

Then the atomic charges are simply 

 
atoms

,
1

Re
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A Ai Bj
i A B j B

n M
∈ = ∈

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑ ∑   (1.37) 

Similarly, the electron density of the atom in the molecule can be defined as 

 ( ) ( ) ( )
atoms

*
;

1
Re

N

A Ai Bj Ai Bj
i A B j B

Pρ χ χ
∈ = ∈

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑ ∑r r r   (1.38) 

 Löwdin noted that the preceding analysis could be simplified if the atomic basis 

functions were orthonormal, ,Ai Bj AB ijS δ δ= , and he proposed choosing orthogonalized 

atomic basis functions, { }Aiχd , that were as close as possible to the original 

(nonorthogonal) basis.10-12 It is not difficult to deduce that the new basis functions are 

simply  

 ( ) ( )
atoms 1

2
,

1

N

Ai Ai Bj Bj
B j B

Sχ χ
−

= ∈

= ∑ ∑r rd   (1.39) 

In the orthogonalized basis, the atomic populations have the simple expression,  

 ,A Ai Ai
i A

n P
∈

=∑d d   (1.40) 

 These methods for assigning atomic populations are extremely erratic for large 

and/or unbalanced basis sets. More generally, Mulliken/Löwdin partitioning fails in any 
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circumstance where the atomic basis functions are not (well-)localized on the atomic 

centers. Consider, for example, that in the extreme case where one expands the 

wavefunction with a complete set of basis functions centered on a single atom, all the 

electrons will be assigned to that atom. To avoid this, it is necessary to ensure that the 

molecular orbitals and the one-electron reduced density matrix,  

 ( ) ( ) ( )
orbitals

*

1
,

N

p p p
p
nγ ψ ψ

=

′ ′= ∑r r r r ,  (1.41) 

are expressed in terms of atomic basis functions that have chemical meaning. The 

approaches proposed by Weinhold14-15, Ruedenberg16-18, and Knizia19 achieve this by 

using atomic basis functions that resemble atomic orbitals. We will only consider 

Weinhold’s approach, called natural population analysis (NPA), because it is by far the 

most widely used of these approaches. 

 In NPA, one uses the atomic orbitals of the isolated neutral atoms, { }Aiφ  as basis 

functions. The molecular orbitals or, alternatively, the one-electron reduced density 

matrix can be expanded in this new basis,  

 ( ) ( ) ( )*
, ,Ai Bj Ai Bj dω φ γ φ′ ′ ′= ∫∫ r r r r r .  (1.42) 

Because the atomic orbitals are not orthogonal, the trace of this matrix is greater than the 

total number of electrons. The basic idea in natural population analysis is to use an 

occupation-weighted version of Löwdin’s symmetric orthogonalization method. That is, 

one chooses the orthonormal basis that resembles the existing atomic orbital basis 

functions to the maximum possible extent, weighted by the occupation of the atomic 

orbital basis functions,  
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 ( ) ( )
atoms 2

,
1

min
N

Ai Ai Ai Ai
A i A

dω φ φ
= ∈

−∑ ∑ ∫ r r rd   (1.43) 

with solution,  

 ( ) ( ) ( )
atoms 1

2

,1

N

Ai Bj
Ai BjB j B

φ φ
−

= ∈

⎡ ⎤= ⎢ ⎥⎣ ⎦∑ ∑r D DSD rd   (1.44) 

where D is a diagonal matrix with the entries , , ,Ai Bj Ai Ai Ai Bjd ω δ=  and S is the overlap 

matrix between the atomic orbitals. The natural populations can then be determined, using 

Eq. (1.40), or, specifically,  

 ( )( ) ( ) ( )*
,A Ai Ai

i A
n d dφ γ φ

∈

′ ′ ′=∑∫∫ r r r r r rd d   (1.45) 

While this captures the essence of the natural population analysis method, the actual 

approach is significantly more complicated. For example the valence atomic orbitals and 

the Rydberg atomic orbitals are orthogonalized separately, and special care must be taken 

when treating atomic orbitals with very small occupations.14  

 In our experience, NPA and other atomic-orbital-based population analysis 

methods remove most, but not all, of the basis-set sensitivity of the unrefined 

Mulliken/Löwdin partitioning strategies. However these methods are still sensitive to the 

quality of the molecular basis set (e.g., they typically work poorly in the extreme case 

where all the basis functions are located on a single atomic center) and also on the design 

decisions that were taken in constructing the atomic basis set. 

1.4.2  Topological Partitioning 

 Topological partitioning methods divide space into regions, each of which is then 
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associated to an atom. For example, in Voronoi partitioning, one assigns each point in 

space to the closest atomic nucleus, giving atomic regions,  

 
   
Ω A

V ≡ r ∀B ≠ A,  r − R A < r − R B{ }   (1.46) 

The atomic weight functions are then taken to be the characteristic function of the region,  

 ( ) 1
0

A
A

A

w
∈Ω⎧
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r
r

r
  (1.47) 

and so the atomic densities and atomic populations are defined as  

 ( ) ( ) ( )molA Awρ ρ=r r r   (1.48) 

and  

 ( ) ( )mol

A

A AN d dρ ρ
Ω

= =∫ ∫r r r r   (1.49) 

 The problem with Voronoi-based partitioning is that it depends only on the 

location of the nuclei, and not on the molecule’s electronic structure. Richard Bader 

realized that there was a natural way to separate a molecule into atoms using the 

topography of the electron density.22-23, 84 If one visualizes the molecular density, it looks 

like a mountain range, with peaks coinciding with the locations of the atomic nuclei and 

valleys between them. Bader’s partititioning, called the quantum theory of atoms in 

molecules (QTAIM), corresponds to a watershed analysis of the atoms. Imagine that a 

tiny rain-cloud hovered over the location of an atomic nucleus, and the water from the 

cloud flowed down the sides of the mountain of electron density associated with the atom. 

All the points in space that were wet by the rain would be assigned to the atom. 
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 Mathematically, this means that if one takes a point, r, and starts to make a 

steepest-ascent path from that point,  

 

    

r0 = r

r1 = r0 + ε∇ρ r0( )
!

rn+1 = rn + ε∇ρ rn( )
!

  (1.50) 

The point is then assigned to the nucleus at the end of the steepest-ascent path. The 

boundaries between the atoms correspond to zero-flux surfaces, where the normal to the 

surface of the atomic volumes is orthogonal to the gradient,  

 ( ) 0
AA ρ Ω∈∂Ω ↔∇ ⋅ =r r n   (1.51) 

Equation (1.51), called local zero-flux condition, establishes that the integral of the 

Laplacian of the electron density over an atomic region is zero, 

 
   

∇2ρ r( )dr
ΩA

∫ = 0 .  (1.52) 

Equation (1.52), called net zero-flux condition, in turn, makes it possible to define atomic 

kinetic energies (and then, by the virial theorem, atomic energies) for this atomic 

partitioning without excessive sensitivity to the way one chooses to represent the quantum 

mechanical operators for the atoms.23, 85-88 This ability to define quantum mechanical 

operators for atoms is why this approach is usually called the quantum theory of atoms in 

molecules (QTAIM).22, 30, 89-90  One should mention that subsequent work makes it clear 

that regions called quantum divided basins, which satisfy the global zero-flux condition 

(Eq. (1.52)), but not the local zero-flux condition (Eq. (1.51)), can also be used to define 
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open quantum subsystems.44-45 Also, subsequent work has shown that there are 

mathematically allowable (but arguably chemical unreasonable) definitions for the local 

kinetic energy for which Eq. (1.52) is insufficient to define unique atomic kinetic 

energies.88, 91-92 For these reasons, we believe the strongest justification for QTAIM is 

topological, based on the intuitive partitioning of space into atomic-density regions. 

 The mathematical underpinnings of QTAIM are elegant, but it has a few 

undesirable properties. For example, sometimes there are “extra” atoms associated with 

maxima in the atomic density that do not coincide with the location of an atomic 

nucleus.93-95 Additional non-atomic regions also appear if one partitions the electron 

density obtained for a pseudopotential calculation, because the absence of the electron 

density from the atomic cores ruins the  mountain-peak structure that the electron density 

has in all-electron calculations. In pseudopotential calculations, it is advisable to correct 

the computed electron density by adding back the (approximate) electron density from the 

atomic core electrons before performing the QTAIM partitioning. If one does not make 

this correction, then spurious atoms and significant topological complexity are induced by 

the “volcanic craters” associated with the missing core electrons. Conversely, sometimes 

there are missing atoms, because a light electron-poor atom is embedded in the electron 

cloud of a heavier electron-rich atom, so that there is no maximum in the molecular 

electron density at the location of the light atom’s nucleus. 

 All topological partitioning methods have the problem that the atomic regions 

have “pointy boundaries” where three or more atomic regions meet. Because the atomic 

regions and their associated densities are far from spherical, it is hard to represent the 
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electrostatic potential of the atom with a point charge: one typically needs not only atomic 

charges, but very high-order atomic multipoles, to describe the molecular electrostatic 

potential using topological partitioning methods.96-99 

1.4.3 Electrostatic Potential Fitting 

 Electrostatic potential fitting is an approach that leads to atomic 

populations/charges, but not to atomic density distributions.100-105 Specifically, one tries 

to find atomic populations that fit the electrostatic potential of the electron density,  
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  (1.53) 

subject to the constraint that the atomic populations sum up to the total number of 

electrons,  
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It is clearly impossible satisfy Eq. (1.53) at every point, but for molecular mechanics 

force fields it is primarily important that the electrostatic potential be accurately captured 

at locations in the vicinity of the van der Waals surface and up to three or four van der 

Waals radii away from the molecule. This suggests that one choose atomic populations by 

minimizing102-103, 106  
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where ( ) 0ω ≥r  is a nonnegative weight function that focuses the optimization on the 

region of chemical interest and which decays rapidly enough to ensure the existence of 

the integral that defines the objective function. 

Different methods for electrostatic potential fitting mainly differ based on the 

weighting function one uses in Eq. (1.55) and the possible addition of constraints based 

on intuition about the likely size of atomic charges, equivalence of the populations of 

chemically similar atoms, etc.. Recognizing that the atomic populations/charges from 

potential-fitting would behave erratically in response to conformation changes unless the 

weighting function was perfectly smooth, Hu, Lu, and Yang proposed the objective 

function106  

 ( ) ( )( )( )20
mol refexp ln lnw σ ρ ρ= − −r r   (1.56) 

where ( )0
molρ r  is the promolecular density and the recommended values for the 

parameters that control the width and location of the weighting function are  

 0.8σ =   (1.57) 

and  

 refln 9ρ = − ,  (1.58) 

respectively. The objective function in Eq. (1.55) with the weighting function (1.56) 

determines the Hu-Lu-Yang (HLY) populations.106 

 Obviously this method can be extended to dipole and higher-order multipole 

moments, simply by inserting the appropriate multipole expansion, 
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in Eq. (1.55). However, electrostatic fitting does not define an atomic density, and is 

therefore not a true partitioning method. It is possible, however, to reverse-engineer 

atomic densities that have the correct multipoles and which maximally resemble some 

atomic reference densities. E.g., one can find the electron densities that satisfy: 
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where the pro-atom density should be chosen to have the same atomic population as was 

assigned by electrostatic fitting, 0
A AN n= , using Eq. (1.12). If one has only monopoles, 

then this approach is equivalent to Hirshfeld-Iλ, but without the variational optimization 

over pro-atom populations. 

 Unfortunately, the optimization in Eq. (1.55) is numerically ill-conditioned. For 

example, the objective function in Eq. (1.55) is extremely insensitive to any atomic 

population that is very far from the molecular van der Waals region that is sampled by the 

weight function ( )ω r ; the optimization landscape is therefore extremely flat, and the 

atomic populations can change significantly due to small changes in electron density, 

whether due to computational parameters (e.g., electronic structure method or basis set) 

or geometric changes. 
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1.5 Shortcomings of Current Schemes: Numerical Assessment  

1.5.1 Computational Setup 

 We compare the performance of various information-theoretic partitioning 

methods (section 1.3) to more traditional approaches (section 1.4). To do so, we selected 

examples from our own work and from the literature that reveal specific, usually 

unfavorable, features of the different partitioning methods. We also selected a set of small 

molecules (CH3
+, CH4, CH3

−, NH4
+, NH3, NH2

−, H3O+, H2O, OH−) for investigating the 

sensitivity of these methods to the one-electron basis set and the type of electronic 

structure theory method used, and also for assessing how well different partitioning 

methods recapture chemical trends.  

All quantum chemistry calculations were performed by Gaussian09 (version 

C.01) software107  employing ultrafine integration grids and stable=opt keyword to ensure 

that a (local) minimum of the energy with respect to variations of the orbitals was found. 

For the small set of molecules, the geometries were optimized at UωB97XD/cc-pVTZ 

level of theory, followed by single point calculations at UHF, UB3LYP,108-110  and 

UωB97XD111 levels of theory with Dunning’s (d-aug-)cc-pVXZ (X=D, T, Q, 5) 

correlation consistent basis set series.112-114  The NPA and HLY charges were generated 

by Gaussian09. The QTAIM charges were generated using AIMALL (version 16.01.09 

standard) software. The charges from information-theoretic partitioning methods were 

generated using HORTON 2.0.0.115 



 
 

37 

1.5.2 Hirshfeld partitioning is sensitive to the choice of pro-atom 

 As noted before, the choice of neutral pro-atoms in the original Hirshfeld method 

is arbitrary, and the Hirshfeld populations from Eq. (1.9) change significantly when 

different reference pro-atom charges are used. This is shown in Table 1.1 for lithium 

chloride, where neutral and charged pro-atoms are used as references. (We have chosen 

the pro-atoms so that the promolecule has the same number of electrons as the molecule. 

Note that this is not implicit in the Hirshfeld method: the traditional Hirshfeld method 

uses neutral promolecules for the population analysis of molecular ions.) The middle 

column of Table 1.1 contains the conventional Hirshfeld charges, but considering the ionic 

character of LiCl, the lithium cation and chlorine anion are the chemically intuitive 

reference pro-atoms. This pro-atom choice produces the higher, and more chemically 

appealing, Hirshfeld charges in the last column. Notice, however, that no matter what 

choice one makes for the charges of the pro-atoms, the Hirshfeld charges are semi-

insensitive to the choice of quantum chemistry method and basis set. In the remainder of 

this manuscript, however, whenever we refer to the Hirshfeld partitioning we will be 

considering only neutral pro-atoms. 
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Table 1.1 The Hirshfeld charge of the lithium atom in the LiCl molecule for an interatomic 
separation of 2.045 angstrom. A neutral promolecule has been used, so the chlorine pro-atom has a 
charge of qCl0 = −qLi

0 . The same level of theory was used to compute the molecular and pro-atomic 
electron densities. To show how insensitive Hirshfeld charges are to the choice of basis set, we also 
tabulate the absolute value of spread in Hirshfeld charges for the basis sets considered. 

 Charge of the Li pro-atom, qLi0  
Level of Theory -1.0 -0.5 0.0 0.5 1.0 
UHF/cc-pVDZ 0.2345 0.4028 0.5511 0.7331 0.9828 
UHF/cc-pVTZ 0.2196 0.3973 0.5525 0.7446 0.9831 
UHF/cc-pVQZ 0.2398 0.4063 0.5519 0.7493 0.9848 
UHF/cc-pV5Z 0.2428 0.4073 0.5515 0.7507 0.9853 
UHF/aug-cc-pVDZ 0.2692 0.4229 0.5549 0.7551 0.9925 
UHF/aug-cc-pVTZ 0.2577 0.4162 0.5523 0.7526 0.9859 
UHF/aug-cc-pVQZ 0.2579 0.4152 0.5513 0.7518 0.9851 
UHF/ aug-cc-pV5Z 0.2587 0.4154 0.5512 0.7517 0.9850 
|max(q) - min(q)| 0.0496 0.0256 0.0037 0.0221 0.0097 

      UB3LYP/cc-pVDZ 0.1753 0.3507 0.5073 0.6937 0.9683 
UB3LYP/cc-pVTZ 0.1612 0.3502 0.5169 0.7143 0.9726 
UB3LYP/cc-pVQZ 0.1838 0.3617 0.5184 0.7216 0.9762 
UB3LYP/cc-pV5Z 0.1853 0.3617 0.5177 0.7232 0.9763 
UB3LYP/aug-cc-pVDZ 0.2100 0.3751 0.5192 0.7295 0.9884 
UB3LYP/aug-cc-pVTZ 0.2048 0.3734 0.5193 0.7274 0.9789 
UB3LYP/aug-cc-pVQZ 0.2052 0.3727 0.5184 0.7263 0.9775 
UB3LYP/aug-cc-pV5Z 0.2053 0.3722 0.5175 0.7251 0.9759 
|max(q) - min(q)| 0.0488 0.0249 0.0120 0.0358 0.0202 

      UωB97XD/cc-pVDZ 0.2005 0.3760 0.5311 0.7153 0.9769 
UωB97XD/cc-pVTZ 0.1846 0.3726 0.5367 0.7326 0.9801 
UωB97XD/cc-pVQZ 0.2063 0.3825 0.5364 0.7389 0.9830 
UωB97XD/cc-pV5Z 0.2108 0.3841 0.5356 0.7405 0.9837 
UωB97XD/aug-cc-pVDZ 0.2364 0.3987 0.5382 0.7447 0.9914 
UωB97XD/aug-cc-pVTZ 0.2255 0.3936 0.5374 0.7435 0.9846 
UωB97XD/aug-cc-pVQZ 0.2253 0.3919 0.5361 0.7425 0.9837 
UωB97XD/aug-cc-pV5Z 0.2259 0.3917 0.5353 0.7418 0.9834 
|max(q) - min(q)| 0.0518 0.0261 0.0072 0.0294 0.0145 
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1.5.3 Hirshfeld-I is Not Variational 

 The Hirshfeld-I method fixes the sensitivity of (ordinary) Hirshfeld charges to the 

choice of pro-atom and ensures that the atom and pro-atom always have the same number 

of electrons. Although the Hirshfeld-I procedure is not written as a variational method (cf. 

section 1.3.2), this does not mean that the solution of the Hirshfeld-I procedure cannot be 

equivalent to the minimization of the Kullback-Leibler divergence or, more generally, 

some other f-divergence measure.  

 Based on a recent mathematical analysis of the Hirshfeld-I equations, this does not 

seem to be the case.116 There are many variational principles that are equivalent to the 

Hirshfeld-I equations, but they are not written as minimizations of the divergence 

between the densities of an AIM and a pro-atom. There it is also shown that the 

Hirshfeld-I solution always exists, and is never unique in a mathematical sense. However, 

in most (but not all)33 cases it seems that the solution is unique in a chemical sense, as the 

spurious mathematical solutions correspond to cases where one or more AIM have zero 

electrons. 

 Figure 1.1 shows how the sum of the atomic Kullback-Leibler divergences, 

 ( ) ( )
( )

atoms

0
1

ln
N

A
A

A A

d
ρ

ρ
ρ=

⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

∑ ∫
r

r r
r

,  (1.61) 

changes when one performs the iterative refinement of Hirshfeld-I charges. This is in 

contrast to the iterative stockholder analysis (ISA) method, which is variational, and 

therefore is associated with steadily decreasing values of Eq. (1.61). We also explored 
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(not shown) the analogue of Eq. (1.61) for other divergences. In those cases, neither 

Hirshfeld-I nor ISA was variational. 

 

Figure 1.1 The value of the total Kullback-Leibler divergence between the densities of the Hirshfeld I 
atoms in a molecule and the reference pro-atomic densities, Eq. (1.61), for each iteration of the self-
consistent Hirshfeld-I procedure. These are computed for the optimized geometry of (a) water, (b) 
methane, (c) formamide, and (d) formaldehyde, at the UωB97XD/cc-pVTZ level. 
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 There are ways to refine Hirshfeld-I to be variational. The Hirshfeld-Iλ method is 

one way to do this, but as mentioned in section 1.3.2, it results in inferior atomic 

charges72 and also does not satisfy the distributive property in Eq. (1.3). If one relaxes the 

requirement that the AIM and pro-atoms have the same charge, variational minimization 

of Eq. (1.61) using the Hirshfeld-I definition for the pro-atom densities gives the 

variational Hirshfeld-I method from section 1.3.3 (cf. Eq. (1.14)). The sum of the atomic 

Kullback-Leibler divergences are computed, as a function of pro-atom charge, for HCl, 

CH4, and H2O in Figure 1.2. Hydrogen Chloride is the favorable case, where the minimum 

divergence and minimizing pro-atom charge are somewhat reasonable. In methane, the 

method often gets “locked” at an integer pro-atom charge (which is conceptually 

unappealing). The nondifferentiability of the objective function also complicates the 

numerical optimization. While the objective function is only convex in between two 

consecutive integer pro-atom charges, and so multiple solutions are possible. (For 

example, we observed that at certain levels of theory, LiCl can have two solutions, with 

Li pro-atom charges slightly more/less than +1.) In water, the objective function is 

insensitive to the O pro-atom charge. This makes the results from variational Hirshfeld-I 

sensitive to the level of theory. E.g., qualitatively insignificant changes in quantum 

chemistry method (e.g., changing the exchange-correlation functional and/or the basis set) 

can change the variational Hirshfeld-I charges significantly. 
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Figure 1.2 The objective function in variational Hirshfeld-I, cf. Eq. (1.13), as a function of pro-atom 
charges for (a) HCl with a minimum at   qH

0 = 0.176 , (b) CH4 with a minimum at   qC
0 = 0.0 , and (c) H2O 

with a minimum at   qO
0 = −0.568 , at the UωB97XD/cc-pVTZ level of theory. In all cases, the minimum 

is marked with a black diamond. 

 

 

1.5.4 Iterative Stockholder Analysis (ISA) is Sensitive to Molecular 

Conformation 

 Iterative Stockholder Analysis (ISA) is variational, but it sometimes gives 

chemically absurd results. Especially when there are several atoms arranged on a 

spherical shell around a central atom, the central atom tends to become overpopulated.79 

An extreme example of this is the endohedral fullerene where a lithium cation is placed 

inside a buckyball, Li+@C60. The lithium cation is given an enormous number of 

electrons, and its population is very sensitive to the size of the numerical integration grid, 

partly because the population of the lithium “cation” will increase dramatically when one 

of the radial shells of grid points (nearly) coincides with the position of the C60 cage. This 

is clearly seen in Table 1.2. It also shows that Hirshfeld-I, and the more recent versions of 

DDEC charges, do not suffer from the same problem. The DDEC methods, however 
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require very large and costly integration grids. 

 

Table 1.2 Hirshfeld-I, ISA, DDEC3 and DDEC4 charges of lithium atom in Li+@C60 for different 
numerical integration grids. All calculations are performed at B3LYP/6-31G. 

Grid  # Points Hirshfeld-I ISA DDEC3 DDEC4 
Coarse  93,576 0.9901 -5.0582   
Medium 152,958 0.9901 -9.0165   
Fine 320,906 0.9899 -7.8583   
Veryfine 518,558 0.9899 -7.5848   
Ultrafine 526,986 0.9899 -7.6278   
Insane 1,958,068 0.9899 -7.2861   
Custom 73,200,000   1.0025 0.9935 

 

 ISA charges are also problematic for more typical chemical problems. For 

example, the tendency for atoms to show a spurious decrease in charge whenever they 

appear at the center of a (nearly) spherical shell of neighboring atoms causes the ISA 

charges to be very sensitive to molecular conformational changes. This is chemically 

unreasonable and it is undesirable for parameterizing molecular mechanics force fields, in 

which the atomic charges are assumed to be insensitive with respect to molecular 

torsions.  

 To show this, Figure 1.3 shows the charge on the central carbon atom in alanine 

dipeptide versus rotations about the ψ dihedral angle. The ISA charges show a large and 

unphysical dependence on molecular conformation. Hirshfeld-I, DDEC3, and DDEC4 

charges are more reasonable, with little conformation dependence. However, upon closer 

inspection, it is observed that the DDEC4 charges vary noisily, rather than smoothly, with 



 
 

44 

respect to the torsion. As the amount of noisiness is small, however, this is more an 

aesthetic and philosophical issue than a practical one. 

 

Figure 1.3 The charge on the central carbon atom in alanine dipeptide versus the ψ dihedral angle for 
Hirshfeld-I, ISA, DDEC3, and DDEC4. (b) A more detailed comparison between Hirshfeld-I and 
DDEC4 charges obtained by zooming in. 

 

1.5.5 Sensitivity to Basis Set and Electronic Structure Method 

 As mentioned in section 1.2.3, useful population methods are insensitive to 

changes in the basis set and the electronic structure method. To assess this, we examined 

the sensitivity of the most promising and popular information-theoretic methods for a set 

of small molecules (CH3
+, CH4, CH3

−, NH4
+, NH3, NH2

−, H3O+, H2O, OH−), three 

different electronic structure methods (UHF, UB3LYP, and UωB97XD) and twelve 

different basis sets (d-aug-)cc-pVXZ (X=D, T, Q, 5). The molecular anions were not 

bound at the Hartree-Fock level, so only the density functional theory methods were used 

to compute charges for CH3
−, NH2

−, and OH−. Figure 1.4 compares the charges from the 
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most popular and promising information-theoretic methods to the charges from traditional 

population analysis methods based on orbital-based partitioning (represented by natural 

population analysis, NPA), topological partitioning (represented by the quantum theory of 

atoms in molecules, QTAIM), and electrostatic fitting (using the Hu-Lu-Yang procedure, 

HLY). 

 None of the methods we consider is very sensitive to the choice of electronic 

structure method. The traditional methods are relatively insensitive to basis set, with HLY 

charges being almost invariant to basis set and electronic structure method, and NPA 

charges being slightly more sensitive, and QTAIM charges showing the greatest 

dependence on basis set, especially for the molecular cations. In terms of method/basis-

set stability, however, the best method by far is the conventional Hirshfeld method. The 

ISA charges and Hirshfeld-E charges perform well also, though we note that the 

Hirshfeld-E has shown problematic basis-set sensitivity for inorganic oxides.73 

 The other information-theoretic methods we considered have significantly greater 

basis-set dependence. The MBIS method performs well for neutral and positively charged 

molecular ions, but is overly sensitive to basis set for molecular anions. We speculate that 

this is because the limited number of Slater functions available means that the 

promolecule density in MBIS is a poor approximation to the slowly decaying molecular 

density for anions.  

As discussed in section 1.5.3, the Achilles heel of variational Hirshfeld-I is its 

extreme sensitivity to method/basis set, and Figure 1.4 confirms this: variational Hirshfeld-

I is the worst population analysis methods we considered by this measure. We wondered 
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whether using a different divergence measure might alleviate this sensitivity, so we also 

generated results using the Hellinger-Bhattacharya distance (with 2ν = ) as a divergence, 

i.e., replacing Eq. (1.14) with  
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As seen in Figure 1.4, however, this revision did not improve the performance of the 

variational Hirshfeld-I method. 

 While the original self-consistent Hirshfeld-I method is not as exquisitely 

sensitive to changes in basis set as variational-Hirshfeld-I, it still shows excessive 

dependence on basis set, especially for Nitrogen-containing molecules. (However, 

Hirshfeld-I is also more sensitive to basis set than one would like for the hydronium atom, 

H3O+.) This problem arises because the nitrogen anion does not exist in nature, and also 

does not exist at some of the levels of theory we considered. (However, the nitrogen 

anion is erroneously predicted to be bound for UB3LYP and UωB97XD for sufficiently 

large and diffuse basis sets.) However, the electron density of the nitrogen anion is an 

essential ingredient in the Hirshfeld-I procedure when the charge on the nitrogen AIM is 

negative (and greater than minus two); when the charge on the nitrogen AIM is less than 

minus two (and greater than minus three), the electron density of the nitrogen dianion is 

also required. The Hirshfeld-I method uses the electron densities of these basis-set-bound 

(or otherwise very weakly bound or unbound) anions, and this imparts undesirable basis-

set-sensitivity to Hirshfeld-I. In particular, as seen in the Appendix 7.3, the electron 



 
 

47 

densities of the reference pro-atoms for the oxygen dianion and the nitrogen (di)anion are 

very sensitive to the presence of diffuse functions in the basis set. 

We expect that as one reduces the molecules in our set, the charge on the central 

atom will decrease. That is, we expect that qC(CH3
+) > qC(CH4) > qC(CH3

-) for the carbon 

series, qN(NH4
+) > qN(NH3) > qN(NH2

-) for the nitrogen series, and qO(H3O+) > qO(H2O) 

> qO(OH-) for the oxygen series). QTAIM and Mulliken charges violate the expected 

trend in all series, and Hirshfeld-I and Hirshfeld-E violate the trends for the nitrogen and 

oxygen series. Variational Hirshfeld-I does not entirely violate our intuition, but for many 

methods/basis sets the charge on the nitrogen atom barely changes when one moves from 

NH4
+ to NH3, which seems questionable, and is inconsistent with the results from most of 

the other population analysis methods. 

The other methods give chemical trends that are largely in agreement with our 

expectations. This does not mean that those methods are flawless, however. For example, 

Hirshfeld partitioning is known to give problematic chemical trends for atoms containing 

large electron-rich atoms.117 

While it is impossible to say what the “right” value for the charge of an AIM is, 

there are certain times when the charges fail to conform to our expectations. For example, 

it seems that Hirshfeld charges are usually “too small” in magnitude and that, conversely, 

the QTAIM charges are usually “too big”. Likewise one can argue that the NPA charges 

seem to be too negative for the central atom in these molecular anions, and that it is 

especially counterintuitive to see carbon charges of ~ -0.8 from NPA in methane. The 

Hirshfeld-I charges in the nitrogen-containing molecules often seem too negative, 
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probably because the nitrogen pro-atom in these species is too diffuse. As mentioned 

before, the MBIS charges for CH3
− and NH2

− are very sensitive to basis set. In addition, 

the MBIS charges for these species are anomalously negative. 
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Figure 1.4 Comparison between partitioning schemes at different levels of theory. For each scheme, 
three columns plot the charges computed using twelve Dunning basis sets (d-aug-)ccpVXZ with X=D, 
T, Q, 5 basis functions) at UHF, UB3LYP, and UωB97XD levels of theory, respectively. (Only 
UB3LYP and UωB97XD give bound molecular anions, so there are only two columns for each 
partitioning scheme in the last column of figures.) The absolute range of the atomic charges obtained 
using various basis sets for each level of theory is summarized on the x-axis alongside the partitioning 
method. The methods used are Hirshfeld (H), Iterative Hirshfeld (HI), Iterative Stockholder Analysis 
(ISA), Hirshfeld-E (HE), Minimal Basis Stockholder Analysis (MBIS), Variational Hirshfeld-I with 
Kullback-Leibler divergence (Eq. (1.14); VHI-KL), Variational Hirshfeld-I with generalized 
Hellinger-Bhattacharya distance with ν = 2 (Eq. (1.62); VHI-H2), Natural Population Analysis (NPA), 
Hu-Lu-Yang electrostatic fitted charges (HLY), Quantum Theory of Atoms in Molecules (QTAIM). 
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1.6 Outline 

 In the first part of this thesis, entitled “Information-Theoretic Atoms in 

Molecules”, we characterize the scope of Hirshfeld-like partitioning methods by precisely 

delimiting when the Hirshfeld partitioning is obtained, and when it is not. 

 In chapter 2, we expose conditions on the local divergence measures that are 

necessary, and sufficient, to recover the popular Hirshfeld partitioning. Specifically, we 

show that among all local measures of divergence between two probability distribution 

functions, the Hirshfeld partitioning is obtained only for f-divergences. 

 In chapter 3, this is extended by demonstrating that some nonlocal divergence 

functionals, namely the statistical divergence measures associated with non-extensive 

thermodynamic entropy functions like the Tsallis, Réyni, Sharma-Mittal, supraextensive, 

and H-divergences, are associated with the Hirshfeld atoms-in-molecules partitioning as 

well.  

 These findings dramatically extend the mathematical framework that one uses for 

similarity-based atoms-in-molecules partitioning by revealing that many different ways of 

measuring the divergence between densities lead to the Hirshfeld partitioning. In addition, 

it subsumes a large body of prior work, where the Hirshfeld partitioning was derived, and 

re-derived, by using different density divergences1, 27, 29, 118 and has potential applications 

in computational algorithms for electronic structure theory, e.g., density-fitting.82, 119-123 

The mathematical tools presented in these chapters are suitable for measuring the 

divergence between other probability distribution functions that arise in quantum 

chemistry too. For example, there has been significant recent interest in approaches that 
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use the shape function,27, 118, 124-125 instead of the electron density, to describe chemical 

phenomena.126-130 

 In the second part of this thesis, entitled “Optimal Pro-atom Densities”, we 

address the important issue of selecting the best reference pro-atoms for partitioning the 

molecule into atoms.  

 In chapter 4, a general and flexible additive pro-atom density model is introduced. 

This pro-atom model is variationally optimized so that the promolecular density 

approximates the molecular density as accurately as possible; these pro-atoms are then 

used for conventional Hirshfeld partitioning. Inspired by the MBIS approach, we take 

advantage of the extended Kullback-Leibler divergences to measure the similarity 

between the molecular and pro-molecular density because: a) this results in a size 

consistent partitioning, b) this guarantees that the atom and pro-atom have the same 

number of electrons (without requiring any constraints), and c) this results in a convex 

optimization problem if the parameters to be optimized are linear. Specifically, we choose 

to express the pro-atom densities as nonnegative linear combinations  of the atomic 

densities of all bound states of the atoms, which we call the Additive Variational 

Hirshfeld (AVH) partitioning scheme. 

 In chapter 5, the multiplicative pro-atom density model is described. This model is 

based on realization that the additive atomic density model in the chapter 4 can be viewed 

as a weighted arithmetic average of the spherically-averaged densities of the bound 

atomic ions. Using instead the weighted geometric average leads to the multiplicative 

pro-atom model. The advantage of the multiplicative model is that it allows us to easily 
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control the asymptotic behavior of atomic density. For example, based on 

electronegativity equalization principle, we can constrain all atoms to have the same 

ionization potential, and set their common ionization potential to equal the molecule’s 

ionization potential. In addition, through this pro-atom model, one can easily make sure 

that the pro-atom densities have the correct nuclear cusps. The presentation of the 

geometric model is followed by a brief numerical assessment of the models laid out in 

chapters 4 and 5, and a recapitulation of our most important findings. 

 These flexible pro-atom models provide a new vista on the problem of partitioning 

the molecular density. Because the pro-atom densities can be variationally optimized 

concurrently with the density of the AIM, they allow one to add constraints in a 

straightforward manner. We expect that these elegant mathematical and chemical features 

improve the quality and transferability of the Hirshfeld charges significantly. Specifically, 

we believe that the Additive Variational Hirshfeld (AVH) partitioning scheme, with its 

many superior mathematical and chemical features, may be the best possible Hirshfeld 

partitioning scheme. 
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2  Local Divergence Measures 
 

 

2.1 Background 

 In 1986, Rychlewski and Parr,131 suggested that the electron density of an atom in 

a molecule should be chosen to minimize the deviation of the atom-in-molecule density, 

  ρA r( ) , from a reference pro-atomic density,    ρA
0 r( ) , subject to the constraint that the sum 

of the atomic densities is equal to the molecular density, 

 
   
ρmolecule r( ) = ρA r( )

A=1

Natoms

∑   (2.1) 

Specifically, Rychlewski and Parr used the energy-gap between the atom in a molecule 

and the reference pro-atom to quantify the deviation between them, obtaining the 

partitioning procedure, 
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(Here   Ev ρ⎡⎣ ⎤⎦ = F ρ⎡⎣ ⎤⎦ + ρv  is the variational Hohenberg-Kohn energy functional.37) 

While the Rychlewski-Parr procedure, which is often called partition-density functional 

theory, has reemerged in recent years, it is computationally problematic and can, at least 

in some cases, give atoms in molecules with delocalized densities.132-135 
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 More than a decade later, Nalewajski and Parr revisited this procedure, using the 

Kullback-Leibler entropy (or information)136-137 to measure the deviation of the atom-in-

molecule density from the reference pro-atomic density,25-26 
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In stark contrast to the computational difficulties attendant to the Rychlewski-Parr 

partitioning, the Nalewajski-Parr procedure can be performed analytically, giving  
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Remarkably, as introduced in previous chapter, Eq. (2.4) is the same partitioning that 

Hirshfeld had proposed more than two decades earlier, on purely heuristic grounds.21  

 Since then, many researchers have elaborated upon this basic approach, either by 

generalizing (and even optimizing) the choice of pro-atomic densities31, 58, 60, 72-73, 78, 80 or 

by using alternative measures of the deviation between densities.1, 27, 29, 118 Remarkably, 

the Hirshfeld partitioning formula, Eq. (2.4) is frequently recovered, even when the 

deviation between the atomic and pro-atomic densities is measured using functionals that 

are very dissimilar to the Kullback-Leibler divergence in Eq. (2.3).  

 So, how pervasive is the Hirshfeld partitioning? Does the Hirshfeld partitioning 

inevitably arise, no matter how the deviation between densities is measured? Clearly not, 

because the Rychlewski-Parr partitioning does not give Eq. (2.4). Does the Hirshfeld 
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partitioning arise whenever a local functional is used to measure the deviation between 

densities? Again, no, because using the squared   L2 -distance,  

 
   

ρA r( )− ρA
0 r( )( )2

dr∫
A=1

Natoms

∑ ,  (2.5) 

in place of the Kullback-Leibler divergence in Eq. (2.3) gives absurdly delocalized atomic 

densities, specifically, 
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 However, the Hirshfeld partitioning is remarkably pervasive. In this chapter, we 

consider divergence measures that are local functionals of the electron density. These can 

be written as 

 
   
H local ρ⎡⎣ ⎤⎦ = h ρ r( )( )dr∫   (2.7) 

where    h x( ) :R+ → R  is an ordinary function. Equivalently, to evaluate the functional 

derivative of a local functional at a point, one needs to only know the electron density at 

that point, 

 

 

   

δ H local ρ⎡⎣ ⎤⎦
δρ r( ) =

dh x( )
dx

x=ρ r( )
  (2.8) 

 Using a similar approach to Nalewajski and Parr, these measures are studied 

thoroughly, and it is shown that any f-divergence138-140 between the densities of the atom 

and pro-atom, 
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suffices to recover the Hirshfeld partitioning, Eq. (2.4). Here, f is any convex function 

with   f (1) = 0 .138-140 The Kullback-Leibler divergence used by Nalewajski-Parr in Eq. 

(2.3), is obviously a special case of an f-divergence, corresponding to the choice of 

  f (x) = − ln(x) . We also show that having an f-divergence is also necessary for the 

Hirshfeld partitioning. That is, no other local measure of the deviation between densities 

recovers the Hirshfeld partitioning. A few especially interesting families of f-divergence 

are also characterized at the end of this chapter. 

2.2 f-divergence is Sufficient for the Hirshfeld Partitioning 

 Suppose that one chooses the densities of the atoms in a molecule by minimizing 

their f-divergence from the densities of their corresponding reference pro-atoms, subject 

to the constraint that the sum of the atomic densities recovers the total molecular density,  

 

    

min

ρA r( )ρmolecule r( )= ρA r( )
A=1

Natoms

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

! ρA r( ) f
ρA

0 r( )
ρA r( )

⎛

⎝
⎜

⎞

⎠
⎟ dr∫

A=1

Natoms

∑   (2.10) 

An explicit equation for the atomic densities is obtained by solving the system of 

nonlinear equations,  

   

0 = δ
δρA r( ) ρA r( ) f

ρA
0 r( )

ρ A r( )
⎛

⎝
⎜

⎞

⎠
⎟ dr∫

A=1

Natoms

∑ − λ r( ) ρmolecule r( )− ρA r( )
A=1

Natoms

∑
⎛

⎝⎜
⎞

⎠⎟
dr∫

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪A=1

Natoms

  (2.11) 
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The term in brackets is the Lagrangian corresponding to the optimization formulated in 

(2.10), and λ(r) is the Lagrange multiplier for the constraint.  

 Evaluating the functional derivatives in Eq. (2.11), we obtain the result 

 

   

g
ρA

0 r( )
ρA r( )

⎛

⎝
⎜

⎞

⎠
⎟ = λ r( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪A=1

Natoms

,  (2.12) 

where  

 
 
g x( ) = x

df x( )
dx

⎛

⎝
⎜

⎞

⎠
⎟ − f x( )   (2.13) 

is the Legendre transform of   f (x) . Equation (2.12) implies that, for any two atoms,  

 
   
g

ρA
0 r( )

ρA r( )
⎛

⎝
⎜

⎞

⎠
⎟ = g

ρB
0 r( )

ρB r( )
⎛

⎝
⎜

⎞

⎠
⎟

.
  (2.14) 

But, because f is convex, g is monotonically increasing, and therefore invertible. Since g 

is invertible, Eq. (2.14) is equivalent to the simpler statement 

 
   

ρA
0 r( )

ρA r( ) =
ρB

0 r( )
ρB r( )   (2.15) 

Equation (2.15) is the key relation from which the Hirshfeld partitioning follows.26-27 This 

is most easily seen by rewriting Eq. (2.15) as  

    ρB r( )ρA
0 r( ) = ρB

0 r( )ρA r( ) . (2.16) 

Summing both sides over all atoms A and using the constraint that the sum of atomic 

densities is the molecular density recovers Eq. (2.4). A detailed derivation can be found in 

Appendix 7.1. 
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2.3 f-divergence is Necessary for the Hirshfeld Partitioning  

2.3.1 Local Measures of Deviation Between Densities 

 In section 2.2, we showed that whenever the deviation between the electron 

densities of atoms from their corresponding reference pro-atoms is quantified by an f-

divergence, the Hirshfeld partitioning inexorably arises. We now show that the converse 

is also true. 

 To prove the converse, we must characterize the set of all “reasonable” ways of 

quantifying the deviation between two densities, and show that the Hirshfeld partitioning 

only arises when the formula for the deviation is an f-divergence.  

 To motivate our specific approach, note that the Hirshfeld partitioning is local: the 

atomic density of atom A at the point r depends only on the molecular density at r and the 

density of the pro-atoms at r. (Not every partitioning satisfies this requirement. For 

example, the Rychlewski-Parr partitioning (a.k.a. partition DFT) does not.) We therefore 

choose to impose an axiom of locality:  the density of an atom at r is a local property, and 

does not depend on the density of the molecule or pro-atoms at points r′ ≠ r.  The axiom 

of locality is equivalent to assuming that the deviation between the densities of the atom 

and pro-atom is quantified by a local functional, with the general form  

 
   
H ρ,ρ 0⎡⎣ ⎤⎦ ≡ h ρ r( ),ρ 0 r( )( )dr∫ .  (2.17) 

This is only a sensible measure of the deviation between two densities if H satisfies  

   
H ρ,ρ 0⎡⎣ ⎤⎦ > H ρ 0 ,ρ 0⎡⎣ ⎤⎦ = 0 , (2.18) 

whenever the density and the pro-density have the same number of electrons,  
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ρ r( )dr∫ = ρ 0 r( )dr∫ .  (2.19) 

2.3.2 Local Measure of Deviation Giving Hirshfeld Partitioning 

 To characterize which functions,   
h x, y( ){ } , give the Hirshfeld partitioning, we 

notice that if 

 

   

δ H ρ,ρ 0⎡⎣ ⎤⎦
δρ r( ) =

∂h x, y( )
∂x

⎛

⎝
⎜

⎞

⎠
⎟

x=ρ r( )
y=ρ0 r( )

= φ
ρ r( )
ρ 0 r( )

⎛

⎝
⎜

⎞

⎠
⎟ , (2.20) 

where  φ x( )  is an invertible function for   x ≥ 0 , then Hirshfeld partitioning is recovered 

because  

 

    

min

ρA r( )ρmolecule r( )= ρA r( )
A=1

Natoms

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

! h ρA r( ),ρA
0 r( )( )dr∫

A=1

Natoms

∑

φ
ρA r( )
ρA

0 r( )
⎛

⎝
⎜

⎞

⎠
⎟ = φ

ρB r( )
ρB

0 r( )
⎛

⎝
⎜

⎞

⎠
⎟ = λ r( )

ρA r( )
ρA

0 r( ) =
ρB r( )
ρB

0 r( )

  (2.21) 

This last equation implies the Hirshfeld partitioning, Eq. (2.4).  

The converse is also true: the Hirshfeld partitioning is not obtained unless the last 

line of Eq. (2.21) is true. The last line of Eq. (2.21) is, furthermore, equivalent to the 

second line. The second line, however, leads to Eq. (2.20). To show this, consider what 

would happen if the Eq. (2.20) were replaced by the more general result,  
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δ H ρ,ρ 0⎡⎣ ⎤⎦
δρ r( ) =

∂h x, y( )
∂x

⎛

⎝
⎜

⎞

⎠
⎟

x=ρ r( )
y=ρ0 r( )

= γ ρ r( ),ρ 0 r( )( )   (2.22) 

Then the second line of Eq. (2.21) would be replaced by the more general equation,  

 
   
γ ρA r( ),ρA

0 r( )( ) = γ ρB r( ),ρB
0 r( )( )   (2.23) 

The solution to this equation is the last line of Eq. (2.21) (i.e., the Hirshfeld partitioning) 

only if 
  
γ ρ r( ),ρ 0 r( )( )  is, in fact, merely a function of   ρ r( ) ρ 0 r( ) . Therefore we may 

rewrite the function as 
  
γ ρ r( ) ρ 0 r( )( ) . In addition, this function must be invertible, for 

otherwise there would—at least in some cases—be alternative, non-Hirshfeld 

partitionings consistent with Eq. (2.23). 

2.3.3 Functional Form of a Local Measure of Deviation Giving 

Hirshfeld Partitioning 

 We now need to show that all local measures of the deviation between two 

densities that satisfy Eqs. (2.18) and (2.20) are f-divergences. To do this, we must 

determine when the functional derivative relation in Eq. (2.20) is satisfied. For a point r 

and pro-density ρ0, Eq. (2.20) is an ordinary differential equation in x with the form: 

 
  

dh x, y( )
dx

= φ x
y

⎛
⎝⎜

⎞
⎠⎟

,  (2.24) 

where y is a constant and h(y,y) = 0 (from Eq. (2.18)). This equation may be formally 

solved by separation of variables, giving,   
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h x, y( ) = y Φ x

y
⎛
⎝⎜

⎞
⎠⎟
− Φ 1( )⎛

⎝⎜
⎞
⎠⎟

  (2.25) 

where (cf. Eq. (2.20))  

 
 
φ u( ) = dΦ u( )

du
  (2.26) 

is required to be invertible. That is, the Hirshfeld partitioning is obtained whenever the 

deviation between densities is measured using the local functional,  

 
   
H ρ,ρ 0⎡⎣ ⎤⎦ = ρ 0 r( ) Φ

ρ r( )
ρ 0 r( )

⎛

⎝
⎜

⎞

⎠
⎟ − Φ 1( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dr∫ ≥ 0   (2.27) 

 The function φ  is invertible only if it is monotonic:  i.e., it is either a strictly 

increasing or strictly decreasing function of u. This means, in turn, that Φ must be either 

strictly convex or strictly concave.  

 However, Eq. (2.18) implies that Φ is convex. To see this, consider that if Φ were 

concave, then Φ would be less than or equal to the value of its tangent line at u = 1, 

 
  
Φ u( ) ≤φ 1( )u + Φ 1( )−φ 1( )( ) .  (2.28) 

Therefore,  

 

   

ρ 0 r( ) Φ
ρ r( )
ρ 0 r( )

⎛

⎝
⎜

⎞

⎠
⎟ − Φ 1( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dr∫ ≤ φ 1( )ρ 0 r( ) ρ r( )
ρ 0 r( ) −1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dr∫

≤ φ 1( ) ρ r( )− ρ 0 r( )( )dr∫
  (2.29) 

Consider the special case where the density and the pro-density have the same number of 

electrons, Eq. (2.19). In this case, Eq. (2.29) implies that H[ρ,ρ0] ≤ 0, contradicting our 

initial assumptions (cf. Eq. (2.18)). 
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2.3.4 f-Divergences are Local Measures of Deviation Giving the 

Hirshfeld Partitioning 

In the previous section, we showed that if a local measure of the deviation 

between two densities recovers the Hirshfeld partitioning, it has the form (2.27), where Φ 

is convex. We now show that this is equivalent to assuming that H[ρ,ρ0] is an f-

divergence. 

Equation (2.27) measures the deviation between densities by a local functional 

with the form  

 
   
ρ 0 r( )F

ρ r( )
ρ 0 r( )

⎛

⎝
⎜

⎞

⎠
⎟ dr∫ ≥ 0 ,  (2.30) 

where F is a convex functional with F(1) = 0. 

 Equation (2.30) is the form of an f-divergence (cf. Eq. (2.9)) except that the roles 

of the density and the pro-density are interchanged. However, choose F to have the 

special form  

 
   
F

ρ r( )
ρ 0 r( )

⎛

⎝
⎜

⎞

⎠
⎟ =

ρ r( )
ρ 0 r( ) f

ρ 0 r( )
ρ r( )

⎛

⎝
⎜

⎞

⎠
⎟ ,  (2.31) 

where f(x) is a convex function with f(1) = 0. Then Eq. (2.30) is equivalent to the usual 

form of f-divergence,  

 
   
ρ r( ) f

ρ 0 r( )
ρ r( )

⎛

⎝
⎜

⎞

⎠
⎟ dr∫ ≥ 0 .  (2.32) 

 To show that the only local measures of the deviation between densities that 

recover the Hirshfeld partitioning are f-divergences, we need to show that Eq. (2.31) is 



 
 

63 

always an allowable form of the function F. Since f(1) = 0, F(1) = 0. So we need only 

show that F is convex. If we assume that F is twice-differentiable, then  

 

  

d 2F
du2 = d 2

du2 uf u−1( )( ) = u−3
d 2 f u−1( )
d u−1( )2 > 0 ,  (2.33) 

which establishes the convexity of the form of F(u). A slightly more general derivation 

starts from the derivative,  

 
  
dF
du

= − d
du

uf u−1( )( ) = − u−1 ′f u−1( )− f u−1( )( )   (2.34) 

The right-hand side of this equation is minus one times the Legendre transform of f(u–1), 

so it is an increasing function of u–1. Since dF/du is an increasing function of u, F(u) is 

convex.  

 Summarizing, among all the possible local functionals that might be used to 

measure the deviation between two densities, only the f-divergences give the Hirshfeld 

partitioning.  

2.4  Characterizing f-divergences 

 Because the family of f-divergences is so diverse, and because the preceding 

treatment is abstract, it seems beneficial to present some specific members of the family 

that have nice properties. Subsections 2.4.1 and 2.4.2 present two families of f-divergence 

that can be given explicit parameterizations. Specifically, in subsection 2.4.1, we assume 

that the f-divergence has a Taylor series expansion (entire f-divergences). In subsection 

2.4.2, we assume that the f-divergence is also a Bregman divergence (α-divergences). 
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Like most f-divergences, these families treat the densities of atoms and pro-atoms 

inequivalently, which means that one cannot interpret the f-divergence as a measure of 

“distance” between the atom and the pro-atom. In subsection 2.4.3, we discuss ways to 

symmetrize the f-divergence. While most symmetrized f-divergences are not distance 

metrics (they do not satisfy the triangle inequality), appropriately symmetrized α-

divergences are squared metrics.141-142 

2.4.1 Entire f-divergences 

 In this subsection we assume that f(x) is entire, which means that it can be 

expressed as a Taylor series. To construct the Taylor series for f(x), we recall that every 

positive polynomial can be written as the sum of the squares of two polynomials,  

 

   

P x( ) = p x( )( )2
+ q x( )( )2

≥ 0

p x( ) = a0 + a1x + a2x2 +!

q x( ) = b0 + b1x + b2x2 +!

  (2.35) 

Therefore, 

 

   

P x( ) = a0
2 + b0

2( ) + 2a1a0 + 2b1b0( )x +!+ aian−i + bibn−i( )
i=0

n

∑⎛⎝⎜
⎞
⎠⎟

xn +!

≥ 0

  (2.36) 

By choosing P(x) to be the second derivative of f(x), we ensure that f(x) is convex. 

Integrating P(x) twice, we obtain 

 

   

f x( ) = A+ Bx + 1
2 a0

2 + b0
2( )x2 + 1

6 2a1a0 + 2b1b0( )x3 +!

!+ 1
n+ 2( ) n+1( ) aian−i + bibn−i( )

i=0

n

∑⎛⎝⎜
⎞
⎠⎟

xn+2 +!
  (2.37) 
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The value of A is determined by the requirement that f(1) = 0, 

 

   

A = −

B + 1
2 a0

2 + b0
2( ) + 1

6 2a1a0 + 2b1b0( ) +!
!+ 1

n+ 2( ) n+1( ) aian−i + bibn−i( )
i=0

n

∑⎛⎝⎜
⎞
⎠⎟
+!

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

,  (2.38) 

but all the other parameters in Eq. (2.37) are arbitrary real numbers; different choices for 

these parameters lead to different members of the family of entire f-divergences.  This 

seems to be the largest family of f-divergences that can be explicitly parameterized. 

2.4.2 α-divergences 

In the literature, the most popular choices for the f-divergence are members of the 

family of α-divergences, with  

 
  
f x( ) = xα −1

α α −1( )   (2.39) 

where α is a real number. (Note that the α-divergences are not entire except when α = 

2,3,…) The α-divergences are equivalent to the Tsallis divergences considered in ref. 118. 

I.e., 

 

   

Hα ρ,ρ 0⎡⎣ ⎤⎦ =
1

α α −1( ) ρ r( ) ρ 0 r( )
ρ r( )

⎛

⎝
⎜

⎞

⎠
⎟

α

−1
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

dr∫

= 1
α α −1( ) ρ r( )( )1−α ρ 0 r( )( )α − ρ r( )dr∫

  (2.40) 

In the α→0 limit, this is an indeterminate form, and one has the Kullback-Leibler directed 

divergence, 
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Hα=0 ρ,ρ 0⎡⎣ ⎤⎦ = ρ r( )ln ρ r( )

ρ 0 r( )
⎛

⎝
⎜

⎞

⎠
⎟ dr∫   (2.41) 

The form is unbounded (not indeterminant) as α→1 unless the pro-molecular density and 

molecular density have the same number of electrons. When that is true, however, Eq. 

(2.40) reduces to 

 
   
Hα=1 ρ,ρ 0⎡⎣ ⎤⎦ = ρ 0 r( )ln ρ 0 r( )

ρ r( )
⎛

⎝
⎜

⎞

⎠
⎟ dr∫ .  (2.42) 

 Among the innumerable possibilities for the f-divergence, the family of α-

divergences is special, and deserves further scrutiny. If (1) the α-divergence is 

symmetrized as discussed in section 2.4.3, (2) the deviation between atomic and pro-

atomic densities is measured relative to their average, and (3) the molecular density and 

pro-molecular density contain the same number of electrons, then the resulting f-

divergence is the square of a distance metric. This enriches our understanding of the 

Hirshfeld partitioning, by clarifying what we mean when we say that the densities of 

Hirshfeld atoms are “as close as possible” to the densities of the corresponding pro-atoms. 

Specifically, we may say that the Hirshfeld atomic densities minimize the α-distance to 

the pro-atomic densities. 

2.4.3 Symmetrized f-divergences 

The specific f-divergences considered in the preceding sections are directed 

divergences: the density and the pro-density enter the formula in different ways, so in 

general, H[ρ,ρ0] ≠ H[ρ0,ρ]. However, as we showed in section 2.3.4, for any asymmetric f-

divergence, one can formulate another f-divergence in which the roles of the density and 
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the pro-density are interchanged. Averaging these two f-divergences gives a symmetric f-

divergence.  

 Therefore, for any (possibly asymmetric) f-divergence, there exists a 

corresponding symmetrized f-divergence, with   
fsym x( ) = 1

2 f x( ) + 1
2 x f x−1( ) . This 

divergence has the form 

 

   

Hsym ρ,ρ 0⎡⎣ ⎤⎦ =
ρ r( )

2
f

ρ 0 r( )
ρ r( )

⎛

⎝
⎜

⎞

⎠
⎟ +

ρ 0 r( )
2

f
ρ r( )
ρ 0 r( )

⎛

⎝
⎜

⎞

⎠
⎟ dr∫

= 1
2 H ρ,ρ 0⎡⎣ ⎤⎦ + H ρ 0 ,ρ⎡⎣ ⎤⎦( )

   (2.43) 

 The symmetrized f-divergence in Eq. (2.43) is still not a distance metric because it 

does not, in general, satisfy the triangle inequality. (The Hellinger distance, 

  
f x( ) = x −1( )2

, is an exception.29, 143) Consider what happens if we also symmetrize the 

reference densities, so that both of the divergences in Eq. (2.43) are measured relative to 

the average of the atomic and pro-atomic densities, 

   

Hsym ρ,ρ 0⎡⎣ ⎤⎦ =
ρ r( )

2
f

1
2 ρ r( ) + ρ 0 r( )( )

ρ r( )
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+
ρ 0 r( )

2
f

1
2 ρ r( ) + ρ 0 r( )( )

ρ 0 r( )
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

dr∫

= 1
2 H ρ, 1

2 ρ + ρ 0( )⎡
⎣

⎤
⎦ + H ρ 0 , 1

2 ρ + ρ 0( )⎡
⎣

⎤
⎦( )

   (2.44) 

This is still an f-divergence because if f(x) is convex and has f(1) = 0, then 

  
fsymref x( ) = f 1

2 + x
2( )   also has those properties. For the special case where f(x) is an α-

divergence and the pro-molecular density and molecular density contain the same number 

of electrons, Eq. (2.44) is the square of a distance measure,141-142 
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Dα

2 ρ,ρ 0( ) =
ρ r( )( )1−α + ρ 0 r( )( )1−α⎡

⎣⎢
⎤
⎦⎥

1
2 ρ r( ) + ρ 0 r( )( )⎡

⎣
⎤
⎦
α
− ρ r( ) + ρ 0 r( )( )⎛

⎝⎜
⎞
⎠⎟ dr∫

2α α −1( )   (2.45) 

In the cases where this is an indeterminant form, one recovers the Jensen-Shannon 

divergence, 

   

Dα= 0,1{ }
2 ρ,ρ 0( ) = 1

2
ρ r( )ln ρ r( )

1
2 ρ r( ) + ρ 0 r( )( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟∫ + ρ 0 r( )ln ρ 0 r( )

1
2 ρ r( ) + ρ 0 r( )( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

dr .  (2.46) 

As discussed in ref. 29, there are interpretative advantages when one uses a distance metric 

to measure the deviation between the atomic densities and their corresponding pro-atomic 

densities.  

2.5 Selecting Reference Pro-atoms 

 A desirable feature of the Rychlewski-Nalewajski-Parr approach to defining 

atoms in a molecule is that, by minimizing the deviation between the atomic densities and 

the pro-atomic densities, one ensures that the properties of the pro-atoms are “as 

transferable as possible” to the atoms in a molecule. (The optimality of this transferability 

can be precisely specified, but it obviously depends on the way one measures the 

deviation between the atomic and pro-atomic densities.27) Given a choice of several 

reference pro-atomic densities (e.g., the densities of isolated atoms with various charges), 

we can maximize the transferability of these reference atoms’ properties to the atoms in 

the molecule by minimizing the f-divergence as a function of the reference pro-atoms. 

This is extensively addressed in chapters 4 and 5. 
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 For concreteness, consider the special case where the pro-atomic densities depend 

only on the number of electrons in the pro-atoms, denoted by    
ρA

0 r, N A
0( ) . The optimal 

pro-atoms can be obtained by minimizing the expression in Eq. (2.10) with respect to the 

populations of the reference pro-atoms, 

 

    

min
N A

0{ }
! min

ρA r( )ρmolecule r( )= ρA r( )
A=1

Natoms

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

! ρA r( ) f
ρA

0 r, N A
0( )

ρA r( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

dr∫
A=1

Natoms

∑   (2.47) 

The inner minimization can be performed analytically, with the solution in Eq. (2.4). 

Substituting this into Eq. (2.47), 

    

min
N A

0{ }
! ρA

0 r, N A
0( ) ρmolecule r( )

ρB
0 r, N B

0( )
B=1

Natoms

∑

⎛
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  (2.48) 

In the second line, the pro-molecular density is defined as 

 
   
ρmolecule

0 r, N A
0{ }( ) = ρA

0 r, N A
0( )

A=1

Natoms

∑   (2.49) 

This indicates that—at least from the standpoint of transferability—the optimal pro-atoms 

should be chosen so that the deviation of the molecular density from the pro-molecular 

density is as small as possible. This suggests a two-step approach to atomic partitioning 

procedure based on the f-divergence: 
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1. Determine the optimal pro-atomic densities by minimizing the f-divergence 

between the pro-molecular and molecular densities, Eq. (2.48). Different f-

divergences will give different optimal pro-atoms. 

2. Determine the densities of the atoms in a molecule that maximally resemble the 

specified reference pro-atoms using the explicit Eq. (2.4). For a given choice of 

pro-atoms, different f-divergences give the same atomic densities. 

 In accord with the axiom of locality, the atomic density at a point in space, r, 

depends only on the molecular density and the pro-atomic densities at r. However, the 

value of the pro-atomic density at r depends on the molecular density (and the density of 

the other pro-atoms) at all points in space, through the integral in Eq. (2.48). It seems 

unclear which f-divergences give pro-atoms whose locality is most consistent with 

chemical intuition. The choice is f-divergence is discussed more in chapter 4. 

 However, it is reasonable to speculate that f-divergences that exaggerate the 

nearly-inevitable large asymptotic deviations between the molecular and pro-molecular 

densities (e.g., the Kullback-Leibler form, where f(x→0) diverges) are less than ideal. It 

may be preferable to choose an f-divergence that prevents divergent values of x from 

contributing disproportionately to the integral in Eq. (2.48) (e.g.,   f x( ) = 21−x −1 or 

  f x( ) = 1− x( ) 1+ x( ) ). 

 One can also constrain the pro-atoms to have desirable properties by imposing 

constraints on the optimization in Eq. (2.47). The variational Hirshfeld method in ref. 72, 

which forces atoms and pro-atoms to have the same charge, does this. (However, because 

that method constrains the pro-atomic charges directly, it couples the inner and outer 
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minimization in Eq. (2.47), and so Eq. (2.48) is not valid for that method.) It would be 

very useful to constrain the pro-molecule and the molecule to have the same number of 

electrons. (However, for two inequivalent, well-separated, subsystems, imposing any 

property of the entire system as a constraint leads to a population analysis method that is 

not size-consistent.) More generally, one may constrain certain atoms or functional 

groups to have specified charges (perhaps to ensure consistency with a molecular 

mechanics force field). 

2.6 Conclusion 

 In this chapter, we have shown that among all local measures of divergence, the 

family of f-divergence measures is necessary and sufficient to recover the Hirshfeld 

partitioning scheme. Special cases of f-divergence measures were characterized. And it 

was demonstrated that for Hirshfeld atoms-in-molecule, the total f-divergence of all 

atomic densities relative to reference pro-atom density is equivalent to the f-divergence 

between molecular and pro-molecule densities. 
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3  Nonlocal Divergence Measures 
 

 

3.1 Background 

 This work was initiated when our numerical investigations revealed that 

optimizing the pro-atoms (as will be discussed in chapters 4 and 5), gave the same results 

for the Tsallis and Réyni divergences. We were surprised that the Réyni divergence, even 

though it is not an f-divergence, gave back the Hirshfeld partitioning. This led us to 

explore what other sorts of nonlocal divergence measures would recover the Hirshfeld 

partitioning. This chapter reports the results of that exploration. 

 Here, we consider divergence measures that cannot be written as local functionals 

of the electron density. Specifically, we explore nonlocal functionals that are functions of 

local functionals discussed in chapter 2, i.e., 

 
   
Gnonlocal ρ⎡⎣ ⎤⎦ = g Flocal

1( ) ρ⎡⎣ ⎤⎦ , Flocal
2( ) ρ⎡⎣ ⎤⎦ ,…( )   (3.1) 

Of particular interest are divergence measures that are based on non-extensive functionals 

for the thermodynamic entropy. (Entropy functionals which are nonlocal are inherently 

non-extensive.) Extending the results of chapter 2, we show that a more general family of 

divergences, which are closely related to the α -divergence, gives rise to Hirshfeld atoms 

as well. This is the first time the Hirshfeld partitioning has been obtained from nonlocal 

divergence functionals. 
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 The nonlocal functionals denoted in Eq. (3.1) are not obviously f-divergences. To 

assess whether or not these recover Hirshfeld partitioning, specifically, we consider the 

directed divergence measures associated with the Tsallis divergence,118, 144-145  
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the Réyni divergence,145-147 
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the Sharma-Mittal divergence,148-151 
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a recently proposed supraextensive divergence,152 
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and the very general family of H-divergences,153  
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  (3.6) 

These H-divergences are not a valid divergence measure for every choice for the ( )1 xϕ , 

( )2 xϕ , and ( )h x  functions. It suffices, however, for ( )1 xϕ  to be convex with ( )1 1 0ϕ =  

(as for an f-divergence), ( )2 0xϕ > , and ( )h x  to be monotonic, ( ) 0h x′ > , and ( )0 0h = .  

There are further extensions (e.g., corresponding to position-dependent values, 

( )α r , for the parameter in Tsallis divergence)153-154 but we choose not to explore those 

generalizations here. We also omit consideration of divergence measures that are 

invariant to coordinate rotations (e.g., the total Bregman divergence).155-157 Finally, we 

note that divergence measures in Eqs. (3.2)-(3.6) are slightly different from the usual 

form of these divergence measures. This revision is needed because atomic electron 

densities are normalized to the number of electrons, while the traditional divergence 

measures only apply to probability distribution functions that are normalized to one. 

The Tsallis divergence is known to be an f-divergence and, in particular, is closely 

related to the special type of f-divergences called the α -divergences,28, 138-140, 145, 158 
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where 
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 ( ) ( )
atoms

mol mol
1

N

A
A

N d dρ ρ
=

= = ∑∫ ∫r r r r   (3.8) 

is the number of electrons in the molecule. For convenience, we have chosen a different 

normalization of the α -divergence from the usual form. While we regard Eq. (3.7) as 

merely a notational convenience, we note that in the absence of prefactors, fI
α  is not a 

valid divergence measure for 0 1α≤ ≤ , because it is not convex. 

Specifically, the Tsallis divergence is proportional to the α -divergence145  

 
1

f
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I
I
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α

α
=

−
,  (3.9) 

Similarly, the Réyni divergence can be written as  
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1 ln 1
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.  (3.10) 

The α -divergence is also closely related to the Sharma-Mittal divergence,  
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, (3.11) 

and the supraextensive divergence, 

 ( )
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11 ln 1 1
1 1

f
SE

INI
N N
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α α

−−
−−

⎡ ⎤⎛ ⎞⎛ ⎞−⎢ ⎥= + + −⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟− − ⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦

.  (3.12) 

Notice that the Réyni, Sharma-Mittal, and supraextensive divergences are functions of 

local functionals (cf. Eq. (3.1)). They are therefore nonlocal density functionals, not f-

divergences. 
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3.2 Non-Extensive Entropy Measures 

Suppose one is given an information loss function that has the general form,  

 { } { } ( )0
gen mol ,A A fI g N Iα αρ ρ⎡ ⎤ =⎣ ⎦   (3.13) 

This form clearly encompasses and generalizes the Tsallis, Réyni, Sharma-Mittal, and 

supraextensive divergence measures. We then determine the atoms in molecule by the 

usual procedure,  
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ρA r( ) ρA r( )
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Natoms
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Introducing the constraint with a Lagrange multiplier, the Lagrangian is, 
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and the stationary condition for the minimum is, 
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where  
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The equation can then be written 
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As long as 1α ≠  and 0fg Iα∂ ∂ ≠ , this identity gives the key relation from which the 

Hirshfeld atom is derived, namely that ( ) ( )0
B Bρ ρr r  is the same for all atoms. (For 

example, it is sufficient to have a strictly monotonic ( )mol , fg N Iα  with respect to 0fI
α > .) 

For the Tsallis, Rényi, and Sharma-Mittal divergences,  
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For the supraextensive entropy, 
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  (3.23) 

Since this expression cannot be equal to zero, one must have 1β ≠ . In all these 

expressions, we have used the fact that 0fI
α ≥ , which presumes that the sum of the 

atomic densities and the sum of the reference pro-atomic densities have the same 

normalization.  
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 For local divergence functionals, one sometimes uses the fact that the densities of 

the reference pro-atoms, ( ){ } atoms0

1

N

A A
ρ

=
r , can be optimized to make the density of the so-

called promolecule, 

 ( ) ( )
atoms

0 0
mol

1

N

A
A

ρ ρ
=

= ∑r r   (3.24) 

as close as possible to the density of the molecule, ( )molρ r .28, 82 (This can remove the 

ambiguity associated with picking the reference pro-atoms.) This can also be done for 

these measures. To see this, notice that the key Hirshfeld criterion,  
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h
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=
r

r
r

,  (3.25) 

for some function ( )h r , can be written as  
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  (3.27) 

and Eq. (3.7) can be rewritten as  

   
I f
α ρmol ρmol

0⎡
⎣

⎤
⎦ = ρmol r( ) ρmol r( )

ρmol
0 r( )

⎛

⎝
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⎞
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⎟

α−1

dr∫ − Nmol = I f
α ρA{ } ρA

0{ }⎡
⎣

⎤
⎦   (3.28) 

where in Eqs. (3.26) and (3.28) we have used the constraint that the atom-in-molecule 

densities add up to the total molecular density. The pro-molecule density can therefore be 

optimized by the two-step procedure,  
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  (3.29) 

The identity (3.28) and the strategy in Eq. (3.29) clearly extend to any of the generalized 

α -divergences in this paper. While these formulas generalize the f-divergences 

considered in chapter 2 somewhat, they do not contradict the results in that paper because 

these divergences are not local functionals of the electron density.28 Their generalizations 

are also not very consequential, since one still obtains the Hirshfeld partitioning. 

However, while the Tsallis and Réyni divergences give the same pro-atoms (because both 

objective functions are minimized when 0
mol molfI

α ρ ρ⎡ ⎤⎣ ⎦  is made as small as possible), this 

is not necessarily true for the Sharma-Mittal and supraextensive divergences.  

3.3 H-Divergences 

The divergence measures we considered in the previous section are all based on 

non-extensive entropy formulas. The H-divergence formula in Eq. (3.6) generalizes these 

equations as well as the f-divergence. For example, the H-divergence is an f-divergence 

(up to a choice of normalization) if ( )1 1 0ϕ = , ( )1 xϕ  is convex, ( )2 1xϕ = , and ( )h x x= .  

As mentioned before, not every choice of functions in Eq. (3.6) is allowed. In this 

chapter, we consider only H-divergences which satisfy the requirements: 

• ( )h x  is monotonically increasing, ( ) 0h x′ > , and ( )0 0h = .  

• ( )1 xϕ  is convex, ( )1 0xϕ′′ > , and ( )1 1 0ϕ = .  



 
 

80 

• ( )2 0xϕ > . 

This gives { } { } { } { }
1 2 1 2

0 0 0
, , , , 0h A A h A AH Hϕ ϕ ϕ ϕρ ρ ρ ρ⎡ ⎤ ⎡ ⎤≥ =⎣ ⎦ ⎣ ⎦ , for the densities with the same 

normalization, which is one of the essential properties of a divergence measure. The 

analogous H-divergence derivation of the Hirshfeld atoms-in-molecules partitioning is 

found by minimizing 
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with the solution  
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where we have defined the convenient notation,  
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Note that by requiring that ( )1 xϕ  is a convex function with ( )1 1 0ϕ = , we ensure that 
1

Gϕ  

is an f-divergence. 
2

Gϕ  is not an f-divergence, but a type of normalization factor. Possible 

choices include ( )2 x xαϕ =  (0 1α≤ ≤ ), ( ) ( )2 1x x xϕ = + , ( ) ( )2 ln 1x xϕ = + , 

( ) ( )2 tanhx xϕ = . All of these functions are concave for 0x ≥ , ( )2 0xϕ′′ < . This is not 

required for H-divergence to be a valid divergence measures, but later it will turn out to 

be useful.  
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Inserting the functional derivatives,  
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into Eq. (3.31), we obtain the expression 
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  (3.34) 

Eq. (3.25), which leads to the Hirshfeld partitioning, is a solution to this equation. 

However, it may not be the only solution. In general, Eq. (3.34) gives an equation relating 

the densities of every atom-pair in the molecule, 

 ( )
( )

( )
( )0 0

A B

A B

g g
ρ ρ
ρ ρ

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

r r
r r

  (3.35) 

where  

 ( ) ( ) ( )( ) ( ) ( )( )1

2 2

1 1 2 22

1 G
g x x x x x x x

G G
ϕ

ϕ ϕ

ϕ ϕ ϕ ϕ′ ′= − − − .  (3.36) 

If ( )g x  is invertible for 0x ≥ , then the unique solution to Eq. (3.35) is  

 
( )
( )

( )
( )0 0

A B

A B

ρ ρ
ρ ρ

=
r r
r r

,  (3.37) 

which leads to the Hirshfeld partitioning. If we assume that all the functions are at least 

twice-differentiable, it is sufficient that ( )g x  be monotonic. Therefore, for 0x > ,  
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 ( ) ( ) ( )( )2 1

2

1 22 0xg x G x G x
G ϕ ϕ

ϕ

ϕ ϕ′ ′′ ′′= − >   (3.38) 

The conditions stipulated at the beginning of this section are almost sufficient to satisfy 

this equation because they ensure that 
2

Gϕ  is positive, that ( )1 xϕ′′  are positive, and that 

1
Gϕ  is nonnegative. If we further require ( )2 xϕ′′  to be nonpositive, then the Hirshfeld 

partitioning is the unique solution to the variational procedure (3.30). These conditions 

also suffice to derive the analogue of the identity in Eq. (3.28), namely that for the atom-

in-molecule densities obtained from Eq. (3.30),  

{ } { }
( ) ( )

( ) ( )
1 2 1 2

0
mol

mol 1
mol0 0

, , , , mol mol 0
mol

mol 2
mol

h A A h

d
I I h

d
ϕ ϕ ϕ ϕ

ρρ ϕ
ρ

ρ ρ ρ ρ
ρρ ϕ

ρ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎝ ⎠⎡ ⎤ ⎡ ⎤= = ⎜ ⎟⎣ ⎦⎣ ⎦ ⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∫

∫

r r
r

r r
r

. (3.39) 

3.4 Conclusions 

 In this chapter, extending on the results of chapter 2, we have shown that several 

nonlocal divergence measures, like Réyni, Sharma-Mittal, and supraextensive divergence 

measures, all lead to the Hirshfeld partitioning. These functionals are very closely linked 

to the α -divergence. This is desirable in the sense that it ensures that these measures are 

closely linked to a very popular and useful family of f-divergence measures, but it is 

undesirable insofar as it means that optimizing the pro-atom does not give significantly 

different results for these approaches. 
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 The H-divergence in represents a much more general class of measures. While it 

is difficult to find necessary conditions for the H-divergence that gives the Hirshfeld 

atom, it is sufficient to require the following properties for 0x > : 

• ( )h x  is monotonically increasing,   ′h x( ) > 0 . Also ( )0 0h = .  

• ( )1 xϕ  is convex, ( )1 0xϕ′′ > , and ( )1 1 0ϕ = . (same requirements as for an f-

divergence) 

• ( )2 0xϕ >  and is nonconvex, ( )2 0xϕ′′ ≤ . 

Note that this family of H-divergences is closely related to the f-divergences, but extends 

that set in a nontrivial way.   
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4  Theory of Variational Hirshfeld Partitioning 
 

 

4.1 Background 

 In this chapter, we explore the freedom in selecting the pro-atoms in the Hirshfeld 

partitioning scheme by introducing the very simple and flexible additive pro-piece model. 

As mentioned in the introduction, the Hirshfeld definition can be extended beyond atoms 

and functional groups to include any suitably defined molecular components. For 

example, in the minimal basis iterative stockholder (MBIS) partitioning, the components 

are atomic shells.82. The additive pro-piece model generalizes the MBIS approach for 

defining pro-density, and has many similarities with other extensions of the original 

Hirshfeld approach, e.g. the iterative Hirshfeld method,46, 60 the extended Hirshfeld 

method,73, 159 variational Hirshfeld-I, etc.31-33, 58, 72, 81, but has better mathematical 

properties. This model is combined with the theoretical framework laid in previous 

chapters to introduce the Additive Variational Hirshfeld (AVH) method, which 

variationally optimizes both the atoms and protoms and has desirable mathematical and 

chemical properties. 

4.2 Mathematical Formulation 

 Instead of approximating the molecular electron density as a sum of pro-atoms, as 

is typically done in the Hirshfeld family of methods, let us approximate the electron 
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density as a sum of nonnegative basis states, ( ){ } 1
;

K
k k k
b

=
rα , which for convenience we 

choose to be normalized to one, 

 ( )0 ;k kb≤ rα .  (4.1) 

 ( )1 ;k kb d= ∫ r rα   (4.2) 

Here kα  is an optional vector of parameters that can be optimized to improve the quality 

of the basis. The molecular electron density is approximately expanded as a linear 

combination of the basis states,  

 
   
ρmol r( ) ≈ ckbk α k ;r( )

k=1

K

∑ ≡ ρmol
0 ck ,α k{ };r( )   (4.3) 

As is typical, this approximation of the molecular density is called the pro-molecular 

density, which in this case, is the sum of the reference densities of the individual pieces 

called the pro-pieces, 

    ρk
0 ck ,α k ;r( ) ≡ ckbk α k ;r( )   (4.4) 

We wish for the pro-molecular density to resemble the molecular density as strongly as 

possible, subject to the constraint that the pro-molecular density is normalized to the total 

number of electrons,  

 
   
Nmol = ρmol r( )dr∫ = ρmol

0 ck ,α k{ };r( )dr∫ = ck
k=1

K

∑ .  (4.5) 

 Based on the theoretical framework established in chapter 2, we can find the best 

pro-pieces by minimizing the deviation between molecular and pro-molecular density. 
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That is, using a directed f-divergence to measure this similarity, we can use the variational 

principle to find the pro-pieces, 

 

    

min
ck ,αk N= ckk=1

K∑⎧
⎨
⎩

⎫
⎬
⎭

! ρmol r( ) f
ρmol

0 ck ,α k{ };r( )
ρmol r( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

dr∫   (4.6) 

where f is any convex function with ( )1 0f = .28 The constraint that the pro-molecular 

density and the molecular density have the same number of electrons is required not only 

for chemical sensibility but also mathematically: otherwise Eq. (4.6) might not be a valid 

divergence measure. 

 We would also like for the pieces of the molecule, ( )kρ r , to resemble as closely 

as possible the pro-pieces. This can also be expressed using variational principle, 

 

    

min
ck ,αk ρmol r( )= ρk r( )d r∫k=1

K∑⎧
⎨
⎩

⎫
⎬
⎭

! min
ρk r( )
! ρk r( ) f

ρk
0 ck ,α k ;r( )
ρk r( )

⎛

⎝
⎜

⎞

⎠
⎟ dr∫

k=1

K

∑   (4.7) 

where the constraint can be simplified into 
  
N = ckk=1

K∑ . Because the minimization of 

molecular piece and pro-piece are not coupled, the variational principle in Eq. (4.7) is 

equivalent to Eq. (4.6), and the densities of the molecular pieces are defined by the 

Hirshfeld, or stockholder, partitioning,21, 28  

 
   
ρk r( ) = ρk

0 ck ,α k ;r( )
ρmol

0 ck ,α k{ };r( ) ρmol r( )   (4.8) 

Note that while we derived this using a divergence directed from the pro-density to the 

density, as elaborated in chapter 2, this treatment includes the alternative cases where the 
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roles of the density and pro-density are interchanged (consider 
   
!f x( ) = xf x−1( ) ) and 

where the density and pro-density are treated symmetrically (consider 

   
!f x( ) = 1

2 f x( ) + xf x−1( )( ) ).28 There is also no constraint guaranteeing that the molecular 

piece and pro-piece have the same number of electrons, i.e. 

    
ρk r( )dr∫ = Nk = ck = ρk

0 ck ,αk ;r( )dr∫   (4.9) 

This is a valid mathematical requirement, but having such a constraint makes the 

optimizations in Eq. (4.7) inseparable and does not result in conventional Hirshfeld 

scheme of Eq. (4.8).72 As a result, we will especially focus on the family of extended 

divergence measures,    
!f x( ) = f x( )− ′f 1( ) x −1( ) , for which the constraint of Eq. (4.9) is 

not required.160-163 Extended f-divergences satisfy   f 1( ) = ′f 1( ) = 0  and therefore have the 

desirable property that  

 
   
ρk r( ) f

ρk
0 ck ,α k ;r( )
ρk r( )

⎛

⎝
⎜

⎞

⎠
⎟ dr∫   (4.10) 

is a valid measure of the divergence of a molecular piece from its corresponding pro-

piece even when the piece and the pro-piece are not normalized to the same number of 

electrons. Notice that   f 1( ) = ′f 1( ) = 0  is automatically satisfied for any symmetric f-

divergence, so they are also plausible divergence measures for densities with different 

normalizations. 

The parameters in the pro-molecule are determined by differentiating the 

Lagrangian corresponding to Eq. (4.6),  
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L
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giving a system of nonlinear equations,  

 
( )
( ) ( )1

mol

;
0 ;

K

k k k
k

k k
k

c b
f b d

c
µ

ρ
=
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α
α   (4.12) 
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( )1

mol

; ;
0

K

k k k
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c b b
f c d

ρ
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⎛ ⎞
⎜ ⎟ ∂∂ ⎜ ⎟′= =

∂ ∂⎜ ⎟
⎜ ⎟⎝ ⎠

∑
∫
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L

α α
α α

  (4.13) 

To solve for the Lagrange multiplier, we multiply Eq. (4.12) by kc  and sum over k to 

obtain 

 

   

µ = 1
Nmol

ρmol
0 ck ,α k{ };r( ) ′f

ρmol
0 ck ,α k{ };r( )

ρmol r( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

dr∫   (4.14) 

 Eqs. (4.12) and (4.13) can then be rewritten as 

 

   

µ = bk α;r( ) ′f
ρmol

0 ck ,α k{ };r( )
ρmol r( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

dr∫   (4.15) 

 

   

0 =
∂bk α;r( )

∂α
′f
ρmol

0 ck ,α k{ };r( )
ρmol r( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

dr∫   (4.16) 

In deriving the second equation we assumed that 0kc ≠ . 
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 There can be many local minima in Eq. (4.6), and so there will usually be multiple 

solutions to these equations. However, in the absence of nonlinear parameters { }kα , the 

second derivative of the Lagrangian is  

 

    

∂2L

∂ck ∂cl

= 1
ρmol r( ) ′′f

ρmol
0 ck{ };r( )
ρmol r( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

bk r( )bl r( )dr∫

= bk r( ) 1
ρmol r( ) ′′f

ρmol
0 ck{ };r( )
ρmol r( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
δ r − ′r( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
bl ′r( )dr d ′r∫∫

  (4.17) 

The integral kernel in the second line is positive-definite because ( ) 0f x′′ > . In such 

cases, the objective function is convex and the variational principle has a unique solution 

for a given value of µ. One may then solve the equations by optimizing the coefficients 

(uniquely) and perform a subsequent one-dimensional search for the appropriate value of 

µ.  

It is, unfortunately, difficult to generalize this argument to the case where there 

are nonlinear parameters. The corresponding blocks of the second derivative matrix are: 

 

    

∂2L

∂ck ∂α l

= 1
ρmol r( ) ′′f

ρmol
0 ck{ };r( )
ρmol r( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

bk r( )c l

∂bl r( )
∂α l

dr∫

+δ kl ′f
ρmol

0 ck{ };r( )
ρmol r( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
∂bl r( )
∂α l

dr∫
  (4.18) 

 

    

∂2L

∂α k ∂α l

= 1
ρmol r( ) ′′f

ρmol
0 r( )

ρmol r( )
⎛

⎝
⎜

⎞

⎠
⎟ c k

∂bk r( )
∂α k

c l

∂bl r( )
∂α l

dr∫

+δ kl ′f
ρmol

0 r( )
ρmol r( )

⎛

⎝
⎜

⎞

⎠
⎟
∂2 bl r( )
∂α l

2 dr∫
 (4.19) 
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The same argument for the convexity of the objective function would hold if the second 

terms in these equations (the k = l terms) were not present. Notice, however, that the 

second term in Eq. (4.18) automatically vanishes if the gradient is zero. This means that if 

the second term in Eq. (4.19) is nonnegative, the second derivative is positive 

semidefinite at every critical point. Assuming sufficient differentiability, then, one may 

apply the Poincare-Hopf theorem to conclude that there can be only one minimum. (To 

have more than one minimum requires the presence of another critical point, typically a 

saddle point.) 

 However, it is not possible to ensure that the second term in Eq. (4.19) is always 

positive. One can argue for this mathematically, but it is intuitively obvious: given one 

local minimum, another local minimum can be found by permuting the basis functions. It 

seems difficult to determine whether there are additional minima beyond these trivial 

solutions. Note, however, that it is easy to verify whether one has discovered a local 

minimum (rather than a saddle point) using inequality (4.23). (This inequality is only 

sufficient, not necessary. If condition (4.23) is not satisfied, one might still have a local 

minimum, but verifying this requires evaluating the full second derivative of the 

Lagrangian, Eqs. (4.17)-(4.19).) 

4.3 Extended Kullback-Leibler Divergence 

 As mentioned in the previous section, we specifically focus our attention on the 

extended Kullback-Leibler divergence measures, because they do not require the density 

and pro-density to have the same number of electrons, i.e. not extra constraints are needed 
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to make the variational principle in Eq. (4.7) mathematically plausible. In addition, the 

results from the previous section have an especially pleasing form in MBIS-style 

partitioning, where one chooses the extended Kullback-Leibler divergence, 

( ) ( )ln 1f x x x= − + − , obtaining the Lagrangian 

{ }( ) ( ) ( )
( )

( ) ( )mol
mol mol

1

1

mol
1

, , ln ;
;

K

k k k k kK
k

k k k
k

K

k
k

c c b d
c b

c N

ρ
µ ρ ρ

µ

=

=

=

⎛ ⎞
⎜ ⎟
⎜ ⎟= + −
⎜ ⎟
⎜ ⎟⎝ ⎠

⎛ ⎞− −⎜ ⎟⎝ ⎠

∑∫
∑

∑

r
r r r r

r
L α α

α   (4.20) 

In this case 0µ =  (cf. Eq. (4.14)), indicating that constraining the molecule and pro-

molecule to have the same number of electrons is unnecessary: this constraint is already 

satisfied when the extended Kullback-Leibler divergence is used. The equations for 

deriving the parameters become (cf. Eqs. (4.15) and (4.16)) 

 
   
1= bk α;r( ) ρmol r( )

ρmol
0 ck ,α k{ };r( ) dr∫   (4.21) 

 

   

0 =
∂bk α;r( )

∂α
1−

ρmol r( )
ρmol

0 ck ,α k{ };r( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

dr∫   (4.22) 

In deriving these equations we used the result ( ) 1 1f x x−′ = − + , the normalization 

constraint in Eq. (4.2), and the result 0µ = . The Lagrangian is convex if there are no 

nonlinear parameters in the basis function, or if the nonlinear parameters satisfy the 

equation  
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1−
ρmol r( )
ρmol

0 r( )
⎛

⎝
⎜

⎞

⎠
⎟
∂bk α k ;r( )

∂α k
2 dr∫ ≥ 0   (4.23) 

While this is probably not true in general, this term will be small when the pro-molecular 

density is a good approximation to the molecular density. Under such circumstances, the 

(manifestly positive definite) first term in Eq. (4.19) is expected to be dominant. 

 A beautiful property that is specific to MBIS-like partitioning is that the pro-

pieces and pieces of the molecule have the same normalization. This desirable feature is 

an outcome of using the (extended) Kullback-Leibler divergence. To see this, multiply 

both sides of Eq. (4.21) by kc  and use the normalization condition, (4.2), the definition of 

the pro-pieces, (4.4), and the result for the densities of the pieces of the molecule, (4.8), to 

conclude that  

 

   

ck = ckbk α k ;r( ) ρmol r( )
ρmol

0 r( ) dr∫

ρk
0 r( )dr∫ = ρk

0 r( ) ρmol r( )
ρmol

0 r( ) dr∫
ρk

0 r( )dr∫ = ρk r( )dr∫

  (4.24) 

It is remarkable that this result, which is ordinarily imposed in the Hirshfeld-E,53 

Hirshfeld-I,60 and Hirshfeld-Iλ methods,72 arises automatically here.   

 Notice, however, that this result does not hold for an arbitrary f-divergence and is 

specific to the (extended) Kullback-Leibler family. To show the class of f-divergences for 

which the pieces and pro-pieces have the same population, we reverse the argument in 

Eq. (4.24). That is, the pieces and pro-pieces have the same normalization only if Eq. 

(4.21) is true. Comparing Eqs. (4.15) and (4.21), we have 
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µ − bk α;r( ) ′f
ρmol

0 ck ,α k{ };r( )
ρmol r( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

dr∫ = 0 = 1− bk α;r( ) ρmol r( )
ρmol

0 ck ,α k{ };r( ) dr∫   (4.25) 

or, equivalently 

 

   

µ −1= bk α;r( ) ′f
ρmol

0 ck ,α k{ };r( )
ρmol r( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
−

ρmol r( )
ρmol

0 ck ,α k{ };r( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dr∫   (4.26) 

Notice that the left-hand-side of this equation is a constant for any choice of basis 

function. This requires that 

 

   
′f
ρmol

0 ck ,α k{ };r( )
ρmol r( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= a

ρmol r( )
ρmol

0 ck ,α k{ };r( ) + b   (4.27) 

where a and b are constants. Therefore ( ) ( )ln 1f x a x b x= + − . The requirement 

( ) 0f x′′ >  corresponds to the requirement 0a < .  For this general form, the Lagrange 

multiplier is (cf. Eq. (4.14)) 

 

   

µ = 1
Nmol

0 ρmol
0 ck ,α k{ };r( ) a

ρmol r( )
ρmol

0 ck ,α k{ };r( ) + b
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

dr∫ = a + b   (4.28) 

where in the last line we have employed the constraint   Nmol = Nmol
0 . Inserting the value of 

the Lagrange multiplier into Eq. (4.15), one has  

 

   

a + b = bk α;r( ) a
ρmol r( )

ρmol
0 ck ,α k{ };r( ) + b

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

dr∫   (4.29) 

which, using the normalization of the basis functions, simplifies to Eq. (4.21). The 

extended f-divergence corresponds to the choice 1a = −  and 1b = .  
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4.4 Size-Consistency 

 A partitioning is size consistent if by performing the method for two molecules, A 

and B, that are infinitely separated, one obtains the same pieces and pro-pieces as when 

one treats the A and B separately. Presuming that the basis functions for the molecular 

pieces are local and therefore can be clearly assigned to one of the molecules, optimizing 

the super-system (i.e., A and B infinitely apart) corresponds to the Lagrangian, 

     

LA!B ck ,α k{ },µ( ) = ρA r( ) f
ckbk α k ;r( )

k∈A
∑
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⎜
⎜
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⎟
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⎞
⎠⎟

  (4.30) 

while optimizing the subsystems separately corresponds to the Lagrangian, 
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  (4.31) 

The two optimizations will give different results unless the Lagrange multiplier is a 

constant that is independent of the system. The only f-divergences that satisfy this 

constraint are the (extended) Kullback-Leibler family considered in previous section, 

( ) ( )ln 1f x a x b x= + −  with 0a < . For these divergences, a bµ = + . 
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4.5 Iterative Solution of Variational Principle 

 In the MBIS procedure, one solves the Eqs. (4.15) and (4.16) using fixed-point 

iteration. That procedure can be generalized to an arbitrary f-divergence by writing the 

update formula 

 
   
ck

new = ρk
0;old r( ) ′f

ρ 0;old r( )
ρ r( )

⎛

⎝
⎜

⎞

⎠
⎟ dr∫   (4.32) 

If the basis functions are varied, a sufficiently good guess for the nonlinear parameters is 

required. If one assumes that the basis functions have the form of a normalization 

function times a functional form,  

 ( ) ( ) ( ); ;k k k k k kb A gα α α=r r   (4.33) 

then one can derive the equation  

 

   

1
A α k( )

∂Ak α k( )
∂α k

= −

∂gk α k ;r( )
∂α k

′f
ρ 0 r( )
ρ r( )

⎛

⎝
⎜

⎞

⎠
⎟ dr∫

gk α k ;r( ) ′f
ρ 0 r( )
ρ r( )

⎛

⎝
⎜

⎞

⎠
⎟ dr∫

  (4.34) 

 which can be expressed as an update formula,  

 

   

1
Ak α k

new( )
∂Ak α k

new( )
∂α k

= −

∂ρk
0;old r( )
∂α k

′f
ρ 0;old r( )
ρ r( )

⎛

⎝
⎜

⎞

⎠
⎟ dr∫

ρk
0;old r( ) ′f

ρ 0;old r( )
ρ r( )

⎛

⎝
⎜

⎞

⎠
⎟ dr∫

  (4.35) 

These update formulas correspond to the MBIS equations in the special case of the 

Kullback-Leibler information with the basis functions 
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 ( ) ( ) ( ); expk k k k kb Aα α α= − −r r R .  (4.36) 

4.6 Additive Variational Hirshfeld (AVH) Method 

 In existing Hirshfeld parititioning methods, the promolecule density is written as a 

linear combination of the spherically-averaged ground state densities of atoms and their 

ions. This suggests that we use the shape functions of atoms and atomic ions as the pro-

pieces. That is,  

 
   

bA,n
0 r( ) =σ A,n

0 r − R A( ){ }
A=1,n=1

Natoms ,Nmax ,A   (4.37) 

where the atomic shape functions are the unit-normalized atomic densities (cf. Eq. (4.2))1, 

27, 118, 124-126  

 
   
σ A,n

0 r( ) = ρA,n
0 r( )

n
  (4.38) 

where 
   
ρA,n

0 r( )  is the spherically averaged electron density of the atomic ion with nuclear 

charge AZ  and charge AZ n− , AR  is the location of this atomic nucleus in the molecule, 

and max,AN  is the maximum number of electrons (either max,A AN Z=  or max, 1A AN Z= + ) 

that can be bound by this atom. Note that, in contrast to methods like Hirshfeld-I, the pro-

pieces all correspond to bound atoms. (This is favorable since, as demonstrated in chapter 

1, Hirshfeld-I can behave erratically when unbound pro-atomic reference densities are 

used.) We choose to allow contributions from all the bound ions of each atom when we 

form the pro-molecular density, 
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ρmol

0 cA,n{ };r( ) = cA,nσ A,n
0 r − R A( )

n=1

Nmax ,A

∑
A=1

Natoms

∑   (4.39) 

In our computational tests, however, we observe that the shape functions of very highly 

charged atom ions have zero contribution, and can be neglected for computational 

expediency.  

 We also observed that the iterative approach based on Eq. (4.32) converges very 

slowly, requiring thousands of iterations. It was much more efficient to use the 

fundamental variational procedure,   

 

   

min

cA ,n≥0 N= cA ,n
n=1

Nmax ,A

∑
A=1

Natoms

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

! g cA,n{ }( )   (4.40) 

 

   

g cA,n{ }( ) = ρmol r( ) f
ρmol

0 cA,n{ };r( )
ρmol r( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

dr∫   (4.41) 

and the first and second derivatives of the objective function are (compare Eqs. (4.12) and 

(4.17)): 

 

   

∂g cA,n{ }( )
∂cA,m

= σ A,m
0 r − R A( ) ′f

ρmol
0 cA,n{ };r( )
ρmol r( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

dr∫   (4.42) 

 

   

∂g cA,n{ }( )
∂cA,m ∂cB,n

=
σ A,m

0 r − R A( )σ B,n
0 r − R B( )

ρmol r( ) ′′f
ρmol

0 cA,n{ };r( )
ρmol r( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

dr∫   (4.43) 

We call this the additive variational Hirshfeld (AVH) method.  

In AVH scheme, we concentrate on two specific families of f-divergence, namely 

the extended α -divergence28, 138-139, 145, 158, 164  
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 ( ) ( ),ext
1

1
x xf x
α

α
α α

α α
− + −=

−
  (4.44) 

 
   
Iα ,ext ρ,ρ 0⎡⎣ ⎤⎦ =

1
α α −1( ) ρ r( ) ρ 0 r( )

ρ r( )
⎛

⎝
⎜

⎞

⎠
⎟

α

+ α −1( )ρ r( )−αρ 0 r( )dr∫   (4.45) 

and the symmetrized α -divergence 

 ( ) ( )
1

,sym
1
2 1

x x xf x
α α

α α α

−− + −=
−

  (4.46) 

   
Iα ,sym ρ,ρ 0⎡⎣ ⎤⎦ =

1
2α α −1( ) ρ r( ) ρ 0 r( )

ρ r( )
⎛

⎝
⎜

⎞

⎠
⎟

α

+ ρ 0 r( ) ρ r( )
ρ 0 r( )

⎛

⎝
⎜

⎞

⎠
⎟

α

− ρ r( ) + ρ 0 r( )( )dr∫   (4.47) 

The extended Kullback-Leibler and symmetrized Kullback-Leibler divergences 

correspond to the choice 1α = . A good discussion of the interpretation and significance 

of different values of α  can be found in the report of Minka.164 

4.7 Extensions 

 One advantage of a variational formulation of Hirshfeld partitioning is that it 

facilitates the addition of constraints. This is especially useful if one wishes to develop 

and use atomic charges in a molecular mechanics force field. For example, if one wished 

to adapt atomic charges to the geometry of a protein then,165 unless one wishes to 

reparameterize the force field entirely, one should conserve (a) the total charges of the 

individual amino acid residues and (b) the charges of the backbone atoms. The constraints 

have the same general form as the constraint that the promolecule has the correct charge, 
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which is already included in Eq. (4.40). Specifically, these constraints on the atomic 

charges of an atom or group can be expressed as 

 
max ,

group ,
group 1

AN

A n
A n

N c
∈ =

= ∑ ∑   (4.48) 

This sort of linear constraint is easily incorporated into the optimization in Eq. (4.40), and 

the minimum of a convex function with respect to linear constraints still has a unique 

minimum. 

 Another advantage of this approach is that it is easily extended to additional states. 

For example, the neutral carbon atom has a 1s22s22p2 electron configuration, but one 

might speculate that a 1s22s12p3 electron configuration is a more appropriate reference for 

the carbon atom in saturated hydrocarbons. One advantage of this approach is that 

excited-state pro-atoms can be easily included in the sum. One merely extends Eq. (4.39) 

to include those states,  

 
   
ρmol

0 cA,n,k{ };r( ) = cA,n,kσ A,n,k
0 r − R A( )

k=1

Nexcited,A ,n

∑
n=1

Nmax ,A

∑
A=1

Natoms

∑ .  (4.49) 

It is not desirable, however, to include all the possible excited states. Including all excited 

states gives the pro-atom density, 

 
   
ρA

0 r( ) = cA,n,kσ A,n,k
0 r − R A( )

k=1

Nexcited,A ,n

∑
n=1

Nmax ,A

∑   (4.50) 

too much flexibility. Indeed, any spherically symmetric function can be described with 

the expansion in Eq. (4.49), including pro-atom densities that are not monotonically 

decreasing.49, 166-168 Therefore, if one includes all possible excited states, the AVH method 

becomes the f-divergence extension of the iterative stockholder analysis (ISA),77-78 where 
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one minimizes the Kullback-Leibler divergence with respect to all possible spherically-

symmetric reference densities.79 As illustrated in chapter 1, ISA has well-known 

shortcomings: for atoms that are surrounded by a spherical shell of atoms (e.g., 

endohedral fullerenes), it gives atomic populations that are far too large;79-80 for large 

floppy molecules like polypeptides, ISA charges show an erratic dependence on 

molecular conformation.80 (Constraining the pro-atom densities to be monotonic is an 

inadequate remedy to these problems.80)  

 If excited states are to be included in the model for the promolecular density, it is 

therefore essential to include only those excited states that correspond to low-energy 

electron configurations. Identifying which excited states to include can be challenging, 

especially for multiconfigurational correlated wavefunctions. A useful heuristic is to 

include the lowest bound excited state of each spin-multiplicity. For example, for the 

carbon atom one would include the 3P, 1D, and 5S states. (The lowest-energy septuplet, 

corresponding to the electron configuration 1s12s12p33s1, is unbound because it is much 

higher in energy than the ground state of the carbon cation, C+.) 

4.8 Conclusion 

 In this chapter, we introduced the additive pro-piece model to represent pro-atom 

density. The parameters in this model were variationally optimized to provide the most 

accurate approximation to the molecular density. This led to Additive Variational 

Hirshfeld (AVH) partitioning scheme, which is convex (has a unique solution), size 



 
 

101 

consistent and easily extendable for including additional constraints and atomic excited 

states. 
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5  Variational Hirshfeld Extensions and Case 
Study 

 

 

 

5.1 Background 

One strategy for defining an atom in a molecule (AIM) is to define AIMs so that 

their properties reproduce the properties of a reference pro-atom, typically selected to be 

an isolated atom or atomic ion, as strongly as possible.1, 27 This maximizes the 

transferability of intuition from isolated atoms to AIM. Since AIM with similar electron 

densities will have similar properties, this strategy can be implemented by forcing the 

electron density of the AIMs to maximally resemble the electron densities of the 

reference pro-atoms, subject to the obvious constraint that the sum of the electron 

densities of the AIMs is equal to the total molecular density.1, 25-29, 118 That is, the AIM 

densities are obtained by partitioning the molecular density. 

In this chapter, the mathematical framework associated with minimizing the 

divergence between the molecular and promolecular density for the additive pro-atom 

model and multiplicative pro-atom models and any given f-divergence are explored. We 

present a computational strategy appropriate for these models, thereby providing a 

concrete realization of the additive variational Hirshfeld (AVH) and multiplicative 

variational Hirshfeld (MVH) partitioning schemes. After discussing some nuances 
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associated with the choice of divergence measure and constraints on multiplicative pro-

atom densities, we present numerical results. 

5.2 Mathematical Formulation 

To implement this strategy mathematically, one minimizes the total divergence 

between the AIM densities, ( ){ } atoms

1

N
A A

ρ
=

r , and the reference pro-atom densities, 

( ){ } atoms0

1

N

A A
ρ

=
r , subject to the constraint that the AIM densities partition the molecular 

density, ( )molρ r .1, 25-27 I.e.,  

 

    

min

ρA r( )ρmol r( )= ρA r( )
A=1

Natoms

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

! D ρA ρA
0⎡

⎣
⎤
⎦

A=1

Natoms

∑   (5.1) 

Here 0
A AD ρ ρ⎡ ⎤⎣ ⎦  is a mathematical divergence measure, which has the property that  

 0 0 0 0A A A AD Dρ ρ ρ ρ⎡ ⎤ ⎡ ⎤≥ =⎣ ⎦ ⎣ ⎦   (5.2) 

whenever the number of electrons in the AIM and the pro-atom are the same,  

 ( ) ( )0 0
A A A AN N dρ ρ= = =∫ ∫r r r   (5.3) 

Usually it is not required that Eq. (5.3) hold for every AIM, but it is a convenient and 

desirable feature.46, 72, 82 In this chapter we will focus on extended divergence measures 

where Eq. (5.2) is true for all nonnegative integrable functions, ( ) 0Aρ ≥r  and ( )0 0Aρ ≥r

, regardless of their normalization.  
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5.2.1 Divergence Measures 

 The first,25-26 and most popular,31-33, 46, 58, 72-73, 77-78, 80-82, 169 divergence measure to 

be used in this context is the extended Kullback-Leibler directed divergence,  

 ( ) ( )
( ) ( ) ( )0 0

KL,ext 0ln A
A A A A A

A

D d
ρ

ρ ρ ρ ρ ρ
ρ

⎛ ⎞
⎡ ⎤ = − +⎜ ⎟⎣ ⎦ ⎜ ⎟⎝ ⎠

∫
r

r r r r
r

  (5.4) 

and its symmetrized version27  

 
   
DKL,sym ρA ρA

0⎡
⎣

⎤
⎦ =

ρA r( )− ρA
0 r( )

2
ln

ρA r( )
ρA

0 r( )
⎛

⎝
⎜

⎞

⎠
⎟ dr∫   (5.5) 

The somewhat unusual form of directed divergence in Eq. (5.4) is the appropriate 

generalization of Kullback-Leibler directed divergence that ensures that Eq. (5.2) is 

always true, regardless of normalization.160-162 Other measures have been also considered 

in chapter 3, including the (generalized) Hellinger distance,29 the Tsallis entropy,118 

nonextensive entropies,170 as well as the Bregman divergence.171 Many of these results 

arise, however, as special cases of the f-divergence,28, 138-140 

 ( ) ( )
( )

0
0 A

f A A A
A

D f d
ρ

ρ ρ ρ
ρ

⎛ ⎞
⎡ ⎤ = ⎜ ⎟⎣ ⎦ ⎜ ⎟⎝ ⎠

∫
r

r r
r

  (5.6) 

where ( )f x  is any convex function with ( ) ( )1 1 0f f ′= = . The requirement ( )1 0f ′ =  is 

needed to ensure Eq. (5.2) holds even when 0
A AN N≠ . Every f-divergence can be 

“extended” so that it can be used for non-normalized densities by defining 

( ) ( ) ( )( )extended 1 1f x f x f x′= − − . Symmetrized f-divergences like Eq. (5.5) are associated 
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with the additional identity ( ) ( ) ( )11 1
2 2f x f x xf x−= + . Every symmetrized f-divergence 

is also an extended f-divergence, but the converse is not true.  

For every f-divergence, the AIM densities have the “stockholder” form, 

 ( ) ( )

( )
atoms

0

0

1

A
A N

B
B

ρ
ρ

ρ
=

=

∑
r

r
r

  (5.7) 

This form was first proposed by Hirshfeld,21 building on the work of Politzer,20 on 

heuristic grounds. The quantity  

 ( ) ( )
atoms

0 0
mol

1

N

B
B

ρ ρ
=

= ∑r r   (5.8) 

is usually called the promolecular density. As discussed in chapter 2, every divergence 

measure that (a) is a local functional of ( )Aρ r  and ( )0
Aρ r  and (b) gives the stockholder 

partitioning (Eq. (5.7)) when used in minimization (5.1) is an f-divergence.28 

Moreover, for an f-divergence, one has  

 
atoms atoms

0 0 0
mol mol mol

1 1

N N

f f A f A A
A A

D D Dρ ρ ρ ρ ρ ρ
= =

⎡ ⎤
⎡ ⎤ ⎡ ⎤= =⎢ ⎥⎣ ⎦ ⎣ ⎦

⎣ ⎦
∑ ∑   (5.9) 

This suggests that the optimal pro-atoms should be determined by minimizing the 

divergence between the molecular and promolecular densities. This allows one to define 

adaptive, molecule-specific, pro-atoms.28 

5.2.2 Pro-atom Density Models 

 The importance of choosing pro-atoms that are adapted to the molecule being 

partitioned was first recognized in the work of Bultinck et al.,46 who used the ground-



 
 

106 

state atoms with fractional charge in an iterative, non-variational method.172,173 We 

propose, however, to use a variational procedure,  

 
    
min

c{ }
!D ρmol ρmol

0 c( )⎡
⎣

⎤
⎦ ,  (5.10) 

where c is a list of parameters upon which the promolecular density depends. We wish to 

retain the conceptually useful picture of AIM densities that maximally resemble pro-atom 

densities, so we consider only promolecular densities that can be expressed as Eq. (5.8). 

(Not every Hirshfeld-like partitioning respects this choice.31, 58, 77-78, 80, 82) Similarly, we 

wish to retain the picture that the pro-atom densities correspond to suitably chosen 

reference states of the isolated atom, including relevant ions and possibly low-lying 

excited states. The optimized pro-atom then gives us information about the dominant 

charge and excited (promoted) reference states of the atoms, facilitating a valence-bond-

like interpretation of molecular electronic structure.174-177 For example, in the previous 

chapter we chose   

 ( ) ( )
excite,max

0 0
, , , ,

1 0

, ,

,

0

AA NN

A A A n k A n k
n k

A n k

c

c

ρ ρ
= =

=

≥

∑ ∑c r r
  (5.11) 

where ( )0
, ,A n kρ r  is the spherically-averaged electron density of the kth included excited 

state of atom A when it has n electrons (and, therefore, charge  qA = ZA − n , where AZ  is 

the atomic number of atom A). Variational minimization of Eq. (5.10) using the additive 

pro-atom model in Eq. (5.11) is called the additive variational Hirshfeld (AVH) method. 



 
 

107 

In AVH, the pro-atom densities are expressed as a (non-normalized) weighted 

average of the electron densities of the isolated atom states. If one generalizes this 

formula to the p-mean, one has 

 ( ) ( )( )
excite,max

1

0 0
, , , ,

1 0

, ,

,

0

AA N pN
p

A A A n k A n k
n k

A n k

c

c

ρ ρ
= =

⎛ ⎞
= ⎜ ⎟⎜ ⎟⎝ ⎠
≥

∑ ∑c r r   (5.12) 

Equation (5.11) corresponds to the ordinary arithmetic mean, p = 1. Assuming that none 

of the coefficients in Eq. (5.12) are exactly zero, then for 0p > , the pro-atom density 

decays very slowly asymptotically, with its decay controlled by the ionization potential of 

the most-weakly-bound atomic state in the sum, i.e.,178-181  

 ( ) ( )max, excite, , max

0 , exp 8IP
A A NA N Nrρ −c r :   (5.13) 

For 0p < , the pro-atom density decays very rapidly asymptotically, with its decay 

controlled by the ionization potential of the most-strongly-bound atomic state in the sum,  

 ( ) ( )0
1,0, exp 8IPA rρ −c r : .  (5.14) 

These asymptotic decay rates seem un-chemical. Based on the electronegativity 

equalization principle, we expect that all the AIM have the same ionization potential as 

the molecule as a whole (and each other). We also expect that the pro-atoms should have 

the same, or at least very similar, ionization potentials. This suggests that the ionization 

potentials of the pro-atoms should lie between the extreme limits in Eqs. (5.13) and (5.14)

. We note that this is not merely a formal problem: some of the failures of Hirshfeld 

methods are often attributed the pro-atom densities having very different asymptotic 
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decays, because then the slowly-decaying pro-atoms take excessive electron density from 

neighboring atoms.117 In extreme cases, this can lead to a “runaway charges” effect, and 

is associated with electropositive atoms that are far too positively charged, even as 

electronegative atoms become far too negatively charged. 

 The asymptotic decay of the pro-atoms changes if one uses the geometric mean, 

corresponding to p = 0,   

 ( ) ( )( )
max, excite,

, ,0 0
,0,0 , ,

1 0

, ,

,

0

A A
A n k

N N
c

A A A A n k
n k

A n k

c

c

ρ ρ
= =

=

≥

∏ ∏c r r
  (5.15) 

We have slightly extended the p = 0 mean by including the multiplicative scaling factor 

,0,0Ac . The asymptotic decay of this multiplicative pro-atom is  

 
    
ρA

0 cA,r( ) ∼ exp −r cA,n,k 8IPA,n,k
k=0

Nexcite,A ,n

∑
n=1

Nmax,A

∑
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.  (5.16) 

The rationale for including a multiplicative scaling factor is that it ensures that the AIM 

and pro-atoms have the same charge, cf. Eq. (5.3), when the extended Kullback-Leibler 

divergence is selected. (See section 5.2.6) We call minimizing the divergence between the 

promolecular and molecular densities (cf. Eq. (5.10)) using the multiplicative pro-atom 

model in Eq. (5.15) the multiplicative variational Hirshfeld (MVH) method. 

5.2.3 Lagrangian and Its Derivatives 

We wish to define the pro-atom densities by minimizing the divergence between 

the molecular and promolecular densities, as in Eq. (5.10), subject to the constraint that 

the molecular and promolecular densities contain the same number of electrons,  
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 ( ) ( )0 0
mol mol mol mold N N dρ ρ= = =∫ ∫r r r r   (5.17) 

This constraint is chemically intuitive. If one is not using an extended or symmetrized f-

divergence, a constraint like this is essential because otherwise the objective function is 

unbound from below. We will consider pro-atoms that are defined by both the additive, 

Eq. (5.11), and multiplicative, Eq. (5.15), formulas. In the appendix 7.2, we catalogue 

multiple divergence formulas that we find especially interesting. The Lagrangian is,  

 ( ) ( ) ( )
( ) ( ) ( )( )

0
mol 0

mol mol mol
mol

,
, ,f d d

ρ
µ ρ µ ρ ρ

ρ
⎛ ⎞

Λ = − −⎜ ⎟⎜ ⎟⎝ ⎠
∫ ∫

c r
c r r r c r r

r
  (5.18) 

The gradient of this Lagrangian is  

   

0 =
∂Λ c,µ( )
∂cA,m,k

= ′f
ρmol

0 c,r( )
ρmol r( )

⎛

⎝
⎜

⎞

⎠
⎟

∂ρmol
0 c,r( )
∂cA,m,k

⎛

⎝
⎜

⎞

⎠
⎟ dr∫ + µ

∂ρmol
0 c,r( )
∂cA,m,k

⎛

⎝
⎜

⎞

⎠
⎟ dr∫

0 =
∂Λ c,µ( )

∂µ
= ρmol

0 c,r( )− ρmol r( )( )dr∫
  (5.19) 

For a given value of Lagrange multiplier µ , the Hessian is 

( )
( )

( )
( )

( ) ( )

( )
( )

( )

2 0 0 0
mol mol mol

, , , , mol mol , , , ,

0 2 0
mol mol

mol , , , ,

, , , ,1

, ,

A m k B n l A m k B n l

A m k B n l

f d
c c c c

f d
c c

µ ρ ρ ρ
ρ ρ

ρ ρ
µ

ρ

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞∂ Λ ∂ ∂
′′= ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

⎡ ⎤ ⎛ ⎞⎛ ⎞ ∂
′+ +⎢ ⎥ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∫

∫

c c r c r c r
r

r r

c r c r
r

r

  (5.20) 

For the additive pro-atom model, the derivatives of the promolecular density with 

respect to its parameters have the simple expressions,  

 
   

∂ρmol
0 cA,r( )
∂cA,m,k

= ρA,m,k
0 r( )   (5.21) 
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∂2ρmol
0 cA,r( )

∂cA,m,k ∂cB,n,l

= 0   (5.22) 

Since  
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,  (5.23) 

the Hessian is positive definite, the objective function is convex, and the minimum of the 

additive pro-atom model is unique.   

For the multiplicative pro-atom model, the derivatives of the promolecular density 

with respect to its parameters have the expressions  
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  (5.24) 
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  (5.25) 

where ( )0 ,A Aρ c r  is defined in Eq. (5.15). The optimization of multiplicative pro-atoms is 

not always convex, but it will tend to be convex when the “diagonal” atom blocks of the 

Hessian are predominately positive 

 ( ) ( )
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Notice that the first term in square brackets is always positive, and that because we are 

considering models with ( )1 0f ′ = , the second term is nearly zero whenever the 

promolecular density is an accurate approximation to the true density. This suggests that 

the multiplicative pro-atom model should be unproblematic whenever an adequate initial 

guess is available. 

5.2.4 Lagrange Multiplier: Explicit Formulas 

 As in the recently proposed minimal basis iterative stockholder (MBIS), the 

Lagrange multiplier µ  can be solved for explicitly.82 For the additive model, inserting 

Eq. (5.21) into Eq. (5.19), multiplying by , ,A m kc , and summing over all the pro-atom 

pieces gives,  
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  (5.27) 

Notice that the Lagrange multiplier is almost zero when the promolecular density is very 

similar to the molecular density, 
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Here again we have assumed that ( )1 0f ′ = , as it is for extended and symmetric f-

divergences. For the multiplicative pro-atom model, we likewise insert the expression for 

the gradient, Eq. (5.24), into Eq. (5.19), multiply by , ,A m kc , and sum over all the pro-atom 

pieces. This gives   
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  (5.29) 

As for the additive pro-atom model, 0µ ≈  if the promolecular and molecular densities 

are very similar.   

5.2.5 Computational Details 

 We use gradient-based optimization to optimize the Lagrangian in Eq. (5.18). As 

an initial guess, we use a method we call the scaled Hirshfeld (SH) method. In the scaled 

Hirshfeld method, the pro-atom densities are the spherically-averaged neutral-atom 

densities, scaled by a multiplicative constant. The promolecule density is therefore  

 ( ) ( )
atoms

0 0 0
mol , ,0

1
A

N

A A Z
A
cρ ρ

=

= ∑r r ,  (5.30) 

where AZ  is the atomic number of atom A. The scaled Hirshfeld method reduces to the 

traditional Hirshfeld partitioning method when   cA
0 = 1  for all the atoms.21 Unlike the 
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traditional Hirshfeld method, however, the promolecule in the scaled Hirshfeld method 

will have the same charge as the molecule. Therefore, unlike the traditional Hirshfeld 

method, the scaled Hirshfeld method is equally appropriate for neutral and charged 

molecules. The scaled Hirshfeld method is an appropriate initial guess since it is a special 

case of both the additive and multiplicative pro-atom models. Specifically, the additive 

pro-atom model corresponds to 0
, , 0AA n k A nZ kc c δ δ= ; the multiplicative pro-atom model 

corresponds to 0
0,0,0 Ac c=  and , , 0AA n k nZ kc δ δ= .  To this initial guess, we add a small 

positive noise to select atomic states; this ensures that the initial optimization point is 

away from the boundary of the feasible region, , , 0A n kc ≥ . After optimization has 

concluded, we test the gradient of the objective function with respect to all the parameters 

that are zero, , , 0A n kc = , to ensure that the objective function could not be lowered by 

increasing the values of these parameters. The initial guess for the Lagrange multiplier is 

computed using Eq. (5.27) (additive pro-atom model) or Eq. (5.29) (multiplicative pro-

atom model).  

5.2.6 Special Case of Extended Kullback-Leibler 

In the previous chapter, we noted that this variational approach to atoms in 

molecules is only size-consistent if the Lagrange multiplier is a constant, independent of 

zero. For the additive model, the extended Kullback-Leibler divergence had the 

advantage of being size consistent. We now show that this is also true for the scaled 

Hirshfeld charges, the multiplicative model, and indeed any pro-atom model for which 

each pro-atom density is scaled by a multiplicative constant. This can be seen as a small 
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generalization of the computational framework associated with minimal basis iterative 

stockholder (MBIS) partitioning.82 

Consider a promolecular density with the form  

 { } { }( ) ( )
atoms

0 0
mol

1
, , ;

N

A A A A A
A

c cρ ρ
=

= ∑r rα α   (5.31) 

The parameters Aα  are internal degrees of freedom in the pro-atom model; there are no 

such internal degrees of freedom for the scaled Hirshfeld pro-atom (cf. Eq. (5.30)) and in 

the multiplicative model each atom has as internal degrees of freedom the exponents 

, ,A n kc  (cf. Eq. (5.15)). The additive model already has the form of Eq. (5.31) with no free 

parameters, but instead of pro-atom densities it uses the densities of individual 

charge/excitation states of the pro-atoms. 

We rewrite the variational principle as a nested variational principle,  

    

min
cA≥0{ }
! min

α A{ }
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0 cA{ }, α A{ },r( )− ρmol r( )dr∫   (5.32) 

Denote the parameters that solve the inner minimization as { }min
Aα . The minimizing 

values for the multiplicative scaling factors, { }Ac , can then be obtained by solving the 

equations 
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  (5.33) 

Recall that the second term is the density of the atom-in-a-molecule, Eq. (5.7). This then 

implies that the AIM and the pro-atom have the same normalization,  
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 ( ) ( ) ( )0 min 0 min min; , ;A A A A A A A AN d c d Nρ ρ= = =∫ ∫r r r rα α α   (5.34) 

If one sums both sides of this equation over all the atoms, then it becomes clear that 

molecule and promolecule are normalized to the same number of electrons for the 

extended Kullback-Leibler information, and so the constraint in Eq. (5.17) does not need 

to be imposed. Because there is no need for a constraint that couples together the atoms 

on different molecular fragments, the method is size consistent. That is, for molecular 

fragments, F and G, which are so well-separated that their fragment molecular densities 

and their reference pro-atom densities do not overlap, it is equivalent to determine the 

reference pro-atom atoms either separately or together,  
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  (5.35) 

where the promolecular density of a fragment is defined by summing over the pro-atom 

densities in that fragment,  

 { } { }( ) ( )0 0
F

F
, , ;A A A A A

A
c cρ ρ

∈

=∑r rα α .  (5.36) 

Notice that size-consistency property and the equality of the AIM and pro-atom 

populations are true even when constraints are imposed on the inner minimization in Eq. 

(5.32). Given the somewhat contrived form of the multiplicative pro-atom model, Eq. 
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(5.15), this motivates us to explore what sorts of constraints we could impose to make the 

multiplicative pro-atomic densities more realistic. 

5.2.7 Constraints on the Multiplicative Pro-atom Model 

 The additive pro-atom model always gives pro-atom densities that satisfy the cusp 

constraint,47-48  
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Satisfying this constraint for the multiplicative pro-atom model forces one to satisfy the 

additional constraints  
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The atoms-in-molecule from the additive pro-atom model have different asymptotic 

decays. Within the multiplicative pro-atom model, however, we can constrain all the AIM 

to have the same asymptotic decay by forcing all the pro-atoms to have the same 

asymptotic decay,  
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This constraint is suggested by the electronegativity equalization principle.50-51 Notice, 

however, that because of the inherent non-locality of the asymptotic density decay,52 

imposing the asymptotic constraint in Eq. (5.39) destroys the size-consistency of the 

partitioning method. We could furthermore force all the AIM densities to decay at the rate 

of the molecular density,  
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Both the cusp and the asymptotic constraints only affect the outer minimization in Eq. 

(5.32); this means that even when these constraints are imposed, the AIM and pro-atom 

charges are the same when the extended Kullback-Leibler information is used. 

Since it is difficult to determine the molecular ionization potential directly from 

the asymptotic decay of the density,182 constraint in Eq. (5.40) would require additional 

knowledge about the molecule that might not always be available. In addition, some 

molecules have ionization potentials that are smaller than the ionization potential of the 

least-bound charge state of a system. For example, for any molecule containing nitrogen 

with an ionization potential less than 14.5 eV, it is impossible to match the asymptotic 

decay of the nitrogen pro-atom to the molecular asymptotic decay. Similarly, for any 

molecule containing hydrogen with an ionization potential greater than 13.6 eV, it is 

impossible to match the asymptotic decay of the hydrogen pro-atom to the molecular 

asymptotic decay.183 It is not even always possible to satisfy Eq. (5.39): for any molecule 

containing both nitrogen and hydrogen atoms, the slowest possible asymptotic decay of a 

nitrogen pro-atom density (IP = 14.5 eV) is faster than the fastest possible decay of a 

hydrogen pro-atom density (IP = 13.6 eV), and so Eq. (5.39) cannot be satisfied.  

 In the next section we will perform computational tests on the additive pro-atom 

model and the multiplicative pro-atom model. We will also consider the utility of 

constraints on the multiplicative pro-atoms like the nuclear cusp constraint (Eq. (5.38)) 

and the asymptotic decay constraint (Eq. (5.39)). 
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5.3 Numerical Assessment 

5.3.1 Computational Procedure 

All quantum chemistry calculations were performed using Gaussian09 (version 

C.01 for the calculations in sections 5.3.2 to 5.3.5; version D.01 for the calculations in 

section 5.3.6)184 using the stable=opt keyword to ensure that a local minimum of the 

energy with respect to orbital rotations was located. Kohn-sham density-functional theory 

(DFT) calculations were performed employing ultrafine integration grids. For the 

molecules in sections 5.3.2 to 5.3.5, the geometries were optimized at UωB97XD/cc-

pVTZ level of theory, the molecules in section 5.3.6 are a subset of a larger database we 

are building, and were optimized at the UB3LYP/Def2-TZVPD level.185 The population 

analysis was performed based on single point calculations at UHF, UB3LYP,108, 186-187 and 

UωB97XD111 levels of theory with Dunning’s (d-aug-)cc-pVXZ (X=D, T, Q, 5) 

correlation consistent basis set series.112-114   

To understand how our methods compare to more traditional methods, we also 

computed atomic populations using natural population analysis (NPA)14-15 and molecular 

electrostatic potential fitting (via the Hu-Lu-Yang method106; ESP). Among information-

theoretic methods, we decided to compare our results to the conventional Hirshfeld 

method (H), the iterative Hirshfeld method (Hirshfeld-I; HI), iterative stockholder 

analysis (ISA), and the minimal basis iterative stockholder approach (MBIS). Recall that 

MBIS differs from the scaled Hirshfeld method (Eq. (5.30), SH), the additive variational 

Hirshfeld method (AVH), and the multiplicative variational Hirshfeld method (MVH) 
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only because it uses s-type Slater orbitals to construct the pro-atoms. In this chapter, the 

pro-atoms were constructed using the spherically-averaged densities of isolated atoms and 

atomic ions, at the same level of theory and basis set used for the molecule being 

partitioned. Unless otherwise noted, all AVH and MVH calculations are performed using 

the ground-state densities of neutral and charged atoms that are bound at that level of 

theory. For example, if an atomic anion is not bound at the Hartree-Fock level for a given 

basis set, then that anion’s electron density is not included in the pro-atom database for 

calculations using that method. All information-theoretic partitioning was performed 

using an in-house version of HORTON.188 For the results presented here, the 

minimization of the objective function for the AVH, MVH, and SH methods was 

performed using the Sequential Least SQuares Programming (SLSQP) method, as 

implemented in Python library SciPy. 

5.3.2 Test Case: Lithium Chloride 

As a first example, we will consider the lithium chloride molecule. Figure 5.1 

shows the charges obtained from various quantum chemistry methods, basis sets, and 

population analysis approaches. Ionic molecules like LiCl are prototypical failures of the 

conventional Hirshfeld method: because the Hirshfeld AIM diverge minimally from the 

neutral pro-atom densities, in ionic molecules the Hirshfeld AIM are too close to neutral, 

and the charges are too small. The scaled Hirshfeld (SH) method is not much better. All 

of the other information-theoretic methods give similar charges, with the methods that use 

basis sets to construct the pro-atom densities (Hirshfeld-I, AVH, and MVH) showing 

similar basis-set dependence. 
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Table 5.1 shows the optimized charges and pro-atom parameters of AVH for 

lithium chloride. Notice that the lithium anion is not bound at the Hartree-Fock level for 

any of the basis sets considered, and so it is not available to construct the lithium pro-

atom. Most of the basis-set dependence of the AVH charges is related to the need for 

diffuse functions in the basis so that the chlorine anion’s density is well-described. Once 

diffuse functions are included, there is consensus between the various quantum chemistry 

methods and aug-cc-pVXZ basis sets that the charge on the lithium atom is about +0.97, 

in accord with our chemical expectations that this molecule is ionic. It is also reassuring 

that the dominant contribution to the lithium pro-atom density is from the cation, with a 

very small contribution from the neutral atom and negligible contributions from the other 

charge states. 

Table 5.2 shows the optimized charges and pro-atom parameters of MVH for 

lithium chloride, with the cusp constraint in Eq. (5.38) imposed. Again, most of the basis-

set dependence in MVH is due to the inaccuracy of the reference pro-atom densities when 

the basis set does not include diffuse functions. For the aug-cc-pVXZ basis sets, the MVH 

charges are tightly clustered, and the different quantum chemistry techniques give a 

consensus charge on the Lithium atom of about +0.94. This is slightly smaller than for 

AVH but nonetheless wholly consistent with our chemical intuition. 

The pro-atom parameters in MVH, however, are very inconsistent with our 

chemical intuition. These parameters are very dependent on the method and basis set, and 

sometimes one sees significant contributions from the electron density of the lithium 

anion or the lithium dication. It is mildly reassuring that at least for the largest basis sets 
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(aug-ccpVXZ, X=T,Q,5) the lithium pro-atom is composed almost exclusively from Li0 

and Li+, which contribute in roughly equal portions. Remarkably, the charges from the 

MVH model do not seem to be especially sensitive to the parameters that define the 

composition of the pro-atom.  
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Figure 5.1 Charge of lithium atom in lithium chloride computed with various partitioning schemes at 
various levels of theory. For each scheme, the three columns plot the charges computed using eight 
Dunning basis sets, i.e. (aug-)ccpVXZ with X=D, T, Q, 5 basis functions, at UHF, UB3LYP, and 
UωB97XD levels of theory, respectively. The absolute range of the atomic charges obtained using 
various basis sets at each level of theory is summarized on the x-axis alongside the name of 
partitioning method. The methods used are Hirshfeld (H), Iterative Hirshfeld (HI), Iterative 
Stockholder Analysis (ISA), Minimal Basis Stockholder Analysis (MBIS), Scaled Hirshfeld (SH), 
Additive Variational Hirshfeld (AVH), Multiplicative Variational Hirshfeld with the cusp constraint 
in Eq. (5.38) (MVH), Hu-Lu-Yang electrostatic fitted charges (ESP), and Natural Population Analysis 
(NPA). 
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Table 5.1 Additive Variational Hirshfeld (AVH) charge   qLi  and basis set coefficients 
  

cLi,N ,0{ }i=1

4
 of 

lithium atom in lithium chloride at various levels of theory. The linear coefficients, from left to right, 
correspond to spherically averaged ground-state 

  
ρ

Li−
r( ) , 

  
ρLi r( ) , 

  
ρ

Li+
r( )  and 

  
ρ

Li+2 r( )  densities, 
respectively. The --- indicates that the atomic density was unbound and thus not included in the pro-
atom expansion. 

 
Level of Theory Liq  Li,4,0c  Li,3,0c  Li,2,0c  Li,1,0c  
UHF/cc-pVDZ 0.9155 --- 0.0776 0.9259 0.0000 
UHF/cc-pVTZ 0.9457 --- 0.0395 0.9679 0.0000 
UHF/cc-pVQZ 0.9609 --- 0.0224 0.9859 0.0000 
UHF/cc-pV5Z 0.9670 --- 0.0155 0.9933 0.0000 
UHF/aug-cc-pVDZ 0.9817 --- 0.0071 0.9985 0.0000 
UHF/aug-cc-pVTZ 0.9771 --- 0.0041 1.0054 0.0000 
UHF/aug-cc-pVQZ 0.9776 --- 0.0027 1.0072 0.0000 
UHF/aug-cc-pV5Z 0.9776 --- 0.0025 1.0074 0.0000 
UB3LYP/cc-pVDZ 0.8536 0.0000 0.1376 0.8668 0.0000 
UB3LYP/cc-pVTZ 0.9043 0.0000 0.0761 0.9337 0.0000 
UB3LYP/cc-pVQZ 0.9261 0.0000 0.0515 0.9596 0.0000 
UB3LYP/cc-pV5Z 0.9346 0.0000 0.0403 0.9723 0.0000 
UB3LYP/aug-cc-pVDZ 0.9585 0.0004 0.0255 0.9817 0.0000 
UB3LYP/aug-cc-pVTZ 0.9524 0.0000 0.0216 0.9914 0.0000 
UB3LYP/aug-cc-pVQZ 0.9527 0.0000 0.0195 0.9945 0.0000 
UB3LYP/aug-cc-pV5Z 0.9514 0.0000 0.0190 0.9958 0.0000 
UωB97XD/cc-pVDZ 0.8879 0.0000 0.1044 0.8995 0.0000 
UωB97XD/cc-pVTZ 0.9303 0.0000 0.0538 0.9542 0.0000 
UωB97XD/cc-pVQZ 0.9489 0.0000 0.0332 0.9758 0.0000 
UωB97XD/cc-pV5Z 0.9561 0.0000 0.0246 0.9850 0.0000 
UωB97XD/aug-cc-pVDZ 0.9762 0.0004 0.0101 0.9960 0.0000 
UωB97XD/aug-cc-pVTZ 0.9705 0.0000 0.0086 1.0019 0.0000 
UωB97XD/aug-cc-pVQZ 0.9712 0.0000 0.0067 1.0043 0.0000 
UωB97XD/aug-cc-pV5Z 0.9709 0.0000 0.0066 1.0047 0.0000 
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Table 5.2 Multiplicative Variational Hirshfeld (MVH) charge  qe  and basis set coefficients of the 
lithium atom in lithium chloride at various levels of theory. These charges were computed 
considering the cusp constraint and promolecule charge constraint. The nonlinear basis function 
coefficients 

  
cLi,4,0 , 

  
cLi,3,0 , 

  
cLi,2,0  and 

  
cLi,1,0 , correspond to the exponents of the spherically averaged 

ground-state 
  
ρ

Li−
r( ) , 

  
ρLi r( ) , 

  
ρ

Li+
r( )  and 

  
ρ

Li+2 r( )  densities, respectively. (See Eq. (5.15).) The last 
column presents the pre-factor of lithium pro-atom expansion. The --- indicates that the atomic 
density was unbound and thus not included in the pro-atom expansion. 

 
Level of Theory Liq   Li,4,0c  Li,3,0c  Li,2,0c  Li,1,0c  Li,0,0c   
UHF/cc-pVDZ 0.9038 --- 0.6221 0.0000 0.3779 1.2848 
UHF/cc-pVTZ 0.9258 --- 0.6880 0.1022 0.2099 1.1464 
UHF/cc-pVQZ 0.9437 --- 0.5694 0.2973 0.1333 1.0920 
UHF/cc-pV5Z 0.9515 --- 0.4892 0.4276 0.0833 1.0574 
UHF/aug-cc-pVDZ 0.9621 --- 0.4437 0.2668 0.2896 1.2160 
UHF/aug-cc-pVTZ 0.9565 --- 0.3909 0.6040 0.0051 1.0038 
UHF/aug-cc-pVQZ 0.9557 --- 0.3853 0.6147 0.0000 1.0009 
UHF/aug-cc-pV5Z 0.9557 --- 0.3858 0.6119 0.0023 1.0025 
UB3LYP/cc-pVDZ 0.8399 0.3180 0.3714 0.0686 0.2420 1.1659 
UB3LYP/cc-pVTZ 0.8858 0.5769 0.0753 0.1923 0.1554 1.1061 
UB3LYP/cc-pVQZ 0.9042 0.0511 0.5755 0.2530 0.1204 1.0819 
UB3LYP/cc-pV5Z 0.9093 0.6148 0.0000 0.2317 0.1535 1.1073 
UB3LYP/aug-cc-pVDZ 0.9315 0.1091 0.4131 0.3570 0.1208 1.0813 
UB3LYP/aug-cc-pVTZ 0.9213 0.0000 0.5036 0.4951 0.0013 1.0006 
UB3LYP/aug-cc-pVQZ 0.9221 0.0000 0.4918 0.5082 0.0000 1.0007 
UB3LYP/aug-cc-pV5Z 0.9213 0.0010 0.5200 0.4565 0.0224 1.0162 
UωB97XD/cc-pVDZ 0.8750 0.3444 0.3045 0.0605 0.2906 1.2067 
UωB97XD/cc-pVTZ 0.9120 0.6249 0.0000 0.2230 0.1521 1.1040 
UωB97XD/cc-pVQZ 0.9284 0.0558 0.5416 0.2727 0.1299 1.0893 
UωB97XD/cc-pV5Z 0.9346 0.0122 0.5609 0.3070 0.1199 1.0836 
UωB97XD/aug-cc-pVDZ 0.9530 0.3221 0.1314 0.3901 0.1564 1.1086 
UωB97XD/aug-cc-pVTZ 0.9443 0.0017 0.4425 0.5557 0.0000 0.9998 
UωB97XD/aug-cc-pVQZ 0.9444 0.0000 0.4380 0.5620 0.0000 1.0007 
UωB97XD/aug-cc-pV5Z 0.9445 0.0020 0.4373 0.5607 0.0000 1.0010 
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5.3.3 Sensitivity to Divergence Measure 

In the previous section we minimized the extended Kullback-Leibler divergence 

between the molecular and promolecular densities, cf. Eq. (5.4). As discussed in section 

5.2.3 however, the method we present works for every f-divergence. Some interesting f-

divergences are listed in the appendix. (In the appendix, we also mention that the result 

extends even somewhat beyond the class of f-divergences.189) Here we will focus only on 

the extended α-divergence,28, 138-140, 145, 158  
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⎞

⎠
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α

− ρA r( )dr∫ .  (5.41) 

This generalizes the extended Kullback-Leibler divergence, to which it reduces in the 

limit 0α → . We will also consider the symmetrized α-divergence, where the densities of 

the AIM and the pro-atom appear symmetrically, 

 ( )0 0 0
,sym ,ext ,ext

1
2A A A A A AD D Dα α αρ ρ ρ ρ ρ ρ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + ⎣ ⎦⎣ ⎦ ⎣ ⎦   (5.42) 

The symmetrized α-divergence reduces to the symmetrized-Kullback-Leibler divergence 

(cf. Eq. (5.5)) when 0α →  or 1α → . Clearly the symmetrized α-divergence gives the 

same answer for 1
2α β= ± , so we will only consider 1

2α ≥ .  

 Figure 5.2 shows the dependence of atomic charges for the oxygen, nitrogen, and 

carbon AIM in formamide, HCONH2, on the value of α in the extended α-divergence. 

The dependence on the basis set is unremarkable, and the charges of the oxygen and 

carbon atoms are rather insensitive to the value of α. However, the charges of the nitrogen 

atom vary by about   ∼ ±0.15 , depending on the value of α. The α-dependence is mostly 
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eliminated when one uses the symmetrized α-divergence as presented in Figure 5.3: now 

the carbon and oxygen atoms are even more insensitive to the choice of α, and the 

nitrogen atoms charge varies by only   ∼ ±0.03 . Moreover, the charges for the 

symmetrized α-divergence are very close to the charges associated with the Hellinger 

distance ( 1
2α = ), and relatively close to the charges associated with the extended 

Kullback-Leibler divergence. Since the extended Kullback-Leibler ( 0α → ) and 

symmetrized α-divergence give similar answers, but only the extended Kullback-Leibler 

divergence is size-consistent (cf. Eq. (5.35)) and gives atoms and pro-atoms with the 

same charges (cf. Eq. (5.34)). As we have found no compelling reason to use any 

divergence other than the extended Kullback-Leibler divergence in our numerical 

explorations, we will henceforth use only that measure.  However, it is worth noting that 

the symmetrized α-divergence (and we believe, symmetrized f-divergences in general) 

will generally be less sensitive to the choice of internal parameters. The symmetrized 

formulas also seem to be slightly less sensitive to basis set. 
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Figure 5.2 Dependence of Additive Variational Hirshfeld (AVH) atomic charges of oxygen, nitrogen 
and carbon in formamide on the α value when the extended α-divergence measure, (5.41), was used 
for optimizing the pro-atoms. The molecular and pro-atom densities were computed with 
unrestricted Hartree-Fock calculations using Dunning basis sets. Similar results were obtained for 
UB3LYP and UωB97XD levels of theory using Dunning basis sets. 
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Figure 5.3 Dependence of Additive Variational Hirshfeld (AVH) atomic charges of oxygen, nitrogen 
and carbon in formamide on the α value when the symmetric α-divergence measure, (5.42), was used 
for optimizing the pro-atoms. The molecular and pro-atom densities were computed with 
unrestricted Hartree-Fock calculations using Dunning basis sets. Similar results were obtained for 
UB3LYP and UωB97XD levels of theory using Dunning basis sets. 
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5.3.4 Cusp and Ionization Potential Constraints  

As discussed in section 5.2.7, one can force the pro-atomic densities in the 

multiplicative model to have appealing mathematical properties by imposing constraints. 

Forcing the pro-atom densities to satisfy the correct nuclear cusp constraint, Eq. (5.38), 

enables the promolecular density to closely fit the molecular density in the vicinity of the 

nucleus. When we implemented the cusp constraint, we observed that the charges on 

heavy atoms did not change dramatically. However, negatively-charged hydrogen atoms 

tended to become less negative. For example, in ammonia, the charge on the nitrogen 

atom in a d-aug-cc-pV5Z calculation is -0.927 without the cusp constraint and -0.573 

with the cusp constraint. (The overall trends are very similar, with nitrogen charges in 

NH3 tightly clustered around -0.9 without the cusp constraint around -0.59 with the cusp 

constraint, regardless of the basis set (d-aug-)cc-pVXZ (X=D, T, Q, 5) or method (UHF, 

UB3LYP, UωB97XD).) Comparing to the results from electrostatic potential (ESP) 

fitting, -0.866, one might believe that the cusp constraint is detrimental to the MVH 

method. However, as we shall discuss in the next section, the ESP charges on the nitrogen 

atom in ammonia are generally too negative, so the fact the unconstrained MVH gives 

even more negative charges is unfavorable. The MVH with the cusp constraint gives 

results very similar to AVH. (For example, the population on the nitrogen in NH3 at the 

UB3LYP/d-aug-cc-pV5Z level from AVH differs from that of cusp-constrained MVH by 

just 0.0006 electrons). 

As discussed in section 5.2.7, one can also require that the pro-atoms all have the 

same asymptotic decay. This constraint is conceptually problematic as the resulting 
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method is not size consistent, since in a molecule consisting of two well-separated 

fragments, F and G, the asymptotic decays of the pro-atoms for fragment F are 

nonetheless constrained based on the asymptotic decays of the pro-atoms for fragment G. 

This is in accord with the electronegativity equalization principle and the paradoxes 

associated thereto,51-52 but it is computationally and intuitively problematic. It is even 

more problematic to note that the constraint that all the pro-atoms have the same 

asymptotic decay, Eq. (5.39), cannot even be satisfied in many cases (e.g, any molecule 

containing both nitrogen and hydrogen atoms). Nonetheless, in cases where we were able 

to impose the asymptotic decay constraint, the results obtained from it were acceptable, 

although perhaps not ideal. For example, for magnesium oxide computed at the 

UB3LYP/aug-cc-pVTZ level, the charge on magnesium changes from +0.824 to +0.713 

when adding the asymptotic constraint. Arguably the charges without the asymptotic 

decay constraint are more reasonable since they are closer to the expected formal charge 

(Mg+2), but perhaps not enough to dismiss the asymptotic constraint as unworthy of 

further study. Based on our investigations, the asymptotic constraint has minimal 

influence in many cases, but in highly ionic systems like MgO, LiCl, etc., the magnitude 

of the charges decreases upon imposition of the asymptotic constraint. 

As we discussed in section 5.3.2, the parameters in MVH are difficult to interpret 

in general. The MgO is no exception. Without the asymptotic constraints, the exponents 

for the Mg0 and Mg+1 electron densities are Mg,12,0 0.55c =  and Mg,11,0 0.42c =  respectively. 

(All other states, including the intuitive Mg+2 state, have exponents less that 0.04.) 

Similarly, the exponents for the O− and O0 electron densities are O,9,0 0.60c =  and 
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O,8,0 0.40c = , respectively. Imposing the asymptotic constraint on the pro-atom densities 

forces the Mg pro-atom to decay more slowly and the O pro-atom to decay more quickly (

Mg,12,0 Mg,11,0 O,9,0 O,8,00.86;  0.09;  0.22;  0.78c c c c= = = = ). This is in accord with chemical 

intuition and the trend for the asymptotic constraint to diminish the magnitude of the 

charges in small molecules. It also agrees with the observation in section 5.3.2 that large 

changes in the exponents in the multiplicative pro-atom model often have surprisingly 

little influence on the computed atomic charges. 

5.3.5 Basis Set and Method Dependence 

In Error! Reference source not found., the charges of the carbon, nitrogen, and 

xygen AIM in the formamide molecule, computed at various levels of theory for a variety 

of population analysis methods, are presented. As before the MVH results include the 

cusp constraint, Eq. (5.38), but not the ionization potential constraint, Eq. (5.39), which is 

inapplicable since formamide has both nitrogen and hydrogen atoms. The Hirshfeld and 

scaled-Hirshfeld, Eq. (5.30), charges are smaller in magnitude than charges from the other 

methods. Hirshfeld-I charges are very sensitive to basis set, which is typical for Nitrogen-

containing elements. Unfortunately, the AVH and MVH methods are also unreasonably 

sensitive to basis set. Examining the data, we realized this occurred because for some 

choices of method and basis set, some atomic anions were not bound. This suggested that 

we should restrict to only allow the electron densities of atomic states that are actually 

physically bound, thereby eliminating the erroneous electron densities associated with 

“computationally bound” systems like nitrogen anions. The AVH-PHYS and MVH-



 
 

132 

PHYS methods do exactly this. Using only the atomic densities of the physically bound 

atomic ions to compose the pro-atom densities removes most of the basis-set dependence. 

To determine which atomic charge states were stable, we used the atoms with stable 

anions tabulated in ref 190. 

It is also apparent that the nitrogen atom in the AVH and MVH methods is less 

negative than it is in the other methods (except, obviously, for Hirshfeld and scaled-

Hirshfeld partitioning). This motivated us to explore a broader set of nitrogen-containing 

molecules (including molecular ions), which we shall do in section 5.3.6) 

To compare the performance of the AVH and MVH methods to more established 

approaches, we selected a set of small molecules (CH3
+, CH4, CH3

−, NH4
+, NH3, NH2

−, 

H3O+, H2O, OH−) for investigating the sensitivity of these methods to the one-electron 

basis set and the type of electronic structure theory method used, and also for assessing 

how well different partitioning methods recapture chemical trends. The results are 

presented in Figure 5.5. As before only allowing the pro-atoms to be constructed using 

physically bound atomic densities removes most of the basis-set dependence. The 

resulting methods, labeled AVH-PHYS and MVH-PHYS in Figure 5.5, show good stability 

with respect to method and basis, and appear to obey the main chemical trends, namely 

that as the molecular charge increases, the atomic charge of the central non-hydrogen 

atom should also increase. AVH-PHYS and MVH-PHYS give very similar results, with 

perhaps slightly better basis-set-insensitivity from the multiplicative pro-atom model 

(MVH). Notice that AVH and MVH cure the erratic behavior for molecular anions of the 

closely related MBIS method.   
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AVH-PHYS and MVH-PHYS give less negative (more positive) charges for the 

central non-hydrogen atoms in these molecules. This may be desirable. For example, in 

charges based on fitting the molecular electrostatic potential, the charge on the nitrogen 

atom in ammonia, NH3, is generally believed to be too negative, because the ESP-fitting 

charges are based on putting a charge at the position of the nitrogen nucleus, while the 

locus of negative charge on the nitrogen atom is associated with the lone pair. It is the 

favorable that the AVH-PHYS and MVH-PHYS charges on the nitrogen in ammonia are 

less negative than the charges from electrostatic fitting. It is disconcerting that MBIS, 

Hirshfeld-I, NPA, and ISA predict charges on the ammonia atom that are even more 

negative than those predicted by electrostatic fitting. 

The lithium nitride molecule in Figure 5.6 shows the same trends as the ammonia 

molecule, but with greater severity. It is extremely clear that it is critical to avoid atomic 

densities that are computationally but not physically bound in the AVH and MVH 

methods. Moreover, the pathologies of the Hirshfeld-I are apparent, not only from the 

extreme basis-set dependence, but also because our software crashed in some cases 

because once the nitrogen atom has a charge smaller than -3, one needs the electron 

density of N−4, which is not available in our database of pro-atoms. MBIS and ISA give 

charges even more negative than the (presumably already too negative) charges from ESP 

fitting. The charges on the nitrogen atoms predicted by AVH and MVH, by contrast, 

seem plausible (though slightly more negative charges would also be reasonable). 

An unpleasant feature of AVH and MVH is the prediction of a small positive 

charge for the central carbon in methane in Figure 5.5. This is an outlier among population 
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analysis methods, and we feel it may be possible to remove this behavior by including 

excited-state atomic densities in the pro-atom basis. In fact, the realization that a 

contribution from the sp3 configuration of the carbon atom should be included in the 

carbon pro-atom of aliphatic hydrocarbons was the original motivation for the excited-

state AVH method. 
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Figure 5.4 Atomic charges of oxygen, nitrogen and carbon in formamide computed with various 
partitioning schemes at various levels of theory. For each scheme, the three columns plot the charges 
computed using twelve Dunning basis sets, i.e. (d-aug-)cc-pVXZ with X=D, T, Q, 5 basis functions, at 
UHF, UB3LYP, and UωB97XD levels of theory, respectively. The absolute range of the atomic 
charges obtained using various basis sets at each level of theory is summarized on the x-axis alongside 
the name of partitioning method. The methods used are Hirshfeld (H), Iterative Hirshfeld (HI), 
Iterative Stockholder Analysis (ISA), Minimal Basis Stockholder Analysis (MBIS), Scaled Hirshfeld 
(SH), Additive Variational Hirshfeld with computationally bound proatom basis (AVH), Additive 
Variational Hirshfeld with physically bound proatom basis (AVH-PHYS), Multiplicative Variational 
Hirshfeld with computationally bound proatom basis (MVH), Multiplicative Variational Hirshfeld 
with physically bound proatom basis (MVH-PHYS), Hu-Lu-Yang electrostatic fitted charges (ESP), 
and Natural Population Analysis (NPA). 
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Figure 5.5 Comparison between partitioning schemes at different levels of theory. For each scheme, 
the three columns plot the charges computed using twelve Dunning basis sets, i.e. (d-aug-)cc-pVXZ 
with X=D, T, Q, 5 basis functions, at UHF, UB3LYP, and UωB97XD levels of theory, respectively. 
The absolute range of the atomic charges obtained using various basis sets at each level of theory is 
summarized on the x-axis alongside the name of partitioning method. The methods used are 
Hirshfeld (H), Iterative Hirshfeld (HI), Iterative Stockholder Analysis (ISA), Minimal Basis 
Stockholder Analysis (MBIS), Scaled Hirshfeld (SH), Additive Variational Hirshfeld with 
computationally bound pro-atom basis (AVH), Additive Variational Hirshfeld with physically bound 
pro-atom basis (AVH-PHYS), Multiplicative Variational Hirshfeld with computationally bound pro-
atom basis (MVH), Multiplicative Variational Hirshfeld with physically bound pro-atom basis 
(MVH-PHYS), Hu-Lu-Yang electrostatic fitted charges (ESP), and Natural Population Analysis 
(NPA). 
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Figure 5.6 Atomic charge of the nitrogen atom in lithium nitride computed with various partitioning 
schemes at various levels of theory. For each scheme, the three columns plot the charges computed 
using twelve Dunning basis sets, i.e. (d-aug-)cc-pVXZ with X=D, T, Q, 5 basis functions, at UHF, 
UB3LYP, and UωB97XD levels of theory, respectively. The absolute range of the atomic charges 
obtained using various basis sets at each level of theory is summarized on the x-axis alongside the 
name of partitioning method. The methods used are Hirshfeld (H), Iterative Hirshfeld (HI), Iterative 
Stockholder Analysis (ISA), Minimal Basis Stockholder Analysis (MBIS), Scaled Hirshfeld (SH), 
Additive Variational Hirshfeld with computationally bound pro-atom basis (AVH), Additive 
Variational Hirshfeld with physically bound pro-atom basis (AVH-PHYS), Multiplicative Variational 
Hirshfeld with computationally bound pro-atom basis (MVH), Multiplicative Variational Hirshfeld 
with physically bound pro-atom basis (MVH-PHYS), Hu-Lu-Yang electrostatic fitted charges (ESP), 
and Natural Population Analysis (NPA). 
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5.3.6 Comparison to Conventional Population Analysis Methods 

To explore the trends in the AVH and MVH charges relative to other methods, we 

considered a set of 41 nitrogen-containing molecules listed in Table 5.3. Figure 5.7 to Figure 

5.14 compare the trends between various population analysis methods for the atoms that 

appear in these molecules, with the charges computed using three different quantum 

chemistry methods (UHF, UB3LYP, UωB97XD) and up to twelve different basis sets (d-

aug-, aug-)cc-pVXZ (X=D,T,Q,5), depending on the availability of the basis sets for the 

elements in each molecule. Based on the results from the previous section, from now on 

we only use physically bound atomic densities when composing the pro-atoms. We use 

the cusp constraint for the multiplicative pro-atom model, Eq. (5.38). 

Looking at Figure 5.7, it is remarkable how close the MVH and AVH models are. 

(A corollary to this finding would be that an even more general method, using the p-mean 

pro-atom formula in Eq. (5.12), is unlikely to significantly affect the molecular 

populations.) Since the AVH method is a convex optimization, and is therefore more 

robust and easier computationally, it seems preferable to the MVH method.  

Figure 5.8 and Figure 5.9 compare AVH atomic charges to the conventional 

Hirshfeld and scaled Hirshfeld charges. The (scaled-)Hirshfeld method is based on neutral 

pro-atom densities, and tends to underestimate the magnitude of the atomic charges. The 

AVH method correlates well with the Hirshfeld and scaled-Hirshfeld charges, but the 

AVH charges tend to be larger. 

Figure 5.10 compares charges from AVH and from Hirshfeld-I charges. Hirshfeld-I 

charges are usually excellent when they are relatively small, but because the reference 
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atomic densities of dianions (and even trianions) are unphysical, Hirshfeld-I charges are 

erratic for molecules containing very negatively charged atoms. For the nitrogen atom, 

AVH charges closely correlate with Hirshfeld-I charges when the nitrogen atom has a 

charge greater than −1, but do not decrease to arguably absurd levels thereafter. In this set 

of molecules, Hirshfeld-I also sometimes gives charges on carbon atoms and lithium 

atoms that are greater than +1. This seems questionable, especially for lithium atoms. It is 

reassuring that AVH never gives charges of lithium or carbon greater than +1 for this 

molecule set.  

Figure 5.11 compares charges from AVH and from iterative stockholder analysis 

(ISA). As with Hirshfeld-I charges, ISA charges tend to be reliable when the magnitude 

of the charges is relatively small, and then unreliable when the charges become extreme. 

It is therefore reassuring that AVH charges are very similar to ISA charges for charges 

between +1 and −1, but less extreme outside this interval. Note that the ISA charges give 

some absurd results:  nitrogen atoms are even more negative than −3, lithium atoms that 

have charges greater than +1, carbon atoms with charges greater than +1. None of these 

questionable behaviors is present for AVH. ISA seems to almost always assign a charge 

near +1 to Lithium atoms, regardless of the chemical context. AVH seems to be more 

nuanced in this respect (recall the data for NLi3 in Figure 5.6). 

Figure 5.12 compare charges from AVH and from minimal basis iterative 

stockholder analysis (MBIS). The charges correlate closely, as might be expected since 

MBIS is also a variational Hirshfeld method. As with Hirshfeld-I and ISA, the charges 

correlated well when the magnitude of the charges is not too large, but the extreme 
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negative nitrogen atom charges are not present (although in general more negative AVH 

nitrogen atoms correspond to more negative MBIS nitrogen atoms). MBIS has a few 

highly positive carbon atoms, which AVH does not show.  

Figure 5.13 compares charge from AVH and from natural population analysis 

(NPA). The trends are clearly similar, but the correlation is weak. The trends of AVH 

charges compared to the charges from electrostatic potential fitting (ESP) are similar as 

plotted in Figure 5.14. In both cases AVH give fewer extremely negative nitrogen atoms, 

more negative hydrogen atoms, and a greater range of possible lithium charges.  

Overall, these figures demonstrate that the variational Hirshfeld models presented 

in this thesis give reasonable results. Their results are quite similar to those of other 

information-theoretic partitioning methods, but improve over scaled-Hirshfeld and 

conventional Hirshfeld methods by having charges of higher magnitude, improve over 

Hirshfeld-I, ISA, and MBIS by having moderating extremely negative charges (for 

nitrogen) and extremely positive charges (for lithium).  
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Table 5.3 The chemical formula, PubChem Compound Identifier (CID), and International Union of 
Pure and Applied Chemistry (IUPAC) name of the nitrogen-containing molecules explored in section 
5.3.6. 

 Formula CID IUPAC Name 
1 H3N 222 Azane 
2 H4N+ 223 Azanium 
3 H2N− 2826723 Azanide 
4 ClH2N 25423 Chloramine 
5 Cl2HN 76939 Dichloroamine 
6 Cl3N 61437 Nitrogen Trichloride 
7 FH2N 139987 Monofluoroamine 
8 F2HN 25242 Difluoroamine 
9 F3N 24553 Nitrogen Trifluoride 

10 F4N+ --- Perfluoroammonium Cation 
11 H2LiN 24532 Lithium;Azanide 
12 HLi2N --- Lithium Imide 
13 Li3N --- Lithium Nitride 
14 H3NO 787 Hydroxylamine 
15 H2N2 123195 Diazene 
16 H4N2 9321 Hydrazine 
17 CHNO 521293 Formonitrile Oxide 
18 CHN 768 Formonitrile 
19 CHN 6432654 Methanidylidyneazanium 
20 CN− 5975 Cyanide 
21 CNO− 105034 Cyanate 
22 CNO� 140912 λ2-azanylidenemethanone 
23 CHNO 6347 Isocyanic Acid 
24 CNO− 12360 Oxidoazaniumylidynemethane 
25 CHNO 62317 Hydroxyazaniumylidynemethane 
26 ClNO 17601 Nitrosyl Chloride 
27 ClNO2 --- Chloro(oxo)azane Oxide 
28 HNO 945 Nitroxyl 
29 NO+ 84878 Azanylidyneoxidanium 
30 NO� 145068 Nitric Oxide 
31 NO− 3001380 Nitroxyl Anion 
32 NO2

+ 3609161 Nitronium 
33 NO2

� 3032552 Nitrogen Peroxide 
34 NO2

− 946 Nitrite 
35 HNO2 24529 Nitrous Acid 
36 FNO2 66203 Nitryl Fluoride 
37 HNO3 944 Nitric Acid 
38 LiNO3 10129889 Lithium;Nitrate 
39 HNO3 123349 Hydroxy Nitrite 
40 NO3

− 104806 Oxido Nitrite 
41 N2O 948 Nitrous Oxide 
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Figure 5.7 For the molecules from Table 5.3, the atomic charges computed using the additive 
variational Hirshfeld method with physically bound pro-atom basis (AVH-PHYS) are plotted versus 
the charges computed using the multiplicative variational Hirshfeld method with physically bound 
pro-atoms (MVH-PHYS). The charges were computed from molecular densities obtained from 36 
calculations, from the twelve Dunning basis sets—(d-aug-)cc-pVXZ; with X=D, T, Q, 5—at the UHF, 
UB3LYP, and UωB97XD levels of theory. 

 

 
 
Figure 5.8 For the molecules from Table 5.3, the atomic charges computed using the additive 
variational Hirshfeld method with physically bound pro-atom basis (AVH-PHYS) are plotted versus 
the charges computed using the conventional Hirshfeld method with neutral pro-atoms (H). The 
charges were computed from molecular densities obtained from 36 calculations, from the twelve 
Dunning basis sets—(d-aug-)cc-pVXZ; with X=D, T, Q, 5—at the UHF, UB3LYP, and UωB97XD 
levels of theory. 
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Figure 5.9 For the molecules from Table 5.3, the atomic charges computed using the additive 
variational Hirshfeld method with physically bound pro-atom basis (AVH-PHYS) are plotted versus 
the charges computed using the scaled Hirshfeld method with scaled neutral pro-atoms (SH). The 
charges were computed from molecular densities obtained from 36 calculations, from the twelve 
Dunning basis sets—(d-aug-)cc-pVXZ; with X=D, T, Q, 5—at the UHF, UB3LYP, and UωB97XD 
levels of theory. 

 
 
 
 
Figure 5.10 For the molecules from Table 5.3, the atomic charges computed using the additive 
variational Hirshfeld method with physically bound pro-atom basis (AVH-PHYS) are plotted versus 
iterative Hirshfeld charges (HI). The charges were computed from molecular densities obtained from 
36 calculations, from the twelve Dunning basis sets—(d-aug-)cc-pVXZ; with X=D, T, Q, 5—at the 
UHF, UB3LYP, and UωB97XD levels of theory. 
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Figure 5.11 For the molecules from Table 5.3, the atomic charges computed using the additive 
variational Hirshfeld method with physically bound pro-atom basis (AVH-PHYS) are plotted versus 
charges computed using iterative stockholder analysis (ISA). The charges were computed from 
molecular densities obtained from 36 calculations, from the twelve Dunning basis sets—(d-aug-)cc-
pVXZ; with X=D, T, Q, 5—at the UHF, UB3LYP, and UωB97XD levels of theory. 

 
 
 
 
Figure 5.12 For the molecules from Table 5.3, the atomic charges computed using the additive 
variational Hirshfeld method with physically bound pro-atom basis (AVH-PHYS) are plotted versus 
minimal basis iterative stockholder charges (MBIS). The charges were computed from molecular 
densities obtained from 36 calculations, from the twelve Dunning basis sets—(d-aug-)cc-pVXZ; with 
X=D, T, Q, 5—at the UHF, UB3LYP, and UωB97XD levels of theory. 
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Figure 5.13 For the molecules from Table 5.3, the atomic charges computed using the additive 
variational Hirshfeld method with physically bound pro-atom basis (AVH-PHYS) are plotted versus 
the atomic charges from natural population analysis (NPA). The charges were computed from 
molecular densities obtained from 36 calculations, from the twelve Dunning basis sets—(d-aug-)cc-
pVXZ; with X=D, T, Q, 5—at the UHF, UB3LYP, and UωB97XD levels of theory. 

 
 
 
 
Figure 5.14 For the molecules from Table 5.3, the atomic charges computed using the additive 
variational Hirshfeld method with physically bound pro-atom basis (AVH-PHYS) are plotted versus 
the atomic charges obtained by fitting the molecular electrostatic potential using the Hu-Lu-Yang 
method (ESP). The charges were computed from molecular densities obtained from 36 calculations, 
from the twelve Dunning basis sets—(d-aug-)cc-pVXZ; with X=D, T, Q, 5—at the UHF, UB3LYP, 
and UωB97XD levels of theory. 
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5.4 Conclusion 

In this chapter, we presented a variational Hirshfeld method, where one minimizes 

the f-divergence between the molecular density and its approximate, called the 

promolecular density. The form of the promolecular density is flexible, but we have 

proposed that it be written as a sum of atomic contributions, Eq. (5.8), where the atomic 

contributions are composed from the spherically-averaged ground state and/or excited 

state densities of the isolated atoms and atomic ions. We observed that including only the 

densities that correspond to physically bound ground states made these methods relatively 

insensitive to the choice of method and basis set. We presented three ways of composing 

the pro-atom densities: 

(a) A weighted arithmetic average, Eq. (5.11), we call this the additive pro-atom model 

and call the resulting partitioning method additive variational Hirshfeld (AVH). 

(b) A weighted geometric average, Eq. (5.15), we call this the multiplicative pro-atom 

model and call the resulting partitioning method multiplicative variational Hirshfeld 

(MVH). 

(c) A scaled Hirshfeld method where only the contribution from the neutral atom’s 

density is used, Eq. (5.30).  

Because all three methods generally employ the electron densities of atomic anions, we 

observed that good results generally require diffuse functions and a triple-zeta basis set. 

We therefore recommend using basis sets no worse than aug-cc-pVTZ, Def2-TZVPD, or 

6-311++G(2df,2pd). 
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We discussed how one can use all three of these methods for any f-divergence. If, 

however, one uses the extended Kullback-Leibler divergence, Eq. (5.4), these three 

methods are all size consistent (cf. Eq. (5.35)) and have equal atomic and pro-atom 

charges, Eq. (5.34). Other choices of the f-divergence do not have these appealing 

properties, and often give rather similar atomic charges.  

The scaled Hirshfeld method is interesting primarily as an initial guess for the 

AVH and MVH methods, but it also is arguably the most straightforward way to extend 

the conventional Hirshfeld method to molecular ions. Like conventional Hirshfeld 

charges, the scaled Hirshfeld charges seem to be systematically too small in size. The 

AVH and MVH methods give results that agree, broadly, with chemical intuition, 

chemical trends, and the charges obtained by other, more established, methods.  

Unlike the AVH method, which is a simple convex optimization, the objective 

function in MVH is generally nonconvex. The AVH coefficients often lend themselves to 

a chemical interpretation, but the MVH coefficients are relatively sensitive to method and 

basis set, and are difficult, if not impossible, to interpret. However, the MVH (with the 

additional constraint that the pro-atom densities have the correct electron-nuclear cusp) 

and AVH give almost the same results, especially for sufficiently large basis sets. This 

suggests that the AVH method, using the extended Kullback-Leibler divergence, is a 

method with promising mathematical and computational properties, worthy of further 

investigation. 
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6  Conclusion and Outlook 
 

 

 In the language of chemistry, molecules are built from atoms and functional 

groups.1, 3, 30, 191 Although the atoms and functional groups are deformed (or “promoted”) 

when they are combined, they nonetheless maintain their quiddity. This is why, for 

example, the periodic table, along with tables of atomic properties (like the 

electronegativity, hardness, polarizability, etc.)38, 190 are essential to practicing chemists. 

This motivated the strategy first proposed by Nalewajski, Parr, and Ayers: define the 

electron density of an atom in a molecule to maximize its resemblance to the electron 

densities of the isolated reference atoms and atomic ions enshrined in the periodic table.24-

27 The measure of “resemblance” between the atom-in-molecule’s density, ( )Aρ r , and 

the reference isolated pro-atom’s density, ( )0
Aρ r , was originally taken to be the 

Kullback-Leibler directed divergence.26 The electron density was also chosen as the 

fundamental descriptor of atoms because of the Hohenberg-Kohn theorem,37, 192 and 

inspired by the pioneering work of Richard Bader.22, 30, 44, 191  

 This sets the theoretical framework within which most Hirshfeld partitioning 

methods have been developed. In this framework, one exhaustively partitions the 

molecular density into its atomic contributions by minimizing the divergence of the atom-

in-molecule densities from their corresponding reference pro-atomic densities, subject to 

the constraint that the sum of the atom-in-molecule densities is the total molecular 
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density. There is enormous freedom in this philosophy, notably in the way one measures 

the resemblance between the atoms and pro-atoms and in how one selects the pro-atoms. 

In this thesis we have explored both of these degrees of freedom and have not only 

established the boundaries of the theoretical framework of the Hirshfeld-partitioning, but 

also proposed a variational approach for selecting the reference pro-atoms, which has 

elegant mathematical and chemical properties. 

 In the first part of this thesis, we scrutinized various classes of divergence 

measures to characterize the pervasiveness of the Hirshfeld partitioning scheme. 

Specifically, we show that for any given set of pro-atomic densities, the only local density 

functionals that lead to the popular Hirshfeld partitioning are f-divergences. Other local 

divergence measures do not give the Hirshfeld partitioning, but every f-divergence 

suffices to obtain the Hirshfeld atoms-in-molecule. This was generalized even more by 

exploring divergences that are nonlocal density functionals but which also give the 

Hirshfeld partitioning. Therefore, the first part of this thesis establishes a solid 

mathematical framework for Hirshfeld partitioning approaches, and subsumes previous 

haphazard explorations and extensions of the Hirshfeld partitioning method.28, 189, 193 

 In the second part of this thesis, we explore novel representations of reference pro-

atom densities. Hirshfeld schemes mainly differ in how they select the reference pro-

atoms, which directly affects the quality of the atomic charges obtained. Specially, we 

proposed additive and multiplicative pro-piece density models to represent the reference 

pro-atom density. These provide very flexible pro-atom density models and allow 

inclusion of ground and excited states of neutral and charged atomic species as well as 
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any other type of basis functions. The parameters in these models were variationally 

optimized so that the pro-molecular density resembles the molecular density as accurately 

as possible when measured by an f-divergence subject to the constraint that the molecule 

and pro-molecule have the same number of electrons. The choice of f-divergence does, 

however, affect the optimal choice of pro-atoms to some extent. To circumvent the many 

possibilities provided by the family of f-divergences, we appeal to the extended Kullback-

Liebler divergence measure, which has unique mathematical and chemical characteristics 

that differentiate it from other f-divergence measure.  

 Our endeavors culminate in presenting the unrivaled Additive Variational 

Hirshfeld (AVH) partitioning scheme. This novel scheme represents each pro-atom as a 

linear combination of non-negative basis functions, like spherically averaged densities of 

isolated (neutral and charged) atomic species corresponding to ground and/or excited 

states. The contribution of each basis function is determined through a variational 

principle, by minimizing the extended Kullback-Liebler divergence between the 

molecular and pro-molecular density. This specific divergence measure automatically 

fulfills the mathematical and chemical requirement that the molecule and pro-molecule to 

have the same number of electrons. In addition, it guarantees that each atom and pro-atom 

have the same number of electrons, and guarantees that the partitioning is size consistent. 

This results in unique and variationally determined pro-atom densities for the Hirshfeld 

partitioning. Any specific constraint on atoms can also be added to the variational 

formulation of AVH in a well-defined and straightforward manner.  
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 We believe that the f-divergence family provides a unified theoretical framework 

for all Hirshfeld-like partitioning methods. In combination with the additive pro-piece 

model, this mathematical framework was leveraged to propose the unrivaled Additive 

Variational Hirshfeld (AVH) partitioning. Considering the unique mathematical features 

of the AVH scheme and the promising numerical results we have obtained, we believe 

that it has the potential to supplant other Hirshfeld partitioning schemes in near future. 
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7  Appendix 
 

 

7.1 Detailed Derivation of the Hirshfeld Atom in a Molecule 

For all of the Hirshfeld partitioning methods considered, the method of derivation 

of AIM density is basically similar. To demonstrate the procedure, we here provide a 

detailed derivation of the Hirshfeld AIM. 

According to Nalewajski and Parr, the density that minimizes the Kullback-

Leibler directed divergence between the density of the AIM and the density of the neutral 

atom, subject to the constraint that the sum of AIM densities is equal to the total 

molecular density, leads to the Hirshfeld AIM.  This corresponds to optimizing the 

Lagrangian,  

{ } ( ) ( )
( ) ( ) ( ) ( )

atoms atoms

mol0
1 1

ln
N N

A
A A A

A AA

d d
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  (7.1) 

where λ(r) is the Lagrange multiplier function that forces the sum of the AIM densities to 

equal the molecular density at every point in space. The Lagrangian is stationary when 

the following equations are satisfied,  
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The second set of equations can be rearranged as  
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implying that the ratio between the atomic density and the pro-atom density is the same 

for all atoms (because   ln(x)+1  is a monotonic function),  
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  (7.4) 

Rearranging this equation and summing over B gives 

 ( )
( ) ( ) ( )

atoms atoms
A 0

B B0
B=1 B=1A

N Nρ
ρ ρ

ρ
=∑ ∑r

r r
r

  (7.5) 

Then, using the constraint on the sum of AIM densities, the first equation in Eq. (7.2), and 

rearranging the resulting equation, one obtains the density of the Hirshfeld AIM,  

 ( ) ( ) ( )
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atoms

mol0
A A

0
B
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N

ρ
ρ ρ

ρ
=
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r

r r
r

.  (7.6) 

 To establish that the sum of the divergences of the AIM from the pro-atoms is 

equal to the divergence of the molecule from the promolecule, insert the definition of the 

Hirshfeld AIM, Eq. (7.6), back into the objective function for the variational principle. 

Rearranging then gives, 
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where in the last line we have used the definition of the promolecular density, 

 
   
ρmol

0 r( ) = ρA
0 r( )

A=1

Natoms

∑   (7.8) 

7.2 Perspective on Information-Theoretic Measures 

A reader familiar with information theory will notice that the Nalewajski-Parr 

approach violates the spirit of information theory insofar as the atomic and pro-atom 

densities are not necessarily normalized to the same number of electrons. This leads to 

nonintuitive results, chief among them the fact that loss of information that occurs when 

the pro-atom distorts to the atom,  
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  (7.9) 

is frequently negative when the atom has fewer electrons than the pro-atom. While this is 

mitigated in the Hirshfeld-I family of methods upon convergence, it is desirable to resolve 

this conundrum in the elementary Hirshfeld method.  

 To resolve the problem, we note that information theory is usually applied to 

probability distribution functions that are normalized to one, and speculate that we can 
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use the (pro)atom shape function, or density per particle, instead of the electron density,  
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r r
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Substituting the shape function into Eq. (1.8)  
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and simplifying gives the expression, 
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Introducing the number of electrons in the molecule and the promolecule, Nmol and 0
molN  

respectively, and defining the fraction of electrons in the (pro)molecule as  
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=   (7.13) 

this can be rewritten as  
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The last term is a constant, and reflects the fact that the information loss can decrease to –

∞ if the pro-atom densities are chosen to have very many electrons. (This could already 

have been inferred directly from Eq. (1.8).) It is therefore only sensible to consider 
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information-theoretic partitionings where the promolecule and the molecule possess the 

same number of electrons. 

 The first two terms in Eq. (7.14) are nonnegative and have direct physical 

interpretations. The first sum, of which every term is nonnegative, can be viewed as the 

entropy-of-polarization, since it measures the way the shape of the pro-atoms’ electron 

distributions deform upon molecule formation. The second sum strongly resembles the 

entropy of mixing in classical thermodynamics: it measures the effects of electron transfer 

between atoms. In Hirshfeld-I the second is zero at convergence, and in Hirshfeld-Iλ, and 

Hirshfeld-E this term is chosen to be zero by added constraints. In variational Hirshfeld-I, 

the entropy of mixing is not zero. 

There has been significant interest in generalizations of the Hirshfeld partitioning 

to other measures of the distance between distributions.28-29, 118, 189,194 For example, one 

can replace the Shannon entropy (and the Kullback-Leibler divergence) with analogous 

nonextensive entropies by Tsallis, Reyni, and others.28, 118, 189 Remarkably, these 

generalized entropies generally lead back to the Hirshfeld definition of the AIM, as 

encapsulated by the Eq. (1.9). However, the simplification from Eq. (7.11) to Eq. (7.12) 

makes essential use of the properties of the logarithm, and so the rigor of these 

approaches may be questioned. Certainly their interpretative power is weakened by the 

absence of a decomposition into entropy-of-polarization and entropy-of-mixing 

contributions. 

All is not lost, however, as long as the distributive rule, Eq. (1.3), holds. If the 

distributive rule holds, and the promolecule and molecule are constrained to have the 
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same number of electrons, then nonextensive entropies and other reasonable measures of 

the “distance” between the molecule and the promolecule will be nonnegative 

0
mol mol; 0D ρ ρ⎡ ⎤ ≥⎣ ⎦ . It is still true that individual atomic contributions, 0;A AD ρ ρ⎡ ⎤⎣ ⎦, can be 

negative, but as we have indicated, this was true even for the venerable Hirshfeld method. 

This does not mean that methods based on more general measures of the deviation 

between electron densities should not be used, but merely that for information measures 

other than Kullback-Leibler divergence, only 0
mol mol;D ρ ρ⎡ ⎤⎣ ⎦ , and not the individual 

atomic contributions to it, should be used in interpretation.  

There has been interest in generalizing the approach of Nalewajski and Parr in Eq. 

(1.8) to other measures for the deviation between two electron densities. Generally we 

can write, 
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As mentioned, this definition should be viewed skeptically unless (1) the distributive rule 

in Eq. (1.3) holds and (2) the molecule and promolecule have the same number of 

electrons. Restricting ourselves to only variational methods, the only degrees of freedom 

are: 

• The functional used to measure the deviation between electron densities. 

• The definition of the pro-atom. 

• Whether any constraints are imposed on the minimization. For example, we may 

wish to constrain the molecule and promolecule to have the same charge or, more 
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stringently, to constrain the AIM and its pro-atom to have the same population.  

Here, we will overview some of the choices for the deviation-functional and the pro-

atom-definition that have been considered in the literature, or in unpublished research by 

us. We will pay particular attention to whether these functionals satisfy the distributive 

rule and whether they lead to localized AIM. 

 

I. Measures of the Deviation between Electron Density 

a. Distance Metrics 

 A measure of the dissimilarity, 0;D ρ ρ⎡ ⎤⎣ ⎦ , between any two nonnegative 

integrable functions is said to be a distance if it satisfies the following requirements, 

 (i) 0; 0D ρ ρ⎡ ⎤ ≥⎣ ⎦  (nonnegativity; separation of points) 

 (ii) ( ) ( )0 00D ρ ρ ρ ρ⎡ ⎤; = ↔ =⎣ ⎦ r r . (distance between equivalent functions is 

zero) 

 (iii) 0 0; ;D Dρ ρ ρ ρ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ . (symmetry) 

 (iv) [ ]0 0
1 2 1 2; ; ;D D Dρ ρ ρ ρ ρ ρ⎡ ⎤ ⎡ ⎤+ ≥⎣ ⎦ ⎣ ⎦ . (triangle inequality) 

In the context of divergence measures, often the first requirement is relaxed because it is 

assumed that all probability distributions are normalized to one, giving,  

(i’) 0; 0D ρ ρ⎡ ⎤ ≥⎣ ⎦  if ( ) ( )0d dρ ρ=∫ ∫r r r r . 

Any functional that satisfies (i’) and (ii) is said to be a divergence measure. Functionals 

that satisfy (i’), (ii), and (iii) are symmetric divergence measures. Divergence measures 
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that satisfy requirements (i) and (ii) are called extended because they can be applied to 

non-normalized probability distribution functions.   

 

b. Kullback-Leibler Directed Divergence and its Generalizations 

 Most Hirshfeld-related techniques use the Kullback-Leibler directed divergence in 

Eq. (1.8). The resulting partitioning methods satisfy the separated-atom limit and the 

distributive property in Eq. (1.3). However, the Kullback-Leibler directed divergence 

does not measure the distance between two electron densities because it does not satisfy 

the triangle inequality and it is not symmetric.  That is,  
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only satisfies the (i’) and (ii) properties of a distance metric. The symmetric (undirected) 

Kullback-Leibler divergence treats the density and prodensity equivalently,  
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0
symKL ;D ρ ρ⎡ ⎤⎣ ⎦  satisfies properties (i), (ii) and (iii) of a distance metric. Using the 

symmetric Kullback-Leibler divergence or any of the forms that lie between Eqs. (7.16) 

and (7.17), 

, 0 0 0
KL KL KL; ; , 0D D Dα β ρ ρ α ρ ρ β ρ ρ α β⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ; + ≥⎣ ⎦ ⎣ ⎦ ⎣ ⎦   (7.18) 

gives back the Hirshfeld partitioning.27 One can also symmetrize the “reference” 

densities, obtaining the Jensen-Shannon divergence,  
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 ( ) ( )0 0 0 01 1 1 1
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0
JS ;D ρ ρ⎡ ⎤⎣ ⎦  satisfies properties (i), (ii) and (iii). Moreover, it is “almost” a distance since 

( )( )120
JS ;D ρ ρ  satisfies the triangle inequality.195 Finally, we mention the extended 

Kullback-Leibler divergence, which satisfies properties (i) and (ii),160-162 
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All of these divergence measures recover the Hirshfeld partitioning, satisfy the separated-

atom limit, and fulfill the distributive property in Eq. (1.3). 

 

c. (Generalized) Hellinger-Bhattacharya Distance 

 If one wishes to satisfy all four properties (i) to (iv) of a metric one can use the 

(generalized) Hellinger-Bhattacharya distance,  

( )( ) ( )( ) { }
110 0

BH ; 0,1D d
ν

ν ννρ ρ ρ ρ ν⎛ ⎞⎡ ⎤ = − ≠⎜ ⎟⎣ ⎦ ⎝ ⎠∫ r r r   (7.21) 

where ν is any real number except zero or one. This is the popular Hellinger-Bhattacharya 

distance when ν = 2. This family of divergences in Eq. (7.21) gives back the Hirshfeld 

definition, and it satisfies the separated atom limit and the distributive rule.29 In addition, 

because this measure satisfies property (i), it does not require any constraint on the 

promolecule to have the same number of electrons as the molecule to be mathematically 

valid. 
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d. α-divergence; Tsallis and Reyni forms of the entropy 

 The Kullback-Leibler approach is based on the Shannon entropy. One can 

generalize to nonextensive entropies like the Tsallis entropy 
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1

D d
ααα ρ ρ ρ ρ ρ α

α
−⎡ ⎤⎡ ⎤ = − ∈⎣ ⎦ ⎢ ⎥⎣ ⎦− ∫ r r r r R   (7.22) 

or the rescaling of the Tsallis entropy into the α-divergence, 

( ) ( )( ) ( )( ) ( )10 01;
1

D d
ααα ρ ρ ρ ρ ρ α

α α
−⎡ ⎤⎡ ⎤ = − ∈⎣ ⎦ ⎢ ⎥⎣ ⎦− ∫ r r r r R   (7.23) 

Replacing the Kullback-Leibler divergence in Eq. (1.8) with these alternatives always 

recovers the Hirshfeld partitioning; the resulting methods satisfy the separated-atom limit 

and the distributive rule. 

 

e. L1-norm 

 The L1 distance between electron densities,  

 ( ) ( )1 0 0;D dρ ρ ρ ρ⎡ ⎤ = −⎣ ⎦ ∫ r r r   (7.24) 

is a distance metric. It it consistent with the Hirshfeld partitioning, but it does not 

determine the AIM density uniquely.196 

 

f. f-divergence. 

 All of the divergence functionals in (b)-(e) are special cases of the f-divergence,  

 

   

Df ρ;ρ 0⎡⎣ ⎤⎦ = ρ r( ) f
ρ 0 r( )
ρ r( )

⎛

⎝
⎜

⎞

⎠
⎟ dr∫

f 1( ) = 0

f x( )  is convex
  (7.25) 
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where f(x) is any convex function with f(1) = 0. Indeed, one can show that for any 

divergence measure that is a local functional, the Hirshfeld partitioning is obtained if and 

only if the deviation between the atomic and pro-atomic densities is measured with an f-

divergence.28 One can also show that every f-divergence satisfies the separated atom limit 

and the distributive rule.  There are many forms of divergence where it is difficult to 

determine what the correct function f(x) is, but because we know these forms give back 

the Hirshfeld AIM, we know such an f(x) must exist and that the separated atom limit and 

distributive rule will be satisfied. For example, the average-density-weighted-density-

distance,  

( ) ( )( )
( ) ( )( )

20
0

avg 2 101
2

; 0
n

n
nD d n

ρ ρ
ρ ρ

ρ ρ
−

−
⎡ ⎤ = >⎣ ⎦ ⎡ ⎤+⎣ ⎦

∫
r r

r
r r

  (7.26) 

recovers the Hirshfeld AIM, and must therefore be an f-divergence.28 

 All f-divergences satisfy properties (i’) and (ii). Additional properties can be 

satisfied by imposing additional restrictions on the form of the function f(x). For example, 

extended f-divergences satisfying properties (i) and (ii) are obtained by requiring that 

( )1 0f ′ =  (where we are using ( )1f ′  to denote the derivative of f(x) evaluated at 1). Any 

f-divergence can be converted into an extended f-divergence by defining 

( ) ( ) ( ) ( )ext 1 1f x f x x f ′= − − . Symmetrized f-divergences with the form 

 
   
Dfsym

ρ;ρ 0⎡⎣ ⎤⎦ =
1
2

ρ r( ) f
ρ 0 r( )
ρ r( )

⎛

⎝
⎜

⎞

⎠
⎟ + ρ 0 r( ) f

ρ r( )
ρ 0 r( )

⎛

⎝
⎜

⎞

⎠
⎟ dr∫   (7.27) 

are also f-divergences. These divergences satisfy requirements (i), (ii), and (iii). Any f-

divergence can be converted into a symmetrized f-divergence by defining 
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( ) ( ) ( )( )11
sym 2f x f x xf x−= + . It is important to note that every symmetric f-divergence is 

also an extended f-divergence. 

 It is sometimes useful to consider the average of the density and the prodensity to 

be the reference, leading to divergences with the form,   

 ( ) ( ) ( )
( )symref

01 1
0 2 2;fD f d

ρ ρ
ρ ρ ρ

ρ
⎛ ⎞+

⎡ ⎤ = ⎜ ⎟⎣ ⎦ ⎜ ⎟⎝ ⎠
∫

r r
r r

r
  (7.28) 

This is also an f-divergence, and in this case the function f(x) satisfies the equation 

( ) ( )1 1
2 2f x f x= +  and the resulting divergence satisfies properties (i’) and (ii). Any f-

divergence can be converted to an f-divergence with a symmetric reference density by 

defining ( ) ( )1 1
symref 2 2f x f x= + . One can satisfy properties (i), (ii) and (iii) by going to 

the generalized Jensen-Shannon form,  

( ) ( ) ( )
( ) ( ) ( ) ( )

( )genJS

0 01 1 1 1
0 2 2 0 2 2

0;fD f d f d
ρ ρ ρ ρ

ρ ρ ρ ρ
ρ ρ

⎛ ⎞ ⎛ ⎞+ +
⎡ ⎤ = +⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∫ ∫
r r r r

r r r r
r r

  (7.29) 

which corresponds to the choice ( ) ( ) ( )( )11 1 1 1 1
genJS 2 2 2 2 2f x f x xf x−= + + + . For the class of 

α-divergences, Eq. (7.23), the square root of the f-divergence based on ( )genJSf x  satisfies 

the triangle inequality, and is therefore a distance metric.141-142  

 The L1 norm corresponds to the limiting case where f(x) is no longer convex, but 

merely nonconcave, specifically ( ) 1f x x= − . This is consistent with the observation 

that the L1 norm (e) is consistent with the Hirshfeld partitioning but is not uniquely 

associated to the Hirshfeld partitioning.  
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g. Nonextensive Entropy Measures 

While the family of f-divergences are the only local functionals that give the 

Hirshfeld partitioning, there are also nonlocal functionals that give the Hirshfeld 

partitioning.189 Many of these functionals, like the Réyni divergence, 
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  (7.30) 

are closely related to the α-divergences (d). Other choices can be considered 

generalizations of the f-divergence. For example, the H-divergences defined by 
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  (7.31) 

give the Hirshfeld partitioning if (1) ( )h x  is monotonically increasing; (2) ( )0 0h = ; (3) 

( )1 xϕ  is convex; (4) ( )1 1 0ϕ = ; (5) ( )2 xϕ  is nonconvex, and (6) ( )2 0xϕ > . 

  

h. Kernel norm/Mahalonobis distance 

 Suppose that ( ),K ′r r  is a positive definite integral kernel, meaning that  

    
g r( )K r, ′r( )g ′r( )dr d ′r∫∫ > 0   (7.32) 

for all    g r( ) ≠ 0 .  The associated kernel divergence,  

 ( ) ( )( ) ( ) ( ) ( )( )0 0 0; ,KD K d dρ ρ ρ ρ ρ ρ′ ′ ′ ′⎡ ⎤ = − −⎣ ⎦ ∫∫ r r r r r r r r   (7.33) 
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satisfies properties (i), (ii), and (iii). Similar to the Jensen-Shannon divergence, the square 

root of the kernel divergence satisfies the triangle inequality, (iv). The square root of Eq. 

(7.33) is usually called the kernel norm or the Mahalanobis distance. Popular choices for 

the integral kernel are the Dirac delta function kernel, ( ) ( ),K δ′ ′= −r r r r  (giving the L2-

norm)28 

 ( ) ( )( )20 0

2
dρ ρ ρ ρ− = −∫ r r r   (7.34) 

and the Coulomb kernel, ( ) 1,K −′ ′= −r r r r ,123, 197-199  

 
( ) ( )( ) ( ) ( )( )0 0

0;KD d d
ρ ρ ρ ρ

ρ ρ
′ ′− −

′⎡ ⎤ =⎣ ⎦ ′−∫∫
r r r r

r r
r r

.  (7.35) 

Unfortunately, when this divergence measure is used in Eq. (1.8) one does not recover the 

Hirshfeld partitioning, but instead a partitioning with extremely nonlocal AIM densities, 

because the deformation density—the difference between the molecular density and the 

promolecular density—is divided equally between all the AIM, 

 ( ) ( ) ( ) ( )0
mol mol0

atoms
A A N

ρ ρ
ρ ρ

−
= +

r r
r r .  (7.36) 

The distributive property, Eq. (1.3), is satisfied for the kernel divergence. 

 

i. Bregman divergence 

The Bregman divergence of the electron density, ( )ρ r , from a reference pro-

density, ( )0ρ r , is defined as 
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 [ ] ( ) ( ) ( )( )
0

0 0 0
Bregman, ;C

C
D C C d

δ ρ
ρ ρ ρ ρ ρ ρ

δρ
⎡ ⎤⎣ ⎦⎡ ⎤ ⎡ ⎤= − − −⎣ ⎦ ⎣ ⎦ ∫ r r r
r

  (7.37) 

where [ ]C ρ  is a differentiable and convex density functional. Unfortunately, when the 

Bregman divergence measure is used in Eq. (1.8), in general one does not recover the 

Hirshfeld partitioning. (An exception is the Kullback-Leibler divergence, which can be 

expressed as a Bregman divergence.) In general, it is difficult to express the AIM 

obtained from the Bregman divergence, but if one assumes that [ ]C ρ  is twice 

differentiable, then the following density-dependent integral kernel exists and is 

invertible, 

 ( ) ( )
( ) ( )

( )
( ) ( )0

2 0 2 0
1

, 0

1 1
,

A A

A A A AC t t C t t
K dt
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r r r r

  (7.38) 

This allows us to generalizes the Hirshfeld expression for an atom in a molecule to the 

Bregman divergence: 

( ) ( ) ( ) ( ) ( ) ( )( )
atoms

0 0

1
0 1 1 0

mol mol, ,
1

, ,
A A B B
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A A
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K K d dρ ρ ρ ρρ ρ ρ ρ
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− −

=

⎛ ⎞′ ′ ′′ ′′ ′′ ′ ′′= + −⎜ ⎟
⎝ ⎠
∑∫r r r r r r r r r r .  (7.39) 

In general, the AIM obtained from the Bregman divergence are unreasonably delocalized. 

This is clear when one considers that the kernel norm (g) corresponds to the special case 

of the Bregman divergence where  

 [ ] ( ) ( ) ( ),C K d dρ ρ ρ′ ′ ′= ∫∫ r r r r r r   (7.40) 

and the kernel in Eq. (7.38), ( ) ( )0,
, ,

A A
K Kρ ρ

′ ′=r r r r , is therefore density independent.  
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II. Possible pro-atom density definitions 

a. Spherical averaged neutral atoms 

In the original Hirshfeld partitioning, the pro-atom densities are chosen as the 

spherically averaged neutral atom densities. Traditionally the pro-atom densities are 

evaluated using the same quantum chemistry method and the same basis set that was used 

to evaluate the molecular density. Constructing a reference database of spherically-

averaged atomic densities for neutral atoms (and, depending on the partitioning approach 

taken, also atomic ions and possibly even atomic excited states) is conceivable. There are 

potential pitfalls here, however, because describing the AIM and pro-atom densities at 

different levels of theory will generally cause the divergence between the atomic 

densities, 0;A AD ρ ρ⎡ ⎤⎣ ⎦, to be bigger. 

It is also possible to forgo spherical averaging of the atomic densities, so that the 

atomic densities retain directionality. For open-shell atoms one then must determine the 

appropriate atomic density amongst the infinite number of possible degenerate densities. 

(This includes not only the need to select the correct orientation of the atomic density, but 

also the need to select the appropriate representation for the atomic density. For example, 

the atomic density for a p-block atom (groups 13-17 in the periodic table) can be built 

from Cartesian p-orbitals, spherical harmonic p-orbitals, etc.).) Minimization of 

atoms 0
mol 1
, N

AA
D ρ ρ

=
⎡ ⎤
⎣ ⎦∑  with respect to the non-spherically-averaged pro-atom densities is a 

nonconvex optimization problem with many local minima. The choice of spherically 

averaged pro-atom densities, therefore, is numerically motivated, and potentially 
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compromises chemical properties. Note, however, that when the pro-atoms are 

spherically symmetric, minimization of atoms 0
1

;N
A AA

D ρ ρ
=

⎡ ⎤⎣ ⎦∑  favors AIM that are also 

nearly spherically symmetric. This leads to AIM with smaller higher-order multipoles, 

leading to more chemically intuitive atomic partial charges. Neutral pro-atoms seem to be 

poor choices for molecules containing atoms with sizable partial charges. Choosing 

neutral pro-atoms also implies that the promolecule will be neutral, which is inappropriate 

for molecular ions. 

 

b. Atomic densities with fractional charge  

In the Hirshfeld-I, Hirshfeld-Iλ, and variational Hirshfeld-I methods, atomic 

densities with fractional charge are used. The mathematically correct way to do this is 

given by the zero temperature limit of the grand canonical ensemble, cf. Eq. (1.10).61-64 

One could also determine the electron density for the fractionally-populated isolated 

atoms directly, but this is more expensive (because it requires that one calculate the 

isolated atomic densities with the appropriate charge at each iteration). This also 

compromises the accuracy of the method insofar as Hartree-Fock, Kohn-Sham density-

functional theory, and some ab initio wavefunction methods are much less accurate for 

systems with fractional electron number.200-204 

Because of the derivative discontinuity of the density at integer population, using 

fractionally charged isolated atoms as pro-atoms leads to inherently discontinuous 

optimization methods for the AIM. This can make it difficult to determine the AIM, and 

also makes it difficult to exclude the possibility of finding a suboptimal solution. 
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c. Basis sets for expanding the pro-atomic density 

 In the Hirshfeld-E method, one decides instead to approximate the electron 

density as a linear combination of the atomic Fukui functions (Eq. (1.17)). Similarly, in 

the Gaussian iterative stockhold analysis (GISA), one approximates the electron density 

as a linear combination of s-type Gaussians. In the minimal basis iterative stockholder 

method (MBIS), the electron density is approximated as a sum of s-type Slater functions 

(Eq. (1.25)). In general, one forces the coefficients in the expansion to be nonnegative, as 

this guarantees the pro-atom densities to be nonnegative. (For Hirshfeld-E, ensuring 

nonnegative pro-atoms is more subtle, as the Fukui function can be negative.3, 168, 205-209)  

 The Hirshfeld-E method is inspired by the representation of the N-electron density 

as a sum of successive Fukui functions. One could instead be inspired by the 

representation of the N-electron density as the sum of the squares of the atomic natural 

orbitals, multiplied by the appropriate occupation numbers,210  

 ( ) ( )
orbitals 20

; ; ;
1

N

A N A k A k
k
nρ φ

=

= ∑r r .  (7.41) 

The analogue of Eq. (1.17) would be to use the spherically-averaged atomic natural 

orbitals as a basis set for expanding the pro-atom densities,  

 ( ) ( )
orbitals 20

;
1

N

A k A k
k
c rρ φ

=

= ∑r .  (7.42) 

The advantage of the orbital-driven approach is that it precludes the need to perform 

separate calculations of the electron density of all possible atomic ions. The disadvantage 

of the orbital-driven approach is that in the basis-set limit, the expansion basis allows one 
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to mimic the (undesirable) features of ISA, e.g., slowly-decaying and nonmonotonic pro-

atom densities.  

In general, basis-set expansions that are too short will not give accurate pro-atoms, 

leading to problems like one observes for MBIS for molecular anions. Basis-set 

expansions that are too long will lead to pro-atoms that are too delocalized, leading to 

excessive conformation dependence and unphysical charges for atoms surrounded by a 

(nearly) spherical shell of other atoms like one observes for ISA and GISA. One therefore 

needs a natural way to truncate the expansion. One way to do this is to consider the 

spherically-averaged densities of the physically bound atomic ions as a basis, 

 ( ) ( )
max

0
;

1
0

N

A N A N N
N
c r cρ ρ

=

= ≥∑r   (7.43) 

This naturally prevents some of the problems that afflict Hirshfeld-I, as the densities of 

unbound atomic (di)anions are no longer needed. 

 Because the basis-set expansions we consider are restricted to nonnegative 

expansion coefficients, 0kc ≥ , they can be interpreted as a weighted average of the basis 

functions. Clearly one could consider other ways of averaging the basis functions using, 

e.g., the power mean. Of these choices, the geometric mean is particularly appealing, as it 

allows one to control the asymptotic decay of the pro-atom density, so that all the pro-

atom densities might decay at the same rate. (This would ensure that the AIM densities 

decay at the same asymptotic rate, which is one of the desiderata listed in section II.B.) 

For example, instead of an additive combination of atomic density basis functions like 

Eq. (7.43), one could consider the multiplicative form: 
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 ( ) ( )( )
max

0
0 ;

1

0N
N

c
A A N N

N

c r cρ ρ
=

= ≥∏r .  (7.44) 

Our preliminary calculations show that Eqs. (7.43) and (7.44) give promising results, and 

are therefore a favorable tradeoff between too-restrictive and too-general basis-set 

expansions.  

 

d. Spherically averaged atomic density 

Given the inherent freedom associated with specifying an appropriate atomic basis 

set for the pro-atom density, it is appealing to allow the AIM to specify its own spherical 

reference pro-atom, without any restriction in form. That is the idea behind iterative 

stockholder analysis (ISA), where the spherical average of the AIM density is used as the 

pro-atom, Eq. (1.19). Alternatively, this corresponds to finding the nonnegative spherical 

functions, ( ){ }Ab r , such that the divergence between the molecular and promolecular 

densities is minimized,  

 

    

min
bA r( )≥0{ }A=1

Natoms

! D ρmol; bA r − R A( )
A=1

Natoms

∑
⎡

⎣
⎢

⎤

⎦
⎥   (7.45) 

ISA is therefore equivalent to basis-set expansion in an infinite basis set, which is why the 

pro-atom density from ISA is often chemically nonsensical. 
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7.3 Plots of Atomic Basis Functions 

Neutral and charged atomic species are frequently used in most Hirshfeld 

partitioning schemes. Here we provide (spherically averaged) density plots of ground-

state species of neutral/charged hydrogen, carbon, nitrogen, oxygen and fluorine atoms to 

show their dependence on the level of theory and basis set used. Also, we tabulate the 

ionization potential of various atomic anions to highlight the unbound and/or basis-set 

bound negatively charges species at various levels of theory and basis set. 
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Table 7.1 Ionization potential (IP) of negatively charged atomic species, 

  
IP X −( ) = EX N( )− E

X − N +1( ) , at various levels of theory and basis set. Unbound species (bold in red) 
have a negative IP. 

Level of Theory IP(H−) IP(C−) IP(N−) IP(O−) IP(F−) 
UHF/cc-pVDZ -0.0505 -0.0070 -0.1218 -0.0710 -0.0093 
UHF/cc-pVTZ -0.0331 0.0046 -0.0969 -0.0456 0.0188 
UHF/cc-pVQZ -0.0265 0.0104 -0.0860 -0.0344 0.0309 
UHF/cc-pV5Z -0.0194 0.0142 -0.0770 -0.0260 0.0394 
UHF/aug-cc-pVDZ -0.0122 0.0172 -0.0683 -0.0192 0.0472 
UHF/aug-cc-pVTZ -0.0112 0.0166 -0.0666 -0.0208 0.0439 
UHF/aug-cc-pVQZ -0.0107 0.0166 -0.0648 -0.0210 0.0434 
UHF/aug-cc-pV5Z -0.0099 0.0166 -0.0603 -0.0211 0.0432 
UHF/d-aug-cc-pVDZ -0.0051 0.0172 -0.0310 -0.0191 0.0472 
UHF/d-aug-cc-pVTZ -0.0045 0.0166 -0.0305 -0.0207 0.0439 
UHF/d-aug-cc-pVQZ -0.0044 0.0166 -0.0293 -0.0210 0.0434 
UHF/d-aug-cc-pV5Z -0.0042 0.0166 -0.0271 -0.0211 0.0432 
UB3LYP/cc-pVDZ -0.0126 0.0121 -0.0635 -0.0152 0.0432 
UB3LYP/cc-pVTZ 0.0077 0.0301 -0.0295 0.0227 0.0873 
UB3LYP/cc-pVQZ 0.0152 0.0379 -0.0157 0.0383 0.1053 
UB3LYP/cc-pV5Z 0.0233 0.0447 -0.0031 0.0519 0.1203 
UB3LYP/aug-cc-pVDZ 0.0326 0.0503 0.0063 0.0616 0.1309 
UB3LYP/aug-cc-pVTZ 0.0334 0.0504 0.0079 0.0616 0.1297 
UB3LYP/aug-cc-pVQZ 0.0336 0.0505 0.0085 0.0618 0.1296 
UB3LYP/aug-cc-pV5Z 0.0337 0.0507 0.0093 0.0620 0.1296 
UB3LYP/d-aug-cc-pVDZ 0.0336 0.0512 0.0124 0.0628 0.1314 
UB3LYP/d-aug-cc-pVTZ 0.0342 0.0512 0.0135 0.0627 0.1301 
UB3LYP/d-aug-cc-pVQZ 0.0342 0.0511 0.0137 0.0626 0.1299 
UB3LYP/d-aug-cc-pV5Z 0.0342 0.0512 0.0143 0.0625 0.1298 
UωB97XD/cc-pVDZ -0.0153 0.0154 -0.0674 -0.0146 0.0470 
UωB97XD/cc-pVTZ 0.0051 0.0301 -0.0374 0.0187 0.0856 
UωB97XD/cc-pVQZ 0.0128 0.0376 -0.0244 0.0332 0.1021 
UωB97XD/cc-pV5Z 0.0209 0.0437 -0.0126 0.0455 0.1151 
UωB97XD/aug-cc-pVDZ 0.0291 0.0485 -0.0035 0.0553 0.1263 
UωB97XD/aug-cc-pVTZ 0.0298 0.0481 -0.0030 0.0540 0.1236 
UωB97XD/aug-cc-pVQZ 0.0299 0.0482 -0.0028 0.0537 0.1227 
UωB97XD/aug-cc-pV5Z 0.0300 0.0484 -0.0021 0.0539 0.1228 
UωB97XD/d-aug-cc-pVDZ 0.0294 0.0490 0.0004 0.0561 0.1267 
UωB97XD/d-aug-cc-pVTZ 0.0299 0.0484 0.0003 0.0546 0.1239 
UωB97XD/d-aug-cc-pVQZ 0.0300 0.0484 0.0002 0.0541 0.1229 
UωB97XD/d-aug-cc-pV5Z 0.0300 0.0485 0.0005 0.0542 0.1229 
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Figure 7.1 Log plot of spherically averaged density of hydrogen atomic species at various levels of 
theory and basis set. Unbound species are denoted with dashed lines. The energy values in plot labels 
are in atomic units. 
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Figure 7.2 Log plot of spherically averaged density of carbon atomic species at various levels of 
theory and basis set. Unbound species are denoted with dashed lines. The energy values in plot labels 
are in atomic units. 
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Figure 7.3 Log plot of spherically averaged density of nitrogen atomic species at various levels of 
theory and basis set. Unbound species are denoted with dashed lines. The energy values in plot labels 
are in atomic units. 
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Figure 7.4 Log plot of spherically averaged density of oxygen atomic species at various levels of 
theory and basis set. Unbound species are denoted with dashed lines. The energy values in plot labels 
are in atomic units. 
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Figure 7.5 Log plot of spherically averaged density of fluorine atomic species at various levels of 
theory and basis set. Unbound species are denoted with dashed lines. The energy values in plot labels 
are in atomic units. 
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