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Abstract

Cure rate models are widely used to model time-to-event data in the presence of

long-term survivors. Cure rate models, since introduced by Boag (1949), have gained

significance over time due to remarkable advancements in the drug industry resulting

in cures for a number of diseases. In this thesis, cure rate models are considered

under a competing risk scenario wherein the initial number of competing causes is

described by a Conway-Maxwell (COM) Poisson distribution, under the assumption

of proportional hazards (PH) lifetime for the susceptibles. This provides a natural

extension of the work of Balakrishnan & Pal (2013) who had considered independently

and identically distributed (i.i.d.) lifetimes in this setup. By linking covariates to

the lifetime through PH assumption, we obtain a flexible cure rate model. First,

the baseline hazard is assumed to be of the Weibull form. Parameter estimation is

carried out using EM algorithm and the standard errors are estimated using Louis’

method. The performance of estimation is assessed through a simulation study. A

model discrimination study is performed using Likelihood-based and Information-

based criteria since the COM-Poisson model includes geometric, Poisson and Bernoulli

as special cases. The details are covered in Chapter 2. As a natural extension of this

work, we next approximate the baseline hazard with a piecewise linear function (PLA)

and estimated it non-parametrically for the COM-Poisson cure rate model under PH

setup. The corresponding simulation study and model discrimination results are

presented in Chapter 3. Lastly, we consider a destructive cure rate model, introduced
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by Rodrigues et. al (2011), and study it under the PH assumption for the lifetimes

of susceptibles. In this, the initial number of competing causes are modeled by a

weighted Poisson distribution. We then focus mainly on three special cases, viz.,

destructive exponentially weighted Poisson, destructive length-biased Poisson and

destructive negative binomial cure rate models, and all corresponding results are

presented in Chapter 4.

KEY WORDS: COM-Poisson distribution; Proportional hazards model; Weighted

Poisson distribution; EM algorithm; Weibull distribution; Maximum likelihood esti-

mation; Akaike Information Criterion (AIC); Bayesian Information Criterion (BIC);

Cutaneous melanoma data; Mixture chi-square.
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Chapter 1

Introduction

1.1 Introduction

In cancer studies, a cure is defined as the state when the hazard rate of the affected

group carrying the disease equals to the same level as that of the general population

(Lambert et al., 2007). This is often measured in terms of disease-free survival time

after 5 or 10 years of the treatment, however, it depends on the type of cancer. In

Statistics, modeling of time-to-event data is typically done by assuming that every

individual in the study cohort encounters the event of interest (death, relapse etc.)

in the long run. However, for example, due to the remarkable advancements in bio-

medical and drug development industry in past few decades, it is not only possible

but quite likely for a proportion of patients in the cohort to get cured completely

and never face recurrences. These individuals are called cured or non-susceptible or

long-term survivors or immunes and the population under study could be considered

as a mixture of immunes and susceptible. This prominent characteristic of data,

having a proportion of disease free individuals, gives rise to a whole new branch of

modeling techniques under the nomenclature of cure rate models. The estimation of

1



Chapter 1.1 - Introduction 2

cure rate is of particular importance to the investigators and patients, as it represents

a measure of efficacy of the treatment and helps in analysis of survival trends. The

application of cure rate models is not limited to the area of clinical trials but can

effectively be extended to industrial reliability. In industrial reliability, cure occurs

in the form of components of a manufacturing process working indefinitely without

failure. For example, while testing failure of circuit boards when exposed to various

levels of stress factors, a proportion of boards may not fail at all. Again, in com-

puter manufacturing industry, computers with failed motherboards are sent to the

dealers/company technicians for repair. However, there exists a certain proportion of

computers in which motherboards continue to work even after many years of being

manufactured. Under such circumstances, a cure rate model may be appropriate to

analyze data and estimate chances of long-term functioning. It is to be noted that

the occurrences of failure may involve more than one risk factor, e.g., damages in

computer motherboards may occur due to improper handling, voltage fluctuation,

excessive heat, electrical problems such as short or a static discharge etc. This gives

rise to a competing cause scenario (Cox and Oakes, 1984). Cure rate model also

finds application in finance (business failure, strategy failure), criminology (recidi-

vism) etc. (e.g. Maller and Zhou, 1996).

The origin of cure rate models can be traced back at least to the works of Boag

(1949) and Berkson and Gage (1952), where the importance of the existence of a

cured proportion is discussed from a clinician’s point of view. Thus, considering an

indicator random variable I where I = 0 if the individual is cured and I = 1 if

the individual is susceptible, the population or long-term survival function of the
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time-to-event T could be given by

Sp(t) = P (T > t) = p0 + (1− p0)Su(t), (1.1.1)

where p0 = P (I = 0) and Su(t) = P (T > t|I = 1) is the survival function of suscep-

tible. It is to be noted that if Su(t) is a proper survival function then Sp(t) is not,

since limt→∞ Sp(t) = p0. The modeling of Su(t) with survival function of many well

known distributions are known throughout literature.

Let us now discuss about a well studied competing cause scenario. Assume that

M is an unobservable (latent) random variable denoting the number of competing

causes related to the occurrence of an event of interest where P (M = 0) denotes

cured proportion p0. Also, let W1, . . . ,WM be random variables where Wj denotes the

lifetime corresponding to the j-th competing cause; furthermore, W ′
js are assumed

independent of M with common cumulative distribution function (c.d.f.) F (w) =

1 − S(w), where S(.) is the survival function. Then, the overall population time-to-

event Y is given by

Y = min{W0,W1, . . . ,WM}

with P (W0 =∞) = 1 and therefore,

Sp(y) = P (Y > y) = P (Y > y |M = 0)P (M = 0) (1.1.2)

+
∞∑
m=1

P (Y > y |M = m)P (M = m)

= P (W0 =∞)p0 +
∞∑
m=1

P [min{W1, . . . ,Wm} > y]P (M = m)
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= p0 +
∞∑
m=1

[S(y)]m P (M = m) = E[S(y)M ] = GM(S(y)),

where GM is the probability generating function of M at S(y) (e.g.,Tsodikov et al.,

2003). It is to be noted that the mixture model in (1.1.1) is a special case of the above

competing cause scenario, in which the number of competing causes M is a Bernoulli

random variable with p0 = P (M = 0) and 1 − p0 = P (M = 1). For more details on

model (1.1.2), the interested reader may be referred to Tsodikov et al. (2003) or the

monographs by Ibrahim et al. (2005) and Maller and Zhou (1996).

A more realistic approach to the cure rate models called destructive cure rate

models was introduced by Rodrigues et al. (2011) which assumes the initial number

of competing causes undergoing a process of destruction in a competing risk sce-

nario. In cancer studies, often the event of interest is patient’s death which can be

caused by one or more number of malignant metastasis-component (see Yakovlev and

Tsodikov, 1996) tumor cells. After a chemotherapy or radiation, only a portion of

initial metastasis-component cells remain active and undamaged, thereby reducing

the initial number of competing causes. Given M = m, we may consider Xg as a

Bernoulli r.v. distributed independently of M . Xg takes 1 if the g-th competing

cause is still active (i.e. if g-th malignant tumor cell remains undamaged after the
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treatment) with probability p ∈ (0, 1) or 0 otherwise. Thus, if we define

D =


X1 + . . .+XM , if M > 0

0, if M = 0

(1.1.3)

then, D represents the number of initial competing causes which are not destroyed.

Obviously, D ≤ M ; the conditional distribution of D given M = m is known as

the damaged distribution which is distributed binomially with parameters m and p if

m > 0 and P (D = 0|M = 0) = 1. The cure rate is defined as P (D = 0) in this case.

As stated by Yang and Chen (1991), an alternative way of thinking involves Xg to be

the number of living malignant cells that are descendants of g-th initiated malignant

cells within a time frame, where initial competing causes are some primary initiated

malignant cells. This destructive mechanism often provides realistic interpretations

for occurrence of events related to an underlying biological activity.

1.2 A brief literature review

As stated earlier, one of the earliest evidences of cure rate model can be found in

the works of Boag (1949) where he introduced the cure rate model emphasizing on

the information loss in conventional five year survival rate from a clinician’s view

point. Berkson and Gage (1952) estimated the cured fraction using a least squared

method while considering a mixture cure rate model. Their work was followed by

Haybittle (1965), who estimated the proportion of treated cancer patient surviving

to a specific time with respect to the normal population. Henceforth, several para-

metric, semi-parametric and non-parametric assumptions have been made about the
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distribution of the lifetime of the non-cured individuals. Farewell (1982) assumed a

Weibull distribution for the lifetime of the susceptible, incorporating the covariates

into the model through a logistic-link for p0 and log-link for the scale parameter of

the lifetime distribution; the estimation of the model parameters was carried out by

employing the maximum likelihood (ML) method. Kuk and Chen (1992) general-

ized the previous parametric model using a semi-parametric Cox proportional hazard

model for the lifetime of the susceptible; the baseline hazard function was treated

as nuisance parameter, and a marginal likelihood estimation method was followed.

Chen et al. (1999) however, considered a promotion time cure rate model instead of

mixture and established a proportional hazard structure to it. Sy and Taylor (2000)

also considered Cox proportional hazard model (see also Sy and Taylor, 2001) using

a Breslow-type estimator for the baseline hazard function; similar assumptions and

estimation method were also adopted by Peng and Dear (2000). A similar Bayesian

approach to Chen et al. (1999) was mentioned in Ibrahim et al. (2001) for a new

class of semi-parametric cure rate model with a smoothing parameter maintaining

the degree of parametricity. Tsodikov et al. (2003) in their paper described the ad-

vantage of using bounded cumulative hazard model in estimating cured proportion as

an alternative to conventional mixture model and inferences were drawn considering

both semi-parametric and Bayesian methods.

Cox proportional hazard cure rate model was also discussed in Fang et al. (2005)

where the existence, consistency and asymptotic normality of the maximum likeli-

hood estimators (MLE) were studied. Lu (2008) used a nonparametric approach for

estimating the parameters of the same model. In Zhao et al. (2014), a Bayesian ap-

proach was developed for estimating the parameters of the Cox proportional hazard

cure rate model where a threshold in the regression coefficient was considered (see also
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Liu et al. (2006)). A class of semi-parametric transformation models, including both

the proportional hazard and the proportional odds cure rate model as special cases,

was studied by Zeng et al. (2006); a recursive algorithm for computing the MLEs

was also introduced while the estimators of the regression coefficients were shown to

be consistent and asymptotically normal. A similar approach on Cox proportional

hazard cure rate model with expectation-maximization (EM) based ML estimation

was developed for interval mapping of quantitative trait loci for time-to-event data

by Liu et al. (2006); the study of Cox proportional hazard cure rate model was also

the subject of Larson and Dinse (1985) (under a competing cause scenario and a

piecewise constant assumption for the baseline hazard function) and Lo et al. (1993)

(with a piecewise linear assumption for the baseline hazard function).

A more recent work on cure rate model was suggested by Rodrigues et al. (2009)

who introduced a flexible Conway-Maxwell (COM) Poisson cure rate model under a

competing risk scenario. Shortly after, it was explored vastly by Balakrishnan and

Pal (2012), Balakrishnan and Pal (2013b) and Balakrishnan and Pal (2014) consid-

ering different parametric distributions (e.g. exponential, Weibull, log-normal and

generalized gamma) as the lifetime distributions of the susceptible. Balakrishnan

et al. (2015) in their work extended the idea by approximating hazard function of the

susceptible by a piecewise linear function.

In their paper, Rodrigues et al. (2011) discussed the destructive cure rate model

considering the distribution of M as weighted Poisson. Gallardo et al. (2016) de-

veloped an EM algorithm based technique for the same model to estimate the pa-

rameters under three special cases, viz., destructive exponentially weighted Poisson,

destructive length-biased Poisson, and destructive negative binomial cure rate mod-
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els. The lifetime distributions of the susceptible were taken to be generalized gamma,

Birnbaum-Saunders, Gamma, log-normal and Weibull. A similar model was described

by Borges et al. (2012) by creating a correlation structure between the initiated cells

using generalized power series distribution. A Bayesian method of inference was

further proposed in the context of destructive weighted Poisson cure rate model by

Rodrigues et al. (2012). Further references can be found in the works of Cancho

et al. (2013), Pal and Balakrishnan (2015), Pal and Balakrishnan (2017) and Pal and

Balakrishnan (2016).

1.3 COM-Poisson cure rate models

The COM-Poisson distribution was introduced by Conway and Maxwell (1961). This

distribution accommodates and generalizes some well known discrete distributions; it

is a flexible family of distributions since it can be over-dispersed or under-dispersed

depending on the value of the dispersion parameter (see also Shmueli et al., 2005

and Kadane et al., 2006). The COM-Poisson distribution has already been used for

modeling the number of competing causes in (1.1.2); see Rodrigues et al. (2009) and

Balakrishnan and Pal (2012, 2013b, 2014). Thus, if the number of competing causes

M follow a COM-Poisson distribution, its probability mass function is given by

P (M = m; η, φ) =
1

Z(η, φ)

ηm

(m!)φ
, m = 0, 1, . . . (1.3.1)

where

Z(η, φ) =
∞∑
j=0

ηj

(j!)φ
, (1.3.2)



Chapter 1.3 - COM-Poisson cure rate models 9

with φ ≥ 0 and η > 0. If φ = 1, M is an equi-dispersed Poisson random variable (r.v.)

with E(M) = η while if φ → ∞, M becomes an under-dispersed Bernoulli r.v. with

parameter 1
1+η

. Furthermore, if φ = 0 and η < 1, then M is an over-dispersed ge-

ometric r.v. with parameter 1 − η. Thus, according to the value of φ, we can have

over-dispersed (φ < 1), equi-dispersed (φ = 1) or under-dispersed (φ > 1) distribu-

tion.

The cure rate is given by

p0 = P (M = 0; η, φ) = Z(η, φ)−1, (1.3.3)

since limy→∞ Z(ηS(y);φ) = 1, while (1.1.2) becomes

Sp(y) =
Z(ηS(y);φ)

Z(η;φ)
, (1.3.4)

with the corresponding improper density function being given by

fp(y) = −∂Sp(y)

∂y
=

1

Z(η;φ)

f(y)

S(y)

∞∑
j=1

j{ηS(y)}j

(j!)φ
. (1.3.5)

The long-term population survival function, improper population density function

and cure fraction (p0) for the special cases of the COM-Poisson cure rate model are

presented in Table 1.1.
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Table 1.1: Population survival function, density function and cured proportion for
the three special cases of COM-Poisson cure rate model.

Model Sp(y) fp(y) p0

Geometric (φ = 0) 1−η
1−ηS(y)

η(1−η)
(1−ηS(y))2

f(y) 1− η
Poisson (φ = 1) e−η(1−S(y)) ηe−η(1−S(y))f(y) e−η

Bernoulli (φ→∞) 1+ηS(y)
1+η

η
1+η

f(y) 1
1+η

1.4 Destructive weighted Poisson cure rate models

The probability mass function (p.m.f) of M following a weighted Poisson distribution

is given by

P (M = m; η, φ) =


Ω(m;φ)

Eη [Ω(M ;φ)]
p∗(m; η), m = 0, 1, 2, . . .

0, o.w.

(1.4.1)

where Ω(.;φ) is a non-negative weight function characterized by φ with φ ∈ R, p∗(.; η)

is the p.m.f of a Poisson distribution with parameter η > 0 and Eη[.] is the expec-

tation taken with respect to a Poisson p.m.f. (see Rodrigues et al., 2011). Given

M = m > 0, the conditional distribution of D is Binomial with parameters m and

p = P (Xg = 1) as obtained from equation (1.1.3), while D = 0 if M = 0. The initial

number of competing causes M is assumed to follow a weighted Poisson distribution,

with weight functions as eφm, m, and Γ(m + φ−1), undergoing a damaging process

as discussed earlier. The corresponding models on considering these weight func-
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tions are known as destructive exponentially weighted Poisson (DEWP), destructive

length-biased Poisson (DLBP), and destructive negative binomial (DNB) cure rate

models respectively. By choosing Ω(m;φ) = (m!)1−φ, we obtain a COM-Poisson dis-

tribution as defined in equation (1.3.1). The corresponding model is called destructive

COM-Poisson cure rate model. However, this model is not discussed in the thesis.

1.4.1 Destructive exponentially weighted Poisson cure rate

model

Under this model, we assume Ω(m;φ) = eφm as the weight function which gives the

p.m.f of M as

P (M = m; η, φ) =


e−ηe

φ (ηeφ)m

m!
, m = 0, 1, 2, . . .

0, otherwise

(1.4.2)

which is a Poisson distribution with rate parameter ηeφ. The unconditional distribu-

tion of the undamaged number of initial competing causes D is expressed through

P (D = d; η, φ, p) =
∞∑
m=d

P (D = d|M = m)P (M = m)

=
∞∑
m=d

m!

(m− d)!d!
pd(1− p)m−de−ηeφ (ηeφ)m

m!

=e−ηpe
φ (ηpeφ)d

d!
, d = 0, 1, 2, ... (1.4.3)
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which is again a Poisson r.v. with expectation E(D) = ηpeφ. The cure rate, popula-

tion survival function and population density function are derived as

p0 = e−ηpe
φ

, (1.4.4)

Sp(y) = e−ηpe
φF (y) (1.4.5)

and

fp(y) = ηpeφSp(y)f(y) (1.4.6)

respectively. Note that the model gets reduced to a destructive Poisson cure rate

model if φ = 0. Furthermore, taking p = 1 gives Poisson cure rate model.

1.4.2 Destructive length-biased Poisson cure rate model

Assuming Ω(m;φ) = m, the p.m.f. of M is expressed as

P (M = m; η, φ) =


e−ηηm−1

(m−1)!
, m = 1, 2, . . .

0, o.w.

(1.4.7)

which is a truncated Poisson distribution with truncation point being m = 0. Since

(D|M = m) ∼ Bernoulli(m, p), the unconditional p.m.f of D, i.e., the number of
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active competing causes is given by

P (D = d; η, φ, p) =
∞∑
m=d

P (D = d|M = m)P (M = m)

=
∞∑
m=d

m!

(m− d)!d!
pd(1− p)m−d e

−ηηm−1

(m− 1)!

=
e−ηp(ηp)d

d!

[
1− p+

d

η

]
, d = 0, 1, 2, ... (1.4.8)

The expression for the cure rate is, therefore, given as

p0 = P (D = 0) = e−ηp(1− p) (1.4.9)

while the population survival function and the population density function is given

by

Sp(y) = P (Y > y) = e−ηpF (y)[1− pF (y)] (1.4.10)

and

fp(y) = P (Y > y) = ηpf(y)e−ηpF (y)

[
1− pF (y)− pf(y)

η

]
(1.4.11)

where f(.) is the probability density function (p.d.f.) of Wj for all j = 1, 2, . . . , d.

1.4.3 Destructive negative binomial cure rate model

Let us consider

P (M = m; η, φ) =


Γ(m+φ−1)

Γφ−1m!

(
φη

1+φη

)m
(1 + φη)−φ

−1
, m = 0, 1, 2, . . .

0, o.w.

(1.4.12)
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where M is a negative binomial r.v. denoting number of failures before φ−1 successes

and probability of each success being φη
1+φη

. This is a weighted Poisson distribution

with parameter φη
1+φη

and Ω(m;φ) = Γ(m + φ−1), where φ > 0. The expression for

the p.m.f of D is given by

P (D = d; η, φ, p) =
∞∑
m=d

P (D = d|M = m)P (M = m)

=
pd

d!

(
φη

1 + φη

)d
(1 + φη)−φ

−1
∞∑
m=d

Γ(m+ φ−1)

(m− d)!Γ(φ−1)

[
(1− p)φη

1 + φη

]m−d
=

Γ(d+ φ−1)

Γφ−1d!

(
pφη

1 + pφη

)d
(1 + pφη)−φ

−1

, d = 0, 1, 2, ...

(1.4.13)

The number of active competing causes is also distributed with a negative binomial

distribution with parameters φ−1 and pφη
1+pφη

. The cure rate, population survival func-

tion and population density function are given by the following expressions:

p0 = (1 + pηφ)−φ
−1

, (1.4.14)

Sp(y) = (1 + pηφF (y))−φ
−1

, (1.4.15)

and

fp(y) = pη(1 + pηφF (y))−1Sp(y)f(y) (1.4.16)

respectively. Note that, destructive negative binomial cure rate model includes de-

structive geometric (φ = 1), negative binomial (p = 1) and geometric (φ = 1, p = 1)

cure rate models as special cases.
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1.5 Proportional hazards model for lifetime data

In lifetime data, time-to-event is often affected by observable factors like age, sex,

severity of disease, smoking status, results of blood tests, other laboratory data,

hospital unit facilities, expertise of medical practitioners etc. These factors are called

covariates and it is important to include these into the model for analysis. One

possible way to include covariates is by using regression through hazard function

h(w) = limδ→0 P (w < W ≤ w+δ | W > w). To be more specific, the hazard function

of Wj; j = 1, . . . ,M is taken as

h(w;x,γ) = h0(w)ex
′γ , (1.5.1)

where x = (x1, . . . , xp)
′ is a vector of p covariates, γ = (γ1, . . . , γp)

′ is the vector of

regression coefficients, h0(w) is the baseline hazard function independent of covariate

vector x. Note that, for any two covariate vectors x1 and x2,

h(w;x1,γ)

h(w;x2,γ)
=
h0(w)ex

′
1γ

h0(w)ex
′
2γ

= e(x1−x2)′γ ,

i.e. the hazard ratio is independent of observed time w. This implies that the ratio of

hazards between two individuals or groups remains constant with respect to time. The

model defined in equation (1.5.1) is thus known as proportional hazards model. The

baseline hazard function h(w) represents the amount of hazard present in all individu-

als inherently even if no covariate is involved and may be estimated parametrically i.e.

by assuming a distribution or non-parametrically without any distributional assump-

tion. A Weibull distribution is often used to model lifetime data, so the corresponding

hazard function is used to define the baseline hazard function as given in equation

(1.5.1). Alternatively, we approximate the baseline hazard non-parametrically using
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a piecewise linear function (PLA), thereby, the resultant model in equation (1.5.1)

follows a Cox proportional hazards model. The proportional hazards model allows us

to link covariates to the lifetime distribution of susceptible through hazard function.

This assumption provides more flexibility to the overall cure rate model since the

lifetimes of the non-cured individuals vary according to the covariates and acts as an

extension to cure rate models with independently and identically distributed (i.i.d.)

lifetimes (see Balakrishnan and Pal, 2014).

1.5.1 Weibull distribution to model baseline hazard

A continuous random variable W follows a two-parameter Weibull distribution if the

probability density function is of the form

f(w; γ0, γ1) =
γ0

γ1

(
w

γ1

)γ0−1

e
−
(
w
γ1

)γ0−1

, (1.5.2)

where w > 0, γ0 > 0 denotes the shape parameter and γ1 > 0 denotes the scale

parameter. The survival function and the hazard function of W are given as

S(w; γ0, γ1) = e
−
(
w
γ1

)γ0−1

(1.5.3)

and

h(w; γ0, γ1) =
γ0

γ1

(
w

γ1

)γ0−1

(1.5.4)

respectively. A Weibull distribution is closed under proportional hazards family when

the shape parameter is kept fixed. Moreover, a two parameter Weibull provides a

great degree of flexibility to the lifetime of the susceptible since it represents cases of

decreasing hazard (γ0 < 1), constant hazard (γ0=1 i.e. exponential distribution) and

increasing hazard (γ0 > 1). Cure rate models taking a Weibull distribution as the
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lifetime of the susceptible are prevalent in literature e.g. Farewell (1982), Tsodikov

et al. (2003), Chen et al. (1999) and Balakrishnan and Pal (2014).

Now, let us assume the baseline hazard function in (1.5.1) to be that of a Weibull

distribution, then, the hazard function of Wj is given by

h(w;x,γ) =
γ0

γ1

(
w

γ1

)γ0−1

ex
′γ2 ; (1.5.5)

clearly, Wi still follows a Weibull distribution with shape parameter γ0 and scale

parameter γ1 exp(−x′γ2/γ0), where γ = (γ0, γ1,γ
′)′. By assuming a proportional

hazard model, we allow the lifetime distribution of the susceptible to vary according

to the covariate categories, thereby adding a greater flexibility to the model. It should

be noted that this model reduces to the parametric Weibull lifetime cure rate model

(Balakrishnan and Pal, 2014) if we set γ2 = 0. This would therefore facilitate us

to test the hypothesis of uniformity among the covariate groups by testing γ2 = 0

and if significant evidence is found against this hypothesis it would then suggest the

suitability of this model over the parametric Weibull lifetime cure rate model with

i.i.d. lifetimes.

1.5.2 A piecewise linear approximation to model baseline

hazard

For the piecewise linear approximation (PLA) of the baseline hazard function h0(w),

we consider a set of cut points {τ0, . . . , τN} on the time axis, with τ0 < τ1, · · · < τN

and N being the number of line segments. Further, it is assumed that the PLA is a

continuous function at cut points. Under these assumptions, the PLA to the baseline

hazard in the interval [τ0, τN ] is given by
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h0(w) =
N∑
l=1

(al + blw)I[τl−1,τl](w) (1.5.6)

where al and bl are the intercept and slope of the l-th line segment with

I[τl−1,τl](w) =


1, τl−1 ≤ w ≤ τl

0, otherwise.

(1.5.7)

Additionally, letting ψl ≥ 0 denote the values of the PLA at the l-th cut point τl,

l = 0, . . . , N we have

bl =
ψl − ψl−1

τl − τl−1

, al = ψl − blτl

for l = 1, . . . , N . Thus, considering ψ = (ψ0, . . . , ψN)′ equation (1.5.6) can be re-

written as

h0(w) = h0(w;ψ) =
N∑
l=1

[
ψl +

ψl − ψl−1

τl − τl−1

(w − τl)
]
I[τl−1,τl](w) (1.5.8)

with limw→τl h0(w;ψ) = ψl, for l = 0, . . . , N . The cumulative baseline hazard function

under the PLA is given by

H0(w;ψ) =
N∑
l=1

ψl(min(w, τl)− τl−1)I[τl−1,∞)(w)

+
N∑
l=1

[(
ψl − ψl−1

τl − τl−1

)
min(w, τl)

2 − τ 2
l−1

2
− τl(min(w, τl)− τl−1)

]
I[τl−1,∞)(w). (1.5.9)

It is to be noted that although the PLA provides an approximation in the interval

[τ0, τN ], it could also be extended to [0, τ0] ∪ [τN ,∞) in many ways, such as, taking

τ0 = 0 and extending aN + bNw to [τN ,∞). This model follows a Cox proportional

hazards model since the baseline is approximated non-parametrically.
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1.6 Form of the data and the likelihood function

In survival analysis or reliability theory, the existence of right censored data is quite

common mainly due to the limitations imposed by the duration of the study. There-

fore, assuming that our data are subject to non-informative right censoring, the cen-

sored group may include not only cured individuals but also susceptibles who met

the event of interest after censoring time. To be more specific, let us denote by Ci

the censoring time and Yi the actual lifetime for the i-th individual, for i = 1, . . . , n.

Thus, the observed lifetime Ti is defined as

Ti = min{Yi, Ci}

while δi = I(Yi ≤ Ci) indicates whether the i-th individual is censored (δi = 0) or

not (δi = 1), for i = 1, . . . , n. Additionally, let us also define the sets ∆1 and ∆0,

with ∆1 = {i : δi = 1} and ∆0 = {i : δi = 0}. xi denotes the vector of covariates

corresponding to the i-th individual for i = 1, . . . , n. Therefore, the observed data are

of the form (ti, δi,xi), for i = 1, . . . , n and the likelihood function can be expressed

as

L(θ; t,x, δ) ∝
n∏
i=1

fp(ti,xi;θ)δiSp(ti,xi;θ)1−δi =
∏
i∈∆1

fp(ti,xi;θ)
∏
i∈∆0

Sp(ti,xi;θ),

(1.6.1)

where θ denotes the vector of parameters involved, t = (t1, . . . , tn)′, x = (x′1, . . . ,x
′
n)′

and δ = (δ1, . . . , δn)′. Sp(ti,xi;θ) and fp(ti,xi;θ) denote population survival and

density functions respectively. Here, xi is generally linked to parameters associated

to cure rate and also to the lifetimes Wj; j = 1, . . . ,M as defined by the proportional

hazards model in equation (1.5.1). The likelihood described in equation (1.6.1) is an

observed likelihood function. For all i ∈ ∆1, we observe the lifetime Ti = Yi. So
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all such i ∈ ∆1 contribute to the likelihood function through the population density

function. For all i ∈ ∆0, we just observe Ti = Ci < Yi i.e. the actual lifetime is

greater than some censoring value. Thus, for these individuals, contribution to the

likelihood occurs through the population survival function.

1.7 Likelihood inference

The likelihood function is a function of parameter which denotes the probability of

obtaining a parameter value when data is already observed. The likelihood principle

suggests that all information relevant to the model parameters contained in a sample

are present in the likelihood function. Maximizing the likelihood function with respect

to the unknown parameter helps us to estimate the parameter and this technique

is commonly referred to as maximum likelihood estimation (MLE). Thus, the ML

estimator θ̂ is obtained as

θ̂mle = arg max
θ∈Θ

L̂(θ ; t,x, δ),

where Θ denotes the parameter space. Since, the parameters we are interested in

are continuous in nature, estimates of the parameters can be obtained by finding the

critical points of the likelihood function using the first derivative test. ML estimators

possess some statistically desirable properties like consistency, asymptotic normality,

asymptotic efficiency and unbiasedness. However, the ML estimators are not always

found in explicit forms, and in some cases, may not even exist. In survival analysis,

we often encounter censored data which leads to observing only partial data. This

is referred to as incomplete data. Under this scenario, an EM algorithm (Dempster

et al., 1977) is often applied to find the ML estimates using iterative methods.
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1.7.1 EM algorithm

The incomplete data is introduced through a random variable Ii; i = 1, . . . , n, where

Ii = 0 if the i-th individual is cured or Ii = 1 otherwise. It is to be noted that Ii is

unobserved if i ∈ ∆0 since we just observe the censoring time for these individuals

and no information about their cure status is known. On the other hand, Ii = 1 for

all i ∈ ∆1. This incomplete data provides an opportunity to implement EM algorithm.

We implement EM algorithm (McLachlan and Krishnan, 2007) to estimate θ∗

except the parameter φ which is estimated using profile likelihood method. θ∗ denotes

the vector of parameters without φ.

The complete data are denoted by {(ti, δi,xi, Ii)′; i = 1, . . . , n}. The complete

data likelihood function is expressed as

Lc(θ; t,x, δ, I)

∝
∏
i∈∆1

fp(ti,xi;θ)
∏
i∈∆0

p0(θ∗∗,xi)
1−Ii{(1− p0(θ∗∗,xi))Su(ti,xi;θ)}Ii

(1.7.1)

and the complete data log-likelihood function is given by

lc(θ; t,x, δ, I) = constant +
∑
i∈∆1

log fp(ti,xi;θ) +
∑
i∈∆0

(1− Ii) log p0(θ∗∗,xi)

+
∑
i∈∆0

Ii log(1− p0(θ∗∗,xi)) +
∑
i∈∆0

Ii logSu(ti,xi;θ),

(1.7.2)

where I = (I1, . . . , In)′ and Su(ti,xi;θ) is obtained using equation (1.1.1) as Su(ti,xi;θ) =

Sp(ti,xi;θ)−p0(θ∗∗,xi)
1−p0(θ∗∗,xi)

. Note that θ∗∗ is a subset of the set of parameters in the vector

θ since in all cases of our study, the cure rate p0 is linked to θ∗∗ through some link

function. More specifically, θ∗∗ generally does not involve any lifetime parameters in
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our studied cure rate models. In equation 1.7.1, the likelihood is split into the prod-

uct of two components, viz., corresponding to cured and non-cured individuals for all

i ∈ ∆0. The contribution to the complete data likelihood function occurs through

p0(θ∗∗,xi) if Ii = 0 and (1− p0(θ∗∗,xi))Su(ti,xi;θ) if Ii = 1.

E-step: For a fixed value φ0 of φ and (a + 1)-th iteration of EM algorithm,

we compute the expected value of lc(θ; t,x, δ, I), given the observed data O =

{(ti, δi,xi, Ii′) : i = 1, . . . , n; i′ ∈ ∆1} and the current parameter estimates θ∗(a)

obtained from the a-th iteration. Therefore, from Equation (1.7.2) we have

E(lc(θ; t,x, δ, I)|θ∗(a),O)

= constant +
∑
i∈∆1

log fp(ti,xi;θ) +
∑
i∈∆0

(1− π(a)
i ) log p0(θ∗∗,xi)

+
∑
i∈∆0

π
(a)
i log(1− p0(θ∗∗,xi)) +

∑
i∈∆0

π
(a)
i logSu(ti,xi;θ),

(1.7.3)

where

π
(a)
i = E[Ii|O,θ∗(a)] =

(1− p0(θ∗∗,xi))Su(ti,xi, zi;θ)

Sp(ti,xi;θ)

∣∣∣∣
θ∗=θ∗(a)

.

We define Q = Q(θ∗,π(a)) = E(lc(θ; t,x, z, δ, I)|θ∗(a),O) where π(a) = (π
(a)
i : i ∈

∆0).

M-step: In the maximization step, we maximize Q(θ∗,π(a)) with respect to θ∗

to find the estimate θ∗(a+1) of θ∗. The numerical maximization is carried out using

Nelder-Mead method for fixed φ0. The iteration process is considered to converge if

max1≤k′≤p

∣∣∣∣ ˆθ∗
k′−θ

∗
k′

θ∗
k′

∣∣∣∣ < ε, for some small ε and p denotes the number of parameters.

The explicit expressions for the Q-function is provided in Appendices A.1, B.1 and

C.1 for various cure rate models we have studied.
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In case of a COM-Poisson cure rate model, φ is a dispersion parameter whereas

for a weighted Poisson cure rate model, φ is a parameter in the weight function. In

both cases, it is observed that the likelihood function is very flat with respect to φ.

As a result, the algorithm for finding ML estimates encounters frequent convergence

problem unless the initial parameter estimates are very close to the true values. Even

if the algorithm converges, the estimate of φ often has a high standard error which

seems to affect the precision of the estimates of other parameters as well. Conse-

quently, φ is kept fixed in the objective function while maximizing with respect to

other parameters. However, this process is repeated for a discrete range of values of

φ, thereby, considering the one, which produces the highest value of log-likelihood

function. In other words, the E-step and M-step are repeated for all φ ∈ Φ where Φ

denotes the admissible range of φ. The value of φ ∈ Φ which provides the maximum

value of the observed likelihood function is taken to be the ML estimate φ̂ of φ.

1.7.2 Estimation of standard errors

For finding the standard error of the parameter estimates, we applied Louis’ principle

for computing the observed information matrix (see Louis, 1982); that is,

I(θ∗) = E[B(θ∗; t,x, δ, I)]− E[S(θ∗; t,x, δ, I)ST (θ∗; t,x, δ, I)]

+ E[S(θ∗; t,x, δ, I)]E[ST (θ∗; t,x, δ, I)],

(1.7.4)

where I(θ∗) is the information on θ∗, B(θ∗; t,x, δ, I) and S(θ∗; t,x, δ, I) denote the

negative of the matrix of second derivatives and the gradient vector of lc(θ; t,x, δ, I)

(score function). The standard errors of the parameter estimates were then calculated

by taking the square-root of the corresponding variances which are nothing more than
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the diagonal elements of the variance-covariance matrix I−1(θ∗). By using the asymp-

totic normality of the MLEs, 95% confidence intervals (CI) of the parameters were

obtained. The normality of the parameter estimates obtained from 1000 simulated

data were validated graphically using QQ plot and also using bootstrap method. The

pertinent details of the first-order and second-order derivatives of the complete data

log-likelihood for obtaining the information matrix are presented in Appendices A.2,

B.2 and C.2. Asymptotic normality of the MLEs can also be used to estimate the

cure rate and is given by p̂0 = p0(θ̂∗∗,xi). The standard error of the cure rate is

obtained using multivariate delta method since p0(θ∗∗,xi) = g(θ∗∗) : R(p+1) → R is a

continuous function.

It can be observed that Equation 1.7.2 and 1.7.3 differ only with respect to Ii. For

the latter, Ii is replaced by π
(a)
i , where at a-th step π

(a)
i is a fixed quantity independent

of θ∗. Thus, taking derivatives on both equations with respect to θ∗ lead to the same

expressions. As such, the expressions for first-order and second-order derivatives of

lc(θ; t,x, z, δ, I) required for calculating the observed information matrix are not

presented separately and can be obtained from Appendices A.1-C.1 and A.2-C.2.

1.8 Simulation study and real data analysis

The robustness of the models and accuracy of the estimation technique are studied

and validated using detailed Monte Carlo simulations. The effects of different sam-

ple sizes, cure rates, censoring proportions and lifetime parameters on the estimation

are investigated thoroughly. Parameter estimates, asymptotic standard errors, bi-

ases, root mean squared errors and coverage probabilities at 95% nominal level are

presented under different model settings. Coverage probabilities are obtained based
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on assuming the asymptotic normality of the ML estimators. The results are based

on the average of R replications of simulated data for each scenario and all calcula-

tions are done in software R-3.1.3. R varies according to the computational load and

complexity of the model under study. The Shared Hierarchical Academic Research

Computing Network (SHARCNET) is used to compile all the R-codes to reduce over-

all computational time.

All studies are supported by model discrimination. This is accomplished by gen-

erating samples from a true model and analyzing the effect of fitting some candidate

models on the parameter estimates and other measures. Likelihood-based criterion,

i.e., likelihood ratio test (LRT) and information-based criteria, i.e., Akaike infor-

mation criterion (AIC) and Bayesian information criterion (BIC) are used to find

rejection and selection rates of various candidate models. AIC and BIC are defined

as:

AIC = −2l̂ + 2p and BIC = −2l̂ + (log n)p,

where l̂ denotes the maximized log-likelihood value, p denotes the number of param-

eters estimated and n is the sample size. Models with minimum AIC or BIC are cho-

sen. For the COM-Poisson cure rate model, we are interested in testing H0 : φ = 0,

H0 : φ = 1 and H0 : φ → ∞. For testing purpose, LRT statistic is defined as

Λ = −2(l̂0 − l̂) where l̂0 and l̂ denote the restricted and unrestricted maximized

log-likelihood function values, respectively. The rejection rates are obtained by the

number of times H0 is getting rejected for some specified level of significance. The null

distribution of Λ asymptotically follows χ2− distribution with one degree of freedom

(d.f.) for testing H0 : φ = 1. However, when we test H0 : φ = 0 or H0 : φ → ∞ i.e.

when φ is on the boundaries of the parameter space, the asymptotic distribution of
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Λ is such that P (Λ ≤ λ) = 1
2

+ 1
2
P (χ2 ≤ λ). In case of destructive weighted Poisson

cure rate model, the necessity of a model discrimination is justified by studying the

biases and mean squared errors of the cured proportion under model mis-specification

and developing measures like total relative bias (TRB) and total relative efficiency

(TRE). The details can be found in Chapter 4.

We implement our proposed models on a malignant melanoma data. This data

provides detail of a historically prospective clinical study on 225 skin cancer patients,

who were operated in the period 1962-77 and followed up till 1977. Andersen et al.

(2012) studied this data set where time since operation was considered to be the re-

sponse of the study with several risk factors like age at operation, sex, tumor thickness,

width, location, types of malignant cells, ulceration status etc. Among these patients,

20 were not included for analysis since they did not permit a histological evaluation.

Later, this data set was the topic of analysis for many studies, e.g., Rodrigues et al.

(2011), Pal and Balakrishnan (2016), Pal and Balakrishnan (2017) etc. Out of these

205 patients, 57 patients died from melanoma, 14 died from other causes and are

considered censored at death. The remaining 134 patients were alive as on January

1, 1978 and are also considered to be right censored. Thus, the study has a high rate

of censored observations (i.e. 72%). This dataset is also available in the ’timereg’

package in R.

1.9 Scope of the thesis

Further details of the link functions used, EM algorithm, simulation study results

and real data analysis results, specific to each model, can be found in the following
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chapters. In Chapter 2, by assuming a COM-Poisson distribution under a compet-

ing cause scenario a defined in Section 1.3, we study a flexible cure rate model in

which the lifetimes of non-cured individuals are described by a proportional haz-

ard model with a Weibull hazard as the baseline function as discussed in Section

1.5.1. A logistic-link is used to associate covariates x to the rate parameter η of the

COM-Poisson distribution and to the cure rate using p0 = 1
z(η,φ)

in this case. The

performance of the models are presented based on five candidate models, namely,

geometric (φ = 0), Poisson (φ = 1), Bernoulli (φ → ∞), COM-Poisson with φ = 0.5

and COM-Poisson with φ = 2. In Chapter 3, we consider a COM-Poisson cure rate

model under a competing cause scenario with the unobserved lifetime distribution

of the non-cured individual following a Cox proportional hazard model; the baseline

hazard is estimated by piecewise linear functions as discussed in Section 1.5.2 with

covariates being linked to the cure rate using a logistic-link function. In our analysis,

we consider the number of lines (N) approximating the baseline hazard function to

be 1, 2, . . . , 5. The candidate models for the COM-Poisson family are taken to be the

same as mentioned for Chapter 2. In Chapter 4, we investigate a destructive cure

rate model where the initial number of competing causes is assumed to follow one of

the three special cases of a weighted Poisson distribution as discussed in Section 1.4,

viz ., exponentially weighted Poisson, length-biased Poisson and negative binomial.

The novelty of the work, however, is introduced by assuming the unobserved lifetime

distribution of the non-cured subjects to be defined by a proportional hazards model

with a Weibull hazard as the baseline function. A log-linear link function and a

logistic-link function are used to link the rate parameter η of the weighted Poisson

distribution and the parameter p representing the proportion of initial causes that

remains active respectively.
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For all these models, the estimation of the parameters are carried out using ML

method by implementing the EM algorithm, except for the dispersion parameter,

which is estimated by a profile likelihood approach. The performance of the model

is tested under various settings of censoring rates, sample sizes, cure rates and mean

lifetimes and model discrimination is performed. For illustrative purposes, analysis

of the cutaneous melanoma data, as mentioned before, is also carried out. The de-

tailed expressions for the Q−functions and the first- and second- derivatives of the

Q− functions, corresponding to the models discussed in each chapters, can be found

in Appendices A.1-C.1 and Appendices A.2-C.2 respectively. It is to be noted that

notations may slightly vary from one chapter to another for better comprehensibility

of a specific model.



Chapter 2

COM-Poisson Cure Rate Model

under Proportional Hazards

Lifetime

2.1 Introduction

We assume a proportional hazards model for the distribution of Wj; j = 1, . . . ,M ,

with a parametric assumption on the baseline hazard function. To be more specific,

the hazard function of Wj is taken as

h(w;xc,γ) = h0(w; γ0, γ1)ex
′
cγ2 , (2.1.1)

where xc = (x1, . . . , xp)
′ is a vector of p covariates, γ2 = (γ21, . . . , γ2p)

′ is the vector

of proportional hazards regression coefficients, h0(w; γ0, γ1) is the hazard function of

a two-parameter (γ0 and γ1) Weibull distribution and γ = (γ0, γ1,γ
′
2)′. The num-

ber of competing causes M is assumed to have a COM-Poisson distribution; under

29
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this assumption, more flexibility is achieved since we can deal with under- and over-

dispersed data (see Balakrishnan and Pal, 2013a and Rodrigues et al., 2009).

The form of the available data and the likelihood function are given in Section 2.2.

In Section 2.3, the steps of the EM algorithm and the estimation of the asymptotic

covariance matrix of the MLEs are provided. An extensive simulation study un-

der various scenarios on cure rates, censoring proportions, sample sizes and lifetime

parameters is carried out in Section 2.4. In Section 2.5, we study the model discrimi-

nation using likelihood-based and information-based methods. In Section 2.6, we use

the proposed model for the analysis of a real data set on cutaneous melanoma.

2.2 Form of the data and the likelihood function

In lifetime data analysis, right censoring in data is quite common mainly due to the

limitations imposed by duration of the study. Therefore, we assume that our data are

subject to non-informative right censoring. The censored group includes susceptibles

who have their lifetimes to be larger than the censoring time, and also all the cured

individuals. To be more specific, let us denote by Ci the censoring time and Yi the

actual lifetime for the ith individual. Then, Ti is defined as

Ti = min{Yi, Ci}

while δi = I(Yi ≤ Ci) indicates whether the ith individual is censored (δi = 0) or not

(δi = 1), for i = 1, . . . , n; let us also define the sets ∆1 and ∆0 and ∆1 = {i : δi = 1}

and ∆0 = {i : δi = 0}. It is to be noted that Z(η, φ) = 1
p0

= Hφ(η) is only a

function of η, for a fixed value of φ and is monotone in η with limη→0Hφ(η) = 1 and
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limη→∞Hφ(η) =∞. Hence, it would be appropriate to link the covariates x1, . . . , xp

to the cured proportion using a logistic regression model i.e.

p0i = p0(β,xi) =
1

1 + ex
′
iβ
,

where p0i is the cured proportion, xi = (1, xi1, . . . , xip)
′ = (1,x′ic)

′ and β = (β0, . . . , βp)
′

is the vector of the regression coefficients for the ith individual. This link implies

η = H−1
φ (1 + exp(x′β)) where H−1

φ (.) is an inverse function of Hφ(.) and cannot be

calculated analytically for general COM-Poisson distribution. Consequently, the ob-

served data is of the form (ti, δi,xi), i = 1, . . . , n, and the likelihood function is given

by

L(θ; t,x, δ) ∝
∏
i∈∆1

fp(ti,xi;θ)
∏
i∈∆0

Sp(ti,xi;θ),

where θ = (φ,β′,γ ′)′, t = (t1, . . . , tn)′, x = (x′1, . . . ,x
′
n)′ and δ = (δ1, . . . , δn)′.

Now, let us assume the baseline hazard function in (2.1.1) to be that of a Weibull

distribution, i.e.,

h0(w; γ0, γ1) =
γ0

γ1

(
w

γ1

)γ0−1

,

where γ0 > 0 (the shape parameter) and γ1 > 0 (the scale parameter). Then, the

hazard function of Wi is given by

h(w;xc,γ) =
γ0

γ1

(
w

γ1

)γ0−1

ex
′
cγ2 ; (2.2.1)

clearly, Wi still follows a Weibull distribution with shape parameter γ0 and scale pa-

rameter γ1 exp(−xc′γ2/γ0).

In the recent work of Balakrishnan and Pal (2014) on COM-Poisson cure rate
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model, the lifetime distribution was assumed to be the same and not change with

the covariates. In the present work, by assuming a proportional hazard model, we

allow the lifetime distribution of the susceptible to vary according to the covariate

categories, thereby adding a greater flexibility to the model. It should be noted that

this model reduces to the parametric Weibull lifetime COM-Poisson cure rate model

studied in detail by Balakrishnan and Pal (2014) if we set γ2 = 0. This would

therefore facilitate us to test the hypothesis of uniformity among the covariate groups

by testing γ2 = 0 and if significant evidence is found against this hypothesis it would

then suggest the suitability of this model over the parametric Weibull lifetime cure

rate model.

2.3 Estimation of parameters and standard errors

The estimation of the model parameters is carried out by using the EM algorithm

(see McLachlan and Krishnan, 2007, for details) and a profile likelihood approach

for the dispersion parameter φ. The complete data are given by {(ti,xi, δi, Ii) : i =

1, . . . , n}, where Iis are observed for i ∈ ∆1 and unobserved for i ∈ ∆0 (recall that

Ii = 0 if and only if the ith individual is cured and 1 otherwise). The complete data

likelihood and log-likelihood functions are, respectively, given by

Lc(θ; t,x, δ, I) ∝
∏
i∈∆1

fp(ti,xi;θ)
∏
i∈∆0

p0(β,xi)
1−Ii{(1− p0(β,xi))Su(ti,xic;θ)}Ii

and

lc(θ; t,x, δ, I) = constant +
∑
i∈∆1

log fp(ti,xi;θ) +
∑
i∈∆0

(1− Ii) log p0(β,xi)

+
∑
i∈∆0

Ii log(1− p0(β,xi)) +
∑
i∈∆0

Ii logSu(ti,xic;θ),

(2.3.1)
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where I = (I1, . . . , In)′, xic = (xi1, . . . , xip)
′ and xi = (1,x′ic)

′. For a fixed value

of the dispersion parameter φ, and at the (k + 1)th iteration of the EM algorithm,

we have to compute the expected value of lc(θ; t,x, δ, I), given the observed data

O = {Ii, i ∈ ∆1, t,x, δ} and the current estimates obtained from the kth iteration,

denoted by θ(k) = (φ,β
′(k),γ

′(k))′. Therefore, for i ∈ ∆0, we have

π
(k+1)
i = E[Ii|O,θ(k)] =

(1− p0(β(k),xi))Su(ti,xic;θ
(k))

Sp(ti,xi;θ(k))
,

and so, Q(k+1) = Q(θ,π(k)) = E[lc(θ; t,x, δ, I)|O,θ(k)] must be maximized with

respect to (β′,γ ′)′ (since φ is assumed to be fixed), with π(k) = (π
(k)
i : i ∈ ∆0).

The numerical maximization is carried out by using the single-step Newton-Raphson

or Quasi-Newton method. Explicit expressions for Q(θ,π(k)) and the first-order

and second-order partial derivatives of Q(θ,π(k)) are presented in Appendix A.1

and A.2, respectively. We considered a specific range of values for φ with fixed

increment; for each choice of φ, we found the MLEs of (β′,γ ′)′ and then the fi-

nal estimate was taken by the choice of φ which yielded the maximum likelihood

value. We set φ ∈ {0.0, 0.1, . . . , 2.0} when data are generated from true φ ≤ 1 and

φ ∈ {0.0, 0.1, . . . , 4.0} when data are generated from true φ > 1.

For finding the standard error of the parameter estimates, we applied Louis’ prin-

ciple for computing the observed information matrix (see Louis, 1982); that is,

I(θ∗) = E[B(θ∗; t,x, δ, I)]− E[S(θ∗; t,x, δ, I)ST (θ∗; t,x, δ, I)]

+ E[S(θ∗; t,x, δ, I)]E[ST (θ∗; t,x, δ, I)],

(2.3.2)

where I(θ∗) is the information on θ∗, B(θ∗; t,x, δ, I) and S(θ∗; t,x, δ, I) denote the

negative of the matrix of second derivatives and the gradient vector of lc(θ; t,x, δ, I)
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(score function). The standard errors of the parameter estimates were then calculated

by taking the square-root of the corresponding variances which are nothing more

than the diagonal elements of the variance-covariance matrix I−1(θ∗). By using the

asymptotic normality of the MLEs, 95% confidence intervals (CI) of the parameters

were obtained. To examine the accuracy of the interval estimation, the coverage

probabilities were found at 95% nominal level. The pertinent details of the first-

order and second-order derivatives of the complete data log-likelihood for obtaining

the information matrix are presented in Appendix A.2. Asymptotic normality of the

MLEs can also be used to estimate the standard error of the cure rates with the use

of multivariate delta method since p0 = g(β) : R(p+1) → R is a continuous function.

2.4 Simulation study

In our simulation study, we studied the effects of different sample sizes, cure rates,

censoring proportions and lifetime parameters in order to examine the performance

and robustness of the proposed model. Motivated by the real data, we considered a

single categorical covariate x, affecting the lifetimes of the susceptible, having four

possible values, namely, x = 1, 2, 3, 4. Two different sample sizes were taken into

account, distributed among the four covariate groups, viz., n = 200 (50, 42, 53, 55)

and n = 400 (95, 102, 97, 106). The choices of the regression parameters were made

by utilizing the monotone behavior of the logit link function. By fixing the true cure

rates for x = 1 and x = 4 as (0.60, 0.25) and (0.40, 0.20) representing the “high” and

“low” cure rate scenarios and solving

1

1 + eβ0+β1
= 0.60(0.40),

1

1 + eβ0+4β1
= 0.25(0.20),
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the true values of (β0, β1) were obtained as (−0.906, 0.501) and (0.078, 0.326), re-

spectively. Furthermore, the performance of the model was tested under “heavy”

and “light” censored data. Specifically, the censoring proportions considered for the

groups x = 1, 2, 3, 4 were (0.80, 0.64, 0.50, 0.38) (“heavy” censoring) and (0.70, 0.57,

0.45, 0.35) (“light” censoring) for the “high” cure rate and (0.60, 0.49, 0.40, 0.33)

(“heavy” censoring) and (0.50, 0.42, 0.35, 0.30) (“light” censoring) for the “low”

cure rate, respectively. It was assumed that the censoring time follow an exponen-

tial distribution with rate λx, x = 1, 2, 3, 4. For determining this λx, we equated the

probability of getting censored for susceptible to the difference between the censoring

and cured proportion, and solved them numerically, i.e.

P [Y ≥ Cx ∩M ≥ 1|X = x] = cx − p0x,

for the xth covariate group. Upon considering Cx ∼ exponential(λx), we therefore

solved for λx from the equation

λx

∫ ∞
0

exp

[
−
(
cx
γ1

)γ0
eγ2x + λxcx

]
dcx −

H−1
φ (cx/p0x)

H−1
φ (1/p0x)

= 0,

by numerical methods. We also took two choices for (γ0, γ1, γ2) as (1.75, 3.25, 0.10)

and (3.25, 5.50, 0.20) corresponding to lower and higher lifetimes, respectively, to

study its effect on the model.

Here, we discuss the techniques of simulation for different cure rate models, but

focusing only on a single covariate group x. For the Bernoulli cure rate model, we

generated a random sample Mx of desired size from a Bernoulli distribution (φ→∞)

having success (I = 0) probability to be p0x. If Mx = 0, then Cx (censoring time vari-
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able) was generated from an exponential distribution with rate λx and Tx (observed

lifetime) was assigned as Cx with δx (censoring indicator) = 0. On the other hand, if

Mx = 1, Cx was generated from an exponential (λx) and Yx (actual lifetime) from a

Weibull with shape γ0 and scale γ1e
− γ2x

γ0 . Tx was calculated as min{Yx, Cx}; δx = 1

when Tx = Yx and δx = 0, otherwise. For the Poisson cure rate model, we generated

Mx from a Poisson distribution (φ = 1) with mean H−1
φ (1 + eβ0+β1x) = − log p0x.

The procedure remains the same if Mx = 0 as in the Bernoulli case. For Mx = m

where m ≥ 1, we generated W1, . . . ,Wm lifetimes from a Weibull distribution with

shape and scale as discussed before and took Yx = min{W1, . . . ,Wm}. We simul-

taneously generated Cx from exponential with rate λx and took Tx = min{Yx, Cx}.

The censoring indicators were generated as δx = 0 for Mx = 0 and Mx ≥ 1 with

Tx = Cx, but δx = 1 if Mx ≥ 1 with Tx = Yx. For the geometric and COM-Poisson

cure rate models, the technique remained the same as of the Poisson, except that

Mx was generated from a geometric distribution with parameter 1− p0x and a COM-

Poisson distribution with parameter ηx = H−1
φ (1 + eβ0+β1x) for a fixed φ, respectively.

ηx was found numerically for the choices of β0 and β1. The number of iterations in

each scenario was fixed to be at most 500 and the computations were performed on

R-software (R-3.1.1). The estimates (Est), i.e., the average over all replications were

calculated using Monte Carlo method along with empirical bias, root mean square

error (RMSE) and coverage probabilities (CP) to assess the accuracy of our estimates.

For the simulation study, a 15% variability on both sides of the real values, i.e., a

random number from the interval (0.85θ∗, 1.15θ∗), was taken as the initial parameter

guess. As discussed before, the MLE of (β′,γ ′) was obtained for that φ which yielded

the maximum log-likelihood value. Thus, φ̂ was obtained by a profile-likelihood and

s.e. of the MLE θ∗ by Louis’ method by considering φ = φ̂.
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In Tables 2.1 to 2.8, we can see that the estimation of the model parameters is

quite accurate for all different scenarios (due to space limitations, the results for the

case φ = 2 are not presented). The standard errors and RMSE are found to decrease

as the sample size increases. The same is observed when the cure rate or the cen-

soring proportion decreases. The standard error of β0 is almost always larger than

the standard error of any other parameter, except the standard error of γ1 which is

comparatively high; it is to be noted that the lifetime of Y itself is quite sensitive with

respect to the scale γ1. The standard error for γ0 is greater when the true lifetime

parameters are large. However, the effect is quite opposite for the other parameters

since the standard errors get reduced. The estimates of φ has a relatively high bias

since it has been estimated by profile likelihood method. This large bias can also

be attributed to the fact that the precision is affected by gap present in the interval

consideration of φ. In most of the cases, we observed an under-estimated value for

φ̂ when data generated from φ = 0.5, which became less apparent for higher true

lifetime values.

In most of the cases, the CPs are quite close to the nominal level. The CPs

reach the nominal level as the censoring proportion decreases or as the sample size

increases. The under-coverage is most apparent in the case of geometric cure rate

model, especially, when the censoring proportion is high and lifetime parameters take

small values; the CP for the Bernoulli cure rate model is quite close to the nominal

level in all cases. The coverage of γ0 is consistently lower than the nominal level

when data is generated from φ = 0.5. Table 2.9 and 2.10 presents the estimates of

the cure rate, bias, RMSE and 95% CI for n = 200 and n = 400 with heavy censoring

and higher lifetime; note that the Bernoulli cure rate model has the least bias and
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RMSE. It is also worth mentioning that the profile likelihood approach seems to cause

bias and larger standard errors which reduce as the grid search for φ is performed on

intervals with more refined increments (a similar remark can be found in Balakrishnan

and Pal, 2014). Overall, more sample observations, less censoring, low cure rate, high

lifetime and φ > 1 results in better accuracy of the estimates.

2.5 Model discrimination

The motivation for model discrimination comes from the fact that a COM-Poisson

distribution encompasses many well known discrete distributions. So, by choosing the

parameter φ suitably, we can adequately fit an appropriate model to a data character-

ized by a cured proportion since it provides access to a wide range of distributions for

the number of competing cause. It enables us to observe how often a model different

than the true model gets selected or rejected, thereby, utilizing the generality of a

COM-Poisson distribution to model a data.

We generated 500 random samples from a specific φ (here, φ = 0 (geometric)

, 0.5, 1 (Poisson), 2 and ∞ (Bernoulli)), and then fitted the three special cases of

a COM-Poisson cure rate model to the generated data. For each replication, we

tested whether the geometric (H0 : φ = 0) or Poisson (H0 : φ = 1) or Bernoulli

(H0 : φ→∞) model could be assumed as an appropriate model for our data, against

the alternative that a model described by a COM-Poisson distribution where φ /∈ H0

provided a better fit. The number of times the correct model was rejected (i.e., H0 is

incorrectly rejected, providing the observed level of significance) and that the incorrect

models were rejected (i.e., H0 is correctly rejected, providing the observed power of

the test), were computed. Two kinds of selection criteria were examined here, namely,
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likelihood-based approach and information-based criteria. We took into account the

following scenarios: Setting 1: n = 400 and “light” censoring; Setting 2: n = 400 and

“heavy” censoring; Setting 3: n = 600 and “light” censoring; Setting 4: n = 600 and

“heavy” censoring; the censoring proportion exceeded the cured proportion by 0.1,

for each covariate group in each of these cases.

2.5.1 Likelihood-based method

Let us denote by l̂0 and l̂ the maximized log-likelihood value under the null and

alternative hypothesis, respectively; it is known that the asymptotic distribution of

the test statistic Λ = −2(l̂0 − l̂) (Wilks’ likelihood ratio test; LRT), under the null

hypothesis, is a Chi-squared distribution with one degrees of freedom (d.f.). However,

the cases φ = 0 and φ → ∞ are on the boundaries of the parametric space and so

the asymptotic distribution of Λ is a mixture Chi-squared distribution such that

P (Λ ≤ λ) = 1
2

+ 1
2
P (χ2

1 ≤ λ), where χ2
1 is a random variable having χ2-distribution

with 1 d.f. (see Self and Liang, 1987). From Table 2.11, we see that the observed level

of significance for the geometric model is quite close to the nominal level 0.05. For the

Bernoulli cure rate model, the observed level of significance is close to 0.10 in most of

the cases, while for the Poisson cure rate model it varies greatly from 0.06 to 0.20. This

could be attributed to the fact that the mixture Chi-squared distribution provides

good approximation to the asymptotic distribution of Λ (as in case of geometric and

Bernoulli), whereas the Chi-squared distribution does not (as in case of the Poisson

distribution). Besides, we note that the observed level of significance improves as

the sample size increases or/and the cure rate decreases. In case when the data are

generated from a true geometric cure rate model, the rejection rate of Bernoulli model

was significantly higher than of other models, taking values from 0.597 to 0.830. For
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the true Poisson model, the rejection rate of the Bernoulli model is greater than the

geometric model, though not as much as observed in the true geometric case. For

the true Bernoulli cure rate model, the rejection rate of a geometric model ranges

from 0.418 to 0.670, whereas that of the Poisson model is in the range of 0.046 and

0.252. For φ = 0.5, it is more likely to reject the Bernoulli model while for φ = 2, the

rejection rates of geometric and Bernoulli models are almost similar. Note also that

in most of the cases the power increases as sample size increases or/and if the cure

rate decreases.

2.5.2 Information-based method

The second method of model selection is based on the Akaike’s information criterion

(AIC) and Bayesian information criterion (BIC); AIC is defined as −2l̂ + 2p, where

l̂ is the maximized likelihood value and p is the number of model parameters to be

estimated and BIC is given by −2l̂ + p logN , where N is the sample size. Clearly,

the model which takes the minimum value for AIC (or BIC) is the model which best

fits the data; it is necessary to mention that in our simulation study, the AIC and

BIC always selected the same model as the models that are compared have the same

number of parameters. From Table 2.12, it can be seen that the selection rate for the

geometric model decreases as φ increases while that of Bernoulli model increases as

φ increases; clearly, both of these features are quite reasonable. Based on AIC, the

selection rates of the correct model are from 67.0% to 73.2% if the true distribution is

geometric, from 39.2% to 49.4% if the true distribution is Poisson, and from 71.2% to

76.0% if the true distribution is Bernoulli. Similar selection rates are also found for

the cases φ = 0.5 and φ = 2. It can therefore be stated that if φ < 1, the geometric

model is more likely to be selected than the Bernoulli model whilst if φ > 1, the
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Bernoulli model is more likely to be selected than the geometric. Note that the

selection rates for the correct models increase as the sample size increases, while it

decreases as censoring rate increases, as expected.

2.6 Analysis of cutaneous melanoma data

The proposed model is illustrated with a data set on cancer recurrence taken from

Ibrahim et al. (2005); the data is part of a study on cutaneous melanoma (a type of

malignant cancer) for the evaluation of postoperative treatment performance with a

high dose of interferon alpha-2b as a drug to prevent recurrence. There were originally

427 patients in the study divided into four nodule categories based on tumor thickness

and this will be the only covariate (x = 1, 2, 3, 4) in our analysis; 10 patients were

excluded from our analysis due to missing values of tumor thickness information. The

patients have been observed for the period 1991-1995 and followed until 1998. The

overall percentage of censored observations is 56%. What was observed was either

the exact lifetimes (time till patient’s death) or the censoring times, in years; the

observed lifetimes had mean and standard deviation as 3.18 and 1.69, respectively.

The sample sizes for the four nodule categories are n1= 111, n2= 137, n3= 87 and

n4= 82.

To provide the initial values of the regression parameters β0 and β1, we considered

the observed censoring proportion of each group to be its cure rate (overestimated);

for the parameter γ, we used a multiple linear regression model of log{− log[S(t;γ)]}

values over log(t); note that log{− log[S(t;γ)]} = γ0 log t + γ2x − γ0 log γ1, wherein

S(t;γ) was estimated by the Kaplan-Meier estimator. We used a profile likelihood

approach for estimating the parameter φ over [0, 5] with increment of 0.1 and then
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Figure 2.1: The plot of Λ = −2(l̂ − l̂0) vs φ, for cutaneous melanoma data.

evaluating the log-likelihood value for each φ. It was observed that the maximum log-

likelihood was achieved at φ = 0, with corresponding log-likelihood value -509.338;

hence, the geometric model is found to be most suitable for our data. In order to

test the hypothesis H0 : φ = 0 against H1 : φ > 0, we follow the same procedure as

described in Section 2.5; we find Λ = −2(l̂0 − l̂) ≈ 0, with p-value equal to 0.50. On

the other hand, if we test for the Poisson and Bernoulli cure rate models, we obtain

p-values of 0.019 and 0.001, respectively, thus not supporting these models.

The models are also compared on the basis of AIC and BIC. From Table 2.13, it

can be seen that AIC and BIC are increasing functions with respect to φ. Based on

this observation, we used the values of Λ against φ (Figure 2.1) with φ ∈ [0, 5] and

10% level of significance; hence, Λ = 2.71 (χ2
1,0.9) and the null hypothesis H0 : φ = 0

does not get supported if Λ is greater than 2.71. This means that φ ∈ [0, 0.285),

implying that the geometric model adequately fits the data.Furthermore, we test

H0 : γ2 = 0 vs. H1 : γ2 6= 0 using the likelihood ratio test; note that if γ2 = 0, then

the lifetime of susceptible follows a Weibull distribution with shape γ0 and shape

γ1 and the covariates would not have any effect on the lifetime. The maximized
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log-likelihood values for the geometric, COM-Poisson with φ = 0.5, Poisson, COM-

Poisson with φ = 2, and Bernoulli cure rate models are -509.419, -512.194, -513.394,

-514.896 and -517.591, respectively. The corresponding Λ values (p-values) are 0.161

(0.687), 1.920 (0.165), 2.627 (0.105), 3.748 (0.052) and 6.234 (0.012), respectively. It

can be seen that the p-values decrease as φ increases which indicates that for under-

dispersed cure rate models, considering proportional-hazards with Weibull baseline

is clearly better than considering a constant Weibull lifetime over the four nodule

categories. In Table 2.14, we present the estimates for the cure rate proportions,

their standard errors and 95% confidence intervals stratified by nodule category, for

the geometric cure rate model; the parameters estimates are β̂0 = −1.076 (0.292),

β̂1 = 0.456 (0.109), γ̂0 = 1.887 (0.118), γ̂1 = 3.286 (0.586) and γ̂2 = 0.078 (0.115).

Note that the confidence intervals of cure rates for the first and fourth nodule cate-

gories are non-overlapping and we can therefore conclude that cure rates of the nodule

category 1 is significantly greater than that of nodule category 4.

One more measure of importance is the probability an individual to be cured,

given that he/she has survived up to a specific time t, i.e., P (I = 0|T > t). The

estimate of this probability is given by

P̂ (I = 0|T > t) =

(
1 + eβ̂0+β̂1x exp

[
−
(
t

γ̂1

)γ̂0
exγ̂2

])−1

.

A plot of this probability for the four nodule categories along with its 95% CI are

presented in Figure 2.2 from which the difference between the four groups can clearly

be seen. The cure probability for nodule category 1 is the highest, whereas that of

nodule category 4 is the lowest.
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Figure 2.2: Plots representing cure rate given an individual has survived up to a
specific time t (solid line), and its 95%CI (dotted line) over four covariate groups.
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Table 2.1: Estimates, bias, RMSE and CP for the Bernoulli cure rate model with
heavy censoring.

n p0 Par True Est (s.e.) Bias RMSE CP (95%)

200 (50, 42, 53, 55) High β0 -0.906 -0.921 (0.519) -0.014 0.517 0.953

β1 0.501 0.510 (0.182) 0.009 0.185 0.949

γ0 1.750 1.780 (0.147) 0.030 0.153 0.959

γ1 3.250 3.366 (0.760) 0.116 0.785 0.938

γ2 0.100 0.105 (0.123) 0.005 0.128 0.950

Low β0 0.078 0.077 (0.483) -0.001 0.482 0.960

β1 0.326 0.331 (0.176) 0.004 0.182 0.967

γ0 1.750 1.770 (0.130) 0.020 0.136 0.952

γ1 3.250 3.304 (0.549) 0.054 0.532 0.944

γ2 0.100 0.104 (0.096) 0.004 0.094 0.956

400 (95, 102, 97, 106) High β0 -0.906 -0.934 (0.369) -0.028 0.380 0.953

β1 0.501 0.510 (0.129) 0.009 0.133 0.947

γ0 1.750 1.766 (0.105) 0.016 0.113 0.936

γ1 3.250 3.262 (0.528) 0.012 0.531 0.940

γ2 0.100 0.095 (0.088) -0.004 0.091 0.945

Low β0 0.078 0.089 (0.334) 0.011 0.338 0.949

β1 0.326 0.325 (0.125) -0.001 0.122 0.957

γ0 1.750 1.763 (0.092) 0.013 0.102 0.926

γ1 3.250 3.292 (0.380) 0.042 0.394 0.953

γ2 0.100 0.103 (0.068) 0.003 0.069 0.947

200 (50, 42, 53, 55) High β0 -0.906 -0.909 (0.493) -0.002 0.536 0.946

β1 0.501 0.500 (0.173) -0.001 0.183 0.956

γ0 3.250 3.329 (0.272) 0.079 0.302 0.930

γ1 5.500 5.545 (0.605) 0.045 0.623 0.930

γ2 0.200 0.207 (0.115) 0.007 0.124 0.924

Low β0 0.078 0.078 (0.447) 0.000 0.517 0.947

β1 0.326 0.328 (0.167) 0.001 0.185 0.953

γ0 3.250 3.316 (0.236) 0.066 0.153 0.953

γ1 5.500 5.513 (0.440) 0.013 0.785 0.949

γ2 0.200 0.204 (0.090) 0.004 0.128 0.935

400 (95, 102, 97, 106) High β0 -0.906 -0.932 (0.352) -0.025 0.340 0.955

β1 0.501 0.511 (0.125) 0.010 0.122 0.959

γ0 3.250 3.289 (0.194) 0.039 0.210 0.941

γ1 5.500 5.515 (0.433) 0.015 0.429 0.945

γ2 0.200 0.201 (0.082) 0.001 0.083 0.943

Low β0 0.078 0.082 (0.312) 0.004 0.380 0.957

β1 0.326 0.328 (0.117) 0.001 0.133 0.967

γ0 3.250 3.272 (0.166) 0.022 0.113 0.957

γ1 5.500 5.482 (0.312) -0.017 0.531 0.955

γ2 0.200 0.197 (0.063) -0.002 0.091 0.947
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Table 2.2: Estimates, bias, RMSE and CP for the Poisson cure rate model with heavy
censoring.

n p0 Par True Est (s.e.) Bias RMSE CP (95%)

200 (50, 42, 53, 55) High β0 -0.906 -0.862 (0.566) 0.044 0.616 0.935

β1 0.501 0.494 (0.195) -0.006 0.202 0.946

γ0 1.750 1.797 (0.155) 0.047 0.164 0.938

γ1 3.250 3.492 (0.995) 0.242 1.189 0.916

γ2 0.100 0.116 (0.157) 0.016 0.170 0.935

Low β0 0.078 0.062 (0.508) -0.016 0.550 0.933

β1 0.326 0.345 (0.192) 0.018 0.212 0.935

γ0 1.750 1.776 (0.135) 0.026 0.134 0.945

γ1 3.250 3.319 (0.725) 0.069 0.848 0.916

γ2 0.100 0.092 (0.133) -0.007 0.154 0.910

400 (95, 102, 97, 106) High β0 -0.906 -0.923 (0.389) -0.017 0.415 0.940

β1 0.501 0.507 (0.136) 0.006 0.148 0.940

γ0 1.750 1.771 (0.109) 0.021 0.111 0.956

γ1 3.250 3.316 (0.658) 0.066 0.717 0.934

γ2 0.100 0.101 (0.111) 0.001 0.118 0.923

Low β0 0.078 0.094 (0.365) 0.016 0.372 0.946

β1 0.326 0.328 (0.136) 0.001 0.137 0.954

γ0 1.750 1.768 (0.097) 0.018 0.094 0.960

γ1 3.250 3.328 (0.522) 0.078 0.582 0.938

γ2 0.100 0.105 (0.095) 0.005 0.102 0.934

200 (50, 42, 53, 55) High β0 -0.906 -0.911 (0.528) -0.005 0.544 0.943

β1 0.501 0.504 (0.188) 0.003 0.194 0.943

γ0 3.250 3.304 (0.282) 0.054 0.279 0.952

γ1 5.500 5.537 (0.750) 0.037 0.714 0.946

γ2 0.200 0.205 (0.147) 0.005 0.144 0.958

Low β0 0.078 0.085 (0.457) 0.006 0.481 0.934

β1 0.326 0.326 (0.173) 0.000 0.180 0.946

γ0 3.250 3.308 (0.237) 0.058 0.254 0.946

γ1 5.500 5.536 (0.556) 0.036 0.578 0.944

γ2 0.200 0.212 (0.118) 0.012 0.126 0.938

400 (95, 102, 97, 106) High β0 -0.906 -0.880 (0.362) 0.026 0.370 0.940

β1 0.501 0.494 (0.128) -0.007 0.131 0.944

γ0 3.250 3.281 (0.194) 0.031 0.187 0.959

γ1 5.500 5.523 (0.509) 0.023 0.518 0.946

γ2 0.200 0.204 (0.099) 0.004 0.103 0.940

Low β0 0.078 0.123 (0.345) 0.045 0.342 0.947

β1 0.326 0.316 (0.128) -0.010 0.126 0.955

γ0 3.250 3.283 (0.175) 0.033 0.181 0.945

γ1 5.500 5.559 (0.421) 0.171 0.413 0.963

γ2 0.200 0.208 (0.087) 0.007 0.083 0.963
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Table 2.3: Estimates, bias, RMSE and CP for the geometric cure rate model with
heavy censoring.

n p0 Par True Est (s.e.) Bias RMSE CP (95%)

200 (50, 42, 53, 55) High β0 -0.906 -0.893 (0.541) 0.013 0.681 0.888

β1 0.501 0.496 (0.188) -0.004 0.238 0.884

γ0 1.750 1.810 (0.160) 0.060 0.172 0.948

γ1 3.250 3.676 (1.244) 0.426 2.041 0.859

γ2 0.100 0.118 (0.198) 0.018 0.269 0.859

Low β0 0.078 0.023 (0.502) -0.055 0.636 0.879

β1 0.326 0.354 (0.189) 0.027 0.244 0.886

γ0 1.750 1.793 (0.144) 0.043 0.169 0.907

γ1 3.250 3.416 (1.032) 0.166 1.484 0.855

γ2 0.100 0.083 (0.192) -0.016 0.255 0.866

400 (95, 102, 97, 106) High β0 -0.906 -0.900 (0.388) 0.006 0.470 0.899

β1 0.501 0.496 (0.137) -0.004 0.166 0.895

γ0 1.750 1.773 (0.115) 0.023 0.134 0.907

γ1 3.250 3.435 (0.837) 0.185 1.160 0.866

γ2 0.100 0.110 (0.144) 0.010 0.190 0.862

Low β0 0.078 0.089 (0.355) 0.010 0.426 0.896

β1 0.326 0.321 (0.131) -0.005 0.160 0.887

γ0 1.750 1.766 (0.101) 0.016 0.107 0.937

γ1 3.250 3.426 (0.732) 0.176 0.989 0.898

γ2 0.100 0.109 (0.133) 0.009 0.173 0.876

200 (50, 42, 53, 55) High β0 -0.906 -0.944 (0.530) -0.037 0.566 0.943

β1 0.501 0.512 (0.186) 0.011 0.203 0.938

γ0 3.250 3.329 (0.292) 0.079 0.305 0.952

γ1 5.500 5.537 (0.913) 0.037 1.033 0.922

γ2 0.200 0.198 (0.189) -0.001 0.218 0.913

Low β0 0.078 0.085 (0.503) 0.006 0.556 0.920

β1 0.326 0.331 (0.185) 0.004 0.210 0.922

γ0 3.250 3.345 (0.268) 0.095 0.282 0.960

γ1 5.500 5.545 (0.836) 0.045 0.939 0.918

γ2 0.200 0.198 (0.183) -0.001 0.210 0.912

400 (95, 102, 97, 106) High β0 -0.906 -0.918 (0.373) -0.012 0.419 0.918

β1 0.501 0.509 (0.133) 0.008 0.150 0.912

γ0 3.250 3.326 (0.208) 0.076 0.238 0.920

γ1 5.500 5.567 (0.642) 0.067 0.690 0.932

γ2 0.200 0.209 (0.134) 0.009 0.149 0.930

Low β0 0.078 0.078 (0.357) -0.000 0.376 0.932

β1 0.326 0.330 (0.133) 0.003 0.144 0.928

γ0 3.250 3.320 (0.189) 0.070 0.216 0.928

γ1 5.500 5.515 (0.589) 0.015 0.656 0.919

γ2 0.200 0.203 (0.131) 0.003 0.152 0.915



Chapter 2.6 - Analysis of cutaneous melanoma data 48

Table 2.4: Estimates, bias, RMSE and CP for the COM-Poisson cure rate model with
φ = 0.5 and heavy censoring.

n p0 Par True Est (s.e.) Bias RMSE CP (95%)

200 (50, 42, 53, 55) High β0 -0.906 -0.935 (0.557) -0.028 0.588 0.933

β1 0.501 0.509 (0.192) 0.008 0.204 0.926

γ0 1.750 1.909 (0.171) 0.159 0.250 0.840

γ1 3.250 3.274 (1.000) 0.024 1.152 0.920

γ2 0.100 0.032 (0.191) -0.067 0.229 0.920

φ 0.500 0.247 (-) -0.252 0.578 -

Low β0 0.078 0.067 (0.504) -0.010 0.508 0.955

β1 0.326 0.333 (0.184) 0.006 0.183 0.955

γ0 1.750 1.897 (0.152) 0.147 0.228 0.816

γ1 3.250 3.474 (0.908) 0.224 1.003 0.955

γ2 0.100 0.058 (0.172) -0.041 0.187 0.948

φ 0.500 0.240 (-) -0.260 0.588 -

400 (95, 102, 97, 106) High β0 -0.906 -0.885 (0.392) 0.021 0.372 0.954

β1 0.501 0.482 (0.136) -0.019 0.128 0.954

γ0 1.750 1.855 (0.118) 0.105 0.181 0.812

γ1 3.250 3.293 (0.724) 0.043 0.820 0.935

γ2 0.100 0.055 (0.135) -0.044 0.165 0.890

φ 0.500 0.279 (-) -0.220 0.609 -

Low β0 0.078 0.064 (0.358) -0.014 0.424 0.903

β1 0.326 0.324 (0.131) -0.002 0.160 0.903

γ0 1.750 1.873 (0.107) 0.123 0.186 0.696

γ1 3.250 3.476 (0.658) 0.226 0.888 0.872

γ2 0.100 0.053 (0.125) -0.046 0.166 0.866

φ 0.500 0.209 (-) -0.290 0.562 -

200 (50, 42, 53, 55) High β0 -0.906 -0.891 (0.540) 0.015 0.504 0.960

β1 0.501 0.500 (0.186) -0.001 0.178 0.973

γ0 3.250 3.543 (0.309) 0.293 0.466 0.814

γ1 5.500 5.619 (0.841) 0.119 0.859 0.933

γ2 0.200 0.190 (0.76) -0.009 0.185 0.947

φ 0.500 0.345 (-) -0.154 0.629 -

Low β0 0.078 0.061 (0.496) -0.017 0.470 0.975

β1 0.326 0.328 (0.181) 0.002 0.179 0.950

γ0 3.250 3.506 (0.277) 0.257 0.431 0.808

γ1 5.500 5.562 (0.713) 0.062 0.811 0.913

γ2 0.200 0.167 (0.161) -0.032 0.188 0.895

φ 0.500 0.401 (-) -0.098 0.663 -

400 (95, 102, 97, 106) High β0 -0.906 -0.912 (0.376) -0.005 0.371 0.957

β1 0.501 0.499 (0.132) -0.001 0.132 0.944

γ0 3.250 3.413 (0.211) 0.163 0.333 0.822

γ1 5.500 5.535 (0.581) 0.035 0.591 0.926

γ2 0.200 0.179 (0.121) -0.020 0.140 0.901

φ 0.500 0.380 (-) -0.119 0.607 -

Low β0 0.078 0.080 (0.347) 0.002 0.382 0.946

β1 0.326 0.314 (0.127) -0.012 0.136 0.928

γ0 3.250 3.494 (0.194) 0.244 0.342 0.724

γ1 5.500 5.598 (0.511) 0.098 0.578 0.898

γ2 0.200 0.176 (0.115) -0.023 0.126 0.934

φ 0.500 0.289 (-) -0.211 0.614 -
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Table 2.5: Estimates, bias, RMSE and CP for the Bernoulli cure rate model with
light censoring.

n p0 Par True Est (s.e.) Bias RMSE CP (95%)

200 (50, 42, 53, 55) High β0 -0.906 -0.961 (0.410) -0.054 0.424 0.945

β1 0.501 0.524 (0.155) 0.023 0.161 0.947

γ0 1.750 1.781 (0.138) 0.031 0.135 0.956

γ1 3.250 3.303 (0.573) 0.053 0.614 0.935

γ2 0.100 0.101 (0.102) 0.001 0.108 0.933

Low β0 0.078 0.066 (0.394) -0.011 0.433 0.941

β1 0.326 0.338 (0.153) 0.011 0.167 0.931

γ0 1.750 1.772 (0.119) 0.022 0.119 0.962

γ1 3.250 3.263 (0.437) 0.013 0.402 0.952

γ2 0.100 0.102 (0.082) 0.002 0.076 0.970

400 (95, 102, 97, 106) High β0 -0.906 -0.931 (0.294) -0.024 0.288 0.948

β1 0.501 0.512 (0.108) 0.011 0.104 0.969

γ0 1.750 1.760 (0.098) 0.010 0.102 0.942

γ1 3.250 3.290 (0.412) 0.040 0.391 0.965

γ2 0.100 0.104 (0.071) 0.004 0.071 0.959

Low β0 0.078 0.054 (0.289) -0.024 0.300 0.938

β1 0.326 0.337 (0.112) 0.010 0.114 0.944

γ0 1.750 1.770 (0.087) 0.020 0.094 0.957

γ1 3.250 3.267 (0.322) 0.017 0.306 0.969

γ2 0.100 0.102 (0.060) 0.002 0.059 0.970

200 (50, 42, 53, 55) High β0 -0.906 -0.908 (0.405) -0.001 0.375 0.973

β1 0.501 0.504 (0.150) 0.003 0.139 0.975

γ0 3.250 3.299 (0.249) 0.049 0.262 0.955

γ1 5.500 5.507 (0.490) 0.007 0.478 0.948

γ2 0.200 0.200 (0.097) 0.000 0.098 0.951

Low β0 0.078 0.058 (0.392) -0.019 0.401 0.945

β1 0.326 0.336 (0.150) 0.009 0.156 0.953

γ0 3.250 3.293 (0.221) 0.043 0.222 0.947

γ1 5.500 5.528 (0.393) 0.028 0.382 0.953

γ2 0.200 0.206 (0.081) 0.006 0.079 0.965

400 (95, 102, 97, 106) High β0 -0.906 -0.914 (0.290) -0.007 0.288 0.945

β1 0.501 0.504 (0.108) -0.003 0.110 0.943

γ0 3.250 3.287 (0.180) 0.037 0.173 0.961

γ1 5.500 5.511 (0.352) 0.011 0.365 0.957

γ2 0.200 0.203 (0.070) 0.003 0.072 0.951

Low β0 0.078 0.075 (0.282) -0.002 0.296 0.955

β1 0.326 0.335 (0.108) 0.008 0.111 0.957

γ0 3.250 3.278 (0.156) 0.028 0.160 0.953

γ1 5.500 5.479 (0.279) -0.021 0.278 0.949

γ2 0.200 0.195 (0.058) -0.004 0.057 0.965
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Table 2.6: Estimates, bias, RMSE and CP for the Poisson cure rate model with light
censoring.

n p0 Par True Est (s.e.) Bias RMSE CP (95%)

200 (50, 42, 53, 55) High β0 -0.906 -0.943 (0.432) -0.036 0.427 0.956

β1 0.501 0.516 (0.163) 0.014 0.164 0.956

γ0 1.750 1.782 (0.142) 0.032 0.154 0.926

γ1 3.250 3.280 (0.685) 0.030 0.729 0.928

γ2 0.100 0.094 (0.127) -0.005 0.142 0.934

Low β0 0.078 0.092 (0.431) 0.013 0.443 0.966

β1 0.326 0.324 (0.163) -0.002 0.170 0.949

γ0 1.750 1.788 (0.125) 0.038 0.135 0.945

γ1 3.250 3.308 (0.586) 0.058 0.634 0.922

γ2 0.100 0.103 (0.003) 0.003 0.123 0.934

400 (95, 102, 97, 106) High β0 -0.923 -0.931 (0.303) -0.016 0.288 0.934

β1 0.501 0.507 (0.113) 0.006 0.100 0.942

γ0 1.750 1.772 (0.099) 0.022 0.102 0.940

γ1 3.250 3.285 (0.482) 0.035 0.391 0.932

γ2 0.100 0.103 (0.089) 0.003 0.071 0.934

Low β0 0.078 0.071 (0.298) -0.007 0.314 0.953

β1 0.326 0.335 (0.117) 0.008 0.115 0.940

γ0 1.750 1.766 (0.088) 0.016 0.104 0.942

γ1 3.250 3.256 (0.404) 0.006 0.501 0.922

γ2 0.100 0.095 (0.080) -0.004 0.094 0.928

200 (95, 102, 97, 106) High β0 -0.906 -0.914 (0.411) -0.007 0.431 0.938

β1 0.501 0.509 (0.153) 0.007 0.159 0.954

γ0 3.250 3.332 (0.256) 0.082 0.268 0.935

γ1 5.500 5.537 (0.560) 0.037 0.586 0.944

γ2 0.200 0.211 (0.117) 0.011 0.124 0.944

Low β0 0.078 0.0411 (0.402) -0.037 0.413 0.944

β1 0.326 0.347 (0.155) 0.020 0.166 0.946

γ0 3.250 3.299 (0.224) 0.049 0.223 0.963

γ1 5.500 5.499 (0.479) -0.001 0.510 0.934

γ2 0.200 0.198 (0.105) -0.002 0.112 0.932

400 (50, 42, 53, 55) High β0 -0.906 -0.905 (0.295) 0.001 0.295 0.957

β1 0.501 0.505 (0.111) 0.004 0.115 0.933

γ0 3.250 3.282 (0.179) 0.032 0.179 0.959

γ1 5.500 5.497 (0.402) -0.002 0.401 0.955

γ2 0.200 0.199 (0.084) -0.001 0.088 0.941

Low β0 0.078 0.075 (0.300) -0.003 0.294 0.961

β1 0.326 0.329 (0.115) 0.003 0.114 0.971

γ0 3.250 3.265 (0.162) 0.015 0.164 0.947

γ1 5.500 5.504 (0.360) 0.004 0.367 0.941

γ2 0.200 0.198 (0.078) -0.001 0.080 0.943
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Table 2.7: Estimates, bias, RMSE and CP for the geometric cure rate model with
light censoring.

n p0 Par True Est (s.e.) Bias RMSE CP (95%)

200 (50, 42, 53, 55) High β0 -0.906 -0.898 (0.439) 0.008 0.479 0.933

β1 0.501 0.505 (0.162) 0.003 0.178 0.922

γ0 1.750 1.805 (0.143) 0.055 0.156 0.947

γ1 3.250 3.405 (0.869) 0.155 0.979 0.939

γ2 0.100 0.111 (0.167) 0.011 0.184 0.933

Low β0 0.078 0.089 (0.414) 0.011 0.446 0.947

β1 0.326 0.324 (0.161) -0.002 0.176 0.928

γ0 1.750 1.800 (0.130) 0.050 0.142 0.930

γ1 3.250 3.332 (0.775) 0.082 0.877 0.907

γ2 0.100 0.103 (0.160) 0.003 0.181 0.920

400 (95, 102, 97, 106) High β0 -0.906 -0.894 (0.306) 0.008 0.314 0.944

β1 0.501 0.498 (0.114) -0.002 0.122 0.944

γ0 1.750 1.781 (0.103) 0.031 0.106 0.950

γ1 3.250 3.325 (0.592) 0.075 0.636 0.938

γ2 0.100 0.110 (0.117) 0.010 0.132 0.931

Low β0 0.078 0.094 (0.299) 0.015 0.329 0.931

β1 0.326 0.319 (0.115) -0.007 0.129 0.937

γ0 1.750 1.777 (0.092) 0.027 0.098 0.942

γ1 3.250 3.301 (0.557) 0.051 0.615 0.929

γ2 0.100 0.105 (0.115) 0.005 0.134 0.906

200 (50, 42, 53, 55) High β0 -0.906 -0.924 (0.430) -0.017 0.429 0.953

β1 0.501 0.513 (0.162) 0.011 0.163 0.955

γ0 3.250 3.326 (0.267) 0.076 0.269 0.949

γ1 5.500 5.580 (0.712) 0.080 0.735 0.939

γ2 0.200 0.217 (0.161) 0.017 0.171 0.936

Low β0 0.078 0.048 (0.430) -0.030 0.448 0.949

β1 0.326 0.337 (0.164) 0.010 0.177 0.945

γ0 3.250 3.323 (0.243) 0.073 0.262 0.943

γ1 5.500 5.478 (0.682) -0.021 0.746 0.924

γ2 0.200 0.193 (0.159) -0.006 0.180 0.914

400 (95, 102, 97, 106) High β0 -0.906 -0.906 (0.302) 0.000 0.305 0.948

β1 0.501 0.503 (0.114) 0.002 0.113 0.955

γ0 3.250 3.285 (0.189) 0.035 0.183 0.967

γ1 5.500 5.482 (0.494) -0.017 0.503 0.942

γ2 0.200 0.192 (0.112) -0.007 0.121 0.936

Low β0 0.078 0.092 (0.299) 0.013 0.326 0.932

β1 0.326 0.320 (0.115) -0.006 0.131 0.922

γ0 3.250 3.303 (0.171) 0.053 0.172 0.959

γ1 5.500 5.557 (0.479) 0.057 0.546 0.910

γ2 0.200 0.211 (0.111) 0.011 0.129 0.910
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Table 2.8: Estimates, bias, RMSE and CP for the COM-Poisson cure rate model with
φ = 0.5 and light censoring.

n p0 Par True Est (s.e.) Bias RMSE CP (95%)

200 (50, 42, 53, 55) High β0 -0.906 -0.865 (0.443) 0.041 0.492 0.932

β1 0.501 0.502 (0.161) 0.001 0.184 0.906

γ0 1.750 1.893 (0.154) 0.143 0.231 0.859

γ1 3.250 3.436 (0.794) 0.186 0.824 0.953

γ2 0.100 0.070 (0.154) -0.029 0.177 0.892

φ 0.500 0.253 (-) -0.246 0.578 -

Low β0 0.078 0.174 (0.435) 0.095 0.479 0.943

β1 0.326 0.304 (0.164) -0.022 0.186 0.943

γ0 1.750 1.903 (0.139) 0.153 0.231 0.765

γ1 3.250 3.441 (0.731) 0.191 0.780 0.943

γ2 0.100 0.059 (0.149) -0.040 0.183 0.905

φ 0.500 0.274 (-) -0.225 0.603 -

400 (95, 102, 97, 106) High β0 -0.906 -0.886 (0.309) 0.020 0.285 0.930

β1 0.501 0.494 (0.114) -0.006 0.103 0.962

γ0 1.750 1.872 (0.108) 0.122 0.181 0.746

γ1 3.250 3.203 (0.518) -0.046 0.584 0.905

γ2 0.100 0.037 (0.109) -0.062 0.136 0.898

φ 0.500 0.203 (-) -0.296 0.548 -

Low β0 0.078 0.083 (0.306) 0.004 0.329 0.933

β1 0.326 0.328 (0.117) 0.001 0.127 0.927

γ0 1.750 1.890 (0.098) 0.140 0.197 0.618

γ1 3.250 3.348 (0.503) 0.098 0.629 0.903

γ2 0.100 0.054 (0.107) -0.045 0.131 0.909

φ 0.500 0.295 (-) -0.204 0.629 -

200 (50, 42, 53, 55) High β0 -0.906 -0.928 (0.436) -0.022 0.484 0.941

β1 0.501 0.521 (0.159) 0.020 0.180 0.922

γ0 3.250 3.423 (0.274) 0.173 0.364 0.896

γ1 5.500 5.469 (0.644) -0.030 0.613 0.954

γ2 0.200 0.162 (0.144) -0.037 0.159 0.935

φ 0.500 0.427 (-) -0.072 0.656 -

Low β0 0.078 0.122 (0.427) 0.044 0.428 0.947

β1 0.326 0.311 (0.161) -0.015 0.163 0.927

γ0 3.250 3.473 (0.252) 0.223 0.380 0.801

γ1 5.500 5.566 (0.602) 0.066 0.588 0.947

γ2 0.200 0.173 (0.141) -0.026 0.143 0.960

φ 0.500 0.412 (-) -0.087 0.671 -

400 (95, 102, 97, 106) High β0 -0.906 -0.894 (0.305) 0.012 0.322 0.931

β1 0.501 0.493 (0.112) -0.007 0.116 0.931

γ0 3.250 3.415 (0.194) 0.165 0.308 0.788

γ1 5.500 5.514 (0.452) 0.014 0.481 0.925

γ2 0.200 0.173 (0.102) -0.026 0.118 0.902

φ 0.500 0.394 (-) -0.105 0.637 -

Low β0 0.078 0.127 (0.301) 0.049 0.281 0.976

β1 0.326 0.306 (0.114) -0.020 0.108 0.953

γ0 3.250 3.482 (0.178) 0.232 0.344 0.619

γ1 5.500 5.603 (0.428) 0.103 0.487 0.919

γ2 0.200 0.177 (0.101) -0.022 0.116 0.895

φ 0.500 0.319 (-) -0.180 0.634 -
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Table 2.9: Estimates of cure rates, bias and RMSE for Geometric and Poisson cure
rate models with heavy censoring and γ = (1.750, 3.500, 0.100).

n p0 True Est Bias RMSE 95% CI

Geometric

200 (50, 42, 53, 55) p01 0.400 0.410 0.010 0.124 (0.168, 0.652)

p02 0.324 0.327 0.002 0.073 (0.184, 0.470)

p03 0.257 0.255 -0.002 0.067 (0.124, 0.386)

p04 0.200 0.200 0.000 0.087 (0.029, 0.371)

p01 0.600 0.602 0.012 0.122 (0.364, 0.840)

p02 0.476 0.480 0.004 0.080 (0.323, 0.637)

p03 0.354 0.357 0.003 0.067 (0.226, 0.488)

p04 0.250 0.253 0.003 0.085 (0.087, 0.419)

400 (95, 102, 97, 106) p01 0.400 0.400 0.000 0.088 (0.228, 0.572)

p02 0.324 0.326 0.002 0.052 (0.224, 0.428)

p03 0.257 0.260 0.003 0.047 (0.168, 0.352)

p04 0.200 0.206 0.006 0.062 (0.085, 0.327)

p01 0.600 0.598 -0.002 0.090 (0.422, 0.774)

p02 0.476 0.475 -0.001 0.060 (0.357, 0.593)

p03 0.354 0.353 -0.001 0.051 (0.253, 0.453)

p04 0.250 0.249 -0.001 0.064 (0.124, 0.374)

Poisson

200 (50, 42, 53, 55) p01 0.400 0.402 0.002 0.115 (0.177, 0.627)

p02 0.324 0.322 -0.002 0.068 (0.189, 0.455)

p03 0.257 0.252 -0.004 0.062 (0.131, 0.373)

p04 0.200 0.198 -0.001 0.080 (0.041, 0.355)

p01 0.600 0.587 -0.012 0.136 (0.321, 0.853)

p02 0.476 0.468 -0.007 0.090 (0.292, 0.644)

p03 0.354 0.350 -0.004 0.068 (0.217, 0.483)

p04 0.250 0.251 0.001 0.083 (0.088, 0.414)

400 (95, 102, 97, 106) p01 0.400 0.397 -0.003 0.082 (0.236, 0.558)

p02 0.324 0.321 -0.003 0.049 (0.225, 0.417)

p03 0.257 0.254 -0.003 0.044 (0.168, 0.340)

p04 0.200 0.199 -0.001 0.057 (0.087, 0.311)

p01 0.600 0.600 0.000 0.091 (0.422, 0.778)

p02 0.476 0.477 0.001 0.060 (0.359, 0.595)

p03 0.354 0.355 0.001 0.050 (0.257, 0.453)

p04 0.250 0.251 0.001 0.064 (0.126, 0.376)
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Table 2.10: Estimates of cure rates, bias and RMSE for Bernoulli and COM-Poisson
(φ = 0.5) cure rate models with heavy censoring and γ = (1.750, 3.500, 0.100).

n p0 True Est Bias RMSE 95% CI

Bernoulli

200 (50, 42, 53, 55) p01 0.400 0.401 0.001 0.108 (0.189, 0.613)

p02 0.324 0.324 0.000 0.065 (0.197, 0.451)

p03 0.257 0.257 0.000 0.057 (0.145, 0.369)

p04 0.200 0.202 0.002 0.073 (0.059, 0.345)

p01 0.600 0.598 -0.001 0.117 (0.369, 0.827)

p02 0.476 0.475 -0.001 0.077 (0.324, 0.626)

p03 0.354 0.353 -0.001 0.065 (0.226, 0.480)

p04 0.250 0.250 0.000 0.081 (0.091, 0.409)

400 (95, 102, 97, 106) p01 0.400 0.399 -0.001 0.076 (0.250, 0.548)

p02 0.324 0.323 -0.001 0.045 (0.235, 0.411)

p03 0.257 0.257 0.000 0.040 (0.179, 0.335)

p04 0.200 0.201 0.001 0.052 (0.099, 0.303)

p01 0.600 0.602 0.002 0.086 (0.433, 0.771)

p02 0.476 0.478 0.002 0.056 (0.368, 0.588)

p03 0.354 0.355 0.001 0.050 (0.257, 0.453)

p04 0.250 0.250 0.000 0.058 (0.136, 0.364)

COM-Poisson (φ = 0.5)

200 (50, 42, 53, 55) p01 0.400 0.401 0.001 0.088 (0.229, 0.573)

p02 0.324 0.325 0.001 0.062 (0.203, 0.446)

p03 0.257 0.256 -0.001 0.059 (0.141, 0.371)

p04 0.200 0.198 -0.002 0.067 (0.067, 0.329)

p01 0.600 0.605 0.005 0.090 (0.429, 0.781)

p02 0.476 0.479 0.003 0.053 (0.375, 0.583)

p03 0.354 0.356 0.002 0.035 (0.287, 0.425)

p04 0.250 0.250 0.000 0.051 (0.149, 0.350)

400 (95, 102, 97, 106) p01 0.400 0.404 0.004 0.062 (0.283, 0.525)

p02 0.324 0.329 0.005 0.043 (0.246, 0.413)

p03 0.257 0.262 0.005 0.040 (0.183, 0.341)

p04 0.200 0.204 0.004 0.047 (0.112, 0.296)

p01 0.600 0.599 -0.001 0.083 (0.438, 0.761)

p02 0.476 0.480 0.004 0.087 (0.311, 0.650)

p03 0.354 0.363 0.009 0.093 (0.183, 0.544)

p04 0.250 0.261 0.011 0.094 (0.078, 0.443)
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Table 2.11: Powers and observed levels (in bold) of LRT under different settings.

Fitted Model True COM-Poisson Model

φ = 0 φ = 0.5 φ = 1 φ = 2 φ→∞
Setting 1

Geometric (φ = 0) 0.055 0.080 0.164 0.140 0.510

Poisson (φ = 1) 0.345 0.085 0.202 0.015 0.088

Bernoulli (φ→∞) 0.745 0.365 0.452 0.210 0.120

Setting 2

Geometric (φ = 0) 0.063 0.075 0.130 0.235 0.418

Poisson (φ = 1) 0.210 0.095 0.106 0.040 0.046

Bernoulli (φ→∞) 0.597 0.555 0.378 0.265 0.120

Setting 3

Geometric (φ = 0) 0.037 0.110 0.164 0.255 0.670

Poisson (φ = 1) 0.540 0.130 0.122 0.015 0.252

Bernoulli (φ→∞) 0.830 0.385 0.520 0.225 0.116

Setting 4

Geometric (φ = 0) 0.043 0.120 0.158 0.270 0.542

Poisson (φ = 1) 0.353 0.185 0.062 0.085 0.110

Bernoulli (φ→∞) 0.740 0.520 0.470 0.345 0.108
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Table 2.12: Selection rates based on Akaike’s information criterion under different
settings.

Fitted Model True COM-Poisson Model

φ = 0 φ = 0.5 φ = 1 φ = 2 φ→∞
Setting 1

Geometric (φ = 0) 0.685 0.372 0.290 0.176 0.049

Poisson (φ = 1) 0.229 0.400 0.392 0.362 0.214

Bernoulli (φ→∞) 0.086 0.228 0.318 0.462 0.737

Setting 2

Geometric (φ = 0) 0.674 0.470 0.304 0.225 0.085

Poisson (φ = 1) 0.230 0.280 0.402 0.313 0.202

Bernoulli (φ→∞) 0.096 0.250 0.294 0.462 0.713

Setting 3

Geometric (φ = 0) 0.732 0.386 0.219 0.131 0.017

Poisson (φ = 1) 0.226 0.464 0.494 0.400 0.223

Bernoulli (φ→∞) 0.042 0.150 0.287 0.469 0.760

Setting 4

Geometric (φ = 0) 0.670 0.398 0.270 0.168 0.056

Poisson (φ = 1) 0.257 0.392 0.428 0.353 0.232

Bernoulli (φ→∞) 0.073 0.210 0.302 0.479 0.712
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Table 2.13: AIC, BIC and maximized log-likelihood (l) values for candidate COM-
Poisson cure rate models.

COM-Poisson Model AIC BIC l̂

Geometric (φ = 0) 1028.677 1048.842 -509.3383

φ = 0.5 1032.468 1052.633 -511.2338

Poisson (φ = 0) 1034.161 1054.326 -512.0803

φ = 2 1036.043 1056.209 -513.0217

Bernoulli (φ =∞) 1038.948 1059.114 -514.4741

Table 2.14: Estimates, standard errors and 95% C.I. for the cure rates stratified by
nodule category, for the geometric cure rate model.

Nod Cat (X) p̂0 s.e. 95% C.I.

1 0.650 0.044 (0.562, 0.737)

2 0.540 0.031 (0.478, 0.602)

3 0.426 0.032 (0.363, 0.490)

4 0.320 0.045 (0.231, 0.409)



Chapter 3

Piecewise linear approximations of

baseline under proportional hazard

and COM-Poisson cure rate models

3.1 Introduction

Under the competing cause scenario as defined in Section 1.1, we assume that the

common hazard function h(w) of Wj follows a Cox proportional hazard structure, i.e.

h(w) = h(w,x;ψ,γ) = h0(w;ψ)ex
′γ (3.1.1)

where h0(w;ψ) (baseline hazard function) is approximated by a piecewise linear func-

tion characterized by a parameter ψ and x = (x1, . . . , xp)
′ is a vector of p covariates

with corresponding regression coefficients γ = (γ1, ..., γp)
′. Therefore, the idea is to

create finite partitions τ0, τ1, . . . , τN on the time axis and approximate the baseline

hazard with N lines, one for each interval [τl−1, τl]; l = 1, . . . , N . The number of com-

58
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peting causes M follows a COM-Poisson distribution; under this assumption, more

flexibility in our model will be added since we can deal with under- and over-dispersed

data (e.g. Rodrigues et al., 2009; Balakrishnan and Pal, 2014).

The form of the available data and the likelihood function are given in Section 3.2.

In Section 3.3, the steps for the EM algorithm and the estimation of the asymptotic

variance and covariance matrix of the MLEs using Louis’ principle are provided. An

extensive simulation study under various N (number of linear functions), censoring

proportions, sample sizes and lifetime parameters is presented in Section 3.4. In

Section 3.5, we study model discrimination using likelihood-based and information

criteria based methods, for the model selection. In Section 3.6, for illustrative purpose,

the proposed model is applied to a real life cutaneous melanoma data set.

3.2 Form of the data and the likelihood function

In survival analysis or reliability theory, the existence of right censored data is quite

common due to the limitations imposed by the duration of the study. Therefore,

assuming that our data are subject to non-informative right censoring, the censored

group may include not only cured individuals but also susceptible who met the event

of interest after censoring time. To be more specific, let us denote by Ci the censoring

time and Yi the actual lifetime for the i-th individual, for i = 1, . . . , n. Thus, the

observed lifetime Ti is defined as

Ti = min{Yi, Ci}
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while δi = I(Yi ≤ Ci) indicates whether the i-th individual is censored (δi = 0) or

not (δi = 1), for i = 1, . . . , n. Additionally, let us also define the sets ∆1 and ∆0,

with ∆1 = {i : δi = 1} and ∆0 = {i : δi = 0}. It is to be noted that Z(η, φ) = 1
p0

=

H∗φ(η) is only a function of η, given a specific value of φ and is monotone in η with

limη→0H
∗
φ(η) = 1 and limη→∞H

∗
φ(η) = ∞. Hence, it would be appropriate to link

the covariates x1, . . . , xp to the cured proportion using a logistic regression model i.e.

p0i = p0(β,xi) =
1

1 + eβ
′x∗i
,

where p0i is the cured proportion for the i-th individual, x∗i = (1, xi1, . . . , xip)
′ =

(1,x′i)
′ and β = (β0, . . . , βp)

′ is the vector of the regression coefficients with i =

1, . . . , n. Therefore, the observed data are of the form (ti, δi,xi), for i = 1, . . . , n and

the likelihood function can be expressed as

L(θ; t,x, δ) ∝
n∏
i=1

fp(ti,xi;θ)δiSp(ti,xi;θ)1−δi =
∏
i∈∆1

fp(ti,xi;θ)
∏
i∈∆0

Sp(ti,xi;θ),

where θ = (φ,β′,ψ′,γ ′), t = (t1, . . . , tn)′, x = (x′1, . . . ,x
′
n)′ and δ = (δ1, . . . , δn)′.

Moreover, we have

Sp(ti,xi;θ) =
1

(1 + eβ
′x∗i )

∞∑
j=0

{H∗−1
φ (1 + eβ

′x∗i )S(ti;x,ψ,γ)}j

(j!)φ

fp(ti,xi;θ) =
h0(ti;ψ)ex

′
iγ

(1 + eβ
′x∗i )

∞∑
j=1

j{H∗−1
φ (1 + eβ

′x∗i )S(ti;x,ψ,γ)}j

(j!)φ
(3.2.1)

where h0(ti;ψ) given through the PLA and S(ti,x;ψ,γ) as defined in Section 1.5.2.
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3.3 Estimation of parameters and standard errors

The estimation of the model parameters is carried out by using the EM algorithm

along with a profile likelihood approach for parameter φ. The complete data are given

by {(ti,xi, δi, Ii) : i = 1, . . . , n} where Iis are observed for i ∈ ∆1 and unobserved

for i ∈ ∆0 (recall that: Ii = 0 if and only if the i-th individual is cured and Ii = 1,

otherwise).

The complete data likelihood and log-likelihood functions are respectively given

by

Lc(θ; t,x, δ, I) ∝
∏
i∈∆1

fp(ti,xi;θ)
∏
i∈∆0

p0(β,xi)
1−Ii{(1− p0(β,xi))Su(ti,xi;θ)}Ii

and

lc(θ; t,x, δ, I) = constant +
∑
i∈∆1

log fp(ti,xi;θ) +
∑
i∈∆0

(1− Ii) log p0(β,xi)

+
∑
i∈∆0

Ii log(1− p0(β,xi)) +
∑
i∈∆0

Ii logSu(ti,xi;θ),

(3.3.1)

where I = (I1, . . . , In)′, fp(ti,xi;θ) as in (3.2.1) and

Su(ti,xi;θ) = e−β
′x∗i

∞∑
j=1

{H∗−1
φ (1 + eβ

′x∗i )S(ti;x,ψ,γ)}j

(j!)φ
.

For a fixed φ and i ∈ ∆0, at the (k + 1)-th iteration, we define

π
(k+1)
i = E[Ii|O,θ(k)] =

(1− p0(β(k),xi))Su(ti,xi;θ
(k))

Sp(ti,xi;θ(k))
,
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where θ(k) = (φ,β
′(k),ψ

′(k),γ
′(k)) is the parameter estimate at k-th iteration and

O = {Ii, t,x, δ} are the observed data (note that, π
(k+1)
i = E[Ii|O,θ(k)] = 1, for each

uncensored item). The quantity Q(k) = Q(θ,π(k)) = E[lc(θ; t,x, δ, I)|O,θ(k)] is then

maximized to obtain the next estimate as

θ(k+1) = arg max
θ∈Θ

Q(θ,π(k))

considering Θ to be the parametric space with fixed φ and π(k) = (π
(k)
1 , . . . , π

(k)
n )

′
.

The numerical maximization is carried out using the Nelder-Mead algorithms. The

explicit expressions for Q(θ,π(k)) and the first-order and second-order partial deriva-

tives of Q(θ,π(k)) are given in Appendix B.1 and B.2, respectively. We consider a

specific range of values for φ with fixed increment; for each choice of φ, we find the

MLEs for (β′,ψ,γ ′)′ and our final estimation (i.e. φ̂) is given by the choice of φ

which yields the maximum log-likelihood. The range of φ considered for this profile

likelihood method is {0.0, 0.1, . . . , 2.0} ∪ {∞}.

For finding the standard error of the parameter estimates, we apply Louis’ prin-

ciple, that is,

I(θ) = E[B(θ; t,x, δ, I)]− E[S(θ; t,x, δ, I)ST (θ; t,x, δ, I)]

+ S∗(θ; t,x, δ)S∗T (θ; t,x, δ)

(3.3.2)

where I(θ) is the information on θ, B(θ; t,x, δ, I) and S(θ; t,x, δ, I) denotes the

negative of the matrix of second derivatives and the gradient vector of lc(θ; t,x, δ, I)

respectively, and S∗(θ; t,x, δ, I) is the expected gradient vector of lc(θ; t,x, δ, I).

Relying on the asymptotic normality of the MLEs, 95% confidence intervals (C.I.) of

the parameters can be easily calculated. Asymptotic normality of the MLEs can also
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be used to estimate the standard error of the cure rates applying multivariate delta

method since p0 = g(β) with g(.) being a continuous function with g : R(p+1) → R.

The form of the first-order and second-order derivatives of the complete data log-

likelihood are given in Appendix B.2.

3.4 Simulation study

A detailed Monte Carlo simulation study was carried out to assess the performance

of the proposed cure rate model and inferential method. Motivated by the real-life

dataset on cutaneous melanoma data (Section 3.6), we considered a single covariate x

with four possible values (categories/groups), i.e., x = 1, 2, 3, 4. To analyse the effect

of censoring on the estimation, we introduced two sets of cure rates for x = 1 and

x = 4 namely (0.600, 0.250) and (0.400, 0.150). It may be noted that by fixing the

cure rates of the first and the fourth group, we can easily determine the cure rates

for x = 2 and x = 3 using the solutions of the system

1

1 + eβ0+β1
= 0.600,

1

1 + eβ0+3β1
= 0.250.

Thus, we obtained the pre-specified cure rates for four groups to be (0.600, 0.470, 0.350, 0.250)

and (0.400, 0.290, 0.210, 0.150), respectively. We further assume that the probability a

susceptible to be censored is 0.10 greater than the cured rate of each group. Therefore

the censoring proportions become (0.700, 0.570, 0.450, 0.350) and (0.500, 0.390, 0.310, 0.250)

to reflect the “heavy” and “light” censoring scenarios. Thus, the corresponding true

values of (β0, β1) are respectively (−0.907, 0.501) and (−0.038, 0.443). The lifetime

distribution for Wj was assumed to be Weibull with hazard function γ0
γ1

(
w
γ1

)γ0−1

eγx,
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where γ0 and γ1 are the shape and scale parameter respectively, of the baseline hazard

function (which is also a Weibull), while γ is the regression parameter. To evaluate

the accuracy of the estimates for different lifetime parameters, two choices of expected

lifetime values were made for the baseline distribution, viz., 1.000 and 2.000 for “low”

and “high” lifetime scenarios, respectively; a unit variance was assumed in both cases.

Hence the respective true values of (γ0, γ1) were (1.000, 1.000) and (2.101, 2.258) with

γ = 0.200. Furthermore, the effects of large and small sample sizes on the accu-

racy of our estimates were assessed by taking n, viz., n = 600(150, 150, 150, 150) and

n = 400(100, 100, 100, 100), respectively. All the true values were selected in order to

closely resemble the real-life dataset.

The censoring time was assumed to follow an exponential distribution with rate

λx, x = 1, 2, 3, 4, while λx was determined by solving

P [Y ≥ Cx ∩M ≥ 1|X = x] = cx − p0x

for the x-th group; cx and p0x denote the pre-specified censoring and cured propor-

tion respectively. Proceeding mathematically, with Cx ∼ exponential(λx), λx were

obtained by solving,

λx

∫ ∞
0

exp

[
−
(
cx
γ1

)γ0
eγx + λxcx

]
dcx −

H∗−1
φ (cx/p0x)

H∗−1
φ (1/p0x)

= 0.

Let us now clarify the basics steps followed for generating our data. For the Bernoulli

cure rate model (φ→∞), M was generated from a Bernoulli distribution with success

(I = 0) probability p0x. If M = 0, then C (censoring time variable) was generated

from an exponential with rate λx, and we set T = C and δ = 0. Otherwise, if M = 1,
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then Y was generated from a Weibull distribution with shape γ0 and scale γ1e
− γx
γ0 and

T = min{Y,C} (C is also generated by an exponential distribution with parameter

λx), with δ = 1 for T = Y , whereas δ = 0 for T = C. For the Poisson cure rate

model, we generated M from a Poisson distribution (φ = 1) with mean ηx = − log p0x.

The procedure remained the same for M = 0, as in the Bernoulli case. However, for

M = m, where m ≥ 1, we generated W1,W2, ...,Wm lifetimes from a Weibull distribu-

tion with shape and scale as discussed before, and we set Y = min{W1,W2, ...,Wm}

and T = min{Y,C}, with C being an exponential(λx) variable. Furthermore, we had

δ = 0 for M = 0 or M ≥ 1, T = C and δ = 1, if M ≥ 1 and T = Y . For the geomet-

ric cure rate model, we generated M from a geometric distribution with parameter

1 − p0x and the rest of the procedure remained as above. This is also the case for

every COM-Poisson cure rate model in which M was generated from a COM-Poisson

distribution with parameter ηx = H−1
φ (1 + eβ0+β1x) for a fixed φ where ηx was found

numerically for the choices of β0 and β1.

Due to heavy computational load, our numerical study was based on r = 100

replications (using R-software), for each of the five COM-Poisson models: φ = 0

(geometric), 0.5, 1 (Poisson), 2 and ∞ (Bernoulli). The cut points were taken to be

the sample quantiles of the lifetimes of the uncensored data with τ0 = min{Yi} and

τN = max{Yi}. An alternative choice could have been to select τN = max{Ti}, how-

ever, was often very far from τN−1 resulting in high degree of bias and variability in the

estimation. Henceforth, the line (i.e. aN + bN t) in [τN−1, τN ] is used to approximate

the hazard function in [τN−1,∞). A 15% variability on both sides of the real values

were taken as the initial parameter guess for (β0, β1, γ) and a 20% variability on both

sides of the baseline Weibull hazard function, at the cut points as an initial estimate

for (ψ0, . . . , ψN). As mentioned before, the estimates were found using ML estima-
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tion with EM algorithm except that of φ, for which a profile likelihood approach was

employed. In Table 3.1 to 3.20, we present the simulation results for all the settings.

Results for the low lifetime cases are not provided for φ = 0.5 and 2 due to space lim-

itation. Estimated parameter values (Est) and cure rates, standard errors (s.e.), root

mean squared errors (RMSE), coverage probabilities with 95% nominal level (95%

C.P.) of the cure rates and root integrated squared errors (RISE) for the four groups

are provided. RMSE for the parameter α is calculated as
√

(r − 1)−1
∑r

q=1(α̂q − α)2,

where α̂q is the estimate for the q-th iteration, α is the true parameter value. RISE

for the x-th covariate group is given by

RISEx =

√√√√ 1

r − 1

r∑
q=1

∫ τN

τ0

[Sp(w, x; θ̂q)− Sp(w, x;θ)]2dw,

for x = 1, 2, 3, 4 and θ̂q is the estimate of θ for q-th replication. Since we are esti-

mating the baseline hazard function using piecewise linear functions, RISE provides

a measure of deviance of the estimated long-term survival function and the true long-

term survival function. RMSE of the lifetime parameters, in this case, could be vague

to interpret and is often large for ψN .

The following observations were made from the simulation study. The estimates

of the regression parameters (β0, β1), and hence, the cure rate over all settings were

found to be quite precise (i.e. close to the true values). As a result, s.e. and RMSE

of the estimates were relatively low given the complexity of the model. Bias of the

estimates corresponding to the geometric cure rate model was observed to be larger

than the other models. The RISE for all the scenarios were also quite small, thereby

suggesting that the approximation of Weibull baseline hazard by PLA provides good
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fit. In both of high mean (i.e. γ0 = 2.101, γ1 = 2.258; increasing hazard function) and

low mean (i.e. γ0 = 1.000, γ1 = 1.000; constant hazard function) lifetimes, the esti-

mates of the hazards ψ0, . . . , ψN were quite consistent with the true hazards, except,

at τN . The estimates of ψN were observed to be highly affected by the distribution

of the censoring time and were relatively far from τN−1, resulting in large standard

deviation. In general, adding more lines (i.e., on increasing N) for approximating the

baseline hazard seemed not to highly affect the precision of the estimates, although,

there are some indications for a negative effect. For the high mean lifetime case,

RISE were generally lowest for N = 1 reflecting that this model provided the best fit

since the true hazard is almost linearly increasing. However, for the low mean lifetime

case, RISE for N = 1 were mostly the highest (owing to the true constant hazard

function). RISE did not seem to show any observable increasing or decreasing pattern

with respect to N , otherwise. The Cox proportional hazard regression parameter (γ)

was over-estimated in most of the settings, except when the true model is φ = 0.5 or

2. The results corresponding to the low mean (γ0 = 1.000, γ1 = 1.000) cases are not

provided in the thesis, however, can be retrieved from the author on request.

Tables 3.1 to 3.20 further revealed that decrease in the censoring proportion re-

sulted in lower s.e. and RMSE of the estimates and higher RISE for the corresponding

covariate groups. As a consequence, the coverage probabilities of the true cure rates

also decreased. An observation of decreased s.e., RMSE of the estimates and 95%

CP of the true cure rates were also made when the sample size was increased, while

RISE also decreased, though slightly. It was also noted that s.e. and RMSE were

comparatively less if data were generated from high mean lifetime Weibull distribu-

tion; however, no such effect was evident for 95% CP. The CPs for the cure rates

were seen to be close to 95% nominal value when the true model were geometric,
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Poisson or Bernoulli. With light censoring and larger sample size, the CPs became

more stable around the nominal level. But the true cure rates encountered a signif-

icant under-coverage (varying around 80%) when the true model was COM-Poisson

with φ = 0.5 or 2. This is because we have estimated φ using the profile likelihood

method since the likelihood surface is very flat w.r.t φ, thereby, ignoring the compo-

nent of variability of φ̂ in the variance-covariance matrix. This resulted in smaller

standard error of the parameter estimates, hence, giving rise to the under-coverage.

A relatively large bias was involved in the estimation of φ, which could arise due to

presence of gaps in the search interval [0, 2]. The accuracy of the estimation of φ were

seen to increase with N when the true model is φ = 2, but decreases with N when

the true model is φ = 0.5. In all of the settings, the PLA models are compared to

the correct parametric model with Weibull baseline hazard. In most of the cases, the

performance of the two models were quite similar.

3.5 Model discrimination

We already have mentioned that a COM-Poisson distribution encompasses many well

known discrete distributions. Thus, it is of practical interest to study how frequently

a true model gets selected and others get rejected depending on some pre-specified

criteria. This was carried out using two different criteria, viz., likelihood-based cri-

terion and information-based criterion. We generated 100 samples where the true

competing cause distributions were: geometric (φ = 0), COM-Poisson with φ = 0.5,

Poisson (φ = 1), COM-Poisson with φ = 2 and Bernoulli (φ→∞). The three special

cases, i.e., geometric, Poisson and Bernoulli were fitted to the simulated data and the

number of times each model was selected or rejected based on the criterion, was stud-

ied. The hazard function was considered to follow a proportional hazards model with
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baseline hazard function from a Weibull distribution with shape and scale γ0 and γ1

respectively. Four different settings were considered with γ0 = 2.101, γ1 = 2.258 and

γ = 0.200, viz., Setting 1: n=400 and ‘light’ censoring (censoring proportions: 0.500,

0.390, 0.310, 0.250), Setting 2: n=400 and ‘heavy’ censoring (censoring proportions:

0.700, 0.570, 0.450, 0.350), Setting 3: n=600 and ‘light’ censoring, Setting 4: n=600

and ‘heavy’ censoring to this end, where γ is a regression parameter.

3.5.1 Likelihood-based method

Here using the likelihood ratio test (LRT), we tested for H0 : φ = 0 vs. H1 : φ > 0,

H0 : φ = 1 vs. H1 : φ 6= 1 and H0 : φ = ∞ vs. H1 : φ < ∞, at 5% significance

level. The number of times H0 got rejected gave us the rejection rates of the candi-

date models. Let l̂0 and l̂ be the maximized log-likelihood value under the null (H0)

and alternative (H1) hypothesis, respectively. The asymptotic distribution of the test

statistic Λ = −2(l̂0 − l̂) (Wilk’s LRT statistic), under the H0 is known to follow a

Chi-squared (χ2) distribution with one degrees of freedom (d.f.). However, this does

not provide a good approximation when we are dealing with cases when the values

that are being tested are on the boundaries of the parametric space, e.g., the cases

φ = 0 and φ = ∞. Hence, the asymptotic distribution of Λ considered, is a mixture

χ2 distribution i.e., P (Λ ≤ λ) = 1
2

+ 1
2
P (χ2

1 ≤ λ), where χ2
1 is a random variable

having χ2-distribution with 1 d.f.

Table 3.21 provides us with model discrimination results based on LRT. The

observed power and level of significance (given in bold) of the tests are presented

in the table corresponding to four settings and N = 1, . . . , 5. It can be noticed
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that the observed level of significance decreases, in case φ = 0, as the number of

lines (N) increases; no observable pattern was found for φ = ∞. On an average,

the observed level is high when the true model is geometric varying greatly between

0-62 %, however, the levels are between 0-20% for the Poisson and 0-33% for the

Bernoulli case. This could be attributed to imprecise estimation of φ with profile

likelihood method since it was noted that φ = 0.5 were rejected less number of

times than geometric when the true model was geometric. As one would expect,

the observed level of significance were more pronounced when the sample size was

small, censoring was heavy and N is less. For light censored data, the observed level

changed drastically (0-33%) for the geometric, which was not very obvious for the

other two cases. N = 3 provided observed levels close to the nominal level (5%)

consistently. Rejection rates for the fitted geometric model gradually increased as

true φ increased. The power on fitting Poisson gradually increased as the true φ

moved far from 1. Similarly, power on fitting the Benoulli decreased with true φ.

Power of the tests were seen to increase with lightly censored data and higher sample

size. The number of lines used to approximate the baseline Weibull hazard seemed

insignificant with respect to the power of the test. It was seen that setting 3 with

N = 5 provided the most consistent results while setting 2 with N = 1 provided the

least. A graphical representation to facilitate the understanding of the readers about

the behavior of LRT across the true model and fitted model for all N is given in

Figure 3.4.

3.5.2 Information-based method

The very well known Akaike’s information criterion (AIC) and Bayesian informa-

tion criterion (BIC) were incorporated to set the criteria of selection in order to
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discriminate among the candidate models. AIC is defined as −2l̂+ 2p, where l̂ is the

unrestricted maximized log-likelihood value and p is the number of parameters and

BIC is defined as −2l̂ + p logN0, where N0 is the sample size. For each true φ, we

fitted the three special cases of COM-Poisson and calculated the corresponding AIC

and BIC values; the one with minimum AIC/BIC was selected. It is to be noted that

AIC and BIC provided us with the same model since we always compared models

with the same number of parameters.

Table 3.22 presents the selection rates of the candidate models when data were

generated from different φ (i.e., 0, 0.5, 1, 2, ∞). Overall, the selection rate of the

proper candidate models were quite reasonable, i.e., the probability of selecting the

correct models were high and incorrect models were low in most of the cases. Chances

of selecting the geometric cure rate model decreased while that of the Bernoulli in-

creased when samples were generated from higher true φ values. The selection rates

by fitting of a Poisson model, when the true model is indeed Poisson, were relatively

low for every N and all settings, when compared to the respective rates of geometric

or Bernoulli models. This could be accounted to the large bias in the estimation of

φ which leads to select φ = 0.5 or 2 when indeed the true model is Poisson. The

selection rates of the true models were consistently high for N = 1, indicating, that

a single linear approximation provided the best fit for the baseline hazard function

(a finding consistent with our results in Section 3.4). Beyond this remark, the effect

of fitting more lines seemed very little with no discernable patterns in the choice of

the models. In general, Bernoulli provided the highest selection rates, which varied

between 0.578 to 0.975. The selection rates of correct geometric model varied from

0.342 to 0.725, while that for the correct Poisson model from 0.200 to 0.694. For the

other true models (viz., φ = 0.5, 2), the probability of selecting the fitted candidate
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models were comparatively low. A decrease in the true censoring proportion affected

the correct selection rates to be increased significantly in most of the scenarios. An

increase in the sample size from 400 to 600 also resulted in a greater selection of the

correct models. Thus, Setting 3 provided us with the best selection rates while Set-

ting 2 provided the worst indicating similar trends as found for the results based on

LRT. A graph representing the power study with respect to AIC/BIC can be found

in Figure 3.5.

3.6 Analysis of cutaneous melanoma data

To further evaluate the performance and appropriateness of the proposed model, we

considered a real-life data set on cancer recurrence. The data is part of a study by

Eastern Cooperative Oncology Group (ECOG) on cutaneous melanoma (a type of

malignant cancer) for the evaluation of postoperative treatment performance with

a high dose of interferon alpha-2b as a drug to prevent recurrence as provided in

Ibrahim et al. (2005). The study cohort contained 427 patients randomized into four

nodule categories (1-4); nodule category is considered to be the only covariate in our

analysis. 10 patients were excluded from our analysis due to missing information on

tumor thickness. The sample sizes for the four nodule categories were 1:n1= 111,

2:n2= 137, 3:n3= 87 and 4:n4= 82, respectively. The patients were observed for the

period 1991-1995 and were followed until 1998. The overall percentage of censored

observations was 56%. As explained before, the observations were either the exact

lifetimes (time till patient’s death) or the censoring times, in years; the observed life-

times had mean and standard deviation as 3.180 and 1.690, respectively. Thus, the

available data contain: censoring time or exact lifetime (t), censoring indicator (δ)

and covariate group (x) to which the individual belongs to.
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An overestimated initial guess to the regression parameters β0 (-1.215) and β1

(0.482) were provided based on the observed censoring proportions 0.676 and 0.329 of

groups with nodule category 1 and 4, respectively. Following the results from approx-

imating the baseline hazard with a Weibull distribution in a proportional hazards life-

time and COM-Poisson cure rate set-up, we used an estimate of 0.072 for Cox regres-

sion coefficient γ. For the set of PLA parameters (ψ0, . . . , ψN), we solved N + 1 non-

linear equations each of the form S(t;ψ0, . . . , ψN , γ) = exp [−H0(t;ψ0, . . . , ψN)eγx] for

N + 1 time points from the data; S(t;ψ0, . . . , ψN , γ) is approximated using Kaplan-

Meier estimates. For N = 5, the initial baseline hazard estimates at the cut points

(quantile-based) was (ψ̂0, ψ̂1, ψ̂2, ψ̂3, ψ̂4, ψ̂5) = (0.010, 0.150, 0.250, 0.200, 0.030, 0.100).

The choices of cut points on the time axis were considered in two different ways and

their effects were compared on the estimates in case of this real-life data. The first

set of cut points is quantile based i.e. suitable quantiles of the observed lifetimes were

taken to be τ0, τ1, ..., τN−1 whereas τN was taken as the maximum of both censoring

and exact lifetimes so as to cover the whole time range. A second approach to choose

the cut points based on the curvature of the baseline hazard function was also stud-

ied. In this case, a kernel-based hazard estimates were obtained by taking only the

susceptible lifetimes (using muhaz function in R) and approximate hazard values at

various time points were noted. The first- and second-order approximate numerical

derivatives of these hazards were calculated at every time point. This is done by di-

viding the difference in hazards at two time points with difference in the time points,

considering the time points to be close enough. These values are then checked for

their nearness to zero; thus, implying approximate extremas. The same technique is

carried out using the first derivative values derived numerically and points of inflec-

tions were obtained, thereby, indicating curvatures. Now, more suitable among those
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points were chosen as the cut points τ1, ..., τN−1 depending on N whereas τ0 and τN

were still the same as considered in the previous approach. The number of lines were

set from N = 1 to N = 5, while the profile likelihood method was performed on the

interval [0, 2] with increment 0.1.

For the quantile-based selection of cut points, the geometric cure rate model with

N = 5 provided the maximum value of the log-likelihood function (-499.996) and

minimum value of AIC (1017.992). The minimum value of BIC (1044.662) was ob-

tained also for the geometric cure rate model with N = 2. For the curvature-based

selection of cut points, maximum log-likelihood value was found to be -504.190 with

N = 5, minimum AIC (1024.892) with N = 2 and minimum BIC with N = 1 all

for the geometric cure rate model. Summing up together, it can be safely said that

the geometric cure rate model with baseline hazard being approximated by five lines

under proportional hazards assumption and quantile-based selection of cut points

provided the best fit to the cutaneous melanoma data. The quantile based cut points

consistently provided a better fit than the curvature, however, both show similar kind

of trend with respect to the selection criteria. Also, AIC and BIC were observed to

be steadily increasing with φ. The details are provided in Table 3.23.

The appropriateness of the geometric cure rate model over Poisson and Bernoulli

was established further by testing for the hypotheses: H0G : φ = 0 vs H1G : φ > 0,

H0P : φ = 1 vs H1P : φ 6= 1 and H0B : φ = ∞ vs H1B : φ < ∞ as described in

Section 3.5. This resulted in the corresponding likelihood ratio test statistic values

ΛG = −2(l̂0G − l̂) = 0, ΛP = −2(l̂0P − l̂) = 3.538 and ΛB = −2(l̂0B − l̂) = 4.540 with

p-values being 0.500, 0.059 and 0.017 respectively for N = 5 (quantile-based); thereby

rejecting both Bernoulli and Poisson cure rate model at 10% level of significance. The
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graph of Λ (i.e., −2(l̂0 − l̂φ)) vs. φ is presented in Figure 3.1 taking N = 5 which is

found to be steadily increasing with some noises. It should be noted that l̂0 is the

value of log-likelihood function under H0 when the log-likelihood is maximized with

respect to other parameters for a fixed φ. The value of l̂0 changes according to the

φ under H0. On doing so, we actually kept the cut points to be fixed for estimating

all l̂0. Thus, the maximization is not true in the sense that we need to choose the

cut points according to the value of φ we are using. If one does so, we predict the

noise to be much less in the plot. For the same model, i.e., PLA of the baseline

hazard with N = 5, the test for H0 : γ = 0 vs. H1 : γ 6= 0 was also performed for

the geometric, φ = 0.5, Poisson, φ = 2 and Bernoulli cure rates. The test statistic

(i.e., Λ = −2(l̂0− l̂) ∼ χ2
1 under H0) values and the p-values were 1.338, 3.889, 4.882,

6.131, 10.679 and 0.247, 0.048, 0.027, 0.013, 0.001 respectively. This indicates that

the homogeneity of individual lifetimes among the nodule categories were not rejected

at 5% level if geometric provided the best fit to the data. A similar observation was

made when the baseline hazard was considered from a parametric Weibull distribu-

tion under proportional hazard.

The estimate, standard error and 95% CI of the parameters and cure rates are

presented in Table 3.24 for the geormetric cure rate model with piecewise linear

approximation of the baseline hazard for N = 1, . . . , 5. It was observed that the

estimated cure rates decreased with N for both ways of selecting the cut points. The

estimated cure rates were further lowered in case of the curvature-based selection

of cut-points. The s.e. of the estimated cure rates were seen to be comparatively

less for N = 1 in both cases. It can also be reported that for all choices of N ,

95% CI for the cure rate estimates for x = 1 and x = 4 were mostly non-overlapping,

thereby, signifying a marked distinction in the chances of getting cured between them.
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Figure 3.1: The plot of Λ vs φ, for cutaneous melanoma data using PLA with N = 5.

These results were quite similar to the results obtained by using Weibull baseline

hazard in proportional hazard set-up. When the lifetime distribution of the non-

cured individuals was assumed to be Weibull, the cure rate estimates were (0.664,

0.546, 0.422, 309) and when the lifetime distribution of Weibull was assumed along

with the proportional hazards assumption, then the estimated cure rates were (0.650,

0.540, 0.426, 0.320) which are very close to the results obtained on taking N = 1.

The s.e of the estimated hazards were found to be increasing as the value of the

cut points increased. Apart from the above mentioned analysis, the cure probability

given that an individual has not met the event of interest till t was also estimated for

x = 1, 2, 3, 4 by

P̂ (I = 0|T > t) =
(

1 + exp
[
β̂0 + β̂1x−H0(t;ψ0, ψ1, ..., ψN)eγx

])−1
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Figure 3.2: The probability to be cured (solid line), given that an individual has
survived up to a specific time t and their 95% CI (dotted line).

and presented along with 95% CI in Figure 3.2 using PLA with N = 5. So, an indi-

vidual has 60% chance of getting cured provided he/she survives up to 1.430, 3.010,

4.180 and 5.350 years, if he/she belongs to nodule category 1, 2, 3 and 4 respectively.

Similar to the parametric inference, the four nodule categories was observed to be

asymptotically converging with increasing trends.

The model was also tested on the same dataset with a different set of covariates,

namely, treatment group (OBS:0, INF:1), gender (male:0, female:1) and age which is

a continuous variable. The average age of the study cohort is 47.892 years years while

62% was male and 50% belonged to the OBS group. Table 3.25 includes parameter

estimates while the cut-points were chosen to be suitable quantiles of τi. It was
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observed that geometric cure rate model provided the best fits for N = 1, 2, 3, Poisson

cure rate model for N = 4 whereas Bernoulli cure rate model for N = 5 in terms

of AIC and BIC (see Table 3.26). Approximating the baseline hazard with two lines

(N = 2) was found to have least AIC or BIC for all candidate models. For N = 2, on

testing H0 : φ = 0, the LRT statistic Λ ≈ 0 with p-value 0.5. On verifying whether

a Poisson or Bernoulli cure rate models are suitable for the data, Λ was found to be

0.090 and 0.958, resulting in p-values as 0.764 and 0.164, respectively. Thus, none of

the candidate cure rate models were found to be unsuitable for the data using three

covariates at 10% level of significance. The mean (median) estimated cure rate for

females receiving OBS is the highest e.g. 0.657 (0.658), for males with OBS is 0.571

(0.573), for females with INF is 0.561 (0.574) and for males receiving INF is 0.474

(0.478). The overall estimated cured probability combining all individuals has mean

equal to 0.554 (s.e.= 0.084), while the median is 0.554. The graph of estimated cure

rates versus age for all the four categories is presented in Figure 3.3. It can also

observed from Table 3.26 that the maximum value of the log-likelihood function was

obtained on using N = 4 for the Poisson cure rate model, implying that this model

could also be effective for fitting of the data.
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Figure 3.3: The graph presents estimated cure rates (p̂0) by age for four categories:
Female+OBS, Male+OBS, Female+INF and Male+INF.

0N:W represents the case of baseline Weibull hazard model.
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Figure 3.4: A power study based on LRT corresponding to table 3.21.

Figure 3.5: A power study based on AIC corresponding to table 3.22.
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Table 3.1: Simulation results for geometric cure rate model having high lifetime
(γ0 = 2.101, γ1 = 2.258) with heavy censoring for small sample size.

Measure
(τi, ψ̂i)

N (β̂0, β̂1, γ̂) p̂0 l̂ AIC i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

n = 400 (100, 100, 100, 100) (-0.907, 0.501, 0.200) (0.600, 0.470, 0.350, 0.250)

1 (-0.792, 0.477, 0.375) (0.577, 0.460, 0.346, 0.249) -350.441 710.884 (0.066, 0.090) (3.520, 1.223)

2 (-0.689, 0.451, 0.376) (0.560, 0.448, 0.341, 0.249) -349.913 709.828 (0.066, 0.061) (0.881, 0.415) (3.520, 0.705)

Est 3 (-0.706, 0.456, 0.371) (0.561, 0.449, 0.341, 0.249) -349.634 709.270 (0.066, 0.059) (0.529, 0.277) (0.881, 0.411) (3.520, 0.747)

4 (-0.720, 0.461, 0.367) (0.561, 0.449, 0.341, 0.248) -349.061 708.120 (0.066, 0.064) (0.321, 0.175) (0.529, 0.292) (0.881, 0.414) (3.520, 0.766)

5 (-0.737, 0.466, 0.362) (0.565, 0.450, 0.340, 0.247) -348.957 707.916 (0.066, 0.064) (0.321, 0.183) (0.737, 0.376) (0.881, 0.399) (1.365, 0.524) (3.520, 0.654)

* (-1.068, 0.557, 0.229) (0.624, 0.488, 0.354, 0.240) -353.017 716.034 (2.060, 2.216)

1 (0.355, 0.132, 0.091) (0.058, 0.038, 0.035, 0.045) (0.035, 0.041) (0.481, 0.355)

2 (0.498, 0.160, 0.114) (0.084, 0.055, 0.041, 0.047) (0.035, 0.038) (0.058, 0.152) (0.481, 0.548)

s.e. 3 (0.478, 0.157, 0.113) (0.081, 0.054, 0.040, 0.047) (0.035, 0.038) (0.039, 0.111) (0.058, 0.149) (0.481, 0.545)

4 (0.487, 0.160, 0.115) (0.082, 0.054, 0.040, 0.047) (0.035, 0.045) (0.035, 0.080) (0.039, 0.124) (0.058, 0.152) (0.481, 0.563)

5 (0.532, 0.170, 0.129) (0.089, 0.060, 0.043, 0.047) (0.035, 0.048) (0.035, 0.087) (0.053, 0.173) (0.058, 0.195) (0.078, 0.238) (0.481, 0.725)

* (0.311, 0.118, 0.111) (0.624, 0.488, 0.354, 0.240) (0.124, 0.330)

1 (0.349, 0.124, 0.201) (0.062, 0.039, 0.035, 0.045)

2 (0.438, 0.147, 0.202) (0.093, 0.059, 0.042, 0.047)

RMSE 3 (0.424, 0.142, 0.198) (0.090, 0.058, 0.041, 0.047)

4 (0.407, 0.138, 0.193) (0.091, 0.058, 0.041, 0.047)

5 (0.389, 0.133, 0.188) (0.096, 0.063, 0.044, 0.047)

* (0.335, 0.120, 0.154) (0.055, 0.037, 0.035, 0.043)

1 (0.980, 0.970, 0.980, 0.990)

2 (0.980, 0.980, 0.990, 0.980)

95% C.P. 3 (0.970, 0.970, 0.980, 0.970)

4 (0.970, 0.970, 0.980, 0.970)

5 (0.950, 0.940, 0.950, 0.950)

* (0.898, 0.933, 0.945, 0.923)

(Gr-1, Gr-2, Gr-3, Gr-4)

1 (0.090, 0.123, 0.182, 0.251)

2 (0.092, 0.127, 0.187, 0.256)

RISE 3 (0.093, 0.128, 0.188, 0.257)

4 (0.095, 0.129, 0.189, 0.258)

5 (0.095, 0.130, 0.189, 0.256)

* (0.076, 0.082, 0.077, 0.075)
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Table 3.2: Simulation results for geometric cure rate model having high lifetime
(γ0 = 2.101, γ1 = 2.258) with heavy censoring for large sample size.

Measure
(τi, ψ̂i)

N (β̂0, β̂1, γ̂) p̂0 l̂ AIC i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

n = 600 (150, 150, 150, 150) (-0.907, 0.501, 0.200) (0.600, 0.470, 0.350, 0.250)

1 (-0.706, 0.456, 0.371) (0.583, 0.464, 0.349, 0.250) -475.297 960.594 (0.049, 0.067) (3.680, 1.323)

2 (-0.821, 0.482, 0.384) (0.571, 0.456, 0.345, 0.250) -473.596 957.194 (0.049, 0.046) (0.887, 0.418) (3.680, 0.789)

Est 3 (-0.760, 0.468, 0.373) (0.572, 0.456, 0.345, 0.249) -472.709 955.418 (0.049, 0.044) (0.537, 0.273) (0.887, 0.417) (3.680, 0.816)

4 (-0.765, 0.469, 0.372) (0.573, 0.457, 0.345, 0.249) -472.019 954.038 (0.049, 0.048) (0.319, 0.165) (0.537, 0.284) (0.887, 0.416) (3.680, 0.831)

5 (-0.769, 0.471, 0.369) (0.574, 0.457, 0.345, 0.249) -470.816 951.632 (0.049, 0.047) (0.319, 0.170) (0.737, 0.371) (0.887, 0.403) (1.356, 0.520) (3.680, 0.762)

* (-1.048, 0.559, 0.215) (0.619, 0.482, 0.348, 0.235) -480.043 970.086 (2.072, 2.210)

1 (0.279, 0.104, 0.072) (0.046, 0.003, 0.028, 0.036) (0.021, 0.028) (0.443, 0.295)

2 (0.335, 0.116, 0.082) (0.057, 0.037, 0.030, 0.037) (0.021, 0.025) (0.047, 0.107) (0.443, 0.395)

s.e. 3 (0.334, 0.116, 0.082) (0.056, 0.037, 0.030, 0.037) (0.021, 0.026) (0.038, 0.080) (0.047, 0.109) (0.443, 0.428)

4 (0.332, 0.116, 0.083) (0.056, 0.037, 0.030, 0.037) (0.021, 0.030) (0.029, 0.056) (0.038, 0.089) (0.047, 0.110) (0.443, 0.431)

5 (0.384, 0.127, 0.094) (0.065, 0.043, 0.032, 0.037) (0.021, 0.031) (0.029, 0.062) (0.042, 0.124) (0.047, 0.147) (0.061, 0.165) (0.443, 0.692)

* (0.280, 0.105, 0.101) (0.044, 0.031, 0.029, 0.035) (0.103, 0.293)

1 (0.259, 0.099, 0.196) (0.049, 0.031, 0.028, 0.036)

2 (0.304, 0.111, 0.190) (0.064, 0.040, 0.030, 0.037)

RMSE 3 (0.296, 0.109, 0.187) (0.063, 0.040, 0.039, 0.037)

4 (0.284, 0.104, 0.185) (0.062, 0.039, 0.030, 0.037)

5 (0.293, 0.107, 0.183) (0.070, 0.045, 0.032, 0.037)

* (0.250, 0.106, 0.114) (0.048, 0.032, 0.030, 0.038)

1 (0.990, 0.990, 0.980, 0.970)

2 (0.990, 0.980, 0.980, 0.970)

95% C.P. 3 (0.990, 0.990, 0.990, 0.980)

4 (0.990, 0.980, 0.990, 0.960)

5 (0.990, 0.970, 0.970, 0.950)

* (0.930, 0.950, 0.970, 0.980)

(Gr-1, Gr-2, Gr-3, Gr-4)

1 (0.076, 0.117, 0.182, 0.254)

2 (0.079, 0.121, 0.187, 0.260)

RISE 3 (0.079, 0.121, 0.188, 0.259)

4 (0.079, 0.122, 0.188, 0.260)

5 (0.080, 0.123, 0.188, 0.259)

* (0.083, 0.085, 0.087, 0.089)
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Table 3.3: Simulation results for geometric cure rate model having high lifetime
(γ0 = 2.101, γ1 = 2.258) with light censoring for small sample size.

Measure (τi, ψ̂i)

N (β̂0, β̂1, γ̂) p̂0 l̂ AIC i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

n = 400 (100, 100, 100, 100) (-0.038, 0.443, 0.200) (0.400, 0.290, 0.210, 0.150)

1 (0.008, 0.444, 0.392) (0.390, 0.291, 0.209, 0.148) -315.586 641.174 (0.049, 0.129) (3.566, 1.483)

2 (0.259, 0.376, 0.404) (0.346, 0.267, 0.202, 0.152) -314.956 639.914 (0.049, 0.070) (0.738, 0.473) (3.566, 0.588)

Est 3 (0.219, 0.389, 0.397) (0.353, 0.270, 0.203, 0.150) -314.159 638.318 (0.049, 0.062) (0.437, 0.327) (0.738, 0.460) (3.566, 0.672)

4 (0.205, 0.395, 0.393) (0.354, 0.270, 0.202, 0.149) -313.167 636.336 (0.049, 0.067) (0.258, 0.205) (0.437, 0.336) (0.738, 0.465) (3.566, 0.692)

5 (0.201, 0.396, 0.395) (0.357, 0.272, 0.202, 0.148) -313.329 636.658 (0.049, 0.065) (0.258, 0.208) (0.610, 0.421) (0.738, 0.426) (1.179, 0.545) (3.566, 0.515)

* (-0.829, 0.503, 0.231) (0.583, 0.457, 0.335, 0.234) -318.347 646.696 (0.962, 1.048)

1 (0.366, 0.149, 0.076) (0.057, 0.033, 0.032, 0.038) (0.026, 0.047) (0.518, 0.344)

2 (0.660, 0.207, 0.102) (0.095, 0.056, 0.038, 0.041) (0.026, 0.039) (0.042, 0.149) (0.518, 0.532)

s.e. 3 (0.635, 0.204, 0.102) (0.092, 0.054, 0.038, 0.041) (0.026, 0.038) (0.032, 0.118) (0.042, 0.144) (0.518, 0.567)

4 (0.625, 0.204, 0.100) (0.089, 0.052, 0.037, 0.041) (0.026, 0.046) (0.026, 0.080) (0.032, 0.124) (0.042, 0.141) (0.518, 0.533)

5 (0.676, 0.216, 0.109) (0.109, 0.063, 0.041, 0.042) (0.026, 0.044) (0.026, 0.086) (0.035, 0.161) (0.042, 0.173) (0.067, 0.207) (0.518, 0.701)

* (0.37, 0.142, 0.152) (0.583, 0.457, 0.335, 0.234) (0.063, 0.494)

1 (0.300, 0.132, 0.214) (0.218, 0.182, 0.145, 0.109)

2 (0.438, 0.158, 0.222) (0.271, 0.211, 0.153, 0.106)

RMSE 3 (0.398, 0.148, 0.215) (0.264, 0.207, 0.152, 0.108)

4 (0.395, 0.146, 0.212) (0.262, 0.207, 0.153, 0.109)

5 (0.371, 0.139, 0.211) (0.266, 0.208, 0.154, 0.110)

* (0.362, 0.131, 0.151) (0.061, 0.045, 0.045, 0.052)

1 (0.980, 0.960, 0.940, 0.950)

2 (0.900, 0.890, 0.890, 0.880)

95% C.P. 3 (0.920, 0.910, 0.900, 0.900)

4 (0.890, 0.880, 0.870, 0.870)

5 (0.860, 0.860, 0.850, 0.850)

* (0.913, 0.957, 0.933, 0.913)

(Gr-1, Gr-2, Gr-3, Gr-4)

1 (0.155, 0.232, 0.316, 0.390)

2 (0.160, 0.234, 0.316, 0.388)

RISE 3 (0.159, 0.233, 0.315, 0.388)

4 (0.156, 0.233, 0.317, 0.390)

5 (0.154, 0.228, 0.307, 0.379)

* (0.534, 0.517, 0.506, 0.500)
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Table 3.4: Simulation results for geometric cure rate model having high lifetime
(γ0 = 2.101, γ1 = 2.258) with light censoring for large sample size.

Measure (τi, ψ̂i)

N (β̂0, β̂1, γ̂) p̂0 l̂ AIC i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

n = 600 (150, 150, 150, 150) (-0.038, 0.443, 0.200) (0.400, 0.290, 0.210, 0.150)

1 (0.219, 0.389, 0.397) (0.391, 0.293, 0.211, 0.149) -38.514 87.030 (0.038, 0.108) (3.703, 1.605)

2 (0.013, 0.437, 0.393) (0.359, 0.275, 0.205, 0.151) -38.329 86.660 (0.038, 0.059) (0.742, 0.484) (3.703, 0.697)

Est 3 (0.181, 0.392, 0.389) (0.363, 0.277, 0.205, 0.150) -37.985 85.972 (0.038, 0.052) (0.444, 0.329) (0.742, 0.472) (3.703, 0.758)

4 (0.159, 0.398, 0.385) (0.366, 0.278, 0.205, 0.149) -35.109 80.220 (0.038, 0.052) (0.257, 0.204) (0.444, 0.335) (0.742, 0.475) (3.703, 0.783)

5 (0.153, 0.402, 0.384) (0.365, 0.277, 0.204, 0.149) -33.999 78.000 (0.038, 0.052) (0.257, 0.207) (0.613, 0.435) (0.742, 0.455) (1.188, 0.551) (3.703, 0.718)

* (-0.945, 0.515, 0.206) (0.604, 0.477, 0.354, 0.248) -32.848 75.698 (0.986, 0.992)

1 (0.292, 0.119, 0.061) (0.045, 0.027, 0.026, 0.031) (0.018, 0.035) (0.488, 0.290)

2 (0.452, 0.153, 0.076) (0.070, 0.040, 0.029, 0.033) (0.018, 0.028) (0.036, 0.110) (0.488, 0.427)

s.e. 3 (0.437, 0.150, 0.074) (0.066, 0.038, 0.029, 0.033) (0.018, 0.028) (0.028, 0.086) (0.036, 0.106) (0.488, 0.463)

4 (0.416, 0.147, 0.073) (0.064, 0.037, 0.029, 0.032) (0.018, 0.031) (0.024, 0.059) (0.028, 0.093) (0.036, 0.104) (0.488, 0.445)

5 (0.516, 0.169, 0.085) (0.078, 0.045, 0.031, 0.033) (0.018, 0.032) (0.024, 0.068) (0.033, 0.129) (0.036, 0.146) (0.058, 0.154) (0.488, 0.722)

* (0.303, 0.116, 0.134) (0.048, 0.033, 0.033, 0.042) (0.053, 0.363)

1 (0.287, 0.122, 0.205) (0.214, 0.179, 0.141, 0.106)

2 (0.407, 0.148, 0.204) (0.251, 0.199, 0.148, 0.104)

RMSE 3 (0.383, 0.142, 0.200) (0.246, 0.197, 0.148, 0.105)

4 (0.368, 0.137, 0.196) (0.243, 0.196, 0.148, 0.106)

5 (0.368, 0.140, 0.196) (0.248, 0.198, 0.149, 0.106)

* (0.169, 0.069, 0.099) (0.048, 0.033, 0.033, 0.042)

1 (0.970, 0.960, 0.970, 0.939)

2 (0.929, 0.929, 0.919, 0.899)

95% C.P. 3 (0.929, 0.919, 0.929, 0.889)

4 (0.939, 0.929, 0.939, 0.899)

5 (0.919, 0.919, 0.929, 0.889)

* (0.910, 0.950, 0.930, 0.933)

(Gr-1, Gr-2, Gr-3, Gr-4)

1 (0.152, 0.226, 0.305, 0.376)

2 (0.156, 0.233, 0.314, 0.385)

RISE 3 (0.157, 0.232, 0.313, 0.385)

4 (0.157, 0.233, 0.314, 0.385)

5 (0.158, 0.234, 0.315, 0.385)

* (0.022, 0.025, 0.028, 0.029)
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Table 3.5: Simulation results for Poisson cure rate model having high lifetime (γ0 =
2.101, γ1 = 2.258) with heavy censoring for small sample size.

Measure (τi, ψ̂i)

N (β̂0, β̂1, γ̂) p̂0 l̂ AIC i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

n = 400 (100, 100, 100, 100) (-0.907, 0.501, 0.200) (0.600, 0.470, 0.350, 0.250)

1 (-0.909, 0.517, 0.209) (0.596, 0.469, 0.346, 0.241) -375.4026 760.805 (0.123, 0.048) (4.036, 1.489)

2 (-0.907, 0.516, 0.214) (0.596, 0.469, 0.346, 0.241) -373.4371 758.874 (0.123, 0.050) (1.385, 0.497) (4.036, 1.633)

Est 3 (-0.903, 0.515, 0.214) (0.595, 0.468, 0.345, 0.241) -370.2826 754.565 (0.123, 0.058) (0.904, 0.299) (1.385, 0.543) (4.036, 1.512)

4 (-0.901, 0.515, 0.213) (0.595, 0.468, 0.345, 0.241) -370.0934 756.187 (0.123, 0.063) (0.557, 0.183) (0.904, 0.318) (1.385, 0.539) (4.036, 1.535)

5 (-0.896, 0.515, 0.213) (0.594, 0.467, 0.344, 0.240) -368.7355 755.471 (0.123, 0.064) (0.557, 0.179) (1.190, 0.446) (1.385, 0.519) (1.928, 0.783) (4.036, 1.402)

* (-0.723, 0.434, 0.188) (0.576, 0.466, 0.359, 0.265) -375.1799 760.360 (2.195, 2.242)

1 (0.317, 0.117, 0.086) (0.051, 0.034, 0.031, 0.039) (0.058, 0.027) (0.506, 0.404)

2 (0.319, 0.117, 0.085) (0.052, 0.035, 0.032, 0.039) (0.058, 0.029) (0.080, 0.136) (0.506, 0.603)

s.e. 3 (0.322, 0.118, 0.086) (0.052, 0.035, 0.032, 0.039) (0.058, 0.035) (0.062, 0.093) (0.080, 0.160) (0.506, 0.628)

4 (0.321, 0.117, 0.086) (0.052, 0.035, 0.032, 0.039) (0.058, 0.041) (0.059, 0.066) (0.062, 0.109) (0.080, 0.160) (0.506, 0.636)

5 (0.332, 0.119, 0.090) (0.055, 0.037, 0.033, 0.040) (0.058, 0.042) (0.059, 0.065) (0.073, 0.146) (0.080, 0.190) (0.086, 0.251) (0.506, 0.984)

* (0.138, 0.053, 0.047) (0.023, 0.018, 0.019, 0.023) (0.121, 0.172)

1 (0.270, 0.104, 0.061) (0.051, 0.034, 0.031, 0.040)

2 (0.265, 0.103, 0.063) (0.052, 0.035, 0.032, 0.040)

RMSE 3 (0.266, 0.103, 0.064) (0.052, 0.035, 0.032, 0.040)

4 (0.260, 0.101, 0.063) (0.052, 0.035, 0.032, 0.040)

5 (0.258, 0.100, 0.062) (0.055, 0.037, 0.034, 0.041)

* (0.229, 0.086, 0.048) (0.033, 0.021, 0.019, 0.028)

1 (0.980, 0.960, 0.930, 0.920)

2 (0.980, 0.970, 0.930, 0.920)

95% C.P. 3 (0.970, 0.960, 0.950, 0.920)

4 (0.980, 0.970, 0.930, 0.930)

5 (0.970, 0.970, 0.940, 0.930)

* (0.400, 0.600, 0.650, 0.500)

(Gr-1, Gr-2, Gr-3, Gr-4)

1 (0.064, 0.050, 0.050, 0.065)

2 (0.065, 0.051, 0.052, 0.067)

RISE 3 (0.065, 0.052, 0.053, 0.067)

4 (0.064, 0.051, 0.052, 0.067)

5 (0.063, 0.051, 0.053, 0.068)

* (0.089, 0.092, 0.094, 0.096)
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Table 3.6: Simulation results for Poisson cure rate model having high lifetime (γ0 =
2.101, γ1 = 2.258) with heavy censoring for large sample size.

Measure (τi, ψ̂i)

N (β̂0, β̂1, γ̂) p̂0 l̂ AIC i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

n = 600 (150, 150, 150, 150) (-0.907, 0.501, 0.200) (0.600, 0.470, 0.350, 0.250)

1 (-0.903, 0.515, 0.214) (0.596, 0.474, 0.354, 0.251) -543.617 1097.233 (0.095, 0.035) (4.206, 1.614)

2 (-0.888, 0.497, 0.202) (0.595, 0.473, 0.353, 0.251) -542.810 1097.620 (0.095, 0.036) (1.376, 0.513) (4.206, 1.718)

Est 3 (-0.881, 0.496, 0.206) (0.595, 0.473, 0.353, 0.251) -540.706 1095.412 (0.095, 0.040) (0.895, 0.318) (1.376, 0.544) (4.206, 1.634)

4 (-0.884, 0.497, 0.205) (0.595, 0.472, 0.353, 0.250) -540.682 1097.363 (0.095, 0.046) (0.555, 0.186) (0.895, 0.341) (1.376, 0.539) (4.206, 1.658)

5 (-0.881, 0.496, 0.203) (0.595, 0.472, 0.353, 0.250) -540.099 1098.197 (0.095, 0.046) (0.555, 0.188) (1.183, 0.462) (1.376, 0.536) (1.941, 0.784) (4.206, 1.597)

* (-0.860, 0.480, 0.201) (0.592, 0.476, 0.362, 0.263) -544.662 1099.325 (2.161, 2.288)

1 (0.252, 0.093, 0.067) (0.041, 0.027, 0.025, 0.032) (0.047, 0.020) (0.441, 0.338)

2 (0.253, 0.093, 0.067) (0.041, 0.028, 0.025, 0.032) (0.047, 0.021) (0.057, 0.110) (0.441, 0.492)

s.e. 3 (0.254, 0.093, 0.067) (0.041, 0.028, 0.025, 0.032) (0.047, 0.024) (0.046, 0.076) (0.057, 0.126) (0.441, 0.516)

4 (0.254, 0.093, 0.067) (0.041, 0.028, 0.025, 0.032) (0.047, 0.029) (0.049, 0.053) (0.046, 0.090) (0.057, 0.126) (0.441, 0.519)

5 (0.257, 0.094, 0.068) (0.042, 0.028, 0.026, 0.032) (0.047, 0.029) (0.049, 0.052) (0.050, 0.116) (0.057, 0.151) (0.073, 0.191) (0.441, 0.815)

* (0.100, 0.039, 0.038) (0.018, 0.016, 0.017, 0.019) (0.102, 0.152)

1 (0.217, 0.082, 0.057) (0.041, 0.027, 0.025, 0.032)

2 (0.215, 0.082, 0.058) (0.041, 0.028, 0.025, 0.032)

RMSE 3 (0.216, 0.082, 0.058) (0.041, 0.028, 0.025, 0.032)

4 (0.212, 0.081, 0.058) (0.041, 0.028, 0.025, 0.032)

5 (0.213, 0.081, 0.057) (0.042, 0.028, 0.026, 0.032)

* (0.110, 0.044, 0.038) (0.020, 0.016, 0.018, 0.023)

1 (0.970, 0.980, 0.960, 0.970)

2 (0.980, 0.980, 0.950, 0.960)

95% C.P. 3 (0.980, 0.990, 0.950, 0.970)

4 (0.970, 0.970, 0.950, 0.960)

5 (0.980, 0.970, 0.950, 0.970)

* (0.480, 0.600, 0.680, 0.640)

(Gr-1, Gr-2, Gr-3, Gr-4)

1 (0.050, 0.039, 0.040, 0.054)

2 (0.051, 0.039, 0.040, 0.055)

RISE 3 (0.051, 0.039, 0.041, 0.055)

4 (0.050, 0.039, 0.041, 0.055)

5 (0.051, 0.040, 0.041, 0.055)

* (0.092, 0.095, 0.098, 0.100)
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Table 3.7: Simulation results for Poisson cure rate model having high lifetime (γ0 =
2.101, γ1 = 2.258) with light censoring for small sample size.

Measure (τi, ψ̂i)

N (β̂0, β̂1, γ̂) p̂0 l̂ AIC i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

n = 400 (100, 100, 100, 100) (-0.038, 0.443, 0.200) (0.400, 0.290, 0.210, 0.150)

1 (0.011, 0.434, 0.213) (0.392, 0.295, 0.214, 0.152) -383.139 776.277 (0.107, 0.040) (4.233, 1.565)

2 (0.004, 0.435, 0.216) (0.394, 0.296, 0.214, 0.152) -382.089 776.178 (0.107, 0.042) (1.415, 0.508) (4.233, 1.690)

Est 3 (0.013, 0.433, 0.218) (0.391, 0.294, 0.213, 0.151) -381.848 777.696 (0.107, 0.046) (0.924, 0.312) (1.415, 0.541) (4.233, 1.594)

4 (0.012, 0.434, 0.218) (0.392, 0.295, 0.214, 0.152) -381.629 779.257 (0.107, 0.050) (0.568, 0.184) (0.924, 0.331) (1.415, 0.535) (4.233, 1.612)

5 (0.011, 0.434, 0.216) (0.392, 0.294, 0.213, 0.151) -381.614 781.228 (0.107, 0.051) (0.568, 0.185) (1.220, 0.453) (1.415, 0.532) (1.990, 0.771) (4.233, 1.588)

* (-0.064, 0.469, 0.193) (0.395, 0.295, 0.212, 0.148) -384.320 778.640 (2.087, 2.247)

1 (0.318, 0.125, 0.067) (0.050, 0.029, 0.027, 0.032) (0.054, 0.022) (0.447, 0.317)

2 (0.320, 0.124, 0.067) (0.050, 0.030, 0.027, 0.032) (0.054, 0.023) (0.056, 0.107) (0.447, 0.487)

s.e. 3 (0.327, 0.126, 0.068) (0.051, 0.030, 0.027, 0.032) (0.054, 0.027) (0.054, 0.074) (0.056, 0.125) (0.447, 0.511)

4 (0.326, 0.126, 0.068) (0.051, 0.030, 0.027, 0.032) (0.054, 0.032) (0.052, 0.054) (0.054, 0.089) (0.056, 0.125) (0.447, 0.515)

5 (0.341, 0.128, 0.071) (0.054, 0.032, 0.027, 0.032) (0.054, 0.032) (0.052, 0.053) (0.055, 0.116) (0.056, 0.154) (0.066, 0.193) (0.447, 0.834)

* (0.094, 0.048, 0.039) (0.407, 0.302, 0.214, 0.148) (0.098, 0.170)

1 (0.318, 0.122, 0.057) (0.214, 0.177, 0.139, 0.103)

2 (0.313, 0.120, 0.059) (0.212, 0.177, 0.139, 0.103)

RMSE 3 (0.317, 0.120, 0.060) (0.215, 0.179, 0.140, 0.104)

4 (0.312, 0.120, 0.060) (0.214, 0.178, 0.139, 0.103)

5 (0.313, 0.120, 0.059) (0.215, 0.179, 0.140, 0.104)

* (0.103, 0.052, 0.040) (0.018, 0.015, 0.015, 0.016)

1 (0.960, 0.950, 0.950, 0.970)

2 (0.960, 0.940, 0.960, 0.960)

95% C.P. 3 (0.960, 0.950, 0.960, 0.960)

4 (0.970, 0.960, 0.970, 0.970)

5 (0.970, 0.950, 0.970, 0.970)

* (0.480, 0.630, 0.565, 0.655)

(Gr-1, Gr-2, Gr-3, Gr-4)

1 (0.070, 0.043, 0.044, 0.062)

2 (0.071, 0.044, 0.045, 0.062)

RISE 3 (0.071, 0.044, 0.044, 0.062)

4 (0.071, 0.045, 0.046, 0.063)

5 (0.071, 0.045, 0.046, 0.063)

* (0.248, 0.266, 0.278, 0.285)
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Table 3.8: Simulation results for Poisson cure rate model having high lifetime (γ0 =
2.101, γ1 = 2.258) with light censoring for large sample size.

Measure (τi, ψ̂i)

N (β̂0, β̂1, γ̂) p̂0 l̂ AIC i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

n = 600 (150, 150, 150, 150) (-0.038, 0.443, 0.200) (0.400, 0.290, 0.210, 0.150)

1 (0.013, 0.433, 0.218) (0.392, 0.294, 0.212, 0.150) -590.814 1191.628 (0.090, 0.031) (4.398, 1.653)

2 (0.005, 0.437, 0.215) (0.392, 0.294, 0.212, 0.150) -590.389 1192.778 (0.090, 0.032) (1.401, 0.511) (4.398, 1.768)

Est 3 (0.007, 0.437, 0.220) (0.392, 0.294, 0.212, 0.149) -588.790 1191.579 (0.090, 0.038) (0.919, 0.312) (1.401, 0.550) (4.398, 1.653)

4 (0.006, 0.437, 0.219) (0.392, 0.294, 0.212, 0.149) -586.561 1189.121 (0.090, 0.043) (0.567, 0.183) (0.919, 0.332) (1.401, 0.545) (4.398, 1.675)

5 (0.004, 0.438, 0.217) (0.392, 0.294, 0.212, 0.149) -585.601 1189.201 (0.090, 0.044) (0.567, 0.184) (1.207, 0.461) (1.401, 0.540) (1.970, 0.782) (4.398, 1.601)

* (-0.079, 0.463, 0.191) (0.407, 0.302, 0.214, 0.148) -593.680 1197.360 (2.147, 2.209)

1 (0.254, 0.100, 0.052) (0.040, 0.023, 0.022, 0.025) (0.046, 0.016) (0.442, 0.261)

2 (0.255, 0.100, 0.053) (0.040, 0.023, 0.022, 0.025) (0.046, 0.017) (0.048, 0.085) (0.442, 0.397)

s.e. 3 (0.257, 0.101, 0.053) (0.040, 0.024, 0.022, 0.025) (0.046, 0.020) (0.046, 0.059) (0.048, 0.101) (0.442, 0.419)

4 (0.257, 0.101, 0.053) (0.040, 0.024, 0.022, 0.025) (0.046, 0.024) (0.046, 0.042) (0.046, 0.071) (0.048, 0.101) (0.442, 0.421)

5 (0.260, 0.101, 0.054) (0.041, 0.024, 0.022, 0.025) (0.046, 0.024) (0.046, 0.042) (0.047, 0.091) (0.048, 0.122) (0.059, 0.151) (0.442, 0.667)

* (0.094, 0.048, 0.039) (0.017, 0.015, 0.015, 0.016) (0.087, 0.139)

1 (0.273, 0.103, 0.049) (0.212, 0.177, 0.140, 0.103)

2 (0.275, 0.103, 0.050) (0.212, 0.177, 0.140, 0.103)

RMSE 3 (0.277, 0.104, 0.050) (0.212, 0.178, 0.140, 0.104)

4 (0.273, 0.103, 0.050) (0.212, 0.178, 0.140, 0.104)

5 (0.268, 0.101, 0.048) (0.212, 0.178, 0.140, 0.104)

* (0.103, 0.052, 0.040) (0.018, 0.019, 0.016, 0.016)

1 (0.910, 0.910, 0.930, 0.960)

2 (0.920, 0.930, 0.920, 0.960)

95% C.P. 3 (0.920, 0.920, 0.920, 0.950)

4 (0.920, 0.930, 0.930, 0.960)

5 (0.930, 0.930, 0.920, 0.940)

* (0.480, 0.630, 0.565, 0.655)

(Gr-1, Gr-2, Gr-3, Gr-4)

1 (0.063, 0.039, 0.040, 0.054)

2 (0.063, 0.040, 0.041, 0.054)

RISE 3 (0.064, 0.040, 0.041, 0.055)

4 (0.063, 0.040, 0.041, 0.054)

5 (0.063, 0.040, 0.041, 0.054)

* (0.248, 0.266, 0.278, 0.285)
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Table 3.9: Simulation results for Bernoulli cure rate model having high lifetime (γ0 =
2.101, γ1 = 2.258) with heavy censoring for small sample size.

Measure (τi, ψ̂i)

N (β̂0, β̂1, γ̂) p̂0 l̂ AIC i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

n = 400 (100, 100, 100, 100) (-0.907, 0.501, 0.200) (0.600, 0.470, 0.350, 0.250)

1 (-0.909, 0.517, 0.209) (0.596, 0.469, 0.346, 0.241) -426.014 862.028 (0.123, 0.048) (4.036, 1.489)

2 (-0.907, 0.516, 0.214) (0.596, 0.469, 0.346, 0.241) -425.802 863.603 (0.123, 0.050) (1.385, 0.497) (4.036, 1.633)

Est 3 (-0.903, 0.515, 0.214) (0.595, 0.468, 0.345, 0.241) -423.608 861.217 (0.123, 0.058) (0.904, 0.299) (1.385, 0.543) (4.036, 1.512)

4 (-0.901, 0.515, 0.213) (0.595, 0.468, 0.345, 0.241) -421.060 858.119 (0.123, 0.063) (0.557, 0.183) (0.904, 0.318) (1.385, 0.539) (4.036, 1.535)

5 (-0.896, 0.515, 0.213) (0.594, 0.467, 0.344, 0.240) -418.575 855.149 (0.123, 0.064) (0.557, 0.179) (1.190, 0.446) (1.385, 0.519) (1.928, 0.783) (4.036, 1.402)

* (-0.925, 0.505, 0.157) (0.603, 0.476, 0.352, 0.246) -428.086 866.172 (2.237, 2.300)

1 (0.317, 0.117, 0.086) (0.051, 0.034, 0.031, 0.039) (0.058, 0.027) (0.506, 0.404)

2 (0.319, 0.117, 0.085) (0.052, 0.035, 0.032, 0.039) (0.058, 0.029) (0.080, 0.136) (0.506, 0.603)

s.e. 3 (0.322, 0.118, 0.086) (0.052, 0.035, 0.032, 0.039) (0.058, 0.035) (0.062, 0.093) (0.080, 0.160) (0.506, 0.628)

4 (0.321, 0.117, 0.086) (0.052, 0.035, 0.032, 0.039) (0.058, 0.041) (0.059, 0.066) (0.062, 0.109) (0.080, 0.160) (0.506, 0.636)

5 (0.332, 0.119, 0.090) (0.055, 0.037, 0.033, 0.040) (0.058, 0.042) (0.059, 0.065) (0.073, 0.146) (0.080, 0.190) (0.086, 0.251) (0.506, 0.984)

* (0.239, 0.091, 0.061) (0.038, 0.028, 0.027, 0.033) (0.124, 0.208)

1 (0.270, 0.104, 0.061) (0.051, 0.034, 0.031, 0.040)

2 (0.265, 0.103, 0.063) (0.052, 0.035, 0.032, 0.040)

RMSE 3 (0.266, 0.103, 0.064) (0.052, 0.035, 0.032, 0.040)

4 (0.260, 0.101, 0.063) (0.052, 0.035, 0.032, 0.040)

5 (0.258, 0.100, 0.062) (0.055, 0.037, 0.034, 0.041)

* (0.240, 0.091, 0.074) (0.038, 0.029, 0.027, 0.033)

1 (0.980, 0.960, 0.930, 0.920)

2 (0.980, 0.970, 0.930, 0.920)

95% C.P. 3 (0.970, 0.960, 0.950, 0.920)

4 (0.980, 0.970, 0.930, 0.930)

5 (0.970, 0.970, 0.940, 0.930)

* (0.750, 0.850, 0.875, 0.850)

(Gr-1, Gr-2, Gr-3, Gr-4)

1 (0.064, 0.050, 0.050, 0.065)

2 (0.065, 0.051, 0.052, 0.067)

RISE 3 (0.065, 0.052, 0.053, 0.067)

4 (0.064, 0.051, 0.052, 0.067)

5 (0.063, 0.051, 0.053, 0.068)

* (0.005, 0.006, 0.006, 0.009)
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Table 3.10: Simulation results for Bernoulli cure rate model having high lifetime
(γ0 = 2.101, γ1 = 2.258) with heavy censoring for large sample size.

Measure (τi, ψ̂i)

N (β̂0, β̂1, γ̂) p̂0 l̂ AIC i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

n = 600 (150, 150, 150, 150) (-0.907, 0.501, 0.200) (0.600, 0.470, 0.350, 0.250)

1 (-0.903, 0.515, 0.214) (0.596, 0.474, 0.354, 0.251) -624.773 1259.546 (0.095, 0.035) (4.206, 1.614)

2 (-0.888, 0.497, 0.202) (0.595, 0.473, 0.353, 0.251) -624.570 1261.141 (0.095, 0.036) (1.376, 0.513) (4.206, 1.718)

Est 3 (-0.881, 0.496, 0.206) (0.595, 0.473, 0.353, 0.251) -621.393 1256.787 (0.095, 0.040) (0.895, 0.318) (1.376, 0.544) (4.206, 1.634)

4 (-0.884, 0.497, 0.205) (0.595, 0.472, 0.353, 0.250) -620.764 1257.527 (0.095, 0.046) (0.555, 0.186) (0.895, 0.341) (1.376, 0.539) (4.206, 1.658)

5 (-0.881, 0.496, 0.203) (0.595, 0.472, 0.353, 0.250) -620.305 1258.611 (0.095, 0.046) (0.555, 0.188) (1.183, 0.462) (1.376, 0.536) (1.941, 0.784) (4.206, 1.597)

* (-0.915, 0.514, 0.154) (0.591, 0.466, 0.344, 0.241) -624.440 1258.879 (2.217, 2.258)

1 (0.252, 0.093, 0.067) (0.041, 0.027, 0.025, 0.032) (0.047, 0.020) (0.441, 0.338)

2 (0.253, 0.093, 0.067) (0.041, 0.028, 0.025, 0.032) (0.047, 0.021) (0.057, 0.110) (0.441, 0.492)

s.e. 3 (0.254, 0.093, 0.067) (0.041, 0.028, 0.025, 0.032) (0.047, 0.024) (0.046, 0.076) (0.057, 0.126) (0.441, 0.516)

4 (0.254, 0.093, 0.067) (0.041, 0.028, 0.025, 0.032) (0.047, 0.029) (0.049, 0.053) (0.046, 0.090) (0.057, 0.126) (0.441, 0.519)

5 (0.257, 0.094, 0.068) (0.042, 0.028, 0.026, 0.032) (0.047, 0.029) (0.049, 0.052) (0.050, 0.116) (0.057, 0.151) (0.073, 0.191) (0.441, 0.815)

* (0.181, 0.069, 0.046) (0.029, 0.021, 0.021, 0.025) (0.098, 0.158)

1 (0.217, 0.082, 0.057) (0.041, 0.027, 0.025, 0.032)

2 (0.215, 0.082, 0.058) (0.041, 0.028, 0.025, 0.032)

RMSE 3 (0.216, 0.082, 0.058) (0.041, 0.028, 0.025, 0.032)

4 (0.212, 0.081, 0.058) (0.041, 0.028, 0.025, 0.032)

5 (0.213, 0.081, 0.057) (0.042, 0.028, 0.026, 0.032)

* (0.181, 0.071, 0.064) (0.030, 0.021, 0.021, 0.027)

1 (0.970, 0.980, 0.960, 0.970)

2 (0.980, 0.980, 0.950, 0.960)

95% C.P. 3 (0.980, 0.990, 0.950, 0.970)

4 (0.970, 0.970, 0.950, 0.960)

5 (0.980, 0.970, 0.950, 0.970)

* (0.750, 0.775, 0.800, 0.725)

(Gr-1, Gr-2, Gr-3, Gr-4)

1 (0.050, 0.039, 0.040, 0.054)

2 (0.051, 0.039, 0.040, 0.055)

RISE 3 (0.051, 0.039, 0.041, 0.055)

4 (0.050, 0.039, 0.041, 0.055)

5 (0.051, 0.040, 0.041, 0.055)

* (0.008, 0.007, 0.007, 0.010)
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Table 3.11: Simulation results for Bernoulli cure rate model having high lifetime
(γ0 = 2.101, γ1 = 2.258) with light censoring for small sample size.

Measure (τi, ψ̂i)

N (β̂0, β̂1, γ̂) p̂0 l̂ AIC i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

n = 400 (100, 100, 100, 100) (-0.038, 0.443, 0.200) (0.400, 0.290, 0.210, 0.150)

1 (0.011, 0.434, 0.213) (0.392, 0.295, 0.214, 0.152) -459.403 928.806 (0.107, 0.040) (4.233, 1.565)

2 (0.004, 0.435, 0.216) (0.394, 0.296, 0.214, 0.152) -458.678 929.357 (0.107, 0.042) (1.415, 0.508) (4.233, 1.690)

Est 3 (0.013, 0.433, 0.218) (0.391, 0.294, 0.213, 0.151) -457.098 928.195 (0.107, 0.046) (0.924, 0.312) (1.415, 0.541) (4.233, 1.594)

4 (0.012, 0.434, 0.218) (0.392, 0.295, 0.214, 0.152) -456.883 929.767 (0.107, 0.050) (0.568, 0.184) (0.924, 0.331) (1.415, 0.535) (4.233, 1.612)

5 (0.011, 0.434, 0.216) (0.392, 0.294, 0.213, 0.151) -456.837 931.674 (0.107, 0.051) (0.568, 0.185) (1.220, 0.453) (1.415, 0.532) (1.990, 0.771) (4.233, 1.588)

* (-0.002, 0.432, 0.185) (0.391, 0.296, 0.217, 0.155) -460.967 931.934 (2.211, 2.388)

1 (0.318, 0.125, 0.067) (0.050, 0.029, 0.027, 0.032) (0.054, 0.022) (0.447, 0.317)

2 (0.320, 0.124, 0.067) (0.050, 0.030, 0.027, 0.032) (0.054, 0.023) (0.056, 0.107) (0.447, 0.487)

s.e. 3 (0.327, 0.126, 0.068) (0.051, 0.030, 0.027, 0.032) (0.054, 0.027) (0.054, 0.074) (0.056, 0.125) (0.447, 0.511)

4 (0.326, 0.126, 0.068) (0.051, 0.030, 0.027, 0.032) (0.054, 0.032) (0.052, 0.054) (0.054, 0.089) (0.056, 0.125) (0.447, 0.515)

5 (0.341, 0.128, 0.071) (0.054, 0.032, 0.027, 0.032) (0.054, 0.032) (0.052, 0.053) (0.055, 0.116) (0.056, 0.154) (0.066, 0.193) (0.447, 0.834)

* (0.247, 0.101, 0.053) (0.039, 0.024, 0.023, 0.027) (0.109, 0.176)

1 (0.318, 0.122, 0.057) (0.214, 0.177, 0.139, 0.103)

2 (0.313, 0.120, 0.059) (0.212, 0.177, 0.139, 0.103)

RMSE 3 (0.317, 0.120, 0.060) (0.215, 0.179, 0.140, 0.104)

4 (0.312, 0.120, 0.060) (0.214, 0.178, 0.139, 0.103)

5 (0.313, 0.120, 0.059) (0.215, 0.179, 0.140, 0.104)

* (0.249, 0.101, 0.055) (0.040, 0.025, 0.024, 0.027)

1 (0.960, 0.950, 0.950, 0.970)

2 (0.960, 0.940, 0.960, 0.960)

95% C.P. 3 (0.960, 0.950, 0.960, 0.960)

4 (0.970, 0.960, 0.970, 0.970)

5 (0.970, 0.950, 0.970, 0.970)

* (0.775, 0.900, 0.900, 0.825)

(Gr-1, Gr-2, Gr-3, Gr-4)

1 (0.070, 0.043, 0.044, 0.062)

2 (0.071, 0.044, 0.045, 0.062)

RISE 3 (0.071, 0.044, 0.044, 0.062)

4 (0.071, 0.045, 0.046, 0.063)

5 (0.071, 0.045, 0.046, 0.063)

* (0.004, 0.005, 0.006, 0.007)
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Table 3.12: Simulation results for Bernoulli cure rate model having high lifetime
(γ0 = 2.101, γ1 = 2.258) with light censoring for large sample size.

Measure (τi, ψ̂i)

N (β̂0, β̂1, γ̂) p̂0 l̂ AIC i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

n = 600 (150, 150, 150, 150) (-0.038, 0.443, 0.200) (0.400, 0.290, 0.210, 0.150)

1 (0.013, 0.433, 0.218) (0.392, 0.294, 0.212, 0.150) -713.902 1437.804 (0.090, 0.031) (4.398, 1.653)

2 (0.005, 0.437, 0.215) (0.392, 0.294, 0.212, 0.150) -713.857 1439.714 (0.090, 0.032) (1.401, 0.511) (4.398, 1.768)

Est 3 (0.007, 0.437, 0.220) (0.392, 0.294, 0.212, 0.149) -712.695 1439.391 (0.090, 0.038) (0.919, 0.312) (1.401, 0.550) (4.398, 1.653)

4 (0.006, 0.437, 0.219) (0.392, 0.294, 0.212, 0.149) -712.665 1441.331 (0.090, 0.043) (0.567, 0.183) (0.919, 0.332) (1.401, 0.545) (4.398, 1.675)

5 (0.004, 0.438, 0.217) (0.392, 0.294, 0.212, 0.149) -711.258 1440.517 (0.090, 0.044) (0.567, 0.184) (1.207, 0.461) (1.401, 0.540) (1.970, 0.782) (4.398, 1.601)

* (-0.036, 0.445, 0.176) (0.397, 0.297, 0.214, 0.151) -713.482 1436.965 (2.188, 2.315)

1 (0.254, 0.100, 0.052) (0.040, 0.023, 0.022, 0.025) (0.046, 0.016) (0.442, 0.261)

2 (0.255, 0.100, 0.053) (0.040, 0.023, 0.022, 0.025) (0.046, 0.017) (0.048, 0.085) (0.442, 0.397)

s.e. 3 (0.257, 0.101, 0.053) (0.040, 0.024, 0.022, 0.025) (0.046, 0.020) (0.046, 0.059) (0.048, 0.101) (0.442, 0.419)

4 (0.257, 0.101, 0.053) (0.040, 0.024, 0.022, 0.025) (0.046, 0.024) (0.046, 0.042) (0.046, 0.071) (0.048, 0.101) (0.442, 0.421)

5 (0.260, 0.101, 0.054) (0.041, 0.024, 0.022, 0.025) (0.046, 0.024) (0.046, 0.042) (0.047, 0.091) (0.048, 0.122) (0.059, 0.151) (0.442, 0.667)

* (0.203, 0.084, 0.048) (0.032, 0.021, 0.019, 0.023) (0.086, 0.150)

1 (0.275, 0.103, 0.048) (0.212, 0.177, 0.140, 0.103)

2 (0.274, 0.103, 0.050) (0.212, 0.177, 0.140, 0.103)

RMSE 3 (0.277, 0.104, 0.050) (0.212, 0.178, 0.140, 0.104)

4 (0.273, 0.103, 0.050) (0.212, 0.178, 0.140, 0.104)

5 (0.268, 0.101, 0.048) (0.212, 0.178, 0.140, 0.104)

* (0.203, 0.084, 0.053) (0.033, 0.022, 0.020, 0.023)

1 (0.910, 0.910, 0.930, 0.960)

2 (0.920, 0.930, 0.920, 0.960)

95% C.P. 3 (0.920, 0.920, 0.920, 0.950)

4 (0.920, 0.930, 0.930, 0.960)

5 (0.930, 0.930, 0.920, 0.940)

* (0.775, 0.900, 0.900, 0.850)

(Gr-1, Gr-2, Gr-3, Gr-4)

1 (0.063, 0.039, 0.040, 0.054)

2 (0.063, 0.040, 0.041, 0.054)

RISE 3 (0.064, 0.040, 0.041, 0.055)

4 (0.063, 0.040, 0.041, 0.054)

5 (0.063, 0.040, 0.041, 0.054)

* (0.006, 0.008, 0.008, 0.008)
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Table 3.13: Simulation results for COM-Poisson cure rate model (φ = 0.5) having
high lifetime (γ0 = 2.101, γ1 = 2.258) with heavy censoring for small sample size.

Measure (τi, ψ̂i)

N (β̂0, β̂1, γ̂, φ̂) p̂0 l̂ AIC i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

n = 400 (100, 100, 100, 100) (-0.907, 0.501, 0.200, 0.500) (0.600, 0.470, 0.370, 0.250)

1 (-0.792, 0.466, 0.156, 0.701) (0.581, 0.465, 0.353, 0.255) -367.509 737.017 (0.080, 0.039) (3.649, 1.623)

2 (-0.751, 0.456, 0.193, 0.560) (0.573, 0.460, 0.350, 0.255) -368.254 740.508 (0.080, 0.042) (1.012, 0.502) (3.649, 1.340)

Est 3 (-0.757, 0.458, 0.174, 0.590) (0.574, 0.460, 0.351, 0.255) -368.084 742.169 (0.080, 0.042) (0.634, 0.290) (1.012, 0.515) (3.649, 1.412)

4 (-0.770, 0.462, 0.166, 0.613) (0.576, 0.462, 0.351, 0.254) -368.074 744.148 (0.080, 0.050) (0.386, 0.161) (0.634, 0.319) (1.012, 0.510) (3.649, 1.472)

5 (-0.768, 0.462, 0.171, 0.761) (0.576, 0.461, 0.350, 0.253) -367.202 744.404 (0.080, 0.049) (0.386, 0.164) (0.859, 0.431) (1.012, 0.491) (1.498, 0.725) (3.649, 1.317)

* (-1.015, 0.553, 0.179, -) (0.601, 0.469, 0.340, 0.231) -368.709 739.419 (2.108, 2.178)

1 (0.359, 0.137, 0.141, 0.807) (0.057, 0.037, 0.036, 0.047) (0.038, 0.027) (0.298, 0.604)

2 (0.361, 0.132, 0.128, 0.745) (0.061, 0.041, 0.038, 0.048) (0.038, 0.032) (0.060, 0.182) (0.298, 0.815)

s.e. 3 (0.371, 0.138, 0.141, 0.794) (0.060, 0.040, 0.037, 0.047) (0.038, 0.033) (0.053, 0.146) (0.060, 0.237) (0.298, 0.851)

4 (0.371, 0.138, 0.138, 0.606) (0.060, 0.040, 0.037, 0.047) (0.038, 0.039) (0.033, 0.085) (0.053, 0.157) (0.060, 0.225) (0.298, 0.849)

5 (0.392, 0.141, 0.138, 0.654) (0.064, 0.043, 0.038, 0.047) (0.038, 0.038) (0.033, 0.080) (0.053, 0.198) (0.060, 0.244) (0.072, 0.314) (0.298, 1.143)

* (0.116, 0.047, 0.044, -) (0.601, 0.469, 0.340, 0.231) (0.147, 0.219)

1 (0.295, 0.100, 0.119, 0.832) (0.060, 0.037, 0.036, 0.047)

2 (0.352, 0.109, 0.111, 0.748) (0.067, 0.042, 0.038, 0.048)

RMSE 3 (0.353, 0.110, 0.135, 0.799) (0.065, 0.041, 0.037, 0.047)

4 (0.325, 0.102, 0.133, 0.616) (0.065, 0.041, 0.037, 0.047)

5 (0.333, 0.102, 0.131, 0.705) (0.068, 0.044, 0.038, 0.047)

* (0.159, 0.070, 0.049, -) (0.023, 0.024, 0.028, 0.031)

1 (0.933, 0.933, 0.967, 0.967)

2 (0.967, 0.933, 0.933, 0.967)

95% C.P. 3 (0.933, 0.900, 0.933, 0.967)

4 (0.933, 0.900, 0.900, 0.933)

5 (0.900, 0.867, 0.900, 0.900)

* (0.400, 0.600, 0.600, 0.533)

(Gr-1, Gr-2, Gr-3, Gr-4)

1 (0.085, 0.065, 0.062, 0.091)

2 (0.099, 0.099, 0.109, 0.130)

RISE 3 (0.096, 0.092, 0.103, 0.130)

4 (0.092, 0.090, 0.102, 0.129)

5 (0.094, 0.093, 0.106, 0.134)

* (0.355, 0.251, 0.123, 0.097)
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Table 3.14: Simulation results for COM-Poisson cure rate model (φ = 0.5) having
high lifetime (γ0 = 2.101, γ1 = 2.258) with heavy censoring for large sample size.

Measure (τi, ψ̂i)

N (β̂0, β̂1, γ̂, φ̂) p̂0 l̂ AIC i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

n = 600 (150, 150, 150, 150) (-0.907, 0.501, 0.200, 0.500) (0.600, 0.470, 0.370, 0.250)

1 (-0.902, 0.495, 0.235, 0.740) (0.600, 0.478, 0.358, 0.254) -537.613 1077.226 (0.073, 0.035) (1.126, 1.427)

2 (-0.888, 0.493, 0.264, 0.763) (0.597, 0.476, 0.357, 0.253) -536.492 1076.985 (0.073, 0.040) (0.658, 0.434) (1.679, 1.268)

Est 3 (-0.894, 0.493, 0.247, 0.818) (0.598, 0.477, 0.358, 0.254) -536.489 1078.978 (0.073, 0.039) (0.638, 0.251) (1.022, 0.423) (3.715, 1.300)

4 (-0.897, 0.495, 0.244, 1.192) (0.599, 0.477, 0.357, 0.253) -536.476 1080.952 (0.073, 0.037) (0.374, 0.152) (0.638, 0.253) (1.022, 0.421) (3.715, 1.313)

5 (-0.889, 0.491, 0.242, 1.059) (0.598, 0.477, 0.358, 0.255) -536.835 1083.669 (0.073, 0.038) (0.374, 0.148) (0.859, 0.337) (1.022, 0.412) (1.495, 0.601) (3.715, 1.243)

* (-0.987, 0.530, 0.192, -) (0.614, 0.482, 0.352, 0.241) -540.329 1082.658 (2.099, 2.262)

1 (0.275, 0.101, 0.104, 0.802) (0.045, 0.030, 0.028, 0.036) (0.023, 0.027) (0.356, 0.372)

2 (0.292, 0.106, 0.090, 0.722) (0.048, 0.031, 0.028, 0.037) (0.023, 0.025) (0.036, 0.113) (0.356, 0.490)

s.e. 3 (0.289, 0.104, 0.187, 0.831) (0.047, 0.032, 0.028, 0.036) (0.023, 0.037) (0.044, 0.155) (0.036, 0.205) (0.356, 0.779)

4 (0.293, 0.106, 0.097, 0.820) (0.047, 0.031, 0.028, 0.036) (0.023, 0.030) (0.038, 0.056) (0.044, 0.085) (0.036, 0.125) (0.356, 0.529)

5 (0.299, 0.107, 0.103, 0.653) (0.050, 0.033, 0.029, 0.036) (0.023, 0.030) (0.038, 0.057) (0.051, 0.117) (0.036, 0.148) (0.062, 0.172) (0.356, 0.763)

* (0.162, 0.062, 0.052, -) (0.027, 0.022, 0.020, 0.024) (0.099, 0.189)

1 (0.275, 0.084, 0.087, 0.838) (0.045, 0.031, 0.029, 0.036)

2 (0.290, 0.087, 0.112, 0.768) (0.048, 0.032, 0.029, 0.037)

RMSE 3 (0.280, 0.085, 0.107, 0.889) (0.047, 0.033, 0.029, 0.036)

4 (0.285, 0.087, 0.103, 1.073) (0.047, 0.032, 0.029, 0.036)

5 (0.281, 0.084, 0.102, 0.860) (0.050, 0.034, 0.030, 0.036)

* (0.181, 0.068, 0.053, -) (0.030, 0.023, 0.020, 0.026)

1 (0.900, 0.933, 0.967, 0.967)

2 (0.767, 0.800, 0.833, 0.833)

95% C.P. 3 (0.900, 0.933, 0.967, 0.967)

4 (0.800, 0.833, 0.833, 0.833)

5 (0.900, 0.900, 0.933, 0.933)

* (0.733, 0.833, 0.833, 0.800)

(Gr-1, Gr-2, Gr-3, Gr-4)

1 (0.061, 0.051, 0.052, 0.070)

2 (0.067, 0.074, 0.102, 0.139)

RISE 3 (0.063, 0.066, 0.092, 0.129)

4 (0.066, 0.070, 0.095, 0.132)

5 (0.065, 0.069, 0.092, 0.127)

* (0.259, 0.168, 0.085, 0.112)
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Table 3.15: Simulation results for COM-Poisson cure rate model (φ = 0.5) having
high lifetime (γ0 = 2.101, γ1 = 2.258) with light censoring for small sample size.

Measure (τi, ψ̂i)

N (β̂0, β̂1, γ̂, φ̂) p̂0 l̂ AIC i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

n = 400 (100, 100, 100, 100) (-0.038, 0.443, 0.200, 0.500) (0.400, 0.290, 0.210, 0.150)

1 (0.015, 0.471, 0.202, 0.517) (0.381, 0.278, 0.194, 0.132) -347.393 696.786 (0.054, 0.028) (3.999, 1.461)

2 (0.022, 0.470, 0.204, 0.610) (0.380, 0.277, 0.193, 0.131) -345.652 695.304 (0.054, 0.034) (0.957, 0.406) (3.999, 1.410)

Est 3 (0.014, 0.474, 0.196, 0.465) (0.381, 0.277, 0.193, 0.130) -345.079 696.158 (0.054, 0.033) (0.591, 0.232) (0.957, 0.395) (3.999, 1.436)

4 (-0.01, 0.482, 0.168, 0.430) (0.384, 0.278, 0.193, 0.129) -345.067 698.134 (0.054, 0.032) (0.352, 0.123) (0.591, 0.222) (0.957, 0.371) (3.999, 1.554)

5 (0.004, 0.478, 0.176, 1.010) (0.382, 0.277, 0.193, 0.130) -345.108 700.216 (0.054, 0.033) (0.352, 0.127) (0.807, 0.310) (0.957, 0.386) (1.463, 0.564) (3.999, 1.563)

* (-1.015, 0.553, 0.179, -) (0.601, 0.469, 0.340, 0.231) -349.304 700.608 (2.108, 2.178)

1 (0.377, 0.153, 0.121, 0.689) (0.056, 0.033, 0.031, 0.035) (0.023, 0.022) (0.680, 0.501)

2 (0.395, 0.160, 0.123, 0.783) (0.061, 0.035, 0.031, 0.035) (0.023, 0.023) (0.045, 0.128) (0.680, 0.648)

s.e. 3 (0.391, 0.159, 0.118, 0.626) (0.060, 0.035, 0.031, 0.035) (0.023, 0.024) (0.031, 0.080) (0.045, 0.134) (0.680, 0.681)

4 (0.383, 0.158, 0.140, 0.624) (0.062, 0.035, 0.032, 0.036) (0.023, 0.027) (0.030, 0.067) (0.031, 0.110) (0.045, 0.160) (0.680, 0.737)

5 (0.398, 0.162, 0.147, 0.780) (0.061, 0.036, 0.032, 0.035) (0.023, 0.025) (0.030, 0.055) (0.039, 0.123) (0.045, 0.162) (0.061, 0.202) (0.680, 1.230)

* (0.116, 0.047, 0.044, -) (0.601, 0.469, 0.340, 0.231) (0.147, 0.219)

1 (0.297, 0.139, 0.095, 0.690) (0.226, 0.195, 0.159, 0.123)

2 (0.334, 0.151, 0.127, 0.791) (0.228, 0.196, 0.160, 0.124)

RMSE 3 (0.322, 0.150, 0.134, 0.627) (0.227, 0.196, 0.160, 0.125)

4 (0.292, 0.139, 0.135, 0.628) (0.225, 0.195, 0.160, 0.126)

5 (0.311, 0.144, 0.134, 0.932) (0.226, 0.196, 0.160, 0.125)

* (0.159, 0.070, 0.049, -) (0.023, 0.024, 0.028, 0.031)

1 (0.967, 0.933, 0.933, 0.933)

2 (0.933, 0.933, 0.933, 0.933)

95% C.P. 3 (0.867, 0.867, 0.867, 0.867)

4 (0.833, 0.833, 0.833, 0.833)

5 (0.967, 0.933, 0.933, 0.933)

* (0.400, 0.600, 0.600, 0.533)

(Gr-1, Gr-2, Gr-3, Gr-4)

1 (0.070, 0.078, 0.093, 0.112)

2 (0.105, 0.125, 0.156, 0.189)

RISE 3 (0.095, 0.117, 0.146, 0.173)

4 (0.089, 0.103, 0.124, 0.144)

5 (0.085, 0.101, 0.127, 0.152)

* (0.355, 0.251, 0.123, 0.097)
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Table 3.16: Simulation results for COM-Poisson cure rate model (φ = 0.5) having
high lifetime (γ0 = 2.101, γ1 = 2.258) with light censoring for large sample size.

Measure (τi, ψ̂i)

N (β̂0, β̂1, γ̂, φ̂) p̂0 l̂ AIC i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

n = 600 (150, 150, 150, 150) (-0.038, 0.443, 0.200, 0.500) (0.400, 0.290, 0.210, 0.150)

1 (0.140, 0.370, 0.238, 0.738) (0.376, 0.294, 0.223, 0.166) -528.923 1059.845 (0.063, 0.026) (3.916, 1.413)

2 (0.170, 0.365, 0.228, 0.835) (0.370, 0.289, 0.221, 0.164) -528.161 1060.322 (0.063, 0.024) (0.950, 0.349) (3.916, 1.450)

Est 3 (0.163, 0.368, 0.235, 0.839) (0.371, 0.290, 0.220, 0.164) -526.593 1059.187 (0.063, 0.025) (0.579, 0.225) (0.950, 0.361) (3.916, 1.448)

4 (0.155, 0.370, 0.230, 0.747) (0.372, 0.290, 0.221, 0.164) -525.186 1058.372 (0.063, 0.029) (0.355, 0.123) (0.579, 0.238) (0.950, 0.352) (3.916, 1.494)

5 (0.168, 0.365, 0.224, 0.771) (0.370, 0.290, 0.221, 0.164) -525.317 1060.634 (0.063, 0.026) (0.355, 0.117) (0.793, 0.296) (0.950, 0.328) (1.435, 0.551) (3.916, 1.231)

* (-0.987, 0.530, 0.192, -) (0.614, 0.482, 0.352, 0.241) -527.206 1056.412 (2.099, 2.262)

1 (0.261, 0.104, 0.089, 0.824) (0.041, 0.025, 0.025, 0.030) (0.033, 0.016) (0.397, 0.359)

2 (0.386, 0.148, 0.112, 0.773) (0.055, 0.029, 0.027, 0.038) (0.033, 0.013) (0.032, 0.091) (0.397, 0.557)

s.e. 3 (0.317, 0.119, 0.084, 0.826) (0.047, 0.027, 0.025, 0.031) (0.033, 0.018) (0.026, 0.090) (0.032, 0.122) (0.397, 0.476)

4 (0.316, 0.120, 0.085, 0.723) (0.046, 0.027, 0.025, 0.031) (0.033, 0.020) (0.028, 0.061) (0.026, 0.106) (0.032, 0.130) (0.397, 0.497)

5 (0.325, 0.121, 0.098, 0.505) (0.049, 0.029, 0.026, 0.032) (0.033, 0.017) (0.028, 0.054) (0.033, 0.116) (0.032, 0.137) (0.033, 0.180) (0.397, 0.643)

* (0.162, 0.062, 0.052, -) (0.027, 0.022, 0.020, 0.024) (0.099, 0.189)

1 (0.300, 0.107, 0.085, 0.858) (0.228, 0.178, 0.129, 0.089)

2 (0.299, 0.108, 0.102, 0.842) (0.236, 0.183, 0.132, 0.094)

RMSE 3 (0.300, 0.107, 0.094, 0.893) (0.234, 0.182, 0.132, 0.091)

4 (0.287, 0.103, 0.094, 0.764) (0.233, 0.182, 0.131, 0.091)

5 (0.296, 0.107, 0.097, 0.573) (0.235, 0.182, 0.132, 0.092)

* (0.181, 0.068, 0.053, -) (0.030, 0.023, 0.020, 0.026)

1 (0.733, 0.867, 0.900, 0.867)

2 (0.833, 0.867, 0.900, 0.900)

95% C.P. 3 (0.767, 0.767, 0.800, 0.800)

4 (0.867, 0.867, 0.900, 0.867)

5 (0.867, 0.900, 0.933, 0.933)

* (0.733, 0.833, 0.833, 0.800)

(Gr-1, Gr-2, Gr-3, Gr-4)

1 (0.077, 0.063, 0.065, 0.084)

2 (0.087, 0.091, 0.114, 0.142)

RISE 3 (0.095, 0.098, 0.118, 0.144)

4 (0.093, 0.099, 0.120, 0.147)

5 (0.089, 0.094, 0.119, 0.148)

* (0.259, 0.168, 0.085, 0.112)
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Table 3.17: Simulation results for COM-Poisson cure rate model (φ = 2) having high
lifetime (γ0 = 2.101, γ1 = 2.258) with heavy censoring for small sample size.

Measure (τi, ψ̂i)

N (β̂0, β̂1, γ̂, φ̂) p̂0 l̂ AIC i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

n = 400 (100, 100, 100, 100) (-0.907, 0.501, 0.200, 0.500) (0.600, 0.470, 0.370, 0.250)

1 (-0.993, 0.543, 0.212, 1.106) (0.610, 0.476, 0.346, 0.235) -570.374 1150.749 (0.117, 0.058) (4.025, 1.463)

2 (-0.987, 0.544, 0.195, 1.113) (0.609, 0.475, 0.344, 0.234) -569.371 1150.742 (0.117, 0.056) (1.218, 0.449) (4.025, 1.639)

Est 3 (-0.987, 0.547, 0.168, 1.103) (0.608, 0.473, 0.342, 0.231) -569.250 1152.499 (0.117, 0.057) (0.780, 0.267) (1.218, 0.467) (4.025, 1.695)

4 (-0.970, 0.541, 0.164, 1.185) (0.605, 0.472, 0.342, 0.232) -568.853 1153.706 (0.117, 0.061) (0.486, 0.148) (0.780, 0.275) (1.218, 0.446) (4.025, 1.729)

5 (-0.975, 0.543, 0.163, 1.687) (0.606, 0.472, 0.342, 0.232) -568.203 1154.407 (0.117, 0.061) (0.486, 0.145) (1.063, 0.375) (1.218, 0.436) (1.795, 0.725) (4.025, 1.552)

* (-0.864, 0.470, 0.184, - ) (0.598, 0.482, 0.482, 0.267) -570.646 1151.292 (2.228, 2.369)

1 (0.329, 0.122, 0.111, 0.862) (0.052, 0.035, 0.033, 0.018) (0.045, 0.034) (0.303, 0.441)

2 (0.331, 0.123, 0.112, 0.915) (0.053, 0.036, 0.033, 0.018) (0.045, 0.033) (0.079, 0.138) (0.303, 0.714)

s.e. 3 (0.323, 0.120, 0.104, 0.948) (0.052, 0.036, 0.033, 0.040) (0.045, 0.036) (0.048, 0.100) (0.079, 0.158) (0.303, 0.719)

4 (0.319, 0.127, 0.122, 0.828) (0.052, 0.036, 0.033, 0.019) (0.045, 0.043) (0.034, 0.064) (0.048, 0.113) (0.079, 0.160) (0.303, 0.788)

5 (0.342, 0.126, 0.118, 0.586) (0.055, 0.037, 0.033, 0.018) (0.045, 0.046) (0.034, 0.072) (0.067, 0.169) (0.079, 0.193) (0.103, 0.274) (0.303, 1.199)

* (0.120, 0.045, 0.037, - ) (0.021, 0.017, 0.017, 0.019) (0.097, 0.149)

1 (0.258, 0.102, 0.090, 1.243) (0.053, 0.036, 0.033, 0.043)

2 (0.271, 0.103, 0.103, 1.274) (0.053, 0.036, 0.033, 0.044)

RMSE 3 (0.270, 0.105, 0.133, 1.305) (0.052, 0.036, 0.032, 0.044)

4 (0.254, 0.101, 0.135, 1.019) (0.054, 0.036, 0.032, 0.044)

5 (0.261, 0.100, 0.117, 0.664) (0.055, 0.037, 0.034, 0.044)

* (0.127, 0.055, 0.040, - ) (0.021, 0.018, 0.021, 0.025)

1 (0.867, 0.900, 0.933, 0.833)

2 (0.800, 0.867, 0.900, 0.800)

95% C.P. 3 (0.867, 0.900, 0.867, 0.833)

4 (0.833, 0.900, 0.867, 0.833)

5 (0.867, 0.900, 0.900, 0.800)

* (0.700, 0.633, 0.600, 0.600)

(Gr-1, Gr-2, Gr-3, Gr-4)

1 (0.059, 0.048, 0.073, 0.117)

2 (0.067, 0.065, 0.086, 0.125)

RISE 3 (0.066, 0.072, 0.107, 0.157)

4 (0.066, 0.071, 0.106, 0.154)

5 (0.060, 0.063, 0.101, 0.148)

* (0.193, 0.244, 0.277, 0.298)
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Table 3.18: Simulation results for COM-Poisson cure rate model (φ = 2) having high
lifetime (γ0 = 2.101, γ1 = 2.258) with heavy censoring for large sample size.

Measure (τi, ψ̂i)

N (β̂0, β̂1, γ̂, φ̂) p̂0 l̂ AIC i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

n = 600 (150, 150, 150, 150) (-0.907, 0.501, 0.200, 0.500) (0.600, 0.470, 0.370, 0.250)

1 (-0.987, 0.547, 0.168, 1.103) (0.588, 0.465, 0.346, 0.244) -398.690 807.380 (0.074, 0.034) (4.327, 1.684)

2 (-0.853, 0.496, 0.211, 1.384) (0.588, 0.464, 0.345, 0.243) -398.562 809.124 (0.074, 0.032) (1.253, 0.474) (4.327, 1.840)

Est 3 (-0.853, 0.497, 0.184, 1.337) (0.588, 0.465, 0.346, 0.243) -398.073 810.147 (0.074, 0.036) (0.801, 0.266) (1.253, 0.501) (4.327, 1.783)

4 (-0.860, 0.500, 0.189, 1.608) (0.589, 0.465, 0.345, 0.242) -397.944 811.887 (0.074, 0.038) (0.481, 0.175) (0.801, 0.276) (1.253, 0.508) (4.327, 1.761)

5 (-0.848, 0.497, 0.177, 1.858) (0.587, 0.463, 0.344, 0.242) -397.307 812.613 (0.074, 0.037) (0.481, 0.169) (1.069, 0.390) (1.253, 0.501) (1.789, 0.779) (4.327, 1.729)

* (-0.925, 0.505, 0.209, - ) (0.601, 0.476, 0.476, 0.251) -399.410 808.819 (2.116, 2.335)

1 (0.255, 0.096, 0.071, 0.790) (0.226, 0.171, 0.126, 0.095) (0.018, 0.020) (0.586, 0.380)

2 (0.253, 0.095, 0.067, 0.858) (0.160, 0.120, 0.090, 0.071) (0.018, 0.021) (0.033, 0.117) (0.586, 0.544)

s.e. 3 (0.254, 0.095, 0.072, 0.815) (0.226, 0.171, 0.126, 0.095) (0.018, 0.024) (0.042, 0.076) (0.033, 0.135) (0.586, 0.589)

4 (0.254, 0.095, 0.072, 0.635) (0.225, 0.170, 0.126, 0.095) (0.018, 0.027) (0.046, 0.056) (0.042, 0.089) (0.033, 0.136) (0.586, 0.594)

5 (0.264, 0.098, 0.070, 0.355) (0.226, 0.170, 0.125, 0.094) (0.018, 0.027) (0.046, 0.054) (0.039, 0.117) (0.033, 0.162) (0.059, 0.208) (0.586, 0.933)

* (0.195, 0.075, 0.056, - ) (0.033, 0.024, 0.024, 0.028) (0.117, 0.213)

1 (0.186, 0.074, 0.056, 1.002) (0.226, 0.171, 0.126, 0.095)

2 (0.180, 0.074, 0.065, 1.104) (0.161, 0.121, 0.090, 0.071)

RMSE 3 (0.174, 0.071, 0.070, 1.050) (0.226, 0.171, 0.126, 0.095)

4 (0.176, 0.072, 0.069, 0.746) (0.226, 0.170, 0.126, 0.095)

5 (0.182, 0.073, 0.074, 0.382) (0.227, 0.171, 0.125, 0.094)

* (0.196, 0.075, 0.057, - ) (0.033, 0.024, 0.024, 0.028)

1 (0.967, 0.967, 0.933, 0.933)

2 (0.933, 0.933, 0.900, 0.900)

95% C.P. 3 (0.933, 0.933, 0.900, 0.900)

4 (0.933, 0.933, 0.833, 0.900)

5 (0.900, 0.900, 0.833, 0.867)

* (0.633, 0.700, 0.700, 0.600)

(Gr-1, Gr-2, Gr-3, Gr-4)

1 (0.063, 0.055, 0.062, 0.080)

2 (0.062, 0.055, 0.062, 0.082)

RISE 3 (0.064, 0.061, 0.076, 0.105)

4 (0.064, 0.061, 0.076, 0.106)

5 (0.063, 0.062, 0.080, 0.112)

* (0.095, 0.086, 0.084, 0.084)
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Table 3.19: Simulation results for COM-Poisson cure rate model (φ = 2) having high
lifetime (γ0 = 2.101, γ1 = 2.258) with light censoring for small sample size.

Measure (τi, ψ̂i)

N (β̂0, β̂1, γ̂, φ̂) p̂0 l̂ AIC i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

n = 400 (100, 100, 100, 100) (-0.038, 0.443, 0.200, 0.500) (0.400, 0.290, 0.210, 0.150)

1 (0.031, 0.448, 0.217, 0.988) (0.382, 0.284, 0.202, 0.139) -619.873 1249.745 (0.095, 0.044) (4.010, 1.486)

2 (0.041, 0.446, 0.160, 0.967) (0.381, 0.282, 0.201, 0.139) -619.841 1251.681 (0.095, 0.029) (1.237, 0.388) (4.010, 1.747)

Est 3 (0.038, 0.447, 0.126, 1.041) (0.381, 0.282, 0.201, 0.139) -619.841 1253.681 (0.095, 0.028) (0.784, 0.182) (1.237, 0.355) (4.010, 1.737)

4 (0.036, 0.448, 0.115, 1.298) (0.381, 0.283, 0.201, 0.139) -619.626 1255.251 (0.095, 0.032) (0.491, 0.100) (0.784, 0.194) (1.237, 0.344) (4.010, 1.789)

5 (0.013, 0.454, 0.093, 1.722) (0.385, 0.285, 0.202, 0.139) -618.941 1255.881 (0.095, 0.031) (0.491, 0.095) (1.045, 0.261) (1.237, 0.338) (1.771, 0.625) (4.010, 1.893)

* (-0.055, 0.435, 0.191, - ) (0.410, 0.310, 0.310, 0.160) -625.229 1260.459 (2.201, 2.334)

1 (0.405, 0.157, 0.084, 0.928) (0.063, 0.034, 0.028, 0.035) (0.035, 0.025) (0.185, 0.396)

2 (0.317, 0.125, 0.094, 0.940) (0.048, 0.030, 0.028, 0.030) (0.035, 0.021) (0.077, 0.107) (0.185, 0.600)

s.e. 3 (0.376, 0.156, 0.201, 0.948) (0.055, 0.031, 0.031, 0.036) (0.035, 0.024) (0.078, 0.071) (0.077, 0.128) (0.185, 1.075)

4 (0.342, 0.137, 0.132, 0.868) (0.054, 0.031, 0.029, 0.033) (0.035, 0.024) (0.057, 0.048) (0.078, 0.085) (0.077, 0.128) (0.185, 0.701)

5 (0.334, 0.135, 0.138, 0.423) (0.053, 0.031, 0.029, 0.033) (0.035, 0.026) (0.057, 0.049) (0.081, 0.111) (0.077, 0.149) (0.102, 0.227) (0.185, 1.135)

* (0.113, 0.052, 0.037, - ) (0.018, 0.014, 0.014, 0.015) (0.085, 0.132)

1 (0.260, 0.077, 0.079, 1.373) (0.227, 0.190, 0.151, 0.116)

2 (0.265, 0.078, 0.144, 1.396) (0.225, 0.190, 0.151, 0.115)

RMSE 3 (0.272, 0.084, 0.145, 1.348) (0.226, 0.190, 0.152, 0.117)

4 (0.276, 0.081, 0.148, 1.116) (0.225, 0.190, 0.152, 0.116)

5 (0.268, 0.082, 0.142, 0.506) (0.221, 0.188, 0.151, 0.116)

* (0.115, 0.053, 0.038, - ) (0.021, 0.024, 0.021, 0.018)

1 (0.933, 0.867, 0.967, 0.967)

2 (0.900, 0.867, 0.900, 0.900)

95% C.P. 3 (0.900, 0.900, 0.967, 0.967)

4 (0.900, 0.867, 0.967, 0.967)

5 (0.933, 0.867, 0.900, 0.900)

* (0.533, 0.566, 0.566, 0.583)

(Gr-1, Gr-2, Gr-3, Gr-4)

1 (0.083, 0.073, 0.068, 0.070)

2 (0.110, 0.135, 0.171, 0.210)

RISE 3 (0.120, 0.154, 0.197, 0.240)

4 (0.128, 0.158, 0.195, 0.230)

5 (0.129, 0.160, 0.194, 0.224)

* (0.135, 0.156, 0.219, 0.232)
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Table 3.20: Simulation results for COM-Poisson cure rate model (φ = 2) having high
lifetime (γ0 = 2.101, γ1 = 2.258) with light censoring for large sample size.

Measure (τi, ψ̂i)

N (β̂0, β̂1, γ̂, φ̂) p̂0 l̂ AIC i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

n = 600 (150, 150, 150, 150) (-0.038, 0.443, 0.200, 0.500) (0.400, 0.290, 0.210, 0.150)

1 (0.038, 0.447, 0.126, 1.041) (0.415, 0.302, 0.209, 0.140) -419.388 848.776 (0.073, 0.035) (3.982, 1.635)

2 (-0.149, 0.493, 0.198, 1.480) (0.412, 0.300, 0.208, 0.140) -419.173 850.345 (0.073, 0.039) (1.180, 0.528) (3.982, 1.474)

Est 3 (-0.147, 0.495, 0.166, 1.443) (0.414, 0.301, 0.208, 0.139) -417.729 849.457 (0.073, 0.036) (0.768, 0.272) (1.180, 0.502) (3.982, 1.590)

4 (-0.145, 0.493, 0.139, 1.806) (0.414, 0.301, 0.209, 0.140) -416.459 848.918 (0.073, 0.034) (0.455, 0.137) (0.768, 0.250) (1.180, 0.460) (3.982, 1.702)

5 (-0.154, 0.497, 0.152, 1.833) (0.415, 0.301, 0.208, 0.139) -415.767 849.534 (0.073, 0.039) (0.455, 0.149) (1.015, 0.389) (1.180, 0.497) (1.713, 0.709) (3.982, 1.684)

* (-0.081, 0.453, 0.202, - ) (0.414, 0.307, 0.307, 0.149) -418.638 847.277 (2.139, 2.294)

1 (0.264, 0.107, 0.067, 0.808) (0.042, 0.025, 0.023, 0.026) (0.026, 0.019) (0.398, 0.325)

2 (0.269, 0.108, 0.069, 0.893) (0.043, 0.025, 0.023, 0.026) (0.026, 0.021) (0.017, 0.115) (0.398, 0.451)

s.e. 3 (0.268, 0.108, 0.085, 0.769) (0.043, 0.025, 0.023, 0.026) (0.026, 0.023) (0.038, 0.098) (0.017, 0.164) (0.398, 0.507)

4 (0.271, 0.110, 0.115, 0.510) (0.043, 0.025, 0.024, 0.027) (0.026, 0.024) (0.019, 0.061) (0.038, 0.107) (0.017, 0.175) (0.398, 0.575)

5 (0.275, 0.110, 0.125, 0.343) (0.044, 0.026, 0.024, 0.027) (0.026, 0.025) (0.019, 0.066) (0.024, 0.148) (0.017, 0.188) (0.038, 0.211) (0.398, 0.975)

* (0.164, 0.069, 0.057, - ) (0.028, 0.021, 0.019, 0.019) (0.092, 0.192)

1 (0.264, 0.121, 0.054, 0.961) (0.191, 0.170, 0.143, 0.113)

2 (0.261, 0.121, 0.062, 1.171) (0.193, 0.172, 0.144, 0.113)

RMSE 3 (0.276, 0.127, 0.107, 0.949) (0.191, 0.171, 0.144, 0.114)

4 (0.279, 0.128, 0.109, 0.546) (0.191, 0.171, 0.143, 0.113)

5 (0.272, 0.125, 0.104, 0.382) (0.190, 0.171, 0.144, 0.115)

* (0.170, 0.070, 0.057, - ) (0.031, 0.027, 0.020, 0.019)

1 (0.800, 0.867, 0.933, 0.867)

2 (0.800, 0.867, 0.933, 0.867)

95% C.P. 3 (0.867, 0.933, 0.933, 0.933)

4 (0.800, 0.867, 0.933, 0.867)

5 (0.800, 0.867, 0.933, 0.867)

* (0.567, 0.716, 0.766, 0.700)

(Gr-1, Gr-2, Gr-3, Gr-4)

1 (0.051, 0.049, 0.072, 0.094)

2 (0.067, 0.078, 0.104, 0.128)

RISE 3 (0.068, 0.087, 0.119, 0.148)

4 (0.085, 0.109, 0.142, 0.169)

5 (0.076, 0.093, 0.125, 0.154)

* (0.359, 0.352, 0.389, 0.407)
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Table 3.21: Model rejection rates based on Likelihood-Ratio Test Criterion (LRT).
True COM Fitted Model

- Poisson Model N=1 N=2 N=3 N=4 N=5 Weibull Baseline

Setting Model Geometric Poisson Bernoulli Geometric Poisson Bernoulli Geometric Poisson Bernoulli Geometric Poisson Bernoulli Geometric Poisson Bernoulli Geometric Poisson Bernoulli

1 φ = 0 0.630 0.333 0.750 0.556 0.083 0.542 0.481 0.125 0.556 0.333 0.167 0.630 0.296 0.083 0.519 0.040 0.240 0.720

φ = 0.5 0.222 0.000 0.375 0.407 0.000 0.042 0.222 0.000 0.222 0.185 0.000 0.222 0.111 0.042 0.407 0.200 0.030 0.667

φ = 1 0.778 0.037 0.250 0.630 0.000 0.083 0.148 0.000 0.148 0.148 0.000 0.148 0.222 0.042 0.296 0.460 0.040 0.320

φ = 2 0.704 0.074 0.083 0.481 0.000 0.000 0.259 0.000 0.111 0.185 0.000 0.111 0.259 0.042 0.148 0.833 0.100 0.200

φ→∞ 0.963 0.296 0.125 0.778 0.125 0.042 0.556 0.125 0.074 0.593 0.125 0.148 0.556 0.083 0.296 0.900 0.340 0.100

2 φ = 0 0.630 0.222 0.778 0.593 0.111 0.407 0.519 0.074 0.519 0.519 0.111 0.593 0.407 0.111 0.593 0.060 0.060 0.460

φ = 0.5 0.667 0.000 0.481 0.481 0.074 0.037 0.296 0.000 0.074 0.222 0.037 0.148 0.259 0.074 0.148 0.266 0.000 0.233

φ = 1 0.963 0.111 0.259 0.852 0.037 0.222 0.741 0.000 0.259 0.815 0.074 0.333 0.667 0.111 0.370 0.220 0.020 0.340

φ = 2 0.963 0.296 0.037 0.593 0.000 0.037 0.444 0.000 0.111 0.370 0.000 0.074 0.407 0.000 0.111 0.433 0.000 0.066

φ→∞ 1.000 0.704 0.037 0.926 0.259 0.222 0.889 0.185 0.222 0.926 0.148 0.259 0.889 0.074 0.222 0.600 0.040 0.140

3 φ = 0 0.267 0.333 0.800 0.133 0.133 0.733 0.000 0.200 0.733 0.000 0.200 0.733 0.067 0.267 0.733 0.120 0.240 0.900

φ = 0.5 0.667 0.000 0.556 0.444 0.037 0.185 0.296 0.000 0.250 0.259 0.037 0.333 0.222 0.037 0.375 0.533 0.133 0.600

φ = 1 0.852 0.037 0.370 0.704 0.037 0.222 0.630 0.037 0.292 0.444 0.074 0.292 0.370 0.037 0.375 0.540 0.120 0.500

φ = 2 1.000 0.222 0.222 0.556 0.000 0.111 0.296 0.000 0.083 0.259 0.000 0.042 0.222 0.037 0.125 0.767 0.133 0.333

φ→∞ 1.000 0.741 0.000 0.963 0.111 0.074 0.741 0.037 0.208 0.630 0.037 0.333 0.556 0.111 0.292 0.940 0.380 0.180

4 φ = 0 0.333 0.800 1.000 0.267 0.400 0.867 0.222 0.333 0.867 0.185 0.333 0.800 0.133 0.467 0.867 0.020 0.080 0.600

φ = 0.5 0.741 0.074 0.889 0.481 0.074 0.296 0.259 0.000 0.296 0.111 0.000 0.259 0.185 0.037 0.333 0.133 0.033 0.566

φ = 1 1.000 0.133 0.600 0.933 0.200 0.333 0.867 0.133 0.400 0.933 0.200 0.467 0.933 0.133 0.533 0.240 0.040 0.360

φ = 2 0.933 0.200 0.200 0.800 0.000 0.000 0.533 0.000 0.067 0.400 0.000 0.067 0.467 0.000 0.133 0.233 0.133 0.266

φ→∞ 1.000 0.583 0.083 1.000 0.250 0.167 0.917 0.167 0.250 0.917 0.083 0.333 0.833 0.083 0.167 0.840 0.100 0.080
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Table 3.22: Model selection rates based on Akaike’s Information Criterion (AIC).
True COM Fitted Model

- Poisson Model N=1 N=2 N=3 N=4 N=5 Weibull Baseline

Setting Model Geometric Poisson Bernoulli Geometric Poisson Bernoulli Geometric Poisson Bernoulli Geometric Poisson Bernoulli Geometric Poisson Bernoulli Geometric Poisson Bernoulli

1 φ = 0 0.549 0.363 0.088 0.407 0.330 0.264 0.462 0.286 0.253 0.484 0.319 0.198 0.538 0.286 0.176 0.700 0.280 0.020

φ = 0.5 0.125 0.545 0.330 0.080 0.284 0.636 0.193 0.250 0.557 0.261 0.261 0.477 0.239 0.227 0.534 0.300 0.000 0.700

φ = 1 0.108 0.506 0.386 0.193 0.301 0.506 0.265 0.301 0.434 0.301 0.361 0.337 0.325 0.337 0.337 0.500 0.200 0.300

φ = 2 0.011 0.315 0.674 0.124 0.180 0.697 0.213 0.180 0.607 0.292 0.101 0.607 0.281 0.157 0.562 0.066 0.466 0.467

φ→∞ 0.000 0.145 0.855 0.024 0.169 0.807 0.096 0.205 0.699 0.157 0.265 0.578 0.145 0.229 0.627 0.040 0.100 0.860

2 φ = 0 0.539 0.408 0.053 0.408 0.224 0.368 0.342 0.355 0.303 0.487 0.224 0.289 0.500 0.224 0.276 0.620 0.300 0.080

φ = 0.5 0.241 0.482 0.277 0.181 0.205 0.614 0.313 0.181 0.506 0.325 0.205 0.470 0.325 0.229 0.446 0.566 0.000 0.444

φ = 1 0.135 0.392 0.473 0.135 0.230 0.635 0.203 0.297 0.500 0.270 0.270 0.459 0.270 0.284 0.446 0.480 0.220 0.300

φ = 2 0.049 0.284 0.667 0.111 0.074 0.815 0.160 0.148 0.691 0.222 0.173 0.605 0.185 0.210 0.605 0.066 0.300 0.633

φ→∞ 0.000 0.127 0.873 0.089 0.076 0.835 0.139 0.089 0.772 0.190 0.101 0.709 0.177 0.139 0.684 0.120 0.180 0.700

3 φ = 0 0.726 0.274 0.000 0.452 0.419 0.129 0.468 0.419 0.113 0.516 0.371 0.113 0.661 0.226 0.113 0.760 0.220 0.020

φ = 0.5 0.129 0.786 0.086 0.086 0.400 0.514 0.200 0.386 0.414 0.214 0.386 0.400 0.286 0.300 0.414 0.440 0.000 0.560

φ = 1 0.000 0.694 0.306 0.059 0.294 0.647 0.106 0.318 0.576 0.153 0.329 0.518 0.188 0.282 0.529 0.200 0.580 0.220

φ = 2 0.000 0.298 0.702 0.024 0.167 0.810 0.107 0.226 0.667 0.143 0.274 0.583 0.131 0.250 0.619 0.133 0.533 0.333

φ→∞ 0.000 0.025 0.975 0.013 0.175 0.813 0.013 0.225 0.763 0.088 0.163 0.750 0.113 0.113 0.775 0.020 0.300 0.680

4 φ = 0 0.563 0.417 0.021 0.396 0.313 0.292 0.417 0.313 0.271 0.500 0.188 0.313 0.438 0.292 0.271 0.640 0.280 0.080

φ = 0.5 0.148 0.689 0.164 0.148 0.377 0.475 0.230 0.426 0.344 0.328 0.393 0.279 0.361 0.279 0.361 0.300 0.000 0.700

φ = 1 0.043 0.557 0.400 0.057 0.257 0.686 0.171 0.200 0.629 0.214 0.214 0.571 0.229 0.200 0.571 0.280 0.400 0.320

φ = 2 0.000 0.288 0.713 0.038 0.188 0.775 0.113 0.175 0.713 0.163 0.175 0.663 0.175 0.163 0.663 0.267 0.500 0.233

φ→∞ 0.000 0.099 0.901 0.014 0.070 0.915 0.042 0.141 0.817 0.070 0.155 0.775 0.099 0.155 0.746 0.060 0.180 0.760
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Table 3.23: AIC, BIC and maximized log-likelihood (l) values for candidate COM-
Poisson cure rate models for different numbers of cut points.

COM-Poisson Quantile-based Curvature-based

Model AIC BIC l̂ AIC BIC l̂

N=1

Geometric (φ = 0) 1027.039 1047.205 -508.520 1027.039 1047.205 -508.520

φ=0.5 1030.456 1050.621 -510.228 1030.456 1050.621 -510.228

Poisson (φ = 1) 1032.354 1052.520 -511.177 1032.354 1052.520 -511.177

φ=2.0 1034.756 1054.921 -512.378 1034.756 1054.921 -512.378

Bernoulli (φ→∞) 1038.062 1058.227 -514.031 1038.062 1058.227 -514.031

N=2

Geometric (φ = 0) 1020.463 1044.662 -504.232 1024.892 1049.091 -506.446

φ=0.5 1021.391 1045.590 -504.696 1025.452 1049.650 -506.726

Poisson (φ = 1) 1021.148 1045.346 -504.574 1025.026 1049.225 -506.513

φ=2.0 1021.981 1046.180 -504.991 1025.531 1049.730 -506.766

Bernoulli (φ→∞) 1022.922 1047.121 -505.461 1026.125 1050.323 -507.062

N=3

Geometric (φ = 0) 1022.107 1050.338 -504.053 1026.965 1055.196 -506.482

φ=0.5 1024.087 1052.318 -505.043 1027.193 1055.425 -506.597

Poisson (φ = 1) 1024.180 1052.411 -505.090 1026.614 1054.845 -506.307

φ=2.0 1025.625 1053.856 -505.812 1026.920 1055.152 -506.460

Bernoulli (φ→∞) 1026.197 1054.428 -506.098 1026.588 1054.819 -506.294

N=4

Geometric (φ = 0) 1018.922 1051.187 -501.461 1025.262 1057.527 -504.631

φ=0.5 1020.226 1052.491 -502.113 1026.164 1058.429 -505.082

Poisson (φ = 1) 1019.621 1051.886 -501.811 1025.876 1058.141 -504.938

φ=2.0 1020.027 1052.291 -502.013 1026.678 1058.943 -505.339

Bernoulli (φ→∞) 1020.486 1052.751 -502.243 1026.834 1059.099 -505.417

N=5

Geometric (φ = 0) 1017.992 1054.290 -499.996 1026.380 1062.678 -504.190

φ=0.5 1022.587 1058.885 -502.294 1030.868 1067.166 -506.434

Poisson (φ = 1) 1021.530 1057.828 -501.765 1030.003 1066.301 -506.002

φ=2.0 1022.913 1059.211 -502.457 1032.372 1068.669 -507.186

Bernoulli (φ→∞) 1022.532 1058.830 -502.266 1030.916 1067.214 -506.458

COM-Poisson Parametric Weibull PH model

Model AIC BIC l̂

Geometric (φ = 0) 1028.677 1048.842 -509.3383

φ = 0.5 1032.468 1052.633 -511.2338

Poisson (φ = 1) 1034.161 1054.326 -512.0803

φ = 2.0 1036.043 1056.209 -513.0217

Bernoulli (φ→∞) 1038.948 1059.114 -514.4741
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Table 3.24: Estimates (Est.), standard errors (s.e.), lower confidence limits (LCL)
and upper confidence limits (UCL) for the geometric cure rate model.

Quantile-based cut points

(τi, ψ̂i)

Measure N (β̂0, β̂1, γ̂) p̂0 i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

1 (-1.095, 0.463, 0.072) (0.653, 0.542, 0.427) (0.148, 0.049) (7.012, 1.285)

2 (-0.637, 0.361, 0.195) (0.569, 0.479, 0.390) (0.148, 0.021) (1.599, 0.208) (7.012, 0.153)

Est 3 (-0.520, 0.338, 0.231) (0.545, 0.461, 0.379) (0.148, 0.020) (0.956, 0.104) (2.223, 0.202) (7.012, 0.073)

4 (-0.621, 0.362, 0.201) (0.565, 0.474, 0.386) (0.148, 0.026) (0.956, 0.105) (1.599, 0.231) (2.223, 0.186) (7.012, 0.157)

5 (-0.527, 0.385, 0.162) (0.536, 0.440, 0.349) (0.148, 0.026) (0.956, 0.099) (1.599, 0.214) (2.223, 0.155) (3.307, 0.155) (7.012, 0.081)

1 (0.296, 0.111, 0.119) (0.045, 0.033, 0.034) ( -, 0.026) ( -, 0.467)

2 (1.185, 0.288, 0.350) (0.223, 0.162, 0.100) ( -, 0.029) ( -, 0.298) ( -, 0.521)

s.e. 3 (0.621, 0.172, 0.194) (0.118, 0.089, 0.069) ( -, 0.017) ( -, 0.069) ( -, 0.160) ( -, 0.143)

4 (1.056, 0.253, 0.296) (0.202, 0.149, 0.098) ( -, 0.033) ( -, 0.127) ( -, 0.289) ( -, 0.270) ( -, 0.447)

5 (1.022, 0.220, 0.253) (0.214, 0.18, 0.147) ( -, 0.030) ( -, 0.107) ( -, 0.246) ( -, 0.214) ( -, 0.249) ( -, 0.223)

1 (-1.676, 0.246, -0.161) (0.564, 0.479, 0.362) ( -, 0.000) ( -, 0.368)

2 (-2.960, -0.203, -0.491) (0.131, 0.162, 0.194) ( -, 0.000) ( -, 0.000) ( -, 0.000)

Lower C.L. (95%) 3 (-1.738, 0.002, -0.148) (0.314, 0.287, 0.244) ( -, 0.000) ( -, 0.000) ( -, 0.000) ( -, 0.000)

4 (-2.690, -0.133, -0.379) (0.169, 0.182, 0.194) ( -, 0.000) ( -, 0.000) ( -, 0.000) ( -, 0.000) ( -, 0.000)

5 (-2.531, -0.046, -0.335) (0.116, 0.088, 0.06) ( -, 0.000) ( -, 0.000) ( -, 0.000) ( -, 0.000) ( -, 0.000) ( -, 0.000)

1 (-0.514, 0.681, 0.306) (0.742, 0.606, 0.493) ( -, 0.100) ( -, 2.201)

2 (1.686, 0.926, 0.882) (1.006, 0.796, 0.586) ( -, 0.078) ( -, 0.793) ( -, 1.175)

Upper C.L. (95%) 3 (0.697, 0.675, 0.611) (0.777, 0.635, 0.514) ( -, 0.055) ( -, 0.239) ( -, 0.516) ( -, 0.354)

4 (1.448, 0.857, 0.781) (0.960, 0.767, 0.578) ( -, 0.091) ( -, 0.353) ( -, 0.798) ( -, 0.716) ( -, 1.034)

5 (1.476, 0.816, 0.658) (0.955, 0.792, 0.637) ( -, 0.085) ( -, 0.309) ( -, 0.697) ( -, 0.575) ( -, 0.644) ( -, 0.518)

Curvature-based cut points

(τi, ψ̂i)

Measure N (β̂0, β̂1, γ̂) p̂0 i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

1 (-1.095, 0.463, 0.072) (0.653, 0.542, 0.427) (0.148, 0.049) (7.012, 1.285)

2 (-0.623, 0.348, 0.234) (0.569, 0.482, 0.396) (0.148, 0.030) (3.000, 0.282) (7.012, 0.088)

Est 3 (-0.469, 0.347, 0.208) (0.531, 0.444, 0.361) (0.148, 0.019) (0.700, 0.087) (3.000, 0.201) (7.012, 0.049)

4 (-0.350, 0.349, 0.194) (0.501, 0.414, 0.333) (0.148, 0.018) (1.300, 0.128) (3.200, 0.156) (3.900, 0.060) (7.012, 0.137)

5 (-0.401, 0.348, 0.204) (0.513, 0.427, 0.345) (0.148, 0.022) (0.700, 0.066) (1.300, 0.139) (3.200, 0.162) (3.900, 0.068) (7.012, 0.148)

1 (0.296, 0.111, 0.119) (0.045, 0.033, 0.034) ( -, 0.026) ( -, 0.467)

2 (0.400, 0.131, 0.142) (0.071, 0.051, 0.045) ( -, 0.017) ( -, 0.135) ( -, 0.163)

s.e. 3 (0.611, 0.156, 0.184) (0.130, 0.116, 0.108) ( -, 0.016) ( -, 0.047) ( -, 0.172) ( -, 0.129)

4 (1.223, 0.250, 0.281) (0.090, 0.062, 0.043) ( -, 0.024) ( -, 0.163) ( -, 0.276) ( -, 0.123) ( -, 0.324)

5 (0.926, 0.215, 0.244) (0.191, 0.157, 0.129) ( -, 0.023) ( -, 0.065) ( -, 0.137) ( -, 0.216) ( -, 0.112) ( -, 0.277)

1 (-1.676, 0.246, -0.161) (0.564, 0.479, 0.362) ( -, 0.000) ( -, 0.368)

2 (-2.960, -0.203, -0.491) (0.429, 0.381, 0.309) ( -, 0.000) ( -, 0.000) ( -, 0.000)

Lower C.L. (95%) 3 (-1.738, 0.002, -0.148) (0.275, 0.216, 0.149) ( -, 0.000) ( -, 0.000) ( -, 0.000) ( -, 0.000)

4 (-2.690, -0.133, -0.379) (0.451, 0.405, 0.338) ( -, 0.000) ( -, 0.000) ( -, 0.000) ( -, 0.000) ( -, 0.000)

5 (-2.531, -0.046, -0.335) (0.138, 0.120, 0.093) ( -, 0.000) ( -, 0.000) ( -, 0.000) ( -, 0.000) ( -, 0.000) ( -, 0.000)

1 (-0.514, 0.681, 0.306) (0.742, 0.606, 0.493) ( -, 0.100) ( -, 2.201)

2 (1.686, 0.926, 0.882) (0.708, 0.583, 0.484) ( -, 0.078) ( -, 0.793) ( -, 1.175)

Upper C.L. (95%) 3 (0.697, 0.675, 0.611) (0.786, 0.672, 0.573) ( -, 0.055) ( -, 0.239) ( -, 0.516) ( -, 0.354)

4 (1.448, 0.857, 0.781) (0.802, 0.646, 0.507) ( -, 0.091) ( -, 0.353) ( -, 0.798) ( -, 0.716) ( -, 1.034)

5 (1.476, 0.816, 0.658) (0.889, 0.734, 0.597) ( -, 0.085) ( -, 0.309) ( -, 0.697) ( -, 0.575) ( -, 0.644) ( -, 0.518)
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Table 3.25: Estimates (Est.), standard errors (s.e.), lower confidence limits (LCL) and
upper confidence limits (UCL) for some candidate COM-Poisson cure rate models
using three covariates.

N = 1 N = 2 N = 3 N = 4 N = 5

par φ Est. (s.e.) (LCL, UCL) Est. (s.e.) (LCL, UCL) Est. (s.e.) (LCL, UCL) Est. (s.e.) (LCL, UCL) Est. (s.e.) (LCL, UCL)

β0 0 -1.044 (0.592) (-2.204, 0.117) -1.204 (1.789) (-4.710, 2.302) -0.978 (0.882) (-2.707, 0.752) -1.035 (1.139) (-3.269, 1.198) -0.916 (1.295) (-3.453, 1.622)

1 -0.900 (0.581) (-2.039, 0.240) -1.193 (0.984) (-3.121, 0.735) -0.776 (0.774) (-2.293, 0.740) -0.944 (0.885) (-2.679, 0.791) -0.907 (1.202) (-3.264, 1.450)

∞ -0.904 (0.594) (-2.067, 0.260) -0.885 (0.827) (-2.506, 0.737) -0.950 (0.848) (-2.612, 0.711) -0.915 (0.793) (-2.469, 0.638) -0.922 (0.901) (-2.689, 0.844)

β11 0 0.296 (0.250) (-0.194, 0.787) 0.449 (0.631) (-0.788, 1.686) 0.364 (0.406) (-0.433, 1.160) 0.374 (0.441) (-0.489, 1.238) 0.388 (0.475) (-0.542, 1.318)

1 0.264 (0.242) (-0.210, 0.739) 0.508 (0.484) (-0.440, 1.456) 0.372 (0.431) (-0.473, 1.216) 0.369 (0.390) (-0.395, 1.132) 0.330 (0.402) (-0.457, 1.117)

∞ 0.322 (0.256) (-0.181, 0.824) 0.431 (0.418) (-0.389, 1.251) 0.432 (0.535) (-0.617, 1.482) 0.393 (0.418) (-0.426, 1.212) 0.388 (0.462) (-0.517, 1.293)

β12 0 0.015 (0.009) (-0.003, 0.033) 0.018 (0.026) (-0.033, 0.070) 0.014 (0.014) (-0.012, 0.041) 0.015 (0.017) (-0.018, 0.049) 0.013 (0.019) (-0.024, 0.051)

1 0.013 (0.009) (-0.004, 0.031) 0.017 (0.015) (-0.014, 0.047) 0.011 (0.013) (-0.014, 0.036) 0.013 (0.014) (-0.013, 0.040) 0.013 (0.018) (-0.021, 0.048)

∞ 0.012 (0.009) (-0.006, 0.030) 0.012 (0.013) (-0.014, 0.037) 0.014 (0.014) (-0.014, 0.041) 0.013 (0.013) (-0.012, 0.037) 0.013 (0.014) (-0.015, 0.041)

β13 0 -0.225 (0.250) (-0.714, 0.264) -0.319 (0.376) (-1.055, 0.418) -0.261 (0.324) (-0.897, 0.374) -0.278 (0.324) (-0.913, 0.358) -0.306 (0.347) (-0.987, 0.375)

1 -0.242 (0.244) (-0.720, 0.237) -0.328 (0.369) (-1.050, 0.395) -0.256 (0.350) (-0.942, 0.430) -0.27 (0.318) (-0.893, 0.352) -0.255 (0.308) (-0.858, 0.347)

∞ -0.248 (0.248) (-0.735, 0.239) -0.277 (0.342) (-0.947, 0.394) -0.295 (0.419) (-1.117, 0.527) -0.269 (0.337) (-0.929, 0.391) -0.255 (0.337) (-0.916, 0.406)

γ21 0 -0.559 (0.280) (-1.106, -0.011) -0.715 (0.814) (-2.309, 0.880) -0.649 (0.491) (-1.610, 0.312) -0.643 (0.546) (-1.714, 0.427) -0.650 (0.601) (-1.828, 0.527)

1 -0.396 (0.220) (-0.828, 0.036) -0.602 (0.430) (-1.444, 0.241) -0.453 (0.379) (-1.196, 0.291) -0.474 (0.373) (-1.205, 0.258) -0.444 (0.463) (-1.352, 0.463)

∞ -0.360 (0.200) (-0.752, 0.031) -0.405 (0.301) (-0.995, 0.186) -0.365 (0.313) (-0.979, 0.250) -0.375 (0.285) (-0.933, 0.183) -0.370 (0.325) (-1.006, 0.267)

γ22 0 -0.003 (0.010) (-0.023, 0.017) -0.007 (0.037) (-0.079, 0.065) -0.004 (0.018) (-0.039, 0.031) -0.004 (0.023) (-0.049, 0.041) -0.002 (0.027) (-0.055, 0.051)

1 0.003 (0.008) (-0.012, 0.019) -0.001 (0.017) (-0.034, 0.031) 0.005 (0.013) (-0.021, 0.030) 0.002 (0.015) (-0.028, 0.032) 0.002 (0.023) (-0.044, 0.048)

∞ 0.007 (0.007) (-0.007, 0.020) 0.006 (0.012) (-0.018, 0.029) 0.005 (0.012) (-0.018, 0.027) 0.005 (0.011) (-0.017, 0.028) 0.005 (0.015) (-0.024, 0.034)

γ23 0 0.201 (0.299) (-0.385, 0.788) 0.321 (0.483) (-0.626, 1.268) 0.241 (0.417) (-0.577, 1.058) 0.264 (0.410) (-0.539, 1.068) 0.295 (0.440) (-0.568, 1.158)

1 0.146 (0.251) (-0.346, 0.638) 0.221 (0.369) (-0.502, 0.943) 0.148 (0.369) (-0.576, 0.872) 0.164 (0.330) (-0.482, 0.811) 0.143 (0.330) (-0.504, 0.789)

∞ 0.099 (0.227) (-0.347, 0.544) 0.080 (0.297) (-0.503, 0.664) 0.110 (0.331) (-0.538, 0.759) 0.090 (0.286) (-0.471, 0.652) 0.071 (0.290) (-0.497, 0.640)

ψ0 0 0.181 (0.132) (-0.078, 0.439) 0.157 (0.409) (0.000, 0.958) 0.137 (0.172) (0.000, 0.474) 0.154 (0.246) (0.000, 0.636) 0.141 (0.271) (0.000, 0.672)

1 0.206 (0.119) (0.000, 0.439) 0.182 (0.209) (0.000, 0.591) 0.103 (0.094) (0.000, 0.288) 0.159 (0.168) (0.000, 0.488) 0.146 (0.250) (0.000, 0.636)

∞ 0.295 (0.149) (0.003, 0.587) 0.166 (0.141) (-0.110, 0.443) 0.133 (0.109) (0.000, 0.347) 0.191 (0.146) (0.000, 0.476) 0.170 (0.184) (0.000, 0.530)

ψ1 0 3.268 (1.847) (0.000, 6.888) 1.228 (3.097) (0.000 7.299) 0.639 (0.735) (0.000, 2.079) 1.410 (1.655) (0.000, 4.654) 0.506 (0.941) (0.000, 2.351)

1 2.161 (0.951) (0.297, 4.026) 1.085 (1.149) (0.000, 3.336) 0.465 (0.359) (0.000, 1.169) 1.050 (0.820) (0.000, 2.657) 0.488 (0.820) (0.000, 2.097)

∞ 1.696 (0.672) (0.379, 3.013) 0.794 (0.600) (0.000, 1.970) 0.590 (0.396) (0.000, 1.366) 0.901 (0.549) (0.000, 1.977) 0.524 (0.528) (0.000, 1.560)

ψ2 0 1.020 (2.485) (0.000, 5.891) 1.181 (1.317) (0.000, 3.764) 1.088 (1.931) (0.000, 3.654) 1.063 (1.989) (0.000, 4.961)

1 0.503 (0.864) (0.000, 2.196) 0.665 (0.520) (0.000, 1.684) 0.711 (1.005) (0.000, 2.010) 0.964 (1.631) (0.000, 4.161)

∞ 0.223 (0.408) (0.000, 1.022) 0.675 (0.451) (0.000, 1.560) 0.621 (0.615) (0.000, 1.370) 0.965 (0.986) (0.000, 2.897)

ψ3 0 0.952 (1.402) (0.000, 3.699) 0.875 (1.461) (0.000, 1.869) 0.798 (1.520) (0.000, 3.778)

1 0.346 (0.608) (0.000, 1.537) 0.502 (0.877) (0.000, 1.110) 0.658 (1.146) (0.000, 2.904)

∞ 0.243 (0.520) (0.000, 1.262) 0.416 (0.582) (0.000, 0.778) 0.590 (0.643) (0.000, 1.850)

ψ4 0 1.031 (2.389) (0.000, 1.167) 0.956 (1.894) (0.000, 4.668)

1 0.846 (1.903) (0.000, 0.890) 0.771 (1.422) (0.000, 3.558)

∞ 0.600 (1.084) (0.000, 0.552) 0.616 (0.813) (0.000, 2.210)

ψ5 0 1.105 (2.883) (0.000, 6.757)

1 0.920 (2.383) (0.000, 5.592)

∞ 0.584 (1.356) (0.000, 3.241)
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Table 3.26: Maximized log-likelihood, AIC & BIC for the E1690 dataset using three
covariates.

Geometric Poisson Bernoulli φ̂

N l̂ AIC BIC l̂ AIC BIC l̂ AIC BIC l̂ AIC BIC

1 (φ̂=0) -536.118 1090.236 1126.725 -537.479 1092.959 1129.449 -539.151 1096.302 1132.792 -536.118 1090.236 1126.725

2 (φ̂=0) -532.561 1085.123 1125.667 -532.606 1085.212 1125.757 -533.040 1086.080 1126.624 -532.561 1085.123 1125.667

3 (φ̂=0) -534.175 1090.349 1134.948 -534.614 1091.227 1135.826 -534.743 1091.485 1136.084 -534.175 1090.349 1134.948

4 (φ̂→∞) -532.121 1088.241 1136.895 -531.739 1087.479 1136.133 -531.824 1087.648 1136.301 -531.739 1087.479 1136.133

5 (φ̂→∞) -532.180 1090.360 1143.068 -532.102 1090.203 1142.911 -531.854 1089.708 1142.415 -531.854 1089.708 1142.415



Chapter 4

Destructive cure rate models under

proportional hazards lifetime

4.1 Introduction

We propose the initial number of competing causes M to follow a weighted Poisson

distribution, with weight functions as eφm, m, and Γ(m+φ−1), undergoing a damaging

process as discussed earlier in Section 1.4. The corresponding models are known as

destructive exponentially weighted Poisson (DEWP), destructive length-biased Pois-

son (DLBP), and destructive negative binomial (DNB) cure rate models respectively.

The hazard function h(.) of Wj is defined by a proportional hazards model and is

given by

h(w) = −∂ logS(w)

∂w
= h0(w)eγ

′x, (4.1.1)

for all j = 1, . . . , D, where h0(.) is the baseline hazard function and x is a vector of

covariates with corresponding parameter γ of same dimension. The baseline hazard

is considered to be a two-parameter Weibull hazard function.

107
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The form of the data and the likelihood function are discussed in detail in Section

4.2. The method of estimation of model parameters using EM algorithm and compu-

tation of asymptotic standard errors are provided in Section 4.3. In Section 4.4, an

analysis of a real-life data on cutaneous melanoma is presented. In Section 4.5, an

extensive simulation study is carried out with various parameter settings and sample

sizes to examine the performance of the estimation method. A model discrimination

is performed among three candidate models based on information criteria and the

results are provided in Section 4.6.

4.2 Form of the data and the likelihood function

In survival analysis, occurrence of right censored data is a common phenomenon which

may take place due to patient’s discontinuation, duration of study or lost to follow-

up. Due to this, we assume a non-informative right censored data for our analysis.

In general, if we consider Yi to be the actual lifetime and Ci to be the censoring time

for the i-th individual, then time to event Ti is defined as

Ti = min{Yi, Ci}.

Ti denotes the observed lifetime of the i-th individual . The censoring indicator is

given by δi = I(Ti ≤ Ci) which takes 1 when the actual lifetime is the observed

lifetime or 0 when only the censoring time is observed for a subject.

Two sets of covariates x and z are linked to the parameters p and η such that

ηi = eα
′zi is linked using a log-linear function whereas pi = eβ

′xi

1+eβ
′xi

is linked using a
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logit function where α = (α1, . . . , αq2)
′ and β = (β0, β1, . . . , βq1)

′. To circumvent the

issue of non-identifiability of parameters in DEWP, DLBP or DNB cure rate models,

α is assumed without an intercept term and covariate xi is assumed to be disjoint of

zi in the sense that they have no common element (see Li et al., 2001). The observed

data for n individuals is of the form (ti, δi,xi, zi)
′; i = 1, . . . , n. Hence, the observed

data likelihood function can be expressed as

L(θ; t, δ,X,Z) ∝
n∏
i=1

fp(ti,xi, zi;θ)δiSp(ti,xi, zi;θ)1−δi (4.2.1)

where θ = (α′,β′,γ ′, φ)′, α = (α1, . . . , αq2)
′, β = (β1, . . . , βq1)

′,γ = (γ0, γ1,γ
′
2,γ

′
3)′,

γ2 = (γ21, . . . , γ2q1)
′, γ3 = (γ31, . . . , γ3q2)

′, t = (t1, . . . , tn)′, δ = (δ1, . . . , δn)′, X =

(x1, . . . ,xn) and Z = (z1, . . . ,zn). The expressions for S(w) = S(w,x, z;γ) and

f(w) = f(w,x, z;γ) can be obtained from Equation (4.3.1) using S(w,x, z;γ) =

e−
∫ w
0 h(w∗,x,z;γ)dw∗ and f(w) = f(w,x, z;γ) = −∂S(w,x,z;γ)

∂w
.

4.3 Estimation of parameters and standard errors

We implement EM algorithm to estimate (α′,β′,γ ′)′ while φ is estimated using profile

likelihood method. The missing data are introduced by defining indicator Ii which

takes 0 if the i-th individual is cured or 1 otherwise. Note that, Ii = 1 for i ∈ ∆1,

however, Ii is unobserved for i ∈ ∆0; ∆1 = {i : δi = 1} and ∆0 = {i : δi = 0}. The

complete data are denoted by {(ti, δi,xi, zi, Ii)′; i = 1, . . . , n}. The complete data

likelihood function is expressed as

Lc(θ; t,x, z, δ, I)

∝
∏
i∈∆1

fp(ti,xi, zi;θ)
∏
i∈∆0

q0(α,β,xi, zi)
1−Ii{(1− q0(α,β,xi, zi))Su(ti,xi, zi;θ)}Ii
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and the complete data log-likelihood function is given by

lc(θ; t,x, z, δ, I) = constant +
∑
i∈∆1

log fp(ti,xi, zi;θ) +
∑
i∈∆0

(1− Ii) log q0(α,β,xi, zi)

+
∑
i∈∆0

Ii log(1− q0(α,β,xi, zi)) +
∑
i∈∆0

Ii logSu(ti,xi, zi;θ),

(4.3.1)

where I = (I1, . . . , In)′ and Su(ti,xi, zi;θ) = Sp(ti,xi,zi;θ)−q0(α,β,xi,zi)

1−q0(α,β,xi,zi)
.

E-step: For a fixed value φ0 of φ and (a + 1)-th iteration of EM algorithm,

we compute the expected value of lc(θ; t,x, δ, I), given the observed data O =

{(ti, δi,xi, zi, Ii′) : i = 1, . . . , n; i′ ∈ ∆1} and the current parameter estimates θ∗(a)

obtained from the a-th iteration, where θ∗ = (α′,β′,γ ′)′. Therefore, from Equation

(4.3.1) we have

E(lc(θ; t,x, z, δ, I)|θ∗(a),O)

= constant +
∑
i∈∆1

log fp(ti,xi, zi;θ) +
∑
i∈∆0

(1− π(a)
i ) log q0(α,β,xi, zi)

+
∑
i∈∆0

π
(a)
i log(1− q0(α,β,xi, zi)) +

∑
i∈∆0

π
(a)
i logSu(ti,xi, zi;θ),

(4.3.2)

where

π
(a)
i = E[Ii|O,θ∗(a)] =

(1− q0(α,β,xi, zi))Su(ti,xi, zi;θ)

Sp(ti,xi, zi;θ)

∣∣∣∣
θ∗=θ∗(a)

.

We define Q(θ∗,π(a)) = E(lc(θ; t,x, z, δ, I)|θ∗(a),O) where π(a) = (π
(a)
i : i ∈ ∆0).

M-step: In the maximization step, we maximize Q(θ∗,π(a)) with respect to

θ∗ to find the estimate θ∗(a+1) of θ∗. The numerical maximization is carried out
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using Nelder-Mead or Quasi-Newton method for fixed φ0. Explicit expressions for

Q(θ∗,π(a)) and the first-order and second-order partial derivatives of Q(θ∗,π(a)) are

presented in Appendix C.1, C.2 and C.3. The iteration process is considered to

converge if max1≤k′≤p

∣∣∣∣ ˆθ∗
k′−θ

∗
k′

θ∗
k′

∣∣∣∣ < ε, for some small ε and p denotes the number of

parameters.

The estimation of φ is carried out using profile likelihood approach since the like-

lihood surface is quite flat w.r.t φ. The E-step and M-step are repeated for all φ ∈ Φ

where Φ denotes the admissible range of φ. The value of φ ∈ Φ which provides the

maximum value of the observed likelihood function is taken to be the ML estimate

φ̂ of φ. For DEWP cure rate model, Φ = {−2.0,−1.9, . . . , 2.0} while for DNB cure

rate model, Φ = {0.10, 0.15, . . . , 7.00}.

The standard errors of the parameter estimates are obtained using Louis’ method.

The expression for calculating the observed information matrix is given by

I(θ̂∗) = E[B(θ̂∗; t,x, z, δ, I)]− E[S(θ̂∗; t,x, z, δ, I)ST (θ̂∗; t,x, z, δ, I)]

+ E[S(θ̂∗; t,x, z, δ, I)]E[ST (θ̂∗; t,x, z, δ, I)]

∣∣∣∣
θ∗=θ̂∗

,
(4.3.3)

where B(θ∗; t,x, z, δ, I) = − δ2lc(θ;t,x,z,δ,I)

δθ∗δθ∗′
and S(θ∗; t,x,x, δ, I) = δlc(θ;t,x,z,δ,I)

δθ∗
. The

100(1 − α)% confidence interval (C.I.) of the parameters are obtained by using the

asymptotic normality of ML estimators. The expressions for first-order and second-

order derivatives of lc(θ; t,x, z, δ, I) required for calculating the observed information

matrix are not presented separately and can be obtained from Appendices C.1 and

C.2.
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Figure 4.1: K-M plot categorized by ulceration status.

4.4 Analysis of cutaneous melanoma data

The observed time (in years) refers to the time since operation till patient’s death or

censoring time with mean and standard deviation (s.d.) to be 5.89 and 3.07 years,

respectively. For our analysis, ulceration status (absent: n = 115; present: n = 90)

and tumor thickness (in mm) were selected as covariates for the study. 44% of the

patients have ulceration status as present. For this group, mean and s.d. of the tu-

mor thickness were found to be 4.34 mm and 3.22 mm. For the group with ulceration

status as absent, the mean and s.d. are 1.81 mm and 2.19 mm. The histograms of

the tumor thickness for both the groups show positively skewed distributions. Figure

4.1 represents the Kaplan-Meier (KM) plot categorized based on ulceration status. It

clearly indicates the presence of cured proportion in the data. We fitted destructive

exponentially weighted Poisson, destructive length-biased Poisson and destructive

negative binomial cure rate models to the melanoma data, respectively, under pro-

portional hazards assumption of the lifetime of the susceptible. A Weibull baseline
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hazard function is considered since it provides a great degree of flexibility to the life-

time of the susceptible i.e. increasing, constant and decreasing hazard rate depending

on the shape parameter (γ0) greater than, equal to or less than 1. As mentioned be-

fore, we applied EM algorithm to estimate all the parameters except φ which was

estimated using profile likelihood.

Table 4.1 presents the number of parameters fitted (k), maximized log-likelihood

values, Akaike’s Information Criterion (AIC) and Bayesian Information Criterion

(BIC) values for all the fitted models. Apart from the main three models, the in-

formation values for all the sub-models are also presented. It is to be noted that, in

case of DEWP, taking φ = 0 reduces the model to destructive Poisson (DP) cure rate

model. Again, we get exponentially weighted Poisson (EWP) and Poisson cure rate

models by setting p = 1 and (p = 1, φ = 0), respectively. Similarly, in case of DNB, we

get the reduced models viz., destructive geometric (DG), negative binomial (NB) and

geometric cure rate models by considering φ = 1, p = 1 and (φ = 1, p = 1), respec-

tively. p = 1 represents the cases where no destructive mechanism of the malignant

cells is considered. When p = 1, we linked both the covariates to η using log-linear

link function η = exp(β0+β1x+αz). It is observed from Table 4.1 that DNB cure rate

model provides best fit to the data with highest maximized log-likelihood (-199.108)

and minimum AIC (414.216) values with φ̂ = 5.2. The estimate, standard error (s.e.),

lower confidence limit (LCL) and upper confidence limit (UCL) of the parameters for

the three main models are presented in Table 4.2. For validating the heterogeneity

among the lifetime of the susceptible , we tested H0 : γ2 = γ3 = 0 for the DNB model.

The p-value was found to be 0.061 with log-likelihood value as -201.908, thereby not

rejecting H0 at 5 % level of significance. Again, on testing H0 : φ = 0 for the full

DNB model, we found the corresponding p-value to be 0.027 which provides sufficient
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evidence of using the DNB model over the DG model.

It is observed from Table 4.1 that incorporating destructive mechanisms to the cure

rate models resulted in better log-likelihood, AIC and BIC values, thereby, justifying

the practicality of destructive cure rate model over ordinary cure rate model. Table

4.3 shows the effect of using different link functions (e.g., L1-L4) on maximized log-

likelihood value for the main three destructive cure rate models. Considering all four

possible combinations, we found link L1 that we have used for our analysis (refer

Section 4.2) provided with the higher maximized log-likelihood value consistently

except in some cases of the DEWP model. However, since the DNB provides the

best fit for the data with link L1 among all other links, we can argue that link L1

justifies the appropriateness of using it. Next, we considered representative values

for tumor thickness, viz., 0.320, 1.940 and 8.320 mm which are values corresponding

to the 5-th, 50-th and 95-th percentiles. For these tumor thicknesses, we plotted the

corresponding long-term survival function values, stratified by ulceration status (see

Figure 4.2a-4.2c). The estimated survival function values were found to be higher

for the group with ulceration status as absent and smaller tumor thicknesses. Figure

4.3 shows the estimated cure rates against tumor thickness stratified by ulceration

status. A non-parametric test of difference suggests significant difference (p-value

< 2.2 x 10−16) between cure rates of the two ulcer groups.

4.5 Simulation study

This Section demonstrates the performance of our suggested method of estimation

and inference based on extensive Monte Carlo simulation study. We generate data set

in a way that it mimics the real data on cutaneous melanoma as discussed in Section
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(a) Survival plots stratified by ulceration sta-
tus with tumor thickness = 0.320 mm.

(b) Survival plots stratified by ulceration sta-
tus with tumor thickness = 1.940 mm.

(c) Survival plots stratified by ulceration sta-
tus with tumor thickness = 8.320 mm.

Figure 4.2: Survival plots stratified by ulceration status.
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Figure 4.3: Cure rate vs. tumor thickness stratified by ulceration status.

Table 4.1: Maximized log-likelihood, AIC and BIC values for some destructive cure
rate models.

Fitted Model k l̂ AIC BIC

DEWP (φ̂ = −0.7) 8 -202.253 420.506 447.090

DP 7 -203.433 420.865 444.126

EWP (φ̂ = −1.5) 8 -205.054 426.108 452.693

Poisson 7 -205.054 424.108 447.370

DLBP 7 -204.979 423.959 447.220

DNB (φ̂ = 5.2) 8 -199.108 414.216 440.800

DG 7 -201.536 417.073 440.334

NB (φ̂ = 6.9) 8 -199.973 415.946 442.531

Geometric 7 -204.027 422.053 445.314

4.4. For this purpose, we define a random variable (r.v.) U where U ∼ Uniform (0, 1).

If U ≤ 0.44, we assign a r.v. Z = 1; otherwise Z = 0, where Z denotes the ulceration



Chapter 4.5 - Simulation study 117

status for each subject. For simulating the tumor thickness data, we plot histograms

of tumor thickness (X) from the cutaneous melanoma study. The histograms reveal

positively skewed curves for both the ulceration statuses; the means and the standard

deviations of which are presented in Section 4.4. Thus, for Z = 1, we assume X to

follow a Weibull (α1, α2) since a Weibull distribution provides flexibility to model any

non-negative continuous r.v. In this case, α1 & α2 are the shape and scale parameters

respectively and are estimated by method of moments, i.e., equating α2Γ(1 + 1/α1)

to 4.34 and α2
2

[
Γ
(

1 + 2
α1

)
−
(

Γ
(

1 + 1
α1

))2
]

to (3.22)2. Thus, we generate X using

the estimated values of α1 and α2. A similar approach is taken to generate X for

Z = 0 where we assume X from a Weibull (α3, α4) where α3 and α4 are estimated

from α4Γ(1+1/α3) = 1.81 and α2
4

[
Γ
(

1 + 2
α3

)
−
(

Γ
(

1 + 1
α3

))2
]

= (2.19)2. As men-

tioned before, we linked η to z using η = eαz and p to x using p = eβ0+β1x

1+eβ0+β1x
, where an

intercept term is not taken for linking η to z in order to avoid non-identifiability. Note

that, η = 1 whenever z = 0. Also, a higher value of η signifies greater number of initial

competing causes (M). Thus, we can safely assume η to be more than 1 for z = 1 since

patients with ulceration status: present are likely to have greater value of M . Fol-

lowing the work of Pal and Balakrishnan (2017), we assume η = 3 for z = 1; thereby,

we get the true value of α = 1.099. In order to determine true values of β0 and β1,

we turn our attention to xmin = min{x} = 0.1 mm and xmax = max{x} = 17.42 mm.

Note that, the link p = eβ0+β1x

1+eβ0+β1x
is a monotonically increasing in x. So, we choose

pmin = min{p} and pmax = max{p} and link them to xmin and xmax respectively. Two

such choices of (pmin, pmax) are considered, viz., (0.2, 0.6) and (0.3, 0.9), representing

two scenarios of lower and higher proportions of active competing causes. The true

values of β0 and β1 change depending on the generated values of x for each simulation.

M is generated with weighted Poisson distribution with η. For exponentially
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weighted Poisson cure rate model, we take true φ = −0.5 and φ = 0.2 and for neg-

ative binomial cure rate model, φ = 0.5, 0.75 and 5.2 are taken. These values of

φ are chosen to relate closely to the estimates of φ as obtained from the real data.

For length- biased Poisson, M is generated from Poisson (η) + 1 distribution. Given

M = m > 0, the number of undamaged competing causes D is generated from a bi-

nomial distribution with success probability p and m number of trials. If M = 0, we

put D = 0. The true values of the lifetime parameters (γ0, γ1, γ2, γ3)′ are considered

to be (1.657, 3.764,−0.005, 0.023)′ which are parameter estimates as obtained from

the real data. If D > 0, then we generate W1, . . . ,WD where each Wj; j = 1, . . . , D is

simulated from a Weibull distribution with shape parameter γ0 and scale parameter

γ1 exp
(
−γ2x

γ0
− γ3z

γ0

)
. We define lifetime Y = min{W1, . . . ,WD} and the censoring

time C is assumed to be distributed exponentially with rate parameter λ. Hence, the

observed time T is defined as T = min{Y,C}. Again, if D = 0, we assign T = C. To

assess the effect of censoring on the developed methodology, we study three different

scenarios: λ = 0.05, 0.15 and 0.25 representing low, medium and high censoring. On

examining λ ∈ {0.01, 0.02, . . . , 1.50} and comparing the proportion of censoring (i.e.

no. of times Y > C) in 1000 replication, we find λ = 0.05, 0.15 and 0.25 corresponds

to 52%, 64% and 72% of censoring percentages respectively. λ as low as 0.01 gives

45% of censoring whereas λ = 1.50 results in 95% of censored observations. To further

investigate the robustness of the inferential technique, we consider two sample sizes

n = 300 and n = 400 representing moderate and large samples respectively.

As mentioned in Section 4.2, we estimate all the parameters using EM algo-

rithm except φ which is estimated using profile likelihood approach. The admissible

ranges for φ are taken to be {−2.00,−1.90, . . . , 2.00} for DEWP cure rate model

and {0.10, 0.15, . . . , 2.00} for DNB cure rate model when true φ = 0.5 or 0.75 and
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{3.0, 3.1, . . . , 7.0} when true φ = 5.2. Apart from φ, initial parameter value is cho-

sen uniformly from the interval (0.85θr, 1.15θr) where θr denotes true value of the

parameter. In table 4.4 - 4.12, we display the results of our simulation study. More

specifically, table 4.4 - 4.6 present the simulation results corresponding to DEWP

cure rate model, table 4.7 - 4.8 show results from DLBP cure rate model and table

4.9 - 4.12 depict the simulation results from DNB cure rate model. The accuracy and

robustness of our proposed method of estimation are established through average esti-

mated value (Est.), standard error (s.e.), bias, root mean squared error (RMSE), 95 %

Confidence Interval (C.I.) and coverage probability (C.P.) under different simulation

settings. CPs are obtained by assuming the asymptotic normality of the maximum

likelihood (ML) estimators and a nominal level of 95% is used. The results are based

on 500 replications of simulated data for each scenario and all calculations are done

in R-3.1.3.

From table 4.4 - 4.12, we observe the estimates are quite close to the true parameter

values, and the biases are small signifying the accuracy of the estimation technique.

Profile likelihood method seems to perform relatively well in terms of accuracy, when

data are generated from DEWP (φ = −0.5) and DEWP (φ = 0.2) cure rate models.

However, when the true model is DNB, biases are found to be high for the estimates

of φ. It can be attributed to the fact that the likelihood function is quite flat with

respect to φ. An under-coverage for β0 and γ0 are observed for DEWP and DNB cure

rate models respectively. To explain this under-coverage, we take one such setting

where data are generated for DEWP model with φ = 0.2 having large sample size

(n = 400), (pmin, pmax) = (0.2, 0.6) and low censoring (λ = 0.05). We fit DEWP cure

rate model to the data and compare effect of estimating φ against taking fixed φ on

coverage probability based on 100 replication. The result is presented in table 4.6. We
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observe that the coverage probability of β0 is reaching the nominal level of 95% when

φ is not estimated. This immediately points toward the imprecision in estimating

φ (most likely due to flatness of the likelihood surface) which leads to the under-

coverage of β0. The s.e. and RMSE are found to decrease with an increase in sample

size and decrease in censoring. Tables corresponding to DEWP with φ = −0.5 and

DNB with φ = 0.75 are not presented to avoid repetition, however, can be retrieved

from the author on request.

4.6 Model discrimination

To assess the impact of model mis-specification on estimate of cure rate, a model

discrimination is performed based on specified selection criteria, e.g., Akaike In-

formation Criterion (AIC) and Bayesian Information Criterion (BIC) values. This

allows us to observe the frequency with which models other than the true model

get selected through our method of estimation. For this, we generate 1000 samples

each from five true models, viz., DEWP (φ = −0.5), DEWP (φ = 0.2), DLBP,

DNB (φ = 0.5) and DNB (φ = 0.75) with (pmin, pmax) = (0.3, 0.9), η = 3 for

Z = 1 and λ = 0.15 (i.e. medium censoring). The lifetime parameters are taken

as γ = (γ0, γ1, γ2, γ3)′ = (1.657, 3.764,−0.005, 0.023)′ (see Section 4.5). Under these

specifications, samples are generated with moderate (n = 300) and large (n = 400)

sample sizes and denoted by Setting 1 and Setting 2 respectively.

We fit three candidate models, i.e., DEWP, DLBP and DNB cure rate models to

these samples with our proposed method of estimation. The model with the least

AIC or BIC value is selected to provide the best fit to the generated data. For a
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model, AIC and BIC are defined as:

AIC = −2l̂ + 2p; BIC = −2l̂ + p log(n),

where l̂ is the maximized log-likelihood value corresponding to the model and p de-

notes number of parameters estimated. The selection rates based on AIC, BIC and

l̂ are presented in Table 4.13. AIC and BIC values are found to be quite low for the

true models when the data are generated from DEWP and DNB cure rate models.

The reason is attributed to the closeness of the values of log-likelihood function for

all the fitted cure rate models. Due to this, AIC and BIC values are getting more

penalized for having one extra parameter for DEWP and DNB models. When the

log-likelihood value is used to select models, the results indicate more selection for

the true models. Table 4.16 shows that when φ is not estimated, it results in much

better selection rates for the true models.

To establish the importance of a model discrimination, we study the bias and MSE

involved in the estimation of cure rate of patients under model mis-specification. For

each model, we compute the total relative bias (TRB) as

TRB =
n∑
i=1

|q̂0,i − q0,i|
q0,i

where q0,i and q̂0,i denote true and estimated cure rate for an individual i; i = 1, . . . , n.

Similarly, we define total mean squared error (TMSE) for a model as

TMSE =
1

n− 1

n∑
i=1

(q̂0,i − q0,i)
2.

Then, for two candidate models M1 and M2, total relative efficiency (TRE) of M2
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with respect to M1 is defined as TRE = TMSEM2

TMSEM1
where TMSEM1 and TMSEM2

denote TMSE corresponding to M1 and M2 respectively. Thus, with these measures

we compare the three candidate models. Table 4.14 presents TRB (in %), TMSE

and TRE for the candidate models under Setting 1 and Setting 2, when the data are

generated from one of the five true models as described earlier.

The model M1 is always chosen to be the true model. It is observed that in cases

where data are generated from DLBP cure rate model, model mis-specification may

lead to large bias and MSE. It is because higher TRB and lower TRE are observed on

fitting candidate models when compared to the true DLBP model. For the other true

models, TRB values are relatively closer to each other, thereby signifies not much

precision is lost under model mis-specification. DNB cure rate model provides lesser

TRB and higher TRE in most of the scenarios. On increasing sample size, TMSE

and TRE are found to decrease but TRB increases. Table 4.15 shows TRB and TRE

values when using AIC and estimated log-likelihood value (l̂) as the model selection

criteria. The output suggests that by allowing AIC or l̂ to select a working model

out of a set of candidate models may lead to lesser relative bias. The TRE values are

greater than one is most cases, which implies that estimating the cured proportion

on fitting the working model as selected by AIC or l̂ results in higher efficiency.
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Table 4.2: Estimate, s.e., 95% LCL and 95% UCL for DEWP, DLBP and DNB cure
rate models on analyzing cutaneous melanoma data.

Fitted Model Measure α β0 β1 γ0 γ1 γ2 γ3 φ

Est. 0.761 -1.985 1.265 1.845 7.423 0.112 0.305 -0.700

DEWP s.e. 0.218 0.909 0.646 0.219 1.904 0.043 0.492 -

LCL 0.333 -3.768 -0.002 1.414 3.689 0.027 -0.660 -

UCL 1.188 -0.202 2.532 2.276 11.156 0.196 1.270 -

Est. 1.527 -2.119 0.081 1.822 8.011 0.115 0.433 -

DLBP s.e. 0.529 0.454 0.053 0.224 2.723 0.046 0.611 -

LCL 0.489 -3.009 -0.023 1.382 2.672 0.024 -0.765 -

UCL 2.565 -1.229 0.186 2.263 13.349 0.207 1.633 -

Est. 3.670 -2.602 1.081 2.845 7.282 0.192 -1.596 5.200

DNB s.e. 1.205 0.925 0.537 0.328 1.342 0.071 1.236 -

LCL 1.306 -4.416 0.027 2.201 4.650 0.052 -4.019 -

UCL 6.033 -0.788 2.136 3.489 9.913 0.332 0.826 -
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Table 4.3: Maximized log-likelihood values for destructive cure rate models with other
link functions.

Link Function Model φ̂ l̂

η = eαz, eβ0+β1x

1+eβ0+β1x

∗∗
(L1)

DEWP -0.7 -205.253

DLBP - -204.979

DNB 5.2 -199.108

η = eαx, eβ0+β1z

1+eβ0+β1z
(L2)

DEWP -0.4 -205.055

DLBP - -208.289

DNB 6.9 -199.962

η = eα0+α1z, eβx

1+eβx
(L3)

DEWP -1.0 -203.994

DLBP - -206.786

DNB 7.2 -201.085

η = eα0+α1x, eβz

1+eβz
(L4)

DEWP -0.2 -205.302

DLBP - -206.667

DNB 6.4 -200.313

∗∗ This link is used for all analysis.
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Table 4.4: Estimate, s.e., bias, RMSE, 95% CI and C.P. for destructive exponentially
weighted Poisson cure rate model with φ = 0.2 for moderate sample size.

n (pmin, pmax) λ θ True Value Est. s.e. bias RMSE 95% C.I. C.P.

300 (0.2, 0.6) 0.05 α 1.099 1.076 0.238 -0.023 0.333 (0.609, 1.543) 0.928

β0 -1.386 -1.470 0.258 -0.084 0.592 (-1.975, -0.965) 0.472

β1 0.142 0.144 0.087 0.037 0.122 (-0.027, 0.315) 0.949

γ0 1.658 1.810 0.138 0.153 0.231 (1.539, 2.082) 0.825

γ1 3.765 3.863 0.453 0.098 0.625 (2.975, 4.750) 0.940

γ2 -0.005 -0.029 0.042 -0.023 0.060 (-0.111, 0.054) 0.924

γ3 0.024 -0.167 0.270 -0.191 0.403 (-0.697, 0.363) 0.882

φ 0.200 0.250 - - - - -

300 (0.3, 0.9) 0.05 α 1.099 1.074 0.201 -0.025 0.278 (0.680, 1.469) 0.934

β0 -0.848 -0.999 0.283 -0.151 0.610 (-1.553, -0.445) 0.504

β1 0.161 0.305 0.173 0.123 0.262 (-0.033, 0.644) 0.923

γ0 1.658 1.842 0.122 0.184 0.236 (1.602, 2.081) 0.702

γ1 3.765 3.926 0.386 0.162 0.550 (3.170, 4.683) 0.923

γ2 -0.005 -0.043 0.039 -0.038 0.064 (-0.119, 0.033) 0.815

γ3 0.024 -0.304 0.245 -0.328 0.447 (-0.785, 0.176) 0.746

φ 0.200 0.289 - - - - -

300 (0.2, 0.6) 0.15 α 1.099 1.099 0.300 0.000 0.407 (0.511, 1.687) 0.941

β0 -1.386 -1.539 0.315 -0.153 0.596 (-2.158, -0.921) 0.693

β1 0.097 0.150 0.105 0.042 0.151 (-0.055, 0.355) 0.941

γ0 1.658 1.808 0.165 0.150 0.260 (1.484, 2.132) 0.869

γ1 3.765 3.809 0.618 0.045 0.836 (2.598, 5.021) 0.932

γ2 -0.005 -0.032 0.058 -0.027 0.083 (-0.146, 0.083) 0.925

γ3 0.024 -0.212 0.377 -0.236 0.556 (-0.952, 0.527) 0.894

φ 0.200 0.296 - - - - -

300 (0.3, 0.9) 0.15 α 1.099 1.102 0.271 0.003 0.368 (0.571, 1.633) 0.946

β0 -0.848 -1.034 0.360 -0.186 0.668 (-1.739, -0.329) 0.664

β1 0.176 0.405 0.268 0.223 0.416 (-0.119, 0.930) 0.909

γ0 1.658 1.820 0.145 0.162 0.243 (1.535, 2.104) 0.824

γ1 3.765 3.915 0.543 0.150 0.742 (2.850, 4.979) 0.946

γ2 -0.005 -0.043 0.052 -0.038 0.080 (-0.144, 0.058) 0.854

γ3 0.024 -0.364 0.352 -0.388 0.581 (-1.053, 0.325) 0.821

φ 0.200 0.294 - - - - -

300 (0.2, 0.6) 0.25 α 1.099 1.101 0.398 0.002 0.522 (0.321, 1.882) 0.953

β0 -1.387 -1.526 0.406 -0.139 0.647 (-2.323, -0.728) 0.839

β1 0.111 0.174 0.147 0.067 0.210 (-0.114, 0.463) 0.942

γ0 1.658 1.817 0.194 0.160 0.296 (1.436, 2.198) 0.900

γ1 3.765 3.843 0.870 0.079 1.156 (2.137, 5.550) 0.922

γ2 -0.005 -0.030 0.078 -0.024 0.107 (-0.182, 0.122) 0.912

γ3 0.024 -0.227 0.524 -0.251 0.723 (-1.254, 0.800) 0.930

φ 0.200 0.286 - - - - -

300 (0.3, 0.9) 0.25 α 1.099 1.120 0.382 0.021 0.491 (0.372, 1.869) 0.967

β0 -0.847 -1.019 0.463 -0.171 0.765 (-1.925, -0.112) 0.812

β1 0.142 0.374 0.287 0.190 0.421 (-0.188, 0.936) 0.918

γ0 1.658 1.819 0.170 0.162 0.271 (1.486, 2.153) 0.866

γ1 3.765 3.950 0.777 0.185 1.014 (2.427, 5.472) 0.960

γ2 -0.005 -0.042 0.065 -0.037 0.097 (-0.170, 0.086) 0.887

γ3 0.024 -0.395 0.497 -0.419 0.734 (-1.370, 0.580) 0.924

φ 0.200 0.293 - - - - -
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Table 4.5: Estimate, s.e., bias, RMSE, 95% CI and C.P. for destructive exponentially
weighted Poisson cure rate model with φ = 0.2 for large sample size.

n (pmin, pmax) λ θ True Value Est. s.e. bias RMSE 95% C.I. C.P.

400 (0.2, 0.6) 0.05 α 1.099 1.080 0.207 -0.019 0.288 (0.675, 1.485) 0.929

β0 -1.386 -1.419 0.222 -0.033 0.568 (-1.855, -0.983) 0.374

β1 0.086 0.135 0.072 0.033 0.100 (-0.006, 0.276) 0.948

γ0 1.658 1.797 0.119 0.139 0.204 (1.564, 2.030) 0.802

γ1 3.765 3.844 0.392 0.079 0.533 (3.076, 4.611) 0.952

γ2 -0.005 -0.029 0.036 -0.023 0.052 (-0.099, 0.041) 0.905

γ3 0.024 -0.163 0.232 -0.187 0.356 (-0.618, 0.291) 0.874

φ 0.200 0.216 - - - - -

400 (0.3, 0.9) 0.05 α 1.099 1.081 0.176 -0.018 0.241 (0.736, 1.426) 0.932

β0 -0.847 -0.991 0.236 -0.143 0.565 (-1.454, -0.527) 0.448

β1 0.153 0.245 0.123 0.071 0.182 (0.005, 0.486) 0.918

γ0 1.658 1.832 0.105 0.174 0.213 (1.625, 2.038) 0.652

γ1 3.765 3.923 0.337 0.158 0.475 (3.263, 4.583) 0.937

γ2 -0.005 -0.043 0.033 -0.038 0.057 (-0.109, 0.023) 0.793

γ3 0.024 -0.292 0.211 -0.315 0.404 (-0.706, 0.123) 0.688

φ 0.200 0.293 - - - - -

400 (0.2, 0.6) 0.15 α 1.099 1.102 0.261 0.003 0.355 (0.589, 1.614) 0.935

β0 -1.386 -1.495 0.271 -0.108 0.535 (-2.025, -0.964) 0.642

β1 0.120 0.130 0.086 0.027 0.122 (-0.039, 0.300) 0.947

γ0 1.658 1.801 0.142 0.143 0.231 (1.522, 2.080) 0.846

γ1 3.765 3.836 0.536 0.071 0.733 (2.785, 4.886) 0.943

γ2 -0.005 -0.029 0.051 -0.024 0.072 (-0.129, 0.070) 0.920

γ3 0.024 -0.193 0.324 -0.217 0.475 (-0.828, 0.443) 0.898

φ 0.200 0.278 - - - - -

400 (0.3, 0.9) 0.15 α 1.099 1.091 0.233 -0.008 0.318 (0.635, 1.548) 0.931

β0 -0.848 -0.983 0.427 -0.136 0.733 (-1.820, -0.147) 0.582

β1 0.210 0.295 0.192 0.118 0.282 (-0.081, 0.670) 0.925

γ0 1.658 1.810 0.125 0.152 0.217 (1.565, 2.054) 0.789

γ1 3.765 3.920 0.470 0.156 0.643 (2.998, 4.842) 0.954

γ2 -0.005 -0.046 0.045 -0.041 0.071 (-0.133, 0.042) 0.838

γ3 0.024 -0.329 0.300 -0.353 0.511 (-0.917, 0.258) 0.796

φ 0.200 0.313 - - - - -

400 (0.2, 0.6) 0.25 α 1.099 1.092 0.342 -0.007 0.455 (0.421, 1.763) 0.954

β0 -1.386 -1.519 0.347 -0.132 0.557 (-2.199, -0.838) 0.836

β1 0.114 0.146 0.112 0.043 0.160 (-0.073, 0.365) 0.940

γ0 1.658 1.797 0.167 0.139 0.254 (1.469, 2.124) 0.891

γ1 3.765 3.868 0.764 0.103 0.995 (2.371, 5.365) 0.951

γ2 -0.005 -0.028 0.067 -0.023 0.092 (-0.160, 0.103) 0.926

γ3 0.024 -0.198 0.447 -0.222 0.618 (-1.073, 0.678) 0.928

φ 0.200 0.286 - - - - -

400 (0.3, 0.9) 0.25 α 1.099 1.105 0.319 0.006 0.413 (0.479, 1.731) 0.962

β0 -0.847 -1.008 0.379 -0.160 0.640 (-1.751, -0.265) 0.791

β1 0.223 0.350 0.244 0.175 0.362 (-0.129, 0.829) 0.934

γ0 1.658 1.799 0.145 0.141 0.232 (1.514, 2.083) 0.850

γ1 3.765 3.941 0.670 0.176 0.900 (2.627, 5.255) 0.958

γ2 -0.005 -0.045 0.056 -0.040 0.087 (-0.155, 0.066) 0.847

γ3 0.024 -0.356 0.416 -0.380 0.634 (-1.171, 0.460) 0.885

φ 0.200 0.286 - - - - -
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Table 4.6: Estimate, s.e., bias, RMSE, 95% CI and C.P. for destructive exponentially
weighted Poisson cure rate model with φ = 0.2 for large sample size with (pmin, pmax) =
(0.2, 0.6) and λ = 0.05.

φ is estimated with φ̂ = 0.597

θ True Value Est. s.e. Bias RMSE 95% C.P.

α 1.099 1.064 0.187 -0.035 0.252 (0.698, 1.430) 0.929

β0 -1.386 -1.809 0.333 -0.422 1.452 (-2.462, -1.156) 0.291

β1 0.099 0.778 0.570 0.675 0.923 (-0.339, 1.894) 0.899

γ0 1.658 1.816 0.120 0.158 0.215 (1.581, 2.050) 0.758

γ1 3.765 3.953 0.391 0.188 0.555 (3.187, 4.718) 0.929

γ2 -0.005 -0.022 0.035 -0.017 0.049 (-0.091, 0.047) 0.919

γ3 0.024 -0.148 0.230 -0.172 0.357 (-0.598, 0.302) 0.848

φ is not estimated and fixed at 0.200

α 1.099 1.086 0.204 -0.013 0.264 (0.685, 1.486) 0.979

β0 -1.386 -1.348 0.208 0.038 0.276 (-1.756, -0.941) 0.979

β1 0.099 0.099 0.053 -0.004 0.069 (-0.005, 0.202) 0.989

γ0 1.658 1.815 0.120 0.157 0.214 (1.581, 2.049) 0.778

γ1 3.765 3.944 0.390 0.180 0.553 (3.179, 4.709) 0.959

γ2 -0.005 -0.022 0.036 -0.016 0.050 (-0.092, 0.049) 0.939

γ3 0.024 -0.154 0.230 -0.178 0.362 (-0.606, 0.297) 0.870
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Table 4.7: Estimate, s.e., bias, RMSE, 95% C.I. and C.P. for destructive length-biased
Poisson cure rate model for moderate sample size.

n (pmin, pmax) λ θ True Value Est. s.e. Bias RMSE 95% C.I. C.P.

300 (0.2, 0.6) 0.05 α 1.099 1.083 0.290 -0.016 0.393 (0.515, 1.651) 0.958

β0 -1.387 -1.400 0.189 -0.013 0.254 (-1.770, -1.030) 0.957

β1 0.108 0.110 0.051 0.003 0.069 (0.010, 0.210) 0.957

γ0 1.658 1.799 0.123 0.141 0.208 (1.558, 2.040) 0.813

γ1 3.765 3.935 0.378 0.170 0.533 (3.194, 4.676) 0.937

γ2 -0.005 -0.027 0.038 -0.022 0.055 (-0.102, 0.047) 0.907

γ3 0.024 -0.144 0.240 -0.168 0.356 (-0.616, 0.327) 0.898

300 (0.3, 0.9) 0.05 α 1.099 1.064 0.287 -0.035 0.383 (0.501, 1.627) 0.966

β0 -0.847 -0.851 0.195 -0.003 0.262 (-1.233, -0.469) 0.949

β1 0.177 0.191 0.074 0.008 0.099 (0.045, 0.337) 0.946

γ0 1.658 1.830 0.109 0.173 0.214 (1.617, 2.044) 0.684

γ1 3.765 4.005 0.329 0.240 0.491 (3.361, 4.649) 0.901

γ2 -0.005 -0.046 0.035 -0.041 0.060 (-0.114, 0.022) 0.787

γ3 0.024 -0.281 0.236 -0.305 0.418 (-0.744, 0.182) 0.770

300 (0.2, 0.6) 0.15 α 1.099 1.077 0.387 -0.022 0.505 (0.318, 1.836) 0.982

β0 -1.387 -1.404 0.241 -0.018 0.315 (-1.876, -0.932) 0.968

β1 0.144 0.110 0.070 0.002 0.092 (-0.027, 0.247) 0.960

γ0 1.658 1.799 0.147 0.141 0.233 (1.511, 2.087) 0.868

γ1 3.765 3.893 0.515 0.129 0.691 (2.883, 4.903) 0.952

γ2 -0.005 -0.028 0.053 -0.023 0.074 (-0.132, 0.075) 0.936

γ3 0.024 -0.165 0.340 -0.189 0.480 (-0.832, 0.502) 0.929

300 (0.3, 0.9) 0.15 α 1.099 1.062 0.419 -0.037 0.540 (0.240, 1.884) 0.984

β0 -0.848 -0.845 0.253 0.003 0.332 (-1.340, -0.350) 0.970

β1 0.132 0.190 0.100 0.007 0.130 (-0.007, 0.386) 0.952

γ0 1.658 1.819 0.129 0.162 0.226 (1.567, 2.072) 0.762

γ1 3.765 3.972 0.452 0.207 0.620 (3.087, 4.857) 0.956

γ2 -0.005 -0.044 0.047 -0.039 0.072 (-0.136, 0.047) 0.850

γ3 0.024 -0.323 0.355 -0.347 0.552 (-1.018, 0.372) 0.877

300 (0.2, 0.6) 0.25 α 1.099 1.031 0.546 -0.068 0.679 (-0.038 , 2.100) 0.989

β0 -1.387 -1.424 0.314 -0.037 0.403 ( -2.039, -0.808) 0.976

β1 0.144 0.117 0.094 0.009 0.121 (-0.066, 0.301) 0.953

γ0 1.658 1.806 0.172 0.149 0.267 (1.469, 2.143) 0.876

γ1 3.765 3.852 0.704 0.087 0.921 (2.471, 5.232) 0.952

γ2 -0.005 -0.029 0.070 -0.024 0.097 (-0.168, 0.109) 0.925

γ3 0.024 -0.167 0.472 -0.191 0.633 (-1.092, 0.757) 0.955

300 (0.3, 0.9) 0.25 α 1.099 1.020 0.692 -0.079 0.830 (-0.335, 2.375) 0.991

β0 -0.847 -0.852 0.330 -0.004 0.424 (-1.499, -0.205) 0.966

β1 0.160 0.185 0.124 0.003 0.161 (-0.058, 0.429) 0.943

γ0 1.658 1.808 0.149 0.150 0.237 (1.516, 2.099) 0.869

γ1 3.765 3.986 0.637 0.221 0.835 (2.736, 5.235) 0.974

γ2 -0.005 -0.043 0.058 -0.038 0.085 (-0.157, 0.071) 0.889

γ3 0.024 -0.292 0.496 -0.316 0.677 (-1.264, 0.679) 0.955
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Table 4.8: Estimate, s.e., bias, RMSE, 95% C.I. and C.P. for destructive length-biased
Poisson cure rate model for large sample size.

n (pmin, pmax) λ θ True Value Est. s.e. bias RMSE 95% C.I. C.P.

400 (0.2, 0.6) 0.05 α 1.099 1.060 0.252 -0.039 0.341 (0.567, 1.553) 0.952

β0 -1.386 -1.392 0.163 -0.005 0.220 (-1.711, -1.072) 0.957

β1 0.085 0.108 0.044 0.005 0.059 (0.022, 0.194) 0.954

γ0 1.658 1.792 0.106 0.135 0.186 (1.584, 2.000) 0.774

γ1 3.765 3.922 0.326 0.157 0.466 (3.284, 4.560) 0.926

γ2 -0.005 -0.028 0.033 -0.023 0.048 (-0.092, 0.036) 0.892

γ3 0.024 -0.139 0.207 -0.163 0.316 (-0.544, 0.266) 0.874

400 (0.3, 0.9) 0.05 α 1.099 1.052 0.247 -0.047 0.333 (0.568, 1.536) 0.961

β0 -0.847 -0.852 0.168 -0.004 0.233 (-1.181, -0.522) 0.942

β1 0.205 0.186 0.064 0.012 0.087 (0.062, 0.311) 0.942

γ0 1.658 1.811 0.093 0.153 0.187 (1.627, 1.994) 0.653

γ1 3.765 3.995 0.287 0.231 0.438 (3.433, 4.558) 0.904

γ2 -0.005 -0.048 0.03 -0.043 0.056 (-0.108, 0.011) 0.711

γ3 0.024 -0.254 0.203 -0.278 0.371 (-0.652, 0.143) 0.736

400 (0.2, 0.6) 0.15 α 1.099 1.062 0.333 -0.037 0.435 (0.409, 1.714) 0.975

β0 -1.386 -1.399 0.208 -0.013 0.273 (-1.807, -0.992) 0.964

β1 0.097 0.109 0.060 0.006 0.078 (-0.009, 0.227) 0.966

γ0 1.658 1.784 0.126 0.126 0.203 (1.537, 2.031) 0.848

γ1 3.765 3.895 0.448 0.130 0.599 (3.017, 4.773) 0.963

γ2 -0.005 -0.027 0.046 -0.022 0.064 (-0.116, 0.062) 0.920

γ3 0.024 -0.165 0.291 -0.189 0.422 (-0.736, 0.407) 0.894

400 (0.3, 0.9) 0.15 α 1.099 1.045 0.346 -0.054 0.447 (0.367, 1.724) 0.980

β0 -0.849 -0.852 0.216 -0.004 0.286 (-1.276, -0.428) 0.956

β1 0.165 0.180 0.084 0.004 0.110 (0.016, 0.344) 0.939

γ0 1.658 1.806 0.111 0.148 0.200 (1.589, 2.023) 0.748

γ1 3.765 3.965 0.391 0.200 0.537 (3.198, 4.732) 0.957

γ2 -0.005 -0.045 0.040 -0.040 0.065 (-0.124, 0.034) 0.827

γ3 0.024 -0.283 0.295 -0.307 0.475 (-0.861, 0.294) 0.856

400 (0.2, 0.6) 0.25 α 1.099 1.055 0.455 -0.044 0.566 (0.163, 1.947) 0.986

β0 -1.387 -1.406 0.270 -0.02 0.341 (-1.936, -0.876) 0.981

β1 0.093 0.108 0.081 0.005 0.102 (-0.050, 0.266) 0.962

γ0 1.658 1.784 0.147 0.127 0.225 (1.496, 2.072) 0.892

γ1 3.765 3.892 0.612 0.127 0.791 (2.692, 5.091) 0.973

γ2 -0.005 -0.029 0.062 -0.023 0.082 (-0.150, 0.092) 0.950

γ3 0.024 -0.150 0.408 -0.174 0.539 (-0.949, 0.649) 0.961

400 (0.3, 0.9) 0.25 α 1.099 1.031 0.553 -0.068 0.659 (-0.053, 2.115) 0.993

β0 -0.847 -0.839 0.284 0.009 0.356 (-1.396, -0.282) 0.979

β1 0.165 0.176 0.108 0.000 0.138 (-0.037, 0.388) 0.947

γ0 1.658 1.799 0.128 0.141 0.212 (1.548, 2.050) 0.830

γ1 3.765 3.995 0.547 0.230 0.716 (2.923, 5.067) 0.978

γ2 -0.005 -0.042 0.052 -0.037 0.076 (-0.143, 0.059) 0.885

γ3 0.024 -0.292 0.421 -0.316 0.593 (-1.117, 0.534) 0.939
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Table 4.9: Estimate, s.e., bias, RMSE, 95% C.I. and C.P. for destructive negative
binomial (φ = 0.5) cure rate model for moderate sample size.

n (pmin, pmax) λ θ True Value Est. s.e. bias RMSE 95% C.I. C.P.

300 (0.2, 0.6) 0.05 α 1.099 1.078 0.286 -0.021 0.391 (0.518, 1.639) 0.942

β0 -1.387 -1.435 0.290 -0.048 0.393 (-2.004, -0.866) 0.955

β1 0.094 0.125 0.085 0.017 0.119 (-0.042, 0.292) 0.946

γ0 1.658 1.847 0.158 0.190 0.274 (1.537, 2.158) 0.795

γ1 3.765 3.926 0.511 0.161 0.721 (2.925, 4.927) 0.929

γ2 -0.005 -0.023 0.047 -0.018 0.065 (-0.115, 0.069) 0.945

γ3 0.024 -0.150 0.304 -0.174 0.445 (-0.746, 0.447) 0.899

φ 0.500 0.415 - - - - -

300 (0.3, 0.9) 0.05 α 1.099 1.022 0.244 -0.077 0.355 (0.544, 1.500) 0.903

β0 -0.848 -0.904 0.299 -0.056 0.409 (-1.490, -0.317) 0.943

β1 0.168 0.207 0.129 0.024 0.190 (-0.047, 0.461) 0.876

γ0 1.658 1.852 0.137 0.195 0.257 (1.584, 2.121) 0.727

γ1 3.765 3.932 0.432 0.168 0.613 (3.085, 4.780) 0.944

γ2 -0.005 -0.031 0.043 -0.026 0.062 (-0.115, 0.052) 0.896

γ3 0.024 -0.233 0.268 -0.256 0.434 (-0.758, 0.293) 0.834

φ 0.500 0.280 - - - - -

300 (0.2, 0.6) 0.15 α 1.099 1.095 0.358 -0.004 0.491 (0.393, 1.797) 0.939

β0 -1.387 -1.465 0.362 -0.078 0.488 (-2.175, -0.754) 0.953

β1 0.117 0.135 0.111 0.027 0.155 (-0.082, 0.352) 0.940

γ0 1.658 1.848 0.190 0.190 0.310 (1.476, 2.219) 0.842

γ1 3.765 3.838 0.690 0.073 0.953 (2.485, 5.191) 0.925

γ2 -0.005 -0.024 0.067 -0.018 0.093 (-0.155, 0.108) 0.940

γ3 0.024 -0.210 0.429 -0.234 0.621 (-1.051, 0.631) 0.909

φ 0.500 0.414 - - - - -

300 (0.3, 0.9) 0.15 α 1.099 1.031 0.313 -0.068 0.442 (0.417, 1.645) 0.916

β0 -0.847 -0.954 0.383 -0.106 0.522 (-1.705, -0.202) 0.957

β1 0.187 0.263 0.183 0.081 0.273 (-0.097, 0.622) 0.891

γ0 1.658 1.856 0.165 0.199 0.284 (1.533, 2.179) 0.804

γ1 3.765 3.949 0.606 0.184 0.851 (2.761, 5.137) 0.931

γ2 -0.005 -0.032 0.057 -0.027 0.082 (-0.145, 0.08) 0.912

γ3 0.024 -0.250 0.381 -0.274 0.578 (-0.998, 0.497) 0.875

φ 0.500 0.323 - - - - -

300 (0.2, 0.6) 0.25 α 1.099 1.088 0.472 -0.011 0.636 (0.162, 2.013) 0.943

β0 -1.386 -1.462 0.466 -0.075 0.618 (-2.375, -0.549) 0.962

β1 0.124 0.151 0.152 0.043 0.211 (-0.147, 0.449) 0.945

γ0 1.658 1.864 0.223 0.207 0.357 (1.427, 2.302) 0.866

γ1 3.765 3.797 0.943 0.032 1.270 (1.949, 5.645) 0.905

γ2 -0.005 -0.020 0.091 -0.015 0.124 (-0.199, 0.160) 0.931

γ3 0.024 -0.252 0.588 -0.276 0.829 (-1.404, 0.901) 0.925

φ 0.500 0.416 - - - - -

300 (0.3, 0.9) 0.25 α 1.099 1.071 0.424 -0.028 0.565 (0.239, 1.903) 0.953

β0 -0.849 -0.949 0.499 -0.101 0.660 (-1.928, 0.030) 0.957

β1 0.205 0.312 0.281 0.130 0.394 (-0.238, 0.863) 0.900

γ0 1.658 1.850 0.192 0.193 0.311 (1.475, 2.226) 0.844

γ1 3.765 3.969 0.854 0.205 1.136 (2.296, 5.643) 0.954

γ2 -0.005 -0.029 0.076 -0.024 0.107 (-0.177, 0.120) 0.922

γ3 0.024 -0.312 0.536 -0.336 0.755 (-1.362, 0.738) 0.936

φ 0.500 0.349 - - - - -
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Table 4.10: Estimate, s.e., bias, RMSE, 95% C.I. and C.P. for destructive negative
binomial (φ = 0.5) cure rate model for large sample size.

n (pmin, pmax) λ θ True Value Est. s.e. bias RMSE 95% C.I. C.P.

400 (0.2, 0.6) 0.05 α 1.099 1.061 0.246 -0.038 0.352 (0.580, 1.543) 0.916

β0 -1.386 -1.432 0.248 -0.045 0.337 (-1.918, -0.946) 0.949

β1 0.115 0.116 0.071 0.013 0.101 (-0.022, 0.255) 0.928

γ0 1.658 1.827 0.136 0.169 0.241 (1.561, 2.093) 0.786

γ1 3.765 3.917 0.441 0.153 0.620 (3.052, 4.782) 0.925

γ2 -0.005 -0.023 0.040 -0.018 0.057 (-0.102, 0.056) 0.933

γ3 0.024 -0.131 0.262 -0.155 0.383 (-0.645, 0.382) 0.897

φ 0.500 0.369 - - - - -

400 (0.3, 0.9) 0.05 α 1.099 1.012 0.212 -0.087 0.310 (0.597, 1.426) 0.894

β0 -0.847 -0.905 0.255 -0.057 0.349 (-1.404, -0.405) 0.944

β1 0.159 0.194 0.107 0.017 0.159 (-0.016, 0.403) 0.869

γ0 1.658 1.837 0.117 0.180 0.229 (1.607, 2.068) 0.683

γ1 3.765 3.968 0.379 0.203 0.551 (3.225, 4.710) 0.924

γ2 -0.005 -0.028 0.036 -0.023 0.053 (-0.100, 0.043) 0.916

γ3 0.024 -0.215 0.231 -0.239 0.382 (-0.667, 0.238) 0.806

φ 0.500 0.265 - - - - -

400 (0.2, 0.6) 0.15 α 1.099 1.059 0.310 -0.040 0.430 (0.452, 1.667) 0.931

β0 -1.387 -1.450 0.312 -0.063 0.417 (-2.062, -0.838) 0.959

β1 0.098 0.128 0.097 0.024 0.135 (-0.062, 0.318) 0.931

γ0 1.658 1.816 0.162 0.158 0.264 (1.498, 2.133) 0.855

γ1 3.765 3.873 0.615 0.109 0.833 (2.669, 5.078) 0.959

γ2 -0.005 -0.024 0.057 -0.019 0.079 (-0.136, 0.088) 0.935

γ3 0.024 -0.166 0.367 -0.190 0.531 (-0.886, 0.554) 0.910

φ 0.500 0.381 - - - - -

400 (0.3, 0.9) 0.15 α 1.099 1.048 0.271 -0.051 0.381 (0.517, 1.579) 0.928

β0 -0.847 -0.936 0.323 -0.088 0.442 (-1.568, -0.304) 0.941

β1 0.213 0.222 0.145 0.045 0.217 (-0.062, 0.505) 0.885

γ0 1.658 1.831 0.141 0.174 0.246 (1.556, 2.107) 0.774

γ1 3.765 3.936 0.526 0.171 0.724 (2.905, 4.966) 0.946

γ2 -0.005 -0.031 0.050 -0.025 0.073 (-0.129, 0.068) 0.906

γ3 0.024 -0.259 0.326 -0.283 0.502 (-0.898, 0.381) 0.871

φ 0.5 0.303 - - - - -

400 (0.2, 0.6) 0.25 α 1.099 1.074 0.400 -0.025 0.537 (0.290, 1.857) 0.946

β0 -1.387 -1.454 0.398 -0.067 0.529 (-2.234, -0.674) 0.957

β1 0.094 0.131 0.119 0.027 0.164 (-0.103, 0.365) 0.945

γ0 1.658 1.826 0.190 0.169 0.297 (1.454, 2.199) 0.882

γ1 3.765 3.856 0.841 0.092 1.140 (2.208, 5.504) 0.922

γ2 -0.005 -0.027 0.077 -0.022 0.105 (-0.177, 0.123) 0.933

γ3 0.024 -0.194 0.503 -0.218 0.695 (-1.180, 0.792) 0.935

φ 0.500 0.399 - - - - -

400 (0.3, 0.9) 0.25 α 1.099 1.068 0.361 -0.031 0.492 (0.361 , 1.775) 0.936

β0 -0.847 -0.944 0.413 -0.096 0.553 (-1.754, -0.133) 0.944

β1 0.204 0.240 0.186 0.064 0.267 (-0.124, 0.604) 0.895

γ0 1.658 1.824 0.164 0.166 0.266 (1.502, 2.146) 0.856

γ1 3.765 3.935 0.733 0.170 0.976 (2.498, 5.372) 0.951

γ2 -0.005 -0.029 0.065 -0.024 0.092 (-0.156, 0.097) 0.912

γ3 0.024 -0.302 0.453 -0.326 0.660 (-1.191, 0.587) 0.916

φ 0.500 0.327 - - - - -
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Table 4.11: Estimate, s.e., bias, RMSE, 95% C.I. and C.P. for destructive negative
binomial (φ = 5.2) cure rate model for moderate sample size.

n (pmin, pmax) λ θ True Value Est. s.e. bias RMSE 95% C.I. C.P.

300 (0.2, 0.6) 0.05 α 1.099 0.963 0.486 -0.136 0.685 (0.010, 1.915) 0.906

β0 -1.387 -0.592 0.479 0.795 1.671 (-1.530, 0.346) 0.914

β1 0.095 0.088 0.216 -0.020 0.463 (-0.335, 0.510) 0.908

γ0 1.658 2.028 0.224 0.370 0.458 (1.588, 2.467) 0.650

γ1 3.765 4.275 0.676 0.510 1.022 (2.950, 5.599) 0.898

γ2 -0.005 -0.016 0.074 -0.010 0.100 (-0.160, 0.129) 0.942

γ3 0.024 -0.189 0.442 -0.213 0.629 (-1.056, 0.677) 0.908

φ 5.200 4.149 - - - - -

300 (0.3, 0.9) 0.05 α 1.099 0.860 0.452 -0.239 0.681 (-0.025, 1.745) 0.871

β0 -0.848 -0.677 0.665 0.171 1.330 (-1.980, 0.626) 0.867

β1 0.138 0.470 0.466 0.289 0.753 (-0.443, 1.383) 0.863

γ0 1.658 2.033 0.201 0.376 0.442 (1.640, 2.426) 0.590

γ1 3.765 4.405 0.631 0.640 1.051 (3.167, 5.642) 0.829

γ2 -0.005 -0.020 0.067 -0.015 0.092 (-0.152, 0.111) 0.940

γ3 0.024 -0.227 0.407 -0.251 0.594 (-1.024, 0.570) 0.904

φ 5.200 3.893 - - - - -

300 (0.2, 0.6) 0.15 α 1.099 1.006 0.625 -0.093 0.892 (-0.219, 2.230) 0.918

β0 -1.387 -0.960 0.590 0.427 1.469 (-2.116, 0.196) 0.922

β1 0.092 0.089 0.225 -0.019 0.422 (-0.352, 0.530) 0.944

γ0 1.658 2.048 0.273 0.390 0.517 (1.512, 2.584) 0.729

γ1 3.765 4.154 0.961 0.389 1.322 (2.271, 6.037) 0.944

γ2 -0.005 -0.021 0.108 -0.016 0.152 (-0.233, 0.192) 0.926

γ3 0.024 -0.275 0.657 -0.299 0.958 (-1.564, 1.013) 0.912

φ 5.200 4.177 - - - - -

300 (0.3, 0.9) 0.15 α 1.099 0.976 0.597 -0.123 0.846 (-0.195, 2.147) 0.911

β0 -0.847 1.715 0.886 2.563 3.939 (-0.022, 3.452) 0.901

β1 0.136 0.212 0.494 0.030 1.030 (-0.756, 1.179) 0.866

γ0 1.658 2.040 0.243 0.382 0.481 (1.564, 2.516) 0.694

γ1 3.765 4.315 0.905 0.550 1.267 (2.541, 6.089) 0.949

γ2 -0.005 -0.023 0.098 -0.018 0.138 (-0.216, 0.170) 0.935

γ3 0.024 -0.328 0.624 -0.352 0.894 (-1.550, 0.894) 0.927

φ 5.200 4.070 - - - - -

300 (0.2, 0.6) 0.25 α 1.099 1.029 0.847 -0.070 1.159 (-0.631, 2.690) 0.914

β0 -1.386 -1.539 1.042 -0.152 1.390 (-3.582, 0.504) 0.931

β1 0.061 0.284 0.380 0.176 0.548 (-0.462, 1.029) 0.937

γ0 1.658 2.047 0.320 0.390 0.560 (1.419, 2.675) 0.800

γ1 3.765 4.238 1.493 0.474 1.990 (1.312, 7.164) 0.904

γ2 -0.005 -0.009 0.145 -0.004 0.210 (-0.293, 0.274) 0.890

γ3 0.024 -0.381 0.955 -0.405 1.337 (-2.253, 1.490) 0.921

φ 5.200 4.225 - - - - -

300 (0.3, 0.9) 0.25 α 1.099 1.075 0.843 -0.024 1.161 (-0.577, 2.727) 0.892

β0 -0.848 -0.989 1.042 -0.141 1.499 (-3.031, 1.053) 0.917

β1 0.211 0.501 0.638 0.316 0.919 (-0.750, 1.751) 0.865

γ0 1.658 2.044 0.284 0.387 0.522 (1.487, 2.602) 0.771

γ1 3.765 4.358 1.309 0.594 1.789 (1.794, 6.923) 0.942

γ2 -0.005 -0.004 0.136 0.001 0.193 (-0.270, 0.262) 0.917

γ3 0.024 -0.507 0.939 -0.531 1.352 (-2.347, 1.334) 0.909

φ 5.200 3.933 - - - - -
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Table 4.12: Estimate, s.e., bias, RMSE, 95% C.I. and C.P. for destructive negative
binomial (φ = 5.2) cure rate model for large sample size.

n (pmin, pmax) λ θ True Value Est. s.e. bias RMSE 95% C.I. C.P.

400 (0.2, 0.6) 0.05 α 1.099 0.986 0.417 -0.113 0.599 (0.168, 1.804) 0.924

β0 -1.386 -1.548 0.383 -0.161 0.540 (-2.298, -0.798) 0.934

β1 0.134 0.127 0.138 0.024 0.201 (-0.145, 0.398) 0.910

γ0 1.658 1.968 0.188 0.310 0.386 (1.598, 2.337) 0.658

γ1 3.765 4.182 0.579 0.417 0.857 (3.047, 5.316) 0.932

γ2 -0.005 -0.021 0.062 -0.016 0.084 (-0.142, 0.100) 0.954

γ3 0.024 -0.204 0.375 -0.228 0.549 (-0.939, 0.531) 0.916

φ 5.200 3.880 - - - - -

400 (0.3, 0.9) 0.05 α 1.099 0.861 0.395 -0.238 0.607 (0.087, 1.635) 0.851

β0 -0.847 -0.377 0.456 0.471 1.443 (-1.271, 0.517) 0.876

β1 0.184 0.272 0.323 0.096 0.558 (-0.362, 0.905) 0.847

γ0 1.658 2.004 0.171 0.346 0.397 (1.668, 2.339) 0.514

γ1 3.765 4.351 0.541 0.586 0.913 (3.291, 5.411) 0.845

γ2 -0.005 -0.025 0.058 -0.019 0.081 (-0.139, 0.089) 0.922

γ3 0.024 -0.200 0.349 -0.224 0.524 (-0.885, 0.485) 0.900

φ 5.200 3.770 - - - - -

400 (0.2, 0.6) 0.15 α 1.099 0.933 0.527 -0.166 0.758 (-0.100, 1.966) 0.896

β0 -1.386 -1.577 0.498 -0.190 0.708 (-2.552, -0.601) 0.948

β1 0.087 0.211 0.218 0.107 0.323 (-0.217, 0.639) 0.934

γ0 1.658 1.984 0.228 0.326 0.429 (1.536, 2.431) 0.733

γ1 3.765 4.223 0.834 0.458 1.179 (2.588, 5.857) 0.944

γ2 -0.005 -0.022 0.092 -0.017 0.128 (-0.202, 0.157) 0.900

γ3 0.024 -0.229 0.551 -0.253 0.764 (-1.309, 0.851) 0.932

φ 5.200 4.043 - - - - -

400 (0.3, 0.9) 0.15 α 1.099 0.928 0.507 -0.171 0.732 (-0.066, 1.922) 0.909

β0 -0.847 -1.035 0.633 -0.187 0.927 (-2.277, 0.206) 0.913

β1 0.183 0.445 0.413 0.271 0.654 (-0.364, 1.254) 0.842

γ0 1.658 1.997 0.206 0.339 0.417 (1.594, 2.400) 0.645

γ1 3.765 4.379 0.792 0.614 1.206 (2.826, 5.932) 0.917

γ2 -0.005 -0.014 0.085 -0.009 0.116 (-0.180, 0.152) 0.941

γ3 0.024 -0.312 0.522 -0.336 0.761 (-1.335, 0.7110) 0.917

φ 5.200 3.834 - - - - -

400 (0.2, 0.6) 0.25 α 1.099 1.006 0.722 -0.093 0.998 (-0.409, 2.421) 0.918

β0 -1.386 -1.544 0.707 -0.158 1.065 (-2.929, -0.159) 0.926

β1 0.106 0.229 0.290 0.126 0.435 (-0.340, 0.797) 0.922

γ0 1.658 1.968 0.268 0.311 0.461 (1.443, 2.493) 0.817

γ1 3.765 4.253 1.290 0.488 1.752 (1.725, 6.780) 0.920

γ2 -0.005 -0.018 0.125 -0.013 0.176 (-0.263, 0.227) 0.912

γ3 0.024 -0.284 0.813 -0.308 1.120 (-1.878, 1.309) 0.932

φ 5.200 4.087 - - - - -

400 (0.3, 0.9) 0.25 α 1.099 0.969 0.676 -0.130 0.924 (-0.356, 2.293) 0.923

β0 -0.847 -0.009 0.955 0.839 2.304 (-1.880, 1.863) 0.905

β1 0.177 0.235 0.379 0.060 0.660 (-0.508, 0.979) 0.872

γ0 1.658 1.990 0.242 0.333 0.446 (1.517, 2.464) 0.736

γ1 3.765 4.440 1.206 0.676 1.648 (2.078, 6.803) 0.953

γ2 -0.005 -0.008 0.112 -0.003 0.151 (-0.227, 0.210) 0.925

γ3 0.024 -0.389 0.752 -0.413 1.034 (-1.863, 1.085) 0.947

φ 5.200 3.827 - - - - -
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Table 4.13: Selection rate based on AIC, BIC and maximized log-likelihood value.
Fitted Models

True Models Setting 1(n = 300) Setting 2 (n = 400)

DEWP DLB DNB DEWP DLB DNB

DEWP (φ = −0.5) φ̂ = −0.044 φ̂ = 0.115 φ̂ = −0.275 φ̂ = 0.378

AIC 0.159 0.799 0.042 0.179 0.768 0.053

BIC 0.021 0.963 0.016 0.037 0.944 0.019

log-lik 0.589 0.257 0.154 0.630 0.152 0.218

DEWP (φ = 0.2) φ̂ = 0.303 φ̂ = 0.125 φ̂ = 0.222 φ̂ = 0.186

AIC 0.112 0.878 0.010 0.125 0.843 0.032

BIC 0.026 0.961 0.013 0.063 0.919 0.018

log-lik 0.568 0.398 0.034 0.597 0.360 0.043

DLB φ̂ = −0.293 φ̂ = 0.319 φ̂ = −0.077 φ̂ = 0.347

AIC 0.084 0.903 0.013 0.073 0.919 0.008

BIC 0.023 0.972 0.005 0.016 0.983 0.001

log-lik 0.436 0.548 0.016 0.427 0.559 0.014

DNB (φ = 0.5) φ̂ = −0.046 φ̂ = 0.184 φ̂ = 0.311 φ̂ = 0.336

AIC 0.172 0.759 0.069 0.163 0.762 0.075

BIC 0.033 0.966 0.001 0.003 0.969 0.028

log-lik 0.589 0.234 0.177 0.556 0.262 0.182

DNB (φ = 0.75) φ̂=-0.143 φ̂ = 0.176 φ̂ = 0.545 φ̂ = 0.346

AIC 0.187 0.745 0.068 0.174 0.737 0.089

BIC 0.046 0.934 0.020 0.040 0.927 0.033

log-lik 0.624 0.228 0.148 0.599 0.242 0.159
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Table 4.14: TRB (%) (TMSE, φ̂, TRE) in estimation of cured proportion for all
candidate models.

True Model

Fitted Model DEWP (φ = −0.5) DEWP (φ = 0.2) DLBP DNB (φ = 0.5) DNB (φ = 0.75)

Setting 1 (n = 300)

True Model 28.42 (0.004, - , 1.000) 56.493 (0.005, - , 1.000) 66.935 (0.003, - , 1.000) 32.563 (0.004, - , 1.000) 33.942 (0.005, - , 1.000)

DEWP 30.018 (0.004, -0.108, 0.902) 62.255 (0.005, 0.267, 0.961) 82.547 (0.004, 0.755, 0.987) 35.146 (0.005, -0.044, 0.904) 36.008 (0.006, -0.131, 0.957)

DLBP 30.898 (0.005, - , 1.033) 52.888 (0.004, - , 1.287) 66.935 (0.003, - , 1.000) 34.73 (0.004, - , 1.138) 35.446 (0.005, - , 1.092)

DNB 27.869 (0.004, 0.459, 1.048) 59.482 (0.005, 0.189, 1.126) 157.468 (0.007, 0.113, 0.475) 31.053 (0.004, 0.277, 1.115) 33.143 (0.005, 0.517, 1.111)

Setting 2 (n = 400)

True Model 35.3 (0.003, -, 1.000) 62.365 (0.003, - , 1.000) 86.617 (0.003, - , 1.000) 41.663 (0.004, - , 1.000) 37.1 (0.003, - , 1.000)

DEWP 37.015 (0.004, -0.199, 0.962) 66.532 (0.004, 0.239, 1.004) 107.147 (0.004, 0.708, 0.964) 42.593 (0.004, -0.079, 1.006) 39.126 (0.004, -0.259, 0.972)

DLBP 37.73 (0.004, 0, 1.383) 61.101 (0.003, - , 1.087) 86.617 (0.003, - , 1.000) 42.992 (0.004, - , 1.052) 40.846 (0.004, - , 1.047)

DNB 34.957 (0.003, 0.461, 1.045) 67.786 (0.003, 0.198, 1.094) 193.413 (0.006, 0.117, 0.455) 40.039 (0.004, 0.396, 1.123) 37.247 (0.003, 0.379, 1.030)

Table 4.15: TRB (%) and TRE when AIC and l̂ are used as a model selection criterion.

True Model

Setting 1 Setting 2

AIC l̂ AIC l̂

TRB (%) TRE TRB (%) TRE TRB (%) TRE TRB (%) TRE

DEWP (φ = −0.5) 29.432 1.007 29.589 0.962 36.347 1.148 36.659 1.085

DEWP (φ = 0.2) 55.174 1.134 58.484 1.066 62.321 1.040 63.832 1.032

DLB 67.872 0.999 75.178 0.989 88.259 0.997 94.829 0.986

DNB (φ = 0.5) 33.909 1.068 34.144 1.003 42.461 1.030 42.408 1.027

DNB (φ = 0.75) 35.015 1.050 35.450 1.008 39.347 1.023 39.104 0.998
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Table 4.16: AIC values when true model is fitted.
True Model

Fitted Model DEWP (φ = −0.5) DNB (φ = 0.5)

Setting 1 Setting 2 Setting 1 Setting 2

True Model 0.530 0.540 0.330 0.350

DEWP 0.070 0.060 0.100 0.090

DLBP 0.370 0.390 0.530 0.550

DNB 0.030 0.010 0.040 0.010



Chapter 5

Summary and Conclusions

With significant improvements in bio-medical fields, more patients are getting cured

even for certain cancers. Consequently, in many cases, the survival plots levels off well

above zero even after following up for considerable amount of time. This indicates

the increasing requirement of applying cure rate models for analyzing lifetime data.

Cure rate acts as an important marker to measure the efficacy of a treatment or

therapy and thus, estimating cure rate is often crucial. As such, generalizing this

model through various possible extensions (e.g., proportional hazards lifetimes) and

more realistic assumptions are desirable.

5.1 Summary of research

In this thesis, cure rate and destructive cure rate models under proportional hazards

lifetime for the susceptible are mainly studied. Consideration of a proportional haz-

ards lifetime generalizes the i.i.d lifetimes of the susceptible by linking covariates to

the lifetimes. Additional degrees of flexibility are added to the model by assuming

the COM-Poisson distribution for the initial number of competing causes in case of

137
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ordinary cure rate model and weighted Poisson distribution in case of destructive cure

rate model under competing cause scenario. The baseline hazard function is modeled

by a Weibull hazard function or approximated by piecewise linear function.

In Chapter 2, a flexible COM-Poisson cure rate model has been studied with a

proportional hazard model for the lifetime distribution of susceptible with the baseline

hazard function being that of a Weibull distribution. The estimation for the model

parameters has been carried out by using the EM algorithm, a profile likelihood ap-

proach for estimating the dispersion parameter of the COM-Poisson distribution, and

Louis’ method for finding the observed information matrix. A number of different sce-

narios have been taken into account concerning the values of cure rates, sample sizes,

censoring proportions and lifetime parameters, in order to carefully evaluate the prop-

erties of the model as well as the performance of the inferential methods developed

here. The estimates of the regression coefficients, lifetime parameters and the cure

rates are all seen to be quite accurate. Low censoring, low cure rates and large sample

size seem to result in more precise estimation. Moreover, the proposed model and the

method has been illustrated by analyzing a real life data set on cutaneous melanoma;

geometric cure rate model is seen to provide the best fit to the data which does not

significantly differentiate between the lifetime distributions across covariate groups

meaning that the test for homogeneity among the groups is not rejected. However,

as φ increases (φ > 1), the assumption of equal lifetime distributions among groups

does get rejected. Thus, the choice of a proportional hazard model for the lifetime

of susceptible becomes better than a parametric Weibull lifetime model, especially

when φ > 1.

In Chapter 3, the model proposed in this paper for modeling lifetime data with a

surviving fraction offers a great advantage in terms of flexibility and robustness. The

number of competing causes is modeled using a COM-Poisson distribution. A COM-
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Poisson distribution takes into account many well known discrete distributions e.g.

geometric, Poisson, Bernoulli depending on the value of the dispersion parameter φ.

A COM-Poisson distribution in general constitutes over-dispersed distributions when

φ < 1 and under-dispersed distributions when φ > 1. More flexibility is included to

the model by assuming the lifetime distributions of the non-cured individuals to be

from a proportional hazards family. A proportional hazard lifetime can vary with

respect to the covariate values leading to non-homogeneity (different lifetime distri-

butions) among the individuals. Moreover, the baseline hazard function is estimated

non-parametrically by estimating with piecewise linear function. This PLA approach

takes into consideration choices of cut-points τ0, τ1, . . . , τN which are at the discretion

of the reader. Here, we have used quantile values of the observed and censored times,

and also based on the curvature of the kernel based baseline hazard function (only

for the real data). In both cases, we have approximated the baseline hazard function

in [τN ,∞) with the line in [τN−1, τN ]. A comparative study was made among models

with N = 1, . . . , 5 and the true parametric model. The estimation of the model pa-

rameters was carried out using EM algorithm and the standard error of the estimates

was obtained employing Louis’ method. A profile likelihood approach provided the

MLE for φ since the likelihood surface is very flat with respect to φ. In most of the

cases, the estimates were close to the true value while s.e.’s and RMSE’s are very

similar among the PLAs and the true parametric model. A simulation study with a

single covariate and four different settings depending on censoring rate and sample

size (section 3.4) established the accuracy of the estimates of the model parameters.

An increase in sample size and decrease in the true censoring proportion lead to im-

proved results reducing s.e. and RMSE. To study the difference between true and

estimated survival times, a measure of RISE was applied, which was found to be

have a trend similar to RMSE. It was also observed that on increasing number of
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lines to approximate the baseline hazard beyond 5 did not sufficiently increase (in

some cases decrease) the log-likelihood value. The estimate of ψN (baseline hazard

at τN) suffers from large bias since in most of the cases τN lies far away from τN−1,

so the PLA does not provide a good approximation. The performance of the model

was also assessed based on a power study and model discrimination using LRT and

AIC/BIC, which showed consistent result when the sample size was increased. The

study of the real data on cutaneous melanoma with one covariate of nodule category

suggested that a geometric cure rate model was appropriate unanimously for all N .

On taking 3 covariates, geometric cure rate model delivered the best approximations

for N = 1, 2, 3 but Poisson and Bernoulli cure rate models for N = 4 and N = 5

respectively. On the basis of AIC and BIC, geometric cure rate model with N = 2

provided the minimum values.

In Chapter 4, a destructive cure rate model is studied where the initial competing

causes undergo a destructive mechanism under a competing risk scenario and exam-

ined under proportional hazards lifetime assumption for the susceptible. The model

generalizes earlier works (see Pal and Balakrishnan, 2017, Pal and Balakrishnan,

2016) on destructive cure rate model by assuming non i.i.d lifetimes for suscepti-

ble. This is accomplished by linking covariates to the lifetimes through proportional

hazards assumption. The parameter estimates are found to be quite accurate with

small bias and RMSE. A relatively large bias is observed while estimating φ, espe-

cially when data are generated from DNB (φ = 0.75) cure rate model. The estimates

are observed to be more precise for low censoring (λ = 0.05), higher proportion of

undamaged competing causes, i.e.,(pmin, pmin) = (0.3, 0.9) and large sample size. A

model discrimination is also carried out using information criteria. The importance

of proper model selection is discussed by comparing TRB, TMSE and TRE across

models. A well known real life example on cutaneous melanoma is considered for the
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purpose of illustration of our model. A Kaplan-Meier survival curve is plotted cate-

gorized by ulceration status and it indicates the presence of cured individuals. DNB

cure rate model with φ̂ = 5.2 provides best fit to the data based on AIC (414.216) and

maximized log-likelihood (-199.108) values. Few nested sub-models are also fitted on

the data and the DG cure rate model is found to have the lowest BIC value among

all other models. The assumption of i.i.d. lifetimes among the susceptible could not

be rejected at 5 % level of significance. Several link functions are considered for as-

sociating p and η to the covariates, however, the link L1 (defined in Section 4.6) is

found to produce the highest log-likelihood value.

5.2 Future works

A wide spectrum of future works can be explored using this model. A more generalized

COM-Poisson cure rate model with proportional hazards lifetime for the susceptible

using a generalized gamma baseline hazard can be of interest since this may enable

us with a two-way model discrimination (Balakrishnan and Pal, 2014). The use of an

informative censoring or interval censoring in data instead of right censoring can be

investigated. Future works on cure models under a destructive set-up may proceed

by assuming a Conway-Maxwell (COM) Poisson distribution as the initial number of

competing causes. A more generalized model can be obtained by utilizing the flexibil-

ity of a COM Poisson distribution along with a destructive mechanism with paramet-

ric i.i.d lifetime for the susceptible. An extension to destructive cure rate models can

be implemented with PLA. Further, this can be complemented with a proportional

hazard lifetime distribution as well. Another possible extension to the destructive

cure rate model under proportional hazards assumption can be with respect to the
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estimation technique. Instead of maximizing the expected value E(I | ˆθ(j),O) while

implementing EM-algorithm, we can maximize E(D,M | ˆθ(j),O),where ˆθ(j) is an

estimate of the parameter θ at j-th step of the iteration and O is the observed data

(Gallardo et al., 2016).

A natural extension under the proportional hazard set-up is to include frailty

through latent covariates. In real life scenario, there are many frailty factors which

affect the lifetime of an individual. Among them, many are not observable but would

be meaningful to contain them in the model. This can be done by including the

frailties through some latent covariates. For this, we form clusters of individuals such

that the k-th cluster is affected by the frailty Xk. Under proportional hazards model,

we can consider the hazard function of the susceptible to be h(t|xk) = h0(t)eγ
′xk for

the k-th cluster. On considering Xk to be random, the distribution of lifetime T is

given by

f(t) =

∫
Xk
h0(t)eγ

′xk
{
e−

∫ t
0 h0(z)dz

}eγ′xk
g(xk|ζk)dxk,

where g(.|ζk) is a p.d.f. characterized by the parameter ζk. By assuming various

distributions for the frailty variables, we can carry out simulation under competing

risk and cure rate model (Balakrishnan and Peng, 2006).



Appendix A

Appendix corresponding to

Chapter 2

A.1 The Q-functions

A.1.1 Bernoulli cure rate model

Q(θ∗,π(k)) = Q1(β,π(k)) +Q2(γ,π(k)),

where

Q1(β,π(k)) =
∑
i∈∆1

x′iβ +
∑
i∈∆0

π
(k)
i x

′
iβ −

∑
i∈∆0

log(1 + ex
′
iβ)

and

Q2(γ,π(k)) = n1 log γ0 − n1γ0 log γ1 + (γ0 − 1)
∑
i∈∆1

log ti +
∑
i∈∆1

x′iγ2

−
∑
i∈∆1

(
ti
γ1

)γ0
ex
′
iγ2 −

∑
∆0

π
(k)
i

(
ti
γ1

)γ0
ex
′
iγ2 ,

with

π
(k)
i =

exp
[
x′iβ −

(
ti
γ1

)γ0
ex
′
iγ2

]
1 + exp

[
x′iβ −

(
ti
γ1

)γ0
ex
′
iγ2

]∣∣∣∣∣
θ=θ∗(k)

(A.1.1)
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for i ∈ ∆0.

A.1.2 Poisson cure rate model

Q(θ∗,π(k)) = n1 log γ0 − n1γ0 log γ1 + (γ0 − 1)
∑
i∈∆1

log ti

+
∑
i∈∆1

x′iγ2 −
∑
i∈∆1

(
ti
γ1

)γ0
ex
′
iγ2

+
∑
i∈∆1

log(log(1 + ex
′
iβ))−

∑
∆∗

log(1 + ex
′
iβ) +

∑
i∈∆1

A(ti,xi;β,γ)

−
∑
i∈∆0

π
(k)
i log(A(ti,xi;β,γ)− 1),

where

A(ti,xi;β,γ) = exp

[
−
(
ti
γ1

)γ0
ex
′
iγ2

]
log(1 + ex

′
iβ)

for i ∈ ∆∗, with

π
(k)
i =

eA(ti,xi;β,γ) − 1

eA(ti,xi;β,γ)

∣∣∣∣∣
θ=θ∗(k)

(A.1.2)

for i ∈ ∆0.

A.1.3 Geometric cure rate model

Q(θ∗,π(k)) = n1 log γ0 − n1γ0 log γ1 + (γ0 − 1)
∑
i∈∆1

log ti +
∑
i∈∆1

x′iγ2

+
∑
i∈∆1

B(ti,xi;β,γ)

− 2
∑
i∈∆1

log(1 + C(ti,xi;β,γ)) +
∑
i∈∆0

π
(k)
i B(ti,xi;β,γ)

−
∑
i∈∆0

π
(k)
i log(1 + C(ti,xi;β,γ))−

∑
i∈∆0

log(1 + ex
′
iβ),

where

B(ti,xi;β,γ) = x′iβ −
(
ti
γ1

)γ0
ex
′
iγ2
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and

C(ti,xi;β,γ) = ex
′
iβ

[
1− exp

(
−
(
ti
γ1

)γ0
ex
′
iγ2

)]
for i ∈ ∆∗, with

π
(k)
i =

eB(ti,xi;β,γ)

1 + ex
′
iβ

∣∣∣∣∣
θ=θ∗(k)

(A.1.3)

for i ∈ ∆0.

A.1.4 COM-Poisson cure rate model

Q(θ∗,π(k)) =n1 log γ0 − n1γ0 log γ1 + (γ0 − 1)
∑
i∈∆1

log ti

+
∑
i∈∆1

x′iγ2 −
∑
i∈∆∗

log(1 + ex
′
iβ)

+
∑
i∈∆1

log z2i +
∑
i∈∆0

π
(k)
i log z1i

where

z1 = z1(θ;x, t) =
∞∑
j=1

{ηS(t;γ)}j

(j!)φ
, z2 = z2(θ;x, t) =

∞∑
j=1

{jηS(t;γ)}j

(j!)φ
,

η = η(β;x) = H−1
φ (1 + ex

′
iβ) and S(t;γ) = exp

[
−
(
t

γ1

)γ0
ex
′
iγ2

]
,

with

π
(k)
i =

z1(θ;xi, ti)

1 + z1(θ;xi, ti)

∣∣∣∣∣
θ=θ∗(k)

(A.1.4)

for i ∈ ∆0.

Using the invariance property of MLEs, we can then easily find estimate of the

cure rate as

p̂0 =
1

1 + ex′β̂
,

where β̂ is the MLE of β.
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A.2 First- and second-order derivatives of the Q-

function

A.2.1 Bernoulli cure rate model

The first- and second-order partial derivatives of Q1(β,π(k)) with respect to β and

of Q2(γ,π(k)) function with respect to γ are as follows:

∂Q1

∂βl
=
∑
i∈∆1

xil −
∑
i∈∆∗

xil
ex
′
iβ

1 + ex
′
iβ

+
∑
i∈∆0

π
(k)
i xil,

∂Q2

∂γ0

=
n1

γ0

− n1 log γ1 +
∑
i∈∆1

log ti −
∑
i∈∆1

(
ti
γ1

)γ0
log

(
ti
γ1

)
ex
′
icγ2

−
∑
i∈∆0

π
(k)
i

(
ti
γ1

)γ0
log

(
ti
γ1

)
ex
′
icγ2 ,

∂Q2

∂γ1

= −n1γ0

γ1

+
∑
i∈∆1

γ0

γ1

(
ti
γ1

)γ0
ex
′
icγ2 +

∑
i∈∆0

π
(k)
i

γ0

γ1

(
ti
γ1

)γ0
ex
′
icγ2 ,

∂Q2

∂γ2h

=
∑
i∈∆1

xih −
∑
i∈∆1

xih

(
ti
γ1

)γ0
ex
′
icγ2 −

∑
i∈∆0

π
(k)
i xih

(
ti
γ1

)γ0
ex
′
icγ2 ,

∂2Q1

∂βl∂βl′
= −

∑
i∈∆∗

xilxil′
ex
′
iβ

(1 + ex
′
iβ)2

,
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∂2Q2

∂γ2
0

= −n1

γ2
0

−
∑
i∈∆1

(
ti
γ1

)γ0 [
log

(
ti
γ1

)]2

ex
′
icγ2

−
∑
i∈∆0

π
(k)
i

(
ti
γ1

)γ0 [
log

(
ti
γ1

)]2

ex
′
icγ2 ,

∂2Q2

∂γ0∂γ1

=− n1

γ1

+
∑
i∈∆1

(
ti
γ1

)γ0 1 + γ0 log
(
ti
γ1

)
γ1

 ex′icγ2
+
∑
i∈∆0

π
(k)
i

(
ti
γ1

)γ0 1 + γ0 log
(
ti
γ1

)
γ1

 ex′icγ2 ,

∂2Q2

∂γ0∂γ2h

= −
∑
i∈∆1

xih

(
ti
γ1

)γ0
log

(
ti
γ1

)
ex
′
icγ2

−
∑
i∈∆0

π
(k)
i xih

(
ti
γ1

)γ0
log

(
ti
γ1

)
ex
′
icγ2 ,

∂2Q2

∂γ2
1

=
n1γ0

γ2
1

−
∑
i∈∆1

(
ti
γ1

)γ0 [γ0(1 + γ0)

γ2
1

]
ex
′
icγ2

−
∑
i∈∆0

π
(k)
i

(
ti
γ1

)γ0 [γ0(1 + γ0)

γ2
1

]
ex
′
icγ2 ,

∂2Q2

∂γ1∂γ2h

=
∑
i∈∆1

xih
γ0

γ1

(
ti
γ1

)γ0
ex
′
icγ2 +

∑
i∈∆0

π
(k)
i xih

γ0

γ1

(
ti
γ1

)γ0
ex
′
icγ2 ,

∂Q2

∂γ2h∂γ2h′
= −

∑
i∈∆1

xihxih′

(
ti
γ1

)γ0
ex
′
icγ2 −

∑
i∈∆0

π
(k)
i xihxih′

(
ti
γ1

)γ0
ex
′
icγ2 ,
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where

π
(k)
i =

e
x′iβ−

(
ti
γ1

)γ0
ex
′
icγ2

1 + e
x′iβ−

(
ti
γ1

)γ0
ex
′
ic
γ2


θθθ=θθθ(k)

for l,l′ =0,. . . , p, xi0= 1, h, h′=1, . . . , p, and i=1, . . . , n.

A.2.2 Poisson cure rate model

The first- and second-order partial derivatives of Q(θ,π(k)) with respect to β and γ

are as follows:

∂Q

∂βl
=
∑
i∈∆1

xil
ex
′
iβ

(1 + ex
′
iβ) log(1 + ex

′
iβ)

+
∑
i∈∆1

xil
ex
′
iβS(ti;γ)

(1 + ex
′
iβ)
−
∑
i∈∆∗

xil
ex
′
iβ

(1 + ex
′
iβ)

+
∑
i∈∆0

π
(k)
i xil

ex
′
iβP (ti,xi;β,γ)S(ti;γ)

(1 + ex
′
iβ)

,

∂Q

∂γ0

= n1

[
1

γ0

− log γ1

]
+
∑
i∈∆1

[
log ti −

(
ti
γ1

)γ0
log

(
ti
γ1

)
ex
′
icγ2

]
+
∑
i∈∆1

log

(
ti
γ1

)
log(1 + ex

′
iβ)S(ti;γ) logS(ti;γ)

+
∑
i∈∆0

π
(k)
i P (ti,xi;β,γ) log

(
ti
γ1

)
log(1 + ex

′
iβ)S(ti;γ) logS(ti;γ),

∂Q

∂γ1

= −γ0

γ1

[
n1 +

∑
i∈∆1

logS(ti;γ)
(

1 + log(1 + ex
′
iβ)S(ti;γ)

)]

− γ0

γ1

[∑
i∈∆0

π
(k)
i P (ti,xi;β,γ) log(1 + ex

′
iβ)S(ti;γ) logS(ti;γ)

]
,
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∂Q

∂γ2h

=
∑
i∈∆1

xih

[
1 + logS(ti;γ)

(
1 + S(ti;γ) log(1 + ex

′
iβ)
)]

+
∑
i∈∆0

π
(k)
i xihP (ti,xi;β,γ) log(1 + ex

′
iβ)S(ti;γ) logS(ti;γ),

∂2Q

∂βl∂β′l
=
∑
i∈∆1

xilxil′

[
ex
′
iβ

(1 + ex
′
iβ)2

(
1

log(1 + ex
′
iβ)

[
1− ex

′
iβ

log(1 + ex
′
iβ)

]
+ S(ti;γ)

)]
−
∑
i∈∆∗

xilxil′
ex
′
iβ

(1 + ex
′
iβ)2

+
∑
i∈∆0

π
(k)
i xilxil′P (ti,xi;β,γ)S(ti;γ)

ex
′
iβ

(1 + ex
′
iβ)2

[
1− ex

′
iβ

eA(ti,xi;β,γ) − 1

]
,

∂2Q

∂βl∂γ0

=
∑
i∈∆1

xil
ex
′
iβ

(1 + ex
′
iβ)

S(ti;γ) logS(ti;γ) log

(
ti
γ1

)
+
∑
i∈∆0

π
(k)
i xilP (ti,xi;β,γ)

ex
′
iβ

(1 + ex
′
iβ)

S(ti;γ) logS(ti;γ) log

(
ti
γ1

)
×
[
1− S(ti;γ) log(1 + ex

′
iβ)

eA(ti,xi;β,γ) − 1

]
,

∂2Q

∂βl∂γ1

=−
∑
i∈∆1

xil
γ0

γ1

ex
′
iβ

(1 + ex
′
iβ)

S(ti;γ) logS(ti;γ)

−
∑
i∈∆0

π
(k)
i xil

γ0

γ1

P (ti,xi;β,γ)
ex
′
iβ

(1 + ex
′
iβ)

S(ti;γ) logS(ti;γ)

×
[
1− S(ti;γ) log(1 + ex

′
iβ)

eA(ti,xi;β,γ) − 1

]
,
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∂2Q

∂βl∂γ2h

=
∑
i∈∆1

xilxih
ex
′
iβ

(1 + ex
′
iβ)

S(ti;γ) logS(ti;γ)

+
∑
i∈∆0

π
(k)
i xilxihP (ti,xi;β,γ)

ex
′
iβ

(1 + ex
′
iβ)

S(ti;γ) logS(ti;γ)

×
[
1− S(ti;γ) log(1 + ex

′
iβ)

eA(ti,xi;β,γ) − 1

]
,

∂2Q

∂γ2
0

=− n1

γ2
0

+
∑
i∈∆1

[
log

(
ti
γ1

)]2

logS(ti;γ)
[
1 + log(1 + ex

′
iβ)S(ti;γ)(1 + logS(ti;γ))

]
+
∑
i∈∆0

π
(k)
i P (ti,xi;β,γ)

[
log

(
ti
γ1

)]2

log(1 + ex
′
iβ)S(ti;γ) logS(ti;γ)

×
[
1 + logS(ti;γ)− S(ti;γ) logS(ti;γ) log(1 + ex

′
iβ)

eA(ti,xi;β,γ) − 1

]
,

∂2Q

∂γ0∂γ1

=− n1

γ1

−
∑
i∈∆1

logS(ti;γ)

γ1

[
1 + γ0 log

(
ti
γ1

)]
−
∑
i∈∆1

[
1 + γ0 log

(
ti
γ1

)
(1 + logS(ti;γ))

]
S(ti;γ) logS(ti;γ) log(1 + ex

′
iβ)

γ1

−
∑
i∈∆0

π
(k)
i P (ti,xi;β,γ)

S(ti;γ) logS(ti;γ) log(1 + ex
′
iβ)

γ1

×
[
1 + γ0 log

(
ti
γ1

)
(1 + logS(ti;γ))

−
γ0S(ti;γ) logS(ti;γ) log

(
ti
γ1

)
log(1 + ex

′
iβ)

eA(ti,xi;β,γ) − 1

 ,
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∂2Q

∂γ0∂γ2h

=
∑
i∈∆1

xih log

(
ti
γ1

)
logS(ti;γ)

[
1 + log(1 + ex

′
iβ)S(ti;γ)(1 + logS(ti;γ))

]
+
∑
i∈∆0

π
(k)
i xihP (ti,xi;β,γ) log

(
ti
γ1

)
S(ti;γ) logS(ti;γ) log(1 + ex

′
iβ)

×
[
(1 + logS(ti;γ))− log(1 + ex

′
iβ)S(ti;γ) logS(ti;γ)

eA(ti,xi;β,γ) − 1

]
,

∂2Q

∂γ2
1

=
n1γ0

γ2
1

−
∑
i∈∆1

γ0(1 + γ0)

γ2
1

logS(ti;γ)

+
∑
i∈∆1

γ0

γ2
1

log(1 + ex
′
iβ)S(ti;γ) [1 + γ0(1 + logS(ti;γ))]

+
∑
i∈∆0

π
(k)
i

γ0

γ2
1

P (ti,xi;β,γ)S(ti;γ) logS(ti;γ) log(1 + ex
′
iβ)

×
[
1 + γ0(1 + logS(ti;γ))− γ0S(ti;γ) logS(ti;γ) log(1 + ex

′
iβ)

eA(ti,xi;β,γ) − 1

]
,

∂2Q

∂γ1∂γ2h

=−
∑
i∈∆1

xih
γ0

γ1

logS(ti;γ)
[
1 + S(ti;γ)(1 + logS(ti;γ)) log(1 + ex

′
iβ)
]

−
∑
i∈∆0

π
(k)
i xih

γ0

γ1

P (ti,xi;β,γ)S(ti;γ) logS(ti;γ) log(1 + ex
′
iβ)

×
[
(1 + logS(ti;γ))− S(ti;γ) logS(ti;γ) log(1 + ex

′
iβ)

eA(ti,xi;β,γ) − 1

]
,

∂2Q

∂γ2h∂γ2h′
=
∑
i∈∆1

xihxih′ logS(ti;γ)
[
1 + S(ti;γ)(1 + logS(ti;γ)) log(1 + ex

′
iβ)
]

+
∑
i∈∆0

π
(k)
i xihxih′P (ti,xi;β,γ)

×
[
(1 + logS(ti;γ))− S(ti;γ) logS(ti;γ) log(1 + ex

′
iβ)

eA(ti,xi;β,γ) − 1

]
,
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where

π
(k)
i =

eA(ti,xi;β,γ) − 1

eA(ti,xi;β,γ)


θθθ=θθθ(k)

,

A(ti,xi;β,γ) = log S(ti;γ) log(1 + ex
′
iβ),

P (ti,xi;β,γ) =
eA(ti,xi;β,γ)

eA(ti,xi;β,γ) − 1

and

S(ti;γ) = exp

[
−
(
ti
γ1

)γ0
ex
′
icγ2

]
for l,l′ =0, . . . , p, xi0= 1, h, h′=1, . . . , p, and i=1, . . . , n.

A.2.3 Geometric cure rate model

The first- and second-order partial derivatives of Q(θ,π(k)) with respect to β and γ

are as follows:

∂Q

∂βl
=
∑
i∈∆1

xil − 2
∑
i∈∆1

xil
B(ti,xi;β,γ)− 1

B(ti,xi;β,γ)

+
∑
i∈∆0

xil

(
π

(k)
i −

ex
′
iβ

1 + ex
′
iβ

)
−
∑
i∈∆0

π(k)xil
B(ti,xi;β,γ)− 1

B(ti,xi;β,γ)
,

∂Q

∂γ0

=
n1

γ0

− n1 log(γ1) +
∑
i∈∆1

log ti +
∑
i∈∆1

log

(
ti
γ1

)
logS(ti;γ)

+
∑
i∈∆0

π
(k)
i log

(
ti
γ1

)
logS(ti;γ)

+ 2
∑
i∈∆1

ex
′
iβ log

(
ti
γ1

)
S(ti;γ) logS(ti;γ)

B(ti,xi;β,γ)

+
∑
i∈∆0

π
(k)
i

ex
′
iβ log

(
ti
γ1

)
S(ti;γ) logS(ti;γ)

B(ti,xi;β,γ)
,
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∂Q

∂γ1

=− n1γ0

γ1

−
∑
i∈∆1

log

(
γ0

γ1

)
logS(ti;γ)−

∑
i∈∆0

π
(k)
i log

(
γ0

γ1

)
logS(ti;γ)

− 2
∑
i∈∆1

ex
′
iβ log

(
γ0
γ1

)
S(ti;γ) logS(ti;γ)

B(ti,xi;β,γ)

−
∑
i∈∆0

π
(k)
i

ex
′
iβ log

(
γ0
γ1

)
S(ti;γ) logS(ti;γ)

B(ti,xi;β,γ)
,

∂Q

∂γ2h

=
∑
I1

xih (1 + logS(ti;γ)) + 2
∑
i∈∆1

xihe
x′iβS(ti;γ) logS(ti;γ)

B(ti,xi;β,γ)

+
∑
I0

π
(k)
i xih logS(ti;γ)

+
∑
i∈∆0

π
(k)
i

xihe
x′iβS(ti;γ) logS(ti;γ)

B(ti,xi;β,γ)
,

∂2Q

∂βl∂βl′
=− 2

∑
i∈∆1

xilxil′
B(ti,xi;β,γ)− 1

B(ti,xi;β,γ)2
−
∑
i∈∆0

xilxil′e
x′iβ

(1 + ex
′
iβ)2

−
∑
i∈∆0

π
(k)
i xilxil′

B(ti,xi;β,γ)− 1

B(ti,xi;β,γ)2
,

∂2Q

∂βl∂γ0

=2
∑
i∈∆1

xile
x′iβ log

(
ti
γ1

)
S(ti;γ) logS(ti;γ)

B(ti,xi;β,γ)2

+
∑
i∈∆0

π
(k)
i

xile
x′iβ log

(
ti
γ1

)
S(ti;γ) logS(ti;γ)

B(ti,xi;β,γ)2
,
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∂2Q

∂βl∂γ1

=− 2
∑
i∈∆1

xile
x′iβ
(
γ0
γ1

)
S(ti;γ) logS(ti;γ)

B(ti,xi;β,γ)2

−
∑
i∈∆0

π
(k)
i

xile
x′iβ
(
γ0
γ1

)
S(ti;γ) logS(ti;γ)

B(ti,xi;β,γ)2
,

∂2Q

∂βl∂γ2h

=2
∑
i∈∆1

xilxihe
x′iβS(ti;γ) logS(ti;γ)

B(ti,xi;β,γ)2

+
∑
i∈∆0

π
(k)
i

xilxihe
x′iβS(ti;γ) logS(ti;γ)

B(ti,xi;β,γ)2
,

∂2Q

∂γ2
0

=− n1

γ2
0

+
∑
i∈∆1

[
log

(
ti
γ1

)]2

logS(ti;γ) +
∑
i∈∆0

π
(k)
i

[
log

(
ti
γ1

)]2

logS(ti;γ)

+ 2
∑
i∈∆1

ex
′
iβ
[
log
(
ti
γ1

)]2

S(ti;γ) logS(ti;γ)C1(ti,xi;β,γ)

B(ti,xi;β,γ)2

+
∑
i∈∆0

π
(k)
i

ex
′
iβ
[
log
(
ti
γ1

)]2

S(ti;γ) logS(ti;γ)C1(ti,xi;β,γ)

B(ti,xi;β,γ)2
,

∂2Q

∂γ0γ1

= −n1

γ1

−
∑
i∈∆1

logS(ti;γ)

γ1

[
1 + γ0 log

(
ti
γ1

)]
−
∑
i∈∆0

π
(k)
i

logS(ti;γ)

γ1

[
1 + γ0 log

(
ti
γ1

)]

− 2
∑
i∈∆1

ex
′
iβS(ti;γ) logS(ti;γ)

[
B(ti,xi;β,γ) + γ0 log

(
ti
γ1

)
C1(ti,xi;β,γ)

]
γ1B(ti,xi;β,γ)2

−
∑
i∈∆0

π
(k)
i

ex
′
iβS(ti;γ) logS(ti;γ)

[
B(ti,xi;β,γ) + γ0 log

(
ti
γ1

)
C1(ti,xi;β,γ)

]
γ1B(ti,xi;β,γ)2

,
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∂2Q

∂γ0γ2h

=
∑
i∈∆1

xih log

(
ti
γ1

)
logS(ti;γ) +

∑
i∈∆0

π
(k)
i xih log

(
ti
γ1

)
logS(ti;γ)

+ 2
∑
i∈∆1

xihe
x′iβS(ti;γ) logS(ti;γ) log

(
ti
γ1

)
C1(ti,xi;β,γ)

B(ti,xi;β,γ)2

+
∑
i∈∆0

π
(k)
i

xihe
x′iβS(ti;γ) logS(ti;γ) log

(
ti
γ1

)
C1(ti,xi;β,γ)

B(ti,xi;β,γ)2
,

∂2Q

∂γ2
1

=
n1γ0

γ2
1

+
∑
i∈∆1

γ0(1 + γ0)

γ2
1

logS(ti;γ) +
∑
i∈∆0

π
(k)
i

γ0(1 + γ0)

γ2
1

logS(ti;γ)

+ 2
∑
i∈∆1

ex
′
iβ
(
γ0
γ1

)
S(ti;γ) logS(ti;γ) [B(ti,xi;β,γ) + γ0C1(ti,xi;β,γ)]

γ1B(ti,xi;β,γ)2

+
∑
i∈∆0

π
(k)
i

ex
′
iβ
(
γ0
γ1

)
S(ti;γ) logS(ti;γ) [B(ti,xi;β,γ) + γ0C1(ti,xi;β,γ)]

γ1B(ti,xi;β,γ)2
,

∂2Q

∂γ1γ2h

=−
∑
i∈∆1

xih
γ0

γ1

logS(ti;γ)

− 2
∑
i∈∆1

xih
ex
′
iβ
(
γ0
γ1

)
S(ti;γ) logS(ti;γ)C1(ti,xi;β,γ)

B(ti,xi;β,γ)2

−
∑
i∈∆0

π
(k)
i xih

γ0

γ1

logS(ti;γ)

−
∑
i∈∆0

π
(k)
i xih

ex
′
iβ
(
γ0
γ1

)
S(ti;γ) logS(ti;γ)C1(ti,xi;β,γ)

B(ti,xi;β,γ)2
,
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∂2Q

∂γ2hγ2h′
=
∑
i∈∆1

xihxih′ logS(ti;γ)

+ 2
∑
i∈∆1

xihxih′
ex
′
iβS(ti;γ) logS(ti;γ)C1(ti,xi;β,γ)

B(ti,xi;β,γ)2

+
∑
i∈∆0

π
(k)
i xihxih′ logS(ti;γ)

+
∑
i∈∆0

π
(k)
i xihxih′

ex
′
iβS(ti;γ) logS(ti;γ)C1(ti,xi;β,γ)

B(ti,xi;β,γ)2
,

where

π
(k)
i =

ex
′
iβS(ti;γ)

1 + ex
′
iβ


θθθ=θθθ(k)

,

B(ti,xi;β,γ) = 1 + ex
′
iβ[1− S(ti;γ)],

C1(ti,xi;β,γ) = B(ti,xi;β,γ) + (1 + ex
′
iβ) logS(ti;γ)

and

S(ti;γ) = exp

[
−
(
ti
γ1

)γ0
ex
′
icγ2

]
for l,l′ =0, . . . , p, xi0= 1, h, h′=1, . . . , p, and i=1, . . . , n.

A.2.4 COM-Poisson cure rate model

The first- and second-order partial derivatives of Q(θ,π(k)) with respect to β and γ,

for a fixed value of the dispersion parameter φ, are as follows:

∂Q

∂βl
= −

∑
i∈∆∗

xil
ex
′
iβ

1 + ex
′
iβ

+
∑
i∈∆1

xil
ex
′
iβz21,i

z2,iz01,i

+
∑
i∈∆0

π
(k)
i xil

ex
′
iβz2,i

z1,iz01,i

,

∂Q

∂γh
=
∂R(ti,xi;γ)

∂γh
+
∑
i∈∆1

[
∂ logS(ti;γ)

∂γh

]
z21,i

z2,i

+
∑
i∈∆0

π
(k)
i

[
∂ logS(ti;γ)

∂γh

]
z2,i

z1,i

,
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∂2Q

∂βlβl′
= −

∑
i∈∆∗

xilxil′
ex
′
iβ

(1 + ex
′
iβ)2

+
∑
I1

xilxil′e
x′iβ

[
z21,i

z01,iz2,i

− ex′iβ
(
z01,iz

2
21,i + z02,iz2,iz21,i − z01,iz2,iz31,i

z2
2,iz

3
01,i

)]
+
∑
I0

π
(k)
i xilxil′e

x′iβ

[
z2,i

z01,iz1,i

− ex′iβ
(
z01,iz

2
2,i + z02,iz1,iz2,i − z01,iz1,iz21,i

z2
1,iz

3
01,i

)]
,

∂2Q

∂βlγh
=
∑
i∈∆1

xile
x′iβ

[
∂ logS(ti;γ)

∂γh

]
z2,iz31,i − z2

21,i

z01,iz2
2,i

+
∑
i∈∆0

π
(k)
i xile

x′iβ

[
∂ logS(ti;γ)

∂γh

]
z1,iz21,i − z2

2,i

z01,iz2
1,i

,

∂2Q

∂γhγh′
=
∂2R(ti,xi;γ)

∂γh∂γh′

+
∑
i∈∆1

[(
∂2 logS(ti;γ)

∂γh∂γh′

)
z21,i

z2,i

−
(
∂ logS(ti;γ)

∂γh

)(
∂ logS(ti;γ)

∂γh′

)
z2

21,i − z2,iz31,i

z2
2,i

]
+
∑
i∈∆0

π
(k)
i

×
[(

∂2 logS(ti;γ)

∂γh∂γh′

)
z2,i

z1,i

−
(
∂ logS(ti;γ)

∂γh

)(
∂ logS(ti;γ)

∂γh′

)
z2

2,i − z1,iz21,i

z2
1,i

]
,

where

π
(k)
i =

z1,i

1 + z1,i


θθθ=θθθ(k)

,

z1 = z1(θ;x, t) =
∞∑
j=1

{ηS(ti;γ)}j

(j!)φ
, z2 = z2(θ;x, t) =

∞∑
j=1

j{ηS(ti;γ)}j

(j!)φ
,

z21 = z21(θ;x, t) =
∞∑
j=1

j2{ηS(ti;γ)}j

(j!)φ
, z31 = z31(θ;x, t) =

∞∑
j=1

j3{ηS(ti;γ)}j

(j!)φ
,
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z01 = z01(θ;x, t) =
∞∑
j=1

jηj

(j!)φ
, z02 = z02(θ;x, t) =

∞∑
j=1

j2ηj

(j!)φ
,

η = η(β;x) = H−1
φ (1 + ex

′
iβ),

S(ti;γ) = exp

[
−
(
ti
γ1

)γ0
ex
′
icγ2

]
and

R = R(ti,xi;γ) = n1 log γ0 + (γ0 − 1)
∑
i∈∆1

log ti − n1γ0 log γ1 +
∑
i∈∆1

x′icγ2

for l,l′ =0, . . . , p, xi0= 1, h, h′=0, 1,j∗, where j∗=21, 22, . . . , 2p, and i=1, . . . , n.

The derivatives of R(ti,xi;γ) and S(t;γ) are as follows:

∂R

∂γ0

=
n1

γ0

+
∑
i∈∆1

log ti − n1 log(γ1),
∂R

∂γ1

= −n1γ0

γ1

,
∂R

∂γ2h

=
∑
i∈∆1

xih,

∂2R

∂γ2
0

= −n1

γ2
0

,
∂2R

∂γ0∂γ1

= −n1

γ2
1

,
∂2R

∂γ0∂γ2h

= 0,

∂2R

∂γ2
1

=
n1γ0

γ2
1

,
∂2R

∂γ1∂γ2h

= 0,
∂2R

∂γ2h∂γ2h′
= 0.



Chapter A.2 - First- and second-order derivatives of the Q-function 159

∂ logS(t;γ)

∂γ0

= logS(t;γ) log

(
t

γ1

)
,
∂ logS(t;γ)

∂γ1

= logS(t;γ)

(
−γ0

γ1

)
,

∂ logS(t;γ)

∂γ2h

= xh logS(t;γ),
∂2 logS(t;γ)

∂γ2
0

= logS(t;γ)

[
log

(
t

γ1

)]2

,

∂2 logS(t;γ)

∂γ0∂γ1

= logS(t;γ)

−1− γ0 log
(
t
γ1

)
γ1

 ,
∂2 logS(t;γ)

∂γ0∂γ2h

= xh logS(t;γ) log

(
t

γ1

)
,

∂2 logS(t;γ)

∂γ2
1

= logS(t;γ)

[
γ0(1 + γ0)

γ2
1

]
,

∂2 logS(t;γ)

∂γ1∂γ2h

= xh logS(t;γ)

(
−γ0

γ1

)
,

∂2 logS(t;γ)

∂γ2h∂γ2h′
= xhxh′ logS(t;γ),

for l,l′ =0, . . . , p, xi0= 1, h, h′=1, . . . , p, and i=1, . . . , n.



Appendix B

Appendix corresponding to

Chapter 3

B.1 The Q-functions

B.1.1 Bernoulli cure rate model

Q(θ,π(k)) = Q1(β,π(k)) +Q2(ψ,γ,π(k))

where

Q1(β,π(k)) =
∑
i∈∆1

β′x∗i +
∑
i∈∆0

π
(k)
i β

′x∗i −
∑
i∈∆∗

log(1 + eβ
′x∗i )

and

Q2(ψ,γ,π(k)) =
∑
i∈∆1

log h0(ti;ψ) +
∑
i∈∆1

γ ′xi −
∑
i∈∆1

H0(ti;ψ)eγ
′xi −

∑
i∈∆0

π
(k)
i H0(ti;ψ)eγ

′xi

with

π
(k)
i =

exp
[
β′x∗i −H0(ti;ψ)eγ

′xi
]

1 + exp [β′x∗i −H0(ti;ψ)eγ′xi ]

∣∣∣∣∣
θ=θ(k)

(B.1.1)
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for i ∈ ∆0 and ∆∗ = ∆1 ∪∆0.

B.1.2 Poisson cure rate model

Q(θ,π(k)) =
∑
i∈∆1

log h0(ti;ψ) +
∑
i∈∆1

γ ′xi +
∑
i∈∆1

log(log(1 + eβ
′x∗i ))−

∑
i∈∆1

H0(ti;ψ)eγ
′xi

−
∑
∆∗

log(1 + eβ
′x∗i ) +

∑
i∈∆1

A(ti,xi;β,ψ,γ)

−
∑
i∈∆0

π
(k)
i log(A(ti,xi;β,ψ,γ)− 1)

where

A(ti,xi;β,ψ,γ) = exp[−H0(ti;ψ)eγ
′xi ] log(1 + eβ

′x∗i )

for i ∈ ∆∗ and

π
(k)
i =

eA(ti,xi;β,ψ,γ) − 1

eA(ti,xi;β,ψ,γ)

∣∣∣∣∣
θ=θ(k)

(B.1.2)

for i ∈ ∆0.

B.1.3 Geometric cure rate model

Q(θ,π(k)) =
∑
i∈∆1

β′x∗i +
∑
i∈∆1

log h0(ti;ψ) +
∑
i∈∆1

γ ′xi −
∑
i∈∆1

H0(ti;ψ)eγ
′xi

− 2
∑
i∈∆1

log(1 + C(ti,xi;β,ψ,γ)) +
∑
i∈∆0

π
(k)
i

[
β′x∗i −H0(ti;ψ)eγ

′xi
]

−
∑
i∈∆0

π
(k)
i log(1 + C(ti,xi;β,ψ,γ))−

∑
i∈∆0

log(1 + eβ
′x∗i )

where

C(ti,xi;β,ψ,γ) = eβ
′x∗i

{
1− exp

[
−H0(ti;ψ)eγ

′xi
]}

for i ∈ ∆∗ and

π
(k)
i =

e

[
β′x∗i−H0(ti;ψ)eγ

′xi
]

1 + eβ
′x∗i

∣∣∣∣∣
θ=θ(k)

(B.1.3)

for i ∈ ∆0.
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B.1.4 COM-Poisson cure rate model

Q(θ,π(k)) =
∑
i∈∆1

log h0(ti;ψ) +
∑
i∈∆1

γ ′xi −
∑
i∈∆∗

log(1 + eβ
′x∗i )

+
∑
i∈∆1

log z2i +
∑
i∈∆0

π
(k)
i log z1i

where

z1i = z1(θ;xi, ti) =
∞∑
j=1

{ηiS(ti,xi;ψ,γ)}j

(j!)φ
, z2i = z2(θ;xi, ti) =

∞∑
j=1

j{ηiS(ti,xi;ψ,γ)}j

(j!)φ
,

ηi = η(β;xi) = H∗−1
φ (1 + eβ

′x∗i ) and S(ti,xi;ψ,γ) = exp
[
−H0(ti;ψ)eγ

′xi
]
.

with

π
(k)
i =

z1(θ;xi, ti)

1 + z1(θ;xi, ti)

∣∣∣∣∣
θ=θ(k)

(B.1.4)

for i ∈ ∆0,

where ∆∗ = ∆1 ∪ ∆0 and n1 = |∆1| (i.e. n1 is the cardinality of ∆1). The

expressions for h0(ti;ψ) and H0(ti;ψ) are provided in (??) and (??) respectively.

B.2 First- and second-order derivatives of the Q-

function

B.2.1 Bernoulli cure rate model

The first- and the second-order partial derivatives of the Q1(β,π(k)) function with

respect to β and of the Q2(ψ,γ,π(k)) function with respect to ψ and γ are as follows:
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∂Q1

∂βd
=
∑
i∈∆1

xid −
∑
i∈∆∗

xid
eβ
′x∗i

1 + eβ
′x∗i

+
∑
i∈∆0

π
(k)
i xid,

∂Q2

∂ψl
=
∑
i∈∆1

∂h0(ti;ψ)
∂ψl

h0(ti;ψ)
−
∑
i∈∆1

∂H0(ti;ψ)

∂ψl
eγ
′xi −

∑
i∈∆0

π
(k)
i

∂H0(ti;ψ)

∂ψl
eγ
′xi ,

∂Q2

∂γr
=
∑
i∈∆1

xir −
∑
i∈∆1

xirH0(ti;ψ)eγ
′xi −

∑
i∈∆0

π
(k)
i xirH0(ti;ψ)eγ

′xi ,

∂2Q1

∂βd∂βd′
= −

∑
i∈∆∗

xidxid′
eβ
′x∗i

(1 + eβ
′x∗i )2

,

∂2Q2

∂ψl∂ψl′
= −

∑
i∈∆1

(
∂h0(ti;ψ)

∂ψl

)(
∂h0(ti;ψ)
∂ψl′

)
h2

0(ti;ψ)
−
∑
i∈∆1

∂2H0(ti;ψ)

∂ψl∂ψl′
eγ
′xi −

∑
i∈∆0

π
(k)
i

∂2H0(ti;ψ)

∂ψl∂ψl′
eγ
′xi ,

∂2Q2

∂ψl∂γr
= −

∑
i∈∆1

xir
∂H0(ti;ψ)

∂ψl
eγ
′xi −

∑
i∈∆0

π
(k)
i xir

∂H0(ti;ψ)

∂ψl
eγ
′xi ,

∂2Q2

∂γr∂γr′
= −

∑
i∈∆1

xirxir′H0(ti;ψ)eγ
′xi −

∑
i∈∆0

π
(k)
i xirxir′H0(ti;ψ)eγ

′xi ;
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for d, d′ = 0, 1, . . . , p with xi0= 1; r, r′ = 1, 2, . . . , p and l = 0, 1, . . . , N .

B.2.2 Poisson cure rate model

The first- and the second-order partial derivatives of the Q(θ,π(k)) function with

respect to β, ψ and γ are as follows:

∂Q

∂βd
=
∑
i∈∆1

xid
eβ
′x∗i

(1 + eβ
′x∗i ) log(1 + eβ

′x∗i )
+
∑
i∈∆1

xid
eβ
′x∗iS(ti,xi;ψ,γ)

(1 + eβ
′x∗i )

−
∑
i∈∆∗

xid
eβ
′x∗i

(1 + eβ
′x∗i )

+
∑
i∈∆0

π
(k)
i xid

eβ
′x∗iP (ti,xi;β,ψ,γ)S(ti,xi;ψ,γ)

(1 + eβ
′x∗i )

,

∂Q

∂ψl
=
∑
i∈∆1

∂h0(ti;ψ)
∂ψl

h0(ti;ψ)
−
∑
i∈∆1

∂H0(ti;ψ)

∂ψl
eγ
′xi{A(ti,xi;β,ψ,γ) + 1}

+
∑
i∈∆0

π
(k)
i

∂H0(ti;ψ)

∂ψl
eγ
′xiP (ti,xi;β,ψ,γ),

∂Q

∂γr
=
∑
i∈∆1

xir −
∑
i∈∆1

xirH0(ti;ψ)eγ
′xi{A(ti,xi;β,ψ,γ) + 1}

+
∑
i∈∆0

π
(k)
i xirH0(ti;ψ)eγ

′xiP (ti,xi;β,ψ,γ),
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∂2Q

∂βd∂βd′
=
∑
i∈∆1

xidxid′

{
eβ
′x∗i

(1 + eβ
′x∗i )2

(
1

log(1 + eβ
′x∗i )

[
1− eβ

′x∗i

log(1 + eβ
′x∗i )

]
+ S(ti,xi;ψ,γ)

)}
−
∑
i∈∆∗

xidxid′
eβ
′x∗i

(1 + eβ
′x∗i )2

+
∑
i∈∆0

π
(k)
i xidxid′P (ti,xi;β,ψ,γ)S(ti,xi;ψ,γ)

eβ
′x∗i

(1 + eβ
′x∗i )2

[
1− eβ

′x∗i

eA(ti,xi;β,ψ,γ) − 1

]
,

∂2Q

∂βd∂ψl
= −

∑
i∈∆1

xid
eβ
′x∗i

(1 + eβ
′x∗i )

S(ti,xi;ψ,γ)
∂H0(ti;ψ)

∂ψl
eγ
′xi

−
∑
i∈∆0

π
(k)
i xid

eβ
′x∗i

(1 + eβ
′x∗i )

P (ti,xi;β,ψ,γ)S(ti,xi;ψ,γ)
∂H0(ti;ψ)

∂ψl
eγ
′xi

×
[
1− S(ti,xi;ψ,γ) log(1 + eβ

′x∗i )

eA(ti,xi;β,ψ,γ) − 1

]
,

∂2Q

∂βd∂γr
= −

∑
i∈∆1

xidxir
eβ
′x∗i

(1 + eβ
′x∗i )

S(ti,xi;ψ,γ)H0(ti;ψ)eγ
′xi

−
∑
i∈∆0

π
(k)
i xidxir

eβ
′x∗i

(1 + eβ
′x∗i )

P (ti,xi;β,ψ,γ)S(ti,xi;ψ,γ)H0(ti;ψ)eγ
′xi

×
[
1− S(ti,xi;ψ,γ) log(1 + eβ

′x∗i )

eA(ti,xi;β,ψ,γ) − 1

]
,
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∂2Q

∂ψl∂ψl′
= −

∑
i∈∆1

(
∂h0(ti;ψ)

∂ψl

)(
∂h0(ti;ψ)
∂ψl′

)
h2

0(ti;ψ)
−
∑
i∈∆1

∂2H0(ti;ψ)

∂ψl∂ψl′
eγ
′xi

−
∑
i∈∆1

A(ti,xi;β,ψ,γ)eγ
′xi

[
∂2H0(ti;ψ)

∂ψl∂ψl′
−
(
∂H0(ti;ψ)

∂ψl

)(
∂H0(ti;ψ)

∂ψl′

)
eγ
′xi

]
+
∑
i∈∆0

π
(k)
i P (ti,xi;β,ψ,γ)eγ

′xi

×
[
∂2H0(ti;ψ)

∂ψl∂ψl′
+

(
∂H0(ti;ψ)

∂ψl

)(
∂H0(ti;ψ)

∂ψl′

)
A(ti,xi;β,ψ,γ)eγ

′xi

eA(ti,xi;β,ψ,γ) − 1

]
,

∂2Q

∂ψl∂γr
= −

∑
i∈∆1

xir
∂H0(ti;ψ)

∂ψl
eγ
′xi

−
∑
i∈∆1

xirA(ti,xi;β,ψ,γ)
∂H0(ti;ψ)

∂ψl
eγ
′xi(1−H0(ti;ψ)eγ

′xi)

+
∑
i∈∆0

π
(k)
i xirP (ti,xi;β,ψ,γ)

∂H0(ti;ψ)

∂ψl
eγ
′xi

[
1 +

H0(ti;ψ)A(ti,xi;β,ψ,γ)eγ
′xi

eA(ti,xi;β,ψ,γ) − 1

]
,

∂2Q

∂γr∂γr′
= −

∑
i∈∆1

xirxir′H0(ti;ψ)eγ
′xi

−
∑
i∈∆1

xirxir′A(ti,xi;β,ψ,γ)H0(ti;ψ)eγ
′xi(1−H0(ti;ψ)eγ

′xi)

+
∑
i∈∆0

π
(k)
i xirxir′P (ti,xi;β,ψ,γ)H0(ti;ψ)eγ

′xi

[
1 +

H0(ti;ψ)A(ti,xi;β,ψ,γ)eγ
′xi

eA(ti,xi;β,ψ,γ) − 1

]
;

where

A(ti,xi;β,ψ,γ) = S(ti,xi;ψ,γ) log(1 + eβ
′x∗i ),

P (ti,xi;β,ψ,γ) =
eA(ti,xi;β,ψ,γ)

eA(ti,xi;β,ψ,γ) − 1
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and

S(ti,xi;ψ,γ) = exp
[
−H0(ti;ψ)ex

′
iγ
]

;

for d, d′ = 0, 1, . . . , p with xi0= 1; r, r′ = 1, 2, . . . , p and l = 0, 1, . . . , N .

B.2.3 Geometric cure rate model

The first- and the second-order partial derivatives of the Q(θ,π(k)) function with

respect to β, ψ and γ are as follows:

∂Q

∂βd
=
∑
i∈∆1

xid − 2
∑
i∈∆1

xid
C(ti,xi;β,ψ,γ)

1 + C(ti,xi;β,ψ,γ)
−
∑
i∈∆0

xid
ex
∗′
i β

1 + ex
∗′
i β

+
∑
i∈∆0

π
(k)
i xid −

∑
i∈∆0

π
(k)
i xid

C(ti,xi;β,ψ,γ)

1 + C(ti,xi;β,ψ,γ)
,

∂Q

∂ψl
=
∑
i∈∆1

∂h0(ti;ψ)
∂ψl

h0(ti;ψ)
−
∑
i∈∆1

∂H0(ti;ψ)

∂ψl
eγ
′xi − 2

∑
i∈∆1

∂H0(ti;ψ)

∂ψl
ex
∗′
i β+γ′xi

S(ti,xi;ψ,γ)

1 + C(ti,xi;β,ψ,γ)

−
∑
i∈∆0

π
(k)
i

∂H0(ti;ψ)

∂ψl
eγ
′xi −

∑
i∈∆0

π
(k)
i

∂H0(ti;ψ)

∂ψl
ex
∗′
i β+γ′xi

S(ti,xi;ψ,γ)

1 + C(ti,xi;β,ψ,γ)
,

∂Q

∂γr
=
∑
i∈∆1

xir −
∑
i∈∆1

xirH0(ti;ψ)eγ
′xi − 2

∑
i∈∆1

xirH0(ti;ψ)ex
∗′
i β+γ′xi

S(ti,xi;ψ,γ)

1 + C(ti,xi;β,ψ,γ)

−
∑
i∈∆0

π
(k)
i xirH0(ti;ψ)eγ

′xi −
∑
i∈∆0

π
(k)
i xirH0(ti;ψ)ex

∗′
i β+γ′xi

S(ti,xi;ψ,γ)

1 + C(ti,xi;β,ψ,γ)
,
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∂2Q

∂βd∂βd′
= −2

∑
i∈∆1

xidxid′
C(ti,xi;β,ψ,γ)

(1 + C(ti,xi;β,ψ,γ))2
−
∑
i∈∆0

xidxid′
ex
∗′
i β

(1 + ex
∗′
i β)2

−
∑
i∈∆0

π
(k)
i xidxid′

C(ti,xi;β,ψ,γ)

(1 + C(ti,xi;β,ψ,γ))2
,

∂2Q

∂βd∂ψl
= −2

∑
i∈∆1

xid
∂H0(ti;ψ)

∂ψl

S(ti,xi;ψ,γ)ex
∗′
i β+γ′xi

(1 + C(ti,xi;β,ψ,γ))2

−
∑
i∈∆0

π
(k)
i xid

∂H0(ti;ψ)

∂ψl

S(ti,xi;ψ,γ)ex
∗′
i β+γ′xi

(1 + C(ti,xi;β,ψ,γ))2
,

∂2Q

∂βd∂γr
= −2

∑
i∈∆1

xidxirH0(ti;ψ)
S(ti,xi;ψ,γ)ex

∗′
i β+γ′xi

(1 + C(ti,xi;β,ψ,γ))2

−
∑
i∈∆0

π
(k)
i xidxirH0(ti;ψ)

S(ti,xi;ψ,γ)ex
∗′
i β+γ′xi

(1 + C(ti,xi;β,ψ,γ))2
,

∂2Q

∂ψl∂ψl′
= −

∑
i∈∆1

(
∂h0(ti;ψ)

∂ψl

)(
∂h0(ti;ψ)
∂ψl′

)
h2

0(ti;ψ)
−
∑
i∈∆1

∂2H0(ti;ψ)

∂ψl∂ψl′
eγ
′xi − 2

∑
i∈∆1

S(ti,xi;ψ,γ)ex
∗′
i β+γ′xi

1 + C(ti,xi;β,ψ,γ)

×

[
∂2H0(ti;ψ)

∂ψl∂ψl′
−
(
∂H0(ti;ψ)

∂ψl

)(
∂H0(ti;ψ)

∂ψl′

)
eγ
′xi

{
1 +

ex
∗′
i βS(ti,xi;ψ,γ)

1 + C(ti,xi;β,ψ,γ)

}]

−
∑
i∈∆0

π
(k)
i

∂2H0(ti;ψ)

∂ψl∂ψl′
eγ
′xi −

∑
i∈∆0

π
(k)
i

S(ti,xi;ψ,γ)ex
∗′
i β+γ′xi

1 + C(ti,xi;β,ψ,γ)

×

[
∂2H0(ti;ψ)

∂ψl∂ψl′
−
(
∂H0(ti;ψ)

∂ψl

)(
∂H0(ti;ψ)

∂ψl′

)
eγ
′xi

{
1 +

ex
∗′
i βS(ti,xi;ψ,γ)

1 + C(ti,xi;β,ψ,γ)

}]
,
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∂2Q

∂ψl∂γr
= −

∑
i∈∆1

xir
∂H0(ti;ψ)

∂ψl
eγ
′xi − 2

∑
i∈∆1

xir
∂H0(ti;ψ)

∂ψl

S(ti,xi;ψ,γ)ex
∗′
i β+γ′xi

1 + C(ti,xi;β,ψ,γ)

×

[
1−H0(ti;ψ)eγ

′xi

{
1 +

ex
∗′
i βS(ti,xi;ψ,γ)

1 + C(ti,xi;β,ψ,γ)

}]

−
∑
i∈∆0

π
(k)
i xir

∂H0(ti;ψ)

∂ψl
eγ
′xi −

∑
i∈∆0

π
(k)
i xir

∂H0(ti;ψ)

∂ψl

S(ti,xi;ψ,γ)ex
∗′
i β+γ′xi

1 + C(ti,xi;β,ψ,γ)

×

[
1−H0(ti;ψ)eγ

′xi

{
1 +

ex
∗′
i βS(ti,xi;ψ,γ)

1 + C(ti,xi;β,ψ,γ)

}]
,

∂2Q

∂γr∂γr′
= −

∑
i∈∆1

xirxir′H0(ti;ψ)eγ
′xi − 2

∑
i∈∆1

xirxir′H0(ti;ψ)
S(ti,xi;ψ,γ)ex

∗′
i β+γ′xi

1 + C(ti,xi;β,ψ,γ)

×

[
1−H0(ti;ψ)eγ

′xi

{
1 +

ex
∗′
i βS(ti,xi;ψ,γ)

1 + C(ti,xi;β,ψ,γ)

}]

−
∑
i∈∆0

π
(k)
i xirxir′H0(ti;ψ)eγ

′xi −
∑
i∈∆0

π
(k)
i xirxir′H0(ti;ψ)

S(ti,xi;ψ,γ)ex
∗′
i β+γ′xi

1 + C(ti,xi;β,ψ,γ)

×

[
1−H0(ti;ψ)eγ

′xi

{
1 +

ex
∗′
i βS(ti,xi;ψ,γ)

1 + C(ti,xi;β,ψ,γ)

}]
,

where

C(ti,xi;β,ψ,γ) = eβ
′x∗i

{
1− exp

[
−H0(ti;ψ)eγ

′xi
]}

and

S(ti,xi;ψ,γ) = exp
[
−H0(ti;ψ)eγ

′xi
]

;

for d, d′ = 0, 1, . . . , p with xi0= 1; r, r′ = 1, 2, . . . , p and l = 0, 1, . . . , N .
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B.2.4 COM-Poisson cure rate model

The first- and the second-order partial derivatives of the Q(θ,π(k)) function with

respect to β, ψ, and γ, for a fixed value of φ, are as follows:

∂Q

∂βd
= −

∑
i∈∆∗

xid
eβ
′x∗i

1 + eβ
′x∗i

+
∑
i∈∆1

xid
eβ
′x∗i z21,i

z2,iz01,i

+
∑
i∈∆0

π
(k)
i xid

eβ
′x∗i z2,i

z1,iz01,i

,

∂Q

∂ψl
=
∑
i∈∆1

∂h0(ti;ψ)
∂ψl

h0(ti;ψ)
−
∑
i∈∆1

∂H0(ti;ψ)

∂ψl

z21,i

z2,i

eγ
′xi −

∑
i∈∆0

π
(k)
i

∂H0(ti;ψ)

∂ψl

z2,i

z1,i

eγ
′xi ,

∂Q

∂γr
=
∑
i∈∆1

xir −
∑
i∈∆1

xirH0(ti;ψ)
z21,i

z2,i

eγ
′xi −

∑
i∈∆0

π
(k)
i xirH0(ti;ψ)

z2,i

z1,i

eγ
′xi ,

∂2Q

∂βd∂βd′
= −

∑
i∈∆∗

xidxid′
eβ
′x∗i

(1 + eβ
′x∗i )2

+
∑
i∈∆1

xidxid′e
β′x∗i

[
z21,i

z01,iz2,i

− eβ′x∗i
(
z01,iz

2
21,i + z02,iz2,iz21,i − z01,iz2,iz31,i

z2
2,iz

3
01,i

)]

+
∑
i∈∆0

π
(k)
i xidxid′e

β′x∗i

[
z2,i

z01,iz1,i

− eβ′x∗i
(
z01,iz

2
2,i + z02,iz1,iz2,i − z01,iz1,iz21,i

z2
1,iz

3
01,i

)]
,
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∂2Q

∂βd∂ψl
= −

∑
i∈∆1

xide
β′x∗i+γ′xi

∂H0(ti;ψ)

∂ψl

[
z2,iz31,i − z2

21,i

z01,iz2
2,i

]

−
∑
i∈∆0

π
(k)
i xide

β′x∗i+γ′xi
∂H0(ti;ψ)

∂ψl

[
z1,iz21,i − z2

2,i

z01,iz2
1,i

]
,

∂2Q

∂βd∂γr
= −

∑
i∈∆1

xidxire
β′x∗i+γ′xiH0(ti;ψ)

[
z2,iz31,i − z2

21,i

z01,iz2
2,i

]

−
∑
i∈∆0

π
(k)
i xidxire

β′x∗i+γ′xiH0(ti;ψ)

[
z1,iz21,i − z2

2,i

z01,iz2
1,i

]
,

∂2Q

∂ψl∂ψl′
= −

∑
i∈∆1

(
∂h0(ti;ψ)

∂ψl

)(
∂h0(ti;ψ)
∂ψl′

)
h2

0(ti;ψ)

+
∑
i∈∆1

(
∂H0(ti;ψ)

∂ψl

)(
∂H0(ti;ψ)

∂ψl′

)[
z2,iz31,i − z2

21,i

z01,iz2
2,i

]
e2γ′xi

+
∑
i∈∆0

π
(k)
i

(
∂H0(ti;ψ)

∂ψl

)(
∂H0(ti;ψ)

∂ψl′

)[
z1,iz21,i − z2

2,i

z01,iz2
1,i

]
e2γ′xi ,

∂2Q

∂ψl∂γr
=
∑
i∈∆1

xirH0(ti;ψ)

(
∂H0(ti;ψ)

∂ψl

)[
z2,iz31,i − z2

21,i

z01,iz2
2,i

]
e2γ′xi

+
∑
i∈∆0

π
(k)
i xirH0(ti;ψ)

(
∂H0(ti;ψ)

∂ψl

)[
z1,iz21,i − z2

2,i

z01,iz2
1,i

]
e2γ′xi ,
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∂2Q

∂γr∂γr′
=
∑
i∈∆1

xirxir′H
2
0 (ti;ψ)

[
z2,iz31,i − z2

21,i

z01,iz2
2,i

]
e2γ′xi

+
∑
i∈∆0

π
(k)
i xirxir′H

2
0 (ti;ψ)

[
z1,iz21,i − z2

2,i

z01,iz2
1,i

]
e2γ′xi

where

z1,i = z1(θ;xi, ti) =
∞∑
j=1

{ηiS(ti,xi;ψ,γ)}j

(j!)φ
, z2,i = z2(θ;xi, ti) =

∞∑
j=1

j{ηiS(ti,xi;ψ,γ)}j

(j!)φ
,

z21,i = z21(θ;xi, ti) =
∞∑
j=1

j2{ηiS(ti,xi;ψ,γ)}j

(j!)φ
, z31,i = z31(θ;xi, ti) =

∞∑
j=1

j3{ηiS(ti,xi;ψ,γ)}j

(j!)φ
,

z01,i = z01(θ;xi, ti) =
∞∑
j=1

jηji
(j!)φ

, z02,i = z02(θ;xi, ti) =
∞∑
j=1

j2ηji
(j!)φ

,

ηi = η(β;xi) = H∗−1
φ (1 + eβ

′x∗i ),

and

S(ti,xi;ψ,γ) = exp
[
−H0(ti;ψ)eγ

′xi
]

;

for d, d′ = 0, 1, . . . , p with xi0= 1; r, r′ = 1, 2, . . . , p and l = 0, 1, . . . , N .

The expressions for h0(ti;ψ) and H0(ti;ψ) are provided in (??) and (??), while

that for ∂h0(ti;ψ)
∂ψl

, ∂H0(ti;ψ)
∂ψl

, ∂2h0(ti;ψ)
∂ψl∂ψl′

and ∂2H0(ti;ψ)
∂ψl∂ψl′

are provided in Appendix ??. The

expressions for π
(k)
i can be found in Appendix ??.
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B.3 First- and second-order derivatives of the base-

line hazard and baseline cumulative hazard

function

∂h0(ti;ψ)

∂ψl
=

(
1− τl − ti

τl − τl−1

)
I[τl−1,τl](ti) +

(
τl+1 − ti
τl+1 − τl

)
I[τl,τl+1](ti)

with

∂h0(ti;ψ)

∂ψ0

=

(
τ1 − ti
τ1 − τ0

)
I[τ0,τ1](ti)

for l = 1, 2, . . . , N and

∂2h0(ti;ψ)

∂ψl∂ψl′
= 0

for l, l′ = 0, 1, . . . , N.

∂H0(ti;ψ)

∂ψl
=

[(
1− τl

τl − τl−1

)
(min(τl, ti)− τl−1) +

(min2(τl, ti)− τ 2
l−1)

2(τl − τl−1)

]
I[τl−1,∞)(ti)

+

[(
τl+1

τl+1 − τl

)
(min(τl+1, ti)− τl)−

(min2(τl+1, ti)− τ 2
l )

2(τl+1 − τl)

]
I[τl,∞)(ti)

with

∂H0(ti;ψ)

∂ψ0

=

[(
τ1

τ1 − τ0

)
(min(τ1, ti)− τ0)− (min2(τ1, ti)− τ 2

0 )

2(τ1 − τ0)

]
I[τ0,∞)(ti)

for l = 1, 2, . . . , N and

∂2H0(ti;ψ)

∂ψl∂ψl′
= 0
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for l, l′ = 0, 1, . . . , N.



Appendix C

Appendix corresponding to

Chapter 4

C.1 The Q-function - destructive weighted Poisson

cure rate model

We define:

ηi = eα
′zi , pi =

eβ
′xi

1 + eβ′xi
,

fi = f(ti;γ) =
γ0

γ1

(
ti
γ1

)γ0−1

eγ
′
2xi+γ

′
3zie

−
(
ti
γ1

)γ0−1
eγ
′
2xi+γ

′
3zi

,

Si = S(ti;γ) = e
−
(
ti
γ1

)γ0−1
eγ
′
2xi+γ

′
3zi

,

Fi = F (ti;γ) = 1− e−
(
ti
γ1

)γ0−1
eγ
′
2xi+γ

′
3zi

,
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and

hi = h(ti;γ) =
γ0

γ1

(
ti
γ0

)γ0−1

eγ
′
2x+γ′3z

C.1.1 Destructive exponentially weighted Poisson cure rate

model

Q(θ∗,π(a)) =
∑
∆1

logMi −
∑
∆∗

Mi +
∑
∆1

MiSi +
∑
∆1

log fi +
∑
∆0

π
(a)
i log(eMiSi − 1),

where

π
(a)
i = 1− e−ηieφpiSi

∣∣∣∣
θ∗=θ∗(a)

,

and

Mi = M(θ; ti,xi, zi) = ηie
φpi,

C.1.2 Destructive length-biased Poisson cure rate model

Q(θ∗,π(a)) =
∑
∆1

log ηi +
∑
∆1

log pi +
∑
∆1

log fi −
∑
∆1

Ai +
∑
∆1

Bi

−
∑
∆0

ηipi +
∑
∆0

log(1− pi) +
∑
∆0

π
(a)
i log(CiDi − 1),

where

π
(a)
i = 1− e−ηipiSi

(
1− pi

1− piFi

) ∣∣∣∣
θ∗=θ∗(a)

,

Ai = A(θ; ti,xi, zi) = ηipiFi, Bi = B(θ; ti,xi, zi) = log

[
1− piFi −

pifi
ηi

]
,

Ci = C(θ; ti,xi, zi) = eηipi(1−Fi),
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and

Di = D(θ; ti,xi, zi) =
1− piFi
1− pi

.

C.1.3 Destructive negative binomial cure rate model

Q(θ∗,π(a)) =
∑
∆1

log ηipi −
(

1

φ
+ 1

)∑
∆1

log(1 + EiFi) +
∑
∆1

log fi

−1

φ

∑
∆0

log(1 + Ei) +
∑
∆0

π
(a)
i log

(
G
−1/φ
i − 1

)

where

π
(a)
i = 1−Gi

∣∣∣∣
θ∗=θ∗(a)

,

Ei = E(θ; ti,xi, zi) = φηipi,

and

Gi = G(θ; ti,xi, zi) =
1 + EiFi
1 + Ei

.

C.2 First- and second-order derivatives of the Q-

function for destructive weighted Poisson cure

rate model:

C.2.1 Destructive exponentially weighted Poisson cure rate

model

∂Q(θ∗,π(a))

∂αj
=
∑
∆1

zij −
∑
∆∗

zijMi +
∑
∆1

zijMiSi +
∑
∆0

π
(a)
i zijD

∗
iMiSi,
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∂Q(θ∗,π(a))

∂βk
=
∑
∆1

xik(1− pi)−
∑
∆∗

xikMi(1− pi) +
∑
∆1

xikMiSi(1− pi)

+
∑
∆0

π
(a)
i xikD

∗
iMiSi(1− pi),

∂Q(θ∗,π(a))

∂γ0

=
∑
∆1

MiS
′
i,0 +

∑
∆1

[
1

γ0

+ log

(
ti
γ1

)
+
S ′i,0
Si

]
+
∑
∆0

π
(a)
i D∗iMiS

′
i,0,

∂Q(θ∗,π(a))

∂γ1

=
∑
∆1

MiS
′
i,1 +

∑
∆1

[
−γ0

γ1

+
S ′i,1
Si

]
+
∑
∆0

π
(a)
i D∗iMiS

′
i,1,

∂Q(θ∗,π(a))

∂γ2l

=
∑
∆1

MiS
′
i,2l +

∑
∆1

[
xil +

S ′i,2l
Si

]
+
∑
∆0

π
(a)
i D∗iMiS

′
i,2l,

∂Q(θ∗,π(a))

∂γ3m

=
∑
∆1

MiS
′
i,3m +

∑
∆1

[
zim +

S ′i,3m
Si

]
+
∑
∆0

π
(a)
i D∗iMiS

′
i,3m,

∂2Q(θ∗,π(a))

∂αj∂αj′
= −

∑
∆∗

zijzij′Mi +
∑
∆1

zijzij′MiSi +
∑
∆0

π
(a)
i zijzij′D

∗
iMiSi

[
1− MiSi

eMiSi − 1

]
,
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∂2Q(θ∗,π(a))

∂αj∂βk
= −

∑
∆∗

xijzikMi(1− pi) +
∑
∆1

xikzijMiSi(1− pi)

+
∑
∆0

π
(a)
i xikzijD

∗
iMiSi(1− pi)

[
1− MiSi

eMiSi − 1

]
,

∂2Q(θ∗,π(a))

∂βk∂βk′
= −

∑
∆∗

xikxik′Mi(1− pi)(1− 2pi) +
∑
∆1

xikxik′MiSi(1− pi)(1− 2pi)

+
∑
∆0

π
(a)
i xikxik′D

∗
iMiSi(1− pi)(1− 2pi)

[
1− MiSi(1− pi)

(1− 2pi)(eMiSi − 1)

]
,

∂2Q(θ∗,π(a))

∂αj∂γ0

=
∑
∆1

zijMiS
′
i,0 +

∑
∆0

π
(a)
i zijD

∗
iMiS

′
i,0

[
1− MiSi

eMiSi − 1

]
,

∂2Q(θ∗,π(a))

∂αj∂γ1

=
∑
∆1

zijMiS
′
i,1 +

∑
∆0

π
(a)
i zijD

∗
iMiS

′
i,1

[
1− MiSi

eMiSi − 1

]
,

∂2Q(θ∗,π(a))

∂αj∂γ2l

=
∑
∆1

zijMiS
′
i,2l +

∑
∆0

π
(a)
i zijD

∗
iMiS

′
i,2l

[
1− MiSi

eMiSi − 1

]
,

∂2Q(θ∗,π(a))

∂αj∂γ3m

=
∑
∆1

zijMiS
′
i,3m +

∑
∆0

π
(a)
i zijD

∗
iMiS

′
i,3m

[
1− MiSi

eMiSi − 1

]
,
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∂2Q(θ∗,π(a))

∂βk∂γ0

=
∑
∆1

xik(1− pi)MiS
′
i,0 +

∑
∆0

π
(a)
i xik(1− pi)D∗iMiS

′
i,0

[
1− MiSi

eMiSi − 1

]
,

∂2Q(θ∗,π(a))

∂βk∂γ1

=
∑
∆1

xik(1− pi)MiS
′
i,1 +

∑
∆0

π
(a)
i xik(1− pi)D∗iMiS

′
i,1

[
1− MiSi

eMiSi − 1

]
,

∂2Q(θ∗,π(a))

∂βk∂γ2l

=
∑
∆1

xik(1− pi)MiS
′
i,2l +

∑
∆0

π
(a)
i xik(1− pi)D∗iMiS

′
i,2l

[
1− MiSi

eMiSi − 1

]
,

∂2Q(θ∗,π(a))

∂βk∂γ3m

=
∑
∆1

xik(1− pi)MiS
′
i,3m +

∑
∆0

π
(a)
i xik(1− pi)D∗iMiS

′
i,3m

[
1− MiSi

eMiSi − 1

]
,

∂2Q(θ∗,π(a))

∂γ2
0

=
∑
∆1

MiS
′′
i,00 +

∑
∆1

[
− 1

γ2
0

+
SiS

′′
i,00 − (S ′i,0)2

S2
i

]

+
∑
∆0

π
(a)
i D∗iMi

[
S ′′i,00 −

Mi(S
′
i,0)2

eMiSi − 1

]
,

∂2Q(θ∗,π(a))

∂γ0∂γ1

=
∑
∆1

MiS
′′
i,01 +

∑
∆1

[
− 1

γ1

+
SiS

′′
i,01 − S ′i,0S ′i,1

S2
i

]
+
∑
∆0

π
(a)
i D∗iMi

[
S ′′i,01 −

MiS
′
i,0S

′
i,1

eMiSi − 1

]
,
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∂2Q(θ∗,π(a))

∂γ0∂γ2l

=
∑
∆1

MiS
′′
i,0(2l) +

∑
∆1

[
SiS

′′
i,0(2l) − S ′i,0S ′i,2l

S2
i

]

+
∑
∆0

π
(a)
i D∗iMi

[
S ′′i,0(2l) −

MiS
′
i,0S

′
i,2l

eMiSi − 1

]
,

∂2Q(θ∗,π(a))

∂γ0∂γ3m

=
∑
∆1

MiS
′′
i,0(3m) +

∑
∆1

[
SiS

′′
i,0(3m) − S ′i,0S ′i,3m

S2
i

]

+
∑
∆0

π
(a)
i D∗iMi

[
S ′′i,0(3m) −

MiS
′
i,0S

′
i,3m

eMiSi − 1

]
,

∂2Q(θ∗,π(a))

∂γ2
1

=
∑
∆1

MiS
′′
i,11 +

∑
∆1

[
γ0

γ2
1

+
SiS

′′
i,11 − (S ′i,1)2

S2
i

]

+
∑
∆0

π
(a)
i D∗iMi

[
S ′′i,11 −

Mi(S
′
i,1)2

eMiSi − 1

]
,

∂2Q(θ∗,π(a))

∂γ1∂γ2l

=
∑
∆1

MiS
′′
i,1(2l) +

∑
∆1

[
SiS

′′
i,1(2l) − S ′i,1S ′i,2l

S2
i

]

+
∑
∆0

π
(a)
i D∗iMi

[
S ′′i,1(2l) −

MiS
′
i,1S

′
i,2l

eMiSi − 1

]
,
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∂2Q(θ∗,π(a))

∂γ1∂γ3m

=
∑
∆1

MiS
′′
i,1(3m) +

∑
∆1

[
SiS

′′
i,1(3m) − S ′i,1S ′i,3m

S2
i

]

+
∑
∆0

π
(a)
i D∗iMi

[
S ′′i,1(3m) −

MiS
′
i,1S

′
i,3m

eMiSi − 1

]
,

∂2Q(θ∗,π(a))

∂γ2l∂γ2l′
=
∑
∆1

MiS
′′
i,(2l)(2l′) +

∑
∆1

[
SiS

′′
i,(2l)(2l′) − S ′i,2lS ′i,2l′

S2
i

]

+
∑
∆0

π
(a)
i D∗iMi

[
S ′′i,(2l)(2l′) −

MiS
′
i,2lS

′
i,2l′

eMiSi − 1

]
,

∂2Q(θ∗,π(a))

∂γ2l∂γ3m

=
∑
∆1

MiS
′′
i,(2l)(3m) +

∑
∆1

[
SiS

′′
i,(2l)(3m) − S ′i,2lS ′i,3m

S2
i

]

+
∑
∆0

π
(a)
i D∗iMi

[
S ′′i,(2l)(3m) −

MiS
′
i,2lS

′
i,3m

eMiSi − 1

]
,

∂2Q(θ∗,π(a))

∂γ3m∂γ3m′
=
∑
∆1

MiS
′′
i,(3m)(3m′) +

∑
∆1

[
SiS

′′
i,(3m)(3m′) − S ′i,3mS ′i,3m′

S2
i

]

+
∑
∆0

π
(a)
i D∗iMi

[
S ′′i,(3m)(3m′) −

MiS
′
i,3mS

′
i,3m′

eMiSi − 1

]
,

where

D∗i =
eMiSi

eMiSi − 1
.

Here, i = 1, . . . , n, j, j′ = 1, . . . , q1, k, k′ = 0, 1, . . . , q2, r, r′ = 0, 1, 20, 21, . . . , 2q2, 31, 32, . . . , 3q1,
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l, l′ = 0, 1, . . . , q2, m,m′ = 1, . . . , q1 and xi0 ≡ 1.

C.2.2 Destructive length-biased Poisson cure rate model

∂Q(θ∗,π(a))

∂αj
=
∑
∆1

zij −
∑
∆1

A′i,j +
∑
∆1

B′i,j −
∑
∆0

zijηipi +
∑
∆0

π
(a)
i

C ′i,jDi

CiDi − 1
,

∂Q(θ∗,π(a))

∂βk
=
∑
∆1

xik(1− pi)−
∑
∆1

A′i,k +
∑
∆1

B′i,k −
∑
∆0

xikηipi(1− pi) +
∑
∆0

xikpi

+
∑
∆0

π
(a)
i

C ′i,kDi +D′i,kCi

CiDi − 1
,

∂Q(θ∗,π(a))

∂γr
=
∑
∆1

∂ log fi
∂γr

−
∑
∆1

A′i,r +
∑
∆1

B′i,r +
∑
∆0

π
(a)
i

C ′i,rDi +D′i,rCi

CiDi − 1
,

∂2Q(θ∗,π(a))

∂αj∂α′j
= −

∑
∆1

A′′i,jj′ +
∑
∆1

B′′i,jj′ −
∑
∆0

zijzij′ηipi

+
∑
∆0

π
(a)
i Di

[
Di(CiC

′′
i,jj′ − C ′jC ′j′)− C ′′i,jj′
(CiDi − 1)2

]
,

∂2Q(θ∗,π(a))

∂αj∂βk
= −

∑
∆1

A′′i,jk +
∑
∆1

B′′i,jk +
∑
∆0

π
(a)
i Di

[
Di(CiC

′′
i,jk − C ′jC ′k)− C ′′i,jk
(CiDi − 1)2

]
,
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∂2Q(θ∗,π(a))

∂αj∂γr
= −

∑
∆1

A′′i,jr +
∑
∆1

B′′i,jr +
∑
∆0

π
(a)
i Di

[
Di(CiC

′′
i,jr − C ′jC ′r)− C ′′i,jr
(CiDi − 1)2

]
,

∂2Q(θ∗,π(a))

∂βk∂βk′
=−

∑
∆1

xikxik′pi(1− pi)−
∑
∆1

A′′i,kk′ +
∑
∆1

B′′i,kk′ +
∑
∆0

xikxik′pi(1− pi)

−
∑
∆1

xikxik′ηipi(1− pi)(1− 2pi)

+
∑
∆0

π
(a)
i

[
D2
i {CiC ′′i,kk′ − C ′i,kC ′i,k′}+ C2

i {DiD
′′
i,kk′ −D′i,kD′i,k′}

(CiDi − 1)2

]
−
∑
∆0

π
(a)
i

[{CiD′′i,kk′ +DiC
′′
i,kk′ + C ′i,kD

′
i,k′ + C ′i,k′D

′
i,k}

(CiDi − 1)2

]
,

∂2Q(θ∗,π(a))

∂βk∂γk
=−

∑
∆1

(A′′i,kr −B′′i,kr)

+
∑
∆0

π
(a)
i

[
D2
i {CiC ′′i,kr − C ′i,kC ′i,r}+ C2

i {DiD
′′
i,kr −D′i,kD′i,r}

(CiDi − 1)2

]
−
∑
∆0

π
(a)
i

[{CiD′′i,kr +DiC
′′
i,kr + C ′i,kD

′
i,r + C ′i,rD

′
i,k}

(CiDi − 1)2

]
,

∂2Q(θ∗,π(a))

∂γr∂γr′
=
∑
∆1

∂2 log fi
∂γr∂γr′

−
∑
∆1

A′′i,rr′ +
∑
∆1

B′′i,rr′

+
∑
∆0

π
(a)
i

[
D2
i {CiC ′′i,rr′ − C ′i,rC ′i,r′}+ C2

i {DiD
′′
i,rr′ −D′i,rD′i,r′}

(CiDi − 1)2

]
−
∑
∆0

π
(a)
i

[{CiD′′i,rr′ +DiC
′′
i,rr′ + C ′i,rD

′
i,r′ + C ′i,r′D

′
i,r}

(CiDi − 1)2

]
,
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where

A′i,j =
∂Ai
∂αj

= zijηipiFi, A
′
i,k =

∂Ai
∂βk

= xikηipi(1− pi)Fi,

A′i,r =
∂Ai
∂γr

= ηipiF
′
i,r,

A′′i,jj′ =
∂2Ai

∂αj∂αj′
= zijzij′ηipiFi, A

′′
i,jk =

∂2Ai
∂αj∂βj

= xikzijηipi(1− pi)Fi,

A′′i,kk′ =
∂2Ai

∂βk∂βk′
= xikxik′ηipi(1− pi)(1− 2pi)Fi, A

′′
i,jr =

∂2Ai
∂αj∂γr

= zijηipiF
′
i,r,

A′′i,kr =
∂2Ai
∂βj∂γr

= xikηipi(1− pi)F ′i,r, A′′i,rr′ =
∂2Ai
∂γr∂γr′

= ηipiF
′′
i,rr′ ;

B′i,j =
∂Bi

∂αj
=
zijpiFi
ηieBi

, B′i,k =
∂Bi

∂βk
= −xikpi(1− pi)

eBi

[
Fi +

fi
ηi

]
,

B′i,r =
∂Bi

∂γr
= −e−Bi

[
piF

′
i,r +

pi
ηi
f ′i,r

]
, B′′i,jj′ =

∂2Bi

∂αj∂αj′
= −zijzij′

pifi(1− piFi)
ηie2Bi

,

B′′i,jk =
∂2Bi

∂αj∂βj
= xikzij

pi(1− pi)fi
ηie2Bi

,

B′′i,kk′ =
∂2Bi

∂βk∂βk′
= −xikxik′

pi(1− pi)
e2Bi

[
Fi +

fi
ηi

] [
1− pi − eBi

]
,

B′′i,jr =
∂2Bi

∂αj∂γr
=
pizijf

′
i,r

ηieBi
+
pizijfi

[
piF

′
i,r +

pif
′
i,r

ηi

]
ηieBi

,

B′′i,kr =
∂2Bi

∂βj∂γr
= −

xikpi(1− pi)
[
F ′i,r +

f ′i,r
ηi

]
eBi

−
xikpi(1− pi)

[
Fi + fi

ηi

] [
piF

′
i,r +

pif
′
i,r

ηi

]
e2Bi

,

B′′i,rr′ =
∂2Bi

∂γr∂γr′
= −

pi

[
F ′′i,rr′ +

f ′′
i,rr′

ηi

]
eBi

−
p2
i

[
F ′i,r +

f ′i,r
ηi

] [
F ′i,r′ +

f ′
i,r′

ηi

]
e2Bi

;
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C ′i,j =
∂Ci
∂αj

= zijηipi(1− Fi)eηipi(1−Fi), C ′i,k =
∂Ci
∂βk

= xikηipi(1− pi)(1− Fi)eηipi(1−Fi),

C ′i,r =
∂Ci
∂γr

= −ηipiF ′i,reηipi(1−Fi),

C ′′i,jj′ =
∂2Ci

∂αj∂αj′
= zijzij′ηipi(1− Fi)eηipi(1−Fi)[1 + ηipi(1− Fi)],

C ′′i,jk =
∂2Ci
∂αj∂βj

= xikzijηipi(1− pi)(1− Fi)eηipi(1−Fi)[1 + ηipi(1− Fi)],

C ′′i,kk′ =
∂2Ci

∂βk∂βk′
= xikxik′ηipi(1− pi)(1− Fi)eηipi(1−Fi)[1− 2pi + ηipi(1− pi)(1− Fi)],

C ′′i,jr =
∂2Ci
∂αj∂γr

= −zijηipiF ′i,reηipi(1−Fi)[1 + ηipi(1− Fi)],

C ′′i,kr =
∂2Ci
∂βj∂γr

= −xikηipi(1− pi)F ′i,reηipi(1−Fi)[1 + ηipi(1− Fi)],

C ′′i,rr′ =
∂2Ci
∂γr∂γr′

= −ηipieηipi(1−Fi)
(
F ′′i,rr′ − ηipiF ′i,rF ′i,r′

)
;

D′i,j =
∂Di

∂αj
= 0, D′i,k =

∂Di

∂βk
=
xikpi(1− Fi)

1− pi
, D′i,r =

∂Di

∂γr
= −

piF
′
i,r

1− pi
,

D′′i,jj′ =
∂2Di

∂αj∂αj′
= 0, D′′i,jk =

∂2Di

∂αj∂βj
= 0, D′′i,kk′ =

∂2Di

∂βk∂βk′
= 0,

D′′i,jr =
∂2Di

∂αj∂γr
=
xikxik′pi(1− Fi)

1− pi
,
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D′′i,kr =
∂2Di

∂βj∂γr
= −

xikpiF
′
i,r

1− pi
, D′′i,rr′ =

∂2Di

∂γr∂γr′
= −

piF
′′
i,rr′

1− pi
.

Here, i = 1, . . . , n, j, j′ = 1, . . . , q1, k, k′ = 0, 1, . . . , q2, r, r′ = 0, 1, 20, 21, . . . , 2q2, 31, 32, . . . , 3q1,

l, l′ = 0, 1, . . . , q2, m,m′ = 1, . . . , q1 and xi0 ≡ 1.

C.2.3 Destructive negative binomial cure rate model

∂Q(θ∗,π(a))

∂αj
=
∑
∆1

zij −
(

1

φ
+ 1

)∑
∆1

zij
EiFi

1 + EiFi
− 1

φ

∑
∆0

zij
Ei

1 + Ei

+
∑
∆0

π
(a)
i

G′i,j

φGi(G
1/φ
i − 1)

,

∂Q(θ∗,π(a))

∂βk
=
∑
∆1

xik(1− pi)−
(

1

φ
+ 1

)∑
∆1

xik
EiFi(1− pi)

1 + EiFi
− 1

φ

∑
∆0

xik
Ei(1− pi)

1 + Ei

+
∑
∆0

π
(a)
i

G′i,k

φGi(G
1/φ
i − 1)

,

∂Q(θ∗,π(a))

∂γr
= −

(
1

φ
+ 1

)∑
∆1

EiF
′
i,r

1 + EiFi
+
∑
∆1

∂ log fi
∂γr

+
∑
∆0

π
(a)
i

G′i,r

φGi(G
1/φ
i − 1)

,

∂2Q(θ∗,π(a))

∂αj∂αj′
= −

(
1

φ
+ 1

)∑
∆1

zijzij′EiFi
(1 + EiFi)2

− 1

φ

∑
∆0

zijzij′Ei
(1 + Ei)2

+
∑
∆0

π
(a)
i

G′′i,jj′Gi(G
1/φ
i − 1)−G′i,jG′i,j′{(1/φ+ 1)G

1/φ
i − 1}

φ
(
G

1/φ+1
i − 1

)2

 ,



Chapter C.2 - First- and second-order derivatives of the Q-function for destructive
weighted Poisson cure rate model: 188

∂2Q(θ∗,π(a))

∂αj∂βk
= −

(
1

φ
+ 1

)∑
∆1

zijxikEiFi(1− pi)
(1 + EiFi)2

− 1

φ

∑
∆0

zijxik(1− pi)Ei
(1 + Ei)2

+
∑
∆0

π
(a)
i

G′′i,jkGi(G
1/φ
i − 1)−G′i,jG′i,k{(1/φ+ 1)G

1/φ
i − 1}

φ
(
G

1/φ+1
i − 1

)2

 ,

∂2Q(θ∗,π(a))

∂βk∂βk′
=−

(
1

φ
+ 1

)∑
∆1

xikxik′EiFi(1− pi)(1− 2pi − EiFipi)
(1 + EiFi)2

− 1

φ

∑
∆0

xikxik′(1− pi)2Ei
(1 + Ei)2

+
∑
∆0

π
(a)
i

G′′i,kk′Gi(G
1/φ
i − 1)−G′i,kG′i,k′{(1/φ+ 1)G

1/φ
i − 1}

φ
(
G

1/φ+1
i − 1

)2

 ,

∂2Q(θ∗,π(a))

∂αj∂γr
= −

(
1

φ
+ 1

)∑
∆1

zijEiF
′
i,r

(1 + EiFi)2

+
∑
∆0

π
(a)
i

G′′i,jrGi(G
1/φ
i − 1)−G′i,jG′i,r{(1/φ+ 1)G

1/φ
i − 1}

φ
(
G

1/φ+1
i − 1

)2

 ,

∂2Q(θ∗,π(a))

∂βk∂γr
= −

(
1

φ
+ 1

)∑
∆1

xik(1− pi)EiF ′i,r
(1 + EiFi)2

+
∑
∆0

π
(a)
i

G′′i,krGi(G
1/φ
i − 1)−G′i,kG′i,r{(1/φ+ 1)G

1/φ
i − 1}

φ
(
G

1/φ+1
i − 1

)2

 ,
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∂2Q(θ∗,π(a))

∂γr∂γr′
= −

(
1

φ
+ 1

)∑
∆1

[
EiF

′′
i,rr′ + E2

i {FiF ′′i,rr′ − F ′i,rF ′i,r′}
(1 + EiFi)2

]

+
∑
∆1

∂2 log fi
∂γr∂γr′

+
∑
∆0

π
(a)
i

G′′i,rr′Gi(G
1/φ
i − 1)−G′i,rG′i,r′{(1/φ+ 1)G

1/φ
i − 1}

φ
(
G

1/φ+1
i − 1

)2

 ,
where

G′i,j =
∂Gi

∂αj
=
zijEi(Fi − 1)

(1 + Ei)2
, G′i,k =

∂Gi

∂βk
=
xikEi(1− pi)(Fi − 1)

(1 + Ei)2
, G′i,r =

∂Gi

∂γr
=

EiF
′
i,r

(1 + Ei)
,

G′′i,jj′ =
∂2Gi

∂αj∂αj′
=
zijzij′Ei(1− Ei)(Fi − 1)

(1 + Ei)3
,

G′′i,jk =
∂2Gi

∂αj∂βk
=
zijxikEi(1− pi)(1− Ei)(Fi − 1)

(1 + Ei)3
,

G′′i,kk′ =
∂2Gi

∂βk∂βk′
=
xikxik′Ei(1− pi)2(1− Ei)(Fi − 1)

(1 + Ei)3
,

G′′i,jr =
∂2Gi

∂αj∂γr
=

zijEiF
′
i,r

(1 + Ei)2
, G′′i,kr =

∂2Gi

∂βk∂γr
=
xikEi(1− pi)F ′i,r

(1 + Ei)2
,

G′′i,rr′ =
∂2Gi

∂γr∂γr′
=

Ei
(1 + Ei)

F ′′i,rr′ .

Here, i = 1, . . . , n, j, j′ = 1, . . . , q1, k, k′ = 0, 1, . . . , q2, r, r′ = 0, 1, 20, 21, . . . , 2q2, 31, 32, . . . , 3q1,

l, l′ = 0, 1, . . . , q2, m,m′ = 1, . . . , q1 and xi0 ≡ 1.
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C.3 First- and second-order derivatives of the den-

sity, cumulative distribution and survival func-

tions

C.3.1 The density and log-density functions

f ′i,0 =
∂fi
∂γ0

=

{
−F ′i,0 + Si

[
1

γ0

+ log

(
ti
γ1

)]}
hi, f

′
i,1 =

∂fi
γ1

= −
{
F ′i,1 + Si

(
γ0

γ1

)}
hi,

f ′i,2l =
∂fi
∂γ2l

=
{
−F ′i,2l + Sixil

}
hi, f

′
i,3m =

∂fi
∂γ3m

=
{
−F ′i,3m + Sizim

}
hi,

f ′′i,00 =
∂2fi
∂γ2

0

=

{
−F ′′i,00 + Si log

(
ti
γ1

)[
2

γ0

+ log

(
ti
γ1

)]
− 2

[
1

γ0

+ log

(
ti
γ1

)]
F ′i,0

}
hi,

f ′′i,01 =
∂2fi
∂γ0∂γ1

=

{
−F ′′i,01 − Si

γ0

γ1

[
2

γ0

+ log

(
ti
γ1

)]
−
[

1

γ0

+ log

(
ti
γ1

)]
F ′i,1 +

γ0

γ1

F ′i,0

}
hi,

f ′′i,11 =
∂2fi
∂γ2

1

=

{
−F ′′i,11 + Si

γ0(γ0 + 1)

γ2
1

+ 2
γ0

γ1

F ′i,1

}
hi,

f ′′i,0(2l) =
∂2fi

∂γ0∂γ2l

=

{
−F ′′i,0(2l) + (Sixil − F ′i,2l)

[
1

γ0

+ log

(
ti
γ1

)]
− xilF ′i,0

}
hi,

f ′′i,0(3m) =
∂2fi

∂γ0∂γ3m

=

{
−F ′′i,0(3m) + (Sizim − F ′i,3m)

[
1

γ0

+ log

(
ti
γ1

)]
− zimF ′i,0

}
hi,

f ′′i,1(2l) =
∂2fi

∂γ1∂γ2l

=

{
−F ′′i,1(2l) − (Sixil − F ′i,2l)

γ0

γ1

− xilF ′i,1
}
hi,

f ′′i,1(3m) =
∂2fi

∂γ1∂γ3m

=

{
−F ′′i,1(3m) − (Sizim − F ′i,3m)

γ0

γ1

− zimF ′i,1
}
hi,

f ′′i,(2l)(2l′) =
∂2fi

∂γ2l∂γ2l′
=
{
−F ′′i,(2l)(2l′) + Sixilxil′ − F ′i,2lxil′ − xilF ′i,2l′

}
hi,

f ′′i,(2l)(3m) =
∂2fi

∂γ2l∂γ3m

=
{
−F ′′i,(2l)(3m) + Sixilzim − F ′i,2lzim − xilF ′i,3m

}
hi,

f ′′i,(3m)(3m′) =
∂2fi

∂γ3m∂γ3m′
=
{
−F ′′i,(3m)(3m′) + Sizimzim′ − F ′i,3mzim′ − zimF ′i,3m′

}
hi;
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∂ log fi
∂γr

=
f ′i,r
fi
,
∂2 log fi
∂γr∂γr′

=
fif
′′
i,rr′ − f ′i,rf ′i,r′

f 2
i

where i = 1, . . . , n, j, j′ = 1, . . . , q1, k, k′ = 0, 1, . . . , q2, r, r′ = 0, 1, 20, 21, . . . , 2q2, 31, 32, . . . , 3q1,

l, l′ = 0, 1, . . . , q2, m,m′ = 1, . . . , q1 and xi0 ≡ 1.

C.3.2 The cumulative distribution function

F ′i,0 =
∂Fi
∂γ0

= −Si logSi log

(
ti
γ1

)
, F ′i,1 =

∂Fi
γ1

= Si logSi log

(
γ0

γ1

)
,

F ′i,2l =
∂Fi
∂γ2l

= −xilSi logSi, F
′
i,3m =

∂Fi
γ3m

= −zimSi logSi,

F ′′i,00 =
∂2Fi
∂γ2

0

= −
[
log

(
ti
γ0

)]2

Si logSi(1 + logSi),

F ′′i,01 =
∂2Fi
∂γ0∂γ1

=
Si logSi
γ1

[
1 + γ0 log

(
ti
γ1

)
(1 + logSi)

]
,

F ′′i,11 =
∂2Fi
∂γ2

1

= −γ0

γ2
1

Si logSi

[
1 + γ0 log

(
ti
γ1

)]
,

F ′′i,0(2l) =
∂2Fi

∂γ0∂γ2l

= −xil log

(
ti
γ1

)
Si logSi(1 + logSi),

F ′′i,0(3m) =
∂2Fi

∂γ0∂γ3m

= −zim log

(
ti
γ1

)
Si logSi(1 + logSi),

F ′′i,1(2l) =
∂2Fi

∂γ1∂γ2l

= xil

(
γ0

γ1

)
Si logSi(1 + logSi),

F ′′i,1(3m) =
∂2Fi

∂γ1∂γ3m

= zim

(
γ0

γ1

)
Si logSi(1 + logSi),

F ′′i,(2l)(2l′) =
∂2Fi

∂γ2l∂γ2l′
= −xilxil′Si logSi(1 + logSi),
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F ′′i,(2l)(3m) =
∂2Fi

∂γ2l∂γ3m

= −xilzimSi logSi(1 + logSi),

F ′′i,(3m)(3m′) =
∂2Fi

∂γ3m∂γ3m′
= −zimzim′Si logSi(1 + logSi),

where i = 1, . . . , n, j, j′ = 1, . . . , q1, k, k′ = 0, 1, . . . , q2, r, r′ = 0, 1, 20, 21, . . . , 2q2, 31, 32, . . . , 3q1,

l, l′ = 0, 1, . . . , q2, m,m′ = 1, . . . , q1 and xi0 ≡ 1.

C.3.3 The survival function

S ′i,0 = −F ′i,0, S ′i,1 = −F ′i,1, S ′i,2l = −F ′i,2l, S ′i,3m = −F ′i,3m,

S ′′i,00 = −F ′′i,00, S
′′
i,01 = −F ′′i,01, S

′′
i,0(2l) = −F ′′i,0(2l), S

′′
i,0(3m) = −F ′′i,0(3m),

S ′′i,11 = −F ′′i,11, S
′′
i,1(2l) = −F ′′i,1(2l), S

′′
i,1(3m) = −F ′′i,1(3m),

S ′′i,(2l)(2l′) = −F ′′i,(2l)(2l′), S ′′i,(2l)(3m) = −F ′′i,(2l)(3m), S
′′
i,(3m)(3m′) = −F ′′i,(3m)(3m′).

where i = 1, . . . , n, j, j′ = 1, . . . , q1, k, k′ = 0, 1, . . . , q2, r, r′ = 0, 1, 20, 21, . . . , 2q2, 31, 32, . . . , 3q1,

l, l′ = 0, 1, . . . , q2, m,m′ = 1, . . . , q1 and xi0 ≡ 1.
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