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Abstract

Cure rate models are widely used to model time-to-event data in the presence of
long-term survivors. Cure rate models, since introduced by Boag (1949), have gained
significance over time due to remarkable advancements in the drug industry resulting
in cures for a number of diseases. In this thesis, cure rate models are considered
under a competing risk scenario wherein the initial number of competing causes is
described by a Conway-Maxwell (COM) Poisson distribution, under the assumption
of proportional hazards (PH) lifetime for the susceptibles. This provides a natural
extension of the work of Balakrishnan & Pal (2013) who had considered independently
and identically distributed (i.i.d.) lifetimes in this setup. By linking covariates to
the lifetime through PH assumption, we obtain a flexible cure rate model. First,
the baseline hazard is assumed to be of the Weibull form. Parameter estimation is
carried out using EM algorithm and the standard errors are estimated using Louis’
method. The performance of estimation is assessed through a simulation study. A
model discrimination study is performed using Likelihood-based and Information-
based criteria since the COM-Poisson model includes geometric, Poisson and Bernoulli
as special cases. The details are covered in Chapter 2. As a natural extension of this
work, we next approximate the baseline hazard with a piecewise linear function (PLA)
and estimated it non-parametrically for the COM-Poisson cure rate model under PH
setup. The corresponding simulation study and model discrimination results are

presented in Chapter 3. Lastly, we consider a destructive cure rate model, introduced

il



by Rodrigues et. al (2011), and study it under the PH assumption for the lifetimes
of susceptibles. In this, the initial number of competing causes are modeled by a
weighted Poisson distribution. We then focus mainly on three special cases, wviz.,
destructive exponentially weighted Poisson, destructive length-biased Poisson and
destructive negative binomial cure rate models, and all corresponding results are
presented in Chapter 4.

KEY WORDS: COM-Poisson distribution; Proportional hazards model; Weighted
Poisson distribution; EM algorithm; Weibull distribution; Maximum likelihood esti-
mation; Akaike Information Criterion (AIC); Bayesian Information Criterion (BIC);

Cutaneous melanoma data; Mixture chi-square.
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Chapter 1

Introduction

1.1 Introduction

In cancer studies, a cure is defined as the state when the hazard rate of the affected
group carrying the disease equals to the same level as that of the general population
(Lambert et al., 2007). This is often measured in terms of disease-free survival time
after 5 or 10 years of the treatment, however, it depends on the type of cancer. In
Statistics, modeling of time-to-event data is typically done by assuming that every
individual in the study cohort encounters the event of interest (death, relapse etc.)
in the long run. However, for example, due to the remarkable advancements in bio-
medical and drug development industry in past few decades, it is not only possible
but quite likely for a proportion of patients in the cohort to get cured completely
and never face recurrences. These individuals are called cured or non-susceptible or
long-term survivors or immunes and the population under study could be considered
as a mixture of immunes and susceptible. This prominent characteristic of data,
having a proportion of disease free individuals, gives rise to a whole new branch of

modeling techniques under the nomenclature of cure rate models. The estimation of
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cure rate is of particular importance to the investigators and patients, as it represents
a measure of efficacy of the treatment and helps in analysis of survival trends. The
application of cure rate models is not limited to the area of clinical trials but can
effectively be extended to industrial reliability. In industrial reliability, cure occurs
in the form of components of a manufacturing process working indefinitely without
failure. For example, while testing failure of circuit boards when exposed to various
levels of stress factors, a proportion of boards may not fail at all. Again, in com-
puter manufacturing industry, computers with failed motherboards are sent to the
dealers/company technicians for repair. However, there exists a certain proportion of
computers in which motherboards continue to work even after many years of being
manufactured. Under such circumstances, a cure rate model may be appropriate to
analyze data and estimate chances of long-term functioning. It is to be noted that
the occurrences of failure may involve more than one risk factor, e.g., damages in
computer motherboards may occur due to improper handling, voltage fluctuation,
excessive heat, electrical problems such as short or a static discharge etc. This gives
rise to a competing cause scenario (Cox and Oakes, 1984). Cure rate model also
finds application in finance (business failure, strategy failure), criminology (recidi-

vism) etc. (e.g. Maller and Zhou, 1996).

The origin of cure rate models can be traced back at least to the works of Boag
(1949) and Berkson and Gage (1952), where the importance of the existence of a
cured proportion is discussed from a clinician’s point of view. Thus, considering an
indicator random variable I where I = 0 if the individual is cured and I = 1 if

the individual is susceptible, the population or long-term survival function of the
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time-to-event T could be given by
Sp(t) = P(T > t) =po+ (1 — po)Su(t), (1.1.1)

where pg = P(I = 0) and S,(t) = P(T > t|I = 1) is the survival function of suscep-
tible. It is to be noted that if S,(t) is a proper survival function then S,(¢) is not,
since lim;_, S,(t) = po. The modeling of S, (¢) with survival function of many well

known distributions are known throughout literature.

Let us now discuss about a well studied competing cause scenario. Assume that
M is an unobservable (latent) random variable denoting the number of competing
causes related to the occurrence of an event of interest where P(M = 0) denotes
cured proportion py. Also, let Wy, ..., Wy, be random variables where WW; denotes the
lifetime corresponding to the j-th competing cause; furthermore, Wis are assumed
independent of M with common cumulative distribution function (c.d.f.) F(w) =
1 — S(w), where S(.) is the survival function. Then, the overall population time-to-
event Y is given by

Y = miH{W(), Wl, ceey WM}

with P(Wy = 0o) = 1 and therefore,

Sp(y) =PY >y)=PY >y | M=0)P(M =0) (1.1.2)
+§:P(Y>y\M:m)P(M:m)

= P(Wy = 00)po + i P [min{Wy,... , W} > y] P(M =m)

m=1
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=po+ Y [SWI" P(M =m) = E[S(y)"] = Gu(S(y)),

where G/ is the probability generating function of M at S(y) (e.g.,Tsodikov et al.,
2003). It is to be noted that the mixture model in (1.1.1) is a special case of the above
competing cause scenario, in which the number of competing causes M is a Bernoulli
random variable with pg = P(M = 0) and 1 — py = P(M = 1). For more details on
model (1.1.2), the interested reader may be referred to Tsodikov et al. (2003) or the

monographs by Ibrahim et al. (2005) and Maller and Zhou (1996).

A more realistic approach to the cure rate models called destructive cure rate
models was introduced by Rodrigues et al. (2011) which assumes the initial number
of competing causes undergoing a process of destruction in a competing risk sce-
nario. In cancer studies, often the event of interest is patient’s death which can be
caused by one or more number of malignant metastasis-component (see Yakovlev and
Tsodikov, 1996) tumor cells. After a chemotherapy or radiation, only a portion of
initial metastasis-component cells remain active and undamaged, thereby reducing
the initial number of competing causes. Given M = m, we may consider X, as a
Bernoulli r.v. distributed independently of M. X, takes 1 if the g-th competing

cause is still active (i.e. if g-th malignant tumor cell remains undamaged after the
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treatment) with probability p € (0,1) or 0 otherwise. Thus, if we define

Xi4...+ Xy, M>0
D= (1.1.3)

0, if M =0

then, D represents the number of initial competing causes which are not destroyed.
Obviously, D < M; the conditional distribution of D given M = m is known as
the damaged distribution which is distributed binomially with parameters m and p if
m >0 and P(D = 0|M = 0) = 1. The cure rate is defined as P(D = 0) in this case.
As stated by Yang and Chen (1991), an alternative way of thinking involves X, to be
the number of living malignant cells that are descendants of g-th initiated malignant
cells within a time frame, where initial competing causes are some primary initiated
malignant cells. This destructive mechanism often provides realistic interpretations

for occurrence of events related to an underlying biological activity.

1.2 A brief literature review

As stated earlier, one of the earliest evidences of cure rate model can be found in
the works of Boag (1949) where he introduced the cure rate model emphasizing on
the information loss in conventional five year survival rate from a clinician’s view
point. Berkson and Gage (1952) estimated the cured fraction using a least squared
method while considering a mixture cure rate model. Their work was followed by
Haybittle (1965), who estimated the proportion of treated cancer patient surviving
to a specific time with respect to the normal population. Henceforth, several para-

metric, semi-parametric and non-parametric assumptions have been made about the
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distribution of the lifetime of the non-cured individuals. Farewell (1982) assumed a
Weibull distribution for the lifetime of the susceptible, incorporating the covariates
into the model through a logistic-link for py, and log-link for the scale parameter of
the lifetime distribution; the estimation of the model parameters was carried out by
employing the maximum likelihood (ML) method. Kuk and Chen (1992) general-
ized the previous parametric model using a semi-parametric Cox proportional hazard
model for the lifetime of the susceptible; the baseline hazard function was treated
as nuisance parameter, and a marginal likelihood estimation method was followed.
Chen et al. (1999) however, considered a promotion time cure rate model instead of
mixture and established a proportional hazard structure to it. Sy and Taylor (2000)
also considered Cox proportional hazard model (see also Sy and Taylor, 2001) using
a Breslow-type estimator for the baseline hazard function; similar assumptions and
estimation method were also adopted by Peng and Dear (2000). A similar Bayesian
approach to Chen et al. (1999) was mentioned in Ibrahim et al. (2001) for a new
class of semi-parametric cure rate model with a smoothing parameter maintaining
the degree of parametricity. Tsodikov et al. (2003) in their paper described the ad-
vantage of using bounded cumulative hazard model in estimating cured proportion as
an alternative to conventional mixture model and inferences were drawn considering

both semi-parametric and Bayesian methods.

Cox proportional hazard cure rate model was also discussed in Fang et al. (2005)
where the existence, consistency and asymptotic normality of the maximum likeli-
hood estimators (MLE) were studied. Lu (2008) used a nonparametric approach for
estimating the parameters of the same model. In Zhao et al. (2014), a Bayesian ap-
proach was developed for estimating the parameters of the Cox proportional hazard

cure rate model where a threshold in the regression coefficient was considered (see also
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Liu et al. (2006)). A class of semi-parametric transformation models, including both
the proportional hazard and the proportional odds cure rate model as special cases,
was studied by Zeng et al. (2006); a recursive algorithm for computing the MLEs
was also introduced while the estimators of the regression coefficients were shown to
be consistent and asymptotically normal. A similar approach on Cox proportional
hazard cure rate model with expectation-maximization (EM) based ML estimation
was developed for interval mapping of quantitative trait loci for time-to-event data
by Liu et al. (2006); the study of Cox proportional hazard cure rate model was also
the subject of Larson and Dinse (1985) (under a competing cause scenario and a
piecewise constant assumption for the baseline hazard function) and Lo et al. (1993)

(with a piecewise linear assumption for the baseline hazard function).

A more recent work on cure rate model was suggested by Rodrigues et al. (2009)
who introduced a flexible Conway-Maxwell (COM) Poisson cure rate model under a
competing risk scenario. Shortly after, it was explored vastly by Balakrishnan and
Pal (2012), Balakrishnan and Pal (2013b) and Balakrishnan and Pal (2014) consid-
ering different parametric distributions (e.g. exponential, Weibull, log-normal and
generalized gamma) as the lifetime distributions of the susceptible. Balakrishnan
et al. (2015) in their work extended the idea by approximating hazard function of the

susceptible by a piecewise linear function.

In their paper, Rodrigues et al. (2011) discussed the destructive cure rate model
considering the distribution of M as weighted Poisson. Gallardo et al. (2016) de-
veloped an EM algorithm based technique for the same model to estimate the pa-
rameters under three special cases, viz., destructive exponentially weighted Poisson,

destructive length-biased Poisson, and destructive negative binomial cure rate mod-



Chapter 1.3 - COM-Poisson cure rate models 8

els. The lifetime distributions of the susceptible were taken to be generalized gamma,
Birnbaum-Saunders, Gamma, log-normal and Weibull. A similar model was described
by Borges et al. (2012) by creating a correlation structure between the initiated cells
using generalized power series distribution. A Bayesian method of inference was
further proposed in the context of destructive weighted Poisson cure rate model by
Rodrigues et al. (2012). Further references can be found in the works of Cancho
et al. (2013), Pal and Balakrishnan (2015), Pal and Balakrishnan (2017) and Pal and
Balakrishnan (2016).

1.3 COM-Poisson cure rate models

The COM-Poisson distribution was introduced by Conway and Maxwell (1961). This
distribution accommodates and generalizes some well known discrete distributions; it
is a flexible family of distributions since it can be over-dispersed or under-dispersed
depending on the value of the dispersion parameter (see also Shmueli et al., 2005
and Kadane et al., 2006). The COM-Poisson distribution has already been used for
modeling the number of competing causes in (1.1.2); see Rodrigues et al. (2009) and
Balakrishnan and Pal (2012, 2013b, 2014). Thus, if the number of competing causes
M follow a COM-Poisson distribution, its probability mass function is given by
1 n"

P(M =m;n,¢) = Z00.9) (m)? m=0,1,... (1.3.1)

where

Zm6) =) Ui (1.3.2)



Chapter 1.3 - COM-Poisson cure rate models 9

with ¢ > 0and n > 0. If ¢ = 1, M is an equi-dispersed Poisson random variable (r.v.)
with E(M) = n while if ¢ — 0o, M becomes an under-dispersed Bernoulli r.v. with
parameter ﬁ Furthermore, if ¢ = 0 and n < 1, then M is an over-dispersed ge-
ometric r.v. with parameter 1 — 7. Thus, according to the value of ¢, we can have

over-dispersed (¢ < 1), equi-dispersed (¢ = 1) or under-dispersed (¢ > 1) distribu-

tion.

The cure rate is given by

po=P(M =0;n,¢)=Z(n,¢)"", (1.3.3)

since lim, o Z(1nS(y); ¢) = 1, while (1.1.2) becomes

Sply) = —Z(Zi(y;)@ (1.3.4)

with the corresponding improper density function being given by

2

Jj=1

B _agp(y) _ 1 fly)
fo(y) = Ay Z(n;¢) S(y)

: (J1?
The long-term population survival function, improper population density function

and cure fraction (pg) for the special cases of the COM-Poisson cure rate model are

presented in Table 1.1.
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Table 1.1: Population survival function, density function and cured proportion for
the three special cases of COM-Poisson cure rate model.

Model Sp(y) fr() Po

; — 1— (1-n)
Geometric (¢ = 0) 1_7757@) (1175(2))2 f() L=
Poisson (¢ =1 e M=SW) - pe=n=SW) f(y)  en
Bernoulli (¢ — o) H{]Tsn(y) ﬁ (y) ﬁ

1.4 Destructive weighted Poisson cure rate models

The probability mass function (p.m.f) of M following a weighted Poisson distribution
is given by
Q(m;¢)

En[Q(M;¢)]p*(m; n), m=0,1,2,...

P(M =m;n,¢) = (1.4.1)

0, 0.W.

where €(.; ¢) is a non-negative weight function characterized by ¢ with ¢ € R, p*(.;n)
is the p.m.f of a Poisson distribution with parameter n > 0 and E,[.] is the expec-
tation taken with respect to a Poisson p.m.f. (see Rodrigues et al., 2011). Given
M = m > 0, the conditional distribution of D is Binomial with parameters m and
p = P(X, = 1) as obtained from equation (1.1.3), while D = 0 if M = 0. The initial
number of competing causes M is assumed to follow a weighted Poisson distribution,
with weight functions as e®™, m, and T'(m + ¢~1), undergoing a damaging process

as discussed earlier. The corresponding models on considering these weight func-
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tions are known as destructive exponentially weighted Poisson (DEWP), destructive
length-biased Poisson (DLBP), and destructive negative binomial (DNB) cure rate
models respectively. By choosing Q(m; ¢) = (m!)1=?, we obtain a COM-Poisson dis-
tribution as defined in equation (1.3.1). The corresponding model is called destructive

COM-Poisson cure rate model. However, this model is not discussed in the thesis.

1.4.1 Destructive exponentially weighted Poisson cure rate

model

Under this model, we assume Q(m; ¢) = e®™ as the weight function which gives the

p-m.f of M as

et = 0,1,2,..
P(M =m;n,¢) = (1.4.2)

0, otherwise

which is a Poisson distribution with rate parameter ne®. The unconditional distribu-

tion of the undamaged number of initial competing causes D is expressed through

P(D=d;n,¢,p P(D =dM =m)P(M =m)
m=d
00 d\m
o o m—d_—ne® (776 )
X ldlp (L—p)"e m!
¢
:e—npe‘i’m’ d = 0,1,2,... (143)

d!
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which is again a Poisson r.v. with expectation E(D) = npe?. The cure rate, popula-

tion survival function and population density function are derived as

po=e ", (1.4.4)
Sy(y) = e~ me I (1.4.5)

and
Fo(y) = npe®Sy(y) f (y) (1.4.6)

respectively. Note that the model gets reduced to a destructive Poisson cure rate

model if ¢ = 0. Furthermore, taking p = 1 gives Poisson cure rate model.

1.4.2 Destructive length-biased Poisson cure rate model

Assuming Q(m; ¢) = m, the p.m.f. of M is expressed as

efnnmfl

W7 m:1,2,...

P(M =m;n,¢) = (1.4.7)

0, 0.W.

which is a truncated Poisson distribution with truncation point being m = 0. Since

(D|M = m) ~ Bernoulli(m, p), the unconditional p.m.f of D, i.e., the number of
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active competing causes is given by

P(D =d;n,¢,p) =Y P(D =d|M =m)P(M = m)

m=d
S m! d €M
= 7 A pymd
,;1 m—aa? T T
e ™ (np)* d
=— 1—p+5 ,d=0,1,2,... (1.4.8)
The expression for the cure rate is, therefore, given as
po=P(D=0)=e"(1-p) (1.4.9)

while the population survival function and the population density function is given
by
Sp(y) = P(Y > y) = e W1 - pF(y)] (1.4.10)

and

foly) = P(Y > y) = npf(y)e ™ '@ |1 — pF(y)

_pfy)
; (1.4.11)

where f(.) is the probability density function (p.d.f.) of Wj for all j =1,2,...,d.

1.4.3 Destructive negative binomial cure rate model

Let us consider

F<m+¢*1)( o1 )m(1+¢ —p~! _
- n) , m=0,1,2,...
P(M =m;n,¢) =4 "0 Ao (1.4.12)

0, 0.W.
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where M is a negative binomial r.v. denoting number of failures before ¢! successes

i

and probability of each success being 1¢ This is a weighted Poisson distribution

with parameter W and Q(m;¢) = T'(m + ¢~ 1), where ¢ > 0. The expression for

the p.m.f of D is given by

P(D = d;n, ¢, p) —ZP (D = d|M = m)P(M = m)
=d

_p_d( ) g1 > L(m+ ¢~ ) [(1_p)¢n}m d
dl' \ 1+ ¢n dm A)T(o~1) | 1+ ¢n
Ld+¢Y) (_pom \* T
I‘¢ 1d| (1 +p¢n) (1+p¢7]> 9 d_071,2,...

(1.4.13)

The number of active competing causes is also distributed with a negative binomial

distribution with parameters ¢! and % The cure rate, population survival func-

tion and population density function are given by the following expressions:

po=(1+pe)™", (1.4.14)
Sp(y) = (1+pnoF(y)) ™", (1.4.15)

and
foly) = pn(L+pnoF (y)) 'S, (y) f (y) (1.4.16)

respectively. Note that, destructive negative binomial cure rate model includes de-
structive geometric (¢ = 1), negative binomial (p = 1) and geometric (¢ = 1,p = 1)

cure rate models as special cases.
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1.5 Proportional hazards model for lifetime data

In lifetime data, time-to-event is often affected by observable factors like age, sex,
severity of disease, smoking status, results of blood tests, other laboratory data,
hospital unit facilities, expertise of medical practitioners etc. These factors are called
covariates and it is important to include these into the model for analysis. One
possible way to include covariates is by using regression through hazard function
h(w) = limso P(w < W <w+§ | W > w). To be more specific, the hazard function

of Wj;5=1,..., M is taken as

hw;x,v) = ho(w)e® ™, (1.5.1)

"is a vector of p covariates, ¥ = (71,...,7,)" is the vector of

where © = (xq,...,x,)
regression coefficients, ho(w) is the baseline hazard function independent of covariate

vector . Note that, for any two covariate vectors x; and @,

hw, e, y) _ ho(W)e™ o ayy

h(w;xa,5y)  ho(w)e®2Y ’

i.e. the hazard ratio is independent of observed time w. This implies that the ratio of
hazards between two individuals or groups remains constant with respect to time. The
model defined in equation (1.5.1) is thus known as proportional hazards model. The
baseline hazard function h(w) represents the amount of hazard present in all individu-
als inherently even if no covariate is involved and may be estimated parametrically i.e.
by assuming a distribution or non-parametrically without any distributional assump-
tion. A Weibull distribution is often used to model lifetime data, so the corresponding
hazard function is used to define the baseline hazard function as given in equation

(1.5.1). Alternatively, we approximate the baseline hazard non-parametrically using
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a piecewise linear function (PLA), thereby, the resultant model in equation (1.5.1)
follows a Cox proportional hazards model. The proportional hazards model allows us
to link covariates to the lifetime distribution of susceptible through hazard function.
This assumption provides more flexibility to the overall cure rate model since the
lifetimes of the non-cured individuals vary according to the covariates and acts as an
extension to cure rate models with independently and identically distributed (i.i.d.)

lifetimes (see Balakrishnan and Pal, 2014).

1.5.1 Weibull distribution to model baseline hazard

A continuous random variable W follows a two-parameter Weibull distribution if the

probability density function is of the form

w 70_1 (w yo—1
fw;v,m) = % (%) e <”1> ; (1.5.2)

where w > 0, 79 > 0 denotes the shape parameter and +; > 0 denotes the scale

parameter. The survival function and the hazard function of W are given as

£>7071

S(w;v0,m) = e (3 (1.5.3)
and
Yo—1
Yo [ W
h(w; o, =—|— 1.5.4
(w70 7) = 2 (7) (15.4)

respectively. A Weibull distribution is closed under proportional hazards family when
the shape parameter is kept fixed. Moreover, a two parameter Weibull provides a
great degree of flexibility to the lifetime of the susceptible since it represents cases of
decreasing hazard (yo < 1), constant hazard (y,=1 i.e. exponential distribution) and

increasing hazard (79 > 1). Cure rate models taking a Weibull distribution as the



Chapter 1.5 - Proportional hazards model for lifetime data 17

lifetime of the susceptible are prevalent in literature e.g. Farewell (1982), Tsodikov
et al. (2003), Chen et al. (1999) and Balakrishnan and Pal (2014).
Now, let us assume the baseline hazard function in (1.5.1) to be that of a Weibull

distribution, then, the hazard function of W is given by

Y0—1
h(w;x,v) = Jo (E> e, (1.5.5)
71\ N

clearly, W; still follows a Weibull distribution with shape parameter =, and scale
parameter v, exp(—a'v2/7), where v = (70,71,7'). By assuming a proportional
hazard model, we allow the lifetime distribution of the susceptible to vary according
to the covariate categories, thereby adding a greater flexibility to the model. It should
be noted that this model reduces to the parametric Weibull lifetime cure rate model
(Balakrishnan and Pal, 2014) if we set 75 = 0. This would therefore facilitate us
to test the hypothesis of uniformity among the covariate groups by testing v, = 0
and if significant evidence is found against this hypothesis it would then suggest the
suitability of this model over the parametric Weibull lifetime cure rate model with

1.1.d. lifetimes.

1.5.2 A piecewise linear approximation to model baseline

hazard

For the piecewise linear approximation (PLA) of the baseline hazard function hg(w),
we consider a set of cut points {7, ...,7n} on the time axis, with 75 < 7, < Ty
and N being the number of line segments. Further, it is assumed that the PLA is a
continuous function at cut points. Under these assumptions, the PLA to the baseline

hazard in the interval [rg, Ty] is given by
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N
= (a+ bw)Ip,_, - (w) (1.5.6)
=1

where a; and b; are the intercept and slope of the [-th line segment with

1, maa<w<T
[[Tlflﬂ'l](w> = (157)
0, otherwise.

Additionally, letting ¢; > 0 denote the values of the PLA at the [-th cut point 7,

[=0,...,N we have
=i

T — Ti-1

by = , ap =Y — by

for i = 1,...,N. Thus, considering ¥ = (¢, ...,%n)" equation (1.5.6) can be re-

written as
- —¢
h — “Yow—m)| I, ., 1.5.8
o) = owi) = 3 [+ U B ) (159
with limy,_,, ho(w; ) = 1y, for I = 0,..., N. The cumulative baseline hazard function

under the PLA is given by

N
Hy(w; ) = Zwl(min(w, ) — Tl—l)][n,l,oo)(w)
=1
N .
+ Z {( — :111) min(w, T;)Q _ T12_1 — n(min(w, ) — 7-1) I[Tzfl,oo)(w)- (1.5.9)

=1

It is to be noted that although the PLA provides an approximation in the interval
[70, v ], it could also be extended to [0, 70] U [Ty, 00) in many ways, such as, taking
7o = 0 and extending ay + byw to [Tn,00). This model follows a Cox proportional

hazards model since the baseline is approximated non-parametrically.
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1.6 Form of the data and the likelihood function

In survival analysis or reliability theory, the existence of right censored data is quite
common mainly due to the limitations imposed by the duration of the study. There-
fore, assuming that our data are subject to non-informative right censoring, the cen-
sored group may include not only cured individuals but also susceptibles who met
the event of interest after censoring time. To be more specific, let us denote by C;
the censoring time and Y; the actual lifetime for the i-th individual, for : =1,... n.

Thus, the observed lifetime T; is defined as

while 0; = I(Y; < (;) indicates whether the i-th individual is censored (4; = 0) or
not (§; = 1), for i = 1,...,n. Additionally, let us also define the sets A; and A,

with Ay = {i : §; = 1} and Ay = {i : &; = 0}. @«; denotes the vector of covariates

corresponding to the i-th individual for i = 1, ..., n. Therefore, the observed data are
of the form (¢;,6;,x;), for i = 1,...,n and the likelihood function can be expressed
as

L0t . 8) o [ [ f,(ti, wi:0)7 S, (ts, 2::0) % = [] foltizi:0) [] Splti,@::0),
=1 €A1 i€\

(1.6.1)
where 0 denotes the vector of parameters involved, t = (t1,...,t,), x = (x},...,x)’
and 6 = (01,...,0,)". Sp(ti,x;;0) and f,(t;, ;;0) denote population survival and
density functions respectively. Here, x; is generally linked to parameters associated
to cure rate and also to the lifetimes W;;j = 1,..., M as defined by the proportional
hazards model in equation (1.5.1). The likelihood described in equation (1.6.1) is an

observed likelihood function. For all ¢ € Ay, we observe the lifetime T; = Y;. So
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all such i € Ay contribute to the likelihood function through the population density
function. For all ¢ € Ay, we just observe T; = C; < Y; i.e. the actual lifetime is
greater than some censoring value. Thus, for these individuals, contribution to the

likelihood occurs through the population survival function.

1.7 Likelihood inference

The likelihood function is a function of parameter which denotes the probability of
obtaining a parameter value when data is already observed. The likelihood principle
suggests that all information relevant to the model parameters contained in a sample
are present in the likelihood function. Maximizing the likelihood function with respect
to the unknown parameter helps us to estimate the parameter and this technique
is commonly referred to as maximum likelihood estimation (MLE). Thus, the ML

estimator @ is obtained as

Omie = arg max j}(ﬂ;t,w, d),
0co

where © denotes the parameter space. Since, the parameters we are interested in
are continuous in nature, estimates of the parameters can be obtained by finding the
critical points of the likelihood function using the first derivative test. ML estimators
possess some statistically desirable properties like consistency, asymptotic normality,
asymptotic efficiency and unbiasedness. However, the ML estimators are not always
found in explicit forms, and in some cases, may not even exist. In survival analysis,
we often encounter censored data which leads to observing only partial data. This
is referred to as incomplete data. Under this scenario, an EM algorithm (Dempster

et al., 1977) is often applied to find the ML estimates using iterative methods.
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1.7.1 EM algorithm

The incomplete data is introduced through a random variable I;;i = 1,...,n, where
I; = 0 if the i-th individual is cured or I; = 1 otherwise. It is to be noted that I; is
unobserved if ¢ € A, since we just observe the censoring time for these individuals
and no information about their cure status is known. On the other hand, I; = 1 for

all i € Ay. This incomplete data provides an opportunity to implement EM algorithm.

We implement EM algorithm (McLachlan and Krishnan, 2007) to estimate 6*
except the parameter ¢ which is estimated using profile likelihood method. 8* denotes
the vector of parameters without ¢.

The complete data are denoted by {(t;,0;, @;, [;)’;i = 1,...,n}. The complete

data likelihood function is expressed as

L.(O;t,x,6,1)
*ok 1-1; *% I; (171)
€A 1€Ao

and the complete data log-likelihood function is given by

1.(0;t,2,6,I) = constant + Z log f,(ti, x;; 0) + Z(l — I;)1log po (0™, x;)

i€EA] i€

+ Z I;log(1 — po(0™, ;) + Z I;log S, (ti, xi; 9),
€A 1€Ap

(1.7.2)

where I = (Iy,...,1,) and S,(t;, x;; @) is obtained using equation (1.1.1) as S, (¢;, ¢;;0) =

Sp (ti,2:;0)—po(0** ,x;)
1—po(0**,x;)

. Note that " is a subset of the set of parameters in the vector
0 since in all cases of our study, the cure rate pq is linked to 8** through some link

function. More specifically, 8** generally does not involve any lifetime parameters in
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our studied cure rate models. In equation 1.7.1, the likelihood is split into the prod-
uct of two components, viz., corresponding to cured and non-cured individuals for all

1 € Ay. The contribution to the complete data likelihood function occurs through

E-step: For a fixed value ¢y of ¢ and (a + 1)-th iteration of EM algorithm,
we compute the expected value of [.(0;t,x,d,I), given the observed data O =
{(t;, 05,25, Iy) : i = 1,...,m;5" € A} and the current parameter estimates 6*@

obtained from the a-th iteration. Therefore, from Equation (1.7.2) we have

E(l.(8;t,x,6,1)|6"%. 0)

= constant + Z log f,(t;, @i; 0) + Z(l - 7r§“)) log po(0™, ;)

€A1 iEAO

+ Z 7ri(a) log(1 — po(0™*, x;)) + Z 7r§“> log S, (ti, x;0),

i€AQ [ISTAN)

(1.7.3)

where
1 —po(0**,x;))Su(ti, x;, 2:;0)

(@) _ mT. ) _
7Tz [ Z|07 0 ] Sp(tiy w“ 0)

6*:9*(‘1).
We define Q = Q(6*, 7@) = E(I.(6:t,x, 2,8, 1)|6*®, 0) where 7@ = (z\* : i €
Ay).

M-step: In the maximization step, we maximize Q(6*, w(®) with respect to 6*
to find the estimate 8*(¢*1 of @*. The numerical maximization is carried out using

Nelder-Mead method for fixed ¢y. The iteration process is considered to converge if
07,07,

k
o,

maxi<i/<p < ¢, for some small € and p denotes the number of parameters.

The explicit expressions for the @)-function is provided in Appendices A.1, B.1 and

C.1 for various cure rate models we have studied.
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In case of a COM-Poisson cure rate model, ¢ is a dispersion parameter whereas
for a weighted Poisson cure rate model, ¢ is a parameter in the weight function. In
both cases, it is observed that the likelihood function is very flat with respect to ¢.
As a result, the algorithm for finding ML estimates encounters frequent convergence
problem unless the initial parameter estimates are very close to the true values. Even
if the algorithm converges, the estimate of ¢ often has a high standard error which
seems to affect the precision of the estimates of other parameters as well. Conse-
quently, ¢ is kept fixed in the objective function while maximizing with respect to
other parameters. However, this process is repeated for a discrete range of values of
¢, thereby, considering the one, which produces the highest value of log-likelihood
function. In other words, the E-step and M-step are repeated for all ¢ € & where ®
denotes the admissible range of ¢. The value of ¢ € ® which provides the maximum

value of the observed likelihood function is taken to be the ML estimate q5 of ¢.

1.7.2 Estimation of standard errors

For finding the standard error of the parameter estimates, we applied Louis’ principle
for computing the observed information matrix (see Louis, 1982); that is,
1(0*) = E[B(6*t,z,6,I)]—E[S(O%t z,6I1)S" (6%t x,8, 1)

(1.7.4)
+E[S(6%:t,x, 8, I)|E[ST(6%t,x,6,1)],

where 1(6*) is the information on 8%, B(0*;t,x,§,I) and S(0*;t,x,d,I) denote the
negative of the matrix of second derivatives and the gradient vector of [.(0;¢t, x, 8, I)

(score function). The standard errors of the parameter estimates were then calculated

by taking the square-root of the corresponding variances which are nothing more than
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the diagonal elements of the variance-covariance matrix I~!(8*). By using the asymp-
totic normality of the MLEs, 95% confidence intervals (CI) of the parameters were
obtained. The normality of the parameter estimates obtained from 1000 simulated
data were validated graphically using QQ plot and also using bootstrap method. The
pertinent details of the first-order and second-order derivatives of the complete data
log-likelihood for obtaining the information matrix are presented in Appendices A.2,
B.2 and C.2. Asymptotic normality of the MLEs can also be used to estimate the
cure rate and is given by py = pO(OA**,:vi). The standard error of the cure rate is
obtained using multivariate delta method since po(6**, x;) = g(8**) : RP*) - R is a

continuous function.

It can be observed that Equation 1.7.2 and 1.7.3 differ only with respect to I;. For
(a

the latter, I; is replaced by 7ri(a), where at a-th step 7, ) is a fixed quantity independent
of 6*. Thus, taking derivatives on both equations with respect to 8* lead to the same
expressions. As such, the expressions for first-order and second-order derivatives of
l(0;t,x,z,08,I) required for calculating the observed information matrix are not

presented separately and can be obtained from Appendices A.1-C.1 and A.2-C.2.

1.8 Simulation study and real data analysis

The robustness of the models and accuracy of the estimation technique are studied
and validated using detailed Monte Carlo simulations. The effects of different sam-
ple sizes, cure rates, censoring proportions and lifetime parameters on the estimation
are investigated thoroughly. Parameter estimates, asymptotic standard errors, bi-
ases, root mean squared errors and coverage probabilities at 95% nominal level are

presented under different model settings. Coverage probabilities are obtained based
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on assuming the asymptotic normality of the ML estimators. The results are based
on the average of R replications of simulated data for each scenario and all calcula-
tions are done in software R-3.1.3. R varies according to the computational load and
complexity of the model under study. The Shared Hierarchical Academic Research
Computing Network (SHARCNET) is used to compile all the R-codes to reduce over-

all computational time.

All studies are supported by model discrimination. This is accomplished by gen-
erating samples from a true model and analyzing the effect of fitting some candidate
models on the parameter estimates and other measures. Likelihood-based criterion,
i.e., likelihood ratio test (LRT) and information-based criteria, i.e., Akaike infor-
mation criterion (AIC) and Bayesian information criterion (BIC) are used to find
rejection and selection rates of various candidate models. AIC and BIC are defined
as:

AIC =—2l+2p  and BIC = =21 + (logn)p,

where [ denotes the maximized log-likelihood value, p denotes the number of param-
eters estimated and n is the sample size. Models with minimum AIC or BIC are cho-
sen. For the COM-Poisson cure rate model, we are interested in testing Hy : ¢ = 0,
Hy : ¢ =1 and Hy : ¢ — oo. For testing purpose, LRT statistic is defined as
A = —2(le — Z) where [y and [ denote the restricted and unrestricted maximized
log-likelihood function values, respectively. The rejection rates are obtained by the
number of times H is getting rejected for some specified level of significance. The null
distribution of A asymptotically follows x?— distribution with one degree of freedom
(d.f.) for testing Hy : ¢ = 1. However, when we test Hy : ¢ = 0 or Hy : ¢ — o0 i.e.

when ¢ is on the boundaries of the parameter space, the asymptotic distribution of
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A is such that P(A < X) = + $P(x*> < A). In case of destructive weighted Poisson
cure rate model, the necessity of a model discrimination is justified by studying the
biases and mean squared errors of the cured proportion under model mis-specification

and developing measures like total relative bias (TRB) and total relative efficiency

(TRE). The details can be found in Chapter 4.

We implement our proposed models on a malignant melanoma data. This data
provides detail of a historically prospective clinical study on 225 skin cancer patients,
who were operated in the period 1962-77 and followed up till 1977. Andersen et al.
(2012) studied this data set where time since operation was considered to be the re-
sponse of the study with several risk factors like age at operation, sex, tumor thickness,
width, location, types of malignant cells, ulceration status etc. Among these patients,
20 were not included for analysis since they did not permit a histological evaluation.
Later, this data set was the topic of analysis for many studies, e.g., Rodrigues et al.
(2011), Pal and Balakrishnan (2016), Pal and Balakrishnan (2017) etc. Out of these
205 patients, 57 patients died from melanoma, 14 died from other causes and are
considered censored at death. The remaining 134 patients were alive as on January
1, 1978 and are also considered to be right censored. Thus, the study has a high rate
of censored observations (i.e. 72%). This dataset is also available in the ’timereg’

package in R.

1.9 Scope of the thesis

Further details of the link functions used, EM algorithm, simulation study results

and real data analysis results, specific to each model, can be found in the following
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chapters. In Chapter 2, by assuming a COM-Poisson distribution under a compet-
ing cause scenario a defined in Section 1.3, we study a flexible cure rate model in
which the lifetimes of non-cured individuals are described by a proportional haz-
ard model with a Weibull hazard as the baseline function as discussed in Section
1.5.1. A logistic-link is used to associate covariates & to the rate parameter n of the

COM-Poisson distribution and to the cure rate using py, = ) in this case. The

_1
z(n,¢
performance of the models are presented based on five candidate models, namely,
geometric (¢ = 0), Poisson (¢ = 1), Bernoulli (¢ — o0), COM-Poisson with ¢ = 0.5
and COM-Poisson with ¢ = 2. In Chapter 3, we consider a COM-Poisson cure rate
model under a competing cause scenario with the unobserved lifetime distribution
of the non-cured individual following a Cox proportional hazard model; the baseline
hazard is estimated by piecewise linear functions as discussed in Section 1.5.2 with
covariates being linked to the cure rate using a logistic-link function. In our analysis,
we consider the number of lines (N) approximating the baseline hazard function to
be 1,2,...,5. The candidate models for the COM-Poisson family are taken to be the
same as mentioned for Chapter 2. In Chapter 4, we investigate a destructive cure
rate model where the initial number of competing causes is assumed to follow one of
the three special cases of a weighted Poisson distribution as discussed in Section 1.4,
viz., exponentially weighted Poisson, length-biased Poisson and negative binomial.
The novelty of the work, however, is introduced by assuming the unobserved lifetime
distribution of the non-cured subjects to be defined by a proportional hazards model
with a Weibull hazard as the baseline function. A log-linear link function and a
logistic-link function are used to link the rate parameter n of the weighted Poisson
distribution and the parameter p representing the proportion of initial causes that

remains active respectively.
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For all these models, the estimation of the parameters are carried out using ML
method by implementing the EM algorithm, except for the dispersion parameter,
which is estimated by a profile likelihood approach. The performance of the model
is tested under various settings of censoring rates, sample sizes, cure rates and mean
lifetimes and model discrimination is performed. For illustrative purposes, analysis
of the cutaneous melanoma data, as mentioned before, is also carried out. The de-
tailed expressions for the ()—functions and the first- and second- derivatives of the
(Q— functions, corresponding to the models discussed in each chapters, can be found
in Appendices A.1-C.1 and Appendices A.2-C.2 respectively. It is to be noted that
notations may slightly vary from one chapter to another for better comprehensibility

of a specific model.



Chapter 2

COM-Poisson Cure Rate Model
under Proportional Hazards

Lifetime

2.1 Introduction

We assume a proportional hazards model for the distribution of Wj;j = 1,..., M,
with a parametric assumption on the baseline hazard function. To be more specific,

the hazard function of W is taken as
h(w; e, ¥) = ho(w; Y0, 11)e™?, (2.1.1)

where . = (21,...,2,) is a vector of p covariates, ¥ = (Y21, ..., 72p)" is the vector
of proportional hazards regression coefficients, ho(w;~o,71) is the hazard function of
a two-parameter (7o and =) Weibull distribution and v = (y0,71,75). The num-

ber of competing causes M is assumed to have a COM-Poisson distribution; under

29
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this assumption, more flexibility is achieved since we can deal with under- and over-

dispersed data (see Balakrishnan and Pal, 2013a and Rodrigues et al., 2009).

The form of the available data and the likelihood function are given in Section 2.2.
In Section 2.3, the steps of the EM algorithm and the estimation of the asymptotic
covariance matrix of the MLEs are provided. An extensive simulation study un-
der various scenarios on cure rates, censoring proportions, sample sizes and lifetime
parameters is carried out in Section 2.4. In Section 2.5, we study the model discrimi-
nation using likelihood-based and information-based methods. In Section 2.6, we use

the proposed model for the analysis of a real data set on cutaneous melanoma.

2.2 Form of the data and the likelihood function

In lifetime data analysis, right censoring in data is quite common mainly due to the
limitations imposed by duration of the study. Therefore, we assume that our data are
subject to non-informative right censoring. The censored group includes susceptibles
who have their lifetimes to be larger than the censoring time, and also all the cured
individuals. To be more specific, let us denote by C; the censoring time and Y; the

actual lifetime for the ith individual. Then, T} is defined as

while ¢; = I(Y; < () indicates whether the ith individual is censored (J; = 0) or not
(0; =1), for i = 1,...,n; let us also define the sets A; and Ag and Ay = {i: §; = 1}
and Ay = {i : §; = 0}. It is to be noted that Z(n,¢) = pio = Hy(n) is only a

function of 7, for a fixed value of ¢ and is monotone in 7 with lim,_,q Hs(n) =1 and
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lim, o Hy(n) = co. Hence, it would be appropriate to link the covariates zy, ..., z,

to the cured proportion using a logistic regression model i.e.

1

i = v Li) = T g
Poi = po(B, x;) 11 oo

where py; is the cured proportion, x; = (1,21, ...,24) = (1, 2,.) and 8 = (B, ..., 5p)’
is the vector of the regression coefficients for the ith individual. This link implies
n = H;l(l + exp(a’B)) where H;l(.) is an inverse function of Hy(.) and cannot be
calculated analytically for general COM-Poisson distribution. Consequently, the ob-
served data is of the form (¢;,9;, @;), i = 1,...,n, and the likelihood function is given
by

L(0:t,x,8) o ] folti,xi:0) [] Splts, x::6),

€A1 iEAo

where 8 = (¢,8,7'), t = (t1,...,t,), * = (&},...,x)) and § = (§1,...,0,)".

Now, let us assume the baseline hazard function in (2.1.1) to be that of a Weibull

distribution, i.e.,

Yo [ w Yo—1
h0<w;’707’71) = (_) 5
71 \N

where 79 > 0 (the shape parameter) and 7; > 0 (the scale parameter). Then, the

hazard function of W; is given by

Yo—1
h(w; @, ) = L2 (E) =<2, (2:2.1)
71 \NM

clearly, W; still follows a Weibull distribution with shape parameter vy and scale pa-

rameter 71 exp(—.¥z2/%)-

In the recent work of Balakrishnan and Pal (2014) on COM-Poisson cure rate
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model, the lifetime distribution was assumed to be the same and not change with
the covariates. In the present work, by assuming a proportional hazard model, we
allow the lifetime distribution of the susceptible to vary according to the covariate
categories, thereby adding a greater flexibility to the model. It should be noted that
this model reduces to the parametric Weibull lifetime COM-Poisson cure rate model
studied in detail by Balakrishnan and Pal (2014) if we set 4 = 0. This would
therefore facilitate us to test the hypothesis of uniformity among the covariate groups
by testing o = 0 and if significant evidence is found against this hypothesis it would
then suggest the suitability of this model over the parametric Weibull lifetime cure

rate model.

2.3 Estimation of parameters and standard errors

The estimation of the model parameters is carried out by using the EM algorithm
(see McLachlan and Krishnan, 2007, for details) and a profile likelihood approach
for the dispersion parameter ¢. The complete data are given by {(t;, x;,d;, ;) : i =
1,...,n}, where I;s are observed for i € A; and unobserved for i € A (recall that
I; = 0 if and only if the ith individual is cured and 1 otherwise). The complete data

likelihood and log-likelihood functions are, respectively, given by

LC(O;t7w’6vI) X H fp(ti>mi;9) H pO(IBawi)l_h{(l _po(ﬁami))SU(thwic;0)}Ii

1€EA] i€Ag

and

[(0;t,x,6,I) = constant + Z log f,(t;, zi; 6) + Z(l — I;)log po(3, x;)

[ISYANY 1€AQ

+ > Llog(1—po(B,2:) + > I;1og Sults, @ic; 6),

i€Ag i€Ag

(2.3.1)
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where I = (Iy,...,1,), i = (Ta,...,xyp) and x; = (1,}.)’. For a fixed value
of the dispersion parameter ¢, and at the (k + 1)th iteration of the EM algorithm,
we have to compute the expected value of [.(6;t,x,d,I), given the observed data
O = {I;;i € Ay,t,x,d} and the current estimates obtained from the kth iteration,

denoted by 8%) = (¢, 3'*),~'®)) Therefore, for i € Ay, we have

Sp(tl,w,,O(’“)) ’

Y = B[1]0,6%) =

(2

and so, Q%Y = Q(8,7®) = E[l.(0;t,x,6,1)|0,0%] must be maximized with
respect to (B,7') (since ¢ is assumed to be fixed), with w*) = (7ri(k) ci€ Ay).
The numerical maximization is carried out by using the single-step Newton-Raphson
or Quasi-Newton method. Explicit expressions for Q(@,w"®) and the first-order
and second-order partial derivatives of Q(@,7*)) are presented in Appendix A.1
and A.2, respectively. We considered a specific range of values for ¢ with fixed
increment; for each choice of ¢, we found the MLEs of (3',') and then the fi-
nal estimate was taken by the choice of ¢ which yielded the maximum likelihood

value. We set ¢ € {0.0,0.1,...,2.0} when data are generated from true ¢ < 1 and

¢ €40.0,0.1,...,4.0} when data are generated from true ¢ > 1.

For finding the standard error of the parameter estimates, we applied Louis’ prin-
ciple for computing the observed information matrix (see Louis, 1982); that is,
1(0") = E[B(6%:t,z,8,I)] -E[S(0":¢,2,0,1)ST(0"¢,2,6,1)]
(2.3.2)
+E[S(0%t,z,6,I)E[ST(0%t,x,5,1)],
where I(6*) is the information on 6*, B(0*;t,x,d,I) and S(0*;t,x,d,I) denote the

negative of the matrix of second derivatives and the gradient vector of [.(0;t,x,d,I)
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(score function). The standard errors of the parameter estimates were then calculated
by taking the square-root of the corresponding variances which are nothing more
than the diagonal elements of the variance-covariance matrix 7-(6*). By using the
asymptotic normality of the MLEs, 95% confidence intervals (CI) of the parameters
were obtained. To examine the accuracy of the interval estimation, the coverage
probabilities were found at 95% nominal level. The pertinent details of the first-
order and second-order derivatives of the complete data log-likelihood for obtaining
the information matrix are presented in Appendix A.2. Asymptotic normality of the
MLEs can also be used to estimate the standard error of the cure rates with the use

of multivariate delta method since py = g(3) : R®*) — R is a continuous function.

2.4 Simulation study

In our simulation study, we studied the effects of different sample sizes, cure rates,
censoring proportions and lifetime parameters in order to examine the performance
and robustness of the proposed model. Motivated by the real data, we considered a
single categorical covariate x, affecting the lifetimes of the susceptible, having four
possible values, namely, x = 1,2,3,4. Two different sample sizes were taken into
account, distributed among the four covariate groups, viz., n = 200 (50,42, 53, 55)
and n = 400 (95,102,97,106). The choices of the regression parameters were made
by utilizing the monotone behavior of the logit link function. By fixing the true cure
rates for z = 1 and x = 4 as (0.60, 0.25) and (0.40, 0.20) representing the “high” and

“low” cure rate scenarios and solving

1

m — 060(040),



Chapter 2.4 - Simulation study 35

the true values of (fy,S1) were obtained as (—0.906,0.501) and (0.078,0.326), re-
spectively. Furthermore, the performance of the model was tested under “heavy”
and “light” censored data. Specifically, the censoring proportions considered for the
groups = = 1,2, 3,4 were (0.80, 0.64, 0.50, 0.38) (“heavy” censoring) and (0.70, 0.57,
0.45, 0.35) (“light” censoring) for the “high” cure rate and (0.60, 0.49, 0.40, 0.33)
(“heavy” censoring) and (0.50, 0.42, 0.35, 0.30) (“light” censoring) for the “low”
cure rate, respectively. It was assumed that the censoring time follow an exponen-
tial distribution with rate A\,,x = 1,2, 3,4. For determining this A, we equated the
probability of getting censored for susceptible to the difference between the censoring

and cured proportion, and solved them numerically, i.e.
PY>C,NnM>1|X =z| = ¢, — Poa,

for the xth covariate group. Upon considering C, ~ exponential()\,), we therefore

solved for A\, from the equation

00 Y0 H1 Co /Do
)\w/ exp {— (c_x) et 4+ )\xcm] de, — M =0,
0 gl H " (1/po:)

by numerical methods. We also took two choices for (79, 71,72) as (1.75, 3.25, 0.10)
and (3.25, 5.50, 0.20) corresponding to lower and higher lifetimes, respectively, to

study its effect on the model.

Here, we discuss the techniques of simulation for different cure rate models, but
focusing only on a single covariate group x. For the Bernoulli cure rate model, we
generated a random sample M, of desired size from a Bernoulli distribution (¢ — 00)

having success (I = 0) probability to be py,. If M, = 0, then C, (censoring time vari-
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able) was generated from an exponential distribution with rate A\, and T, (observed
lifetime) was assigned as C, with §, (censoring indicator) = 0. On the other hand, if
M, =1, C, was generated from an exponential ()\;) and Y, (actual lifetime) from a
Weibull with shape vy and scale ’)/16_%. T, was calculated as min{Y,, C,}; 6, = 1
when T, =Y, and ¢, = 0, otherwise. For the Poisson cure rate model, we generated
M, from a Poisson distribution (¢ = 1) with mean H'(1 4 e®t17) = —log py,.
The procedure remains the same if M, = 0 as in the Bernoulli case. For M, = m
where m > 1, we generated Wy, ..., W,, lifetimes from a Weibull distribution with
shape and scale as discussed before and took Y, = min{Wi,...,W,,}. We simul-
taneously generated C, from exponential with rate A, and took 7, = min{Y;,,C,}.
The censoring indicators were generated as o, = 0 for M, = 0 and M, > 1 with
T, =C,, but 6, = 1if M, > 1 with T, = Y,. For the geometric and COM-Poisson
cure rate models, the technique remained the same as of the Poisson, except that
M, was generated from a geometric distribution with parameter 1 — pg, and a COM-
Poisson distribution with parameter 7, = H;l(l + eP0th1E) for a fixed ¢, respectively.
1, was found numerically for the choices of 5y and ;. The number of iterations in
each scenario was fixed to be at most 500 and the computations were performed on
R-software (R-3.1.1). The estimates (Est), i.e., the average over all replications were
calculated using Monte Carlo method along with empirical bias, root mean square

error (RMSE) and coverage probabilities (CP) to assess the accuracy of our estimates.

For the simulation study, a 15% variability on both sides of the real values, i.e., a
random number from the interval (0.850*,1.1560%), was taken as the initial parameter
guess. As discussed before, the MLE of (3',+') was obtained for that ¢ which yielded
the maximum log-likelihood value. Thus, é was obtained by a profile-likelihood and

~

s.e. of the MLE 6* by Louis’ method by considering ¢ = ¢.
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In Tables 2.1 to 2.8, we can see that the estimation of the model parameters is
quite accurate for all different scenarios (due to space limitations, the results for the
case ¢ = 2 are not presented). The standard errors and RMSE are found to decrease
as the sample size increases. The same is observed when the cure rate or the cen-
soring proportion decreases. The standard error of [ is almost always larger than
the standard error of any other parameter, except the standard error of v; which is
comparatively high; it is to be noted that the lifetime of Y itself is quite sensitive with
respect to the scale ;. The standard error for ~q is greater when the true lifetime
parameters are large. However, the effect is quite opposite for the other parameters
since the standard errors get reduced. The estimates of ¢ has a relatively high bias
since it has been estimated by profile likelihood method. This large bias can also
be attributed to the fact that the precision is affected by gap present in the interval
consideration of ¢. In most of the cases, we observed an under-estimated value for
é when data generated from ¢ = 0.5, which became less apparent for higher true

lifetime values.

In most of the cases, the CPs are quite close to the nominal level. The CPs
reach the nominal level as the censoring proportion decreases or as the sample size
increases. The under-coverage is most apparent in the case of geometric cure rate
model, especially, when the censoring proportion is high and lifetime parameters take
small values; the CP for the Bernoulli cure rate model is quite close to the nominal
level in all cases. The coverage of 7, is consistently lower than the nominal level
when data is generated from ¢ = 0.5. Table 2.9 and 2.10 presents the estimates of
the cure rate, bias, RMSE and 95% CI for n = 200 and n = 400 with heavy censoring

and higher lifetime; note that the Bernoulli cure rate model has the least bias and
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RMSE. It is also worth mentioning that the profile likelihood approach seems to cause
bias and larger standard errors which reduce as the grid search for ¢ is performed on
intervals with more refined increments (a similar remark can be found in Balakrishnan
and Pal, 2014). Overall, more sample observations, less censoring, low cure rate, high

lifetime and ¢ > 1 results in better accuracy of the estimates.

2.5 Model discrimination

The motivation for model discrimination comes from the fact that a COM-Poisson
distribution encompasses many well known discrete distributions. So, by choosing the
parameter ¢ suitably, we can adequately fit an appropriate model to a data character-
ized by a cured proportion since it provides access to a wide range of distributions for
the number of competing cause. It enables us to observe how often a model different
than the true model gets selected or rejected, thereby, utilizing the generality of a

COM-Poisson distribution to model a data.

We generated 500 random samples from a specific ¢ (here, ¢ = 0 (geometric)
, 0.5, 1 (Poisson), 2 and oo (Bernoulli)), and then fitted the three special cases of
a COM-Poisson cure rate model to the generated data. For each replication, we
tested whether the geometric (Hy : ¢ = 0) or Poisson (Hy : ¢ = 1) or Bernoulli
(Hp : ¢ — 00) model could be assumed as an appropriate model for our data, against
the alternative that a model described by a COM-Poisson distribution where ¢ ¢ Hy
provided a better fit. The number of times the correct model was rejected (i.e., Hy is
incorrectly rejected, providing the observed level of significance) and that the incorrect
models were rejected (i.e., Hy is correctly rejected, providing the observed power of

the test), were computed. Two kinds of selection criteria were examined here, namely,
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likelihood-based approach and information-based criteria. We took into account the
following scenarios: Setting 1: n = 400 and “light” censoring; Setting 2: n = 400 and
“heavy” censoring; Setting 3: n = 600 and “light” censoring; Setting 4: n = 600 and
“heavy” censoring; the censoring proportion exceeded the cured proportion by 0.1,

for each covariate group in each of these cases.

2.5.1 Likelihood-based method

Let us denote by lo and [ the maximized log-likelihood value under the null and
alternative hypothesis, respectively; it is known that the asymptotic distribution of
the test statistic A = —2(ly — ) (Wilks’ likelihood ratio test; LRT), under the null
hypothesis, is a Chi-squared distribution with one degrees of freedom (d.f.). However,
the cases ¢ = 0 and ¢ — oo are on the boundaries of the parametric space and so
the asymptotic distribution of A is a mixture Chi-squared distribution such that
P(A < X) =1+ 1P(x3 <)), where x} is a random variable having x*-distribution
with 1 d.f. (see Self and Liang, 1987). From Table 2.11, we see that the observed level
of significance for the geometric model is quite close to the nominal level 0.05. For the
Bernoulli cure rate model, the observed level of significance is close to 0.10 in most of
the cases, while for the Poisson cure rate model it varies greatly from 0.06 to 0.20. This
could be attributed to the fact that the mixture Chi-squared distribution provides
good approximation to the asymptotic distribution of A (as in case of geometric and
Bernoulli), whereas the Chi-squared distribution does not (as in case of the Poisson
distribution). Besides, we note that the observed level of significance improves as
the sample size increases or/and the cure rate decreases. In case when the data are
generated from a true geometric cure rate model, the rejection rate of Bernoulli model

was significantly higher than of other models, taking values from 0.597 to 0.830. For
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the true Poisson model, the rejection rate of the Bernoulli model is greater than the
geometric model, though not as much as observed in the true geometric case. For
the true Bernoulli cure rate model, the rejection rate of a geometric model ranges
from 0.418 to 0.670, whereas that of the Poisson model is in the range of 0.046 and
0.252. For ¢ = 0.5, it is more likely to reject the Bernoulli model while for ¢ = 2, the
rejection rates of geometric and Bernoulli models are almost similar. Note also that
in most of the cases the power increases as sample size increases or/and if the cure

rate decreases.

2.5.2 Information-based method

The second method of model selection is based on the Akaike’s information criterion
(AIC) and Bayesian information criterion (BIC); AIC is defined as —2[ 4 2p, where
[ is the maximized likelihood value and p is the number of model parameters to be
estimated and BIC is given by —2l + plog N, where N is the sample size. Clearly,
the model which takes the minimum value for AIC (or BIC) is the model which best
fits the data; it is necessary to mention that in our simulation study, the AIC and
BIC always selected the same model as the models that are compared have the same
number of parameters. From Table 2.12; it can be seen that the selection rate for the
geometric model decreases as ¢ increases while that of Bernoulli model increases as
¢ increases; clearly, both of these features are quite reasonable. Based on AIC, the
selection rates of the correct model are from 67.0% to 73.2% if the true distribution is
geometric, from 39.2% to 49.4% if the true distribution is Poisson, and from 71.2% to
76.0% if the true distribution is Bernoulli. Similar selection rates are also found for
the cases ¢ = 0.5 and ¢ = 2. It can therefore be stated that if ¢ < 1, the geometric

model is more likely to be selected than the Bernoulli model whilst if ¢ > 1, the
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Bernoulli model is more likely to be selected than the geometric. Note that the
selection rates for the correct models increase as the sample size increases, while it

decreases as censoring rate increases, as expected.

2.6 Analysis of cutaneous melanoma data

The proposed model is illustrated with a data set on cancer recurrence taken from
Ibrahim et al. (2005); the data is part of a study on cutaneous melanoma (a type of
malignant cancer) for the evaluation of postoperative treatment performance with a
high dose of interferon alpha-2b as a drug to prevent recurrence. There were originally
427 patients in the study divided into four nodule categories based on tumor thickness
and this will be the only covariate (z = 1,2,3,4) in our analysis; 10 patients were
excluded from our analysis due to missing values of tumor thickness information. The
patients have been observed for the period 1991-1995 and followed until 1998. The
overall percentage of censored observations is 56%. What was observed was either
the exact lifetimes (time till patient’s death) or the censoring times, in years; the
observed lifetimes had mean and standard deviation as 3.18 and 1.69, respectively.
The sample sizes for the four nodule categories are n;= 111, ny= 137, nzg= 87 and

res 82.

To provide the initial values of the regression parameters 3, and (31, we considered
the observed censoring proportion of each group to be its cure rate (overestimated);
for the parameter v, we used a multiple linear regression model of log{— log[S(t;¥)]}
values over log(t); note that log{—log[S(t;v)]} = Y logt + vz — Yo logy:, wherein
S(t;~) was estimated by the Kaplan-Meier estimator. We used a profile likelihood

approach for estimating the parameter ¢ over [0,5] with increment of 0.1 and then
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Figure 2.1: The plot of A = —2(I — Iy) vs ¢, for cutaneous melanoma data.

evaluating the log-likelihood value for each ¢. It was observed that the maximum log-
likelihood was achieved at ¢ = 0, with corresponding log-likelihood value -509.338;
hence, the geometric model is found to be most suitable for our data. In order to
test the hypothesis Hy : ¢ = 0 against H; : ¢ > 0, we follow the same procedure as
described in Section 2.5; we find A = —2(ly — {) ~ 0, with p-value equal to 0.50. On
the other hand, if we test for the Poisson and Bernoulli cure rate models, we obtain

p-values of 0.019 and 0.001, respectively, thus not supporting these models.

The models are also compared on the basis of AIC and BIC. From Table 2.13, it
can be seen that AIC and BIC are increasing functions with respect to ¢. Based on
this observation, we used the values of A against ¢ (Figure 2.1) with ¢ € [0, 5] and
10% level of significance; hence, A = 2.71 (x7 ) and the null hypothesis Hy : ¢ = 0
does not get supported if A is greater than 2.71. This means that ¢ € [0,0.285),
implying that the geometric model adequately fits the data.Furthermore, we test
Hy : v =0vs. Hy: 7 # 0 using the likelihood ratio test; note that if v = 0, then
the lifetime of susceptible follows a Weibull distribution with shape =, and shape

~v1 and the covariates would not have any effect on the lifetime. The maximized
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log-likelihood values for the geometric, COM-Poisson with ¢ = 0.5, Poisson, COM-
Poisson with ¢ = 2, and Bernoulli cure rate models are -509.419, -512.194, -513.394,
-514.896 and -517.591, respectively. The corresponding A values (p-values) are 0.161
(0.687), 1.920 (0.165), 2.627 (0.105), 3.748 (0.052) and 6.234 (0.012), respectively. It
can be seen that the p-values decrease as ¢ increases which indicates that for under-
dispersed cure rate models, considering proportional-hazards with Weibull baseline
is clearly better than considering a constant Weibull lifetime over the four nodule
categories. In Table 2.14, we present the estimates for the cure rate proportions,
their standard errors and 95% confidence intervals stratified by nodule category, for
the geometric cure rate model; the parameters estimates are Bo = —1.076 (0.292),
B, = 0.456 (0.109), 40 = 1.887 (0.118), 41 = 3.286 (0.586) and 42 = 0.078 (0.115).
Note that the confidence intervals of cure rates for the first and fourth nodule cate-
gories are non-overlapping and we can therefore conclude that cure rates of the nodule

category 1 is significantly greater than that of nodule category 4.

One more measure of importance is the probability an individual to be cured,
given that he/she has survived up to a specific time ¢, i.e., P(I = 0|T > t). The

estimate of this probability is given by

. -1
~ A o t Yo .
P([ = 0|T > t) — (1 + ePothiz exp [_ <T) 6$72]> ‘
g

A plot of this probability for the four nodule categories along with its 95% CI are
presented in Figure 2.2 from which the difference between the four groups can clearly
be seen. The cure probability for nodule category 1 is the highest, whereas that of

nodule category 4 is the lowest.
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Figure 2.2: Plots representing cure rate given an individual has survived up to a
specific time ¢ (solid line), and its 95%CI (dotted line) over four covariate groups.
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Table 2.1: Estimates, bias, RMSE and CP for the Bernoulli cure rate model with

heavy censoring.

n po | Par | True Est (s.e.) Bias | RMSE | CP (95%)
200 (50, 42, 53, 55) | High | £y |-0.906 | -0.921 (0.519) | -0.014 | 0.517 0.953
Br | 0.501 | 0.510 (0.182) | 0.009 | 0.185 0.949
Y | 1.750 | 1.780 (0.147) | 0.030 | 0.153 0.959
v | 3.250 | 3.366 (0.760) | 0.116 | 0.785 0.938
72 | 0.100 | 0.105 (0.123) | 0.005 | 0.128 0.950
Low | By | 0.078 | 0.077 (0.483) | -0.001 | 0.482 0.960
B | 0.326 | 0.331 (0.176) | 0.004 | 0.182 0.967
Y | 1.750 | 1.770 (0.130) | 0.020 | 0.136 0.952
7 | 3.250 | 3.304 (0.549) | 0.054 | 0.532 0.944
72 | 0.100 | 0.104 (0.096) | 0.004 | 0.094 0.956
400 (95, 102, 97, 106) | High | 3y | -0.906 | -0.934 (0.369) | -0.028 | 0.380 0.953
By | 0.501 | 0.510 (0.129) | 0.009 | 0.133 0.947
Yo | 1.750 | 1.766 (0.105) | 0.016 | 0.113 0.936
7 | 3.250 | 3.262 (0.528) | 0.012 | 0.531 0.940
2 | 0.100 | 0.095 (0.088) |-0.004 | 0.091 0.945
Low | Sy | 0.078 | 0.089 (0.334) | 0.011 | 0.338 0.949
1| 0.326 | 0.325 (0.125) | -0.001 | 0.122 0.957
Y | 1.750 | 1.763 (0.092) | 0.013 | 0.102 0.926
v | 3.250 | 3.292 (0.380) | 0.042 | 0.394 0.953
2 | 0.100 | 0.103 (0.068) | 0.003 | 0.069 0.947
200 (50, 42, 53, 55) | High | £y | -0.906 | -0.909 (0.493) | -0.002 | 0.536 0.946
B1 | 0.501 | 0.500 (0.173) | -0.001 | 0.183 0.956
Y | 3.250 | 3.329 (0.272) | 0.079 | 0.302 0.930
v | 5500 | 5.545 (0.605) | 0.045 | 0.623 0.930
72 | 0.200 | 0.207 (0.115) | 0.007 | 0.124 0.924
Low | By | 0.078 | 0.078 (0.447) | 0.000 | 0.517 0.947
B | 0.326 | 0.328 (0.167) | 0.001 | 0.185 0.953
Y | 3.250 | 3.316 (0.236) | 0.066 | 0.153 0.953
v | 5.500 | 5.513 (0.440) | 0.013 | 0.785 0.949
72 | 0.200 | 0.204 (0.090) | 0.004 | 0.128 0.935
400 (95, 102, 97, 106) | High | 5y | -0.906 | -0.932 (0.352) | -0.025 | 0.340 0.955
Br | 0.501 | 0.511 (0.125) | 0.010 | 0.122 0.959
Y | 3.250 | 3.289 (0.194) | 0.039 | 0.210 0.941
7 | 5.500 | 5.515 (0.433) | 0.015 | 0.429 0.945
72 | 0.200 | 0.201 (0.082) | 0.001 | 0.083 0.943
Low | By | 0.078 | 0.082 (0.312) | 0.004 | 0.380 0.957
By | 0.326 | 0.328 (0.117) | 0.001 | 0.133 0.967
Yo | 3.250 | 3.272 (0.166) | 0.022 | 0.113 0.957
7 | 5500 | 5.482 (0.312) |-0.017 | 0.531 0.955
2 | 0.200 | 0.197 (0.063) | -0.002 | 0.091 0.947
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Table 2.2: Estimates, bias, RMSE and CP for the Poisson cure rate model with heavy

censoring.

n po | Par | True Est (s.e.) Bias | RMSE | CP (95%)
200 (50, 42, 53, 55) | High | 5y | -0.906 | -0.862 (0.566) | 0.044 | 0.616 0.935
B1 | 0.501 | 0.494 (0.195) | -0.006 | 0.202 0.946
Yo | 1.750 | 1.797 (0.155) | 0.047 | 0.164 0.938
v | 3.250 | 3.492 (0.995) | 0.242 | 1.189 0.916
72 | 0.100 | 0.116 (0.157) | 0.016 | 0.170 0.935
Low | By | 0.078 | 0.062 (0.508) | -0.016 | 0.550 0.933
B | 0.326 | 0.345 (0.192) | 0.018 | 0.212 0.935
Yo | 1.750 | 1.776 (0.135) | 0.026 | 0.134 0.945
7 | 3.250 | 3.319 (0.725) | 0.069 | 0.848 0.916
72 | 0.100 | 0.092 (0.133) | -0.007 | 0.154 0.910
400 (95, 102, 97, 106) | High | 3y | -0.906 | -0.923 (0.389) | -0.017 | 0.415 0.940
By | 0.501 | 0.507 (0.136) | 0.006 | 0.148 0.940
Yo | 1.750 | 1.771 (0.109) | 0.021 | 0.111 0.956
7 | 3.250 | 3.316 (0.658) | 0.066 | 0.717 0.934
72 | 0.100 | 0.101 (0.111) | 0.001 | 0.118 0.923
Low | Sy | 0.078 | 0.094 (0.365) | 0.016 | 0.372 0.946
B | 0.326 | 0.328 (0.136) | 0.001 | 0.137 0.954
Y | 1.750 | 1.768 (0.097) | 0.018 | 0.094 0.960
v | 3.250 | 3.328 (0.522) | 0.078 | 0.582 0.938
2 | 0.100 | 0.105 (0.095) | 0.005 | 0.102 0.934
200 (50, 42, 53, 55) | High | £y |-0.906 | -0.911 (0.528) | -0.005 | 0.544 0.943
B1 | 0.501 | 0.504 (0.188) | 0.003 | 0.194 0.943
Y | 3.250 | 3.304 (0.282) | 0.054 | 0.279 0.952
v | 5500 | 5.537 (0.750) | 0.037 | 0.714 0.946
72 | 0.200 | 0.205 (0.147) | 0.005 | 0.144 0.958
Low | By | 0.078 | 0.085 (0.457) | 0.006 | 0.481 0.934
B | 0.326 | 0.326 (0.173) | 0.000 | 0.180 0.946
Yo | 3.250 | 3.308 (0.237) | 0.058 | 0.254 0.946
v | 5.500 | 5.536 (0.556) | 0.036 | 0.578 0.944
72 | 0.200 | 0.212 (0.118) | 0.012 | 0.126 0.938
400 (95, 102, 97, 106) | High | 5, | -0.906 | -0.880 (0.362) | 0.026 | 0.370 0.940
B | 0.501 | 0.494 (0.128) | -0.007 | 0.131 0.944
Yo | 3.250 | 3.281 (0.194) | 0.031 | 0.187 0.959
7 | 5.500 | 5.523 (0.509) | 0.023 | 0.518 0.946
72 | 0.200 | 0.204 (0.099) | 0.004 | 0.103 0.940
Low | Bp | 0.078 | 0.123 (0.345) | 0.045 | 0.342 0.947
By | 0.326 | 0.316 (0.128) | -0.010 | 0.126 0.955
Y | 3.250 | 3. 283 (0.175) | 0.033 | 0.181 0.945
v | 5500 | 5.559 (0.421) | 0.171 | 0.413 0.963
Y2 | 0.200 | 0. 208 (0.087) | 0.007 | 0.083 0.963
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Table 2.3: Estimates, bias, RMSE and CP for the geometric cure rate model with

heavy censoring.

n po | Par | True Est (s.e.) Bias | RMSE | CP (95%)
200 (50, 42, 53, 55) | High | Sy | -0.906 | -0.893 (0.541) | 0.013 | 0.681 0.888
B1 | 0.501 | 0.496 (0.188) | -0.004 | 0.238 0.884
Y | 1.750 | 1.810 (0.160) | 0.060 | 0.172 0.948
v | 3.250 | 3.676 (1.244) | 0.426 | 2.041 0.859
72 | 0.100 | 0.118 (0.198) | 0.018 | 0.269 0.859
Low | By | 0.078 | 0.023 (0.502) | -0.055 | 0.636 0.879
Bi | 0.326 | 0.354 (0.189) | 0.027 | 0.244 0.886
Yo | 1.750 | 1.793 (0.144) | 0.043 | 0.169 0.907
7 | 3.250 | 3.416 (1.032) | 0.166 | 1.484 0.855
72 | 0.100 | 0.083 (0.192) |-0.016 | 0.255 0.866
400 (95, 102, 97, 106) | High | 3, | -0.906 | -0.900 (0.388) | 0.006 | 0.470 0.899
By | 0.501 | 0.496 (0.137) | -0.004 | 0.166 0.895
Yo | 1.750 | 1.773 (0.115) | 0.023 | 0.134 0.907
7 | 3.250 | 3.435 (0.837) | 0.185 | 1.160 0.866
v2 | 0.100 | 0.110 (0.144) | 0.010 | 0.190 0.862
Low | Sy | 0.078 | 0.089 (0.355) | 0.010 | 0.426 0.896
B/1 | 0.326 | 0.321 (0.131) | -0.005 | 0.160 0.887
Y | 1.750 | 1.766 (0.101) | 0.016 | 0.107 0.937
v | 3.250 | 3.426 (0.732) | 0.176 | 0.989 0.898
2 | 0.100 | 0.109 (0.133) | 0.009 | 0.173 0.876
200 (50, 42, 53, 55) | High | £y | -0.906 | -0.944 (0.530) | -0.037 | 0.566 0.943
f1 | 0.501 | 0.512 (0.186) | 0.011 | 0.203 0.938
Y | 3.250 | 3.329 (0.292) | 0.079 | 0.305 0.952
v | 5500 | 5.537 (0.913) | 0.037 | 1.033 0.922
72 | 0.200 | 0.198 (0.189) | -0.001 | 0.218 0.913
Low | By | 0.078 | 0.085 (0.503) | 0.006 | 0.556 0.920
B | 0.326 | 0.331 (0.185) | 0.004 | 0.210 0.922
Yo | 3.250 | 3.345 (0.268) | 0.095 | 0.282 0.960
v | 5.500 | 5.545 (0.836) | 0.045 | 0.939 0.918
72 | 0.200 | 0.198 (0.183) | -0.001 | 0.210 0.912
400 (95, 102, 97, 106) | High | 5, | -0.906 | -0.918 (0.373) | -0.012 | 0.419 0.918
B | 0.501 | 0.509 (0.133) | 0.008 | 0.150 0.912
Y | 3.250 | 3.326 (0.208) | 0.076 | 0.238 0.920
7 | 5.500 | 5.567 (0.642) | 0.067 | 0.690 0.932
72 | 0.200 | 0.209 (0.134) | 0.009 | 0.149 0.930
Low | By | 0.078 | 0.078 (0.357) | -0.000 | 0.376 0.932
By | 0.326 | 0.330 (0.133) | 0.003 | 0.144 0.928
Yo | 3.250 | 3.320 (0.189) | 0.070 | 0.216 0.928
v | 5500 | 5.515 (0.589) | 0.015 | 0.656 0.919
72 | 0.200 | 0.203 (0.131) | 0.003 | 0.152 0.915
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Table 2.4: Estimates, bias, RMSE and CP for the COM-Poisson cure rate model with
¢ = 0.5 and heavy censoring.

n Po Par | True Est (s.e.) Bias | RMSE | CP (95%)
200 (50, 42, 53, 55) High | 5o | -0.906 | -0.935 (0.557) | -0.028 | 0.588 0.933
51 0.501 | 0.509 (0.192) | 0.008 0.204 0.926
Yo 1.750 | 1.909 (0.171) | 0.159 0.250 0.840
Y1 3.250 | 3.274 (1.000) | 0.024 1.152 0.920
Yo 0.100 | 0.032 (0.191) | -0.067 | 0.229 0.920
) 0.500 0.247 (-) -0.252 | 0.578 -
Low | Bo 0.078 | 0.067 (0.504) | -0.010 | 0.508 0.955
B 0.326 | 0.333 (0.184) | 0.006 0.183 0.955
Yo 1.750 | 1.897 (0.152) | 0.147 | 0.228 0.816
%! 3.250 | 3.474 (0.908) | 0.224 1.003 0.955
Yo 0.100 | 0.058 (0.172) | -0.041 | 0.187 0.948
6 | 0.500 0.240 (-) | -0.260 | 0.588 -
400 (95, 102, 97, 106) | High | By | -0.906 | -0.885 (0.392) | 0.021 0.372 0.954
et 0.501 | 0.482 (0.136) | -0.019 | 0.128 0.954
Yo 1.750 | 1.855 (0.118) | 0.105 0.181 0.812
Y1 3.250 | 3.293 (0.724) | 0.043 0.820 0.935
Y2 0.100 | 0.055 (0.135) | -0.044 | 0.165 0.890
) 0.500 0.279 (-) -0.220 | 0.609 -
Low | Bo 0.078 | 0.064 (0.358) | -0.014 | 0.424 0.903
B 0.326 | 0.324 (0.131) | -0.002 | 0.160 0.903
Yo 1.750 | 1.873 (0.107) | 0.123 0.186 0.696
Y1 3.250 | 3.476 (0.658) | 0.226 0.888 0.872
Yo 0.100 | 0.053 (0.125) | -0.046 | 0.166 0.866
) 0.500 0.209 (-) -0.290 | 0.562 -
200 (50, 42, 53, 55) High | 5o | -0.906 | -0.891 (0.540) | 0.015 0.504 0.960
et 0.501 | 0.500 (0.186) | -0.001 | 0.178 0.973
Yo 3.250 | 3.543 (0.309) | 0.293 0.466 0.814
Y1 5.500 | 5.619 (0.841) | 0.119 0.859 0.933
Y2 0.200 0.190 (0.76) | -0.009 | 0.185 0.947
o) 0.500 0.345 (-) -0.154 | 0.629 -
Low | Bo 0.078 | 0.061 (0.496) | -0.017 | 0.470 0.975
B 0.326 | 0.328 (0.181) | 0.002 0.179 0.950
Yo 3.250 | 3.506 (0.277) | 0.257 | 0.431 0.808
Y1 5.500 | 5.562 (0.713) | 0.062 0.811 0.913
Y2 0.200 | 0.167 (0.161) | -0.032 | 0.188 0.895
@ 0.500 0.401 (-) -0.098 | 0.663 -
400 (95, 102, 97, 106) | High | By | -0.906 | -0.912 (0.376) | -0.005 | 0.371 0.957
B 0.501 | 0.499 (0.132) | -0.001 | 0.132 0.944
Yo 3.250 | 3.413 (0.211) | 0.163 0.333 0.822
7 5.500 | 5.535 (0.581) 0.035 0.591 0.926
Yo 0.200 | 0.179 (0.121) | -0.020 | 0.140 0.901
6 | 0.500 0.380 (-) | -0.119 | 0.607 -
Low | Bo 0.078 | 0.080 (0.347) | 0.002 0.382 0.946
B 0.326 | 0.314 (0.127) | -0.012 | 0.136 0.928
Yo 3.250 | 3.494 (0.194) | 0.244 0.342 0.724
Y1 5.500 | 5.598 (0.511) | 0.098 0.578 0.898
Y2 0.200 | 0.176 (0.115) | -0.023 | 0.126 0.934
) 0.500 0.289 (-) -0.211 | 0.614 -
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Table 2.5: Estimates, bias, RMSE and CP for the Bernoulli cure rate model with

light censoring.

n po | Par | True Est (s.e.) Bias | RMSE | CP (95%)
200 (50, 42, 53, 55) | High | £y |-0.906 | -0.961 (0.410) | -0.054 | 0.424 0.945
Br | 0.501 | 0.524 (0.155) | 0.023 | 0.161 0.947
Y | 1.750 | 1.781 (0.138) | 0.031 | 0.135 0.956
v | 3.250 | 3.303 (0.573) | 0.053 | 0.614 0.935
72 | 0.100 | 0.101 (0.102) | 0.001 | 0.108 0.933
Low | By | 0.078 | 0.066 (0.394) | -0.011 | 0.433 0.941
B | 0.326 | 0.338 (0.153) | 0.011 | 0.167 0.931
Y | 1.750 | 1.772 (0.119) | 0.022 | 0.119 0.962
7 | 3.250 | 3.263 (0.437) | 0.013 | 0.402 0.952
72 | 0.100 | 0.102 (0.082) | 0.002 | 0.076 0.970
400 (95, 102, 97, 106) | High | 3y | -0.906 | -0.931 (0.294) | -0.024 | 0.288 0.948
By | 0.501 | 0.512 (0.108) | 0.011 | 0.104 0.969
Yo | 1.750 | 1.760 (0.098) | 0.010 | 0.102 0.942
7 | 3.250 | 3.290 (0.412) | 0.040 | 0.391 0.965
2 | 0.100 | 0.104 (0.071) | 0.004 | 0.071 0.959
Low | Sy | 0.078 | 0.054 (0.289) | -0.024 | 0.300 0.938
By | 0326 | 0.337 (0.112) | 0.010 | 0.114 | 0.944
Y | 1.750 | 1.770 (0.087) | 0.020 | 0.094 0.957
v | 3.250 | 3.267 (0.322) | 0.017 | 0.306 0.969
v2 | 0.100 | 0.102 (0.060) | 0.002 | 0.059 0.970
200 (50, 42, 53, 55) | High | 5y | -0.906 | -0.908 (0.405) | -0.001 | 0.375 0.973
B1 | 0.501 | 0.504 (0.150) | 0.003 | 0.139 0.975
Yo | 3.250 | 3.299 (0.249) | 0.049 | 0.262 0.955
v | 5500 | 5.507 (0.490) | 0.007 | 0.478 0.948
72 | 0.200 | 0.200 (0.097) | 0.000 | 0.098 0.951
Low | By | 0.078 | 0.058 (0.392) | -0.019 | 0.401 0.945
B | 0.326 | 0.336 (0.150) | 0.009 | 0.156 0.953
Y | 3.250 | 3.293 (0.221) | 0.043 | 0.222 0.947
v | 5.500 | 5.528 (0.393) | 0.028 | 0.382 0.953
72 | 0.200 | 0.206 (0.081) | 0.006 | 0.079 0.965
400 (95, 102, 97, 106) | High | 5y | -0.906 | -0.914 (0.290) | -0.007 | 0.288 0.945
B1 | 0.501 | 0.504 (0.108) | -0.003 | 0.110 0.943
Y | 3.250 | 3.287 (0.180) | 0.037 | 0.173 0.961
7 | 5.500 | 5.511 (0.352) | 0.011 | 0.365 0.957
72 | 0.200 | 0.203 (0.070) | 0.003 | 0.072 0.951
Low | By | 0.078 | 0.075 (0.282) | -0.002 | 0.296 0.955
B1 | 0.326 | 0.335(0.108) | 0.008 | 0.111 0.957
Yo | 3.250 | 3.278 (0.156) | 0.028 | 0.160 0.953
v | 5500 | 5.479 (0.279) | -0.021 | 0.278 0.949
2 | 0.200 | 0.195 (0.058) | -0.004 | 0.057 0.965
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Table 2.6: Estimates, bias, RMSE and CP for the Poisson cure rate model with light

censoring.

n po | Par | True Est (s.e.) Bias | RMSE | CP (95%)
200 (50, 42, 53, 55) | High | [y | -0.906 | -0.943 (0.432) | -0.036 | 0.427 0.956
f1 | 0501 | 0.516 (0.163) | 0.014 | 0.164 0.956
v | 1.750 | 1.782 (0.142) | 0.032 | 0.154 0.926
v | 3.250 | 3.280 (0.685) | 0.030 | 0.729 0.928
72 | 0.100 | 0.094 (0.127) | -0.005 | 0.142 0.934
Low | By | 0.078 | 0.092 (0.431) | 0.013 | 0.443 0.966
B | 0.326 | 0.324 (0.163) | -0.002 | 0.170 0.949
Y | 1.750 | 1.788 (0.125) | 0.038 | 0.135 0.945
1 | 3.250 | 3.308 (0.586) | 0.058 | 0.634 0.922
72 | 0.100 | 0.103 (0.003) | 0.003 | 0.123 0.934
400 (95, 102, 97, 106) | High | £y | -0.923 | -0.931 (0.303) | -0.016 | 0.288 0.934
B | 0.501 | 0.507 (0.113) | 0.006 | 0.100 0.942
Y | 1.750 | 1.772 (0.099) | 0.022 | 0.102 0.940
7 | 3.250 | 3.285 (0.482) | 0.035 | 0.391 0.932
72 | 0.100 | 0.103 (0.089) | 0.003 | 0.071 0.934
Low | Sy | 0.078 | 0.071 (0.298) | -0.007 | 0.314 0.953
/1 | 0.326 | 0.335(0.117) | 0.008 | 0.115 0.940
v | 1.750 | 1.766 (0.088) | 0.016 | 0.104 0.942
v | 3.250 | 3.256 (0.404) | 0.006 | 0.501 0.922
72 | 0.100 | 0.095 (0.080) | -0.004 | 0.094 0.928
200 (95, 102, 97, 106) | High | B, | -0.906 | -0.914 (0.411) | -0.007 | 0.431 0.938
By | 0.501 | 0.509 (0.153) | 0.007 | 0.159 0.954
Y | 3.250 | 3.332(0.256) | 0.082 | 0.268 0.935
v | 5.500 | 5.537 (0.560) | 0.037 | 0.586 0.944
2 | 0.200 | 0.211 (0.117) | 0.011 | 0.124 0.944
Low | By | 0.078 | 0.0411 (0.402) | -0.037 | 0.413 0.944
B1 | 0.326 | 0.347 (0.155) | 0.020 | 0.166 0.946
Yo | 3.250 | 3.299 (0.224) | 0.049 | 0.223 0.963
v | 5.500 | 5.499 (0.479) | -0.001 | 0.510 0.934
72 | 0.200 | 0.198 (0.105) | -0.002 | 0.112 0.932
400 (50, 42, 53, 55) | High | Sy | -0.906 | -0.905 (0.295) | 0.001 | 0.295 0.957
B | 0501 | 0.505 (0.111) | 0.004 | 0.115 0.933
Y | 3.250 | 3.282 (0.179) | 0.032 | 0.179 0.959
1 | 5.500 | 5.497 (0.402) | -0.002 | 0.401 0.955
72 | 0.200 | 0.199 (0.084) | -0.001 | 0.088 0.941
Low | By | 0.078 | 0.075 (0.300) | -0.003 | 0.294 0.961
/1 | 0.326 | 0.329 (0.115) | 0.003 | 0.114 0.971
Y | 3.250 | 3.265 (0.162) | 0.015 | 0.164 0.947
7 | 5.500 | 5.504 (0.360) | 0.004 | 0.367 0.941
72 | 0.200 | 0.198 (0.078) | -0.001 | 0.080 0.943
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Table 2.7: Estimates, bias, RMSE and CP for the geometric cure rate model with
light censoring.

n po | Par | True Est (s.e.) Bias | RMSE | CP (95%)
200 (50, 42, 53, 55) | High | £y | -0.906 | -0.898 (0.439) | 0.008 | 0.479 0.933
B1 | 0.501 | 0.505 (0.162) | 0.003 | 0.178 0.922
Y | 1.750 | 1.805 (0.143) | 0.055 | 0.156 0.947
v | 3.250 | 3.405 (0.869) | 0.155 | 0.979 0.939
72 | 0.100 | 0.111 (0.167) | 0.011 | 0.184 0.933
Low | By | 0.078 | 0.089 (0.414) | 0.011 | 0.446 0.947
B | 0.326 | 0.324 (0.161) | -0.002 | 0.176 0.928
Y | 1.750 | 1.800 (0.130) | 0.050 | 0.142 0.930
7 | 3.250 | 3.332 (0.775) | 0.082 | 0.877 0.907
72 | 0.100 | 0.103 (0.160) | 0.003 | 0.181 0.920
400 (95, 102, 97, 106) | High | 3, | -0.906 | -0.894 (0.306) | 0.008 | 0.314 0.944
By | 0.501 | 0.498 (0.114) | -0.002 | 0.122 0.944
Yo | 1.750 | 1.781 (0.103) | 0.031 | 0.106 0.950
7 | 3.250 | 3.325(0.592) | 0.075 | 0.636 0.938
v2 | 0.100 | 0.110 (0.117) | 0.010 | 0.132 0.931
Low | Sy | 0.078 | 0.094 (0.299) | 0.015 | 0.329 0.931
B | 0.326 | 0.319 (0.115) | -0.007 | 0.129 0.937
Y | 1.750 | 1.777 (0.092) | 0.027 | 0.098 0.942
v | 3.250 | 3.301 (0.557) | 0.051 | 0.615 0.929
v2 | 0.100 | 0.105 (0.115) | 0.005 | 0.134 0.906
0, 42, 53, 55) | High | By | -0.906 | -0.924 (0.430) | -0.017 | 0.429 0.953
f1 | 0.501 | 0.513 (0.162) | 0.011 | 0.163 0.955
Y | 3.250 | 3.326 (0.267) | 0.076 | 0.269 0.949
v | 5.500 | 5.580 (0.712) | 0.080 | 0.735 0.939
72 | 0.200 | 0.217 (0.161) | 0.017 | 0.171 0.936
Low | By | 0.078 | 0.048 (0.430) | -0.030 | 0.448 0.949
B | 0.326 | 0.337 (0.164) | 0.010 | 0.177 0.945
Yo | 3.250 | 3.323 (0.243) | 0.073 | 0.262 0.943
v | 5.500 | 5.478 (0.682) | -0.021 | 0.746 0.924
72 | 0.200 | 0.193 (0.159) | -0.006 | 0.180 0.914
400 (95, 102, 97, 106) | High | 3y | -0.906 | -0.906 (0.302) | 0.000 | 0.305 0.948

B1 | 0.501 | 0.503 (0.114) | 0.002 | 0.113 0.955

Y | 3.250 | 3.285 (0.189) | 0.035 | 0.183 0.967

7 | 5.500 | 5.482 (0.494) | -0.017 | 0.503 0.942

2 | 0.200 | 0.192 (0.112) | -0.007 | 0.121 0.936

Low | By | 0.078 | 0.092 (0.299) | 0.013 | 0.326 0.932

(0.115)

(0.171)

57 (0.479)

(0.111)

200 (

ut

By | 0.326 | 0.320 (0.115) |-0.006 | 0.131 0.922
Yo | 3.250 3303 0.171) | 0.053 | 0.172 0.959
5. 0.479) | 0.057 | 0.546 0.910
0.111) | 0.011 | 0.129 0.910

v | 5.500
v | 0.200 0211
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Table 2.8: Estimates, bias, RMSE and CP for the COM-Poisson cure rate model with
¢ = 0.5 and light censoring.

n Po Par | True Est (s.e.) Bias | RMSE | CP (95%)
200 (50, 42, 53, 55) High | By | -0.906 | -0.865 (0.443) | 0.041 0.492 0.932
B 0.501 0.502 (0.161) 0.001 0.184 0.906
Yo 1.750 | 1.893 (0.154) | 0.143 0.231 0.859
Y1 3.250 | 3.436 (0.794) | 0.186 0.824 0.953
Yo 0.100 | 0.070 (0.154) | -0.029 | 0.177 0.892
) 0.500 0.253 (-) -0.246 | 0.578 -
Low | Bo 0.078 | 0.174 (0.435) | 0.095 0.479 0.943
B 0.326 | 0.304 (0.164) | -0.022 | 0.186 0.943
Yo 1.750 | 1.903 (0.139) | 0.153 0.231 0.765
%! 3.250 | 3.441 (0.731) | 0.191 0.780 0.943
Yo 0.100 | 0.059 (0.149) | -0.040 | 0.183 0.905
# | 0.500 0.274 (-) | -0.225 | 0.603 -
400 (95, 102, 97, 106) | High | By | -0.906 | -0.886 (0.309) | 0.020 0.285 0.930
B 0.501 | 0.494 (0.114) | -0.006 | 0.103 0.962
Yo 1.750 | 1.872 (0.108) | 0.122 0.181 0.746
Y1 3.250 | 3.203 (0.518) | -0.046 | 0.584 0.905
Y2 0.100 | 0.037 (0.109) | -0.062 | 0.136 0.898
) 0.500 0.203 (-) -0.296 | 0.548 -
Low | Bo 0.078 | 0.083 (0.306) | 0.004 0.329 0.933
B 0.326 | 0.328 (0.117) | 0.001 0.127 0.927
Yo 1.750 | 1.890 (0.098) | 0.140 0.197 0.618
a%1 3.250 | 3.348 (0.503) | 0.098 0.629 0.903
Yo 0.100 | 0.054 (0.107) | -0.045 | 0.131 0.909
) 0.500 0.295 (-) -0.204 | 0.629 -
200 (50, 42, 53, 55) High | 5o | -0.906 | -0.928 (0.436) | -0.022 | 0.484 0.941
et 0.501 | 0.521 (0.159) | 0.020 0.180 0.922
Yo 3.250 | 3.423 (0.274) | 0.173 0.364 0.896
Y1 5.500 | 5.469 (0.644) | -0.030 | 0.613 0.954
Va2 0.200 | 0.162 (0.144) | -0.037 | 0.159 0.935
o) 0.500 0.427 (-) -0.072 | 0.656 -
Low Bo 0.078 | 0.122 (0.427) 0.044 0.428 0.947
B 0.326 | 0.311 (0.161) | -0.015 | 0.163 0.927
Yo 3.250 | 3.473 (0.252) | 0.223 0.380 0.801
Y1 5.500 | 5.566 (0.602) | 0.066 0.588 0.947
Y2 0.200 | 0.173 (0.141) | -0.026 | 0.143 0.960
@ 0.500 0.412 (-) -0.087 | 0.671 -
400 (95, 102, 97, 106) | High | By | -0.906 | -0.894 (0.305) | 0.012 0.322 0.931
B 0.501 | 0.493 (0.112) | -0.007 | 0.116 0.931
Yo 3.250 | 3.415 (0.194) | 0.165 0.308 0.788
7 5.500 | 5.514 (0.452) 0.014 0.481 0.925
Yo 0.200 | 0.173 (0.102) | -0.026 | 0.118 0.902
6 | 0.500 0.394 (-) | -0.105| 0.637 -
Low | Bo 0.078 | 0.127 (0.301) | 0.049 0.281 0.976
et 0.326 | 0.306 (0.114) | -0.020 | 0.108 0.953
Yo 3.250 | 3.482 (0.178) | 0.232 0.344 0.619
Y1 5.500 | 5.603 (0.428) | 0.103 0.487 0.919
Y2 0.200 | 0.177 (0.101) | -0.022 | 0.116 0.895
) 0.500 0.319 (-) -0.180 | 0.634 -
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Table 2.9: Estimates of cure rates, bias and RMSE for Geometric and Poisson cure
rate models with heavy censoring and v = (1.750, 3.500, 0.100).

n | po | True | Est | Bias [ RMSE [  95% CI
Geometric

200 (50, 42, 53, 55) po1 | 0.400 | 0.410 | 0.010 | 0.124 | (0.168, 0.652)
Ppoz | 0.324 | 0.327 | 0.002 0.073 | (0.184, 0.470)

pos | 0.257 | 0.255 | -0.002 | 0.067 | (0.124, 0.386)

poa | 0.200 | 0.200 | 0.000 | 0.087 | (0.029, 0.371)

po1 | 0.600 | 0.602 | 0.012 0.122 | (0.364, 0.840)

po2 | 0.476 | 0.480 | 0.004 | 0.080 | (0.323, 0.637)

pos | 0.354 | 0.357 | 0.003 | 0.067 | (0.226, 0.488)

Poa | 0.250 | 0.253 | 0.003 | 0.085 | (0.087, 0.419)

400 (95, 102, 97, 106) | po1 | 0.400 | 0.400 | 0.000 | 0.088 | (0.228, 0.572)
Poz | 0.324 | 0.326 | 0.002 0.052 | (0.224, 0.428)

pos | 0.257 | 0.260 | 0.003 | 0.047 | (0.168, 0.352)

poa | 0.200 | 0.206 | 0.006 | 0.062 | (0.085, 0.327)

po1 | 0.600 | 0.598 | -0.002 | 0.090 | (0.422, 0.774)

Ppo2 | 0.476 | 0.475 | -0.001 | 0.060 | (0.357, 0.593)

pos | 0.354 | 0.353 | -0.001 | 0.051 | (0.253, 0.453)

Poa | 0.250 | 0.249 | -0.001 | 0.064 | (0.124, 0.374)

Poisson

200 (50, 42, 53, 55) por | 0.400 | 0.402 | 0.002 0.115 | (0.177, 0.627)
poz | 0.324 | 0.322 | -0.002 | 0.068 | (0.189, 0.455)

Ppos | 0.257 | 0.252 | -0.004 | 0.062 | (0.131, 0.373)

posa | 0.200 | 0.198 | -0.001 | 0.080 | (0.041, 0.355)

po1 | 0.600 | 0.587 | -0.012 | 0.136 | (0.321, 0.853)

poz | 0.476 | 0.468 | -0.007 | 0.090 | (0.292, 0.644)

pos | 0.354 | 0.350 | -0.004 0.068 (0.217, 0.483)

poa | 0.250 | 0.251 | 0.001 0.083 | (0.088, 0.414)

400 (95, 102, 97, 106) | po1 | 0.400 | 0.397 | -0.003 | 0.082 | (0.236, 0.558)
poz | 0.324 | 0.321 | -0.003 | 0.049 | (0.225, 0.417)

Ppos | 0.257 | 0.254 | -0.003 | 0.044 | (0.168, 0.340)

posa | 0.200 | 0.199 | -0.001 | 0.057 | (0.087, 0.311)

po1 | 0.600 | 0.600 | 0.000 | 0.091 | (0.422, 0.778)

po2 | 0.476 | 0.477 | 0.001 0.060 | (0.359, 0.595)

pos | 0.354 | 0.355 | 0.001 0.050 (0.257, 0.453)

posa | 0.250 | 0.251 | 0.001 0.064 | (0.126, 0.376)
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Table 2.10: Estimates of cure rates, bias and RMSE for Bernoulli and COM-Poisson

(¢ = 0.5) cure rate models with heavy censoring and v = (1.750, 3.500, 0.100).

n | po | True | Est | Bias [ RMSE [  95% CI
Bernoulli

200 (50, 42, 53, 55) po1 | 0.400 | 0.401 | 0.001 0.108 | (0.189, 0.613)
po2 | 0.324 | 0.324 | 0.000 0.065 (0.197, 0.451)

po3 | 0.257 | 0.257 | 0.000 0.057 | (0.145, 0.369)

Poa | 0.200 | 0.202 | 0.002 0.073 | (0.059, 0.345)

po1 | 0.600 | 0.598 | -0.001 | 0.117 | (0.369, 0.827)

poz | 0.476 | 0.475 | -0.001 | 0.077 | (0.324, 0.626)

pos | 0.354 | 0.353 | -0.001 | 0.065 | (0.226, 0.480)

Poa | 0.250 | 0.250 | 0.000 0.081 | (0.091, 0.409)

400 (95, 102, 97, 106) | po1 | 0.400 | 0.399 | -0.001 | 0.076 | (0.250, 0.548)
poz | 0.324 | 0.323 | -0.001 | 0.045 | (0.235, 0.411)

pos | 0.257 | 0.257 | 0.000 0.040 | (0.179, 0.335)

Poa | 0.200 | 0.201 | 0.001 0.052 | (0.099, 0.303)

po1 | 0.600 | 0.602 | 0.002 0.086 | (0.433, 0.771)

Poz | 0.476 | 0.478 | 0.002 0.056 | (0.368, 0.588)

po3 | 0.354 | 0.355 | 0.001 0.050 | (0.257, 0.453)

Poa | 0.250 | 0.250 | 0.000 0.058 | (0.136, 0.364)

COM-Poisson (¢ = 0.5)

200 (50, 42, 53, 55) po1 | 0.400 | 0.401 | 0.001 0.088 | (0.229, 0.573)
po2 | 0.324 | 0.325 | 0.001 0.062 | (0.203, 0.446)

Pos | 0.257 | 0.256 | -0.001 | 0.059 | (0.141, 0.371)

posa | 0.200 | 0.198 | -0.002 | 0.067 | (0.067, 0.329)

po1 | 0.600 | 0.605 | 0.005 0.090 | (0.429, 0.781)

Ppoz | 0.476 | 0.479 | 0.003 0.053 | (0.375, 0.583)

pos | 0.354 | 0.356 | 0.002 0.035 (0.287, 0.425)

Ppoa | 0.250 | 0.250 | 0.000 0.051 | (0.149, 0.350)

400 (95, 102, 97, 106) | po1 | 0.400 | 0.404 | 0.004 0.062 | (0.283, 0.525)
poz | 0.324 | 0.329 | 0.005 0.043 | (0.246, 0.413)

pos | 0.257 | 0.262 | 0.005 0.040 | (0.183, 0.341)

Posa | 0.200 | 0.204 | 0.004 0.047 | (0.112, 0.296)

Po1 | 0.600 | 0.599 | -0.001 | 0.083 | (0.438, 0.761)

Poz | 0.476 | 0.480 | 0.004 0.087 | (0.311, 0.650)

pos | 0.354 | 0.363 | 0.009 0.093 | (0.183, 0.544)

posa | 0.250 | 0.261 | 0.011 0.094 | (0.078, 0.443)
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Table 2.11:

5}

Powers and observed levels (in bold) of LRT under different settings.

Fitted Model

True COM-Poisson Model

p=0]1¢0=05]|¢p=1|¢=2|¢p—= 0
Setting 1
Geometric (¢ =0) | 0.055 | 0.080 | 0.164 | 0.140 | 0.510
Poisson (¢ =1 0.345 | 0.085 | 0.202 | 0.015 | 0.088
Bernoulli (¢ — o0) | 0.745 | 0.365 | 0.452 | 0.210 | 0.120
Setting 2
Geometric (¢ =0) | 0.063 | 0.075 | 0.130 | 0.235 | 0.418
Poisson (¢ =1 0.210 | 0.095 | 0.106 | 0.040 | 0.046
Bernoulli (¢ — o0) | 0.597 | 0.555 | 0.378 | 0.265 | 0.120
Setting 3
Geometric (¢ =0) | 0.037 | 0.110 | 0.164 | 0.255 | 0.670
Poisson (¢ =1 0.540 | 0.130 | 0.122 | 0.015 | 0.252
Bernoulli (¢ — o0) | 0.830 | 0.385 | 0.520 | 0.225 | 0.116
Setting 4
Geometric (¢ =0) | 0.043 | 0.120 | 0.158 | 0.270 | 0.542
Poisson (¢ =1 0.353 | 0.185 | 0.062 | 0.085 | 0.110
Bernoulli (¢ — o0) | 0.740 | 0.520 | 0.470 | 0.345 | 0.108
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Table 2.12:
settings.

26

Selection rates based on Akaike’s information criterion under different

Fitted Model

True COM-Poisson Model

p=0]¢=05|¢=1|¢=2|¢—
Setting 1
Geometric (¢ =0) | 0.685 | 0.372 | 0.290 | 0.176 | 0.049
Poisson (¢ =1 0.229 | 0.400 | 0.392 | 0.362 | 0.214
Bernoulli (¢ — o0) | 0.086 | 0.228 | 0.318 | 0.462 | 0.737
Setting 2
Geometric (¢ =0) | 0.674 | 0.470 | 0.304 | 0.225 | 0.085
Poisson (¢ =1 0.230 | 0.280 | 0.402 | 0.313 | 0.202
Bernoulli (¢ — o0) | 0.096 | 0.250 | 0.294 | 0.462 | 0.713
Setting 3
Geometric (¢ =0) | 0.732 | 0.386 | 0.219 | 0.131 | 0.017
Poisson (¢ =1 0.226 | 0.464 | 0.494 | 0.400 | 0.223
Bernoulli (¢ — o0) | 0.042 | 0.150 | 0.287 | 0.469 | 0.760
Setting 4
Geometric (¢ =0) | 0.670 | 0.398 | 0.270 | 0.168 | 0.056
Poisson (¢ =1 0.257 | 0.392 | 0.428 | 0.353 | 0.232
Bernoulli (¢ — o0) | 0.073 | 0.210 | 0.302 | 0.479 | 0.712
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Table 2.13: AIC, BIC and maximized log-likelihood () values for candidate COM-
Poisson cure rate models.

COM-Poisson Model AIC BIC I
Geometric (¢ = 0) | 1028.677 | 1048.842 | -509.3383
6=05 1032.468 | 1052.633 | -511.2338
Poisson (¢ = 0) 1034.161 | 1054.326 | -512.0803
6=2 1036.043 | 1056.209 | -513.0217
Bernoulli (¢ = o0) | 1038.948 | 1059.114 | -514.4741

Table 2.14: Estimates, standard errors and 95% C.I. for the cure rates stratified by
nodule category, for the geometric cure rate model.

Nod Cat (X) | po s.e. 95% C.1.
1 0.650 | 0.044 | (0.562, 0.737
2 0.540 | 0.031 | (0.478, 0.602
3 0.426 | 0.032 | (0.363, 0.490
1 (

0.320 | 0.045 | (0.231, 0.409

~— — ' —




Chapter 3

Piecewise linear approximations of
baseline under proportional hazard

and COM-Poisson cure rate models

3.1 Introduction

Under the competing cause scenario as defined in Section 1.1, we assume that the

common hazard function h(w) of W; follows a Cox proportional hazard structure, i.e.

h(w) = h(w, z; 9, ) = ho(w; )™ (3.1.1)

where ho(w; 1)) (baseline hazard function) is approximated by a piecewise linear func-
tion characterized by a parameter ¢ and = (z1,...,2,)" is a vector of p covariates
with corresponding regression coefficients v = (71, ...,7,)’. Therefore, the idea is to
create finite partitions 79, 7,..., 7y on the time axis and approximate the baseline

hazard with N lines, one for each interval [1,_1,7];1 =1, ..., N. The number of com-

o8
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peting causes M follows a COM-Poisson distribution; under this assumption, more
flexibility in our model will be added since we can deal with under- and over-dispersed

data (e.g. Rodrigues et al., 2009; Balakrishnan and Pal, 2014).

The form of the available data and the likelihood function are given in Section 3.2.
In Section 3.3, the steps for the EM algorithm and the estimation of the asymptotic
variance and covariance matrix of the MLEs using Louis’ principle are provided. An
extensive simulation study under various N (number of linear functions), censoring
proportions, sample sizes and lifetime parameters is presented in Section 3.4. In
Section 3.5, we study model discrimination using likelihood-based and information
criteria based methods, for the model selection. In Section 3.6, for illustrative purpose,

the proposed model is applied to a real life cutaneous melanoma data set.

3.2 Form of the data and the likelihood function

In survival analysis or reliability theory, the existence of right censored data is quite
common due to the limitations imposed by the duration of the study. Therefore,
assuming that our data are subject to non-informative right censoring, the censored
group may include not only cured individuals but also susceptible who met the event
of interest after censoring time. To be more specific, let us denote by C; the censoring
time and Y; the actual lifetime for the i-th individual, for ¢ = 1,...,n. Thus, the

observed lifetime T; is defined as
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while ¢; = I(Y; < C;) indicates whether the i-th individual is censored (§; = 0) or
not (6; = 1), for i = 1,...,n. Additionally, let us also define the sets A; and Ay,
with Ay = {i:§; = 1} and Ay = {i : 6; = 0}. It is to be noted that Z(n, ) = pio =

H(n) is only a function of 7, given a specific value of ¢ and is monotone in 7 with

lim,, o H3(n) = 1 and lim, ., H};(n) = oo. Hence, it would be appropriate to link

the covariates x1,. .., x, to the cured proportion using a logistic regression model i.e.
B B 1
poi = po(B, x;) = ma
where pg; is the cured proportion for the i-th individual, =} = (1,2:1,...,25) =
(1,z}) and B = (Bo,...,0p) is the vector of the regression coefficients with i =
1,...,n. Therefore, the observed data are of the form (¢;,0;, x;), for i =1,...,n and

the likelihood function can be expressed as

L(6;t,x,6) o [ [ fults, 2::0)% S, (s, @::0)' % = ] foltizi;0) [] Sp(ti. zi50),

1=1 €A €A

where 8 = (6, 8,9 7), t = (t,....t,), & = (&,....2.,) and & = (61,...,0,)"

Moreover, we have

o SHET U+ P S (b 1, )Y
Sp(ti, i;0) = (1+e7%) Z (j1)e
" ay X G{H ! B'z; . ‘
fp(ti,a:i;e):h‘)(t“we ”ZJ{% (14205t 2,9, 7)Y (3:2.1)

(+ 75 2 G

where hg(t;; 1) given through the PLA and S(t;, z; v, ~) as defined in Section 1.5.2.
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3.3 Estimation of parameters and standard errors

The estimation of the model parameters is carried out by using the EM algorithm
along with a profile likelihood approach for parameter ¢. The complete data are given
by {(t;,@;,0;,1;) : i = 1,...,n} where I;s are observed for i € A; and unobserved
for i € Ay (recall that: I; = 0 if and only if the i-th individual is cured and I; = 1,

otherwise).

The complete data likelihood and log-likelihood functions are respectively given

by

Lc(e;tawa(sa-[) X H fp(tzawwH) H pO(/Bawi)lili{(l _pO(/Bawl))Su(tlawme)}ll

€A1 ’iGAO

and

l(0;t,2,6,I) = constant + Z log f,(t;, @;; 6) + Z(l — I;)log po (B, x;)
€A1 ’iGAO

(3.3.1)
+ Z Iilog(1 — po(B, x;)) + Z I;1og S, (t;, x;; 0),

i€ i€Ag
where I = (Iy,...,1,), fpo(t;,x;;0) as in (3.2.1) and

e S AH (1 P ()P
Sulti,@:;0) = Z : (j1)? ‘

J=1

For a fixed ¢ and i € Ag, at the (k + 1)-th iteration, we define

(1- po(BW, )8, (t;, zi; 0M)
Syt @;00) ’

" = E[1]0,6") =
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where 8%) = (¢, 3'®) op'®) ~'()) is the parameter estimate at k-th iteration and
O = {I;,t,x,d} are the observed data (note that, 7r£k+1) = E[L;|]O,0™)] = 1, for each
uncensored item). The quantity Q) = Q(8, 7)) = E[l.(0;t,x, 5, I)|0, 0] is then

maximized to obtain the next estimate as

0"+ — arg max Q(@, )
9co

considering © to be the parametric space with fixed ¢ and #*) = (ﬂ’“), . ,w,&’“))’.

The numerical maximization is carried out using the Nelder-Mead algorithms. The
explicit expressions for Q(@,7*)) and the first-order and second-order partial deriva-
tives of Q(8, 7)) are given in Appendix B.1 and B.2, respectively. We consider a
specific range of values for ¢ with fixed increment; for each choice of ¢, we find the
MLEs for (3,4,v') and our final estimation (i.e. ¢) is given by the choice of ¢
which yields the maximum log-likelihood. The range of ¢ considered for this profile
likelihood method is {0.0,0.1,...,2.0} U {oo}.

For finding the standard error of the parameter estimates, we apply Louis’ prin-

ciple, that is,

1(0) = E[B(6:t,x,0,I)] - E[S(0:t,%,8,1)S"(6;t,,0,I)]
(3.3.2)
+ S*(0;t,x,8)S*(0;t,x, )

where 1(0) is the information on 0, B(6;t,x,d,I) and S(0;t,x,d,I) denotes the
negative of the matrix of second derivatives and the gradient vector of [.(0;¢t, x, 8, I)
respectively, and S*(@;t,x,d,I) is the expected gradient vector of [.(0;t,x,d,I).
Relying on the asymptotic normality of the MLEs, 95% confidence intervals (C.I.) of

the parameters can be easily calculated. Asymptotic normality of the MLEs can also
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be used to estimate the standard error of the cure rates applying multivariate delta
method since py = g(B) with g(.) being a continuous function with g : R®+1) — R.
The form of the first-order and second-order derivatives of the complete data log-

likelihood are given in Appendix B.2.

3.4 Simulation study

A detailed Monte Carlo simulation study was carried out to assess the performance
of the proposed cure rate model and inferential method. Motivated by the real-life
dataset on cutaneous melanoma data (Section 3.6), we considered a single covariate
with four possible values (categories/groups), i.e., z = 1,2, 3,4. To analyse the effect
of censoring on the estimation, we introduced two sets of cure rates for x = 1 and
x = 4 namely (0.600,0.250) and (0.400,0.150). It may be noted that by fixing the
cure rates of the first and the fourth group, we can easily determine the cure rates

for x = 2 and = = 3 using the solutions of the system

1

1

]_ _|_ 660 +361

Thus, we obtained the pre-specified cure rates for four groups to be (0.600, 0.470, 0.350, 0.250)
and (0.400, 0.290, 0.210, 0.150), respectively. We further assume that the probability a
susceptible to be censored is 0.10 greater than the cured rate of each group. Therefore

the censoring proportions become (0.700, 0.570, 0.450, 0.350) and (0.500, 0.390, 0.310, 0.250)
to reflect the “heavy” and “light” censoring scenarios. Thus, the corresponding true
values of (fy, f1) are respectively (—0.907,0.501) and (—0.038,0.443). The lifetime

Y0—1
distribution for W; was assumed to be Weibull with hazard function % (%) e,



Chapter 3.4 - Simulation study 64

where 7 and 7; are the shape and scale parameter respectively, of the baseline hazard
function (which is also a Weibull), while v is the regression parameter. To evaluate
the accuracy of the estimates for different lifetime parameters, two choices of expected
lifetime values were made for the baseline distribution, viz., 1.000 and 2.000 for “low”
and “high” lifetime scenarios, respectively; a unit variance was assumed in both cases.
Hence the respective true values of (7y,71) were (1.000,1.000) and (2.101,2.258) with
v = 0.200. Furthermore, the effects of large and small sample sizes on the accu-
racy of our estimates were assessed by taking n, viz., n = 600(150, 150, 150, 150) and
n = 400(100, 100, 100, 100), respectively. All the true values were selected in order to

closely resemble the real-life dataset.

The censoring time was assumed to follow an exponential distribution with rate

Ao, =1,2,3,4, while A\, was determined by solving
PY>C,NnM>1|X =z] =c; — pos

for the x-th group; ¢, and py, denote the pre-specified censoring and cured propor-
tion respectively. Proceeding mathematically, with C, ~ exponential()\,), A\, were

obtained by solving,

LS Y0 H* 1 Co .
)\x/ exp {— (C—m) e’ + )\xcx] de, — M =0.
0

M H;_l(l/pox)

Let us now clarify the basics steps followed for generating our data. For the Bernoulli
cure rate model (¢ — 00), M was generated from a Bernoulli distribution with success
(I = 0) probability po,. If M = 0, then C (censoring time variable) was generated

from an exponential with rate \,, and we set T'= C' and § = 0. Otherwise, if M =1,
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then Y was generated from a Weibull distribution with shape vy and scale v, e %0 and
T = min{Y,C} (C is also generated by an exponential distribution with parameter
Az), with § = 1 for T =Y, whereas § = 0 for " = C. For the Poisson cure rate
model, we generated M from a Poisson distribution (¢ = 1) with mean 1, = — log po,.
The procedure remained the same for M = 0, as in the Bernoulli case. However, for
M = m, where m > 1, we generated Wy, W, ..., W,,, lifetimes from a Weibull distribu-
tion with shape and scale as discussed before, and we set Y = min{W;, Wy, ..., W,,,}
and 7' = min{Y, C'}, with C being an exponential(),) variable. Furthermore, we had
0=0for M=0orM>1,T=Candd=1,if M >1and T =Y. For the geomet-
ric cure rate model, we generated M from a geometric distribution with parameter
1 — po, and the rest of the procedure remained as above. This is also the case for
every COM-Poisson cure rate model in which M was generated from a COM-Poisson
distribution with parameter n, = qul( 1 + ePo+h1) for a fixed ¢ where 1, was found

numerically for the choices of £y and ;.

Due to heavy computational load, our numerical study was based on r = 100
replications (using R-software), for each of the five COM-Poisson models: ¢ = 0
(geometric), 0.5,1 (Poisson), 2 and oo (Bernoulli). The cut points were taken to be
the sample quantiles of the lifetimes of the uncensored data with 75 = min{Y;} and
7n = max{Y;}. An alternative choice could have been to select 7y = max{T;}, how-
ever, was often very far from 7_; resulting in high degree of bias and variability in the
estimation. Henceforth, the line (i.e. ay + byt) in [Ty_1,7n] is used to approximate
the hazard function in [ry_;,00). A 15% variability on both sides of the real values
were taken as the initial parameter guess for (5, f1,7) and a 20% variability on both
sides of the baseline Weibull hazard function, at the cut points as an initial estimate

for (v, ...,%¥n). As mentioned before, the estimates were found using ML estima-
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tion with EM algorithm except that of ¢, for which a profile likelihood approach was
employed. In Table 3.1 to 3.20, we present the simulation results for all the settings.
Results for the low lifetime cases are not provided for ¢ = 0.5 and 2 due to space lim-
itation. Estimated parameter values (Est) and cure rates, standard errors (s.e.), root
mean squared errors (RMSE), coverage probabilities with 95% nominal level (95%

C.P.) of the cure rates and root integrated squared errors (RISE) for the four groups

are provided. RMSE for the parameter « is calculated as \/(r — 1)1y (6 — a)?,

where &4 is the estimate for the ¢-th iteration, « is the true parameter value. RISE

for the z-th covariate group is given by

1« [ 3
RISE, = — ;/TO [Sp(w,z;0,) — Sy(w, x;0)]2dw,

for x = 1,2,3,4 and éq is the estimate of @ for ¢-th replication. Since we are esti-
mating the baseline hazard function using piecewise linear functions, RISE provides
a measure of deviance of the estimated long-term survival function and the true long-
term survival function. RMSE of the lifetime parameters, in this case, could be vague

to interpret and is often large for ¢ y.

The following observations were made from the simulation study. The estimates
of the regression parameters (S, 1), and hence, the cure rate over all settings were
found to be quite precise (i.e. close to the true values). As a result, s.e. and RMSE
of the estimates were relatively low given the complexity of the model. Bias of the
estimates corresponding to the geometric cure rate model was observed to be larger
than the other models. The RISE for all the scenarios were also quite small, thereby

suggesting that the approximation of Weibull baseline hazard by PLA provides good
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fit. In both of high mean (i.e. vy = 2.101, 7 = 2.258; increasing hazard function) and
low mean (i.e. 79 = 1.000, 73 = 1.000; constant hazard function) lifetimes, the esti-
mates of the hazards vy, ..., 1N were quite consistent with the true hazards, except,
at 7. The estimates of ¢y were observed to be highly affected by the distribution
of the censoring time and were relatively far from 7_1, resulting in large standard
deviation. In general, adding more lines (i.e., on increasing N) for approximating the
baseline hazard seemed not to highly affect the precision of the estimates, although,
there are some indications for a negative effect. For the high mean lifetime case,
RISE were generally lowest for N = 1 reflecting that this model provided the best fit
since the true hazard is almost linearly increasing. However, for the low mean lifetime
case, RISE for N = 1 were mostly the highest (owing to the true constant hazard
function). RISE did not seem to show any observable increasing or decreasing pattern
with respect to IV, otherwise. The Cox proportional hazard regression parameter ()
was over-estimated in most of the settings, except when the true model is ¢ = 0.5 or
2. The results corresponding to the low mean (v, = 1.000, 7; = 1.000) cases are not

provided in the thesis, however, can be retrieved from the author on request.

Tables 3.1 to 3.20 further revealed that decrease in the censoring proportion re-
sulted in lower s.e. and RMSE of the estimates and higher RISE for the corresponding
covariate groups. As a consequence, the coverage probabilities of the true cure rates
also decreased. An observation of decreased s.e., RMSE of the estimates and 95%
CP of the true cure rates were also made when the sample size was increased, while
RISE also decreased, though slightly. It was also noted that s.e. and RMSE were
comparatively less if data were generated from high mean lifetime Weibull distribu-
tion; however, no such effect was evident for 95% CP. The CPs for the cure rates

were seen to be close to 95% nominal value when the true model were geometric,
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Poisson or Bernoulli. With light censoring and larger sample size, the CPs became
more stable around the nominal level. But the true cure rates encountered a signif-
icant under-coverage (varying around 80%) when the true model was COM-Poisson
with ¢ = 0.5 or 2. This is because we have estimated ¢ using the profile likelihood
method since the likelihood surface is very flat w.r.t ¢, thereby, ignoring the compo-
nent of variability of gzg in the variance-covariance matrix. This resulted in smaller
standard error of the parameter estimates, hence, giving rise to the under-coverage.
A relatively large bias was involved in the estimation of ¢, which could arise due to
presence of gaps in the search interval [0, 2]. The accuracy of the estimation of ¢ were
seen to increase with N when the true model is ¢ = 2, but decreases with N when
the true model is ¢ = 0.5. In all of the settings, the PLA models are compared to
the correct parametric model with Weibull baseline hazard. In most of the cases, the

performance of the two models were quite similar.

3.5 Model discrimination

We already have mentioned that a COM-Poisson distribution encompasses many well
known discrete distributions. Thus, it is of practical interest to study how frequently
a true model gets selected and others get rejected depending on some pre-specified
criteria. This was carried out using two different criteria, viz., likelihood-based cri-
terion and information-based criterion. We generated 100 samples where the true
competing cause distributions were: geometric (¢ = 0), COM-Poisson with ¢ = 0.5,
Poisson (¢ = 1), COM-Poisson with ¢ = 2 and Bernoulli (¢ — o0). The three special
cases, i.e., geometric, Poisson and Bernoulli were fitted to the simulated data and the
number of times each model was selected or rejected based on the criterion, was stud-

ied. The hazard function was considered to follow a proportional hazards model with
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baseline hazard function from a Weibull distribution with shape and scale v and v,
respectively. Four different settings were considered with 7o = 2.101, 7, = 2.258 and
v = 0.200, viz., Setting 1: n=400 and ‘light’ censoring (censoring proportions: 0.500,
0.390, 0.310, 0.250), Setting 2: n=400 and ‘heavy’ censoring (censoring proportions:
0.700, 0.570, 0.450, 0.350), Setting 3: n=600 and ‘light’ censoring, Setting 4: n=600

and ‘heavy’ censoring to this end, where v is a regression parameter.

3.5.1 Likelihood-based method

Here using the likelihood ratio test (LRT), we tested for Hy : ¢ = 0 vs. Hy : ¢ > 0,
Hy:¢p=1vs. H :¢ #1and Hy: ¢ = oo vs. Hy : ¢ < oo, at 5% significance
level. The number of times H, got rejected gave us the rejection rates of the candi-
date models. Let [y and [ be the maximized log-likelihood value under the null (Hy)
and alternative (H;) hypothesis, respectively. The asymptotic distribution of the test
statistic A = —2(lp — [) (Wilk’s LRT statistic), under the Hy is known to follow a
Chi-squared (x?) distribution with one degrees of freedom (d.f.). However, this does
not provide a good approximation when we are dealing with cases when the values
that are being tested are on the boundaries of the parametric space, e.g., the cases
¢ = 0 and ¢ = co. Hence, the asymptotic distribution of A considered, is a mixture
x? distribution i.e., P(A < A) = 3 + $P(x} < A), where xi is a random variable

having y2-distribution with 1 d.f.

Table 3.21 provides us with model discrimination results based on LRT. The
observed power and level of significance (given in bold) of the tests are presented

)
in the table corresponding to four settings and N = 1,...,5. It can be noticed
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that the observed level of significance decreases, in case ¢ = 0, as the number of
lines (V) increases; no observable pattern was found for ¢ = oco. On an average,
the observed level is high when the true model is geometric varying greatly between
0-62 %, however, the levels are between 0-20% for the Poisson and 0-33% for the
Bernoulli case. This could be attributed to imprecise estimation of ¢ with profile
likelihood method since it was noted that ¢ = 0.5 were rejected less number of
times than geometric when the true model was geometric. As one would expect,
the observed level of significance were more pronounced when the sample size was
small, censoring was heavy and NN is less. For light censored data, the observed level
changed drastically (0-33%) for the geometric, which was not very obvious for the
other two cases. N = 3 provided observed levels close to the nominal level (5%)
consistently. Rejection rates for the fitted geometric model gradually increased as
true ¢ increased. The power on fitting Poisson gradually increased as the true ¢
moved far from 1. Similarly, power on fitting the Benoulli decreased with true ¢.
Power of the tests were seen to increase with lightly censored data and higher sample
size. The number of lines used to approximate the baseline Weibull hazard seemed
insignificant with respect to the power of the test. It was seen that setting 3 with
N =5 provided the most consistent results while setting 2 with N = 1 provided the
least. A graphical representation to facilitate the understanding of the readers about
the behavior of LRT across the true model and fitted model for all N is given in
Figure 3.4.

3.5.2 Information-based method

The very well known Akaike’s information criterion (AIC) and Bayesian informa-

tion criterion (BIC) were incorporated to set the criteria of selection in order to
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discriminate among the candidate models. AIC is defined as —2l + 2p, where [ is the
unrestricted maximized log-likelihood value and p is the number of parameters and
BIC is defined as —2 + plog Ny, where NNy is the sample size. For each true ¢, we
fitted the three special cases of COM-Poisson and calculated the corresponding AIC
and BIC values; the one with minimum AIC/BIC was selected. It is to be noted that
AIC and BIC provided us with the same model since we always compared models

with the same number of parameters.

Table 3.22 presents the selection rates of the candidate models when data were
generated from different ¢ (i.e., 0, 0.5, 1, 2, 00). Overall, the selection rate of the
proper candidate models were quite reasonable, i.e., the probability of selecting the
correct models were high and incorrect models were low in most of the cases. Chances
of selecting the geometric cure rate model decreased while that of the Bernoulli in-
creased when samples were generated from higher true ¢ values. The selection rates
by fitting of a Poisson model, when the true model is indeed Poisson, were relatively
low for every N and all settings, when compared to the respective rates of geometric
or Bernoulli models. This could be accounted to the large bias in the estimation of
¢ which leads to select » = 0.5 or 2 when indeed the true model is Poisson. The
selection rates of the true models were consistently high for N = 1, indicating, that
a single linear approximation provided the best fit for the baseline hazard function
(a finding consistent with our results in Section 3.4). Beyond this remark, the effect
of fitting more lines seemed very little with no discernable patterns in the choice of
the models. In general, Bernoulli provided the highest selection rates, which varied
between 0.578 to 0.975. The selection rates of correct geometric model varied from
0.342 to 0.725, while that for the correct Poisson model from 0.200 to 0.694. For the

other true models (viz., ¢ = 0.5, 2), the probability of selecting the fitted candidate
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models were comparatively low. A decrease in the true censoring proportion affected
the correct selection rates to be increased significantly in most of the scenarios. An
increase in the sample size from 400 to 600 also resulted in a greater selection of the
correct models. Thus, Setting 3 provided us with the best selection rates while Set-
ting 2 provided the worst indicating similar trends as found for the results based on
LRT. A graph representing the power study with respect to AIC/BIC can be found

in Figure 3.5.

3.6 Analysis of cutaneous melanoma data

To further evaluate the performance and appropriateness of the proposed model, we
considered a real-life data set on cancer recurrence. The data is part of a study by
Eastern Cooperative Oncology Group (ECOG) on cutaneous melanoma (a type of
malignant cancer) for the evaluation of postoperative treatment performance with
a high dose of interferon alpha-2b as a drug to prevent recurrence as provided in
Ibrahim et al. (2005). The study cohort contained 427 patients randomized into four
nodule categories (1-4); nodule category is considered to be the only covariate in our
analysis. 10 patients were excluded from our analysis due to missing information on
tumor thickness. The sample sizes for the four nodule categories were 1:n;= 111,
2:n9= 137, 3:ng3= 87 and 4:n,= 82, respectively. The patients were observed for the
period 1991-1995 and were followed until 1998. The overall percentage of censored
observations was 56%. As explained before, the observations were either the exact
lifetimes (time till patient’s death) or the censoring times, in years; the observed life-
times had mean and standard deviation as 3.180 and 1.690, respectively. Thus, the
available data contain: censoring time or exact lifetime (¢), censoring indicator (J)

and covariate group (z) to which the individual belongs to.
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An overestimated initial guess to the regression parameters fy (-1.215) and [
(0.482) were provided based on the observed censoring proportions 0.676 and 0.329 of
groups with nodule category 1 and 4, respectively. Following the results from approx-
imating the baseline hazard with a Weibull distribution in a proportional hazards life-
time and COM-Poisson cure rate set-up, we used an estimate of 0.072 for Cox regres-
sion coefficient . For the set of PLA parameters (¢, ..., %¥y), we solved N + 1 non-
linear equations each of the form S(t; 1o, ..., ¥N,7y) = exp [—Ho(t; 1o, . . . , YN )e?*] for
N + 1 time points from the data; S(¢; 4y, ..., ¥y,7) is approximated using Kaplan-
Meier estimates. For N = 5, the initial baseline hazard estimates at the cut points
(quantile-based) was (¥, U1, o, U3, U4, U5) = (0.010,0.150, 0.250, 0.200, 0.030, 0.100).
The choices of cut points on the time axis were considered in two different ways and
their effects were compared on the estimates in case of this real-life data. The first
set of cut points is quantile based i.e. suitable quantiles of the observed lifetimes were
taken to be 1, 71, ..., Tv_1 Whereas 7y was taken as the maximum of both censoring
and exact lifetimes so as to cover the whole time range. A second approach to choose
the cut points based on the curvature of the baseline hazard function was also stud-
ied. In this case, a kernel-based hazard estimates were obtained by taking only the
susceptible lifetimes (using muhaz function in R) and approximate hazard values at
various time points were noted. The first- and second-order approximate numerical
derivatives of these hazards were calculated at every time point. This is done by di-
viding the difference in hazards at two time points with difference in the time points,
considering the time points to be close enough. These values are then checked for
their nearness to zero; thus, implying approximate extremas. The same technique is
carried out using the first derivative values derived numerically and points of inflec-

tions were obtained, thereby, indicating curvatures. Now, more suitable among those
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points were chosen as the cut points 71, ..., 7v_1 depending on N whereas 7y and 7y
were still the same as considered in the previous approach. The number of lines were
set from N =1 to N = 5, while the profile likelihood method was performed on the

interval [0, 2] with increment 0.1.

For the quantile-based selection of cut points, the geometric cure rate model with
N = 5 provided the maximum value of the log-likelihood function (-499.996) and
minimum value of AIC (1017.992). The minimum value of BIC (1044.662) was ob-
tained also for the geometric cure rate model with N = 2. For the curvature-based
selection of cut points, maximum log-likelihood value was found to be -504.190 with
N = 5, minimum AIC (1024.892) with N = 2 and minimum BIC with N =1 all
for the geometric cure rate model. Summing up together, it can be safely said that
the geometric cure rate model with baseline hazard being approximated by five lines
under proportional hazards assumption and quantile-based selection of cut points
provided the best fit to the cutaneous melanoma data. The quantile based cut points
consistently provided a better fit than the curvature, however, both show similar kind
of trend with respect to the selection criteria. Also, AIC and BIC were observed to

be steadily increasing with ¢. The details are provided in Table 3.23.

The appropriateness of the geometric cure rate model over Poisson and Bernoulli
was established further by testing for the hypotheses: Hog : ¢ = 0 vs Hig : ¢ > 0,
Hop: 9 =1vs Hip: ¢ #1and Hygp: ¢ = 0o vs Hig : ¢ < oo as described in
Section 3.5. This resulted in the corresponding likelihood ratio test statistic values
Ag = —2(loe —1) =0, Ap = =2(lop — ) = 3.538 and A = —2(lop — 1) = 4.540 with
p-values being 0.500, 0.059 and 0.017 respectively for N = 5 (quantile-based); thereby

rejecting both Bernoulli and Poisson cure rate model at 10% level of significance. The
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graph of A (i.e., =2(ly — ly)) vs. ¢ is presented in Figure 3.1 taking N = 5 which is
found to be steadily increasing with some noises. It should be noted that ly is the
value of log-likelihood function under Hy when the log-likelihood is maximized with
respect to other parameters for a fixed ¢. The value of lo changes according to the
¢ under Hy. On doing so, we actually kept the cut points to be fixed for estimating
all le. Thus, the maximization is not true in the sense that we need to choose the
cut points according to the value of ¢ we are using. If one does so, we predict the
noise to be much less in the plot. For the same model, i.e., PLA of the baseline
hazard with N = 5, the test for Hy : v = 0 vs. H; : v # 0 was also performed for
the geometric, ¢ = 0.5, Poisson, ¢ = 2 and Bernoulli cure rates. The test statistic
(ie., A = —2(Iy— 1) ~ x2 under Hy) values and the p-values were 1.338, 3.889, 4.882,
6.131, 10.679 and 0.247, 0.048, 0.027, 0.013, 0.001 respectively. This indicates that
the homogeneity of individual lifetimes among the nodule categories were not rejected
at 5% level if geometric provided the best fit to the data. A similar observation was
made when the baseline hazard was considered from a parametric Weibull distribu-

tion under proportional hazard.

The estimate, standard error and 95% CI of the parameters and cure rates are
presented in Table 3.24 for the geormetric cure rate model with piecewise linear
approximation of the baseline hazard for N = 1,...,5. It was observed that the
estimated cure rates decreased with N for both ways of selecting the cut points. The
estimated cure rates were further lowered in case of the curvature-based selection
of cut-points. The s.e. of the estimated cure rates were seen to be comparatively
less for N = 1 in both cases. It can also be reported that for all choices of N,
95% CI for the cure rate estimates for x = 1 and = = 4 were mostly non-overlapping,

thereby, signifying a marked distinction in the chances of getting cured between them.
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Figure 3.1: The plot of A vs ¢, for cutaneous melanoma data using PLA with N = 5.
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These results were quite similar to the results obtained by using Weibull baseline
hazard in proportional hazard set-up. When the lifetime distribution of the non-
cured individuals was assumed to be Weibull, the cure rate estimates were (0.664,
0.546, 0.422, 309) and when the lifetime distribution of Weibull was assumed along
with the proportional hazards assumption, then the estimated cure rates were (0.650,
0.540, 0.426, 0.320) which are very close to the results obtained on taking N = 1.
The s.e of the estimated hazards were found to be increasing as the value of the
cut points increased. Apart from the above mentioned analysis, the cure probability
given that an individual has not met the event of interest till ¢ was also estimated for

r=1,2,3,4 by

~

P(I=0T>t)= (1 + exp [Bo + Brx — Ho(t; 4bo, 1, ""ZDN)@WD
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Figure 3.2: The probability to be cured (solid line), given that an individual has
survived up to a specific time ¢ and their 95% CI (dotted line).

Prob.of cure given survival time is at least 't".
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and presented along with 95% CI in Figure 3.2 using PLA with N = 5. So, an indi-
vidual has 60% chance of getting cured provided he/she survives up to 1.430, 3.010,
4.180 and 5.350 years, if he/she belongs to nodule category 1,2,3 and 4 respectively.
Similar to the parametric inference, the four nodule categories was observed to be

asymptotically converging with increasing trends.

The model was also tested on the same dataset with a different set of covariates,
namely, treatment group (OBS:0, INF:1), gender (male:0, female:1) and age which is
a continuous variable. The average age of the study cohort is 47.892 years years while
62% was male and 50% belonged to the OBS group. Table 3.25 includes parameter

estimates while the cut-points were chosen to be suitable quantiles of 7;. It was
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observed that geometric cure rate model provided the best fits for N = 1, 2, 3, Poisson
cure rate model for N = 4 whereas Bernoulli cure rate model for N = 5 in terms
of AIC and BIC (see Table 3.26). Approximating the baseline hazard with two lines
(N = 2) was found to have least AIC or BIC for all candidate models. For N = 2, on
testing Hy : ¢ = 0, the LRT statistic A &~ 0 with p-value 0.5. On verifying whether
a Poisson or Bernoulli cure rate models are suitable for the data, A was found to be
0.090 and 0.958, resulting in p-values as 0.764 and 0.164, respectively. Thus, none of
the candidate cure rate models were found to be unsuitable for the data using three
covariates at 10% level of significance. The mean (median) estimated cure rate for
females receiving OBS is the highest e.g. 0.657 (0.658), for males with OBS is 0.571
(0.573), for females with INF is 0.561 (0.574) and for males receiving INF is 0.474
(0.478). The overall estimated cured probability combining all individuals has mean
equal to 0.554 (s.e.= 0.084), while the median is 0.554. The graph of estimated cure
rates versus age for all the four categories is presented in Figure 3.3. It can also
observed from Table 3.26 that the maximum value of the log-likelihood function was
obtained on using N = 4 for the Poisson cure rate model, implying that this model

could also be effective for fitting of the data.
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Figure 3.3: The graph presents estimated cure rates (pg) by age for four categories:

Female+OBS, Male+OBS, Female+INF and Male+INF.
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Figure 3.4: A power study based on LRT corresponding to table 3.21.
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Table 3.1: Simulation results for geometric cure rate model having high lifetime
(70 = 2.101, y; = 2.258) with heavy censoring for small sample size.

it

TTY N i B
7,030,020 (050 041,039, 0
VI, 047,055 (05,04, 36,024

Measure

=400 {100, 10, 100, 100)

530441 710884 | (0.066, 0.090) (3.320, 1223

1 (08000 350,12
) A0660,0:61,0376) (0300, 044, 0341, 0219)| 30913 TS0 | (066, 0061) (0881 0415 (352,075
B 3 (0706, 0.56,0371) (0361, 0449, 0301, 026)| 39634 TA2T0| (066,0059) (038, 097) (086, 0.1) (35,0747
(720,061, 0367) (0361, 0449, 0301, 0248) | -39061 TOR120 | (066, 0060) (03210175 (0329,0299 (0S81,0414) (330,076
5 (07T, 0468 D3 (5 46004 L) -7 S (006006 (0520 (75, 030) (381030) (L5 03] (30 05
10680357, 0208) (0624 048,035, 0240) | 33017 TI604 (2000, 2216
1 (0355, 1132, 0091) (0058, 00880083, 005 (0085, 0] (01461, 0359
2 (0408, 0160, 0114 (0084, 0055, 0041, 0047 (0035, 0038 (0058015 (081, 058)
st 3 061, 054, 0040, 047 (0035, 0038 (0030 0.1) (058, 0149) (0481, 036
(0487, 0160, 0.5) (0082, 0054, 004,001 (005,008 (05009 (030,002 (0058005) (L8105
B (03, 0070,0.12) (0089, 0060 0043001 (0035, 0048) (0035, 0087) (0053,0173) (0.58,01%) (0078, 0.89) (045, 07%5)
(0311, 0118, 011 (0124, 0330
1

0.349, 014,00
0438 0.47,002
0424, 0.142, 019
0.407, 0138, 0.19
0.389, 0.133, 0.188
0.335, 0.120, 0.154

0,062, 0.039, 0.0, 004
0,093, 0,059, 0.042, 0.04
0,090, 0,038, 0.041, 0.047
(0,091, 0.058, 0.041, 0.047
0,096, 0.063, 0,04, 0.047
0,035, 0.057, 0035, 0.043
(.980, 0.970, 0.980, 0.990
0,980, 0.980, 0.990, 0.980
0.970, 0.970, 0.980, 0.970
0.970, 0.970, 0.980, 0.970
0.930, 0.940, 0950, 0.950
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)
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1
2
% CP. 3
4
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0898, 0.933, 0.945, 0923
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.090, 0.123, 0.182, 0.251
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(0092, 0.127, 0.187, 0.256)
RISE (0,093, 0.128, 0.188, 0.57)
(01095, 0.129,0.189, 0.58)
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Table 3.2: Simulation results for geometric cure rate model having high lifetime
(70 = 2.101, v, = 2.258) with heavy censoring for large sample size.

(5, U
¥oohhg i [ A0 | i=0  i=l i=) i=d i=d o i=h
007, 0301, 020) (0600, 0.470, 0350, 0250

¢

(0706, 0456, 0.370) (0383, 0.464, 039, 0.250
(0821, 0482, 0.384) (071, 0.456, 0345, 0.250
(0760, 0468, 0.373) (0372, 0.456, 0345, 0.249
(0765, 0469, 0372) (0573, 0.457, 0345, 0.249
(-0.769, 0471, 0369) (0374, 0,457, 0.345, 0.249
(108, 0.559, 0.203) (0,619, 0482, 0,348, 0.285
(0279, 0104, 0072) (0,046, 0.003, 0.028, 0.036
(0.335, 0.116, 0.082) (0057, 0037, 0.030, 0037
(0.334, 0.116, 0.082) (0.056, 0.037, 0.030, 0037
(
(
(
(
(
(
(
(
il

Measure

1= 600 {150, 150, 130, 150)

1 ATS20 960594 | (0,049, 0067) (3680, 1.323)
2 73596 967104 | (0,049, 0.06) (0887, 0.48) (3.680, 0.789)
Bt 3 ATLT09 935418 | (0049, 0044) (037,0.273) (0887, 0417) (3,680, 0316)
4 72009 954038 | (0049, 0.088) (0319, 0.165) (0337, 028) (0887, 0416) (3650, 0.831)
5 AT0816 951,632 | (0049, 0.047) (0,319, 0.170) (0.737, 0.371) (087, 0403) (1356, 0520 (3.680,0.762)
180043970086 (20m,2210)
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( ) (0001, 00%) (0.43,0.29]
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035, 0116 0083 (0056, 0037, 0030, 0057) (wmmm(mmm){w%wm(mwom(msmm
(384,027, 0004) (0065, 0043, 008, 0457) (0021, D031) (00, 0062) (0042,0124) (0047047 (061, 0165 (0443, 069)
(004, 0031, 002,05 (0103,02%)
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1
2
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4
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)
)
)
)
)
0380, 0105, 0.1
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)
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0,049, 0.051, 0.028, 0.036
0,064, 0.040, 0,050, 0.037
0,063, 0.040, 0,059, 0.037
(.062, 0.039, 0.030, 0.03

0,070, 0.045, 0.032, 0.03

0,048, 0.032, 0,030, 0.038
(.990, 0.990, 0.980, 0970
0,990, 0.980, 0.980, 0970
(.990, 0.990, 0.990, 0.980
0.990, 0.980, 0.990, 0.960
0.990, 0.970, 0.970, 0.95

0.304, 0.112,0190
0.296, 0.109, 0.187
0.284,0.104, 0.185
0.293, 0107, 0.183
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l
2
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2
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Table 3.3: Simulation results for geometric cure rate model having high lifetime
(70 = 2.101, v, = 2.258) with light censoring for small sample size.

Measure (7 1,1)

Vo b 0 (I = DR 5 R & N £ R B
038, 0443, 0.200) (0400, 0.290, 0.210, 0.150)
0.008, 0.444,0392) (0390, 0297, 0.209, 0.148) | -315.586 641174 | (0.049, 0.129) (3.366, 1.483

0.259, 0376, 0.404) (0346, 0.267, 0202, 0.152) | -314.956 630914 | (0.049, 0.070) (0.788, 0473) (3566, 0.388

) (004, 0.9) (3365, 148
) (043, 0.00) (0735, 047) - (366,038
210,038, 0307 (0353, 02700208, 0.150) | $14150 638318 | (0049, 0062 (0.67,0307) (0738, 0460) (3386 047)
) (0048, 067) (0268, 020) (057,033 | mwmw(%%%w
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(0462 104
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1
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Table 3.4: Simulation results for geometric cure rate model having high lifetime
(70 = 2.101, v, = 2.258) with light censoring for large sample size.

Veasure (7, )

oo hha i [AC| =0 i=1 i=) i=3 i=4 i=5
=600 (130, 150, 150, 150) | (-0.038, 0.443, 0.200) (0400, 0.290, 0.210, 0.150
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)
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0.292, 0.119, 0.061) (0.045, 0,027, 0.026, 0.031
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| |
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| |
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o
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Table 3.5: Simulation results for Poisson cure rate model having high lifetime (v =
2.101,~v; = 2.258) with heavy censoring for small sample size.

Meastre (7 13‘1)
VoA i [AC| =0 =l i=) Q=3 =t s
=400 (100,100, 100,100 | (0907, 0301, 0200) (0600, 0470, 0350, 0250)
1 (0900, 0517, 0209) (0396, 0469, 046, 0241) | 375026 760805 | (0123, 0.08) (1036, 14%)
2 (0907, 0316, 0204) (0306, 0460, 0346, 0:41) | -S73:4371 758874 | (0198, 0050) (1385, 0497) (4036, 1633
B 3 (0903, 0315, 0214) (0305, 0465, 0365, 0:241) | -STO2806 75565 | (0123, 0058) (0304, 0209) (1385, 0343) (4036, 151)
4 (0901, 0315, 0213) (0305, 0465, 035, 0:241) | -ST00834  T56.187 | (0128, 0063) (0357, 0.188) (0904, 031 (138 520) (4036, 155
5 (0896, 0505,0213) (039 0467, 034, 0240) | -3087365 755471 | (0123, 0064) (0557 0179) (1190, 046) (1385,0319) (1998 0783) (036 1.400)
' (00304340 88) (0376, 0466, 0350, 0265) | 3751790 760360 (2195, 221
1 (0317, 0.117, 0086] (0051, 0034 0031, 0.030) (0058, 0027) (0306, 0:40)
) Lo 1 0085) (0052, 003, 032, 039) (0038,0029) (0080, 0.136) (0506, 0603
se 3 (032,008, 0086) (0032, 008, 0032, 00%) (0038, 0035) (0062, 0088) (0080, 0160) (0306, 0628)
4 (032, 0117, 0086] (0052, 0035, 0032, 003 (0058, 0041) (0.059,0066) (0062, 0.109) (0080, 0.360) (0306, 063
5 (0332, 009, 0090) (0055, 0037, 0083, 0.040) (0058, 0042) (0050, 0065) (0073, 0.4 (0.080,0190) (0086, 0351) (0506, 098)
£ (0138, 0053,004) (0023, 018, 0019, 00%) (0121,017)
1 (0270, 0104, 0061) (0051, 0034, D031, 0.0140)
D (0265, 0103, 0063 (0052, 0035 0032, 0.140)
RASE 3 (0266, 0.103, 0064 (0052, 0035, 0032, 0.140)
£ (0260, 0.0, 0063) (0052, 0.5, 0032, 004)
5 (0258, 0100,0062) (0055, 087, 0034, 0041
£ (0229, 0086, 048) (0033, 021, 0019, 0008
1 (0980, 0960, 0530, 0.0
) (0980, 097, 0930, 090
051 . 3 (070, 0960, 050, 0.920)
! (0980, 0970, 0930, 0.93)
5 (070, 0970, 0540, 093)
i (0400, 0600, 0630, 0300)
(Ge1, G2, Ge-3, G-
I (064, 0050, 0050, 0,063
) (0065, 0051, 052, 0067
RISE 3 (0063, 0032, 0.053,0.67)
1 (006400 005, 0067)
5 (0063, 051, 0053, 0069
' (0089, 0092 0094, 006)
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Table 3.6: Simulation results for Poisson cure rate model having high lifetime (o =
2.101,~; = 2.258) with heavy censoring for large sample size.

Measure (50

Yo i [AC | =l

1
1l
-
1
=%
il
—
1
<

= 600 (150, 180, 150, 150} | (0907, 0301, 0.200) (0600, 0.470, 0350, 0.20)

3617 1097.233

09760

0.903, 0315, 0.214) (0596, 0.474, 0354, 0.2 (0095, 0035) (4206, 1614)

088804970202) 0,59, 0.473, 0353, 0251 | 342810 (01095, 0036) (L1376, 0313) (4206, 1718

0881, 0.496, 0006) (0595, 0473, 0.353, 0251) | 540706 1095.412 | (0.09, 0.040] (0.895, 0318) (L376, 0544) (4206, 1634)
(0055, 0.46) (05,0186
(0083, D045 (0355, 0189

1 1
1 1 (426,78
1 1 (L36,034
D881, 007, 0205) (0305, 0472, 0353, 0250) |-B0680 1097363 | (1095, 0046) (055, 0.156) (085, 0341 (L376,03%) (4206, 1639
1 (L183,046)
1 (210 228

i
1 i
! i
Est ] i
4 i
5 (0881, 0496,0208) (0.595, 0.472, 0.353, 0.350) | 540099 1098.107 | (0098, 0.046) (01555, 0.188) (1183, 0.462) (L376, 0.336) (1941, 0.784) (4206, L307)
¥ 099.325 2161, 2288

.560, 0480, 0.01) 0)92 0.476, 0,362, 0.263) | -344.662

0.252, 0.093, 0.06) ~ (0.041, 0.027, 0.2, 0032
0.253, 0,093, 0.067) (0,041, 0.028, 0,025, 0.0

(0047, 0020) (041,035
(0047, 0021) (0067,0110) (041 0492)

(0047, 0024) (046, 0076) (0057, 0.126) (044,031

(0047, 0029) (0249, 0053 0 0090) (0087, 0126) (041,051

(0047, 0025) (049,005 (0050, 0.116) (0057, 0151) (0073 0.191) (0441, 0815
(0102, 0132

01020 )

J
0254, 0.093, 0067) - (0.041, 0028, 0025, 0032
0257, 0.004, 0068) ~ (0.042, 0,028, 026, 0.03

0.047,0.009) (0049, 0,053
0.047, 0.029) (0,049, 0,052
0.100, 0.039, 0.038

0.217,0.082, 0.0

j

7] (0.041, 0027, 0.025, 0.032
0.215, 0.082, 0,038

i

i

if

0041, 0,028, 0025, 0.2,
0.041, 0.028, 0.5, 0032
(.041, 0.028, 0,025, 0.0
0.0£2, 0,028, 0.026, 0,05
(.020, 0.016, 0.018, 0.023

RMSE 0.216, 0.082, 0,038
0.212, 0081, 0.038
0.213, 0.081, 0.

¢

[

(

¢

¢

t

t

(

L

(0254, 099,008 (0041, 108,005, 002
(

035

(

(

(025

(

(

L

(0110, 0044, 0058

)
)
)
)
)
)
I
)
)
)
)
)

(.970, 0.980. 0.960, 0.970
(1,980, 0.980. 0.930, 0.960
0.980, 0.990, 0.950, 0970
0970, 0.970, 0950, 0960,
0.980, 0.970, 0.950, 0970
0480, 0,600, 0,650, 0.640

( )
( )
( )
(0% )
(035 )
( )
( )
( )
( J
( )
( )
( )
(00,0016, 0017, 0019
( )
( )
( )
( j
( i
( )
( )
( )
W52 ( )
( )
( )
( )

B N U SFER S .

(Gr-1, Gr-2, Gr-3, Ge-d

)
(0.030, 0.039, 0.0, 0.054

(0051, 0,039, 0.040, 0,053

RISE (0051, 0,089, 0041, 0,053
(0,030, 0.030, 0041, 0,055
(0.051, 0.040, 0041, 0.055
(

0,092, 0.09, 0.098, 0.100

e I S FC R S

)
)
)
)
)
)
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Table 3.7: Simulation results for Poisson cure rate model having high lifetime (o =
2.101,~; = 2.258) with light censoring for small sample size.
Measure (5 L;)

¥oohhg i [ A0 | i=0  i=l i=) i=d i=d o i=h

=400 (100, 100, 100, 100) | (-0.038, 043, 0.200) (0400, 0.290, 010, 0150

0.011, 0434, 0.213) (0392, 0.29, 0214, 0.152) |-383.139 T76.277
0.004, 0.435, 0.216) (0394, 0296, 0214, 0.152) | -382.080 776178

) (0107 00) (4235, L35
) (
0130435, 0218 (0301, 02040203, 0.151) | LS 7706
) (
) (

107 0.00) - (4283, 1565
107,008 (1455, 0508 (425, 1690
107,004 (05240319 (1455, 0541) (4233 13%)
107 050) (036, 0184
107, 0051) (0368, 0183

(4233 160)
st (L415,0:41)
(0974033) (1415, 0.5%) (L233, 1612)
(122, 0.53)
(o087, 24)

0.012, 0434, 0.28) (0392, 0295, 0.214, 0.152) | -381.629 T79.257 | (0107, 0.050) (0.568; 0.184

3
5
]
i
i
J 0061) (0.568 0.185)

- e -

0.
0.
(.
0.011, 0434, 0.216 0.
0.064, 0469, 0.193) (0395, 0.295, 0.212, 0148

0,392, 0204, 0213, 0.151) | -381.614  781.228
-S43 TT8.640

1220, 0453) (1415053 (1990, 0.771) (4233, 1388
2087, 247

0,318, 0.125, 0.067) - (0.050, 0029, 0.027, 0.032
0.320, 0.124, 0.067) ~ (0.050, 0.030, 0.027, 0.032

(0054, 0002)(0.407,0317)
(0054,008) (01056, 0.107) (040,081
(0054, 0007) (0054, 0.074) (0056, 0125) (0447, 051)
0306, 0126, 0068) (0051, 0030, 0007, 0032 (0054, 0030) (0052, 0054) (0054, 0089) (0056, 0.1%5) (047,051
(0054,0030) (0052, 0058) (0055, 0.1
(0098, 0170

0.034, 0,052, 0027, 0.032

0.054,0032) (0.082, 0.05

0.34L, 0.128, 0071 0.054,0.032) - (0.052,0083) (0,055, 0.116) (0056, 0.154) (0066, 0.193] - (0.447,0834)

1
2
e, 3
4
5
* 0,098, 0.17

.04, 0.048, 059

0.214,0.177,0.139, 0.103
0.212,0177,0.139, 0.103
0.215, 0.179,0.140, 0.104
0:214,0.178, 0.139, 0.103
0.215, 0.7, 0140, 0.104)
(0,018, 0.015, 0.015, 0.016

0.313, 0.120, 0.9
0.317, 0.120, 0.060
03 20 120, 0.060
0.313,0.120,0.05
0.105, 0,032, 0.040

¢
(
(
(
(
(
il
(
(
(0327, 0126, 0068) (051, 008,027, 02
(
(
(
L
2
RSE )
o
5 (
il

)
)
)
)
)
)
018,012, 0157
)
)
)
)
)

10.960,0.950, 0,930, 0.970
(.960, 0.940, 0.960. 0.960
(960, 0.90, 0.960. 0.960
0.970, 0.960, 0970, 0.970
0.970, 0.950, 0970, 0.970

( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
(407,030,004, 0.4
( )
( )
( )
( )
( )
( )
L )
( )
051 . ( )
( )
( )
( )

PO - FC R SER——

480, 0630, 0.565, 0.63

0. i
(Ge-1, G-, Gr-3, Gr-4)

(0.070, 0,043, 0,044, 0.062)

(0071, 0,044, 0,045, 0.062)
RISE (0071, 0.044, 004, 0.062)
(0071, 0.045, 0.046, 0.063)
(0.1, 0.045, 0,046, 0.063)
( )

0:248, 0.266, 0.278, 0.285

O S N
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Table 3.8: Simulation results for Poisson cure rate model having high lifetime (v, =
2.101,~; = 2.258) with light censoring for large sample size.

Measure (7 131)

VoA i [AC | =0 i=1 =) i=3 i=4 i=5

1= 600 (150, 180, 150, 150) | (0038, 0443, 0.200) (0400, 0.290, 0210, 0.150)

0003, 0.433,0118) (0.39,0294, 0212, 0.150) | -590814
0.005, 0.437,0215) (0.392,0.294, 0212, 0.150) | -590.389
0.007,0.437, 0220 (0.392,0.294, 0212, 0.149) | -388.790
)
)

1191628 | (0090, 031) (1398, 1653

11

] 11

006,057, 0219) (0392, 0204, 0212, 0149) | 386361 1180.121
1l

11

92778 | 0.000, 0.032) (1401, 0311

(0090, 0031) (4398, 1653
(000,003 (1401 03L1) (439, L768
91379 | (0090,0058) (0919,0312)
(000,00 (0367, 0183
(0090, 004) (0367, 0184

( )

(1401, 0350) (4308, 1.633)
0.090, 0.043) - (0.67, 0.183) (0.929,0332) (L40L, 0.345) (4398, LTo)
0.004, 0.438, 0.217 0,090, 0.044) - (0.67,084) ( ) (
(L4722

0.392,0294,0.12, 0.149) | 585,600 1180.201
0079, 0,463, 0.197) (0407, 0302, 0.214, 0.19) | -593.680

97.360

1207, 0461) (1401, 0.540) (970, 0.782) (4398, 1.601)

1
]
Est 3
4
5
¥ 2.47,2.209

0.254, 0.100, 0.052) ~ (0.040, 0.023, 0.022, 0.023)

) 0.046, 0.016) (0.442, 0.261
0.255,0.100, 0.053) - (0.040, 0023, 0.022, 0.0%)

)

)

( ) | )
(D046, 0017) (048,0085] (0443, 030)

(0046, 0020) (D04, 0059 (D04, 0.101) (0443, 0419

(0046, 0004) (046,004 (0046 007T) (0048,0101) (044, 0.421)

(0046, 00) | )(mamm (0048, 0122) (0058, 0.351) (0.4, 0667)
(00s7, 0139

0.067,

0257, 0.101, 0053)  (0.040, 0024, 0022, 0.0%) 0.046, 0.024) (0,046, 0,042

0260001004 0041, 0024, 0022, 0025 0.046, 0.024) (0,046, 0,042

0273, 0.103, 0049) (0212, 0,177, 0140, 0.103)
0.275, 0.103, 0.050
0.277, 0.104, 0,050
0.273, 0.103, 0.030
0.268, 0101, 0.048
0.103, 0052, 0.040

0.212, 0177, 0140, 0.103)
0.212, 0.178, 0.140, 0.104]
0.212, 0,178, 0.140, 0.104)
0.212, 0,078, 0.140, 0104

¢
(
(
(
(
(
t
(
L
(0257 0.0, 0053 (040, 0024, 002, 0023
(
(
(
(
(02
RSE (
(
L
[

(.018, 0.019, 0.026, 0.016

0.920, 0.930, 0,920, 0.960
(.920, 0920, 0.920, 0.95

0920, 0,990, 0930, 0960,
0.930, 0.930, 0.920, 0940

5% C.P.

(
(
(
(
(
(
(
) |
) |
) |
) |
W
0094004, 0039 (0017, 015,005, 0016
) |
) |
i) |
) |
) | )
) | )
(0910010, 0980, 0.6])
( )
( J
( )
(
(

B N U SFER S .

)
80,0630, 0363, 0.5%)

0. ]
(Ge1, G2, Ge-3, G-

(0.063, 0.039, 0,040, 0.054)

(0,063, 0.040, 0041, 0.054)
RISE (0064, 0.040, 0041, 0,053
(0,063, 0.040, 0041, 0.054)
(0,063, 0.040, 0041, 0.054)
( )

(:248, 0.266, 0.278, 0.8

e I S FC R S
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Table 3.9: Simulation results for Bernoulli cure rate model having high lifetime (g
2.101,~v; = 2.258) with heavy censoring for small sample size.
Measure (5 L;)

¥oohhg i [ A0 | i=0  i=l i=) i=d i=d o i=h

=400 (100, 100, 00, 200y |~ (-0.907, 0501, 0.200) - (0.600, 0.470, 0350, 0.2

0909, 0517, 0.209) (0396, 0.469, 0346, 0.241
0.907. 0,516, 0.214) (0396, 0469, 0.346, 0241
0903, 0315, 0.214) (0,595, 0,468, 0.345, 0.241
0901, 0315, 0.13) (0595, 0.468, 0345, 0

0.306, 0315, 0.213) 0394046703440?40
(.923, 0505, 0.157) - (0.603, 0476, 0.352, 0.246

A%6.014 862028
425802 863,603

(0.123,008) (4,036, 1489
(
608 8617 |
(
(

008 (405,14
198, 0050) (13%,0 M(w%mw
mon)mwom)u 0543 (405, 151)

LG S58119) (0.2 0068) (0587, 0183 (0904, 0318) (185,03%) (4036 153)

835 5140 | (0128, 0064) (0357, 0179) (1190, 044

(2237, 2300)

{28086 866172

23,0063 0183

1
2
Est 3
4
5 2, 0,064

0.
0.
(.
0. 1100, 0446) (1385, 0.510) (1928, 0.783) (4036, 1.402)
2287, 2300

0,317, 0.117,0.086) (0,051, 0.054, 0.031, 0.030
0.319, 0117, 0.085) ~ (0.052, 0.035, 0.032, 0.039
0.322, 0.118, 0.086) ~ (0.052, 0.035, 0.032, 0.039
0.321, 0117, 0.086) ~ (0.052, 0.035, 0.032, 0.039
0. 20190090 0,035, 0.057, 0.033, 0.040

(0058, 00T (0306, 0400
(0038, 0028) (0080, 0.136) (0306, 0613

(0058, 0055) (0062, 0088) (0.080,0160) (0506, 0529

(0058, D041 (0059, 0066) (0062, 0109) (0080, 0160) (056,056

(0058, 0040) (0059, 0065) (0073, 0146) (0080, 0.1%0) (06, 0251) (036, 098
(0124, 0208

1
2
e, 3
4
5
¥ 0.124, 0.08

0.270, 0,104, 0.061) ~ (0.051, 0.054, 0.03L, 0.040
0,032, 0.035, 0.032, 0.040
0,032, 0,035, 0032, 0.040
0,032, 0.035, 0,032, 0.040
0,033, 0.037, 0,034, 0.041
0,038, 0.029, 0.027, 0033

0.265, 0.103, 0.063
(.266, 0.103, 0.064
0.260, 0.101, 0.063
0.238, 0,100, 0.062
0.240, 0.0, 0.074

¢
[
[
t

[
§
il
(

(

(
(
(

(
L

2

RISE )
o

5 (

il

j
)
)
)
)
)
)
)
)
)
)
)
)

(.980, 0.960, 0.930, 0.920
(.980, 0970, 0.930, 0.920
0.970, 0.960, 0.950, 0.920
0,980, 0.970, 0.930, 0.930
0.970,0.970, 0.940, 0.9%0
0.730, 0.850, 0875, 0.850

( )

( )

( )

(035 )

( U]

( )

( )

( )

( )

( )

( )

f )

1930, 0001 0061 (0035 008,007, 003
( )

( )

( )

( )

( )

( )

( )

( )

054 CP. ( )
( )
( )
( )

PO - FC R SER——

Gr-1, Gr-d, Gr-3, G4

( )
mwowowo%
(0063 005, 005, 067
(0065, 005, 0053, 0067
(
(
(

)

)

RISE )
0164, D051, 065, 0067
)

)

i
0.03
0.03
i

(.063, 0.05L, 0.033, 0.068
(.003, 0.006, 0.006, 0.009

O S N
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Table 3.10: Simulation results for Bernoulli cure rate model having high lifetime
(70 = 2.101, v, = 2.258) with heavy censoring for large sample size.
Measture (5 13‘1)

VoA i [AC | i=0 i
0.907, 0301, 0.200) (0,600, 0.470, 0350, 0.250)
0,903, 0315, 0.214) (0596, 0.474, 0.334, 0.2
088804970202 0,39, 0.473, 0333, 0.551) | 624370

J 1
) 1
0881, 0496, 0206) (0395, 0473, 0353, 0.51) | 621399 1
0884, 0407, 005) (0395, 0472, 035, 0260) | 60764 1257307
) 1
! 1

1
1l
-
1
=%
il
—
1
<

1= 600 (150, 130, 150, 10)

SUTT 120,46

26L141

(0085, 0055) (4206, 1614
(0095, 0036) (L76,0513) (4206 1718
JSRTT | (0005 0.040) (0895, 0318) (L6, 0544 (4206, 163)
(0095, 048] (055, 0186
(0085, 0045 (0355, 0189

I
1 (42, 118
1 (147, 034
0095, 0046) (0355 0.88) (0885, 0:34) (L376,0539) (4206, L85
(LIS, 0467
(LT 225

i
i
i
i
i
i

(881, 0496, 0.203) (0395, 0.472, 0.353, 0.250) | -620.305 1258611
28819

1
]
Est 3
4
5 0.09, 046) (0555, 0.188) (1183, 0.462) (L376, 0.3%) (1941, 0784) (4206, 1.597)
0915, 0514, 0154 2072058
0.252, 0,093, 0.067
0.253, 0.093, 0,067

¢

[

(

¢

¢

t

[ 05, 04,034 D24
(

0
(025,095, 08
(025

(

(

(

(025

(

(

L

[

0.041, 0.027, 0.5, 0032
(.041, 0.028, 0,023, 0.0
(.041, 0.028, 0.025, 0,052
0.041, 0.028, 0.0, 0032
0.042, 0,028, 0026, 0.3

( )
( )
( )
(0% )
(035 )
( )
( )| 440
( )
( J
( )
( )
( )
(002,002,021, 023
( )
( )
( )
( j
( )
( )
( )
( )
( )
( )
( )
(07 )

(0047, 0020) (041, 0.338)
(0047, 0.021) (0,057, 0.110) - (0441, 0492

(0047, 0.004) (0,046, 0.076)  (0.057, 0.26) (0441, 0.516)
(0047, 009) {004,005
(0047, 000) {004,005

(04,049
(005, 0.12
[wmmw(Mﬂmm(mnmm
(005, 0.1
(005, 0.8

J
0254, 0,093, 0,067 0.047,0.009) (0049, 0,053

)
)
)
)
0.257, 0094, 0.068] 0.047, 0.029) (0,049, 0.032) (0,030, (0057, 0.151) (073, 0.101) (041, 0815)
0,181, 0.069, 0.046) 00980 i)

I

5)

i)

)

I

)

0.217,0.082, 0.03
0.215, 0.082, 0,038
0.216, 0.082, 0,038
0.212, 0081, 0.038
0.213, 0081, 0.03
0181, 0.071, 0064

0.041, 0,027, 0.025, 0,052
0041, 0,028, 0025, 0.2,
0041, 0028, 0025, 0032
0,041, 0.028, 0.025, 0.03

(1,042, 0.028, 0.026, 0,032
(.00, 0.021, 0.022, 0027
(1,970, 0.980, 0.960, 0.970
(1,980, 0.980, 0.950, 0.960
0,980, 0.990, 0.930, 0970
0970, 0.970, 0950, 0960,
0.980, 0,970, 0950, 0970
0,750, 0.775, 0.800, 0.725
(Ge1, G2, Ge-3, G-
(0.050, 0,039, 0,040, 0.034
(0051, 0,039, 0.040, 0,053
(0051, 0,089, 0041, 0,053
(0,030, 0.030, 0041, 0,055
( 5
(

RMSE

5% C.P.

B N U SFER S .

RISE

(.031, 0.040, 0.041, 0.
(.008, 0.007, 0.007, 0.010

e I S FC R S

)
)
)
)
)
)




Chapter 3.6 - Analysis of cutaneous melanoma data

91

Table 3.11: Simulation results for Bernoulli cure rate model having high lifetime
(70 = 2.101, v, = 2.258) with light censoring for small sample size.

Measure

(5 %)

N

(. 5.9

Jo

[ A

i=0

i=1

=400 {100, 10, 100, 100)

038, 0443, 0.200] (0400, 0:290, 0:210, 0.150

Est

- e -

0.01L, 0.434, 0213
0.004, 0.435, 0216
0.013, 0.433, 0218
0.012, 0.434, 0218
0.011, 0434, 0.216

)
)
)
)
)

0,392, 0.29, 0.214, 0.152

0.391, 0.294, 0213, 0.151
0.392, 0.9, 0214, 0.152

0.002, 0432, 0.185) (0391, 0.296, 0217, 0.1

-£30.403 - 928.806
0,394, 0.296, 0214, 0.152) | -
55709 928.1%
-£36883 90767
-$36.837 951674
-460.967 951.954

438678 920.357

107,004 |
107,004
107,00
107, 0060) (03
107, 0061) (0

(
(
b
(
(0107, 005])

=S s = =

425, 1

1415,

092403
368, 0.1
568, 0.18

i)
0508 (4233 160
) (L4550

§) (0974033
i) (120,05
(

2211, 238

)

M) (435, 15%)

) (1415, 0385) (4235, 161)
3) (1415, 038)

)

(1990,0.771) - (4233, 188

1
1
J
4
5

0.318, 0.125, 0.067
0.320, 0.124, 0.067

0.326, 0.126, 0.068
0.341 0128 0071
0.247, 0.101, 0,053

i
5
]
i
i
.39, 0204, 0:213, 0.131
b
0,030, 0.029, 0027, 0.032
0,030, 0.030, 0.027, 0.032
(0,051, 0.030, 0.027, 0.032
0.031, 0.050, 0.027, 0.032

0.034, 0,052, 0027, 0.032

(006,00 |
(0054, 003) |
(0034, 0071 |
(0054, 008 |
(0054, 0080 |

0470317
0.036, 0.107

0.052, 0.05
0.032, 0.05

1
1
0034, 0474
{
)

(0447, 0487
(0056, 0.125
(0054, 0.089
3 (0060
(0109, 0.1

)

) (047,031

) (086,01%) (0470313
)

f

0.5, 0.116) (0,056, 0.154) (0066, 0.198) (0447, 0.834)

RMSE

1
2
3
"
5

0.318,0.122,005
0.313, 0.120, 0.9
0.317, 0.120, 0.060
03 20 120, 0.060
0.313,0.120, 0.089

¢
(
(
(
(
(
il
(
(
(0377,0.6, 008
(
(
'
(
(
(
(
(
© 024,001, 005

)
)
)
)
)
)
J
)
)
)
)
)

0.214,0.177,0.139, 0.103
0.212,0177,0.139, 0.103
0.215, 0.179,0.140, 0.104
0:214,0.178, 0.139, 0.103
0.215, 0.7, 0140, 0.104)
0,040, 0.025, 0,024, 0.027

% CP.

PO - FC R SER——

10.960,0.950, 0,930, 0.970
(.960, 0.940, 0.960. 0.960
(960, 0.90, 0.960. 0.960
0.970, 0.960, 0970, 0.970
0.970, 0.950, 0970, 0.970

( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
(00390024003, 007
( )
( )
( )
( )
( )
( )
L )
( )
( )
( )
( )
(077,030, 000, 08

(Gr1,

RISE

O S N

i
G2, Gr-3, Gr-
(0070, 0.043, 0044, 0.062)
(071, 0.044, 0045, 0.062)
(7L, 0044, 0.044,0.062)
(0L, 0045, 0.046,0.063)
(0071, 0.045, 0,046, 0.063)
(0,004, 0.005, 0.006, 0.007)
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Table 3.12: Simulation results for Bernoulli cure rate model having high lifetime
(70 = 2.101, v, = 2.258) with light censoring for large sample size.
Measire (7 )
o) i [N =0
0.038, 043, 0.200) (0,400, 0.290, 0210, 0.150)

0,003, 0.433,0218) (0.392, 0204, 0212, 0.150
0.005,0.437,0215) (0.392,0.204, 0212, 0.150
0.007,0.437, 020 (0.392, 0294, 0212, 0.149)
)
)

1
1l
-
1
=%
il
—
1
<

1= 600 (150, 130, 150, 10)

13002 1437804 | (0090, 0.031) (4398, 1.633)
TI3&T 1430714 | (0090, 0.0%) (1401, 0311)
1269 1430301 | (0090, 0.0%8) (0919, 0312)
(0050, 0083 {0367, 018%)
(0056, 0044 {0567, 0181)

1
1 4.398, 1.768
1
72665 1441351 | (0.090, 0.043) (0.567, 0.183
1
1

( )
(1401, 0350) (4308, 1.633)
0.006, 0.437, 0.219) ~(0.392, 0.294, 0.212,0.149 (0929, 0332) (1401, 0.345) (4308, 1675)
0.004, 0438, 0.217) (0,392, 0294, 0.212, 0149 ( ) (
036, 045, 0.176) - (0.397, 0.207, 0214, 0151 ( j)
0.254, 0.100,0052) ~(0.040, 0,023, 0.22, 0023
0.255, 0100, 0.053) (0,040, 0.023, 0.022, 0.023
i
i

¢

(

(

(

(

( LB THO3IT | (0090 004) (05670181
t

(

L

(0257, 0.0, 0053 (0041, 0024, 002, 02
(

(

(

(

(

(

(

L

[

-T13482 1436.965

1207, 0461) (1401, 0.540) (970, 0.782) (4398, 1.601)

1
]
Est 3
4
5
¥ 2188, 231

(0045, 0016 (0442, 026
(D046, 0017) (048,0085] (0443, 030)

(0046, 0020) (D04, 0059 (D04, 0.101) (0443, 0419

(0046, 0004) (046,004 (0046 007T) (0048,0101) (044, 0.421)

(0046, 0024) (D04, 0042) (D047, 081 (D045, 0122 (D058 0351 (0.4, 0667)
(00s6, 0130

0.086, 015

0.257, 0,101, 0.033) ~(0.040, 0.024, 0,022, 0.2
0.041, 0024, 0022, 005,

( il
( )
( )
( )
( )
( )
( J| 1
( )
( )
( )
( ) 0045,0024 (045,004
( )
(0032,0021, 019, 03
( )
( )
( )
( !
( )
( )
( )
( )
( 0
( )
( )
( )

02600 0L, 0.054 0.046, 0.024) (0,046, 0,042

)
)
)
)
H
02030084 004
)
)
i)
)
)
i

0.275, 0.103, 0048
07440 103, 0.030
0.277, 0.104, 0,050
0.273, 0.103, 0.030
0.268, 0101, 0.048
0.203, 0.084, 0.03

0.212, 0077, 0140, 0.103
0.212, 0,177, 0140, 0.103)
0.212, 0078, 0.140, 0104
:212, 0178, 0.140, 0.104
0.212, 0,078, 0.140, 0104
0,033, 0.022, 0.020, 0.023
(.910, 0.910, 0.930, 0.960
(.920, 0,930, 0.920, 0.960
(.920, 0920, 0.920, 0.95
0920, 0,990, 0930, 0960,
0.930, 0.930, 0.920, 0940

RMSE

5% C.P.

B N U SFER S .

.75, 0.900, 0.900, 0.850
(Gr-1, Gr-2, Gr-3, Ge-d
0,063, 0.039, 0,040, 0.0

)

( H

(D063, 0040, 0041, 0054
RSE (D064, 04,0041, 005
(D03, 004,041, 0054
(0063, 0040, 0041, 0054
( )

(1,006, 0.008, 0.008, 0.008

e I S FC R S
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Table 3.13: Simulation results for COM-Poisson cure rate model (¢ = 0.5) having

high lifetime (yy = 2.101,7; = 2.258) with heavy censoring for small sample size.

Measure (7 )

Yoo B i [AC| =0 i=l =) =) =t =)
0.907, 0301, 0.200, 0.500) - (0.600, 0470, 0.370, 050

¢ )

(-0.792, 0.466, 0.136, 0.701) (0.381, 0463, 0.333, 0.253
(-0.75L, 0436, 0.193, 0.360) (0573, 0.460, 0350, 0.255
AT, 4680174 030) (05740600351, 053
LTI 048,016,061 4
[ 1 ;

1= 400100, 100, 100, 100)

07309 700
0824 74008

7] {0080, 0139
( !
SR8 TE169 | (000,004
(008, 0250
(0050, 049

(
0080, 0040 (1012, 0502) (3680,1 340)
(063, 080) (1012,0315) (360.1 412)
(0386, 0161) (0634,0319) (L012,0310) (340, 147)
L (0859,081) (1
(2108, 2.18)

360,162

10, 0462, 0,166, 0613) - (0.576, 0462, 0.351, 07 08074 744145 | (0.080,0050
67202 TALA0L | (0080, 0049

-S08.709 739419

1
2
Est 3
4 )
5 0.386, 0.164] (0,850, 0.431 2049) (1498, 0.725) (3,649, 1317)
2108, 2178
0.298, 0604

J )
)[0060[] §)
) (0053, 0.4
) (0053, 0065)
) (0033, 0050)

1768, 0462, 0.17L, 0.761) - (0.576, 0.46L, 0.550, 0.25
0.601, 0.469, 0.340, 0.231
0.037, 0037, 0056, 0.047
0.06L, 0.041, 0,038, 0,048
0.060, 0.040, 0.037, 0.047
0.060, 0040, 0,037, 0.047
2, 0.14L, 0.138, 0.654) (0,064, 0.043, 0038, 0.4

( )
( )
( )
(03 )
( )
L )
(0505530119) L )
( )

L )

( )

( )

! ]

(0116, 007,004 (0501, 048, 040,033
( 1)

( )

( )

( )

( )

( )

L )

( )

( )

( )

( )

( )

(0380, 01370241, 047)
(036101320128[] )
(0371, 0138 0141, 070
( )
(03 )

(003,007
(008,032
(038,003
(038,003
(003,008

(0265, 085

(0060[]23) (0298, 085)

(0033, 0557 (0060, 02%) (028,084
(0053, 0.1%)

{ )

1
0.371, 0.138, 0.138, 0.606 0.033, 0.085 0157

0.3, 0.080) (0.0, 0.198) (0060, 0244] (0072, 0314) (0298, 1.18)

0. 41 0219

0.205, 0.100, 0.119,0832) {0.060, 0.057, 0,036, 0.04
0.067, 0042, 0038, 0.088
0.065, 0041, 0.7, 0.047
0.065, 0.04L, 0.037, 0.047
0.068, 0.044, 0.038, 0.047
0.025, 0.024, 0,028, 0.031
0.933, 0.933, 0.967, 0.967
0.967, 0.933, 0.933, 0.967
0.933, 0900, 0.933, 0.967
0.933, 0,900, 0.900, 0933
0.900, 0867, 0.900, 0900
0400, 0.600, 0.600, 0.533
(Ge-L, G, G, G
0.085, 0.065, 0.062, 0,091
0.099, 0099, 0.109, 0.0
0.096, 0092, 0.103,0.130
0062, 0090, 0.102, 0.129

1

12

( )
(0352, 0.0, 0111, 078
RIS (0353000, 0135, 079
(0350100 0133066)
(0353 0.00, 01310715

(0,159, 0.0, 0,049, )

P I U R S

1
)
5% CP. J
4
)

0.004, 0,095, 0.106, 0.134
0.355, 0.5L, 0.123, 0.097
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Table 3.14: Simulation results for COM-Poisson cure rate model (¢ = 0.5) having
high lifetime (7o = 2.101, v, = 2.258) with heavy censoring for large sample size.

Measure i Ll)
Yoo (ki i i=)
=600 (130, 150, 180, 150) | (0907, 0301, 020, 030) (0,600, 0470, 0370, 070[])
1 (0902, 0495, 0.235, 0740) (0600, 0.478, 0358, 0254] | -
) 0888049302640463 (0307, 0476, 0.357, 0.253) |- (1679, 1.269)
Est 3 089104930747088 (00980440 0704)- 1,02.(],473] (3713
4 (0807, 0495, 044, 1192) (0599, 0477, 0357, 0.253) | 0638073] (1
j 0889049107471039 (0598, 0477, 0358, 0.2 | 5 0.89,037) (102 495[]601) (3715, 1243
* (098; 0530.0‘ 9, (0614, 0482, 0382, 0.41) | 5. 12009, 26))
1 0.104,0.802) (0045, 0030, 0.028, 0.0%6)
1 099’ [)106 0.090,0.722) (0048 0.031, 0.028, 0.637) 0.356, 0.490)
56, 3 0989 0.104, 0,187, 0.831) (0047, 0032, 0028, 0.06) 10036, 0.20) (.
4 (0293, 0.106, 0097, 0820)  (0.047, 0.3, 0028 0.036) 0014008] (0060123 (0.336, 0320
i 0799 0.107, 0.103,0.653) (0,030, 0,033, 0.9, 0.06) 0.107) (0036, 0.148) (0062, 0172) (0356, 0.763)
(0162, 006, 0082, - (0.027,0.022, 0020, 0024) 0099(] 180)
1 (0275, 0.084, 0.087, 0838 (0.043, 0031, 0.029, 0.036]
2 (0.290, 0087, 0112, 0.768) (0048, 0.032, 0029, 0.037)
RMSE 3 (0.280,0.085, 0 04 0889 (0047, 0,033, 0.9, 0.056)
4 (0:285, 0.087,0. 3) (0047, 0,032, 0029, 0036)
5 (0281 0.084 0. 02 066[] (0.050, 0.034, 0.030, 003
(08I, 0.068, 0.3, ) (0030, 0023, 0020, 002
1 (0300, 0.933, 0.967, 0.967)
2 (0,767, 0.800, 0833, 0833)
Bl CP. b (0900, 0.933, 0.967, 0.967)
4 (0300, 0833, 0833, 0833)
i (0900, 0.900, 0933, 0.933)
i (0733, 0833, 0833, 0800)
(Gr-L, Gr-2, Gr-3, Gr-4)
1 (0L, 0651, 0052, 0.0%)
) (067, 0074, 0.102, 0.139)
RISE 3 (0063, 0.086, 002, 0.12)
4 (0.6, 0070, 0.09%, 0.132)
) (0.065, 0.069, 0092, 0.127
* (0259, 0.168, 0085, 0.112)
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Table 3.15: Simulation results for COM-Poisson cure rate model (¢ = 0.5) having
high lifetime (yy = 2.101,7; = 2.258) with light censoring for small sample size.

Veasure (7 ul)
Yoo B i [AC| =0 i=l =) =) =t =)
=400 (100,100,100, 100) | (41038, 043,000, 0300) (040,090,021, 0130
(005,047,002, 0317 (1381, 127, 1194 0.132) | 347308 696786 (0054, 0028 (399, 1461
2 (002, 0470, 0204 0610) (0380, 0207, 0193 0131) | -3562 638304 | (0054, 0034) (057 0406) (30, 141
Bt 3 (0014,0474,0.196, 0463 (0381 02”0930130 3070 696158 | (0054, 0038) (0391, 0230) (0957, 0395 (3990, 1.5
L (001, 0482, 0168, 0:60) (0384, 0208, 0193 0.120) | 345067 698134 | (0054, 0.032) (0352, 0.128) (0391, 020) (057, 0371) (308, L35
5 (0004, 0478, 0.76, 1010) (0382, 0207, 0193 0.130) | 345108 TO0216 | (054, 0.038) (0352, 0.127) (0807 0310) (057, 0386) (1463, 036¢) (399, 1563
(L015, 0353,01.) (0601, 0460, 030, 0231) | -30304 70008 (2108, 217)
1 (037, 0353, 0121, 0689) (0056, D083, 0031, 055 (002,002 (0680,0301)
2 (0365, 0160, 012,078 (DOGL 0035, 0031, 055 (00230023 (00,0128 (0550, 0.48)
st 3 (0301 0150, 0.18, 0626 (0060, 0035, 0031, 05 (00230024 (0031, 080} (00450 3) (0680, 0681
1 (0388, 0.8, .40, 062) (0062, 0035, 0032, 0036 (0023,0007) (0030, 0067) (0031, 0.110) (0045, 0160) (0680, 0737
509, 0162, 0147, 0780) (0061, 036,02, 0035 (0023,00%5) (0030, 0053 (00390 ) (008, 0161) (0061 020) (0680, 1230
' (0.147,0209)

0.207.0.139, 009, 0690) (0.226,0.195, 0.139, 0.123
0.228, 0.196, 0.160, 0.124
0.227, 0196, 0.160, 0.125
0.225, 0.1%, 0.160, 0.126
[]?26[]9606[]0 i
0.025, 0.024, 0,028, 0.031
0.967, 0.933, 0.933, 0.95:
0.935, 0.933, 0.933, 0.95:
0867, 0867, 0.867, 0.867
0:833, 0833, 0833, 0.833
0.967, 093, 0933, 0.933

( )
(0334, 0.1, 0.127, 0.701)
RMSE (0322, 0130, 0.134, 0.627
(0292, 0.130, 0135, 0.628)
(0311014, 0134 0%

(0,159, 0,070, 0,049, -)

P I U R S

&2 &2

( )
( )
( )
( )
( )
( )
L )
( )
L )
( )
( )
( )
(b116,0047,0044 (0601, 068,0310,023)
( )
( )
( )
( )
( )
( )
L )
( )
(08 )
( )
( )
( )

1
)
5% CP. J
4
)

0400, 0.600, 0.600, 0.55:

3

(Ge-L, G, G, G

1 (.70, 0078, 093, 0.11)

2 (0.105,0 50060189)

RISE 3 (0.095, 0117, 0.146,0.173)
4 ([]089[]0301 0.144)

; (1085, 0101, 0277, 0352

(135, 0231, 0.1, 0087
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Table 3.16: Simulation results for COM-Poisson cure rate model (¢ = 0.5) having
high lifetime (v = 2.101, v, = 2.258) with light censoring for large sample size.

Measure

(1, 0)

(b B39 i

1= 60 (150, 130, 150, 150)

0.038,0.443,0:200, 0.300] - (0.400,0:290, 0210, 0150

Est

— co o

=

[
0
(0170036, 028,035
t
(
(

1

140, 0.370, 0.238, 0.738 1
0.370, 028,021, 0.1
1

01

0.135, 0310, 030, 0747

)
)
1163, 0368, 0255, 083
) (037,020,020,
)

0.168, 0.365, 0.224, 0.771
(0987, 0.3%0,0.192, |

0376, 0294, 0223, 0.166) |-
)|
0,371, 0.0, 0220, 0.164) |-
0] |-

0,614, 0.482, 0.352, 0.41) | -527.206

0] (3916, 1450)
%) (0960, 0361) (3
2 (030, 0738]
( ) |
( )

17} (0793, 0.29 0900398)

2009, 2262

435 []551) (3916, 1.231)

_ s o

s

0261, 0.104,0.089, 0824
0.386, 0.148, 0.L12, 0.773

( ) (004,005, 0005, 0030
( )
(0317, 0119, 0081, 085
( )
t )

0.055, 0.009, 0.027, 0.038
0.047, 0027, 0,025, 0.031)
0.046, 0027, 0,025, 0.031
0.323, 0121, 0,098, 0.503] - (0.049, 0.029, 0,026, 0.032

0.316, 0.120, 0.085, 0.723

)

)

/|
002002 16| 42

)

)

)

)
il
06

) (030,0
(0030,
(00,0,
0 (0
(

3
!
l
01
0.099, 0189

) 0
)
)
)

(00)0130 (0397, 047
16) (0052, 0.37) (0035, 0180) (0367, 064

RMSE

)
)
i
(0300, 0,107, 0,085, 0.858) (0.228, 0.178, 0.12, 0.089]
(0299, 0,108, 0,102, 0.842) (023, 0.183, 0.132, 0.004)
(030, D 01 0.094,0893) (0234, 0182, 0132, 0.91)
( | (0233,0182,0.31, 0.091)
( T3] (0235, 0182, 0.132, 0,00

0.030, 0.023, 0.020, 0.026)

0.287, 0.103, 0.004, 0.764
0?96 0101 0.097,0.
(0181, 0.068, 0033, -

05 CP.

0.733, 0867, 0.900, 0.367)
0:833, 0867, 0.900, 0.900)
0767, 0.767, 0.800, 0.800}
0.867, 0867, 0.900, 0.867)
0.867, 0900, 0933, 0933

(
(
(
(
(
L
(
L
L
(
(
(
(D162,0062,0082) (0027, 002, D00, 0
(
(
[
L
(
(
L
(
(
(
(
(073303330833, 081)

(Gr-L, Gr-2, Gr-3, Gr-4)

e S R S —

0.077. 0.063, 0.065, 0.084
0.087, 0097, 0.114, 0.142
(.00, 0098, 0.118, 0.144
0.003, 0099, 0.120, 0.147
0.089, 0.004, 0.119, 0.148

0l

(
(
(
L
L
(023,068,008, 011
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Table 3.17: Simulation results for COM-Poisson cure rate model (¢ = 2) having high
lifetime (79 = 2.101,~y; = 2.258) with heavy censoring for small sample size.

Measure i Ll)
Voo hhi) i O B I S N & R ot R S B
=40 (100, 100,100, 100)| (0907, 001, 0200, 0300) (060,047,037, 050
(A998, 034, 020, LIOK) (0610, 0476, 0346, 0.25) |-50.974 150749 (0007, 0.058) (4025, 1483
2 00705040105, L) (00, 0.4%,030, 028 | SO0 15078 LT, O50) (L2504 (405, L6y
B 3 (987 0547, 01168, 1105 (06080473, 0342, D251 | -49250 162490 (117, 0067) (0780, 0267) (1218, 067) (4025, 1603
4 (OO0, 0341, 0164, LISS) (0605, 0472 0.4, 032 | 08853 1153706 | (0107, 0061) (0486, 0.14)  (0780,0205) (L1, 0.46) (4025, L72)
A0, .54, 0163 1657) (06060472 0342 0252 | 508208 1184407 (L117, 0061) (0486, 0.45] (1063, 07%] (1218 006) (179, 07%] (4025, 1)
F OB 04T0 0181-) (098,082,082, 0267) | 570646 115190 (2208, 236
1 (0329,0.22,01, 0862 (052, 005,08, 018 (0085, 0034 (0308, 14
2 (033,012 0112,0015] (053, 003,03, 018 (0045, 0088) (007, 0138) (0308 0714
e 3 (1923, 0.120, 0104 048) (052, 086,083 040 (0045, 0036 (0045, 0200 (007, 0158) (0308, 0719
4 (0919,0.127,0.122,088) (052, 086,008,019 (0045,0088) (0034 0064 (0048, 0113 (00490160 (0303, 0789
(03,006 008, 0386] (0055 009, oos 008) (0045, 0046 (0034 0072) (0067, 0169 (007, 0199) (0108, 0274) (0308, L1%)
(002,045, 0097- ) (021,017,017, 019 (0097, 0149
(0238, 0020000, 1245] (053, 0% 0033 0043J
(027,008,008 1274 (0.0, 0%, 08, 004
RISE 3 (0 ,oo 33 35 (062, 003%, 0082, 004
T 1019 (0054 0036, 0032, D0
5 (0?6101000 0664) (0055, 0037, 0034, 0044
F (027,005, 0040 ) (021,018,001, 0%
1 (0867, 090, 098,183
) (0300, 0867, 000, 0800
054 CP, j (0887, 090, 087,183
4 (085, 090, 087,183
5 (0867, 0.0, 0900, 0800
' (070,063, 0600, 0600
(Gr-L, Gr-2, Gr-3, Gr-4)
1 (0030, 0048, 0073, 0117
) (0087, 0, 0086 012)
RISE 3 (0066, 0072, 0107, 0137
4 (0066,0071,0 060104)
5 (0060, 0063, 0101, 0148
g (0198,0244,0277, 0208
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Table 3.18: Simulation results for COM-Poisson cure rate model (¢ = 2) having high
lifetime (79 = 2.101,~; = 2.258) with heavy censoring for large sample size.

Measine (7 ul)
(5 30 i i)
=600 (150, 150, 150, 30) | (0907, 0.501, 0200, 0300 (0,600, 0470, 0370, 0.20)
D87, 047, 0.168, 1.103] (0588, 0465, 036, 0.24) | 398
-0.833, 0.496, U?l ~lJ (88, 0464, 0345, 0.243) | -3985 (4371 840
st 0853, 0497, 0.184, 1337) (0388, 0.465, 0,346, 043) | - (1
860, 0.500,0. 89 (0 180, 0.465, 0.345, 042) | 3079 | (0801 0776 { 3[] 58] (4307, 1761)
D348 0407, 0.177, 1858 (0387, 0.463, 0344, 0242) | 307 (1 069, 0.300) (1253, 0.500) (1789, 0.770) (437, 1729)
(-0.925, 0.505, 0209 ) (0601, 0.476,0.476, 0.251) | -399.41 ( 16,233
1 (0.255, 0096, 0071, 0.790) (0,226,071, 0.6, 0.0%)
2 (0:253, 0,095, 0.067, 0.838) (0. 6001700090001) (0)86[]54l
5. 3 (0254, 0095, 0072, 0815) (0226, 0.171, 0.126, 0.0%5) ) (0033
L (0254 005,007, 063 (0255, 0.170,0.126, 005 i i) (004, 0089 (00 1 I3 (038%6,03%)
5 (02640098, 0.070,0.355) (0226, 0170, 0.12, 0.004) 0046 []0-1 (0039, 0.17) (0033, 0.162) (0,059, 0.208) (0586, 0.933]
(A 00750[]06 (0.033, 0024, 0.024, 0.028) (017, 0.13
1 (0186, 0074 0.036, 1.002) (0,226,071, 0.126, 0.0%)
2 018(] 0074, 0065 (0161,0.121 0[]90 0.071)
RMSE 3 (074, 0071, 0070, 1050) (0 776 0.171,0.126, 0.09)
4 (0176, 0.072, 0.069, []746 (0226, []17[] 0.126, 0.09)
5 (082,007, 0074, 0.382) (027, 0171, 0.125, 0.084)
(0196, 075, 0057, ) (0.0, 0094 0.04, 0.18)
1 (0967, 0.967, 0933, 0.9%3)
2 (0,933, 0.933, 0.900, 0.900)
93l CP. 3 (0933, 0933, 0.90, 0.900)
4 (1,933, 0,933, 0833, 0.900)
5 (1.900,0.900, 0833, 0.367)
* (0,633, 0.700, 0.700, 0.600)
(Ge-L, G, G, G
1 (1,063, 0.035, 0062, 0.080)
1 (1,062, 0.035, 0062, 0.082)
RISE 3 (1,064, 0.06L, 0076, 0.105
4 (1064, 0,061, 0.076, 0.106)
5 (0,063, 0.062, 0.080, 0.112)
* (0.09, 0.086, 0081, 0.04)
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Table 3.19: Simulation results for COM-Poisson cure rate model (¢ = 2) having high
lifetime (79 = 2.101,~; = 2.258) with light censoring for small sample size.

Measure

(1, 0)

(b B39 i

=400 {100, 100, 100, 100)

0,038, 0.4, 0200, 0:300] - (0.400,0.90, 0.2, 0130

[ 1
(0031, 048, 0207, 0988) (0380281 0202, 0.39) | 619873 128745 | (0098, 0044 (4000, 156
2 (0041, 046, 0160, 0967) (0381 098902010139J : (005,008 (129,038 (401174
B 3 (0055047, 0126, L04) (138,028,001, 0139 | 6198 (0055, 008 (04840 B) (17,035) (1
1 (0036 048,005, 1.2%) (0381083070 0130) | 619626 (00550089 (0401,0100) (07840184 (1 34 0344)
(0003, 0454 0088, 1722 (0385, 0285, 02020139 - (0065, 0081) (000, 008) (108, 0261 (128,035 | “1062;) (4010, 189
(005, 04550101, -) (0410, 0310, 0310, 016 |+ (L33
1 (0405, 01157, 0088, 098] (063, 0034, 0028 003 (0055, 002 (01850206
2 (0307, 1.125 0094, 090 (048,003, 008, 0030 (0055, 002) (0077, 0107) (0185, 0600
se 3 (0376, 015,020, 0948) (0155, D031, D031, 056 (0055, 002) (0078,0071) (0077, 0.138) (0135, 107)
£ (03,0157, 0.3%,0365) (0054, D031, 00,053 (0035, 0024) (0067, 0048) (0070085 (0077, 0.8) (0185, 070)
5| ) (0085, 008] (057,004 (00810 1) (007 0149 (0102,0) (0185, L135)
F (D113, 005 0087+ (0018, D014 0014 0015 (0085, 0.13)

0260, 0077, 0079, 1373) (0227, 0190, 0151, 0.11)
0.265, 0078, 0.144,1.3%6) - (0.225,0.190, 0151

( 7 1
( ) i
o 00840 5 L) (0206, 019,052, 01
( ) 1
( )

|

0.276, 0.08L, 0.145, 1116
) 0?6800870420506
(0,115, 0.033, 0.038,- |

I
1
1
1
0.225, 0.190, 0.152, 0.116
011

0.22L, 0.188, 0.131

)
1
)
RMSE 3
4
j 0,116
’ )

001 007400?1 0.018

)
)
Ik
)
)
)
3
1334, 0135,0138, 0438 (00530081, 042, 0033
)
)
)
l 7
L )
( )
(
(09830367, 0967, 087
(090, 0367, 0.0, 0.0
(090,030 0967, 057
(090, 03670367, 057
(09830367 030,000
L )

0,533, 0366, 0,566, 0.583

1
2
05 CP. 3
{

6L, Gr, Gr-3, G-
083, 0.073, 0,068, 0.070
10,0135, 0471,0.10
120, 0154, 0.197, 040
128, 0158, 0,195, 0.30
|
13

(
0]
0.
(.
0.
0.129, 0.160, 0.194, 0.224
0.135, 0.136, 0.219, 0.232

=
=
e SCE NN

(
(
(
L
L
(
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Table 3.20: Simulation results for COM-Poisson cure rate model (¢ = 2) having high

lifetime (79 = 2.101, v, = 2.258) with light censoring for large sample size.

Measure (7 )

Yoo B i [AC| =0 i=l =) =) =t =)
0,038, 0.443,0.200, 0300 (0.400,0.290, 010, 0.150)

[ l
(0038, 0447, 0,126, 1.04T) (0,415, 0,302, 0,209, 0.140) | 410388 $48.776 | (0078, 0.035) (3,982, 1.635)
(+0.149, 0493, 0.198, 1480 (0412, 0.300,0.208, 0.140) | 410173 850345 | (0.7, 0.030) (1180, 0.328) (3.9, 147
(0147, 0495, 0166, 1.43) (0414, 0.301,0.208,0.130) | 417720 810457 | (0073, 0.036) (0768, 0.272) (180, 0502) (3982, L3%0)
[ (04140300, 0.0, 0.140) | 416450 848918 | (0073, 0034) (0455, 0.137) (0768, 0.20) (L180,0.460) (3982, LT
; 1 1 (0073, 0089 (045, 0.48) (1013, 038 (1
2130220

=600 150, 150, 150, 150)

6,
(143, 0493, 0.130, 1.806

1
i 1
Est 3 1.
! 1
5 (0154, 0407, 0152, 1833) (0415, 0301, 0.208,0.130) | -415.767 810,334 | (0.073,0.039) (0455, 0.149) (1015, 0.389) (1180, 0.497) (LTI3, 0.709) (3982, 1.684)
21302204
0.026, 0019) - (0.398, 0.325
0.026,0.020) (0017, 0.113

(0026, 0019) (039, 03%5)
(0026,001) (0017, 0.155)
(002,00 (045,085
(0026, 0424) (002,006
(0026, 05) - (001, 0.8

8
8
(0081, 0.453, 0202, - |
0.264, 0.107, 0.067, 0,808

L
L
0414, 0.307, 0307, 0.14) | 418638 847277
0.042, 0023, 0,023, 0.026)
i,
i,

0.6, 0,108, 0069, 0893) (0,043, 0025, 0.3, 0.06)

( )
( ) 138,045
(0268005085, 07
( )
( )

0.017, 0.164 (0 39, []501

(068,048
004, 0005, 0033, 06 (0017 0164
(0038010) ( 01T (035, 0575
( ) (0
( )

0.043, 0023, 0.024, 02
0.275, 0.110,0.125,0.343) (0044, 0.026, 0,024, 0.02

(
(
(
(
(
L
L
(
L
(
0271, 011,011,051 |
(
(D164,0060,0657,-) (D28, DL, 001,001

(

(

(

L

L

) |

L

(

(

(

(

(

0.026, 0.024) (0.029, 0.061
0.026, 0.023) (0,029, 0.066

= =

0.04, 0148 0.188) (0038, 0211) (0398, 097)
0.002, 0192

0.264,0.121, 004096 0.170, 0143, 0113

0.261, 0.121, 0062, 11

( )
( ) (019,017,004 01
(02760127, 0.7, 04
( )
( )

)

0
0 )
RSE 0 Y
027, 0.1, 0108, 0346) (. )
027, 0.1, 0104 038

(0170, 0070, 0057, -

91, 0171, 0.145,0.
0.100, 0.17L, 0.144 0.
0.031 007100’0009
0.800, 0.867, 0.933, 0.867
0.800, 0.867, 0.933, 0.867
0.867, 0.933, 0.933, 0.933
0800, 0867, 0933, 0.867
0800, 0867, 0933, 0.867

1
191, (11
1 11
19, 0.7L, 0.144, 0.11
1 113
1 115
1

P I U R S

)

)

)

)

3

)

1 )

! )

BiCh |3 )

! )
5

J
(.567, 0716, 0.766, 0.700)
(Gr-L, Gr-2, G-, G-
0.

031, 0.049, 0,072, 0.0%4

(

(0067, 0.078, 0.104,0.128
(0068, 0.087, 0.120,0.148
(0085, 0.109,0.142, 0.169
(0.076, 0,095, 0.125, 0.154
(0339, 0.332, 0.389, 0.407

)
)
)
)
334
)
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Table 3.21:

101

Model rejection rates based on Likelihood-Ratio Test Criterion (LRT).

True COM

Fitted Model

- Poisson Model

V=l

N=2

\=3

N=

N=h

Wetbull Baselme

Setting  Model

Geometric Poisson Bemoul

Geometric Poisson Berno

I

Geometric Poisson Benoull

Geometric Poisson Benoull

Geometric Poisson Bernoul

Geometric Poisson Bernoull

[ =0
0=03
0=1
b1
0400

0.630
02
0778
0104
0963

0333
0000
0.037
007
0.9

0730
0375
020
0183
0125

0.536
0407
060
041
0778

0342
0042
0053
0000
0042

0.481
022
0148
0230
0336

015
0000
000
000
015

0336
012
0148
01
074

0.333
018
0148
018
039

167
000
0000
0000
015

0630
02
0148
01
014

0.2%6
0111
022
03
(336

0083
0042
0042
0042
0183

0319
0407
0.9
0148
0.29

0040 0H0 070
02000030 067
04000040 030
085 0100 0200
090 0340 0100

0630
0.667
0963
0963
L0

e
=05
0=1

0778
0431
050
0057

0.593
0481
0832
039
0926

0407
0037
02
0037
022

0.519
0.9
074
044
088

0074
0000
0000
000
015

0319
0
050
011
0222

0.519
02
015
0310
0926

01
0057
0074
000
0148

039
0148
033
0
0.259

0400
039
(667
040
089

01
0
0111
000
04

039
0148
0310
011
022

0060 0060 0460
0266 0000 033
(000 039
0435 0000 0066
0600 0040 0140

0.267
0,667
0832
1000
1000

06

007
5050
- 03
0310
02
000

0.133
044
0704
0336
0963

0733
015
012
01
0074

0000
0.9
063
029
074

0200
000
0037
000
0037

0733
0230
092
0083
0.208

0000
020
044
029
063

0200
0037
0074
0000
007

0733
0333
0292
0042
0.333

0.067
02
0310
022

0267
0037
0.037
0037
01

073
0375
0375
015
0.292

0120 040 0900
035 013 0600
0340 0120 0300
076 01 038
0350 0.180

0.333
0741
100
0933
L0

L0
055
000
0200
0.083

0.267
0431
093
0800
L0

0867
0.9
035
000
0.167

0.222
0230
(867
033
0917

[

0353
000
0.133
0000
167

0867
0.9
040
(067
0.250

0.185
011
0933
040
0917

0353
000
0.200
000
0083

0300
030
0407
0067
0.333

0467
0037
0.133
000
0083

0867
035
033
013
0.167

0080 0600
0035 0366
00040 00
0 0266
0 0100 0.080
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Table 3.22: Model selection rates based on Akaike’s Information Criterion (AIC).

True COM

- Poisson Model

Fitted Model

V=l

N=2

\=3

N=

N=h

Wetbull Baselme

Setting  Model

Geometric Poisson Bemoul

Geometric Poisson Berno

I

Geometric Poisson Benoull

Geometric Poisson Benoull

Geometric Poisson Bernoul

Geometric Poisson Bernoull

1

0=
0=03
0=1
b1
0400

0549 0365 0088
05 036 030
0105 0506 035
1
000 014 0.8

040 0330 004
000 08¢ 063
0165 0300 0306
014 0180 0607
00 0169 0807

0462 026 0293
019 030 03
026 0300 043
025 0180 0607
00% 025 069

0484 0319 0198
060 030 0477
0300 0361 03
022 0100 0607
57 0% 0478

058 03 01
03 0m 03
035 033 03
080 01T 032
0145 029 0627

0700 020 000
03000000 0700
0300 0.200 0300
0066 0466 0467
(M0 0100 0860

0=0
=05
0=1

0539 0408 003
04 04 0o
033 0392 043
I
0000 012 0873

0408 024 0368
080 025 06
03 0230 06%
0100 08l
008 006 085

0342 03 030
0315 0180 0306
005 0287 030
0160 0148 069
010 008 072

0487 024 02
035 025 040
070020 04
0201 060
019 0200 0709

0500 024 0276
03 09 046
070 0284 046
016 0210 0605
0 0139 0.684

0620 030 0080
0365 0000 044
040 0220 030
0066 0300 0633
(10 0180 0700

0726 024 000
0100786 00
0000 0694 0306
000 02§ 072
000005 097

0432 049 019
00% 0400 03
000 0294 0647
004 0167 0810
003 01 0813

0468 0419 013
0200036 04
0105 0318 0376
0100026 0667
0013 025 0763

0516 031 0103
014 036 0400
015 0329 038
015 02 038
008 016 0730

0661 02%6 0113
026 0300 044
0165 028 03
031 050 0619
013 013 07

0760 020 000
040 000 0360
00 0380 020
038 038
030 0.680

0563 047 0t
0145 0659 0164
0065 0857 0400
00023 073
00000009 0901

0.3% 0313 020
0145 031 047
00 0257 (6%
0065 018 075
004 000 0913

047033 0
120 046 04
070200 062
0 0% 07
(02 011 0817

0500 018 0303
03 039 020
024024 01l
0165 01% 0683
0 015% 07

1% 0
1m0
g 0200 0Tl
0165 066
I 015 0746

020 000
0000 0700
0 0400 030
i 000 023
i 0180 0.760
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Table 3.23: AIC, BIC and maximized log-likelihood () values for candidate COM-
Poisson cure rate models for different numbers of cut points.

COM-Poisson Quantile-based ‘ Curvature-based
Model AIC BIC l \ AIC BIC 7
N=1
Geometric (¢ = 0) 1027.039 1047.205 -508.520 1027.039 1047.205 -508.520
»=0.5 1030.456 1050.621 -510.228 1030.456 1050.621 -510.228
Poisson (¢ = 1) 1032.354 1052.520 -511.177 1032.354 1052.520 -511.177
P=2.0 1034.756 1054.921 -512.378 1034.756 1054.921 -512.378
Bernoulli (¢p — oco) 1038.062 1058.227 -514.031 1038.062 1058.227 -514.031
N=2
Geometric (¢ = 0) 1020.463 1044.662 -504.232 1024.892 1049.091 -506.446
P»=0.5 1021.391 1045.590 -504.696 1025.452 1049.650 -506.726
Poisson (¢ = 1) 1021.148 1045.346 -504.574 1025.026 1049.225 -506.513
Pp=2.0 1021.981 1046.180 -504.991 1025.531 1049.730 -506.766
Bernoulli (¢p — co) 1022.922 1047.121 -505.461 1026.125 1050.323 -507.062
N=3
Geometric (¢ = 0) 1022.107 1050.338 -504.053 1026.965 1055.196 -506.482
»=0.5 1024.087 1052.318 -505.043 1027.193 1055.425 -506.597
Poisson (¢ = 1) 1024.180 1052.411 -505.090 1026.614 1054.845 -506.307
»=2.0 1025.625 1053.856 -505.812 1026.920 1055.152 -506.460
Bernoulli (¢ — co) 1026.197 1054.428 -506.098 1026.588 1054.819 -506.294
N=4
Geometric (¢ = 0) 1018.922 1051.187 -501.461 1025.262 1057.527 -504.631
»=0.5 1020.226 1052.491 -502.113 1026.164 1058.429 -505.082
Poisson (¢ = 1) 1019.621 1051.886 -501.811 1025.876 1058.141 -504.938
»=2.0 1020.027 1052.291 -502.013 1026.678 1058.943 -505.339
Bernoulli (¢p — oo) 1020.486 1052.751 -502.243 1026.834 1059.099 -505.417
N=5
Geometric (¢ = 0) 1017.992 1054.290 -499.996 1026.380 1062.678 -504.190
P»=0.5 1022.587 1058.885 -502.294 1030.868 1067.166 -506.434
Poisson (¢ = 1) 1021.530 1057.828 -501.765 1030.003 1066.301 -506.002
Pp=2.0 1022.913 1059.211 -502.457 1032.372 1068.669 -507.186
Bernoulli (¢ — oco) 1022.532 1058.830 -502.266 1030.916 1067.214 -506.458
COM-Poisson Parametric Weibull PH model
Model AIC BIC l
Geometric (¢ = 0) 1028.677 1048.842 -509.3383
¢ = 0.5 1032.468 1052.633 -511.2338
Poisson (¢ = 1) 1034.161 1054.326 -512.0803
¢p = 2.0 1036.043 1056.209 -513.0217
Bernoulli (¢ — oo) 1038.948 1059.114 -514.4741
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Table 3.24: Estimates (Est.), standard errors (s.e.), lower confidence limits (LCL)
and upper confidence limits (UCL) for the geometric cure rate model.

Quantile-based cut points

(Tl'r l\“i)l)
Measure N (5o, 1) fo i=0 i=1 i=2 i=3 i=14 i=5
1| (-1.095,0.463, 0.072)  (0.653, 0.542, 0.427) | (0.148, 0.049) (7.012, 1.285)
2 | (-0.637, 0.361, 0.195) (0569, 0.479, 0.390) | (0.148, 0.021) (1.599, 0.208) (7.012, 0.153)
Est 3| (-0.520,0.338,0.231)  (0.545, 0.461, 0.379) | (0.148, 0.020) (0.956, 0.104) (2.223,0.202) (7.012,0.073)
4| (-0.621, 0.362, 0.201)  (0.565, 0.474, 0.386) | (0.148, 0.026) (0.956, 0.105) (1.599, 0.231) (2223, 0.186) (7.012, 0.157)
5| (-0.527, 0.385, 0.162)  (0.536, 0.440, 0.349) | (0.148, 0.026) (0.956, 0.099) (1.599, 0.214) (2.223,0.155) (3.307, 0.155) (7.012, 0.081)
1| (0.296,0.111, 0.119)  (0.045, 0.033, 0.034) | (-, 0.026) (-, 0.467)
2| (1.185,0.288,0.350)  (0.223, 0.162, 0.100) | (-, 0.029) (- 0.298) (-, 0.521)
s.e. 3| (0.621,0.172,0.194)  (0.118, 0.089, 0.069) | (-, 0.017) (-, 0.069) (-, 0.160) (-, 0.143)
4| (1.056,0.253,0.296)  (0.202, 0.149, 0.098) | (-, 0.033) (-,0.127) (-, 0.289) (-, 0.270) (-, 0.447)
5 (L022,0.220,0253) (0214, 0.18,0.147) | (-0030)  (-0107)  (-0246)  (-0214)  (-0249) (- 02
1| (-1.676,0.246, -0.161)  (0.564, 0.479, 0.362) | (-, 0.000) (-, 0.368)
2| (-2.960, -0.203, -0.491) (0.131, 0.162, 0.194) | (-, 0.000) (-, 0.000) (-, 0.000)
Lower C.L. (95%) | 3 | (-1.738, 0.002, -0.148)  (0.314, 0.287, 0.244) | (-, 0.000) (-, 0.000) (-, 0.000) (-, 0.000)
4| (-2.690, -0.133,-0.379)  (0.169, 0.182, 0.194) | (-, 0.000) (-, 0.000) (-, 0.000) (-, 0.000) (-, 0.000)
5 | (-2.531, -0.046, -0.335)  (0.116, 0.088, 0.06) | ( -, 0.000) (-, 0.000) (-, 0.000) (-, 0.000) (-, 0.000) (-, 0.000)
1| (-0.514,0.681,0.306) (0.742, 0.606, 0.493) | (-, 0.100) (-, 2.201)
2| (1.686,0.926, 0.882)  (1.006, 0.796, 0.586) | ( -, 0.078) (- 0.793) (- 1.175)
Upper C.L. (95%) | 3 | (0.697,0.675, 0.611) ~ (0.777, 0.635, 0.514) | (-, 0.055) (-,0.239) (-, 0.516) (- 0.354)
4| (1.448,0.857,0.781)  (0.960, 0.767, 0.578) | (-, 0.091) (-, 0.353) (-, 0.798) (-, 0.716) (-, 1.034)
5| (1476, 0.816, 0.658)  (0.955, 0.792, 0.637) | (-, 0.085) (-, 0.309) (-, 0.697) (-, 0.575) (-, 0.644) (-, 0.518)
Curvature-based cut points
(Tl‘r l“;?)
Measure N (Bo, B1,%) Do i=0 i=1 i=2 i=3 i=4 i=5
1| (-1.095,0.463, 0.072)  (0.653, 0.542, 0.427) | (0.148, 0.049) (7.012, 1.285)
2| (-0.623,0.348,0.234)  (0.569, 0.482, 0.396) | (0.148, 0.030) (3.000, 0.282) (7.012, 0.088)
Est 3| (-0.469, 0.347,0.208)  (0.531, 0.444, 0.361) | (0.148, 0.019) (0.700, 0.087) (3.000, 0.201) (7.012, 0.049)
4| (-0.350, 0.349, 0.194)  (0.501, 0.414, 0.333) | (0.148, 0.018) (1.300, 0.128) (3.200, 0.156) (3.900, 0.060) (7.012, 0.137)
5| (-0.401,0.348,0.204)  (0.513, 0.427, 0.345) | (0.148, 0.022) (0.700, 0.066) (1.300, 0.139) (3.200,0.162) (3.900, 0.068) (7.012, 0.148)
1] (0.296,0.111, 0.119)  (0.045, 0.033, 0.034) | (-, 0.026) (-, 0.467)
2| (0400, 0.131,0.142) ~ (0.071, 0.05L, 0.045) | (-, 0.017) (-, 0.135) (-, 0.163)
s.e. 3| (0611, 0.156, 0.184)  (0.130, 0.116, 0.108) | (-, 0.016) (-, 0.047) (- 0.172) (-, 0.129)
4| (1.223,0.250, 0.281)  (0.090, 0.062, 0.043) | (-, 0.024) (-,0.163) (-, 0.276) (-,0.123) (-,0.324)
5 (0.926,0.215,0.244)  (0.191, 0.157, 0.129) | (-, 0.023) (-, 0.065) (- 0.137) (-, 0216) (- 0.112) (-0217)
1| (-1.676,0.246,-0.161)  (0.564, 0.479, 0.362) | (-, 0.000) (-, 0.368)
2| (-2.960, -0.203, -0.491) (0.429, 0.381, 0.309) | (-, 0.000) (-, 0.000) (-, 0.000)
Lower C.L. (95%) | 3 | (-1.738,0.002, -0.148)  (0.275, 0.216, 0.149) | (-, 0.000) (-, 0.000) (-, 0.000) (-, 0.000)
4 | (-2.690, -0.133,-0.379)  (0.451, 0.405, 0.338) | (-, 0.000) (-, 0.000) (-, 0.000) (-, 0.000) (-, 0.000)
5 | (-2.531, -0.046, -0.335) (0.138, 0.120, 0.093) | (-, 0.000) (-, 0.000) (-, 0.000) (-, 0.000) (-, 0.000) (-, 0.000)
1| (-0.514,0.681,0.306) (0.742, 0.606, 0.493) | (-, 0.100) (-,2.201)
2| (1686, 0.926, 0.882)  (0.708, 0.583, 0.484) | (-, 0.078) (-, 0.793) (-, L175)
Upper C.L. (95%) | 3 | (0.697,0.675, 0.611)  (0.786, 0.672, 0.573) | (-, 0.055) (-,0.239) (-, 0.516) (- 0.354)
4| (1.448,0.857,0.781)  (0.802, 0.646, 0.507) | (-, 0.091) (- 0.353) (-, 0.798) (-, 0.716) (-, 1.034)
5| (1476, 0.816, 0.658)  (0.889, 0.734,0.597) | (-, 0.085) (-, 0.309) (-, 0.697) (-, 0.575) (- 0.644) (-, 0.518)
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Table 3.25: Estimates (Est.), standard errors (s.e.), lower confidence limits (LCL) and
upper confidence limits (UCL) for some candidate COM-Poisson cure rate models

using three covariates.

N=1 N=2 N= N=14 N=5
par| 6| Bst(se) (LCL,UCL) | Est (se) (LCL,UCL) | Est. (se) (LCL UCL) | Est. (se) (LCLUCL) | Est.(se) (LCL,UCL)
G [0 -1044 (0592) (-2.204, 0.107) | -1204 (1789) (-4710, 2.302) | -0.978 (0.882) (-2.707, 0.752) | -L035 (L139) (-3:269, 1198 | -0.916 (1295) (-3453, 1622)

1| -0.900 (0381) (-2.039,0.240) | -1193 (0.984) (-3.121, 0.735) | 0776 (0.774) (2293, 0.740) | -0.944 (0.885) (-2.679, 0.791) | -0.907 (L202) (-3:264, 1.450)
o0 | 0904 (0504) (2067, 0.260) | -0.885 (0.827) (-2.506, 0.737) | -0.950 (0.848) (-2612, 0.711) | 0915 (0.793) (-2469, 0.638) | -0.922 (0.901) (-2.689, 0.8%4)
By | 0] 0296 (0.250) (-0.194, 0.787) | 0449 (0631) (0788, L686) | 0.364 (0406) (-0.433, 1160) | 0.374 (0.441) (-0.480, 1.238) | 0388 (0475) (0542, 1318)
1] 0264 (0212) (-0.210,0.739) | 0508 (0.484) (0440, 1456) | 0372 (0431) (0473, 1.216) | 0.369 (0.390) (-0.395, 1.132) | 0.330 (0.402) (-0.457, 1.117)
20 | 0322 (0.256) (0181, 0.824) | 0431 (0418) (-0.389, 1%51) | 0.432 (0.535) (-0.617, 1.482) | 0398 (0418) (0426, 1.212) | 0,385 (0462) (-0517, 1.293)
By | 0 | 0.015 (0.009) (-0.003, 0.033) | 0018 (0.026) (0033, 0.070) | 0.014 (0.014) (-0.012, 0.041) | 0.015 (0.017) (-0.018, 0.049) | 0.013 (0.019) (-0.024, 0.051)
1| 0013(0009) (-0.004,001) | 0.017 (0.015) (0014, 0.047) | 0011 (0.013) (0.0, 0.036) | 0.013 (0.014) (-0.013, 0.040) | 0.013 (0.018) ~(-0.021, 0.048)
20 | 0.012 (0.009) (0006, 0.030) | 0012 (0013) (-0.014, 0.037) | 0.004 (0.014) (-0.014, 0.041) | 0.013 (0.013) (0012, 0.037) | 0.013 (0.004) (-0.015, 0.041)
By | 00225 (0.250) (0714, 0.264) | -0.319 (0376) (1055, 0-A18) | -0.261 (0.324) (-0.897, 0.374) [ -0.278 (0.324) (-0.913, 0.358) | -0.306 (0.347) (0987, 0.375)
1| 0202 (0244) (-0.720,0237) | 0328 (0.369) (-LOS0, 0.395) | -0.256 (0.350) (0042, 0.430) | -0.27 (0.318) (-0.893, 0.352) | -0.255 (0.308) (-0.858, 0.347)
20 | 0248 (0.248) (0735, 0.239) o (0342) (0947, 0.304) | -0.295 (0.419) (-L.117, 0527) | -0.269 (0.337) (-0.929, 0.391) | 0255 (0.337) (0916, 0.406)
o1 | 0 [-0559 (0.280) (-L.106, -0.011) | 0715 (0814) (2309, 0.880) | -0.649 (0.491) (-L610, 0.312) [ -0.643 (0.546) (-L714, 0.427) | 0650 (0.601) (1828, 0.527)
1| -0396 (0220) (-0.828, 0.036) -0602 (0430) (-1444, 0.241) | -0.453 (0.379) (-1.196, 0.291) | -0.474 (0.373) (-1.205, 0.258) | 0444 (0463) (1352, 0.463)
20 | 0360 (0.200) (0752, 0.031) | -0.405 (0.301) (-0.995, 0.186) | -0.365 (0.313) (-0.979, 0.250) | 0375 (0.285) (0933, 0.183) | -0.370 (0.325) ~(-1.006, 0.267)
70 | 0 [-0.003 (0.010) (-0.023, 0.017) | -0.007 (0.037) (0079, 0.065) | -0.004 (0.018) (-0.039, 0.031) | -0.004 (0.023) (-0.049, 0.041) | -0.002 (0.027) (-0.055, 0.051)
1| 0003 (0008) (-0.012,0019) | 0001 (0.017) (-0.034, 0.031) | 0.005 (0.013) (-0.021, 0.030) | 0.002 (0.015) (-0.028, 0.032) | 0.002 (0.023) ~(-0.044, 0.048)
%0 | 0.007 (0.007) (0007, 0.020) | 0.006 (0.012) (-0.018, 0.029) | 0.005 (0.012) (-0.018, 0.027) | 0.005 (0.011) (0007, 0.028) | 0.005 (0.015) (-0.024, 0.034)
105 | 0 | 0201 (0.299) (<0385, 0.788) | 0321 (0483) (0626, 1.268) | 0.241 (0417) (0577, 1058) | 0.264 (0.410) (-0.539, L.068) | 0.295 (0-440) (0368, L18)
1| 0146 (0251) (-0.346,0638) | 0.221 (0.369) (0502, 0.943) | 0.148 (0.369) (0576, 0.872) | 0.164 (0.330) (-0.482, 0811) | 0.143 (0.330) (-0.504, 0.789)
2o | 0.09 (0.227) (0347, 0.544) | 0.080 (0297) (-0.503, 0.664) | 0.110 (0.331) (-0.538, 0.759) | 0.090 (0.286) (0471, 0.652) | 0.071 (0.290) (-0.497, 0.640)
Uy | 0] 0181(0132) (0078, 0.439) | 0.157 (0.409) (0.000, 0.958) | 0137 (0172) (0000, 0.474) | 0.154 (0:246) (0.000, 0.636) | 0.141 (0.271)  (0.000, 0.672)
1| 0206 (0.119) (0000, 0.439) | 0.182 (0.20) (0.000, 0.591) | 0.103 (0.094) (0.000, 0.288) | 0.159 (0.168) (0,000, 0.488) | 0.146 (0.250)  (0.000, 0.636)
oo | 0.295 (0.149) (0.003, 0.587) | 0166 (0.141) (-0.110,0443) | 0.133 (0.109) (0.000,0347) | 0.191 (0.146) (0000, 0.476) | 0.170 (0.184) ~(0.000, 0.530)
U | 0] 3268 (L847) (0,000, 6888) | 1228 (3007) (0000 7.299) | 0,639 (0.735) (0,000, 2079) | 1410 (L635) (0.000, 4654) | 0506 (0.941) (0000, 2.351)
1| 2161 (0951) (0297, 4026) | 1085 (L149)  (0.000, 3.336) | 0465 (0.359) (0000, L169) | 1050 (0.820) (0,000, 2657) | 0.488 (0.820)  (0.000, 2097)
o | 1696 (0.672) (0379, 3.013) | 0794 (0.600) (0,000, L970) | 0.590 (0.396) (0.000, 1.366) | 0.901 (0549) (0000, L977) | 0.524 (0.528) (0,000, L560)
U | 0 1020 (2485) (0000, 5.891) | LIST (L3L7) (0,000, 3.764) | LS8 (L931) (0.000, 3.654) | LOG3 (L989) (0.000, 4.961)
1 0.503 (0.864) (0.000, 2.196) | 0665 (0.520) (0000, L684) | 0711 (1005) (0,000, 2010) | 0.964 (L631)  (0.000, 4.161)
) 0.223 (0.408) (0.000,1.022) | 0675 (0451) (0000, L560) | 0.621 (0.615) (0,000, L370) | 0.965 (0.986)  (0.000, 2897)
Us | 0 0.952 (1L402)  (0.000, 3.699) | 0875 (1461) (0000, 1869) | 0.798 (1520)  (0.000, 3.778)
1 0.346 (0.608) (0.000, 1.537) | 03502 (0877) (0000, L110) | 0.658 (1.146) ~ (0.000, 2904)
) 0.243 (0.520)  (0.000, 1.262) | 0416 (0.582) (0000, 0.778) | 0.590 (0.643) ~ (0.000, 1.850)
Uy | 0 LOSL (2389) (0000, L167) | 0.956 (L894) (0,000, 4668)
1 0.846 (1903) (0.000,0890) | 0771 (1422) (0000, 3.558)
) 0.600 (L084)  (0.000,0.552) | 0616 (0.813) (0000, 2.210)
Us | 0 1105 (2883) (0000, 6.757)
1 0.920 (2383)  (0.000, 5.502)
) 0.584 (1356) (0.000, 3.241)
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Table 3.26: Maximized log-likelihood, AIC & BIC for the E1690 dataset using three
covariates.

(Geometric Poisson Bernoulli 4
[ AIC BIC | AIC BIC l AIC BIC l AIC BIC
-536.118  1090.236  1126.725 | -H37479 1092.959  1129.449 |-530.151 1096.302 1132.792 | -536.118 1090.236  1126.725
532561 1085.123 1125.667 | -532.606 1085.212 1125.757 | -533.040 1086.080 1126.624 | -532.561 1085.123 1125.667
534175 1090.349  1134.948 | -534.614 1091.227  1135.826 |-534.743 1091.485  1136.084 |-534.175 1090349  1134.948
532121 1088.241 1136895 | -531.739 1087479  1136.133 |-531.824 1087.648 1136.301 |-531.739 1087479  1136.133
532180 1090360  1143.068 |-532.102 1090.203  1142.911 |-531.854 1089.708 1142415 | -531.854 1089.708  1142.415
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Chapter 4

Destructive cure rate models under

proportional hazards lifetime

4.1 Introduction

We propose the initial number of competing causes M to follow a weighted Poisson
distribution, with weight functions as e?™, m, and I'(m+¢ ), undergoing a damaging
process as discussed earlier in Section 1.4. The corresponding models are known as
destructive exponentially weighted Poisson (DEWP), destructive length-biased Pois-
son (DLBP), and destructive negative binomial (DNB) cure rate models respectively.

The hazard function h(.) of W; is defined by a proportional hazards model and is

given by
dlog S /
h(w) = —Og—w(w} = ho(w)e™?®, (4.1.1)
for all j = 1,..., D, where hy(.) is the baseline hazard function and x is a vector of

covariates with corresponding parameter v of same dimension. The baseline hazard

is considered to be a two-parameter Weibull hazard function.

107
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The form of the data and the likelihood function are discussed in detail in Section
4.2. The method of estimation of model parameters using EM algorithm and compu-
tation of asymptotic standard errors are provided in Section 4.3. In Section 4.4, an
analysis of a real-life data on cutaneous melanoma is presented. In Section 4.5, an
extensive simulation study is carried out with various parameter settings and sample
sizes to examine the performance of the estimation method. A model discrimination
is performed among three candidate models based on information criteria and the

results are provided in Section 4.6.

4.2 Form of the data and the likelihood function

In survival analysis, occurrence of right censored data is a common phenomenon which
may take place due to patient’s discontinuation, duration of study or lost to follow-
up. Due to this, we assume a non-informative right censored data for our analysis.
In general, if we consider Y; to be the actual lifetime and C; to be the censoring time

for the -th individual, then time to event 7; is defined as
T; = min{Y;, C;}.

T; denotes the observed lifetime of the i-th individual . The censoring indicator is
given by §; = I(T; < C;) which takes 1 when the actual lifetime is the observed

lifetime or 0 when only the censoring time is observed for a subject.

Two sets of covariates & and z are linked to the parameters p and 7 such that

B'z;

_ a/z_ . . . . . o ek . . .
7n; = e*# is linked using a log-linear function whereas p; = TroPe; 18 linked using a
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logit function where o = (v, ..., aq,)" and 8 = (Bo, b1, - .., By ). To circumvent the
issue of non-identifiability of parameters in DEWP, DLBP or DNB cure rate models,
a is assumed without an intercept term and covariate x; is assumed to be disjoint of
z; in the sense that they have no common element (see Li et al., 2001). The observed
data for n individuals is of the form (¢;, d;, @;, z;)";i = 1,...,n. Hence, the observed

data likelihood function can be expressed as
L(0:t,6,X,Z) o< [ | folti. @i, 2 0)% S, (t:, i, 25 0)' (4.2.1)
i=1

where 8 = (/. 8,7, ¢), a = (a1,...,04,), B = (B1,---,Bs) 'y = (Y0, 71,73, 73)',
Yo = (o1, s720) s V3 = (V31,5 Y3g) s t = (t1, .. tn), 6 = (61,...,0,), X =
(x1,...,x,) and Z = (z1,...,2,). The expressions for S(w) = S(w,x, z;v) and
f(w) = f(w,x, z;7) can be obtained from Equation (4.3.1) using S(w,x, z;7) =

e MmN and f(w) = fw,@, z5y) = —2S0eE),

4.3 Estimation of parameters and standard errors

We implement EM algorithm to estimate (o', 3',~')" while ¢ is estimated using profile
likelihood method. The missing data are introduced by defining indicator I; which
takes 0 if the ¢-th individual is cured or 1 otherwise. Note that, I; = 1 for i € Ay,
however, I; is unobserved for i € Ag; Ay = {i : 6; = 1} and Ay = {i : §; = 0}. The
complete data are denoted by {(t;,d;, x;, z;, I;)';¢ = 1,...,n}. The complete data

likelihood function is expressed as

L.(O0;t,x,z,8,1)

x H fp(ti, i, 23 0) H g, B, i, z) (1 — qolex, B, @i, 2:)) Sults, @i, 25 0) }

€A1 1€AQ
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and the complete data log-likelihood function is given by

l(0;t,x,2,0,I) = constant + Z log f,(ti, x;, 25 0) + Z (1 —1I)logqo(ax, B, x;, 2;)

i€ i€Ao
+ Y Lilog(1 = qo(ew, B, @i, z:)) + Y Tilog Su(ti, @i, 2 6),
ISANY) 1€

(4.3.1)

Sp(ti,xi,zi;0)—qo(a,B,xi,2;
where I = (Iy,...,1,) and S,(t;, x;, 2;;0) = 1 l_qo(;;f;(i’zg ),

E-step: For a fixed value ¢y of ¢ and (a + 1)-th iteration of EM algorithm,
we compute the expected value of [.(0;t,x,d,I), given the observed data O =
{(ts, 05, 25,25, Iy) i = 1,...,n;3" € A1} and the current parameter estimates 6*(®
obtained from the a-th iteration, where 8* = (a’, 8',4’)". Therefore, from Equation

(4.3.1) we have

E(l.(0;t,x, 2,6, 1)|6*“,0)

= constant + Z log f,(ti, @i, 2i;0) + Z (1-— 7T logqo(a B, x;, ;)

€A 1€Ap

+ Z Trz(a) log(l - QO(aaﬁa Z;, zl)) + Z ﬂ-i(a) IOg Su(tlv i, zi; 0)7

1€\ 1€

(4.3.2)

where

qola, B,x;, 2;))Su(ti, Ti, 2i; 0)
Sp(ti, i, 23 0) o+ —gr(a)

= — (10,67 — L=
We define Q(6*, @) = E(1.(6:t, x, 2,8, 1)|0"@, O) where 7@ = (7\” : i € A,).

M-step: In the maximization step, we maximize Q(8*,7(®) with respect to

0* to find the estimate @*(@tD of @*. The numerical maximization is carried out
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using Nelder-Mead or Quasi-Newton method for fixed ¢o. Explicit expressions for
Q(6*, @) and the first-order and second-order partial derivatives of Q(8*, w(*)) are

presented in Appendix C.1, C.2 and C.3. The iteration process is considered to

k
07

0,07,

converge if maxj<p<p < €, for some small € and p denotes the number of

parameters.

The estimation of ¢ is carried out using profile likelihood approach since the like-
lihood surface is quite flat w.r.t ¢. The F-step and M-step are repeated for all ¢ € &
where ® denotes the admissible range of ¢. The value of ¢ € ® which provides the
maximum value of the observed likelihood function is taken to be the ML estimate

¢ of ¢. For DEWP cure rate model, ® = {—2.0,—1.9,...,2.0} while for DNB cure
rate model, & = {0.10,0.15,...,7.00}.

The standard errors of the parameter estimates are obtained using Louis’ method.

The expression for calculating the observed information matrix is given by

[(0*) = E[B<é*7t7 T, z, 57 I)] - E[S<9A*7 t> Z, z, 57 I)ST(é*a ta Z, z, 67 I)]
A R (4.3.3)
+E[S(0*;t,x, 2,6, I)E[ST (0" t,x,2,6, 1) ,
0*—=0*

*. o _52lc(9;t,w,z,6,I) *. _ 6l(O5t,x,2,6,1)
where B(0*;t,x,z,6,1) = —aser — and SO t,x,x,6,1) = ===272==. The
100(1 — @)% confidence interval (C.I.) of the parameters are obtained by using the
asymptotic normality of ML estimators. The expressions for first-order and second-
order derivatives of [.(0; t, x, z, §, I) required for calculating the observed information

matrix are not presented separately and can be obtained from Appendices C.1 and

C.2.
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Survival

— NOULC
---- uLC

00 02 04 06 08 1.0

0 5 10 15

time (in years)
Figure 4.1: K-M plot categorized by ulceration status.

4.4 Analysis of cutaneous melanoma data

The observed time (in years) refers to the time since operation till patient’s death or
censoring time with mean and standard deviation (s.d.) to be 5.89 and 3.07 years,
respectively. For our analysis, ulceration status (absent: n = 115; present: n = 90)
and tumor thickness (in mm) were selected as covariates for the study. 44% of the
patients have ulceration status as present. For this group, mean and s.d. of the tu-
mor thickness were found to be 4.34 mm and 3.22 mm. For the group with ulceration
status as absent, the mean and s.d. are 1.81 mm and 2.19 mm. The histograms of
the tumor thickness for both the groups show positively skewed distributions. Figure
4.1 represents the Kaplan-Meier (KM) plot categorized based on ulceration status. It
clearly indicates the presence of cured proportion in the data. We fitted destructive
exponentially weighted Poisson, destructive length-biased Poisson and destructive
negative binomial cure rate models to the melanoma data, respectively, under pro-

portional hazards assumption of the lifetime of the susceptible. A Weibull baseline
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hazard function is considered since it provides a great degree of flexibility to the life-
time of the susceptible i.e. increasing, constant and decreasing hazard rate depending
on the shape parameter (7y) greater than, equal to or less than 1. As mentioned be-
fore, we applied EM algorithm to estimate all the parameters except ¢ which was

estimated using profile likelihood.

Table 4.1 presents the number of parameters fitted (k), maximized log-likelihood
values, Akaike’s Information Criterion (AIC) and Bayesian Information Criterion
(BIC) values for all the fitted models. Apart from the main three models, the in-
formation values for all the sub-models are also presented. It is to be noted that, in
case of DEWP, taking ¢ = 0 reduces the model to destructive Poisson (DP) cure rate
model. Again, we get exponentially weighted Poisson (EWP) and Poisson cure rate
models by setting p = 1 and (p = 1, ¢ = 0), respectively. Similarly, in case of DNB, we
get the reduced models viz., destructive geometric (DG), negative binomial (NB) and
geometric cure rate models by considering ¢ = 1, p = 1 and (¢ = 1,p = 1), respec-
tively. p = 1 represents the cases where no destructive mechanism of the malignant
cells is considered. When p = 1, we linked both the covariates to n using log-linear
link function n = exp(Bo+ i1z +az). It is observed from Table 4.1 that DNB cure rate
model provides best fit to the data with highest maximized log-likelihood (-199.108)
and minimum AIC (414.216) values with ¢ = 5.2. The estimate, standard error (s.e.),
lower confidence limit (LCL) and upper confidence limit (UCL) of the parameters for
the three main models are presented in Table 4.2. For validating the heterogeneity
among the lifetime of the susceptible , we tested Hy : 75 = 3 = 0 for the DNB model.
The p-value was found to be 0.061 with log-likelihood value as -201.908, thereby not
rejecting Hy at 5 % level of significance. Again, on testing Hy : ¢ = 0 for the full

DNB model, we found the corresponding p-value to be 0.027 which provides sufficient
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evidence of using the DNB model over the DG model.

It is observed from Table 4.1 that incorporating destructive mechanisms to the cure
rate models resulted in better log-likelihood, AIC and BIC values, thereby, justifying
the practicality of destructive cure rate model over ordinary cure rate model. Table
4.3 shows the effect of using different link functions (e.g., L1-L4) on maximized log-
likelihood value for the main three destructive cure rate models. Considering all four
possible combinations, we found link L1 that we have used for our analysis (refer
Section 4.2) provided with the higher maximized log-likelihood value consistently
except in some cases of the DEWP model. However, since the DNB provides the
best fit for the data with link L1 among all other links, we can argue that link L1
justifies the appropriateness of using it. Next, we considered representative values
for tumor thickness, viz., 0.320, 1.940 and 8.320 mm which are values corresponding
to the 5-th, 50-th and 95-th percentiles. For these tumor thicknesses, we plotted the
corresponding long-term survival function values, stratified by ulceration status (see
Figure 4.2a-4.2c). The estimated survival function values were found to be higher
for the group with ulceration status as absent and smaller tumor thicknesses. Figure
4.3 shows the estimated cure rates against tumor thickness stratified by ulceration
status. A non-parametric test of difference suggests significant difference (p-value

< 2.2 x 107'%) between cure rates of the two ulcer groups.

4.5 Simulation study

This Section demonstrates the performance of our suggested method of estimation
and inference based on extensive Monte Carlo simulation study. We generate data set

in a way that it mimics the real data on cutaneous melanoma as discussed in Section
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Figure 4.3: Cure rate vs. tumor thickness stratified by ulceration status.

Table 4.1: Maximized log-likelihood, AIC and BIC values for some destructive cure

rate models.

Fitted Model k I AIC BIC
DEWP (¢ = —0.7) | 8 | -202.253 | 420.506 | 447.090
DP 7| -203.433 | 420.865 | 444.126
EWP (¢ =—1.5) | 8 | -205.054 | 426.108 | 452.693
Poisson 7| -205.054 | 424.108 | 447.370
DLBP 7| -204.979 | 423.959 | 447.220
DNB (¢ = 5.2) 8 [-199.108 | 414.216 | 440.800
DG 7 | -201.536 | 417.073 | 440.334
NB (¢ = 6.9) 8 | -199.973 | 415.946 | 442.531
Geometric 7| -204.027 | 422.053 | 445.314

4.4. For this purpose, we define a random variable (r.v.) U where U ~ Uniform (0, 1).

If U <0.44, we assign ar.v. Z = 1; otherwise Z = 0, where Z denotes the ulceration
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status for each subject. For simulating the tumor thickness data, we plot histograms
of tumor thickness (X) from the cutaneous melanoma study. The histograms reveal
positively skewed curves for both the ulceration statuses; the means and the standard
deviations of which are presented in Section 4.4. Thus, for Z = 1, we assume X to
follow a Weibull (o, o) since a Weibull distribution provides flexibility to model any
non-negative continuous r.v. In this case, a; & as are the shape and scale parameters
respectively and are estimated by method of moments, i.e., equating asI'(1 4+ 1/a)
to 4.34 and a3 {F (1 + a%) — (F <1 + %))2] to (3.22)%. Thus, we generate X using
the estimated values of a; and as. A similar approach is taken to generate X for
Z = 0 where we assume X from a Weibull (a3, ay) where a3 and a4 are estimated

from ayI'(14+1/a3) = 1.81 and a3 {F (1 + a%) - (F <1 + %3))2] = (2.19)2. As men-

ePotBiz

TtePoThiz> where an

tioned before, we linked 7 to z using n = e¢** and p to z using p =
intercept term is not taken for linking 7 to 2z in order to avoid non-identifiability. Note
that, n = 1 whenever z = 0. Also, a higher value of 7 signifies greater number of initial
competing causes (M ). Thus, we can safely assume 7 to be more than 1 for z = 1 since
patients with ulceration status: present are likely to have greater value of M. Fol-
lowing the work of Pal and Balakrishnan (2017), we assume n = 3 for z = 1; thereby,

we get the true value of @ = 1.099. In order to determine true values of 3y, and fy,

we turn our attention to Ty, = min{z} = 0.1 mm and ., = max{z} = 17.42 mm.

eBotBiT

Note that, the link P = TtcPothie

is a monotonically increasing in x. So, we choose
Pmin = Min{p} and pya = max{p} and link them to x;, and zy., respectively. Two
such choices of (Pmin, Pmax) are considered, viz., (0.2, 0.6) and (0.3, 0.9), representing

two scenarios of lower and higher proportions of active competing causes. The true

values of 5y and 3, change depending on the generated values of x for each simulation.

M is generated with weighted Poisson distribution with 7. For exponentially
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weighted Poisson cure rate model, we take true ¢ = —0.5 and ¢ = 0.2 and for neg-
ative binomial cure rate model, ¢ = 0.5,0.75 and 5.2 are taken. These values of
¢ are chosen to relate closely to the estimates of ¢ as obtained from the real data.
For length- biased Poisson, M is generated from Poisson (n) + 1 distribution. Given
M = m > 0, the number of undamaged competing causes D is generated from a bi-
nomial distribution with success probability p and m number of trials. If M =0, we
put D = 0. The true values of the lifetime parameters (7o, 71,72, 73)" are considered
to be (1.657,3.764, —0.005,0.023)" which are parameter estimates as obtained from
the real data. If D > 0, then we generate Wy,..., Wp where each Wj;5=1,...,D is
simulated from a Weibull distribution with shape parameter 7, and scale parameter
1 €xXp (—Vj—o‘r — %) We define lifetime Y = min{Wi,...,Wp} and the censoring
time C'is assumed to be distributed exponentially with rate parameter \. Hence, the
observed time 7' is defined as 7' = min{Y, C'}. Again, if D = 0, we assign T'= C. To
assess the effect of censoring on the developed methodology, we study three different
scenarios: A = 0.05,0.15 and 0.25 representing low, medium and high censoring. On
examining A € {0.01,0.02,...,1.50} and comparing the proportion of censoring (i.e.
no. of times Y > (') in 1000 replication, we find A = 0.05,0.15 and 0.25 corresponds
to 52%, 64% and 72% of censoring percentages respectively. A as low as 0.01 gives
45% of censoring whereas A = 1.50 results in 95% of censored observations. To further
investigate the robustness of the inferential technique, we consider two sample sizes

n = 300 and n = 400 representing moderate and large samples respectively.

As mentioned in Section 4.2, we estimate all the parameters using EM algo-
rithm except ¢ which is estimated using profile likelihood approach. The admissible
ranges for ¢ are taken to be {—2.00,—1.90,...,2.00} for DEWP cure rate model
and {0.10,0.15,...,2.00} for DNB cure rate model when true ¢ = 0.5 or 0.75 and
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{3.0,3.1,...,7.0} when true ¢ = 5.2. Apart from ¢, initial parameter value is cho-
sen uniformly from the interval (0.856,, 1.156,) where 6, denotes true value of the
parameter. In table 4.4 - 4.12, we display the results of our simulation study. More
specifically, table 4.4 - 4.6 present the simulation results corresponding to DEWP
cure rate model, table 4.7 - 4.8 show results from DLBP cure rate model and table
4.9 - 4.12 depict the simulation results from DNB cure rate model. The accuracy and
robustness of our proposed method of estimation are established through average esti-
mated value (Est.), standard error (s.e.), bias, root mean squared error (RMSE), 95 %
Confidence Interval (C.I.) and coverage probability (C.P.) under different simulation
settings. CPs are obtained by assuming the asymptotic normality of the maximum
likelihood (ML) estimators and a nominal level of 95% is used. The results are based
on 500 replications of simulated data for each scenario and all calculations are done

in R-3.1.3.

From table 4.4 - 4.12, we observe the estimates are quite close to the true parameter
values, and the biases are small signifying the accuracy of the estimation technique.
Profile likelihood method seems to perform relatively well in terms of accuracy, when
data are generated from DEWP (¢ = —0.5) and DEWP (¢ = 0.2) cure rate models.
However, when the true model is DNB, biases are found to be high for the estimates
of ¢. It can be attributed to the fact that the likelihood function is quite flat with
respect to ¢. An under-coverage for 3, and 7, are observed for DEWP and DNB cure
rate models respectively. To explain this under-coverage, we take one such setting
where data are generated for DEWP model with ¢ = 0.2 having large sample size
(n = 400), (Pmin; Pmax) = (0.2,0.6) and low censoring (A = 0.05). We fit DEWP cure
rate model to the data and compare effect of estimating ¢ against taking fixed ¢ on

coverage probability based on 100 replication. The result is presented in table 4.6. We
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observe that the coverage probability of 3, is reaching the nominal level of 95% when
¢ is not estimated. This immediately points toward the imprecision in estimating
¢ (most likely due to flatness of the likelihood surface) which leads to the under-
coverage of By. The s.e. and RMSE are found to decrease with an increase in sample
size and decrease in censoring. Tables corresponding to DEWP with ¢ = —0.5 and
DNB with ¢ = 0.75 are not presented to avoid repetition, however, can be retrieved

from the author on request.

4.6 Model discrimination

To assess the impact of model mis-specification on estimate of cure rate, a model
discrimination is performed based on specified selection criteria, e.g., Akaike In-
formation Criterion (AIC) and Bayesian Information Criterion (BIC) values. This
allows us to observe the frequency with which models other than the true model
get selected through our method of estimation. For this, we generate 1000 samples
each from five true models, viz., DEWP (¢ = —0.5), DEWP (¢ = 0.2), DLBP,
DNB (¢ = 0.5) and DNB (¢ = 0.75) with (pmin, Pmax) = (0.3,0.9), n = 3 for
Z =1and A = 0.15 (i.e. medium censoring). The lifetime parameters are taken
as v = (70,7, 72,73) = (1.657,3.764, —0.005,0.023)" (see Section 4.5). Under these
specifications, samples are generated with moderate (n = 300) and large (n = 400)

sample sizes and denoted by Setting 1 and Setting 2 respectively.

We fit three candidate models, i.e., DEWP, DLBP and DNB cure rate models to
these samples with our proposed method of estimation. The model with the least

AIC or BIC value is selected to provide the best fit to the generated data. For a
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model, AIC and BIC are defined as:

AIC = =20+ 2p; BIC = —2l + plog(n),

where [ is the maximized log-likelihood value corresponding to the model and p de-
notes number of parameters estimated. The selection rates based on AIC, BIC and
[ are presented in Table 4.13. AIC and BIC values are found to be quite low for the
true models when the data are generated from DEWP and DNB cure rate models.
The reason is attributed to the closeness of the values of log-likelihood function for
all the fitted cure rate models. Due to this, AIC and BIC values are getting more
penalized for having one extra parameter for DEWP and DNB models. When the
log-likelihood value is used to select models, the results indicate more selection for
the true models. Table 4.16 shows that when ¢ is not estimated, it results in much

better selection rates for the true models.

To establish the importance of a model discrimination, we study the bias and MSE
involved in the estimation of cure rate of patients under model mis-specification. For

each model, we compute the total relative bias (TRB) as

n A
TRB — Z IQO,’L qD,'L|
1 qo,i
K]
where ¢ ; and ¢ ; denote true and estimated cure rate for an individual 4;7 = 1, ..., n.

Similarly, we define total mean squared error (TMSE) for a model as

1 .
TMSE = 1 Z(qo’i — QO,i>2-

Then, for two candidate models M1 and M2, total relative efficiency (TRE) of M2
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with respect to M1 is defined as TRE = %’gi‘ﬁ where TMSFE); and TMSE
denote TMSE corresponding to M1 and M2 respectively. Thus, with these measures
we compare the three candidate models. Table 4.14 presents TRB (in %), TMSE
and TRE for the candidate models under Setting 1 and Setting 2, when the data are

generated from one of the five true models as described earlier.

The model M1 is always chosen to be the true model. It is observed that in cases
where data are generated from DLBP cure rate model, model mis-specification may
lead to large bias and MSE. It is because higher TRB and lower TRE are observed on
fitting candidate models when compared to the true DLBP model. For the other true
models, TRB values are relatively closer to each other, thereby signifies not much
precision is lost under model mis-specification. DNB cure rate model provides lesser
TRB and higher TRE in most of the scenarios. On increasing sample size, TMSE
and TRE are found to decrease but TRB increases. Table 4.15 shows TRB and TRE
values when using AIC and estimated log-likelihood value (f) as the model selection
criteria. The output suggests that by allowing AIC or [ to select a working model
out of a set of candidate models may lead to lesser relative bias. The TRE values are
greater than one is most cases, which implies that estimating the cured proportion

on fitting the working model as selected by AIC or [ results in higher efficiency.
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Table 4.2: Estimate, s.e., 95% LCL and 95% UCL for DEWP, DLBP and DNB cure
rate models on analyzing cutaneous melanoma data.

Fitted Model | Measure @ Bo B Yo T Yo Y3 10)
Est. 0.761 | -1.985 | 1.265 | 1.845 | 7.423 | 0.112 | 0.305 | -0.700
DEWP s.e. 0.218 | 0.909 | 0.646 | 0.219 | 1.904 | 0.043 | 0.492 -
LCL 0.333 | -3.768 | -0.002 | 1.414 | 3.689 | 0.027 | -0.660 -
UCL 1.188 | -0.202 | 2.532 | 2.276 | 11.156 | 0.196 | 1.270 -
Est. 1.527 | -2.119 | 0.081 | 1.822 | 8.011 | 0.115 | 0.433 -
DLBP s.e. 0.529 | 0.454 | 0.053 | 0.224 | 2.723 | 0.046 | 0.611 -
LCL 0.489 | -3.009 | -0.023 | 1.382 | 2.672 | 0.024 | -0.765 -
UCL | 2.565 | -1.229 | 0.186 | 2.263 | 13.349 | 0.207 | 1.633 -
Est. 3.670 | -2.602 | 1.081 | 2.845 | 7.282 | 0.192 | -1.596 | 5.200
DNB s.e. 1.205 | 0.925 | 0.537 | 0.328 | 1.342 | 0.071 | 1.236 -
LCL 1.306 | -4.416 | 0.027 | 2.201 | 4.650 | 0.052 | -4.019 -
UCL | 6.033 | -0.788 | 2.136 | 3.489 | 9.913 | 0.332 | 0.826 -
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Table 4.3: Maximized log-likelihood values for destructive cure rate models with other

link functions.

Link Function Model ) l
DEWP | -0.7 | -205.253
az _ePotbiz
N = e, Lo (L1) | DLBP | - | -204.979
DNB 2.2 | -199.108
DEWP | -0.4 | -205.055
azx _ePothiz
n=e ’l—i-eoﬁw (LQ) DLBP - -208.289
DNB 6.9 | -199.962
DEWP | -1.0 | -203.994
n=etotez € (13) | DLBP | - | -206.786
DNB 7.2 | -201.085
DEWP | -0.2 | -205.302
n= et e (L4) | DLBP | - |-206.667
DNB 6.4 | -200.313

** This link is used for all analysis.
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Table 4.4: Estimate, s.e., bias, RMSE, 95% CI and C.P. for destructive exponentially
weighted Poisson cure rate model with ¢ = 0.2 for moderate sample size.

n (Pmin» Pmax) A 0 | True Value Est. s.e. bias RMSE 95% C.I1. C.P.
300 (0.2, 0.6) 0.05 | « 1.099 1.076 | 0.238 | -0.023 0.333 (0.609, 1.543) 0.928
Bo -1.386 -1.470 | 0.258 | -0.084 0.592 (-1.975, -0.965) | 0.472
51 0.142 0.144 | 0.087 | 0.037 0.122 (-0.027, 0.315) 0.949
Yo 1.658 1.810 | 0.138 | 0.153 0.231 (1.539, 2.082) 0.825
Y1 3.765 3.863 | 0.453 | 0.098 0.625 (2.975, 4.750) 0.940
Ya -0.005 -0.029 | 0.042 | -0.023 0.060 (-0.111, 0.054) 0.924
Y3 0.024 -0.167 | 0.270 | -0.191 0.403 (-0.697, 0.363) 0.882
[ 0.200 0.250 - - - - -
300 (0.3, 0.9) 0.05 | « 1.099 1.074 | 0.201 | -0.025 0.278 (0.680, 1.469) 0.934
Bo -0.848 -0.999 | 0.283 | -0.151 0.610 (-1.553, -0.445) | 0.504
51 0.161 0.305 | 0.173 | 0.123 0.262 (-0.033, 0.644) 0.923
Yo 1.658 1.842 | 0.122 | 0.184 0.236 (1.602, 2.081) 0.702
Y1 3.765 3.926 | 0.386 | 0.162 0.550 (3.170, 4.683) 0.923
Ya -0.005 -0.043 | 0.039 | -0.038 0.064 (-0.119, 0.033) 0.815
Y3 0.024 -0.304 | 0.245 | -0.328 0.447 (-0.785, 0.176) 0.746
[ 0.200 0.289 - - - - -
300 (0.2, 0.6) 0.15 | « 1.099 1.099 | 0.300 | 0.000 0.407 (0.511, 1.687) 0.941
Bo -1.386 -1.539 | 0.315 | -0.153 0.596 (-2.158, -0.921) | 0.693
51 0.097 0.150 | 0.105 | 0.042 0.151 (-0.055, 0.355) 0.941
Yo 1.658 1.808 | 0.165 | 0.150 0.260 (1.484, 2.132) 0.869
Y1 3.765 3.809 | 0.618 | 0.045 0.836 (2.598, 5.021) 0.932
Ya -0.005 -0.032 | 0.058 | -0.027 0.083 (-0.146, 0.083) 0.925
Y3 0.024 -0.212 | 0.377 | -0.236 0.556 (-0.952, 0.527) 0.894
[ 0.200 0.296 - - - - -
300 (0.3, 0.9) 0.15 | « 1.099 1.102 | 0.271 0.003 0.368 (0.571, 1.633) 0.946
Bo -0.848 -1.034 | 0.360 | -0.186 0.668 (-1.739, -0.329) | 0.664
51 0.176 0.405 | 0.268 | 0.223 0.416 (-0.119, 0.930) 0.909
Yo 1.658 1.820 | 0.145 | 0.162 0.243 (1.535, 2.104) 0.824
Y1 3.765 3.915 | 0.543 | 0.150 0.742 (2.850, 4.979) 0.946
Yo -0.005 -0.043 | 0.052 | -0.038 0.080 (-0.144, 0.058) 0.854
Y3 0.024 -0.364 | 0.352 | -0.388 0.581 (-1.053, 0.325) 0.821
P 0.200 0.294 - - - - -
300 (0.2, 0.6) 0.25 | « 1.099 1.101 0.398 | 0.002 0.522 (0.321, 1.882) 0.953
Bo -1.387 -1.526 | 0.406 | -0.139 0.647 (-2.323, -0.728) | 0.839
51 0.111 0.174 0.147 0.067 0.210 (-0.114, 0.463) 0.942
Yo 1.658 1.817 | 0.194 | 0.160 0.296 (1.436, 2.198) 0.900
Y1 3.765 3.843 | 0.870 | 0.079 1.156 (2.137, 5.550) 0.922
Ya -0.005 -0.030 | 0.078 | -0.024 0.107 (-0.182, 0.122) 0.912
Y3 0.024 -0.227 | 0.524 | -0.251 0.723 (-1.254, 0.800) 0.930
[} 0.200 0.286 - - - - -
300 (0.3, 0.9) 0.25 | « 1.099 1.120 | 0.382 | 0.021 0.491 (0.372, 1.869) 0.967
Bo -0.847 -1.019 | 0.463 | -0.171 0.765 (-1.925, -0.112) | 0.812
51 0.142 0.374 | 0.287 | 0.190 0.421 (-0.188, 0.936) 0.918
Yo 1.658 1.819 | 0.170 | 0.162 0.271 (1.486, 2.153) 0.866
Y1 3.765 3.950 | 0.777 | 0.185 1.014 (2.427, 5.472) 0.960
Ya -0.005 -0.042 | 0.065 | -0.037 0.097 (-0.170, 0.086) 0.887
Y3 0.024 -0.395 | 0.497 | -0.419 0.734 (-1.370, 0.580) 0.924
& 0.200 0.293 - - - - -
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Table 4.5: Estimate, s.e., bias, RMSE, 95% CI and C.P. for destructive exponentially
weighted Poisson cure rate model with ¢ = 0.2 for large sample size.

n (Pmin» Pmax) A 0 | True Value Est. s.e. bias RMSE 95% C.I1. C.P.
400 (0.2, 0.6) 0.05 | « 1.099 1.080 | 0.207 | -0.019 0.288 (0.675, 1.485) 0.929
Bo -1.386 -1.419 | 0.222 | -0.033 0.568 (-1.855, -0.983) | 0.374
51 0.086 0.135 | 0.072 | 0.033 0.100 (-0.006, 0.276) 0.948
Yo 1.658 1.797 | 0.119 | 0.139 0.204 (1.564, 2.030) 0.802
Y1 3.765 3.844 | 0.392 | 0.079 0.533 (3.076, 4.611) 0.952
Ya -0.005 -0.029 | 0.036 | -0.023 0.052 (-0.099, 0.041) 0.905
Y3 0.024 -0.163 | 0.232 | -0.187 0.356 (-0.618, 0.291) 0.874
[ 0.200 0.216 - - - - -
400 (0.3, 0.9) 0.05 | « 1.099 1.081 0.176 | -0.018 0.241 (0.736, 1.426) 0.932
Bo -0.847 -0.991 | 0.236 | -0.143 0.565 (-1.454, -0.527) | 0.448
51 0.153 0.245 | 0.123 | 0.071 0.182 (0.005, 0.486) 0.918
Yo 1.658 1.832 | 0.105 | 0.174 0.213 (1.625, 2.038) 0.652
Y1 3.765 3.923 | 0.337 | 0.158 0.475 (3.263, 4.583) 0.937
Ya -0.005 -0.043 | 0.033 | -0.038 0.057 (-0.109, 0.023) 0.793
Y3 0.024 -0.292 | 0.211 | -0.315 0.404 (-0.706, 0.123) 0.688
[ 0.200 0.293 - - - - -
400 (0.2, 0.6) 0.15 | « 1.099 1.102 | 0.261 0.003 0.355 (0.589, 1.614) 0.935
Bo -1.386 -1.495 | 0.271 | -0.108 0.535 (-2.025, -0.964) | 0.642
51 0.120 0.130 | 0.086 | 0.027 0.122 (-0.039, 0.300) 0.947
Yo 1.658 1.801 0.142 | 0.143 0.231 (1.522, 2.080) 0.846
Y1 3.765 3.836 | 0.536 | 0.071 0.733 (2.785, 4.886) 0.943
Ya -0.005 -0.029 | 0.051 | -0.024 0.072 (-0.129, 0.070) 0.920
Y3 0.024 -0.193 | 0.324 | -0.217 0.475 (-0.828, 0.443) 0.898
[ 0.200 0.278 - - - - -
400 (0.3, 0.9) 0.15 | « 1.099 1.091 0.233 | -0.008 0.318 (0.635, 1.548) 0.931
Bo -0.848 -0.983 | 0.427 | -0.136 0.733 (-1.820, -0.147) | 0.582
51 0.210 0.295 | 0.192 | 0.118 0.282 (-0.081, 0.670) 0.925
Yo 1.658 1.810 | 0.125 | 0.152 0.217 (1.565, 2.054) 0.789
Y1 3.765 3.920 | 0.470 | 0.156 0.643 (2.998, 4.842) 0.954
Yo -0.005 -0.046 | 0.045 | -0.041 0.071 (-0.133, 0.042) 0.838
Y3 0.024 -0.329 | 0.300 | -0.353 0.511 (-0.917, 0.258) 0.796
P 0.200 0.313 - - - - -
400 (0.2, 0.6) 0.25 | « 1.099 1.092 | 0.342 | -0.007 0.455 (0.421, 1.763) 0.954
Bo -1.386 -1.519 | 0.347 | -0.132 0.557 (-2.199, -0.838) | 0.836
51 0.114 0.146 | 0.112 | 0.043 0.160 (-0.073, 0.365) 0.940
Yo 1.658 1.797 | 0.167 | 0.139 0.254 (1.469, 2.124) 0.891
Y1 3.765 3.868 | 0.764 | 0.103 0.995 (2.371, 5.365) 0.951
Ya -0.005 -0.028 | 0.067 | -0.023 0.092 (-0.160, 0.103) 0.926
Y3 0.024 -0.198 | 0.447 | -0.222 0.618 (-1.073, 0.678) 0.928
[} 0.200 0.286 - - - - -
400 (0.3, 0.9) 0.25 | « 1.099 1.105 | 0.319 | 0.006 0.413 (0.479, 1.731) 0.962
Bo -0.847 -1.008 | 0.379 | -0.160 0.640 (-1.751, -0.265) | 0.791
51 0.223 0.350 | 0.244 | 0.175 0.362 (-0.129, 0.829) 0.934
Yo 1.658 1.799 | 0.145 | 0.141 0.232 (1.514, 2.083) 0.850
Y1 3.765 3.941 0.670 | 0.176 0.900 (2.627, 5.255) 0.958
Ya -0.005 -0.045 | 0.056 | -0.040 0.087 (-0.155, 0.066) 0.847
Y3 0.024 -0.356 | 0.416 | -0.380 0.634 (-1.171, 0.460) 0.885
& 0.200 0.286 - - - - -
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Table 4.6: Estimate, s.e., bias, RMSE, 95% CI and C.P. for destructive exponentially
weighted Poisson cure rate model with ¢ = 0.2 for large sample size with (Pumin, Pmax) =

(0.2,0.6) and A = 0.05.

¢ is estimated with ¢ = 0.597
0 | True Value | Est. s.e. | Bias | RMSE 95% C.P.
o} 1.099 1.064 | 0.187 | -0.035 | 0.252 | (0.698, 1.430) | 0.929
Bo -1.386 -1.809 | 0.333 | -0.422 | 1.452 | (-2.462, -1.156) | 0.291
Joi 0.099 0.778 | 0.570 | 0.675 | 0.923 | (-0.339, 1.894) | 0.899
Yo 1.658 1.816 | 0.120 | 0.158 | 0.215 | (1.581, 2.050) | 0.758
oGl 3.765 3.953 | 0.391 | 0.188 | 0.555 | (3.187,4.718) | 0.929
Yo -0.005 -0.022 | 0.035 | -0.017 | 0.049 | (-0.091, 0.047) | 0.919
Y3 0.024 -0.148 | 0.230 | -0.172 | 0.357 | (-0.598, 0.302) | 0.848
¢ is not estimated and fixed at 0.200
Q@ 1.099 1.086 | 0.204 | -0.013 | 0.264 | (0.685, 1.486) | 0.979
Bo -1.386 -1.348 | 0.208 | 0.038 | 0.276 | (-1.756,-0.941) | 0.979
51 0.099 0.099 | 0.053 | -0.004 | 0.069 | (-0.005, 0.202) | 0.989
Yo 1.658 1.815 | 0.120 | 0.157 | 0.214 | (1.581,2.049) | 0.778
T 3.765 3.944 | 0.390 | 0.180 | 0.553 | (3.179, 4.709) | 0.959
Yo -0.005 -0.022 | 0.036 | -0.016 | 0.050 | (-0.092, 0.049) | 0.939
Y3 0.024 -0.154 | 0.230 | -0.178 | 0.362 | (-0.606, 0.297) | 0.870
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Table 4.7: Estimate, s.e., bias, RMSE, 95% C.I. and C.P. for destructive length-biased
Poisson cure rate model for moderate sample size.

n (Prmins Pmax) A 6 | True Value | Est. s.e. Bias | RMSE 95% C.I. C.P.
300 (0.2, 0.6) 0.05 | « 1.099 1.083 | 0.290 | -0.016 | 0.393 (0.515, 1.651) 0.958
Bo -1.387 -1.400 | 0.189 | -0.013 | 0.254 (-1.770, -1.030) | 0.957
B 0.108 0.110 | 0.051 | 0.003 0.069 (0.010, 0.210) 0.957
Yo 1.658 1.799 | 0.123 | 0.141 0.208 (1.558, 2.040) 0.813
" 3.765 3.935 | 0.378 | 0.170 0.533 (3.194, 4.676) 0.937
Yo -0.005 -0.027 | 0.038 | -0.022 | 0.055 (-0.102, 0.047) 0.907
V3 0.024 -0.144 | 0.240 | -0.168 | 0.356 (-0.616, 0.327) 0.898
300 (0.3, 0.9) 0.05 | « 1.099 1.064 | 0.287 | -0.035 0.383 (0.501, 1.627) 0.966
Bo -0.847 -0.851 | 0.195 | -0.003 | 0.262 (-1.233, -0.469) | 0.949
B 0.177 0.191 | 0.074 | 0.008 0.099 (0.045, 0.337) 0.946
Yo 1.658 1.830 | 0.109 | 0.173 0.214 (1.617, 2.044) 0.684
" 3.765 4.005 | 0.329 | 0.240 0.491 (3.361, 4.649) 0.901
Y2 -0.005 -0.046 | 0.035 | -0.041 | 0.060 (-0.114, 0.022) 0.787
V3 0.024 -0.281 | 0.236 | -0.305 | 0.418 (-0.744, 0.182) 0.770
300 (0.2, 0.6) 0.15 | « 1.099 1.077 | 0.387 | -0.022 | 0.505 (0.318, 1.836) 0.982
Bo -1.387 -1.404 | 0.241 | -0.018 | 0.315 (-1.876, -0.932) | 0.968
B 0.144 0.110 | 0.070 | 0.002 0.092 (-0.027, 0.247) 0.960
Yo 1.658 1.799 | 0.147 | 0.141 0.233 (1.511, 2.087) 0.868
" 3.765 3.893 | 0.515 | 0.129 0.691 (2.883, 4.903) 0.952
Yo -0.005 -0.028 | 0.053 | -0.023 | 0.074 (-0.132, 0.075) 0.936
Y3 0.024 -0.165 | 0.340 | -0.189 | 0.480 (-0.832, 0.502) 0.929
300 (0.3, 0.9) 0.15 | « 1.099 1.062 | 0.419 | -0.037 | 0.540 (0.240, 1.884) 0.984
Bo -0.848 -0.845 | 0.253 | 0.003 0.332 (-1.340, -0.350) | 0.970
B 0.132 0.190 | 0.100 | 0.007 0.130 (-0.007, 0.386) 0.952
Yo 1.658 1.819 | 0.129 | 0.162 0.226 (1.567, 2.072) 0.762
0% 3.765 3.972 | 0.452 | 0.207 0.620 (3.087, 4.857) 0.956
Y -0.005 -0.044 | 0.047 | -0.039 | 0.072 (-0.136, 0.047) 0.850
V3 0.024 -0.323 | 0.355 | -0.347 | 0.552 (-1.018, 0.372) 0.877
300 (0.2, 0.6) 0.25 | « 1.099 1.031 | 0.546 | -0.068 | 0.679 (-0.038 , 2.100) | 0.989
5o -1.387 -1.424 | 0.314 | -0.037 | 0.403 ( -2.039, -0.808) | 0.976
font 0.144 0.117 | 0.094 | 0.009 0.121 (-0.066, 0.301) 0.953
Yo 1.658 1.806 | 0.172 | 0.149 0.267 (1.469, 2.143) 0.876
Y 3.765 3.852 | 0.704 | 0.087 0.921 (2.471, 5.232) 0.952
Va2 -0.005 -0.029 | 0.070 | -0.024 | 0.097 (-0.168, 0.109) 0.925
V3 0.024 -0.167 | 0.472 | -0.191 | 0.633 (-1.092, 0.757) 0.955
300 (0.3, 0.9) 0.25 | « 1.099 1.020 | 0.692 | -0.079 | 0.830 (-0.335, 2.375) 0.991
Bo -0.847 -0.852 | 0.330 | -0.004 | 0.424 (-1.499, -0.205) | 0.966
B 0.160 0.185 | 0.124 | 0.003 0.161 (-0.058, 0.429) 0.943
Yo 1.658 1.808 | 0.149 | 0.150 0.237 (1.516, 2.099) 0.869
" 3.765 3.986 | 0.637 | 0.221 0.835 (2.736, 5.235) 0.974
Y2 -0.005 -0.043 | 0.058 | -0.038 | 0.085 (-0.157, 0.071) 0.889
73 0.024 -0.292 | 0.496 | -0.316 | 0.677 (-1.264, 0.679) 0.955
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Table 4.8: Estimate, s.e., bias, RMSE, 95% C.I. and C.P. for destructive length-biased
Poisson cure rate model for large sample size.

n (Pmins Pmax) A 0 | True Value | Est. s.e. bias | RMSE 95% C.1. C.P.

400 (0.2, 0.6) 0.05 | « 1.099 1.060 | 0.252 | -0.039 | 0.341 (0.567, 1.553) 0.952
Bo -1.386 -1.392 | 0.163 | -0.005 | 0.220 (-1.711, -1.072) | 0.957

51 0.085 0.108 | 0.044 | 0.005 0.059 (0.022, 0.194) 0.954

Yo 1.658 1.792 | 0.106 | 0.135 0.186 (1.584, 2.000) 0.774

7 3.765 3.922 | 0.326 | 0.157 0.466 (3.284, 4.560) 0.926

Y2 -0.005 -0.028 | 0.033 | -0.023 | 0.048 (-0.092, 0.036) | 0.892

V3 0.024 -0.139 | 0.207 | -0.163 | 0.316 (-0.544, 0.266) | 0.874

400 (0.3, 0.9) 0.05 | « 1.099 1.052 | 0.247 | -0.047 | 0.333 (0.568, 1.536) 0.961
Bo -0.847 -0.852 | 0.168 | -0.004 | 0.233 (-1.181, -0.522) | 0.942

B 0.205 0.186 | 0.064 | 0.012 0.087 (0.062, 0.311) 0.942

Yo 1.658 1.811 | 0.093 | 0.153 0.187 (1.627, 1.994) 0.653

o1 3.765 3.995 | 0.287 | 0.231 0.438 (3.433, 4.558) 0.904

Yo -0.005 -0.048 | 0.03 | -0.043 | 0.056 (-0.108, 0.011) | 0.711

V3 0.024 -0.254 | 0.203 | -0.278 | 0.371 (-0.652, 0.143) | 0.736

400 (0.2, 0.6) 0.15 | « 1.099 1.062 | 0.333 | -0.037 | 0.435 (0.409, 1.714) 0.975
Bo -1.386 -1.399 | 0.208 | -0.013 | 0.273 (-1.807, -0.992) | 0.964

B 0.097 0.109 | 0.060 | 0.006 0.078 (-0.009, 0.227) | 0.966

Yo 1.658 1.784 | 0.126 | 0.126 0.203 (1.537, 2.031) 0.848

Y 3.765 3.895 | 0.448 | 0.130 0.599 (3.017, 4.773) 0.963

Y2 -0.005 -0.027 | 0.046 | -0.022 0.064 (-0.116, 0.062) | 0.920

Y3 0.024 -0.165 | 0.291 | -0.189 0.422 (-0.736, 0.407) | 0.894

400 (0.3, 0.9) 0.15 | « 1.099 1.045 | 0.346 | -0.054 | 0.447 (0.367, 1.724) 0.980
Bo -0.849 -0.852 | 0.216 | -0.004 | 0.286 (-1.276, -0.428) | 0.956

51 0.165 0.180 | 0.084 | 0.004 0.110 (0.016, 0.344) 0.939

Yo 1.658 1.806 | 0.111 | 0.148 0.200 (1.589, 2.023) 0.748

Y1 3.765 3.965 | 0.391 | 0.200 0.537 (3.198, 4.732) 0.957

Y2 -0.005 -0.045 | 0.040 | -0.040 | 0.065 (-0.124, 0.034) | 0.827

V3 0.024 -0.283 | 0.295 | -0.307 | 0.475 (-0.861, 0.294) | 0.856

400 (0.2, 0.6) 0.25 | « 1.099 1.055 | 0.455 | -0.044 | 0.566 (0.163, 1.947) 0.986
Bo -1.387 -1.406 | 0.270 | -0.02 0.341 (-1.936, -0.876) | 0.981

B 0.093 0.108 | 0.081 | 0.005 0.102 (-0.050, 0.266) | 0.962

Yo 1.658 1.784 | 0.147 | 0.127 0.225 (1.496, 2.072) 0.892

o1 3.765 3.892 | 0.612 | 0.127 0.791 (2.692, 5.091) 0.973

Va2 -0.005 -0.029 | 0.062 | -0.023 | 0.082 (-0.150, 0.092) | 0.950

VY3 0.024 -0.150 | 0.408 | -0.174 | 0.539 (-0.949, 0.649) | 0.961

400 (0.3, 0.9) 0.25 | « 1.099 1.031 | 0.553 | -0.068 | 0.659 (-0.053, 2.115) | 0.993
Bo -0.847 -0.839 | 0.284 | 0.009 0.356 (-1.396, -0.282) | 0.979

B 0.165 0.176 | 0.108 | 0.000 0.138 (-0.037, 0.388) | 0.947

Yo 1.658 1.799 | 0.128 | 0.141 0.212 (1.548, 2.050) 0.830

Y 3.765 3.995 | 0.547 | 0.230 0.716 (2.923, 5.067) 0.978

Yo -0.005 -0.042 | 0.052 | -0.037 | 0.076 (-0.143, 0.059) | 0.885

¥3 0.024 | -0.292 | 0.421 | -0.316 | 0.593 | (-1.117, 0.534) | 0.939
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Table 4.9: Estimate, s.e., bias, RMSE, 95% C.I. and C.P. for destructive negative
binomial (¢ = 0.5) cure rate model for moderate sample size.

n (Pmin» Pmax) A 0 | True Value Est. s.e. bias RMSE 95% C.I1. C.P.
300 (0.2, 0.6) 0.05 | « 1.099 1.078 | 0.286 | -0.021 0.391 (0.518, 1.639) 0.942
Bo -1.387 -1.435 | 0.290 | -0.048 0.393 (-2.004, -0.866) | 0.955
51 0.094 0.125 | 0.085 | 0.017 0.119 (-0.042, 0.292) 0.946
Yo 1.658 1.847 | 0.158 | 0.190 0.274 (1.537, 2.158) 0.795
Y1 3.765 3.926 | 0.511 0.161 0.721 (2.925, 4.927) 0.929
Ya -0.005 -0.023 | 0.047 | -0.018 0.065 (-0.115, 0.069) 0.945
Y3 0.024 -0.150 | 0.304 | -0.174 0.445 (-0.746, 0.447) 0.899
[ 0.500 0.415 - - - - -
300 (0.3, 0.9) 0.05 | « 1.099 1.022 | 0.244 | -0.077 0.355 (0.544, 1.500) 0.903
Bo -0.848 -0.904 | 0.299 | -0.056 0.409 (-1.490, -0.317) | 0.943
51 0.168 0.207 | 0.129 | 0.024 0.190 (-0.047, 0.461) 0.876
Yo 1.658 1.852 | 0.137 | 0.195 0.257 (1.584, 2.121) 0.727
Y1 3.765 3.932 | 0.432 | 0.168 0.613 (3.085, 4.780) 0.944
Ya -0.005 -0.031 | 0.043 | -0.026 0.062 (-0.115, 0.052) 0.896
Y3 0.024 -0.233 | 0.268 | -0.256 0.434 (-0.758, 0.293) 0.834
[ 0.500 0.280 - - - - -
300 (0.2, 0.6) 0.15 | « 1.099 1.095 | 0.358 | -0.004 0.491 (0.393, 1.797) 0.939
Bo -1.387 -1.465 | 0.362 | -0.078 0.488 (-2.175, -0.754) | 0.953
51 0.117 0.135 | 0.111 0.027 0.155 (-0.082, 0.352) 0.940
Yo 1.658 1.848 | 0.190 | 0.190 0.310 (1.476, 2.219) 0.842
Y1 3.765 3.838 | 0.690 | 0.073 0.953 (2.485, 5.191) 0.925
Ya -0.005 -0.024 | 0.067 | -0.018 0.093 (-0.155, 0.108) 0.940
Y3 0.024 -0.210 | 0.429 | -0.234 0.621 (-1.051, 0.631) 0.909
[ 0.500 0.414 - - - - -
300 (0.3, 0.9) 0.15 | « 1.099 1.031 0.313 | -0.068 0.442 (0.417, 1.645) 0.916
Bo -0.847 -0.954 | 0.383 | -0.106 0.522 (-1.705, -0.202) | 0.957
51 0.187 0.263 | 0.183 | 0.081 0.273 (-0.097, 0.622) 0.891
Yo 1.658 1.856 | 0.165 | 0.199 0.284 (1.533, 2.179) 0.804
Y1 3.765 3.949 | 0.606 | 0.184 0.851 (2.761, 5.137) 0.931
Yo -0.005 -0.032 | 0.057 | -0.027 0.082 (-0.145, 0.08) 0.912
Y3 0.024 -0.250 | 0.381 | -0.274 0.578 (-0.998, 0.497) 0.875
P 0.500 0.323 - - - - -
300 (0.2, 0.6) 0.25 | « 1.099 1.088 | 0.472 | -0.011 0.636 (0.162, 2.013) 0.943
Bo -1.386 -1.462 | 0.466 | -0.075 0.618 (-2.375, -0.549) | 0.962
51 0.124 0.151 0.152 0.043 0.211 (-0.147, 0.449) 0.945
Yo 1.658 1.864 | 0.223 | 0.207 0.357 (1.427, 2.302) 0.866
Y1 3.765 3.797 | 0.943 | 0.032 1.270 (1.949, 5.645) 0.905
Ya -0.005 -0.020 | 0.091 | -0.015 0.124 (-0.199, 0.160) 0.931
Y3 0.024 -0.252 | 0.588 | -0.276 0.829 (-1.404, 0.901) 0.925
[} 0.500 0.416 - - - - -
300 (0.3, 0.9) 0.25 | « 1.099 1.071 0.424 | -0.028 0.565 (0.239, 1.903) 0.953
Bo -0.849 -0.949 | 0.499 | -0.101 0.660 (-1.928, 0.030) 0.957
51 0.205 0.312 | 0.281 0.130 0.394 (-0.238, 0.863) 0.900
Yo 1.658 1.850 | 0.192 | 0.193 0.311 (1.475, 2.226) 0.844
Y1 3.765 3.969 | 0.854 | 0.205 1.136 (2.296, 5.643) 0.954
Ya -0.005 -0.029 | 0.076 | -0.024 0.107 (-0.177, 0.120) 0.922
Y3 0.024 -0.312 | 0.536 | -0.336 0.755 (-1.362, 0.738) 0.936
& 0.500 0.349 - - - - -
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Table 4.10: Estimate, s.e., bias, RMSE, 95% C.I. and C.P. for destructive negative
binomial (¢ = 0.5) cure rate model for large sample size.

n (Pmin» Pmax) A 0 | True Value Est. s.e. bias RMSE 95% C.I1. C.P.
400 (0.2, 0.6) 0.05 | « 1.099 1.061 0.246 | -0.038 0.352 (0.580, 1.543) 0.916
Bo -1.386 -1.432 | 0.248 | -0.045 0.337 (-1.918, -0.946) | 0.949
51 0.115 0.116 | 0.071 0.013 0.101 (-0.022, 0.255) 0.928
Yo 1.658 1.827 | 0.136 | 0.169 0.241 (1.561, 2.093) 0.786
Y1 3.765 3.917 | 0.441 0.153 0.620 (3.052, 4.782) 0.925
Ya -0.005 -0.023 | 0.040 | -0.018 0.057 (-0.102, 0.056) 0.933
Y3 0.024 -0.131 | 0.262 | -0.155 0.383 (-0.645, 0.382) 0.897
[ 0.500 0.369 - - - - -
400 (0.3, 0.9) 0.05 | « 1.099 1.012 | 0.212 | -0.087 0.310 (0.597, 1.426) 0.894
Bo -0.847 -0.905 | 0.255 | -0.057 0.349 (-1.404, -0.405) | 0.944
51 0.159 0.194 | 0.107 | 0.017 0.159 (-0.016, 0.403) 0.869
Yo 1.658 1.837 | 0.117 | 0.180 0.229 (1.607, 2.068) 0.683
Y1 3.765 3.968 | 0.379 | 0.203 0.551 (3.225, 4.710) 0.924
Ya -0.005 -0.028 | 0.036 | -0.023 0.053 (-0.100, 0.043) 0.916
Y3 0.024 -0.215 | 0.231 | -0.239 0.382 (-0.667, 0.238) 0.806
[ 0.500 0.265 - - - - -
400 (0.2, 0.6) 0.15 | « 1.099 1.059 | 0.310 | -0.040 0.430 (0.452, 1.667) 0.931
Bo -1.387 -1.450 | 0.312 | -0.063 0.417 (-2.062, -0.838) | 0.959
51 0.098 0.128 | 0.097 | 0.024 0.135 (-0.062, 0.318) 0.931
Yo 1.658 1.816 | 0.162 | 0.158 0.264 (1.498, 2.133) 0.855
Y1 3.765 3.873 | 0.615 | 0.109 0.833 (2.669, 5.078) 0.959
Ya -0.005 -0.024 | 0.057 | -0.019 0.079 (-0.136, 0.088) 0.935
Y3 0.024 -0.166 | 0.367 | -0.190 0.531 (-0.886, 0.554) 0.910
[ 0.500 0.381 - - - - -
400 (0.3, 0.9) 0.15 | « 1.099 1.048 | 0.271 | -0.051 0.381 (0.517, 1.579) 0.928
Bo -0.847 -0.936 | 0.323 | -0.088 0.442 (-1.568, -0.304) | 0.941
51 0.213 0.222 | 0.145 | 0.045 0.217 (-0.062, 0.505) 0.885
Yo 1.658 1.831 0.141 0.174 0.246 (1.556, 2.107) 0.774
Y1 3.765 3.936 | 0.526 | 0.171 0.724 (2.905, 4.966) 0.946
Yo -0.005 -0.031 | 0.050 | -0.025 0.073 (-0.129, 0.068) 0.906
Y3 0.024 -0.259 | 0.326 | -0.283 0.502 (-0.898, 0.381) 0.871
P 0.5 0.303 - - - - -
400 (0.2, 0.6) 0.25 | « 1.099 1.074 | 0.400 | -0.025 0.537 (0.290, 1.857) 0.946
Bo -1.387 -1.454 | 0.398 | -0.067 0.529 (-2.234, -0.674) | 0.957
51 0.094 0.131 0.119 | 0.027 0.164 (-0.103, 0.365) 0.945
Yo 1.658 1.826 | 0.190 | 0.169 0.297 (1.454, 2.199) 0.882
Y1 3.765 3.856 | 0.841 0.092 1.140 (2.208, 5.504) 0.922
Ya -0.005 -0.027 | 0.077 | -0.022 0.105 (-0.177, 0.123) 0.933
Y3 0.024 -0.194 | 0.503 | -0.218 0.695 (-1.180, 0.792) 0.935
[} 0.500 0.399 - - - - -
400 (0.3, 0.9) 0.25 | « 1.099 1.068 | 0.361 | -0.031 0.492 (0.361 , 1.775) 0.936
Bo -0.847 -0.944 | 0.413 | -0.096 0.553 (-1.754, -0.133) | 0.944
51 0.204 0.240 | 0.186 | 0.064 0.267 (-0.124, 0.604) 0.895
Yo 1.658 1.824 | 0.164 | 0.166 0.266 (1.502, 2.146) 0.856
Y1 3.765 3.935 | 0.733 | 0.170 0.976 (2.498, 5.372) 0.951
Ya -0.005 -0.029 | 0.065 | -0.024 0.092 (-0.156, 0.097) 0.912
Y3 0.024 -0.302 | 0.453 | -0.326 0.660 (-1.191, 0.587) 0.916
& 0.500 0.327 - - - - -
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Table 4.11: Estimate, s.e., bias, RMSE, 95% C.I. and C.P. for destructive negative
binomial (¢ = 5.2) cure rate model for moderate sample size.

n (Pmins Pmax) A 0 | True Value Est. s.e. bias RMSE 95% C.1. C.P.
300 (0.2, 0.6) 0.05 | « 1.099 0.963 | 0.486 | -0.136 0.685 (0.010, 1.915) 0.906
Bo -1.387 -0.592 | 0.479 | 0.795 1.671 (-1.530, 0.346) | 0.914
Ioi 0.095 0.088 | 0.216 | -0.020 0.463 (-0.335, 0.510) | 0.908
Yo 1.658 2.028 | 0.224 | 0.370 0.458 (1.588, 2.467) 0.650
Y1 3.765 4.275 0.676 | 0.510 1.022 (2.950, 5.599) 0.898
Yo -0.005 -0.016 | 0.074 | -0.010 0.100 (-0.160, 0.129) | 0.942
Y3 0.024 -0.189 | 0.442 | -0.213 0.629 (-1.056, 0.677) | 0.908
[} 5.200 4.149 - - - - -
300 (0.3, 0.9) 0.05 | « 1.099 0.860 | 0.452 | -0.239 0.681 (-0.025, 1.745) | 0.871
Bo -0.848 -0.677 | 0.665 | 0.171 1.330 (-1.980, 0.626) | 0.867
Ioi 0.138 0.470 | 0.466 | 0.289 0.753 (-0.443, 1.383) | 0.863
Yo 1.658 2.033 | 0.201 0.376 0.442 (1.640, 2.426) 0.590
Y1 3.765 4.405 0.631 0.640 1.051 (3.167, 5.642) 0.829
Yo -0.005 -0.020 | 0.067 | -0.015 0.092 (-0.152, 0.111) | 0.940
Y3 0.024 -0.227 | 0.407 | -0.251 0.594 (-1.024, 0.570) | 0.904
[} 5.200 3.893 - - - - -
300 (0.2, 0.6) 0.15 | « 1.099 1.006 | 0.625 | -0.093 0.892 (-0.219, 2.230) | 0.918
Bo -1.387 -0.960 | 0.590 | 0.427 1.469 (-2.116, 0.196) | 0.922
Ioi 0.092 0.089 | 0.225 | -0.019 0.422 (-0.352, 0.530) | 0.944
Yo 1.658 2.048 | 0.273 | 0.390 0.517 (1.512, 2.584) 0.729
Y1 3.765 4.154 | 0.961 0.389 1.322 (2.271, 6.037) 0.944
Yo -0.005 -0.021 | 0.108 | -0.016 0.152 (-0.233, 0.192) | 0.926
Y3 0.024 -0.275 | 0.657 | -0.299 0.958 (-1.564, 1.013) | 0.912
[} 5.200 4.177 - - - - -
300 (0.3, 0.9) 0.15 | « 1.099 0.976 | 0.597 | -0.123 0.846 (-0.195, 2.147) | 0.911
Bo -0.847 1.715 0.886 | 2.563 3.939 (-0.022, 3.452) | 0.901
Ioi 0.136 0.212 0.494 | 0.030 1.030 (-0.756, 1.179) | 0.866
Yo 1.658 2.040 | 0.243 | 0.382 0.481 (1.564, 2.516) 0.694
Y1 3.765 4.315 0.905 0.550 1.267 (2.541, 6.089) 0.949
Yo -0.005 -0.023 | 0.098 | -0.018 0.138 (-0.216, 0.170) | 0.935
Y3 0.024 -0.328 | 0.624 | -0.352 0.894 (-1.550, 0.894) | 0.927
[} 5.200 4.070 - - - - -
300 (0.2, 0.6) 0.25 | « 1.099 1.029 | 0.847 | -0.070 1.159 (-0.631, 2.690) | 0.914
Bo -1.386 -1.539 | 1.042 | -0.152 1.390 (-3.582, 0.504) | 0.931
Ioi 0.061 0.284 | 0.380 | 0.176 0.548 (-0.462, 1.029) | 0.937
Yo 1.658 2.047 | 0.320 | 0.390 0.560 (1.419, 2.675) 0.800
Y1 3.765 4.238 1.493 | 0.474 1.990 (1.312, 7.164) 0.904
Yo -0.005 -0.009 | 0.145 | -0.004 0.210 (-0.293, 0.274) | 0.890
Y3 0.024 -0.381 | 0.955 | -0.405 1.337 (-2.253, 1.490) | 0.921
[} 5.200 4.225 - - - - -
300 (0.3, 0.9) 0.25 | « 1.099 1.075 0.843 | -0.024 1.161 (-0.577, 2.727) | 0.892
Bo -0.848 -0.989 | 1.042 | -0.141 1.499 (-3.031, 1.053) | 0.917
Ioi 0.211 0.501 0.638 | 0.316 0.919 (-0.750, 1.751) | 0.865
Yo 1.658 2.044 | 0.284 | 0.387 0.522 (1.487, 2.602) 0.771
o %1 3.765 4.358 1.309 | 0.594 1.789 (1.794, 6.923) 0.942
Yo -0.005 -0.004 | 0.136 | 0.001 0.193 (-0.270, 0.262) | 0.917
Y3 0.024 -0.507 | 0.939 | -0.531 1.352 (-2.347, 1.334) | 0.909
[} 5.200 3.933 - - - - -
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Table 4.12: Estimate, s.e., bias, RMSE, 95% C.I. and C.P. for destructive negative
binomial (¢ = 5.2) cure rate model for large sample size.

n (Pmin> Pmax) 6 | True Value Est. s.e. bias RMSE 95% C.I1. C.P.
400 (0.2, 0.6) 0.05 | « 1.099 0.986 | 0.417 | -0.113 0.599 (0.168, 1.804) 0.924
Bo -1.386 -1.548 | 0.383 | -0.161 0.540 (-2.298, -0.798) | 0.934
51 0.134 0.127 | 0.138 | 0.024 0.201 (-0.145, 0.398) 0.910
Yo 1.658 1.968 | 0.188 | 0.310 0.386 (1.598, 2.337) 0.658
Y1 3.765 4.182 | 0.579 | 0.417 0.857 (3.047, 5.316) 0.932
Yo -0.005 -0.021 | 0.062 | -0.016 0.084 (-0.142, 0.100) 0.954
Y3 0.024 -0.204 | 0.375 | -0.228 0.549 (-0.939, 0.531) 0.916
o) 5.200 3.880 - - - - -
400 (0.3, 0.9) 0.05 | « 1.099 0.861 0.395 | -0.238 0.607 (0.087, 1.635) 0.851
Bo -0.847 -0.377 | 0.456 | 0.471 1.443 (-1.271, 0.517) 0.876
51 0.184 0.272 | 0.323 | 0.096 0.558 (-0.362, 0.905) 0.847
Yo 1.658 2.004 | 0.171 0.346 0.397 (1.668, 2.339) 0.514
Y1 3.765 4.351 0.541 0.586 0.913 (3.291, 5.411) 0.845
Yo -0.005 -0.025 | 0.058 | -0.019 0.081 (-0.139, 0.089) 0.922
Y3 0.024 -0.200 | 0.349 | -0.224 0.524 (-0.885, 0.485) 0.900
o) 5.200 3.770 - - - - -
400 (0.2, 0.6) 0.15 | « 1.099 0.933 | 0.527 | -0.166 0.758 (-0.100, 1.966) 0.896
Bo -1.386 -1.577 | 0.498 | -0.190 0.708 (-2.552, -0.601) | 0.948
51 0.087 0.211 0.218 | 0.107 0.323 (-0.217, 0.639) 0.934
Yo 1.658 1.984 | 0.228 | 0.326 0.429 (1.536, 2.431) 0.733
Y1 3.765 4.223 | 0.834 | 0.458 1.179 (2.588, 5.857) 0.944
Yo -0.005 -0.022 | 0.092 | -0.017 0.128 (-0.202, 0.157) 0.900
Y3 0.024 -0.229 | 0.551 | -0.253 0.764 (-1.309, 0.851) 0.932
o) 5.200 4.043 - - - - -
400 (0.3, 0.9) 0.15 | « 1.099 0.928 | 0.507 | -0.171 0.732 (-0.066, 1.922) 0.909
Bo -0.847 -1.035 | 0.633 | -0.187 0.927 (-2.277, 0.206) 0.913
51 0.183 0.445 | 0.413 | 0.271 0.654 (-0.364, 1.254) 0.842
Yo 1.658 1.997 | 0.206 | 0.339 0.417 (1.594, 2.400) 0.645
Y1 3.765 4.379 | 0.792 | 0.614 1.206 (2.826, 5.932) 0.917
Yo -0.005 -0.014 | 0.085 | -0.009 0.116 (-0.180, 0.152) 0.941
Y3 0.024 -0.312 | 0.522 | -0.336 0.761 (-1.335, 0.7110) | 0.917
o) 5.200 3.834 - - - - -
400 (0.2, 0.6) 0.25 | « 1.099 1.006 | 0.722 | -0.093 0.998 (-0.409, 2.421) 0.918
Bo -1.386 -1.544 | 0.707 | -0.158 1.065 (-2.929, -0.159) | 0.926
51 0.106 0.229 | 0.290 | 0.126 0.435 (-0.340, 0.797) 0.922
Yo 1.658 1.968 | 0.268 | 0.311 0.461 (1.443, 2.493) 0.817
Y1 3.765 4.253 1.290 | 0.488 1.752 (1.725, 6.780) 0.920
Yo -0.005 -0.018 | 0.125 | -0.013 0.176 (-0.263, 0.227) 0.912
Y3 0.024 -0.284 | 0.813 | -0.308 1.120 (-1.878, 1.309) 0.932
o) 5.200 4.087 - - - - -
400 (0.3, 0.9) 0.25 | « 1.099 0.969 | 0.676 | -0.130 0.924 (-0.356, 2.293) 0.923
Bo -0.847 -0.009 | 0.955 | 0.839 2.304 (-1.880, 1.863) 0.905
51 0.177 0.235 | 0.379 | 0.060 0.660 (-0.508, 0.979) 0.872
Yo 1.658 1.990 | 0.242 | 0.333 0.446 (1.517, 2.464) 0.736
Y1 3.765 4.440 1.206 | 0.676 1.648 (2.078, 6.803) 0.953
Yo -0.005 -0.008 | 0.112 | -0.003 0.151 (-0.227, 0.210) 0.925
Y3 0.024 -0.389 | 0.752 | -0.413 1.034 (-1.863, 1.085) 0.947
o) 5.200 3.827 - - - - -
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Table 4.13: Selection rate based on AIC, BIC and maximized log-likelihood value.

Fitted Models
True Models Setting 1(n = 300) Setting 2 (n = 400)
DEWP DLB DNB DEWP DLB DNB
DEWP (¢ = —0.5) | ¢ = —0.044 $=0.115| ¢ = —0.275 b =0.378
AIC 0.159 0.799 0.042 0.179 0.768 0.053
BIC 0.021 0.963 0.016 0.037 0.944 0.019
log-lik 0.589 0.257 0.154 0.630 0.152 0.218
DEWP (¢ =0.2) | ¢ =0.303 $=0.125| &=0222 $ = 0.186
AIC 0.112 0.878 0.010 0.125 0.843 0.032
BIC 0.026 0.961 0.013 0.063 0.919 0.018
log-lik 0.568 0.398 0.034 0.597 0.360 0.043
DLB ¢ = —0.293 ¢ =0.319 | p = —0.077 ¢ = 0.347
AIC 0.084 0.903 0.013 0.073 0.919 0.008
BIC 0.023 0.972 0.005 0.016 0.983 0.001
log-lik 0.436 0.548 0.016 0.427 0.559 0.014
DNB (¢ = 0.5) | ¢ = —0.046 b =0184| &=0311 b = 0.336
AIC 0.172 0.759 0.069 0.163 0.762 0.075
BIC 0.033 0.966 0.001 0.003 0.969 0.028
log-lik 0.589 0.234 0.177 0.556 0.262 0.182
DNB (¢ = 0.75) $=-0.143 $=0.176 | ¢ =0.545 é = 0.346
AIC 0.187 0.745 0.068 0.174 0.737 0.089
BIC 0.046 0.934 0.020 0.040 0.927 0.033
log-lik 0.624 0.228 0.148 0.599 0.242 0.159
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Table 4.14: TRB (%) (TMSE, ¢, TRE) in estimation of cured proportion for all
candidate models.

True Model
Fitted Model | DEWP (g=-03) | DEWP(6=0) | DLBP | DNB(=05) | DNB(o=07)
Setting 1 (n=300)
True Model | 2842 (0004- 1000) | 56493 (0005,- 1000) | 66985 (0.003, -, L000) | 32363 (0.004,- 1000} | 33942 (0.005,- , 100)
DEWP | 30018 (0004, -0.108, 0.902) | 62.255 (0.005, 0267, 0.961) | 82.547 (0.004, 0755, 0.987) | 35.146 (0.005, .04, 0.90) | 36.008 (0.006,-0.131, 0.957)
DLBP 30898 (0005, 1033) | 52888 (0004 - 187) | 66985 (0.003, -, LO00) | 3473 (0.004-, L138) | 35446 (0005, 1092)
DNB 7869 (0.004, 0459, 1.048) | 39.482 (0.005, 0189, 1.126) | 157,468 (0.007, 0.113, 0475) | 31.053 (0004, 0.277, 1115) | 33.143 (0.005, 0317, L111)
Setting 2 (n = 400)
Toe Model | 353 (0003, 1000) | 62365 (0003,- 1L000) | 86617 (0.003,-, L00G) | 41663 (0.004,-, 1006 | 37.1(0.003,- , 1.00O)
DEWP | 37.015 (D004, -0.199, 0.962) | 66.532 (0.004, 0239, 1.004) | 107.147 (D004, 0108, 0.964) | 42595 (0.004, D079, 1006) | 39.126 (0.004,-0.259, 0.972)
DLBP 373 (0004,0,1383) | GLIOL(0003,-, LO8T) | 86617 (0.003, -, 1000) | 42992 (0.004,-,1032) | 40846 (0004, - , L04T)
DNB S4957 (0003, 0.461, 1.045) | 67786 (0.003, 0.198, 1.094) | 193.413 (0.006, 0117, 0455 | 40.039 (0.004, 0,396, 1.123) | 37247 (0.003, 0.379, 1.030)

Table 4.15: TRB (%) and TRE when AIC and [ are used as a model selection criterion.

Setting 1 Setting 2
True Model AIC [ AIC l

TRB (%) TRE | TRB (%) TRE | TRB (%) TRE | TRB (%) TRE
DEWP (¢ = —0.5) | 29.432 1.007 | 29.589 0.962 | 36.347 1.148 | 36.659  1.085
DEWP (¢ =0.2) 55.174  1.134 | 58484  1.066 | 62.321  1.040 | 63.832  1.032
DLB 67.872 0999 | 75178  0.989 | 88.259  0.997 | 94.829  0.986
DNB (¢ = 0.5) 33.909 1.068 | 34.144 1.003 | 42461  1.030 | 42.408  1.027
DNB (¢ = 0.75) 35.015  1.050 | 35.450  1.008 | 39.347 1.023 | 39.104  0.998
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Table 4.16: AIC values when true model is fitted.

True Model
Fitted Model | DEWP (¢ = —0.5) DNB (¢ = 0.5)
Setting 1 Setting 2 | Setting 1 Setting 2
True Model 0.530 0.540 0.330 0.350
DEWP 0.070 0.060 0.100 0.090
DLBP 0.370 0.390 0.530 0.550
DNB 0.030 0.010 0.040 0.010
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Chapter 5

Summary and Conclusions

With significant improvements in bio-medical fields, more patients are getting cured
even for certain cancers. Consequently, in many cases, the survival plots levels off well
above zero even after following up for considerable amount of time. This indicates
the increasing requirement of applying cure rate models for analyzing lifetime data.
Cure rate acts as an important marker to measure the efficacy of a treatment or
therapy and thus, estimating cure rate is often crucial. As such, generalizing this
model through various possible extensions (e.g., proportional hazards lifetimes) and

more realistic assumptions are desirable.

5.1 Summary of research

In this thesis, cure rate and destructive cure rate models under proportional hazards
lifetime for the susceptible are mainly studied. Consideration of a proportional haz-
ards lifetime generalizes the i.i.d lifetimes of the susceptible by linking covariates to
the lifetimes. Additional degrees of flexibility are added to the model by assuming

the COM-Poisson distribution for the initial number of competing causes in case of
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ordinary cure rate model and weighted Poisson distribution in case of destructive cure
rate model under competing cause scenario. The baseline hazard function is modeled
by a Weibull hazard function or approximated by piecewise linear function.

In Chapter 2, a flexible COM-Poisson cure rate model has been studied with a
proportional hazard model for the lifetime distribution of susceptible with the baseline
hazard function being that of a Weibull distribution. The estimation for the model
parameters has been carried out by using the EM algorithm, a profile likelihood ap-
proach for estimating the dispersion parameter of the COM-Poisson distribution, and
Louis’ method for finding the observed information matrix. A number of different sce-
narios have been taken into account concerning the values of cure rates, sample sizes,
censoring proportions and lifetime parameters, in order to carefully evaluate the prop-
erties of the model as well as the performance of the inferential methods developed
here. The estimates of the regression coefficients, lifetime parameters and the cure
rates are all seen to be quite accurate. Low censoring, low cure rates and large sample
size seem to result in more precise estimation. Moreover, the proposed model and the
method has been illustrated by analyzing a real life data set on cutaneous melanoma;
geometric cure rate model is seen to provide the best fit to the data which does not
significantly differentiate between the lifetime distributions across covariate groups
meaning that the test for homogeneity among the groups is not rejected. However,
as ¢ increases (¢ > 1), the assumption of equal lifetime distributions among groups
does get rejected. Thus, the choice of a proportional hazard model for the lifetime
of susceptible becomes better than a parametric Weibull lifetime model, especially
when ¢ > 1.

In Chapter 3, the model proposed in this paper for modeling lifetime data with a
surviving fraction offers a great advantage in terms of flexibility and robustness. The

number of competing causes is modeled using a COM-Poisson distribution. A COM-
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Poisson distribution takes into account many well known discrete distributions e.g.
geometric, Poisson, Bernoulli depending on the value of the dispersion parameter ¢.
A COM-Poisson distribution in general constitutes over-dispersed distributions when
¢ < 1 and under-dispersed distributions when ¢ > 1. More flexibility is included to
the model by assuming the lifetime distributions of the non-cured individuals to be
from a proportional hazards family. A proportional hazard lifetime can vary with
respect to the covariate values leading to non-homogeneity (different lifetime distri-
butions) among the individuals. Moreover, the baseline hazard function is estimated
non-parametrically by estimating with piecewise linear function. This PLA approach
takes into consideration choices of cut-points 79, 7, ..., 7 which are at the discretion
of the reader. Here, we have used quantile values of the observed and censored times,
and also based on the curvature of the kernel based baseline hazard function (only
for the real data). In both cases, we have approximated the baseline hazard function
in [Ty, 00) with the line in [7x_1,7n]. A comparative study was made among models
with N = 1,...,5 and the true parametric model. The estimation of the model pa-
rameters was carried out using EM algorithm and the standard error of the estimates
was obtained employing Louis” method. A profile likelihood approach provided the
MLE for ¢ since the likelihood surface is very flat with respect to ¢. In most of the
cases, the estimates were close to the true value while s.e.’s and RMSE’s are very
similar among the PLAs and the true parametric model. A simulation study with a
single covariate and four different settings depending on censoring rate and sample
size (section 3.4) established the accuracy of the estimates of the model parameters.
An increase in sample size and decrease in the true censoring proportion lead to im-
proved results reducing s.e. and RMSE. To study the difference between true and
estimated survival times, a measure of RISE was applied, which was found to be

have a trend similar to RMSE. It was also observed that on increasing number of
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lines to approximate the baseline hazard beyond 5 did not sufficiently increase (in
some cases decrease) the log-likelihood value. The estimate of ¢y (baseline hazard
at Ty) suffers from large bias since in most of the cases 7y lies far away from 7_1,
so the PLA does not provide a good approximation. The performance of the model
was also assessed based on a power study and model discrimination using LRT and
AIC/BIC, which showed consistent result when the sample size was increased. The
study of the real data on cutaneous melanoma with one covariate of nodule category
suggested that a geometric cure rate model was appropriate unanimously for all V.
On taking 3 covariates, geometric cure rate model delivered the best approximations
for N = 1,2,3 but Poisson and Bernoulli cure rate models for N = 4 and N =5
respectively. On the basis of AIC and BIC, geometric cure rate model with N = 2
provided the minimum values.

In Chapter 4, a destructive cure rate model is studied where the initial competing
causes undergo a destructive mechanism under a competing risk scenario and exam-
ined under proportional hazards lifetime assumption for the susceptible. The model
generalizes earlier works (see Pal and Balakrishnan, 2017, Pal and Balakrishnan,
2016) on destructive cure rate model by assuming non i.i.d lifetimes for suscepti-
ble. This is accomplished by linking covariates to the lifetimes through proportional
hazards assumption. The parameter estimates are found to be quite accurate with
small bias and RMSE. A relatively large bias is observed while estimating ¢, espe-
cially when data are generated from DNB (¢ = 0.75) cure rate model. The estimates
are observed to be more precise for low censoring (A = 0.05), higher proportion of
undamaged competing causes, i.e.,(Pmin, Pmin) = (0.3,0.9) and large sample size. A
model discrimination is also carried out using information criteria. The importance
of proper model selection is discussed by comparing TRB, TMSE and TRE across

models. A well known real life example on cutaneous melanoma is considered for the
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purpose of illustration of our model. A Kaplan-Meier survival curve is plotted cate-
gorized by ulceration status and it indicates the presence of cured individuals. DNB
cure rate model with ¢ = 5.2 provides best fit to the data based on AIC (414.216) and
maximized log-likelihood (-199.108) values. Few nested sub-models are also fitted on
the data and the DG cure rate model is found to have the lowest BIC value among
all other models. The assumption of i.i.d. lifetimes among the susceptible could not
be rejected at 5 % level of significance. Several link functions are considered for as-
sociating p and 7 to the covariates, however, the link L1 (defined in Section 4.6) is

found to produce the highest log-likelihood value.

5.2 Future works

A wide spectrum of future works can be explored using this model. A more generalized
COM-Poisson cure rate model with proportional hazards lifetime for the susceptible
using a generalized gamma baseline hazard can be of interest since this may enable
us with a two-way model discrimination (Balakrishnan and Pal, 2014). The use of an
informative censoring or interval censoring in data instead of right censoring can be
investigated. Future works on cure models under a destructive set-up may proceed
by assuming a Conway-Maxwell (COM) Poisson distribution as the initial number of
competing causes. A more generalized model can be obtained by utilizing the flexibil-
ity of a COM Poisson distribution along with a destructive mechanism with paramet-
ric i.i.d lifetime for the susceptible. An extension to destructive cure rate models can
be implemented with PLA. Further, this can be complemented with a proportional
hazard lifetime distribution as well. Another possible extension to the destructive

cure rate model under proportional hazards assumption can be with respect to the
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estimation technique. Instead of maximizing the expected value E(/ | GEJ), O) while
implementing EM-algorithm, we can maximize E(D, M | sz),O),Where 00) is an
estimate of the parameter @ at j-th step of the iteration and O is the observed data

(Gallardo et al., 2016).

A natural extension under the proportional hazard set-up is to include frailty
through latent covariates. In real life scenario, there are many frailty factors which
affect the lifetime of an individual. Among them, many are not observable but would
be meaningful to contain them in the model. This can be done by including the
frailties through some latent covariates. For this, we form clusters of individuals such
that the k-th cluster is affected by the frailty Xj. Under proportional hazards model,
we can consider the hazard function of the susceptible to be h(t|zy) = ho(t)eY®* for
the k-th cluster. On considering X to be random, the distribution of lifetime T' is
given by ,

£(t) = / ho(t)eY @ {e* Iy ho(z)clz}e7 N g |Ch)day,
Xk

where ¢(.|Cx) is a p.d.f. characterized by the parameter . By assuming various
distributions for the frailty variables, we can carry out simulation under competing

risk and cure rate model (Balakrishnan and Peng, 2006).
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Appendix corresponding to

Chapter 2

A.1 The Q-functions

A.1.1 Bernoulli cure rate model

Q(O*, ﬁ(k)) = Ql(,@, W(k)) + QQ(’)@ W(k))’

where

QuB.wM) = aip+ > maiB D log(l+ ™)

1€EA] i€\ 1€Ao

and
Qa(v, 7®)) = nylogyo — miyology + (o — 1) > logt; + > @iy

1€A 1€A
t‘ o , i t Yo ,
_ E (_Z ewi'YZ _ 5 ﬂ-z( ) i emi72’
iea; M1 Ao m

with
ex [w’-ﬁ — (t—i)%emm}
(k) PP
1+ exp [a:;,B — <§—1> ewm}

(A.1.1)
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for i € Ao.

A.1.2 Poisson cure rate model

Q(0*, ™) = nylogyo —nivologyi + (0 — 1) Z logt;

t: Yo , e
+ Z Ty — Z (—l) e®in

€A 1€EA m

+ > log(log(1 4 €™?)) = "log(1 +€P) + >~ A(t;, @;; 8,7)
A*

1€EA] 1€EA]

_ Z Wz(k) log(A(t;, zi; B,7v) — 1),

i€

where

ti Yo , .
A(ti, i 8,v) = exp [— (—) 6$i72] log(1 + e™?)

4!

for i € A*, with

i eA(tiymi;ﬁv’Y)

(A.1.2)

0=0*(k)

for i € Ay.

A.1.3 Geometric cure rate model

Q6" w™*)) = nylogyo — myology + (o — 1) Y logti + > @iy

€A €AY
+ Z B(ti, xi; B,7)
1€A]
€A1 1€\
— > P log(1+ Ot B,7)) — D log(1+ ™#),
i€AQ 1€A0

where

t\"
Bt @ B,) — @3 — (—)

7
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\ Yo ,
O(ti» wi;ﬂ77) = %P [1 — exp (— (t_’) emi72):|
T

and

for i € A*, with

T g
for i € Ay.
A.1.4 COM-Poisson cure rate model
Q(6*, M) =n, log o — n1yologv1 + (70 — 1) Z log t;
ISVANT
+ Z Tiys — Z log(1 + e®#)
1€EA IEA*
+ Z log zo; + Z wﬁ’“) log 21,
€A1 ’iGAO
where
o =Sy = nsSEy)Y
7 =2(0;x,t) = ; W,@ = 2(0;x,t) = ; W;
’ t 70 ’
n=n(B;x)=H;'(1+"”) and S(t;y) = exp [— <—) e””m} :
84!
with
0. i)ti
mt = < all = )t (A1.4)
+Z1( s Ly, ’L) 0—0+(k)

for i € Ag.

Using the invariance property of MLEs, we can then easily find estimate of the

cure rate as

where 3 is the MLE of 3.
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A.2 First- and second-order derivatives of the Q-

function

A.2.1 Bernoulli cure rate model

The first- and second-order partial derivatives of Q;(83,®*)) with respect to 3 and

of Qo(~, ) function with respect to ~ are as follows:

Q)
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where
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A.2.2 Poisson cure rate model

The first- and second-order partial derivatives of Q(@,7w®) with respect to 3 and ~

are as follows:
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for I,I! =0, ..., p, o= 1, h,W'=1, ..., p, and i=1, ..., n.

A.2.3 Geometric cure rate model

The first- and second-order partial derivatives of Q(8, 7)) with respect to 3 and ~

are as follows:
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A.2.4 COM-Poisson cure rate model

The first- and second-order partial derivatives of Q(@,*)) with respect to 3 and -,

for a fixed value of the dispersion parameter ¢, are as follows:
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The derivatives of R(t;, x;;y) and S(t;7) are as follows:
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Appendix B

Appendix corresponding to

Chapter 3

B.1 The Q-functions

B.1.1 Bernoulli cure rate model

Q0,7m™) = Q1(B, 7™ + Qa(2p, v, w¥)

where
Z,@'a:*—i—ZW(k "} Zlog 14 P
1€ i€ IEA*
and
Qe 7. W) = logho(tiip) + D vmi — Y Holtigp)e”™ — Y al H(ti;p)e™
[ISVANT €A 1€EA] 1€EAQ
with

L _ XD |8/} — Ho(ts;4h)e? ™|
¢ 1+ exp[B'xf — Ho(t;; Y)eV ]

(B.1.1)
6=0(k)
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for i € AO and A* = Ay UAO

B.1.2 Poisson cure rate model

Q0,7") = Z log ho(ti; ) + Z Y@ + Z log(log(1 + 7)) — Z Hy(ti;9p)e”™

ISYAN 1€ €A1 €A1

= log(1+e#)+ > A(ti, z:;8,%,7)
A*

€A

— Z 7r2-(k) log(A(t;, xi; 8,%,7v) — 1)

i€Ag

where
Aty 5 8,7, 7) = exp[—Hy(ti; )e? @] log(1 4 4%)

for s € A* and
) _ eAltiiBabyy) _ 1

Ti eAti,ziB,%.7) (B'1'2)
0=6(k)
for i € AQ.
B.1.3 Geometric cure rate model
QO.7m*) =" Ba;+> logho(ts) + > '@ — Y Holtiigh)e” ™
€A €A1 €A1 ISYAN
=2 log(1+ Clty, i B,9,7) + Y " [ﬁ’w: — Hy(ty; 9p)e”'™
1€EA i€Ag
N 1P log(1 + Clti, i B.4.7)) — Y log(1 + 7%)
i€Ag 1€Ag
where
C(ti, xi; B,¢,v) = e {1 — eXp [_Ho(tz’; Qp)eymi}}
for 1 € A* and ,
1B/~ Ho(tiw)er =]
o = __ (B.1.3)
¢ 1+ Pz
0—6(k)

for i € Ay.
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B.1.4 COM-Poisson cure rate model

ISYAN 1€ 1EA*
k
+ E log zo; + E 7T§ )log 215
1€AL 1€AQ

where

7? G

o~ {niS(ts, s p,v)} — j{niS(ti, @i h,v)}
21 = 21(0; 24, 1;) = Z (S ( L2kl 22 = 20(0; i, 1) = Z IS : 2l
j=1 J=1

me = n(Bs i) = Hy ™ (1+e7*) and S(ts,@i5%,7) = exp |~ Ho(tis 9)e™™ .

with
w205, t;)

T = 1"—21(0,.’1}’1,251)

(B.1.4)

0=0(k)

for i € Ay,

where A* = A; U Ag and n; = |Ay| (i.e. ny is the cardinality of A;). The

expressions for ho(t;; 1) and Hy(t;;70) are provided in (??) and (?7?) respectively.

B.2 First- and second-order derivatives of the Q-
function

B.2.1 Bernoulli cure rate model

The first- and the second-order partial derivatives of the Q,(3,w*)) function with

respect to B and of the Qo (v, v, ™)) function with respect to ¢ and 4 are as follows:
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for d,d =0,1,...,p with z;o0=1; 7" =1,2,...,pand [ =0,1,..., N.

B.2.2 Poisson cure rate model

The first- and the second-order partial derivatives of the Q(@,7®) function with

respect to B, 1 and « are as follows:
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and

S(t;, @i;h,y) = exp | —Ho(t;; )e™7 | ;

for d,d' =0,1,...,p with x;o=1;r," =1,2,...,pand [ =0,1,..., N.

B.2.3 Geometric cure rate model

The first- and the second-order partial derivatives of the Q(@,7®) function with

respect to B, ¥ and ~ are as follows:
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for d,d =0,1,...,p with x;o=1; 7" =1,2,...,pand [ =0,1,..., N.
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B.2.4 COM-Poisson cure rate model

The first- and the second-order partial derivatives of the Q(@,7®) function with

respect to B, ¥, and -, for a fixed value of ¢, are as follows:
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B.3 First- and second-order derivatives of the base-
line hazard and baseline cumulative hazard

function
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for 1,I' = 0,1,...,N.



Appendix C

Appendix corresponding to

Chapter 4

C.1 The Q-function - destructive weighted Poisson
cure rate model
We define:
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and

N
hi = h(tsy) = 2 (—) LEanth
71 \o

C.1.1 Destructive exponentially weighted Poisson cure rate

model

QO @) = Z log M; — Z M; + Z M;S; + Z log f; + Z WZ(“) log(eM% — 1),
Aq A* Ay Ay Ag

where

(@) _ —1;?p; S
m ' =1—e ,

0*=0*(a)

and

M; = M(0;t;, @i, z;) = n:¢’p;,

C.1.2 Destructive length-biased Poisson cure rate model

QO",w @) = "logmi+» logp;+ Y logfi—> Ai+> B
Aq Aq Ay Aq Ay

— Z nip; + Z log(1 —p;) + Z 7ri(a) log(C;D; — 1),
AO AO A0

where

9

0*:9*((1)

@ _ pmipiSi L—pi
' 1 —piF;

A, = A0t x;, z;) = nip; Fy, B, = B(0;t;, x;, z;) = log [1 —pil —

pifz':|

)

Cz‘ = C(O, ti; x;, Zz') — eﬁipi(lfFi)’
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and

C.1.3 Destructive negative binomial cure rate model

1
Q6" 7) = 3 lognp, — (:b n 1) S log(1 + BE) + Y log
Aq Aq Ay

1 a ~1/¢
——» log(l+ E;) + 7r§ ' log (Gi - 1)
o3

where
7T§a) =1- Gz s
9*:6*(51)
E, = E(6;t;,x;, z;) = onipi,
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1+ E;F;
Gi =G0t %, 2) = ————.
( T, ;) T &

C.2 First- and second-order derivatives of the Q-
function for destructive weighted Poisson cure

rate model:

C.2.1 Destructive exponentially weighted Poisson cure rate

model

M = Z Zij — Z Zile' -+ Z ZijMiSi + Z?TZ(Q)ZMD:MZ‘S“
O Ay A* A Ao
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LIU=0,1,...,q0, mym' =1,...,¢; and x;0 = 1.

C.2.2 Destructive length-biased Poisson cure rate model
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C.3 First- and second-order derivatives of the den-
sity, cumulative distribution and survival func-

tions

C.3.1 The density and log-density functions
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C.3.2 The cumulative distribution function
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C.3.3 The survival function
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