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Abstract

Despite valiant effort by astronomers, the mass of the Milky Way (MW) Galaxy

is poorly constrained, with estimates varying by a factor of two. A range of

techniques have been developed and different types of data have been used to

estimate the MW’s mass. One of the most promising and popular techniques

is to use the velocity and position information of satellite objects orbiting the

Galaxy to infer the gravitational potential, and thus the total mass. Using

these satellites, or Galactic tracers, presents a number of challenges: 1) much

of the tracer velocity data are incomplete (i.e. only line-of-sight velocities have

been measured), 2) our position in the Galaxy complicates how we quantify

measurement uncertainties of mass estimates, and 3) the amount of available

tracer data at large distances, where the dark matter halo dominates, is small.

The latter challenge will improve with current and upcoming observational

programs such as Gaia and the Large Synoptic Survey Telescope (LSST ), but

to properly prepare for these data sets we must overcome the former two. In

this thesis work, we have created a hierarchical Bayesian framework to estimate

the Galactic mass profile. The method includes incomplete and complete data

simultaneously, and incorporates measurement uncertainties through a mea-

surement model. The physical model relies on a distribution function for the

tracers that allows the tracer and dark matter to have different spatial density
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profiles. When the hierarchical Bayesian model is confronted with the kine-

matic data from satellites, a posterior distribution is acquired and used to infer

the mass and mass profile of the Galaxy.

This thesis walks through the incremental steps that led to the development

of the hierarchical Bayesian method, and presents MW mass estimates when

the method is applied to the MW’s globular cluster population. Our best

estimate of the MW’s virial mass is Mvir = 0.87 (0.67, 1.09)×1012M�. We also

present preliminary results from a blind test on hydrodynamical, cosmological

computer-simulated MW-type galaxies from the McMaster Unbiased Galaxy

Simulations. These results suggest our method may be able to reliably recover

the virial mass of the Galaxy.
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Notation and abbreviations

ABC Approximate Bayesian Compuation

AJ The Astronomical Journal

ApJ The Astrophysical Journal

ApJL The Astrophysical Journal Letters

ASA American Statistical Association

CASCA Canadian Astronomical Society

Decl. Declination

DF(s) Distribution Function(s)

DG(s) Dwarf Galaxy(Galaxies)

GC(s) Globular Cluster(s)

GME Galactic Mass Estimator

HVSs High Velocity Stars

IAU International Astronomincal Union

JSM Joint Statistical Meetings

kpc kiloparsecs

LG Local Group

LMC Large Magellanic Cloud

LSR Local Standard of Rest

LT Little & Tremaine (1987)

MCMC Markov Chain Monte Carlo

MNRAS Monthly Notices of the Royal Astronomical Society

MUGS2 McMaster Unbiased Galaxy Simulations
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MW Milky Way

M31 Messier Object 31 (i.e. Andromeda Galaxy)

NFW Navarro, Frenk, and White (1997)

NGC New General Catalog

NSC Nuclear Star Cluster

NSERC National Sciences and Engineering Research Council of Canada

Pal Palomar

RA Right Ascension

SMC Small Magellanic Cloud

WE99 Wilkinson & Evans (1999)

W10 Watkins et al (2010)
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1
Introduction

Looking deep into space allows us to study the past, while observing the nearby

universe allows us to study the present. In particular, the Local Group, which

is dominated by the Milky Way and Andromeda galaxies, provides a local

laboratory for observing large, spiral galaxies, as well as the smaller and more

numerous dwarf galaxies that live amongst them. In the context of extragalac-

tic studies from deep space observations, studies of the Local Group allow us

to test cosmological theories and to make inferences about how galaxies in the

universe formed and evolved into their present state. Comparing the Milky

Way to other galaxies in the universe, and understanding its properties in the

context of galaxy formation theory, is a key part of this endeavour.

1.1 The Milky Way Galaxy

Living inside the Milky Way Galaxy gives us a unique perspective because the

Galaxy’s properties can be scrutinized in more detail than any other galaxy.

The fundamental properties of the Milky Way (MW), such as size, composi-

tion, shape, star formation rate, and mass, were determined by the Galaxy’s

formation history, which is understood to have occurred through accretion of

1
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both baryonic and dark matter. It is widely accepted that every galaxy in the

universe resides within a massive, dark matter halo. In the cold dark matter

model (ΛCDM), these dark matter halos are thought to have formed from

density fluctuations in the very early universe which grew over time; more

dark matter fell into the gravitational potential wells as time progressed, and

the baryonic matter gathered into these wells too, forming the first galaxies.

Galaxies continued to grow through accretion of gas and mergers with other

galaxies. These gravitationally-driven formation mechanisms are understood

to have created galaxy groups, galaxy clusters, and the overall hierarchical

structure of the universe that we observe today.

An early inference of dark matter and its presence was found by Zwicky

(1933, 1937) (translated by Ehlers, 2008), who looked at the Coma Cluster and

discovered there was not enough visible matter to support the observed veloc-

ity dispersion of the galaxies within it. Since then, there has been mounting

observational evidence supporting dark matter’s existence, such as the rota-

tion curves of spiral galaxies (the seminal paper being Rubin et al., 1980),

gravitational lensing by galaxy clusters (e.g. Soucail et al., 1987; Lynds &

Petrosian, 1989; Bartelmann, 2010), the distribution of intergalactic gas af-

ter galaxy cluster mergers (Markevitch et al., 2004; Clowe et al., 2006), and

the cosmic microwave background (Spergel et al., 2003; Bennett et al., 2013;

Planck Collaboration et al., 2016) (see also the review by Roos, 2010). Al-

though alternative theories for gravity can predict some of these phenomena

(e.g. the empirical model by Milgrom (1983) predicts the rotation curves of

many spiral galaxies), a new theory for gravity that explains all observations

from small to large scales remains elusive. Furthermore, computer simulations

2
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show that cold dark matter plus dark energy are required to form the large-

scale visible structures that we observe in the universe. The combination of

such evidence strongly suggests that every galaxy in the universe resides within

a massive halo of dark matter.

The current consensus is that both the mass of the Galaxy’s initial dark

matter halo and the properties of the surrounding environment governed the

MW’s past and ultimately dictated how it looks today. Because the MW

does not have a finite boundary, it is common to define its mass within some

specified distance from the center of the Galaxy, such as the virial radius (see

Section 1.2). An accurate and precise measurement of the MW’s dark mat-

ter halo mass, which dominates the total mass, could have implications for

two long-standing problems in ΛCDM cosmology: (1) the “Missing Satel-

lite Problem”, which says that the number of observed satellites around the

MW is significantly fewer than the number predicted from simulations (Klypin

et al., 1999), and (2) the “Too-Big-To-Fail” problem, which says that the aver-

age masses of observed satellites are less than that predicted from simulations

(Boylan-Kolchin et al., 2011b). For example, a less massive MW would imply

fewer satellites, easing the tension of problem (1). To overcome problem (2),

the mass of the MW should be less than 1.4× 1012M�, according to compar-

isons of the MW dwarf galaxies (DGs) to those from Millenium II simulations

(Cautun et al., 2014).

Evidence also suggests a connection between the amount of dark mat-

ter in galaxies and other galaxy features. For example, star formation rates

(e.g. Springel & Hernquist, 2003; Behroozi et al., 2013), the masses of central

supermassive black holes (Ferrarese, 2002; Baes et al., 2003), and the total

stellar masses of galaxies (e.g. Guo et al., 2010) appear to be linked to the
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host galaxy’s dark matter halo. Thus, knowledge of the MW’s dark matter

halo mass is critical for testing not only cosmological theories about galaxy

evolution, but also about internal Galactic processes.

Understanding the current properties of the halo, and specifically its mass,

will help determine which models of galaxy formation are most likely, and

ultimately test fundamental concepts in physics. However, because the MW

is made up of a bulge, a disk, a stellar halo, and a dark matter halo, all of

these components contribute to the total gravitational potential of the Galaxy.

The mass and shape of the dark matter halo is the most difficult of these

components to measure because we cannot directly detect it. Instead, the

total gravitational potential must be inferred through the motions of visible

objects or via theoretical arguments.

The total mass and cumulative mass profile of the MW — which are dom-

inated by the dark matter halo at large radii — are poorly constrained. Many

techniques exist to infer the MW’s mass, each having its own advantages and

disadvantages, and yet as a field, astronomers and astrophysicists have yet to

pin down a precise mass estimate. Results in the literature span a factor of two

or more (with an average somewhere near 1012M�), and the uncertainties in

these measurements do not always overlap (see Figure 1.1 Wang et al., 2015).

Many different techniques have been developed with the goal of estimating

the MW mass, and I discuss the most popular methods below (Section 1.3).

As we shall see, the different techniques and use of data yield a wide variety

of mass results in the literature. Moreover, many estimates are limited to the

mass within the furthest data point in the tracer sample, meaning that masses

are reported at a variety of distances from the Galactic center. While efforts

are made to standardize the mass estimates (e.g. Wang et al., 2015), it is
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Figure 1.1: Collection of MW mass estimates (abscissa) and the techniques
used to acquire them (ordinate). Reprint of Figure 1 from “Estimating the
dark matter halo mass of our Milky Way using dynamical tracers” Wang et al.
(2015), Monthly Notices of the Royal Astronomical Society, 453 (1):377-400.
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nonetheless difficult to compare the mass estimates in the context of different

methods.

Before outlining the most popular techniques for galaxy mass estimation,

a brief review of Galaxy mass definitions is in order.

1.2 Definitions of Galaxy Mass

Total mass estimates for the MW are typically reported in terms of the virial

mass, Mvir. The virial mass is defined as the mass enclosed within the virial

radius, rvir, which itself depends on cosmological theory and the critical density

of the universe, ρcrit. The following is a brief description of the cosmological

theory that is often used to define the virial radius and thus the virial mass

(Cole & Lacey, 1996).

The universe is assumed to be mathematically flat (k = 0) and have a

critical density parameter of Ω = ρ/ρcrit ≡ 1, which implies that it will expand

forever. The critical density of the universe, ρcrit, is then

ρcrit =
3H2

8πG
, (1.1)

where H is the Hubble constant and G is the gravitational constant.

In this cosmological model, the early universe contains spherically-symmetric

density fluctuations that are Gaussian distributed. If one of these regions of

high density has a significant overdensity compared to the background, then it

undergoes idealized, spherical collapse. Linear theory predicts the overdensity

at which collapse occurs, and the virial theorem and energy conservation can

be used to show that the final density of such a region after virialization is
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∆c = 18π2 ≈ 178 (White, 2001; Cole & Lacey, 1996). The virial radius of a

spherically collapsed, virialized halo is then defined such that

ρ̄(rvir) = ∆cρcrit, (1.2)

where ρ̄ is the mean density of the halo.

The mean density of a galaxy within its virial radius is defined as

ρ̄(rvir) =
Mvir

4
3
πr3

vir

(1.3)

Thus, with Equations 1.2 and 1.3, the virial radius is found to be

rvir =

(
3Mvir

4π∆cρcrit

)1/3

. (1.4)

Equation 1.4 shows how the model for the mass profile M(r) will play a role

in the definition of the virial radius.

Often, ∆c is set to 200, leading to the notation M200 (which is how we

define Mvir in Chapter 4). In this thesis, other notations such as M125 =

M(r < 125 kpc) and M300 = M(r < 300 kpc) are also used to define the mass

within certain radii, and these should not be confused with the definition of

M200.

When a virial mass is reported in the literature, it is often but not always

an extrapolation out to the virial radius. Little observational data is available

beyond ∼ 150kpc, and thus studies tend to report the mass contained within

the Galactocentric distance of their furthest data point. With a variety of mass

estimates at different Galactocentric radii, it is sometimes difficult to compare

and contrast studies that use different data sets and different methods. It
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would therefore be beneficial to have a method that predicts a continuous

mass profile, which would enable more direct comparisons between studies

that report masses within different radii.

1.3 Mass Estimation Techniques

There are numerous ways to measure the mass of the Galaxy, but ultimately

all methods boil down to using the position and kinematic information of ob-

jects in and around the MW, or using the major components of the Local

Group (LG) (i.e. M31 and dwarf galaxies). Traditionally, most mass estima-

tion techniques rely on fundamental physics, but as we shall see, recently some

studies have begun to obtain Galactic mass estimates by comparing observa-

tional data to simulated data from cosmologically-motivated, hydrodynamical

simulations.

In the next few subsections, I outline the most popular methods for esti-

mating the mass of the MW and highlight both advantages and disadvantages

to each method.

1.3.1 Tidal Streams

Since the discovery of the Sagittarius tidal stream around the MW (Ibata et al.,

2001b,a; Majewski et al., 2003), it has become popular to use stellar streams as

tracers of the Galactic potential (e.g. Law & Majewski, 2010; Koposov et al.,

2010; Gibbons et al., 2014; Küpper et al., 2015; Pearson et al., 2015; Bovy

et al., 2016; Dierickx & Loeb, 2017). A stellar stream is assumed to be created

from a satellite dwarf galaxy (DG) or globular cluster (GC) that is being torn

apart by the tidal effects of gravity— leading and trailing arms of stars precede
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and follow the progenitor’s orbital path.

Mass estimates derived using tidal streams are mixed. For example, the

Sagittarius stream appears to imply a “lighter” MW mass (. 1012M�), whereas

the GC stream from Pal 5 suggests a “heavier” mass. Gibbons et al. (2014)

found M(r < 100kpc) = 0.41±0.04×1012M� using the stream of Sagittarius,

whereas Küpper et al. (2015) found M(r < 100 kpc) = 0.90± 0.20× 1012M�

using the stream of Pal 5.

An arguable advantage to using streams over other mass estimation tech-

niques is the possibility that they may help constrain the shape of the dark

matter halo. Cosmological simulations predict different shapes and aspect ra-

tios of dark matter halos (e.g. Vera-Ciro et al., 2011; Kuhlen et al., 2007).

However, so far no shape of the MW’s dark matter halo has been ruled out, as

studies have found evidence for an oblate (e.g. Loebman et al., 2014; Deg &

Widrow, 2013; Law & Majewski, 2010), prolate (e.g. Bowden et al., 2016), and

spherical (e.g. Smith et al., 2009; Belokurov et al., 2006) dark matter halo. It

has even been suggested that the Sagittarius stream is too dynamically young

to provide any information about the shape of the dark matter halo (Helmi,

2004).

Using stellar streams as probes of the Galactic potential poses some chal-

lenges. For example, the Sagittarius stream has a complex mixture of stars

and wide spatial distribution on the sky (Koposov et al., 2010). The amount

of kinematic information of the individual stars within stellar streams is also

limited. Sophisticated techniques have been developed to use stellar streams

as probes of the Galactic potential despite this shortcoming (e.g. Varghese

et al., 2011; Price-Whelan et al., 2014).

For simplicity, it is often assumed that stellar streams follow the orbit of
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the progenitor. However, Eyre & Binney (2011) showed that stellar streams

can be made up of multiple orbits, occupying different regions of phase-space.

Therefore, using streams under an assumption of a single orbit can introduce

significant systematic error.

Investigations into the effectiveness of using streams have been performed.

Bonaca et al. (2014) used a forward-modeling technique to investigate the use

of stellar streams as probes of the Galactic dark matter halo. They found that

using multiple stellar streams is favourable to using only one, because analysis

of a single stream may under- or over-estimate the Galaxy’s mass.

Sanderson et al. (2017) investigated how the action-space clustering of in-

formation from stellar streams can provide information about the mass of

the Galactic dark matter halo. By analysing stellar streams around MW-type

galaxies from the Aquarius simulations (Springel et al., 2008), they successfully

recovered mass profiles that were consistent with spherically averaged dark

matter profiles, even when ignoring the shape and time-dependencies. Proba-

bilistic models using a Bayesian paradigm have also been developed, although

they are currently too computationally-heavy for practical use (Sanders, 2014).

The minimum entropy method introduced by Peñarrubia et al. (2012) provides

yet another way to analyse stellar streams and constrain the Galactic poten-

tial, although the authors stress that further investigations are needed to test

the method.

Clearly, using stellar streams is an active area of research, and rightly so

with the new and continuing data from the Gaia satellite (Perryman et al.,

2001; ESA, 2016), which is sure to discover more stellar streams in the Milky

Way. As surveys start to detect stellar streams around other galaxies, methods

to use extragalactic stellar streams to estimate masses of other galaxies will
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also become important.

1.3.2 The Timing Argument

The timing argument uses the current distance between and relative velocities

of the MW and M31, and the age of the Universe, to constrain the total mass

M = MMW + MM31 of the two galaxies, and thus provides an approximation

of the Local Group mass, MLG (Kahn & Woltjer, 1959). The timing argument

assumes the MW and M31:

• can be treated as point mass particles,

• had a separation of zero right after the Big Bang,

• are in bound orbits,

• obeyed conservation of energy since the big bang, and

• must have reached apocentre at least once.

The last assumption requires that the present day separation of the MW and

M31 is less than that of apocentric separation, and it also puts a constraint

on the orbital period of the two-body system Li & White (2008).

Early efforts using the timing argument suggested a total mass of the LG

that was larger than the sum of the MW and M31 combined. In light of the

high LG mass, Li & White (2008) used outputs from the Millenium Simulation

to investigate and calibrate the timing argument. They looked at both LG-

like pairs of galaxies and pairs resembling the MW-Leo I system. Li & White

(2008) argued that mass estimates from the timing argument for both the LG

and the MW-Leo I system are robust, and find median estimates of MLG =

5.27+1.51
1.45 × 1012M�, and MMW = 2.43× 1012M�. Even though the lower 95%

confidence limit on the MW is 0.80 × 1012M�, the median is high enough
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to suggest the MW is larger in mass than the Andromeda Galaxy. A great

deal of observational evidence brings into question this result, including M31’s

greater number of GCs and DGs, its higher maximum rotational velocity, and

its stellar content (Diaz et al., 2014, outlines the evidence clearly).

In the last decade, it has become possible to measure the proper motions of

stars within the Andromeda galaxy, enabling the use of the timing argument

to estimate the total mass of the Local Group to better precision (Sohn et al.,

2012; van der Marel et al., 2012b,a). The new data, in conjuction with a

Bayesian analysis using prior information of the MW’s mass from other studies,

have led to lower estimates for the LG’s virial mass, such as 3.17 ± 0.57 ×

1012M� (van der Marel et al., 2012a).

A disadvantage to the timing argument is that it ignores the other massive

satellites in the LG, including the Large Magellanic Clouds and the Triangulum

Galaxy (M33) (Diaz et al., 2014). Another issue is that the assumption of

point-masses for the two galaxies MW and M31 is often made; the halos of

these two galaxies likely overlapped at earlier times.

Peñarrubia et al. (2014) modeled the local cosmic expansion with a Bayesian

approach and compared their result to the timing argument. They found a

LG mass of MLG = 2.3 ± 0.7 × 1012M�, and ruled out models in which

MMW > MM31. An advantage to their Bayesian approach meant that many

parameters could be estimated simultaneously; not only did they obtain an

estimate of MLG, but also an estimate for the mass ratio MMW/MM31, the

circular velocity of the MW at the solar radius, the reduced Hubble constant,

and the fractional vacuum density.

Another alternative to the timing argument was suggested by Diaz et al.

(2014). They estimated the total mass of the MW and M31 by assuming that
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the total momentum of the LG should be zero and that the masses of these two

galaxies dominate. One advantage to this line of argument, as opposed to the

timing argument, is that it does not assume the two main galaxies of the LG

are point masses, and instead requires that the dark matter halos of M31 and

the MW do not overlap. The authors also claim that the orbits and number

of passages are not needed. With this method, MLG = 2.5 ± 0.4 × 1012M�,

where MMW = 0.8± 0.5× 1012M� ∼ 0.43MM31.

Research investigating the discrepancy between the timing argument mass

estimates of the LG and the summed masses of the MW and M31 is on-

going, with studies of hydrodynamical and cosmological simulations hopefully

providing some insight (e.g. Fattahi et al., 2016; Carlesi et al., 2017). Carlesi

et al. (2017) used prior information from cosmological simulations to construct

posterior distributions of the mass of the MW, M31, and the LG, finding

that this method yields lower MLG values than the timing argument, and

masses of the MW and M31 in the ranges of 0.6 − 0.8 × 1012M� and 1.0 −

2.0 × 1012M� respectively. However, the authors note that differences in the

tangential velocity of M31 can change the LG mass by a factor of two, and

change the ratio M31/MMW by up to 20%.

1.3.3 Kinematics of Satellites

Satellite objects that orbit the Galaxy, such as halo stars, globular clusters

(GCs), and dwarf galaxies (DGs), can be used as tracers of the Galactic po-

tential, and thus probe the total mass. Using tracer kinematics is undoubt-

edly the most popular technique in the literature, but it is not without its

challenges.
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One challenge is that the heliocentric reference frame complicates position

and velocity measurements of tracers in orbit around the Galaxy. Theoretical

models of the Galaxy are written in mathematically simpler and tractable

forms if a Galactocentric reference frame is used. Thus, it is often necessary

to transform heliocentric position and velocity measurements of tracers into

Galactocentric ones, which requires knowledge of the Local Standard of Rest

(LSR), the solar motion, and the distance to the tracer. Although transforming

positions and velocities from the heliocentric to Galactocentric frame is a solved

problem, it requires careful procedures (Johnson & Soderblom, 1987).

All measurements are subject to uncertainty, but some of the measure-

ments are more precise than others— it is important to take into account

these differences carefully. Another challenge is the non-linear propagation

of these measurement uncertainties from the heliocentric to Galactocentric

frames, which is non-trivial without making certain assumptions about error

distributions.

The velocity data for satellite objects are often incomplete; most line-of-

sight velocities have been measured, but many proper motions have not. A

datum with an incomplete velocity measurement cannot be transformed from

the heliocentric frame to the Galactocentric one without making certain geo-

metric and limiting assumptions.

Small sample size also presents a problem. For example, beyond 80kpc,

the number of GCs around the MW is small, making measurements of the

virial mass mostly an extrapolation. Until the last decade or so, studies relied

on not only the few distant GCs but also the MW’s DGs. However, use of

some DGs (e.g. Leo I) as tracers of the dark matter halo have been shown

to have strong influence on mass estimates (e.g. Boylan-Kolchin et al., 2013;
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Sakamoto et al., 2003). The main issue is that these tracers’ full velocity

vectors are either unknown (i.e. only line-of-sight velocities are known) or

measurements are highly uncertain. Therefore, any assumptions about such

a tracer’s boundedness to the Galaxy and/or the ellipticity of its orbit play a

large role in the mass estimate.

All of these challenges — reference frames, incomplete data, measurement

uncertainty, and small sample size — in addition to galaxy model assumptions

contribute to the variation in mass estimates in the literature. Regardless,

research has persisted in trying to obtain an accurate mass for the MW because

of its importance. In the next few subsections, I outline the major methods

by which tracer kinematics have been used to estimate the Galaxy’s mass.

Mass Estimators and the Jeans Equation

Mass estimators use the kinematic information from a population of Galaxy

tracers, such as halo stars, to infer the mass within the distance of the furthest

tracer. Mass estimators typically use only radial velocities, and thus they

depend heavily on an assumed velocity anisotropy of the system. Assumptions

about the eccentricity of orbits in the system can produce very different mass

estimates. However, one major advantage of mass estimators is that they

rarely rely on a physical model1.

In what follows, Hartwick & Sargent (1978) derived one of the first mass es-

timators, under the assumption of a spherically symmetric, collisionless system

for the MW. Beginning from the first moment of the Boltzmann equation,

d

dr

(
n(r)〈v2

r〉
)

= −GM(r)

r2
n(r) +

(λ− 2)n(r)〈v2
r〉

r
+
v̄2
rotn(r)

r
, (1.5)

1except, of course, that of gravity
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where n(r) is the radial number density of the tracers, λ determines the velocity

anisotropy, vr is the Galactocentric radial velocity, v̄rot is the mean streaming

velocity, M(r) is the mass within Galactocentric radius r, and angled brackets

indicate time-averages, equation 1.5 is solved for M(r) to give

M(r) =
r〈v2

r〉
G

[
−d log n

d log r
− d log 〈v2

r〉
d log r

+ (λ− 2) +
v̄2
rot

〈v2
r〉

]
. (1.6)

The term 〈v2
r〉 depends explicitly on the assumed anisotropy of the system.

Equation 1.6 is one way of writing the Jeans equation, which relates the

total gravitational potential to the number density and velocity dispersion of

the system’s tracer population. Equation 1.6 holds for a spherical, collisionless,

rotationless, and dissipation-supported system in equilibrium.

Use of the Jeans equation has been one of the most popular approaches

for estimating the mass of the MW (e.g. Battaglia et al., 2005; Kafle et al.,

2012), other galaxies (e.g.  Lokas, 2009), and even galaxy clusters too (e.g. Côté

et al., 2003). Nowadays, the Jeans’ Equation is usually written in the following

notation and form,

1

n

d

dr
(nσ2

r) +
2βσ2

r

r
= −GM(r)

r2
, (1.7)

where σr is the radial velocity dispersion and where

β = 1−
σ2
θ + σ2

φ

2σ2
r

(1.8)

is the anisotropy parameter (Binney & Tremaine, 2008).

One drawback to using Equation 1.7 to estimate the mass of the MW,

however, is that assumptions must be made about β of the tracer population,
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leading to a mass-anisotropy degeneracy. The degeneracy lies in the fact that

both n(r) and the velocity dispersion σ2
r will depend on β. Some studies suggest

that the mass estimate can be biased by over 70% without any knowledge of

the velocity anisotropy of the satellites (Watkins et al., 2010). In addition

to assuming a velocity anisotropy, use of the Jeans’ equation often requires

fixing the parameter for the number density profile of the satellite population

(e.g. Kafle et al., 2012). Loebman et al. (2017) recently showed that Jeans’

modelling is sensitive to non-constant β, and in particular could lead to over-

estimates of the Galaxy’s mass.

Another early mass estimator was introduced by Lynden-Bell et al. (1983)

(which built upon Lynden-Bell & Frenk, 1981). They showed how the Galacto-

centric distances r and radial velocities vr of satellites could be used to estimate

the mass of the MW through application of the virial theorem and by making

assumptions about orbital distributions of tracers. Assuming that (1) most of

the Galaxy’s mass resides within the solar circle and thus can be treated as a

point mass, and (2) the tracers’ orbits have an isotropic distribution (i.e. the

time-averaged eccentricity is 〈e2〉 = 1/2), they showed that

M =
4〈(v2

r − ε2)r〉
G

, (1.9)

where ε represents the velocity uncertainties. If instead the anisotropy distri-

bution is dominated by radial orbits (i.e. 〈e2〉 = 1/8, then the mass is given

by

M =
16〈(v2

r − ε2)r〉
G

, (1.10)

which notably gives a result four times that of Equation 1.9 (Lynden-Bell

et al., 1983). The isotropic mass estimator (Equation 1.9) was later used by
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Olszewski et al. (1986) with 16 remote halo objects to obtain a Galaxy mass

estimate of 5 ± 2 × 1011M�. The authors stress, however, that the highly

uncertain measurements and limited sample size impede a better estimate.

Little & Tremaine (1987) (hereafter LT) review the shortcomings of the

mass estimators by Hartwick & Sargent (1978) and Lynden-Bell et al. (1983).

For one, Equation 1.6 (1.7) requires the quantities such as n(r) to be specified,

which is arguably difficult when the tracer sample size is small. LT also call

into question the confidence intervals because it is unclear how these may be

calculated with a finite sample size. Finally, both mass estimators assume

bound satellites, but at the same time can produce mass estimates implying

that some satellites have velocities higher than the escape speed. In light of

these problems, LT introduce a Bayesian approach that uses a distribution

function (to be discussed later).

The Jeans equation has been used to estimate the mass of the Galaxy in

a few different ways. For example, Battaglia et al. (2005) derived the ex-

pected radial velocity dispersion profile from the Jeans equation under both

the assumption of constant β and varying β(r), and performed a minimum-

χ2 analysis with 240 tracer objects (including GCs, halo stars, and DGs).

The authors acknowledge that their analysis highlights the well-known mass-

anisotropy degeneracy; multiple combinations of β and potential models can

describe the observed velocity dispersion equally well. Both (1) the empiri-

cal dark halo model introduced by Navarro et al. (1996, hereafter NFW) that

includes a varying anisotropy, and 2) a truncated flat rotation model with

constant anisotropy, provide good fits to the data, giving mass estimates of

0.8+1.2
−0.2×1012M� (−0.3 . β . 1) or 1.2+1.8

−0.5×1012M� (β = −0.5±0.4) respec-

tively. The data can be explained by either a steep dark matter halo profile
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with constant anisotropy, or by a less steep profile with varying anisotropy

that goes to tangetially-biased orbits at large radii. The authors thus stress

the need for proper motion measurements of tracers at large radii in order to

break the mass-anisotropy degeneracy. However, their method did not make

use of any proper motion measurements, even for those tracers for which these

measurements are available. Perhaps the mass-anisotropy degeneracy could

be partially lifted (or at least some models could be ruled out) if a technique

could include known proper motions measurements as well.

Xue et al. (2008) used the Jeans equation in conjunction with hydrodynam-

ical simulations to estimate the circular velocity profile of the MW, and thus

constrain the MW mass. The tracers were a collection of over 2400 Blue Hor-

izontal Branch (BHB) stars whose positions and line-of-sight velocities were

measured by the Sloan Digital Sky Survey. By binning the data into radial

bins and comparing the observed line-of-sight velocity dispersions in each bin

to mock observations from hydrodynamical simulations, the circular velocity

as a function of radius, Vcirc(r), was scaled through a Jeans equation-based

modelling approach such that the simulated data matched the observed data.

With this approach, they found M(r < 60 kpc) = 4.0± 0.7× 1011M�. From

here, they extrapolate the fit out to a virial radius of ≈ 250 kpc to obtain

a virial mass of Mvir = 1.0+0.3
−0.2 × 1012M� (assuming a potential model that

includes a Hernquist (1990) bulge, an exponential disk, and an NFW dark

matter halo). One downside to the Jeans equation-based method was that the

measurement uncertainties of the BHB stars were not included directly in the

analysis, and so the uncertainties in the mass estimate relied on bootstrapping

the data. Matching observations to simulated observations also relies heavily

on the idea that the hydrodynamical simulations are a good representation of
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reality.

More recently Watkins et al. (2010) (hereafter W10) introduced two mass

estimators for the MW and M31. One estimator uses only the radial velocity

(vr) and position r of the satellite data,

M =
(α + γ − 2β)r1−α

out

G
〈v2
rr
α〉 (1.11)

where α is a parameter of the gravitational potential, γ is the power-law in-

dex for the number density of the tracer population, rout is the distance of

the furthest tracer, and β is the standard anisotropy parameter. The second

estimator uses the complete velocity v, for when proper motion measurements

are available,

M =
1

G

(α + γ − 2β)r1−α
out

3− 2β
〈v2rα〉. (1.12)

The above equations require estimates of α, β, and γ, which necessitates

using observational and/or simulated data. The results of this study thus

depend heavily on the assumed velocity anisotropy, and W10 find the mass

of the MW to be between 0.7 × 1012M� and 3.4 × 1012M�, depending on

whether β is defined from simulations or observations. Another large source of

uncertainty in their mass estimate comes from assuming whether or not Leo I

is bound to the Galaxy.

There are two drawbacks to using Equations 1.11 and 1.12. The first is

that obtaining a standard deviation for the mass estimate requires Monte Carlo

simulations, and W10 must generate mock data sets of the MW satellites to

obtain uncertainties in their mass estimates. The second is that to combine all

of the information from the kinematics of the satellites, a linear combination of

the estimates from Equations 1.11 and 1.12 is used to arrive at a final estimate
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of the mass of the MW.

Deason et al. (2012) applied the W10 radial velocity mass estimator (Equa-

tion 1.11) to new kinematic data of BHB, blue straggler, and N-type carbon

stars. The data are identified out to ∼ 150 kpc, but the sample size contains

a modest 31 stars beyond 80kpc. Thus, binning the data at large distances

leads to high levels of uncertainty, and their mass estimates within 150kpc

range from 0.3× 1012 and 1.6× 1012M�. The uncertainty in their mass esti-

mate is overwhelmed by the small sample size and incomplete data, because

assumptions about velocity anisotropy and the tracer density profile play a

large role in determining the mass.

Overall, one of the biggest drawbacks to mass estimators is that they typ-

ically use only line-of-sight velocities, and there is no obvious way to include

both incomplete and complete data simultaneously in the analysis. Further-

more, methods to include measurement uncertainties often rely on bootstrap-

ping the data.

Comparing Cosmological Simulations to the Magellanic Clouds

Some recent studies have taken a different approach to estimating the mass of

the MW by directly comparing observations of the Large and Small Magellanic

Clouds (LMC and SMC) to cosmological simulations of MW-type galaxies.

Boylan-Kolchin et al. (2011a) and Busha et al. (2011) estimated the MW

mass by comparing observable features of the Magellanic Clouds to cosmologi-

cally simulated MW-type galaxies. The latter study used Millenium-II simula-

tions (Boylan-Kolchin et al., 2009) and the former used the Bolshoi simulations

(Klypin et al., 2011) as a prior in a Bayesian analysis. The two studies are in

disagreement with one another, with Boylan-Kolchin et al. (2011a) suggesting
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a heavy mass of at least 2×1012M� and Busha et al. (2011) suggesting a more

moderate ∼ 1.2× 1012M�.

Barber et al. (2014) took a slightly different approach, and compared the

ellipticity of the MW’s satellite orbits to the MW-sized dark-matter halo

simulations of the Aquarius Project. They estimate that the mass range

M200 = 0.6− 3.1× 1012M� for the MW.

Most recently, Patel et al. (2017) used the proper motions of the LMC

and M33, along with results from the Illustris dark-matter only cosmological

simulation (Vogelsberger et al., 2014a,b; Nelson et al., 2015), to determine the

mass of the MW and M31. The authors follow the same Bayesian inference

technique as Busha et al. (2011), and assume that the orbital energy of the

massive satellites are highly correlated with the host galaxy’s halo mass. Their

MW mass estimate is Mvir = 1.02+0.77
−0.55 × 1012M�.

Using results from simulations as priors in a Bayesian analysis of obser-

vational data from the MW will depend heavily on the assumption that the

simulations are a good representation of reality. Furthermore, this kind of

analysis requires selection of MW-type galaxies from the simulation, and so

one must question what prior information is being used in this selection.

Finally, when making inferences about the MW from aggregate simulated

data, one must be wary of the ecological fallacy (Robinson, 1950). The eco-

logical fallacy is a proven statistical phenomena in which “two variables at

the aggregate level frequently differ markedly from the correlations between

the same two variables at the individual level” (Gove & Hughes, 1980). In

other words, correlations between properties at the individual level cannot be

reliably inferred from correlations at the group level (Piantadosi et al., 1988).

Therefore, even if the number of satellites around galaxies and the masses of
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galaxies are correlated in cosmological simulations, this does not mean that

the MW satellite population has to be similar in number to its counterpart in

simulations.

High Velocity Stars

The velocity distribution of High Velocity Stars (HVSs) can be used to infer an

escape speed for the Galaxy and to thereby infer the gravitational potential

and mass of the MW. HVSs in the stellar halo of the MW are thought to

be produced by strong dynamical interactions such as a binary stellar system

interacting with the central massive black hole of the MW (Hills, 1988; Perets,

2009). The main idea behind using HVSs is that they will create asymmetries

in the distribution of halo stars in the MW (Gnedin et al., 2005; Yu & Madau,

2007; Perets et al., 2009). Without HVSs, there would be as many stars

with positive radial velocities (outgoing stars) as those with negative radial

velocities (incoming). Any unbound stars then contribute to the positive side

of the distribution, because by definition these stars are on their way out of the

Galaxy. By studying this asymmetry in the distribution, identifying HVSs, and

assuming a physical model for the gravitational potential, one can constrain

the escape speed at different distances.

Mass estimates from recent HVS studies are mixed. Smith et al. (2007)

derived a MW virial mass under the assumption of the NFW cold dark matter

halo model, arriving at a mass of 1.42+1.14
−0.54 × 1012M�. HVSs ejected from the

center regions of the MW lead to a mass estimate of (1.2 − 1.9) × 1012M�

(Fragione & Loeb, 2017).

Gnedin et al. (2010) analysed HVSs from the Hypervelocity Star Survey

to estimate the enclosed mass within 80kpc of the Galactic center. Assuming
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a single power law for the density profile of halo stars, and restricting their

analysis to objects beyond 25kpc, a Jeans modelling analysis suggested a mass

of 0.69+0.30
−1.2 × 1012M�. The authors state that the uncertainty in this mass

estimate is dominated by the lack of proper motion measurements for the HVSs

and thus no information about the velocity anisotropy of the tracer population.

One potential problem with this method is contamination in the velocity

distribution from stellar streams, which would have a bulk motion either to-

wards or away from the Galactic center, although it has been suggested that

the contamination is low (Piffl et al., 2011). Another issue with using HVSs to

estimate the mass is heavy model dependence— the escape speed at a given

distance from the Galactic center will depend on the physical model. Fur-

thermore, estimating the mass of the Galaxy relies not only the local escape

speed but also how the mass is distributed outside the solar circle (Leonard &

Tremaine, 1990). Another issue is the assumption of velocity anisotropy, since

proper motion measurements for HVSs are limited.

Distribution Functions

The strong Jeans Theorem implies that the positions and velocities of colli-

sionless particles in a steady state system can be described probabilistically

by a distribution function (DF). The DF gives the probability of a star hav-

ing a particular position in 6-dimensional phase space (i.e. with velocity

v = 〈vx,vy,vz〉 and position r = 〈x,y, z〉) (Binney & Tremaine, 2008), and it
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is a probability density function (PDF), by definition integrating to one:2

∫
f(r,v)d3rd3v = 1. (1.13)

In practice, the DF is usually written in terms of the relative energy per unit

mass E and the angular momentum per unit mass ~L where

E = −v
2

2
+ Φ(r) (1.14)

and

~L = r× v. (1.15)

Under the assumption of spherical symmetry, only the magnitude of L matters,

and in this case the notation f(E , L) is common.

In the context of Galaxy mass estimation, analytic DFs are commonly used

in Bayesian (e.g. Little & Tremaine, 1987; Kochanek, 1996; Wilkinson & Evans,

1999; McMillan, 2011) and maximum likelihood (e.g. Kulessa & Lynden-Bell,

1992; Deason et al., 2011) frameworks to analyse kinematic data from tracers.

In these types of analyses, a distribution of model parameters (rather than

point estimates) is obtained which can be useful for making scientific inferences

about physical quantities.

Little & Tremaine (1987)(LT) used a Bayesian approach to analyse kine-

matic data from eight DGs and seven GCs extending to ∼ 90kpc, and found an

upper limit of the MW mass of 5.2× 1011M� (assuming a point-mass model)

or 2.4+1.3
−0.7 × 1011M� (assuming an infinite halo model). If the massive halo is

assumed to extend out to 90kpc, then the estimate is closer to ∼ 1× 1012M�.

2In practice, DFs in astronomy may be normalized such that f(x, r) integrates to a value
of interest, such as the total mass or total luminosity.
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The Bayesian method used in their study does not incorporate the measure-

ment uncertainties, and so highly uncertain measurements are left out of the

analysis.

The technique introduced by LT was used in a follow-up study by Zarit-

sky et al. (1989), in which new kinematic measurements were included for the

objects Eridanus, Palomar 14, Leo I, and Leo II. One notable result was that

the mass estimate changed significantly with the inclusion of the new data;

it increased by a factor of two with Eridanus, Palomar 14, and Leo II, and

increased by a factor of 3 when Leo I was also included. The mass estimate

was also sensitive to the velocity anisotropy assumption, with a radial orbit

assumption giving 9.3+4.1
−1.2 × 1011M� and isotropic orbit assumption giving

12.5+8.4
−3.2 × 1011M�. Because the results depend heavily on Leo I and assump-

tions about orbits, Zaritsky et al. (1989) argue that the method introduced by

LT does not accurately account for the true uncertainty in the mass estimate.

A perhaps more important point, however, is that the LT method does not

include measurement uncertainty, which could significantly reduce the leverage

of highly uncertain measurements.

Kochanek (1996) used a Bayesian approach and all currently-available data

of tracers, including line-of-sight velocities and a few proper motions to esti-

mate the mass of the MW. This study did not incorporate the measurement

uncertainties of positions and velocities directly into the Bayesian analysis. In-

stead, mock data sets were generated from Monte Carlo simulations based on

the data and their measurement uncertainties, and the analysis was repeated

to estimate the uncertainty in the mass.

Wilkinson & Evans (1999) (hereafter WE99) introduced a truncated, flat

rotation curve model for the MW and derived its isotropic DF (an intractable
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integral). WE99 found asymptotic approximations for the DF and used it

in a Bayesian analysis of 27 MW satellites, of which 6 have proper motion

measurements, to estimate the mass of the Milky Way. They investigated

how different prior distributions on model parameters and the inclusion or

exclusion of Leo I affect the mass estimate. Their results indicate a total mass

of 1.9+3.6
−1.7 × 1012M�, although their mass estimate within 50kpc (5.4+0.2

−3.6 ×

1011M�) is the robust measurement.

WE99 derive a statistical correction factor to account for the heliocen-

tric measurements under the assumption of constant β. However, their data

are at large radii from the Galactic centre, and so this correction factor is

small. The measurement uncertainties of the proper motions were accounted

for by convolving the probability density function with an error function, but

other measurement uncertainties were excluded from the analysis. Instead,

mock data sets were used to investigate how other factors, such as uncertain-

ties in distance and line-of-sight velocities and correlations within the data,

might affect the mass estimate. WE99 conclude that the main sources of

uncertainty are the measurement errors. A main result from WE99 is that

including the proper motion measurement of Leo I greatly reduced its influ-

ence on the mass estimate. Their analysis highlights two strengths of using a

DF within a Bayesian approach over traditional mass estimators— incomplete

and complete data can be included in the analysis simultaneously, and prior

assumptions must be stated explicitly.

Sakamoto et al. (2003) applied the method developed by WE99 to a mixture

of Galactic tracers (satellite galaxies, GCs, and BHB stars) to estimate the

mass of the MW. They find a lower limit of 1.8+0.4
−0.7 × 1012M� without Leo

I, and an upper limit of 2.5+0.5
−1.0 × 1012 with Leo I— results that are in stark
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contrast with WE99. The study also depends on Monte Carlo simulations to

estimate the uncertainty in the mass estimate due to measurement errors in

distances and velocities.

An & Evans (2006) showed that a DF approach suffers from mass-anisotropy

degeneracy when only line-of-sight velocities for tracer objects are used. De-

pending on the assumed anisotropy, the mass of the MW derived from line-

of-velocities of distant tracers (i.e. for which vlos is approximately the Galac-

tocentric radial velocity) can differ up to a factor of 3. Thus, being able to

include any available proper motion measurements in the analysis would be

beneficial.

One drawback to using DFs is that few analytic forms are known. Two of

these analytic DFs are those found by Hernquist (1990, hereafter the Hernquist

model) and Jaffe (1983). These DFs are also self-consistent, meaning that the

gravitational potential Φ(r) and the density ρ(r) which determine them make

up a potential-density pair which obeys Poisson’s equation. A little more

recently Evans et al. (1997) derived an analytic DF for a spherical system

in which the gravitational potential and the number density of the tracers

follow different logarithmic radial profiles, which will be discussed further in

Chapter 3.

DFs for a disk, bulge, dark matter halo, and even a central black hole, are

available and can be used to generate initial conditions for N-body simulations

(e.g. Widrow et al., 2003; Widrow & Dubinski, 2005), however, incorporating

these DFs in a maximum likelihood or Bayesian scheme to estimate the total

mass of the MW would be computationally difficult. In a Bayesian analysis

where Monte Carlo Markov Chains are being created, these DFs would have

to be numerically integrated for each combination of model parameter values
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at every step in the chain.

Although analytic DFs are difficult to come by, using DFs within a Bayesian

approach has still been a fruitful endeavour and continues to hold promise.

The major advantages to this approach have been shown above; mainly, the

inclusion of incomplete and complete data simultaneously. Further progress

can be accomplished by using a hierarchical Bayesian framework that includes

a complete measurement model, as opposed to including only the measurement

uncertainties of proper motions and relying on Monte Carlo simulations (i.e.

the methods used by WE99 and Sakamoto et al., 2003).

1.4 Reviewing Major Challenges

As we have seen, there are many methods to measure the mass of the MW—

each having its own advantages and disadvantages. The use of kinematics of

satellite objects is the most popular technique, although methods using tidal

streams are now becoming more prominent. Common challenges arise in all of

the techniques. Here I compile and attempt to create a well-defined list of these

challenges: small sample-size and incomplete data, measurement uncertainties,

reference frames, and the mass-anisotropy degeneracy. I also briefly describe

a challenge that will be encountered in the near future: Big Data.

Sample Size and Incomplete Data

An ideal data set for a tracer population would be large in number and com-

plete in 6-dimensional phase-space information. Unfortunately, kinematic data

from MW tracers are often incomplete, and can vary in sample size.

In the past decade, it has become possible to take observations of halo stars
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further out in the halo, with BHB stars being a common choice (Kafle et al.,

2012; Deason et al., 2012; Xue et al., 2008). BHB stars have several advantages:

they have constant absolute magnitude, they are scattered throughout the

Galaxy, and they exist as far as ∼ 150kpc. However, even though halo stars

are numerous, obtaining proper motion measurements of these objects has not

been possible beyond the solar neighbourhood until very recently.

Progress is being made with programs such as Gaia and the Large Syn-

optic Survey Telescope (LSST-Corporation, 2016), which are performing and

will perform all-sky surveys. The first release of the Gaia satellite data (DR1)

has been cross referenced with the Hipparcos catalogue to estimate the proper

motions of about 2 million stars using the Tycho-Gaia astrometric solution

(TGAS) (Michalik et al., 2015; ESA, 2016; Lindegren et al., 2016; Gaia Col-

laboration et al., 2017). However, the proper motions of these halo stars will

not be very reliable for distances beyond ∼ 20kpc from the Galactic center

(Bailer-Jones, 2004). The LSST data will not be available for a number of

years, but when it is released we need to be ready with reliable mass estima-

tion methods that can include incomplete and complete data simultaneously,

and efficiently.

Measurement Uncertainties

The magnitudes of measurement uncertainty in tracer data are mixed, with

some velocity measurements being very uncertain and others being quite pre-

cise. How one incorporates this inhomogeneous measurement uncertainty is an

important choice, and ideally all measurement uncertainties would be prop-

agated through to the final mass estimate. Unfortunately, current methods

usually require simplifying assumptions about error distributions and/or rely
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on simulations to estimate statistical error.

Reference Frames

Mathematical models of the Galaxy are simplest and easiest to use in a Galac-

tocentric reference frame, but our measurements of MW tracers are by default

in a heliocentric frame. Both line-of-sight and proper motion measurements

(i.e. complete data) are needed to transform a velocity vector from the he-

liocentric frame to the Galactocentric frame. Because tracer data tend to be

incomplete, studies often limit their sample to distant tracers where vlos ≈ vr.

Furthermore, mass estimators derived from the Jeans equation use only in-

complete or complete data; in either case, information is being thrown away.

Transforming incomplete measurements and propagating measurement uncer-

tainties into a Galactocentric frame is particularly challenging, and propagat-

ing uncertainties into the final mass estimate is difficult and often avoided

(e.g. instead, simulations are used to estimate the statistical uncertainty in

the mass).

Mass Anisotropy Degeneracy

Many of the techniques outlined in Section 1.3 rely on assumptions about the

tracer population’s velocity dispersion, and I reviewed how assumptions about

β can dramatically alter the mass estimate in Jeans equation analyses. One

reason for these assumptions is the lack of proper motion data, and limited

techniques for including incomplete and complete data simultaneously in the

analysis. It would be better to allow β to be a free parameter in the analysis,

and to estimate its value based on all available data.
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Big Data

Astronomy is entering an era of Big Data. Data from Gaia and LSST are and

will provide kinematic data of millions of halo stars, including many proper

motions. However, not all of these data will be complete. Thus new computa-

tional challenges will present themselves, and the development of statistically

rigorous methods for using this kinematic data will be needed.

1.5 Contribution of this Research

The main goal of my thesis research is to develop a method for estimating

the mass and mass profile of the MW galaxy that overcomes most of the chal-

lenges associated with using satellite kinematics and that more easily allows

for comparison to other mass estimates in the literature. I have developed a

Bayesian hierarchical model that employs an analytic DF and which infers the

mass and mass profile of the MW from the kinematics of tracers. The results

are presented in the collection of papers in this thesis.

For the majority of this thesis work, I have been using GCs as a test data

set for developing the hierarchical Bayesian method. GCs are compact star

clusters which are spherical in shape, gravitationally bound, and kinematically

self-supported, so treating them as point mass particles with respect to the

Galaxy is not a gross approximation. GCs are some of the oldest objects in

the universe, and are thought to have been either accreted by the Milky Way

during our Galaxy’s formation, created in-situ within our Galaxy, or both. The

GCs have been in orbit around the Galaxy for billions of years, making them a

nearly virialized population. Because of this property of the MW’s GCs, these
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objects make good kinematic tracers of the Milky Way’s total gravitational

potential in the context of a DF method, and are thus a good data set to work

with while developing the Galaxy mass estimation technique.

GCs in the MW are a modest data set at 157 objects, and the velocity

measurements are proportionally more complete than halo stars. The GC

data set is missing proper motion measurements for approximately 50% of

the GCs, but this is gradually improving thanks to the HST Proper Motion

Collaboration (HSTPROMO) (van der Marel et al., 2014; van der Marel, 2016)

and others (Fritz et al., 2017; Watkins & van der Marel, 2017; Massari et al.,

2017)3. HSTPROMO is also obtaining proper motions for a number of DGs,

as other studies continue to do so as well (e.g. Piatek et al., 2016; Cioni et al.,

2016, and others).

The work presented here was initially built upon the research I completed

during my Masters, which involved a statistical study of Bayesian mass esti-

mates of very simple simulated “galaxies”. These galaxies were not cosmo-

logically motivated simulations, but instead generated in a statistical manner;

they were composed of simulated point particles that followed a Hernquist

spatial and kinematic distribution. I investigated the statistical properties of

Bayesian mass estimators when the kinematic data was entirely incomplete

(i.e. only line-of-sight measurements were known) or entirely complete, and

when the assumed model had the incorrect velocity anisotropy.

During my PhD, I have made substantial and significant improvements

to this method with the goal of overcoming the challenges presented in Sec-

tion 1.4. The advances in this method have been incremental but important,

3enabled by the Gaia data
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and the subsequent hierarchical Bayesian formalism has allowed us to over-

come major challenges associated with using kinematic data of MW satellites.

A hierarchical Bayesian method provides several advantages because:

1. ... both incomplete and complete data can be used simultaneously in

the analysis. This is especially important for the use of GCs in the

analysis, for which approximately 50% of the data are missing proper

motion measurements.

2. ... the true positions and velocities of the satellites are treated as param-

eters. These parameters are constrained with the known measurement

uncertainties, which are well understood, through a measurement model.

3. ... the measurement model is in the heliocentric frame, and thus negates

the need for complex propagation of uncertainties to the Galactocentric

frame. The varying uncertainties are naturally carried through to the

posterior distribution via the hierarchical model.

4. ... the resulting posterior distribution gives probability regions for model

parameters and credible intervals for physically meaningful quantities

like the virial mass and the velocity anisotropy of the tracer population.

5. ... the method not only produces total mass estimates for the MW but

also predicts a mass profile for the Galaxy so that comparisons may be

made with other mass estimates at any radius.

The chapter contents in this thesis naturally walk through the incremental

steps that led to the hierarchical Bayesian model.

First, an introduction to the method developed during my Masters, includ-

ing Bayes’ Theorem and sampling algorithms (e.g. Monte Carlo Markov Chain
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and Gibbs Sampling) in the context of using the DF to analyse kinematic data,

is provided. The method is then altered to include complete and incomplete

data simultaneously and in arbitrary mixtures. Simulated incomplete data

are constructed and used to test this new method in light of different veloc-

ity anisotropy assumptions. A preliminary analysis of MW GC and DG data

is then performed to obtain a mass estimate for the MW under a Hernquist

model assumption (Chapter 2). Not all GCs are included in this analysis be-

cause only GCs for which the line-of-sight velocity is a good approximation to

the Galactocentric radial velocity could be included.

Second, a more flexible DF from the literature is incorporated that allows

the number density profile of the MW satellites and the dark matter to follow

different spatial distributions. This model as it applies to the MW GC data is

explored through a series of investigations and sensitivity tests (Chapter 3).

Third, measurement uncertainties are incorporated via a hierarchical

Bayesian framework. The hierarchical framework includes a measurement

model in the heliocentric frame, which not only makes propagation of errors

unnecessary, but which also allows more of the incomplete data to be included

in the analysis. With the ability to include all of the available information,

we subsequently arrive at a new mass estimate for the Galaxy using all of the

MW’s known GC population. (Chapter 4).

Finally, we are currently testing the hierarchical method from Chapter 4

on mock observations of simulated MW-type data from hydrodynamical cos-

mological simulations (Chapter 5). The latter is a paper in preparation, to be

submitted to the The Astrophysical Journal. In Chapter 6, I summarize the

overall findings of this thesis and discuss avenues of future work.
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Abstract

A powerful method to measure the mass profile of a galaxy is through

the velocities of tracer particles distributed through its halo. Transforming

this kind of data accurately to a mass profile M(r), however, is not a trivial

problem. In particular, limited or incomplete data may substantially affect the

analysis. In this paper we develop a Bayesian method to deal with incomplete

data effectively; we have a hybrid-Gibbs sampler that treats the unknown

velocity components of tracers as parameters in the model. We explore the

effectiveness of our model using simulated data, and then apply our method

to the Milky Way using velocity and position data from globular clusters and

dwarf galaxies. We find that in general, missing velocity components have little

effect on the total mass estimate. However, the results are quite sensitive to the

outer globular cluster Pal 3. Using a basic Hernquist model with an isotropic

velocity dispersion, we obtain credible regions for the cumulative mass profile

M(r) of the Milky Way, and provide estimates for the model parameters with

95% Bayesian credible intervals. The mass contained within 260kpc is 1.37×

1012M�, with a 95% credible interval of (1.27, 1.51)×1012M�. The Hernquist

parameters for the total mass and scale radius are 1.55+0.18
−0.13 × 1012M� and

16.9+4.8
−4.1 kpc, where the uncertainties span the 95% credible intervals. The code

we developed for this work, Galactic Mass Estimator (GME), will be available

as an open source package in the R Project for Statistical Computing.
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2.1 Introduction

Almost every galaxy in the universe is assumed to reside in a massive, dark

matter halo that can extend far beyond the visible components of the galaxy.

Standard methods to determine the mass distribution within visible portions

of galaxies are based on rotation curves or velocity dispersion profiles. The

former is applicable to spiral galaxies, while the latter method is used mainly

for elliptical galaxies or disk galaxy bulges. At large radii, where the mass

distribution is presumably dominated by dark matter, one can use observations

of kinematic tracers to learn about a galaxy’s mass profile.

The Milky Way (MW) has many distant satellites, such as globular clus-

ters, halo stars, planetary nebulae, and dwarf galaxies (DGs). The kinematic

properties of these satellites can be used to learn about the gravitational po-

tential of the whole system, and thus the Galaxy’s mass profile out to large

radii.

One way to use the kinematic data of tracers to estimate the mass distribu-

tion is via a mass estimator, a method first suggested by Hartwick & Sargent

(1978) and a method that avoids using an explicit model. The method has

endured partly because it uses only the line of sight velocities and positions of

the tracers. It is useful when no proper motions are available and conversion

to a Galactocentric refrence frame is impossible. Nowadays, however, many

MW tracers have proper motion measurements, and more continue to become

available. Thus, it would be beneficial to have a method which can incorpo-

rate both complete data (i.e. tracers with 3-dimensional space motions in the

Galactocentric frame) and incomplete data (i.e. tracers with only line of sight

velocities). In this paper we introduce such a method of mass estimation.
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The method used here is based on the phase-space distribution function

(DF), which is a probability distribution for a satellite in terms of its position r

and velocity v in the Galactocentric reference frame. Using the DF for a model

and a Bayesian approach to the analysis, we obtain probability distributions

for the model parameters (and thus the mass). The method was first suggested

by Little & Tremaine (1987), who showed how to use the DF and a Bayesian

approach to estimate the mass specifically for the Milky Way. Since then, other

studies have used the Bayesian approach or Maximum Likelihood methods

for Galactic mass estimation (e.g. Kulessa & Lynden-Bell, 1992; Kochanek,

1996; Wilkinson & Evans, 1999; Widrow et al., 2008). Deriving analytic and

physically relevant DFs has been explored by Hernquist (1990), Cuddeford

(1991), Ciotti (1996), Widrow (2000), and Evans & Williams (2014), to name

a few.

A DF’s derivation and final form is, by default, in the Galactocentric ref-

erence frame, but previous studies have re-written DFs in terms of the line-

of-sight velocity component only, in order to incorporate incomplete data (e.g.

Wilkinson & Evans, 1999). This does not take full advantage of the complete

data that is available, which is an issue when the method may be susceptible

to large uncertainties due to small sample size (as discussed by Zaritsky et al.,

1989). Furthermore, rewriting the DF in terms of the line-of-sight velocity can

be mathematically difficult. In our study, we introduce a generalized approach

via the Bayesian framework, whereby it is easy to incorporate complete and

incomplete data simultaneously, and also unnecessary to rewrite the DF in

terms of the line-of-sight velocity.

The purpose of this paper is to lay out the method fully, and set the

groundwork for future studies with a range of DFs and datasets. We also test
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the method with simulated data, and do some preliminary analysis with the

method as it applies to the Milky Way.

The outline of this paper is as follows. Section 2.2.1 briefly describes the

theoretical background of DFs, and Section 2.2.2 introduces two models that

already have analytic DFs, which we use in this work. Next, in Section 2.2.3,

we review how Bayes’ Theorem can be used with the DFs to obtain parameter

estimates of the model. Sections 2.2.4, 2.2.5, and 2.2.6 introduce the method

for incorporating both complete and incomplete data via a hybrid-Gibbs Sam-

pler, and Section 2.2.7 discusses the techniques used to assess convergence of

the Markov chains.

We first apply and test our method on simulated data (described in Sec-

tion 2.3) and then apply the method to some kinematic data of satellites or-

biting the Milky Way (described in Section 2.4). The results of these analyses

are presented and discussed in Sections 2.5 and 2.6 respectively. Many future

prospects are also discussed in Section 2.6.

2.2 Background

This section provides background information and notation about distribution

functions, the models we use in our analysis, and the methods of Bayesian in-

ference as they apply to the current problem. Additional details and discussion

can be found in Eadie (2013).

2.2.1 Distribution Function

The Distribution Function (DF), f(r,v), is a probability density function that

gives the probability of finding a particle with a position r and velocity v within
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a phase-space volume element d3rd3v (Binney & Tremaine, 2008). Like any

probability density, the DF integrates to one:

∫
f(r,v)d3rd3v = 1. (2.1)

Eq. 2.1 is often renormalized so that the DF integrates to a quantity of interest,

such as the total mass Mtot:

∫
f(r,v)d3rd3v = Mtot. (2.2)

However, in a Bayesian framework the DF as defined in eq. 2.1 is used, and

thus the left-hand-side of eq. 2.2 is divided by Mtot. Thus, it is important that

models have a finite mass in a Bayesian analysis— if the mass is infinite, then

the DF is not a proper probability distribution.

A DF can be specified by use of Jeans’ Theorem, which states that any

solution of the time-independent collisionless Boltzmann equation is a function

of the phase-space coordinates (r,v) only. In a time-independent system, the

Hamiltonian H = v2

2
+Φ(r) is always an integral of motion, and if the system is

also spherical then the magnitude of the angular momentum, L, is an integral

of motion too. Therefore, any non-negative function f(H) or f(H,L) will be

a solution to the time-independent collisionless Boltzmann equation, and thus

a DF for the system. Whether or not f is a function of H or both H and

L determines the velocity dispersion of the system; f(H) corresponds to an

isotropic system, and f(H,L) corresponds to an anisotropic system.

In practice, a DF corresponding to an isotropic, spherical, self-consistent

system is usually written in terms of E , the relative energy per unit mass,
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defined as

E = −v
2

2
+ Ψ(r) (2.3)

where v is the speed of a particle at a distance r from the center of the system,

and Ψ(r) is the relative gravitational potential of the system at r, as defined

in Binney & Tremaine (2008). Particles with E ≤ 0 are unbound and require

f = 0. If the system has an anisotropic velocity dispersion, then the DF is

written as a function of both E and the angular momentum L.

2.2.2 Models

Models with analytic DFs are preferable to empirical distribution functions in

theoretical analyses because they allow for easy sampling of the distribution,

and also save computation time by avoiding numerical integration. Finding a

DF that models a realistic galaxy is a difficult task, however, because galaxies

are often composed of multiple subsystems such as a bulge, a stellar halo, a

dark matter halo, and possibly a disk. Finding a single phase-space distribu-

tion function that is self-consistent, analytic, and that describes the intricate

features of a galaxy is very challenging.

An empirical luminosity profile that has been successful in fitting the sur-

face brightness profiles of elliptical galaxies and bulges is the de Vaucouleurs

(1948) R1/4 profile. A generalization of the R1/4 profile is R1/n, which was

introduced by Sersic (1968). Due to the success of R1/4, theorists have tried

to develop distribution functions that can reproduce the profile. The ana-

lytic models introduced by Jaffe (1983) and Hernquist (1990) fit the R1/4 type

galaxies well for most radii.

In this work, primarily for the purpose of testing the method, we use the
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Hernquist and Jaffe models because of their analytic simplicity and their ubiq-

uity. The Hernquist model also has the benefit of having more than one

analytic DF— one has an isotropic velocity dispersion, and there are a few

that are anisotropic. Furthermore, both the Hernquist and Jaffe models are

self-consistent and have a finite total mass, making consistent numerical com-

putations feasible. For these reasons, we use the Hernquist-style models to

lay out the methodology of our Bayesian approach and the derivation of mass

profile credible regions. In future work, we will extend the method to include

models with non-analytic DFs and non-finite mass distributions, such as the

Navarro et al. (1996) (NFW) model.

Hernquist (1990) introduced a halo model that is a self-consistent, ana-

lytic potential-density pair. With G ≡ 1, the gravitational potential of the

Hernquist model is

Φ(r) = −Mtot

r + a
(2.4)

and the mass density profile is

ρ(r) =
aMtot

2πr (r + a)3 (2.5)

whereMtot is the total mass of the system, and a is the scale radius. Integrating

over a sphere, the Hernquist cumulative mass profile is then,

M(r) = Mtot
r2

(r + a)2
(2.6)

Hernquist (1990) provides two DFs for their model that are written in terms

of elementary functions: one for an isotropic velocity dispersion, and a second

for an anisotropic velocity dispersion of the Osipkov (1979) and Merritt (1985)
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type (hereafter OM-type). The OM-type allows the anisotropy to vary as a

function of r, and includes a constant parameter called the anisotropy radius

ra:

β(r) =
r2

r2 + r2
a

(2.7)

The parameter ra controls the degree of radial anisotropy in the system at

different radii. As ra →∞, β(r)→ 0 (completely isotropic).

The third Hernquist DF used in this research has a constant anisotropy

β = 0.5, which was derived by Evans & An (2006). We consider this model

because recent research by Deason et al. (2013) showed that blue horizontal

branch (BHB) stars have a radially biased velocity anisotropy of 0.5 between

16 and 28kpc, suggesting that β may be approximately constant for most of

the stellar halo.

We also consider the isotropic Jaffe (1983) model in this work, which has

mass profile and potential

M
J
(r) = Mtot

r

aJ(r + aJ

(2.8)

Φ
J
(r) = Mtot

ln (1 + a
J
/r)

a
J

(2.9)

where aJ is the scale radius.

Overall, we fit the Milky Way data to four different models: three Hernquist

models with different anisotropies (isotropic, OM-type, constant anisotropy

(β = 0.5), and the isotropic Jaffe model.
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2.2.3 Bayes Theorem and Parameter Estimation

Bayes’ Theorem is named after Thomas Bayes (1701-1761) and was introduced

posthumously by Richard Price (Bayes & Price, 1763). Using the rules of con-

ditional probabilities, Bayes showed that the conditional probability p(A|B)

is,

p(A|B) =
p(B|A)p(A)

p(B)
(2.10)

now known as Bayes’ Theorem.

Bayesian inference involves using eq. 2.10 in data analysis to obtain prob-

ability distributions about model parameters. Bayesian inference returns a

probability distribution for parameters given the data and a prior distribution

on the parameters.

When Bayes’ Theorem is used for Bayesian inference, it is re-written in

terms of the vector of model parameters θ and the data y, and is sometimes

referred to as Bayes’ rule. The Bayesian posterior probability for θ, given some

data y, is then

p (θ|y) =
p (y|θ) p (θ)

p (y)
(2.11)

where p (y|θ) is called the likelihood, p (θ) is the prior probability on the param-

eters, and p (y) is the marginal probability of the data. Because the marginal

probability does not depend on θ, and with fixed y can be considered a con-

stant, it is common practice to sample the unnormalized posterior probability,

p (θ|y) ∝ p (y|θ) p (θ) . (2.12)

The pioneering work by Bahcall & Tremaine (1981) showed that the DF
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determines the likelihood p(y|θ). For example, the probability of the first

satellite in our data set having r1 and v1, given the model parameters, is

f(r1,v1|θ). Assuming all n satellites in the data set are independent, the

probability of their corresponding positions and velocities is the product of

the DFs, and thus the likelihood is

p(y|θ) =
n∏
i=1

f(ri,vi|θ). (2.13)

Therefore, eq 2.12 becomes

p (θ|y) ∝
n∏
i=1

f(ri,vi|θ)p (θ) . (2.14)

Sampling eq. 2.14 is usually done via a Markov Chain Monte Carlo (MCMC)

method, which creates a Markov chain— a sequence of random variables, θt,

where t = 1, 2, 3... represents the position in the chain. Every random variable

in the chain depends only on the variable before it, θt−1 (Gelman et al., 2003).

When MCMC algorithms are used to sample a Bayesian posterior density,

then by construction, the Markov chain is a collection of parameter vectors

that have the same stationary distribution as the posterior (eq. 2.11).

We apply the Metropolis algorithm (Metropolis & Ulam, 1949; Metropolis

et al., 1953) to sample eq. 2.14. The Metropolis algorithm is iterative and

creates a Markov chain whose stationary distribution is proportional to the

Bayesian posterior probability in question. The Markov chains in this work

are constructed as follows (Gelman et al., 2003):

1. Draw a trial value θ∗ from a symmetric proposal distribution

2. Calculate d = p(θ∗|y)
p(θt−1|y)
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3. If d > 1, then accept θ∗ as θt

(a) set θt = θ∗

(b) return to step 1

4. If instead d < 1, then accept θ∗ with probability d

(a) draw a random number z from the uniform distribution U (0, 1)

(b) if d > z then accept θ∗ as in step 3, and return to step 1

(c) if d < z then reject θ∗

i. set θt = θt−1

ii. return to step 1

Accepting θ∗ only when d > z ensures that the θ values are accepted

with probability proportional to the posterior, provided that the chain has

converged to the target distribution. The above process is repeated N times,

resulting in a Markov chain with N values of θ which represents samples from

the posterior.

Because a Bayesian analysis leads to distributions for parameters, the re-

sults are arguably easier to interpret. The Markov chains can be used to

acquire estimates, uncertainties, and probabilities pertaining to model param-

eters. Furthermore, the uncertainties can be carried forward to subsequent

modeling and analysis.

A Bayesian analysis can also easily include nuisance parameters— param-

eters in the model whose values are unknown but not necessarily of interest

to the researcher. This feature turns out to be useful in our current problem

of galaxy mass estimation; sometimes we do not know the tangential velocity

component of a satellite object, but we can treat that unknown component as

a nuisance parameter in the model.
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2.2.4 Nuisance (vt) Parameters

In a Galactocentric coordinate system, the total speed of a satellite in orbit

around the Galaxy can be written

v =
√
v2
r + v2

t (2.15)

where vr and vt are the radial and tangential components respectively. In turn,

v2
t = v2

φ + v2
θ . (2.16)

The total speed of a satellite is needed for the DF f(r, v|θ) in the likelihood

of Bayes’ theorem. However, proper motion measurements are not available for

all satellites. In many cases, distant tracers of the MW have only line-of-sight

velocity measurements with respect to our position in the Galaxy. We want

to use this satellite information in our analyses, but without a proper motion,

the line-of-sight velocity in the local standard of rest frame does not give us vr

or vt in Galactocentric coordinates. For very distant objects, the line-of-sight

velocity is approximately vlos ≈ vr, since the angle created by the location of

the Sun, the satellite, and the center of the galaxy is quite small. However, we

still have no value for vt. If we treat these unknown vt’s as nuisance parameters

in the model, then Bayes’ rule reads,

p(θ|y) ∝
n∏
i=1

f(ri, vr,i)|θ, vt,i)p(θ)p(vt,i) (2.17)

where p(vt,i) is the prior probability on the tangential velocity of the ith satel-

lite, to be discussed in section 2.2.6.
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2.2.5 The Gibbs Sampler

When nuisance (vt) parameters are present, we use a Gibbs sampler, which was

first introduced by Geman & Geman (1984) in the area of image processing,

and then adapted to iterative simulations in the study of statistics by Tanner

& Wong (1987). Gelfand & Smith (1990) then showed how to apply it to

Bayesian inference. Since then, the Gibbs sampler has been applied to many

problems (Gelman et al., 2003, and references therein).

The Gibbs sampler is sometimes called alternating conditional sampling,

and can be very useful in multi-dimensional problems where θ = (θ1, ..., θn)

(Gelman et al., 2003). The Gibbs algorithm samples each of the parameters

(θ1, ..., θn) one at a time, based on the current value of all of the other param-

eters and the conditional probability given those parameters.

Consider θi, the ith parameter in a model with n parameters, and let θ−i

represent all of the other parameters. Next, let t be the tth iteration of the

chain— the chain that will be a sample of the posterior distribution p(θ|y). In

the Gibbs sampler, each θi is sampled one at a time based on its conditional

probability given the current values of all of the other parameters,

p(θi|θt−1
−i , y) (2.18)

where θt−1
−i represents the other parameters at their current value,

θt−1
−i = (θt1, ..., θ

t
i−1, θ

t−1
i+1 , ..., θ

t−1
n ).

In our work, we do not directly sample the conditional distributions (eq. 2.18)
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because they are usually not available. Instead, we use a Metropolis step to up-

date the conditional distributions. Thus, we employ a hybrid-Gibbs sampler:

we use a symmetric proposal distribution, so that the accept/reject condi-

tion of the trial parameter θ∗i follows the same algorithm as that described in

section 2.2.3, except d is now

d =
p
(
θ∗i |θt−1

−i , y
)

p
(
θt−1
i |θt−1

−i , y
)

(Gelman et al., 2003).

In the problem at hand, the hybrid-Gibbs sampler is more efficient than

a standard Metropolis algorithm. The latter method samples all parameters

simultaneously, while the former samples parameters individually. Under the

Metropolis algorithm, if even one parameter suggestion is highly improbable,

then the entire vector of parameters is likely to be rejected. Therefore, a high-

dimensional Markov chain may take an extremely long time to walk through

parameter space and converge to the posterior distribution. By contrast, the

hybrid-Gibbs sampler is much more efficient in our high-dimensional Markov

chain (there are 2 model parameters, and 44 tangential velocity parameters for

the Milky Way data discussed below). The parameters Mtot and a are sampled

simultaneously, based on the current vt parameters, and the vt parameters are

sampled individually based on the current values of all the other parameters.

Using the hybrid-Gibbs sampler for the vt’s allows us to obtain a probability

distribution for each vt parameter efficiently. We can look at the probability

distribution for each vt and make a prediction of the most probable vt value for

each satellite. Although we find that the resulting vt distributions are quite

diffuse, and a meaningful prediction of vt cannot be made from them, the
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hybrid-Gibbs sampler method is nevertheless efficient and in general does not

affect the mass estimate of the Galaxy (as will be shown below). If we assume

that the satellite is bound to the galaxy, then by setting eq. 2.3 to zero we

obtain an upper limit on the tangential velocity,

vt,max =
√

2Ψ(r)− v2
r . (2.19)

2.2.6 Prior Probabilities

In a Bayesian analysis, the choice of a prior can be thought of as a chance for

the researcher to state plainly and explicitly the prior assumptions. When little

is known about the problem at hand, it is common to use a noninformative

prior, so that the information contained in the likelihood is not overwhelmed

by information contained in the prior.

In this preliminary analysis, we use uniform priors for all of the model

parameters because we assume little about the mass and scale of the system.

The uniform prior for each parameter θ is,

p(θ) =
1

θmax − θmin
(2.20)

where θmin and θmax are the lower and upper bounds of the uniform distribu-

tion. In practice, the parameters are sampled in the natural log-space to ensure

that the total mass and scale radius are always positive. The Markov chain

values are then exponentiated before examination of the posterior. The bounds

(θmin, θmax) that we use for Mtot and a are on the order of (108, 1015)M� and

(10−2, 106)kpc respectively.
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When the tangential velocities are treated as nuisance parameters and sam-

pled in the Markov chain, they too require a prior. The tangential velocity

is a 2-dimensional vector on the plane of the sky, so we would like the prior

on vt to be uniform in v2
t . Because we are sampling vt and not the squared

tangential velocity, the uniform prior on v2
t needs to be transformed to one for

vt.

Here we use Jeffreys’ invariance principle (Jeffrey, 1939). Suppose a pa-

rameter θ has a prior distribution p(θ), and that a one-to-one transformation

is subsequently performed on θ such that φ = h(θ). Then the Jeffrey’s prior

for φ which expresses the same belief as that of p(θ) is

p(φ) = p(θ)

∣∣∣∣dθdφ
∣∣∣∣ = p(θ) |h′(θ)|−1

(2.21)

(Gelman et al., 2003).

Following equation 2.21, let θ = v2
t and φ = vt, so that h(θ) =

√
v2
t . Then

the prior on vt is given by

p(vt) =
2vt

v2
t,max − v2

t,min

. (2.22)

The minimum tangential velocity, vt,min, is zero, and the maximum tangential

velocity, vt.max, is a large constant. Note that if a value of vt that makes a

particle unbounded is suggested in the Markov chain, it will be rejected via

the likelihood.
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2.2.7 MCMC Chains and Assessing Convergence

The computer code created for this research is written for the R Project for

Statistical Computing (R), an open source software environment for statistical

computing and graphics (R Development Core Team, 2012) with many well-

developed and efficient statistical diagnostic tools. Recently, R has gained

popularity in astronomy and the field of astrostatistics (e.g. Feigelson & Babu,

2012), and our code is being developed into an R package, called Galactic

Mass Estimator (hereafter GME).

GME takes data of the form (r, vr, vt) in Galactocentric coordinates, allows

the user to select one of five DFs, constructs three Markov chains in parallel,

and then combines them into a final, single chain after convergence conditions

have been met. The result is a single Markov chain that represents samples

from the posterior distribution for the model parameters, given the data. The

SNOW package (Tierney et al. (2013)) is used for parallel computing, and the

CODA package (Plummer et al., 2006) is used for convergence diagnostics.

Many diagnostics to assess convergence of a Markov chain have been de-

veloped, and most of these methods use multiple chains. One advantage of

running multiple chains is that the initial values can be dispersed widely in

the parameter space, and then convergence can be approximated when they

appear to reach a common stationary distribution. This approach allows more

exploration of the parameter space and makes it less likely for a local maxi-

mum to be mistaken for the mode of the posterior. Furthermore, using multiple

chains on the same data set allows estimates of convergence to be obtained

in a more reliable and quantitative manner than a single chain. Gelman &

Rubin (1992) suggest using the statistic R̂ to assess the mutual convergence
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of parallel chains:

R̂ =

√
v̂ar+ (ψ|y)

W
. (2.23)

In equation 2.23, v̂ar+ (ψ|y) is the marginal posterior variance of the estimand

[parameter], which is essentially a weighted average of the within-chain vari-

ance W , and between-chain variance B (see Gelman et al., 2003, for more

details). In practice, R̂ is calculated for each parameter separately; to assume

convergence, Gelman et al. (2003) recommend a value of R̂ < 1.1 for every

parameter, and this is the criterion we use. The R̂ statistic is available in the

R Software Statistical Computing Language in the CODA package (Plummer

et al., 2006).

In this work, the three Markov chains’ starting values are widely dispersed

in the parameter space, and each chain is run for i = 103 iterations. After this

initial run, R̂ is calculated for each parameter. If any of the parameters have

R̂ > 1.1, then it is assumed that the chains have not converged, and the last

parameter values in each chain are used as the initial parameters in three new

chains. The process is repeated until all parameters across all three chains

have R̂ < 1.1, at which point convergence is assumed. The final sample of

the posterior distribution is created by combining the last halves of the three

chains, thus providing 1500 parameter vector samples. Prior to this final step,

however, we check the effective sample sizes of the Markov chains.

In general, the draws in a Markov chain are not truly independent; some

autocorrelation exists in the sequence of samples (Gelman et al., 2003). The

effective sample size is the equivalent number of independent samples:

neff = mn
v̂ar+ (ψ|y)

B
(2.24)

65



Ph.D. Thesis - Gwendolyn M. Eadie McMaster University - Physics & Astronomy

where m is the number of parallel Markov chains and n is the number of draws

in each chain (Gelman et al., 2003). If the draws in all chains were perfectly

independent, then the number of independent draws would be mn. However,

the draws within a chain are general autocorrelated, and so B > v̂ar+ (ψ|y),

and neff < mn. An effective sample size of at least 100 is necessary to obtain

reliable first-moment statistics such as the mean and median, while an effective

sample size over 200 is needed for second-order moments.

In our code, we use the effectiveSize function in the CODA package (Plum-

mer et al., 2006), and find that all parameters had effective sample sizes greater

than 300 for all models when i = 104. An acceptance rate between 20 and 30%

is required for the vt parameters, and an acceptance rate of 30-40% is required

for the model parameters. The final chain (15000 samples) for each model is

visually inspected to ensure that the three chains did not reach very different

maxima in the posterior distribution.

2.3 Simulations

Prior to data analysis, we explored the statistical properties of our Bayesian es-

timates under repeated sampling, using simulation. Unfortunately, a Bayesian

analysis cannot be repeated when the data is real (i.e. for a single data set).

A Bayesian analysis can be repeated, however, with simulated data sets pro-

duced from the same DF, and analysed independently using the same model.

By examining the range of parameter estimates, the average behaviour of the

model on this type of data can be explored. Simulations and analyses of trivial

cases (i.e. when the model and data have the same distribution) are also an

effective way to test code.
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It is expected that when the simulated data come from the same DF as

that of the model, then on average the Bayesian parameter estimates should

be correct. Furthermore, quantities like uncertainties and credible intervals

should be reliable (e.g. a 50% credible region should contain the true parameter

values 50% of the time). In contrast, when the simulated data comes from a

different DF than that of the model, biases in the estimates may occur, and

the credible regions may become unreliable (e.g. overconfident). Moreover,

we need to investigate whether or not treating missing vt measurements as

parameters affects other parameter estimates, regardless of whether or not the

data and model share the same DF.

We simulate mock observations of 100 satellites orbiting a galaxy whose

gravitational potential follows the Hernquist model. The mock tracer observa-

tions include their distances r and velocity components vr and vt. We explore

the effects of assuming an isotropic Hernquist model in the following three

scenarios:

1. isotropic data with complete velocity vectors

2. isotropic data with 50 unknown vt values

3. constant anisotropic data from the β = 0.5 Henquist model, with 50

unknown vt’s

For each scenario, we create 500 data sets with 100 particles each. The

Bayesian analysis is performed on each set of data, as described in Sections 2.2.3 -

2.2.7, yielding 500 Markov chains for each scenario. From these chains, statis-

tics such as the mean parameter estimate and credible intervals are calculated.

For all the simulations, we use Mtot = 1012M� and a = 15kpc to generate

the data. Our choice for the total mass is based on many other studies that
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have shown the Milky Way’s mass to be close to this order of magnitude. For

numerical simplicity, the following units are used in our code: the gravitational

constant G ≡ 1, r is measured in kiloparsecs (kpc), velocity components are

measured in 100km s−1, and mass is measured in 2.325× 109M�.

2.4 Kinematic Data for the Milky Way

In principle, any well-defined object orbiting the Galaxy with a measured

distance from the Galactic center and at least one velocity measurement may

be used to estimate the mass of the Milky Way. In this work, as a first run,

we use only globular clusters (GCs) and dwarf galaxies (DGs). It is possible

to measure the proper motions and line-of-sight velocities of these tracers in

the Galaxy’s halo, and to convert these measurements into Galactocentric

coordinates. Indeed, many of the kinematic measurements and conversions

have already been made (e.g. Dinescu et al., 1999; Casetti-Dinescu et al., 2010,

2013; Boylan-Kolchin et al., 2013). However, the proper motions of many GCs

and DGs have yet to be measured, and so the conversion from our frame

of reference to a Galactocentric one cannot be performed. Nevertheless, the

line-of-sight velocities of these objects are available, and could contain useful

information about the Galaxy’s mass profile. Thus, we incorporate some of

this incomplete data into our analysis.

The data used in this research are in Galactocentric coordinates (see Ta-

ble 2.1). The first 59 objects are GCs, and the last 29 are DGs. Note that

26 GCs and 18 DGs listed do not have tangential velocities, because they

have no proper motion measurements. The Galactocentric radial velocities for

these data must be approximated, for which we assume vr ≈ vlos. We use
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this approximation only for objects with |cos γ| ≥ 0.95 (where γ is the an-

gle subtended by the line connecting the Sun and the Galactic Centre, from

the object), guaranteeing that any further adjustment to vlos will be small.

We also exclude the following clusters, even though they have |cos γ| ≥ 0.95,

because they are either associated with the Sagittarius dwarf galaxy or their

measurements suffer from high extinction: Djorg 1, NGC 6401, NGC 6715,

NGC 6544, NGC 6715, Pal 6, Terzan 1, Terzan 6, Terzan 7, and Terzan 8.

Table 2.1: Milky Way Kinematic Data

Object r vr ∆vr vt ∆vt cos γ
(kpc) (km s−1) (km s−1)

NGC 104 7 17.0 0.2 171.0 22.0 0.15
NGC 288 11 16.0 0.4 59.0 18.0 0.75
NGC 362 9 55.0 0.5 85.0 31.2 0.61
NGC 1851 16 186.0 0.6 170.0 42.4 0.89
NGC 1904 18 93.0 0.5 83.0 44.7 0.94
NGC 2298 14 -58.0 1.3 100.0 52.7 0.89
Pal 3 85 -247.0 8.4 242.0 121.5 1.00
NGC 4147 19 57.0 1.0 161.0 65.7 0.93
NGC 4590 9 -99.0 0.6 300.0 35.6 0.69
NGC 5024 18 -106.0 4.1 250.0 86.5 0.90
NGC 5139 6 -31.0 0.7 65.0 14.1 0.05
NGC 5272 12 2.0 0.4 164.0 24.5 0.75
NGC 5466 16 254.0 0.3 216.0 66.8 0.88
Pal 5 16 -11.0 16.0 62.0 38.0 0.95
NGC 5897 7 49.0 1.0 138.0 59.4 0.79
NGC 5904 6 -313.0 0.5 234.0 39.6 0.33
NGC 6093 3 60.0 4.1 85.0 28.2 0.67
NGC 6121 6 -58.0 0.4 25.0 22.6 -0.91
NGC 6144 3 109.0 1.1 137.0 33.3 0.47
NGC 6171 4 20.0 0.3 156.0 36.9 -0.29
NGC 6205 8 279.0 0.9 129.0 35.0 0.48
NGC 6218 5 -21.0 0.6 168.0 22.0 -0.46
NGC 6254 5 -53.0 1.1 178.0 28.3 -0.59
NGC 6341 9 70.0 1.7 46.0 26.2 0.61
NGC 6362 5 -40.0 0.6 134.0 20.5 0.25
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Object r vr ∆vr vt ∆vt cos γ
(kpc) (km s−1) (km s−1)

NGC 6397 6 18.0 0.1 166.0 16.3 -0.83
NGC 6584 6 150.0 15.0 185.0 55.9 0.88
NGC 6626 3 8.0 1.0 172.0 26.4 -0.87
NGC 6656 5 172.0 0.6 214.0 31.9 -0.94
NGC 6712 4 208.0 0.6 132.0 21.5 -0.08
NGC 6752 5 -19.0 1.5 200.0 11.4 -0.50
NGC 6779 9 172.0 0.9 39.0 58.1 0.63
NGC 6809 4 -181.0 0.4 119.0 30.4 -0.49
NGC 6838 7 3.0 0.2 180.0 17.8 -0.05
NGC 6934 12 -305.0 1.6 124.0 93.0 0.86
NGC 7078 10 -74.0 0.6 141.0 34.7 0.70
NGC 7089 10 46.0 0.9 331.0 63.9 0.74
NGC 7099 7 14.0 1.0 120.0 30.8 0.46
NGC 5634 21 -0.8 6.6 – – 0.95
NGC 6284 8 0.3 1.7 – – 0.98
NGC 6356 7 0.6 4.3 – – 0.97
NGC 6426 14 -0.5 23.0 – – 0.96
NGC 6441 4 -0.0 1.0 – – 0.95
NGC 6453 4 -0.9 8.3 – – 0.98
NGC 6540 3 0.0 1.4 – – -0.97
NGC 6569 3 -0.2 5.6 – – 0.95
NGC 6864 15 -1.1 3.6 – – 0.96
IC 1257 18 -66.5 2.1 – – 0.99
Arp 2 21 153.0 10.0 – – 0.99
NGC 7492 25 -97.4 0.6 – – 0.95
NGC 5824 26 -117.7 1.5 – – 0.98
Pal 13 27 192.4 0.3 – – 0.95
NGC 5694 29 -228.1 0.8 – – 0.98
NGC 6229 30 22.6 7.6 – – 0.96
Whiting 1 35 -103.5 1.8 – – 0.98
Pal 2 35 -104.4 57.0 – – 1.00
Pal 15 38 147.8 1.1 – – 0.99
NGC 7006 39 -185.2 0.4 – – 0.98
Pyxis 41 -195.2 1.9 – – 0.98
Pal 14 72 165.4 0.2 – – 1.00
NGC 2419 90 -26.4 0.5 – – 1.00
Eridanus 95 -141.0 2.1 – – 1.00
Pal 4 111 50.5 2.1 – – 1.00
AM 1 125 -41.6 20.0 – – 1.00
Fornax 140 -31.8 1.7 196.0 29.0 1.00
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Object r vr ∆vr vt ∆vt cos γ
(kpc) (km s−1) (km s−1)

LeoI 261 167.9 2.8 101.0 34.4 1.00
LMC 49 93.2 3.7 346.0 8.5 0.99
SMC 60 6.8 2.4 259.0 17.0 0.99
Sculptor 87 79.0 6.0 198.0 50.0 1.00
Draco 92 -98.5 2.6 210.0 25.0 1.00
BootesI 57 106.6 1.0 – – 0.99
BootesII 43 -115.6 5.0 – – 0.98
CanesVenaticiI 219 76.8 1.0 – – 1.00
CanesVenaticiII 150 -96.1 1.0 – – 1.00
Carina 102 14.3 1.0 – – 1.00
ComaBernices 45 82.6 5.0 – – 0.98
Hercules 141 142.9 1.0 – – 1.00
LeoII 235 26.5 8.0 – – 1.00
LeoIV 154 13.9 1.0 – – 1.00
LeoV 175 62.3 3.0 – – 1.00
Sagittarius 16 166.3 60.0 – – 0.93
Segue1 28 113.5 1.0 – – 0.97
Segue2 41 39.7 1.0 – – 0.99
Sextans 89 78.2 1.0 – – 1.00
UrsaMajorI 101 -8.8 1.0 – – 1.00
UrsaMajorII 36 -36.5 2.0 – – 0.99
UrsaMinor 77 -89.8 8.0 – – 1.00
Willman1 42 33.7 2.0 – – 0.98

NOTE: Columns from left to right: objects’ names, Galactocentric distance,
radial velocity, uncertainty in radial velocity, tangential velocity, uncertainty
in tangential velocity,and cos γ. All data are in Galactocentric coordinates (r,
vr, vt) as described in Section 2.2.4, with the exception of GCs and DGs that
lack tangential velocities (see text). Conversions from line-of-sight and proper
motion measurements to Galactocentric measurements were completed by the
studies mentioned in Section 2.4.

The GC data are taken from Dinescu et al. (1999), Casetti-Dinescu et al.

(2010), Casetti-Dinescu et al. (2013), and Harris (1996), while data for six of

the DGs are taken from Sohn et al. (2013) (Leo I), Pryor et al. (2014) (Draco),
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and Boylan-Kolchin et al. (2013) (Fornax, LMC, SMC, and Sculptor). The

rest of the dwarf galaxy data, which do not have tangential velocities, are

from the compilation given in Watkins et al. (2010) and references therein.

Uncertainties in the Watkins et al. (2010) dwarfs’ vr values are taken from the

HyperLeda Catalogue (Paturel et al., 2003), with the exception of those for

Coma Berenices, Sagittarius, and Sextans, which are taken from Simon & Geha

(2007), Ibata et al. (1997), and Walker et al. (2006) respectively. The r-values

in Table 2.1 are based on mean magnitudes of RR Lyrae and horizontal branch

stars, and are uncertain to typically 5% (see Harris, 1996). The uncertainties

associated with r and vr, and the differences in the LSR assumed motion used

among the different studies are / 15 km/s, and thus unimportant compared

to the uncertainties associated with the vt values.

In the following analysis, we specifically assume (a) a spherical Hernquist-

like or Jaffe-like halo potential, (b) equal weights for all data points, (c) no

net rotation of the halo, and (d) that all tracers are bound to the Galaxy.

2.5 Results

2.5.1 Simulation Results

Figure 2.1 shows the distribution of the mean parameter estimates from sce-

nario 1. Black dots are the mean of the estimates, and red dashed lines are

the true parameter values. On average, the estimates are unbiased within one

standard deviation (sd), and the sd of the chains is roughly equal to the sd of

the estimates.

Because the Markov chain represents the posterior distribution, we can also
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Figure 2.1: Empirical distribution of Mtot and a estimates from simulated data
analysis. Black points and red dashed lines show the mean of the estimates
and the true value of the parameter respectively. The standard deviation of
the estimates is 0.07 and 1.77 for Mtot and a respectively.
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Figure 2.2: Example of predicted and true mass profile from analysis of sim-
ulated data. The true M(r) profile is shown in red, and the 50, 75, and 96%
credible regions are shown as shades of teal. Note: this is the result from one
analysis (i.e. one data set).
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calculate credible regions — Bayesian analogues of confidence intervals — for

the M(r) profile. An example of the mass profile credible regions for one data

set is shown in Figure 2.2, where shades of teal show the 50, 75, and 95%

credible intervals as a function of r. Credible regions are found by calculating

M(r) at several different r values, for every set of parameters in the Markov

chain. The true M(r) profile is the solid red line, calculated from eq. 2.6 and

the true Mtot and a. We find that the credible regions are reliable when the

DF of the assumed model and the DF of the data are the same. For example,

the true M(r) curve fell within the 75% credible region seventy-five percent of

the time over the course of the 500 analyses for scenario 1.

In scenario 2, we randomly remove 50 vt’s from each data set, and treat

them as parameters in the analysis. We find a very small positive bias in both

the Mtot and a estimates, as shown in the top two panels in Fig. 2.3. The bias

is insignificant, as the means of the estimates (1.01×1012M� and 15.2kpc) are

within one standard deviation of the distribution (0.08× 1012M� and 1.9kpc,

respectively). The slight although insignificant positive bias suggests that the

median may be a better estimate of the mass than the mean, but the median

is almost identical to the mean in all cases.

In scenario 3 recall that an isotropic model is assumed, but the data sets

in scenario 3 have constant anisotropic velocity dispersions β = 0.5. Despite

the data and model having different DFs, the estimates show only a slight

positive bias; the true Mtot and a are still within one standard deviation of

the distribution (see Fig. 2.3). The mean of the estimates for Mtot and a are

1.01± 0.08× 1012M�and 15.3± 1.8kpc, respectively.

Examples of mass profile credible regions from scenarios 2 and 3 are pre-

sented in Fig. 2.4. Note that the introduction of vt parameters tends to increase
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Figure 2.3: Empirical distribution of Mtot and a estimates from simulated
data analysis, with 50 tangential velocities removed. The top panels are for
scenario (2) and the bottom, (3). The black points and red dashed lines show
the mean of the estimates and the true value of the parameters respectively.
The standard deviations of the estimates in scenario (2) are 0.08 × 1012M�
and 1.9kpc, while the standard deviations are 0.08 × 1012M� and 1.8kpc in
(3).
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Figure 2.4: Example cumulative mass profile when 50 vt’s are unknown, and
an isotropic Hernquist model is assumed. The true profile is shown as a solid
red line, and the credible regions are shown as shades of teal. The left profile
is scenario (2) and the right is scenario (3).
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the width of the credible regions at all r values compared to Fig. 2.2. In sce-

nario 2, we find the credible regions to be slightly over confident for values of

17 < r < 35kpc, with the true M(r) falling within the 50, 75, and 95% regions

48, 73, and 93% of the time over the 500 analyses. At all other r values, how-

ever, the credible regions are reliable. In scenario 2, the credible regions are

slightly lower than the true cumulative mass profile; the opposite is the case

for scenario 3, but for both the true curve still lies in the 75% credible region

for most r (see Fig. 2.4). We reiterate, however, that Fig. 2.4 are examples of

M(r) profiles from a single data set and analysis. Over 500 analyses we find

that the 50, 75, and 95% credible regions do contain the true M(r) 50, 75, and

95% of the time, in both scenarios 2 and 3, for almost all r.

2.5.2 Milky Way Results

Assuming an isotropic Hernquist model, and using all the kinematic data from

Table 2.1, we find a mean Mtot of 1.55 ± 0.08 × 1012 M� and a scale radius

of 16.9 ± 2.3 kpc, where the uncertainties are the standard deviations of the

parameters in the Markov chain. The 95% credible regions for Mtot and a

are (1.42, 1.73) × 1012 M� and (12.8, 21.7) kpc respectively. We also report

the mean Mtot and scale radius, with uncertainties of one standard deviation,

when the other models are assumed (Table 2.2). The mass estimates and scale

radii vary only slightly between Hernquist models. The Jaffe model’s mass is

similar, but the Jaffe scale radius radius cannot be compared directly to that

of Hernquist because they have physically different definitions.

The mass profile credible regions are shown in Fig. 2.5. The innermost dark

region corresponds to the 50% credible region. The vertical dashed lines show
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Figure 2.5: Mass profile credible regions assuming a Hernquist model with
isotropic velocity dispersion. The dashed lines indicate the location of NGC
6540 and Leo I (the closest and furthest objects from the Galactic center
respectively in our dataset).

the extent of the data, with NGC 6540 and Leo I being the closest and furthest

objects from the Galactic center respectively. The mass contained within the

distance of Leo I is 1.37+0.14
−0.10× 1012M�, where the uncertainties correspond to

the 95% credible interval.
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Table 2.2: Parameter Estimates for the Milky Way.

All Data Without Pal 3 Without Draco

Model - σ2 Mtot Scale Radius Mtot Scale Radius Mtot Scale Radius
(1012M�) (kpc) (1012M�) (kpc) (1012M�) (kpc)

H - iso 1.55 ± 0.08 16.9 ± 2.3 1.36 ± 0.07 16.7 ± 2.2 1.55 ± 0.08 16.8 ± 2.3
H - OM 1.52 ± 0.08 16.7 ± 2.2 1.34 ± 0.06 16.4 ± 2.1 1.52 ± 0.08 16.6 ± 2.2
H - β = 0.5 1.47 ± 0.07 12.1 ± 1.9 1.31 ± 0.06 12.3 ± 1.9 1.46 ± 0.07 11.9 ± 1.8
Jaffe - iso 1.61 ± 0.09 47.7 ± 8.5 1.38 ± 0.06 48.9 ± 8.7 1.57 ± 0.08 45.2 ± 8.2

NOTE: In the first column, the first three models are of the Hernquist type, with isotropic, OM-type anisotropy, and
constant anisotropy. The last row shows the results of assuming an isotropic Jaffe model. Uncertainties are one standard
deviation of the posterior distribution.
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Some satellites may have a large effect on the mass estimate of the Galaxy.

Leo I, for example, remained a contentious object for many years, because it

is at a large distance from the Galactic center and it was unclear whether or

not it is bound to the MW. Recently, however, Boylan-Kolchin et al. (2013)

showed that Leo I is likely bound to the MW. Furthermore, when Leo I’s proper

motion is taken into account, the object has little effect on the mass estimate

of the Galaxy (Wilkinson & Evans, 1999). We run our analysis assuming the

isotropic Hernquist model both with and without Leo I, and we also find that

it has no effect within error on Mtot. When Leo I is removed from the analysis,

Mtot = 1.52±0.07×1012M� and a = 16.2±2.2 kpc, very similar to the values

obtained when Leo I is present.

The five other DGs in our data set that have measured proper motions are

Draco, Fornax, Sculptor, and the Large and Small Magellanic Clouds (here-

after LMC and SMC). We obtain parameter estimates assuming an isotropic

Hernquist model with each of these dwarfs removed, and find that the mass

and scale radii do not change within error in any case.

Another object to consider is Sagittarius. In Section 2.4, we argued that

vlos ≈ vr for tracers with |cos γ| ≥ 0.95, but Sagittarius is relatively close-

by at 16 kpc and has |cos γ| = 0.93, so one may question the inclusion of

this object. However, once again we find little change in the mass estimate

without it, for all models. For example, the isotropic Hernquist model returned

Mtot = 1.55± 0.08× 1012M�, which is almost identical to the result obtained

using all the data (see Table 2.2). The scale radius is also unchanged within

error (17.0± 2.2kpc).

We also investigate the effects on the mass estimate when tangential ve-

locities are treated as parameters. To do this, we first obtain a mass estimate
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using only the Dinescu data (i.e. using only objects with complete velocity

vectors), and find a slightly lower mass of 1.47± 0.08× 1012 M�. Next, we re-

move five tangential velocities from the data, and repeat the analysis treating

those missing vt’s as parameters. Repeating this process and removing five dif-

ferent vt’s each time, we find that the vt’s cannot be well estimated. However,

treating vt’s as parameters has little to no effect on the mass estimate, within

error. There is one exception to the latter statement: when Pal 3’s tangential

velocity was removed, the mass estimate was reduced significantly.

To investigate the influence of Pal 3 further, we performed an analysis

using only the Dinescu data, but without Pal 3’s vt value. Treating Pal 3’s vt

as a parameter, the mass estimate of the Milky Way fell by more than 50%

(Mtot = 0.76±0.06×1012M�). We also ran the analysis using only the Dinescu

data, but without any vt’s. In this case, Mtot = 0.8 ± 0.1 × 1012M�, which

is similar to the estimate obtained in the former analysis. We note, however,

that Pal 3 has the most uncertain vt measurement in the list (Table 2.1). It is

evident that including measurement uncertainties in the analysis would reduce

its leverage considerably.

Using all kinematic data, but removing Pal 3 from the analysis, also re-

sulted in reduced mass estimates. Furthermore, the effect is observed regard-

less of the selected model (Table 2.2). Thus, Pal 3’s proper motion, and indeed

Pal 3 in general, has significant influence on the mass estimate of the Galaxy.

This issue regarding Pal 3 confirms the finding of Sakamoto et al. (2003), who

noted that high-velocity objects such as Pal 3 and Draco can have a significant

effect on the mass estimate of the Galaxy. As mentioned previously, we also

test the effect of Draco on the mass estimate and find that it has little effect

on the mass estimate (Table 2.2).

81



Ph.D. Thesis - Gwendolyn M. Eadie McMaster University - Physics & Astronomy

0 50 100 150 200 250 300

−30

−20

−10

0

r (kpc)

E
 (1

00
km

 s
−1

 )2

complete data
incomplete data
Pal 3
Draco
Leo I
Φ(r)

Figure 2.6: Satellite energies given the model parameters from the isotropic
Hernquist model fit. Satellites without tangential velocities are shown as open
circles, and are plotted using the estimated vt value from the model fit. Un-
bound (escaping) objects would lie above the dotted line.

To demonstrate the effectiveness of using vt’s as parameters, consider Fig-

ure 2.6. Using eq. 2.3 and the mean parameter values from the isotropic

Hernquist model fit, we plot the negative of the tracers’ specific energies as a

function of r. Filled points are satellite data with complete velocity vectors,

and hollow points are data with unknown vt’s (plotted using the mean vt esti-

mates from the Markov chain). As demonstrated by our simulations and tests

with the Dinescu data, the vt values cannot be well estimated. However, the

vt parameters appear to converge to an average vt for a given r value, and this

is reflected in the positions of the hollow points in Fig. 2.6.

The results demonstrate that in a small sample of data, some objects carry

greater influence on the mass estimate than others. Furthermore, the variation

in these results implies that it would be fruitful to weight the data by their
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Figure 2.7: Distribution of Mtot and a estimates from the third sensitivity
analysis. The black dots show the mean of the estimates. The value of the
mean and the standard deviation of the empirical distribution are shown in
the legend.

measurement uncertainties. In a Bayesian analysis, however, a fully hierarchi-

cal approach is necessary to properly include the measurement uncertainties

of the data, and a probability distribution for the errors must be assumed. We

leave this analysis to a future paper, and instead perform three more approx-

imate sensitivity analyses.

The first two sensitivity analyses are extreme cases: (1) all the tangen-

tial velocities are increased by 2∆vt, and (2) all the tangential velocities are

decreased by 2∆vt. In the third and more realistic sensitivity analysis, we

randomly change each vt into a new tangential velocity vt,new via,

vt,new = vt +N(0,∆vt) (2.25)
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where N(0,∆vt) represents a random number drawn from a normal distribu-

tion with mean zero and variance ∆vt. Using eq. 2.25, we generate 100 data

sets with new vt values, and then analyze these data sets assuming the isotropic

Hernquist model. The estimates of Mtot and a from the 100 analyses have a

distribution that confirms the results of the original analysis (Fig. 2.7); the

mean of the estimates is nearly identical to the result in Table 2.2.

The results of the sensitivity analyses show that a proper treatment of

the measurement uncertainties is worth pursuing. In future analyses, we plan

to incorporate the measurement uncertainties of the data via a hierarchical

model.

2.6 Discussion and Future Prospects

The results of this study are promising. Not only does the Bayesian analysis

provide an effective way of incorporating complete and incomplete data, but it

also enables easy calculation of probabilistic credible regions for the cumulative

mass profile. Furthermore, even though this is a preliminary analysis, and

mostly meant to lay the groundwork for future studies, our total mass estimates

are similar to other studies that use different methods.

Because our method returns a sample of parameter values representing the

posterior distribution, it is easy to compare our results with mass estimates,

at any radii, obtained in other studies. We can compute M(r) credible regions

from our Markov chain at any r value, and obtain a mass estimate at that

radius, with uncertainties.

A collection of total mass estimates within r = 100kpc, from 10 different

studies, has been compiled by Courteau et al. (2014). Our mass estimate at this
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radius assuming the isotropic Hernquist model is M100 = 1.14× 1012M�with

a 95% credible region of (1.05, 1.26)×1012M�, which is within the range of

values listed in the review.

Watkins et al. (2010) find the mass within 300 kpc to be 0.9 ± 0.3 ×

1012M� for an isotropic model. Our estimate M300 assuming an isotropic

model is 1.39 × 1012M�with a 95% credible region of (1.29, 1.53)×1012M�.

When they consider an anisotropic velocity distribution with β derived from

the observational data, however, they find 3.4± 0.9× 1012M�, in contrast to

our β = 0.5 constant anisotropic model that gives M300 = 1.35 × 1012M�,

with a 95% credible interval of (1.27,1.51)×1012M�.

Deason et al. (2013) used BHB stars to trace the MW’s mass, and found

M(r = 50kpc) to be approximately 4×1011M�, assuming a model of constant

anisotropy with β = 0.5. However, our mass estimate for the MW at 50kpc,

using the Hernquist constant anisotropic model, is substantially higher at 9.5×

1011M� with a 95% credible interval of (8.5, 11.0)× 1011M�. Even removing

Pal 3 from the data set does not lower this estimate significantly, reducing it

to 8.5× 1011M�with a 95% credible interval of (7.5, 9.6)× 1011M�.

Using a truncated, flat rotation curve model, Battaglia et al. (2005) found

the mass of the MW dark matter halo to be 1.2+1.8
−0.5 × 1012M� , and with an

NFW model found a virial radius of 0.8+1.2
−0.2 × 1012M�. Boylan-Kolchin et al.

(2013) estimate the MW virial mass at 1.6× 1012M�, with a 90% confidence

interval of 1.0 to 2.4 × 1012M�. Sohn et al. (2013) use the timing argument

of Leo I to arrive at a virial mass estimate Mvir = 3.15+1.58
−1.36 × 1012M�. Li

& White (2008) found the virial mass to be 2.4× 1012M�, with a lower 95%

confidence level of 0.8 × 1012M�. Thus, our preliminary results are on par

with many other studies that use different methodologies.

85



Ph.D. Thesis - Gwendolyn M. Eadie McMaster University - Physics & Astronomy

To our knowledge, no other studies besides Sakamoto et al. (2003) have

found Pal 3 to carry so much weight in the analysis. Pal 3’s proper motion

is already known (though with large uncertainties) and the satellite does not

lie as far from the Galactic center as Leo I and other satellite dwarfs, which

may have allowed its effect to go unnoticed. Removing Pal 3’s true vt from

the analysis and treating it as a parameter lowered the mass significantly,

suggesting that the tangential velocity is in the tail of the vt distribution at

r = 84kpc. The DGs in our data set, on the other hand, seem to have little

individual influence on the mass estimate of the Galaxy even though some

have high velocities and large distances from the galactic center.

Many improvements, challenges, and exploratory analyses remain:

1. One way to substantially improve the analysis is to incorporate measure-

ment uncertainties via a hierarchical model, rather than the preliminary

sensitivity analysis performed here. In the Bayesian paradigm, a prob-

ability density function of the measurement errors must be assumed.

For example, for each data point the known measurement uncertainty

may be used to define the variance of a Gaussian distribution centered

on the measurement value. Objects with high influence when measure-

ment errors are ignored (e.g. Pal 3) might have reduced influence when

measurement errors are included.

2. An immediate challenge is finding models with distribution functions

that are tractable and that describe the Milky Way in a more sophisti-

cated manner. Using the NFW model is of particular interest because it

is known to fit the dark matter halos of galaxies on many different scales,

as well as groups and clusters of galaxies. The NFW DF, however, is not
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analytic. Although numerical solutions for the NFW DF have been de-

rived, applying them in the Bayesian framework is more difficult because

of the model’s infinite mass. When a model’s DF does not integrate to a

finite mass (eq. 2.2) then it is not a proper probability distribution— a

requirement when applying Bayes’ theorem. We are currently exploring

the problem through an Approximate Bayesian Computation (ABC) al-

gorithm, which allows for calculations of posterior distributions without

explicit calculation of the likelihood.

3. The DFs for all of the models employed here are analytic. Furthermore,

the models are self-consistent— i.e. we implicitly assume that the dark

matter and the satellites follow the same distribution. However, it is

possible that the tracers (GCs and DGs) have a different distribution

than the dark matter halo particles. For example, the tracers may have

a Hernquist-type density profile ρH(r) given by eq. 2.5, but may reside

in an NFW gravitational potential given by

ΦNFW(r) = −4πρor
2
s

ln (1 + r/rs)

r/rs
. (2.26)

In this situation, there are two extra parameters, rs and ρo, which corre-

spond to the scale length and density parameter of the dark matter halo.

We can derive the DF for such a model via the Eddington formula:

f(E) =
1√
8π2

∫ E
0

1√
E −Ψ

(
d2ρ

dΨ2

)
dΨ +

1√
E

(
dρ

dΨ

)
Ψ=0

(2.27)

where Ψ = Φ − Φo is the relative potential (see Binney & Tremaine,

2008). For the Hernquist model, ρ can be written as an analytic function
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of Ψ, and the integral can be evaluated in closed form. For the case at

hand, however, the relation between ρH and ΨNFW is a transcendental

equation. Nevertheless, the integral required in the Eddington formula

can be evaluated numerically. Widrow et al. (2008), for example, used

this method to derive DFs for their self-consistent disk-bulge-halo galaxy

models. A numerically derived DF may still be used with our method, as

long as it is a normalized probability distribution. We plan to implement

models of this type in future studies of tracer populations.

4. Different velocity anisotropy formalisms are also of interest. For example,

other Hernquist model DFs of different anisotropies are discussed by

Cuddeford (1991) and Baes & Dejonghe (2002). The former derived a

velocity anisotropy that is a generalization of the OM-type anisotropy,

where another parameter β0 is introduced such that

β(r) =
r2 + β0r

2
a

r2 + r2
a

. (2.28)

When β0 = 0, eq. 2.28 reduces to OM-type anisotropy. As ra → ∞,

β(r) → β0, in constrast to eq. 2.7. Baes & Dejonghe (2002) derive a

Hernquist DF using this formalism, and show that only four values of

β0 lead to DFs that can be expressed in terms of elementary functions.

The simplest of these DFs occurs when β0 = 0.5, while the other DFs

are ”...somewhat more elaborate” and not provided (Baes & Dejonghe,

2002).

5. We will explore biases that may occur due to selection effects. In the

Hernquist simulations used here, some tracers are unrealistically far from
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the Galactic center (e.g. more than 500kpc away), while our kinematic

data set has a range from r = 3kpc to 261 kpc. Imposing a more realistic

range on simulated data may or may not introduce biases in parameter

estimates.

6. Further along the line, it will be exciting to apply the method pre-

sented here to large datasets of field halo stars, leading up to the GAIA

data. Sakamoto et al. (2003) showed that including many field horizontal

branch stars greatly reduced the effect of high-velocity objects (such as

Draco and Pal 3) on the mass estimate of the Milky Way. Therefore, it

can be expected that the accurate and abundant kinematic data from

GAIA will also improve our mass estimates in a major way and decrease

the effect of outliers.

7. The method outlined in this paper could also be extended to obtain

mass estimates of other galaxies for which tracer objects will have only

the projected positions and line of sight velocities.

Summary

We have introduced a method to estimate the mass of the Milky Way that

incorporates both complete and incomplete data for positions and velocities

of tracers. The method treats unknown tangential velocities as parameters in

the model. Simulations showed that although the tangential velocities cannot

be well constrained, treating vt’s as parameters has little effect on the mass

estimate when other complete velocity vectors are available. An exception does

occur, however, when a tracer has an unusually extreme tangential velocity
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(e.g. Pal 3).

Under simple assumptions of a Hernquist-like halo potential and modest

anisotropy, we find Mtot ≈ 1.3− 1.5× 1012M�, in good agreement with other

recent work. For an isotropic model we find Mtot = 1.55×1012M� with a 95%

credible interval of (1.42, 1.73) × 1012M�, and a scale radius of a = 16.9kpc.

We also report the mass contained within 260kpc: 1.37×1012M�, with a 95%

credible interval of (1.27, 1.51)× 1012M�.

In future research, we will be incorporating measurement uncertainties into

the analysis and will test more extensively for parameter biases. We also plan

to use the NFW model and find other DF’s to use in the GME code. The

method outlined here will eventually be applied to extragalactic studies, where

the complete velocity vectors of the tracers are unknown.
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Abstract

We present mass and mass profile estimates for the Milky Way (MW)

Galaxy using the Bayesian analysis developed by Eadie et al. (2015b) and

using globular clusters (GCs) as tracers of the Galactic potential. The dark

matter and GCs are assumed to follow different spatial distributions; we as-

sume power-law model profiles and use the model distribution functions de-

scribed in Evans et al. (1997) and Deason et al. (2011, 2012a). We explore the

relationships between assumptions about model parameters and how these as-

sumptions affect mass profile estimates. We also explore how using subsamples

of the GC population beyond certain radii affect mass estimates. After explor-

ing the posterior distributions of different parameter assumption scenarios, we

conclude that a conservative estimate of the Galaxy’s mass within 125kpc is

5.22 × 1011M�, with a 50% probability region of (4.79, 5.63) × 1011M�. Ex-

trapolating out to the virial radius, we obtain a virial mass for the MW

of 6.82 × 1011M�with 50% credible region of (6.06, 7.53) × 1011M�(rvir =

185+7
−7kpc). If we consider only the GCs beyond 10 kpc, then the virial mass

is 9.02 (5.69, 10.86) × 1011M� (rvir = 198+19
−24kpc). We also arrive at an esti-

mate of the velocity anisotropy parameter β of the GC population, which is

β = 0.28 with a 50% credible region (0.21, 0.35). Interestingly, the mass esti-

mates are sensitive to both the dark matter halo potential and visible matter

tracer parameters, but are not very sensitive to the anisotropy parameter.
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3.1 Introduction

The Milky Way’s (MW’s) composition, structure, dynamical properties, and

formation history are heavily influenced by two important properties: its total

mass and mass profile. However, inferring the mass profile of the Milky Way

(MW) is a task fraught with uncertainty. Direct observations of dark matter,

the most important component of the Galaxy’s mass, still elude us. There-

fore, astronomers must rely on kinematic information of tracer objects such as

globular clusters (GCs), dwarf galaxies (DGs), stellar streams, and halo stars

whose orbits are influenced by the Galaxy’s gravitational potential.

Attempts to use these objects are made more difficult because many of the

three-dimensional velocity measurements are incomplete (i.e., proper motions

are unknown). Although some tracers’ velocity measurements are complete,

popular mass estimators do not make use of both incomplete and complete data

at the same time. For example, projected mass estimators rely on line-of-sight

velocities (e.g., the mass estimators introduced by Bahcall & Tremaine, 1981;

Evans et al., 2003; Watkins et al., 2010). On the other hand, mass estimators

that use proper motions only use a subset of the data, because they require

complete velocity vectors. So overall, we seem to have a dilemma; either we

(1) throw away proper motion measurements, or (2) throw away some of the

line-of-sight velocity measurements.

Watkins et al. (2010) (hereafter W10) developed two different mass esti-

mators: one that uses line-of-sight velocities only, and one that uses full three-

dimensional space motions. In an attempt to use all the data available, W10

employed each mass estimator separately, and combined the two estimates by

a weighted average. This approach, however, requires a decision about how to
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weight each estimator, and also relies on Monte Carlo simulations to determine

uncertainties. Furthermore, W10 find the mass estimators are quite sensitive

to the velocity anisotropy.

Cosmological simulations have also shown that the spatial distributions

of the dark matter and the tracers are probably quite different, and thus the

density profiles of the tracers and the gravitational potential of the dark matter

are not self-consistent. This inconsistency makes it difficult to model the phase-

space distribution function (DF) of the tracer particles.

Because of the aforementioned issues, the MW’s mass and mass profile

estimates remain very uncertain, with values routinely varying between 1011

and 1012M� (see Wang et al., 2015, for a graphic of mass estimates from

studies using different methods).

For quite some time now, in an effort to obtain better Galactic mass esti-

mates, both maximum likelihood and Bayesian methods have been adopted,

with the pioneering paper being Little & Tremaine (1987) (see also Kulessa

& Lynden-Bell, 1992; Kochanek, 1996; Wilkinson & Evans, 1999; McMillan,

2011; Kafle et al., 2012; Eadie et al., 2015b; Williams & Evans, 2015; Küpper

et al., 2015).

Eadie et al. (2015b, hereafter EHW) introduced a Bayesian analysis which

estimates the cumulative mass profile of the Galaxy with both complete and

incomplete kinematic data used simultaneously. The method uses the phase-

space DF of the tracers, f(E , L) as determined by the physical model (Binney

& Tremaine, 2008). Thorough testing of the method was performed with

simulated data, and a preliminary analysis was done using real data (GCs and

local DGs). The simulations showed that the Bayesian method is a powerful

way to include complete and incomplete kinematic data simultaneously, and
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the preliminary analysis gave a total mass for the Galaxy that was in agreement

with many other studies (although the range of values in the literature is wide).

Furthermore, we found that estimating the mass in this way was relatively

insensitive to the velocity anisotropy assumption.

In the discussion section of EHW, we listed ways to improve the analysis

in future work. One major step-forward is to implement a model in which

the spatial distribution of the dark matter halo is different from the spatial

distribution of the satellites. Deriving a DF for such a model, in terms of

the energies and momenta of tracers, can be quite difficult; the Eddington-

equation method described in Binney & Tremaine (2008) (and also used below)

requires the density profile of the tracers ρ to be written as a function of the

gravitational potential Φ, which may not be possible if ρ and Φ do not obey

Poissons equation. Still, there are realistic cases in which ρ can be written

as a function of Φ, even when they are not self-consistent, and for which a

non-negative DF can be found.

3.2 The Power Law Model

We assume a galaxy model first proposed by Evans et al. (1997), and also

used by Deason et al. (2011); Watkins et al. (2010), in which the gravitational

potential and the density profile of the satellites follow different power-law

profiles. For such power-law profiles, the DF is analytic (see below), and

thus provides a major advantage for assessing the effects of the important

parameters of the model.

The first step in setting up the model is to derive the DF in terms of the

parameters. Evans et al. (1997) derived a family of DFs for their generalized
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power-law model in terms of the specific energy and angular momentum of

galactic satellites. This DF was later adopted by Deason et al. (2011, 2012a),

with a slightly different parametrization of the gravitational potential, and

used in a maximum likelihood analysis to obtain an estimate for the mass

profile of the MW, given the kinematic information of blue horizontal branch

(BHB) stars.

Various pieces of the DF derivation are given in Evans et al. (1997) and

Deason et al. (2011, 2012a), but their notations differ substantially and the

exact form of the normalization constant is unclear. In our experience, this

can lead to confusion. Therefore, for completeness and clarity, we provide a

short derivation of the DF using the parameterization and notation introduced

by Deason et al. (2011).

The number density profile for the satellites (tracers) is given by

ρt ∝
1

rα
(3.1)

where α may be a free parameter (we drop the constant for Equation 3.1 as this

factor is only related to the number of satellites). The gravitational potential

of the dark matter halo (assumed to be spherical) is

Φ =
Φo

rγ
(3.2)

where both γ and Φo may be free parameters. The values of γ and Φo will

determine the cumulative mass profile of the dark matter halo through the

equation:

M(r) =
γΦo

G

(
r

kpc

)1−γ

(3.3)
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(Deason et al., 2012b). For γ → 0, M(r) approaches an isothermal sphere.

The opposite extreme, γ → 1, corresponds to the Keplerian case of a central

point mass. Mathematically, the values of Φo and γ in Equation 3.3 may be

any pair of real numbers. However, physically there are restrictions on their

allowed values: Φo plays a large role in determining the mass and must be

positive, and 0 < γ < 1 if the cumulative mass profile is to be a constant

or increasing function of radius. Although the parameters α and β do not

appear in Equation 3.3, their values will determine the shape of the posterior

distribution, and may affect the estimates for Φo and γ.

We use the Eddington-equation method described in Binney & Tremaine

(2008) to solve for the isotropic DF f(E) in terms of the binding energy E =

−v2/2 + Φ(r), where

f(E) =
1√
8π2

∫ E
0

1√
E − Φ

(
d2ρt
dΦ2

)
dΦ +

1√
E

(
dρt
dΦ

)
Φ=0

(3.4)

To solve Equation 3.4, Equation 3.1 must be written as a function of Equa-

tion 3.2. Solving Equation 3.2 for r, and substituting into Equation 3.1 gives

ρt(Φ) ∝
(

Φ

Φo

)α/γ
. (3.5)

The derivatives of the above equation are,

dρt
dΦ
∝ α

γ

(
Φ

Φo

)α
γ
−1

1

Φo

(3.6)

and

d2ρt
dΦ2

∝ α

γ

(
α

γ
− 1

)(
Φ

Φo

)α
γ
−2

1

Φ2
o

. (3.7)
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We assume and require that α
γ
> 1 (i.e. the satellite profile is steeper than the

dark matter profile). With this restriction in place, Equation 3.6 goes to zero

as Φ → 0, making the second term in Equation 3.4 vanish. The DF for the

isotropic case is then,

f(E) =
1√
8π2

α

γ

(
α

γ
− 1

)
1

Φ2
o

∫ E
0

1√
E − Φ

(
Φ

Φo

)α
γ
−2

dΦ. (3.8)

The solution to this integral is analytic, albeit tedious. Use the substitution

u = Φ/E to solve the integral, and then apply the recursion relation xΓ(x) =

Γ(x+ 1), twice, to simplify the final expression to

f(E) =
E
α
γ
− 3

2

√
8π3Φ

α
γ
o

Γ
(
α
γ

+ 1
)

Γ
(
α
γ
− 1

2

) . (3.9)

Equation 3.9 is the probability distribution of the specific energies of tracers

in the potential Φ, assuming an isotropic velocity dispersion.

The velocity dispersion of Milky Way satellites is likely to be at least mildly

anisotropic. Cuddeford (1991) showed that a way to incorporate velocity

anisotropy is to multiply the DF by the specific angular momentum L = rvt,

f(E , L) ∝ L−2βf(E). (3.10)

Here, β is the velocity anisotropy parameter,

β = 1−
σ2
θ + σ2

φ

2σ2
r

(3.11)

and σ2
θ , σ

2
φ, and σ2

r are the velocity variances in spherical coordinates (Binney

& Tremaine, 2008). A system with completely radial orbits or completely
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tangential orbits will have β = 1 or β → −∞ respectively, while an isotropic

velocity dispersion will have β = 0.

Evans et al. (1997) derived the normalization for Equation 3.10, and this

factor depends on the parameters of interest. We reproduce their result here,

the complete anisotropic DF, slightly re-organized and in Deason’s notation:

f(E , L) =
L−2βE

β(γ−2)
γ

+α
γ
− 3

2

√
8π32−2βΦ

− 2β
γ

+α
γ

o

Γ
(
α
γ
− 2β

γ
+ 1
)

Γ
(
β(γ−2)

γ
+ α

γ
− 1

2

) . (3.12)

Note that as β → 0, Equation 3.12 reduces to Equation 3.9. In summary, this

model has four parameters:

Φo the scale factor for the gravitational potential

γ the power-law slope of the gravitational potential

α the power-law slope of the satellite population

β the velocity anisotropy parameter

The parameters γ, α, and β are restricted by Equation 3.12 and the require-

ment that the DF be non-negative,

α > β(2− γ) +
γ

2
(3.13)

(Evans et al., 1997, but be aware of notational differences).

In practice, the dark matter halo profile is often assumed to follow an

NFW-type or Sérsic/Einasto-type function (e.g. Merritt et al., 2006). We ex-

perimented with such models but found that converting these to a DF becomes

intractable analytically. There are numerical approximations to such models
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that are themselves quite complex (e.g. Widrow, 2000), but for the present pur-

pose we stick to analytic models for simplicity. While a power-law potential for

the dark matter is simplistic, it is also a common assumption in methodologies

that use DFs (Deason et al., 2012a; Williams & Evans, 2015). Furthermore, a

power-law potential (Equation 3.2) has the benefit of approximating an NFW

profile at large radii when γ = 0.5 (Watkins et al. 2010; Deason et al. 2011),

with recent analyses suggesting a transition radius around 10kpc (Huang et al.,

2016; Harris, 2001).

In this study, we use the Deason power-law model shown in Equation 3.12,

and assume that all tracers are bound to the spherically symmetric, non-

rotating system, i.e., E > 0. We explore the parameter space and mass profiles

predicted by the model when it is confronted with real data.

3.3 Kinematic Data: Globular Clusters

In this study, and in contrast to EHW, we use only GCs to trace the Galactic

potential. In principle, we could include kinematic data for both DGs and GCs

to help extend the estimated M(r) profile to larger distances. However, the

model parameter α is meant to describe the power-law slope distribution of a

single population, and the GCs’ and DGs’ spatial distributions may be quite

different. Thus, we only use GCs, but will return to this point in a later paper.

Although metal-rich and metal-poor GCs may also have different distributions,

we treat them as a single population: the metal-poor ones ([Fe/H]< −1)

dominate the numbers, particularly at large Galactocentric radius.

Table 3.1 lists all the kinematic data available for 157 MW GCs, using the
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catalog of Harris (1996, 2010 edition) as a starting point. The Heliocentric line-

of-sight velocities vlos and the Galactocentric distances r are from the Harris

catalog, while the proper motions are taken from a variety of studies (see

the “µ Reference” column in the table). The Galactocentric distances were

calculated assuming the Sun’s position with respect to the Galactic center

as (X�, Y�, Z�) = (8.0, 0, 0.02)kpc (the height above the midplane is from

Humphreys & Larsen, 1995).

Almost half of the GCs in Table 3.1 have measured proper motions, many of

which are from the series of papers by Casseti-Dinescu, referenced collectively

as “Casseti” in the table (Dinescu et al., 1999, 2004, 2005; Casetti-Dinescu

et al., 2010, 2013)1. The GC M79 (NGC 1904) has two proper motion mea-

surements we are aware of: the first was calculated by Dinescu et al. (1999)

and is included in the Casetti online catalog, and the second was calculated by

Wang et al. (2005) using 29 years of photographic plates from the Shanghai

Observatory. We use the result from Wang et al. (2005) because it is more

recent, and agrees well with Dinescu et al. (1999).

Many Galactic GC proper motions are still unknown, although there are

observational programs such as HSTPROMO (Sohn, S. et al 2016, in progress)

which are beginning to remedy this issue. For example, the proper motions of

inner bulge GCs NGC 6522, NGC 6558, NGC 6540, NGC 6652, AL 3, ESO

456-SC38, Palomar 6, Terzan 2, Terzan 4, and Terzan 9 were recently measured

by Rossi et al. (2015). A proper motion measurement for NGC 6681 was made

for the first time by Massari et al. (2013), and an updated measurement for

47 Tuc (NGC 104) was recently completed by Cioni et al. (2016).

Two GCs found in the bulge, NGC 6528 and NGC 6553, have proper

1Updated catalog: www.astro.yale.edu/dana/gc.html
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motion measurements too (Feltzing & Johnson, 2002; Zoccali et al., 2001,

respectively), which can also be found in the Casseti online catalog. Pal 5’s

proper motion was measured by Fritz & Kallivayalil (2015) and Küpper et al.

(2015), and their uncertainties overlap, so we use the average µ of these two

studies.

We exclude some GCs in Table 3.1 from our analysis:

1. A few objects simply do not have any velocity measurements, such as

Ko 1, Ko 2, and AM 4.

2. Some GCs are known to be associated with the Sagittarius DG, and

their motions may be highly correlated with one another; these objects

include Arp 2, NGC 6715, NGC 5634, Terzan 7, Terzan 8, and Whiting

1 (Law & Majewski, 2010a).

3. The following GCs are subject to very high reddening: NGC 6401, NGC

6544, Terzan 1, Pal 6, Djorg 1, and Terzan 6. However, because of the

careful new measurements by Rossi et al. (2015), we include Terzan 1

and Pal 6 in the analysis.

4. Another GC of issue is outer-halo object Pal 3; EHW showed that Pal

3’s proper motion substantially affects the total mass estimate for the

Milky Way. However, the proper motion measurement for Pal 3 is highly

uncertain (Majewski & Cudworth, 1993). We are unaware of an updated

proper motion measurement for Pal 3, and thus decide to treat the proper

motion for this GC as unknown in the analysis.

5. We exclude some GCs that do not have proper motions, and explain why

below.
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To incorporate the incomplete data (GCs without proper motions) via the

methodology of EHW, we must make the approximation that the Heliocentric

line-of-sight velocity |vlos| is approximately equal to the Galactocentric radial

velocity |vr|. This approximation is only valid when the GC is either (1) very

far away, or (2) in line with the Sun and the Galactic center. To quantify

this argument, we define ξ as the angle subtended by the Sun, the GC, and

the center of the Galaxy, and as in EHW require that GCs without a proper

motion measurement have |cosξ| > 0.95 in order to be included. In these cases

we can safely make the approximation that |vlos| ≈ |vr|.

After culling the data for the above reasons, only 89 GCs remain in the sam-

ple. We note that our main motivation for using the EHW Bayesian method

was to incorporate all the available data, but we have just tossed aside over

a third of the data, mostly due to our imposed geometric requirement that

|cosξ| > 0.95. However, this is a temporary problem; in our next paper (G. M.

Eadie et al. 2016, in preparation), we will introduce a hierarchical version of

the EHW method that negates the need for this geometric requirement. The

GCs included in our current sample have a X in the “Included” column in

Table 3.1; 18 of the 89 GCs included in our sample have incomplete velocity

measurements.
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Table 3.1: Kinematic Data of Galactic Globular Clusters

Object r µα cos δ µδ vlos cos ξ µ Reference Included
kpc mas/year mas/year km s−1

NGC 104 7.4 7.26 ± 0.03 -1.25 ± 0.03 -18 ± 0.1 0.17 Cioni X
NGC 288 12.0 4.675 ± 0.219 -5.6 ± 0.35 -45.4 ± 0.2 0.75 Casseti X
NGC 362 9.4 4.873 ± 0.514 -2.727 ± 0.824 223.5 ± 0.5 0.61 Casseti X
Whiting 1 34.5 — — -130.6 ± 1.8 0.98 — —
NGC 1261 18.1 — — 68.2 ± 4.6 0.90 — —
Pal 1 17.2 — — -82.8 ± 3.3 0.93 — —
AM 1 124.6 — — 116 ± 20 1.00 — X
Eridanus 95.0 — — -23.6 ± 2.1 1.00 — X
Pal 2 35.0 — — -133 ± 57 1.00 — X
NGC 1851 16.6 1.28 ± 0.68 2.39 ± 0.65 320.5 ± 0.6 0.89 Casseti X
NGC 1904 18.8 2.34 ± 0.69 -0.5 ± 0.75 205.8 ± 0.4 0.94 Wang X
NGC 2298 15.8 4.05 ± 1 -1.72 ± 0.98 148.9 ± 1.2 0.89 Casseti X
NGC 2419 89.9 — — -20.2 ± 0.5 1.00 — X
Ko 2 41.9 — — — 1.00 — —
Pyxis 41.4 — — 34.3 ± 1.9 0.98 — X
NGC 2808 11.1 0.58 ± 0.45 2.06 ± 0.46 101.6 ± 0.7 0.71 Casseti X
E 3 9.1 — — — 0.57 — —
Pal 3 95.7 0.33 ± 0.23 0.3 ± 0.31 83.4 ± 8.4 1.00 Majewski X

& Cudworth (µ not included)
NGC 3201 8.8 5.28 ± 0.32 -0.98 ± 0.33 494 ± 0.2 0.43 Casseti X
Pal 4 111.2 — — 74.5 ± 2.1 1.00 — X
Ko 1 49.3 — — — 0.99 — —
NGC 4147 21.4 -1.54 ± 0.54 -3.285 ± 0.516 183.2 ± 0.7 0.93 Casseti X
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Object r µα cos δ µδ vlos cos ξ µ Reference Included
kpc mas/year mas/year km s−1

NGC 4372 7.1 -6.49 ± 0.33 3.71 ± 0.32 72.3 ± 1.2 0.24 Casseti X
Rup 106 18.5 — — -44 ± 3 0.93 — —
NGC 4590 10.2 -3.76 ± 0.66 1.79 ± 0.62 -94.7 ± 0.2 0.70 Casseti X
NGC 4833 7.0 -8.11 ± 0.35 -0.96 ± 0.34 200.2 ± 1.2 0.31 Casseti X
NGC 5024 18.4 0.5 ± 1 -0.1 ± 1 -62.9 ± 0.3 0.90 Casseti X
NGC 5053 17.8 — — 44 ± 0.4 0.90 — —
NGC 5139 6.4 -5.08 ± 0.35 -3.57 ± 0.34 232.1 ± 0.1 0.06 Casseti X
NGC 5272 12.0 -0.12 ± 0.607 -2.667 ± 0.404 -147.6 ± 0.2 0.75 Casseti X
NGC 5286 8.9 — — 57.4 ± 1.5 0.73 — —
AM 4 27.8 — — — 0.98 — —
NGC 5466 16.3 -3.9 ± 1 1 ± 1 110.7 ± 0.2 0.88 Casseti X
NGC 5634 21.2 — — -45.1 ± 6.6 0.96 — —
NGC 5694 29.4 — — -140.3 ± 0.8 0.98 — X
IC 4499 15.7 — — 31.5 ± 0.2 0.91 — —
NGC 5824 25.9 — — -27.5 ± 1.5 0.98 — X
Pal 5 18.6 -2.343 ± 0.356 -2.3085 ± 0.331 -58.7 ± 0.2 0.95 Fritz; Kupper X
NGC 5897 7.4 -4.93 ± 0.86 -2.33 ± 0.84 101.5 ± 1 0.79 Casseti X
NGC 5904 6.2 4.267 ± 0.597 -11.3 ± 1.457 53.2 ± 0.4 0.33 Casseti X
NGC 5927 4.6 -5.72 ± 0.39 -2.61 ± 0.4 -107.5 ± 1 0.23 Casseti X
NGC 5946 5.8 — — 128.4 ± 1.8 0.67 — —
BH 176 12.9 — — — 0.94 — —
NGC 5986 4.8 -3.81 ± 0.45 -2.99 ± 0.37 88.9 ± 3.7 0.67 Casseti X
Lynga 7 4.3 — — 8 ± 5 0.27 — —
Pal 14 71.6 — — 72.3 ± 0.2 1.00 — X
NGC 6093 3.8 -3.31 ± 0.58 -7.2 ± 0.67 8.2 ± 1.5 0.66 Casseti X
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Object r µα cos δ µδ vlos cos ξ µ Reference Included
kpc mas/year mas/year km s−1

NGC 6121 5.9 -12.657 ± 0.285 -19.387 ± 0.288 70.7 ± 0.2 -0.94 Casseti X
NGC 6101 11.2 — — 361.4 ± 1.7 0.87 — —
NGC 6144 2.7 -3.06 ± 0.64 -5.11 ± 0.72 193.8 ± 0.6 0.47 Casseti X
NGC 6139 3.6 — — 6.7 ± 6 0.70 — —
Terzan 3 2.5 — — -136.3 ± 0.7 0.23 — —
NGC 6171 3.3 -0.7 ± 0.9 -3.1 ± 1 -34.1 ± 0.3 -0.29 Casseti X
1636-283 2.1 — — — 0.27 — —
NGC 6205 8.4 -0.103 ± 0.797 4.687 ± 0.813 -244.2 ± 0.2 0.48 Casseti X
NGC 6229 29.8 — — -154.2 ± 7.6 0.97 — X
NGC 6218 4.5 1.15 ± 1.95 -7.75 ± 1.672 -41.4 ± 0.2 -0.48 Casseti X
FSR 1735 3.7 — — — 0.63 — —
NGC 6235 4.2 — — 87.3 ± 3.4 0.89 — —
NGC 6254 4.6 -5.75 ± 0.778 -4.75 ± 1.45 75.2 ± 0.7 -0.58 Casseti X
NGC 6256 3.0 — — -101.4 ± 1.9 0.83 — —
Pal 15 38.4 — — 68.9 ± 1.1 0.99 — X
NGC 6266 1.7 -3.5 ± 0.37 -0.82 ± 0.37 -70 ± 1.4 -0.64 Casseti X
NGC 6273 1.7 -2.86 ± 0.49 -0.45 ± 0.51 135 ± 4 0.55 Casseti X
NGC 6284 7.5 -3.66 ± 0.64 -5.39 ± 0.83 27.6 ± 1.7 0.99 Casseti X
NGC 6287 2.1 -3.68 ± 0.88 -3.54 ± 0.69 -288.7 ± 3.5 0.73 Casseti X
NGC 6293 1.9 0.26 ± 0.85 -5.14 ± 0.71 -146.2 ± 1.7 0.83 Casseti X
NGC 6304 2.3 -2.59 ± 0.29 -1.56 ± 0.29 -107.3 ± 3.6 -0.88 Casseti X
NGC 6316 2.6 -2.42 ± 0.63 -2.65 ± 0.56 71.5 ± 8.9 0.94 Casseti X
NGC 6341 9.6 -3.575 ± 0.893 -0.6 ± 0.601 -120 ± 0.1 0.61 Casseti X
NGC 6325 1.1 — — 29.8 ± 1.8 -0.11 — —
NGC 6333 1.7 -0.57 ± 0.57 -3.7 ± 0.5 229.1 ± 7 0.05 Casseti X
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Object r µα cos δ µδ vlos cos ξ µ Reference Included
kpc mas/year mas/year km s−1

NGC 6342 1.7 -2.77 ± 0.71 -5.84 ± 0.65 115.7 ± 1.4 0.39 Casseti X
NGC 6356 7.5 -3.14 ± 0.68 -3.65 ± 0.53 27 ± 4.3 0.97 Casseti X
NGC 6355 1.4 — — -176.9 ± 7.1 0.88 — —
NGC 6352 3.3 — — -137 ± 1.1 -0.59 — —
IC 1257 17.9 — — -140.2 ± 2.1 0.98 — X
Terzan 2 0.8 -0.94 ± 0.3 0.15 ± 0.42 109 ± 15 -0.59 Rossi X
NGC 6366 5.0 — — -122.2 ± 0.5 -0.76 — —
Terzan 4 1.0 3.5 ± 0.69 0.35 ± 0.58 -50 ± 2.9 -0.78 Rossi X
HP 1 0.5 — — 45.8 ± 0.7 0.43 — —
NGC 6362 5.1 -3.09 ± 0.46 -3.83 ± 0.46 -13.1 ± 0.6 0.26 Casseti X
Liller 1 0.8 — — 52 ± 15 0.30 — —
NGC 6380 3.3 — — -3.6 ± 2.5 0.91 — —
Terzan 1 1.3 0.51 ± 0.31 -0.93 ± 0.29 114 ± 14 -1.00 Rossi X
Ton 2 1.4 — — -184.4 ± 2.2 0.23 — —
NGC 6388 3.1 -1.9 ± 0.45 -3.83 ± 0.51 80.1 ± 0.8 0.71 Casseti X
NGC 6402 4.0 — — -66.1 ± 1.8 0.52 — —
NGC 6401 2.7 — — -65 ± 8.6 0.97 — —
NGC 6397 6.0 3.69 ± 0.29 -14.88 ± 0.26 18.8 ± 0.1 -0.82 Casseti X
Pal 6 2.2 2.95 ± 0.41 1.24 ± 0.19 181 ± 2.8 -1.00 Rossi X
NGC 6426 14.4 — — -162 ± 23 0.96 — X
Djorg 1 5.7 — — -362.4 ± 3.6 1.00 — —
Terzan 5 1.2 — — -93 ± 2 -0.90 — —
NGC 6440 1.3 — — -76.6 ± 2.7 0.45 — —
NGC 6441 3.9 -2.86 ± 0.45 -3.45 ± 0.76 16.5 ± 1 0.95 Casseti X
Terzan 6 1.3 — — 126 ± 15 -0.91 — —
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Object r µα cos δ µδ vlos cos ξ µ Reference Included
kpc mas/year mas/year km s−1

NGC 6453 3.7 — — -83.7 ± 8.3 0.98 — X
UKS 1 0.7 — — 57 ± 6 -0.24 — —
NGC 6496 4.2 — — -112.7 ± 5.7 0.86 — —
Terzan 9 1.1 0 ± 0.38 -3.07 ± 0.49 59 ± 10 -0.79 Rossi X
Djorg 2 1.8 — — — -0.93 — —
NGC 6517 4.2 — — -39.6 ± 8 0.74 — —
Terzan 10 2.3 — — — -0.94 — —
NGC 6522 0.6 3.35 ± 0.6 -1.19 ± 0.34 -21.1 ± 3.4 -0.47 Rossi X
NGC 6535 3.9 — — -215.1 ± 0.5 -0.05 — —
NGC 6528 0.6 -0.35 ± 0.23 0.27 ± 0.26 206.6 ± 1.4 -0.13 Feltzing X

& Johnson
NGC 6539 3.0 — — 31 ± 1.7 0.12 — —
NGC 6540 2.8 0.07 ± 0.4 1.9 ± 0.57 -17.7 ± 1.4 -0.95 Rossi X
NGC 6544 5.1 — — -27.3 ± 3.9 -0.95 — —
NGC 6541 2.1 — — -158.7 ± 2.4 -0.11 — —
2MS-GC01 4.5 — — — -0.95 — —
ESO-SC06 14.0 — — — 0.98 — —
NGC 6553 2.2 2.5 ± 0.065 5.35 ± 0.076 -3.2 ± 1.6 -0.88 Zoccali X
2MS-GC02 3.2 — — -238 ± 36 -0.95 — —
NGC 6558 1.0 -0.12 ± 0.55 0.47 ± 0.6 -197.2 ± 1.5 -0.56 Rossi X
IC 1276 3.7 — — 155.7 ± 1.3 -0.53 — —
Terzan 12 3.4 — — 94.1 ± 1.5 -0.90 — —
NGC 6569 3.1 — — -28.1 ± 5.6 0.95 — X
BH 261 1.7 — — — -0.85 — —
GLIMPSE02 3.0 — — — -0.75 — —
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Object r µα cos δ µδ vlos cos ξ µ Reference Included
kpc mas/year mas/year km s−1

NGC 6584 7.0 -0.22 ± 0.62 -5.79 ± 0.67 222.9 ± 15 0.88 Casseti X
NGC 6624 1.2 — — 53.9 ± 0.6 -0.01 — —
NGC 6626 2.7 0.63 ± 0.67 -8.46 ± 0.67 17 ± 1 -0.89 Casseti X
NGC 6638 2.2 — — 18.1 ± 3.9 0.71 — —
NGC 6637 1.7 — — 39.9 ± 2.8 0.55 — —
NGC 6642 1.7 — — -57.1 ± 5.4 0.16 — —
NGC 6652 2.7 4.75 ± 0.07 -4.45 ± 0.1 -111.7 ± 5.8 0.80 Rossi X
NGC 6656 4.9 7.37 ± 0.5 -3.95 ± 0.42 -146.3 ± 0.2 -0.95 Casseti X
Pal 8 5.5 — — -43 ± 15 0.92 — —
NGC 6681 2.2 1.58 ± 0.18 -4.57 ± 0.16 220.3 ± 0.9 0.55 Massari X
GLIMPSE01 4.9 — — — -0.54 — —
NGC 6712 3.5 4.2 ± 0.4 -2 ± 0.4 -107.6 ± 0.5 -0.09 Casseti X
NGC 6715 18.9 — — 141.3 ± 0.3 0.99 — —
NGC 6717 2.4 — — 22.8 ± 3.4 -0.23 — —
NGC 6723 2.6 -0.17 ± 0.45 -2.16 ± 0.5 -94.5 ± 3.6 0.41 Casseti X
NGC 6749 5.0 — — -61.7 ± 2.9 0.30 — —
NGC 6752 5.2 -0.69 ± 0.42 -2.85 ± 0.45 -26.7 ± 0.2 -0.50 Casseti X
NGC 6760 4.8 — — -27.5 ± 6.3 0.19 — —
NGC 6779 9.2 0.3 ± 1 1.4 ± 1 -135.7 ± 0.8 0.63 Casseti X
Terzan 7 15.6 — — 166 ± 4 0.98 — —
Pal 10 6.4 — — -31.7 ± 0.4 0.16 — —
Arp 2 21.4 — — 115 ± 10 0.99 — —
NGC 6809 3.9 -3.31 ± 0.945 -9.695 ± 0.554 174.7 ± 0.3 -0.47 Casseti X
Terzan 8 19.4 — — 130 ± 8 0.98 — —
Pal 11 8.2 — — -68 ± 10 0.83 — —
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Object r µα cos δ µδ vlos cos ξ µ Reference Included
kpc mas/year mas/year km s−1

NGC 6838 6.7 -2.3 ± 0.8 -5.1 ± 0.8 -22.8 ± 0.2 -0.06 Casseti X
NGC 6864 14.7 — — -189.3 ± 3.6 0.96 — X
NGC 6934 12.8 1.2 ± 1 -5.1 ± 1 -411.4 ± 1.6 0.86 Casseti X
NGC 6981 12.9 — — -345.1 ± 3.7 0.89 — —
NGC 7006 38.5 -0.96 ± 0.35 -1.14 ± 0.4 -384.1 ± 0.4 0.98 Casseti X
NGC 7078 10.4 -1.233 ± 0.617 -7.567 ± 1.77 -107 ± 0.2 0.70 Casseti X
NGC 7089 10.4 5.9 ± 0.849 -4.95 ± 0.849 -5.3 ± 2 0.74 Casseti X
NGC 7099 7.1 1.42 ± 0.69 -7.71 ± 0.65 -184.2 ± 0.2 0.45 Casseti X
Pal 12 15.8 -1.2 ± 0.3 -4.21 ± 0.29 27.8 ± 1.5 0.91 Casseti X
Pal 13 26.9 2.3 ± 0.26 0.27 ± 0.25 25.2 ± 0.3 0.95 Casseti X
NGC 7492 25.3 — — -177.5 ± 0.6 0.95 — X

Note: This table is available in machine-readable format
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3.4 Methods

3.4.1 Overview and Bayesian Inference

We estimate the mass profile of the Milky Way’s dark matter halo by assuming

the power-law model described in Section 3.2, using the Bayesian method

outlined in EHW, and confronting this model with the GC data described in

Section 3.3. For numerical purposes, we use G ≡ 1 units. The cumulative

mass profile in 1012M� units is then given by

M(< r) = 2.325× 10−3γΦo

(
r

kpc

)1−γ

. (3.14)

where Φo has units 104km2s−2 and r is in kpc.

The DFs in Eq. 3.9 and 3.10 require Galactocentric velocities in a spherical

coordinate system, rather than the Heliocentric proper motion and line-of-

sight measurements presented in Table 3.1. In the Galactocentric spherical

coordinate system, the binding energy E is given by

E = −1

2
(v2
r + v2

t ) + Φ(r) (3.15)

where vr and vt =
√
v2
φ + v2

θ are the radial and tangential velocities respec-

tively.

Heliocentric velocities (vlos, µα cos δ, µδ) are transformed to Galactocentric

velocities (U, V,W ) in a right-handed cylindrical coordinate system, follow-

ing the method outlined in Johnson & Soderblom (1987), but using J2000

epoch values for the North Galactic Pole. We assume the velocity of the Sun

with respect to the local standard of rest is (U�, V�,W�) = (11.1, 12.24, 7.25)
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km s−1(Schönrich et al., 2010), and take the local standard of rest velocity to

be 22km s−1. After transforming to (U, V,W ), the velocities are transformed

to spherical coordinates (vr, vφ, vθ).

When a tracer does not have a proper motion measurement, then the trans-

formations described above cannot be computed. For these objects, vt in Equa-

tion 3.15 is still unknown. This is where using the Bayesian paradigm comes

in handy: the unknown vt’s can be treated as parameters in the model.

Bayes’ theorem states that the posterior probability distribution p(θ|y) is

the probability of model parameters (θ), conditional on a set of data y:

p (θ|y) =
p (y|θ) p (θ)

p (y)
, (3.16)

where p (y|θ) is the likelihood, and p (θ) is the prior probability on θ (Bayes

& Price, 1763). The denominator is a normalization constant whose value is

not of interest— we may instead sample a distribution that is proportional to

the posterior distribution,

p (θ|y) ∝ p (y|θ) p (θ) , (3.17)

to obtain probabilities of model parameters given the data.

If there are n tracers, each with data (r, vr, vt), and assumed to be inde-

pendent, then the posterior probability is proportional to the product

p (θ|y) ∝
n∏
i

p (yi|θ) p (θ)

∝
n∏
i

p ((ri, vr,i, vt,i)|θ) p (θ) .
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In the case that vt is unknown, it becomes a nuisance parameter in the model,

p(θ|y) ∝
n∏
i

p ((ri, vr,i)|θ, vt,i) p(vt,i)p (θ) . (3.18)

We define p(vt,i),, the prior probability on vt,i, as a uniform distribution in v2
t

(this accounts for spherical geometry). The nuisance parameters are sampled

via a hybrid-Gibbs sampler, which is a mixture of a standard Metropolis algo-

rithm (Metropolis & Ulam, 1949; Metropolis et al., 1953) and a Gibbs sampler

(Geman & Geman, 1984). This method is an efficient way to treat the un-

known tangential velocities as parameters; see Eadie (2013) and EHW for more

details. For a comprehensive description of Gibbs sampling, see Gelman et al.

(2003).

3.4.2 Markov Chains

Samples of the posterior distribution are drawn via the hybrid-Gibbs sampler

described in EHW. We run three independent Markov chains in parallel: the

chains are initialized in different parts of parameter space and run until they

reach a common stationary distribution (Figure 3.1). The mutual convergence

of the chains is assessed by inspecting the trace plots of the chains and by

calculating the R̂ statistic (Gelman & Rubin, 1992).

Figure 3.1 is an example of a trace plot for three Markov chains that were

initialized at different Φo values, but which have reached a common posterior

distribution. Within the first few hundred iterations (the burn-in), these chains

appear to have reached a common location in parameter space. The burn-in is

discarded, and the Markov chains are run for at least 104 more iterations, after

which we confirm the effective sample size (neff) of the chains is at least 1000
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Figure 3.1: Example trace plot of three parallel Markov chains that are sam-
pling the parameter space of Φo.

(see EHW for a brief description of neff). After all requirements have been met

(visual convergence, a 30%-45% acceptance rate, R̂ < 1.1, and neff > 1000),

we accept that the final Markov chain samples have a distribution that is

proportional to the posterior distribution (Equation 3.18). At this point, we

calculate statistics, estimates, and probabilities of model parameters.

3.4.3 Priors

Bayesian inference requires choosing prior probability distributions for model

parameters. We use flat, uniform prior probability distributions for three out of

four model parameters, with the lower and upper bounds listed in Table 3.2.

When a parameter is held fixed, then the prior probability is a δ-function
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centered on the chosen parameter value.

The prior on Φo is quite wide, representing little prior knowledge of the

Galaxy’s mass. In the cases of γ and β, there are clear mathematical reasons

for the prior bounds; γ must be positive for the halo potential to decrease

with distance (Equation 3.2), and β is the conventional anisotropy parameter,

which has the limits described in Section 3.2.

Unfortunately, using β → −∞ as a lower-bound to a uniform distribution is

ill-defined. On the other hand, there is strong evidence to expect β & 0 for the

Galactic stellar halo (Kafle et al., 2014), and previous studies have shown that

the velocity distribution of GCs in the MW halo is mildly radial (Deason et al.,

2011). Furthermore, values of β < −1 are known to be unrealistic velocity

anisotropies for distant halo stars (e.g. Cunningham et al., 2016; Deason et al.,

2013). Taking all of this information into account, we set a conservative lower

limit of βlower = −0.5.

The parameter α determines the spherical density distribution of the GCs,

and has been shown to follow a power-law profile with index ∼ 3.5 (Harris,

1976; Djorgovski & Meylan, 1994). Given our knowledge of the GC spatial

distribution around the MW, it seems reasonable to define a slightly more

informative prior distribution for this parameter. Although it may be tempting

to look at all the GC r values, fit a power-law profile, and then use the best-fit

parameter value of α as a way to define a prior distribution, Bayesian inference

can only use the data once; we cannot use the data to define a prior and then

also use the same data to calculate the posterior distribution. This is especially

true here, where the r value of the GCs will help constrain not only α, but

also the potential through Equation 3.15. So, how do we define a prior for α?
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We use the 68 MW GCs that are excluded from our analysis (see Sec-

tion 3.3) to determine the prior distribution for α. The procedure to define

the prior probability distribution p(α) is as follows.

First we hypothesize that the true density profile of the GCs is a power-law

profile ρ(r) ∝ r−α, implicitly assuming spherical symmetry. We can re-write

the power law as,

ρ(r) ∝ 1

4πr2
× 1

rα−2
. (3.19)

where the first term is one over the area of a sphere with radius r. Thus,

in 1-dimension, the GCs follow a power-law with index α − 2. This kind of

distribution can be described by a Pareto Distribution of the first kind.

The Pareto Distribution is a pdf defined as

f(x|η, b) = ηbη
1

x(η+1)
, 0 < b < x <∞, (3.20)

where b is a threshold parameter— the x value beyond which the data follow

a power-law with index η + 1 (Howlander et al., 2007; Feigelson & Babu,

2012). The term ηbη is the normalization constant. Note the power-law slope

in Equation 3.20 is η + 1, but in Equation 3.19 is α − 2. Thus, for the GCs,

α = η + 3.

Following Howlander et al. (2007), the posterior pdf for η given data vector

x of length n is,

p(η|b,x) =
(nco+ p)c+n

Γ(c+ n)
ηc+n−1e−η(nco+p), η > 0 (3.21)
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where c and p are parameters, and where

nco =
n∑
i

log
(xi
b

)
. (3.22)

Equation 3.21 is a Gamma distribution with shape and scale parameters (n+c)

and (nco + p).

We use Equation 3.21 to calculate the probability distribution of η given

the extra data (n = 68), and then reparameterize to obtain a prior probability

distribution for α (Figure 3.2). We let the extra GC data determine the shape

and scale of the Gamma distribution as much as possible by defining b =

0.4kpc, c = 0.001, and p = 0.001. The most probable value in Figure 3.2 is

α ≈ 3.4. Interestingly, this value is in excellent agreement with the power-law

best-fit obtained by Wilkinson & Evans (1999), who used a mixture of both

globular clusters and dwarf galaxies beyond 20kpc.

As a check, we plot the smoothed density estimate of the extra GC data

and a power-law profile with index 3.4 in Figure 3.3. The smoothed density

estimate is made using the density function in the R software environment,

with a Gaussian kernel of bandwidth 1kpc. The power-law profile with slope

3.4 approximates the smoothed density quite well beyond 2kpc. We will return

to this point in Section 3.5.3 below.

The spatial distribution of the 68 excluded GCs may be different from that

of the 89 included GCs, due to selection effects (e.g., closer GCs may be more

likely to have proper motion measurements). However, in a Bayesian analysis

this is not a problem. By including the r information of the excluded GCs

via the prior, we are actually taking into account the spatial distribution of

the entire GC population. The estimate for α after using Bayes’ theorem is
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Figure 3.2: Prior probability distribution (a Gamma distribution) for α, as
determined by the extra GC data (n = 68).
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Figure 3.3: Density profile estimate of Milky Way Globular Clusters not used
in this study. The dashed blue line has α = 3.4.
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Table 3.2: Prior Probability Distributions for Parameters

Parameter Prior Prior Parameters

Φo Uniform Φo,min = 1, Φo,max = 200

γ Uniform γmin = 0, γmax = 1

α Gamma b = 0.4kpc, c = 0.001, p = 0.001

β Uniform βmin = −0.5, βmax = 1

a compilation of the information from the prior and the information from the

data.

3.4.4 Investigations

The Φo and γ parameters directly determine the MW’s mass profile (Equa-

tion 3.3), while parameters α and β may indirectly affect it. Thus, a simple

analysis would let only Φo and γ be free parameters, while a more general

analysis would let all four model parameters (Φo, γ, α, β) be free. To cover

the range of possibilities, we instead perform an entire suite of investigations

categorized first into Groups and then into Scenarios, as listed in Table 3.3.

In every investigation, the parameter Φo is free. Group (1) holds γ = 0.5 and

α = 3.5 fixed, Group (2) holds α = 3.5 fixed, and Group (3) holds γ = 0.5 fixed.

Within each Group, we test Scenarios with different velocity anisotropies. For

example, in Scenario IV, Φo and γ are free, α is fixed at 3.5, and we assume an

isotropic velocity dispersion (β = 0). In Scenario VI, however, the anisotropy

β is a free parameter. Scenario XII is the most general analysis; (Φo, γ, α, β)

are all free.
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Table 3.3: Investigations: fixed vs. free parameters

Group Scenario Potential Tracers Anisotropy

γ α β

I 0
(1) II 0.5 3.5 0.5

III free
IV 0

(2) V free 3.5 0.5
VI free
VII 0

(3) VIII 0.5 free 0.5
IX free
X 0

(4) XI free free 0.5
XII free
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Table 3.4: Summary of Parameter Estimates and 50% marginal credible regions

Group Scen. Φo (104km2s−2) γ α β M125 (1011)M�
I 32.9 (28.4-36.4) 0.50 — 3.50 — 0.00 — 4.28 (3.69-4.73)

(1) II 33.7 (28.8-37.4) 0.50 — 3.50 — 0.50 — 4.38 (3.75-4.86)
III 33.4 (28.6-37.0) 0.50 — 3.50 — 0.35 (0.29-0.42) 4.34 (3.72-4.81)
IVb 29.5 (25.2-33.1) 0.32 (0.31-0.33) 3.50 — 0.00 — 5.88 (5.00-6.61)

(2) Vb 30.4 (25.7-34.3) 0.33 (0.31-0.34) 3.50 — 0.50 — 5.93 (4.97-6.72)
VIb 29.5 (27.2-31.5) 0.33 (0.31-0.35) 3.50 — 0.27 (0.21-0.35) 5.70 (5.23-6.17)
VII 31.4 (27.4-34.5) 0.50 — 3.20 (3.18-3.23) 0.00 — 4.09 (3.56-4.48)

(3) VIII 31.6 (27.3-34.6) 0.50 — 3.20 (3.17-3.23) 0.50 — 4.10 (3.55-4.50)
IX 31.5 (27.4-34.6) 0.50 — 3.20 (3.17-3.23) 0.36 (0.30-0.43) 4.10 (3.56-4.50)
X 27.4 (23.4-30.7) 0.32 (0.31-0.32) 3.20 (3.17-3.22) 0.00 — 5.47 (4.66-6.13)

(4) XI 27.4 (23.1-30.9) 0.33 (0.31-0.34) 3.20 (3.17-3.22) 0.50 — 5.36 (4.50-6.06)
XII 26.9 (24.9-28.8) 0.33 (0.31-0.35) 3.20 (3.18-3.22) 0.28 (0.21-0.35) 5.22 (4.79-5.63)
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Figure 3.4: M(r < 125) estimates for all Scenarios, with 50% and 95%
Bayesian credible intervals shown as bright and faint error bars respectively.

3.5 Results

Table 3.4 summarizes the results of our study, showing the estimates of each

parameter and their 50% marginal credible intervals in brackets. Figure 3.4

shows the mass estimates within 125kpc, with error bars indicating the 50%

and 95% Bayesian credible intervals. The mass estimates are grouped as in

Tables 3.3 and 3.4 in order to highlight both the differences between groups,

and differences between the anisotropy assumptions within a group.

In the following four sections, the results are presented in more detail. Each

section pertains to one of the Groups in Table 3.3. In this way, we intend

to highlight the differences in mass estimates due to anisotropy assumptions

versus other parameter assumptions, and also describe why these differences

occur.
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Figure 3.5: Credible regions for the cumulative mass profile in Scenarios I,
II, and III. The percentages in the legend correspond to the three Bayesian
credible regions shown, and the dotted lines show the extent of the GC data.

3.5.1 Group (1): Scenarios I, II, & III

Group (1) is the most rudimentary analysis, because it assumes that the dark

matter profile is NFW-like in the outer halo, and that the power-law profile of

the tracers is known with certainty.

The cumulative mass profile estimates for Scenarios I, II, & III are presented

in Figure 3.5, with the darkest regions representing the 50% Bayesian credible

regions. The velocity anisotropy assumption varies from left to right in the

figure: the first assumes an isotropic velocity dispersion, the second a constant

anisotropy of 0.5, and the third has β as a free parameter.

Despite the variation in the anisotropy assumption between Scenarios I, II,

and III, the mass profiles appear quite similar. The three estimates for the mass

within 125kpc (M125) are 4.28, 4.38, and 4.34× 1011M� and the 50% proba-

bility credible regions are (3.69, 4.73), (3.75, 4.86), and (3.72,4.81)×1011M�

respectively. The mass estimate in Scenario II (β = 0.5) is only slightly higher
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Figure 3.6: Posterior distribution for Scenario III. The contours show the 10,
30, 50, 75, and 95% joint credible regions for Φo and β when the parameters
alpha and γ are fixed.

than Scenarios in I (β = 0) and III (β free), but all estimates are in agreement

within the 50% credible regions.

For comparison, we also use W10s mass estimator (their Equation (24))

with our complete data to compute a mass estimate, and then compare this

result with our method. Using our data, α = 3.5, γ = 0.5, and assuming an

isotropic velocity assumption, W10s mass estimator returns 1.79 × 1011M�

for the mass within 38.5kpc (the position of the outermost GC with a proper

motion measurement). Under an anisotropic assumption of β = 0.5, the W10

mass estimator gives 2.01 × 1011M�. In contrast, our cumulative mass pro-

file and 50% credible regions for Scenarios I and II are M(r < 38.5kpc) =

2.37 (2.05, 2.63) × 1011M�, and 2.43 (2.08, 2.70) × 1011M�. Therefore, the

W10 mass estimator gives a slightly lower value using the complete data than

our Bayesian method does using the complete and incomplete data together.

Figure 3.6 shows Scenario IIIs 10, 30, 50, 75, and 95% joint credible regions
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for Φo and β 2. There is no evidence for strong correlation between the two

parameters, and the estimate of β suggests a slightly anisotropic velocity dis-

tribution. The 50% marginal credible interval for β is between 0.29 and 0.42,

and the mean estimate for β is 0.35. Note that the 50% joint credible interval

for β and Φo has a slightly wider range than the marginal credible interval for

β alone.

3.5.2 Group (2): Scenarios IV, V, & VI

Scenarios IV - VI investigate the case in which γ is a free parameter, con-

strained to the lower and upper bounds given in Table 3.2. In principle, this

Group is the one we should pay most attention to, because γ is the least

constrained by observations.

Figure 3.7 shows the joint credible regions for Φo and γ in Scenario IV,

after assessing for convergence. Even though γ was allowed to vary between

0 and 1 (a flat, uniform prior), very few samples are drawn from the region

γ > 0.3. The parameters Φo and γ have a strong, highly non-linear correlation

at low γ values, which results in larger estimates for the mass. The shape of

the distribution is also reminiscent of that seen in Deason et al. (2012b). The

mean value of Φo from the posterior distribution is 102.7, with a 50% credible

region of (64.2, 138.1)×104km2s−2, and the mean estimate for γ is 0.06 (the

median is 0.05), with 50% marginal distribution samples between 0.03 and

0.08. The latter estimate is quite surprising, considering that Deason et al.

(2012a) found γ ∼ 0.35 using the same model and BHB stars as tracers.

When the mean Φo and γ from the posterior distribution in Figure 3.7 are

naively used as the best estimates for these parameters, then the cumulative

2Contours are drawn with the emdbook package in R (see Bolker, 2008, 2016)
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Figure 3.7: Scenario IV posterior distribution for Φo and γ. The contours
show the Bayesian joint credible region. The dotted horizontal line is the
upper bound of the uniform prior on Φo.

mass profile increases almost linearly with distance from the Galactic center, as

it should for γ → 0 (Equation 3.3). The mean mass estimate within 125kpc is

also significantly larger than in Group (1), at a value of 1.09× 1012M�, with

a 50% credible region of (0.92, 1.24)×1012M�.

A numerical issue is that the posterior distribution of Φo and γ in Scenario

IV may be multi-modal, and that the Markov chains may be stuck in a local

maximum. Figure 3.7 shows more than one peak in the posterior distribution

which may be real modes as opposed to numerical artifacts, (106 pairs of Φo

and γ were drawn in Scenario IV). One could use a more complicated sampling

method to try to explore other parts of the parameters space (e.g. the affine

invariant sampler introduced by Goodman & Weare, 2010), but we view this

as unnecessary since we have good reasons to put a narrower prior distribution

on γ.

An isothermal profile for the dark matter halo (γ → 0 in Equation 3.3) has

been ruled out in the case of constant anisotropy (Battaglia et al., 2005). At
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the other extreme, γ → 1, M(r) goes to a point mass which is unrealistic for

a dark matter halo. As stated previously, γ = 0.5 is a good approximation

to an outer NFW-type dark matter halo, for galaxies like the MW (Watkins

et al., 2010; Deason et al., 2011). This is why we choose γ = 0.5 in Scenarios

where γ is fixed. In the scenarios where γ is a free parameter, we relax the

NFW approximation slightly and apply a uniform prior with lower and upper

bounds of 0.3 and 0.7 respectively, calling these Scenarios IVb, Vb, and VIb.

The range γ = 0.3 to 0.7 by itself covers a large range in dark matter halo

central concentrations, while staying within arguably realistic bounds.

The above adjustment to the prior p(γ) allows for slightly non-NFW type

potentials while notably excluding some parameter ranges. Because of the

relationship seen in Figure 3.7, the new prior on γ will change our mass es-

timates. However, choosing this slightly informative prior is important in the

Bayesian paradigm—we apply prior distributions based on our assumptions

and current knowledge about the situation, including external information not

contained in the GC data themselves. At the same time, we present our results

with the reminder that they are influenced by our assumptions, and thus are

open to interpretation and criticism.

With the new prior on γ, the mean estimates for Scenario IVb are of

Φo = 29.5 (25.2, 33.1) × 104km2s−2 and γ = 0.318 (0.305, 0.325). These

estimates are in better agreement with Deason et al. (2012a), where the same

model was applied to BHB stars using a maximum likelihood method rather

than a Bayesian analysis. The mean estimates of Φo and γ in Scenarios Vb

and VIb are very similar, but the shapes of the 95% joint posterior probability

contours are rather different, shown in Figure 3.8. Notice that when β is

a free parameter, the range of Φo is considerably smaller. Although it may
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Figure 3.8: Left: The 95% joint credible regions for Group (2). The re-
gions for the isotropic (β = 0), constant anisotropic (β = 0.5), and constant
anisotropic (free parameter) are shown in dotted (red), dashed (green), and
solid (blue) lines respectively. Right: The posterior distribution and joint
credible regions for Φo and γ in Scenario VIb.

initially seem strange that an extra free parameter would cause the posterior

distribution to narrow, one explanation is that the posterior distribution of Φo

and β is narrow as well (the right panel of Figure 3.8).

The M125 estimates for Scenarios IVb, Vb, and VIb are considerably higher

than those in Scenarios I, II, and III, but the Bayesian credible intervals are

also substantially larger (Figure 3.4 and Table 3.4). Likewise, the cumulative

mass profile credible regions are also substantially wider (Figure 3.9). In the

isotropic and anisotropic cases (Scenario IVb and Vb), the 50% credible regions

for M125 are 5.00 − 6.61 × 1011M� and 4.97 − 6.72 × 1011M� respectively.

The M125 estimate is most constrained in Scenario VIb (free β) with a 50%

credible interval of 5.23− 6.17× 1011M�. This is attributed to the narrowed

marginal distribution ofΦo when β is a free parameter (Figure 3.8).
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Figure 3.9: Credible regions for the cumulative mass profile in Scenarios IVb,
Vb, and VIb. The percentages in the legend correspond to the three Bayesian
credible regions shown, and the dotted lines show the extent of the GC data.

The differences in mass estimates between Group (1) and Group (2) are

significant in terms of the 50% credible intervals. The 95% credible intervals

for Scenarios IVb, Vb, and VbI contain the mass estimates obtained in Group

(1), although VIb is a close call. The differences between Groups (1) and (2)

must arise because γ is a free parameter. The estimate of γ is near the lower

bound of the prior distribution p(γ), which might indicate that the prior is too

strong of an assumption. On the other hand, the uncertainty in the mass is

very large when γ is free, suggesting that there is insufficient information in

the GC data alone to pin down the shape of the dark matter halo.

3.5.3 Group (3): Scenarios VII, VIII, & IX

The cumulative mass profile credible regions from Group (3) (α free) are almost

identical to those of Group (1) and so we do not bother showing them. Similar
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Figure 3.10: Left: The 95% joint credible region contours for Scenarios VII,
VIII, and IX. The regions for the isotropic (β = 0), constant anisotropic
(β = 0.5), and constant anisotropic (free parameter) are shown in dotted
(red), dashed (green), and solid (blue) lines respectively. Right: The posterior
distribution and 95% credible region for parameters Φo and γ in Scenario VIb.

to the results in Section 5.1, the cumulative mass profiles between Scenarios

VII, VIII, and IX are strikingly similar, regardless of the velocity anisotropy

assumption. Overall, the estimate of M125 is approximately 4.1 × 1011M�,

with 50% credible regions of about (3.6, 4.5) ×1011M�. The M125 estimates

are significantly lower than the estimates in Group (2), and only slightly lower

than the estimates in Group (1).

The α estimates in Scenarios VII, VIII, and IX were all ∼ 3.2, with very

narrow 50% marginal credible intervals (Table 3.4). This implies a slightly

shallower tracer profile than we expected. It is interesting that the mass es-

timates are also lower in these Scenarios—Deason et al. (2012a) noticed the

same behavior between α and the mass estimate.

One possible explanation for the lower α estimate is that the GCs in our

subsample of Table 3.1 do not follow a power-law profile with index α ≈ 3.5.

As a check, we calculate the spherical density profile for both the entire set
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of GCs from Table 3.1 and the subset we used in our analysis (Figure 3.11).

The density profile of the subsample appears to follow a power-law slope of

3.6 beyond ∼ 7kpc just as well as the entire data set. However, we can also

see that a power-law slope of 1.9 follows the density profile quite well within

∼ 6kpc. In our subsample, 42 of the 89 GCs fall within this inner region, so

when α is free, the best model fit of a single power-law is a compromise of

these two slopes. A broken power-law might be a better description of the

GC profile in the MW. Alternatively, we could exclude data within 6.64kpc

(the point of intersection of the two straight lines shown in Figure 11) at the

expense of a smaller sample size of tracers.

To test the latter hypothesis, we run Scenario IX again but only use data

for which r > 6.64kpc. We also re-define the prior distribution on α for consis-

tency, using b = 6.64kpc and only using the extra data beyond 6.64kpc. While

the resulting estimate of M125 is larger (5.06 × 1011M�, with 50% credible

region 4.23-5.71×1011M�), the estimates for α and β are relatively unchanged

(3.14 and 0.33 respectively). Therefore, excluding inner region objects leads to

a slightly higher mass estimate despite an unchanged α estimate. We return

to this point in more detail in Section 3.5.6.

3.5.4 Group (4): Scenarios X, XI, & XII

The mean M125 estimates for Group (4) are lower than those in Group (2), but

higher than those in Groups (1) and (3) (Table 3.4 and Figure 3.4). However,

Scenario X and XIs 95% credible regions for the mass estimate overlap with

the mass estimates from all Groups (Figure 3.4).

Scenario XII deserves some attention, as all four model parameters are
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Figure 3.11: Smoothed radial density distribution of the GC subsample (solid
line). Lines with power-law slopes 3.6 and 1.9 follow the outer and inner
regions of GCs respectively. Points along the bottom of the graph indicate the
r values of individual GCs; the top row shows the entire GC population from
Table 3.1, and the bottom row is the subsample used in our analysis. The lack
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free. The joint posterior credible regions for all parameter combinations are

shown in Figure 3.12, the parameter estimates are shown in Table 3.4, and the

cumulative mass profile is on the left-hand side of Figure 3.13.

One notable feature in Figure 3.12 is in the marginal posterior distributions

for γ (the leftmost column in the figure). The mode for γ is very close to the

lower bound defined in the prior distribution, similar to the situation seen in

Group (2) (Figure 3.8). The posterior distribution for γ also has an asymmetric

shape, reminiscent of the shape seen in Figure 3.7. The parameter γ was poorly

constrained when we used a less informative prior (Figure 3.7), and appears to

be constrained in Group (2) and (4) mainly because of the more informative
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Figure 3.13: Comparisons of Scenario XII M(R < r) profile credible regions
to mass estimates from other studies (those not mentioned in the text are
Kochanek, 1996; McMillan, 2011; Kafle et al., 2012; Eadie et al., 2015b; Küpper
et al., 2015). The shades of grey (dark to light) correspond to the Bayesian
credible regions (95, 75, and 50%). Left: Mass profile when all GC data are
used in the analysis. Right: Mass profile when GC data at Galactocentric
positions r < 10kpc are excluded.

prior. Therefore, the present GC sample may not provide enough information

about the dark matter halo to constrain its shape, without making relatively

strong prior assumptions. The most we can say is that perhaps the potential

is shallower than NFW.

The other notable feature about Scenario XII is that the 95% credible

regions for M125 overlap the 50% credible regions from all the other Scenarios.

The points in Figure 3.13 are results from other studies, which are discussed

below (Section 3.6). In general, however, it is clear that the results of Scenario

XII are in agreement with studies that favor a “lighter” dark matter halo.
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3.5.5 Summary of Groups (1) - (4)

Figure 3.4 shows the effect that parameter assumptions can have on mass

estimates. In Group (1) — Scenarios I, II, and III — the only parameter

that was allowed to vary in every case was Φo. The mass estimates are in very

good agreement with one another, despite the different assumptions of velocity

anisotropy.

In Group (2) (γ free) the mass estimates are consistently higher than

Groups (1) and (3), but the uncertainties in these estimates are also sub-

stantially larger. Likewise, the credible regions for the M(r) profiles are much

larger (Figure 3.9). This may imply that it is difficult to constrain the steep-

ness of the dark matter profile using the kinematic information of the tracers,

most of which lie within 30kpc. When a strong assumption is made about the

dark matter potential shape (γ = 0.5), the mass profile is more constrained

but may be biased. When we relax the restriction on γ, the mass becomes

more uncertain and relies more heavily on the prior distribution p(γ), again

implying that the current sample of GCs cannot constrain γ well on their own.

In Group (3) (α free), the mass estimates are lower than in any other group,

but the results of Scenarios VII, VIII, and IX are in agreement with each other.

We also observe that the tracer number density parameter α has a minor effect

on the M125 estimate, despite its lack of appearance in Equation 3.3.

The mass estimates in Group (4) are slightly lower than those in Group (2),

but higher than Groups (1) and (3). The uncertainties in Group (4) are similar

to those seen in Group (2), where the β-free case has smaller credible regions.

This is attributed to allowing β to be a free parameter, which narrows the

allowed values of Φo via the likelihood, as shown in Section 3.5.2. In Groups
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(3) and (4) (α free), the mass estimates are lower than in Groups (1) and

(2) respectively. The lower estimates of α in comparison to a fixed α = 3.5

(Table 3.4) may be causing the lower mass estimate, a relationship also noted

by Deason et al. (2012a).

Table 3.3 shows the anisotropy parameter estimates for the Scenarios in

which β was a free parameter (Scenarios III, VIb, IX, and XII). All estimates

of β are in agreement with one another within the 95% credible intervals despite

the mass estimates for these Scenarios differing in a large way. For a direct

comparison of the anisotropy estimates with observations, we also estimate

β directly from the complete data (71 GCs have both radial and tangential

velocity measurements), and obtain a mean value 〈β〉 = 0.209. This value is

slightly but not dramatically smaller than the values in Table 3.3, and falls

within our 95% credible regions of the β estimates.

Taking all considerations into account, we choose Scenario XII as our es-

timate for the MW dark matter halo. Using the posterior distribution from

Scenario XII, and assuming a Hubble constant of 67.8km s−1Mpc−1 (Planck

Collaboration et al., 2015), we extrapolate out to the virial radius defined by

ρ200 = 200ρcrit. We find rvir = 185+7
−7kpc, and obtain a virial mass for the MW

of 6.82× 1011M�with 50% credible region of (6.06, 7.53)× 1011M�.

3.5.6 Sensitivity Test of the GC Sample

In this section, we run a simple sensitivity test of the relative importance of the

inner versus outer GCs. Although the GCs cover a range of 0.6 < r < 125kpc,

many of the GCs in our sample are within r = 30kpc. Setting γ = 0.5 is akin

to assuming an NFW potential beyond ' 10kpc. However, a single power-law
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will not account for the inner DM halo which is presumably flatter than the

outskirts. Furthermore, the inner GCs (r < 10kpc) are in a region where the

bulge and disk are important contributors to the gravitational potential.

To investigate possible biases in our results, we perform a simple empirical

test that has little reliance on a particular form (such as NFW) for the shape

of the potential. We repeat the analysis for the whole suite of investigations

(Table 3.3) using four different r cut-off values, rcut, for the data. Mass es-

timates within 125kpc are obtained when GCs within 5, 10, 15, and 20kpc

are excluded from the analysis respectively. We expect that as rcut becomes

larger, the uncertainties in the mass estimate will increase simply due to the

lower number of data points. The question remains whether or not there is a

significant trend toward a lower or higher mass as rcut increases.

The number of data points decreases quickly as rcut increases. For rcut =

5 kpc, only 53 GCs remain in the sample (down from 89). For rcut values of

10, 15 and 20 kpc, the number of GCs drops to 33, 24, and 16 respectively.

Furthermore, as rcut increases from 5 to 20kpc, the percentage of incomplete

data increases from 30.2% to 81.2%, making the estimates of β in Scenarios

III, VI, IX, and XII more uncertain.

Figure 3.14 shows the median mass estimates within 125kpc for all Scenar-

ios listed in Table 3.3. Note that in all Groups, the Bayesian credible regions

increase significantly as more data is excluded, as we expected. In Groups (1)

and (3), when γ = 0.5, there is a noticeable dependence on the inner GC data

that causes lower mass estimates; the mass estimates trend to higher values as

more inner GCs are excluded from the analysis. This dependence, however, is

not as strong when the 95% Bayesian credible regions are taken into account

(the faint error bars in Figure 3.14).
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Figure 3.14: Results from sensitivity tests; dependency of the M125 estimates
on the GC data sample. Each mass estimate was determined using GCs beyond
rcut. Bright and faint error bars correspond to the 50% and 95% credible
regions respectively.
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In contrast, for Groups (2) and (4), where γ is a free parameter, the trend

of increasing mass estimates as rcut increases is lessened significantly. Closer

examination of Figure 3.14 reveals that the biggest mass differences between

Groups occurs when all of the data is used in the analysis. On the other hand,

there is little variation between the Groups’ mass estimates when rcut > 10kpc.

Thus, the best choice may be to treat γ as a free parameter, and exclude GCs

within 10kpc.

The estimates of β when it is a free parameter (i.e., Scenarios III, VI, IX,

and XII) do not depend heavily on the rcut values, despite the percentage of

incomplete data increasing as rcut increases. For example, the 50% credible

regions for β in Scenario III, in increasing order of rcut, are (0.28, 0.44), (0.21,

0.44), (0.34, 0.58), and (0.01, 0.49).

Another interesting feature of Figure 3.14 is that as rcut increases, the

difference in mass estimates between anisotropy scenarios (β = 0, 0.5 or free)

becomes more pronounced. This can be attributed to the lowered percentage

of complete data in the analysis as inner GCs are excluded. As the percentage

of incomplete data becomes higher, any assumptions about β will have a larger

impact on the mass estimate.

3.6 Discussion and Future Work

The mass estimate for the Galaxy in this work is significantly lower than

the estimate from EHWs analysis (Figure 3.13). However, EHW used two

populations of satellites (DGs and GCs) and assumed a self-consistent Hern-

quist model. When we apply the isotropic Hernquist model to the data

used in this paper (GCs only), the results are in closest agreement with
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Group (3); the isotropic Hernquist model gives a mass interior to 125kpc of

3.74 (3.64, 3.81)× 1011M�. Thus, the biggest difference results from dropping

the DGs, which populate r & 50kpc.

In general, our results are closely consistent with a number of other studies

which suggest a “light” MW total mass. We take Scenario XII as our best

estimate for the MW mass profile (Figure 3.13) and compare it to other studies.

We consider the results when all GC data are used, and when only GCs at

r > 10kpc are included. It is clear from Figure 3.13 that the latter case results

in better agreement with more studies, simply because of the increased range

of the Bayesian credible regions at each radius.

We now discuss and compare our results from Scenario XII with a selection

of the mass estimates shown in Figure 3.13. We also discuss some other studies

whose results cannot be displayed in the figure.

Wilkinson & Evans (1999) used kinematic data of GCs and DGs, and a

truncated flat-rotation curve (TF) model, to estimate the mass of the MW.

Their result for M(r < 50kpc) and the uncertainties are shown in Figure 3.13.

The lower bound of their uncertainty completely overlaps our mass estimate

at 50kpc, despite the difference in model assumption. The point estimate is

not in good agreement with ours, but this may be attributed to the different

model choice.

Our results are in good agreement with Sakamoto et al. (2003), who used

satellite galaxies, GCs, and field horizontal branch stars as kinematic tracers

and found M(r < 50kpc) = 5.5+0.0
−0.2 × 1011M�.

Battaglia et al. (2005) studied the radial velocity dispersion profile of 240

halo objects (satellite galaxies, GCs, and halo stars), and found that an NFW

model predicts a virial mass of 0.8+1.2
−0.2×1012M�with a concentration of c = 18.
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The virial mass is an extrapolation beyond their furthest data point (120kpc),

so they also quote their best mass estimateM(r < 120kpc) = 5.4+2.0
−1.4×1011M�.

Figure 3.13 shows that their result is in excellent agreement with our estimate

at 120kpc.

Xue et al. (2008) compared the line-of-sight velocity distribution of 2401

BHB stars to cosmological galaxy simulations to constrain the mass of the MW.

They found an enclosed mass within 60kpc of 4.0±0.7×1011M�, in agreement

with our Scenario XII results (see Figure 3.13). However, when they assume

an NFW halo profile the virial mass estimate is 1.0+0.3
−0.2×1012M�, which is not

in agreement with Mvir presented here (see Section 3.5.4). This disagreement

cannot be attributed to the dark matter profile parameter γ, since we found

that a lower γ estimate leads to a higher mass estimate (Section 3.5.2), and

we found γ ≈ 0.3, rather than the NFW approximation of γ = 0.5.

Li & White (2008) report a virial mass of 2.43 × 1012M�, with a lower

limit of 0.8× 1012M� at the 95% confidence level. This is at the higher end

of the results in the literature and disagrees with our results.

As mentioned in Section 3.1, W10 calculated the MWs mass with two

different mass estimators, assuming an NFW-type halo and using kinematic

data from 26 DGs. Their mass estimates depended significantly on both the

velocity anisotropy assumption for the tracers and the inclusion (or not) of

proper motion measurements; they reported M(r < 300kpc) (M300) values

ranging from 7.0 to 14.0 × 1011M�. To compare, we extrapolate the Group

(3) analyses (i.e., those which assume an NFW-type halo) out to M300 and find

a range of 4.8 to 9.2×1011M� for the 95% credible intervals, independent of

the velocity anisotropy. Although our estimates were made using GCs rather

than DGs, the 95% credible regions do overlap with the lower end of the mass
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estimates from W10. If instead we compare our Scenario XII results extrap-

olated out to M300, we obtain a 95% credible range of (6.84,11.93)×1011M�,

which is in much better agreement with W10’s estimates. However, it should

be noted that in Scenario XII, the posterior distribution for γ does not suggest

an NFW-type potential, which was assumed by W10.

Using distant halo stars and a high-velocity star sample, and the spherical

Jeans equation, Gnedin et al. (2010) found an enclosed mass for the Milky

Way of M(80kpc) = 6.9+3.0
−1.2 × 1011M�. This is in disagreement with Scenario

XII’s estimate of M(80kpc) (see Figure 3.13), but in better agreement with

Scenarios IVb, Vb, and VIb (refer to Figure 3.8).

Busha et al. (2011) also used Bayesian inference to estimate the mass of the

Milky Way, but instead incorporated ΛCDM-based simulations and the phase-

space information of the Small and Large Magellanic Clouds. They arrived at

a virial mass estimate of 1.2+0.7
−0.4×1012M�, where we quote only the statistical

errors. Their virial radius was 250+60
−30kpc. Our Scenario XII estimates within

250kpc and 310kpc are in close agreement: 0.83 (0.61, 1.05) × 1012M�and

0.96 (0.70, 1.22)× 1012M�.

Deason et al. (2012a) used the power-law model employed here in a max-

imum likelihood analysis of BHB star kinematics. When they assume spher-

ical symmetry and set α = 3.5, their γ, Φo, and β values were 0.35+0.08
−0.17,

30 ± 5 × 104km2s−2, and 0.4−0.2
+0.1 respectively, which leads to mass estimate

within 50kpc of 3.3± 0.4× 1011M�. In our equivalent set-up (Scenario VIb),

we estimated γ ≈ 0.33, Φo ≈ 30, β ≈ 0.27, and a mass within 50kpc of

3.09 (2.43, 3.86) × 1011M�, which is in very good agreement despite the use

of different tracer objects and a different method.

Using the TME from W10, Deason et al. (2012c) concluded that the mass
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within 150kpc is (5-10)×1011M�. When we extrapolate the Scenario VIb

mass profile out to 150kpc, we find the mass and 95% credible regions to be

6.44 × 1011M�, (4.84, 8.14)×1011M�, again in good agreement. In Scenario

XII the estimate with 95% credible regions is 5.90 (4.45, 7.43)×1011M�, which

is also in good agreement with the TME. Again, this suggests a “light” Milky

Way total mass.

The virial mass of the Milky Way was estimated by Boylan-Kolchin et al.

(2013) to be 1.6+1.0
−0.6 × 1012M�, where the uncertainties represent 90% confi-

dence intervals and the virial radius was ∼ 300kpc. The 95% credible regions

forM(r < 300kpc) from Scenario XII are in agreement at (0.68,1.19)×1012M�.

Lastly, Gibbons et al. (2014) used a Bayesian method and kinematic data

from the Sagittarius stream to measure the Galactic mass distribution, and

reported the mass within 50 and 100 kpc: M(50kpc) = 2.9 ± 0.5 × 1011M�

and M(100kpc) = 4.0 ± 0.7 × 1011M�. The former is in agreement with our

Scenario XII estimate for M(50kpc) mentioned above, and is also in reasonable

agreement with M(100 kpc) (see Figure 3.13). Their result is also in line with

the aforementioned papers that support a lighter Milky Way Galaxy. Gibbons

et al. (2014) also point out that their leaner mass estimate of the Milky Way

helps to solve the “Too big to fail” problem.

In Scenario XII, where the GC subsample is limited to r > 10kpc, the mass

profile credible regions widen dramatically (right-hand side of Figure 3.13).

Under this circumstance, our results agree with almost every value we have

quoted from the literature.

There are some issues with the analysis presented here:

1. We assumed a spherically symmetric DM halo. However, the geometry
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of the Milky Way’s DM halo is not well known. Some studies favour a

triaxial shape or oblate shape (Loebman et al., 2014; Deg & Widrow,

2013; Law & Majewski, 2010b), others a prolate shape (Bowden et al.,

2016), and still others show that a spherical shape is not ruled out (Smith

et al., 2009). The ideal way to allow for a non-spherical halo under the

methodology of EHW would be to use a DF that includes an angular-

dependent dark matter potential through extra model parameters. These

parameters could then be estimated via the posterior distribution, and

used to make inference about the geometry of the dark matter halo.

2. The model we used here assumes a constant anisotropy of the tracers,

not an anisotropy that can vary with distance.

3. The assumption that tracers are randomly distributed about the Galaxy

is probably incorrect at large r. Substructure in the distribution of Galac-

tic satellites and halo stars arises in many hierarchical formation simu-

lations of Milky Way-type galaxies, is becoming increasingly obvious in

M31 (e.g. McConnachie et al., 2009; Ibata et al., 2007), and is without

a doubt present in our own Galaxy (e.g. Yanny et al., 2000; Belokurov

et al., 2006). However, recently Yencho et al. (2006) showed that the

errors introduced by assuming a randomly distributed tracer population

are actually quite small (at the 20% level) in comparison to the errors

introduced by measurement uncertainties. This brings us to the next

point.

4. The mass estimate under the power-law model presented here depends

on the range of GCs used in the analysis. To fully understand this de-

pendence, a better test of this simple power-law form (γ = constant) will
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be to apply this analysis to simulated galaxies built from ΛCDM hy-

drodynamic simulations. This will be the subject of an upcoming paper

(G. M. Eadie et al 2016, in preparation).

5. Measurement uncertainties have not been included in this analysis, but

as EHW showed they are extremely important. In the third paper of this

series, we will discuss how uncertainties can be included in the Bayesian

paradigm; the interested reader may look at some preliminary tests of

this method in Eadie et al. (2015a,c).

6. Finally, although our method does use incomplete and complete data

at the same time, it relies on geometric arguments to incorporate the

incomplete data (that is, the requirement that |cosξ| > 0.95). There are

157 GCs in Table 3.1, and we used only 89 of them (∼ 56%). In our

next paper, we will show how this problem is remedied through the use

of a hierarchical model that includes the measurements uncertainties.

The Bayesian analysis performed here highlights the important influence

of parameter assumptions and selecting prior probabilities. The results of Sce-

narios IV, V, and VI, as well as IVb, Vb, and VIb in Section 3.5.2 showed that

the data cannot constrain the dark matter halo profile parameter γ very well,

without prior information from other studies and knowledge gained from sim-

ulations. However, this highlights a strength of the Bayesian approach—we

must mathematically and explicitly state our prior knowledge and assump-

tions. Many of these assumptions are incorporated into studies that use maxi-

mum likelihood and standard frequentist techniques too, but the assumptions

may be more implicit.
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3.7 Conclusion

We have performed a Bayesian analysis to determine the mass and cumulative

mass profile of the MW out to 125kpc using GCs as tracers of the Galactic

halo. The model and method we used is sensitive to the assumptions about

model parameters, and most notably assumptions about the power-law profile

of the dark matter halo potential. There also appears to be a dependence on

the positions of the GCs, as excluding inner GCs leads to slightly higher mass

estimates, especially when strong assumptions have been made about the dark

matter profile.

One advantage of the EHW method is that we can easily obtain an estimate

for the mass enclosed at any radius, and immediately obtain uncertainties in

that estimate. This feature of the method makes comparing our results to

other studies relatively straightforward (e.g., Figure 3.13). Another advan-

tage is that using both complete and incomplete data simultaneously seems

to remove any mass-anisotropy degeneracy. Furthermore, independent of pa-

rameter assumptions, the results suggest that the GC population has a mild

radially anisotropic velocity distribution.

The first data release from the Gaia mission, including astrometric and

photometric measurements, will occur in summer 2016 (ESA, 2016). Tycho-

Gaia astrometric solution, which uses data from the Hipparcos catalog and

the new measurements from GAIA, could yield proper motion, parallax, and

position measurements for 2.5 million Tycho-2 stars (Michalik et al., 2015).

The analytical approach described here will be well suited to this data.

Lastly, our analysis and comparison to other studies, and in particular

Figure 3.13, strongly emphasizes the need for remote, virialized tracers (r &
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30kpc) with proper motion measurements to place stronger constraints on the

slope of the dark matter halo profile, and ultimately the total mass of the

MW. As more complete data at large Galactic distances become available, it

will also be easier to rule out possible dark matter halo models via Bayesian

model comparison tests.
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4
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Abstract

We present a hierarchical Bayesian method for estimating the total mass

and mass profile of the Milky Way Galaxy. The new hierarchical Bayesian

approach further improves the framework presented by Eadie et al. (2015b);

Eadie & Harris (2016) and builds upon the preliminary reports by Eadie et al.

(2015a,c). The method uses a distribution function f(E , L) to model the galaxy

and kinematic data from satellite objects such as globular clusters (GCs) to

trace the Galaxy’s gravitational potential. A major advantage of the method

is that it not only includes complete and incomplete data simultaneously in

the analysis, but also incorporates measurement uncertainties in a coherent

and meaningful way. We first test the hierarchical Bayesian framework, which

includes measurement uncertainties, using the same data and power-law model

assumed in Eadie & Harris (2016), and find the results are similar but more

strongly constrained. Next, we take advantage of the new statistical framework

and incorporate all possible GC data, finding a cumulative mass profile with

Bayesian credible regions. This profile implies a mass within 125kpc of 4.8×

1011M� with a 95% Bayesian credible region of (4.0, 5.8) × 1011M�. Our

results also provide estimates of the true specific energies of all the GCs. By

comparing these estimated energies to the measured energies of GCs with

complete velocity measurements, we observe that (the few) remote tracers

with complete measurements may play a large role in determining a total

mass estimate of the Galaxy. Thus, our study stresses the need for more

remote tracers with complete velocity measurements.
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4.1 Introduction

In our two previous papers, Eadie et al. (2015b, hereafter Paper I) and Eadie

& Harris (2016, hereafter Paper II), we estimated the Galaxy’s mass and mass

profile using a new Bayesian method and the kinematic data of Milky Way

globular clusters (GCs) and dwarf galaxies (DGs). Paper I laid the ground-

work: we tested the method on simulated data and then applied the method

to Milky Way satellite data in a preliminary analysis. A main advantage of

the new Bayesian method was that both complete and incomplete velocity

vectors were included in the analysis simultaneously. Furthermore, the tests

on simulated data showed that our Galactic mass estimates were insensitive to

incorrect velocity anisotropy assumptions. Paper I incorporated an analytic

Hernquist model (for simplicity and testing of the method), and used GCs and

DGs as tracers of the Milky Way’s potential. The satellites were assumed to

follow the same spatial distribution as the dark matter. Despite the simplicity

of the model, the results were in agreement with many other studies (see Wang

et al., 2015, for a comparison figure).

The promising results of Paper I led us to implement an arguably more

realistic model for the Milky Way in Paper II, in which the distributions of

the dark matter and the Galactic tracers are allowed to differ. The Paper II

model uses power-law profiles with different parameters for the dark matter

and tracers, and also includes velocity anisotropy as a parameter. This model

is explained in detail by Evans et al. (1997), and previous applications of the

model to the Milky Way and other galaxies were completed by Deason et al.

(2011, 2012a,b, note that the notations vary between Evans’ and Deason’s

papers).
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Because the model includes a spatial profile for only a single population

of tracers, we used GC kinematic data alone instead of a mixture of DGs and

GCs. The results in Paper II suggested a mass estimate for the Milky Way that

was significantly lower than the mass found in Paper I under the Hernquist

model, but closer in agreement to recent studies which suggest a “light” Milky

Way (e.g. Gibbons et al., 2014).

An issue that is not fully addressed in Paper I or II is the inclusion of

measurement uncertainty. Measurement uncertainties can differ substantially

from object to object, with some tracers having very precise radial velocities

or proper motions and others having very imprecise ones.

Using a sensitivity analysis, we found in Paper I that measurement uncer-

tainties can play a significant role in the mass estimate of the Galaxy, con-

tributing up to 50% of the uncertainty in the estimate. In addition, we found

that certain individual objects had very high leverage. For example, when

the single GC Palomar 3 was removed from the analysis, the mass estimate of

the Galaxy decreased by more than 12%. Thus, it seems prudent to include

measurement uncertainties in a rigorous and consistent way when estimating

the mass and mass profile of the Galaxy.

Here, we substantially improve upon Paper II by introducing a hierarchical

Bayesian method that includes the measurement uncertainties of proper mo-

tions and line-of-sight velocities in a measurement model. Preliminary tests

of this method have been reported by Eadie, Harris, Widrow, & Springford

(2015c) and Eadie, Harris, & Springford (2015a) using the Hernquist model

and data from GCs and DGs in Paper I, but here we apply the arguably more

realistic tracer model from Paper II, and also use all of the available GC data.
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4.2 Method

In Papers I and II, we defined the posterior distribution from Bayes’ theorem

as p(θ|y), where θ is the vector of model parameters, and y is the vector of

data. In practice, the posterior distribution is difficult to calculate directly,

and Markov Chain Monte Carlo (MCMC) methods are used to sample a dis-

tribution that is proportional to the posterior distribution. We write this

distribution as

p (θ|y) ∝
n∏
i

p (yi|θ) p (θ) (4.1)

=
n∏
i

p ((ri, vr,i, vt,i)|θ) p (θ) . (4.2)

Above, ri, vr,i, and vt,i represent the Galactocentric distance, radial velocity,

and tangential velocity of the ith tracer (GC). We assume that the GC positions

and velocities are independent of one another, conditional on the value of θ.

In Paper II, we defined p ((ri, vr,i, vt,i)|θ) by the distribution function (DF).

The model for the dark matter halo’s gravitational potential follows a power-

law profile of Φ(r) = Φor
−γ, and the spatial number density profile of the

tracers follows ρ(r) ∝ r−α. Using the Eddington formula as described in

Binney & Tremaine (2008), the DF is found to be

f(E , L) =
L−2βE

β(γ−2)
γ

+α
γ
− 3

2

√
8π32−2βΦ

− 2β
γ

+α
γ

o

Γ
(
α
γ
− 2β

γ
+ 1
)

Γ
(
β(γ−2)

γ
+ α

γ
− 1

2

) (4.3)

where E = −v2/2 + Φ(r), L = rvt, and the model parameters are θ =

(Φo, γ, α, β) (beware of notational differences between Evans et al. (1997) and
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Deason et al. (2011, 2012a,b)). The parameter β is the standard anisotropy

parameter, where the limits β = 1 and β → −∞ correspond to completely

radial or completely tangential orbital distributions for the tracers (Binney &

Tremaine, 2008).

The DF in Equation 4.3 assumes a spherical and non-rotating system, and

also requires that the relative energy E is greater than zero (i.e. that tracers

are bound to the Galaxy). Under this model, the mass profile of the dark

matter halo is,

M(r) =
γΦo

G

(
r

kpc

)1−γ

(4.4)

(Deason et al., 2012b), which has the physical limits of an isothermal sphere

(γ → 0) and a central point mass (γ → 1).

Equation 4.3 is written in the Galactocentric reference frame— the frame

in which the geometry of the model is the most straightforward. The GC

kinematic data and their uncertainties, on the other hand, are measured in

the Heliocentric reference frame. Although the mathematical transformation

of velocity and position vectors from a Heliocentric frame to a Galactocentric

frame is relatively straightforward, transforming uncertainties from one frame

to the other requires complex error propagation which is non-linear, and that

likely results in non-Gaussian errors. Therefore, we employ a different ap-

proach to incorporating the measurement uncertainties using a hierarchical

Bayesian model.

4.2.1 Hierarchical Bayesian Model

In Paper II, all stochasticity in {ri, vr,i, vt,i} was due to Equation 4.3, and none

was due to measurement uncertainty. The measured values of {ri, vr,i, vt,i}
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were assumed to be the true values, which we conditioned upon to obtain the

posterior distribution for θ, the model parameters.

Now, we include a model for measurement uncertainty. The approach starts

with a slight change in perspective: instead of treating the measurements of

the position r, line-of-sight velocity vlos, and proper motions in right ascension

(R.A.) (µα cos δ) and declination (decl.) (µδ) as the true values, we treat

these measurements as samples drawn from a distribution which depends on

the true (but unknown) values. That is, the true values are now included as

parameters in the model. These parameters, the true Galactocentric position

and Heliocentric velocity components, are denoted with a † symbol:

ϑ =
(
r†, v†los, µ

†
δ, µα cos δ†

)
, (4.5)

For a given GC, the measurements are denoted as

y = (r, vlos, µδ, µα cos δ), (4.6)

and the measurement uncertainties are denoted:

∆ = (∆r,∆vlos,∆µδ,∆µα cos δ). (4.7)

We assume that the measurements are samples drawn from Gaussian (nor-

mal) distributions centered on ϑ, and the measurement uncertainties ∆ are

taken to be standard deviations. For example, the measurement of the line-

of-sight velocity is drawn from a normal distribution centered on the true

line-of-sight velocity, with a standard deviation equal to the measurement un-

certainty. In statistical terms, this is akin to saying that Vlos is a random

165



Ph.D. Thesis - Gwendolyn M. Eadie McMaster University - Physics & Astronomy

variable normally distributed with mean v†los and variance ∆v2
los:

Vlos ∼ N (v†los,∆vlos
2) (4.8)

(where N (µ, σ2) represents the Normal distribution). With this assumption,

the probability of obtaining a measurement vlos is

p(Vlos = vlos|v†los,∆vlos) =
1√

2π∆vlos
2
e
−

(vlos−v
†
los

)2

2∆vlos
2 . (4.9)

The same Gaussian assumption is made for the probabilities of the other

measurements p(µδ|µ†δ,∆µδ), p(µα cos δ|µα cos δ†,∆µα cos δ), and p(r|r†,∆r).

We assume that measurement errors are independent given the true values, so

that the probability of measuring all components of a GC’s kinematic quanti-

ties is simply the product of the probabilities defined above. Thus, the total

likelihood is

L(y|∆, ϑ) = p(r|r†,∆r)p(vlos|v†los,∆vlos)×

p(µδ|µ†δ,∆µδ)p(µα cos δ|µα cos δ†,∆µα cos δ) (4.10)

(Eadie et al., 2015a,c). This defines our measurement model. We acknowledge

that the two components of the proper motion measurements are not actually

independent. Their correlation could be incorporated using a multivariate

normal, but because these correlations are not usually reported, we do not

pursue it here.

Equipped with an expression for the likelihood (Eq. 4.10), we next define

prior distributions on the parameters. The prior distributions on ϑ link the
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measurement model to the tracer/galactic mass model. The parameters ϑ

represent the true positions and velocities, and we assume that these parame-

ters have a prior distribution defined by Equation 4.3, i.e. the DF. Thus, the

DF is the prior distribution on ϑ, and is denoted in shorthand as p(h(ϑ)|θ),

where h is the transformation from Heliocentric to Galactocentric coordinates

(Section 4.2.3).

Because the DF (the prior distribution on ϑ) has its own parameters θ,

then hyperpriors p(θ) must also be specified. Thus, for a single GC or tracer,

Bayes’s rule is written as

p(θ|yi,∆i) ∝ L(yi|∆i,ϑi)× p(h(ϑi)|θ)× p(θ) (4.11)

∝ Likelihood × Prior× Hyperprior (4.12)

Assuming that the GCs are conditionally independent, the posterior distribu-

tion is proportional to

p(θ|y,∆) ∝
N∏
i=1

L(yi|ϑi,∆i)p(h(ϑi)|θ)p(θ). (4.13)

The hierarchical Bayesian specification above provides a couple of improve-

ments to Papers I and II (Equation 4.1). First and foremost, measurement un-

certainties are included in the analysis in a meaningful way. Second, whereas

before only 89 of 157 GCs could be included1, we can now include 143 GCs.

The remaining 14 GCs are objects for which no measurements of velocity are

available (see Table 4 in Paper II).

1Mainly due to the GCs’ locations, see Papers I & II
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4.2.2 Defining Priors and Hyperpriors

Defining priors in the Bayesian paradigm is an opportunity for the researcher

to state prior knowledge, gained from previous studies, and prior assumptions

about model parameters. For this study, we use the same prior distributions

for the model parameters Φo, γ, and β that were used previously: uniform dis-

tributions with bounds given and justified in Paper II. These lower and upper

bounds for Φo, γ, and β are (1, 200), (0.3, 0.7), and (-0.5, 1.0) respectively.

The prior on the GC spatial distribution parameter, p(α), is a gamma

distribution. This choice was established and justified in Paper II and was

defined using the extra 68 GCs not otherwise included in the analysis. In this

study, however, most of these previously excluded GCs can now be included

because we do not have to depend on geometric assumptions to approximate

vlos. There remain 14 GCs that are excluded in the data sample because they

have only position measurements (see Section 4.2.1). We use these 14 GC

positions to estimate and define a prior distribution for the parameter α, in

the same way as in Paper II. Figure 4.1 compares the new p(α) to that used

in Paper II. Note that the new prior is wider than the one used in Paper II,

because fewer GCs were used to estimate and define it. Including the extra GC

data in the prior is akin to including the positions of all GCs in the analysis.

In summary, there are two sets of parameters in the hierarchical model: (1)

the position and velocity parameters ϑ and (2) the DF parameters θ. Bayes’

theorem and the rules of conditional probability require a prior probability

for both sets of parameters. The prior probability distribution for ϑ is Equa-

tion 4.3 (the DF), because we assume that the positions and velocities come

from the set of models determined by θ. The prior distributions on θ are the
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Figure 4.1: The solid black line is the prior distribution used in this paper,
and the blue dashed line was the prior distribution used in Paper II. The solid-
line prior probability distribution for α is determined using the extra GC data
(n = 14) that is not used in the rest of the analysis. Thus, the prior used in
this study is less informative than that used in Paper II.

hyperprior distributions p(θ) described above and in Paper II.

4.2.3 Transformation of Velocities

In this section we discuss the function h(ϑ) first mentioned in Section 4.2.1.

The h(ϑ) notation symbolizes the transformation of velocity parameters in

Eq. 4.5 from a Heliocentric parameterization (v†los, µ
†
δ, µα cos δ†) to a Galacto-

centric parameterization v†r, v
†
t ), following the method presented in Johnson &

Soderblom (1987). We review the Johnson & Soderblom (1987) method here

for completeness and in order to highlight some important points.
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The first step is to transform the Heliocentric velocities into Galactic space-

velocities (U, V,W ) in a right-handed coordinate system:


U

V

W

 = T ·A


vlos

kµαcos(δ)/λ

kµδ/λ

+


U�

V�

W�

 (4.14)

where U is positive toward the Galactic center, V is positive in the direction

of Galactic rotation, and W is positive above the Galactic plane. The solar

motion is set to (U�, V�,W�) = (11.1, 12.24, 7.25) (Schönrich et al., 2010),

k=4.74057 (the equivalent in km s−1of 1 AU in one tropical year), and λ is the

parallax (in arcsec) of the GC (Johnson & Soderblom, 1987). The matrices T

and A depend on the R.A. and decl. of the North Galactic Pole (as determined

by the Hipparcos catalog) and GCs, respectively, where

T =


−0.0548755604 −0.8734370902 −0.4838350155

+0.4941094279 −0.4448296300 +0.7469822445

−0.8676661490 −0.1980763734 +0.4559837762

 (4.15)

(ESA, 1997) and where A for a single GC is

A =


+ cosα cos δ − sinα − cosα sin δ

+ sinα cos δ + cosα − sinα sin δ

+ sin δ 0 + cos δ

 . (4.16)

Above, α and δ are the R.A. and decl., respectively, in decimal degrees (this

α is of course different from the one used to parameterize the GC distribution

above). We take the GCs’ parallax and R.A. and decl. positions as fixed but
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treat the Galactocentric distance r as a parameter in the model and assign an

uncertainty of 5% to the measured r value (Harris, 1996, 2010 edition).

The next step is to transform the Cartesian, rotating Galactic frame veloc-

ity components (U, V,W ) into components in a cylindrical, non-rotating Galac-

tocentric reference frame (Π,Θ, Z). First the adjustment for the rotation of

the Galaxy at R� = 8.0kpc is taken to be 220km s−1, to obtain (Ugc, Vgc,Wgc),

and then this vector is transformed to a non-rotating, right-handed cylindrical

system via 
Π

Θ

Z

 =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1



Ugc

Vgc

Wgc

 . (4.17)

As a test of the entire transformation, we compare our derived (Π,Θ,W ) to

the Casseti online catalog of GC velocity measurements (Figure 4.2) (Dinescu

et al., 1999, 2004, 2005; Casetti-Dinescu et al., 2010, 2013)2.

Finally, the velocity components in Eq. 4.17 are transformed to the spher-

ical coordinate system


vr

vθ

vφ

 =


cosφ 0 sinφ

0 1 0

− sinφ 0 cosφ




Π

Θ

W

 (4.18)

where v2
t = v2

θ +v2
φ. To reiterate, the complete transformation from the Galac-

tocentric parameterization to the Heliocentric parameterization described above

is represented by h(ϑ) in Equation 4.3.

2Updated catalog: www.astro.yale.edu/dana/gc.html
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Figure 4.2: Our transformation from Heliocentric velocities to Galactocentric
velocities (Θ,Π,W ) for GCs with proper motions, compared to the Casseti
catalog. The abscissa are from the Casseti online catalog, and the ordinates
are our transformation values. The error bars are the uncertainties given in
the Casseti catalog, and the grey line has a slope of one.
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4.2.4 Improved Computational Methods

The posterior distribution is sampled using the same general MCMC method

and hybrid-Gibbs sampler that was utilized in Papers I and II. One improve-

ment is that the proposal distributions for ϑ and θ are determined using the

adaptive MCMC method described by Roberts & Rosenthal (2009). A multi-

variate covariance matrix is determined for each GC’s ϑ parameters and for

θ, via an iterative burn-in process. The advantage of the adaptive MCMC

method is that the target posterior distribution is sampled much more ef-

ficiently by taking into account correlations between parameters. A second

minor change is that we now run seven independent parallel chains instead

of three, thereby obtaining the same number of samples in less than half the

time.

4.3 Kinematic Data

The kinematic data used in this study are presented in Table 1 of Paper II. In

Paper II, only 89 out of 157 GCs were used in the analysis, mainly because the

approximation |vlos| ≈ |vr| did not hold for most GCs without proper motions.

Other GCs were excluded in the analysis of Paper II, due to high reddening

association with the Sagittarius dwarf galaxy, or to no velocity measurements.

As described in Sections 4.2 and 4.3, using the hierarchical Bayesian frame-

work allows all of the incomplete data to be included without having to make

any geometric arguments like those used in Papers I and II, because the like-

lihood L is written in the Heliocentric frame. Now that we are accounting

for uncertainties, we also include the GCs subject to high reddening. In the
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present analysis, the GCs associated with the Sagittarius dwarf do not change

the result significantly, and therefore we choose to include them. Altogether,

this increases the size of the data set significantly, from 89 to 143 GCs.

4.4 Analysis Overview

To make a fair comparison between the nonhierarchical method of Paper II

and the hierarchical method presented here and to thereby directly test the

influence of measurement uncertainties, we first apply the hierarchical Bayesian

method to the same kinematic data analyzed in Paper II (i.e., only 89 GCs).

In this case, we use the prior distribution p(α) for the tracer spatial parameter

that was used in Paper II (the dashed blue line in Figure 4.1).

Next, we use the hierarchical Bayesian method with 143 GCs, using prior

distribution p(α) defined by the extra 14 GCs without velocity measurements

(solid line in Figure 4.1).

4.5 Results

Figure 4.3 compares the 95% Bayesian credible regions for the mass profiles of

the Milky Way from Paper II (the dashed black lines) to the 50%, 75%, and

95% regions from the present paper (the blue shaded regions). Both results rely

on the same 89 GC sample used in Paper II; the only difference between the

two analyses is that measurement uncertainties are now included. The main

result of including measurement uncertainties via the hierarchical method is a

stronger constraint on the mass profile and mass estimate compared to that

from the method used in Paper II.
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Figure 4.3: The blue shaded areas are the Bayesian credible regions for the
cumulative mass profile of the Milky Way, using the hierarchical method and
89 GCs. The black dashed lines show the 95% credible regions for the non-
hierarchical method and 89 GCs (i.e. the results from Paper II).

As mentioned in Section 4.2.1 and 4.3, one advantage of the hierarchical

model is that the GC sample size is increased from 89 to 143. Figure 4.4

compares the estimated mass profile using 89 GCs to the profile using 143

GCs. The dashed blue lines indicate the 95% Bayesian credible regions from

Figure 4.3, and the black shaded regions indicate the credible regions when

143 GCs are included. The increase in total sample size likely accounts for

the slight narrowing of the Bayesian credible regions. However, the difference

between the hierarchical results from the 89 GC sample and those from the

143 GC sample is not as large as might be expected.

We conjecture that a more constrained estimate using the present method

will require a higher proportion of complete data. Although the sample size

increases by more than 60%, the GC data that are added to the sample are
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Figure 4.4: The grey shaded areas are the Bayesian credible regions for the cu-
mulative mass profile of the Milky Way using the hierarchical method and 143
GCs. The blue dashed lines show the 95% credible regions for the hierarchical
method and 89 GCs (i.e. the outermost blue region in Figure 4.3).

all incomplete. Of the 89 GCs used in Paper II, 71 had complete velocity

data. Thus, with 143 GCs the proportion of GCs with complete velocity data

decreased to about 50%.

GCs are subject to the total gravitational potential within their orbits and

thus trace the Galaxy’s total mass out to 125kpc (the distance of the farthest

GC in our sample). Using the hierarchical Bayesian method presented here,

the power-law models, and the priors, and confronting this coherent model

with data from 143 GCs returns a total mass within 125kpc of 4.8× 1011M�,

with a 95% credible region of (4.0, 5.8)× 1011M�.

Extrapolating our mass profile in Figure 4.4 to a virial radius that cor-

responds to 200 times the critical density of the universe, assuming Ho =

67.8 km s−1Mpc−1 (Planck Collaboration et al., 2016), we find that r200 =
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179(164, 194)kpc and M(r200 = 6.2 (4.7, 7.8)×1011M� (the numbers in brack-

ets correspond to the 95% Bayesian credible regions). Extrapolating further,

we find that the mass within 300kpc is M(300kpc) = 0.9 (0.7, 1.1)×1012M�.

In Paper II, we performed a sensitivity analysis to determine how the spatial

sample of GCs might affect the mass estimate of the Milky Way under our

assumed power-law model. The sensitivity analysis involved obtaining mass

estimates after removing GCs with positions within five different rcut values:

0, 5, 10, 15, and 20 kpc. Here we repeat the sensitivity analysis using the same

set of rcut values but using the full sample of 143 GCs. The sensitivity analysis

implicitly examines how disk- and bulge-associated GCs might affect the mass

estimate, because when rcut = 10 kpc, almost all (93/97) of the excluded GCs

have |z| < 5 kpc. Figures 4.5 and 4.6 display how the mass and individual

model parameters Φo, γ, α, and β vary in the sensitivity analysis.

In contrast to Paper II, we find that the mass estimate within 125 kpc is

robust to the systematic exclusion of inner GCs, except perhaps when only

GCs beyond 20 kpc are used in the analysis (Figure 4.5). We note, however,

that the sample size beyond 20 kpc is small (19 GCs), and only 4 of these GCs

have proper motion measurements. Accordingly, the uncertainty in the mass

increases significantly in this case, and the 95% credible regions overlap with

mass estimates under smaller rcut values.

The results suggest that the current model is adequate for describing the

profile of GCs, at least with regard to estimating the total mass within 125kpc.

If the current tracer model was not able to describe the data, then we might

expect changes in the α estimate and the mass estimate, as inner tracers were

systematically removed. However, we see no evidence of this occurring within

the 95% credible regions of the posterior distributions for α (Figure 4.6), and
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Figure 4.5: Sensitivity analysis: the estimate of the total mass within 125 kpc
(M125) for different GC samples. GCs within the rcut value are removed from
the sample (for example, M125 at rcut = 10 corresponds to the mass estimate
when GCs within 10 kpc are removed from the sample). Inner bars are 50%
credible regions, and outer bars are 95% credible regions.

there is little evidence that changes in α affect the mass estimate (Figure 4.5).

The power-law slope of the GC population is highly constrained in the analysis,

regardless of the GC sample that is used. One thing to note is that the prior

p(α) becomes less and less informative for each rcut, as the extra data available

to define a prior change from 14 GCs to 6, 5, 3, and 3 GCs.

A positive correlation in the estimates of Φo and γ is immediately obvious

in the upper two panels of Figure 4.6, and as more inner GCs are excluded

(i.e., as rcut increases), γ → 0.5. This value of γ corresponds to an approximate

Navarro et al. (1996) profile at large radii (Deason et al., 2011), albeit with
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very large uncertainty. The significant change in γ and in its uncertainty in the

sensitivity analysis suggests that the shape of the dark matter profile cannot be

well constrained using only the outermost GCs. To constrain the shape with

more confidence, all of the data must be used. The single power-law profile

for the gravitational potential does not take into account the Galaxy’s bulge

and disk components. However, despite the relatively simplistic model for the

gravitational potential and the changes in γ during the sensitivity analysis,

the mass estimate is robust.

The β estimates in the sensitivity analysis are in good agreement with one

another, despite the percentage of complete data decreasing as rcut increases.

We can therefore conclude that the GC population has a mildly radial constant

anisotropy under this model assumption. However, when the GC sample is

limited to clusters outside 20 kpc, the uncertainty in β becomes quite large.

To summarize the entire posterior distribution for the full sample of 143

GCs, we also show the joint credible regions for all four model parameters

(Figure 4.7).
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Because the hierarchical method treats the Heliocentric distances and ve-

locities as parameters in the model, the final posterior distribution provides

estimates and credible regions for the parameters ϑ =
(
r†, v†los, µ

†
δ, µα cos δ†

)
(i.e., there are 572 parameters in the GC measurement model alone). Using

the posterior distributions for these parameters, we derive an estimate of the

specific energy E for each GC, with credible regions. Figure 4.8 shows these

energy estimates as a function of Galactocentric position: the hollow and solid

blue circles are the mean energy estimates of the incomplete and complete data

parameters, respectively. The solid green diamonds are the energies derived

from the measurements of the complete data (there are no hollow green dia-

monds because energies cannot be derived without proper motions). Arrows

from the solid green diamonds to the solid blue points connect the same GC.

For legibility, we do not show the 95% credible regions for the energies, but

we have checked that they are reasonable. The purple shaded curves enclose

the 50% and 95% credible regions for the gravitational potential, determined

pointwise as a function of r.

Figure 4.8 provides a consistency check of the hierarchical method in three

ways: (1) the distribution of points is consistent with our initial assumptions

that all GCs are bound to the Galaxy, (2) the incomplete and complete data

energy distributions populate the region between the gravitational potential

and the zero line, and (3) the incomplete and complete data do not appear to

have different energy distributions. Another feature of note is the tendency

for the estimated energies based on positions and velocities to shrink toward

a curve similar in shape to the Φ(r) profile. The reason is that the posterior

distributions for each tracer’s energy are in some sense a compromise between

the prior implied by the tracer model (Equation 4.3) and the measured value.
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Figure 4.8: The posterior means of the GCs’ specific energies as a function
of Galactocentric position. The blue circles are the mean energy estimates
for each GC; solid points are complete data and hollow points are incomplete
data. The solid green diamonds are the measured energies for complete data.
The arrows connect GC measured energies to GC posterior mean energies,
and the purple shaded curves represent the 50 and 95% credible regions for
the potential.

Whether the posterior distribution is closer to the measured value or to the

value implied by the tracer model is a function of the width of the prior com-

pared to the measurement uncertainty of the tracer.

4.6 Discussion

The Bayesian method presented here has an advantage over traditional point

mass estimation techniques in the literature because it uses complete and in-

complete data simultaneously in the analysis, whereas other techniques use

either complete or incomplete data only (e.g. the mass estimators introduced

by Bahcall & Tremaine, 1981; Evans et al., 2003; Watkins et al., 2010). Fur-

thermore, although other studies have used a Bayesian analysis to infer the
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mass of the Milky Way (e.g. Little & Tremaine, 1987; Kulessa & Lynden-

Bell, 1992; Kochanek, 1996; Wilkinson & Evans, 1999; McMillan, 2011; Kafle

et al., 2012; Williams & Evans, 2015; Küpper et al., 2015), to our knowledge

none of these studies has included measurement uncertainties using a coherent

measurement model as we have done here.

Including the measurement uncertainties in a measurement model intro-

duced four additional parameters for every GC, which increased the compu-

tational cost of the analysis. Nonetheless, even with 576 parameters (572

measurement model parameters ϑ and 4 tracer model parameters θ), we were

able to run these analyses overnight on a personal computer with four cores

after sufficient Markov chain burn-in.

We found that including uncertainties in the analysis resulted in a tighter

constraint on the cumulative mass profile of the Milky Way compared to ignor-

ing measurement uncertainties (Figure 4.3). This somewhat paradoxical result

might be explained by attributing some of the variation in GC kinematics to

the measurement process, as described in Figure 4.8. Without allowing for

measurement error, the tracer model is made to explain all of the variation,

which apparently results in increased overall uncertainty in the mass profile.

When the sample size of GCs went from 89 to 143, neither the value nor

the spread of the mass profile changed substantially (Figure 4.4). Introducing

additional data might be expected to decrease the width of the Bayesian cred-

ible regions, but this was not observed. We suspect that the credible region

width did not change because including additional incomplete data decreased

the proportion of complete measurements. When 143 GCs were included in the

analysis, nearly 50% of the data were incomplete, in contrast to almost 80%

of the data being complete when 89 GCs were used. We therefore stress the
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importance of having complete and accurate motion data for tracer objects.

In particular, there is a need for remote tracers with complete measurements.

This point is highlighted by both the sensitivity analysis (Figures 4.5 and 4.6

and 6) and the energy estimates of the GCs (Figure 4.8).

Figures 4.5 and 4.6 display how the uncertainty in the mass and parameter

estimates changes as inner GCs are removed from the sample; as the percentage

of incomplete data increases, the results become much less constrained.

Figure 4.8 shows that the outermost GCs with complete data have esti-

mated energies that are lower than their measured counterparts. The com-

plete data E estimates (solid blue circles) appear to move away from the mea-

surement values (solid green diamonds) and toward the E estimates of the

incomplete data (hollow blue circles). However, there is very little informa-

tion beyond 20 kpc, because the proportion of GCs at large distances without

proper motion measurements is high. If complete velocity measurements of

these remote GCs suggest that they have high energies, then the mass esti-

mate obtained with this model will increase. If they do not, then the mass

estimate of the Galaxy may be closer to the value we found in this study.

Ultimately, this question cannot be answered without measuring the proper

motions of the other remote GCs.

The results of the sensitivity analysis, the estimated energy profile of the

GCs, and the relatively unchanged result between 89 and 143 clusters lead us to

conclude that it is absolutely critical to have proper motions for distant tracers.

Obtaining proper motions of GCs at large radii is critical to understanding the

distribution of energies at large radii and thus the mass of the Milky Way.

An illuminating follow-up investigation to this study is to analyze simu-

lations of Milky Way-type galaxies and their satellites using our hierarchical
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method. We are currently performing such analyses of realistic galaxy simula-

tions (Keller et al., 2015, 2016) to determine how much proper motion data is

necessary to constrain the mass profile further, and to study what biases may

occur under the Galaxy model that we have employed here when the distribu-

tion of the tracers does not follow a single power-law spatial distribution (G.

M. Eadie et al. 2016, in preparation).

The mass profile result we have obtained in this study is at the lower

end of most mass estimates in the literature but is also in agreement with

some more recent measurements (e.g. Deason et al., 2012a; Battaglia et al.,

2005; Gibbons et al., 2014). Because the result obtained in this study is so

similar to the mass profile of Paper II, we refer the reader to that paper for

further comparison to other studies. We end by noting, however, that our

results could change substantially with the inclusion of proper motion data

from remote tracers. The number of complete velocity measurements for GCs

at large distances will soon increase thanks to projects such as the HST Proper

Motion Collaboration (HSTPROMO3; van der Marel et al., 2014; Sohn et al.,

2016), and with these data, a better estimate of the Galaxy’s total mass will

be possible.

4.7 Conclusion

We have described a coherent, hierarchical Bayesian method for estimating the

mass profile of the Milky Way Galaxy and applied this method to the Galaxy

using GC data. This statistical framework allows us to take full advantage of

all available GC kinematic data and also provides a meaningful and coherent

3HSTPROMO Project: http://www/stsci.edu/ marel/hstpromo.html
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probabilistic way to incorporate measurement uncertainties.

Using the assumptions of the power-law model (Section 4.2.1), the hier-

archical framework for including uncertainties (Section 4.2), and the prior

distributions (Section 4.2.2) and confronting this model with data from 143

GCs around the Milky Way, we arrive at a cumulative mass profile for the

Galaxy with uncertainties (Figure 4.4) and a mass estimate within 125 kpc of

4.8× 1011M� (the 95% Bayesian credible regions are (4.0− 5.8)× 1011M�).

When we extrapolate the mass profile to the virial radius (≈ 179 kpc), we find

Mvir = 6.2 × 1011M� with a 95% Bayesian credible region of (4.7 − 7.8) ×

1011M�. This mass estimate is notably lower than those in other studies.

The statistical framework presented here will be highly useful and appro-

priate for other tracer objects around the Milky Way, such as halo stars and

DGs. Using our approach with data sets from large programs, such as Gaia,

could yield a well-constrained mass estimate for the Galaxy. Incorporating

large data sets in this analysis will present some computational challenges,

but given the effectiveness of our MCMC sampler we are confident that this

will be a tractable problem through parallelization.

The first order of business, however, is to better understand what tracer

populations will provide the most information about the Milky Way’s grav-

itational potential. Thus, in our next paper (G. M. Eadie et al. 2016, in

preparation), we perform a series of blind tests of simulated data of Milky Way-

type galaxies that were created through hydrodynamical simulations (Keller

et al., 2015, 2016) and investigate which tracer information is necessary for

constraining the mass of the Milky Way.
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López, C. E. 2010, AJ, 140, 1282

Deason, A. J., Belokurov, V., & Evans, N. W. 2011, MNRAS, 411, 1480

Deason, A. J., Belokurov, V., Evans, N. W., & An, J. 2012a, MNRAS, 424,

L44

Deason, A. J., Belokurov, V., Evans, N. W., & McCarthy, I. G. 2012b, ApJ,

748, 2

Dinescu, D. I., Girard, T. M., & van Altena, W. F. 1999, AJ, 117, 1792

Dinescu, D. I., Keeney, B. A., Majewski, S. R., & Girard, T. M. 2004, AJ,

128, 687

Dinescu, D. I., Mart́ınez-Delgado, D., Girard, T. M., et al. 2005, ApJL, 631,

L49

189



Ph.D. Thesis - Gwendolyn M. Eadie McMaster University - Physics & Astronomy

Eadie, G., & Harris, W. 2016, ApJ, 829, 108

Eadie, G., Harris, W., & Springford, A. 2015a, in JSM Proceedings (ASA)

Eadie, G., Harris, W., & Widrow, L. 2015b, ApJ, 806, 54

Eadie, G., Harris, W., Widrow, L., & Springford, A. 2015c, in Proceedings

of the IAU, ed. A. Bragaglia, M. Arnaboldi, M. Rejkuba, & D. Romano

(Cambridge Journals)

ESA. 1997, The Hipparcos and Tycho Catalogues

Evans, N. W., Hafner, R. M., & de Zeeuw, P. T. 1997, MNRAS, 286, 315

Evans, N. W., Wilkinson, M. I., Perrett, K. M., & Bridges, T. M. 2003, ApJ,

583, 752

Gibbons, S. L. J., Belokurov, V., & Evans, N. W. 2014, MNRAS, 445, 3788

Harris, W. E. 1996, AJ, 112, 1487

—. 2010 edition, ArXiv e-prints, arXiv:1012.3224, updated Globular Cluster

catalogue

Johnson, D. R. H., & Soderblom, D. R. 1987, The Astronomical Journal, 93,

864

Kafle, P. R., Sharma, S., Lewis, G. F., & Bland-Hawthorn, J. 2012, ApJ, 761,

98

Keller, B. W., Wadsley, J., & Couchman, H. M. P. 2015, MNRAS, 453, 3499

—. 2016, MNRAS, 463, 1431

190



Ph.D. Thesis - Gwendolyn M. Eadie McMaster University - Physics & Astronomy

Kochanek, C. S. 1996, ApJ, 457, 228

Kulessa, A. S., & Lynden-Bell, D. 1992, MNRAS, 255, 105

Küpper, A. H. W., Balbinot, E., Bonaca, A., et al. 2015, ApJ, 803, 80

Little, B., & Tremaine, S. 1987, ApJ, 320, 493

McMillan, P. J. 2011, MNRAS, 414, 2446

Navarro, J. F., Frenk, C. S., & White, S. D. M. 1996, ApJ, 462, 563

Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2016, A&A, 594, A13

Roberts, G. O., & Rosenthal, J. S. 2009, Journal of Computational and Graph-

ical Statistics, 18, 349

Schönrich, R., Binney, J., & Dehnen, W. 2010, MNRAS, 403, 1829

Sohn, S. T., Van Der Marel, R. P., Deason, A. J., et al. 2016, in American

Astronomical Society Meeting Abstracts, Vol. 228, American Astronomical

Society Meeting Abstracts, 319.06

van der Marel, R. P., Anderson, J., Bellini, A., et al. 2014, in Astronomical

Society of the Pacific Conference Series, Vol. 480, Structure and Dynamics

of Disk Galaxies, ed. M. S. Seigar & P. Treuthardt, 43

Wang, W., Han, J., Cooper, A., et al. 2015, MNRAS, 453, 377

Watkins, L., Evans, N., & An, J. 2010, MNRAS, 406, 264

Wilkinson, M., & Evans, N. 1999, MNRAS, 310

Williams, A. A., & Evans, N. W. 2015, MNRAS, 454, 698

191



Ph.D. Thesis - Gwendolyn M. Eadie McMaster University - Physics & Astronomy

192



Ph.D. Thesis - Gwendolyn M. Eadie McMaster University - Physics & Astronomy

5
A Blind Test on Milky Way-Type
Galaxies from the MUGS2 Hydro-
dynamical, ΛCDM Simulations

In the chapter, I present preliminary results of original research that is in prepa-

ration for The Astrophysical Journal. The first author is myself, Gwendolyn

Eadie, the second author is Dr. Benjamin Keller, and the third is Dr. William

Harris. Dr. Keller supplied the mock data. In what follows, I performed the

analysis and wrote the text.
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5.1 Introduction

Multiple techniques have been created to measure the total mass and mass

profile of the Milky Way (MW) Galaxy, including the timing argument (Kahn

& Woltjer, 1959), the use of kinematics of globular clusters (GCs), halo stars,

and stellar streams to trace the gravitational potential (e.g. Little & Tremaine,

1987; Wilkinson & Evans, 1999; Sakamoto et al., 2003; Dehnen et al., 2006;

Xue et al., 2008; Deason et al., 2012; Law & Majewski, 2010, and many oth-

ers), and more recently the direct comparison to cosmological simulations (e.g

Boylan-Kolchin et al., 2011; Busha et al., 2011; Patel et al., 2017). While each

method has its own merits, the most popular approach continues to be using

the kinematics of tracers to estimate the MW’s gravitational potential, and

thus its total mass. The Gaia satellite (Perryman et al., 2001; ESA, 2016)

and the Large Synoptic Survey Telescope (LSST-Corporation, 2016, hereafter

LSST) data will greatly increase the number of kinematic tracers, and with

this big data comes a demand for reliable methods that use tracer information

to estimate the mass of the Galaxy.

In this vein, we have been developing a hierarchical Bayesian method to

measure the mass and mass profile of the MW that uses kinematic tracers. The

method is tentatively called Galactic Mass Estimator (GME), and it has been

applied to the Galactic globular cluster (GC) data in a series of papers (Eadie

et al., 2015; Eadie & Harris, 2016; Eadie et al., 2017b,a, hereafter Papers 1,

2, and 31 respectively.). GME uses the distribution function (DF) from Evans

et al. (1997), which was also used by Deason et al. (2011) in a maximum likeli-

hood analysis of halo stars to measure the mass of the MW. Our results provide

1this paper includes an erratum, see Appendix A
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a 95% Bayesian credible region for the virial mass of (0.67, 1.09) × 1012M�,

which is in agreement with several recent studies (e.g. Xue et al., 2008; Diaz

et al., 2014; Gibbons et al., 2014; Patel et al., 2017; McMillan, 2017). Our

method has at least two advantages over traditional mass estimation methods,

one being the inclusion of incomplete data (tracers which only have line-of-sight

velocity measurements) and two being a measurement model that accounts for

observational error. Our method produces Bayesian credible regions for the

cumulative mass profile of the Galaxy at any Galacocentric radii, rather than

point estimates of the total mass within a certain distance.

What remains unclear in our previous analyses, however, is whether the

mass profile correctly describes the shape and true total mass of the Galaxy. It

is impossible to know the true Galactic mass profile, but it would be useful to

have some sense of how well our mass profile prediction encloses the true mass

profile within the uncertainties. We also want to obtain a better understanding

of the model’s limitations. Thus, it seems a natural step from Papers 1, 2, and

3 to test the hierarchical Bayesian method on mock observations derived from

hydrodynamical simulations of MW-type galaxies, in order to obtain insight

into the predictive properties of our choice of model.

In this study, we perform such tests on simulated observations of GC ana-

logues from the McMaster Unbiased Galaxy Simulations 2 (MUGS2) hydrody-

namical simulations (see Keller et al., 2015, 2016). The simulations incorporate

the modern smoothed particle hydrodynamics code GASOLINE2 (Wadsley

et al., 2004; Wadsley et al., 2017) and include such effects as low-temperature

metal cooling, UV background radiation, star formation, and stellar and super-

bubble feedback (Keller et al., 2015; Stinson et al., 2010). These mock galaxies

provide a way to test our method’s predictive power because their stellar and
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dark matter profiles are probably more complicated than our model— a situ-

ation that is likely similar with the real data of the MW.

We perform blind tests on the mock data (i.e. without prior knowledge of

the true mass of the simulated galaxies) from eight MUGS2 simulated galaxies.

Two of these galaxies, g15784 and g1536, are first analysed in detail, and then

six more are analysed to obtain a greater sample. Section 5.2 briefly reviews the

physical model that is used in our hierarchical Bayesian framework. Section 5.3

describes how mock tracers from the MUGS2 simulations were selected, and

Section 5.3.3 describes how mock heliocentric observations (with errors) were

created from these tracers. In Section 5.4, we show the mass profile and virial

mass predictions and compare these to the true quantities (which were revealed

to us from Keller after our analysis was complete). A brief discussion follows

in Section 5.5, and Section 5.6 provides a summary of our findings.

5.2 Brief Review of the Physical Model

We adopt the same physical model that was used in Papers 2 and 3 (Evans

et al., 1997; Deason et al., 2011). The model assumes a total gravitational

potential given by

Φ(r) =
Φo

rγ
(5.1)

where Φo and γ are parameters. The radial distribution of the tracer popula-

tion is also assumed to follow a power-law profile:

ρ(r) ∝ 1

rα
(5.2)
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where α is a parameter. Given Equation 5.1, the total mass profile is given by

M(r) =
γΦo

G

(
r

kpc

)1−γ

, (5.3)

which goes to an isothermal sphere in the limit that γ → 0, and a point mass

as γ → 1. Equations 5.1 and 5.2 are used to derive a distribution function

(DF) through the Eddington formula (see Binney & Tremaine, 2008). For the

curious reader, the derivation of the DF is given in both the original paper by

Evans et al. (1997) and in Paper 2 (Chapter 4, albeit with different notation).

The DF is a probability distribution; it gives the probability of a single

tracer having a particular specific energy E and specific angular momentum

L, given the model parameters (Φo, γ, α, β), where β is the constant velocity

anisotropy parameter for the tracer population (Binney & Tremaine, 2008). In

our Bayesian set-up, all four model parameters are free. The prior probabilities

on the model parameters are uniform distributions for (Φo, γ, β), and the prior

on α is a Gamma distribution.

The measurement model, which incorporates the measurement uncertain-

ties in the data, is described fully in Paper 3. In short, the measurement

model treats the true position and velocity components of the tracers as nui-

sance parameters, and constrains these parameters using both the data and the

measurement uncertainties. For information on the particulars of the MCMC

methods for sampling the posterior distribution, the reader may refer to Paper

1, with some updates in Papers 2 and 3.
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5.3 Creating Mock Observations of Tracers in

MUGS2 Galaxies

In order for our blind test to be as realistic as possible, we need to create a set

of tracer data from the simulated galaxies that most closely resembles that of

the MW. In the next few sections, we describe this process.

5.3.1 Finding GC analogues in MUGS2 Galaxies

Although cosmological, hydrodynamical simulations have made great strides

in recent years, resolution limits have prevented the ability to create GC popu-

lations within a fully simulated, cosmological galactic environment. Therefore,

MUGS2 does not have GCs with which we can use to test our method. In-

stead, we must use a selection of star particles from each mock galaxy and

treat them as GC analogues. These star particles represent entire populations

of stars, with each particle carrying a mass of ∼ 105M�. Coincidentally, this

mass is similar to the mass of many GCs found in the MW.

In order to keep our analysis a true blind test, we asked Keller to select

the GC analogues independently and send us only their kinematic information.

Keller chose GC analogues from the MUGS2 data by filtering out star particles

with ages greater than 12 billion years and metallicities [Fe/H] < −1.5. With

such cuts, the stars in a GC analogue would have formed at an approximate

redshift z ≈ 3. Keller also removed any disk-associated objects by removing

star particles within a galaxy-centered cylinder with radius 3re and height re,

where re is the half-light radius of the Galaxy.
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Keller then provided us with the Galactocentric positions (x, y, z) and ve-

locities (vx, vy, vz) of the GC analogues, and told us that the MUGS2 host

galaxies were “Milky Way-type”. We had no knowledge of their mass, mass

profile, or merger history.

The number of GC analogues in each MUGS2 galaxy varies significantly,

ranging from populations of 64 to 5106— a reflection of the different star

formation rates at high redshift. Galaxies with more GC analogues had more

star formation in earlier times. Some of these population sizes are not realistic

when compared to the MW GC population, which consists of 157 known GCs

(Harris, 1996, 2010). Although the number of GC analogues does not match

the number of MW GCs, we can randomly sample GC analogues from the

population to mimic the MW.

For this preliminary work, we randomly select 157 GC analogues from each

of g15784 and g1536. Having thousands of GC analogues at our disposal, while

unrealistic, will make for some interesting statistical studies in the future. For

example, we can repeat the sampling and perform the blind test more than

once on the same galaxy to uncover and understand possible biases, although

this is left to future work.

5.3.2 Selecting MUGS2 Galaxies to Investigate

Eighteen MW-type galaxies were created in the MUGS2 simulations. The

black points in (Figure 5.1) show the GC analogues’ total velocity v as a

function of galactocentric distance r. For comparison, the MW GC data is also

plotted in blue (only GCs with complete velocity measurements are shown).

Most of the galaxies’ GC analogues display the same overall shape to their
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velocity profile— the average speed tends to decrease with distance r from

the galactic centre. However, there are also clumpy features in some of the

GC analogue profiles which could indicate recent merger events and/or the

presence of massive satellites. The GC system of the MW is thought to be an

approximately virialized population, and indeed these kinds of features are not

present in the MW GC data. Therefore, it seems prudent to avoid MUGS2

galaxies with these features for this preliminary analysis).

As a first step, we chose to work with g15784 because it lacked any strange

features in its velocity profile, had many GC analogues from which I could

draw samples, and frankly, because its velocity profile and mock image of

the galaxy “looked nice”. It should be noted that we did not look at the

comparison of the MW GC data to the MUGS2 data (Figure 5.1) until after the

analysis was complete, and only after-the-fact did we realize the MW GC data

overlaps quite well with the GC analogues for g15784. After analysing g15784,

we studied g1536 at the suggestion of Keller, who relayed the information

that g1536 was a less concentrated galaxy than 15784 and thus would make

an interesting comparison. In the two galaxies, g15784 and g1536, the GC

analogue populations are 2381 and 311 respectively. We follow-up this detailed

examination by applying our method to six more MUGS2 galaxies: g19195,

g22437, g22795, g25271, g4145, and g4720.

5.3.3 Creating Mock Heliocentric Observations

After selecting MUGS2 galaxies to analyse, we created mock heliocentric ob-

servations of the GC analogues, such as might be viewed from a Sun-centered

reference frame. This involved a series of steps, including not only transforming
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Figure 5.1: Velocity profiles of GC analogues from MUGS2 simulated galaxies,
with MW GC velocities (for GCs with complete data) overplotted in blue.
Galaxies g1536 and g15784 are the first two frames in the top row.
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Figure 5.1: (cont’d) Velocity profiles of GC analogues from MUGS2 simulated
galaxies, with MW GC velocities (for GCs with complete data) over-plotted
in blue.
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positions and velocities into a heliocentric frame, but also introducing missing

data and measurement errors to simulate real observations.

5.3.4 Transforming from Galactocentric to Heliocentric

The kinematic information of the GC analogues directly from the MUGS2

simulations is in a galactocentric, Cartesian coordinate system with positions

(x, y, z) and velocities (vx, vy, vz). To create heliocentric positions and veloci-

ties, we perform a series of steps:

1. Transform the galactocentric Cartesian coordinates into heliocentric Carte-

sian coordinates by adjusting for the solar position.

2. Calculate the distance d from the Sun to the GC analogue, which is then

used to calculate the parallax λ.

3. Transform the heliocentric positions (Cartesian coordinates) into galactic

coordinates l and b, and subsequently into right ascension (RA, α) and

declination (decl., δ).

4. Using the GC analogues’ λ, α, δ and Galactocentric velocities, we per-

form the inverse of the transformation described in Johnson & Soderblom

(1987) to obtain the line-of-sight velocities (vlos) and proper motions

(µα cos δ, µδ):


vlos

kµαcos(δ)/λ

kµδ/λ

 = (T ·A)−1



U

V

W

−

U�

V�

W�


 , (5.4)
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where k=4.74057 (the equivalent in km s−1of 1 AU in one tropical year),

the vector (U�, V�,W�) is the solar motion (we use the value from

Schönrich et al., 2010)2, the matrix T is determined by the RA and

decl. of the North Galactic Pole, and the matrix A is determined by α

and δ of the GC analogue.

The above steps were performed for the MUGS2 GC analogue data, and

then checked by transforming the heliocentric data back to Galactocentric with

the relevant code in GME. This was done without introducing scatter, to con-

firm that we could obtain the correct Galactocentric values when transforming

back to the Galactocentric frame.

We notice discrepancies of ' 2 × 10−13km s−1 in the velocities at small

rgc when the transformation is performed without scatter, which are due to

numerical issues (Figure 5.2). The symmetry of these discrepancies and their

small values will not contribute to any systematic bias in the result.

5.3.5 Assigning Measurement Uncertainties

The measurement model in the hierarchical Bayesian method (Paper 3) as-

sumes that a measurement of some quantity x is a random variable X that is

normally distributed,

X ∼ N (µ, σ2) (5.5)

where µ, the mean, is the true value of the quantity and where σ2, the variance,

is equal to the square of the measurement uncertainty. Any difference between

the measured x and the true value µ is the error. In order to analyse the

2U is positive toward the Galactic center, V is positive in the direction of Galactic
rotation, and W is positive above the Galactic plane.
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Figure 5.2: Difference between the true radial, tangential, and total velocities
and those calculated from the heliocentric velocities, as a function of Galacto-
centric distance (indicated by colours).
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MUGS2 data in a way that is most similar to the MW analysis, we must

create realistic, observational errors. We achieve this by setting the mean µ to

the true value of the quantity (e.g. r, vlos, etc) in the MUGS2 data, deciding on

a value for σ2, and drawing from the normal distribution determined by these

parameters. How we choose to define σ2 for each quantity (r, vlos, µα cos δ, µδ)

is important because it may determine how much leverage a data point has on

the final analysis.

The galactocentric distances r were assigned a measurement uncertainty of

5% (see Harris, 1996, 2010). The proper motion and line-of-sight measurement

uncertainties were drawn with replacement from the real data uncertainties by

randomly selecting a row from the MW GC list given in Paper 2. We excluded

two large measurement uncertainties in this process — that of Pal 3 and NGC

6218 — to avoid assigning very large observed proper motions to the GC ana-

logues that we deemed to be unrealistic3. We also investigated various distance

measures to match MW GCs to GC analogues, so that GC analogues could be

assigned uncertainties that were similar to their MW counterparts, but found

these procedures gave final error distributions that were indistinguishable from

the simple random sampling.

Once the transformations of the MUGS2 data were complete and mea-

surement errors were created for the GC analogues of each MUGS2 galaxy, a

subsample of 157 was taken at random from each galaxy to mimic the sample

size of the MW’s GC population.

3in the MW analysis, we treated the proper motion of Pal 3 as unknown, because the
measurement uncertainty was so large.
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5.3.6 Creating Incomplete Data

Of the 157 GCs in the MW listed in Paper 2, 85 do not have proper motion mea-

surements and 14 of this subset also lack line-of-sight velocity measurements.

Within 20kpc of the MW centre, approximately 50% (67/135) of the data are

missing proper motion measurements, and beyond this distance approximately

87% are missing proper motions. We mimic this distribution of incomplete

data in the subsamples by removing 50% of the proper motions within 20kpc,

and removing 87% outside of this distance. After doing this, there are many

GC analogues with proper motion measurements beyond 50kpc, which to us

seems unrealistic, since the real MW has only one complete data point beyond

this distance. Thus, we decided to remove all proper motions beyond 50kpc.

In Papers 2 and 3, we used the 14 GCs that lacked line-of-sight measure-

ments to define the prior distribution in the number density profile parameter

α (see Chapter 3). For the MUGS2 GC analogues, we randomly remove 14

line-of-sight velocities and use the positions of these objects in the same way as

we did for the real data. To check that the distribution of incomplete data is

similar to that of the MW, we plot the smoothed distributions of the GC ana-

logue mock data and compare it to that of the MW GC data. The subsample

for g15784 is shown as an example in Figure 5.3.

In the case of g1536, any given subsample of 157 GC analogues of the simu-

lated data has ∼ 30 GC analogues residing within 20kpc of the galactic centre.

This is in stark contrast to the MW, which has 135 GCs within 20kpc. In the

MW, proper motion measurements are available for at least 67 GCs within

20kpc. Removing 50% of the proper motion measurements within 20kpc for

g1536 (as was done for g15784) seems unrealistic— if we lived in a galaxy with
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Figure 5.3: Top: The distribution of the MW complete and incomplete data,
as a function of Galactocentric distance (solid blue and dashed black lines
respectively). Bottom: The distribution of complete and incomplete mock
data generated from a subsample of g15784 GC analogues.
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only 30 GCs within 20kpc of the Galactic centre, then surely we would have

proper motion measurements for almost all of them! Thus, we decide to keep

all but two proper motion measurements within 20kpc. Beyond 50kpc, all

proper motions are removed, based on the fact that measurements of the most

distant GCs require a certain amount of time, technology, and commitment

on the part of us humans.

5.4 Preliminary Results

We now apply the GME code to the GC analogue subsamples from eight

MUGS2 galaxies, and present the results below (Section 5.4.1). We begin

with a detailed look at g15784 and g1536 (Section 5.4.1). Next, we repeat

the analysis on six other MW-type MUGS2 galaxies (g19195, g22437, g22795,

g25271, g4145, and g4720) that have similar GC-analogue spatial distributions

to that of the MW’s real GC system (Section 5.4.2).

5.4.1 Detailed Test Cases: g15784 and g1536

The mean estimates of the model parameters given by the posterior distri-

bution for galaxy g15784 are presented in Table 5.1, where the numbers in

brackets represent the bounds of the 95% marginal credible regions.

We also calculate the virial radius and virial mass of galaxy g15784 from

the posterior distribution of model parameters. We define the virial radius

as the distance from the galactic centre within which the mean mass den-

sity of the galaxy is 200 times the critical density of the Universe, and use

a Hubble constant of 67.8 km s−1Mpc−1 (Planck Collaboration et al., 2016).

The mean virial radius and virial mass of galaxy g15784 as predicted from
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the hierarchical Bayesian analysis are rvir = 217 (184, 249) kpc and Mvir =

1.1 (0.7, 1.7)× 1012M�, where numbers in brackets are 95% Bayesian credible

regions (Table 5.1). These values are strikingly accurate— the true values

from the simulations are 219 kpc and 1.3× 1012M�.

After completing the analysis of g15784, galaxy g1536 was recommended by

Keller for a second blind test, because its structure is somewhat different from

g15784. The results are shown in Table 5.2. In this case, the method did not

perform as well; the true virial radius and mass are 174kpc and 0.65×1012M�

respectively, whereas the predicted values were rvir = 162 (143, 182)kpc and

Mvir = 0.5 (0.3, 0.6)× 1012M�.

We also calculate the cumulative mass profile Bayesian credible regions,

using Equation 5.3 (Figure 5.4a). Although the virial mass is well estimated

using the GC analogues of g15784, the predicted mass profile shows disagree-

ment with the true mass profile. The predicted M(r) profile falls below the

true profile for many values of r for both g15784 and g1536.

The hierarchical Bayesian method treats the true positions and velocities

as nuisance parameters, sampling them in the Monte Carlo Markov Chain

hybrid-Gibbs algorithm (see Paper 1 and 3). As a result, we obtain marginal

Table 5.1: Model Parameter Estimates: g15784

Parameter Mean 95% Marginal Credible Region

Φo(104km2s−2) 47 (40, 57)
γ 0.41 (0.31, 0.57)
α 3.04 (3.02, 3.06)
β 0.54 (0.41, 0.66)

Derived Quantity

rvir (kpc) 216 (183, 248)
Mvir (1012M�) 1.1 (0.7, 1.6)
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Table 5.2: Model Parameter Estimates: g1536

Parameter Mean 95% Marginal Credible Region

Φo(104km2s−2) 25 (19, 36)
γ 0.41 (0.30, 0.62)
α 3.03 (3.01, 3.04)
β 0.46 (0.22, 0.64)

Derived Quantity

rvir (kpc) 162 (143,182)
Mvir (1012M�) 0.5 (0.3, 0.6)
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Figure 5.4: The predicted (grey shaded regions) and true (red line) cumulative
mass profiles for galaxy (a) g15784 and (b) g1536. The dashed vertical lines
indicate the range of the mock observations.
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posterior distributions for the galactocentric velocity and position of each GC

analogue, which can be used to estimate the specific energy E . In Paper 3,

we used these marginal posterior distributions to create an energy profile as a

function of radius, and compared the predicted energies to the measured ener-

gies. We noted that the estimated energies were altered when the measurement

uncertainties were large, in perhaps the model’s attempt to describe the GC’s

kinematic energy in light of the other GCs. Here, we repeat the same pro-

cedure of comparing the mock “measured” energies of the GC analogs to the

estimated energies, but also have the luxury of comparing the latter to the true

energies of the GC analogues (given the estimates for the model parameters).

The estimated, measured, and true specific energies of the GC analogues

from g15784 are shown in Figure 5.5. All energies are calculated using the

mean estimates of the model (Φo, γ, α, β) and nuisance (r, vlos, µα cos δ, µδ) pa-

rameters. The measured complete data (solid green diamonds) are connected

to the estimated energies (solid blue circles) via black arrows. The estimated

energies from the posterior distribution for the incomplete data are shown as

open blue circles. The true energies, given the mean model parameters, are

show as grey squares. There is neither an over- nor under-estimated systematic

bias in the energy estimates. However, we can see that the estimates are pulled

toward the profile created by the incomplete data measurements (Figure 5.5).

Overall, the ability of GME to adjust the energy values of the GC analogues

reflects the result found in Paper 3, for the real MW data.

The estimated energy profile of the GC analogues from g1536 is shown in

Figure 5.6. Again, the mock measurements of the complete data and mean

model parameters are used to calculate the measured energy (solid green di-

amonds), and the estimated energies (solid blue = complete, hollow blue =
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Figure 5.5: Energy profile of GC analogues from g15784. The solid grean
diamonds show the specific energy of the GC analogues which have complete
velocity measurements. The solid blue and hollow blue points are the estimated
energies, calculated using the mean values of both the model and nuisance pa-
rameters of the posterior distribution. Arrows connect the measured energies
to the esimated energies for the GC analogues with complete data. The grey
squares show the true energies, based on the best estimates of the model pa-
rameters. The purple curves are the 50 and 95% regions for the gravitational
potential. Any object above the dotted line (E = 0) would be unbound.

incomplete) are calculated using the means of the nuisance and model param-

eters. The true values of the energies, given the model parameters, are shown

as grey solid squares. Immediately obvious in Figure 5.6 are ∼ 6 GC analogues

whose measured energies differ greatly from the predicted ones. However, the

true values (grey squares) are quite different as well, and the estimated en-

ergies are in better agreement with the true energies. The model has taken

into account the large uncertainties of these objects and adjusted their posi-

tion and velocity parameters such that the GC analogue energies match the

average distribution of the other energies at that distance.

For galaxy g1536, about 50% of the GC analogue data are complete between
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Figure 5.6: Estimated energy profile of GC analogues from g1536. The symbol
notation is the same as Figure 5.5, except that grey squares are added to
indicate the true energies of the GC analogues.

20 and 50kpc, and the estimated energies for a significant portion of these

GC analogues are not very different from the true values. There were six GC

analogues with large measured energies, but the measurement model accounted

for their large errors and estimated their energies to be much lower— which was

the correct assumption in this case. However, despite accurately predicting the

approximate energy of the six GC analogues that had large errors, the total

mass and mass profile for g1536 was underestimated.

5.4.2 Mass Estimates of MUGS2 galaxies

We now apply GME to six more MUGS2 galaxies, to bring the total to eight,

and present the results. Galaxies g19195, g22437, g22795, g25271, g4145, and

g4720 were chosen for analysis because their GC analogue populations have
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radial density profiles similar to the GC population of the MW. Figure 5.7

summarizes the mean estimates of the virial mass (top), virial radius (mid-

dle), and constant velocity anisotropy (bottom) for all eight MUGS2 galaxies

analysed thus far. The estimates are shown as black circles, the true values

are blue diamonds, and the 95% credible regions are shown as error bars.

The virial masses are underestimated for seven out of eight of the MUGS2

galaxies, and the 95% credible regions contain the true virial mass for all

but g22795 and g4720 (top panel, Figure 5.7, top row). This could hint at

a systematic bias in our method, but it is important to make this kind of

inference cautiously, for a few reasons.

First, recall that the six additional galaxies were chosen because their GC

analogue populations had similar spatial distributions to the real GCs of the

MW. After the analysis was complete and the true masses and characteristics

of the galaxies were revealed to us, we learned we had chosen six “unregulated”

MUGS2 galaxies (Keller et al., 2016), discussed next.

Half of the galaxies in the MUGS2 simulations were categorized as unregu-

lated (Keller et al., 2016). During the last stages of evolution in the simulations,

feedback mechanisms were unable to effectively expel gas from these galaxies,

which led to an overproduction of stars in their discs. Ultimately, each of these

unregulated galaxies formed a massive bulge at its center which eventually de-

pleted its gas reservoir, and created a strong central Keplerian potential (see

Keller et al., 2016, Figure 4). When the gas mass is normalized by the virial

mass, it becomes clear that g22795 and g4720 are two of the most extreme

unregulated galaxies (Figure 5.8). Furthermore, Keller et al. (2016) note that

the unregulated galaxies do not follow the standard stellar mass to halo mass

relation, and therefore are not quite MW-type galaxies. Of the eight MUGS2
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galaxies we have analysed thus far, seven out of eight were unregulated, with

the exception being g1536.

Second, the two most poorly estimated virial masses, g22795 and g4720,

have marginal posterior distributions for γ that reached the upper limit of the

prior (i.e. 0.7). In a Bayesian analysis, a marginal distribution for a parameter

that is truncated by the upper or lower limit of the prior distribution should

inspire suspicion in the results, because this behaviour indicates that the model

and prior assumptions are not capable of describing the data. In the cases of

g22795 and g4720, it seems that γ was attempting to reach a value larger

than 0.7 because of the extremely compact discs; in the limit that γ → 1, the

gravitational potential model goes to a Keplerian potential (Equation 5.1). As

we saw in Paper 2, the parameters Φo and γ are anti-correlated, and thus a

larger value of the latter will lead to a smaller value of the former— which

consequently means a smaller mass estimate.

Third, the sample size of galaxies is only eight, and each galaxy was anal-

ysed with one sample of GC analogues. Thus, the probability that seven out

of eight galaxies would be underestimated by chance is not insignificant.

Returning to Figure 5.7, the virial radius estimates (middle row) are in

reasonably good agreement with the true values and within the 95% credible

regions for all but the two special cases mentioned above. The β parameter

estimates, on the other hand, are more poorly estimated, and tend to indicate

a less radially-biased anisotropy than the true velocity anisotropy calculated

from the GC analogue subsample (5.7, bottom row). Nevertheless, the accu-

racy of the β estimate does not appear to be related to the accuracy of the

virial mass or virial radius. It is unclear why the velocity anisotropy is un-

derestimated, although it is important to remember than the mock data was

216



Ph.D. Thesis - Gwendolyn M. Eadie McMaster University - Physics & Astronomy

incomplete beyond 50kpc. It will be interesting to test how the β estimates

change as more proper motions measurements are included in future tests.

5.5 Discussion

The results of this preliminary study are intriguing. While the measurement

model seems to account for the measurement uncertainties very well, the phys-

ical model poorly describes the shape of the galaxy’s mass profile at all radii.

On the other hand, the virial radius and virial mass estimates are quite good

for most of the galaxies and within the 95% credible regions.

The virial mass estimates of the eight MUGS2 galaxies analysed so far do

show a tendency to be underestimated (top panel of Figure 5.7). However,

all of the galaxies we analysed so far (with the exception of g1536) were the

unregulated type from the MUGS2 sample. We selected out these galaxies

for analysis by looking at the radial density profile of their GC analogues and

without considering their star formation histories or final gas fractions. The

galaxies g22795 and g4720 in particular are two extreme case, and indeed these

are the two galaxies which are the most poorly estimated in our study.

One of the most important next steps is to apply the hierarchical Bayesian

method to the regulated MUGS2 galaxies. The regulated galaxies are probably

better representations of the MW and therefore will provide a second test of

our method.

Although we analysed mostly unregulated galaxies in this study, we never-

theless have gained insight into the features of our method and the behaviour

of the physical model. Our method did recover the virial mass within the

95% credible regions in most cases, but the physical model could not describe
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Figure 5.7: True values (blue diamonds), estimates (black circles), and 95%
credible regions (error bars) for each MUGS2 galaxy’s virial mass (top), virial
radius (middle), and velocity anisotropy parameter (bottom). The estimates
were calculated after analysing mock observations of 157 GC analogues for
each of the eight MUGS2 simulated galaxies.
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Figure 5.8: The gas mass fraction at z = 0 of the eight MUGS2 galaxies
analysed in this study (created using data from Keller et al. (2016), Table 1).

the inner regions of the cumulative mass profiles of the galaxies. If our inter-

pretation of the analysis thus far is correct, then an important next step is

introducing a better model for the gravitational potential.

Treating the positions and velocities as nuisance parameters enables the

estimated energy to change significantly when the measurements are highly

uncertain. For objects whose measurement uncertainties are large, including

these uncertainties can have a profound affect at the individual level (i.e. the

energy estimate for that GC analogue) and at the mass measurement level. If

we had not included the measurement uncertainties, then the six outliers in

g1536 would have carried significantly more weight and led to a larger virial

mass estimate.

Including measurement uncertainties may lead to narrower credible regions

in the mass profile, but if the model describes poorly the underlying mass dis-

tribution then these credible regions may be overconfident. It is therefore
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important that we investigate using only the outer tracers from the simula-

tions, to see if they provide a better estimate of the MW mass. However, it

is interesting that the less concentrated simulated galaxy (g1536) was more

poorly fit than the more concentrated one, even though there were fewer GC

analogues at inner radii.

The MUGS2 galaxies that have GC analogue populations most similar in

size to the MW are g8893 (64), g7124 (247), and g422 (251), so a next step

might be to analyse the GC analogues of these galaxies. Revisiting Figure 5.1,

however, shows us that the velocity profiles of these GC analogues are rather

dissimilar to the GC analogues in the MW, populating regions much further

out in the their host galaxies (again, due to the original cuts that removed

disk-associated GC analogues).

One way to test whether the GC analogues are from a distribution similar

to that of the MW GCs would be to perform an empirical statistical test.

For this preliminary work, we simply compare the normalized number density

profile of the GC analogs for both simulated galaxies to the GC number density

profile in the MW (Figure 5.9). We can see that the cylindrical cuts to remove

disk-associated GC analogues significantly changes the spatial distribution at

small radii. However, the distributions at large radii look similar.

One hypothesis is that the combination of the GC analogue number density

profile and the incomplete data at large radii are culprits for the mismatch

between the predicted and true mass profiles (see Figures 5.5 and 5.6).

Our studies of the MW, and in particular the sensitivity analyses in Papers

2 and 3, suggest that the mass estimate might increase slightly if the inner GC

analogues were not included in the analysis. We could perform a sensitivity

analysis on the mock data, and iteratively remove the inner GC analogues
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Figure 5.9: Solid lines show the GC analogue number density profiles for the
subsampled data from MUGS2 galaxies (a) g15784 and (b) g1536. Dotted
lines show the GC number density profile for the MW GC data. The points
along the bottom show the positions of the individual GC analogues (top) and
MW GCs (bottom).
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from the sample to find out how the mass estimate and mass profile prediction

would change. However, as we have seen, the number density profile of the

GC analogues does seem to follow a single power law at large radii. Therefore,

perhaps the incomplete data at large radii are the most important piece of the

puzzle.

To investigate this idea, we plan to re-run the analysis, gradually increasing

the number of proper motion measurements at large distances. Perhaps we

can answer the question: Will the predictive power of the mass profile improve

with the inclusion of complete data at large distances?

5.6 Preliminary Conclusions

We have applied the hierarchical Bayesian mass estimation technique presented

in Eadie et al. (2017b,a) to mock data from eight MUGS2 hydrodynamical

Milky Way-type galaxies (Keller et al., 2015, 2016). First we analysed galaxies

g15784 and g1536 in detail; while the virial radii and virial masses of these

two galaxies were well estimated, the mass profiles were underestimated at

small radii. The hierarchical method applied to the other six MUGS2 galaxies

showed similar results, in that the mass tended to be underestimated. These

results warrant further investigation and a more comprehensive statistical anal-

ysis. Because we plan to extend GME to other applications (e.g. other galax-

ies) in the long term, it is imperative to investigate how our choice of tracer

and physical model might bias results. At this point no strong conclusions can

be made, but we can cautiously say the method may tend underestimate the

virial mass, at least for this small sample of unregulated MUGS2 galaxies.
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An important caveat to the results in Section 5.4, is that only a single ran-

dom sample of GC analogues from each MUGS2 galaxy was investigated. The

number of GC analogues in each MUGS2 galaxy is usually larger; for exam-

ple, the total number of GC analogues in g15784 is 2381, and in g1536 is 311.

An interesting statistical test would be to repeat the analysis of Section 5.4

on multiple random samples of these galaxies, in order to fully understand

the reliability of the mass and mass profile estimates. Another caveat to our

results is that the GC analogues may not be representative of a GC popula-

tion in a MW-type galaxy, insofar as the MW is typical for one of its shape,

size, and mass. Finally, the most important caveat is that seven out of eight

galaxies we chose to analyse were unregulated ones. Why did the unregulated

galaxies have a spatial distribution of GC analogues most similar to the MW’s

GC population, when these galaxies are supposedly least like the MW? The

answer is unclear, and this question also brings into doubt the reliability of

treating star tracers in the MUGS2 simulation as GC analogues.

Nevertheless, the results of this preliminary study encourage us to pursue

our investigations of these simulated galaxies. A more thorough analysis in-

volving repeated sampling of the MUGS2 data will provide us with a better

understanding of both the model choice and the method. Furthermore, by

increasing the number of complete measurements at larger radii, we will be

able to investigate how well the model predicts the mass profile in the pres-

ence of more complete data. And of course, analysing the regulated galaxies

from MUGS2 will also enable a more well-rounded interpretation of the present

results.

Another area to investigate is that of tracer choice. In our studies thus far,

we have been using the MW GC population as a testbed for the hierarchical
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Bayesian method. One way to investigate how the tracer choice (GCs) affects

the mass estimate is to apply our hierarchical Bayesian method to other tracer

populations in the MW halo, such as Blue Horizontal Branch (BHB) stars or

dwarf galaxies (DGs). While this would allow for comparison between mass

estimates from different tracers, at the same time it would not tell us which

mass estimate is best (if they were different) nor if the physical model we

assume is a good predictor of true Galactic mass. Interpreting and comparing

results from such a study would be quite model dependent, and rely on some

conjecture. Therefore, using different tracers from the MUGS2 simulations

might be a fruitful path to pursue, first.

There are many high-performance computer simulations that produce MW-

type galaxies, and it would be interesting to test our method with the power-

law models on more than the MUGS2 simulated galaxies. In particular, data

from the Apostle, Aquarius, Eagle, Fire, Illustris, and Latte (Sawala et al.,

2016; Springel et al., 2008; Schaye et al., 2015; Hopkins et al., 2014; Vogels-

berger et al., 2014; Wetzel et al., 2016) projects would all make interesting

candidates.

To compare the viability of different galaxy model assumptions within our

hierarchical framework, we could perform Bayesian model comparison tests

(e.g. the Bayes’ factor Jeffrey, 1939). However, this is complicated by the

shortage of analytic distribution functions (DFs) for galaxy models. Analytic

DFs are required in the current set-up of our hierarchical Bayesian framework.

Non-analytic models might be possible with Approximate Bayesian Computa-

tion (ABC) or “Forward Modeling”, but this would involve substantial over-

haul of the hierarchical code.
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We should not immediately discount the idea that the galaxy model em-

ployed here, although simple, may still be a good predictor of the Galaxy’s

mass and mass profile if we can understand how best to use it. If this is the

case, then it would be a favourable alternative to computationally heavy meth-

ods like ABC for computing the mass of the MW (and in the future, other

galaxies), especially with the deluge of data coming from Gaia and LSST in

the near future.
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6
Summary & Future Work

I have presented the development of a hierarchical Bayesian model for mea-

suring the mass and cumulative mass profile of the Milky Way Galaxy, as well

as its application to simple simulated data, real data, and mock data from

hydrodynamic, cosmological simulations. The immediate goal of this work has

been to develop a thorough statistical framework for measuring the mass of

the MW using the kinematic information of Galactic satellites. In particular,

I have sought to overcome some of the major challenges associated with using

tracer data that were discussed in Chapter 1. Another important goal has been

to make the method accessible to those who are not familiar with Bayesian

analysis, and I hope that I have succeeded in this task, especially with the

introduction to Bayesian inference in Chapter 2.

The series of investigations performed in Chapter 3 highlighted some fea-

tures of the physical model when applied to MW GC data. For example, it

was seen that the mass estimate increased slightly as inner GCs were removed

from the analysis, but that the uncertainties also increased significantly. The

mass estimates, despite this change, agree at the level of the 95% credible

regions even when numerous inner GCs are removed. We also noted that the

inclusion of complete and incomplete data simultaneously seemed to remove
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any mass-anisotropy degeneracy; mass estimates were in agreement with each

other within the 50% credible regions, regardless of whether β = 0, β = 0.5,

or β was a free parameter. Also, any slight disagreement in the mass due to

β appears to increase as the proportion of proper motions decreased, as ex-

pected. This result exemplifies why obtaining proper motions for tracers at

large Galactic radii is so important.

Chapter 4 brings the biggest improvement to our method thus far— includ-

ing measurement uncertainties in a hierarchical Bayesian paradigm. Treating

the positions and velocities of the GCs as parameters in the model not only

reduces the influence of highly uncertain data, but also allows us to anal-

yse the specific energy profile of the GCs, which can provide useful insight.

Our best estimate of the mass and mass profile of the MW using the hi-

erarchical Bayesian method are shown in Appendix A. I repeat the virial

mass and virial radius with the 95% credible intervals here, for convenience:

Mvir = 0.87 (0.67, 1.09)×1012M� and rvir = 201 (184, 217)kpc. This mass es-

timate is in agreement with many of the studies discussed in Chapter 1, albeit

the range of mass estimates in the literature is wide. It also is in agreement with

two of the most recent studies of the MW’s virial mass, which found Mvir =

1.02+0.77
−0.55 × 1012M� (Patel et al., 2017) and Mvir = 1.30(±0.30) × 1012M�

(McMillan, 2017).

The results from blind tests performed on mock data from the hydrody-

namical and cosmologically motivated MUGS2 simulations are compelling and

warrant further investigation (Chapter 5). The 95% Bayesian credible regions

for the virial radius contained the true value in most cases, and the true virial

mass was contained within the same regions for all but three galaxies. The

mass profiles, on the other hand, were underestimated at small radii for the
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unregulated galaxies, and overestimated at small radii for g1536. Because all

but g1536 were unregulated galaxies from MUGS2, we cannot make strong

conclusions about our method’s predictive power for the MW.

An important next step is to understand whether the physical model poorly

described the mass profiles because of random or systematic effects. If the

underestimation in the mass profile is a true systematic bias, then we can

hope to understand it and develop a way to correct for it. Alternatively, the

underestimation could be a chance occurrence based on the subsample of GC

analogues that were taken from the simulated galaxies. To fully comprehend

the behaviour of the model as it is confronted with GC analogues, independent

analyses of multiple subsamples of the MUGS2 data are being performed.

Regardless of the mass profile discrepancies, the possibility that the simple

power-law profile model for the Galactic potential can consistently recover the

virial mass for these simulated galaxies is encouraging.

In addition to the work presented in Chapter 5 and discussed above, I

will also use the MUGS2 data to study how the mass estimate changes as

more proper motions are included at larger distances. I may also compare

the distribution of the current GC analogues to MW metal-poor halo star

populations in a quantitative manner, and investigate the possibility of using

different definitions to find GC analogues and/or halo star analogues in the

MUGS2 data.

The blind tests in Chapter 5 highlight the importance of high-resolution

simulations for testing new Galactic mass estimation methods, insofar as they

can describe nature. Ideally, actual GCs within galactic simulations would

make better mock data than GC analogues (not just for this study, but for

many other areas of astronomy as well). However, creating realistic GCs within
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a cosmological simulations requires much higher resolution that is not yet

achievable (although some simulations are getting close, e.g. Kim et al., 2017).

Overall, the hierarchical Bayesian method provides a probabilistic frame-

work to estimate the mass and mass profile of the MW, includes all avail-

able tracer kinematic data, and incorporates measurement uncertainties for

all known positions and velocities. From the posterior distribution, estimates

and probability regions for meaningful physical quantities can be derived, and

a mass profile with probability regions can be calculated to compare mass

estimates with other studies.

6.1 Future Work

The method I have developed for measuring the mass of the MW could be

improved in a variety of ways. For example, one could

• derive a new DF that includes a gravitational potential for the disk and

bulge component of the Galaxy,

• include a shape parameter that allows for non-spherical dark matter halos

(e.g. Deason et al., 2012),

• treat the solar motion and the LSR as parameters in the model (stellar

stream studies have done this with success, e.g. Küpper et al., 2015),

• design a way to allow satellites to be unbound in the model, with some

probability, so that statements may be made about whether or not a

tracer is bound to the MW,
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• incorporate a broken power-law for stellar tracers as done by Kafle et al.

(2012), and

• allow β to vary with radius (instead of assuming a constant velocity

anisotropy).

Determining which of these improvements is the most immediately important

may depend on the results of our current study (Chapter 5). However, at this

point it appears that the first and last items are perhaps the most important

improvements to pursue. Using a DF that includes the gravitational potential

for the disk and bulge components of the Galaxy will provide more model

flexibility, and evidence suggests this improvement is needed to better describe

the data. The sensitivity tests in Chapters 3 and 4 showed a slight increase

in the mass estimate as inner GCs were removed from the analysis (although

the uncertainties increased substantially), and in Chapter 5 the innermost

regions of the mass profiles of the simulated galaxies were poorly recovered

(although here the number of blind tests was small). The last item, allowing

β to vary with radius, would provide us with a β(r) profile for the MW,

which is potentially very useful. Studies of both N-body and hydrodynamical

simulations of MW-type galaxies suggest that changes in β with radius provide

information about the Galaxy’s accretion history (Loebman et al., 2017).

Beyond improving the method itself, one could also apply the method to

other tracers and new data. The recent work by the HSTPROMO team and

others is increasing the number of proper motion measurements of GCs in

the MW. Some of these GCs are at large distances and are being measured

relatively precisely. Re-running our analysis to include this new data may

provide significant information about the dark matter halo at larger radii.
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The mass estimate for the MW when dwarf galaxies were included in our

analysis (Chapter 2) was larger than our more recent results (Appendix A).

However, some of the DG data are highly uncertain. Now that we have im-

proved the method to incorporate measurement uncertainty and are using a

slightly more realistic model for the tracer profile, it would be useful to re-run

the analysis on the dwarf galaxy data too.

Kinematic data used in other studies (e.g. Xue et al., 2008, used BHB

stars) could also be analysed with our method, and the results might make

for interesting comparisons. RR Lyrae, a subset of BHB stars, will also be

useful tracers when their kinematic data becomes available from observational

programs such as Gaia and LSST. With these new instruments, a mixture

of both complete and incomplete velocity measurements will be available, and

methods which can deal with both kinds of data simultaneously will be needed.

The method developed in this thesis could be adapted and applied to other

mass estimation problems in astronomy. For example, one could use it to

estimate masses of objects at a range of scales, including globular clusters,

the Nuclear Star Cluster (NSC) of the MW, spherical dwarf galaxies, other

galaxies, and possibly galaxy clusters.

Currently, I have started to investigate using GME to estimate the mass

profile of the MW’s NSC. By looking at the central region of the NSC, one

could include the gravitational potential of the central supermassive black hole

in addition to the background potential. Such a model would return estimates

for not only the parameters of the NSC, but also the mass of the central

supermassive black hole. Furthermore, the mass profile generated from GME

could be used with the integrated light profile to constrain a mass-to-light ratio

profile with Bayesian credible regions. A natural progression from application
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to the NSC is to apply the method to GCs themselves— we could determine

the probability that a GC contains an intermediate mass black hole at its

centre.

Future work using the hierarchical Bayesian approach I have developed in

this thesis is promising, both for continued studies of the MW and for other

systems. Astronomy is entering an era of Big Data, and kinematic information

from large-scale surveys such as Gaia and LSST are and will become available.

Despite the massive data sets, data will remain incomplete and subject to

measurement uncertainty. Modern statistical methods, such as the hierarchical

Bayesian approach presented in this thesis, will be needed to properly interpret

the data, test theoretical models, and help us decide which research paths to

take next.
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This paper is an erratum to the paper presented in Chapter 4.
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In the analysis for the original manuscript Eadie et al. (2017), the Cartesian

Galactocentric velocities (Ugc, Vgc,Wgc) of the globular clusters (GCs) were in-

correctly transformed to the right-hand cylindrical velocities (Π,Θ, Z) (Equa-

tion (17)). The angle θ in Equation (17) is measured in the xy−plane from

the positive x-axis, such that cos θ = Xgc
r

and sin θ = Ygc
r

where Xgc and Ygc

are the Galactocentric x and y coordinates of a GC in a right-hand Cartesian

system, and where r is the projected distance of the GC onto the xy-plane. In

the analysis, the incorrect r values were used to calculate cos θ and sin θ. This

mistake was partly due to the differences in notation between the Casseti and

Harris online GC catalogs (in the former, Rgc is defined as the projected dis-

tance r, while in the latter Rgc is the three-dimensional distance). The Harris

values of Rgc were used as the projected distance, and thus many of the GC

spatial velocities were underestimated.

We have corrected this mistake, recalculated all posterior distributions,

and performed the sensitivity analysis again. A summary of the new model

parameter estimates is presented in the top half of Table A.1. The estimates

for the derived parameters M125 = M(r < 125 kpc), Mvir = M(r < rvir), rvir,

and M300 = M(r < 300 kpc) are also calculated from the new posterior distri-

butions of the model parameters and shown in the lower half of the table. Of

the four model parameters, only the Φo and β estimates changed significantly;

Φo and the derived mass estimates are higher because the velocities were pre-

viously underestimated, and β is lower because the tangential components of

the velocities were the most affected. The shapes of the joint posterior distri-

butions (Figure 7 in the original paper) did not change. The cumulative mass

profile M(r) is now in better agreement with previous studies (Figure A.1).

The estimated energy profile is similar in shape to the original Figure 8, but
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Figure A.1: Cumulative mass profile for the Milky Way as estimated with the
kinematic data of 143 GCs. The grey shaded areas show the 50%, 75%, and
95% Bayesian credible regions, and the points with error bars are results from
other studies. (Replaces Figures 3 and 4 in the original paper.)

is shifted toward more negative energies (Figure A.3). Our interpretation of

the energy profile remains the same.

The parameter trends found in the sensitivity analysis (Figure 6 in the

paper) are unchanged, despite the different values of Φo and β. The new

estimates for β for different rcut values are between 0.1 and 0.3, which still

indicates a mild radial velocity anisotropy for the GC population. The trend

in the M125 estimate is slightly stronger than that shown in Figure 5 of the

original paper, albeit with large uncertainties (Figure A.2).
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Table A.1: Parameter and Derived Parameter Estimates with Bayesian
Marginal Credible Regions

Parameter Units Mean Median 50% Cred. Region 95% Cred. Region

Φo (104km2s−2) 31.6 31.4 (29.7, 33.2) (26.9, 37)
γ — 0.32 0.31 (0.31, 0.33) (0.30, 0.37)
α — 3.05 3.05 (3.04, 3.06) (3.03, 3.08)
β — 0.14 0.14 (0.06, 0.21) (-0.09, 0.34)

M125 1012M� 0.63 0.63 (0.59, 0.66) (0.52, 0.74)
Mvir 1012M� 0.87 0.86 (0.80, 0.94) (0.67, 1.09)
rvir kpc 201 201 (195, 206) (184, 217)
M300 1012M� 1.14 1.14 (1.06, 1.21) (0.92, 1.36)
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Figure A.2: The new M125 estimates from the sensitivity analysis. Bright and
faint error bars correspond to 50% and 95% credible regions. (Replaces Figure
5 in the original paper.)
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Côté, P., McLaughlin, D. E., Cohen, J. G., & Blakeslee, J. P. 2003, ApJ, 591,

850

Courteau, S., Cappellari, M., de Jong, R., et al. 2014, Rev. Mod. Phys., 86, 47

Cuddeford, P. 1991, MNRAS, 253, 414

Cunningham, E. C., Deason, A. J., Guhathakurta, P., et al. 2016, ApJ, 820,

18

de Vaucouleurs, G. 1948, Annales d’Astrophysique, 11, 247

Deason, A. J., Belokurov, V., & Evans, N. W. 2011, MNRAS, 411, 1480

Deason, A. J., Belokurov, V., Evans, N. W., & An, J. 2012a, MNRAS, 424,

L44

Deason, A. J., Belokurov, V., Evans, N. W., & Johnston, K. V. 2013a, ApJ,

763, 113

Deason, A. J., Belokurov, V., Evans, N. W., & McCarthy, I. G. 2012b, ApJ,

748, 2

253



Ph.D. Thesis - Gwendolyn M. Eadie McMaster University - Physics & Astronomy

Deason, A. J., Van der Marel, R. P., Guhathakurta, P., Sohn, S. T., & Brown,

T. M. 2013b, ApJ, 766, 24

Deason, A. J., Belokurov, V., Evans, N. W., et al. 2012c, MNRAS, 425, 2840

Deg, N., & Widrow, L. 2013, MNRAS, 428, 912

Dehnen, W., McLaughlin, D. E., & Sachania, J. 2006, MNRAS, 369, 1688

Diaz, J. D., Koposov, S. E., Irwin, M., Belokurov, V., & Evans, N. W. 2014,

MNRAS, 443, 1688

Dierickx, M. I. P., & Loeb, A. 2017, ArXiv e-prints, arXiv:1703.02137

Dinescu, D. I., Girard, T. M., & van Altena, W. F. 1999, AJ, 117, 1792

Dinescu, D. I., Keeney, B. A., Majewski, S. R., & Girard, T. M. 2004, AJ,

128, 687

Dinescu, D. I., Mart́ınez-Delgado, D., Girard, T. M., et al. 2005, ApJL, 631,

L49

Djorgovski, S., & Meylan, G. 1994, AJ, 108, 1292

Eadie, G., & Harris, W. 2016, ApJ, 829, 108

Eadie, G., Harris, W., & Springford, A. 2015a, in Joint Statistical Meetings

Proceedings (American Statistical Association)

Eadie, G., Harris, W., & Widrow, L. 2015b, ApJ, 806, 54

Eadie, G., Springford, A., & Harris, W. 2017a, ApJ, 838, 76

Eadie, G. M. 2013, Master’s thesis, Queen’s University, Kingston, Ontario,

Canada

254



Ph.D. Thesis - Gwendolyn M. Eadie McMaster University - Physics & Astronomy

Eadie, G. M., Harris, W. E., Widrow, L. M., & Springford, A. 2015c, in Pro-

ceedings of the International Astronomical Union, ed. A. Bragaglia, M. Arn-

aboldi, M. Rejkuba, & D. Romano (Cambridge Journals)

Eadie, G. M., Springford, A., & Harris, W. E. 2017b, ApJ, 835, 167

Ehlers, J. 2008, General Relativity and Gravitation, 41, 203

ESA. 2016, Data Release Scenario, http://www.cosmos.esa.int/web/gaia/release,

accessed: 2016-05-10

Evans, N. W., & An, J. H. 2006, Physical Review D, 73

Evans, N. W., Hafner, R. M., & de Zeeuw, P. T. 1997, MNRAS, 286, 315

Evans, N. W., & Williams, A. A. 2014, MNRAS, 443, 791

Eyre, A., & Binney, J. 2011, MNRAS, 413, 1852

Fattahi, A., Navarro, J. F., Sawala, T., et al. 2016, MNRAS, 457, 844

Feigelson, E., & Babu, G. 2012, Modern Statistical Methods for Astronomy:

With R Applications (Cambridge University Press)

Feltzing, S., & Johnson, R. A. 2002, A&A, 385, 67

Ferrarese, L. 2002, ApJ, 578, 90

Fragione, G., & Loeb, A. 2017, New Astronomy, 55, 32

Fritz, T. K., & Kallivayalil, N. 2015, ApJ, 811, 123

Fritz, T. K., Linden, S. T., Zivick, P., et al. 2017, ApJ, 840, 30

255



Ph.D. Thesis - Gwendolyn M. Eadie McMaster University - Physics & Astronomy

Gaia Collaboration, van Leeuwen, F., Vallenari, A., et al. 2017, A&A, 601,

A19

Gelfand, A. E., & Smith, A. F. 1990, Journal of the American statistical

association, 85, 398

Gelman, A., Carlin, J., Stern, H., & Rubin, D. 2003, Bayesian data analysis

(Chapman & Hall/CRC)

Gelman, A., & Rubin, D. 1992, Statistical science, 7, 457

Geman, S., & Geman, D. 1984, Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 6, 721

Gibbons, S. L. J., Belokurov, V., & Evans, N. W. 2014, MNRAS, 445, 3788

Gnedin, O. Y., Brown, W. R., Geller, M. J., & Kenyon, S. J. 2010, ApJL, 720,

L108

Gnedin, O. Y., Gould, A., Miralda-Escudé, J., & Zentner, A. R. 2005, ApJ,
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