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Abstract

In the past decade, automobile manufacturers have gone through the initial adoption
phase of electric mobility. The increasing momentum behind electric vehicles (EV)
suggests that electrified storage systems will play an important role in electric mo-
bility going forward. Lithium ion batteries have become one of the most common
solutions for energy storage due to their light weight, high specific energy, low self-
discharge rate, and non-memory effect. To fully benefit from a lithium-ion energy
storage system and avoid its physical limitations, an accurate battery management
system (BMS) is required. One of the key issues for successful BMS implementation
is the battery model. A robust, accurate, and high fidelity battery model is required
to mimic the battery dynamic behavior in a harsh environment. This dissertation
introduces a robust and accurate model-based approach for lithium-ion battery man-
agement system.

Many strategies for modeling the electrochemical processes in the battery have
been proposed in the literature. The proposed models are often highly complex, re-
quiring long computational time, large memory allocations, and real-time control.
Thus, model-order reduction and minimization of the CPU run-time while main-
taining the model accuracy are critical requirements for real-time implementation of

lithium-ion electrochemical battery models. In this dissertation, different modeling

vi



techniques are developed. The proposed models reduce the model complexity while
maintaining the accuracy.

The thermal management of the lithium ion batteries is another important consid-
eration for a successful BMS. Operating the battery pack outside the recommended
operating conditions could result in unsafe operating conditions with undesirable con-
sequences. In order to keep the battery within its safe operating range, the tempera-
ture of the cell core must be monitored and controlled. The dissertation implements a
real-time electrochemical, thermal model for large prismatic cells used in electric ve-
hicles’ energy storage systems. The presented model accurately predicts the battery’s

core temperature and terminal voltage.
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Chapter 1

Introduction

1.1 Thesis Motivation

This research was motivated by global concerns related to the greenhouse gas emis-
sions (GHG) and the need for improving the fuel efficiency of transportation systems.
The United States Environmental Protection Agency (EPA) report in 2014 showed
that the GHG emissions from the transportation sector contribute 26% to the total
GHG emissions [2]. In order to reduce the emissions of the transportation sector,
the National Highway Traffic Safety Administration (NHTSA) has set new standards
to improve the Corporate Average Fuel Economy (CAFE) levels on a yearly basis
starting from 2017 until 2025. By 2025, the CAFE standard aims to increase the
corporate fleet fuel efficiency to 54.5 miles per gallon (mpg) (5.6 liter/100 km) and
reduce the CO; emissions to 163 grams/mile. The 2025 CAFE goals improve the fuel
efficiency by 20% compared to the 2017 target of 40.3 mpg (7 liter/100 km) [3].

The automakers are expected to produce more hybrid electric vehicles (HEVSs),

plug-in hybrid electric vehicles (PHEVs), and battery electric vehicles (BEVSs) in order
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to reduce the overall fleet emissions and meet the new restrictive emissions standards.
Lithium ion batteries have become one of the most attractive alternatives for electric
vehicle energy storage systems due to their light weight, high specific energy, low
self-discharge rate, and non-memory effect [1].

The electric vehicle energy storage systems consist of a battery pack and a battery
management system (BMS). The battery pack consists of multiple modules and each
module consists of multiple connected cells. The BMS is essential for maximizing the
benefits of lithium-ion batteries and cells and avoid their physical limitations. The
BMS is responsible for performance management which includes but is not limited
to the state of charge (SOC), state of health (SOH), and state of function (SOF)
estimation algorithms, as well as cell balancing, power management, and thermal
management. One of the key issues for successful BMS implementation is the battery
model. A robust, accurate, and high fidelity battery model is required to simulate

the dynamic cell behavior in a demanding environment.

1.2 Thesis contributions and novelty

This dissertation presents contributions in the area of lithium-ion battery electro-
chemical modeling, thermal modeling, heat generation modeling, state of charge esti-
mation, core temperature estimation, and thermal management strategies, with the
focus on their real-time application in the battery manage systems of hybrid and
electric vehicles. The contributions of this dissertation are divided into primary con-

tributions and secondary contribution as follows:
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Primary contribution:

e Development of a continuous piecewise-linear, reduced-order electrochemical

model for lithium-ion batteries in real-time applications.

e Development of a combined electrochemical, heat generation, and thermal model

for large prismatic lithium-ion batteries in real-time applications.

e A critical review of the most commonly used modeling categories and nonlin-
ear state estimation strategies for lithium-ion energy storage systems real-time

applications.

Secondary contribution:

e Reducing the computational cost (CPU run-time) of the single particle elec-
trochemical model while maintaining accuracy using a piecewise linearization

technique.

e Development of an optimal knot-placement algorithm for continuous piecewise-

linear approximation of electrochemical models.

e Determination of the model parameters dependencies on the electrode’s state

of charge.
e Development of a four nodes thermal model for large format prismatic cells.

e Development of a parameterization scheme that aids in identifying the model

parameters under isothermal and non-isothermal operating conditions.

e Identification of the model parameters dependencies on temperature.
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e Introducing a heat generation model that accounts for different loss mechanisms.

e Comparatively assessing three different estimation strategies based on their rate
of convergence, robustness against modeling and measurement uncertainties,
computational complexity, tuning complexity, and SOC estimation accuracy

under normal operating conditions.

1.3 Thesis Outline

The thesis is organized as follows:

Chapter 2 provides a literature review of the battery management system, battery
models, thermal models, heat generation models, state of charge estimation tech-

niques, and battery aging mechanisms.

Chapter 3 proposes a new reduced-order, electrode-average, electrochemical model
using piecewise linearization technique. The Genetic Algorithm (GA) optimization
strategy is used to determine the optimal knot-locations. The proposed model reduces
the univariate nonlinear function of the electrode’s open circuit potential dependence
on the state of charge with respect to continuous piecewise regions. The proposed
model is complemented by parameterization experiments that were specifically chosen
to isolate the slow changing parameters from the fast changing parameters, and that
provided a trade-off between extensive experimental characterization and parameter
identifications using optimization techniques.

The parametrization experiments are described and the data was gathered using

a prismatic lithium-ion battery cell suitable for high-power applications like PHEVS,
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HEVs, and EVs. The experimental tests were done on 12 channels, Scienlab bat-
tery test bench. During testing, the cells were placed in a climate chamber with a

continuously controlled ambient temperature maintained at 25°C.

Chapter 4 proposes an accurate combined electrochemical, heat generation, and
thermal model for large prismatic cells. The proposed model consists of three sub-
models, an electrochemical model, a heat generation model, and a thermal model.
These are integrated together in an iterative fashion through physicochemical tem-
perature dependent parameters. A parameterization scheme is then used to identify
the sub-models’ parameters separately by exciting the battery under isothermal and
non-isothermal operating conditions. The proposed combined model structure shows
accurate terminal voltage and core temperature prediction at various operating condi-
tions while maintaining a simple mathematical structure, making it ideal for real-time
BMS applications.

Experimental data was gathered using a prismatic lithium-ion battery cell suitable
for high-power applications like PHEVs, HEVs, and EVs. During testing, the cells
were placed in a climate chamber with a constantly controlled ambient temperature.

The tests were repeated at six different temperature points.

Chapter 5 presents a critical review of the most commonly used battery model
categories and non-linear state estimation strategies in lithium-ion battery energy
storage applications. The modeling categories include Behavioral models, Equiva-
lent circuit models, and Electrochemical models. A representative model from each
category is considered. The two-states enhanced self-correcting model, the two-RC

model, and the reduced-order, electrode average electrochemical model are considered
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as representatives of behavioral models, equivalent circuit models, and electrochemical
models, respectively. The performance of the three models performance are analyzed
with respect to their terminal voltage prediction accuracy, parameterization efforts,
and computational complexity. Three non-linear estimation strategies are also con-
sidered and compared using the reduced order electrochemical model. The estimation
strategies include, the extended Kalman filter (EKF), the smooth variable structure
filter (SVSF), and the unscented Kalman filter (UKF). The estimation strategies are
comparatively assessed based on their rate of convergence, robustness against mod-
eling and measurement uncertainties, computational complexity, tuning complexity,

and SOC estimation accuracy under normal operating conditions.

Chapter 6 presents the implementation of three non-linear estimation strategies
for Li-Ton battery SOC estimation. The one state hysteresis (OSH) model is used as a
standard benchmark for the three strategies. The extended Kalman filter (EKF), the
smooth variable structure filter (SVSF), and the time varying smoothing boundary

layer SVSF (VBL-SVSF) are applied on the model, and the results are compared.

Chapter 7 provides the conclusions and recommendations for future work.



Chapter 2

Literature Review

2.1 Introduction

In the past decade, automotive manufacturers have been increasingly aligning with
electric mobility. The increasing momentum behind electric vehicles (EV) suggests
that electric energy storage systems will play a major role in transportation going
forward. Lithium ion batteries have become one of the most attractive solutions for
electric vehicles’ energy storage systems due to their light weight, high specific energy,
and low self-discharge rate [1].

In order to efficiently integrate lithium-ion batteries in electric vehicles (EVs),
different cell chemistries have been introduced. Ragone plot presented in Figure 2.1
shows the current and projected status of batteries in HEV, PHEV, and BEV with

respect to the United States Advanced Battery Consortium (USABC) requirements

[4]-
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Figure 2.1: Ragone plot of different energy storage chemistries.

The Internal Combustion Engine (ICE) has the highest specific power and specific

energy due to the nature of fossil fuels. Ultra-capacitors possess the highest specific

power, which enables them to supply a large instantaneous peak power. Alternatively,

fuel cells have a large specific energy density but require a hydrogen infrastructure.

Lithium-ion based batteries provide an attractive choice for the HEVs and PHEVs

due to their large combined energy and power densities. As a result, considerable

investment and research are being made for their development in order to improve

their performance, reliability, safety and longevity.
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2.2 Background

2.2.1 Operating principles of Li-ion batteries

A battery converts chemical energy into electrical energy and vice versa. The basic
setup of a battery cell consists of four main parts: the positive electrode, the separator,

the electrolyte, and the negative electrode, as shown in Figure 2.2.
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Figure 2.2: Schematic representation of a Li-ion battery during discharging [14].

The positive and negative electrodes are referred to as the cathode and the anode.
The battery is connected to an external load using current collector plates. In the case
of Li-ion cells, a copper collector is used in the negative electrode while an aluminum
collector is used for the positive electrode.

The anode is the electrode capable of supplying electrons to the load. The anode is
usually made up of a mixture of carbon (e.g. Li,Cj), the cathode is typically made of
metal oxides (ex. LiC0Oy or LiMn,0y), while the electrolyte can be a salt-containing

solvent mixture, polymer, or solid materials (e.g. LiPFg), polymer or solid materials.
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In the case of solid or polymer materials, the electrolyte will also act as a separator.
The separator is a porous membrane allowing the transfer of lithium ions between the
electrodes, but which also serves as a barrier to electrons. It prevents the occurrence
of a short-circuit and thermal run away, while at the same time offering negligible
resistance to the flow of ions between the electrodes.

Under the presence of a load current, reduction-oxidation reaction occurs. Ox-
idation reaction takes place at the anode where the trapped lithium particles start
to deintercalate or diffuse toward the electrolyte-solid interface splitting lithium into
ions and electrons. Lithium ions transfer through the solution due to the potential
difference while the electrons move through the current collector because the elec-
trolyte solution serves as a barrier to electrons. Reduction reaction takes place at the
cathode where the traveling lithium ions from the anode start to intercalate and react
with the electrons coming from the positive collector. The electrochemical reactions

are as follows:

discharge

Li,Cg LiyCs + xLit™ + ze™ (2.1)
charge
. . _ discharge .
Lity—oyMny0,4 + xLi" 4+ xe” == Li,Mn,0, (2.2)
charge

The process of lithium ion insertion into the electrode happens without a change
in the electrode crystal structure ”intercalation” mechanism. The whole phenomenon
of intercalation and deintercalation is reversible as lithium ions pass back and forth
between the electrodes during charging and discharging. In theory, this phenomenon
could go on infinitely. Unfortunately, due to cell material degradation and other
irreversible chemical reactions, the cell capacity and power degrade with the number

of cycles and usage.

10
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2.2.2 Battery terminology
Cell, Modules and Packs

Every HEV, PHEV, and BEV contains a high voltage battery pack that consists of
multiple modules, each module consists of multiple cells. A cell is the smallest unit
connected in parallel or in series to form one module. A module is then connected in

a parallel or series configuration to form one pack.

Nominal capacity

Nominal capacity C,, is determined by the manufacturer and referred to as the coulo-
metric capacity. The C), is equal to the total Amp-hours drawn to fully discharge a
cell from 100% state of charge to the cut-off voltage. The capacity is then calculated
as the multiplication of the discharge current (in Amps) by the discharge time (in

hours) [5].

C-Rate

The C-Rate describes the rate at which the battery is charged or discharged relative
to its maximum capacity C,. It is often used to normalize the discharge current of

batteries with different capacities. It can be calculated as follows:

C — Rate =

G /0 (23)

State of charge

The state of charge (SOC) is the ratio between the present capacity to the nominal

capacity (), in percentage.

11
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State of health

The state of health (SOH) is a ratio that indicates a condition reached in the battery’s

life cycle between the beginning of life (BoL) and end of life (EoL).

2.3 Battery management system

The battery management system is a critical component of the energy storage sys-
tem found in Electric Vehicle (EVs) and Hybrid Electric Vehicles (HEVs). To fully
benefit from a lithium-ion energy storage system and avoid its physical degradation,
an accurate Battery Management System (BMS) is required. The main objective of
a BMS is to monitor, control, and balance all the cells in the battery pack. The five

main functionalities for the BMS can be summarized as follows [6]:

Cell protection.

Performance management.

e Communication.

Diagnostics.

History.

The BMS uses mathematical models and state estimation algorithms to perform
the above mentioned functions. One of the main requirements for a successful BMS
implementation is the development of a high fidelity battery model that is comple-
mented and coupled with a thermal model and an aging model. The models need to

be dynamically significant while being computationally efficient, robust, and accurate.

12
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Of particular interest is the prediction of the terminal voltage which is affected by
the cell’s core temperature. As such, an accurate thermal model is needed to predict
the core temperature and estimate its dynamics. The inclusion of a thermal model
within the overall battery model is necessary as it enables the BMS to operate the
battery safely and preserve its performance effectively. In section 2.4, battery models
are discussed in details, and in section 2.5 the literature pertaining to thermal models

is reviewed..

2.4 Battery models

In the literature, numerous battery models have been reported. The choice between
these models is a trade-off between model complexity, accuracy, and parameterization
effort. The models can be classified into three categories of increasing complexity:
behavioral (or black-box) [7, 8, 9, 10], equivalent circuit [11, 12, 13, 14], and finally
detailed electrochemical (physics-based) models [1, 15, 16] Currently, the equivalent
circuit models are commonly used in the BMS because of their low computational
complexity and acceptable accuracy. However, they are not capable of describing the

battery’s internal physical behavior.

2.4.1 Ideal battery models

As the name suggests, the battery is represented as an ideal voltage source. These

models are used in studies where the energy storage device (battery) is not of interest.

13
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2.4.2 Behavioral or Black-box battery models

Behavioral or Black-box Models simulate the terminal voltage behavior of the batter-
ies without the need for the specification or approximation of the underlying physical
or electrochemical behavior. These models consist of phenomenological functions that
require measured data to be used. Alternatively, neural networks, empirical functions
or look-up tables may be utilized. Peukert’s law [17] is one of the first well-known
examples of a behavioral model for batteries, where an empirical function is used to
describe the dependence of the battery’s remaining capacity on the discharge rate as

follows.

I7Ct = constant (2.4)

Where, I is the discharge current, ¢ is the maximum discharge time and PC'is the

Peukert’s Coefficient which ranges from 1 to 2 [18]. The battery capacity can be

7.\ Pe-1
Co = C,, (I—”l) (2.5)

calculated as follows [18]:

Where C,,; is the battery remaining capacity at the discharge current of I,,; [18].
Another form of behavioral model was introduced by Shepherd [19], to predict the

terminal voltage during charging/discharging conditions as follows [20]:

. K,
B(t) = Bo+ Railt) + o5 (2.6)

Where, Ej is the initial cell voltage, R, is the cell internal resistance, gs(t) is the

instantaneous stored charge, and K is a constant. A further modification was made

14
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to equation (2.3) by the Unnewehr model [20]:

E(t) = Ey + Rai(t) + Kaqs(t) (2.7)

Nernst introduced another two constants K3 and K4 which are used for curve

fitting as follows:

_ @' a(t) oo (@ a)
E(t) = E, + R,i(t) + K3 0 Kyl < 0 ) (2.8)

Where, @ is the total charge capacity of the cell and the constants K;, K5, K3, and
K4 can be obtained by fitting experimental data [21].

Plett combined a series of behavioral models to simulate the battery operations
(7,8, 9]. Four models were discussed in his publication namely simple, zero-hysteresis,
one-state hysteresis, and enhanced self-correcting (ESC). All of these were based on
Peukert’s and Shepherd’s models. These models can account for cell hysteresis, po-
larization time constants, and ohmic loss effects [10]. Use of artificial neural networks
and fuzzy logic in modeling is discussed in [22]. Behavioral models can achieve ter-

minal voltage prediction accuracy of up to 5% [16, 23].

The combined model

Shepherd/Unnewehr/Nernst models are combined to make a ’combined model’ that
performs better than any of the individual models alone [8]. The combined model is

defined as follows:

Zk+1 = Rk — C ik (29)

15
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K
yr = Ko — Rip — Z—l — Koz + Ksln(zy) + Kyln(1 — z) (2.10)
k

This model has the advantage of being linear in the parameters, which makes it easier
to implement and estimate. Accordingly, the unknown quantities in the model may
be estimated using a system identification procedure. For example, given a set of IV
cell input-output parameters (yg,ix,2x ), the values may be solved for in a closed form

using least squares estimation [8].

The simple model

The simple model is obtained from the combined model. The output equation of the
simple model is divided into two additive parts: one depending only on the SOC (z),
and the other depending only on the current (ix). Doing so yields equations (2.11)
and (2.12):

K
f(zx) = OCV(z,) = Ko — 2—1 — Koz + Ksln(z) + Kyln(1 — z) (2.11)
k

fix) = Riy, (2.12)

Equation (2.11) and (2.12) are combined in one equation for an easier and more

accurate implementation of the combined model as follows:

AL
Zk+1 — Rk — nC (2% (213)

Y = OCV(Zk) — le (2.14)

Where OCV (z) refers to the open circuit voltage.

16
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The zero-state hysteresis model

An important concept that is overlooked by the previous two models includes hys-
teresis. For improved SOC estimation, the hysteresis effects of the terminal voltage
should be considered. As described in [10], a basic model of hysteresis simply adds a

term to the output equation (2.14) as follows:

Y = OOV(Zk) — SkM<Zk) — le (2.15)

Where s; represents the sign of the current (with memory during a rest period). For

some sufficiently small and positive value €, s, can be calculated as follows:

;

+1 Tl > €

sk=9 -1  ip<-—¢ (2.16)

sp—1 :lig] <e
\

Also, note that M (z;) is half the difference between the charge and discharge values
(i.e., some value of hysteresis) [10]. Typically, the value for M can be assumed
constant. As per [8], the zero-state hysteresis model is an improvement over the simple
model, but only crudely approximates the underlying phenomenon. Whereas the level
of hysteresis slowly changes as the cell is charged or discharged, the model estimates
hysteresis as immediately flipping between its maximum positive and negative values

when the sign of current changes.

17
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The one-state hysteresis model

The slow transition may be modeled by adding a "hysteresis state’ to the model. The
hysteresis state is not a differential equation as a function of time but in SOC (i.e.,
ampere-hours). Suppose that h(z,t) is the hysteresis voltage, then one has [8]:

dh(z,t)
dz

= ysgn(2)[M(z, 2) — h(z,1)] (2.17)

Where M (z, 2) is a function that gives the maximum polarization due to hysteresis
as a function of SOC and the rate-of-change of SOC. The term M (z, 2) — h(z, t) states
that the rate-of-change of hysteresis voltage is proportional to the distance away from
the main hysteresis loop; leading to a type of voltage decay in the major loop. The
term -y is considered positive and constant and affects the rate of voltage decay. The
sign function forces the equation to be stable for both charge and discharge. The

overall state-space equations for the one-state hysteresis model are as follows [8]:

2k 0 1| |z — 1At 0 M (z, %)
yr = OCV (2x) + hy, — Riy, (2.19)

where F(i) = exp(—|nii(t)y/Chl)

The enhanced self-correcting model

The enhanced self-correction (ESC) battery model represents one of the most accurate
models that are currently being used for battery SOC estimation. This model can

accurately capture battery dynamics and thus can be implemented in a vehicle BMS

18
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as it accommodates for hysteresis, polarization time constants, and ohmic losses. The

ESC model in the state space form is as follows [8]:

Jen diag(e) 0 0| | fi 1 0 .
3%
hia | = 0 F(ix) Of ||t | 0  1—F(i) (2.20)
M (z,2)
Zk+1 0 0 1 2k —mTAt O
Y = OCV(Zk) + hy — Ry, + Gfk (221)

Where 2z, is the state of charge, fi is the states of the low pass filter on 7, which
is used to characterize the polarization time constants, hj is the state representing
charging or discharging hysteresis effect, OCV is the open circuit voltage, C), is the
nominal battery capacity, R is the internal battery resistance, GG is the output matrix
of the low pass filter, and « are the poles of the low pass filter.

This model contains two inputs as follows: i is the battery input current, and
M (z, 2) which represents the maximum polarization due to hysteresis. The model has
one output gy, which is the terminal voltage. It is important to note that this model

may be broken into two models; based on either two states or four states [8, 10].

2.4.3 Equivalent circuit battery models

Lumped-element equivalent circuit components such as resistors and capacitors can
be used to represent the behavior of a battery cell [14]. They are widely applied
because of their simplicity, a low number of parameters to tune, and easy implemen-
tation. They commonly consist of first-order, second-order, or third-order RC models

in addition to the hysteresis effect. The model parameters such as resistances and
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capacitances are calculated by system identification using test data. Present Battery
Management Systems (BMS) rely on Equivalent circuit models due to their simplicity
and robustness, which allow these models to be implemented in real-time applications.
However, they have limitations in providing insight into the electrochemical reactions
that occur internally inside the cell. This limitation makes them unable to predict
electrochemical phenomena like cell degradation, capacity fading, and power fading.
In literature, these models also can be coupled or integrated with thermal models to

predict the overall cell behavior as discussed in [24].

The first order RC models

The first order RC model represents the simplest equivalent circuit model [14]. Tt
consists of one RC pair connected in series with resistance. The state and measure-
ment equations of the system are represented by (2.22) and (2.23) respectively. The
schematic diagram is shown in Figure 2.3. It can be easily implemented in real-time

applications due to its simplicity.
R1

ocv C1

® JeuIwIRY A l

Figure 2.3: Schematic diagram of the first order RC Battery Model.

45 1— 2L 0| |V St
k+1 _ R1Ch k + 1 |:Zk:| (222)
Zk41 0 I | 2 —mTAt
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yr = OCV (2) — Ri — V! (2.23)

Where, zj, is the state of Charge of the battery cell, V}! is the voltage drop across
the first RC pair, C' is the battery nominal capacity, R is the battery ohmic resistance,
yx is the battery terminal voltage, and 7); is the charging and discharging efficiency.

The parameters to be optimized are given in Equation (2.24).

0=[R", R, Ry, (] (2.24)

The first order RC models with one-state hysteresis

The hysteresis state is incorporated by adding the OCV charging and discharging
hysteresis effect to the first order RC model. The state and measurement equations
of the system are represented by (2.25) and (2.26) respectively. While the parametric

vector to be optimized is shown in Equation (2.27).

Vi 1-7F5 0 0] |W ot 0 .
23
hiyr| = 0 F(ip) O [he|+ ] 0 1—F(ip) (2.25)
M (z,2)
2t 0 0 1| |z — 1At 0
yp = OCV (2) — Rip — ViE + hy (2.26)
0 = [R+,R_,R1701,M+,M_,’}/] (227)
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The second order RC models

The second-order OCV-R-RC-RC model is as shown in 2.4 and its state and mea-
surement equations are represented by Equation (2.28) and (2.29) respectively. This
model is more accurate than the previous models while it is still simple enough to be

implemented in real-time applications [14].
R1 R2

|_

ocyv c1 c2

[BUIWLIBY A @

@
Figure 2.4: Schematic diagram of the second order RC Battery Model.

A A
Vi, 1— 5 0 0| |V ot
V2| = 0 1-2L o (V2| +| 2 M (2.28)
Zk41 0 0 1 2k —ﬂ%At
yp = OCV (2) — Rip — Vil = V2 (2.29)

Where, V2 is the voltage drop across the second RC pair. The parameters to be

optimized are shown in Equation (2.30).

0 = [R*, R, Ry,Ch, Ra, Cy) (2.30)

The second order RC models with one-state hysteresis

This model is formed by adding one hysteresis state to the second order RC model.

The state and measurement equations of the system are represented in Equation
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(2.31) and (2.32) respectively. While the parameteric vector to be optimized is shown

in Equation (2.33).

1
Vk+1
2
Vk+1

et

Zk+1

_ R - - r -

-2 0 of [V & 0
A A
01— 0 o 1 at 0 it

0 0 0 1| |z — At 0

(2.31)

Y = OCV(Z’k) — Riy, — Vkl — sz + hy, (2.32)

0= [R+,R_,R1,Cl,RQ,CQ,M+,M_,’7] (233)

The third order RC models

The third-order OCV-R-RC-RC-RC model is shown in Figure 2.5 and the state and

measurement equations of this system are represented by Equation (2.34) and (2.35)

respectively. The associated parameteric vector is given in Equation (2.36). Although

the complexity increases in this model, it is more accurate in capturing the dynamic

behavior of the battery cell [14].

R1

R

R2

R3

o () o

® |euluI@)” A l

Figure 2.5: Schematic diagram of the third order RC Battery Model.
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Ve 01— 4 0 o] [V at
S RaCa . NEREN M (2.34)
3 t 3 t
Vi 0 0 -6 O [ Ve o
et 0 0 0 1] | 2 — 18t
yr = OCV (z) — Ri, — Vil = V2 = V2 (2.35)

Where, V;? is the voltage drop across the third RC pair.

6 = [R+7R_7R17017R27027R3703] (236)

The third order RC models with one-state hysteresis

Similarly to the first and second order models, the third order RC model can be
augmented with one state to represent the hysteresis effect [25]. The state and mea-
surement equations of the system are represented by Equation (2.37) and (2.38) re-

spectively.
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2.4.4 Electrochemical battery models

0= [R+7 R_J RhCla R27 027 R37 C3aM+7 M_J’Y]

1

At
R3C3

g

M (z,2)

(2.37)

(2.38)

(2.39)

Many approaches to model the electrochemical processes in the battery have been

proposed in the literature. Most of the models are derived from the physics-based,

electrochemical pseudo-two-dimensional (P2D) model referred to as the Doyle-Fuller-

Newman model [26, 27], which is based on the porous electrode and concentrated

solution theory. The primary benefit of the rigorous physics-based P2D model is

the increased accuracy /precision achieved by modeling the electrochemical processes.

Unfortunately, it is high in complexity, computational time, memory allocations, and
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not suited to real-time control. Therefore, simplifications to the P2D model are
required. In the literature, numerous reduction methods have been explored, all of
which have the goal of reducing the computational complexity involved in solving the
physics-based electrochemical model while maintaining acceptable accuracy.

These methods can be divided into two categories. The first one is primarily
focused on reducing the computational complexity involved in solving for the con-
centration of lithium in the solid particles of the electrodes, e.g. Subramanian et
al. [28, 29, 30] developed a simplified model using the Lyapunov-Schmidt technique,
perturbation techniques, volume averaging, and intuition-based simplifications. Their
approach works well at low-to-moderate discharge rates but performs poorly for highly
dynamic current profiles such as those encountered in hybrid- and electric-vehicle
applications. Cai et al. [31] proposed an approach based on proper orthogonal de-
composition, which uses a two-step approximation of the full order model; The first
approximation is discretizing the governing equations and the second is truncating
the number of orthogonal modes. The proposed reduced order model proved to be
about seven times faster than the full order model. Forman et al. [32] used quasi-
linearization and Padé approximation. This approach uses a quasi-linearized model of
intercalation current to solve the model algebraic equations, then a Padé approxima-
tion of spherical diffusion is used to decrease the model complexity while maintaining
a high level of accuracy. Wang et al. [15] assumed a parabolic concentration profile
within the spherical particle (cs = ag + air + a2r2) formulating a solid state diffusion
sub-model, which correctly captures bulk dynamics and steady state concentration
gradient but otherwise neglects diffusion dynamics. It is, therefore, valid for extended

operation times and low C-rates, as its inaccuracy becomes significantly compromised
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at higher C-rates. Smith et al. [33, 34] proposed a simplified model using the method
of residue grouping. They used a nonlinear optimization technique to minimize the
error in the frequency response between the 'full order’ and the 'reduced order’ model.
The derived transfer functions are represented by a truncated series of grouped resid-
uals with similar eigenvalues. Bhikkaji et al. [35, 36] developed a simplified model
based on the Chebyshev polynomial.

The second category of model simplification is focused on reducing the electro-
chemical model as a whole. The primary contribution pertains to avoiding the solu-
tion of large sets of differential-algebraic equations (DAEs) of the Li™ concentration
distribution and the potential distribution of the electrolyte phase. This provides a
reduced order model capable of computing in real-time. However, this strategy for
model simplification leads to loss of information. The performance reduces at higher
C-rates in comparison to the full order model. In general, the assumptions used for
the model reduction can lead to inaccuracies if a broad C-rate range of operation is
considered and if the model is not adjusted with respect to the operating conditions
of the battery. Examples of this modeling approach, Haran et al. [37] originally
developed the single particle model (SPM) approach for the metal hydride battery,
and it was extended to the lithium system by Santhanagopalan in [25, 38]. In this
model, the local volumetric current density j% is constant across the electrode (an-
ode or cathode) and equal to an average value j*. Rahimian et al. [39] extended the
SPM by including a polynomial approximation of the electrolyte dynamics. Domenico
et al. [16] presented the electrode averaging model (EAM). In literature, there are
also other methodologies reported for solving the original physics-based P2D model

directly.
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2.5 Battery thermal managament

Thermal management of lithium ion batteries is an important consideration for a
successful BMS. Operating the battery pack outside the recommended operating con-
ditions could result in unsafe operating conditions with undesired consequences. In
order to keep the battery within its safe operating range, the temperature of the cell
core must be monitored and controlled.

In the literature, various strategies have been proposed for managing the tem-
perature variations inside a cell during its operation. All of which have the goal of
avoiding unsafe operating conditions. All the battery thermal management models

are divided into two sub-models, heat generation model, and thermal model.

2.5.1 Heat generation model

The heat generation model is responsible for the heat generation experienced during
the cell’s operation due to the energy conversion losses through electrical, chemical
and mass transport processes. In literature, various ways have been utilized to model

the heat generation rate ranging from empirical to analytical models.

Empirical heat generation models

The Empirical approach as discussed by Kobayashi [40] measures the heat generation
rate experimentally using calorimetry techniques. The empirical models are usually
parameterized under a constant current load via the direct measurement of the heat
generated in the cells. Al-Hallaj et al. [41] used an Accelerating Rate Calorimeter
(ARC) to measure the heat generation of a cell for complete charging and discharging

cycles. These measurements are mostly carried out for small battery samples, and the
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heat generation is scaled up to the actual battery cell size [42]. The results from the
empirical heat generation methods are tabulated as a function SOC, current density,

current direction, and temperature.

Analytical heat generation models

The analytical approach as discussed by Bernadi [43] calculates the heat generation
rate using an energy balance that accounts for different sources of heat generation.
In chapter 4, the analytical approach will be considered in details. A detailed
expression for the heat losses that accounts for all the chemical reactions, mixing
processes, polarization effects and electrode kinetics is often impractical. A simplified
expression derived by Berandi et al. [43] is widely used in literature. Bernardi’s
expression quantified the losses in an electrochemical system taking into account the
enthalpy of the reactions, enthalpy of mixing, phase-change and the heat capacity.
The sum of all the heat sources is Qgen as defined in equation (2.40). It consists

of four different terms.

Qgen = Qrev + Qirr + szx + er (240)

Reversible losses The first term in equation (2.40) is the reversible losses (Qey),
and can be calculated as shown in (2.41)

8(Up — Un)

"rev =1IT
¢ oT

(2.41)

The magnitude of Q,., can be either positive or negative depending on the sign of

the entropic coefficient. The entropic coefficient U, ,,/0T quantifies the magnitude
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of the OCP dependency on temperature and is directly correlated with the entropy
change and hence the reversible losses. A common way of calculating the entropic
coefficient is to discharge the cell to a predefined SOC and wait until the cell relaxes
to record the equilibrium potential and then repeat at different temperature points
and different SOC points. This can either be done by keeping the SOC constant and
then varying the temperature or by varying the SOC while holding the temperature
constant, though the latter method results in more uncertainty [44]. The accuracy of
the results depends on the number of SOC points considered. It can take extended
experimental procedures to get sufficient data. Some novel approaches such as elec-
trothermal impedance spectroscopy [45] as well as methods based on calorimetry [46]

are discussed in the literature.

Irreversible losses The second term in equation (2.40) is named irreversible losses
(QW) or polarization losses. Polarization is the deviation of the cell’s voltage from
its equilibrium voltage and can be attributed to ohmic, activation and concentration
polarization [47]. The irreversible loss is quantified by how much the instantaneous

cell potential deviates from the equilibrium potential, and can be calculated as follows

Qire = 1[V; — (U, — Uy)] (2.42)

Losses induced by polarization have the biggest magnitude out of all the modes of

losses.

Heat of Mixing The third term in equation (2.40) is the heat of mixing (Qmiz),

and it models the losses released or absorbed from the formation and relaxation of
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the concentration gradients during the operation of a lithium-ion cell. Thomas et
al. [48] quantified the amount of heat of mixing for porous insertion electrodes, and
concluded that its magnitude is negligible compared to the reversible and irreversible
losses for well-designed cells. The heat of mixing in porous insertion electrodes can be
divided into four modes (i) the concentration gradients inside the spherical particles,
(ii) concentration gradients inside the bulk electrolyte, (iii) concentration gradients
inside the electrolyte pores of the insertion electrode, and (iv) concentration gradients

inside the bulk electrode.

Side reactions The fourth term in equation (2.40) is the heat associated with any
side reactions that may occur (er). During normal operating conditions, this term

can be neglected as discussed in [43].

2.5.2 Thermal model

Thermal models are important to predict and simulate the temperature profile inside
the battery during operation. The thermal model uses the heat generation rate inside
the cell (as discussed in section 2.5.1) and the thermal boundary conditions in order
to simulate the heat transfer mechanisms. In the literature, different approaches are
proposed to model the thermal profile within a cell. These approaches can be divided

into two categories:(i) lumped models, and (ii) multi-dimensions models.

Lumped models

Damay et al. [49] developed a lumped capacitance zero-dimensional thermal model.
The model included one heat capacitor coupled with different modes of heat transfer

throughout the cell to represent the thermal behavior of a prismatic cell. Similarly,
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Forgez et al. [50] employed the same technique for cylindrical cells using two heat
capacitors. The lumped capacitance modeling approach will also be considered in

chapter 4 due to its low computational complexity and acceptable accuracy.

Multi-dimensions models

The multi-dimensions models include coupled partial differential equations (PDE)
models, linear parameter-varying state-space models, three-dimensional Finite Ele-
ment Analysis (FEA) models. Smyshlyaev et al. [51] proposed an analytic solution
for solving the thermal model PDEs. Whereas, Hu et al. [52] reduced the PDEs
computational complexity by fitting a more complicated computational fluid dynam-
ics (CFD) model to a linear parameter-varying state-space model. Guo et al. [53]
presented a three-dimensional FEA thermal model, while Baba et al. [54] developed
a full 3D thermal model that takes into account local heat generation and the spa-
tial dependencies to obtain a full 3D temperature distribution of the cell. The FEA
thermal models are very accurate; however, they require excessive computational
power and detailed material properties, which limit their real-time implementation

especially when fluid dynamics are considered in the cooling process.

2.5.3 Thermal model parametrization

An accurate set of parameters is required for obtaining a high-fidelity thermal model.
The thermal parameters are either determined analytically or experimentally. Lin
et al. [55] used detailed information about the material and geometry of the cell
for analytically determining the parameters. Perez et al. [24] used the least squares

optimization algorithms to fit the model to the experimental data. Lin et al. [56]
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proposed an online estimation algorithm. Whereas Hu et al. [52] fitted a linear
parameter-varying state-space model from a more complicated computational fluid
dynamics (CFD) model to reduce the computational complexity. In Chapter 4, an
experimental method involving optimization will be used instead of analytical meth-

ods as they suffer from a high level of uncertainty.

2.6 State of charge determination

The Battery Management System (BMS) and the accurate estimation of State of
Charge (SOC) have been researched extensively in the past decade. SOC estimation
not only provides information on battery performance but also reminds the user of the
remaining useful energy in the battery. The different SOC determination techniques

are considered in this section.

2.6.1 Direct measurement methods

The direct measurement methods use physical battery properties to calculate the
SOC.

Measurement of the electrolyte physical properties

This method is used in lead-acid batteries. Here, a linear relationship between the
electrolyte acid concentration and the SOC is established and used to determine the
value of the SOC. A possible application of this method to batteries with liquid

electrolyte is provided in [57].
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Open circuit voltage - OCV

This method is promising for applications where the battery is allowed to rest for
long periods of time as the battery terminal voltage decays with time to the Open
Circuit Voltage (OCV). SOC can then be inferred from the OCV via look-up tables.
However, this method cannot be used for dynamic SOC estimation, and its accuracy
is adversely affected by temperature variations and hysteresis. Since the rest periods
occur from time to time; this technique can be used in addition to coulomb counting.
Such a combination allows the SOC to be calculated after a rest period using the
OCV-SOC interrelation; this SOC can then be used as a re-calibration point for the

coulomb counting method [58].

Impedance spectroscopy

Electro-Chemical Impedance Spectroscopy (EIS) is widely discussed in literature [59,
60]. It is based on establishing a baseline by measuring the cell impedances over a
wide range of frequencies under different SOCs. The SOC is inferred by measuring

the cell impedance values and correlating them against baseline impedance for various

SOC.

2.6.2 Book-keeping methods

The book-keeping methods measure the battery current and use this information as

input for calculating the state of charge.
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Ampere-hour (Coulomb) counting

Ampere-hour (Coulomb) counting technique is the most common technique for cal-
culating the SOC. Since the battery discharge and charge are directly related to the
supplied and the drawn currents respectively, the idea of battery current balancing is
applied as follows. If a starting (SOC)) is known, the value of the current integral is

the direct indicator for the SOC. Such that:

t
SOC = SOC, — 01 / Idt (2.43)
nom Jtg

where C), is the nominal capacity, I is the discharge current and SOC) is the initial

SOC value. Three main drawbacks of this method are:

1. Incorrect current measurement could result in a large error due to integration

in equation (2.43).

2. Ampere-hour counting calculation is based on a predefined calibration point

that may not always be available.

3. Not all of the current charged or discharged from the battery can be taken into

account due to losses.

The first drawback can be overcome by having an accurate sensor that is often expen-
sive. The second drawback is solved by having a predefined calibration point. The
third drawback can be eliminated by adding a constant correction charging factor(n;)

to the battery at each charge/discharge cycle, where the value of (1;) changes with
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the number of cycles to compensate for battery capacitance losses as follows:

‘ t
SOC = SOC, — C”Z / Idt (2.44)
to

nom

The error in Ampere-hour counting can be maintained low by defining a correction
factor and defining a re-calibration point [61]. The Ah counting method [62] provides
a higher accuracy than other SOC calculation methods. It is easy and reliable if the

current measurement is accurate and if the re-calibration point is available.

2.6.3 Adaptive methods

Artificial neural network

SOC determination using Artificial Neural Networks (ANN) is discussed in details in
(63, 64]. Since artificial neural networks can establish an input/output relationship of
complex non-linear systems, SOC and SOH can readily be obtained with ANNs. An
ANN is composed of neurons that are interconnected together to form a relationship
between the network’s input and outputs. ANN mimics the human brain and needs
to be trained. The techniques and algorithms used for training of the ANN are
presented in [65]. A limitation of ANN is that it requires a significant amount of data

for training for all operating conditions and situations.

State estimation techniques

In the literature, several state estimation techniques have been presented to predict
the battery’s state of charge. The state estimation techniques require an accurate

state space model for the battery where the SOC is an observable state. Plett et

36



PhD Thesis McMaster University
Mohammed Farag Mechanical Engineering

al. [9] used the Extended Kalman Filter (EKF) to predict the battery SOC using
the behavioral models. Farag et al. [14] used the Smooth Variable Structure Filter
(SVSF) to estimate the battery SOC using the equivalent circuit models. In chapter 5
a comparative study between different state estimation techniques is presented using

the electrochemical model.

2.7 Battery aging mechanisms

The phenomenon of battery aging is complex to model due to its dependence on many
factors either from the environment or from utilization modes as shown in [66, 67].
In literature, the aging has been mainly defined as capacity or power fading to a
predefined limit, where the capacity fade is identified as loss of capacity [68], and

power fade is identified as an increase in the battery internal resistance [69].

2.7.1 Aging origins
The origins for aging can be classified into two main causes [70]:

e Extreme Conditions: operating the battery under extreme conditions such as

high temperature [66], or high charging rates [71].

e Normal Conditions: aging can be caused due to battery storage (calendar aging)

or usage (cycling aging).

Battery aging is a result of diverse and complex processes where performance degra-

dation takes place due to irreversible chemical reactions [72].
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2.7.2 Aging models

In the literature, different models have been proposed to model the aging phenomena.

The models can be divided into five categories:

e FElectrochemical models: physical-based models that estimate the aging phe-

nomena occurring in the cell [73].

e Equivalent circuit-based models: using an equivalent circuit model to model the

aging phenomena [74].
e Performances based models: physical equations predict the battery aging [75].

e Analytical models with empirical fitting: involves estimation of aging parame-

ters through experimental measurements [76].

e Statistical approach: these are mainly based on data analysis and do not require

apriori knowledge [77].

2.8 Summary

The battery management system plays a major role in the energy storage systems
of electric vehicles. One of the key consideration for the accuracy of the BMS is the
battery model and its temperature and aging dependencies. This chapter provided
a brief literature review of the battery management system, battery models, thermal
models, heat generation models, state of charge estimation techniques, and cell aging
mechanisms.

Different battery modeling categories are presented. The choice between these

categories is a trade-off between model complexity, accuracy, and parameterization
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effort. The models can be classified into three categories of increasing complexity:
behavioral, equivalent circuit, and electrochemical models. Currently, the equivalent
circuit models are commonly used in the BMS because of their low computational
complexity and acceptable accuracy. However, they are not capable of describing the
battery’s internal physical behavior.

An accurate thermal-electrical battery model is required in order to operate the
energy storage system in a temperature range which is characterized by slow aging
progress, high efficiency, and performance. The thermal models consist of two sub-
models, namely the heat generation model, and the heat transfer model. The heat
generation model is responsible for the rate of heat generation inside the battery’s
core during operation and can be divided into four primary sources: reversible losses,
irreversible losses, heat of mixing losses, and side reaction losses. The heat trans-
fer models are necessary to predict and simulate the temperature profile inside the
battery. Finally, various state of charges estimation techniques and battery aging
mechanisms are presented.

In this dissertation, a new formulation for the the reduced-order, electrode-average
model (EAM) is developed. The new formulation reduces the CPU run-time while
maintaining accuracy. The electrochemical model is then augmented with thermal
model and heat generation model in order to be capable of predicting the cell’s ter-
minal voltage and core temperature over a broad range of temperatures and state of
charges. Finally, different model-based nonlinear state of charge estimation strategies

were used to estimate the state of charge of the battery.
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electrochemical battery models. In this paper, an isothermal, continuous, piecewise-
linear, electrode-average model is developed by using an optimal knot placement
technique. The proposed model reduces the univariate nonlinear function of the
electrode’s open circuit potential dependence on the state of charge to continuous
piecewise regions. The parameterization experiments were chosen to provide a trade-
off between extensive experimental characterization techniques and purely identify-
ing all parameters using optimization techniques. The model is then parameterized
in each continuous, piecewise-linear, region. Applying the proposed technique cuts
down the CPU run-time by around 20%, compared to the reduced-order, electrode-
average model. Finally, the model validation against real-time driving profiles (FTP-
72, WLTP) demonstrates the ability of the model to predict the cell voltage accurately

with less than 2% error.

3.2 Introduction

In the past few years, automobile manufacturers have gone through the initial adop-
tion phase of electric mobility. The gradually increasing momentum behind electric
vehicles (EV) adoption suggests that electrified storage systems will play an impor-
tant role in electric mobility going forward. Lithium ion batteries have become one
of the most attractive alternatives for electric vehicles’ energy storage systems due
to their light weight, high specific energy, low self-discharge rate, and non-memory
effect, etc. [6]. To fully benefit from a lithium-ion energy storage system and avoid
its physical limitations, an accurate battery management system (BMS) is required.
In EV, the BMS is responsible for performance management which includes -but is

not limited to- state of charge (SOC), state of health (SOH), and state of function
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(SOF) estimation algorithms, as well as power management, thermal management,
and so forth. One of the key issues for successful BMS implementation is the battery
model. A robust, accurate, and high fidelity battery model is required to mimic the
battery dynamic behavior in a harsh environment.

In the literature, numerous battery models have been reported. The choice be-
tween these models is a trade-off between model complexity, accuracy, and param-
eterization effort. The models can be classified into three categories of increasing
complexity: behavioral (or black-box) [7, 8, 9, 10], equivalent circuit [11, 12, 13, 14],
and finally detailed electrochemical (physics-based) models. Currently, the equivalent
circuit models are commonly used in the BMS because of their low computational
complexity and acceptable accuracy. However, they are not capable of describing the
battery’s internal physical behavior.

Many approaches to model the electrochemical processes in the battery have
been proposed in the literature. Most of the models are derived from the physics-
based, electrochemical pseudo-two-dimensional (P2D) model developed by Doyle-
Fuller-Newman model [26, 27], which is based on the porous electrode and concen-
trated solution theory. The primary gain of the rigorous physics-based P2D model is
the increased accuracy /precision achieved by modeling the electrochemical processes.
Unfortunately, it is high in complexity, computational time, memory allocations, and
real-time control. Therefore, simplification of the P2D model is required. In the
literature, numerous reduction methods have been explored, all of which have the
goal of reducing the computational complexity involved in solving the physics-based
electrochemical model while maintaining acceptable accuracy.

These methods can be divided into two categories. The first one is primarily
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focused on reducing the computational complexity involved in solving for the con-
centration of lithium in the solid particles of the electrodes, e.g. Subramanian et
al. [28, 29, 30] developed a simplified model using the Liapunov-Schmidt technique,
perturbation techniques, volume averaging, and intuition-based simplifications. Their
approach works well at low-to-moderate discharge rates but performs poorly for highly
dynamic current profiles such as those encountered in hybrid- and electric-vehicle
applications. Cai et al. [31] proposed an approach based on proper orthogonal de-
composition, which uses a two-step approximation of the full order model; The first
approximation is discretizing the governing equations and the second is truncating
the number of orthogonal modes. The proposed reduced order model proved to be
about seven times faster than the full order model. Forman et al. [32] used quasi-
linearization and Padé approximation. This approach uses a quasi-linearized model of
intercalation current to solve the model algebraic equations, then a Padé approxima-
tion of spherical diffusion is used to decrease the model complexity while maintaining
a high level of accuracy. Wang et al. [15] assumed a parabolic concentration profile
within the spherical particle (cs = ag + air + a27°2) formulating a solid state diffusion
submodel, which correctly captures bulk dynamics and steady state concentration gra-
dient but otherwise neglects diffusion dynamics. It is, therefore, valid for extended
operation times and low C-rates, as its inaccuracies become significant at higher C-
rates. Smith et al. [33, 34] proposed a simplified model using the method of residue
grouping. They used a nonlinear optimization technique to minimize the error in the
frequency domain response between the ’full order’ and 'reduced order’ model. The
derived transfer functions are represented by a truncated series of grouped residues

with similar eigenvalues. Bhikkaji et al. [35, 36] developed a simplified model based
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on Chebyshev polynomial.

The second category of model simplification is focused on reducing the electro-
chemical model as a whole. The primary contribution pertains to avoiding the solu-
tion of large sets of differential-algebraic equations (DAEs) of the Li™ concentration
distribution and the potential distribution of the electrolyte phase. This provides a
reduced model capable of computing in real-time. However, this strategy for model
simplification leads to loss of information. The performance reduces at higher C-rates
in comparison to the full order model. In general, the assumptions used for the model
reduction can lead to inaccuracies if a broad C-rate range of operation is considered
and if the model is not adjusted with respect to the operating conditions of the bat-
tery. Examples of this modeling approach, Haran et al. [37] originally developed
the single particle model (SPM) approach for the metal hydride battery, and it was
extended to the lithium system by Santhanagopalan in [25, 38]. In this model, the
local volumetric current density j¥ is constant across the electrode (anode or cathode)
and equal to an average value j%. Rahimian et al. [39] extended the SPM by includ-
ing a polynomial approximation of the electrolyte dynamics. Domenico et al. [16]
presented the electrode averaging model (EAM). In literature, there are also other
methodologies reported for solving the original physics-based P2D model directly.

This paper contributes to the literature above by developing three unique im-
provements to the reduced-order electrode average electrochemical model presented
by Domenico et al. [16]. The first contribution is a continuous piecewise linearized
(CPWL) technique that aids in efficiently running the model in real time applications.

The second contribution is an optimal knot-placement optimization technique for the
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continuous piecewise linearized electrode averaged model (CPWL-EAM) using the ge-
netic algorithm (GA). The third contribution is a parameter-grouping approach that
helps in reducing the parameterization efforts for the EAM and the CPWL-EAM.
First, the optimal knot locations are obtained using the GA to minimize the residual
error. The CPWL-EAM parameters are then identified in order to minimize the error
between the model terminal voltage output and the experimental data. The model is
then validated using battery voltage, current, and temperature measurements against

real-time driving cycles.

Paper structure First, the full-order electrochemical model is briefly introduced.
Next, the continuous piecewise linearization technique is presented. Then, the battery
parameter identification procedure and the experimental setup are illustrated. The
model validation against two different real-time driving cycles is then shown. Finally,

the results and discussion are presented.

3.3 Electrochemical battery modeling

3.3.1 Operating principles of lithium-ion batteries

A battery converts chemical energy into electrical energy and vice versa. The basic
setup of a battery cell consists of four main parts: the positive electrode, the separator,
the electrolyte, and the negative electrode, as shown in Figure 3.1.

The positive and negative electrodes are referred to as the cathode and the anode.
The battery is connected to an external load using current collector plates. In the case

of Li-ion cells, a copper collector is used in the negative electrode while an aluminum
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collector is used for the positive electrode.

The anode is the electrode capable of supplying electrons to the load. The anode
is usually made up of a mixture of carbon (e.g. Li,Cg), the cathode is typically made
of metal oxides (ex. LiC0oOy or LiMnyQOy), while the electrolyte can be made of a
salt-containing solvent mixture, polymer, or solid materials (e.g. LiPFg), polymer or
solid materials. In the case of solid or polymer materials, the electrolyte will also act
as a separator. The separator is a porous membrane allowing the transfer of lithium
ions between the electrodes, but which serves as a barrier to electrons. It prevents the
occurrence of a short-circuit and thermal run away, while at the same time offering

negligible resistance to the flow of ions between the electrodes.
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Figure 3.1: Schematic representation of the Li-ion battery operation principles and the
single particle model simplification.
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3.3.2 Model mathematical formulation
Relationship between concentrations and currents

The mathematical equations governing the charge and mass conservation in the solid

and electrolyte phases is summarized in this section.

Mass transport in the solid phase The electrode model is based on the porous
electrode theory, and the lithium-ion concentration in a single spherical particle is

described by Fick’s law of diffusion [25]

n,p n,p
dcg?(x,rt) D5 0 [7’2808 (x,r, t)} (3.1)

ot 2 or or
where c,(z,r,t) : (0,L) x (0, R}P) x (to,t) — [0,c}P ] is the concentration of Li*
in the solid particles, as shown in Figure 3.1. At the particle surface, the rate at
which ions exit or enter the particle is proportional to the volumetric rate of chemical

reaction j', while at the center of the particle the rate is equal to zero, written as the

boundary conditions (BC):

8cn,p acn,p _jli
s = O d 5 = 32
ar |,_o o or |,_gre  DsasF (3:2)
With initial conditions (IC):
ey (w,rt) = P (x,7) (3.3)

Mass transport in the electrolyte The LiT concentration in the electrolyte
changes due to the flow of ions and the current. It can be described by Fick’s law

of diffusion along the coordinate between the electrodes, with the mass transport
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between the electrodes treated as being effectively homogeneous at all coordinates in

the plane normal to the inter-electrode coordinate.

ot - Ox

Ocece(x, t 0 erpOCe(x,t 1L—t5 .
( ) _ (Deff ét )) + 7 0 jl (3.4)

Where c.(z,t) is the concentration of Li* in the electrolyte and e, and D¢/ are
domain-dependent parameters (anode, cathode, separator). The Bruggeman’s rela-
tion D/ = D, x €l® accounts for the tortuous path of Li* transport through the
porous electrodes and separator. Ensuring zero flux at the current collector and conti-
nuity of concentration and flux through the adjoining domains within the cell, written

as boundary conditions:

7 P
Ol o ana 2% o (3.5)
o |,_, or|,_;
With initial conditions:
Co(,tg) = Cep () (3.6)

Relationship between potential and currents

Potential in the solid electrodes The electrical potential in the electrodes ¢ is

derived from the extended Ohm’s law:

0 0

% (Ueff%QSs(xat)) - jli =0 (37)

The potentials at the current collectors (xr = 0 and = L) are proportional to the

applied current, I and zero at the separator, written as boundary conditions (where
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A is the cross-sectional area of the cell):

0 0 1
_seff 2 _ _seff 2 _
o 8x¢5<$’t) » o ax¢s($,t) T
i ) (3.8)
—gbs(l‘,t) = —¢s($,t) =0
a x=0n 8x x:6n+5scp

Potential in the electrolyte The electrical potential in the electrolyte ¢, is de-

rived from the charge conservation law:

0 0 9] 0 :
eff eff i
By (/4@ _6x¢e(x’t)) + o (FLD E In ce> +5"=0 (3.9)

With boundary conditions:

=0 (3.10)

Butler-Volmer kinetics equations

The volumetric rate of chemical reaction is governed by the Butler-Volmer current

density equation. This equation links the reaction rate to the phase potentials and is

G a _aF
J = as)o [eXp <_RT n) exp < T 77)] (3.11)

The overpotential n is defined as the difference between the cell’s overpotential and

described as:

its charge/discharge voltage. It is responsible for driving the electrochemical reaction,

and can be calculated as follows:

77 = ¢s - ¢e - U(Cse) (312)
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Where U(c,,) is the open circuit potential and the coefficient jy is a function of the

surface electrolyte concentration ¢, according to equation (3.13).

Jo = (ce)™ (Cihax — co) ™" ()™ (3.13)

S, max

Cell potential equations

The cell potential, V', across the cell terminals is determined as follows:
I
V:¢S(x:[/> —QZ5S(CL’:O) —RfZ (3.14)

The mathematical formulation, describing the full order electrochemical model

equation (3.1) to (3.14), is presented in Figure 3.2.
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3.3.3 Model reduction

The full-order model (FOM) is highly accurate; however it requires extensive com-
putational time and onboard memory allocation, which limits its utility for real-time
applications. Therefore, reduction of the FOM has been carried out by simplify-
ing the set of FOM equations for ion concentration and potential in electrode and
electrolytes. In this section, some assumptions and simplifications to the FOM are

considered in order to obtain a Reduced Order Model (ROM) as shown in Figure 3.3.

Model reduction assumptions

The FOM equations represented in equations (3.1) to (3.14) are simplified in order
to be implemented in real-time applications. The simplification assumptions are
summarized in Table 3.1. As a result of these reductions, a single particle from each

electrode (anode and cathode) can describe the diffusion dynamics.
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Reduced-order model

The FOM set of equations is simplified due to the previous assumptions. The reduced-
order, electrode-averaged model (ROM) is summarized in equation (3.15) to (3.19).
Its terminal voltage can be calculated by substituting equation (3.12) in equation

(3.14), as derived in [25]:

V() = (B )+ (8 6) +[0(0,) ~ U0~ Ry (3:20)

where 7, — 7,, is the difference between the positive and negative electrode overpo-
tentials, and can be calculated by substituting equation (3.19) in (3.11) as shown

below:

RT . &+ /& +1 i
My — N = In where §&,, = —
" aaF fn + V 5721 +1 '

@F — ¢ is the difference between the positive and negative terminals electrolyte po-

21
2asj0 (3 )

tentials, and can be represented as derived in [25]:

_ . I
Ve = ¢ = ~ 57 (On T 20sep +6y) (3.22)

Finally, U,(6,) — U,(6,) is the difference between the open circuit voltage for the
positive and negative electrolyte. The stoichiometry ratio 6,, is the normalized
solid-electrolyte interface concentration for the negative and positives electrodes re-
spectively.

P

9n7p = Cn,sz;e (323)

where ¢'P is the average bulk concentration, and can be obtained by calculating the

total concentration volumetric average V.
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Rn,p
() = - / (e 1)V, (3.24)
0

3.3.4 Capacity model mathematical formulation

In this paper, the battery nominal capacity C,.,, is determined by the mass of active
material contained in a fully charged cell. It can be measured by calculating the
maximum number of ampere-hours that can be drawn from the fully charged battery
at room temperature (293 K) and very low C-rate (C/25). The volumetric averaged
Li concentration can be determined by substituting V; = 47 R3/3 and dV, = 4nr?dr
in equation (3.24).

Rs
& (1) = % /0 P26 (1, £) dr (3.25)

By using the boundary conditions in equations (3.2) and substituting equation (3.19)
into equation (3.2), the volumetric averaged Li concentration dynamics in equation

(3.25) become [78]:

» 3D, i I
cyP(t) = i [RZ7dcg(RLP, 1)) = S AR (3.26)
S n,p S

The state of charge is defined as

1

SOC = m/o I(T)dr (3.27)
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assuming the initial state of charge SOC(t = 0) = 0 and I(¢) is the applied current
with I > 0 during charge. SOC can be defined as

0,0 — Oow
SOC = e 0% (3.28)
6100% - 60%

Using equations (3.26), (3.27), and (3.28), the capacity is defined as

_ s,max L’ 100%
nom 3600 )

ARG, e (00— O] [Ah] (3.29)

3.3.5 Discretization method

The governing PDEs of the ROM constitute the building blocks of the battery model.
To be useful for control and systems engineering, the PDEs must be discretized in
space to reduce them to coupled multiple ordinary differential equations (ODEs) in

the time domain.

Finite difference method

The Finite Difference Method (FDM) is the simplest and the most commonly used ap-
proach to the solution of the diffusion equations found in battery models for real-time
applications. By using the central finite difference method for the radial dimension r,
it is possible to describe the spherical PDE by a set of ordinary differential equations
(ODE). Equation (3.15) can be written as

dcy(r,t) 9%cs  20c,
ot D, (87“2 + ror ) (3.30)
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By using the CFDM, and discretizing the solid spherical particle into M, shells along
the radial dimension 7 as shown in Figure 3.1, such that Ry = Ar x (M,), and defining

q=1,..., M,_; equation (3.30) becomes

-n DS n n n AT T n
cs7p|q = Az [(Cs’p|q+1 — 205’p|q + cs7p|q_1> + r_q <Cs’p|q+1 — Cs’p|q_1>] (3.31)

By substituting with r, = ¢ x Ar and rearranging, equation (3.31) becomes

-n DS q_l n n Q+1 n
Cs’p‘q = Ar2 |:( q ) Csjp‘qfl - 2cs7p’q+ < q ) Csyp

The boundary condition equations (3.2) can be rewritten accordingly:

qﬂ} (3.32)

gl = e, (3.33)

=l
n —J n
M, = Cs7p’M7.,1 + ATFCL D = Csép (334>

,p
CS’

By substituting with the boundary conditions equations (3.33) and (3.34), and rear-

ranging, equation (3.32) becomes

w [—2err), + (42) 0ol =1
P =W _(%) ng,p|q_1 — ch},p|q + (%) cg’p|q+1} :2<q< M, -2 (3.35)
v [(2) et = () 7l = 8 ()] o= e
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where ¥ = D,/Ar? and Z = 1/(Ar x a, x F'). The lithium concentration in the solid
particle at the outer shell when r = M,. is referred to as the lithium concentration at

the solid-electrolyte interface c.P.

State space representation

With the above approximations for the mass conservation equation and its boundary
conditions, a state space representation for equations (3.31) to (3.35) can be formu-

lated as follows:

P = AP + Byt (3.36)

b =Py =l + Dj" (3.37)

The state space matrices, A, B, and D, are obtained as follows:

—9 ol g ... 9 0
q
el 2 - 0 0
q
0 .- :
A=V (3.38)
0 0 —2 4
q
0 0 0 & _«1
| q q |
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B=7| (3.39)

D= 7 (3.40)

3.3.6 Model parameter grouping

The ROM battery voltage equation can be rewritten by substituting equation (3.21),
(3.22), (3.23) in equation (3.20) as shown below:

V(t) = [Up(p) — Un(0n)] + 037 (Onp, 1) = 1 K pes (3.41a)

1 (6, + 20s5ep + 6p)
where Kyes = 1 Ry + Sclf (3.41b)

Where K,.s is a term that accounts for the increase in ohmic resistance during a

charge or discharge current pulse related to the poor electronic conductivity of the

cell chemistry.

By substituting a?? = 3¢™P/R*P and o, = o, = 0.5 from Table 3.3, equation
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(3.21) can be written as follows:

RT1 S+ v+l

9P (0,0, 1) =1y — Ty, = 3.42
n(p, ) Tp — 1 Oéaann—i— 2l ( a)
I

where &, , = Q" oE (3.42Db)
(cthacts? — c2”)
R

and Q"7 = > 0 (3.42¢)

6.A0, s (Ce)

Where Q0"P is a constant term which accounts for the variation of the average elec-
trolyte concentration.
After introducing Q2™? and K,.s, the new set of equations are described in Figure

3.3, where the blue-colored constants represent the model parameters.
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Equations (3.35), which describe the lithium-ion concentration in a single spheri-
cal particle, are linear time-invariant (LTT). The nonlinearity in the output equation
(3.41) is due to the open circuit potential term [U,(SOC,) — U, (SOC,,)] and the over-
potential difference term 9}*(0,,,, I). The open circuit potential term is a univariate,
nonlinear function of the cell state of charge U, ,(SOC,,,). Reducing this term to a
CPWL regions while maintaining accuracy aids in reducing the computational com-

plexity of the model.

3.4 Continuous piecewise linearization

This sections will present the main contribution of this paper, the use of piecewise

linearization techniques to reduce the system complexity.

3.4.1 Background

In the literature, Qingzhi et al. [79] used a cubic spline regression model to fit the
experimental open-circuit potential (OCP) curves of two intercalation electrodes of
a lithium-ion battery. In this paper, a method is presented for constructing CPWL
regions of the experimentally measured OCP data using polynomials of the first or-
der by a stochastic global solution of the resulting mathematical problem. Due to
constraints in real time applications, the proposed technique must maintain the con-
tinuity and smoothness of the OCP curve at the knot positions.

Pittman et al. [80] have proposed an algorithm that attempts to stochastically
find the global solution to an optimization problem that not only minimizes the

sum of squared errors (SSE) but also chooses the optimal number of knots that
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maximizes the information content in each knot. The algorithm proposed in the
current work is a modified form of Pittman’s algorithm since the optimization problem
being solved is more restrictive. First, the number of knots must be known and
specified in advance. Second, the knots are not completely free on the fitting interval,
but rather are restricted to be unique and in order between the values in the finite
set of measurements.

A two-stage framework of knot placement is proposed. We start with an outline
of the algorithm, then the knot placement strategy and the genetic algorithm (GA)

optimization model are described, respectively.

3.4.2 Problem formulation and implementation

The open circuit potential as a function of state of charge, U, ,(SOC,, ), is a univari-

ate, nonlinear function where SOC,,, € [SOCY%, SOC%]. This nonlinear function

has N CPWL functions w;(#) within its domain, where A is a pre-specified number

that represents the knot points. Each line segment can be defined as follows:

U<)\z> — U(/\z—l)

W (500) = =

Where ); are knot points in [SOC?% SOC'%] and i = 1, ...., N. The first and the
last knot points are fixed at the boundaries, that is, A\g = SOC*% Ay = SOC1%,
Also, the knot points are ordered and unique: A\; > \;_; for i = 1,...., N. To find the
optimal placements for the knot points Aq,....., A,_1, such that the overall squared-

approximation error err is minimized. The optimization objective function is defined
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as follows:
Socl()(l%
_min qerr = / [U(S0C) — wi(SOC)*dSOC (3.44)
Tyeeneens N—1
SOCO%

The optimization problem can be described as follows:

min err(SOC) (3.45a)

Ay AN 1
(err(SOC)) = [U(SOC) — w;(SOC)?,  err(SOC) =0 (3.45b)

dsocC

wz(SOC’) = b\ b\ (SOC — )\i—1> + U()\z—1> for /\i—l S SOC S )\Z (345C)
i \i—1

Ao = SOCY, Ny = SOC% (3.45d)

)\i 2 )\i—1+€7 1= 1,...,N (3456)

The continuity constraint implies that w(\;11) = w(\;), and can be written as:

UN) — U(his)
Ai — Aic1

Nic1 + U(Ns) (3.46)

3.4.3 Optimizing joint-points for continuous piecewise lin-

earization

The proposed method for optimizing the joint-points uses the genetic algorithm (GA),
which is inherently stochastic in nature. The GA is theoretically proven to eventually
attain global convergence, and its stochastic nature prevents any prediction or calcu-
lation of its rate of convergence. As a result, these routines can be computationally

expensive in real-time calculations.
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Since the continuous piecewise linearization of the OCP will be performed offline,
the real-time calculation constraint does not apply. Therefore, the problem can be
solved to global optimality by the GA, which guarantees that the resulting solution
is globally optimal within an epsilon tolerance.

The experimental procedure for obtaining the OCP curves will be discussed in
Section 3.6. As shown in Figure 3.4, the anode OCP is nearly constant. The OCP
of the cathode is an order of magnitude higher than that of the anode; therefore,
the knot locations are optimized for the cathode. The results of the optimization
problem described in equation (3.44) are shown in equation (3.47). Since the nonlinear
relation between the OCP and the cell SOC is chemistry dependent. The optimized
knot locations will differ according to the lithium ion chemistry under consideration.
In this experiment, the optimized knot locations are at (6%, 23%, 49%, 78%) SOC,,.
Round-off errors at lower SOC are avoided by choosing the first piecewise-linear region

interval away from the steep portion of the cathode OCP curve.

A =[0.06,0.23,0.49,0.78, 1] (3.47)
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Figure 3.4: Comparison of the experimental OCP curves and the CPWL functions obtained
by optimizing the joint-points. (a) Cathode, (b) Anode, (c¢) Residual plot for Cathode (red)
and Anode (blue).

Figure 3.4 shows the optimized knot locations and compares between the mea-
surement and the piecewise-linear functions. In both parts of the graphs, the x-axis
represents the normalized concentration, and the y-axis represents the OCP [V] and
residuals [V], in upper and lower figures, respectively. The residuals graph shows the
accuracy of the piecewise-linear functions with respect to the nonlinear function; the

coefficient of determination of the fitted functions is equal to 0.9997.
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By substituting equation (3.47) in equation (3.43),

(

0.8250C, — 0.0550C,, +3.42 :0.06 < SOC, <0.23

0.3150C, — 0.0550C,, + 3.53 :0.23 < SOC, <0.49
W(SOC,,) = (3.48)

0.6950C, — 0.0350C,, +3.34 :0.49 < SOC, <0.78

1.0850C, — 0.0250C,, +3.09 :0.78 < SOC, < 1.00

The CPWL-EAM terminal voltage can be calculated by substituting equations (3.21),
(3.22), and (3.48) in equation (3.20):
RT . &+ /& +1

) = 1 -
V(t) = w(SOCu,) + Spln ey

IK e (3.49)

3.4.4 Comparison with existing models

A well-determined model for the nonlinear relation between the OCP and the cell
SOC is indispensable for the model performance. The proposed method is compared
against six different models summarized by Weng et al. in [81] and listed in Table
3.2. The OCP data shown in figure 3.4-a is used to fit the models presented in Table
3.2 using the Matlab curve fitting toolbox.

The RMS error and CPU time for the models’ fitting results are shown in Table
3.2. The proposed continuous piecewise-linear model has the lowest CPU run time
and the third highest accuracy when compared to the other models.

It should be noted that none of the other six models in Table 3.2 reduces the model
to a linear form. The benefit of the piecewise linearization is the ability to incorpo-

rate optimal SOC estimation techniques such as Kalman Filter. Linear estimation
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strategies are simpler, computationally more efficient, more robust and more accurate

for linear or piecewise linear systems compared to non-linear estimation techniques.
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3.5 Experimental setup

In this paper, parameterization and validation data sets have been gathered exper-
imentally using a prismatic lithium-ion battery cell suitable for high-power applica-
tions like PHEVs, HEV, and EV. The battery positive electrode material is NMC-
based, and the anode is graphite-based.

The tests are done on a Scienlab battery test bench. The voltage accuracy is +
0.05% (~ £+ 1mV) of the measured value, the current accuracy is + 0.05% (~ +
20mA) of the measured value. The sensors are integrated to the test bench. During
testing, the cells are placed in a climate chamber with a continuously controlled
ambient temperature of 25°C.

The cycler has 12 channels; four different current profiles were tested on 12 cells
(one cell per channel). In order to account for any cell manufacturing variations, each
test was conducted on a cluster of three cells of the same type and under the same
conditions. The cluster output was averaged to obtain the measurement variables.
The cell voltages, currents, and temperature are sampled every 100ms. The measured
variables are used as input data for the presented algorithm in the MATLAB /Simulink

environment.

3.6 Parameter identification procedure

This section presents the procedure for identifying the model parameters. The reduced-
order, electrode-averaged model requires fewer parameters than the full-order model;
however the number of parameters is still relatively high, if all of the parameters val-

ues are considered as unknowns. These parameters represent geometrical, physical, or
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chemical properties. In order to decrease the number of parameters to be identified,
the parameterization process will be divided into two steps.

In step one, the battery cell is operated within [C'/30 to C'/50] range of operation
using experimental inputs so as to limit the number of parameters which impact the
output voltage. The parameters are identified using experimental data. In step two,
the battery cell is excited with a signal that is rich in the frequency range necessary
to identify the rest of the parameters. This approach has the advantage of providing
a trade-off between extensive experimental characterization techniques and purely
identifying all of the parameters using nonlinear techniques. Table 3.3 summarizes

the model constants or formula-based parameters [25].

Symbol Value

Anode Separator Cathode
Qg Oc 0.5 - 0.5
td 0.363 0.363 0.363
o 1 - 0.1
oelf o¢ff =¢enrg - o¢ff =¢emrg
Dgff D:ff = 6&'5De
K K = 0.0158¢,e(0-5% ")
kel f relf = eMPk
wel ! Rl _ 2RI )

Table 3.3: Model parameters - constant parameters and formula-based parameters.

The solid concentrations inside the electrodes and the correlation function between

the electrodes’ solid concentrations and their OCP are obtained from OCV data. This
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step relies mostly on utilizing half-cell OCV curves. Next, the rest of parameters are

optimized using the GA. Lastly, the model is compared to experimental results.

3.6.1 Identification of capacity-related parameters

This step identifies the solid concentrations inside the electrodes and is used to ob-
tain the correlation function between the electrodes’ solid concentrations and their
OCP. This step makes SOC-dependent and rate-dependent parameters easier to
identify by sweeping through the full range of battery states of charge at differ-
ent charge/discharge rates. The correlation between the negative electrode active
material solid concentration and its open circuit potential has been measured in the
laboratory.

Anode OCP U, (6,,) measurements were made using a composite graphite film (~
140 microns thickness; MTI Corporation) mounted on copper foil in a half-cell versus
a solid lithium metal electrode with a standard, commercial electrolyte consisting of
1.0 M LiPF6 in EC/DEC, 1:1 (v/v) (Novolyte Corporation). A coin cell geometry was
used, and the cells were assembled under argon atmosphere in a glove box. They were
then cycled at C/50 on a BT2000 multi-channel cycler (Arbin Instruments), and the
3rd cycle was used to construct the OCP curve, to allow for SEI formation (Coulombic
efficiency was in excess of 99% by this cycle). Both the charge and discharge curves
exhibit the characteristic plateaus and stoichiometric phase transitions associated
with Li intercalation into graphite, and the inserted and extracted specific capacity
is approaching the theoretical specific capacity for graphite of 372 mAh/g as shown

in Figure 3.5-a.
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Figure 3.5: Open circuit potential versus normalized concentration for (a) positive electrode,
(b) negative electrode, and (c) open circuit potentials, experimental versus model.

The Cathode OCP U,(6,) is calculated by adding the measured battery open

circuit voltage V., to the Anode OCP U, (6,).

Up(0p) = Voeo + Un(0,,) (3.50)

The obtained Cathode OCP U,(6,) is shown in Figure 3.5-b. The open-circuit poten-

tial for the positive electrode U,(6,) and the negative electrode U, (,,), along with the
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OCV (V,) relationship are shown in Figure 3.5-c. The capacity-related parameters

with their lower bounds (LB) and upper bounds(UB) are summarized in Table 3.4

Symbol Unit Anode Cathode

LB UB LB UB

cobar  mol em™3 le7* 1 lemt 1
B0 - 0 1 0 1
0100% - 0 1 0 1

Table 3.4: Capacity-related parameters lower and upper bounds.

3.6.2 Identification of diffusion-related parameters

The objective of this step is to identify the parameters associated with the battery
transient response in each CPWL region. A parameterization cycle that contains
charge-sustaining and charge-depleting phases is chosen, as shown in Figure 3.6-a.
The cycle frequency content makes it easier to identify the cell parameters, as il-
lustrated in Figure 3.6-b. The test starts with a fully charged battery and then a
current profile is applied to discharge the battery until the SOC specified in equation
(3.47) is reached. Then, the cell is left to rest at this SOC to allow for full cell relax-
ation. Finally, the cycle is repeated in each CPWL region until the battery is fully
discharged.

The diffusion-related parameters, with their lower and upper bounds, are summa-

rized in Table 3.5.
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Symbol Unit Anode Cathode

LB UB LB UB

BRie = le=* 1 le=* 1
D, cm? s71 le—14 1 le 14 1
R}P cm g—g On, % Op
e mol cm 3 [le=* — 1e?]
Ry Qem? [le=* — 1e]
A em? [7e? — 9¢3)

Table 3.5: Diffusion-related parameters lower and upper bounds.

After the identification procedure by the GA, the model shows an accurate voltage
prediction, with an approximate Root Mean Square Error (RMSE) of 0.022 [V] and
Mean Absolute Error (MAE) of 0.020 [V]. The identified parameter set is listed in
Table 3.6.
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Symbol Unit Identified values

Anode Cathode
Cyhae  mol em™3  0.072 0.080
0o, — 0.428 0.824
B ~ 0.774 0.483
gt — 0.958 0.950
RZP cm 0.00026 0.000475
A cm? 8833.9
Ce mol em=3  [3.13, 3.11 , 3.11 , 2.07]x 1e2
Ry Qem?  [1.73,1.93,1.97 , 2.81]x le-7
Dr em? s7t 745, 7.45 ,7.45 , 7.45]x le-10
DP em? s71 (843,738,521, 4.87]x 1le-10

Table 3.6: Identified model parameters.

Under the parameterization cycle, the model shows an accurate voltage prediction
during both the steady and transient phases, as shown in Figure 3.6-c and 3.6-d. The
gray-solid line represents the experimental battery voltage, while the blue-solid and
green-dotted lines represent the EAM and CPWL-EAM responses, respectively. The
lower part of the figure shows the error between the measured voltage and the calcu-
lated voltage of the models. Since the error is determined by subtracting the measured
voltage from the estimated voltage; the positive error implies under-calculation, while

the negative error indicates over-calculation.
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Figure 3.6: Parameterization Cycle - (a) Current profile, (b)frequency distribution of the
current profile, (c,d) voltage response, and (e) voltage error.
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3.7 Model validation under different driving pro-

files

In this section, the model performance is compared with experimental data to demon-
strate the effectiveness of the preceding methodology. The validation cycles in this
section are different from those utilized for the purpose of identification. The two
validation cycles used are the US Federal Test Procedure (FTP-72) cycle, also called
the Urban Dynamometer Driving Schedule (UDDS), and the Worldwide Harmonized
Light Vehicles Test Procedure (WLTP). The two error quantitative matrices are the
RMSE and MAE.

3.7.1 Results under FTP72

The first set of validation data is the FTP-72 cycle as shown in Figure 3.7-a. Under the
FTP-72 cycle, the calculated voltages of the EAM and the CPWL-EAM are compared
against the measured voltage in Figure 3.7-b and 3.7-c, with the voltage error shown
in Figure 3.7-d. The gray-solid line represents the experimental battery voltage, while
the blue-solid and green-dotted lines represent the EAM and CPWL-EAM responses,
respectively. The RMSE between the modeled voltage and the measured voltage over
five consecutive cycles with 10 minutes rest between cycles is 0.019 V, and the MAE

is 0.014 V.
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Figure 3.7: Validation Cycle (FTP72) - (a) Current profile, (b,c) voltage response, and (d)

voltage error.

3.7.2 Results under WLTP-Case 3

The second set of validation data is Case 3 of the WLTP. Case 3 stands for high-power

vehicles with Power to Weight ratio (PWr) > 34. This driving cycle consists of four

parts Low, Medium, High, and Extra High-speed as shown in Figure 3.8-a.
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Under the WLTP cycle, the calculated voltages of the EAM and the CPWL-EAM
are compared against measured voltage in Figure 3.8-b and 3.8-c with the voltage error
shown in Figure 3.8-d. Here again, The gray-solid line represents the experimental
battery voltage, while the blue-solid and green-dotted lines represent the EAM and
CPWL-EAM responses, respectively. The RMSE between the modeled voltage and
the measured voltage over four consecutive cycles with 10 minutes rest between cycles

is 0.018 V, and the MAE is 0.015 V.
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Figure 3.8: Validation Cycle (WLTP- case 3) - (a) Current profile, (b,c) voltage response,

and (d) voltage error.

3.8 Results and comparison

By comparing the voltage error under the various different discharge currents in Figure

3.6-c, 3.7-b, and 3.8-b, it is clear that the CPWL-EAM exhibits accurate voltage
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prediction during the steady and transient phases of cycling. The proposed model
was able to maintain the voltage prediction accuracy, while decreasing the mean
CPU time as shown in Table 3.7. The reduction in the CPU run-time by around
20% (from 2.12 sec. to 1.64 sec), due to the reformulation of the nonlinear OCP
equation as a four-point lookup table, where the voltage values falling between the
points are calculated using onboard linear interpolation. The CPU times presented

in this publication were run on a 2.30 GHz Intel processor with 16 GB RAM.

a EAM CPWL-EAM

RSME MAE RSME MAE

Parameterization cycle 0.023  0.021 0.022  0.020
Validation cycle - FTP72  0.020 0.015 0.019 0.014
Validation cycle - WLTP  0.019 0.015 0.018 0.015

Mean 0.020  0.017  0.020  0.016

b EAM CPWL-EAM

CPU time (sec) CPU time (sec)

Parameterization cycle 4.23 3.82
Validation cycle - FTP72 1.11 1.02
Validation cycle - WLTP 1.01 0.09
Mean 2.12 1.64

Table 3.7: Model results for different cycles (a) RMSE and MAE [V], (b) Computation time
[sec].

33



PhD Thesis McMaster University
Mohammed Farag Mechanical Engineering

3.9 Conclusion

In conclusion, a continuous, piecewise- linear, electrode-average model is presented,
which exhibits high accuracy and reduced CPU runtime compared with the reduced-
order, electrode-average model (EAM). The proposed CPWL-EAM linearizes the uni-
variate, nonlinear relation between the OCP and the cell SOC, while maintaining the
continuity and smoothness of the OCP curve. The piecewise-linear regions were iden-
tified using a novel optimal knot-placement technique which uses GA to determine
the optimal knot-locations, while maintaining the continuity constraints. The model
is parametrized using a new technique that provides a trade-off between extensive
experimental characterization techniques and purely identifying all parameters using
nonlinear techniques. The accuracy of the CPWL-EAM is validated through compar-
ison with experimental data and the EAM under the real-time driving profiles FTP-72
and WLTP. The calculated RMSE and MAE are 0.020 V and 0.016 V respectively.
Since the CPWL-EAM model shows accurate voltage prediction, while reducing the
running time by 20%, the proposed model can be easily implemented onboard in a
real-time BMS. Future work will focus on incorporating optimal state of charge es-
timation techniques (e.g. Kalman Filter), along with model parameterization and
validation under different temperature and aging conditions through changing of the

knot-location.

84



PhD Thesis McMaster University

Mohammed Farag Mechanical Engineering
Nomenclature
Symbol Description Unit
Acronyms
A State matrix in linear state model state equation —
B Input matrix in linear state model state equation —
C State matrix in linear state model output equation —
D Input matrix in linear state model output equation —
RYP Solid active material particle radius cm
Ry Film resistance on the electrodes surface Qem?
A Electrode plate Area cm?
td Transference number of lithium ion —
c Concentration of lithium ions mol cm ™3
D Diffusion coefficient of lithium species em?s~!
q Discretization step —
R Universal gas constant (R = 8.3143) Jmol 1K1
F Farady’s Constant (F = 96,487) C mol™!
T Absolute Temperature K
s Active surface area per electrode unit volume cm?em™3
I Applied current A
r Radial coordinate cm
t Time S
x Cartesian coordinate S
gt Butler-Volmer current density Acem™3
R*, R~ Internal Resistance of the cell A em™3

Greek Symbols

Es Active material volume fraction —

Ee Electrolyte phase volume fraction —

o Conductivity of solid active material Qtem™!
Electrolyte phase ionic conductivity Q tem™!
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KD Electrolyte phase diffusion conductivity Qtem™t
0 Reference stoichiometry —
g, Ol Anodic and cathodic charge transfer coefficients —

a1, Qo The poles of the low pass filter —

n Surface overpotential of an electrode reaction \Y
[0) Volume averaged electrical potential \Y
4] Thickness cm
Superscripts

eff Effective —
P Cathode —
n Anode —
sep Separator —
Subscripts

e Electrolyte phase —
S Solid phase —

36



Chapter 4

Combined electrochemical, heat
generation, and thermal model for

large prismatic lithium-ion

batteries in real-time applications !

4.1 Abstract

Real-time prediction of the battery’s core temperature and terminal voltage is very
crucial for an accurate battery management system. In this paper, a combined elec-
trochemical, heat generation, and thermal model is developed for large prismatic

cells. The proposed model consists of three sub-models, an electrochemical model,

'Mohammed Farag, Haitham Sweity, Matthias Fleckenstein, Saeid Habibi
Combined electrochemical, heat generation, and thermal model for large prismatic lithium-ion
batteries in real-time applications
Submitted and under revision by the Journal of Power Sources
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heat generation model, and thermal model which are coupled together in an iterative
fashion through physicochemical temperature dependent parameters. The proposed
parameterization cycles identify the sub-models’ parameters separately by exciting
the battery under isothermal and non-isothermal operating conditions. The proposed
combined model structure shows accurate terminal voltage and core temperature
prediction at various operating conditions while maintaining a simple mathemati-
cal structure, making it ideal for real-time BMS applications. Finally, the model is
validated against both isothermal and non-isothermal drive cycles, covering a broad

range of C-rates, and temperature ranges [-25°C to 45°C].

4.2 Introduction

In the past decade, lithium-ion batteries have gradually gained acceptance in the
automotive sector as electric energy storage due to their high specific energy, low self-
discharge rate, and non-memory effect. In order to efficiently integrate the lithium-ion
batteries in electric vehicles (EV), different cell sizes have been introduced. Depending
on the method of packing, the cells can be shaped into a pouch, cylindrical, or pris-
matic form. Prismatic lithium-ion batteries have become one of the most attractive
options for energy storage systems due to their optimal use of space and light weight.
However, abnormal operating conditions such as over discharge, overcharge, or high
operating temperature can accelerate their aging and degradation and may lead to
thermal runaways in extreme cases. To fully benefit from a lithium-ion energy storage
system and avoid its physical degradation, an accurate battery management system
(BMS) is required. The BMS is responsible for the battery state of charge (SOC),

state of health (SOH), state of power (SOP), and thermal management. It uses state

38



PhD Thesis McMaster University
Mohammed Farag Mechanical Engineering

estimation algorithms for monitoring, as well as operating the battery within a range
that is considered as nominal in order to ensure safety and performance as well as
preserving its projected useful life. One of the main requirements for a successful
BMS implementation is the development of a high fidelity battery model that in-
cludes thermal and aging dependent parameters. The battery model needs to be
dynamically significant while being computationally efficient, robust, and accurate.
Of particular interest is the prediction of the terminal voltage which is affected by
the cell’s core temperature. As such, an accurate thermal model is needed to predict
the core temperature and estimate its dynamics. The inclusion of a thermal model
within the overall battery model is necessary as it enables the BMS to operate the
battery safely and preserve its performance effectively.

Battery models are broadly classified under three categories: equivalent circuit
[11, 12, 13, 14], behavioral (or black-box) [7, 8, 9, 10], and electrochemical (physics-
based) models [28, 31, 32]. The equivalent circuit models are widely used in BMS
due to their acceptable accuracy, complexity, and fidelity. Most of the electrochem-
ical modeling approaches found in the literature are based on the electrochemical
pseudo-two-dimensional (P2D) model further developed following the Doyle-Fuller-
Newman model [26, 27]. The physics-based P2D model is very accurate; however,
it is excessively computationally complex, thereby burdening its real-time implemen-
tation. Therefore, many model reduction methods have been proposed to reduce its
complexity while maintaining its accuracy. The model reduction methods commonly
used can be divided into two categories. One category focuses on reducing the com-
putational complexity involved in solving the concentration of lithium in the solid

particles of the electrodes by either simplifying the concentration profile or assuming

39



PhD Thesis McMaster University
Mohammed Farag Mechanical Engineering

it to be constant as presented by [15, 34, 36]. Another category focuses on reducing
the electrochemical model as a whole, such as to avoid the solution of large sets of
differential-algebraic equations (DAES) of the Lit concentration distribution and the
potential distribution of the electrolyte phase. Examples of the latter can be found
in [16, 37, 39].

In order to investigate the dynamic behavior of the cell, two main approaches
are discussed in the literature: (i) electrochemical impedance spectroscopy (ELS)
and (ii) measurement of a voltage response using controlled input currents and then
applying optimization techniques to determine the model parameters. The general
principle of the EIS method is to apply an input signal either current (galvanostatic)
or voltage (potentiostatic) and then measure the characteristic response of the cell
which depends on the cell impedance. In the scope of this publication, the model is
parameterized and validated using the second approach. The battery under test was
subjected to charging, charge-sustaining and charge-depleting phases at six different
temperature in order to determine the temperature dependency of the parameters.
The genetic algorithm (GA) was then used to optimize the model parameters.

In addition, various strategies have been proposed in the literature for modeling
the temperature profile inside a cell during its operation. These include coupled par-
tial differential equations (PDE) models, linear parameter-varying state-space mod-
els, three-dimensional Finite Element Analysis (FEA) models and relatively simple
lumped capacitance zero-dimensional thermal models. Smyshlyaev et al. [51] pro-
posed an analytic solution for solving the thermal model PDEs. Whereas, Hu et
al. [52] reduced the PDEs computational complexity by fitting a more complicated

computational fluid dynamics (CFD) model to a linear parameter-varying state-space
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model. Guo et al. [53] presented a three-dimensional FEA thermal model, while Baba
et al. [54] developed a full 3D thermal model that takes into account local heat gen-
eration and the spatial dependencies to obtain a full 3D temperature distribution of
the cell. The FEA thermal models are very accurate; however, they require excessive
computational power and specific material properties, which limit their real-time im-
plementation especially when fluid dynamics are considered in the cooling process.
Damay et al. [49] developed a lumped capacitance, zero-dimensional thermal model.
The model included one heat capacitor coupled with different modes of heat transfer
throughout the cell to represent the thermal behavior of a prismatic cell. Similarly,
Forgez et al. [50] employed the same technique for cylindrical cells using two heat
capacitors. Further to the above, the lumped capacitance modeling approach will
also be considered in this work due to its low computational complexity and accept-
able accuracy. An accurate set of parameters is required for obtaining a high-fidelity
thermal model. The thermal parameters are either determined analytically or exper-
imentally. Lin et al. [55] used detailed information about the material and geometry
of the cell for analytically determining the parameters. Perez et al. [24] used the
least squares optimization algorithms to fit the model to the experimental data. Lin
et al. [56] proposed an online estimation algorithm. Sastry et al. [85] developed
a surrogate-based modeling and dimension reduction techniques to assess the role
of design variables on multiple competing objectives for a wide range of engineering
problems [86, 87].

In this publication, an experimental method involving optimization will be used
instead of the analytical methods as they suffer from a high level of uncertainty.

This paper proposes three unique contributions for improving battery modeling.
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The first contribution is a combined electrochemical, heat generation, and thermal
model capable of accurately predicting the cell’s terminal voltage and core temper-
ature. The second contribution is an accurate yet computationally simple four-node
thermal model (4ANTM). The 4NTM helps in estimating the battery’s core temper-
ature leading to an increase in the terminal voltage accuracy within a broad range
of temperatures [-25°C to 40°C]. The four-node structure constitutes a reduced order
form that renders the model suitable for real-time applications. The third contribu-
tion is a model parameterization scheme that allows identification of each sub-model

parameters separately.

Paper structure In section 4.3, the combined electrochemical, heat generation
and thermal model is illustrated. Section 4.4, 4.5 and 4.6 presents the reduced-
order electrochemical model (ROM), the heat generation model, and the thermal
model respectively. In section 4.7, the parameter identification procedure and the
experimental setup are explained. The ROM, 4NTM, and the combined ECHTM
are then validated using battery voltage, current, and temperature measurements
against different driving cycles. Finally, the conclusion, results, and future work are

presented.

4.3 The combined model

This sections will present the main contribution of this paper, the formulation of a
combined electrochemical, heat generation, and thermal model (ECHTM) that al-
lows the BMS to effectively operate the battery in safe conditions and improve its

terminal voltage, SOC, and SOH estimation accuracy. Figure 4.1 shows a schematic
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representation of the combined ECHTM and its sub-models. The combined ECHTM
is capable of estimating the cell’s SOC, terminal voltage, and core temperature and
it is divided into three different sub-models. First, the electrochemical model es-
timates the cells’ terminal voltage V3, SOC, open circuit potential U, ,, and Li-ion
concentration gradients C7? as a function of the cell’s core temperature 7. using
physicochemical temperature dependent parameters. The cell’s core temperature is
calculated using a specific thermal model and fed back to the electrochemical model
as an input. The heat losses are the most difficult elements to model due to the
nonlinear nature of the heat sources. Thus, a specific model is developed for heat
generation @)y, which computes reversible, irreversible, and heat of mixing losses,
as a function of the measured terminal voltage, the measured current, the modeled
SOC,, ,, the modeled U, ,, and the concentration gradients C7"? determined by the
electrochemical model. Finally, the 4ANTM model evaluates the temperatures of the
core T, bottom Ty, terminal T}, and housing 7T} as a function of the heat generation
rate, cooler temperature T}, cell’s geometry and boundary conditions. The exper-
imental results shown in section 4.8 and 4.9, indicates a relatively small difference
between the housing and the core temperature of 2°C. Hence, only the core tempera-
ture information is then fed back to update the electrochemical model. This iterative
procedure is repeated at every time step to model the cell in real time continuously.

In Figure 4.1 the blue arrows represent inputs, the black arrows represent internal
variables, and the red arrows represent outputs. The colored-doted blocks represent
software functions. The combined ECHTM inputs are data provided by the vehicle

sensors, and the outputs are processed data transferred to the main BMS.
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Figure 4.1: Diagram of the combined electrochemical, heat generation and thermal model
(ECHTM) modeling approach.
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In this section, the general formulation of the combined ECHTM is presented. In

the following sections, the three sub-models are discussed in details.

4.4 Electrochemical battery model

4.4.1 Lithium-ion batteries principles of operation

Figure 4.2 shows the basic setup of a battery cell. It consists of four main parts: the
positive electrode (cathode), the separator, the electrolyte, and the negative electrode
(anode). The battery is connected to an external load using current collector plates.
The anode is usually made up of a mixture of carbon (e.g. Li,Cg), the cathode
is typically made of metal oxides (ex. LiC0Os or LiMny0,), while the electrolyte
can be made of a salt-containing solvent mixture, polymer, or solid materials (e.g.
LiPFg).

Under the presence of a load current, reduction-oxidation reaction occurs. Oxi-
dation reaction takes place at the anode where the trapped lithium particles start to
deintercalate or diffuse toward the electrolyte-solid interface splitting lithium into ions
and electrons. Lithium ions transfer through the solution due to the potential differ-
ence while the electrons move through the current collector because the electrolyte
solution serves as a barrier to electrons. Reduction reaction takes place at the cathode
where the traveling lithium ions from the anode start to intercalate and react with
the electrons coming from the positive collector. An example of the electrochemical

reactions are as follows:

discharge

LZxCG LiQCG + £L‘LZ+ +xe (41)

charge
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discharge
I

Liy_2yMnyO4 + xLit + xe” LiyMnyOy4 (4.2)

charge

The process of lithium ion insertion into the electrode happens without a change in
the electrode crystal structure ”intercalation” mechanism. The whole phenomenon
of intercalation and deintercalation is reversible as lithium ions pass back and forth
between the electrodes during charging and discharging. In theory, this phenomenon
could go on infinitely. Unfortunately, due to cell material degradation and other
irreversible chemical reactions, the cell capacity and power degrade with the number

of cycles and usage.
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Figure 4.2: Schematic representation of the Li-ion battery operation principles and the
single particle model simplification.
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4.4.2 Model mathematical formulation
Relationship between concentrations and currents

The mathematical equations governing the charge and mass conservation in the solid

and electrolyte phases is discussed in details in [1] and summarized in Table 4.1.
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Conservation equations

Boundary conditions Initial conditions

Mass transport in the solid phase

ocP
ocrP(x,r,t)  Dg 0 ocP(x,r,t) s =0 " "
o o [TQ ar o l—o 44 et (w,7,t0) = <5f (2, 7)
(4.3) 9P A (4.5)
or =R D,a,F
Mass transport in the electrolyte
Oecce(,t) co(x,t) 1—td oc? OcP
—= = pf— =2 g 4t el = : =0 e(z,t0) = ce 48
ot € Ox? * F oz |,_, T Ox|,_p ce(?,t0) = ce(@)  (48)
(4.6) (4.7)
Potential in the solid electrodes
oeff@@(m,t) = 41° (4.9) 9 t I
@0 T AT bu(to) = deo(z) (411)
0
8792/)5 (.’.U, t) = O
z 2=61,0n+0sep
(4.10)
Potential in the electrolyte
eff & eff 0 13 9
R @(be(zyt) Sl Rp @ ll'lCe = —) %Qbe(x,t) =0 (413) ¢6(I,t0) = ¢670(13) (414)

(4.12)

Table 4.1: Set of PDEs equations describing the full-order electrochemical model and its

boundary and initial conditions.
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Butler-Volmer kinetics equations

The Butler-Volmer current density equation governs the volumetric rate of the chem-
ical reaction. This equation links the four conservation equations (4.3), (4.6), (4.9),

(4.12) and is described as [1]:

Qi . OéaF _ _ﬂ
7" = asjo [exp (—RT n) exp ( =T n)] (4.15)

where the overpotential 7 is defined as:

n=0¢s— de — UlCse) (4.16)

and the coefficient jy is a function of the surface electrolyte concentration c,, and
obtained as:

o = (66) (€l — €5) ()™ (4.17)

s,max se

Finally, the cell potential, V', across the cell terminals is determined as follows:

V = 6ua= L)~ oule = 0) ~ Ry (4.18)

4.4.3 Model reduction

Due to the computational complexity of the Full Order Model (FOM) some assump-
tions and simplifications are considered in order to obtain a Reduced Order Model
(ROM).

The simplification assumptions are as follows: (i) the lithium concentration in

electrolyte ¢, is assumed to be constant and uniform. (ii) the solid particle distribution
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along the electrode is neglected, this is due to the averaging procedure in the first
assumption. (iii) the aging dependencies of the model parameters have been neglected.
As a result of the assumptions mentioned above, a single particle from each electrode

(anode and cathode) can describe the diffusion dynamics.

oc¥P(r,t)  Dg 0 [ ,0c¥P(r,t)
s N\ s 7 s A 4.1

ot r2 Or [T or (4.19)
Ce(x,t) = Ce (4.20)
sr O t) =4 4.21
o 81’2 ¢S<w7 ) - ]n,p ( . )
es1 & t) = —j 4.22
K @(ﬁe(l’? ) - _jn,p ( ' )

— 1

e

]n7p - Adn,p (423)

The ROM is summarized in equation (4.19) to (4.23). The terminal voltage can

be rewritten by substituting equation (4.16) in equation (4.18), as shown in [25]:

V(t) = [Up(0p) — Un(On)] + 07" (Onp, I) — I Kpes (4.24)

Where K,., is described as follows:

Ry, (O + 2050 + 65)
Kres - 7 - (¢€ - d)e) - Z Rf + 2Heff (425&)
- - 1
where ng — Cb: = —W (571 + 2(586:0 + 6p) (425b)

The term 9,7 (6,,,, ) in equation (4.24) is the difference between the cathode and

anode overpotentials, and can be calculated by substituting equation (4.23) in (4.15),
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al? = 3PP /RMP, and a, = a, = 0.5 from Table 4.3, as shown below:

RT1 S+ v+l

POy, 1) =1y — T = 4.26
n(p, ) =1p — 1) Oéaann—i— 2l ( a)
1

where &, , = Q" oE (4.26Db)
(cthacts? — c2”)
R

and Q"7 = > 0 (4.26¢)

6.A0, s (Ce)

The term U, (0,) —U,(0,) in equation (4.24) is the difference between the open cir-
cuit voltage for the anode and cathode. The stoichiometry ratio 6, , is the normalized

solid-electrolyte interface concentration for the anode and cathode respectively.

#3

P
e

(4.27)

Onp = P
Csmax

where ¢ is the average bulk concentration and can be obtained as follows [1]:

3

Rs
coP(t) = ﬁ/ r2cP (v, t)dr (4.28)
s JO

The cell SOC and nominal capacity are defined as follows:

SOC — Onp = Oog. (4.29)
0100% — Oo%

n,p n,p wmp o QP
o AF&n,pgs Cs,max[elﬂo% 00%]

Cnom = 3600 ’

(AL (4.30)
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4.4.4 State-space formulation

In order to the ROM to be useful for control and systems engineering, the PDEs
must be rewritten in state-space representation. First, the model is discretized using
the central finite difference method (CFDM), then a state-space representation is
formulated.

By using the CFDM for the radial dimension r, it is possible to describe the
spherical PDE by a set of ordinary differential equations (ODE). Equation (4.19) can

be written as

dcy(r,t) 9%cs  20c,
ot D, (W + ror ) (4.31)

By discretizing the solid spherical particle into M, shells along the radial dimension
r as shown in Figure 4.2, such that Ry, = Ar x (M,), and defining ¢ = 1,...., M,

where r, = ¢ X Ar equation (4.31) becomes:

Cs7p|q = Ar2 |:(T> Cs7p|q—1 - 2Cs7p’q + <T) Cs’p|q+1:| (432)

The boundary condition equations (4.4) can be rewritten accordingly:

C?’plo = 7|, (4.33)
=l

=P (4.34)

n?p e n7p
Cs |Mr = G4 ’Mr_l + ATF@ D se
ss
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By substituting with the boundary conditions equations (4.33) and (4.34), and rear-

ranging, a state-space representation for equation (4.32) can be formulated as follows:

&P = AP + Bjt (4.35)

ol = Py, = €|y, + D" (4.36)

where the state-space matrices, A, B, and D, are obtained as follows:

(-2 0 0 0
=l 2 . 0 0
q
0
A=V | © (4.37)
S
0 0 R R
q
0 0 0 & _«1
L q q 4
© 0 -
0
0
B=7 : (4.38)
gt
L q 4
7
D=-o (4.39)

where U = D,/Ar? and Z = 1/(Ar x a, x F). The lithium concentration in the solid
particle at the outer shell when r = M, is referred to as the lithium concentration at
the solid-electrolyte interface cP.

In this publication, the SPM is discretized into four shells M, = 4. This reduces to

model’s state-space system to 3 states, and one output equation. The computational
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cost of the system in terms of CPU simulation time is approximately 1.2 sec for every

25 minutes in real time. The CPU times presented in this publication were run on a

2.30 GHz Intel processor with 16 GB RAM.

4.4.5 Thermal dependent parameters

The cell temperature varies due to nonisothermal operating conditions. Arrhenius
equation governs the most significant temperature-dependent parameters such as solid
phase diffusion coefficient, electrolyte ionic conductivity, electrolyte diffusional ionic

conductivity.

— (4.40)

EY, (1 1
R \T.; T

where 1 is temperature dependent model parameter, ¥,.s is its value at T,.¢, R is

the universal gas constant and EY., is the activation energy. The fitted results for the

act
solid diffusion coefficient and internal resistance were found to follow an Arrhenius
relationship with temperature. The results are plotted in Figure 4.3, where the gray

points represent the data points, and the solid-blue line represents the data fit.
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Figure 4.3: Temperature dependent parameters (a) Solid-phase diffusion coefficient (b)
Internal resistance (c¢) Open circuit potential versus SOC.
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4.5 Heat generation model

Energy conversion losses through electrical, chemical and mass transport processes
are responsible for the heat generation experienced during the cell’s operation. In the
literature, various ways have been utilized to model the heat generation rate ranging
from analytical to experimental approaches. The analytical approach as discussed
by Bernadi et al.[43] calculates the heat generation rate using an energy balance
that accounts for different sources of heat generation. Whereas, experimental ap-
proaches measures the heat generation rate using calorimetry techniques as described
by Kobayashi et al.[40].

In this publication, the analytical approach will be considered due to the nature
of our application. A complete expression for the heat losses that accounts for all
the chemical reactions, mixing processes, polarization effects and electrode kinetics is
often impractical. A simplified formulation derived by Berandi et al. [43] is widely
used in literature. Bernardi’s expression quantified the losses in an electrochemical
system taking into account the enthalpy of the reactions, the enthalpy of mixing, the
phase-change and the heat capacity.

The total heat sources Qgen consist of four different terms and defined as follows:

Qgen = Qrev + Qirr + Qmm + er (4,41)

Reversible losses The first term in equation (4.41) is the reversible losses (Qyey)
and can be calculated as shown in (4.42)

a(Up _ Un)

‘rev =IT
¢ oT

(4.42)
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The magnitude of Q,., can be either positive or negative depending on the sign of
the entropic coefficient. The entropic coefficient 0U,,,,/OT quantifies the magnitude
of the OCP dependency on temperature and is directly correlated with the entropy
change and hence the reversible losses. A common way of calculating the entropic
coefficient is to discharge the cell to a predefined SOC and wait until the cell relaxes
to record the equilibrium potential and then repeat at different temperature points
and different SOC points. This can either be done by keeping the SOC constant and
then varying the temperature or by varying the SOC while holding the temperature
constant, though the latter method results in more uncertainty [44]. The accuracy of
the results depends on the number of SOC points considered. It can take extended
experimental procedures to get sufficient data. Some novel approaches such as elec-
trothermal impedance spectroscopy [45] as well as methods based on calorimetry [46]
are discussed in the literature.

In this publication, the OCP-curve was calculated as the average of continuously
charging/discharging the cell at C'/52. At such discharge rate, the cell is in quasi-
equilibrium and the terminal voltage approximately equal to the real equilibrium value
[88]. This method is convenient as it provides readings for the whole SOC range, but
it can have a lower accuracy due to the relaxation effects. Tests were performed at
[-25°C, -10°C, 0°C, 10°C, 25°C, and 40°C]. The entropic coefficient was then obtained
by performing a linear fit to each SOC point against the six available temperatures.
To obtain the entropic coefficient for both the cathode and anode separately, the value

for the anode’s entropic coefficient was obtained from Kumaresan et al’s publication
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[89], while the cathode’s entropic coefficient was calculated using equation (4.43).

U _00CV  0U
or, 0T T

(4.43)

The experimental results obtained can be found in Figure 4.4. The experimental

procedure for obtaining the electrode’s OCP curves will be discussed in Section 4.8.
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Irreversible losses The second term in equation (4.41) is the irreversible losses
(Qi,.T) or the polarization losses. Polarization is the deviation of the cell’s voltage from
its equilibrium voltage due to the ohmic, activation and concentration polarization
[47]. The irreversible loss is quantified by how much the instantaneous cell potential
deviates from the equilibrium potential and can be calculated as shown in (4.44).
Losses induced by polarization have the biggest magnitude out of all the modes of

losses.

Qire = 1V — (U, — Uy)] (4.44)

Heat of Mixing The third term in equation (4.41) is the heat of mixing (Qmiz),
and it models the losses released or absorbed from the formation and relaxation of the
concentration gradients during the operation of a lithium-ion cell. The heat of mixing
in porous insertion electrodes can be divided into four modes (i) the concentration
gradients inside the spherical particles, (ii) concentration gradients inside the bulk
electrolyte, (iii) concentration gradients inside the electrolyte pores of the insertion
electrode, and (iv) concentration gradients inside the bulk electrode.

The heat of mixing within the spherical particles has the biggest magnitude out
of these four modes and its formula as derived by Thomas et al. [48] is expressed
in equation (4.45). This formula was derived using a Taylor-series expansion for the
molar enthalpy of each species while neglecting the effects of pressure and density
change and assuming the magnitude of the second derivative of the partial molar

enthalpy to be negligible.

1 OH 4
AH = _ 0 — Caoo)?d 4.45
2Cb,oo‘/b,oo 80(1 /(C o, ) ! ( )
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where ¢ o & Vb,oo are the volume-averaged concentration and partial molar volume of
species 'b’; the product ¢ Vj o was assumed to be 1 [90]. 9H,/dc, is the change in

enthalpy of mixing for species ’a’ per change of concentration and can be calculated

as follows:

8;: = —F%Zf (4.46)
where

Ug=U— Tj—g (4.47)

The coefficient 0H 4/0c, is calculated using numerical differentiation of (4.47), where
Uy is calculated using the knowledge of the OCP and the entropic coefficient of the
negative and positive electrodes. The integral in (4.45) is approximated using the

trapezoidal rule:

n—1

/(CA—CA’OOVCZ’U — /(cA—cA’oo)247T7’2dr = Z 21 A [17(¢; = Cavg)® + 7741 (Ci1 — Cang)?)
=1
(4.48)

The power released due to this change of enthalpy during time step At is expressed

as:
: AH
Qe = 10 (4.49)
Using (4.49) and (4.45) the heat of mixing can be calculated as follows:
: 0 [10H,4 9
== |= - d 4.
Onie =35 |35 [(ea = cnia] (4.50)

Side reactions The fourth term in equation (4.41) is the heat associated with any
side reactions that may occur (QST). During normal operating conditions, this term

can be neglected as discussed in [43].
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Figure 4.7-c and 4.7-j shows the magnitude of each heat losses component based
on the parameterization cycle and the validation cycle, respectively. The parameter-
ization and validation are discussed later in Section 4.8. The irreversible losses have
the biggest magnitude out of all the total heat losses. While the reversible losses
is the second biggest of heat losses. Finally, the heat of mixing losses is negligible
compared to the reversible and irreversible losses. This agrees with Thomas et al.
[48] findings of the negligibility of the heat of mixing for porous insertion electrodes
in well-designed cells. Now that an estimate of the heat flux can be calculated, a tem-
perature model, therefore, has to be defined to translate the losses and the boundary

conditions into the cell’s temperature.

4.6 Thermal model

4.6.1 Model mathematical formulation

This section introduces the thermal model of the combined ECHTM. Due to the
nature of the application and to reduce the model computational complexity, the
detailed geometry of the cell’s internal components were not considered and were
simply abstracted by a simple 0-D model with four nodes. The four nodes lumped
capacitance model is developed to capture the thermal behavior of the prismatic
cell adequately as shown in Figure 4.5-a. The terminal node represents the average
temperature of the positive and negative terminals. The bottom node represents the
temperature change in the cell due to the temperature gradient caused by the cooling.
The housing node captures the heat conduction of the outer housing shell. Finally,

the core node represents the change in the core temperature of the cell.
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Due to the cell’s geometry, experimental setup, thermal properties, and temper-
ature range of operation, the following assumptions and simplifications have been
proposed. (i) Thermal properties are assumed to be independent of temperature
since the operational temperature range of the cell is too small to show any signif-
icant dependence of the material thermal properties on temperature. (ii) The cell’s
core, housing, bottom, and terminals are each represented by a heat capacitor. (iii)
The heat transfer from convection and radiation were assumed to be negligible.

The heat generation due to the electrochemical reaction is assumed to be localized
in the cell’s core, whereas the resistive losses due to the tab and current collector losses
are assumed to be confined in the cell’s terminal. Based on these assumptions, the
heat flux due to the cell’s operational losses is generated at both the terminal and the
core. For each of the four nodes an ordinary differential equation (energy balance)
expresses the heat exchange paths and the boundary conditions.

At the terminals, there is heat transfer to and from the core and the housing along

with the losses P originating from the tap’s restrictive losses.

I.-T, T,—-T,

Oth‘jvt _
t Rih

+ pit (4.51)

Where P" is is determined experimentally through considering the resistivity val-
ues for both the cathode (Aluminum) and anode (copper) terminals along with the
physical dimensions of the current collectors.

Similarly, at the housing heat is exchanged with the terminal, core and bottom

nodes as the housing is in contact with all the nodes.

Tb—Th TC—Th E_Th
+ +
RYf RIF RIF

Cih T, = (4.52)
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At the core (sometimes referred to as the jellyroll), heat is exchanged with all the
surrounding nodes and a significant heat flux is generated due to the losses at the
core as described in section 4.5.

Tb_Tc E_Tc Th_Tc th
RF T RP R e

cth T, = (4.53)
The bottom node is in direct contact with the cooler underneath. Heat is exchanged
through conduction to the cooler. A constant temperature boundary condition is

assumed for the cooler, whose temperature is regulated by the cooling system’s con-

troller.
. T.-T, T.-T, T,—T,
Cih T, =
’ RY Ry Ry

(4.54)

Since both the thermal conductance and the heat capacity can be assumed to
be physical constants, the system can be modeled using linear ordinary differential

equations and represented in a state-space representation.

T = AT 4+ Bty (4.55)

T, = C™"T + D"y (4.56)

where

(4.57)

(4.58)

115



PhD Thesis McMaster University
Mohammed Farag Mechanical Engineering

The state-space matrices, A, B, C and D, are obtained as follows:

1 1 (L L1y L) 1 1
Ath _ C;’,’,]‘Réh C}t;’h Rih R;’h Rgh Cthgh CﬁhRéh
1 1 S (g1 1
CéhRfl" cghRih Cf,h ih R%h Rflh CghRfé}L
(4.59)
1
0 i 0
0 0 0
h
Cih
1
0 0 Zmsm
CghRéh
Ch=[0 0 1 0] (4.61)
th
D™ = [0] (4.62)

Equations (4.59) to (4.62) describe a linear time-invariant state-space system. The
system’s controllability and observability is described in equation (4.63) and equation
(4.64) respectively.

Co=[B AB A’B A’B] (4.63)

Ob=[C CA CA? cA¥" (4.64)

The system’s controllability and observability matrices are full ranks.
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Figure 4.5: (a) A visual representation of the lumped temperature model of a prismatic
cell, (b) Internal and external sensor locations.
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4.7 Experimental setup

In this paper, two experimental setups were implemented. The experiments were
conducted on a high-power prismatic lithium-ion battery cell to parameterize and
validate each sub-model of the combined ECHTM. The prismatic cell under consider-
ation contains a jelly roll core that consists of alternating layers of anode, separator,
and cathode materials. The cell has an NMC-based cathode and graphite-based an-

ode. The properties of the cell are given in Table 4.2.

Parameter Value Unit

Anode material Graphite -
Cathode material NMC -

Nominal voltage 4.25 \%
Nominal capacity 26 Ah
Cell length 17.2 cm
Cell width 24 cm
Cell height 9.6 cm

Table 4.2: Properties of the lithium-ion cell under test.

In the first experimental setup, the experiment was performed using a Scienlab
battery cycler with voltage accuracy of + 0.05% of the measured value, current ac-
curacy of &+ 0.05% of the measured value, and temperature accuracy of £ 1 K. The
voltage and current sensors are integrated to the cycler.

The thermocouples were installed both externally and internally in order to mea-
sure and validate the cell’s temperature. The techniques of placing and protecting
the internal thermocouple in order to ensure safety and accuracy of the measurements

are discussed in details by Li et al. in [91]. The exact locations of the six internal
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and external thermocouples are illustrated in Figure 4.5-b. The external thermocou-
ples were attached using heat-resistant tapes at the locations shown. Whereas, the
internal thermocouples locations were chosen to ensure the safety of the cells and
the accuracy of the measurement. The internal thermocouples are required in order
to validate the parameterized thermal model. The Scienlab cycler used during the
experiment has 12 channels, four different current profiles were tested on 12 cells (one
cell per channel). The tests were performed on a cluster of three cells under the same
conditions, in order to minimize the impact of any cell manufacturing variations. The
output of each cluster was averaged to obtain the required variables. In order to re-
alize an isothermal condition for the experiment. The batteries were cycled inside
a thermal chamber with a continuously controlled ambient temperature. The cell
was directly exposed to the chamber air. Also, the thermocouples output was mon-
itored continuously in real time and in case the temperature is 3°C higher than the
prescribed chamber temperature a wait buffer was introduced to the current profile.

In the second experimental setup, the tests were performed to parameterize the
thermal model under non-isothermal conditions. During the test, in order to replicate
the operating conditions in a battery pack of an electric/hybrid vehicle, the cells were
placed in a closed container that minimized convection heat transfer. The container
had an active cooler that ran below the cell that was directly in contact with the cell’s
bottom. Such tests allow the thermal dynamics of the prismatic cell to be captured.
In order to mimic the vehicle operating conditions, the experiment had two controlled
inputs, the cooler’s temperature, and the current profile used to excite the cells.

In both setups, the measured variables are sampled every 100ms and then used as

an input to the presented algorithm in the MATLAB/Simulink environment. Also,
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two cycles of C/52 CC-CV charge/discharge were conducted first in order to identify
the cell’s OCV and the nominal capacity of each cell.

The T, is measured using the internal sensor (sg), located at the core of the cell.
Whereas, The T}, is measured by the external sensor (s3), located at the bottom of the
cell. Similarly, The T}, is calculated as the average of the two external temperature
sensors (s and s4), located at the two sides of the cell. Finally, T; is calculated as
the mean of the two external temperature sensors (s; and sg), located at the cell’s

negative and the positive terminals, respectively.

4.8 Parameter identification procedure

This section presents the procedure for identifying the electrochemical model and the
thermal model parameters. The number of combined ECHTM parameters is relatively
high if all of the parameters are considered as unknowns. In order to decrease the
number of parameters to be identified, the parameterization process is divided into
two steps.

In step one, the battery cell is operated under isothermal conditions using ex-
perimental inputs so as to limit the variations in the cell core temperature. The
electrochemical dependent parameters are then identified at six different tempera-
tures. The genetic algorithm (GA) was used to optimize the model parameters. The
GA is theoretically proven to attain global convergence. The cost function of GA is to
minimize the root m