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Lay Abstract

It is well known that with the knowledge of channel state, it is possible to increase

the channel capacity. In this sense, knowing channel state never hurts. However,

whether it is always beneficial to actively acquire channel state is another story. If we

take into account the cost of measuring the channel state against the potential gain

on the capacity, sometimes it may not appear very economic to do so. This thesis

studies the effect of the quality of observed channel states on the channel capacity.

It has been found out in some circumstances the channel capacity is very sensitive to

the noise on the state information. On the other hand, it appears that the maximum

capacity can be achieved with the knowledge of a small portion of the total channel

state information under a slightly different setting. This thesis proves the generality of

such phenomena in binary-input channels and provides the necessary and sufficient

conditions for the occurrence of such phenomena for an arbitrary channel. This

paper also introduces the idea of intrinsic capacity which can be used to measure the

ultimate capacity potential of a channel by exploring the channel state. By viewing

an arbitrary channel as a deterministic channel with state, the greatest possible and

smallest possible capacities have been either derived or bounded in the thesis.
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Abstract

Channels with state model communication settings where the channel statistics are

not fully known or vary over transmissions. It is important for communication system

to obtain the channel state information in terms of increasing channel capacity. This

thesis addresses the effect of the quality of state information on channel capacity.

Extreme scenarios are studied to reveal the limit in increasing channel capacity with

the knowledge of state information.

We consider the channel with the perfect state information at the decoder, while

the encoder is only available to a noisy state observation. The effect of the noisy state

at the encoder to the channel capacity is studied. We show that for any binary-input

channel, if the mutual information between the noisy state observation at the encoder

and the true channel state is below a positive threshold determined solely by the state

distribution, then the capacity is the same as that with no encoder side information.

A complementary phenomenon is also revealed for the generalized probing capacity.

Extensions beyond binary-input channels are developed.

We further investigate the channel capacity, when the causal channel state in-

formation (available at the encoder or the decoder or both) makes it deterministic.

Every such a capacity is called an intrinsic capacity of the channel. Among them,

the smallest and the largest, called the lower and the upper intrinsic capacities, are
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particularly studied. Their exact values are determined in most cases when the in-

put or the output is binary. General lower and upper bounds are also provided for

the lower and the upper intrinsic capacities with causal state information available at

both sides. Byproducts of this work are a generalization of the Birkhoff-von Neumann

theorem and a result on the uselessness of causal state information at the encoder.
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Notation and Abbreviations

CSI Channel state information

CSIT Channel state information available at the transmitter

CSIR Channel state information available at the receiver

DMC Discrete memoryless channel

e.g., X Random variable

e.g., X Alphabet of X

e.g., |X | Cardinality of X

e.g., pX Distribution of X, and also a 1× |X | row vector

e.g., pY |X Conditional distribution of Y given X, and also a |X | × |Y|

stochastic matrix

e.g., pY |X(·|x) Conditional distribution of Y given X = x, and also a 1× |Y|

row vector

e.g., pY |X(y|·) A column vector equal to the y-column of pY |X

C(·) Channel capacity

H(·) Entropy

I(·; ·) Mutual information

D(·||·) Divergence

I(·) Indicator function
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BES Binary erasure channel

BSS Binary symmetric channel

P(·) Probability

X\Y Exclude set Y from set X

∗ Erased output

‖ · ‖∞ Infinity norm

‖ · ‖2 2-norm

‖ · ‖F Frobenius norm

A⇒B A is sufficient to B

A⇔B A is equivalent to B

R Real space

P Channel space

P̂ Deterministic channel space

dec(·) The set of all possible convex combination

IC(·) Intrinsic capacity

IC(·) Lower intrinsic capacity

IC(·) Upper intrinsic capacity

e.g. supp(pX) The support of pX

e.g. a Row vector

e.g. M Matrix

1 All-one row vector

e.g. (a)+ The value equals the greater between a and 0

Γ(·, ·) Rank probability
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Chapter 1

Introduction

1.1 Motivation

Channels with state refer to channels whose conditional output probability distribu-

tion depends on a state process, and where the channel state information (CSI) signal

is available at the transmitter (CSIT) or at the receiver (CSIR) or at both ends. Many

studies have devoted over the years to a wide range of scenarios. Depending on the

assumptions on the channel state and on the availability and quality (clean or noisy)

of the state information at the transmitter and/or the receiver, a variety of problems

arise to the interest of related physical situations.

Note that the CSI signal can be observed either causally or noncausally. In the

causal case, the transmitter and/or the receiver at time n know only the CSI sequence

from time 1 to n, whereas in the non-causal case, the realization of the state sequence

from the start to the end of transmission is known before the transmission of any

symbol begins. The causal CSIT channel model was introduced in [Shannon 1958]

where the state is generated by an independent and identically distributed (i.i.d.)
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process and noiselessly available at the transmitter. Shannon found that the capacity

of this channel is equal to the capacity of an ordinary discrete memoryless channel

(DMC) with an extended input alphabet. [Salehi 1992] generalized Shannon’s result

to the case where both the transmitter and receiver observe (possibly different) noisy

versions of the state information. Later, Caire and Shamai showed this result to be

a special case of Shannon’s model and also determined that optimal codes can be

constructed directly on the input alphabet when CSIT is a deterministic function

of CSIR (Caire and Shamai, 1999). The non-causal CSIT model was introduced

in [Kuznetsov and Tsybakov 1974]. Gel’fand and Pinsker found the capacity and

suggested the optimal coding for perfect CIST and no CSIR (Gel’fand and Pinsker,

1980). An extension of the result has been developed in [Cover and Chiang 2002]

for the case where the transmitter and the receiver have the knowledge of different

nonperfect CSI sequences, which are correlated to the state sequence. Regarding

CSIR, causal and non-causal CSI are not distinguished, since the receiver waits until

the end of the transmission anyway, before decoding. Channels with CSIR are studied

in [Caire and Shamai 1999; Heegard and Gamal 1983; Salehi 1992].

Driven by the rapid development of wireless communications systems over the last

decade, numerous works have been devoted to more realistic analytic models and to

the exploration of the fundamental limits on reliable information transmission over

these systems. The presence of CSI has been shown to yield significant performance

gains, for example, in improving a predetermined space-time code (Jöngren et al.,

2002), in outage probability (Bhashyam et al., 2002) or in capacity (Sabharwal et al.,

2000). However, in practice, CSI is communicated over way-side channels, for which

only limited resources of the system are located, and moreover, the existence of noise

2
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or distortions should also be taken into account. Some recent works have been de-

voted to the more realistic case of partial or nonperfect CSI (Rosenzweig et al., 2005;

Asnani et al., 2011; Song and Chen, 2011). Motivated by the tradeoff between the

improvement in the channel capacity due to the availability of CSIT and the potential

cost of maintaining a high quality of the CSIT, in this thesis, we study the effect of

the quality of the CSIT on the channel capacity. On the other hand, knowing that

the more effort we put to analyze a channel, the better knowledge of the channel

statistics we will obtain, we want to discover the ultimate potential gain in capacity

due to the CSI. To characterize the potential capacity gain, we introduce the intrinsic

capacity which is the channel capacity as if the channel is fully known as deterministic

channels with state.

1.2 Background

Consider the channel with state depicted in Fig. 1.1, whose input, state and output,

at time t, are X(t) ∈ X , S(t) ∈ S and Y (t) ∈ Y , respectively, where X , S, Y are the

corresponding finite alphabets. The transmitter wishes to communicate a message

M over the channel with state to the receiver with possible state information S(t)

available at the encoder and/or the decoder or neither. Unless otherwise specified,

we assume throughout a DMC with state model, where the channel is memoryless in

the sense that

p(yn|xn, sn,m) =
n∏
i=1

pY |X,S(yi|xi, si).

In this model, the channel state is randomly chosen by nature where the state

3
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Encoder Decoder| ,Y X Sp

Sp

M

( )S t

( )X t ( )Y t M̂

( )S t ( )S t

Figure 1.1: Channels with state model.

Encoder Decoder| ,Y X Sp

Sp

M ( )X t ( )Y t M̂

( )S t

Figure 1.2: State information available at neither the encoder nor the decoder.

sequence (S1, S2, · · · ) is i.i.d. with Si ∼ ps(si). The fact that the state changes over

transmissions provides a temporal dimension to the availability of the channel state.

The state information may be observed causally or non-causally. The capacity of

this channel under various scenarios of state information availability is what we are

interested in. When the state is available at the decoder, the capacity under the

different temporal settings is the same. However, this is not the case when the state

is available at the encoder. In the following subsections, we will introduce special

cases of this general setup.

4
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Encoder Decoder| ,Y X Sp

Sp

M ( )X t ( )Y t M̂

( )S t ( )S t

Figure 1.3: State information available only at the decoder.

1.2.1 State Information Available at Neither the Encoder

nor the Decoder

When the state information is not available at either the encoder or the decoder,

the model is shown in Fig. 1.2. Since neither the encoder nor the decoder have

the knowledge of the state, the channel can be treated as a DMC without state by

averaging the DMCs p(y|x, s) over the state, i.e. let p(y|x) =
∑

s p(s)p(y|x, s) be

the DMC. Then it is easy to see that the capacity when the state information is not

available at the encoder or the decoder is exactly the same as the capacity of an

ordinary DMC, i.e.

C(pY |X) = max
p(x)

I(X;Y )

1.2.2 State Information Available only at the Decoder

When the state information is available only at the decoder, the model is shown in

Fig. 1.3. In this model, the state information can be treated as part of the channel

5
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Encoder Decoder| ,Y X Sp

Sp

M ( )X t ( )Y t M̂

( )S t ( )S t( )S t

Figure 1.4: State information available at both the encoder and the decoder.

output. The channel capacity is

CD(pY |X) = max
p(x)

I(X;Y, S).

Note that the channel state is i.i.d. generated which means S is independent with

both X and Y . Therefore, the capacity can also be written as

CD(pY |X) = max
p(x)

I(X;Y |S).

1.2.3 State Information Available at Both the Encoder and

the Decoder

When the state information is available causally and/or non-causally at both the

encoder and the decoder, the model is depicted in Fig. 1.4. In this model, the

channel state Sn can be treated as a time-sharing sequence. Then channel capacity

is the same for all four combinations and is given by

CED(pY |X) = max
p(x|s)

I(X;Y |S).

6
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1.2.4 State Information Available only at the Encoder

When the state information is available only at the encoder as depicted in Fig. 1.5,

the capacity distinguishes between channels where the state information is observed

causally and channels where the state information is observed non-causally.

For the causal case, the encoder knows only Si before transmission i. In this

scenario, an auxiliary random variable, which is independent of S, is introduced as U

with |U| ≤ |X ||S|. Then, the capacity of the DMC with DM state p(y|x, s)p(s) when

the state information is available causally only at the encoder is

CE(pY |X) = max
p(u),x(u,s)

I(U ;Y )

The coding scheme corresponds to attaching a “mapping device” x(u, s) with two

inputs U and S and one output X in front of the actual channel input. In this way, a

new DMC is induced as p(y|u) =
∑

s p(y|x(u, s), s)p(s) with input U , output Y and

capacity CE. Note that we can view the encoding as being performed over the set of

all functions {xu(s) : S → X} indexed by u as the input alphabet. This technique of

coding over functions onto X instead of actual symbols in X is referred to as the Shan-

non strategy. It can reduce the cardinality bound of U to min {(|X | − 1)|S|+ 1, |Y|}.

When the state information is available noncausally only at the encoder, Gelfand-

Pinsker Theorem gives the channel capacity as follows.

CGP(pY |X) = max
p(u|s),x(u,s)

(I(U ;Y )− I(U ;S)),

where U ≤ min {|X | · |S|, |Y|+ |S| − 1}.

Recall that when the state information is causally available at the encoder, U is

7
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Encoder Decoder| ,Y X Sp

Sp

M ( )X t ( )Y t M̂

( )S t( )S t

Figure 1.5: State information available only at the encoder.

independent of S which leads to I(U ;S) = 0. The capacity of the causal case can

also be written as

CE(pY |X) = max
p(u),x(u,s)

(I(U ;Y )− I(U ;S)).

As we can see, these two expressions of causal and non-causal cases have the same

form, except that in the causal case the maximization is over p(u) instead of p(u|s).

1.3 Thesis Contributions and Outline

This thesis focuses on the theoretical analysis of the capacity of channels with state.

In Chapter 2, we study the channel model when the perfect state information is

available at the decoder and the encoder is only accessible to a noisy version of the

state information. We find that for a binary-input channel, when the quality of the

state information at the encoder is below a certain threshold, the channel capacity is

as low as if there was no state information at the encoder at all. On the other hand, a

generalized probing capacity is as high as if there was perfect state information at the

encoder when the quality of the state information is above a certain threshold at the

encoder end. We claim that this surprising phenomena can in fact be observed for all

8
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binary-input channels. The main results of this chapter are summarized in Theorems

2.1 and 2.2 in which the thresholds of the phenomena have also been given. The rest

of Chapter 2 is organized as follows. We present the proofs of Theorems 2.1 and 2.2

in Sections 2.2 and 2.3, respectively. The validity of these two results under various

modified conditions is discussed in Section 2.4. Section 2.5 contains some concluding

remarks.

In Chapter 3, we introduce the idea of intrinsic capacity. Based on the idea that

any channel can be seen as deterministic channels with state which we call intrinsic

state, the intrinsic capacity is the channel capacity after all the uncertainty of the

channel being eliminated. We show that each intrinsic state distribution corresponds

to some ordinary channel, and the intrinsic capacity solely depends on the distribution

of the intrinsic state. However, the mapping from an ordinary channel to its intrinsic

state is not 1-to-1 or unique. We suspect that the true mapping should depend on the

physical nature or many other factors of the channel. Despite of that, it is still pos-

sible to determine the lower and upper bound of the intrinsic capacity. On the other

hand, according to the availability of the intrinsic state at the encoder and/or the

decoder, the analysis of the intrinsic capacity should also be scenario-specific which

could complicate the problem. The main contributions of Chapter 3 are as follows. 1)

We study the structure of the convex polytope consisting of all convex combinations

of deterministic channels for a generic channel; 2) We prove a generalization of the

Birkhoff-von Neumann theorem for a family of channel matrices with integer-valued

column-sum vector constraints from below and above, respectively; 3) When the in-

trinsic state is available at both the encoder and the decoder, the lower and upper

9
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intrinsic capacity is determined for binary-input or binary-output channels, and gen-

eral upper and lower bounds are also provided for the non-binary cases; 4) For a

binary-output channel, the lower and upper intrinsic capacity are determined when

the intrinsic state is only available at the encoder; 5) For a binary-input channel, the

lower and upper intrinsic capacity are determined when the intrinsic state is available

at the decoder only. Chapter 3 is organized as follows. Section 3.2 formulates the

problem of intrinsic capacities. The simplest case, the binary-input binary-output

channel, is first studied in Section 3.3. The main results of this chapter are then

presented in Section 3.4.

The rest of this thesis is organized as follows. In Chapter 2, we first state our main

results Theorems 2.1 and 2.2 in Section 2.1; we then present the proofs of those two

theorems in Sections 2.2 and 2.3, respectively; the validity of these two results under

various modified conditions is discussed in Section 2.4; section 2.5 contains some

concluding remarks. In Chapter 3, we first introduce the idea of intrinsic capacity in

Section 3.1; section 3.2 formulates the problem of intrinsic capacities; The simplest

case, the binary-input binary-output channel, is first studied in Section 3.3; the main

results of this chapter are then presented in Section 3.4. Finaly, Chapter 4 concludes

the thesis.

10



Chapter 2

When is Noisy State Information

at the Encoder as Useless as No

Information or as Good as

Noise-Free State?

2.1 Introduction

Consider a memoryless channel pY |X,S with input X, output Y , and state S. We

assume that the channel state S, distributed according to pS, is provided to the

decoder, and a noisy state observation S̃, generated by S through side channel pS̃|S,

is available causally at the encoder. Here X, Y , S, and S̃ are defined over finite

alphabets X , Y , S, and S̃, respectively. In this setting (see Fig. 2.1), Shannon’s

remarkable result (Shannon, 1958) (see also (Caire and Shamai, 1999, Eq. (3)) and

11
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Figure 2.1: Channel model.

(Gamal and Kim, 2011, Th. 7.2)) implies that the channel capacity is given by

C(pY |X,S, pS, pS̃|S) , max
pU

I(U ;Y |S). (2.1)

The auxiliary random variable U is defined over alphabet U with |U| = |X ||S̃|, whose

joint distribution with (X, Y, S, S̃) factors as

pU,X,Y,S,S̃(u, x, y, s, s̃) = pU(u)pS(s)pS̃|S(s̃|s)I(x = ψ(u, s̃))pY |X,S(y|x, s),

u ∈ U , x ∈ X , y ∈ Y , s ∈ S, s̃ ∈ S̃, (2.2)

where I(·) is the indicator function, and ψ(u, ·), u ∈ U , are |X ||S̃| different mappings

from S̃ to X . Without loss of generality, we set X = {0, 1, · · · , |X | − 1}, S =

{0, 1 · · · , |S| − 1}, U = {0, 1, · · · , |X ||S̃| − 1}, and order the mappings ψ(u, ·), u ∈ U ,

in such a way that the first |X | mappings1 are

ψ(u, ·) ≡ u, u ∈ X ; (2.3)

1These are the mappings that ignore the encoder side information.

12
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moreover, we assume that ρ , mins∈S pS(s) > 0. The capacity formula (2.1) can be

simplified in the following two special cases. Specifically, when there is no encoder

side information, the channel capacity reduces to (Gamal and Kim, 2011, Eq. (7.2))

C(pY |X,S, pS) , max
pX

I(X;Y |S), (2.4)

where pX,Y,S(x, y, s) = pX(x)pS(s)pY |X,S(y|x, s); on the other hand, when perfect state

information is available at the encoder (as well as the decoder), the channel capacity

becomes (Gamal and Kim, 2011, Eq. (7.3))

C(pY |X,S, pS) , max
pX|S

I(X;Y |S), (2.5)

where pX,Y,S(x, y, s) = pS(s)pX|S(x|s)pY |X,S(y|x, s).

For comparison, consider the following similarly defined quantity

C ′(pY |X,S, pS, pS̃|S) , max
pU

I(X;Y |S),

where the joint distribution of (U,X, Y, S, S̃) is also given by (2.2). We shall refer to

C ′(pY |X,S, pS, pS̃|S) as the generalized probing capacity. By the functional representa-

tion lemma (Gamal and Kim, 2011, p. 626) (see also (Wang et al., 2011, Lemma 1)),

C ′(pY |X,S, pS, pS̃|S) can be defined equivalently as

C ′(pY |X,S, pS, pS̃|S) , max
pX|S̃

I(X;Y |S),

13
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where

pX,Y,S,S̃(x, y, s, s̃) = pS(s)pS̃|S(s̃|s)pX|S̃(x|s̃)pY |X,S(y|x, s), x ∈ X , y ∈ Y , s ∈ S, s̃ ∈ S̃.

Clearly,

C(pY |X,S, pS) ≤ C(pY |X,S, pS, pS̃|S)

≤ C ′(pY |X,S, pS, pS̃|S)

≤ C(pY |X,S, pS). (2.6)

Moreover, we have

C(pY |X,S, pS, pS̃|S) = C ′(pY |X,S, pS, pS̃|S)

= C(pY |X,S, pS) (2.7)

if S and S̃ are independent (i.e., I(S; S̃) = 0), and

C(pY |X,S, pS, pS̃|S) = C ′(pY |X,S, pS, pS̃|S)

= C(pY |X,S, pS) (2.8)

if S is a deterministic function of S̃ (i.e., H(S|S̃) = 0).

To elucidate the operational meaning of C ′(pY |X,S, pS, pS̃|S) and its connection with

C(pY |X,S, pS, pS̃|S), it is instructive to consider the special case where pS̃|S is a binary

erasure channel with erasure probability ε (denoted by BEC(ε)), which corresponds to

the probing channel setup studied in [Asnani et al. 2011]. The probing channel model

14
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Figure 2.2: Illustration of pY |X,S and pS given by (2.9) and (2.10), respectively.

is essentially the same as the one in Fig. 2.1 except that, in Fig. 2.1, the encoder

(which, with high probability, observes approximately nε state symbols out of the

whole state sequence of length n when n is large enough) has no control of the exact

positions of these n(1−ε) symbols whereas, in the probing channel model, the encoder

has the freedom to specify the positions of these n(1 − ε) symbols according to the

message to be sent. It is shown by [Asnani et al. 2011] that this additional freedom

increases the achievable rate from C(pY |X,S, pS,BEC(ε)) to C ′(pY |X,S, pS,BEC(ε)).

Now consider an example (see also Fig. 2.2) where

pY |X,S(y|x, s) =



1− θ, (x, y, s) = (0, 0, 0) or (1, 1, 1),

θ, (x, y, s) = (0, 1, 0) or (1, 0, 1),

0, (x, y, s) = (1, 0, 0) or (0, 1, 1),

1, (x, y, s) = (1, 1, 0) or (0, 0, 1),

(2.9)

pS(0) = pS(1) =
1

2
. (2.10)

15
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C(pY |X,S , pS)

C(pY |X,S , pS ,BEC(ǫ))

C(pY |X,S , pS)

C ′(pY |X,S , pS ,BEC(ǫ))

Figure 2.3: Plots of C(pY |X,S, pS,BEC(ε)) and C ′(pY |X,S, pS,BEC(ε)) against ε for
ε ∈ [0, 1], where pY |X,S and pS are given by (2.9) with θ = 1

2
and (2.10), respectively.

For this example, it can be verified that

C(pY |X,S, pS) =


log 2, θ = 0,

1
2

(
(1− θ) log 2 + log 2

1+θ
+ θ log 2θ

1+θ

)
, θ ∈ (0, 1),

0, θ = 1,

C(pY |X,S, pS) =


log 2, θ = 0,

log

(
1 + (1− θ)θ

θ
1−θ

)
, θ ∈ (0, 1),

0, θ = 1.

Note that C(pY |X,S, pS) is strictly greater than C(pY |X,S, pS) unless θ = 0 or θ = 1.
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Figure 2.4: Plots of C(pY |X,S, pS,BSC(q)) and C ′(pY |X,S, pS,BSC(q)) against q for
q ∈ [0, 1

2
], where pY |X,S and pS are given by (2.9) with θ = 1

2
and (2.10), respectively.

It follows by (2.7) and (2.8) that

C(pY |X,S, pS,BEC(ε))
∣∣
ε=1

= C ′(pY |X,S, pS,BEC(ε))
∣∣
ε=1

= C(pY |X,S, pS),

C(pY |X,S, pS,BEC(ε))
∣∣
ε=0

= C ′(pY |X,S, pS,BEC(ε))
∣∣
ε=0

= C(pY |X,S, pS).

To gain a better understanding, we plot C(pY |X,S, pS,BEC(ε)) and C ′(pY |X,S, pS,BEC(ε))

against ε for ε ∈ [0, 1] in Fig. 2.3. It turns out that, somewhat counterintuitively,

C(pY |X,S, pS,BEC(ε)) coincides with C(pY |X,S, pS) way before ε reaches 1. That is to
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say, when ε is above a certain threshold strictly less than 1, the noisy state observa-

tion S̃ is useless and can be ignored (as far as the channel capacity is concerned). On

the other hand, it can be seen that C ′(pY |X,S, pS,BEC(ε)) is equal to C(pY |X,S, pS)

for a large range of ε strictly greater than 0. Hence, in terms of the probing capacity,

the noisy state observation can be as good as the perfect one. As shown in Fig. 2.4,

the same phenomena arise if we choose pS̃|S to be a binary symmetric channel with

crossover probability q (denoted by BSC(q)).

The contributions of the present work are summarized in the following theorems,

which indicate that the aforedescribed surprising phenomena can in fact be observed

for all binary-input channels.

Theorem 2.1 For any binary-input channel pY |X,S, state distribution pS, and side

channel pS̃|S,

C(pY |X,S, pS, pS̃|S) = C(pY |X,S, pS)

if I(S; S̃) ≤ ρ2

2e2
, where ρ , mins∈S pS(s).

Theorem 2.2 For any binary-input channel pY |X,S, state distribution pS, and side

channel pS̃|S,

C ′(pY |X,S, pS, pS̃|S) = C(pY |X,S, pS)

if H(S|S̃) ≤ 2ρ log 2
(|S|−1)(e−1)

, where ρ , mins∈S pS(s).

On the surface these two results may look rather similar. One might even suspect

the existence of a certain duality between them. However, it will be seen that the

18
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underlying reasons are actually quite different. The proof of Theorem 2.1 hinges upon,

among other things, a perturbation analysis. In contrast, Theorem 2.2 is essentially

a manifestation of an induced Markov structure.

The conditions in Theorem 2.1 and Theorem 2.2 are stated in terms of bounds on

I(S; S̃) and H(S|S̃); as a consequence, they depend inevitably on pS. As shown by

Theorem 2.3 in Section 2.2 and Theorem 2.4 in Section 2.3, it is in fact possible to

establish these two results under more general conditions on pS̃|S that are universal

for all binary-input channels and state distributions.

Throughout this chapter, all logarithms are base-e.

2.2 Proof of Theorem 2.1

First consider the special case where pS̃|S is a generalized erasure channel (with

erasure probability ε ∈ [0, 1]) defined as

p
S̃
(ε)
GE|S

(s̃|s) =


1− ε, s̃ = s,

ε, s̃ = ∗,

0, otherwise,

s ∈ S, s̃ ∈ S ∪ {∗}.

Lemma 2.1 Given any binary-input channel pY |X,S and state distribution pS,

C(pY |X,S, pS, pS̃(ε)
GE|S

) = C(pY |X,S, pS)

for ε ∈ [1− e−1, 1].
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Remark: Lemma 2.1 provides a universal upper bound2 on the erasure probability

threshold above which the encoder side information is useless. The actual threshold,

however, depends on pY |X,S and pS (see Section 2.4.1 for a detailed analysis).

Proof: As indicated by (2.1), the capacity of the channel model in Fig. 2.1 (i.e.,

C(pY |X,S, pS, pS̃|S)) is equal to that of channel pY,S|U , where

pY,S|U(y, s|u) =
∑
s̃∈S̃

pS(s)pS̃|S(s̃|s)pY |X,S(y|ψ(u, s̃), s), u ∈ U , y ∈ Y , s ∈ S.

According to [Gallager 1968, Th. 4.5.1], pU is a capacity-achieving input distribution

of channel pY,S|U (i.e., pU is a maximizer of the optimization problem in (2.1)) if and

only if there exists some number C such that

D(pY,S|U(·, ·|u)‖pY,S) = C, u ∈ U with pU(u) > 0,

D(pY,S|U(·, ·|u)‖pY,S) ≤ C, u ∈ U with pU(u) = 0;

furthermore, the number C is equal to C(pY |X,S, pS, pS̃|S). In view of (2.3), we have

pY,S|U(y, s|u) = pY,S|X(y, s|u), u ∈ X , y ∈ Y , s ∈ S.

Let pX̂ be a capacity-achieving input distribution of channel pY,S|X (i.e, pX̂ is a max-

imizer of the optimization problem in (2.4)). Define

pÛ(u) =

 pX̂(u), u ∈ X ,

0, otherwise.
(2.11)

2Numerical simulations suggest that this universal upper bound is not tight. Determining the
exact universal erasure probability threshold remains an open problem.
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It is clear that C(pY |X,S, pS, pS̃|S) = C(pY |X,S, pS) if and only if pÛ is a capacity-

achieving input distribution of channel pY,S|U .

Now consider the special case where pS̃|S is a generalized erasure channel with

erasure probability ε, and define

DGE(pU , ε, u) = D(pY,S|U(·, ·|u)‖pY,S) (2.12)

to stress the dependence of D(pY,S|U(·, ·|u)‖pY,S) on pU , ε, and u. It can be verified

that

pY,S|U(y, s|u)

=
∑

s̃∈S∪{∗}

pS(s)pS̃(ε)|S(s̃|s)pY |X,S(y|ψ(u, s̃), s)

= pS(s)εpY |X,S(y|ψ(u, ∗), s) + pS(s)(1− ε)pY |X,S(y|ψ(u, s), s)

= pS(s)(pY |X,S(y|ψ(u, s), s) + εδ(u, y, s)), (2.13)

where

δ(u, y, s) = pY |X,S(y|ψ(u, ∗), s)− pY |X,S(y|ψ(u, s), s), u ∈ U , y ∈ Y , s ∈ S. (2.14)

Since |X | = 2, there is no loss of generality in assuming that (Shulman and Feder,

2004, Th. 2)

pX̂(x) > e−1, x ∈ X . (2.15)
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To the end of proving Lemma 2.1, it suffices to show that, for ε ∈ [1− e−1, 1],

DGE(pÛ , ε, u) = C(pY |X,S, pS), u ∈ X ,

DGE(pÛ , ε, u) ≤ C(pY |X,S, pS), otherwise.

Clearly, pÛ is a capacity-achieving input distribution of channel pY,S|U when ε = 1.

Therefore, we have3

DGE(pÛ , 1, u) = C(pY |X,S, pS), u ∈ X , (2.16)

DGE(pÛ , 1, u) ≤ C(pY |X,S, pS), otherwise. (2.17)

Note that

DGE(pÛ , ε, u)

=
∑

y∈Y,s∈S

pY,S|U(y, s|u) log
pY,S|U(y, s|u)∑

u′∈U pÛ(u′)pY,S|U(y, s|u′)

=
∑

y∈Y,s∈S

pS(s)(pY |X,S(y|ψ(u, s), s) + εδ(u, y, s))

× log
pY |X,S(y|ψ(u, s), s) + εδ(u, y, s)∑

u′∈U pÛ(u′)(pY |X,S(y|ψ(u′, s), s) + εδ(u′, y, s))
(2.18)

=
∑

y∈Y,s∈S

pS(s)(pY |X,S(y|ψ(u, s), s) + εδ(u, y, s))

× log
pY |X,S(y|ψ(u, s), s) + εδ(u, y, s)∑

x∈X pX̂(x)pY |X,S(y|x, s)
, ε ∈ [0, 1], u ∈ U , (2.19)

3The inequality in (2.17) is in fact an equality.
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where (2.18) is due to (2.13), and (2.19) is due to (2.3) and (2.11). Moreover,

∂

∂ε
DGE(pÛ , ε, u)

=
∑

y∈Y,s∈S

pS(s)δ(u, y, s)×

(
log

pY |X,S(y|ψ(u, s), s) + εδ(u, y, s)∑
x∈X pX̂(x)pY |X,S(y|x, s)

+ 1

)

=
∑

y∈Y,s∈S

pS(s)δ(u, y, s)× log
pY |X,S(y|ψ(u, s), s) + εδ(u, y, s)∑

x∈X pX̂(x)pY |X,S(y|x, s)

+
∑
s∈S

pS(s)
∑
y∈Y

δ(u, y, s)

=
∑

y∈Y,s∈S

pS(s)δ(u, y, s)× log
pY |X,S(y|ψ(u, s), s) + εδ(u, y, s)∑

x∈X pX̂(x)pY |X,S(y|x, s)
,

ε ∈ [0, 1], u ∈ U . (2.20)

Define

Gδ = {u ∈ U : δ(u, y, s) = 0 for all y ∈ Y and s ∈ S}. (2.21)

In light of (2.19),

DGE(pÛ , ε, u) = DGE(pÛ , 1, u), ε ∈ [0, 1], u ∈ Gδ. (2.22)

For any u ∈ U\Gδ, there must exist some y ∈ Y and s ∈ S such that δ(u, y, s) 6= 0;

furthermore, since |X | = 2, we have

δ(u, y, s) > 0 =⇒ pY |X,S(y|ψ(u, s), s) + εδ(u, y, s)

= b(y, s) + ε(a(y, s)− b(y, s)), (2.23)

δ(u, y, s) < 0 =⇒ pY |X,S(y|ψ(u, s), s) + εδ(u, y, s)
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= a(y, s) + ε(b(y, s)− a(y, s)), (2.24)

where

a(y, s) = max
x∈X

pY |X,S(y|x, s),

b(y, s) = min
x∈X

pY |X,S(y|x, s).

Continuing from (2.20),

∂

∂ε
DGE(pÛ , ε, u)

=
∑

y∈Y,s∈S

pS(s)δ(u, y, s)× log
pY |X,S(y|ψ(u, s), s) + εδ(u, y, s)∑

x∈X pX̂(x)pY |X,S(y|x, s)

≥
∑
s∈S

pS(s)
∑

y∈Y:δ(u,y,s)>0

δ(u, y, s)× log
pY |X,S(y|ψ(u, s), s) + εδ(u, y, s)

(1− e−1)a(y, s) + e−1b(y, s)

+
∑
s∈S

pS(s)
∑

y∈Y:δ(u,y,s)<0

δ(u, y, s)× log
pY |X,S(y|ψ(u, s), s) + εδ(u, y, s)

e−1a(y, s) + (1− e−1)b(y, s)
(2.25)

=
∑
s∈S

pS(s)
∑

y∈Y:δ(u,y,s)>0

δ(u, y, s)× log
b(y, s) + ε(a(y, s)− b(y, s))
(1− e−1)a(y, s) + e−1b(y, s)

+
∑
s∈S

pS(s)
∑

y∈Y:δ(u,y,s)<0

δ(u, y, s)× log
a(y, s) + ε(b(y, s)− a(y, s))

e−1a(y, s) + (1− e−1)b(y, s)
(2.26)

≥
∑
s∈S

pS(s)
∑

y∈Y:δ(u,y,s)>0

δ(u, y, s)× log
(1− e−1)a(y, s) + e−1b(y, s)

(1− e−1)a(y, s) + e−1b(y, s)

+
∑
s∈S

pS(s)
∑

y∈Y:δ(u,y,s)<0

δ(u, y, s)× log
e−1a(y, s) + (1− e−1)b(y, s)

e−1a(y, s) + (1− e−1)b(y, s)

= 0, ε ∈ [1− e−1, 1], u ∈ U , (2.27)

where (2.25) is due to (2.15), and (2.26) is due to (2.23) and (2.24). Combining (2.16),
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(2.17), (2.22), (2.27), and the fact X ⊆ Gδ yields the desired result. �

Recall (Gamal and Kim, 2011, p. 112) that pS̃1|S (with input alphabet S and

output alphabet S̃1) is said to be a stochastically degraded version of pS̃2|S (with

input alphabet S and output alphabet S̃2) if there exists pS̃1|S̃2
satisfying

pS̃1|S(s̃1|s) =
∑
s̃2∈S̃2

pS̃2|S(s̃2|s)pS̃1|S̃2
(s̃1|s̃2), s ∈ S, s̃1 ∈ S̃1. (2.28)

We can write (2.28) equivalently as

pS̃1|S = pS̃2|SpS̃1|S̃2

by viewing pS̃1|S, pS̃2|S, and pS̃1|S̃2
as probability transition matrices.

The following result is obvious and its proof is omitted.

Lemma 2.2 If pS̃1|S is a stochastically degraded version of pS̃2|S, then

C(pY |X,S, pS, pS̃1|S) ≤ C(pY |X,S, pS, pS̃2|S).

Next we extend Lemma 2.1 to the general case by characterizing the condition

under which pS̃|S is a stochastically degraded version of p
S̃
(ε)
GE|S

.

Lemma 2.3 pS̃|S is a stochastically degraded version of p
S̃
(ε)
GE |S

if and only if

∑
s̃∈S̃

min
s∈S

pS̃|S(s̃|s) ≥ ε. (2.29)
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Proof: The problem boils down to finding a necessary and sufficient condition for

the existence of p
S̃|S̃(ε)

GE
such that

pS̃|S(s̃|s) =
∑

s̃′∈S∪{∗}

p
S̃
(ε)
GE|S

(s̃′|s)p
S̃|S̃(ε)

GE
(s̃|s̃′), s ∈ S, s̃ ∈ S̃. (2.30)

It suffices to consider the case ε ∈ [0, 1) since Lemma 2.3 is trivially true when ε = 1.

Note that

∑
s̃′∈S∪{∗}

p
S̃
(ε)
GE|S

(s̃′|s)p
S̃|S̃(ε)

GE
(s̃|s̃′)

= (1− ε)p
S̃|S̃(ε)

GE
(s̃|s) + εp

S̃|S̃(ε)
GE

(s̃|∗), s ∈ S, s̃ ∈ S̃. (2.31)

Combining (2.30) and (2.31) gives

p
S̃|S̃(ε)

GE
(s̃|s) =

pS̃|S(s̃|s)− εp
S̃|S̃(ε)

GE
(s̃|∗)

1− ε
, s ∈ S, s̃ ∈ S̃. (2.32)

In light of (2.32),

∑
s̃∈S̃

p
S̃|S̃(ε)

GE
(s̃|s) = 1, s ∈ S,

⇐⇒
∑
s̃∈S̃

p
S̃|S̃(ε)

GE
(s̃|∗) = 1,

p
S̃|S̃(ε)

GE
(s̃|s) ≥ 0, s ∈ S, s̃ ∈ S̃,

⇐⇒ min
s∈S

pS̃|S(s̃|s) ≥ εp
S̃|S̃(ε)

GE
(s̃|∗), s̃ ∈ S̃. (2.33)

It can be readily seen that the existence of conditional distribution p
S̃|S̃(ε)

GE
satisfying
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(2.30) is equivalent to the existence of probability vector (p
S̃|S̃(ε)

GE
(s̃|∗))s̃∈S̃ satisfying

(2.33). Clearly, (2.29) is a necessary and sufficient condition for the existence of such

(p
S̃|S̃(ε)

GE
(s̃|∗))s̃∈S̃ . �

Theorem 2.3 For any binary-input channel pY |X,S, state distribution pS, and side

channel pS̃|S,

C(pY |X,S, pS, pS̃|S) = C(pY |X,S, pS)

if

∑
s̃∈S̃

min
s∈S

pS̃|S(s̃|s) ≥ 1− e−1. (2.34)

Proof: In view of Lemmas 2.1, 2.2, and 2.3, we have

C(pY |X,S, pS, pS̃|S) ≤ C(pY |X,S, pS) (2.35)

if (2.34) is satisfied.

Combining (2.6) and (2.35) completes the proof of Theorem 2.3. �

Now we proceed to prove Theorem 2.1 by translating (2.34) (which is a condition

on pS̃|S that is universal for all binary input channels and state distributions) to an

upper bound on I(S; S̃). This upper bound, however, depends inevitably on the state

distribution.
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For any pS̃|S violating (2.34) (i.e,
∑

s̃∈S̃ mins∈S pS̃|S(s̃|s) < 1− e−1), we have

I(S; S̃) ≥ 1

2

( ∑
s∈S,s̃∈S̃

pS(s)
∣∣∣pS̃(s̃)− pS̃|S(s̃|s)

∣∣∣)2

(2.36)

≥ 1

2

(∑
s̃∈S̃

pS(s(s̃))
∣∣∣pS̃(s̃)− pS̃|S(s̃|s(s̃))

∣∣∣)2

≥ 1

2

(
ρ
∑
s̃∈S̃

∣∣∣pS̃(s̃)− pS̃|S(s̃|s(s̃))
∣∣∣)2

≥ 1

2

(
ρ

∣∣∣∣∣∣
∑
s̃∈S̃

pS̃(s̃)−
∑
s̃∈S̃

pS̃|S(s̃|s(s̃))

∣∣∣∣∣∣
)2

>
ρ2

2e2
,

where (2.36) is due to Pinsker’s inequality (Csiszár and Körner, 2011, p. 44), and

s(s̃) is a minimizer of mins∈S pS̃|S(s̃|s), s̃ ∈ S̃. As a consequence, (2.34) must hold if

I(S; S̃) ≤ ρ2

2e2
. This completes the proof of Theorem 2.1.

2.3 Proof of Theorem 2.2

First consider the special case where pS̃|S is a generalized symmetric channel (with

crossover probability q ∈ [0, 1
|S| ]) defined as

p
S̃
(q)
GS|S

(s̃|s) =

 1− (|S| − 1)q, s̃ = s,

q, otherwise,
s ∈ S, s̃ ∈ S.

28



Ph.D. Thesis - Rui Xu McMaster - Electrical Engineering

Lemma 2.4 C ′(pY |X,S, pS, pS̃(q)
GS|S

) = C(pY |X,S, pS) if and only if

min
x∈X+,s∈S

pX̂|S(x|s)∑
s′∈S pX̂|S(x|s′)

≥ q (2.37)

for some pX̂|S ∈ P, where P denotes the set of maximizers of the optimization problem

in (2.5), and X+ = {x ∈ X :
∑

s∈S pX̂|S(x|s) > 0}.

Proof: Clearly, C ′(pY |X,S, pS, pS̃(q)
GS|S

) = C(pY |X,S, pS) if and only if there exists pX̂|S ∈

P that is a stochastically degraded version of p
S̃
(q)
GS|S

. When q = 1
|S| , (2.37) is equivalent

to the desired condition that X̂ needs to be independent of S. When q ∈ [0, 1
|S|), pS̃(q)

GS|S

is invertible and

p−1

S̃
(q)
GS|S

=



q−1
|S|q−1

q
|S|q−1

· · · q
|S|q−1

q
|S|q−1

. . . . . .
...

...
. . . . . . q

|S|q−1

q
|S|q−1

· · · q
|S|q−1

q−1
|S|q−1


. (2.38)

The problem boils down to finding a necessary and sufficient condition under which

p−1

S̃
(q)
GS|S

pX̂|S is a valid probability transition matrix (i.e., all entries are non-negative

and the sum of each row vector is equal to 1). Note that

p−1

S̃
(q)
GS|S

pX̂|S


1

...

1

 = p−1

S̃
(q)
GS|S



1

1

...

1


= p−1

S̃
(q)
GS|S

p
S̃
(q)
GS|S



1

1

...

1


=



1

1

...

1


. (2.39)

29



Ph.D. Thesis - Rui Xu McMaster - Electrical Engineering

Moreover, all entries of p−1

S̃
(q)
GS |S

pX̂|S are non-negative if and only if

−pX̂|S(x|s) + q
∑

s′∈S pX̂|S(x|s′)
|S|q − 1

≥ 0, x ∈ S, s ∈ S,

which is equivalent to (2.37). �

The following result is obvious and its proof is omitted.

Lemma 2.5 If pS̃1|S is a stochastically degraded version of pS̃2|S, then

C ′(pY |X,S, pS, pS̃1|S) ≤ C ′(pY |X,S, pS, pS̃2|S).

Lemma 2.6 p
S̃
(q)
GS |S

is a stochastically degraded version of pS̃|S if

max
s∈S,ŝ∈S+:s 6=ŝ

pŜ|S(ŝ|s)∑
s′∈S pŜ|S(ŝ|s′)

≤ q, (2.40)

where Ŝ is the maximum likelihood estimate of S based on S̃, and S+ = {ŝ ∈ S :∑
s∈S pŜ|S(ŝ|s) > 0}.

Proof: The case q = 1
|S| is trivial. When q ∈ [0, 1

|S|), pS̃(q)
GS|S

is invertible and p−1

S̃
(q)
GS|S

is given by (2.38). It can be shown (see the derivation of (2.39)) that the sum of

each row of p−1

S̃
(q)
GS|S

pŜ|S is equal to 1; moreover, the off-diagonal entries of p−1

S̃
(q)
GS|S

pŜ|S

are non-positive if and only if

−pŜ|S(ŝ|s) + q
∑

s′∈S pŜ|S(ŝ|s′)
|S|q − 1

≤ 0, s ∈ S, ŝ ∈ S+ : s 6= ŝ,
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which is equivalent to (2.40). Therefore, (2.40) ensures that p−1

S̃
(q)
GS|S

pŜ|S is a non-

singular M -matrix, which in turn ensures that p−1

Ŝ|SpS̃(q)
GS|S

exists and is a non-negative

matrix (Plemmons, 1977). Hence, if (2.40) is satisfied, then p−1

Ŝ|SpS̃(q)
GS|S

is a valid prob-

ability transition matrix (the requirement that the entries in each row of p−1

Ŝ|SpS̃(q)
GS|S

add up to 1 is automatically satisfied), which implies that p
S̃
(q)
GS|S

is a stochastically de-

graded version of pŜ|S (and consequently a stochastically degraded version of pS̃|S). �

Theorem 2.4 For any binary-input channel pY |X,S, state distribution pS, and side

channel pS̃|S,

C ′(pY |X,S, pS, pS̃|S) = C(pY |X,S, pS)

if

max
s∈S,ŝ∈S+:s 6=ŝ

pŜ|S(ŝ|s)∑
s′∈S pŜ|S(ŝ|s′)

≤ 1

(|S| − 1)e− |S|+ 2
, (2.41)

where Ŝ is the maximum likelihood estimate of S based on S̃.

Proof: Since |X | = 2, it follows from [Shulman and Feder 2004, Th. 2] that there

exists pX̂|S ∈ P satisfying

pX̂|S(x|s) > e−1, x ∈ X , s ∈ S.

For such pX̂|S,

min
x∈X+,s∈S

pX̂|S(x|s)∑
s′∈S pX̂|S(x|s′)

≥ e−1

e−1 + (|S| − 1)(1− e−1)
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=
1

(|S| − 1)e− |S|+ 2
.

In view of of Lemmas 2.4, 2.5, and 2.6, we have

C ′(pY |X,S, pS, pS̃|S) ≥ C(pY |X,S, pS) (2.42)

if (2.41) is satisfied. Combining (2.6) and (2.42) completes the proof of Theorem 2.4.

�

Now we are in a position to prove Theorem 2.2. Let Ŝ and Ŝ ′ denote respectively

the maximum likelihood estimate and the maximum a posteriori estimate of S based

on S̃. According to [Ho and Verdú 2010, Th. 11],

P(S 6= Ŝ ′) ≤ H(S|S̃)

2 log 2
. (2.43)

It can be verified that

∑
s,ŝ∈S:s 6=ŝ

pŜ|S(ŝ|s) ≤
∑

s,ŝ∈S:s 6=ŝ

pŜ′|S(ŝ|s)

≤ 1

ρ

∑
s,ŝ∈S:s 6=ŝ

pS(s)pŜ′|S(ŝ|s)

=
P(S 6= Ŝ ′)

ρ
. (2.44)

Substituting (2.43) into (2.44) yields

∑
s,ŝ∈S:s 6=ŝ

pŜ|S(ŝ|s) ≤ ~ ,
H(S|S̃)

2ρ log 2
. (2.45)
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Note that

max
s∈S,ŝ∈S+:s 6=ŝ

pŜ|S(ŝ|s)∑
s′∈S pŜ|S(ŝ|s′)

≤ ~
~ + I(~ ≤ 1)

. (2.46)

Indeed, (2.46) is trivially true when ~ > 1; moreover, when ~ ≤ 1,

max
s∈S,ŝ∈S+:s 6=ŝ

pŜ|S(ŝ|s)∑
s′∈S pŜ|S(ŝ|s′)

≤ max
s∈S,ŝ∈S+:s 6=ŝ

pŜ|S(ŝ|s)
pŜ|S(ŝ|s) + pŜ|S(ŝ|ŝ)

= max
s∈S,ŝ∈S+:s 6=ŝ

pŜ|S(ŝ|s)
pŜ|S(ŝ|s) + 1−

∑
ŝ′∈S:ŝ′ 6=ŝ pŜ|S(ŝ′|ŝ)

≤ max
s∈S,ŝ∈S+:s 6=ŝ

pŜ|S(ŝ|s)
2pŜ|S(ŝ|s) + 1− ~

(2.47)

≤ ~
~ + 1

, (2.48)

where (2.47) and (2.48) are due to (2.45). In view of Theorem 2.4, It suffices to have

~
~ + I(~ ≤ 1)

≤ 1

(|S| − 1)e− |S|+ 2
. (2.49)

Note that (2.49) is not satisfied when ~ > 1 since its left-hand side is equal to 1

whereas its right-hand side is strictly less than 1 (~ > 1 implies |S| ≥ 2). When

~ ≤ 1, we can rewrite (2.49) as4

~ ≤ 1

(|S| − 1)(e− 1)
,

4Note that ~ ≤ 1
(|S|−1)(e−1) implies ~ ≤ 1 when |S| ≥ 2. The case |S| = 1 is trivial since ~ can

only take the value 0.
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which is exactly the desired result. This completes the proof of Theorem 2.2.

In Appendix A.1, we give an alternative proof of Theorem 2.2 with a different

threshold on H(S|S̃).

2.4 Extension and Discussion

2.4.1 Extension of Theorem 2.1

It is interesting to know to what extent Theorem 2.1 can be extended beyond the

binary-input case. This subsection is largely devoted to answering this question. For

any pY |X,S and pS, define

ε(pY |X,S, pS) = min
{
ε ∈ [0, 1] : C(pY |X,S, pS, pS̃(ε)

GE |S
) = C(pY |X,S, pS)

}
,

q(pY |X,S, pS) = min

{
q ∈ [0,

1

|S|
] : C(pY |X,S, pS, pS̃(q)

GS |S
) = C(pY |X,S, pS)

}
.

Proposition 2.1 1. There exists α(pY |X,S, pS) > 0 such that C(pY |X,S, pS, pS̃|S) =

C(pY |X,S, pS) for all pS̃|S satisfying I(S; S̃) ≤ α(pY |X,S, pS) if and only if ε(pY |X,S, pS) <

1.

2. ε(pY |X,S, pS) < 1 if and only if

∑
y∈Y,s∈S

pS(s)δ(u, y, s)× log
pY |X,S(y|ψ(u, ∗), s)∑
x∈X pX̂(x)pY |X,S(y|x, s)

> 0, u ∈ U+\Gδ, (2.50)

where δ(u, y, s) and Gδ are defined in (2.14) and (2.21), respectively, pX̂ is an
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Figure 2.5: Plot of C(pY |X,S, pS,BEC(ε)) against ε for ε ∈ [0, 1], where pY |X,S and pS
are given by (2.62) and (2.63), respectively.

arbitrary maximizer of the optimization problem in (2.4), and

U+ =

{
u ∈ U :

∑
y∈Y,s∈S

pS(s)pY |X,S(y|ψ(u, ∗), s)

× log
pY |X,S(y|ψ(u, ∗), s)∑
x∈X pX̂(x)pY |X,S(y|x, s)

= C(pY |X,S, pS)

}
.

Remark: All maximizers of the optimization problem in (2.4) give rise to the same∑
x∈X pX̂(x)pY |X,S(y|x, s), y ∈ Y , s ∈ S (Gallager, 1968, p. 96, Cor. 2).

Proof: The first statement can be easily extracted from the proof of Theorem

2.1.
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Now we proceed to prove the second statement. First recall the definitions of

DGE(pU , ε, u) and pÛ in (2.12) and (2.11), respectively. Since pÛ is a capacity-

achieving input distribution of channel pY,S|U when ε = 1, we must have

DGE(pÛ , 1, u) = C(pY |X,S, pS), u ∈ U with pÛ(u) > 0,

DGE(pÛ , 1, u) ≤ C(pY |X,S, pS), u ∈ U with pÛ(u) = 0,

which, together with the fact U+ = {u ∈ U : DGE(pÛ , 1, u) = C(pY |X,S, pS)}, implies

{u ∈ U : pÛ(u) > 0} ⊆ U+, (2.51)

DGE(pÛ , 1, u) = C(pY |X,S, pS), u ∈ U+, (2.52)

DGE(pÛ , 1, u) < C(pY |X,S, pS), otherwise. (2.53)

It can be verified that

DGE(pÛ , ε, u) = DGE(pÛ , 1, u), ε ∈ [0, 1], u ∈ Gδ. (2.54)

Moreover, in view of (2.20), we can write (2.50) equivalently as

∂

∂ε
DGE(pÛ , ε, u)

∣∣∣∣
ε=1

> 0, u ∈ U+\Gδ. (2.55)

According to (2.52)–(2.55), there exists ε(pY |X,S, pS) ∈ [0, 1) such that

DGE(pÛ , ε, u) = C(pY |X,S, pS), u ∈ U+ ∩ Gδ, (2.56)

DGE(pÛ , ε, u) ≤ C(pY |X,S, pS), otherwise (2.57)
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for ε ≥ ε(pY |X,S, pS). In light of (2.51) and the fact {u ∈ U : pÛ(u) > 0} ⊆ X ⊆ Gδ,

we have

{u ∈ U : pÛ(u) > 0} ⊆ U+ ∩ Gδ. (2.58)

Combining (2.56), (2.57), and (2.58) proves the “if” part of the second statemen-

t. Next we turn to the “only if” part of the second statement. Assuming the ex-

istence of ε(pY |X,S, pS) ∈ [0, 1) such that C(pY |X,S, pS, pS̃(ε)|S) = C(pY |X,S, pS) for

ε ≥ ε(pY |X,S, pS) (or equivalently pÛ is a capacity-achieving input distribution of

channel pY,S|U for ε ≥ ε(pY |X,S, pS)), we must have

DGE(pÛ , ε, u) ≤ C(pY |X,S, pS), ε ≥ ε(pY |X,S, pS), u ∈ U . (2.59)

It can be verified that

∂2

∂ε2
DGE(pÛ , ε, u)

=
∑

y∈Y,s∈S

pS(s)δ2(u, y, s)

pY |X,S(y|ψ(u, s), s) + εδ(u, y, s)

> 0, ε ∈ [0, 1], u ∈ U\Gδ. (2.60)

Moreover, by the definition of U+,

DGE(pÛ , 1, u) = C(pY |X,S, pS), u ∈ U+. (2.61)

Note that (2.59), (2.60), and (2.61) hold simultaneously for u ∈ U+\Gδ, from which

(2.50) (or equivalently (2.55)) can be readily deduced. This completes the proof of
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Proposition 2.1. �

As shown by the following example, the necessary and sufficient condition (2.50)

is not always satisfied when |X | > 2. Let

pY |X,S(y|x, s) =



1, (x, y, s) = (0, 0, 0) or (1, 1, 1),

0, (x, y, s) = (0, 1, 0) or (1, 0, 1),

2
5
, (x, y, s) = (1, 0, 0) or (0, 1, 1),

3
5
, (x, y, s) = (1, 1, 0) or (0, 0, 1),

3
10
, (x, y, s) = (2, 0, 0),

1
5
, (x, y, s) = (2, 0, 1),

7
10
, (x, y, s) = (2, 1, 0),

4
5
, (x, y, s) = (2, 1, 1),

(2.62)

pS(0) = pS(1) =
1

2
. (2.63)

For this example, it can be verified that û ∈ U+\Gδ and

∑
y∈Y,s∈S

pS(s)δ(û, y, s) log
pY |X,S(y|ψ(û, ∗), s)∑
x∈X pX̂(x)pY |X,S(y|x, s)

< 0,

where ψ(û, ·) is given by ψ(û, 0) = 2, ψ(û, 1) = 1, and ψ(û, ∗) = 1; indeed, Fig. 2.5

shows that C(pY |X,S, pS,BEC(ε)) > C(pY |X,S, pS) for ε ∈ [0, 1).

The proof of Proposition 2.1 in fact suggests a strategy for computing ε(pY |X,S, pS).

Let pX̂ be an arbitrary maximizer of the optimization problem in (2.4) and define pÛ

according to (2.11). Note that

• DGE(pÛ , 1, u) ≤ C(pY |X,S, pS) for u ∈ U (see (2.52) and (2.53)),
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• DGE(pÛ , ε, u) does not depend on ε for u ∈ Gδ (see (2.54)),

• DGE(pÛ , ε, u) is a strictly convex function of ε for u ∈ U\Gδ (see (2.60)).

Hence, for each u ∈ U , there are three mutually exclusive cases.

1. DGE(pÛ , 0, u) ≤ C(pY |X,S, pS): We have DGE(pÛ , ε, u) ≤ C(pY |X,S, pS) for ε ∈

[ε(u), 1], where ε(u) = 0.

2. DGE(pÛ , 0, u) > DGE(pÛ , 1, u) = C(pY |X,S, pS) and ∂
∂ε
DGE(pÛ , ε, u)

∣∣
ε=1
≤ 0 (this

case can arise only when |X | > 2): We have DGE(pÛ , 0, u) > C(pY |X,S, pS) for

ε ∈ [0, ε(u)), where ε(u) = 1.

3. Otherwise: We haveDGE(pÛ , ε, u) > C(pY |X,S, pS) for ε ∈ [0, ε(u)) andDGE(pÛ , ε, u) ≤

C(pY |X,S, pS) for ε ∈ [ε(u), 1], where ε(u) is the unique solution ofDGE(pÛ , ε, u) =

C(pY |X,S, pS) for ε ∈ (0, 1).

It can be readily shown that

ε(pY |X,S, pS) = max
u∈U

ε(u). (2.64)

We can compute q(pY |X,S, pS) in a similar way. Define

DGS(pU , q, u) = D(pY,S|U(·, ·|u)‖pY,S),

where

pY,S|U(y, s|u) = pS(s)(pY |X,S(y|ψ(u, s), s) + qω(u, y, s))
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with

ω(u, y, s) =
∑

s̃∈S:s̃6=s

pY |X,S(y|ψ(u, s̃), s)− (|S| − 1)pY |X,S(y|ψ(u, s), s),

u ∈ U , y ∈ Y , s ∈ S.

Again, let pÛ be defined5 according to (2.11). It can be verified that

DGS(pÛ , q, u)

=
∑

y∈Y,s∈S

pS(s)(pY |X,S(y|ψ(u, s), s) + qω(u, y, s))

× log
pY |X,S(y|ψ(u, s), s) + qω(u, y, s)∑

x∈X pX̂(x)pY |X,S(y|x, s)
, q ∈ [0,

1

|S|
], u ∈ U ,

∂

∂q
DGS(pÛ , q, u)

=
∑

y∈Y,s∈S

pS(s)δ(u, y, s)

× log
pY |X,S(y|ψ(u, s), s) + qω(u, y, s)∑

x∈X pX̂(x)pY |X,S(y|x, s)
, q ∈ [0,

1

|S|
], u ∈ U ,

∂2

∂q2
DGS(pÛ , q, u)

=
∑

y∈Y,s∈S

pS(s)δ2(u, y, s)

pY |X,S(y|ψ(u, s), s) + qω(u, y, s)
> 0, q ∈ [0,

1

|S|
], u ∈ U\Gω,

where

Gω = {u ∈ U : ω(u, y, s) = 0 for all y ∈ Y and s ∈ S}.

5Note that the underlying U depends on S̃. In particular, |U| = |X ||S| when pS̃|S is a generalized

symmetric channel whereas |U| = |X ||S|+1 when pS̃|S is a generalized erasure channel.
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Clearly,

• DGS(pÛ ,
1
|S| , u) ≤ C(pY |X,S, pS) for u ∈ U ,

• DGS(pÛ , q, u) does not depend on q for u ∈ Gω,

• DGS(pÛ , q, u) is a strictly convex function of q for u ∈ U\Gω.

Hence, for each u ∈ U , there are also three mutually exclusive cases.

1. DGS(pÛ , 0, u) ≤ C(pY |X,S, pS): We have DGS(pÛ , q, u) ≤ C(pY |X,S, pS) for q ∈

[q(u), 1], where q(u) = 0.

2. DGS(pÛ , 0, u) > DGS(pÛ ,
1
|S| , u) = C(pY |X,S, pS) and ∂

∂q
DGS(pÛ , q, u)

∣∣∣
q= 1
|S|

≤ 0

(this case can arise only when |X | > 2): We have DGS(pÛ , 0, u) > C(pY |X,S, pS)

for q ∈ [0, q(u)), where q(u) = 1
|S| .

3. Otherwise: We haveDGS(pÛ , q, u) > C(pY |X,S, pS) for q ∈ [0, q(u)) andDGS(pÛ , q, u) ≤

C(pY |X,S, pS) for q ∈ [q(u), 1
|S| ], where q(u) is the unique solution ofDGS(pÛ , q, u) =

C(pY |X,S, pS) for q ∈ (0, 1
|S|).

It can be readily shown that

q(pY |X,S, pS) = max
u∈U

q(u). (2.65)

For pY |X,S and pS illustrated in Fig. 2.2 (see also (2.9) and (2.10)), we show in

Appendix A.2 that

ε(pY |X,S, pS) =

 ε̂(θ), θ ∈ (0, 1),

0, otherwise,
(2.66)
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q(pY |X,S, pS) =

 q̂(θ), θ ∈ (0, 1),

0, otherwise,
(2.67)

where ε̂(θ) is the unique solution of

ε(1− θ) log 2ε+ (1− ε(1− θ)) log
2(1− ε(1− θ))

1 + θ

= (1− θ) log 2 + θ log
2θ

1 + θ

for ε ∈ (0, 1), and q̂(θ) is the unique solution of

q(1− θ) log 2q + (1− q(1− θ)) log
2(1− q(1− θ))

1 + θ

=
1

2

(
(1− θ) log 2 + log

2

1 + θ
+ θ log

2θ

1 + θ

)

for q ∈ (0, 1
2
). Setting θ = 1

2
gives ε(pY |X,S, pS) ≈ 0.1 (cf. Fig. 2.3) and q(pY |X,S, pS) ≈

0.037 (cf. Fig. 2.4).

2.4.2 Extension of Theorem 2.2

We shall extend Theorem 2.2 in a similar fashion. For any pY |X,S and pS, define

ε(pY |X,S, pS) = max
{
ε ∈ [0, 1] : C ′(pY |X,S, pS, pS̃(ε)

GE|S
) = C(pY |X,S, pS)

}
,

q(pY |X,S, pS) = max

{
q ∈ [0,

1

|S|
] : C ′(pY |X,S, pS, pS̃(q)

GE|S
) = C(pY |X,S, pS)

}
.

Proposition 2.2 1. There exists β(pY |X,S, pS) > 0 such that C ′(pY |X,S, pS, pS̃|S) =

C(pY |X,S, pS) for all pS̃|S satisfying H(S|S̃) ≤ β(pY |X,S, pS) if and only if q(pY |X,S, pS) >
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Figure 2.6: Plot of C ′(pY |X,S, pS,BSC(q)) against q for q ∈ [0, 1
2
], where pY |X,S and

pS are given by (2.69) and (2.70), respectively.

0.

2. q(pY |X,S, pS) > 0 if and only if there exists pX̂|S ∈ P such that

{x ∈ X : pX̂|S(x|s) > 0} = X+, s ∈ S. (2.68)

Proof: The first statement can be easily extracted from the proof of Theorem 2.2.

The second statement is a consequence of Lemma 2.4. �
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As shown by the following example, the necessary and sufficient condition (2.68)

is not always satisfied when |X | > 2. Let

pY |X,S(y|x, s) =



1, (x, y, s) = (0, 0, 0) or (2, 1, 1),

0, (x, y, s) = (0, 1, 0) or (2, 0, 1),

2
5
, (x, y, s) = (1, 0, 0) or (0, 1, 1),

3
5
, (x, y, s) = (1, 1, 0) or (0, 0, 1),

4
5
, (x, y, s) = (2, 0, 0) or (1, 1, 1),

1
5
, (x, y, s) = (2, 1, 0) or (1, 0, 1),

(2.69)

pS(0) = pS(1) =
1

2
. (2.70)

For this example, it can be verified that the maximizer of the optimization problem

in (2.5), denoted by pX̂|S, is unique and

{x ∈ X : pX̂|S(x|0) > 0} = {0, 1},

{x ∈ X : pX̂|S(x|1) > 0} = {0, 2};

indeed, Fig. 2.6 shows that C ′(pY |X,S, pS,BSC(q)) < C(pY |X,S, pS) for q ∈ (0, 1
2
].

In view of Lemmas 2.3 and 2.4, we have

ε(pY |X,S, pS) = max
pX̂|S∈P

∑
x∈X

min
s∈S

pX̂|S(x|s), (2.71)

q(pY |X,S, pS) = max
pX̂|S∈P

min
x∈X+,s∈S

pX̂|S(x|s)∑
s′∈S pX̂|S(x|s′)

. (2.72)
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Note that P does not depend on pS (under the assumption ρ > 0); as a consequence,

ε(pY |X,S, pS) and q(pY |X,S, pS) do not depend on pS either. For pY |X,S and pS illus-

trated in Fig. 2.2 (see also (2.9) and (2.10)), we show in Appendix A.3 that

ε(pY |X,S, pS) =


2

(
1 + (1− θ)θ

θ
1−θ

)−1

θ
θ

1−θ , θ ∈ (0, 1),

1, otherwise,

(2.73)

q(pY |X,S, pS) =


(

1 + (1− θ)θ
θ

1−θ

)−1

θ
θ

1−θ , θ ∈ (0, 1),

1
2
, otherwise.

(2.74)

Setting θ = 1
2

gives ε(pY |X,S, pS) = 4
5

(cf. Fig. 2.3) and q(pY |X,S, pS) = 2
5

(cf. Fig.

2.4).

2.4.3 Two Implicit Conditions

In this subsection, we shall examine the following two implicit conditions in Theorem

2.1:

1. perfect state information at the decoder,

2. causal noisy state observation at the encoder.

If no state information is available at the decoder, then the channel capacity is

given by

C̃(pY |X,S, pS, pS̃|S) , max
pU

I(U ;Y ),
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where the joint distribution of (U,X, Y, S, S̃) is given by (2.2). Furthermore, if there is

also no state information available at the encoder, then the channel capacity becomes

C̃(pY |X,S, pS) , max
pX

I(X;Y ), (2.75)

where pX,Y,S(x, y, s) = pX(x)pS(s)pY |X,S(y|x, s). Define

ε̃(pY |X,S, pS) = min
{
ε ∈ [0, 1] : C̃(pY |X,S, pS, pS̃(ε)

GE|S
) = C̃(pY |X,S, pS)

}
.

The proof of the following result is similar to that of Proposition 2.1 and is omitted.

Proposition 2.3 1. There exists α̃(pY |X,S, pS) > 0 such that C̃(pY |X,S, pS, pS̃|S) =

C̃(pY |X,S, pS) for all pS̃|S satisfying I(S; S̃) ≤ α̃(pY |X,S, pS) if and only if ε̃(pY |X,S, pS)

< 1.

2. ε̃(pY |X,S, pS) < 1 if and only if

∑
y∈Y

(∑
s∈S

pS(s)δ(u, y, s)

)

× log

∑
s∈S pS(s)pY |X,S(y|ψ(u, ∗), s)∑

x∈X ,s∈S pX̂(x)pS(s)pY |X,S(y|x, s)
> 0,

u ∈ Ũ+\G̃δ, (2.76)

where δ(u, y, s) is defined in (2.14), pX̂ is an arbitrary maximizer of the opti-

mization problem in (2.75), and

G̃δ =

{
u ∈ U :

∑
s∈S

pS(s)δ(u, y, s) = 0 for all y ∈ Y

}
,
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Ũ+ =

{
u ∈ U :

∑
y∈Y

(∑
s∈S

pS(s)pY |X,S(y|ψ(u, ∗), s)

)

× log

∑
s∈S pS(s)pY |X,S(y|ψ(u, ∗), s)∑

x∈X ,s∈S pX̂(x)pS(s)pY |X,S(y|x, s)
= C̃(pY |X,S, pS)

}
.

As shown by the following example, the necessary and sufficient condition (2.76)

is not always satisfied even when |X | = 2. Let

Y = X ⊕ S, X = Y = S = {0, 1}, (2.77)

pS(1) = µ ∈ (0,
1

2
), (2.78)

where ⊕ is the modulo-2 addition. It can be verified that (2.76) is not satisfied for

this example; indeed, Fig. 2.7 indicates that

C̃(pY |X,S, pS,BEC(ε)) > C̃(pY |X,S, pS), ε ∈ [0, 1). (2.79)

Here we give an alternative way to prove (2.79). Write S = S̃ ⊕∆, where S̃ and

∆ are two mutually independent Bernoulli random variables with

pS̃(1) = ν ∈ [0, µ],

p∆(1) =
µ− ν
1− 2ν

.

It is clear that

C̃(pY |X,S, pS, pS̃|S) = log 2−H(∆)

> log 2−H(S)
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Figure 2.7: Plot of C̃(pY |X,S, pS,BEC(ε)) against ε for ε ∈ [0, 1], where pY |X,S and pS
are given by (2.77) with µ = 1

4
and (2.78), respectively.

= C̃(pY |X,S, pS), ν ∈ (0, µ]. (2.80)

In light of Lemma 2.3, pS̃|S is a stochastically degraded version of BEC(ε) and conse-

quently

C̃(pY |X,S, pS,BEC(ε)) ≥ C̃(pY |X,S, pS, pS̃|S) (2.81)

if H(S)−H(∆) ≤ µ2(1−ε)2
2

. Combining (2.80) and (2.81) proves (2.79).

Now we proceed to examine the second implicit condition. If the noisy state

observation is available non-causally at the encoder, the Gelfand-Pinsker Theorem

(Gel’fand and Pinsker, 1980) (see also (Gamal and Kim, 2011, Th. 7.3)) indicates
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Figure 2.8: Plot of CGP(pY |X,S, pS,BEC(ε)) against ε for ε ∈ [0, 1], where pY |X,S and
pS are given by (2.9) with θ = 1

2
and (2.10), respectively.

that the channel capacity is given by

CGP(pY |X,S, pS, pS̃|S) , max
pU|S̃

I(U ;Y, S)− I(U ; S̃),

where the joint distribution of (U,X, Y, S, S̃) factors as

pU,X,Y,S,S̃(u, x, y, s, s̃) = pS(s)pS̃|S(s̃|s)pU |S̃(u|s̃)I(x = ψ(u, s̃))pY |X,S(y|x, s),

u ∈ U , x ∈ X , y ∈ Y , s ∈ S, s̃ ∈ S̃.
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It turns out that CGP(pY |X,S, pS, pS̃|S) is bounded between C(pY |X,S, pS, pS̃|S) and

C ′(pY |X,S, pS, pS̃|S), i.e.,

C(pY |X,S, pS, pS̃|S) ≤ CGP (pY |X,S, pS, pS̃|S)

≤ C ′(pY |X,S, pS, pS̃|S).

Indeed, the first inequality is obvious, and the second one holds because

I(U ;Y, S)− I(U ; S̃) ≤ I(U ;Y, S)− I(U ;S)

= I(U ;Y |S)

≤ I(X;Y |S).

In Fig. 2.8 we plot CGP(pY |X,S, pS,BEC(ε)) against ε for ε ∈ [0, 1], where pY |X,S

and pS are given by (2.9) with θ = 1
2

and (2.10), respectively; it can be seen that

CGP(pY |X,S, pS,BEC(ε)) is strictly greater than C(pY |X,S, pS) except when ε = 1. So

the causality condition on the noisy state observation at the encoder is not superfluous

for Theorem 2.1.

2.5 Conclusion

We have shown that the capacity of binary-input6 channels is very “sensitive” to the

quality of the encoder side information whereas the generalized probing capacity is

very “robust”. Here the words “sensitive” and “robust” should not be understood

in a quantitative sense. Indeed, it is known (Shulman and Feder, 2004) that, when

6In fact, both numerical simulation and theoretical analysis suggest that similar results hold for
many (but not all) non-binary input channels.
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|X | = 2, the ratio of C(pY |X,S, pS) to C(pY |X,S, pS) is at least 0.942 and the difference

between these two quantities is at most ∼0.011 bit; in other words, the gain that

can be obtained by exploiting the encoder side information (or the loss that can be

incurred by ignoring the encoder side information) is very limited anyway.

Binary signalling is widely used, especially in wideband communications. So our

work might have some practical relevance. However, great caution should be exercised

in interpreting Theorems 2.1 and 2.2. Specifically, both results rely on the assump-

tion that the channel state takes values from a finite set7, which is not necessarily

satisfied in reality; moreover, the freedom of power control in real communication

systems is not captured by our results. Nevertheless, our work can be viewed as an

initial step towards a better understanding of the fundamental performance limits of

communication systems where the transmitter side information and the receiver side

information are not deterministically related.

Finally, it is worth mentioning that our results might have their counterparts in

source coding.

7In contrast, the assumption |Y| <∞ and |S̃| <∞ is not essential
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Chapter 3

Intrinsic Capacity

3.1 Introduction

The capacity of a channel with state may be increased by utilizing the information

about the state status available at the encoder and/or the decoder. In other words,

the knowledge about the channel may be used to increase the channel capacity. If,

in the extreme case, we have all the knowledge about the channel, then the channel

reduces to a deterministic channel. In this case, can we surely have a higher capacity?

The answer is “no”, as is shown by the following example. Consider the binary

symmetric channel with crossover probability 0.5:

pY |X =

0.5 0.5

0.5 0.5

 ,

where each entry pY |X(y|x) denoting the conditional probability of output y given

input x with X ,Y = {0, 1}. The channel capacity is clearly zero.
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Suppose that the channel has a binary state S with pS(0) = pS(1) = 0.5. Let us

consider the following two models.

Model 1. For every realization of S, pY |X,S is either

1 0

0 1

 or

0 1

1 0

.

Model 2. For every realization of S, pY |X,S is either

1 0

1 0

 or

0 1

0 1

.

It is easy to verify that pY |X =
∑

S∈S pY |X,S =

0.5 0.5

0.5 0.5

. If the actual model of

the channel is Model 1, with the state information S available at the encoder and

decoder, the channel becomes a deterministic perfect channel, so that the capacity

increases to one. On the contrary, if the underlying mechanism of the channel is

Model 2, then for every realization of S, the channel becomes a deterministic useless

channel, and hence, even with S known at both sides, the channel capacity is still

zero. This example shows that although the whole knowledge of a channel can be

used to eliminate the uncertainty of the channel, it does not necessarily increase its

capacity.

Now let us suppose that we can eliminate all the uncertainty of a DMC regardless

of time and cost. Ultimately, the channel can be seen as a deterministic DMC with

state, though the realization of this ultimate model is uncertain and not unique which

may be determined by the physical nature of the channel. Under this premise, any

DMC can be seen as certain realization of some deterministic channel with state. Let

us call such state as intrinsic state. The capacity of the channel with intrinsic state

known at the encoder and/or the decoder is called the channel’s intrinsic capacity.

The greatest possible intrinsic capacity of the channel is called the upper intrinsic
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capacity. The smallest possible intrinsic capacity of the channel is called the lower

intrinsic capacity.

Whereas the intrinsic capacity of a channel is uncertain and not unique, the lower

and the upper intrinsic capacity are determined and unique by definition. On the

other hand, according to the availability of the causal state information at the encoder

and/or the decoder, there are three kinds of the lower and the upper intrinsic capacity.

Throughout this chapter, we denote the lower and upper intrinsic capacity by IC and

IC, respectively. And we use subscript E, D and ED to indicates the cases where the

state information is available at the encoder only, at the decoder only and at the both

ends, respectively.

3.2 Problem Formulation

Let X and Y be two finite sets. A channel pY |X is a stochastic matrix with each entry

pY |X(x, y) denoting the probability of output y ∈ Y given input x ∈ X . A determin-

istic channel is a special channel whose stochastic matrix is a zero-one matrix, so that

it uniquely identifies a map of X into Y . In the sequel, deterministic channels and

maps will be regarded as equivalent objects, so that their notations and conventions

can be integrated with no ambiguities.

It is clear that the set of all channels forms a convex polytope in R|X |×|Y|. We

denote this polytope by PY |X , which consists of all the possible |X | × |Y| stochastic

matrices. The vertices of PY |X are exactly all the deterministic channels and hence

every channel can be expressed as a convex combination of some deterministic chan-

nels. Such a convex decomposition is not unique and each decomposition essentially

gives a channel with intrinsic state. Since a channel with intrinsic state may have a
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larger capacity when the state information is available at the encoder, the decoder,

or both, we are interested in the potential gain of such a channel with intrinsic state.

Let us denote the set of all deterministic channels with input X and output Y by

P̂Y |X with |P̂Y |X | = |X ||Y|, and the intrinsic state by Ŝ with finite alphabet Ŝ. Also,

by setting |Ŝ| = |P̂Y |X | and making a bijection between Ŝ and P̂Y |X , each value in Ŝ

uniquely corresponds to a possible deterministic channel p̂Y |X,Ŝ. Then the set of all

possible convex combinations of a channel pY |X is

dec(pY |X) ,

pŜ ∈ PŜ : pY |X =
∑
ŝ∈Ŝ

pŜ(ŝ)p̂Y |X,S(·|·, ŝ)

.
where PŜ is the set of all probability distributions over Ŝ and can be regarded as the

set of all the possible 1× |P̂Y |X | stochastic matrices or vectors.

Since I(X;Y ) can be seen as a function of the input distribution and the channel,

let us define a function Ĩ(·, ·) with parameter pX and pY |X which is also equivalent to

I(X;Y ) as follows.

Ĩ(pX , pY |X) ,
∑
x∈X

pX(x)D(pY |X ||pXpY |X)

= I(X;Y )

Note that a channel is determined by the distribution of its intrinsic state. And

given the availability of the intrinsic state Ŝ at the encoder, or the decoder, or both,

we have the following three kinds of intrinsic capacities (Gamal and Kim, 2011, Ch.

7).

1. Ŝ is available at the encoder only. We define the intrinsic capacity of channel
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pY |X as a function JE(·, ·) with parameters pU and pŜ by

CE(pY |X) = ICE(pŜ)

, max
pU

JE(pU , pŜ)

= max
pU

Ĩ(pU , pY |U)

where the auxiliary random variable U is defined over alphabet U with |U| ≤

min{(|X | − 1)|Ŝ|+ 1, |Y|}, whose joint distribution with (X, Y, Ŝ) factors as

pU,X,Y,Ŝ(u, x, y, ŝ) = pU(u)pŜ(ŝ)I(x = ψ(u, ŝ))p̂Y |X,Ŝ(y|x, ŝ),

u ∈ U , x ∈ X , y ∈ Y , ŝ ∈ Ŝ,

where I(·) is the indicator function, and ψ(u, ·), u ∈ U , are |X ||Ŝ| different

mappings from Ŝ to X . It is worth mentioning that JE(pU , pŜ) is an equivalent

transformation of Ĩ(pU , pY |U) in which pY |U is in fact a function of pŜ.

2. Ŝ is available at the decoder only. Similarly, we define the intrinsic capacity of

channel pY |X as a function JD(·, ·) with parameters pU and pŜ by

CD(pY |X) = ICD(pŜ)

, max
pX

JD(pX , pŜ)

= max
pX

∑
ŝ

pŜ(s̃)Ĩ(pX , pY |X)

where pY |X =
∑

ŝ∈Ŝ pŜ(ŝ)p̂Y |X,S(·|·, ŝ). Also, JD(pX , pŜ) is an equivalent trans-

formation of
∑

ŝ pŜ(ŝ)Ĩ(pX , pY |X).
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3. Ŝ is available at both the encoder and the decoder. We have the intrinsic

capacity of channel pY |X as follows.

CED(pY |X) = ICED(pŜ)

= max
pX|Ŝ

∑
ŝ∈Ŝ

pŜ(ŝ)Ĩ
(
pX|Ŝ(·|ŝ), p̂Y |X,Ŝ(·|·, ŝ)

)
=
∑
ŝ∈Ŝ

pŜ(ŝ) log rank
(
p̂Y |X,Ŝ(·|·, ŝ)

)
.

Then, given a channel pY |X , we can define its intrinsic capacity set by

{ICf (pŜ)} ,
{
Cf (pY |X) : pŜ ∈ dec(pY |X)

}
.

where the subscript f ∈ {E,D,ED} indicates the different cases of the availability of

Ŝ.

Furthermore, we define the lower and the upper intrinsic capacities of pY |X by

ICf (pY |X) , inf
pŜ∈dec(pY |X)

Cf (pY |X).

and

ICf (pY |X) , sup
pŜ∈dec(pY |X)

Cf (pY |X).

respectively.

We close this section with some results on the analytic properties of Jf and ICf .
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For any pX , p
′
X ∈ PX ,

d(pX , p
′
X) ,

1

2
‖pX − p′X‖1

=
1

2

∑
x∈X

|pX(x)− p′X(x)|

is called the statistical distance on PX . Given the product space PX ×PY , we define

its product metric by

d((pX , pY ), (p′X , p
′
Y )) , max {d(pX , p

′
X), d(pY , p

′
Y )} ,

which induces the usual product topology. Thus for any channels pY |X , p
′
Y |X ∈ PY |X ,

we have the channel distance

d(pY |X , p
′
Y |X) , d

((
pY |X(·|x)

)
x∈X ,

(
p′Y |X(·|x)

)
x∈X

)
= max

x∈X
d
(
pY |X(·|x), p′Y |X(·|x)

)
.

Proposition 3.1 (a) JE(pU , pŜ) is uniformly continuous, and it is convex in pŜ for

fixed pU and is concave in pU for fixed pŜ.

(b) JD(pX , pŜ) is uniformly continuous, and it is linear in pŜ for fixed pX and is

concave in pX for fixed pŜ.

Proof: (a) The function JE(pU , pŜ) can be rewritten as Ĩ(pU , g(pŜ)) where

g(pŜ) = pY |U
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in which each row of pY |U can be expressed for a given u as follows

pY |U(·|u) = pŜpY |U,Ŝ(·|u, ·)

= pŜ p̂Y |X,Ŝ(·|ψ(u, ·), ·).

Note that for a given u, p̂Y |X,Ŝ(·|ψ(u, ·), ·) can be seen as a channel between Ŝ and

Y . By Proposition B.2, for pŜ, p
′
Ŝ
∈ PS,

d(g(pŜ), g(p′
Ŝ
)) = max

u∈U
d(pŜ p̂Y |X,Ŝ(·|ψ(u, ·), ·), pŜ p̂

′
Y |X,Ŝ(·|ψ(u, ·), ·))

≤ d(pŜ, p
′
Ŝ
),

so that g(·) is uniformly continuous, and hence JE(pU , pŜ) is uniformly continuous

(Proposition B.5). It is also clear that g(·) is a linear function, so that JE(pU , pŜ) is

convex for fixed pU and is concave for fixed pŜ (Cover and Thomas, 2006, Th. 2.7.4).

(b) The function JD(pX , pŜ) can be written as

JD(pX , pŜ) = pŜg(pX),

where g(pX) is defined as

g(pX) =



Ĩ(pX , p̂Y |X,Ŝ(·|·, ŝ0))

Ĩ(pX , p̂Y |X,Ŝ(·|·, ŝ2))

...

Ĩ(pX , p̂Y |X,Ŝ(·|·, ŝ|S|−1))


.

By Propositions B.1 and B.2, Ĩ
(
pX , p̂Y |X,Ŝ(·|·, ŝ)

)
is uniformly continuous on PX and

59



Ph.D. Thesis - Rui Xu McMaster - Electrical Engineering

is bounded by log (min {|X |, |Y|}). Then for pŜ, p
′
Ŝ
∈ PŜ and pX , p

′
X ∈ PX , we have

∣∣pŜg(pX)− p′
Ŝ
g(p′X)

∣∣ =
∣∣pŜg(pX)− p′

Ŝ
g(pX) + p′

Ŝ
g(pX)− p′

Ŝ
g(p′X)

∣∣
≤
∣∣pŜg(pX)− p′

Ŝ
g(pX)

∣∣+
∣∣p′
Ŝ
g(pX)− p′

Ŝ
g(p′X)

∣∣
≤
∣∣pŜ − p′Ŝ∣∣ g(pX) + p′

Ŝ
|g(pX)− g(p′X)|

≤ log (min {|X |, |Y|}) ||pŜ − p
′
Ŝ
||1 + ||g(pX)− g(p′X)||1

which implies that JD is uniformly continuous. The remaining part is straightforward

(Cover and Thomas, 2006, Th. 2.7.4). �

Proposition 3.2 For f ∈ {E,D,ED}, Cf (pŜ) is uniformly continuous and convex

(and indeed linear for f = ED).

Proof: Use Proposition 3.1 and Proposition B.6 for f = E or D. The case of

f = ED is trivial because ICED(pŜ) is a linear function of pŜ. �

3.3 The Simplest Case

In order to gain some insights into the intrinsic capacity, we first consider the simplest

case: a binary channel pY |X with the stochastic matrix

1− ε1 ε1

ε2 1− ε2

 ,

where 0 ≤ ε1, ε2 ≤ 1, and we assume ε1 + ε2 ≤ 1 without loss of generality.
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Note that there are only four types of binary deterministic channels, and let us

make them correspond to the intrinsic state as follows.

p̂Y |X,Ŝ(·|·, ŝ0) =

1 0

1 0

 , p̂Y |X,Ŝ(·|·, ŝ1) =

0 1

0 1

 ,

p̂Y |X,Ŝ(·|·, ŝ2) =

1 0

0 1

 , p̂Y |X,Ŝ(·|·, ŝ3) =

0 1

1 0

 .

It can be verified that dec(pY |X) is a convex set, more specifically, a line segment with

endpoints pŜ and p′
Ŝ

as

pŜ = (ε2, ε1, 1− ε1 − ε2, 0) ,

p′
Ŝ

=

 (ε2 − ε1, 0, 1− ε2, ε1) , for ε1 ≤ ε2,

(0, ε1 − ε2, 1− ε1, ε2) , for ε1 > ε2.

It is easy to see that

ICED(pŜ) = 1− ε1 − ε2,

ICED(pŜ) = 1− |ε1 − ε2|.

Since the input is binary, the binary uniform distribution is always capacity-achieving

for every deterministic channel, either rank 1 or rank 2, so that ICD(pŜ) = ICED(pŜ)

for every pŜ ∈ dec(pY |X), and therefore ICD(pŜ) = ICED(pŜ) and ICD(pŜ) = ICED(pŜ).

The case of f = E is slightly complicated. We have the following result.

61



Ph.D. Thesis - Rui Xu McMaster - Electrical Engineering

Proposition 3.3

{ICE(pŜ)} =
{
C
(
pY |X + tM

)
: 0 ≤ t ≤ min{ε1, ε2}

}

where M =

 1 −1

−1 1

. Then,

ICE(pŜ) = C(pY |X),

ICE(pŜ) = C
(
pY |X + min{ε1, ε2}M

)
.

Proof: By the observation above, since pŜ = (ε2, ε1, 1− ε1 − ε2, 0), we have

dec(pY |X) = {pŜ + t(−1,−1, 1, 1) : 0 ≤ t ≤ min{ε1, ε2}}.

Since the size of output alphabet is two, we only need to choose two maps from all

the 16 maps of P̂Y |X into X = {0, 1} for constructing the capacity-achieving distri-

butions. We denote these two maps by ψ(u0, Ŝ) and ψ(u1, Ŝ), and then the optimal

strategy for choosing ψ(u0, ·) and ψ(u1, ·) is to maximize pY |U(y0|u0) − pY |U(y0|u1)

(Proposition B.7), where pY |U(y|u) =
∑

ŝ∈Ŝ pŜ(ŝ)p̂Y |X,Ŝ(y|ψ(u, ŝ), ŝ). One of such

pairs is

ψ(u0, Ŝ) =



0, Ŝ = ŝ0,

0, Ŝ = ŝ1,

0, Ŝ = ŝ2,

1, Ŝ = ŝ3,

and ψ(u1, Ŝ) =



0, Ŝ = ŝ0,

0, Ŝ = ŝ1,

1, Ŝ = ŝ2,

0, Ŝ = ŝ3.
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Then we have pY |U as

pY |U =

1− ε1 + t ε1 − t

ε2 − t 1− ε2 + t


The remaining part of the proof is then straightforward. �

In summary, from this simplest case, we obtain some interesting results that may

be extended to general cases, as follows:

• The set dec(pY |X) is closed and convex, so that {ICf (pŜ)} is compact and con-

nected.

• ICED(pŜ) = |1− ε1 − ε2| and ICED(pŜ) = 1− |ε1 − ε2|.

• ICD(pŜ) = ICED(pŜ) and ICD(pŜ) = ICED(pŜ).

• ICE(pŜ) = C(pY |X).

3.4 The General Case

Let pY |X be an arbitrary channel with |X | ≥ 2 and |Y| ≥ 2. In this section we will

study its lower and upper intrinsic capacities.

3.4.1 dec(pY |X)

First, we have the following fundamental result.
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Theorem 3.1 The set dec(pY |X) is a bounded, closed convex polytope. For each

f ∈ {E,D,ED}, {ICf (pŜ)} is a closed interval and ICf (pŜ) can be attained at some

vertex of dec(pY |X). Furthermore, ICD(pŜ) and ICED(pŜ) can also be attained at some

vertices of dec(pY |X).

Proof: By definition, it is clear that dec(pY |X) is a bounded, closed convex poly-

tope, so that {ICf (pŜ)} is a closed interval (Proposition 3.2).

By Proposition 3.2 and [Bertsekas et al. 2003, Prop. 3.4.1], it is easy to see that

ICf (pŜ) attains its maximum ICf (pŜ) at some vertex of dec(pY |X) and that ICED(pŜ)

attains its minimum ICED(pŜ) at some vertex of dec(pY |X).

For f = D, it follows from the minimax theorem (Sion, 1958, Th. 3.4) and

Proposition 3.1 that

ICD(pŜ) = min
pŜ∈dec(pY |X)

max
pX∈PX

JD(pX , pŜ)

= max
pX∈PX

min
pŜ∈dec(pY |X)

JD(pX , pŜ)

= max
pX∈PX

g(pX),

where, for every fixed pX , the value of g(pX) is always attained at some vertex of

dec(pY |X) (Proposition 3.1 and (Bertsekas et al., 2003, Prop. 3.4.1)). Therefore,

ICD(pŜ) is attained at some vertex of dec(pY |X). �

In light of Theorem 3.1, we proceed to study the structure of dec(pY |X), namely,

its vertices. Our approach is analogous to [Jurkat and Ryser 1968].
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Proposition 3.4 Let

S =

supp(αŜ) : αŜ ∈ R|Ŝ|,
∑
ŝ∈Ŝ

αŜ(ŝ)p̂Y |X,Ŝ(·|·, ŝ) = 0

.
A probability distribution pŜ ∈ dec(pY |X) is a vertex iff for T ∈ S, T ⊆ supp(pŜ)

implies T = ∅.

Proof: (Sufficiency) Given pŜ, if it can be expressed as a linear combination of

some p′
Ŝ
, p′′

Ŝ
∈ dec(pY |X) as follows,

pŜ = tp′
Ŝ

+ (1− t)p′′
Ŝ
, for some 0 < t < 1, (3.1)

then p′
Ŝ
− p′′

Ŝ
= (pŜ − p′′Ŝ)/t. Since

∑
ŝ∈Ŝ

(p′
Ŝ
− p′′

Ŝ
)p̂Y |X,Ŝ(·|·, ŝ) =

∑
ŝ∈Ŝ

p′
Ŝ
p̂Y |X,Ŝ(·|·, ŝ)−

∑
ŝ∈Ŝ

p′′
Ŝ
p̂Y |X,Ŝ(·|·, ŝ)

= pY |X − pY |X

= 0

we have supp(p′
Ŝ
− p′′

Ŝ
) ∈ S. Note that supp(p′

Ŝ
− p′′

Ŝ
) ⊆ supp(pŜ) from (3.1). Hence,

if for T ∈ S, T ⊆ supp(pŜ) implies T = ∅, we have

p′
Ŝ
− p′′

Ŝ
= 0, for any p′

Ŝ
, p′′

Ŝ
∈ dec(pY |X) and satisfy (3.1),

in other words, pŜ = p′
Ŝ

= p′′
Ŝ

is a vertex.
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(Necessity) For every nonempty T ∈ S, there is a vector αŜ ∈ R|Ŝ| such that

supp(αŜ) = T and

∑
ŝ∈Ŝ

αŜ(ŝ)p̂Y |X,Ŝ(·|·, ŝ) = 0.

Let p′
Ŝ

= pŜ + tαŜ and p′′
Ŝ

= pŜ − tαŜ with t 6= 0, so that pŜ = (p′
Ŝ

+ p′′
Ŝ
)/2 with

p′
Ŝ
6= p′′

Ŝ
. Since pŜ is a vertex, p′

Ŝ
and p′′

Ŝ
must not be elements of dec(pY |X) for all

t 6= 0. Note that

∑
ŝ∈Ŝ

p′
Ŝ
(ŝ)p̂Y |X,Ŝ(·|·, ŝ) =

∑
ŝ∈Ŝ

pŜ(ŝ)p̂Y |X,Ŝ(·|·, ŝ) +
∑
ŝ∈Ŝ

αŜ(ŝ)p̂Y |X,Ŝ(·|·, ŝ)

= pY |X ,

and
∑

ŝ∈Ŝ p
′′
Ŝ
(ŝ)p̂Y |X,Ŝ(·|·, ŝ) = pY |X similarly. Therefore, p′

Ŝ
and p′′

Ŝ
must not be valid

distributions in the same time, in other words, T 6⊆ supp(pŜ). �

Below are several easy consequences of Proposition 3.4.

Proposition 3.5 A probability distribution pŜ ∈ dec(pY |X) is a vertex iff for every

p′
Ŝ
∈ dec(pY |X), supp(p′

Ŝ
) ⊆ supp(pŜ) implies p′

Ŝ
= pŜ.

Proposition 3.6 If pŜ ∈ dec(pY |X) is a vertex, then

|supp(pŜ)| ≤
∣∣supp(pY |X)

∣∣− |X |+ 1.
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Proof: For pŜ ∈ dec(pY |X), we have

pY |X =
∑
ŝ∈Ŝ

pŜ(ŝ)p̂Y |X,Ŝ(·|·, ŝ). (3.2)

Because of
∑

ŝ∈Ŝ pŜ = 1, the equations (3.2) have at most |X |(|Y| − 1) + 1 linearly

independent equations. This number can be further reduced by utilizing the infor-

mation of pY |X . Note that if for some x ∈ X and y ∈ Y ,

pY |X(y|x) =
∑
ŝ∈Ŝ

pŜ(ŝ)p̂Y |X,Ŝ(y|x, ŝ) = 0,

pŜ(ŝ) must be zero for all ŝ with p̂Y |X,Ŝ(y|x, ŝ) = 1. Therefore, the number of linearly

independent equations of (3.2) is no more than
∣∣supp(pY |X)

∣∣−|X |+1. In other words,

if pŜ ∈ dec(pY |X) is a vertex, |supp(pŜ)| ≤
∣∣supp(pY |X)

∣∣− |X |+ 1. �

Proposition 3.6 provides an upper bound for the support size of a vertex in

dec(pY |X). On the other hand, the following result provides a lower bound for the

support size of points in dec(pY |X), including all the vertices of dec(pY |X).

Proposition 3.7 For any pŜ ∈ dec(pY |X),

|supp(pŜ)| ≥ max

{⌈
log2

∣∣supp(pY |X)
∣∣⌉,max

x∈X

∣∣supp
(
pY |X(·|x)

)∣∣} .
Proof: By conditioning, we have

pY |X(y|x) =
∑
ŝ∈Ŝ

pŜ(ŝ)p̂Y |X,Ŝ(y|x, ŝ).
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Since p̂Y |X,Ŝ(y|x, ŝ) is either 0 or 1, the right-hand side can yield at most 2|supp(pŜ)|

different values, so that

2|supp(pŜ)| ≥
∣∣supp(pY |X)

∣∣ ,
or |supp(pŜ)| ≥

⌈
log2

∣∣supp(pY |X)
∣∣⌉.

On the other hand, given x ∈ X and y ∈ Y , every equation

∑
ŝ∈Ŝ

pŜ(ŝ)p̂Y |X,Ŝ(y|x, ŝ) = pY |X(y|x) > 0.

must have at least one positive pŜ for some

ŝ ∈
{
ŝ ∈ Ŝ : p̂Y |X,Ŝ(y|x, ŝ) = 1

}
.

Since for every x, the sets
{
ŝ ∈ Ŝ : p̂Y |X,Ŝ(y|x, ŝ) = 1

}
y∈Y

are mutually disjoint, we

conclude that |supp(pŜ)| ≥
∣∣supp

(
pY |X(·|x)

)∣∣ for each x ∈ X . Therefore, the proof is

complete. �

3.4.2 ICED(pY |X) and ICED(pY |X)

If we can enumerate all the vertices of dec(pY |X), then by Theorem 3.1, we can

certainly obtain the exact values of ICED(pY |X) and ICED(pY |X). However, because of

the complex structure of dec(pY |X), we turn to estimating ICED(pY |X) and ICED(pY |X)

by other approaches. The next result is a generalization of the Birkhoff-von Neumann

Theorem, which will be very useful for our purpose. Our approach is an extension of
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the ideas in [Jurkat and Ryser 1968; Caron et al. 1996].

Theorem 3.2 Let a and b be two 1×|Y| integer-valued row vectors such that a ≤ b,

namely, ay ≤ by for y ∈ Y. Define

PY |X [a,b] ,
{
pY |X ∈ PY |X : a ≤ 1pY |X ≤ b

}
P̂Y |X [a,b] , PY |X [a,b] ∩ P̂Y |X

where 1 denotes the 1 × |X | all-one row vector. If PY |X [a,b] is not empty, then

PY |X [a,b] is convex and the vertices of PY |X [a,b] are exactly the matrices in P̂Y |X [a,b].

Proof: It is clear that PY |X [a,b], if nonempty, is a convex set. We will show

that any matrix pY |X ∈ PY |X [a,b] having non-integer entries cannot be a vertex of

PY |X [a,b]. There are two cases:

Case (a) There is a non-integer entry in a off-boundary column.

Case (b) All non-integer entries are in the on-boundary columns.

Here, let us say a column is on boundary if its sum is either aj or bj, where j is the

index of the column, and such a column is called a on-boundary column. The column

whose sum is neither aj nor bj is called an off-boundary column.

In whichever the case, we can pick a non-integer entry, say the (i0, j0)-th entry,

which must be in a non-boundary column for Case (a). By the following searching

process, we will find a chain or loop of non-integer entries of the matrix, which will

be used to prove that the matrix is not extremal.

1. Pick a non-integer entry as the start entry, and record the index of this entry,
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say (i0, j0). Note that this entry must be in a non-boundary column for Case

(a).

2. Assuming that the last recorded index is (ik, jk) with k = 0, 1, 2, · · · , pick a

non-integer entry (ik, jk) in the same row excluding (i0, j0), say the (ik, jk+1)-th

entry. Determine if any of the following conditions is true, and execute the

corresponding operations.

• if the jk+1-th column is not on boundary, record the index (ik, jk+1). Note

that all the recorded indices form a chain. Return the index chain as

follows.

(i0, j0), (i0, j1), (i1, j1), · · · , (ik, jk), (ik, jk+1);

• if jk+1-th column has already been visited, i.e. jk+1 = jl for some 0 ≤

l ≤ k − 1, but the (ik, jk+1)-th entry hasn’t been picked, record the index

(ik, jk+1). Note that there is a loop formed with some of the recorded

indices. Return the loop indices as follows;

(il, jl), (il, jl+1), (il+1, jl+1), · · · , (ik, jk), (ik, jk+1);

• if the (ik, jk+1)-th entry has been picked, record the index (ik, jk+1). Note

that a loop is formed with the most recently picked four entries. Return

the loop indices as follows;

(ik−1, jk−1), (ik−1, jk), (ik, jk), (ik, jk+1);
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If any of the conditions above is true, the searching process is finished. Other-

wise, record the index of the picked entry as (ik, jk+1) and move on to the next

step.

Remark: Because the (ik, jk)-th entry is not an integer, there exists at least

another entry in the same row that is also not an integer.

3. Assuming that the last recorded index is (ik, jk+1), pick a non-integer entry in

the same column and record its index as (ik+1, jk+1). Jump back to Step 2.

Remark: If the jk+1-th column is on boundary, then there exists at least another

non-integer entry in the same column.

Given the returned indices, either a chain or a loop, we can construct a |X | × |Y|

matrix M by setting the entry of M corresponding to the first returned index as

1, the entry of M corresponding to the second returned index as −1, the entry of

M corresponding to the third returned index as 1, the entry of M corresponding to

the forth returned index as −1, and so on until all the entries corresponding to the

returned indices have been assigned values. And all other entries are set to be zero.

It is clear that

1M = ej0 − ejk+1
, M1T = 0

given the chain indices and

1M = 0, M1T = 0

given the loop indices , where ej is a 1× |Y| row vector with the j-th entry as 1 and

all the other entries as 0.

Let p′Y |X = pY |X + εM and p′′Y |X = pY |X − εM. It is clear that p′Y |X , p
′′
Y |X ∈

PY |X [a, b] for sufficiently small ε > 0. It is also clear that pY |X = 1
2
p′Y |X + 1

2
p′′Y |X and
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p′Y |X 6= p′′Y |X , that is, pY |X is not a vertex of PY |X [a, b].

Therefore, if denoting the set of all vertices of PY |X [a, b] by P(v)
Y |X [a, b], we have

P(v)
Y |X [a, b] ⊆ P̂Y |X [a, b]. It remains to show that P̂Y |X [a, b] ⊆ P(v)

Y |X [a, b]. For any

pY |X ∈ P̂Y |X [a, b], if pY |X = αp′Y |X + (1 − α)p′′Y |X with p′Y |X , p
′′
Y |X ∈ PY |X [a, b] and

α ∈ (0, 1), then for every 1 ≤ j ≤ |X |,

eipY |X = αeip
′
Y |X + (1− α)eip

′′
Y |X ,

which however implies that eip
′
Y |X = eip

′′
Y |X for every 1 ≤ j ≤ |X |, or p′Y |X = p′′Y |X .

Therefore, it has been shown that each pY |X ∈ P̂Y |X [a, b] is a vertex of P(v)
Y |X [a, b]

which completes our proof. �

Now we proceed to estimate the lower and the upper intrinsic capacities. Since

pŜ ∈ dec(pY |X) is a probability mass function (or equivalently, a probability measure)

over P̂Y |X and rank(p̂Y |X,Ŝ) ≤ min{|X |, |Y|}, we define a probability mass function

Γ(r, pŜ) which is called rank probability as follows.

Γ(r, pŜ) =
∑

ŝ:rank(p̂Y |X,Ŝ)=r

pŜ(ŝ).

where r ∈ {1, 2, · · · ,min{|X |, |Y|}}. Further more, given a channel pY |X , the lower

and the upper rank probabilities are defined by

Γ(r, pY |X) = min
pŜ∈dec(pY |X )

Γ(r, pŜ),

Γ(r, pY |X) = max
pŜ∈dec(pY |X )

Γ(r, pŜ),
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respectively.

Proposition 3.8

Γ(1, pY |X) =
(
g(pY |X)− |X |+ 1

)+
,

Γ(1, pY |X) =
∑
y∈Y

α(y).

where

g(pY |X) = max
y∈Y

∑
x∈X

pY |X(y|x), (3.3)

α(y) = min
x∈X

pY |X(y|x). (3.4)

Proof: Note that

g(p̂Y |X,Ŝ) ≤ |X | − 1, for every p̂Y |X,Ŝ ∈
{
p̂Y |X,Ŝ : rank(p̂Y |X,Ŝ) ≥ 2

}
.

Then, by Theorem 3.2, pY |X can be expressed as a convex combination of deterministic

channels of rank ≥ 2 if g(pY |X) ≤ |X | − 1, in which case, Γ(1, pY |X) = 0. Otherwise,

let the yl-column be the one such that g(pY |X) ≥ |X | − 1. Consider the convex

combination

pY |X = tUyl + (1− t)p′Y |X ,

where Uyl is a |X | × |Y| matrix in which the yl-column is all one and all the other

entries are zeros. It is clear that p′Y |X cannot be a convex combination of deterministic

channels of rank ≥ 2 unless the sum of its l-th column is ≤ |X | − 1. To this end, we
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set t = g(pY |X) − |X | + 1, which is the minimum value required such that p′Y |X can

be a convex combination of deterministic channels of rank ≥ 2, and we have

∑
x∈X

p′Y |X(yl|x) =

∑
x∈X pY |X(yl|x)− t|X |

1− t
= |X | − 1

and

∑
x∈X

p′Y |X(yj|x) =

∑
x∈X pY |X(yj|x)

1− t
≤ 1, for yj 6= yl,

so that Γ(1, pY |X) = g(pY |X)− |X |+ 1.

Note that pY |X has the following convex decomposition

pY |X =

(
1−

∑
y∈Y

α′(y)

)
p′Y |X +

∑
y∈Y

α′(y)Uy,

in which p′Y |X is a valid stochastic matrix iff α′(y) ≤ α(y) for all y ∈ Y . Therefore,

Γ(1, pY |X) =
∑

y∈Y α(y). �

Proposition 3.9 If |X | ≤ |Y|, then

Γ(|X |, pY |X) ≤ 1− β,

where

β = max
y∈Y


(∑
x∈X

pY |X(y|x)

)
− 1∣∣supp(pY |X(y|·))
∣∣− 1


+

. (3.5)

Furthermore, if β = 0, then Γ(|X |, pY |X) = 1.
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If |X | ≥ |Y|, then

Γ(|Y|, pY |X) ≤ h,

where

h = min

{
1,min

y∈Y

∑
x∈X

pY |X(y|x)

}
. (3.6)

If h = 1, then Γ(|Y|, pY |X) = 1.

Proof: If |X | ≤ |Y|, then the sum of every column of a deterministic channel

of rank |X | is at most 1, and for every y ∈ Y , pY |X allows a convex combination of

deterministic channels with the y-column sum at most
∣∣supp(pY |X(y|·))

∣∣. Thus for

every pŜ ∈ dec(pY |X) and every y ∈ Y , we have

∑
x∈X

pY |X(y|x)

≤min
{

1,
∣∣supp(pY |X(y|·))

∣∣}Γ(|X |, pŜ) +
∣∣supp(pY |X(y|·))

∣∣ (1− Γ(|X |, pŜ))

=
∣∣supp(pY |X(y|·))

∣∣− (∣∣supp(pY |X(y|·))
∣∣− 1

)+
Γ(|X |, pŜ)

so that

Γ(|X |, pŜ) ≤ 1−

(∑
x∈X

pY |X(y|x)

)
− 1∣∣supp(pY |X(y|·))
∣∣− 1

for
∣∣supp(pY |X(y|·))

∣∣ > 1 and hence Γ(|X |, pY |X) ≤ 1 − β. If β = 0, which implies

that
∑

x∈X pY |X(y|x) ≤ 1 for all y ∈ Y , then Γ(|X |, pY |X) = 1 (Theorem 3.2).
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If |X | ≥ |Y|, then the sum of every column of a deterministic channel of rank |Y|

is at least 1, so that, for every pŜ ∈ dec(pY |X) and every y ∈ Y , we have

∑
x∈X

pY |X(y|x) ≥ Γ(|Y|, pŜ),

and hence Γ(|Y|, pY |X) ≤ h. If h = 1, which implies
∑

x∈X pY |X(y|x) ≥ 1 for all

y ∈ Y , then Γ(|Y|, pY |X) = 1 (Theorem 3.2). �

Proposition 3.10

ICED(pY |X)

≤

 (1− Γ(1, pY |X)) log
(
min

{(
|X |+ | supp(a)| − a1T

)
, |Y|

})
, Γ(1, pY |X) < 1,

0, Γ(1, pY |X) = 1,

ICED(pY |X) ≥ 1− Γ(1, pY |X),

where

a =
⌊
1p′Y |X

⌋
,

p′Y |X =

pY |X −
∑
y∈Y

α(y)Uy

1− Γ(1, pY |X)
,

and α(y) is defined by (3.4).

If |X | = 2 or |Y| = 2, then ICED(pY |X) = 1− Γ(1, pY |X).
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Proof: One way to find an upper bound of the lower intrinsic capacity is to find

a convex combination of pY |X as bad as possible, while Γ(1, pY |X) is achieved. To this

end, we can first extract from pY |X a collection of useless deterministic channels with

the total probability Γ(1, pY |X) according to Proposition 3.8, that is,

pY |X =
∑
y∈Y

α(y)Uy + (1− Γ(1, pY |X))p′Y |X .

If Γ(1, pY |X) = 1, then ICED(pY |X) = 0; otherwise,

ICED(pY |X) =
(
1− Γ(1, pY |X)

)
ICED(p′Y |X).

It is clear that p′Y |X ∈ PY |X [a,x], where x denotes the row vector with every entry

equal |X |. The best deterministic channels in PY |X [a,x] are those with the number

of nonzero columns maximized. The rank of those matrices is

min
{(
|X |+ | supp(a)| − a1T

)
, |Y|

}
,

so ICED(p′Y |X) ≤ log
(
min

{(
|X |+ | supp(a)| − a1T

)
, |Y|

})
(Theorem 3.2). Thus,

ICED(pY |X) ≤
(
1− Γ(1, pY |X)

)
log
(
min

{(
|X |+ | supp(a)| − a1T

)
, |Y|

})
.

Let pŜ be the vertex of dec(pY |X) that attains ICED(pY |X). Then

ICED(pY |X) =
∑
ŝ∈Ŝ

pŜ(ŝ) log rank
(
p̂Y |X,Ŝ(·|·, ŝ)

)
≥1− Γ(1, pŜ)
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≥1− Γ(1, pY |X).

Finally, the special case of |X | = 2 or |Y| = 2 can be easily verified. �

Proposition 3.11

ICED(pY |X) ≥ (1− Γ(1, pY |X)) log

| supp(a)|+

|X | − ∑
y∈supp(a)

by

+ , (3.7)

ICED(pY |X) ≤ (1− Γ(1, pY |X)) log(m− 1) + Γ(m, pY |X) log
m

m− 1
, (3.8)

where

a =
⌊
1p′Y |X

⌋
,

b =
⌈
1p′Y |X

⌉
,

p′Y |X =
pY |X − Γ(1, pY |X)Uyl

1− Γ(1, pY |X)
,

m = min {|X |, |Y|} ,

and yl corresponds to the column of pY |X such that 1pY |X(yl|·) = g(pY |X) with g(pY |X)

defined by (3.3).

If |X | = 2 or |Y| = 2, then ICED(pY |X) = 1− Γ(1, pY |X).

If |X | ≤ |Y| and β = 0 (see (3.5)), then ICED(pY |X) = log |X |.

If |X | ≥ |Y| and h = 1 (see (3.6)), then ICED(pY |X) = log |Y|.

78



Ph.D. Thesis - Rui Xu McMaster - Electrical Engineering

Proof: In order to estimate a lower bound of ICED(pY |X), we first extract from

pY |X the minimum required useless channels (Proposition 3.8), that is,

pY |X = Γ(1, pY |X)Uyl +
(
1− Γ(1, pY |X)

)
p′Y |X ,

so that ICED(pY |X) ≥ (1− Γ(1, pY |X)) ICED(p′Y |X).

To find a lower bound of ICED(p′Y |X), we need to find a convex combination of p′Y |X

as good as possible. It is clear that p′Y |X ∈ P [a,b], so ICED(p′Y |X) is bounded below

by the capacity of the worst deterministic channel in P [a,b] (Theorem 3.2), which

are obviously those with the number of nonzero columns minimized. The capacity of

such a channel is

log

| supp(a)|+

|X | − ∑
y∈supp(a)

by

+ .

Since ICED(p′Y |X) ≥ log

(
| supp(a)|+

(
|X | −

∑
y∈supp(a) by

)+
)

, (3.7) has been proved.

Let pŜ be the vertex of dec(pY |X) that attains ICED(pY |X). Then

ICED(pY |X) =
∑
ŝ∈Ŝ

pŜ(ŝ) log rank
(
p̂Y |X,Ŝ(·|·, ŝ)

)
≤(1− Γ(1, pŜ)− Γ(m, pŜ)) log(m− 1) + Γ(m, pŜ) log(m)

=(1− Γ(1, pŜ)) log(m− 1) + Γ(m, pŜ) log
m

m− 1

≤(1− Γ(1, pY |X)) log(m− 1) + Γ(m, pY |X) log
m

m− 1

where m = min {|X |, |Y|}. The remaining part of the proof is straightforward. �

79



Ph.D. Thesis - Rui Xu McMaster - Electrical Engineering

3.4.3 ICf(pY |X) and ICf(pY |X) for f = E,D

Although it is more difficult to compute ICf (pY |X) and ICf (pY |X) for f = E,D in

general cases, we can still obtain some useful results for some special cases.

The first case to be considered is a channel with binary output, namely, pY |X with

|Y| = 2.

Proposition 3.12 If |Y| = 2, then

ICE(pY |X) = C(pY |X),

ICE(pY |X) = C(p∗Y |U),

where p∗Y |U =

 1 0

Γ(1, pY |X) 1− Γ(1, pY |X)

 with Γ(1, pY |X) given by Proposition 3.8.

Proof: Since |Y| = 2, we only need to choose two maps from all the 2|S| = 22|X|

maps of P̂Y |X into X for constructing the capacity-achieving distributions. We denote

these two maps by ψ(u0, Ŝ) and ψ(u1, Ŝ). Similar to the proof of Proposition 3.3, our

strategy for choosing ψ(u0, ·) and ψ(u1, ·) is to maximize pY |U(y0|u0) − pY |U(y0|u1),

where pY |U(y|u) =
∑

ŝ∈Ŝ pŜ(ŝ)p̂Y |X,Ŝ(y|ψ(u, ŝ), ŝ).

There are only two classes of deterministic channels in P̂Y |X , rank 1 and rank 2.

For ŝ ∈
{
ŝ ∈ Ŝ : rank

(
p̂Y |X,Ŝ(·|·, ŝ)

)
= 1
}

, it does not matter to choose the values

of ψ(u0, ŝ) and ψ(u1, ŝ). For ŝ ∈
{
ŝ ∈ Ŝ : rank

(
p̂Y |X,Ŝ(·|·, ŝ)

)
= 2
}

, however, let us

choose ψ(u0, ŝ) such that p̂Y |X,Ŝ(y0|ψ(u0, ŝ), ŝ) = 1, and choose ψ(u1, ŝ) such that
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p̂Y |X,Ŝ(y0|ψ(u1, ŝ), ŝ) = 0. Then we have pY |U as

pY |U =

1− λy1 λy1

λy0 1− λy0


where

λy0 = pŜ

(
ŝ : p̂Y |X,Ŝ(·|·, ŝ) = Uy0

)
,

λy1 = pŜ

(
ŝ : p̂Y |X,Ŝ(·|·, ŝ) = Uy1

)
.

By Proposition 3.8, the maximum of Γ(1, pŜ) = λy0 + λy1 is α(y0) + α(y1) with each

α(y) being the maximum of feasible values of λy, so that

ICE(pY |X) = C


1− α(y1) α(y1)

α(y0) 1− α(y0)


 .

Observing that these two rows are exactly two rows of pY |X , we further have ICE(pY |X) =

C(pY |X).

Again by Proposition 3.8, Γ(1, pY |X) =
(
g(pY |X)− |X |+ 1

)+
. Without loss of

generality, we suppose
∑

x∈X pY |X(y0|x) = g(pY |X). Then the minima of feasible

values of λy0 and λy1 are Γ(1, pY |X) and 0, respectively. Therefore,

ICE(pY |X) = C


 1 0

Γ(1, pY |X) 1− Γ(1, pY |X)


 .

�
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The phenomenon ICE(pY |X) = (pY |X) implies that in some cases, the capacity

of channel pY |X cannot be increased, even if its exact mechanism is known at the

encoder. The following result shows that it is not a special case and that a class of

general channels with causal state information also has such a property.

Theorem 3.3 Let pY |X = pB|XpY |B, where pB|X is a channel with binary output and

pY |B is a channel with binary input in which |B| = 2. Suppose

pB|X =
∑
s∈S

pS(s)pB|X,S(·|·, s)

where s denotes the state of channel. The capacity of pY |X cannot be increased by the

causal state information s available at the encoder iff all pB|X,S(·|·, s) are (xi, xj)-ended

for some fixed xi, xj ∈ X for all s ∈ S, where a binary output channel pB|X,S(·|·, s) is

said to be (xi, xj)-ended if

pB|X,S(b0|xi, s) = min
x∈X

pB|X,S(b0|x, s)

and pB|X,S(b0|xj, s) = max
x∈X

pB|X,S(b0|x, s).

In other words, all row vectors of pB|X,S(·|·, s) are contained in the line segment be-

tween endpoints pB|X,S(·|xi, s) and pB|X,S(·|xj, s).

Proof: (Sufficiency) By [Gamal and Kim 2011, Th. 7.2 ], we consider the channel

pY |U = pB|UpY |B
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where the input alphabet is U with |U| = |X ||S| and

pB|U =
∑
s∈S

pS(s)pB|X,S(·|ψ(u, s), s).

in which ψ(u, s) maps from S to X .

Because every channel pB|X,S(b0|x, s) is (xi, xj)-ended, it is easy to show that

pB|U is also (ui, uj)-ended, where ui, uj are regarded as two constant maps such that

ψ(ui, s) = xi and ψ(ui, s) = xj for all s ∈ S. Then every row vector of pY |U is

contained in the line segment between pB|U(·|ui)pY |B and pB|U(·|uj)pY |B, hence pY |U

has a capacity-achieving input probability distribution supported on {ui, uj} (Propo-

sition B.7), and therefore the capacity of pY |X cannot be increased by the causal state

information at the encoder.

(Necessity) If the capacity of pY |X cannot be increased by its causal state informa-

tion at the encoder, then a capacity-achieving input probability distribution of pY |U

must have a support, say {ui, uj}, so that for every map ψ(u, s), the vector

pY |U(·|u) =pB|U(·|u)pY |B

=

(∑
s∈S

pS(s)pB|X,S(·|ψ(u, s), s)

)
pY |B

is contained in the line segment between pY |U(·|ui) and pY |U(·|uj) (Proposition B.8),

where ui and uj are understood as two constant maps such that ψ(ui, s) = xi and

ψ(ui, s) = xj for all s ∈ S.

Without loss of generality, we assume pB|U(b0|ui) ≤ pB|U(b0|uj). Then, for any

s′ ∈ S and any x′ ∈ X , we can take ψ(u′, s′) = x′ and ψ(u′, s) = xi for any s 6= s′.
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Since

0 ≥ pB|U(b0|u′)− pB|U(b0|ui)

=
∑
s∈S

pS(s)pB|X,S(b0|ψ(u′, s), s)−
∑
s∈S

pS(s)pB|X,S(b0|ψ(u, s), s)

= pS(s′)pB|X,S(b0|ψ(u′, s′), s′)− pS(s′)pB|X,S(b0|ψ(u, s′), s′)

= pS(s′)
(
pB|X,S(b0|x′, s′)− pB|X,S(b0|xi, s′)

)
we have pB|X,S(b0|x′, s′) ≥ pB|X,S(b0|xi, s′) for any s′ ∈ S and any x′ ∈ X . Similarly,

we have pB|X,S(b0|x′, s′) ≤ pB|X,S(b0|xj, s′). Therefore, every pB|X,S(·|·, s) is (xi, xj)-

ended. �

The second case to be considered is a channel with binary input, namely, pY |X

with |X | = 2.

Proposition 3.13 If |X | = 2, then for every pŜ ∈ dec(pY |X), ICD(pŜ) = ICED(pŜ),

so that ICD(pY |X) = 1− Γ(1, pY |X) and ICD(pY |X) = 1− Γ(1, pY |X).

Proof: Because |X | = 2, the binary uniform distribution is capacity-achieving for

every deterministic channel, rank 1 or rank 2. Thus we have ICD(pŜ) = ICED(pŜ) for

every pŜ ∈ dec(pY |X). The remaining part is an easy consequence of Propositions 3.10

and 3.11. �

In the above two special cases, we notice that ICE(pY |X) = C(pY |X) for |Y| = 2

and ICD(W ) = IC(W ) for X = 2. However they are not true in general.
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Example 3.1 For

pY |X =

0.8 0.2 0

0.6 0.35 0.05

 ,

ICD(pY |X) > C(pY |X).

Proposition 3.14 Let pY |X be a ternary-input-binary-output channel. If all proba-

bilities pY |X(y|x) are distinct and the sum of each column of pY |X is greater than or

equal to 1, then ICD(pY |X) < ICED(pY |X).

The proof of Proposition 3.14 is given in Appendix B.3.

3.5 Conclusion

We have shown that the intrinsic capacity of a channel can be any value between the

lower and the upper intrinsic capacities. So, to some extent, the lower and the upper

intrinsic capacities are important properties of a channel, reflecting the freedom of

the underlying structure of the channel from an information-theoretic perspective.

There are three options for the availability of the causal state information, so to

each option there corresponds a pair of lower and upper intrinsic capacities, which we

denote by ICf (pY |X) and ICf (pY |X) for f = E,D,ED, respectively. We determined

their values in almost all cases when the input or the output are binary. Two excep-

tions are the binary-input nonbinary-output channels for f = E and the nonbinary-

input-binary-output channels for f = D. Example 3.1 and Proposition 3.14 show

that these two cases are not as simple as other binary cases.
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Our main approach involves determining the lower and the upper rank proba-

bilities (Propositions 3.8 and 3.9). However, it is still unknown that, in general, the

greedy strategy to put probability mass as much as possible on channels with priorities

from the lowest rank to the highest or from the highest to the lowest will necessarily

lead us to the lower or the upper intrinsic capacities. Anyway, this approach is useful

for estimating the lower and the upper intrinsic capacities (Propositions 3.10 and

3.11).

This work may not be very useful for the real-world communications because it is

usually difficult to get the full knowledge of a channel such that it degenerates to a

deterministic channel. Storage applications may be one of the exceptions.

On the contrary, for information theory, this work is very important. In a coding

system, any dependence can be modeled by a random map or a channel, and if using

the terms in game theory, they are called a mixed strategy and a behavioral strate-

gy, respectively. The relation between a random map and a channel is many-to-one,

and note that a random map is nothing but a convex combination of deterministic

channels. The problem studied in this paper is a bridge connecting these two objects.

The convex-nature results of this topic, combined with traditional tools of informa-

tion theory (e.g., the log-sum inequality), can provide powerful approaches to many

information-theoretic problems.
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Chapter 4

Conclusions and Future Work

This thesis focused on the capacity analysis for channels with state. Particularly,

based on the availability of the state information at the encoder and/or decoder, the

capacity-achieving coding schemes are different.

In Chapter 2, we studied the channel model when the decoder-side state informa-

tion is always perfect and only a noisy version of state information is available at the

encoder side. We have shown that when a fairly small amount of noise is added upon

the encoder-side state information, the capacity of binary-input channels is as low

as if the noisy state information is totally useless. On the contrary, the generalized

probing capacity is as high as if the encoder has the knowledge of the perfect state

information, even when a fairly large amount of noise is added to the encoder-side

state information. Two explicit thresholds about the quality of the encoder-side state

information have been derived in terms of I(S; S̃) and H(S|S̃). Extensions have also

been made to non-binary-input cases and to the model when the state information is

not available at the decoder. The necessary and sufficient conditions have been given

on when such thresholds exist for the extensions. Considering that binary signalling
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is widely used, especially in wideband communications, our work might have some

practical relevance. However, our results rely on the assumption that the channel

has finite state which is not always true in reality; moreover, the freedom of power

control in real communication systems is considered in our research. Thus, it will

be interesting to take into account of either an infinite size of channel state or the

freedom of power control. The potential counterpart result in source coding is also

worthy to be investigated.

In Chapter 3, we introduced the idea of intrinsic capacity which can be seen

as the potential of increasing the channel capacity by utilizing the channel state

information. In pursuing a better understanding of intrinsic capacity, we first studied

the structure of the convex polytope dec(pY |X) consisting of all convex combinations of

deterministic channels for channel pY |X . We proved that, except for ICE(pY |X), all the

other ICf (pY |X) and ICf (pY |X) are attained at some vertex of dec(pY |X). Necessary

and sufficient conditions for a vertex of dec(pY |X), as well as a series of consequences,

are also provided. Then, we proved a generalization of the Birkhoff-von Neumann

Theorem for a family PY |X [a,b] of channel matrices with integer-valued column-sum

vector constraints a and b from below and above, respectively. It has been shown

that PY |X [a,b] is convex and its vertices are exactly all deterministic channels in

PY |X [a,b]. Using this fundamental result, we have determined the exact values of

ICED(pY |X) and ICED(pY |X) when the input or the output is binary. General lower

and upper bounds are further provided for the nonbinary cases and in some cases,

the exact value of ICED(pY |X) has also been determined. For a binary-output channel

pY |X , we have derived the exact values of ICE((pY |X) and ICE((pY |X), and for a binary-

input channel pY |X , the exact values of IC01(W ) and IC01(W ) have also been obtained.
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Finally, an interesting phenomenon observed is that ICE(pY |X) = C(pY |X) for binary-

output channels. In other words, the causal state information at the encoder is useless.

We further proved that a class of general channels with causal state information

available at the encoder also has such a property. In the future, it will be worthy

to investigate if the greedy strategy to put probability mass as much as possible on

channels with priorities from the lowest rank to the highest or from the highest to the

lowest will necessarily lead us to the lower or the upper intrinsic capacities. Besides

that, more research is required to derive the exact values of lower and upper intrinsic

capacities for non-binary channels.
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Appendix A

Proofs for Chapter 2

A.1 An Alternative Proof of Theorem 2.2

We shall show that, for any binary-input channel pY |X,S, state distribution pS, and

side channel pS̃|S,

C ′(pY |X,S, pS, pS̃|S) = C(pY |X,S, pS)

if

H(S|S̃) ≤ 4ρ log 2

3 + 2(e− 1)
√

2|S|
. (A.1)

Lemma A.1 pX̂|S is a stochastically degraded version of pS̃|S if

H(S|S̃) ≤ 4τρ log 2

3τ + 2
√

2|S|
, (A.2)
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where

τ = min
x∈X+

mins∈S pX̂|S(x|s)
maxs∈S pX̂|S(x|s)

.

Proof: Let Ŝ denote the maximum likelihood estimate of S based on S̃. It suffices

to show that pŜ|S is invertible and p−1

Ŝ|SpX̂|S is a valid probability transition matrix if

(A.2) is satisfied.

Table A.1: Specification of ψ(·, ·) for U = {0, 1, · · · , 7} and S̃ = {0, 1, ∗}

ψ(u, s̃) s̃ = 0 s̃ = 1 s̃ = ∗
u = 0 0 0 0
u = 1 1 1 1
u = 2 1 1 0
u = 3 0 0 1
u = 4 0 1 0
u = 5 0 1 1
u = 6 1 0 0
u = 7 1 0 1

Let σmin(pŜ|S) denote the smallest singular value of pŜ|S. It follows from [Johnson

1989, Th. 3] that

σmin(pŜ|S) ≥ min
s∈S

1

2

(
2pŜ|S(s|s)−

∑
ŝ∈S:ŝ 6=s

pŜ|S(ŝ|s)−
∑

ŝ∈S:ŝ 6=s

pŜ|S(s|ŝ)

)
. (A.3)

Clearly,

min
s∈S

1

2

(
2pŜ|S(s|s)−

∑
ŝ∈S:ŝ 6=s

pŜ|S(ŝ|s)−
∑

ŝ∈S:ŝ 6=s

pŜ|S(s|ŝ)

)

= min
s∈S

1

2

(
2− 3

∑
ŝ∈S:ŝ 6=s

pŜ|S(ŝ|s)−
∑

ŝ∈S:ŝ 6=s

pŜ|S(s|ŝ)

)
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≥ 1− 3

2

∑
s,ŝ∈S:s6=ŝ

pŜ|S(ŝ|s). (A.4)

Substituting (A.4) into (A.3) and invoking (2.45) gives

σmin(pŜ|S) ≥ 1− 3H(S|S̃)

4ρ log 2
. (A.5)

Therefore, pŜ|S is invertible if H(S|S̃) < 4ρ log 2
3

. Let ‖ · ‖∞, ‖ · ‖2, and ‖ · ‖F denote

the maximum row sum matrix norm, the spectral norm, and the Frobenius norm,

respectively Horn and Johnson (1985). Note that

‖p−1

Ŝ|S − diag(1, · · · , 1)‖∞

≤
√
|S|‖p−1

Ŝ|S − diag(1, · · · , 1)‖2

≤
√
|S|‖p−1

Ŝ|S‖2‖pŜ|S − diag(1, · · · , 1)‖2 (A.6)

≤
√
|S|‖p−1

Ŝ|S‖2‖pŜ|S − diag(1, · · · , 1)‖F , (A.7)

where (A.6) follows by the sub-multiplicative property of the spectral norm. We have

‖p−1

Ŝ|S‖2 =
1

σmin(pŜ|S)

≤

(
1− 3H(S|S̃)

4ρ log 2

)−1

, (A.8)

where (A.8) is due to (A.5). For pŜ|S − diag(1, · · · , 1), it is clear that the diagonal

entries are non-positive, the off-diagonal entries are non-negative, and the sum of all

entries is equal to 0; moreover, the sum of its off-diagonal entries is bounded above
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by H(S|S̃)
2ρ log 2

(see (2.45)). Therefore,

‖pŜ|S − diag(1, · · · , 1)‖F

=

√∑
s∈S

(pŜ|S(s|s)− 1)2 +
∑

s,ŝ∈S:s 6=ŝ

(pŜ|S(ŝ|s))2

≤

√√√√(∑
s∈S

(pŜ|S(s|s)− 1)

)2

+

( ∑
s,ŝ∈S:s 6=ŝ

pŜ|S(ŝ|s)

)2

=

√√√√2

( ∑
s,ŝ∈S:s 6=ŝ

pŜ|S(ŝ|s)

)2

≤ H(S|S̃)√
2ρ log 2

. (A.9)

Substituting (A.8) and (A.9) into (A.7) yields

‖p−1

Ŝ|S − diag(1, · · · , 1)‖∞ ≤
√
|S|H(S|S̃)√

2ρ log 2

(
1− 3H(S|S̃)

4ρ log 2

)−1

. (A.10)

To ensure that all entries of p−1

Ŝ|SpX̂|S are non-negative (or equivalently (diag(1, · · · , 1)−

p−1

Ŝ|S)pX̂|S is component-wise dominated by pX̂|S), it suffices to have

‖p−1

Ŝ|S − diag(1, · · · , 1)‖∞ ≤ τ. (A.11)

Combining (A.10) and (A.11) shows that p−1

Ŝ|SpX̂|S is a valid probability transition

matrix1 if (A.2) is satisfied2. �

1The requirement that the entries in each row of p−1
Ŝ|S

pX̂|S add up to 1 is automatically satisfied.
2Note that (A.2) implies H(S|S̃) < 4ρ log 2

3 , which further implies the existence of p−1
Ŝ|S

.
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Since |X | = 2, it follows from (Shulman and Feder, 2004, Th. 2) that there exists

pX̂|S ∈ P satisfying

pX̂|S(x|s) > e−1, x ∈ X , s ∈ S.

For such pX̂|S, we have

τ ≥ 1

e− 1
.

Invoking Lemma A.1 shows that pX̂|S is a stochastically degraded version of pS̃|S (and

consequently C ′(pY |X,S, pS, pS̃|S) = C(pY |X,S, pS)) if (A.1) is satisfied.

A.2 Proof of (2.66) and (2.67)

Table A.2: Specification of ψ(·, ·) for U = {0, 1, · · · , 3} and S̃ = {0, 1, ∗}

ψ(u, s̃) s̃ = 0 s̃ = 1
u = 0 0 0
u = 1 1 1
u = 2 0 1
u = 3 1 0

Lemma A.2 For θ ∈ (0, 1),

η(θ) , (1− θ) log(1 + θ) + θ log θ < 0.
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Proof: We have

d2η(θ)

dθ2
=

d

dθ

(
− log(1 + θ) +

1− θ
1 + θ

+ log θ + 1

)

= − 1

1 + θ
− 2

(1 + θ)2
+

1

θ

=
1− θ

θ(1 + θ)2

> 0, θ ∈ (0, 1),

which, together with the fact η(0) = η(1) = 0, implies the desired result. �

When θ = 0 or θ = 1, we have C(pY |X,S, pS) = C(pY |X,S, pS), which implies

ε(pY |X,S, pS) = q(pY |X,S, pS) = 0. When θ ∈ (0, 1), the maximizer of the optimization

problem in (2.4), denoted by pX̂ , is unique and is given by

pX̂(0) = pX̂(1) =
1

2
.

Now consider ψ(·, ·) specified by Table A.1. It can be verified that

DGE(pÛ , ε, u) =
1

2

(
(1− θ) log 2 + log

2

1 + θ
+ θ log

2θ

1 + θ

)
, u = 0, 1,

DGE(pÛ , ε, u) =
1

2

(
ε(1− θ) log 2ε+ (θ + ε(1− θ)) log

2(θ + ε(1− θ))
1 + θ

+ (1− ε(1− θ)) log
2(1− ε(1− θ))

1 + θ

+ (1− ε)(1− θ) log 2(1− ε)

)
, u = 2, 3,
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DGE(pÛ , ε, u) =
1

2

(
(1− θ) log 2 + (θ + ε(1− θ)) log

2(θ + ε(1− θ))
1 + θ

+ θ log
2θ

1 + θ
+ (1− ε)(1− θ) log 2(1− ε)

)
, u = 4, 5,

DGE(pÛ , ε, u) =
1

2

(
ε(1− θ) log 2ε+ log

2

1 + θ

+ (1− ε(1− θ)) log
2(1− ε(1− θ))

1 + θ

)
, u = 6, 7.

Moreover,

DGE(pÛ , 0, u) =
1

2

(
(1− θ) log 2 + log

2

1 + θ
+ θ log

2θ

1 + θ

)

= C(pY |X,S, pS), u = 0, 1, 2, 3,

DGE(pÛ , 0, u) = (1− θ) log 2 + θ log
2θ

1 + θ

< C(pY |X,S, pS), u = 4, 5, (A.12)

DGE(pÛ , 0, u) = log
2

1 + θ

> C(pY |X,S, pS), u = 6, 7, (A.13)

where (A.12) and (A.13) follow from Lemma A.2. Therefore, we have

ε(u) = 0, u = 0, 1, 2, 3, 4, 5,

ε(u) = ε̂(θ), u = 6, 7,
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which, together with (2.64), proves (2.66) for θ ∈ (0, 1). Next consider ψ(·, ·) specified

by Table A.2. It can be verified that

DGS(pÛ , q, u) =
1

2

(
(1− θ) log 2 + log

2

1 + θ
+ θ log

2θ

1 + θ

)
, u = 0, 1,

DGS(pÛ , q, 2) = (1− q)(1− θ) log 2(1− q) + (θ + q(1− θ)) log
2(θ + q(1− θ))

1 + θ
,

DGS(pÛ , q, 3) = q(1− θ) log 2q + (1− q(1− θ)) log
2(1− q(1− θ))

1 + θ
.

Moreover,

DGS(pÛ , 0, u) =
1

2

(
(1− θ) log 2 + log

2

1 + θ
+ θ log

2θ

1 + θ

)

= C(pY |X,S, pS), u = 0, 1,

DGS(pÛ , 0, 2) = (1− θ) log 2 + θ log
2θ

1 + θ

< C(pY |X,S, pS), (A.14)

DGS(pÛ , 0, 3) = log
2

1 + θ

> C(pY |X,S, pS), (A.15)

where (A.14) and (A.15) follow from Lemma A.2. Therefore, we have

q(u) = 0, u = 0, 1, 2,

q(3) = q̂(θ),

which, together with (2.65), proves (2.67) for θ ∈ (0, 1).
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A.3 Proof of (2.73) and (2.74)

When θ = 0 or θ = 1, we have C(pY |X,S, pS) = C(pY |X,S, pS), which implies ε(pY |X,S, pS) =

1 and q(pY |X,S, pS) = 1
2
. When θ ∈ (0, 1), the maximizer of the optimization problem

in (2.5), denoted by pX̂|S, is unique and is given by

pX̂|S(x|s)

=



(
1 + (1− θ)θ

θ
1−θ

)−1

θ
θ

1−θ , x = s,(
1 + (1− θ)θ

θ
1−θ

)−1(
1− θ

1
1−θ

)
, otherwise.

In view of (2.71) and (2.72), it suffices to show that

θ
θ

1−θ < 1− θ
1

1−θ , θ ∈ (0, 1).

Indeed, for θ ∈ (0, 1),

θ
θ

1−θ < 1− θ
1

1−θ

⇔ 1 < θ−
θ

1−θ − θ

⇔ (1− θ) log(1 + θ) + θ log θ < 0,

and the last inequality is true according to Lemma A.2.
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Appendix B

Proofs for Chapter 3

B.1 Continuity of Mutual Information

Proposition B.1 (Zhang, 2007, Th. 2) For pX , p
′
X ∈ PX and pY |X , p

′
Y |X ∈ PY |X ,

∣∣∣Ĩ(pX , pY |X)− Ĩ(p′X , p
′
Y |X)

∣∣∣ ≤ 3δ log(|X ||Y| − 1) + 3HB(δ).

where δ = d(diag(pX)pY |X , diag(p′X)p′Y |X) and HB(·) is the binary entropy.

Proposition B.2 (Yassaee et al., 2014, cf. Lemma 3) For pX , p
′
X ∈ PX and pY |X ∈

PY |X ,

d(diag(pX)pY |X , diag(p′X)pY |X) = d(pX , p
′
X)

and

d(pXpY |X , p
′
XpY |X) ≤ d(pX , p

′
X).
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Proposition B.3 For pX ∈ PX and pY |X , p
′
Y |X ∈ PY |X ,

d(diag(pX)pY |X , diag(pX)p′Y |X) ≤ d(pY |X , p
′
Y |X).

Proof:

d(diag(pX)pY |X , diag(pX)p′Y |X) =
1

2

∑
x∈X ,y∈Y

|pX(x)pY |X(y|x)− pX(x)p′Y |X(y|x)|

=
1

2

∑
x∈X

pX(x)
∑
y∈Y

|pY |X(y|x)− p′Y |X(y|x)|

=
∑
x∈X

pX(x) d(pY |X(·|x), p′Y |X(·|x))

≤ d(pY |X , p
′
Y |X)

�

Proposition B.4 (Yassaee et al., 2014, cf. Lemma 3) For pX , p
′
X ∈ PX and pY |X , p

′
Y |X ∈

PY |X ,

d(diag(pX)pY |X , diag(p′X)p′Y |X) ≤ d(pX , p
′
X) + d(pY |X , p

′
Y |X)

≤ 2 d
(
(pX , pY |X), (p′X , p

′
Y |X)

)
,

so that Ĩ(pX , pY |X) is uniformly continuous on (PX × PY |X).

Proof: This proposition is a direct result from the triangle inequality and Propo-

sitions B.1–B.3. �
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Proposition B.5 Let g(·) be a map from PŜ to PY |X . If g(·) is uniformly continuous,

then Ĩ(pX , g(PŜ)) is uniformly continuous on (PX×PŜ), where pX ∈ PX and pŜ ∈ PŜ.

Proof: This proposition is a direct result from B.4. �

Proposition B.6 If Ĩ(pX , pY |X) is uniformly continuous on (PX×PY |X), then C(pY |X) =

maxpX Ĩ(pX , pY |X) is uniformly continuous.

Proof: Since Ĩ(pX , pY |X) is uniformly continuous, for any ε > 0, there is a δ > 0

such that for any pY |X , p
′
Y |X ∈ PY |X and any pX ∈ PX ,

d
(
(pX , pY |X), (pX , p

′
Y |X)

)
< δ ⇒

∣∣∣Ĩ(pX , pY |X)− Ĩ(pX , p
′
Y |X)

∣∣∣ < ε

In other words, for any pX ∈ PX ,

d
(
pY |X , p

′
Y |X)

)
< δ ⇒

∣∣∣Ĩ(pX , pY |X)− Ĩ(pX , p
′
Y |X)

∣∣∣ < ε

Then

∣∣∣∣max
pX

Ĩ(pX , pY |X)−max
pX

Ĩ(pX , p
′
Y |X)

∣∣∣∣ ≤ max
pX

∣∣∣Ĩ(pX , pY |X)− Ĩ(pX , p
′
Y |X)

∣∣∣ < ε,

so that C(pY |X) is uniformly continuous. �
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B.2 Capacity-Achieving Input Probability Distri-

butions

For a channel pY |X , according to (Gallager, 1968, Th. 4.5.1), an input probability

distribution p∗X maximizes the mutual information I(X;Y ) iff

D
(
pY |X(·|x)||pY

) = C for x ∈ supp(p∗X)

≤ C for x /∈ supp(p∗X)

where pY = p∗XpY |X . Based on this sufficient and necessary condition, we have the

following results concerning the support of capacity-achieving input probability dis-

tributions. In the sequel, we denote by conv(pY |X) the convex hull of all row vectors

in pY |X .

Proposition B.7 Let A ⊆ X . If all row vectors of pY |X are contained in the convex

hull, conv(
{
pY |X(·|x)

}
x∈A), then there exists a capacity-achieving probability distri-

bution p∗X such that supp(p∗X) ⊆ A.

Proof: Let pA be a capacity-achieving probability distribution of the sub matrix

pY |A. Padding pA with zeros for x ∈ X \ A, we obtain a probability distribution p∗X

over X . It is clear that

D
(
pY |X(·|x)||p∗Y

) = C for x ∈ supp(p∗X)

≤ C for x /∈ A \ supp(p∗X)

where p∗Y = p∗XpY |X . It remains to show that

D
(
pY |X(·|x)||pY

)
≤ C for x /∈ A.
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Note that all row vectors of pY |X are contained in the convex hull, conv(
{
pY |X(·|x)

}
x∈A).

Thus, there exists some distribution pA over A, such that

pY |X(·|x) =
∑
a∈A

qA(a)pY |A(·|a) for each x ∈ A.

Since divergence is a convex function on the domain of probability distribution, we

have

D
(
pY |X(·|x)||pY

)
= D

(∑
a∈A

qA(a)pY |A(·|a)
∥∥∥pY)

≤
∑
a∈A

qA(a)D
(
pY |A(·|a)‖pY

)
≤ C

�

Proposition B.8 Let p∗X be a capacity-achieving probability distribution of pY |X and

let A = supp(p∗X). For any xa ∈ A, pY |X(·|xa) /∈ conv
({
pY |X(·|x)

}
x∈X \

{
pY |X(·|xa)

})
.

Proof: It is clear that D
(
pY |X(·|x)‖p∗Y

)
= C for all x ∈ A, where p∗Y = p∗XpY |X .

We first show that pY |X(·|xa) /∈ conv
({
pY |X(·|x)

}
x∈A \

{
pY |X(·|xa)

})
. If it is false,

then

pY |X(·|xa) =
∑
x∈A′

p′X(x)pY |X(·|x)
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where A′ =
{
x ∈ A : pY |X(·|x) 6= pY |X(·|xa)

}
and p′X is some strictly postive distri-

bution over A′. It is clear that p′X(x) < 1 for all x ∈ A′, so that

D
(
pY |X(·|xa)‖p∗Y

)
=D

(∑
x∈A′

p′X(x)pY |X(·|x)||p∗Y

)

<
∑
x∈A′

p′X(x)D
(
pY |X(·|x)‖p∗Y

)
=C,

a contradiction.

Now suppose that

pY |X(·|xa) /∈ conv
({
pY |X(·|x)

}
x∈A \

{
pY |X(·|xa)

})

Then

pY |X(·|xa) =
∑
x∈A′′

p′′X(x)pY |X(·|x)

=
∑
x∈A′

p′′X(x)pY |X(·|x) +
∑

x∈A′′\A′
p′′X(x)pY |X(·|x)

where A′′ =
{
x ∈ X : pY |X(·|x) 6= pY |X(·|xa)

}
and p′′X is some strictly postive distri-

bution over A′′. It is clear that 0 <
∑

x∈A′′\A′
p′′X(x) < 1, and therefore

C =D
(
pY |X(·|xa)‖p∗Y

)
=D

∑
x∈A′

p′′X(x)pY |X(·|x) +
∑

x∈A′′\A′
p′′X(x)pY |X(·|x)‖p∗Y


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<

1−
∑

x∈A′′\A′
p′′X(x)

C +
∑

x∈A′′\A′
p′′X(x)D

(
pY |X(·|x)‖p∗Y

)

≤

1−
∑

x∈A′′\A′
p′′X(x)

C + max
x∈A′′\A′

D
(
pY |X(·|x)‖p∗Y

) ∑
x∈A′′\A′

p′′X(x),

Thus, it leads to an absurd result that

max
x∈A′′\A′

D
(
pY |X(·|x)‖p∗Y

)
> C.

It completes our proof. �

B.3 Proofs of Results in Proposition 3.14

By Proposition 3.9, Γ(2, pY |X) = 1, so that pY |X can be expressed as a convex com-

bination of perfect channels and hence ICED(pY |X) = 1.

Let

P ′
Ŝ

=
{
pŜ ∈ dec(pY |X) : Γ(2, pŜ) = 1

}
.

If ICD(pY |X) = 1, then there exists a pŜ ∈ P ′Ŝ such that the capacity-achieving

input distribution, denoted p∗X , is capacity-achieving for every perfect channel in{
p̂Y |X,Ŝ(·|·, ŝ) ∈ P̂ : ŝ ∈ supp(pŜ)

}
. Thus at least one entry of p∗X must be 1/2. With-

out loss of generality, we assume p∗X(x0) = 1/2.

If p∗X(x1) and p∗X(x2) are both positive, then p∗X is capacity-achieving only for
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perfect channels 
1 0

0 1

0 1

 and


0 1

1 0

1 0

 .

By Proposition 3.7, every pŜ ∈ dec(pY |X) must satisfy that | supp(pŜ)| ≥ dlog2 6e = 3,

which implies that a positive distribution p∗X is not capacity-achieving for pŜ ∈ P ′Ŝ.

If p∗X(x1) = 0, then p∗X is capacity-achieving for perfect channels


1 0

0 1

0 1

 ,


0 1

1 0

1 0

 ,


1 0

1 0

0 1

 ,


0 1

0 1

1 0

 .

However, any convex combination of these four matrices can only yield a channel

matrix with at most four distinct probability values, and hence p∗X is not capacity-

achieving for pŜ ∈ P ′Ŝ.

In all cases, we have shown that p∗X is not capacity-achieving, which contradicts

to the assumption ICD(pY |X) = 1. Therefore, we have ICD(pY |X) < 1 = ICED(pY |X).
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