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Abstract

Growth mixture models (GMMs) are used to model intra-individual change and inter-

individual differences in change and to detect underlying group structure in longitu-

dinal studies. Regularly, these models are fitted under the assumption of normality,

an assumption that is frequently invalid. To this end, this thesis focuses on the de-

velopment of novel non-elliptical growth mixture models to better fit real data. Two

non-elliptical growth mixture models, via the multivariate skew-t distribution and

the generalized hyperbolic distribution, are developed and applied to simulated and

real data. Furthermore, these two non-elliptical growth mixture models are extended

to accommodate missing values, which are near-ubiquitous in real data.

Recently, finite mixtures of non-elliptical distributions have flourished and facili-

tated the flexible clustering of the data featuring longer tails and asymmetry. How-

ever, in practice, real data often have missing values, and so work in this direction

is also pursued. A novel approach, via mixtures of the generalized hyperbolic distri-

bution and mixtures of the multivariate skew-t distributions, is presented to handle

missing values in mixture model-based clustering context. To increase parsimony,

families of mixture models have been developed by imposing constraints on the com-

ponent scale matrices whenever missing data occur. Next, a mixture of generalized

hyperbolic factor analyzers model is also proposed to cluster high-dimensional data
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with different patterns of missing values. Two missingness indicator matrices are

also introduced to ease the computational burden. The algorithms used for param-

eter estimation are presented, and the performance of the methods is illustrated on

simulated and real data.
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Chapter 1

Introduction

1.1 Finite Mixture Models

Finite mixture models (FMMs) assume that an overall population is made up of a col-

lection of disjoint subpopulations, within which each subpopulation may be modelled

by a statistical distribution. Formally, a random vector X taken from a G component

FMM, for all x ⊂ X, has density

f(x | ϑ) =
G∑
g=1

πg fg(x | θg), (1.1)

where πg > 0, such that
∑G

g=1 πg = 1, are the mixing proportions, fg(x | θg) is the gth

component density with component-specific parameters θg, and ϑ = (π,θ1, . . . ,θG)

denotes the model parameters with π = (π1, . . . , πG). Naturally, the number of mix-

ture components G can be used to model the heterogeneous data, leading to FMMs

as extremely powerful and flexible tools for discovering heterogeneity in multivari-

ate datasets. Extensive details on FMMs and their applications can be found in

1
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Everitt and Hand (1981), Titterington et al. (1985), McLachlan and Basford (1988),

McLachlan and Peel (2000), and Frühwirth-Schnatter (2006).

This thesis focuses on the application of the FMMs in two areas: growth mixture

models (GMMs) (Chapters 3 and 4) and model-based clustering (Chapters 5 and 6).

Their common aim is to partition the data into meaningful groups of homogeneous

observations, where the similarity within groups and the dissimilarity between groups

are maximized, i.e., clustering. Note that though both topics evolved from FMMs

and had a common goal, they are applicable to different types of data and their

statistical models are different. Specifically, GMMs are widely used for the analysis

of longitudinal data, where observations are collected over time.

GMMs incorporate both conventional random effects growth modeling (Laird and

Ware, 1982) and latent trajectory classes as in finite mixture modeling (1.1); therefore,

they offer a way to handle the unobserved heterogeneity between subjects in their

development. One common fundamental assumption for GMMs is that model errors

are normally distributed (e.g., Verbeke and Lesaffre, 1996; Muthén and Shedden, 1999;

Nagin, 1999; Muthén and Muthén, 2000; Muthén, 2001a,b; Muthén and Asparouhov,

2008). When the data are asymmetric and/or have heavier tails, more than one latent

class is required to capture the observed variable distribution. This thesis focuses on

the development of a GMM with continuous non-elliptical distributions that allow for

parameterization of skewness and heavier tails, in addition to location and scale as

in Gaussian GMM.

Assuming no prior knowledge of class labels, the application of FMMs (1.1) to

perform clustering in this way is known as model-based clustering. As McNicholas

(2016a) points out, the association between mixture models and clustering goes back

2
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at least as far as Tiedeman (1955), who uses the former as a means of defining the

latter. Gaussian mixture models are historically the most popular tool for model-

based clustering and dominated the literature for quite some time (e.g., Celeux and

Govaert, 1995; Fraley and Raftery, 1998; McLachlan et al., 2003; Bouveyron et al.,

2007; McNicholas and Murphy, 2008, 2010). Recently, finite mixtures of non-elliptical

distributions have flourished and facilitated the flexible clustering of the data featuring

longer tails and asymmetry (e.g., Lin, 2010; Vrbik and McNicholas, 2012; Lee and

McLachlan, 2014; Murray et al., 2014; Franczak et al., 2014; Dang et al., 2015; Karlis

and Santourian, 2009; O’Hagan et al., 2016; Tortora et al., 2016). A comprehensive

review of model-based clustering work, up to and including some recent work on non-

Gaussian mixtures, is given by McNicholas (2016b). However, unobserved or missing

observations are frequently a hindrance in multivariate datasets and so developing

mixture models that can accommodate incomplete data is an important issue in

model-based clustering. Therefore, work in this direction is also pursued in this

thesis.

1.2 Thesis Structure

1.2.1 Chapter 2

Background information is given including details on growth mixture models, missing

data mechanism, the EM algorithm and variants thereof, and some well-known non-

elliptical distributions. Methods for model-selection and performance assessment are

also discussed.

3
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1.2.2 Chapter 3

A GMM with continuous non-elliptical distribution is introduced to capture skewness

and heavier tails in the dataset, via the multivariate skew-t distribution and the

generalized hyperbolic distribution. When extending GMMs, four statistical models

are considered with different distributions of measurement errors and random effects.

Algorithms for model parameter estimation are presented. The performance of our

proposed GMMs with non-elliptical distributions is illustrated on simulated and real

data.

1.2.3 Chapter 4

The growth mixture models with non-elliptical random effects are generalized to ac-

commodate missing values under missing at random mechanism. Two indicator vari-

ables are introduced to facilitate the computation procedure for model parameter

estimation. The methods are compared to the competing algorithms though simula-

tion studies and real data analysis.

1.2.4 Chapter 5

Flexible methods and algorithms for model-based clustering with incomplete data

are presented via mixture of the generalized hyperbolic and skew-t distributions. The

statistical properties of the generalized hyperbolic and skew-t distributions are pre-

sented. An analytically tractable and computational feasible algorithm is formulated

for parameter estimation and imputation of missing values for mixture models em-

ploying missing at random mechanisms.

4
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1.2.5 Chapter 6

A generalization of the mixture of generalized hyperbolic factor analyzers (MGHFA)

is presented for handling high-dimensional data in the presence of missing values.

Under a missing at random mechanism, we develop a computationally efficient EM

algorithm for parameter estimation of the MGHFA model with different patterns

of missing values. As a by-product, the proposed procedure provides a conditional

predictor to impute the missing values and a classifier to cluster partially observed

vectors. The performance of our proposed methodology is illustrated through the

analysis of simulated and real data.

1.2.6 Chapter 7

A summary of the work demonstrated in this thesis is presented and possible research

prospects for future direction are also discussed.

1.3 The Contribution of this Work

The impact of the work proposed in this thesis on the body of current growth mixture

models and model-based clustering literature is summarized here. Firstly, growth mix-

ture models with non-elliptical distributions are introduced. This model extends the

current literature on Gaussian growth mixture models, via the generalized hyperbolic

distribution and the multivariate skew-t distribution, to allow for parameterization

of skewness and heavy tails in a dataset. The parameter estimation procedure for the

proposed models is shown to be both mathematically elegant and computationally

appealing. These models show greater flexibility and ability to recover the true data

5
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structure when compared to the Gaussian growth mixture models, due to the fact

that the generalized hyperbolic distribution is a flexible distribution including many

well-known distributions as its limiting and special cases.

Next, following the positive results using growth mixture models with non-elliptical

distributions, we generalized our proposed models to accommodate missing values

which are very common for longitudinal data. Our proposed models are demonstrated

using simulated and real data and perform favourably compared to their counterpart

Gaussian growth mixture models.

The second part of the thesis deals with model-based clustering in the presence

of unobserved or missing values. Mixtures of the generalized hyperbolic distribu-

tions and mixtures of multivariate skew-t distributions for model-based clustering are

presented to tackle missing values under missing at random mechanism. In addi-

tion to considering missing data, we develop families of MGHD and MST mixture

models, each with 14 parsimonious eigen-decomposed scale matrices corresponding

to the famous Gaussian parsimonious clustering models (GPCMs) of Banfield and

Raftery (1993) and Celeux and Govaert (1995). Furthermore, we developed a unified

approach to mixtures of generalized hyperbolic factor analyzers model for handling

high-dimensional data in the presence of missing values as well as heavy-tailed and/or

asymmetric clusters. Both of these models are demonstrated using simulated and real

data and perform favourably compared to the mean imputation method.

6



Chapter 2

Background

2.1 Growth Mixture Models

Over the past two decades, growth mixture models (GMMs) have been widely used

for the analysis of longitudinal data. Suppose a longitudinal study features n subjects

and T time points or measurement occasions. For subject i (i = 1, . . . , n), let yi be a

T×1 vector yi = (yi1, yi2, . . . , yiT )′ where yit represents the outcome on occasion t (t =

1, . . . , T ), let xi = (xi1, xi2, . . . , xim)
′

be an m × 1 vector of observed time-invariant

covariates, let ηi be a q × 1 vector containing q continuous latent variables, and let

Ci be a K × 1 vector consisting of K class variables. Note that Ci = (Ci1, . . . , CiK)′

has a multinomial distribution, where Cik = 1 if individual i is in class k and Cik = 0

otherwise. The conventional GMM with Gaussian random effects can be represented

using a hierarchical three-level formulation as follows.

At level 1 of the GMM, the continuous outcome variables Y1, . . . ,Yn are related

7
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to the continuous latent variables η1, . . . ,ηn via

Yi = Λyηi + εi, (2.1)

for i = 1, . . . , n, εi is a T × 1 vector of residuals or measurement errors that is

assumed to follow a multivariate Gaussian distribution εi ∼ N (0,Θk), and Λy is a

T × q design matrix consisting of factor loadings with each column corresponding to

specific aspects of change. The matrix Λy and the vector ηi determine the growth

trajectory of the model. For instance, when q = 3, ηi = (η0i, η1i, η2i), and Λy is a

T × 3 matrix. Assuming at are age-related time scores (t = 1, 2, . . . , T ) centred at

age a0, then Λy is given by

Λy =



1 a1 − a0 (a1 − a0)2

1 a2 − a0 (a2 − a0)2
...

...
...

1 aT−1 − a0 (aT−1 − a0)2


.

At level 2 of the GMM, the continuous latent variables η are related to the latent

categorical variables c and to the observed time-invariant covariate vector x by the

relation

ηi = αk + Γkxi + ζi, (2.2)

where αk (k = 1, . . . , K) denotes the intercept parameter for class k, ζi is a q-

dimensional vector of residuals assumed to follow a multivariate Gaussian distribution

ζi ∼ N (0,Ψk), and Γk is a q ×m parameter matrix representing the effect of x on

the latent continuous variables η and assumed to be different among classes. Note

8
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that the level 2 errors ζi are uncorrelated with the measurement errors εi. We may

allow for class-specific effects Γk in (2.2) that are equal across classes.

By combining the first two levels of the GMM, we have

p(yi | xi) =
K∑
k=1

πkφ(yi;µk,Σk), (2.3)

where πk = Pr(Cik = 1) is the class probability or mixing proportions satisfying

0 < πk ≤ 1 and
∑K

k=1 πk = 1, and φ(·;µk,Σk) is a multivariate Gaussian density

with mean µk = Λy(αk + Γkxi) and covariance matrix Σk = ΛyΨkΛ
′

y + Θk. Notice

that the GMM in (2.3) assumes that class probability πk is constant for each class.

At level 3 of the GMM, we assume that the class probabilities are no longer

constant, but depend on the observed covariates. In other words, we want to know

how πk is related to an individual’s background variables, such as gender and income.

At this level, the categorical latent variables Ci represent membership of mixture

components that are related to x through a multinomial logit regression for unordered

categorical responses. Define πik = Pr(Cik = 1 | xi), i.e., the probability that subject

i falls into the kth class depending on the covariates xi. Let πi = (πi1, πi2, . . . , πiK)′

and

logit(πi) =

(
log

(
πi1
πiK

)
, log

(
πi2
πiK

)
, . . . , log

(
πiK−1
πiK

))′
.

Then,

logit(πi) = αc + Γcxi, (2.4)

where αc is a (K−1)×1 parameter vector and Γc is a (K−1)× q parameter matrix.

9
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By combining these three levels of the GMM, we have

p(yi | xi) =
K∑
k=1

πikφ(yi;µk,Σk). (2.5)

Note that the model is not a finite mixture model anymore because the class proba-

bility is not constant with respect to i (cf. McLachlan and Peel, 2000).

2.2 Missing Data Mechanism

Unobserved or missing observations are frequently a hindrance in multivariate datasets

and so developing mixture models that can accommodate incomplete data is an im-

portant issue in finite mixture modelling. The maximum likelihood and Bayesian ap-

proaches are two common imputation paradigms for analyzing data with incomplete

observations. Little and Rubin (2002) posited three different missing data mechanisms

that remain in use today: (a) missing completely at random (MCAR), (b) missing

at random (MAR), and (c) missing not at random (MNAR). In the missing data

literature, data are often partitioned into two parts: the observed data (Xo) and the

missing data (Xm). In this context, the missing data mechanism can be elegantly

described through relationships among Xo, Xm, and the ‘cause’ of data missingness.

MACR is a process in which the cause of missingness is independent of both Xo and

Xm. For MAR, the cause of missingness is not related to Xm, but may depend on

Xo. Note that MACR is a special case of MAR. If data missingness are related to

Xm or some unobserved latent variables, then the missing data mechanism is NMAR.

Throughout this thesis, the missing data mechanism is assumed to be missing at ran-

dom (MAR), under which the missing data mechanisms are ignorable for methods
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using the maximum likelihood approach.

2.3 Non-Elliptical Distributions

There are a variety of non-elliptical distributions in the literature (Lee and McLach-

lan, 2014). However, the focus of this thesis will be on two non-elliptical distributions

that arise as part of a larger family with nice properties called the normal variance-

mean mixture distributions (NVMMs; Barndorff-Nielsen et al., 1982; Gneiting, 1997),

namely the generalized hyperbolic distribution (GHD) and multivariate skew-t dis-

tribution (GST). Formally, the p-dimensional random variable X is said to have a

multivariate NVMM if its density can be written in the form

X = µ+Wα+
√
WU, U⊥W (2.6)

where µ and α are parameter vectors in Rp, W ≥ 0 is a univariate random variable,

U ∼ N (0,Σ) is a multivariate Gaussian distribution with mean zero and covariance

matrix Σ, and the symbol ⊥ indicates independence. Note that different distribu-

tional forms of W will lead to many well-known distributions, such as multivariate

skew-t distributions, multivariate t-distributions, and multivariate Gaussian distribu-

tions. Further examples of normal variance-mean mixtures are given by McNeil et al.

(2005) and McNicholas (2016a), among others.
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2.3.1 Generalized Inverse Gaussian Distribution

The random variable W ∈ R+ is said to have a generalized inverse Gaussian (GIG)

distribution, introduced by (Good, 1953), with parameters λ, χ, and ψ if its proba-

bility density function is given by

fGIG(w | λ, χ, ψ) =
(ψ/χ)λ/2wλ−1

2Kλ(
√
ψχ)

exp

{
−ψw + χ/w

2

}
, (2.7)

where ψ, χ ∈ R+, λ ∈ R, and Kλ is the modified Bessel function of the third kind

with index λ. Herein, we write W ∼ GIG(λ, χ, ψ) to indicate that a random variable

W has the GIG density as parameterized in (2.7). The GIG distribution has some

attractive properties (Barndorff-Nielsen and Halgreen, 1977a; Blæsild, 1978; Halgreen,

1979; Jørgensen, 1982), including the tractability of the expectations:

E[W ] =

√
χ

ψ

Kλ+1(
√
ψχ)

Kλ(
√
ψχ)

,

E[1/W ] =

√
ψ

χ

Kλ−1(
√
ψχ)

Kλ(
√
ψχ)

=

√
ψ

χ

Kλ+1(
√
ψχ)

Kλ(
√
ψχ)

− 2λ

χ
, (2.8)

E[logW ] = log

(√
χ

ψ

)
+

∂

∂λ
log(Kλ(

√
ψχ)).

These tractable expected values lead to the development of a computationally efficient

E-step of the EM algorithm and its extensions throughout this thesis.

Browne and McNicholas (2015) introduce another parameterization of the GIG

distribution by setting ω =
√
ψχ and η =

√
χ/ψ. Write W ∼ I(λ, η, ω); its density

is given by

fI(w | λ, η, ω) =
(w/η)λ−1

2ηKλ(ω)
exp

{
−ω

2

(
w

η
+
η

w

)}
(2.9)
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for w > 0, where η ∈ R+ is a scale parameter and ω ∈ R+ is a concentration param-

eter. These two parameterizations of the GIG distribution are important ingredients

for building the generalized hyperbolic distribution presented later.

2.3.2 Generalized Hyperbolic Distribution

Several alternative parameterizations of the GHD have appeared in the literature,

e.g., Barndorff-Nielsen and Blæsild (1981), McNeil et al. (2005), and Browne and

McNicholas (2015). Barndorff-Nielsen and Halgreen (1977b) introduces the GHD to

model the distribution of the sand grain sizes and subsequent reports described its

statistical properties (e.g., Barndorff-Nielsen, 1978; Barndorff-Nielsen and Blæsild,

1981). However, under this standard parameterization, the parameters of the mixing

distribution are not invariant under affine transformations. An important innovation

was made by McNeil et al. (2005), who gave a new parameterization of the GHD.

Under this new parameterization, the linear transformation of GHD remains in the

same sub-family characterized by the parameters of the mixing distribution. However,

there is an identifiability issue arising under this parameterization. To solve this

problem, Browne and McNicholas (2015) give an alternative parameterization.

Following McNeil et al. (2005), a p × 1 random vector X is said to follow a

GHD with index parameter λ, concentration parameters χ and ψ, location vector µ,

dispersion matrix Σ, and skewness vector α, denoted by X ∼ GHp(λ, χ, ψ,µ,Σ,α),

if it can be represented by (2.6), where W ∼ GIG(λ, χ, ψ), U ∼ N (0,Σ). It follows

that X | w ∼ N (µ+wα, wΣ). So, the density of the generalized hyperbolic random

13
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vector X is given by

f(x | ϑ) =

[
χ+ δ(x,µ | Σ)

ψ +αᵀΣ
−1
α

]λ−p/2
2

×
(ψ/χ)λ/2Kλ−p/2

(√
(χ+ δ(x,µ | Σ))(ψ +αᵀΣ

−1
α)
)

(2π)p/2|Σ|1/2Kλ(
√
χψ) exp{−(x− µ)ᵀΣ

−1
α}

, (2.10)

where δ(x,µ | Σ) = (x−µ)ᵀΣ
−1

(x−µ) is the squared Mahalanobis distance between

x and µ, Kλ is the modified Bessel function of the third kind with index λ, and

ϑ = (λ, χ, ψ,µ,Σ,α) denotes the model parameters. The mean and covariance

matrix of X are

E(X) = µ+ E(W )α and Var(X) = E(W )Σ + Var(W )ααᵀ, (2.11)

respectively, where E(W ) and Var(W ) are the mean and variance of the random

variable W , respectively.

Note that, in this parameterization, we need to hold |Σ| = 1 to ensure identifi-

ability. Using |Σ| = 1 solves the identifiability problem but would be prohibitively

restrictive for model-based clustering and classification applications. Hence, Browne

and McNicholas (2015) develop a new parameterization of the GHD with index pa-

rameter λ, concentration parameter ω, location vector µ, dispersion matrix Σ, and

skewness vector β = ηα, denoted by X ∼ GHDp(λ, ω,µ,Σ,β). Note that η = 1.

This formulation is given by

X = µ+Wβ +
√
WU, (2.12)
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where W ∼ I(λ, 1, ω) and U ∼ N (0,Σ). Under this parameterization, the density of

the generalized hyperbolic random vector X is

f(x | ϑ) =

[
ω + δ(x,µ | Σ)

ω + βᵀΣ
−1
β

]λ−p/2
2

×
Kλ−p/2

(√
(ω + δ(x,µ | Σ))(ω + βᵀΣ

−1
β)
)

(2π)p/2|Σ|1/2Kλ(ω)exp{−(x− µ)ᵀΣ
−1
β}

, (2.13)

where δ(x,µ | Σ) and Kλ−p/2 are as described earlier. This parameterization of

the GHD, together with the following multivariate skew-t distribution, are used for

model development throughout this thesis. Now, recalling that W ∼ I(ω, 1, λ) and

that the unconditional distribution of X is generalized hyperbolic, Bayes’ theorem

gives W | x ∼ GIG(ω + β
′
Σ−1β, ω + δ(x,µ | Σ), λ − p/2). This elegant result will

be used to extend GMMs to the generalized hyperbolic distribution and handling

incomplete data in Chapters 3 and 4, respectively.

2.3.3 The Multivariate Skew-t Distribution

Several alternative formulations of the multivariate skew-t distribution have appeared

in the literature (e.g., Branco and Dey, 2001; Sahu et al., 2003; Lee and McLachlan,

2014; McNeil et al., 2005). The formulation of the multivariate skew-t distribution

used herein arises as a special and limiting case of the GHD by setting λ = −ν/2 and

χ = ν, and letting ψ → 0. This formulation of the multivariate skew-t distribution

has been used by Murray et al. (2014) to develop a mixture of skew-t factor analyzer

models.
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A p-dimensional skew-t random variable X has the density function

f(x | ϑ) =

[
v + δ(x,µ | Σ)

βᵀΣ
−1
β

]−ν−p
4

×
νν/2K(−ν−p)/2

(√
(ν + δ(x,µ | Σ))(βᵀΣ

−1
β)
)

(2π)p/2|Σ|1/2Γ(ν/2)2ν/2−1exp{−(x− µ)ᵀΣ
−1
β}

. (2.14)

where µ is the location parameter, Σ is the scale parameter, β is the skew pa-

rameter, ν is the degree of freedom parameter, and K(−ν−p)/2 and δ(x,µ | Σ) are

as defined in (2.10). We write X ∼ GST(µ,Σ,β, ν) to denote that the random

variable X follows the skew-t distribution such that it has the density in (2.14).

Now, X ∼ GST(µ,Σ,β, ν) can be obtained through the relationship in (2.12) with

W ∼ IG(ν/2, ν/2), where IG(·) denotes the inverse-gamma distribution. We have

X | w ∼ N (µ+ wβ, wΣ), and so, from Bayes’s theorem, W | x ∼ GIG(β
′
Σ−1β, ν +

δ(x,µ | Σ),−(ν + p)/2).

2.4 The EM algorithm and Extensions

2.4.1 The EM algorithm

As is typical within the field of finite mixture modelling, the expectation-maximization

(EM) algorithm (Dempster et al., 1977) is used to find maximum likelihood (ML)

estimates of the model parameters in the presence of incomplete data. Due to its

construction, it is a natural and effective procedure for handling missing data problem,

which can meet with both the actual and conceptual missing data. The two aspects of

application of the EM algorithm are illustrated throughout this thesis. For instance, in

Chapter 3, data are complete without actual missing values but treated as incomplete
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by adding conceptual ‘missing’ data for latent variables, such as latent growth factors

η and latent trajectory class variable C. In Chapters 4, 5, and 6, data are incomplete

with both actual and conceptual missing data.

The EM algorithm is based on the complete-data, which refers to the combination

of the observed data and the unobserved data (i.e., the actual and conceptual missing

data). The algorithm alternates between two processes: an expectation (E-) step

and a maximization (M-) step. In each E-step, the expected value of the complete-

data log-likelihood, namely the so-called Q function, is computed conditional on

the observed data and the current parameter estimates. The E-step can be further

simplified to calculate the conditional expectations of the actual missing or latent

variables. In the M-step, the expected complete-data log-likelihood Q is maximized

with respect to the model parameters.

2.4.2 The AECM algorithm

The alternating expectation conditional maximization (AECM) algorithm (Meng and

Van Dyk, 1997) is an extension of the EM algorithm, or more precisely, is a mod-

ification of the expectation-conditional maximization (ECM) algorithm (Meng and

Rubin, 1993). Specifically, the ECM algorithm is an extension of the EM algorithm,

where the M-step is simplified by performing a sequence of analytically tractable,

simpler, and faster conditional maximization (CM-) steps, and the AECM algorithm

is an extension of the ECM algorithm where the specification of complete-data is

allowed to be different at each cycle of the algorithm. Similar to the regular M-

step, the CM-step will maximize the conditional expectation of its corresponding

complete-data log-likelihood at each cycle. Please refer to McLachlan and Krishnan
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(2008) for complete details as well as illustrative examples of the EM algorithm and

its extensions.

2.4.3 Stopping Criteria

The EM algorithm and its extensions iteratively update the model parameters until

some pre-specified criteria are satisfied. Two stopping criteria are lack of progress

and the Aitken’s acceleration-based criterion. The lack of progress approach is to

stop the algorithm depending on the difference in successive observed log-likelihood

values, i.e., the EM algorithm is stopped when

l(r+1) − l(r) < ε

for a given small threshold ε. As McNicholas et al. (2010) pointed out that the

drawback of this criterion is that the algorithm would be stopped before reaching the

global maximum in situations where there are jumps in the likelihood.

Alternatively, Aitken’s acceleration-based criterion (Aitken, 1926) is the most pop-

ular criterion. The Aitken acceleration at iteration r is

a(r) =
l(r+1) − l(r)

l(r) − l(r−1)
,

where l(r) is the log-likelihood value evaluated at iteration (r). Following Böhning

et al. (1994) and Lindsay (1995), the asymptotic estimate of the log-likelihood at

iteration r + 1 is

l(r+1)
∞ = l(r) +

1

1− a(r)
(l(r+1) − l(r)).
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For all the algorithms developed in this thesis, we use the method recommended by

McNicholas et al. (2010), which stops the algorithm when

l(r+1)
∞ − l(r) < ε

for some small positive ε. Note that there exist other stopping criteria based on

Aitken’s acceleration (Böhning et al., 1994; Lindsay, 1995).

2.5 Model Selection

One of the main objectives related to the application of finite mixture modelling is

to select a best model from a set of candidate models. Generally speaking, selecting

the best model include several facets: determination of the number of cluster or mix-

ture components, when relevant, choosing number of latent variables and component

covariance structure, among others. There are a variety of options for model selec-

tion criteria. The most popular criterion for this purpose is the Bayesian information

criterion (BIC; Schwarz, 1978). The BIC is defined as

BIC = 2l(x, Θ̂)− ρ log(n), (2.15)

where ϑ̂ is the ML estimate of model parameters ϑ, l(x, Θ̂) is the maximized log-

likelihood value, ρ is the number of free parameters, and n is the number of obser-

vations in the model. Empirical evidence (e.g., McNicholas and Murphy, 2008; Baek

et al., 2010) have shown that the BIC performs well in choosing the number of clusters

and the ideal number of latent variables.
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However, the BIC can be unreliable or does not necessarily give the best model

from a set of candidate models (Biernacki et al., 2000; Baek and McLachlan, 2011;

Bhattacharya and McNicholas, 2014). Hence, alternatives such as the integrated

completed likelihood (ICL; Biernacki et al., 2000) have been considered. The ICL

can be calculated via

ICL ≈ BIC + 2
n∑
i=1

G∑
g=1

MAP(ẑig) logẑig, (2.16)

where ẑig is the estimated posterior probability that xi arises from the gth component,

and MAP denotes the maximum a posterior probability such that MAP(ẑig) = 1 if

maxg(ẑig) occurs in the gth component and MAP(ẑig) = 0 otherwise. The part after

the plus sign, known as the estimated mean entropy, reflects the uncertainty in the

classification of observations into components.

Another option is to consider the approximated weight of evidence (AWE; Banfield

and Raftery, 1993). The AWE is given by

AWE = BIC + 2EN(z)− ρ(3 + logn), (2.17)

where EN(z) =
∑n

i=1

∑G
g=1 ẑig logẑig is the entropy of the classification matrix with

the (i, g)th entry being ẑig. Clearly, the ICL and AWE penalize complex models more

severely than the BIC, and thus tend to select more parsimonious models in practice.

When defined as in (2.15), (2.16), and (2.17), the model with the largest value of those

criteria is selected. Nevertheless, there is no optimal strategy with respect to which

criterion is always the best, and a combined use of these criteria could be helpful in

screening reasonable candidate models.
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2.6 Comparing Partitions

Throughout this thesis, the misclassification rate and the adjusted Rand index (ARI;

Hubert and Arabie, 1985) are mostly used to assess the classification performance of

the proposed methods. For this purpose, we often consider datasets with known true

class membership. However, these true class memberships are entirely hidden from

our algorithms and not used to aid the clustering. Because the true class membership

for the datasets are known a priori, the misclassification (error) rate (ERR) can

simply be calculated as

ERR =
number of observations that were misclassified

total number of observations
(2.18)

The ARI is a method based on pairwise agreement and a corrected form of Rand

index Rand (RI; 1971) for taking into account the fact of some cases will be correctly

classified due to chance. For a better understanding, Table 2.1, which is taken from

McNicholas (2016a), summaries the pairwise agreements and disagreements.

Table 2.1: Cross-tabulation of pairs for two partitions, where row represent pairs of
observations from one partition and columns represent pairs from another partition.

Same group Different group
Same group A B
Different group C D

The RI is the ratio of the number of pairwise agreements to total number of pairs

(i.e., number of pairwise agreements plus number of pairwise disagreements) and can

be expressed as

RI =
A+D

N
, (2.19)
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where N = A + B + C + D is the total number of pairs. Its values range from 0 to

1, with 1 indicating perfect class agreement. However, an issue with the RI is that it

may be difficult to interpret for small values of the RI due to the fact that its expected

value is greater than 0 under random classification. The ARI is an improvement of

the RI and takes the form

ARI =
N(A+D)− [(A+B)(A+ C) + (C +D)(B +D)]

N2 − [(A+B)(A+ C) + (C +D)(B +D)]
(2.20)

(cf. Steinley, 2004). The expected value of ARI under randomization is zero. When

compared to the true classification, the ARI value of 1 corresponds to perfect clas-

sification, while a negative value of ARI indicates that the classifier is worse than

randomly performing a classification.

22



Chapter 3

Extending Growth Mixture Models

Using Continuous Non-Elliptical

Distributions

3.1 Introduction

In this chapter, growth mixture models with continuous non-elliptical distributions

are developed using two different distributions, namely the generalized hyperbolic

distribution and the multivariate skew-t distribution. It is well known that the gener-

alized hyperbolic distribution is perhaps the most flexible alternative to the Gaussian

distribution in the literature (McNeil et al., 2005; McNicholas, 2016a), including many

well-known distributions as its limiting or special cases.

As mentioned in Chapter 2, the majority of work on GMMs are based on the nor-

mality assumption. When the normality assumption is violated, GMMs are tend to

yield non-consistent estimates and overextraction of the number of latent classes (Arminger
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et al., 1999; Bauer and Curran, 2003a,b; Guerra-Peña and Steinley, 2016). Therefore,

we introduce a non-elliptical approach that allows for skewness and heavy tails while

also parameterizing location and scale. This approach is effective and mathematically

elegant.

3.2 Methodology

3.2.1 GMM with the generalized hyperbolic distribution

As discussed in Section 2.1, conventional GMMs assume that the residuals ε and ζ

have multivariate Gaussian distribution with zero means and within-class covariance

matrices, respectively. We are interested in constructing a GMM with generalized

hyperbolic distribution model errors, denoted by GHD-GMM. The generalized hy-

perbolic distribution can be represented as a normal mean-variance mixture, where

the mixing weight has a GIG distribution. To this end, we introduce a latent con-

tinuous variable W with Wik | cik = 1 ∼ I(ωk, 1, λk). Accordingly, conditional on

cik and wik, we assume that model errors εi and ζi are non-centered Gaussian error

terms with distinct covariance matrices:

εi | wik, cik = 1 ∼ N (wiβyk, wikΘk), (3.1)

ζi | wik, cik = 1 ∼ N (wiβηk, wikΨk), (3.2)

where Θk is the diagonal covariance matrix for εi, and Ψk is the covariance matrix

for ζi. The T -dimensional vector βyk is a vector of skewness parameters, which we

refer to as the skewness parameter for the measurement errors. The q-dimensional
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vector βηk is the vector of skew parameters for the continuous latent variables ηi.

Then, based on (2.2) and (3.1), the observed random variables Yi, conditional on ηi,

cik, and wik, follow a conditional Gaussian distribution of the form

Yi | ηi, wik, cik = 1 ∼ N (Λyηi + wiβyk, wikΘk). (3.3)

And, based on (2.2) and (3.2),

ηi | xi, wik, cik = 1 ∼ N (αk + Γkxi + wikβηk, wikΨk). (3.4)

and, from the preceding equations, we have the conditional distribution

Yi | xi, wik, cik = 1 ∼ N (µk + wik(Λyβηk + βyk), wikΣk), (3.5)

where µk = Λy(αk + Γkxi) and Σk = ΛyΨkΛ
′

y + Θk. Recalling the elegant result

explained in Section 2.3, we obtain the conditional distributions

ηi | xi, cik = 1 ∼ GHDq(λk, ωk,αk + Γkxi,Ψk,βηk), (3.6)

Yi | xi, cik = 1 ∼ GHDT (λk, ωk,µk,Σk,Λyβηk + βyk). (3.7)

By combining the preceding setup and level 3 of the GMM from Section 2.1, we

arrive at a GMM with density

p(yi | xi) =
K∑
k=1

πikfGHD,T (yi;λk, ωk,µk,Σk,Λyβηk + βyk), (3.8)

where fGHD,T (·) is the density of a T -dimensional random variable following a GHD
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as given in (2.13). Note that the overall skewness for Yi is Λyβηk + βyk. In the

above setup, the dependent observed variable Yi, the latent growth factors ηi, and

residual variables εi and ζi all have generalized hyperbolic distributions. Note that

the distribution of the covariates xi is not modelled; please refer to Muthén and

Asparouhov (2015) for detailed explanations.

3.2.2 GMM with the multivariate skew-t distribution

In this section, we are interested in extending the conventional GMM to have multi-

variate skew-t distribution model errors, denoted by GST-GMM. As in the case for

the GHD, the multivariate skew-t distribution also has a convenient representation as

a normal mean-variance mixture; this time, the weight has an inverse-gamma distri-

bution. In analogous fashion to the GHD-GMM, a latent continuous random variable

Wik is first introduced, where Wik | cik = 1 ∼ IG(νk/2, νk/2). Accordingly, we assume

that εi and ζi are non-centred Gaussian error terms with their own covariance ma-

trices as in (3.1) and (3.2), and yi and ηi are conditionally normally distributed as

in (3.3) and (3.4). From this characterization of the multivariate skew-t distribution,

the following conditional distributions are obtained:

ηi | xi, cik = 1 ∼ GSTq(αk + Γkxi,Ψk,βηk, νk), (3.9)

Yi | xi, cik = 1 ∼ GSTT (µk,Σk,βyk + Λyβηk, νk), (3.10)

where µk and Σk are as described above and νk is a concentration parameter (i.e.,

the degrees of freedom). Similarly, we arrive at a GMM with a multivariate skew-t
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distribution

p(yi | xi) =
K∑
k=1

πikfGST,T (yi;µk,Σk,βyk + Λyβηk, νk), (3.11)

where πik is defined as in (2.4). In this setup, the random variable Yi, the latent

growth factors ηi, and the residual variables εi and ζi all follow multivariate skew-t

distributions.

3.2.3 Comments on the GHD-GMM and GST-GMM

In the preceding extensions of GMMs, recall that the overall skewness for Yi is

Λyβηk +βyk, so there are a total of T + q skewness parameters. Hence, the skewness

parameters βyk and βηk are subject to identifiability issues, because no more than

T skewness parameters can be identified from the T -dimensional Yi. Therefore, two

special formulations are considered in this chapter. The first formulation is where

βyk = 0. In this formulation, the residuals for Yi or the measurement errors are not

skewed, i.e., εi | wik, cik = 1 ∼ N (0, wikΘk). All of the skewness in the data is as-

sumed to come from the distribution of latent factors. The second special formulation

is the case where βηk = 0. In this formulation, the residuals for the latent factors η

are symmetric, i.e., ζi | wik, cik = 1 ∼ N (0, wikΨk). Accordingly, all of the skewness

in the data is assumed to come from the residuals of Yi or the measurement errors.

In practice, we would want as much of the skewness as possible in the observed data

Y1, . . . ,Yn to be explained through the latent factors. There appears to be no opti-

mal strategy with respect to which skewness parameter to estimate. Accordingly, four

statistical models, differing with respect to the distributions of measurement errors
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and random effects for the first two levels of the GMM, are employed and compared.

These models are as follows:

• Model I: A model with independent multivariate generalized hyperbolic ran-

dom effects and measurement errors while assuming all of the skewness in

the data comes from the distribution of latent factors (i.e., GHD-GMM un-

der βyk = 0).

• Model II: A model with independent multivariate generalized hyperbolic ran-

dom effects and measurement errors while assuming all of the skewness in the

data comes from the residuals of Y (i.e., GHD-GMM under βηk = 0).

• Model III: A model with independent multivariate skew-t random effects and

measurement errors while assuming all of the skewness in the data comes from

the distribution of latent factors (i.e., GST-GMM under βyk = 0).

• Model IV: A model with independent multivariate skew-t random effects and

measurement errors while assuming all of the skewness in the data comes from

the residuals of Y (i.e., GST-GMM under βηk = 0).

Take Model I (i.e., GHD-GMM under βyk = 0) as an example. For different

trajectory classes, the parameters λk, ωk,αk,βηk,Θk,Ψk, and Γk may be different

across classes, or may be the same across the classes. By imposing constraints on all

these parameters (different or the same across classes), we obtain a family of GHD-

GMM models. In this chapter, we only consider two models. One model assumes that

the parameters λk, ωk,αk,βηk,Θk,Ψk, and Γk are different across classes, we call this

model as the general model. The second model assumes that only the parameter αk

is different across classes while all the other parameters are the same across classes,
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i.e., λk = λ, ωk = ω, βηk = βη, Θk = Θ, Ψk = Ψ, and Γk = Γ for k = 1, 2, . . . , K;

we call this model the most constrained model.

3.3 Parameter Estimation

3.3.1 The EM algorithm for Model I

For our GHD-GMM under βyk = 0, the complete-data comprise the observed out-

come data y1, . . . ,yn, the covariates x1, . . . ,xn, together with the latent categorical

variables c1, . . . , cn, the latent growth factors η1, . . . ,ηn, and the latent wik. The

observed-data log-likelihood can be expressed as follows:

logL =
n∑
i=1

log p(yi | xi), (3.12)

where

p(yi | xi) =
K∑
k=1

πikfGHD,T (yi;λk, ωk,µk,Σk,Λyβηk) (3.13)

and πik is defined as in connection with (2.4).

Now, Yi | xi, wik, cik = 1 ∼ N (µk + wikΛyβηk, wikΣk) independently for i =

1, . . . , n, Wik | cik = 1 ∼ I(ωk, 1, λ̃k), and so, from Bayes’s theorem, Wik | yi,xi, cik =

1 ∼ GIG(ψk, χik, λ̃k) with ψk = ωk +β
′

ηkΛ
′

yΣ
−1

k Λyβηk, χik = ωk + δ(yi,µk | Σk), and

λ̃k = λk − T/2. It follows that

ηi | yi,xi, wik, cik = 1 ∼ N (Vk(
−1Ψk(αk+Γkxi+wikβηk)+Λ

′

yΘ
−1

k yi), wikVk), (3.14)

where Vk =−1 (−1Ψk + Λ
′

yΘ
−1

k Λy). The result in (3.14) is used to estimate the latent
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growth factors ηi, and a detailed proof thereof is given in Appendix A.1. Therefore,

the complete-data likelihood is given by

Lc(ϑ) =
n∏
i=1

K∏
k=1

[πikφ(yi | Λyηi, wikΘk)φ(ηi | αk+Γkxi+wikβηk, wikΨk)h(wik | ωk, λk)]cik ,

with the same notation used previously, where h(wik | ωk, λk) is the density of a GIG

distribution in (2.9) with η = 1.

After some algebra, the complete-data log-likelihood is given by

Lc(ϑ | y,x) = L1c(π) + L2c(Θk) + L2c(αk,βηk,Ψk,Γk) + L4c(λ,ω), (3.15)

where λ = (λ1, . . . , λK) and ω = (ω1, . . . , ωK), and

L1c =
n∑
i=1

K∑
k=1

cik logπik,

L2c =
n∑
i=1

K∑
k=1

cik

{
1

2
log|Θ−1k | −

1

2wik
y
′

iΘ
−1
k yi +

1

wik
y
′

iΘ
−1
k Λyηi −

1

2wik
η
′
Λ
′

yΘ
−1
k Λyη

}
+ C1,

L3c =
n∑
i=1

K∑
k=1

cik

{
1

2
log|Ψ−1k | −

1

2wik
η
′

iΨ
−1
k ηi +

1

wik
(αk + Γkxi)

′
Ψ−1k ηi + β

′

ηkΨ
−1
k ηi

− 1

2wik
(αk + Γkxi)

′
Ψ−1k (αk + Γkxi)− (αk + Γkxi)

′
Ψ−1k βηk

−wik
2
β
′

ηkΨ
−1
k βηk

}
+ C2,

L4c =
n∑
i=1

K∑
k=1

cik

{
(λk − 1) logwik − logKλk(ωk)−

ωk
2

(
wik +

1

wik

)}
,

where C1 and C2 are constants with respect to model parameters.

In the E-step, we compute the conditional exception of Lc(ϑ | y,x) given in (3.15),

denoted Q. First, let pik denote the probability that the ith observation belongs to
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the kth component of the mixture, and is updated by

pik := E [Cik | yi,xi] =
πikfGHD,T (yi;λk, ωk,µk,Σk,Λyβηk)∑K
l=1 πilfGHD,T (yi;λl, ωl,µl,Σl,Λyβηl)

.

The resulting E-step quantiles regarding the latent growth factors η and the latent

continuous variable W are given by

E1ik := E [Wi | xi,yi, cik = 1] =

√
χik
ψk

Kλ̃k+1(
√
ψkχik)

Kλ̃k
(
√
ψkχik)

,

E2ik := E [1/Wi | xi,yi, cik = 1] =

√
ψk
χik

Kλ̃k+1(
√
ψkχik)

Kλ̃k
(
√
ψkχik)

− 2λ̃k
χik

,

E3ik := E [logWi | xi,yi, cik = 1] = log

(√
χik
ψk

)
+

1

Kλ̃k
(
√
ψkχik)

∂

∂λ̃k
Kλ̃k

(
√
ψkχik),

E4ik := E [ηi | yi,xi, cik = 1] = Vk(Ψ
−1
k (αk + Γkxi + E1ikβηk) + Λ

′

yΘ
−1
k yi),

E5ik := E [(1/Wik)ηi | yi,xi, cik = 1] = E2ikVk(Ψ
−1
k (αk + Γkxi) + Λ

′

yΘ
−1
k yi) + VkΨ

−1
k βηk,

E6ik := E[(1/Wik)ηiη
′

i | yi,xi, cik = 1] = Vk + Vk(Ψ
−1
k (αk + Γkxi) + Λ

′

yΘ
−1
k yi)βηkΨ

−1
k Vk

+ E2ikVk(Ψ
−1
k (αk + Γkxi) + Λ

′

yΘ
−1
k yi)(Ψ

−1
k (αk + Γkxi) + Λ

′

yΘ
−1
k yi)

′
Vk

+ VkΨ
−1
k β

′

ηk(Ψ
−1
k (αk + Γkxi) + Λ

′

yΘ
−1
k yi)

′
Vk + E1ikVkΨ

−1
k βηkβ

′

ηkΨ
−1
k Vk,

and ψk, χik, and λ̃k are as previously defined. These attractive closed forms for E1ik,

E2ik, and E3ik exist because Wik | yi,xi, cik = 1 ∼ GIG(ψk, χik, λ̃k), and so we can

use the formulae as in (2.8). The existence of these attractive closed forms for E4ik,

E5ik, and E6ik is due to the conditional Gaussian distribution of η as in (3.14).

In the M-step, we maximize Q with respect to the model parameters to get the
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updates. With respect to the parameters αc and Γc, the M-step maximizes

n∑
i=1

K∑
k=1

pik logπik, (3.16)

which may be viewed as a multinomial logistic regression with fractional observations

pik. The parameters ωk and λk are estimated by maximizing the following function

qk(ωk, λk) = − logKλk(ωk) + (λk − 1)d̄k −
ωk
2

(āk + b̄k), (3.17)

where nk =
∑n

i=1 pik, āk = 1
nk

∑n
i=1 pikE1ik, b̄k = 1

nk

∑n
i=1 pikE2ik, and d̄k = 1

nk

∑n
i=1 pikE3ik.

The associated updates are

λ̂k = c̄kλ̂
prev
k

[
∂

∂t
logKt(ω̂

prev
k ) |t=λ̂prevk

]−1
,

ω̂k = ω̂prev
k −

[
∂

∂t
qk(t, λ̂k)

∣∣∣
t=ω̂prev

k

] [
∂2

∂t2
qk(t, λ̂k)

∣∣∣
t=ω̂prev

k

]−1
,

where the superscript “prev” means the previous estimate — refer to Browne and
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McNicholas (2015) for further details. Finally, we get the updates of the other pa-

rameters in the model:

Θ̂k = diag

(∑n
i=1 pik(E2ikyiy

′
i − yiE

′

5ikΛ
′

y −ΛyE5iky
′
i + ΛyE6ikΛ

′

y)

nk

)
,

Γ̂k =
n∑
i=1

pik

(
E5ikx

′

i − E2ikα̂kx
′

i − β̂kx
′

i

)( n∑
i=1

K∑
k=1

pikE2ikxix
′

i

)−1
,

α̂k =
āk
∑n

i=1 pik(E5ik − E2ikΓ̂kxi)−
∑n

i=1 pikE4ik +
∑n

i=1 pikΓ̂kxi
nk(ākb̄k − 1)

,

β̂ηk =
b̄k
∑n

i=1 pik(E4ik − Γ̂kxi)−
∑n

i=1 pikE5ik +
∑n

i=1 pikE2ikΓ̂kxi
nk(b̄kb̄k − 1)

,

Ψ̂k =
1

nk

n∑
i=1

pik

(
E6ik − β̂kE

′

4ik − E5ik(α̂k + Γ̂kxi)
′ − E4ikβ̂

′

k − (α̂k + Γ̂kxi)E
′

5ik

+ E2ik(α̂k + Γ̂kxi)(α̂k + Γ̂kxi)
′
+ (α̂k + Γ̂kxi)β̂

′

ηk + β̂ηk(α̂k + Γ̂kxi)
′
+ E1ikβ̂ηkβ̂

′

ηk

)
.

3.3.2 The EM algorithm for Model III

Similarly, for our Model III, parameter estimation is carried out within the EM al-

gorithm framework. Suppose we observe the outcome yi and the covariates xi from

a GMM with skew-t random effects as in (3.11) but with βyk = 0. There are three

sources of unobserved data: the latent categorical variables ci, the latent growth fac-

tors ηi, and the latent wik. The complete-data log-likelihood can be expressed as

follows:

Lc(ϑ) =
n∑
i=1

K∑
k=1

πik
[

logπik + logφ(yi | Λyηi, wikΘk)

+ logφ(ηi | αk + Γkxi + wikβηk, wikΨk) + logf(wik | νk/2, νk/2)
]
,
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where πik is defined as above in (2.4) and f(wik | νk/2, νk/2) is the density of the

inverse Gamma distribution.

The E-step requires the computation of the expected value of the complete-

data log-likelihood. Note that Wik | yi,xi, cik = 1 ∼ GIG(ψ∗k, χ
∗
ik, λ

∗
k) with ψ∗k =

β
′

ηkΛ
′

yΣ
−1

k Λyβηk, χ
∗
ik = νk + δ(yi,µk | Σk), and λ∗k = −(λk + T )/2. So, we have

convenient forms for the following expected values:

E∗1ik := E [Wi | xi,yi, cik = 1] =

√
χ∗ik
ψ∗k

Kλ∗k+1(
√
ψ∗kχ

∗
ik)

Kλ∗k
(
√
ψ∗kχ

∗
ik)

,

E∗2ik := E [1/Wi | xi,yi, cik = 1] =

√
ψ∗k
χ∗ik

Kλ∗k+1(
√
ψ∗kχ

∗
ik)

Kλ∗k
(
√
ψ∗kχ

∗
ik)
− 2λ∗k
χ∗ik

,

E∗3ik := E [logWi | xi,yi, cik = 1] = log

(√
χ∗ik
ψ∗k

)
+

1

Kλ∗k
(
√
ψ∗kχ

∗
ik)

∂

∂λ∗k
Kλ∗k

(
√
ψ∗kχ

∗
ik).

We also need the expected value of the class membership, i.e.,

τik := E [Cik | yi,xi] =
πikfGHD,T (µk,Σk,Λyβηk, vk)∑K
l=1 πilfGHD,T (µl,Σl,Λyβηl, vl)

,

as well as the following conditional expectations, which are similar to those derived

in the E-step of parameter estimation for the GHD-GMM:

E∗4ik := E [ηi | yi,xi, cik = 1] = Vk(Ψ
−1
k (αk + Γkxi + E∗1ikβηk) + Λ

′

yΘ
−1
k yi),

E∗5ik := E [(1/Wik)ηi | yi,xi, cik = 1] = E∗2ikVk(Ψ
−1
k (αk + Γkxi) + Λ

′

yΘ
−1
k yi) + VkΨ

−1
k βηk,

E∗6ik := E[(1/Wik)ηiη
′

i | yi,xi, cik = 1] = Vk + Vk(Ψ
−1
k (αk + Γkxi) + Λ

′

yΘ
−1
k yi)βηkΨ

−1
k Vk

+ E∗2ikVk(Ψ
−1
k (αk + Γkxi) + Λ

′

yΘ
−1
k yi)(Ψ

−1
k (αk + Γkxi) + Λ

′

yΘ
−1
k yi)

′
Vk,

+ VkΨ
−1
k β

′

ηk(Ψ
−1
k (αk + Γkxi) + Λ

′

yΘ
−1
k yi)

′
Vk + E∗1ikVkΨ

−1
k βηkβ

′

ηkΨ
−1
k Vk.
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The M-step requires the computation of the parameter updates to maximize the

expected value of the complete-data log-likelihood. In this step, the parameter up-

dates for αc,Γc,αk,βηk,Θk,Ψk and Γk are obtained in closed form and are similar

to those derived in the M-step of parameter estimation for the GHD-GMM, hence

are omitted here. We solve the equation

log
(νk

2

)
+ 1− ϕ

(νk
2

)
− 1

nk

n∑
i=1

τik (E∗3ik + E∗2ik) = 0 (3.18)

for νk, numerically, where nk =
∑n

i=1 τik. Parameter estimation for Models II and IV

is outlined in Appendix A.2.

3.4 Illustrations

3.4.1 Alcoholic consumption data from the National Longi-

tudinal Survey of Youth

The National Longitudinal Survey of Youth (NLSY) is a longitudinal study conducted

by the United States Bureau of Labor Statistics with the goal of understanding the

interaction between labor force participation, education, and health behaviors in chil-

dren and adolescents. The sample for this study was a cohort of children who were

between the ages of 12 and 17 when first interviewed in 1997. The data of interest

were gathered each year between 1997 and 2011 and again in 2013 (15 total possible

interviews). Each respondent provided a number between 0 and 98 that represents

the number of alcoholic drinks they typically consume on a given day on which they

are drinking. Tracking heterogeneity in trajectories of alcohol consumption has been
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a frequent topic in the social and biomedical sciences with many objectives: to deter-

mine the effect of excessive drinking over time, design interventions that can prevent

excessive drinking, or model the interplay between consumption of different drugs.

Because we are interested in modeling drinking behaviour over the life span, the data

are shifted from representing year of interview to age. To minimize the effect of

missing data, individuals who were interviewed between the ages of 16 and 19 were

used for the following analyses. In this analysis, the time invariant covariates are not

considered.

We implement the Gaussian GMM via Mplus Version 7.3 (Muthén and Muthén,

2012). Our proposed GHD-GMM and GST-GMM are implemented in R and run

with K ranging from 1 to 10 until the best model is obtained under each scenario.

Table 3.1 shows the results of fitting all of the models as aforementioned for a varying

number of latent classes. The BIC values show that more than eight classes are needed

with the conventional GMM, two are needed with constrained Models I and IV, and

three are needed for all of the other models. The BIC values for the GST-GMM and

GHD-GMM are better than the BIC for the Gaussian GMM. Notably, the BIC values

for the GHD-GMM do not always improve on that for the GST-GMM. Among all

fitted models, the three-cluster general GST-GMM under βyk = 0 (i.e., general Model

III) is preferable according to the BIC. It is worth mentioning that, even though the

skew-t distribution is a special case of the generalized hyperbolic distribution, the

GST-GMM seems to be useful in addition to the GHD-GMM.

The best-fitting model, the three-cluster skew-t, breaks the data into three groups.

The first group, comprising 56% of the population, begins with low-moderate drink-

ing (< 1 drink per drinking day), slightly increases during adolescence, and by age 19
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Table 3.1: Results of fitting Gaussian, GST, and GHD GMMs for consumption data
from the National Longitudinal Survey of Youth.

GMM-Gaussian (constrained) GMM-Gaussian (general)
Classes Log-likelihood Free paras BIC Log-likelihood Free paras BIC

1 -14983.42 9 -30030.27 -14983.42 9 -30030.27
2 -14623.41 12 -29331.40 -12671.88 19 -25477.69
3 -14330.00 15 -28765.72 -12233.95 29 -24672.31
4 -14182.66 18 -28492.19 -12119.21 39 -24513.30
5 -14076.42 21 -28300.85 -12027.60 49 -24400.58
6 -14015.58 24 -28200.32 -11950.97 59 -24317.78
7 -13980.78 27 -28151.86 -11906.09 69 -24298.53
8 -13937.17 30 -28085.80 -11870.44 79 -24297.69
9 -13916.40 33 -28065.38

GHD-GMM (Model I, constrained) GHD-GMM (Model I, general)
Classes Log-likelihood Free paras BIC Log-likelihood Free paras BIC

1 -12403.20 13 -24898.19 -12403.28 13 -24898.19
2 -12315.75 16 -24744.27 -12119.53 27 -24429.36
3 -12315.50 19 -24764.91 -11958.92 41 -24206.82
4 -11953.84 55 -24295.33

GHD-GMM (Model II, constrained) GHD-GMM (Model II, general)
Classes Log-likelihood Free paras BIC Log-likelihood Free paras BIC

1 -12399.68 15 -24883.94 -12399.68 15 -24905.09
2 -12312.27 18 -24737.32 -12166.47 31 -24551.45
3 -12288.26 21 -24717.49 -12002.12 47 -24335.51
4 -12287.98 24 -24745.12 -11956.47 63 -24356.99

GST-GMM (Model III, constrained) GST-GMM (Model III, general)
Classes Log-likelihood Free paras BIC Log-likelihood Free paras BIC

1 -12421.85 12 -24928.28 -12421.92 12 -24928.42
2 -12352.31 15 -24810.34 -12151.6 25 -24479.41
3 -12340.61 18 -24808.10 -11966.84 38 -24201.52
4 -12348.28 21 -24844.58 -11925.67 51 -24210.82

GST-GMM (Model IV, constrained) GST-GMM (Model IV, general)
Classes Log-likelihood Free paras BIC Log-likelihood Free paras BIC

1 -12418.18 14 -24935.05 -12418.19 14 -24935.05
2 -12348.01 17 -24748.06 -12118.12 29 -24440.64
3 -12347.48 20 -24756.18 -11990.60 44 -24291.33
4 -11938.08 59 -24292.00

the average drinks per drinking day is at about 1. These can be considered “consis-

tent low” drinkers. Although the intercept for this class is heavily positively skewed
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(intercept skewness = 2.59), the slope is not (slope skewness = 0.03), which indicates

that the individual slopes are nearly normally distributed around the class slope of

0.21. The second class, comprising 23% of the population, are what will be called the

“decreasing” drinkers. This class has an intercept of around five drinks per drinking

day (a drinking binge) and ends at about 3 drinks per drinking day (just below the

amount considered a drinking binge).1 The intercept is again positively skewed (in-

tercept skewness = 2.90) but the slope is negatively skewed (slope skewness = −0.78),

suggesting that individuals in this class decrease their consumption quickly over the

period of adolescence. The third class, comprising 20% of the population, will be

called the “increasing moderate” drinkers. Their initial level of drinking is around

2.87 drinks per drinking day (less than a binge) and this increases during adolescence,

ending at age 19 around 7 drinks per drinking day (far above a drinking binge). Both

the slope and intercept are slightly positively skewed (intercept skewness = 0.48, slope

skewness = 0.41).

These results suggest that, during adolescence, which is typically a time when

alcohol consumption is initiated, individuals will have different reactions to the ex-

posure to alcohol given their previous experience – those individuals who are low

drinkers will tend to continue to be low drinkers, those who have already consumed

alcohol heavily will begin to taper back to safe levels (alluding to these individuals

“knowing their limits” when it comes to alcohol), and those who are only at moderate

levels tend to increase to heavy drinking. This model can be useful because it indi-

cates which 15-year-olds should be the target of interventions if the goal is to prevent

1The World Health Organization defines heavy episodic drinking (also called a drinking
“binge”) as the consumption of 60 or more grams of alcohol on one occasion (www.who.
int/gho/alcohol/consumption_patterns/heavy_episodic_drinkers_text/en/), which is about
four standard drinks (www.niaaa.nih.gov/alcohol-health/overview-alcohol-consumption/
what-standard-drink).
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heavy drinking in late adolescence. Although the high drinkers may appear to be

the most likely to develop problems related to alcohol, they may “grow out” of their

alcohol consumption; therefore, it may be better to focus efforts on the 15-year-olds

that only drink at moderate levels.

Other models tend to find a similar developmental pattern. For instance, the

three-class GHD model (which has a very similar BIC to the three-class skew-t model)

demonstrates a similar pattern in the clusters: one consistent low, one high but de-

creasing, and one moderate and increasing. This suggests that the same pattern

endures regardless of the distributional assumptions. However, the cluster propor-

tions differ slightly (58%, 24%, and 17%, for the low, high/decreasing, and moder-

ate/increasing classes, respectively), which seems to suggest that the GHD model

classifies more individuals into the “low” class than the skew-t model. If the goal of

the analysis is to identify groups to target for interventions for the prevention of alco-

holism, the proportions found in the skew-t model might be preferred as they create

population groups that are larger. Therefore, interventions targeting this group may

have a greater impact on the population than those targeting a smaller group.

3.4.2 Simulation Studies

In addition to the real data application of our proposed model, simulation studies

are carried out to further illustrate the performance of the proposed GST-GMM and

GST-GMM models in recovering the underlying model parameters and the clustering

ability. We use the relationship between the generalized hyperbolic distribution and

the Gaussian distribution (cf. Section 2.3) to generate GHD-GMM and GST-GMM

data. Data are generated in a number of scenarios: linear and quadratic GMMs with

39



Ph.D. Thesis - Yuhong Wei McMaster - Mathematics and Statistics

different distributions of the measurement errors and random effects, resulting in four

distinct simulation experiments. We analyzed the data in several different ways: using

a Gaussian distribution via Mplus, using the proposed constrained and general GST-

GMM and GHD-GMM models under βyk = 0, and using the proposed constrained

and general GST-GMM and GHD-GMM models under βηk = 0. The purpose of

analyzing the simulated data in this way is to compare our proposed GHD-GMM and

GST-GMM models with the Gaussian GMM developed by Muthén and colleagues,

which dominates the literature on GMMs.

In the first simulation experiment, the dataset is generated by a two-class general

GHD-GMM under βηk with linear growth and five time points (n1 = n2 = 400). In

the second simulation experiment, the dataset is generated by a two-class general

GHD-GMM under βyk with quadratic growth and thirty time points (n1 = n2 =

200). In the third simulation experiment, the simulated dataset is generated by a

three-class general GST-GMM under βηk with linear growth and eight time points

(n1 = n2 = n3 = 500). In the fourth simulation experiment, the dataset is generated

by a two-class general GST-GMM under βyk with quadratic growth and twenty time

points (n1 = n2 = 500). Individual trajectories for these four simulation experiments

are plotted in Figure 3.1.

First, we evaluate the ability of our proposed model to recover underlying pa-

rameters. To this end, 100 datasets are generated for each of the four simulation

experiments. True values and the means of the parameter estimates with their as-

sociated standard deviations are summarized in Tables 3.2–3.5. The results for each

of the four simulation experiments show that the means of parameter estimates are

close to the true values with small standard deviations; hence, our proposed approach
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Figure 3.1: Individual observation trajectories plots for the four simulation experi-
ments.

is effective at parameter recovery.

Second, we compare the two formulations for extending GMMs. One hundred

datasets are generated for the four simulation experiments above and analyzed using

GMMs developed herein. The means of the BIC, the ARI, and the misclassification

rates (ERR) are summarized in Table 3.6. As anticipated, the best models obtained

are those with underlying true data structures. There is, however, one disadvantage

with Model II and Model IV. In terms of model complexity, Model II has K(T − q)

more parameters than Model I, and Model IV has K(T − q) more parameters than

Model III. Hence, Models II and IV need larger sample sizes as small class sizes
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Table 3.2: Key model parameters as well as means and standard deviations of the
associated parameter estimations from the 100 runs for the first simulation experiment
(Model II).

True values Means Standard deviations

α1 (4, 5)
′

(4.00, 5.00)
′

(0.11, 0.08)
′

α2 (2, 3)
′

(1.99, 2.98)
′

(0.18, 0.11)
′

β1 (1,−1, 1, 1, 1)
′

(0.94,−0.92, 0.93, 0.94, 0.93)
′

(0.35, 0.33, 0.39, 0.44, 0.51)
′

β2 (−1, 1,−1,−1,−1)
′

(−0.77, 0.83,−0.72,−0.68,−0.67)
′

(0.27, 0.36, 0.33, 0.43, 0.55)
λ1 -1 -0.7 0.73
λ2 -2 -1.05 0.85
ω1 2 2.02 0.32
ω2 3 3.11 0.58

Ψ1

[
1 0
0 0.7

] [
0.92 0.00
0.00 0.65

] [
0.34 0.08
0.08 0.22

]
Ψ2

[
1.5 0
0 0.8

] [
1.20 −0.01
−0.01 0.63

] [
0.36 0.08
0.08 0.18

]
Table 3.3: Key model parameters as well as means and standard deviations of the
associated parameter estimations from the 100 runs for the second simulation exper-
iment (Model I).

True values Means Standard deviations

α1 (15, 8,−6)
′

(14.98, 8.00,−6.00)
′

(0.10, 0.09, 0.15)
′

α2 (−14,−10, 6)
′

(−14.06,−9.96, 6.02)
′

(0.24, 0.20, 0.16)
′

β1 (1, 1, 1)
′

(1.05, 1.01, 1)
′

(0.35, 0.32, 0.39)
′

β2 (−1,−1,−1)
′

(−0.89,−0.95,−0.95)
′

(0.24, 0.25, 0.27)
′

λ1 -1 -0.52 0.70
λ2 2 1.05 1.28
ω1 2 2.02 0.31
ω2 3 2.92 0.51

Ψ1

 1 0 0
0 0.7 0
0 0 2

  0.99 0.00 0.00
0.00 0.70 0.00
0.00 0.00 1.99

  0.33 0.07 0.12
0.07 0.21 0.11
0.12 0.11 0.62


Ψ2

 1.5 0 0
0 0.8 0
0 0 0.9

  1.38 0.00 0.01
0.00 0.74 −0.01
0.01 −0.01 0.84

  0.39 0.08 0.08
0.08 0.21 0.08
0.08 0.08 0.21



can create problems, such as singularity of the covariance matrix and slow or non-

convergence of the EM algorithm.
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Table 3.4: Key model parameters as well as means and standard deviations of the as-
sociated parameter estimations from the 100 runs for the third simulation experiment
(Model IV).

True values Means Standard deviations

α1 (4, 5)
′

(4.01, 4.98)
′

(0.11, 0.10)
′

α2 (0, 0)
′

(−0.01, 0.01)
′

(0.07, 0.08)
′

α3 (−4,−5)
′

(−3.91,−4.9)
′

(0.81, 1.01)
′

β1 (1, 1)
′

(1.00, 1.01)
′

(0.10, 0.09)
′

β2 (0, 0)
′

(−0.01,−0.02)
′

(0.17, 0.19)
′

β3 (−1,−1)
′

(−0.99,−0.98) (0.24, 0.22)
′

ν1 7 7.09 0.61
ν2 5 4.97 0.41
ν3 6 6.08 0.50

Ψ1

[
1 0
0 0.7

] [
1.00 0.01
0.01 0.68

] [
0.07 0.05
0.05 0.07

]
Ψ2

[
0.7 0
0 0.6

] [
0.72 0.03
0.03 0.64

] [
0.28 0.32
0.32 0.40

]
Ψ3

[
1.5 0
0 0.8

] [
1.36 0.00
0.00 0.76

] [
0.27 0.07
0.07 0.08

]
Table 3.5: Key model parameters as well as means and standard deviations of the
associated parameter estimations from the 100 runs for the fourth simulation exper-
iment (Model III).

True values Means Standard deviations

α1 (8, 7,−3)
′

(7.95, 7.01,−2.93)
′

(0.18, 0.11, 0.05)
′

α2 (−8,−7, 3)
′

(−7.98,−6.99, 2.93)
′

(0.21, 0.12, 0.05)
′

β1
(1, 1, 1, 1, (1.04, 0.98, 0.78, 0.44, (0.16, 0.17, 0.18, 0.18,

1, 1, 1, 1)
′ −0.02,−0.62,−1.35,−2.21)

′
0.18, 0.18, 0.22, 0.32)

′

β2
(−1,−1,−1,−1, (−1.02,−0.96,−0.78,−0.46, (0.17, 0.15, 0.16, 0.16,

−1,−1,−1,−1)
′ −0.01, 0.56, 1.26, 2.09)

′
0.18, 0.22, 0.29, 0.40)

′

ν1 7 7.43 0.80
ν2 6 6.27 0.59

Ψ1

 1 0 0
0 0.7 0
0 0 0.8

  0.99 0.00 0.01
0.00 0.71 0.00
0.01 0.00 0.80

  0.11 0.07 0.05
0.07 0.06 0.04
0.05 0.04 0.06


Ψ2

 1.5 0 0
0 0.8 0
0 0 0.9

  1.49 0.01 0.01
0.01 0.79 0.01
0.01 0.01 0.90

  0.20 0.10 0.08
0.10 0.09 0.04
0.08 0.04 0.07
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Table 3.6: Comparison of results — including average BIC, ARI, and EER values —
for Models I–IV.

Model I Model II
Free paras BIC ARI ERR Free paras BIC ARI ERR

1st simulation
29 –16018.99 0.92 0.02 35 –15366.59 0.97 0.01

(model II)
2nd simulation

89 –69895.48 1.00 0.00 143 –70507.17 1.00 0.00
(model I)

Model IV Model III
Free paras BIC ARI ERR Free paras BIC ARI ERR

3rd simulation
50 –101669.80 1.00 0.00 68 –101587.60 1.00 0.00

(model IV)
4th simulation

67 –37271.48 1.00 0.00 101 –37265.55 1.00 0.00
(model III)

Finally, we compare our proposed Models I and III with the Gaussian GMMs

(via Mplus). Herein, 100 datasets are generated, as described before, for the second

simulation experiment and analyzed with different distributions: the generalized hy-

perbolic distribution via our proposed Model I, the multivariate skew-t distribution

via our proposed Model III, and Gaussian GMMs via the Mplus software. Table 3.7

summarizes the percentage of the replications favoured by the BIC when analyzing

those 100 generated datasets for 1–6 latent classes (note that 6 latent classes were

never selected, cf. Table 3.7). It is not surprising that the Gaussian GMMs overes-

timate the number of classes, pointing to five classes 33% of the time and to four

classes 67% of the time. Because the true data are generated from the generalized

hyperbolic distribution, the Gaussian GMMs need to extract more latent classes to

capture the observed variable distribution. The generalized hyperbolic and skew-t

GMMs (i.e., the proposed Models I and III) correctly choose the number of classes

100% of the time. It is noteworthy to mention that the best model, based on the BIC,

is a two-class generalized hyperbolic GMM consistently. Typical analysis results for
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fitting the Gaussian, the multivariate skew-t, and the generalized hyperbolic GMMs

to the second simulation experiment are given in Table 3.8.

Table 3.7: Percent preferred by the BIC when analyzing the second simulation ex-
periment with Model I, Model III, and GMM along with number of classes.

Number of classes
1 2 3 4 5

Model I 0 100 0 0 0
Model III 0 100 0 0 0
GMM 0 0 0 67 33

Table 3.8: Results of fitting the Gaussian, GST, and GHD to the second simulation
experiment.

Model K Free paras Log-likelihood BIC ARI ERR
1 64 −35261.30 −70906.06 0 0.50

Model I 2 129 −34283.40 −69339.69 1 0
3 194 −34231.13 −69624.60 0.86 0.08
1 63 −35295.15 −70967.76 0 0.5

Model III 2 127 −34292.80 −69346.20 1 0
3 191 −34240.11 −69624.59 0.86 0.09
1 59 −38474.99 −77303.47 0 0.50
2 119 −35524.70 −71762.39 0.77 0.06

GMM 3 179 −34872.72 −70817.91 0.51 0.29
4 239 −34544.54 −70521.04 0.52 0.39
5 299 −34356.91 −70505.26 0.46 0.45
6 359 −34252.98 −70656.90 0.44 0.46

3.5 Discussion

We have introduced novel GHD-GMM and GST-GMM models, which are extensions

of the GMMs introduced by Verbeke and Lesaffre (1996) to the generalized hyper-

bolic and skew-t distributions, respectively, to facilitate heavier tails or asymmetry.
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Updates are derived for parameter estimation within the EM algorithm framework

in the model-based clustering context, which is made feasible by the fact that the

generalized hyperbolic distribution can be represented as a normal mean-variance

mixture, where the weight follows a GIG distribution. In our extension GMMs, four

models were considered (GHD-GMM and GST-GMM under βyk = 0, GHD-GMM

and GST-GMM under βηk = 0) and their performance was compared using simu-

lated and real data. In terms of interpretation, GHD-GMM under βηk = 0 is better

than GHD-GMM under βyk = 0 because the skewness parameters are in the data

space and the interpretation of the skewness parameters is clear. However, naturally,

models with a minimal number of parameters would be preferable. Hence, in terms

of model complexity, GHD-GMM under βyk = 0 is preferable to GHD-GMM under

βηk = 0, because the former model has K(T − q) fewer parameters than the latter.

We believe that this kind of mixture modeling approach for longitudinal data is

important in many biostatistical and psychological applications, allowing accurate

inference of model parameters and class membership probabilities while adjusting for

heterogeneity, heavy tails, and skewness in the data. The proposed GHD-GMM and

GST-GMM models have several advantages over Gaussian GMMs. The proposed

GHD-GMM, which includes the multivariate skew-t, variance-gamma distribution,

multivariate Gaussian distributions, etc., as special or limiting cases, provides flexi-

bility to handle a broader range of multivariate longitudinal data.

The models proposed herein can be further developed in various ways. First, for

the first level of the GMM, only qth order polynomial equations are considered, and

so kernel regressions or non-linear regressions could be incorporated into the model.

Second, Bayesian mixture modeling may offer researchers an alternative way to handle
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clustering of longitudinal data due to the popularity and advances in Markov chain

Monte Carlo techniques. Finally, it is also worthwhile to consider more general para-

metric distributions of measurement errors and random effects, such as the coalesced

generalized hyperbolic distribution and the multiple scaled generalized hyperbolic

distribution (Tortora et al., 2014, 2016).
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Chapter 4

Growth Mixture Model Analysis

with Continuous Non-Elliptical

Random Effects for Incomplete

Data

4.1 Introduction

In this chapter, we detail the methodological development of growth mixture models

with continuous non-elliptical random effects designed for analyzing longitudinal data

in the presence of arbitrary missing values and is split into 4 sections. Section 4.2

describes the growth mixture models with continuous non-elliptical random effects

for incomplete data, in Section 4.3 outlines the ML estimation via an expectation-

maximization algorithm, in Section 4.4 both simulated and real data analyses are
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used to illustrated our approach and in Section 4.5 the chapter gives a discussion of

the work.

Before proceeding to the growth mixture model with non-elliptical distribution

with missing information, let us clarify some notations used in the following sections.

As we mentioned in Section 2.2, in the missing data literature, the data are often

partitioned into two parts: the observed component (Yo
i ) and the missing component

(Ym
i ) with dimensions T oi × 1 and Tmi × 1, respectively, where T oi + Tmi = T . For a

fully observed data point Yi, Ym
i does not exist. To facilitate computation, follow-

ing Finkbeiner (1979) and Lin et al. (2006), we introduce two missingness indicator

matrices, denoted by Oi (T oi × T ) and Mi (Tmi × T ). For each i = 1, . . . , n, Yo
i and

Ym
i are related to Yi by Yo

i = OiYi and Ym
i = MiYi, respectively. Specifically, Oi

and Mi can be formed by extracting from a T -dimensional identity matrix IT cor-

responding to the respective row positions of Yo
i and Ym

i in Yi. It is easy to verify

that Yi = O
′
iY

o
i + M

′
iY

m
i and O

′
iOi + M

′
iMi = IT .

4.2 Model Description

In the previous chapter, we developed four statistical models when extending the

GMMs to have non-elliptical distributions. We compared the two formulations for

extending GMMs and demonstrated that GMMs with non-elliptical random effects

(i.e., Model I and Model III) are preferable to GMMs with non-elliptical measure-

ment errors (i.e., Model II and Model IV). Therefore, we only consider to generalize

GMMs with non-elliptical random effects to accommodate missing values. For a bet-

ter notational convenience, we rewrite the GMMs with non-elliptical random effects

via GHD and GST herein. The growth mixture model with generalized hyperbolic

49



Ph.D. Thesis - Yuhong Wei McMaster - Mathematics and Statistics

random effects (abbreviated as GHD-GMM) can be written as

p(yi | xi) =
K∑
k=1

πikfGHD,T (yi;λk, ωk,µk,Σk,Λyβk), (4.1)

where µk = Λy(αk + Γkxi) and Σk = ΛyΨkΛ
′

y + Θk. Similary, the growth mixture

model with multivariate skew-t random effects (abbreviated as GST-GMM) can be

written as

p(yi | xi) =
K∑
k=1

πikfGST,T (µk,Σk,Λyβk, νk), (4.2)

where µk and Σk are as defined above.

4.2.1 GHD-GMM with missing infromation

Apply the above standard set-up to a K-component GHD-GMM as defined in (4.1),

then we obtain the marginal distribution of the observed data yoi is

p(yoi | xi) =
K∑
k=1

πikfGHD,T oi
(yoi ;λk, ωk,µ

o
k,Σ

oo
k ,β

o
k), (4.3)

where µok = Oiµk, Σoo
k = OiΣkO

′
i, β

o
k = OiΛyβk, and the observed-data log-

likelihood function becomes

lo(ϑ | yoi ,xi) =
n∑
i=1

log

(
K∑
k=1

πikfGHD,T oi
(yoi ;λk, ωk,µ

o
k,Σ

oo
k ,β

o
k)

)
, (4.4)

where ϑ = (πik, λk, ωk,αc,Γc,αk,Γk,βk,Θk,Ψk) is the vector of parameters. How-

ever, it is very difficult to obtain ML estimates by directly working on the maximiza-

tion of lo(ϑ | yo,xi). To compute the ML estimates of unknown parameters involved
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in (4.3), we make use of the EM algorithm (Dempster et al., 1977).

To facilitate the ML estimation of the GHD-GMM model with missing informa-

tion via the EM algorithm, we will augment the observed data yoi and xi with the

truly missing data ymi together with the unobserved or latent variables ηi, ci, and

Wi. let ci = (ci1, . . . , ciK) for i = 1, . . . , n be the set of allocation vectors or class

membership indicators, where the component membership cik = 1 if yi belongs to

the kth component and cik = 0 otherwise. It follows that ci follows a multinomial

distribution with one trial and cell probabilities πi1, . . . , πiK in connection with (2.4).

Subsequently, in this ‘new’ complete-data framework, we establish the following

proposition, which is essential to evaluate the required conditional expectations in

the E-step of the EM algorithm described in Section 4.3.

Proposition 4.2.1. Given (2.1), (2.2), wi | cik = 1 ∼ I(λk, ωk), and let the yoi and

ymi be the observed and missing components of yi, respectively. we have the following

conditional distributions:

a. The conditional distribution of yoi given xi, Wi, and cik = 1 is

yoi | xi, wi, cik = 1 ∼ N
(
µok + wiOiΛyβi, wiOiΣkO

′

i

)
.

b. The conditional distribution of W given Yo
i , xi, and cik = 1 is

Wi | Yo
i ,xi, cik = 1 ∼ GIG (λ∗ik, χ

∗
ik, ψ

∗
ik) ,

where λ∗ik = λk − T oi
2

, χ∗ik = ωk + δ(yoi ,µ
o
k | Σoo

k ), ψ∗ik = ωk +β
′

kΛ
′

yS
oo
ikΛyβk, and

Sooik = O
′
i(OiΣ

oo
k Oi)

−1Oi.
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c. The conditional distribution of ymi given yoi , xi, Wi, and cik = 1 is

ymi | yoi ,xi, wi, cik = 1 ∼ N
(

Mi(µk + wiΛyβk) + ΣkS
oo
ik (yi − µk − wiΛyβk),

wiMi(IT −ΣkS
oo
ik )ΣkM

′

i

)

d. The conditional distribution of ηi given yoi , xi, Wi, and cik = 1 is

ηi | yoi ,xi,Wi, cik = 1 ∼ N
(
Vk(Ψ

−1
k (αk + Γkxi + wiβk) + Λ

′

yT
oo
ikyi), wiVk

)
,

where Vk = (Ψ−1k + ΛyT
oo
ikΛy)

−1 and Too
ik = O

′
i(OiΘ

oo
k Oi)

−1Oi.

e. The conditional distribution of ymi given yoi , ηi, Wi, and cik = 1 is

ymi | yoi ,ηi, wi, cik = 1 ∼ N
(

MiΛyηi + MiΘkT
oo
ik (yi −Λyηi),

wiMi(IT −ΘkT
oo
ik )ΘkM

′

i

)
,

where Too
ik is as defined above .

Proof. The proof is based on statistical properties of the multivariate Gaussian dis-

tribution and it is is straightforward, hence is omitted here.

4.2.2 GST-GMM with missing information

Taking an analogous fashion to the GHD-GMM with missing information, for the

GST-GMM with missing information, we obtain the marginal distribution of the
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observed data yoi is

p(yoi | xi) =
K∑
k=1

πikfGST,T oi
(yoi ; νk,µ

o
k,Σ

oo
k ,β

o
k), (4.5)

where µok, Σoo
k , and βok are as defined above in connection with (4.3). The observed-

data log-likelihood function becomes

lo(ϑ | yoi ,xi) =
n∑
i=1

log

(
K∑
k=1

πikfGST,T oi
(yoi ; νk,µ

o
k,Σ

oo
k ,β

o
k)

)
, (4.6)

where ϑ = (πik, νk,αc,Γc,αk,Γk,βk,Θk,Ψk) is the vector of parameters in the case

of the GST-GMM with missing information. Similarly, after augmenting the observed

data yoi and xi with the missing variables ymi ,ηi, ci, and Wi, we obtain the following

proposition. The other distributions in the proposition 2 are the same as in the

GHD-GMM case, hence is omitted here.

Proposition 4.2.2. Given (2.1), (2.2), and wik ∼ I(νk
2
, νk

2
), we obtain the conditional

distribution of W given yoi , xi, and cik = 1 as

Wi | yoi ,xi, cik = 1 ∼ GIG(λ?ik, χ
?
ik, ψ

?
ik),

where λ?ik = −λk+T
o
i

2
, χ?ik = νk + δ(yoi ,µ

o
k | Σoo

k ), ψ?ik = β
′

kΛ
′

yS
oo
ikΛyβk, and Sooik is as

defined above.
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4.3 Parameter estimation

4.3.1 The EM algorithm for GHD-GMM with missing infor-

maiton

For the GHD-GMM model with missing information, as mentioned previously, the

complete-data are composed of the observed data (yoi ,xi) and the missing or unob-

served data (ymi ,ηi, ci, wi). Hence, the complete-data log-likelihood function is

lc(ϑ |yoi ,ymi ,xi,ηi, ci, wi) =
n∑
i=1

K∑
k=1

cik

[
logπik + logφ(yi | Λyηi, wikΘk)

+ logφ(ηi | αk + Γkxi + wikβηk, wikΨk) + logh(wik | ωk, λk)
]
. (4.7)

The E-step involves calculating the so-called Q function, which is the conditional ex-

pectation of the complete-data log-likelihood as in Equation (4.7) given the observed

data yoi and xi and the current estimates of ϑ̂
(r)

. First, the conditional expected

value of cik given the observed data is given by

p
(r)
ik := E(cik | yoi ,xi, ϑ̂

(r)
) =

π̂ikfGHD,T oi
(λ̂

(r)
k , ω̂

(r)
k , µ̂

o(r)
k , Σ̂

oo(r)

k , β̂
o(r)

k )∑K
l=1 π̂ilfGHD,T oi

(λ̂
(r)
l , ω̂

(r)
l , µ̂

o(r)
l , Σ̂

oo(r)

l , β̂
o(r)

l )
, (4.8)

where µ̂
o(r)
k , β̂

o(r)

k , and Σ̂
oo(r)

k are µok, β
o
k, and Σoo

k evaluated at ϑ = ϑ̂
(r)

, respectively.

It denotes the posterior probability of ith observation yoi belonging to the kth com-

ponent at the rth iteration. From proposition 1b, we have convenient closed forms
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for the following conditional expectations:

a
(r)
ik :=E [wi | yoi ,xi, cik = 1] =

√√√√ χ̂
∗(r)
ik

ψ̂
∗(r)
ik

K
λ̂
∗(r)
ik +1

(

√
ψ̂
∗(r)
ik χ̂

∗(r)
ik )

K
λ̂
∗(r)
ik

(

√
ψ̂
∗(r)
ik χ̂

∗(r)
ik )

,

b
(r)
ik :=E [1/wi | yoi ,xi, cik = 1] =

√√√√ ψ̂
∗(r)
ik

χ̂
∗(r)
ik

K
λ̂
∗(r)
ik +1

(

√
ψ̂
∗(r)
ik χ̂

∗(r)
ik )

K
λ̂
∗(r)
ik

(

√
ψ̂
∗(r)
ik χ̂

∗(r)
ik )

− 2λ̂
∗(r)
ik

χ̂
∗(r)
ik

,

d
(r)
ik :=E [logwi | yoi ,xi, cik = 1] = log(

√√√√ χ̂
∗(r)
ik

ψ̂
∗(r)
ik

) +
1

K
λ̂
∗(r)
ik

(

√
ψ̂
∗(r)
ik χ̂

∗(r)
ik )

∂

∂λ̂
∗(r)
ik

K
λ̂
∗(r)
ik

(

√
ψ̂
∗(r)
ik χ̂

∗(r)
ik ),

where χ̂
∗(r)
ik , ψ̂

∗(r)
ik , λ̂

∗(r)
ik are χ∗ik, ψ

∗
ik, λ

∗
ik are evaluated at ϑ = ϑ̂

(r)
, respectively.

Inspired by the key idea of the EM algorithm, we impute the missing values ymi to

yield a complete data set at each iteration. To this end, for the actual missing values

ymi and the latent continuous growth factors ηi, based on proposition 1 (c, d, and e),

55



Ph.D. Thesis - Yuhong Wei McMaster - Mathematics and Statistics

the following conditional expectations are also needed,

E
(r)
1ik := E [1/wiyi | yoi ,xi, cik = 1] = b

(r)
ik Σ̂

(r)

k Ŝ
oo(r)
ik yi

+ b
(r)
ik

(
IT − Σ̂

(r)

k Ŝ
oo(r)
ik

)
µ̂

(r)
k +

(
IT − Σ̂

(r)

k Ŝ
oo(r)
ik

)
Λyβ̂

(r)

k ,

E
(r)
2ik := E

[
1/wiyiy

′

i | yoi ,xi, cik = 1
]

=
(
IT − Σ̂

(r)

k Ŝ
oo(r)
ik

)
Σ̂

(r)

k

+ a
(r)
ik

(
IT − Σ̂

(r)

k Ŝ
oo(r)
ik

)
Λyβ̂

(r)

k β̂
′(r)

k Λ
′

y

(
IT − Ŝ

oo(r)
ik Σ̂

(r)

k

)
+
(
Σ̂

(r)

k Ŝ
oo(r)
ik yi + (IT − Σ̂

(r)

k Ŝ
oo(r)
ik )µ̂

(r)
k

)
β̂
′(r)

k Λ
′

y

(
IT − Ŝ

oo(r)
ik Σ̂

(r)

k

)
+
(
IT − Σ̂

(r)

k Ŝ
oo(r)
ik

)
Λyβ̂

(r)

k

(
Σ̂

(r)

k Ŝ
oo(r)
ik yi + (IT − Σ̂

(r)

k Ŝ
oo(r)
ik )µ̂

(r)
k

)′
+ b

(r)
ik

(
Σ̂

(r)

k Ŝ
oo(r)
ik yi + (IT − Σ̂

(r)

k Ŝ
oo(r)
ik )µ̂

(r)
k

)(
Σ̂

(r)

k Ŝ
oo(r)
ik yi + (IT − Σ̂

(r)

k Ŝ
oo(r)
ik )µ̂

(r)
k

)′
,

E
(r)
3ik := E [ηi | yoi ,xi, cik = 1] = V̂

(r)
k

(
Ψ̂
−1(r)
k (α̂

(r)
k + Γ̂

(r)

k xi + a
(r)
ik β̂

(r)

k ) + Λ
′

yT̂
oo(r)
ik yi

)
,

E
(r)
4ik := E [1/wikηi | yoi ,xi, cik = 1] = V̂

(r)
k

(
b
(r)
ik µ̂

(r)
k + Ψ̂

−1(r)
k β̂

(r)

k + b
(r)
ik Λ

′

yT̂
oo(r)
ik yi

)
,

E
(r)
5ik := E

[
1/wikηiη

′

i | yoi ,xi, cik = 1
]

= V̂
(r)
k + a

(r)
ik V̂

(r)
k Ψ̂

−1(r)
k β̂

(r)

k β̂
′(r)

k Ψ̂
−1(r)
k V̂

(r)
k

+ V̂
(r)
k Ψ̂

−1(r)
k β̂

(r)

k

(
µ̂

(r)
k + Λ

′

yT̂
oo(r)
ik yi

)′
V̂

(r)
k

+ V̂
(r)
k

(
µ̂

(r)
k + Λ

′

yT̂
oo(r)
ik yi

)
β̂
′(r)

k Ψ̂
−1(r)
k V̂

(r)
k

+ b
(r)
ik V̂

(r)
k

(
µ̂

(r)
k + Λ

′

yT̂
oo(r)
ik yi

)(
µ̂

(r)
k + Λ

′

yT̂
oo(r)
ik yi

)′
V̂

(r)
k ,

E
(r)
6ik := E

[
1/wikyiη

′

i | yoi ,xi, cik = 1
]

= Θ̂
(r)

k T̂
oo(r)
ik yiE

′(r)
4ik +

(
IT − Θ̂

(r)

k T̂
oo(r)
ik

)
ΛyE

(r)
5ik,

where µ̂
(r)
k , α̂

(r)
k , Γ̂

(r)

k , Σ̂
(r)

k , Ψ̂
(r)
k ,S

oo(r)
ik , T̂

oo(r)
ik , and V̂

(r)
k are corresponding themselves

evaluated at ϑ = ϑ̂
(r)

, respectively. The proof of these conditional expectations

follows directly from the law of iterative expectations and the use of O
′
iOi(IT −

ΣkS
oo
ig ) = 0 and O

′
iOi(IT −ΘkT

oo
ig ) = 0.

After forming the Q function, the M-step involves maximizing such Q function
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with respect to model parameters ϑ. For notational convenience, let n
(r)
k =

∑n
i=1 p

(r)
ik ,

ā
(r)
k = 1

n
(r)
k

∑n
i=1 p

(r)
ik a

(r)
ik , b̄

(r)
k = 1

n
(r)
k

∑n
i=1 p

(r)
ik b

(r)
ik , and d̄

(r)
k = 1

n
(r)
k

∑n
i=1 p

(r)
ik d

(r)
ik . In

summary, the resulting M-step can be implemented as follows:

(i) Update the parameters α̂(r)
c and Γ̂

(r)

c by maximizing

n∑
i=1

K∑
k=1

p
(r)
ik logπik

with respect to αc and Γc, which can be seen as a multinomial logistic regression

with fractional observations p
(r)
ik .

(ii) Update the measurement errors Θ̂
(r)

k by differentiating the Q function with

respect to Θk, which gives

Θ̂
(r+1)

k =
1

n
(r)
k

diag

(
n∑
i=1

p
(r)
ik (E

(r)
2ik − E

(r)
6ikΛ

′

y −ΛyE
′(r)
6ik + ΛyE

(r)
5ikΛ

′

y)

)
,

where diag(·) means a diagonal matrix constructed by extracting the main

diagonal elements of a square matrix.

(iii) Update the regression coefficients Γ̂
(r)

k by differentiating the Q function with

respect to Γk, which gives

Γ̂
(r+1)

k =
n∑
i=1

p
(r)
ik

(
E

(r)
4ikx

′

i − b
(r)
ik α̂

(r)
k x

′

i − β̂
(r)

k xii

)[ n∑
i=1

p
(r)
ik b

(r)
ik xix

′

i

]−1
.

(iv) Update the intercept and skewness parameters α̂
(r)
k and β̂

(r)

k by differentiating
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the Q function with respect to αk and βk, respectively, which leads to

α̂
(r+1)
k =

∑n
i=1 p

(r)
ik

(
E

(r)
4ik − b

(r)
ik Γ̂

(r+1)

k xi − β̂
(r)

k

)
∑n

i=1 p
(r)
ik b

(r)
ik

,

and

β̂
(r+1)

k =

∑n
i=1 p

(r)
ik

(
E3ik − α̂(r+1)

k − Γ̂
(r+1)

k xi

)
∑n

i=1 p
(r)
ik a

(r)
ik

.

(v) Update the model errors Ψ̂
(r)
k by differentiating the Q function with respect to

Ψk, which gives

Ψ̂
(r+1)
k =

1

n
(r)
k

n∑
i=1

p
(r)
ik

(
E

(r)
5ik − (E

(r)
4ik − β̂

(r+1)

k )(α̂
(r+1)
k + Γ̂

(r+1)

k xi)
′ − E(r)

3ikβ̂
′(r+1)

k

− β̂
(r+1)

k E
′(r)
3ik − (α̂

(r+1)
k + Γ̂

(r+1)

k xi)(E
(r)
4ik − β̂

(r+1)

k )
′

+ b
(r)
ik (α̂

(r+1)
k Γ̂

(r+1)

k xi)(α̂
(r+1)
k + Γ̂

(r+1)

k xi)
′
+ a

(r)
ik β̂

(r+1)

k β̂
′(r+1)

k

)

(vi) Update the index and concentrate parameters λ̂k and ω̂
(r)
k by maximizing the

following function

qk(λk, ωk) = − logKλk(ωk) + (λk − 1)d̄
(r)
k −

ωk
2

(ā
(r)
k + b̄

(r)
k ).

This leads to

λ̂
(r+1)
k = d̄

(r)
k λ̂

(r)
k

[
∂

∂t
logKt(ω̂

(r)
k ) |

t=λ̂
(r)
k

]−1
,

and

ω̂
(r+1)
k = ω̂

(r)
k −

[
∂

∂t
qk(t, λ̂

(r+1)
k ) |

t=ω̂
(r)
k

] [
∂2

∂t2
qk(t, λ̂

(r+1)
k ) |

t=ω̂
(r)
k

]−1
.
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These updates are analogous to those used by Browne and McNicholas (2015).

4.3.2 The EM algorithm for GST-GMM with missing infor-

mation

Analogous to the GHD-GMM with missing information, for the GST-GMM with

missing information, the complete-data consist of the observed data (yoi ,xi) and the

missing data (ymi ,ηi, ci, wi). Accordingly, the complete-data log-likelihood function

is

lc(ϑ |yoi ,ymi ,xi,ηi, ci, wi) =
n∑
i=1

K∑
k=1

cik

[
logπik + logφ(yi | Λyηi, wikΘk)

+ logφ(ηi | αk + Γkxi + wikβηk, wikΨk) + logh(wik |
νk
2
,
νk
2

)

]
. (4.9)

The E-step involves the calculation of the expected value of the class membership cik,

i.e.,

τ
(r)
ik := E(cik | yoi ,xi, ϑ̂

(r)
) =

π̂ikfGST,T oi
(ν̂

(r)
k , µ̂

o(r)
k , Σ̂

oo(r)

k , β̂
o(r)

k )∑K
l=1 π̂ilfGST,T oi

(ν̂
(r)
l , µ̂

o(r)
l , Σ̂

oo(r)

l , β̂
o(r)

l )
, (4.10)
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as well as the following conditional expectations:

A
(r)
ik := E [wi | yoi ,xi, cik = 1] , B

(r)
ik := E [1/wi | yoi ,xi, cik = 1] ,

D
(r)
ik := E [logwi | yoi ,xi, cik = 1] , E

?(r)
1ik := E [1/wiyi | yoi ,xi, cik = 1] ,

E
?(r)
2ik := E

[
1/wiyiy

′

i | yoi ,xi, cik = 1
]
, E

?(r)
3ik := E [ηi | yoi ,xi, cik = 1] ,

E
?(r)
4ik := E [1/wikηi | yoi ,xi, cik = 1] , E

?(r)
5ik := E

[
1/wikηiη

′

i | yoi ,xi, cik = 1
]
,

E
?(r)
6ik := E

[
1/wikyiη

′

i | yoi ,xi, cik = 1
]
,

which are similar to those used in the case of the GHD-GMM with missing infor-

mation, hence are omitted here. The M-step proceeds in analogy to that for the

GHD-GMM with missing information, except that the degrees of freedom parameter

νk is updated here instead of λk and ωk. We update the degree of freedom parameter

ν̂
(r)
k by solving the root of

log
(νk

2

)
+ 1− ϕ

(νk
2

)
− 1

n
(r)
k

n∑
i=1

τ
(r)
ik

(
D

(r)
ik +B

(r)
ik

)
= 0,

where n
(r)
k =

∑n
i=1 τ

(r)
ik and ϕ(·) is the digamma function. The uniroot function from

R is employed to carry out the root finding of the above equation. In both cases

of GHD-GMM and GST-GMM with missing information, the E- and M-step of the

EM algorithm are iterated repeatedly until a Aitken acceleration-based criterion is

satisfied.
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4.3.3 Estimation of random effects and imputation of missing

values

When the algorithm achieves convergence, we can estimate random effects, namely

growth factor scores ηi, and obtain the imputation of the missing values ymi . Specif-

ically, let η̂ik be the estimated conditional expectation of growth factor scores corre-

sponding to yoi for the kth class, which can be computed by substituting ϑ with the

ML estimate ϑ̂ into E
(r)
3ir or E

?(r)
3ir depending on presumed underlying distribution for

the random effects. Moreover, the estimated random effects scores corresponding to

yoi can be viewed as

η̂i =
K∑
k=1

ẑikη̂ik,

where ẑik, calculated through (4.8) or (4.10) evaluated at ML estimates ϑ̂, denotes

the posterior probability of yoi belonging to the kth component of the GMM. Next, we

perform the imputation of missing values ymi via the conditional expectation method.

According to proportion 1c,

ymik := E [ymi | yoi ,xi, wik, cik = 1] = Mi(µk +wikΛyβk) + ΣkS
oo
ik (yi −µk −wikΛyβk).

(4.11)

Therefore, the imputation of missing values ymi can be defined as

ŷmi =
K∑
k=1

ẑikŷ
m
ik,

where ẑik is as defined above. Note that wik in (4.11) are evaluated via âik or Âik at ML

estimates ϑ̂ depending on the presumed underlying distribution of the random effects.
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Specifically, if the random effects follow the generalized hyperbolic distribution, then

âik is used; if the random effects follow the multivariate skew-t distribution, then Âik

is used.

4.4 Illustration

4.4.1 Simulation Studies

To assess the performance of our proposed models (i.e., GHD-GMM and GST-GMM)

with varying proportions of missing values, we performed two simulation studies in

this section. In simulation studies, we were interested in both the number of selected

classes in terms of the Bayesian information cirterion (BIC; Schwarz, 1978) , as well

as the classification performance using the adjusted rand index (ARI; Hubert and

Arabie, 1985) and the misclassification rate (ERR).

We utilize the normal variance-mean mixture as given in (2.6) to generate GHD-

GMM and GST-GMM data. In the first simulation experiment, we consider two

classes coming from a five time points linear GMM with generalized hyperbolic ran-

dom effects. In the second simulation experiment, we simulate two classes from a

eight time points quadratic GMM with multivariate skew-t distribution. In each

simulation, the GHD-GMM and GST-GMM data are generated with a total of 30

replicates and two different sample sizes, i.e., nk = 250 and nk = 500. Table 4.1 lists

the true model parameters for the simulated data. In Figure 4.1, we show the indi-

vidual’s trajectory plots for a typical simulated GHD-GMM and GST-GMM dataset

with sample size nk = 250. The individual’s trajectory plot for the simulated GHD-

GMM dataset suggests a considerable amount for heterogeneity, i.e., the two classes
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are well separated. While we see that there is very little separation between the two

classes for the simulated GST-GMM dataset.

Table 4.1: True model parameters for the simulated data

Trajectory class 1 Trajectory class 2

GHD-GMM

λ1 = −5 λ2 = −6
ω1 = 2 ω2 = 3
α1 = (4, 5)

′
α2 = (1, 2)

′

β1 = (1,−1)
′

β2 = (−1, 1)
′

Θ1 = diag(1, 2, 3, 4, 5) Θ2 = diag(1.5, 2.5, 3.5, 4.5, 5.5)

Ψ1 =

[
2.18 1.07
1.07 3.35

]
Ψ2 =

[
1.51 −0.18
−0.18 1.37

]

GST-GMM

ν1 = 4 ν2 = 5
α1 = (4,−5, 3)

′
α2 = (−2, 3,−4)

′

β1 = (1, 1, 1)
′

β2 = (−1,−1,−1)
′

Θ1 = diag(1, 2.4, 3.7, 4.3, Θ2 = diag(1, 2.1, 3.1, 4.1,
5.2,6.5,7.6,8.7) 5.1,6.1,7.1,8.3)

Ψ1 =

 2.11 −0.01 −0.22
−0.01 2.09 −0.10
0.22 −0.10 3.71

 Ψ2 =

 4.08 −0.66 −0.06
−0.66 3.32 −0.10
−0.06 −0.10 4.65



The simulated datasets are complete under each scenario considered, so for illus-

tration purposes we remove entries at random under missing rates of low (5% and

10%), moderate (20%), and relatively high (30%). Throughout this chapter, the

proposed models (i.e., GHD-GMM and GST-GMM) and their Gaussian GMM coun-

terpart were used to carried out parameter estimation. Our proposed models are

implemented in R and Gaussian GMM is carried out by Mplus Version 7.3. As stated

in previous chapter, a family of the GHD-GMMs or GST-GMMs can be obtained

by imposing the constraints on the model parameters ϑ (equal or different across

classes). We only consider the general model (all the model parameters are different

across classes) and the most constrained model (only αk is different across classes)

herein.
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Figure 4.1: Individual’s trajectories plots for a typical simulated GHD-GMM and
GST-GMM dataset with nk = 250

In Table 4.2 and 4.3, we show the number of times each latent classes was selected,

as well as the average ARI and the average ERR and their corresponding associated

standard deviations. Overall, it can be seen that our proposed GHD-GMM with

missing information outperforms the GST-GMM and the Gaussian GMM counterpart

in selecting the correct number of latent classes with a very high average ARI (ARI)

and low average ERR (ERR). When the true underlying classes are well separated

(e.g., first simulation), all the models perform well but the GHD-GMM performs

best in terms of ARI and ERR. When the true underlying classes are overlapping

(e.g., second simulation), the GHD-GMM and GST-GMM leads to much higher ARI

and much lower ERR than their Gaussian GMM counterpart. The Gaussian GMM

usually overestimte the true trajectory classes unless the underlying true classes are

well separated. When the true underlying classes are overlapping, the increase of
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missing rate generally decrease the ARI and increase the ERR.

Table 4.2: The number of classes selected by the BIC for the first simulation experi-
ment with two different sample sizes under different missing rates (r)

r Fitted Models
Number of classes

ARI (std. dev.) ERR (std. dev.)
1 2 3 4 5

nk = 250

5%
GMM-Normal 0 0 22 8 0 0.955(0.040) 0.017(0.021)
GST-GMM 0 30 0 0 0 0.971(0.019) 0.007(0.005)
GHD-GMM 0 30 0 0 0 0.971(0.019) 0.007(0.005)

10%
GMM-Normal 0 1 18 8 3 0.957(0.042) 0.015(0.022)
GST-GMM 0 30 0 0 0 0.973(0.014) 0.007(0.003)
GHD-GMM 0 30 0 0 0 0.973(0.015) 0.007(0.004)

20%
GMM-Normal 0 9 19 2 0 0.968(0.018) 0.009(0.007)
GST-GMM 0 30 0 0 0 0.972(0.015) 0.007(0.004)
GHD-GMM 0 30 0 0 0 0.971(0.015) 0.007(0.004)

30%
GMM-Normal 0 10 20 0 0 0.967(0.018) 0.008(0.005)
GST-GMM 0 30 0 0 0 0.971(0.016) 0.007(0.004)
GHD-GMM 0 30 0 0 0 0.967(0.019) 0.008(0.005)

nk = 500

5%
GMM-Normal 0 10 20 0 0 0.895(0.067) 0.055(0.051)
GST-GMM 0 30 0 0 0 0.972(0.011) 0.007(0.003)
GHD-GMM 0 30 0 0 0 0.972(0.011) 0.007(0.003)

10%
GMM-Normal 0 17 13 0 0 0.926(0.0616) 0.035(0.040)
GST-GMM 0 30 0 0 0 0.970(0.010) 0.007(0.003)
GHD-GMM 0 30 0 0 0 0.970(0.010) 0.007(0.003)

20%
GMM-Normal 0 18 12 0 0 0.923(0.068) 0.036(0.039)
GST-GMM 0 30 0 0 0 0.969(0.011) 0.008(0.003)
GHD-GMM 0 30 0 0 0 0.969(0.011) 0.007(0.003)

30%
GMM-Normal 0 22 8 0 0 0.939(0.052) 0.025(0.036)
GST-GMM 0 30 0 0 0 0.963(0.014) 0.009(0.003)
GHD-GMM 0 30 0 0 0 0.963(0.014) 0.009(0.003)
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Table 4.3: The number of classes selected by the BIC for the second simulation
experiment with two different sample sizes under different missing rates (r)

r Fitted Models
Number of classes

ARI (std. dev.) ERR (std. dev.)
1 2 3 4 5

nk = 250

5%
GMM-Normal 0 20 10 0 0 0.501(0.167) 0.272(0.088)
GST-GMM 1 28 1 0 0 0.895(0.171) 0.035(0.088)
GHD-GMM 1 29 0 0 0 0.891(0.173) 0.036(0.088)

10%
GMM-Normal 0 25 5 0 0 0.436(0.218) 0.302(0.099)
GST-GMM 3 27 0 0 0 0.832(0.284) 0.067(0.147)
GHD-GMM 2 28 0 0 0 0.865(0.237) 0.051(0.122)

20%
GMM-Normal 0 28 2 0 0 0.416(0.298) 0.282(0.131)
GST-GMM 2 27 1 0 0 0.854(0.233) 0.054(0.121)
GHD-GMM 1 29 0 0 0 0.882(0.174) 0.038(0.088)

30%
GMM-Normal 0 30 0 0 0 0.311(0.272) 0.282(0.146)
GST-GMM 1 29 0 0 0 0.876(0.184) 0.040(0.090)
GHD-GMM 0 30 0 0 0 0.905(0.079) 0.025(0.023)

nk = 500

5%
GMM-Normal 0 10 20 0 0 0.423(0.110) 0.352(0.069)
GST-GMM 0 29 1 0 0.932(0.017) 0.017(0.004)
GHD-GMM 2 27 1 0 0 0.867(0.241) 0.051(0.124)

10%
GMM-Normal 0 15 15 0 0 0.474(0.086) 0.320(0.070)
GST-GMM 1 29 0 0 0.897(0.170) 0.035(0.088)
GHD-GMM 0 29 1 0 0 0.927(0.017) 0.019(0.006)

20%
GMM-Normal 0 18 12 0 0 0.474(0.093) 0.334(0.086)
GST-GMM 0 30 0 0 0 0.920(0.015) 0.021(0.004)
GHD-GMM 1 29 0 0 0 0.883(0.170) 0.038(0.088)

30%
GMM-normal 0 22 8 0 0 0.518(0.167) 0.271(0.108)
GST-GMM 2 28 0 0 0 0.851(0.232) 0.054(0.121)
GHD-GMM 1 29 0 0 0 0.881(0.168) 0.039(0.087)

4.4.2 Body mass index (BMI) from the National Longitudi-

nal Survey of Youth (NLSY)

In this section, we illustrate the application of our proposed non-elliptical GMMs with

missing information through the analysis of the BMI development over the ages 12-23
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years using the data from the National Longitudinal Survey of Youth 1997 (NLSY), a

nationally-representative survey conducted yearly by the United States Department

of Labor’s Bureau of Labor Statistics. The NLSY began in 1997 with youths between

the ages of 12 and 16 years old and continued to assess them annually. In addition

to labor participation, the NLSY also collected health-related data, including Body

Mass Index (BMI). In this Section, we only consider the black women (n = 1160).

Table 4.4 depicts the summary statistics for the data along with the missing data

information. Overall, the means of the BMI increased over time. The missing data

rates range from 13.97% to 94.48%, and there are 227 patterns of missing data.

Figure 4.2 shows boxplots of the twelve attributes of BMI from NLSY ages 12-23

for black women. From this figure, it can be seen that the distributions of many

attributes exhibit heavier tail weight than normal distributions, indicating that the

assumption of normality is not reasonable for this dataset.

Table 4.4: Summary statistics for BMI development ages 12-23 from NLSY

Variables Mean Std.
Missing data Missing data

(count) (percentage)
bmi12 21.70 4.38 1036 89.31
bmi13 22.79 4.83 833 71.81
bmi14 23.57 5.31 615 53.02
bmi15 23.84 5.21 453 39.05
bmi16 24.45 5.53 222 19.14
bmi17 25.06 5.92 162 13.97
bmi18 25.68 6.09 217 18.71
bmi19 26.24 6.58 390 33.62
bmi20 26.70 6.83 565 48.71
bmi21 26.85 6.68 762 65.69
bmi22 27.71 7.27 916 78.97
bmi23 28.55 7.06 1096 94.48

We analyze the BMI data using our proposed models and their Gaussian GMM
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Figure 4.2: Boxplots for the twelve attributes of BMI ages 12-23 from NLSY

counterpart with the latent classes ranging from 1 to 6 until the best model is selected

under each scenario considered. Like in the simulation studies, we only consider the

general and most constrained models among the families of the GMMs herein. Table

4.5 shows the results of fitting general and constrained normal, skew-t and generalized

hyperbolic GMMs for varying number of latent classes. In light of the BIC, the results

show that all GHD-GMM models are superior to the GST-GMM models and the

Gaussian GMMs. The best one is the general GHD-GMM with two latent classes.

The resulting ML estimates of the key model parameters are shown in Table 4.6. Not

surprisingly, the Gaussian GMM select more than two latent classes because the data

attributes exhibit skewness.
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Table 4.5: Results of fitting general and most constrained normal, skew-t and gener-
alized hyperbolic GMMs for BMI development from NLSY

GMM-Normal(general) GMM-Normal(constrained)
Classes Loglikelihood Free paras BIC Loglikelihood Free paras BIC

1 -17012.734 21 -34173.647 -17012.734 21 -34173.647
2 -15737.978 43 -31775.371 -16851.028 25 -33878.461
3 -15542.482 65 -31543.615 -16769.795 29 -33744.220
4 -15462.996 87 -31539.878 -16720.005 33 -33672.863
5 -16685.476 37 -33632.506
6 -16684.621 41 -33658.546

GST-GMM(general) GST-GMM(constrained)
Classes Loglikelihood Free paras BIC Loglikelihood Free paras BIC

1 -15730.611 25 -31637.626 -15744.836 25 -31666.077
2 -15512.380 51 -31384.625 -15703.949 29 -31612.526
3 -15443.812 77 -31430.949 -15709.897 33 -31652.647

GHD-GMM(general) GHD-GMM(constrained)
Classes Loglikelihood Free paras BIC Loglikelihood Free paras BIC

1 -15607.208 26 -31397.876 -15607.208 26 -31397.876
2 -15471.416 53 -31316.808 -15582.629 30 -31376.944
3 -15416.920 80 -31398.334 -15574.508 34 -31388.926

Table 4.6: The estimated key model parameters of the two-class general GHD-GMM
for BMI from NLSY

Class 1 Class 2

λ̂1 = 0.64 λ̂2 = −0.02
ω̂1 = 0.88 ω̂2 = 0.79
α̂1 = c(9.48, 1.70, 9.48)

′
α̂2 = c(10.83, 6.99, 10.83)

′

β̂1 = c(1.14, 0.73, 1.14)
′
β̂2 = c(1.58, 2.31, 1.58)

′

4.5 Discussion

In this chapter we have proposed the GHD-GMM and GST-GMM with arbitrary

patterns of missing values, which allows the analysts to fit longitudinal data in the

simultaneous presence of asymmetry, heavy tail weights, and missing values. We have
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developed a computationally tractable AECM algorithm for carrying out ML estima-

tion based on nice statistical properties of the normal variance-mean mixture. Rather

than deleting or filling in incomplete cases, ML treats the missing data as latent or

unobserved random variables to be updated at each iteration until convergence. The

computation procedure for the imputation of the missing values and the estimation

of the random effects are easy to implement once the ML estimates are achieved.

An advantage of the GHD and GST distributions for the random effects is their

propensity for accommodating asymmetry and heavier tail weight than its normal

distribution counterpart for random effects. Numerical results illustrated from sim-

ulated and real data indicate that our proposed models compares favourably to the

conventional GMM counterpart when the normality assumption is violated. Even

when the data are truly normally distributed, our proposed GHD-GMM with missing

values could be used to check the reproducibility of a normal GMM solution due to

the flexibility of the generalized hyperbolic distribution.

Looking forward, there are a number of extensions that would benefit from future

research. Our proposed models are only applicable to single outcome longitudinal

data, so a natural extension is to accommodate multi-outcome longitudinal data. We

can also generalize our proposed models by replacing the polynomial regression at

level 1 of the GMMs with other functional models, such as the spline and wavelet

bases. Finally, a joint modelling of the time-to-event data and longitudinal data would

be challenging and worthwhile extension by adding the standard Cox proportional

hazard or accelerated failure time survival models.
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Chapter 5

Mixtures of Generalized

Hyperbolic Distributions and

Mixtures of Skew-t Distributions

for Model-Based Clustering with

Incomplete Data

5.1 Introduction

As discussed in Chapter 1, more attention has been paid to develop mixture models

that can accommodate incomplete data in model-based clustering. The ML approach

to clustering incomplete data has been well studied and is often used, particularly

for Gaussian mixture models (e.g., Ghahramani and Jordan, 1994; Lin et al., 2006;
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Browne et al., 2013). Wang et al. (2004) present a framework of ML estimation using

an EM algorithm to fit a mixture of multivariate t-distributions with arbitrary miss-

ing data patterns, which was generalized by Lin et al. (2009) to efficient supervised

learning via the parameter expanded (PX-EM) algorithm (Liu et al., 1998) through

two auxiliary indicator matrices. Lin (2014) further develops a family of multivariate-

t mixture models with 14 eigen-decomposed scale matrices in the presence of missing

data through a computationally flexible EM algorithm by incorporating two auxiliary

indicator matrices.

In this chapter, we consider fitting mixtures of generalized hyperbolic distribu-

tions (MGHD) and mixtures of multivariate skew-t distributions (MST) with missing

information. In each case, an EM algorithm is used for parameter estimation. In ad-

dition to considering missing data, we develop families of MGHD and MST mixture

models, each with 14 parsimonious eigen-decomposed scale matrices corresponding

to the famous Gaussian parsimonious clustering models (GPCMs) of Banfield and

Raftery (1993) and Celeux and Govaert (1995).

5.2 Statistical Properties of the GHD and GST

Before outlining the details for this algorithm, we first present some distributional

properties of the GHD and GST, which is useful for developing the parameter esti-

mation presented in Section 5.3.

The following result shows an appealing closure property of the GHD and GST

under affine transformation and conditioning as well as the formation of marginal

distributions. Suppose that X is a p-dimensional random vector having a GHD as

in (2.13), i.e., X ∼ GHDp(λ, ω,µ,Σ,β). Assume that X is partitioned as X =
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(Xᵀ
1,X

ᵀ
2)

ᵀ, where X1 takes values in Rd1 and X2 in Rd1 = Rp−d1 , with

µ =

µ1

µ2

 , β =

β1

β2

 , Σ =

Σ11 Σ12

Σ21 Σ22

 ,

where X, µ, and β have similar partitions. Furthermore, Σ11 is d1 × d1 and Σ22 is

d2 × d2.

Proposition 5.2.1. Affine transformation of the GHD. If X ∼ GHDp(λ, ω,µ,Σ,β)

and Y = BX + b where B ∈ Rk×p and b ∈ Rp, then

X ∼ GHDk(λ, ω,Bµ+ b,BΣBᵀ,Bβ), (5.1)

Proof. The result follows by substituting (2.12) into Y = BX + b.

Proposition 5.2.2. The marginal distribution of X1 is a GHD as in (2.13) with

index parameter λ, concentration parameter ω, location vector µ1, dispersion matrix

Σ11, and skewness vector β1, i.e., X1 ∼ GHDd1(λ, ω,µ1,Σ11,β1).

Proof. The result follows by applying Proposition 1 and choosing B = [Id1 ,0] and

b = 0. The parameters λ, ω inherited from the mixing distribution W ∼ I(λ, η =

1, ω) remain the same under the affine transformation and marginal distribution.

Proposition 5.2.3. The conditional distribution of X2 given X1 = x1 is a GHD as
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in (2.10), i.e., X2 | X1 = x1 ∼ GHd2(λ2|1, χ2|1, ψ2|1,µ2|1,Σ2|1,β2|1), where

λ2|1 = λ− d1
2
, χ2|1 = ω + (x1 − µ1)

ᵀΣ
−1

11 (x1 − µ1),

ψ2|1 = ω + βᵀ
1Σ

ᵀ
11β, µ2|1 = µ2 + Σᵀ

12Σ
−1

11 (x1 − µ1),

Σ2|1 = Σ22 −Σᵀ
12Σ

−1

11Σ12, β2|1 = β2 −Σᵀ
12Σ

−1

11β1.

The proof of Proposition 5.2.3 is given in Appendix B.2.

Similarly, suppose that X is a p-dimensional random vector having the multivari-

ate skew-t distribution as in (2.14), i.e., X ∼ GSTp(ν,µ,Σ,β). Assume that X is

partitioned as X = (Xᵀ
1,X

ᵀ
2)

ᵀ, where X1 takes values in Rd1 and X2 in Rd1 = Rp−d1 ,

with

µ =

µ1

µ2

 β =

β1

β2

 Σ =

Σ11 Σ12

Σ21 Σ22

 ,

where X, µ, and β have similar partitions. Furthermore, Σ11 is d1 × d1 and Σ22 is

d2 × d2.

Proposition 5.2.4. Affine transformation of the multivariate skew-t distribution. If

X ∼ GSTp(ν,µ,Σ,β) and Y = BX + b, where B ∈ Rk×p and b ∈ Rp, then

X ∼ GSTk(ν,Bµ+ b,BΣBᵀ,Bβ). (5.2)

Proof. The proof is similar to Proposition 5.2.1, hence is omitted here.

Proposition 5.2.5. The marginal distribution of X1 is a multivariate skew-t distri-

bution as in (2.14) with degree of freedom parameter ν, location vector µ1, dispersion
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matrix Σ11, and skewness vector β1, i.e., X1 ∼ GSTd1(ν,µ1,Σ11,β1).

Proof. The proof follows easily by applying Proposition 5.2.4 and choosing B =

[Id1 ,0] and b = 0. The degree of freedom parameter ν inherited from the mixing

distribution W ∼ IG(ν/2, ν/2) remains invariant under affine transformation and

marginal distribution.

Proposition 5.2.6. The conditional distribution of X2 given X1 = x1 is a GHD as

in (2.10), i.e., X2 | x1 ∼ GHd2(λ2|1, χ2|1, ψ2|1,µ2|1,Σ2|1,β2|1), where

λ2|1 = −(ν + d1)/2, χ2|1 = ν + (x1 − µ1)
ᵀΣ

−1

11 (x1 − µ1),

ψ2|1 = βᵀ
1Σ

ᵀ
11β, µ2|1 = µ2 + Σᵀ

12Σ
−1

11 (x1 − µ1),

Σ2|1 = Σ22 −Σᵀ
12Σ

−1

11Σ12, β2|1 = β2 −Σᵀ
12Σ

−1

11β1.

The proof of Proposition 5.2.6 is similar to that for Proposition 5.2.3, hence is

omitted.

5.3 Methodology

5.3.1 MGHD with Incomplete Data

Let X1, . . . ,Xn be p-dimensional random variables arising from a heterogeneous pop-

ulation with G disjoint MGHD subpopulations. That is, each Xi has the density

fMGHD(xi | Θ) =
G∑
g=1

πgfGHD(xi | λg, ωg,µg,Σg,βg), (5.3)
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where πg > 0, such that
∑G

g=1 πg = 1 are the mixing proportions, Θ denotes the

model parameters, and fGHD(xi | λg, ωg,µg,Σg,βg) is the GHD density defined in

(2.13).

To apply the MGHD model (5.3) in the clustering paradigm, introduce Zi =

(Zi1, . . . , Zig)
ᵀ, where Zig = 1 if observation i is in component g and Zig = 0 otherwise.

We have Zi ∼ M(1;π1, . . . , πG), i.e., Zi follows a multinomial distribution with one

trial and cell probabilities π1, . . . , πG.

A three-level hierarchical representation of the MGHD model (5.3) can be ex-

pressed by

Xi | (wig, Zig = 1) ∼ N (µg + wigβg, wigΣg),

Wig | (Zig = 1) ∼ I(λg, η = 1, ωg), (5.4)

Zi ∼M(1;π1, . . . , πG).

The complete-data consist of the observed xi together with the missing group mem-

bership zig and the latent wig, for i = 1, . . . , n and g = 1, . . . , G, and the complete-data

log-likelihood is given by

lc(Θ) =
n∑
i=1

G∑
g=1

zig
[
log(πg) + log(φ(xi | µg + wigβg, wigΣg)) + log(h(wig | λg, ωg))

]
.

(5.5)

Browne and McNicholas (2015) present an EM algorithm for parameter estimation

with the MGHD when there is no missing data in x1, . . . ,xn. We are interested

in parameter estimation for the MGHD model (5.3) when x1, . . . ,xn are partially

observed with arbitrary missing patterns. The missing data mechanism is assumed

to be MAR. Assume now that we split xi into two components, xo
i and xm

i that denote
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the observed and missing components of xi, respectively. In general, each data vector

xi may have a different pattern of missing features, i.e., xi = (xoiᵀ
i ,xmiᵀ

i )ᵀ, but can

be simplified for the sake of clarity.

For each xi = (xoᵀ
i ,x

mᵀ
i )ᵀ, partition the vector mean µg = (µoᵀ

g,i,µ
mᵀ
g,i )

ᵀ, where

µo
g,i and µm

g,i denote the sub-vectors of µg matching the observed and missing compo-

nents of xi, respectively. Similarly, the skewness vector is βg = (βoᵀ
g,i,β

mᵀ
g,i )

ᵀ and the

covariance matrix Σg as

Σg =

Σoo
g,i Σom

g,i

Σmo
g,i Σmm

g,i

 and Σ
−1

g =

Σ−1,oog,i Σ−1,omg,i

Σ−1,mo
g,i Σ−1,mm

g,i

 , (5.6)

correspond to xi = (xoᵀ
i ,x

mᵀ
i )ᵀ. As a result, in addition to the observed xo

i , the

missing group membership zig, and the latent variable wig, the complete-data also

include the missing data xm
i . In the framework of the EM algorithm, the missing

data xm
i are considered to be random variables that are updated in each iteration.

Hence, the complete-data log-likelihood (5.5) is rewritten as

lc(Θ) =
n∑
i=1

G∑
g=1

zig
[

log πg+ log φ(xo
i ,x

m
i | µg + wigβg, wigΣg) + log hI(wig | λg, ωg)

]
.

Given (5.4), we establish the following:

• The marginal distribution of Xo
i given is

Xo
i ∼

G∑
g=1

πgfGHD,poi
(λg, ωg,µ

o
g,i,Σ

oo
g,i,β

o
g,i),

where poi is the dimension corresponding to the observed component xo
i , which
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should be exactly written as poii but here is simplified.

• The conditional distribution of Xm
i given xo

i and Zig = 1, according to Propo-

sition 3, is

Xm
i | xo

i , Zig = 1 ∼ GHp−poi

(
λ
m|o
g,i , χ

m|o
g,i , ψ

m|o
g,i ,µ

m|o
g,i ,Σ

m|o
g,i ,β

m|o
g,i

)
, (5.7)

where

λ
m|o
g,i = λg −

poi
2
, χ

m|o
g,i = ωg + (xo

i − µo
g,i)

ᵀ(Σoo
g,i)
−1(xo

i − µo
g,i),

ψm|o
g = ωg + βoᵀ

g,i(Σ
oo
g,i)
−1βo

g,i, µ
m|o
g,i = µm

g + Σomᵀ
g,i (Σoo

g,i)
−1(xo

i − µo
g,i),

Σ
m|o
g,i = Σmm

g,i −Σomᵀ
g,i (Σoo

g,i)
−1Σom

g,i , β
m|o
g,i = βm

g,i −Σomᵀ
g,i (Σoo

g,i)
−1βo

g,i.

• The conditional distribution of Xm
i given xo

i , wig, and Zig = 1 is

Xm
i | xo

i , wig, Zig = 1 ∼ Np−poi (µ
m|o
g,i + wigβ

m|o
g,i , wigΣ

m|o
g,i ). (5.8)

• The conditional distribution of Wi given xo
i and Zig = 1 is

Wig | xo
i , Zig = 1 ∼ GIG

(
ωg + βoᵀ

g,i(Σ
oo
g,i)
−1βo

g,i, ωg + δ(xo
i ,µ

o
g,i | Σoo

g,i), λg −
poi
2

)
.

(5.9)
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After a little algebra, we get the complete data log-likelihood function is

lc(Θ) =
n∑
i=1

G∑
g=1

zig log πg +
n∑
i=1

G∑
g=1

zig

[
−p

2
log(2π)− p

2
logwig +

1

2
log |Σ−1

g |
]

− 1

2

n∑
i=1

G∑
g=1

tr

Σ
−1

g zig
1

wig

 (xo
i − µo

g,i)(x
o
i − µo

g,i)
ᵀ (xo

i − µo
g,i)(x

m
i − µm

g,i)
ᵀ

(xm
i − µm

g,i)
ᵀ(xo

i − µo
g,i) (xm
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g,i)(x

m
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g,i)
ᵀ




+
1

2

n∑
i=1

G∑
g=1

tr

Σ
−1

g zig

βo
g,i

βm
g,i

((xo
i − µo

g,i)
ᵀ (xm

i − µm
g,i)

ᵀ

)
+

1

2

n∑
i=1

G∑
g=1

tr

Σ
−1

g zig

xo
i − µo

g,i

xm
i − µm

g,i

(βoᵀ
g,i βmᵀ

g,i

)− 1

2

n∑
i=1

G∑
g=1

zigwigβ
ᵀ
g,iΣ

−1

g βg,i

+
n∑
i=1

G∑
g=1

zig

[
(λg − 1) logwig − log(2Kλg(ωg))−

ωg
2

(
wig +

1

wig

)]
. (5.10)

On the kth iteration of the E-step, the expected value of the complete data log-

likelihood is computed given the observed data xo
1, . . . ,x

o
n and the current parameter

updates Θ(k). That is, we need to compute E(Zig | xo
i ; Θ

(k)), E(Wig | xo
i , zig =

1; Θ(k)), E(logWig | xo
i , zig = 1; Θ(k)), E(1/Wig | xo

i , zig = 1; Θ(k)), E(Xm
i | xo

i , zig =

1, wi; Θ
(k)), and E(Xm

i Xmᵀ
i | xo

i , zig = 1, wi; Θ
(k)).

First, let ẑ
(k)
ig denote the a posteriori probability that i-th observation belongs to

the g-th component of the mixture, based on the observed data:

ẑ
(k)
ig := E(Zig | xo

i ,Θ
(k)) =

π
(k)
g fGHD,poi

(xo
i ;λ

(k)
g , ω

(k)
g ,µ

o(k)
g,i ,Σ

oo(k)
g,i ,β

o(k)
g,i )∑G

l=1 π
(k)
l fGHD,poi

(xo
i ;λ

(k)
l , ω

(k)
l ,µ

o(k)
l,i ,Σ

oo(k)
l,i ,β

o(k)
l,i )

.
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Given (2.8) and (5.9), we have the following expectations as to the latent variable W :

a
(k)
ig := E(Wig | xo

i , zig = 1; Θ(k)) =

√√√√ ω
(k)
g + δ(xo

i ,µ
o(k)
g,i | Σ

oo(k)
g,i )

ω
(k)
g + β

o(k)ᵀ
g,i (Σ

oo(k)
g,i )−1β

o(k)
g,i

×
K
λ
(k)
g −

p0
i
2
+1

(√
(ω

(k)
g + δ(xo

i ,µ
o(k)
g,i | Σ

oo(k)
g,i ))(ω

(k)
g + β

o(k)ᵀ
g,i (Σ

oo(k)
g,i )−1β

o(k)
g,i )

)
K
λ
(k)
g −

p0
i
2

(√
(ω

(k)
g + δ(xo

i ,µ
o(k)
g,i | Σ

oo(k)
g,i ))(ω

(k)
g + β

o(k)ᵀ
g,i (Σ

oo(k)
g,i )−1β

o(k)
g,i )

) ,

b
(k)
ig := E(1/Wig | xo

i , zig = 1; Θ(k))

= − 2λ
(k)
g − poi

ω
(k)
g + δ(xo

i ,µ
o(k)
g,i | Σ

oo(k)
g,i )

+

√√√√ω
(k)
g + β

o(k)ᵀ
g,i (Σ

oo(k)
g,i )−1β

o(k)
g,i

ω
(k)
g + δ(xo

i ,µ
o(k)
g,i | Σ

oo(k)
g,i )

×
K
λ
(k)
g −

p0
i
2
+1

(√
(ω

(k)
g + δ(xo

i ,µ
o(k)
g,i | Σ

oo(k)
g,i ))(ω

(k)
g + β

o(k)ᵀ
g,i (Σ

oo(k)
g,i )−1β

o(k)
g,i )

)
K
λ
(k)
g −

p0
i
2

(√
(ω

(k)
g + δ(xo

i ,µ
o(k)
g,i | Σ

oo(k)
g,i ))(ω

(k)
g + β

o(k)ᵀ
g,i (Σ

oo(k)
g,i )−1β

o(k)
g,i )

) ,

c
(k)
ig := E(logWig | xo

i , zig = 1; Θ(k)) = log


√√√√ ω

(k)
g + δ(xo

i ,µ
o(k)
g,i | Σ

oo(k)
g,i )

ω
(k)
g + β

o(k)ᵀ
g,i (Σ

oo(k)
g,i )−1β

o(k)
g,i


+

∂

∂t
log

{
Kt

(√
(ω

(k)
g + δ(xo

i ,µ
o(k)
g,i | Σ

oo(k)
g,i ))(ω

(k)
g + β

o(k)ᵀ
g,i (Σ

oo(k)
g,i )−1β

o(k)
g,i )

)}∣∣∣∣
t=(λ

(k)
g −

po
i
2
)

.

For convenience, we use the following notation analogous to Browne and McNicholas

(2015): n
(k)
g =

∑n
i=1 ẑ

(k)
ig , ā

(k)
g = 1/n

(k)
g

∑n
i=1 ẑ

(k)
ig a

(k)
ig , b̄

(k)
g = 1/n

(k)
g

∑n
i=1 ẑ

(k)
ig b

(k)
ig , and

c̄
(k)
g = 1/n

(k)
g

∑n
i=1 ẑ

(k)
ig c

(k)
ig . For the actual missing data Xm, we will also need the

80



Ph.D. Thesis - Yuhong Wei McMaster - Mathematics and Statistics

following expectations:

x̂
m(k)
ig : = E(Xm

i | xo
i , Zig = 1) = µ

m|o(k)
g,i + a

(k)
ig β

m|o(k)
g,i ,

x̃
m(k)
ig : = E((1/Wi)X

m
i | xo

i , Zig = 1) = b
(k)
ig µ

m|o(k)
g,i + β

m|o(k)
g,i ,

˜̃x
m(k)
ig : = E((1/Wi)X

m
i Xmᵀ

i | xo
i , Zig = 1) = Σ

m|o(k)
g,i + b

(k)
ig µ

m|o(k)
g,i (µ

m|o(k)
g,i )ᵀ

+ µ
m|o(k)
g,i (β

m|o(k)
g,i )ᵀ + β

m|o(k)
g,i (µ

m|o(k)
g,i )ᵀ + a

(k)
ig β

m|o(k)
g,i (β

m|o(k)
g,i )ᵀ.

On the k-th iteration of the M-step, the expected value of the complete data

log-likelihood is maximized to get the updates for the parameter estimates as follows:

π(k+1)
g =

n
(k)
g

n
,

µ(k+1)
g =

1∑n
i=1 ẑ

(k)
ig (ā

(k)
g b

(k)
ig − 1)

n∑
i=1

ẑ
(k)
ig

 (ā
(k)
g b

(k)
ig − 1)xo

i

ā
(k)
g x̃

m(k)
ig − x̂

m(k)
ig

 ,

β(k+1)
g =

1∑n
i=1 ẑ

(k)
ig (ā

(k)
g b

(k)
ig − 1)

n∑
i=1

ẑ
(k)
ig

 (b̄
(k)
g − b(k)ig )xo

i

b̄
(k)
g x̂

m(k)
ig − x̃

m(k)
ig

 ,

Σ(k+1)
g =

1

n
(k)
g

n∑
i=1

ẑ
(k)
ig Σ

(k+1)
ig − (x̄g − µ(k+1)

g )β(k+1)ᵀ
g − β(k+1)

g (x̄g − µ(k+1)
g )ᵀ + ā(k)g β

(k+1)
g β(k+1)ᵀ

g ,

where

x̄g =
1

n
(k)
g

n∑
i=1

ẑ
(k)
ig

 xo
i

x̂
m(k)
ig

 ,

Σ
(k+1)
ig =

 b
(k)
ig (xo

i − µ
o(k+1)
g )(xo

i − µ
o(k+1)
g )ᵀ (xo

i − µ̂
o(k+1)
g )(x̃

m(k)
ig − b(k)ig µ̂

m(k+1)
g )ᵀ

(x̃
m(k)
ig − b(k)ig µ̂

m(k+1)
g )(xo

i − µ
o(k+1)
g )ᵀ k

m(k+1)
ig

 ,
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where

k
m(k+1)
ig = ˜̃x

m(k)
ig − x̃

m(k)
ig µ̂m(k+1)ᵀ

g − µ̂m(k+1)
g x̃

m(k)ᵀ
i + b

(k)
ig µ̂

m(k+1)
g µ̂m(k+1)ᵀ

g .

Finally, the estimates of λ
(k+1)
g and ω

(k+1)
g are given as solutions to maximize the

function

qg(λg, ωg) = − log(Kλg(ωg)) + (λg − 1)c̄g −
ωg
2

(āg + b̄g),

and the associated updates are

λ(k+1)
g = c̄(k)g λ(k)g

[
∂

∂λ
(k)
g

log
(
K
λ
(k)
g

(ω(k)
g )
)]−1

,

ω(k+1)
g = ω(k)

g −

[
∂

∂ω
(k)
g

qg(λ
(k+1)
g , ω(k)

g )

][
∂2

∂ω
2(k)
g

qg(λ
(k+1)
g , ω(k)

g )

]−1

.

5.3.2 MST with Incomplete Data

Analogous to the MGHD model (5.3), the MST model takes the density

fMST(Xi | Θ) =
G∑
g=1

πgfGST(Xi | νg,µg,Σg,βg), (5.11)

where Θ = (π,vg,µg,Σg,βg) with vg = (ν1, . . . , νg) and πg,µg,Σg, and βg are as de-

fined above. By introducing the group membership variables Zi ∼M(1;π1, . . . , πG),
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convenient three-layer hierarchical representations are given by

Xi | (wig, Zig = 1) ∼ N (µg + wigβg, wigΣg)

Wig | (Zig = 1) ∼ IG(νg/2, νg/2). (5.12)

Zi ∼M(1;π1, . . . , πG)

Assume that the matrix X = (Xoᵀ,Xmᵀ)ᵀ contains missing data. For each xi =

(xoᵀ
i ,x

mᵀ
i )ᵀ, we write µg = (µoᵀ

g,i,µ
mᵀ
g,i )

ᵀ, βg = (βoᵀ
g,i,β

mᵀ
g,i )

ᵀ, and finally the gth dis-

persion matrix Σg is partitioned as in (5.6). Hence, based on (5.12), we have the

following conditional distributions:

• The marginal distribution of Xo
i is

Xo
i ∼

G∑
g=1

πgfGST,poi
(λg, ωg,µ

o
g,i,Σ

oo
g,i,β

o
g,i),

where poi is the dimension corresponding to the observed component xo
i , which

should be exactly written as poii but here is simplified.

• The conditional distribution of Xm
i given xo

i and Zig = 1, according to Propo-

sition 6, is

Xm
i | xo

i , Zig = 1 ∼ GHp−poi (λ
m|o
g,i , χ

m|o
g,i , ψ

m|o
g,i ,µ

m|o
g,i ,Σ

m|o
g,i ,β

m|o
g,i ), (5.13)
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where

λ
m|o
g,i = −νg + poi

2
, ψ

m|o
g,i = νg + (xo

i − µo
g,i)

ᵀ(Σoo
g,i)
−1(xo

i − µo
g,i),

ψ
m|o
g,i = βoᵀ

g,i(Σ
oo
g,i)
−1βo

g,i, µ
m|o
g,i = µm

g,i + Σomᵀ
g,i (Σoo

g,i)
−1(xo

i − µo
g,i),

Σ
m|o
g,i = Σmm

g,i −Σomᵀ
g,i (Σoo

g,i)
−1Σom

g,i , β
m|o
g,i = βm

g,i −Σomᵀ
g,i (Σoo

g,i)
−1βo

g,i.

• The conditional distribution of Xm
i given xo

i , wig, and Zig = 1 is

Xm
i | xo

i , wig, Zig = 1 ∼ Np−poi (µ
m|o
g,i + wigβ

m|o
g,i , wigΣ

m|o
g,i ). (5.14)

• The conditional distribution of Wi given xo
i and Zig = 1 is

Wig | xo
i , Zig = 1 ∼ GIG

(
βoᵀ
g,i(Σ

oo
g,i)
−1βo

g,i, νg + δ(xo
i ,µ

o
g,i | Σoo

g,i),−
νg + poi

2

)
.

(5.15)

As in the case of the MGHD model with incomplete data, the complete data

consists of the observed xi, the missing group membership zig, the latent wig, as well

as the actual missing data xm
i , for i = 1, . . . , n and g = 1, . . . , G. Again, the complete

data log-likelihood function is given by

lc(Θ) =
n∑
i=1

G∑
g=1

zig
[
log πg + log φ(xo

i ,x
m
i | µg + wigβg, wigΣg)

+ log fIG(wig | νg/2, νg/2)] . (5.16)
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Furthermore, one can simplify (5.16) to

lc(Θ) =
n∑
i=1

G∑
g=1

zig log πg +
n∑
i=1

G∑
g=1

zig

[
−p

2
log(2π)− p

2
logwig +

1

2
log |Σ−1

g |
]

− 1

2

n∑
i=1

G∑
g=1

tr

Σ
−1

g zig
1
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g,i)(x
o
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ᵀ (xo
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g,i)(x

m
i − µm
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ᵀ

(xm
i − µm

g,i)
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i − µo
g,i) (xm
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g,i)(x

m
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ᵀ




+
1

2

n∑
i=1

G∑
g=1

tr

Σ
−1

g zig

βo
g,i

βm
g,i

((xo
i − µo

g,i)
ᵀ (xm

i − µm
g,i)

ᵀ

)
+

1

2

n∑
i=1

G∑
g=1

tr

Σ
−1

g zig

xo
i − µo

g,i

xm
i − µm

g,i

(βoᵀ
g,i βmᵀ

g,i

)− 1

2

n∑
i=1

G∑
g=1

zigwigβ
ᵀ
g,iΣ

−1

g βg,i

+
n∑
i=1

G∑
g=1

zig

[
νg
2

log
(νg

2

)
− log Γ

(νg
2

)
−
(νg

2
+ 1
)

logwig −
νg

2wig

]
. (5.17)

On the kth iteration of the E-step, the expected value of the complete-data log-

likelihood is computed given the observed data Xo and the current parameter updates

Θ(k). Denote by τ
(k)
ig the a posteriori probability that the ith observation belongs to

the gth component of the mixture. Specifically, it can be calculated as

τ
(k)
ig := E(Zig | xo

i ,Θ
(k)) =

π
(k)
g fGST,poi

(xo
i ; ν

(k)
g ,µ

o(k)
g,i ,Σ

oo(k)
g,i ,β

o(k)
g,i )∑G

l=1 π
(k)
l fGST,poi

(xo
i ; v

(k)
l ,µ

o(k)
l,i ,Σ

oo(k)
l,i ,β

o(k)
l,i )

.

Given the observed data xo, the current parameter updates Θ(k), and conditional

distributions (5.13) and (5.15), taking expectations for (5.17) leads to the following

expectation updates in the E-step:
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A
(k)
ig := E(Wig | xo

i , zig = 1; Θ(k)) =

√√√√ν
(k)
g + δ(xo

i ,µ
o(k)
g,i | Σ

oo(k)
g,i )

β
o(k)ᵀ
g,i (Σ

oo(k)
g,i )−1β

o(k)
g,i

×
K−(ν(k)g +p0i )/2+1

(√
(ν

(k)
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o(k)
g,i | Σ

oo(k)
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(√
(ν
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oo(k)
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g,i )

) ,
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(k)
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i , zig = 1; Θ(k))

=
ν
(k)
g + poi

ν
(k)
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o(k)
g,i | Σ

oo(k)
g,i )

+

√√√√ β
o(k)ᵀ
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oo(k)
g,i )−1β

o(k)
g,i

ν
(k)
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o(k)
g,i | Σ
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g,i )

×
K−(ν(k)g +p0i )/2+1

(√
(ν

(k)
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i ,µ
o(k)
g,i | Σ

oo(k)
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K−(ν(k)g +p0i )/2

(√
(ν

(k)
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o(k)
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oo(k)
g,i ))(β

o(k)ᵀ
g,i (Σ
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g,i )−1β

o(k)
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) ,

C
(k)
ig := E(logWig | xo

i , zig = 1; Θ(k)) = log


√√√√ν

(k)
g + δ(xo

i ,µ
o(k)
g,i | Σ

oo(k)
g,i )

β
o(k)ᵀ
g,i (Σ

oo(k)
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o(k)
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+

∂

∂t
log

{
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(√
(ν

(k)
g + δ(xo

i ,µ
o(k)
g,i | Σ

oo(k)
g,i ))(β

o(k)ᵀ
g,i (Σ

oo(k)
g,i )−1β

o(k)
g,i )

)}∣∣∣∣
t=−(ν(k)g +poi )/2

,

x̂
m(k)
ig : = E(Xm

i | xo
i , Zig = 1) = µ

m|o(k)
g,i + A

(k)
ig β

m|o(k)
g,i ,

x̃
m(k)
ig : = E((1/Wi)X

m
i | xo

i , Zig = 1) = B
(k)
ig µ

m|o(k)
g,i + β

m|o(k)
g,i ,

˜̃x
m(k)
ig : = E((1/wi)X

m
i Xmᵀ

i | xo
i , Zig = 1) = Σ

m|o(k)
g,i +B

(k)
ig µ

m|o(k)
g,i (µ

m|o(k)
g,i )ᵀ

+ µ
m|o(k)
g,i (β

m|o(k)
g,i )ᵀ + β

m|o(k)
g,i (µ

m|o(k)
g,i )ᵀ + A

(k)
ig β

m|o(k)
g,i (β

m|o(k)
g,i )ᵀ.

For convenience, let n
(k)
g =

∑n
i=1 τ

(k)
ig , Ā

(k)
g = 1/n

(k)
g

∑n
i=1 τ

(k)
ig A

(k)
ig , B̄

(k)
g = 1/n

(k)
g

∑n
i=1 τ

(k)
ig B

(k)
ig ,

and C̄
(k)
g = 1/n

(k)
g

∑n
i=1 τ

(k)
ig C

(k)
ig . On the kth iteration of the M-step, we get updates

for the parameter estimates of the mixture as follows:
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π(k+1)
g =

n
(k)
g

n
,

µ(k+1)
g =

1∑n
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(k)
ig (Ā
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g B
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n∑
i=1

τ̂
(k)
ig

 (Ā
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Finally, as for the degree of freedom parameter νg, the update does not exist in

closed form. The update ν
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where ϕ(·) is the digamma function.

5.3.3 Notes on Implementation

It is well known that the EM algorithm can be heavily dependent on the initial

values; indeed, good initial values of parameter estimates may speed up convergence.

In this study, the following procedure for automatically generating initial values is

used, unless otherwise specified.

• Fill in the missing values based on the mean imputation method.

• Perform k-means clustering and use the resulting clustering membership to

initialize the a posteriori probability ẑ0ig. Accordingly, the initial values for the

model parameters are then given by:

π̂(0)
g =

∑n
i=1 ẑ

0
ig

n
, µ̂(0)

g =

∑n
i=1 ẑ

0
igxi∑n

i=1 ẑ
0
ig

, Σ̂
(0)

g =

∑n
i=1 ẑ

0
ig(xi − µ̂

(0)
g )(xi − µ̂(0)

g )ᵀ∑n
i=1 ẑ

0
ig

.

• Set the skewness parameter β(0)
g to be close to zero for symmetric data.

• When applicable, we set ω
(0)
g = 1 and λ

(0)
g = −0.5 for the index and concentra-

tion parameters and set ν
(0)
g = 50 for the near-normality assumption.

To enhance the computational efficiency of the EM algorithm, we update the

parameters per missing pattern instead of per individual. We suggest rearranging X

according to unique patterns of the missing data. The procedure can be implemented

as follows:

• Build a binary n by p indicator matrix R = [rij], with each entry rij = 1 if Xij

is missing and rij = 0 otherwise;
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• Find all unique missing patterns; and

• Update parameters per missing pattern instead of per individual.

5.4 Numerical Examples

Studies based on both simulated and real datasets are used to compare the clus-

tering performance of the proposed approach. The simulated datasets are each two-

component mixtures: a mixture of Gaussian distributions (GMM) with a general VEE

covariance structure, a mixture of skew-t distributions (MST) with a diagonal VEI

covariance structure, and a mixture of generalized hyperbolic distributions (MGHD)

with a general VEE covariance structure. The GMM datasets are generated via the R

function rmvnorm from the mvtnorm package for R, and the MST and MGHD datasets

are generated using R code based on the stochastic representations in (2.12).

For each mixture component, ng = 200 two-dimensional vectors xi are generated.

The presumed parameters of Σg (g = 1, 2) for the VEE and VEI models are the same

as those considered in Celeux and Govaert (1995) and Lin (2014). Each mixture com-

ponent is centred on a different point giving well-separated and overlapping mixtures.

Where applicable, the skewness parameters are β1 = (1, 1)ᵀ and β2 = (−1,−1)ᵀ, the

degrees of freedoms for the MST is v1 = v2 = 7, and the values of other parameters

for the MGHD are ω1 = ω2 = 4 and λ1 = λ2 = 6. For each scenario, we create arti-

ficially incomplete datasets by removing data through an MAR mechanism from the

simulated samples under missing rates r ranging from 5% to 30% while maintaining

the condition that each observation has at least one observed attribute. Then our

proposed model for incomplete data is compared to the MGHD and MST for complete
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data once missing data have been ‘filled-in’ with the sample mean of the associated

attribute, via the mean imputation method. The misclassification rate ERR and the

adjusted Rand index (ARI; Hubert and Arabie, 1985) are used to compare predicted

classifications with true classes.

5.4.1 Simulation Studies

The datasets considered in the simulation studies are summarized in Table 5.1 and

plotted in Figure 5.1. The datasets are overlapping, making this a relatively difficult

clustering scenario even when the datasets are complete.

Table 5.1: Summary of simulated datasets

Dataset Distribution Covariance structure Separation between components
Sim1 MGHD VEE well-separated
Sim2 MGHD VEE overlapping
Sim3 MST VEI well-separated
Sim4 MST VEI overlapping
Sim5 GMM VEE well-separated
Sim6 GMM VEE overlapping

First, we undertook a simulation study similar to those of Celeux and Govaert

(1995) and Lin (2014) to investigate the classification performance of the MGHD

VEE and MST VEI models with synthetic missing values (r = 5%, 30%). These two

models discussed in this experiment are compared for the six simplest cases among

a family of fourteen models. Simulations were run with a total of 80 replicates for

the first four simulated datasets. The detailed numerical results are summarized in

Tables 5.2 and 5.3, including the average misclassification rates with the associated

standard deviations in parentheses. The following phenomena are observed, which

are similar to results obtained by Lin (2014):
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Figure 5.1: Exemplar scatter plots for simulated datasets.

• The average misclassification rate increases as the missing rate rises.

• The overlapping components typically have a higher misclassification rate than

well-separated components.

• The bolded numbers indicate that the best results are generally associated with

the true covariance structure.

• The standard deviations increase with missing data rate and the degree of com-

ponent overlap.

As another illustration, we explore the flexibility of the MGHD model for incom-

plete data and study the performance of the BIC for model selection. As mentioned

in the introduction, the GHD is a flexible distribution with skewness, concentration,
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Table 5.2: Misclassification rates and associated standard deviations for each model
fitted in Sim1, Sim2, Sim3, and Sim4 when r = 5%.

EII VII EEI VEI EEE VEE

Sim1
0.0670 0.0538 0.0717 0.0546 0.0557 0.0531

(0.0421) (0.0125) (0.0529) (0.0134) (0.0210) (0.0131)

Sim2
0.1424 0.1214 0.1261 0.1223 0.1535 0.1210

(0.0577) (0.0330) (0.0308) (0.0204) (0.0640) (0.0214)

Sim3
0.0763 0.0295 0.0509 0.0186 0.0541 0.0189

(0.0215) (0.0117) (0.0268) (0.0062) (0.0298) (0.0062)

Sim4
0.3050 0.2019 0.3316 0.1907 0.3306 0.2425

(0.0631) (0.0458) (0.0752) (0.0353) (0.0582) (0.1004)

Table 5.3: Misclassification rates and associated standard deviations for each model
fitted to Sim1, Sim2, Sim3, and Sim4 when r = 30%.

EII VII EEI VEI EEE VEE

Sim1
0.0784 0.0646 0.0853 0.0671 0.0692 0.0601

(0.0416) (0.0192) (0.0498) (0.0203) (0.0297) (0.0305)

Sim2
0.1666 0.1520 0.1462 0.1427 0.1821 0.1425

(0.0607) (0.0597) (0.0475) (0.0418) (0.0662) (0.0467)

Sim3
0.1092 0.0799 0.0936 0.0709 0.0936 0.0723

(0.0222) (0.0257) (0.0195) (0.0128) (0.0257) (0.0112)

Sim4
0.3555 0.2826 0.3442 0.2759 0.3589 0.3019

(0.0702) (0.0691) (0.0804) (0.0639) (0.0638) (0.0779)

and index parameters. The six simulated datasets in Table 5.1 with missing rates

ranging from 5 to 30% were generated under an MAR mechanism with 20 replicates

for each dataset. The parsimonious MGHD and MST models introduced here are

fitted to the simulated data and compared to mean imputation method with the

number of components fixed to G = 2 and also with number of components selected

from G = 1, . . . , 4. We compute the average misclassification rates, the average ARI,

and their associated standard deviations for the best model selected based on the

BIC. The detailed results are summarized in Tables 5.4 and 5.5. The lowest misclas-

sification rates and the highest ARI are highlighted. From these tables, we observe
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the following:

• The average misclassification rate increases as the missing rate rises. As ex-

pected, overlapping components typically have higher misclassification rates

than the well-separated components. In addition, the fit of the parsimonious

MGHD and MST models to each simulated dataset does not considerably de-

crease as the missing data rate rises.

• Our proposed parsimonious MGHD and MST models for incomplete data per-

form significantly better than their counterparts parsimonious MGHD and MST

model with mean imputation method (MI/MGHD, MI/MST). In addition,

our proposed parsimonious MGHD generally yields much lower misclassifica-

tion rates than its competitor parsimonious MST for incomplete data when the

datasets are generated from generalized hyperbolic distribution, and lower or

closer misclassification rates when the datasets are generated from the skew-t

or Gaussian distribution.

• Our proposed parsimonious MGHD for incomplete data generally yields similar

misclassification rates under circumstances of both known clusters and unknown

clusters, while its competitor parsimonious MST generally yields poorer misclas-

sification rates with unknown clusters. This is because the BIC always finds the

true number of clusters when using the MGHD for incomplete data, but tends

to overestimate the number of clusters when using the MST for incomplete data

for datasets with overlapping mixtures.
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Table 5.4: A comparison of average misclassification rates and ARI between MGHD,
MST, and MI models with standard deviations in parentheses (replications=20) with
G = 2.

MGHD MST MI/MGHD MI/MST
r ERR ARI ERR ARI ERR ARI ERR ARI

Sim1

5%
0.0539 0.7963 0.1346 0.5362 0.111 0.6039 0.1309 0.5482
(0.016) (0.0553) (0.0293) (0.0868) (0.0259) (0.0807) (0.0339) (0.0972)

10%
0.0503 0.8093 0.1344 0.3355 0.1684 0.3355 0.233 0.3355
(0.0135) (0.0484) (0.0325) (0.1934) (0.0302) (0.1934) (0.1167) (0.1934)

20%
0.0641 0.761 0.1241 0.2686 0.2821 0.2686 0.3385 0.1516
(0.0208) (0.0701) (0.0409) (0.2561) (0.1452) (0.2561) (0.1135) (0.1546)

30%
0.0684 0.7478 0.113 0.602 0.1035 0.6606 0.3338 0.2374
(0.0289) (0.0933) (0.0318) (0.1001) (0.0925) (0.1884) (0.1836) (0.2969)

Sim2

5%
0.1095 0.6133 0.1676 0.4532 0.1998 0.3699 0.195 0.386
(0.0335) (0.0961) (0.0575) (0.1382) (0.053) (0.1175) (0.0635) (0.132)

10%
0.1114 0.4481 0.1694 0.4481 0.2621 0.2422 0.2893 0.2116
(0.0462) (0.146) (0.0563) (0.146) (0.0678) (0.1088) (0.0966) (0.1632)

20%
0.1244 0.5662 0.1786 0.4232 0.1853 0.4342 0.2924 0.2084
(0.0274) (0.0786) (0.0546) (0.1225) (0.1014) (0.1698) (0.0993) (0.1561)

30%
0.1244 0.5667 0.172 0.436 0.1293 0.5536 0.2616 0.3147
(0.0297) (0.0874) (0.0426) (0.11) (0.0356) (0.0897) (0.1529) (0.2266)

Sim3

5%
0.0208 0.9186 0.0454 0.9186 0.0349 0.8651 0.0938 0.6913
(0.0049) (0.0187) (0.0288) (0.0187) (0.0045) (0.0167) (0.0915) (0.1774)

10%
0.0304 0.882 0.0531 0.8014 0.0611 0.7703 0.1384 0.5736
(0.0054) (0.0204) (0.0286) (0.1006) (0.0103) (0.0363) (0.1163) (0.2459)

20%
0.0497 0.8131 0.0689 0.7373 0.1461 0.5516 0.3017 0.2199
(0.01) (0.0365) (0.0272) (0.0971) (0.1122) (0.1941) (0.1261) (0.2232)

30%
0.0674 0.6472 0.1076 0.7483 0.2808 0.292 0.4618 0.009
(0.0091) (0.1719) (0.0921) (0.0315) (0.1631) (0.2823) (0.037) (0.0169)

Sim4

5%
0.191 0.3883 0.2891 0.1997 0.2065 0.3553 0.2968 0.3553

(0.0454) (0.1057) (0.0789) (0.135) (0.0566) (0.1238) (0.1084) (0.1238)

10%
0.293 0.2248 0.3025 0.1745 0.2543 0.2756 0.3133 0.1789

(0.1201) (0.19) (0.073) (0.1055) (0.0965) (0.1586) (0.1041) (0.1505)

20%
0.272 0.2403 0.3004 0.1896 0.3101 0.1953 0.317 0.1748

(0.0942) (0.1339) (0.0917) (0.1353) (0.1175) (0.1531) (0.1056) (0.1315)

30%
0.2748 0.2138 0.3241 0.1447 0.415 0.0605 0.4699 0.0114
(0.0575) (0.1005) (0.0776) (0.0958) (0.0939) (0.112) (0.051) (0.0502)

Sim5

5%
0.0776 0.7146 0.1155 0.5965 0.1448 0.5151 0.118 0.5855
(0.0214) (0.0714) (0.0399) (0.1201) (0.0549) (0.1374) (0.0274) (0.0836)

10%
0.0783 0.7149 0.1214 0.5782 0.1816 0.4129 0.1665 0.4489
(0.0328) (0.1067) (0.0388) (0.1181) (0.0483) (0.1173) (0.0377) (0.0954)

20%
0.0836 0.6982 0.1124 0.6065 0.2556 0.3462 0.2638 0.2605
(0.0378) (0.1204) (0.0411) (0.1272) (0.169) (0.2948) (0.1011) (0.1796)

30%
0.101 0.6447 0.0986 0.6469 0.1441 0.5864 0.2673 0.3536

(0.0478) (0.145) (0.0298) (0.0946) (0.1458) (0.2624) (0.1903) (0.3161)

Sim6

5%
0.2235 0.3136 0.2199 0.3312 0.2749 0.226 0.2469 0.2761

(0.0493) (0.0996) (0.0704) (0.1132) (0.0806) (0.1357) (0.075) (0.1141)

10%
0.2439 0.2853 0.2384 0.3019 0.2813 0.2219 0.2784 0.2227
(0.08) (0.1459) (0.0882) (0.1451) (0.0916) (0.1348) (0.0854) (0.1338)

20%
0.2518 0.2548 0.3039 0.19 0.4419 0.0216 0.4409 0.0182
(0.0508) (0.0966) (0.0997) (0.1257) (0.0517) (0.0377) (0.0416) (0.0347)

30%
0.2495 0.2709 0.241 0.2755 0.2145 0.3292 0.2975 0.1987

(0.0749) (0.1285) (0.0477) (0.0935) (0.0355) (0.0778) (0.0975) (0.1153)
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Table 5.5: A comparsion of average misclassification rates and ARI between MGHD,
MST, and MI models with standard deviations in parentheses (replications=20) with
G = 1, . . . , 4.

MGHD MST MI/MGHD MI/MST
Datasets r ERR ARI ERR ARI ERR ARI ERR ARI

Sim1

5%
0.0608 0.7744 0.0688 0.7712 0.1206 0.5935 0.1185 0.6069
(0.0292) (0.0925) (0.0557) (0.0998) (0.0302) (0.0874) (0.0341) (0.098)

10%
0.0578 0.7823 0.2769 0.4558 0.1879 0.5029 0.2325 0.4794
(0.0116) (0.0412) (0.0895) (0.2147) (0.0392) (0.109) (0.0882) (0.139)

20%
0.0674 0.7523 0.2311 0.5615 0.3108 0.2975 0.2963 0.3703
(0.0335) (0.1082) (0.0604) (0.1052) (0.0552) (0.1387) (0.0541) (0.1209)

30%
0.0746 0.7267 0.2369 0.5605 0.4265 0.2461 0.3936 0.2825
(0.0309) (0.099) (0.0576) (0.075) (0.1155) (0.1705) (0.0824) (0.1374)

Sim2

5%
0.1114 0.6092 0.3174 0.3703 0.1769 0.4482 0.3348 0.3444
(0.0398) (0.1061) (0.0936) (0.1716) (0.0534) (0.1331) (0.0986) (0.1437)

10%
0.1188 0.5873 0.4068 0.4068 0.3018 0.3018 0.3281 0.3281
(0.0425) (0.1126) (0.1431) (0.1431) (0.1263) (0.1263) (0.1149) (0.1149)

20%
0.1240 0.5722 0.3103 0.4056 0.3153 0.3081 0.3354 0.294
(0.0444) (0.1225) (0.095) (0.1076) (0.0531) (0.1011) (0.0648) (0.1311)

30%
0.1319 0.5482 0.3036 0.386 0.476 0.1319 0.4586 0.1723
(0.0437) (0.1121) (0.0577) (0.069) (0.0869) (0.1268) (0.086) (0.1109)

Sim3

5%
0.0198 0.9227 0.2155 0.6765 0.0335 0.8765 0.2608 0.5412
(0.0055) (0.0211) (0.0774) (0.1619) (0.0075) (0.0284) (0.108) (0.2765)

10%
0.0556 0.8316 0.2386 0.5548 0.0878 0.7565 0.2969 0.3988
(0.1049) (0.1979) (0.1161) (0.2822) (0.0367) (0.0503) (0.1256) (0.2891)

20%
0.0744 0.7629 0.246 0.3157 0.3251 0.3157 0.2673 0.4629
(0.1010) (0.1855) (0.0793) (0.2448) (0.1154) (0.2448) (0.0673) (0.1664)

30%
0.0769 0.7162 0.2473 0.0904 0.4741 0.0904 0.5329 0.09

(0.0141) (0.0476) (0.0938) (0.1201) (0.0726) (0.1201) (0.1012) (0.1422)

Sim4

5%
0.2419 0.3074 0.441 0.1751 0.2066 0.355 0.3004 0.1875

(0.1054) (0.1699) (0.0632) (0.1035) (0.055) (0.1256) (0.1066) (0.0965)

10%
0.3004 0.2011 0.4401 0.1519 0.2518 0.2938 0.4048 0.1842

(0.1066) (0.1593) (0.0608) (0.075) (0.0826) (0.1387) (0.0689) (0.0911)

20%
0.2703 0.2375 0.4359 0.1306 0.4323 0.0829 0.4395 0.0782
(0.0859) (0.1266) (0.0743) (0.0812) (0.0589) (0.0857) (0.0515) (0.0964)

30%
0.3101 0.1691 0.4356 0.0975 0.5004 0.0101 0.6058 0.0043
(0.0836) (0.1088) (0.0589) (0.0535) (0.0532) (0.0246) (0.0241) (0.0169)

Sim5

5%
0.0575 0.7844 0.2533 0.5515 0.127 0.5994 0.2596 0.5138
(0.0214) (0.0748) (0.0596) (0.1117) (0.0397) (0.1127) (0.052) (0.0749)

10%
0.072 0.7346 0.2545 0.5235 0.1986 0.4692 0.2403 0.4556

(0.0257) (0.0872) (0.0879) (0.1428) (0.0476) (0.1087) (0.0646) (0.0896)

20%
0.0766 0.7239 0.2459 0.5493 0.3454 0.2477 0.2975 0.3767
(0.0445) (0.1317) (0.0894) (0.1419) (0.0808) (0.1929) (0.065) (0.1543)

30%
0.1064 0.6268 0.2395 0.5281 0.3915 0.2961 0.3983 0.2692
(0.0455) (0.1366) (0.0739) (0.1067) (0.0912) (0.1328) (0.0705) (0.1217)

Sim6

5%
0.2211 0.3198 0.436 0.1709 0.2685 0.2415 0.4105 0.1983
(0.0515) (0.1062) (0.0846) (0.1114) (0.0822) (0.1381) (0.0712) (0.077)

10%
0.2573 0.2515 0.4155 0.1921 0.3305 0.1857 0.4068 0.176
(0.0672) (0.1093) (0.0693) (0.0857) (0.058) (0.0935) (0.1079) (0.0958)

20%
0.2501 0.2613 0.3865 0.1818 0.5618 0.0216 0.5625 0.006
(0.0588) (0.1072) (0.0655) (0.0869) (0.0497) (0.0377) (0.0433) (0.0146)

30%
0.2597 0.2442 0.4205 0.1773 0.4992 0.0634 0.4923 0.1094
(0.0626) (0.1064) (0.1032) (0.0745) (0.0903) (0.0811) (0.0607) (0.0676)
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5.4.2 Italian Wine Data

In this first experiment, we apply our proposed parsimonious MGHD and MST mod-

els to the well-known Italian wine dataset, which includes thirteen chemical attributes

of n = 178 Italian wines from Barolo (59), Grignolino (71), and Barbera (48) grape

cultivars, which are treated as three intrinsic clusters. This dataset is available in

the gclus package (Hurley, 2004) for R. This dataset is complete, so for illustra-

tion purposes we consider various levels of missing data ranging from 5 to 30% by

deleting observations through an MAR mechanism. The dataset is scaled prior to

analysis. The number of components is fixed at G = 3, then data are analyzed using

our proposed parsimonious MGHD and MST models for incomplete data and their

counterparts with mean imputation. The results of this analysis (Table 5.6) show

that the parsimonious MGHD outperforms the other models for all levels of missing

data.

Table 5.6: Misclassification rate and ARI values for our proposed approaches and
using mean imputation for clustering on the wine dataset with different levels of
missing rates (r).

MGHD MST MI/MGHD MI/MST
r ERR ARI ERR ARI ERR ARI ERR ARI
5% 0.0506 0.8465 0.0730 0.7844 0.0562 0.8222 0.0618 0.0618
10% 0.1180 0.6779 0.1517 0.6052 0.1292 0.6455 0.1573 0.5929
20% 0.3539 0.4128 0.3427 0.4645 0.3989 0.3456 0.3764 0.3367
30% 0.3596 0.4280 0.3620 0.4073 0.3820 0.3327 0.3820 0.3327

5.4.3 Pima Indians Diabetes Data

Data on the diabetes status of 768 patients is obtained from the UCI Machine Learn-

ing data repository. The data include information on eight attributes, in which the

attribute of number of times pregnant is treated as continuous variable because its
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range is from 0 to 14. These data are a popular benchmark dataset for clustering for

truly missing values, as 376 of the observations have at least one attribute missing.

The data are overlapping and the numerous missing observations make clustering

difficult. The detailed description of the attributes and their associated missing rates

are summarized in Table 5.7. The dataset features 268 patients with a diabetes di-

agnosis and 500 without, and these are treated as two clusters. Again, this dataset

is scaled prior to the analysis.

Table 5.7: A description of Pima Indian diabetes dataset

No. missing values Sample mean Sample std. dev.
Number of times pregnant 0 3.85 3.37
Plasma glucose concentration 5 120.89 31.97
Diastolic blood pressure (mm Hg) 35 69.11 19.36
Triceps skin fold thickness (mm) 227 20.54 15.95
2-hour serum insulin(mu U/mL) 374 79.80 115.24
Body mass index 11 31.99 7.88
Diabetes pedigree function 0 0.47 0.33
Age (years) 0 33.24 11.76

Because there are two known clusters, we fix G = 2 and compare the BIC and ICL

values for 14 covariance structures of our proposed parsimonious MGHD and MST

models. The clustering results are summarized in Table 5.8. Lin (2014) perform a

comparable cluster analysis on these via a t mixture model and matches the true clus-

ter labels with 66.7% accuracy. Compared to Lin (2014), our proposed parsimonious

MGHD model for incomplete data gives a higher accuracy rate (69.11%).

Table 5.8: Misclassification rate and ARI values for our proposed approaches for
clustering on the Pima Indian diabetes dataset.

Structure BIC ICL ERR Accuracy
MGHD EEE -14016.95 -14053.61 0.3089 69.11%
MST VVI -14109.1 -14186.1 0.3763 62.37%
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5.5 Discussion

Approaches for clustering incomplete data where clusters may be heavy tailed and/or

asymmetric is introduced, based on MGHD and MST. There approaches were further

extended to parsimonious families of MGHD and MST models via eigen-decomposition

of the component scale matrices. The BIC and ICL were used for model selection. It is

well known that the BIC can tend to overestimate the number of clusters in practice;

however, the results presented herein show that this overestimation can sometimes

be mitigated via a more flexible component density such as the MGHD. An EM algo-

rithm was developed to fit the MGHD and MST models to incomplete data, and later

implemented in R. It is worth mentioning that our approaches are also applicable in

situations with no missing data; and so we have MGHD and MST analogues of the

models of Celeux and Govaert (1995). Our MGHD and MST models were applied to

real and simulated heterogeneous datasets for clustering in the presence of missing

values, and the PMGHD family performed favourably when compared to the PMST

family as well as the MGHD and MST approaches with mean imputation.

Going forward, the PMGHD and PMST approaches for clustering with missing

values can easily be extended to model-based classification, discriminant analysis, and

density estimation. Furthermore, Bayesian analysis via a Gibbs sampler is another

popular approach to handle missing data in multivariate datasets (e.g., Lin et al.,

2009), so a fully Bayesian treatment will be considered as an alternative to the EM

algorithm for parameter estimation.
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Chapter 6

Flexible High-Dimensional

Unsupervised Learning with

Missing Data

6.1 Introduction

Recently, more attention has been paid to the analysis of heterogeneous high-dimensional

data involving different patterns of missing values. However, many model-based clus-

tering techniques, such as the commonly used mixtures factor analyzers (MFA) and

mixtures of t-factor analyzers (MtFA) approaches, require complete data for sta-

tistical analysis. Naturally, this has led to the development of models for clustering

high-dimensional data with missing values, such as the mixture of common factor ana-

lyzers (MCFA) model with missing values (Wang, 2013) and the mixture of common-t

factor analyzers (MCtFA) with missing values (Wang, 2015).
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In this chapter, we aim to develop a unified approach to the mixtures of gener-

alized hyperbolic factor analyzers (MGHFA) for handling high-dimensional data in

the presence of missing values as well as heavy-tailed and/or asymmetric clusters

(Section 6.2). Maximum likelihood estimates for the MGHFA model with missing

values are worked out via a variant of the expectation-maximization algorithm (EM;

Dempster et al., 1977) (Section 6.3). To ease the computational burden, two auxil-

iary permutation matrices are introduced as in Lin et al. (2006). As a by-product,

the proposed procedure provides a conditional predictor to impute the missing values

and a classifier to cluster partially observed vectors. In Section 6.4, the methodology

is illustrated through simulated data with varying proportions of artificially missing

values and a real ozone dataset with truly missing values. Finally, some concluding

remarks are given in Section 6.5.

6.2 Methodology

6.2.1 The MFA and MGHFA Models

Out of consideration for completeness, we briefly outline the MFA and MGHFA

models herein. The main idea behind MFA is to reduce the number of parame-

ters in the specification of the component-covariance matrices. Given n independent

p-dimensional continuous variables x1, . . . ,xn, which come independently from a het-

erogeneous population with G subgroups, the MFA can be written as

Xi = µg + ΛgUig + εig (6.1)
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with probability πg, for i = 1, . . . , n and g = 1, . . . , G, where µg is a p × 1 vector of

component central location, Λg is a p × q matrix of factor loadings, Uig ∼ N (0, Iq)

is a q × 1 vector of latent factors, and εig ∼ N (0,Ψg) is a p× 1 vector of errors with

Ψg = diag(ψg1, . . . , ψgp). Note that the Uig are independently distributed and are

independent of the εig, which are also independently distributed. Under this model,

the marginal distribution of Xi from the gth component is N (µg,ΛgΛ
′

g + Ψg).

Tortora et al. (2016) consider an MGHFA model, where

Xi = µg +Wigβg +
√
Wig(ΛgUig + εig) (6.2)

with probability πg, where Wig ∼ I(λg, η = 1, ωg), Uig ∼ N (0, Iq), and εig ∼

N (0,Ψg). Note that Uig and εig satisfy the same independence relationships as

for the MFA model. It follows that Xi | wig ∼ N (µg + wigβg, wig(ΛgΛ
′

g + Ψg)).

Then, they arrive at the MGHFA model with density

g(x | π1, . . . , πg,ϑ1, . . . ,ϑg) =
G∑
g=1

πgfGHD(x | λg, ωg,µg,Σg,βg), (6.3)

where Σg = ΛgΛ
′

g + Ψg.

Typically, denote which component each Xi belongs to, it is convenient to in-

troduce Z1, . . . ,Zn, where Zi = (Zi1, . . . , ZiG) with zig = 1 if xi belongs to the gth

component and Zig = 0 otherwise. It follows that Zi follows a multinomial distribu-

tion with one trial and cell probabilities π1, . . . , πG, denoted by Zi ∼M(1;π1, . . . , πG).

According to (6.2), a four-level hierarchical representation of MGHFA models can be
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formulated as

Xi | (wig,uig, zig = 1) ∼ N (µg + wigβg + Λguig, wigΨg), (6.4)

Uig | (wig, zig = 1) ∼ N (0, wigIq), (6.5)

Wig | (zig = 1) ∼ I(λg, η = 1, ωg), (6.6)

Zi ∼M(1; πg, . . . , πG). (6.7)

6.2.2 The MGHFA Model With Missing Information

To set up estimating equations for the MGHFA model allowing for missing informa-

tion, Xi is partitioned into the observed component Xo
i and the missing component

Xm
i with dimensions poi × 1 and pmi × 1, respectively, where poi + pmi = p. To facilitate

computation, following Lin et al. (2006), two missingness indicator matrices are also

introduced, denoted by Oi (poi × p) and Mi (pmi × p), which can be extracted from a

p-dimensional identity matrix Ip corresponding to the respective row positions of Xo
i

and Xm
i in Xi such that Xo

i = OiXi and Xm
i = MiXi. It is not difficult to verify that

Xi = O
′
iX

o
i +M

′
iX

m
i and O

′
iOi+M

′
iMi = Ip. Now, some important consequences are

summarized in the following proposition, which is useful for evaluating the required

conditional expectation in the E-step of the algorithm described in the next section.

Proposition 6.2.1. Following from the MGHFA model (6.2) and the hierarchical

representations (6.4)–(6.7), we have:

a. The conditional distribution of Xo
i given wig and zig = 1 is

Xo
i | wig, zig = 1 ∼ Npoi (µ

o
ig + wigβ

o
ig, wigΣ

oo
ig ), (6.8)
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where µo
ig = Oiµg, β

o
ig = Oiβg, and Σoo

ig = OiΣgO
′
i.

b. The marginal distribution of the observed component Xo
i is

g(xo
i ) =

G∑
g=1

πgfpoi ,GHD(x | λg, ωg,µo
ig,Σ

oo
ig ,β

o
ig), (6.9)

where poi is the dimension corresponding to the observed component xo
i .

c. The conditional distribution of Xm
i given xo

i , wig, and zig = 1 is

Xm
i | xo

i , wig, zig = 1 ∼ Npoi (ζ
m·o
ig , wigΣ

m·o
ig ), (6.10)

where

ζm·oig = Mi

(
µg + wigβg + ΣgS

oo
ig (xi − µg − wigβg)

)
,

Σm·o
ig = Mi(Ip −ΣgS

oo
ig )ΣgM

′

i,

Soo
ig = O

′

i(OiΣgO
′

i)
−1Oi.

d. The conditional distribution of Wig given xo
i and zig = 1 is

Wig | xo
i , zig = 1 ∼ GIG(λ?ig, χ

?
ig, ψ

?
ig), (6.11)

where ψ?ig = ωg +βgS
oo
igβ

′

g, χ
?
ig = ωg + (xi−µg)

′
Soo
ig (xi−µg), and λ?ig = λg− poi

2
.

e. The conditional distribution of Xo
i given wig, uig, and zig = 1 is

Xo
i | wig,uig, zig = 1 ∼ Npoi (ζ

o
ig, wigΨ

oo
ig ), (6.12)
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where ζoig = µoig + wigβ
o
ig + OiΛguig and Ψoo

ig = OiΨgO
′
i.

f. The conditional distribution of Xm
i given xo

i , wig, uig, and zig = 1 is

Xm
i | xo

i , wig,uig, zig = 1 ∼ N (γm·o
ig , wigΨ

m·o
ig ), (6.13)

where

γm·o
ig = Mi(µg + wigβg + Λguig + ΨgT

oo
ig (xi − µg − wigβg −Λguig)),

Ψm·o
ig = Mi(Ip −ΨgT

oo
ig )ΨgM

′

i,

Too
ig = O

′

i(OiΨgO
′

i)
−1Oi.

g. The conditional distribution of Uig given xo
i , wig, and zig = 1 is

Uig | xo
i , wig, zig = 1 ∼ N

(
αig(xi − µg − wigβg), wig(Iq −αigΛg)

)
, (6.14)

where αig = Λ
′

gS
oo
ig .

The proof of Proposition 1 is straightforward and hence omitted.

6.3 Computational Techniques

6.3.1 Learning via the AECM Algorithm

To compute the maximum likelihood estimates for the parameters of MGHFA model

with partially observed data, we adopt a modification of the expectation-conditional

maximization (ECM) algorithm (Meng and Rubin, 1993), namely the alternating
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ECM (AECM) algorithm (Meng and Van Dyk, 1997). In our MGHFA models with

missing information, the complete-data is composed of the observed data xo
i as well

as the missing data xm
i , the missing labels zig, the latent wig, and the latent factors

uig.

For this application of the AECM algorithm to our MGHFA model with missing

information, one iteration consists of two cycles, with one E-step and five CM-steps

in the first cycle and one E-step and two CM-steps in the second cycle. In the first

cycle of the algorithm, we update the mixing proportions πg, the component means

µg, the skewness βg, the concentration parameters ωg, and the index parameters λg.

In the second cycle of the algorithm, we update the factor loadings matrices Λg and

the error covariance matrices Ψg.

In the first cycle of the AECM algorithm, when estimating πg, λg, ωg, µg, and

βg, the complete-data consist of the observed xo
i , the missing xm

i , the labels zig, and

the latent wig. Hence, the complete-data log-likelihood is

logL1 =
n∑
i=1

G∑
g=1

zig
[
log πg + log φ

(
xo
i ,x

m
i | µg + wigβg, wigΣg

)
+ log h(wig | ωg, λg)

]
.

In the E-step of the first cycle, in order to compute the expected value of the complete-

data log-likelihood logL1, we need to compute E(Zig | xo
i ), E(Wig | xo

i , zig = 1),

E(logWig | xo
i , zig = 1), E(1/Wig | xo

i , zig = 1), E(Xi | xo
i , zig = 1), E((1/Wig)Xi |

xo
i , zig = 1), and E((1/Wig)XiX

′
i | xo

i , zig = 1).

As usual, the expected value of the Zig is given by

E(Zig | xo
i ) =

πgfGHD(xo
i | λg, ωg,µo

ig,Σ
oo
ig ,β

o
ig)∑G

h πhfGHD(xo
i | λh, ωh,µo

ih,Σ
o
ih,β

o
ih)

=: ẑig. (6.15)
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Let aig = E(Wig | xo
i , zig = 1), big = E(1/Wig | xo

i , zig = 1), and cig = E(logWig |

xo
i , zig = 1), which are implicit functions of parameters and can be evaluated directly

by applying Proposition 1(d) and (2.8).

Recall that Xi = O
′
iX

o
i + M

′
iX

m
i and O

′
iOi + M

′
iMi = Ip. These simply lead to

O
′
iOi(Ip − ΣgS

oo
ig ) = 0. Then, based on Proposition 1(c), the following conditional

expectations are obtained:

E(Xi | xo
i , zig = 1) = µg + aigβg + ΣgS

oo
ig (xi − µg − aigβg) =: E1ig,

E((1/Wig)Xi | xo
i , zig = 1) = bigµg + βg + ΣgS

oo
ig (big(xi − µg)− βg) =: E2ig,

E((1/Wig)XiX
′

i | xo
i , zig = 1; Θ̂) = (Ip −ΣgS

oo
ig )Σg + (Ip −ΣgS

oo
ig )(bigµgx

′

i + βgx
′

i)S
oo
igΣg

+ (Ip −ΣgS
oo
ig )(bigµgµ

′

g + µgβ
′

g + βgµ
′

g + aigβgβ
′

g)(Ip − Soo
igΣg) + bigΣgS

oo
ig xix

′

iS
oo
igΣg

+ ΣgS
oo
ig (bigxiµ

′

g + xiβ
′

g)(Ip − Soo
igΣg) =: E3ig.

After the expected value Q1 of the complete-data log-likelihood (logL1) is formed,

maximizing Q1 with respect to πg, µg, and βg gives rise to the parameter updates

π̂g =
ng
n
, µ̂g =

∑n
i=1 ẑig(āgE2ig − E1ig)∑n

i=1 ẑig(bigāg − 1)
, and β̂g =

∑n
i=1 ẑig(b̄gE1ig − E2ig)∑n
i=1 ẑig(bigāg − 1)

,

respectively, where ng =
∑n

i=1 ẑig, āg = 1/ng
∑n

i=1 ẑigaig, b̄g = 1/ng
∑n

i=1 ẑigbig, and

c̄g = 1/ng
∑n

i=1 ẑigcig. The estimates of the parameters ωg and λg are given as solu-

tions to maximize the following function:

qg(λg, ωg) = − logKλg(ωg) + (λg − 1)c̄g −
ωg
2

(āg + b̄g), (6.16)
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and the associated updates are

λ̂g = c̄gλ̂
prev
g

[
∂

∂λ̂prevg

logKλ̂prevg

(
ω̂prev
g

)]−1

,

ω̂g = ω̂prev
g −

[
∂

∂ω̂prev
g

qg

(
ω̂prev
g , λ̂g

)] [ ∂2

∂(ω̂prev
g )2

qg

(
ω̂prev
g , λ̂g

)]−1

,

where the superscript ‘prev’ denotes the previous estimate. Note that these are

analogous to the updates given by Browne and McNicholas (2015).

In the second cycle of the AECM algorithm, when estimating Λg and Ψg, the

complete-data include the observed data xo
i , the missing data xm

i , the group labels

zig, the latent wig, and the latent factors uig. The complete-data log-likelihood can

be written

logL2 =
n∑
i=1

G∑
g=1

zig
[

log πg + log φ
(
xo
i ,x

m
i | µg + wigβg + Λguig, wigΨg

)
+ log φ(uig | 0, wigIq) + log h(wig | ωg, λg)

]
,

= C +
1

2

n∑
i=1

G∑
g=1

zig log |Ψ
−1

g |

− 1

2

n∑
i=1

G∑
g=1

zig

[
tr

(
1

wig
(xix

′

i − xiµ
′

g − µgx
′

i + µgµ
′

g)Ψ
−1

g

)
− 2tr

(
βg(xi − µg)

′
Ψ
−1

g

)
+ tr

(
wigβgβ

′

gΨ
−1

g

)
− 2tr

(
1

wig
Ψ
−1

g Λguigx
′

i

)
+ 2tr

(
1

wig
µ
′

gΨ
′

gΛguig

)
+ 2tr

(
β
′

gΨ
−1

g Λguig

)
+ tr

(
1

wig
Λguigu

′

igΛ
′

gΨ
−1

g

)]
,

where C is constant with respect to the parameters Λg and Ψg. In the E-step of

the second cycle, in order to compute the expected value of the complete-data log-

likelihood logL2, in addtion to the same conditional expectations from the E-step
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of the first cycle, we will also need to compute E(Uig | xo
i , zig = 1), E((1/Wig)Ui |

xo
i , zig = 1), E((1/Wig)UiU

′
i | xo

i , zig = 1), and E((1/Wig)Uix
′
i | xo

i , zig = 1).

Recall that Xi = O
′
iX

o
i + M

′
iX

m
i and O

′
iOi +M

′
iMi = Ip. These simply give rise

to O
′
iOi(Ip−ΣgS

oo
ig ) = 0 and O

′
iOi(Ip−ΨgT

oo
ig ) = 0. Then, based on Proposition 1f

and 1g, we obtain the following conditional expectations:

E(Ui | xo
i , zig = 1) = αig(xi − µg − aigβg) =: E4ig,

E((1/Wig)Ui | xo
i , zig = 1) = αig(big(xi − µg)− βg) =: E5ig,

E((1/Wig)UiU
′

i | xo
i , zig = 1) = Iq −αigΛg + bigαig(xi − µg)(xi − µg)

′
α
′

ig

+ aigαigβgβ
′

gα
′

ig −αig
(

(xi − µg)β
′

g + βg(xi − µg)
′
)
α
′

ig =: E6ig,

E((1/Wig)UiX
′

i | xo
i , zig = 1) = E5igx

′

iT
oo
igΨg + E5igµ

′

g(Ip −Too
igΨg)

+ E4ig(Ip −Too
igΨg) + E6igΛ

′

g(Ip −Too
igΨg) =: E7ig.

Therefore, it follows that the expected value of the complete-data log-likelihood

(logL2) evaluated with zig = ẑig, µg = µ̂g, and βg = β̂g is of the form

Q2 =
1

2

n∑
i=1

G∑
g=1

ẑig log |Ψ
−1

g | −
1

2

n∑
i=1

G∑
g=1

ẑig

[
tr
(

(E3ig − E2igµ̂
′

g − µ̂gE
′

2ig + bigµ̂gµ̂
′

g)Ψ
−1

g

)
− 2tr

(
β̂g(E1ig − µ̂g)

′
Ψ
−1

g

)
+ tr

(
aigβ̂gβ̂

′

gΨ
−1
g

)
− 2tr

(
Ψ
−1

g ΛgE7ig

)
+ 2tr

(
µ̂
′

gΨ
′

gΛgE5ig

)
+ 2tr

(
β̂
′

gΨ
−1

g ΛgE4ig

)
+ tr

(
ΛgE6igΛ

′

gΨ
−1

g

)]
,

where the constant C is omitted. Differentiating Q2 with respect to Λg and Ψg and
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solving the first derivative equalling to zero give rise to their associated updates:

Λ̂g =

[ n∑
i=1

ẑig

(
E
′

7ig − µ̂gE
′

5ig − β̂gE
′

4ig

)][ n∑
i=1

ẑigE6ig

]−1

,

Ψ̂g =
1

ng

n∑
i=1

ẑig

[
E3ig − E2igµ̂

′

g − µ̂gE
′

2ig + bigµ̂gµ̂
′

g − 2β̂g(E1ig − µ̂g)
′

+ aigβ̂gβ̂
′

g − 2Λ̂gE7ig + 2Λ̂gE5igµ̂
′

g + 2Λ̂gE4igβ̂
′

g + Λ̂gE6igΛ̂
′

g

]
.

The AECM algorithm iteratively updates the parameters until the Aitken acceleration

based criterion is satisfied. Unless otherwise specified, the default value of ε is 10−5

in later numerical examples (Section 6.4).

6.3.2 Imputation of Missing Data

When the convergence is achieved, we obtain the maximum likelihood estimates of

the parameters denoted by Θ̂ = (π̂g, λ̂g, ω̂g, µ̂g, β̂g, Λ̂g, Ψ̂g, g = 1, . . . , G). Therefore,

the posterior probability of group membership for each observation at convergence

can be estimated by

ẑ?ig = P(zig = 1 | xo
i ; Θ̂) =

π̂gfGHD(xo
i | λ̂g, ω̂g, µ̂

o
ig, Σ̂

oo

ig , β̂
o

ig)∑G
h π̂hfGHD(xo

i | λ̂h, ω̂h, µ̂
o
ih, Σ̂

o

ih, β̂
o

ih)
. (6.17)

The resulting ẑ?ig can be used to cluster observations into groups based on the maxi-

mum a posteriori (MAP) probabilities. Specifically, MAP(ẑ?ig) = 1 if maxg(ẑ
?
ig) occurs

in component g and MAP(ẑ?ig) = 0 otherwise.

For analyzing incomplete data, it is important to fill in the missing data with

plausible values. We implement the imputation of the missing values based on the

conditional mean method. That is, by substituting the maximum likelihood estimates
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Θ̂ = (µ̂g, β̂g, Λ̂g, Ψ̂g, g = 1, . . . , G), it leads to a predictor of xm
i given by

Mi

G∑
g=1

ẑ?ig(µ̂g + aigβ̂g + Σ̂gŜ
oo
ig (xi − µ̂g − aigβ̂g)). (6.18)

6.3.3 Notes on implementation

Like any EM-type iterative algorithm, the AECM algorithm may suffer from compu-

tational problems such as slow convergence or even failure to converge. Often, good

initial parameter values may speed up the convergence or lead to the attainment of a

global optimum. To try to overcome such computational difficulties, we recommend a

simple procedure to automatically obtain a set of suitable initial values for the AECM

algorithm, as listed below.

1. Perform mean imputation to fill in the missing values for each attribute sep-

arately, i.e., the missing value xm
ip for the ith observation on the pth attribute

was imputed by the sample mean of the observed values of the corresponding

variable.

2. Perform the k-means clustering to initialize the zero-one membership label ẑ
(0)
ig .

Accordingly, the initial values for the model parameters are then

π̂(0)
g =

∑n
i=1 ẑ

(0)
ig

n
, µ̂(0)

g =

∑n
i=1 ẑ

(0)
ig xi∑n

i=1 ẑ
(0)
ig

, Σ̂
(0)

g =

∑n
i=1 ẑ

(0)
ig (xi − µ̂(0)

g )(xi − µ̂(0)
g )

′∑n
i=1 ẑ

(0)
ig

.

3. Generate the initial values for Λg and Ψg via the eigen-decomposition of Σ̂
(0)

g

as follows:

(a) The initial values of the jth column of Λg were set as γ
(0)
j =

√
djρj,
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where dj is the jth largest eigenvalue of Σ̂
(0)

g and ρj is the jth eigenvector

corresponding to the jth largest eigenvalue of Σ̂
(0)

g for j ∈ {1, . . . , q}.

(b) The Ψg is then initialized as Ψ̂(0)
g = diag(Σ̂

(0)

g − Λ̂
(0)

g Λ̂
(0)′

g ).

4. Set the skewness parameter β̂
(0)

g ≈ 0 for the near asymmetric assumption and

set the index parameter λ̂
(0)
g = 1 and the concentration parameter ω̂

(0)
g = −0.5

for simplicity.

To select an appropriate MGHFA model with missing information in terms of

the number of mixture components G and the number of latent factors q, we adopt

two widely used model selection criteria: the Bayesian information criterion (BIC;

Schwarz, 1978) and the approximated weight of evidence (AWE; Banfield and Raftery,

1993).

6.4 Numerical Examples

6.4.1 Simulation Studies

To examine the performance of the MGHFA model with missing values as defined

above, we compared our proposed procedure to the existing mean imputation ap-

proach and the MSTFA model with missing values. The EM algorithm for learning

the MGHFA and MSTFA models with missing values has been implemented in R (R

Core Team, 2016) as MGHFAMISS and MSTFAMISS, respectively. A two-step procedure

is considered. First, the missing values are imputed according to mean imputation,

where the missing values are replaced by their unconditional means. Next, the model
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parameters are estimated based on the “completed” data using some existing clus-

tering methods found in R, namely:

• Parsimonious Gaussian mixture models (PGMM; McNicholas and Murphy,

2008): model-based clustering using Gaussian mixtures of factor analyzers. We

use the function pgmmEM via the R package pgmm (McNicholas et al., 2015) to

derive the results. For the purpose of comparison, the covariance structure is

set to be UUU, i.e., we fit the MFA model.

• MGHFA (Tortora et al., 2016): model-based clustering using mixtures of gen-

eralized hyperbolic factor analyzers. The function MGHFA via the R package

MixGHD (Tortora et al., 2015) is used to derive the results.

The samples were generated from a three-component MGHFA model with a bi-

variate normal factor (q = 2) under two different sizes, i.e., ng = 100 and ng = 200,

respectively. Specifically, the data xi were generated from

Xi = µg +Wigβg +
√
Wig(ΛgUig + εig) (6.19)

with probability πg, where Uig and εig satisfy distributional assumptions as in (6.2)

and g ∈ {1, 2, 3}. The model parameters are given in Table 6.1. Synthetic missing

datasets are simulated by deleting at random from the generated data under missing

rates ranging from 5 to 30%. Figure 6.1 depicts a scatterplot of the simulated data

and its underlying clustering structure for one of the simulated datasets.

For comparison, group memberships were initialized using the k-means clustering

unless otherwise specified. The clustering experiments comprise 30 replications per

combination of sample size and missingness rate. The performance assessments in
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Table 6.1: True model parameters for the simulated data.

Component 1 Component 2 Component 3
λ1 = 5 λ2 = 3 λ3 = 4
ω1 = 3 ω2 = 6 ω3 = 6
µ1 = (3, 3, 3, 3, 3, 3)

′
µ2 = (0, 0, 0, 0, 0, 0)

′
µ3 = (−3,−3,−3,−3,−3,−3)

′

β1 = (1, 1,−1, 1,−1, 1) β2 = (−1, 1, 1, 1, 1,−1,−1)
′
β3 = (1,−1, 1,−1, 1,−1)

′

Λ1 =


−0.6 −0.1
0.1 −0.5
−0.8 0.8
−0.6 −0.4
0.1 −0.4
0.8 −0.2

 Λ2 =


−0.5 −0.9
0.4 1.0
−0.5 −0.2
−0.4 0.4
0.5 0.3
−0.8 0.9

 Λ3 =


0.7 −0.4
0.8 0.0
−0.2 0.9
−0.3 0.4
0.3 0.7
−0.8 0.1


Ψ1 = 2I6 Ψ2 = I6 Ψ3 = I6

Figure 6.1: Scatterplot of one of the simulated datasets, where colours reflect true
class

terms of classification are evaluated through the adjusted Rand index (ARI; Hubert
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and Arabie, 1985) and misclassification rate (ERR). In this study, we fit the simu-

lated data using PGMM with mean imputation (MI-PGMM), MGHFA with mean

imputation (MI-MGHFA), MSTFAMISS, and MGHFAMISS models with G = 3 and

q = 2.

Tables 6.2 and 6.3 report the mean of the BIC, AWE, ARI, and ERR together

with their corresponding standard deviations (Std. Dev.) under each combination

considered. Moreover, the frequencies (Freq.) supported by the BIC and AWE are

also recorded. Not surprisingly, the results indicate that the best model based on the

BIC and AWE is an MGHFAMISS model. At low levels of missingness, all methods

perform well but the MGHFAMISS model performs best in terms of the ARI. At high

levels of missingness, the MGHFAMISS model leads to much bigger BIC and AWE

values as well as much higher ARI and much lower ERR values than those resulting

from the MI-PGMM and MI-MGHFA models. Most of the time, the MSTFAMISS

model gives slightly inferior results when compared to the best model.

Next, the predictive accuracy of the imputation of missing values is explored. The

empirical discrepancy measure for imputed values is simply

MSE =
1

n∗

n∑
i=1

(xm
i − x̂m

i )
′
(xm

i − x̂m
i ),

where n∗ =
∑n

i=n(p− poi ) is the number of missing values. Table 6.4 shows the mean

MSE together with its standard deviations. The MGHFAMISS and MSTFAMISS

models substantially outperform MI for all cases. Furthermore, the MGHFAMISS

imputation demonstrates superiority for the reconstruction of missing values in data

with the presence of longer tails and asymmetry when compared to the MSTFAMISS

imputation.
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6.4.2 Italian Wine Data

In addition to the simulated data experiments, our MGHFA model with missing data

are applied to real data. In this first experiment, we apply our proposed MGHFA

model with missing values to the well-known Italian wine data previously analyzed in

Chapter 5. First, the wine data are standardized prior to analysis using the default

scale function in R. Then, we modify the normalized wine data by adding seven-

teen noisy attributes, which are irrelevant for clustering purposes, to the original

attributes. The noise attributes are generated from an independent uniform distribu-

tion in the interval (−1, 1). These two datasets (i.e., original wine data and modified

wine data) are complete, so for illustration purposes we remove entries through an

MAR mechanism to obtain approximately 5, 10, 20, and 30 percent overall missing-

ness.

To compare the BIC and the AWE with respect to choosing the number of la-

tent factors, the MGHFAMISS model with g = 3 and q = 1, . . . , 7 are applied for

parameter estimation. Simulations were run with a total of thirty replications under

each scenario considered. Table 6.5 summarizes the frequencies of each of the candi-

date models preferred by the BIC and the AWE for the original and modified wine

data under various missing rates. Not surprisingly, the AWE tends to select models

with a smaller number of factors than does the BIC. Table 6.6 lists the mean ARI

and the mean ERR together with their corresponding standard deviations under each

scenario considered. As anticipated, as the missingness rates increase the ARI val-

ues and the ERR values generally decrease and increase, respectively. Adding noisy

variables leads to a slight worsening of the classification assessments.

115



Ph.D. Thesis - Yuhong Wei McMaster - Mathematics and Statistics

6.4.3 Ozone Level Detection Data

To further demonstrate the proposed methodology, ozone level detection data with

truly missing values are analyzed herein. The dataset, available from the UCI Machine

Learning Repository (Lichman, 2013), was originally collected by Zhang et al. (2006)

for the Houston, Galveston, and Briazoria (HGB) area from several databases within

two major federal data warehouses and one local database for air quality control.

These are, respectively, the United States Environmental Protection Agency (EPA)

Air Quality System (AQS) and National Climate Data Center (NCDC) from the

federal government and Continuous Ambient Monitoring Stations (CAMS) operated

by the Texas Commission on Environmental Quality (TCEQ). There are two ground

ozone level datasets: one is the one hour peak set, the other is the eight hour peak set,

and both consist of at least 2500 observations with 72 continuous features containing

various measures of air pollutant and meteorological information for the HGB area.

As stated by Zhang and Fan (2008), forecasting ozone days is challenging because the

dataset (a) is sparse, (b) contains a large number of irrelevant features (only about

10 out of 72 features have been verified by environmental scientists to be useful and

relevant), and (c) is skewed and has a lot of missing values. The one hour ozone data

feature 73 ozone days versus 2463 normal days and the eight hour ozone data feature

160 ozone days versus 2374 normal days. Both datasets contain 8.2% missing values.

The status of whether a day is an ozone day or normal day was recorded for each

observation, and is naturally used as the true class variable. These datasets have

been previously analyzed by Zhang and Fan (2008) and Wang (2013). Wang (2013)

analyzed these datasets using a mixture of common factor analyzers (MCFA) with

missing values.
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Before performing the fitting, we scale the partially observed dataset using the

default scale function in R. Following Wang (2013), we fit a two-component MGH-

FAMISS model with q = 1, . . . , 60. The largest number of latent factors is chosen

such that the relationship

(p− q)2 > (p+ q)

is satisfied (Lawley and Maxwell, 1962).

Figure 6.2: Plot of BIC and AWE values versus number of latent factors q for the
MGHFAMISS models fitted to the one hour and eight hour ozone data

Considering a plot of the BIC and AWE values versus the number of latent fac-

tors for the MGHFAMISS model (Figure 6.2), the BIC and the AWE clearly and

coincidentally prefer q = 30 for both the one hour and eight hour ozone data. The
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best model reported by Wang (2013) had an associated q = 43 and q = 44 based

on the BIC for one hour and eight hour ozone data, respectively, and q = 34 based

on the AWE for both datasets. Zhang and Fan (2008) stated that there are a larger

number of irrelevant features for both datasets, so that our proposed MGHFA model

with missing values outperforms the MCFA model with missing values in terms of

choosing a smaller number of latent factors.

Furthermore, the correct classification rate, calculated from one minus the mis-

classification rate, lies in the range from 50.9% to 73.2% and from 51.2% to 74.0%

for one hour and eight hour ozone data, respectively. Even though the classification

accuracy is not very high, it is superior to the maximum correct classification rate of

72.5% reported by Wang (2013). Notably, they show their result is superior to that

of the GMIX imputation (Lin et al., 2006) and the mclust (Fraley et al., 2012) meth-

ods. Consequently, our best MGHFAMISS model outperforms a variety of popular

clustering methods for these two ozone datasets.

6.5 Discussion

The MGHFA model has been extended to accommodate complex missing patterns

for high-dimensional data with heavy tails and strong asymmetry. By borrowing

the attractive features of the GIG distribution, we developed an efficient and elegant

parameter estimation for the MGHFA model with missing values within an AECM

framework. To simplify matrix manipulations, two auxiliary permutation matrices

were incorporated in the procedure. The proposed AECM algorithm can simulta-

neously take into account the missing values and clustering purpose. The analysis

of simulated and real data reveal that the proposed method is quite effective for
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the reconstruction of the missing values and outperforms other competing models

in terms of clustering purpose when data contain missing information and clusters

exhibit non-normal features such as asymmetry and/or heavy tails.

There are computational challenges that must be addressed when fitting the

MGHFA model with missing information. Most particularly, the AECM algorithm

requires the imputation of missing values on each iteration of the algorithm and,

as the number of missing values become large, this task becomes increasingly time

consuming. Implementing this approach in parallel would help to ease this computa-

tional burden. A families of parsimonious models could be obtained by considering

a generalized hyperbolic analogue to the PGMM models of McNicholas and Mur-

phy (2008, 2010). Future work will also include investigation of alternatives to the

AECM algorithm for parameter estimation via Bayesian analysis to handling missing

values (Utsugi and Kumagai, 2001; Lin et al., 2004, 2009). We will also consider al-

ternatives to the BIC and the AWE for selecting the number of latent factors q, such

as the LASSO-penalized BIC introduced by Bhattacharya and McNicholas (2014) for

mixture model selection.
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Table 6.2: Simulation results based on 30 replications (ng = 100)

Criteria MI-PGMM MI-MGHFA MSTFAMISS MGHFAMISS
r=5%

Mean -10030.2598 -10051.2803 -9494.0017 -9488.5104
BIC Std. Dev. 73.0375 67.7079 67.7139 67.2659

Freq. 0 0 0 30
Mean -10887.1058 -10326.9726 -10320.9896

AWE Std. Dev. 67.8401 68.6834 68.0657
Freq. 0 0 30

ARI
Mean 0.9552 0.9580 0.9834 0.9827
Std. Dev. 0.0303 0.0297 0.0138 0.0145

ERR
Mean 0.0151 0.0142 0.0056 0.0058
Std. Dev. 0.0103 0.0102 0.0047 0.0049

r=10%
Mean -10102.5544 -10118.6320 -9049.5149 -9045.1046

BIC Std. Dev. 79.4933 77.7768 66.7636 66.5819
Freq. 0 0 1 29
Mean -10961.5987 -9888.2528 -9883.1796

AWE Std. Dev. 79.5014 67.9787 67.7636
Freq. 0 1 29

ARI
Mean 0.8934 0.9439 0.9640 0.9659
Std. Dev. 0.0767 0.0245 0.0276 0.0241

ERR
Mean 0.0382 0.0190 0.0122 0.0116
Std. Dev. 0.0307 0.0084 0.0096 0.0083

r=20%
Mean -10037.2565 -10171.5710 -8194.6957 -8192.0231

BIC Std. Dev. 701.7855 74.0607 60.1604 59.9971
Freq. 1 0 5 24
Mean -11034.8195 -9044.9730 -9041.6883

AWE Std. Dev. 74.4998 61.0852 60.9230
Freq. 0 0 5 25

ARI
Mean 0.7218 0.8424 0.9452 0.9458
Std. Dev. 0.1405 0.0813 0.0341 0.0338

ERR
Mean 0.1211 0.0567 0.0187 0.0184
Std. Dev. 0.0926 0.0342 0.0123 0.0122

r=30%
Mean -8681.0944 -10043.6238 -7277.6321 -7275.3765

BIC Std. Dev. 1544.2082 94.3739 51.4588 50.9416
Freq. 3 0 5 22
Mean -10928.0620 -8146.3752 -8142.4176

AWE Std. Dev. 97.5731 50.0552 49.9651
Freq. 0 3 27

ARI
Mean 0.4935 0.6584 0.8952 0.8970
Std. Dev. 0.1482 0.1558 0.0441 0.0372

ERR
Mean 0.2377 0.1451 0.0366 0.0357
Std. Dev. 0.1114 0.0993 0.0171 0.0135
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Table 6.3: Simulation results based on 30 replications (ng = 200)

Criteria MI-PGMM MI-MGHFA MSTFAMISS MGHFAMISS
r=5%

Mean -19786.2100 -19718.5600 -18592.1700 -18584.0800
BIC Std. Dev. 112.4260 107.0459 113.7804 112.3613

Freq. 0 0 1 29
Mean -20627.2800 -19496.2000 -19487.3800

AWE Std. Dev. 107.5092 114.4635 113.1241
Freq. 0 0 30

ARI
Mean 0.9646 0.9806 0.9884 0.9882
Std. Dev. 0.0134 0.0096 0.0071 0.0070

ERR
Mean 0.0119 0.0065 0.0039 0.0039
Std. Dev. 0.0045 0.0032 0.0024 0.0023

r=10%
Mean -19943.2000 -19862.7200 -17717.8100 -17709.8400

BIC Std. Dev. 97.1792 96.5181 98.4372 98.3385
Freq. 0 0 0 30
Mean -20789.8800 -18631.8800 -18623.1100

AWE Std. Dev. 100.6342 100.6766 100.5329
Freq. 0 0 30

ARI
Mean 0.9308 0.9544 0.9796 0.9796
Std. Dev. 0.0301 0.0270 0.0098 0.0101

ERR
Mean 0.2361 0.0154 0.0068 0.0068
Std. Dev. 0.0107 0.0095 0.0033 0.0034

r=20%
Mean -20034.3000 -19942.5600 -15987.7100 -15987.7100

BIC Std. Dev. 110.1910 104.0624 104.0624 84.4214
Freq. 0 0 0 30
Mean -20911.7400 -16927.9300 -16920.6700

AWE Std. Dev. 106.3821 86.8494 87.4063
Freq. 0 0 30

ARI
Mean 0.7950 0.8864 0.9490 0.9494
Std. Dev. 0.1104 0.0319 0.0154 0.0142

ERR
Mean 0.0774 0.0391 0.0391 0.0171
Std. Dev. 0.0551 0.0115 0.0053 0.0053

r=30%
Mean -15275.3400 -19714.8400 -14214.8300 -14209.6400

BIC Std. Dev. 848.4015 399.6284 85.8753 85.2652
Freq. 3 0 1 26
Mean -20736.8500 -15188.8800 -15182.1600

AWE Std. Dev. 422.2199 89.8860 89.1632
Freq. 0 1 29

ARI
Mean 0.4288 0.7105 0.9074 0.9082
Std. Dev. 0.1493 0.1307 0.0225 0.0236

ERR
Mean 0.3066 0.1178 0.0318 0.0316
Std. Dev. 0.1221 0.0870 0.0080 0.0083
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Table 6.4: Imputation performance for MI-PGMM, MI-MGHFA, MGHFAMISS, and
MSTFAMISS models under various missing rates (r).

MSE
r MI-PGMM MI-MGHFA MGHFAMISS MGHFAMISS

ng = 100

5%
Mean 28.9713 28.9713 9.5301 9.4876
Std. Dev. 4.4879 4.4879 2.2601 2.318

10%
Mean 29.3071 29.3071 9.7587 9.757
Std. Dev. 3.7476 3.7476 1.2783 1.2892

20%
Mean 28.314 28.314 10.6201 10.5251
Std. Dev. 2.5078 2.5078 1.519 1.4792

30%
Mean 28.5495 28.5495 11.5292 11.4841
Std. Dev. 1.7307 1.7307 1.1275 1.0765
ng = 200

5%
Mean 28.3152 28.3152 8.7326 8.7032
Std. Dev. 2.9408 2.9408 1.4740 1.4329

10%
Mean 29.0423 29.0423 8.9467 8.9232
Std. Dev. 2.1778 2.1778 0.8855 0.8818

20%
Mean 28.0596 28.0596 9.6844 9.6442
Std. Dev. 1.6919 1.6919 0.9224 0.9260

30%
Mean 28.5089 28.5089 10.9109 10.8826
Std. Dev. 1.2845 1.2845 0.7926 0.7965

Table 6.5: The frequencies of each of the MGHFAMISS models with q = 1, . . . , 7
preferred by the BIC and AWE for the original and modified wine data under various
missingness rates.

Original wine data Modified wine data
5% 10% 20% 30% 5% 10% 20% 30%

q BIC AWE BIC AWE BIC AWE BIC AWE BIC AWE BIC AWE BIC AWE BIC AWE
1 16 30 24 30 29 30 30 30 30 30 30 30 30 30 30 30
2 14 0 4 0 1 0 0 0 0 0 0 0 0 0 0 0
3 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
4–7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 6.6: The ARI and ERR values for each of the MGHFAMISS models with
q = 1, . . . , 7 for the original and modified wine data under various missingness rates.

5% 10% 20% 30%
q ARI ERR ARI ERR ARI ERR ARI ERR

Original wine data
1 0.825 0.059 0.811 0.064 0.766 0.082 0.75 0.089

(0.059) (0.021) (0.062) (0.023) (0.07) (0.027) (0.082) (0.033)
2 0.906 0.031 0.876 0.041 0.805 0.066 0.78 0.076

(0.073) (0.025) (0.062) (0.021) (0.069) (0.026) (0.066) (0.025)
3 0.894 0.04 0.818 0.073 0.796 0.07 0.779 0.076

(0.099) (0.061) (0.142) (0.087) (0.089) (0.034) (0.072) (0.028)
4 0.879 0.04 0.827 0.058 0.773 0.084 0.746 0.098

(0.072) (0.025) (0.061) (0.022) (0.109) (0.063) (0.133) (0.08)
5 0.856 0.048 0.79 0.083 0.773 0.078 0.757 0.088

(0.084) (0.029) (0.12) (0.082) (0.073) (0.028) (0.101) (0.058)
6 0.837 0.06 0.805 0.072 0.781 0.075 0.745 0.093

(0.118) (0.066) (0.107) (0.064) (0.073) (0.028) (0.092) (0.055)
7 0.851 0.05 0.818 0.062 0.77 0.079 0.756 0.085

(0.076) (0.027) (0.072) (0.026) (0.075) (0.029) (0.062) (0.024)
Modified wine data

1 0.874 0.042 0.817 0.063 0.719 0.08 0.721 0.074
(0.057) (0.021) (0.051) (0.019) (0.221) (0.068) (0.207) (0.032)

2 0.897 0.034 0.869 0.043 0.756 0.06 0.717 0.075
(0.067) (0.023) (0.043) (0.015) (0.217) (0.03) (0.202) (0.029)

3 0.905 0.031 0.864 0.045 0.749 0.063 0.708 0.078
(0.055) (0.019) (0.045) (0.016) (0.213) (0.028) (0.199) (0.029)

4 0.894 0.035 0.837 0.059 0.741 0.066 0.709 0.078
(0.047) (0.016) (0.075) (0.045) (0.211) (0.029) (0.202) (0.031)

5 0.885 0.038 0.841 0.053 0.742 0.066 0.71 0.077
(0.047) (0.016) (0.047) (0.017) (0.211) (0.03) (0.2) (0.029)

6 0.871 0.043 0.834 0.056 0.749 0.063 0.704 0.08
(0.04) (0.014) (0.055) (0.02) (0.212) (0.028) (0.197) (0.028)

7 0.872 0.042 0.836 0.055 0.748 0.063 0.699 0.081
(0.045) (0.016) (0.048) (0.017) (0.211) (0.027) (0.195) (0.027)
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Chapter 7

Conclusions

7.1 Summary

Finite mixture models continue to grow in prominence in the literature of modelling,

especially used as tools for modelling heterogeneity. The work presented in this thesis

has focused on the development and implementation of two topics in finite mixture

modelling: extending growth mixture models and handling missing data in model-

based clustering, using finite mixture of non-elliptical distributions. This work is

a significant contribution to the body of literature on growth mixture models with

non-elliptical distributions and model-based clustering with incomplete data.

In Chapters 3 and 4, we put forth two cases for substantial departure from Gaus-

sian growth mixture model paradigm, namely growth mixture models with non-

elliptical distributions via the generalized hyperbolic distribution and multivariate

skew-t distribution (i.e., GHD-GMM and GST-GMM), for complete and incomplete

data. Unlike existing skew-t growth mixture models (Lu and Huang, 2014; Muthén

and Asparouhov, 2015), our approach is elegant and computationally straightforward.
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Our proposed models perform favourably or equivalently, depending on whether the

data are normal or non-normal, when compared to the Gaussian GMM counterpart.

In the presence of heterogeneity, heavy tails, and skewness in longitudinal data, the

proposed method can fit the data considerably better than Gaussian GMM reducing

the risk of extracting latent classes that are merely due to non-normality of the out-

comes. When the data are normal, the proposed GHD-GMM can be used to check the

reproducibility of a Gaussian GMM solution due to the flexibility of the generalized

hyperbolic distribution.

In Chapter 5, we proposed the approaches for clustering incomplete data when

clusters may be asymmetric and/or heavy tailed, using mixtures of generalized hy-

perbolic distributions (MGHD) and mixtures of multivariate skew-t distributions

(MST). In addition to considering missing data, to introduce parsimony, we also

developed families of MGHD and MST mixture models, each with 14 parsimonious

eigen-decomposed scale matrices corresponding to the famous Gaussian parsimonious

clustering models (GPCMs) of Banfield and Raftery (1993) and Celeux and Govaert

(1995). In Chapter 6, we presented a flexible latent variable approach for clustering

high-dimensional data with missingness via mixtures of generalized hyperbolic factor

analyzers (MGHFA). In each chapter, analytically feasible EM algorithm or its exten-

sions are formulated for parameter estimation and imputation of missing values for

mixture models are also investigated under missing at random mechanisms. The pro-

posed methodologies investigated through simulation study with varying proportions

of synthetic missing values and illustrated using real datasets.
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7.2 Future Work

7.2.1 Alternatives to the EM algorithm

All of the models developed in this thesis make use of the EM algorithm or its exten-

sions for parameter estimation. One major drawback to the EM approach is its slow

rate of convergence and, in some cases, failure to converge. Common work-arounds

to this problem involve multiple random starts or good initial values. Future work

will investigate alternative methods such as Bayesian analysis for parameter estima-

tion (e.g., Teschendorff et al., 2005; McGrory and Titterington, 2007; Subedi and

McNicholas, 2014).

7.2.2 Not Missing At Random (NMAR)

All of the models developed in this thesis to tackle missing data are under the MAR

assumption, which are often referred to as ignorable missingness mechanism because

the parameters that govern the missingness are separable from the parameters that

govern the data. Although the MAR assumption is often reasonable, there are situa-

tions where this assumption is not achievable. Hence, it becomes necessary to model

the missingness mechanism that may contain information about the parameters of

the complete-data population. Therefore, future work focusing on NMAR missing

data mechanism would be beneficial.

7.2.3 Improvement to the Computational Efficiency

We have demonstrated that all of the models proposed in this thesis are effective in

clustering. However, there are computational challenges that must be addressed when
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fitting models with missing information. Notably, in Chapters 4, 5, and 6, the EM

algorithm and its extensions require the imputation of missing values on each iteration

of the algorithm and, as the dimension of the data and the number of missing values

become large, this task becomes increasingly time consuming. Implementing this

approach in parallel would help to ease this computational burden (cf. McNicholas

and Murphy, 2010). There is also work to be done on the alternatives to the R

programme language such as C and Python for implementing these models.
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Appendix A

Details Required for GMMs with

Non-Elliptical Distributions

A.1 Distribution of ηi | yi,xi, wik, cik = 1

Herein, we give the detailed derivation of the conditional distribution of ηi given

yi,xi, wik, and cik = 1, which facilitate the computation of the conditional expec-

tations in the E-step of the EM algorithm. It also serves as a way to estimate the

growth factor scores. The joint distribution of ηi and Yi given xi, wik, and cik = 1 is

given by

ηi
Yi

∣∣∣∣ xi, wik, cik = 1 ∼ N
( αk + Γkxi + wikβηk

Λy(αk + Γkxi + wikβηk)

 ,

 wikΨk wikΨkΛ
′

y

wikΛyΨk wikΣk

),
where Σk = ΛyΨkΛ

′

y + Θk.

According to the properties of the conditional distribution for multivariate normal
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variables, the conditional distribution of ηi conditional on yi,xi, wik, cik = 1 is also a

multivariate normal distribution with

E(ηi | yi,xi, wik, cik = 1) = αk + Γkxi + wikβηk

+ ΨkΛ
′

y(ΛyΨkΛ
′

y + Θk)
−1(yi −Λy(αk + Γkxi + wikβηk)),

Var(ηi | yi,xi, wik, cik = 1) = wikΨk − wikΨkΛ
′

y(ΛyΨkΛ
′

y + Θk)
−1ΛyΨk.

According to the Woodbury matrix identity (Woodbury, 1950), the covariance matrix

for the latent variable ηi can be simplified to

Var(ηi | yi,xi, wik, cik = 1) = wik(Ψ
−1

k + Λ
′

yΘ
−1

k Λy)
−1.

Next, let us simplify the expectation of the latent variable η:

E(ηi | yi,xi, wik, cik = 1)

= (IT −ΨkΛ
′

y(ΛyΨkΛ
′

y + Θk)
−1Λy)(αk + Γkxi + wikβηk) + ΨkΛ

′

y(ΛyΨkΛ
′

y + Θk)
−1yi,

= (Ψk −ΨkΛ
′

y(ΛyΨkΛ
′

y + Θk)
−1ΛyΨk)Ψ

−1

k (αk + Γkxi + wikβηk)

+ ΨkΛ
′

y(Θ
−1

k −Θ
−1

k Λy(Ψ
−1

k + Λ
′

yΘ
−1

k Λy)
−1Λ

′

yΘ
−1

k )yi,

= (Ψ−1

k + Λ
′

yΘ
−1

k Λy)
−1Ψ−1

k (αk + Γkxi + wikβηk)

+ (Ψk(Ψ
−1

k + Λ
′

yΘ
−1

k Λy)−ΨkΛ
′

yΘ
−1

k Λy)(Ψ
−1

k + Λ
′

yΘ
−1

k Λy)
−1Λ

′

yΘ
−1

k yi,

= (Ψ−1

k + Λ
′

yΘ
−1

k Λy)
−1Ψ−1

k (αk + Γkxi + wikβηk) + (Ψ−1

k + Λ
′

yΘ
−1

k Λy)
−1Λ

′

yΘ
−1

k yi,

= (Ψ−1

k + Λ
′

yΘ
−1

k Λy)
−1(Ψ−1

k (αk + Γkxi + wikβηk) + Λ
′

yΘ
−1

k yi).
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Finally, we obtain the conditional distribution

ηi | yi,xi, wik, cik = 1 ∼ N (Vk(Ψ
−1

k (αk + Γkxi + wikβyk) + Λ
′

yΘ
−1

k yi), wikVk),

where Vk = (Ψ−1

k + Λ
′

yΘ
−1

k Λy)
−1.

A.2 The EM algorithm for Model II and IV

The EM algorithm for Model II was employed for parameter estimation in an analo-

gous fashion to the algorithm for Model I described in Section 3.3.1. The complete-

data comprise the observed outcomes yi and covariates xi, the class membership

labels cik, the latent factors ηi, and the latent variable wik, for i = 1, . . . , n and

k = 1, . . . , K. Therefore, the complete-data log-likelihood is

lc(ϑ) =
n∑
i=1

K∑
k=1

cik[ logπik + logφ(yi | Λyηi + wikβyk, wikΘk)

+ logφ(ηi | αk + Γkxi, wikΨk) + logh(wik | ωk, λk)].

The E-step requires the computation of the conditional expectations regarding

the latent factors ηi and the latent variable Wik. Under this formulation,

ηi | yi,xi, wik, cik = 1 ∼ N (Vk(Ψ
−1

k (αk + Γkxi) + Λ
′

yΘ
−1

k (yi − wikβyk), wikVk),

and the conditional distribution of latent variable Wik given yi,xi, and cik = 1 is

given by

Wik | yi,xi, cik = 1 ∼ GIG(ψ?k, χik, λ̃k),
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with ψ?k = ωk + β
′

ykΣ
−1

k βyk, χik = ωk + δ(yi,µk | Σk), λ̃k = λk − T/2, where

µk = Λy(αk + Γkxi), and Σk = ΛyΨkΛ
′

y + Θk.

Therefore, we have convenient forms for the following conditional expectations:

E?
1ik := E [Wi | xi,yi, cik = 1] =

√
χik
ψ?k

Kλ̃k+1(
√
ψ?kχik)

Kλ̃k
(
√
ψ?kχik)

,

E?
2ik := E [1/Wi | xi,yi, cik = 1] =

√
ψ?k
χik

Kλ̃k+1(
√
ψ?kχik)

Kλ̃k
(
√
ψ?kχik)

− 2λ̃k
χik

,

E?
3ik := E [logWi | xi,yi, cik = 1] = log

(√
χik
ψ?k

)
+

1

Kλ̃k
(
√
ψ?kχik)

∂

∂λ̃k
Kλ̃k

(
√
ψ?kχik),

E?
4ik := E [ηi | yi,xi, cik = 1] = Vk(Ψ

−1

k (αk + Γkxi) + Λ
′

yΘ
−1

k (yi − E?
1ikβyk)),

E?
5ik := E [(1/Wik)ηi | yi,xi, cik = 1] = Vk(E

?
2ik(Ψ

−1

k (αk + Γkxi) + Λ
′

yΘ
−1

k yi)−Λ
′

yΘ
−1

k βyk),

E?
6ik := E[(1/Wik)ηiη

′

i | yi,xi, cik = 1] = Vk −Vk(Ψ
−1

k (αk + Γkxi) + Λ
′

yΘ
−1

k yi)β
′

ykΘ
−1

k ΛyVk

+ E?
2ikVk(Ψ

−1

k (αk + Γkxi) + Λ
′

yΘ
−1

k yi)(Ψ
−1

k (αk + Γkxi) + Λ
′

yΘ
−1

k yi)
′
Vk,

−VkΛ
′

yΘ
−1

k β
′

yk(Ψ
−1

k (αk + Γkxi) + Λ
′

yΘ
−1

k yi)
′
Vk + E?

1ikVkΛ
′

yΘ
−1

k βykβ
′

ykΘ
−1

k ΛyVk.

At each E-step, the values of E?
1ik to E?

6ik are updated. We also update the value of

the class membership variable cik using

p?ik :=
πikfGHDT (yi; λ̃k, ωk,µk,Σk,βyk)∑K
l=1 πilfGHDT (yi; λ̃l, ωl,µl,Σl,βyl)

.

At each M-step, the following model parameters are obtained by maximizing the

conditional expected value of lc(ϑ) and are updated sequentially. The updates for

πik, αc, Γc, λ̃k, and ωk are similar to those used in Section 3.3.1. We update the
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skewness parameter βyk using

β̂yk =

∑n
i=1 p

?
ik(yi −ΛyE

?
4ik)∑n

i=1 p
?
ikE

?
1ik

,

and the measurement error Θk using

Θ̂k =
1

nk

n∑
i=1

p?ik

(
E?

2ikyiy
′

i − yiE
?′

5ikΛ
′

y − yiβ̂
′

yk −ΛyE
?
5iky

′

i + ΛyE
?
6ikΛ

′

y

+ ΛyE
?
4ikβ̂

′

yk − β̂yky
′

i + β̂ykE
?′

4ikΛ
′

y + E?
1ikβ̂ykβ̂

′

yk

)
,

where nk =
∑n

i=1 p
?
ik. We update Γk, αk, and Ψk sequentially using

Γ̂k =

{
n∑
i=1

p?ik(E
?
5ik − E?

2ikα̂k)x
′

i

}{
n∑
i=1

p?ikE
?
2ikxix

′

i

}−1
,

α̂k =

∑n
i=1 p

?
ik(E

?
5ik − E?

2ikΓ̂kxi)∑n
i=1 p

?
ikE

?
2ik

,

Ψ̂k =
1

nk

n∑
i=1

p?ik

(
E?

6ik − E?
5ik(α̂k + Γ̂kxi)

′ − (α̂k + Γ̂kxi)E
?′

5ik

+E?
2ik(α̂k + Γ̂kxi)(α̂k + Γ̂kxi)

′
)
.

The parameter estimation for the model IV is similar to that for model II, hence, is

omitted here.
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Appendix B

Details Pertaining to MGHD and

MST with Incomplete Data

B.1 Some Matrix Computations

We here present some useful matrix computation results that are employed in the

derivation of the conditional pdf of a partitioned generalized hyperbolic and multi-

variate skew-t random vector Y in Propositions 5.2.3 and 5.2.6.

Consider a partitioned random vector Y of p-dimension that follows the pdf as in

Equation (2.13) with

Y =

Y1

Y2

 µ =

µ1

µ2

 β =

β1

β2

 Σ =

Σ11 Σ12

Σ21 Σ22

 , (B.1)

where Y1 and Y2 have dimensions d1 and d2 = p − d1, respectively. The mean,

skewness and dispersion matrix are composed of blocks of appropriate dimensions
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as partitions of Y. Sometimes, it is more convenient to work with the inverse of

dispersion matrix Σ
−1

:

Σ
−1

=

 (Σ11 −Σ12Σ
−1

22Σᵀ
12)
−1 −Σ

−1

11Σ12(Σ22 −Σᵀ
12Σ

−1

11Σ12)
−1

−(Σ22 −Σᵀ
12Σ

−1

11Σ12)
−1Σᵀ

12Σ
−1

11 (Σ22 −Σᵀ
12Σ

−1

11Σ12)
−1

 . (B.2)

Furthermore, we have for the determinant of Σ:

det(Σ) = det(Σ11)det(Σ22 −Σᵀ
12Σ

−1

11Σ12). (B.3)

B.2 Outline of Proof of Proposition 5.2.3

Here, we derive the conditional density of Y2 given that Y1 = y1 if Y1 and Y2

are jointly generalized hyperbolic distributed, i.e., Y ∼ GHDp(λ, ω,µ,Σ,β) with

the partition in Appendix B.1. Although basic probability theory indicates that the

conditional pdf is a ratio of the joint and marginal pdfs, the expression takes a very

complicated form. The results from Appendix B.1 are heavily used in the course of

the derivations. The conditional density is given by

fY2|Y1(y2 | y1) =
fY1,Y2(y1,y2)

fY1(y1)

=

[
ω+δ(y,µ|Σ)

ω+βᵀΣ
−1
β

]λ−p/2
2 Kλ−p/2

(√
(ω+δ(y,µ|Σ))(ω+βᵀΣ

−1
β)

)
(2π)p/2|Σ|1/2Kλ(ω)exp{−(y−µ)ᵀΣ

−1
β}[

ω+δ(y1,µ1|Σ11)

ω+βᵀ

1Σ
−1

11 β1

]λ−d1/2
2 Kλ−d1/2

(√
(ω+δ(y1,µ1|Σ11))(ω+β

ᵀ

1Σ
−1

11 β1)

)
(2π)d1/2|Σ11|1/2Kλ(ω)exp{−(y1−µ1)

ᵀΣ
−1

11 β1}

,

where we combine (2.13) and Proposition 5.2.2. For the moment, we focus on the

linear form and quadratic form in which y enters the pdf in (2.13). Inserting the
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partition of Y,µ,β, and Σ in (B.1) and the inverse of dispersion matrix Σ
−1

(B.2)

into the quadratic form yields

δ(y,µ | Σ) = (y − µ)ᵀΣ
−1

(y − µ)

=

(
(y1 − µ1)

ᵀ (y2 − µ2)
ᵀ

)
Σ
−1

y1 − µ1

y2 − µ2


= (y1 − µ1)

ᵀ(Σ11 −Σ12Σ
−1

22Σᵀ
12)
−1(y1 − µ1)

− (y2 − µ2)
ᵀ(Σ22 −Σᵀ

12Σ
−1

11Σ12)
−1Σᵀ

12Σ
−1

11 (y1 − µ1)

− (y1 − µ1)
ᵀΣ

−1

11Σ12(Σ22 −Σᵀ
12Σ

−1

11Σ12)
−1(y2 − µ2)

+ (y2 − µ2)
ᵀ(Σ22 −Σᵀ

12Σ
−1

11Σ12)
−1(y2 − µ2)

= (y1 − µ1)
ᵀΣ

−1

11 (y1 − µ1)

+ (y1 − µ1)
ᵀΣ

−1

11Σ12(Σ22 −Σᵀ
12Σ

−1

11Σ12)
−1Σᵀ

12Σ
−1

11 (y1 − µ1)

− (y2 − µ2)
ᵀ(Σ22 −Σᵀ

12Σ
−1

11Σ12)
−1Σᵀ

12Σ
−1

11 (y1 − µ1)

− (y1 − µ1)
ᵀΣ

−1

11Σ12(Σ22 −Σᵀ
12Σ

−1

11Σ12)
−1(y2 − µ2)

+ (y2 − µ2)
ᵀ(Σ22 −Σᵀ

12Σ
−1

11Σ12)
−1(y2 − µ2)

= (y1 − µ1)
ᵀΣ

−1

11 (y1 − µ1)

+ (y2 − µ2 −Σᵀ
12Σ

−1

11 (y1 − µ1))
ᵀ(Σ22 −Σᵀ

12Σ
−1

11Σ12)
−1(y2 − µ2 −Σᵀ

12Σ
−1

11 (y1 − µ1))

= δ(y1,µ1 | Σ11) + δ(y2,µ2|1 | Σ2|1), (B.4)

where µ2|1 = µ2 + Σᵀ
12Σ

−1

11 (y1 − µ1) and Σ2|1 = (Σ22 −Σᵀ
12Σ

−1

11Σ12)
−1.

135



Ph.D. Thesis - Yuhong Wei McMaster - Mathematics and Statistics

Similarly, inserting into the linear form, following the same algebra as above, yields

(y − µ)ᵀΣ
−1
β =

(
(y1 − µ1)

ᵀ (y2 − µ2)
ᵀ

)
Σ
−1

β1

β2


= (y1 − µ1)

ᵀΣ
−1

11β1

+ (y2 − µ2 −Σᵀ
12Σ

−1

11 (y1 − µ1))
ᵀ(Σ22 −Σᵀ

12Σ
−1

11Σ12)
−1(β2 −Σᵀ

12Σ
−1

11β1)

= (y1 − µ1)
ᵀΣ

−1

11β1 + (y2 − µ2|1)
ᵀΣ

−1

2|1β2|1, (B.5)

where µ2|1 and Σ2|1 are as described above, and β2|1 = β2 −Σᵀ
12Σ

−1

11β1.

Furthermore, we investigate the term βᵀΣ
−1
β, we obtain

βᵀΣ
−1
β =

(
βᵀ

1 βᵀ
2

)
Σ
−1

β1

β2


= βᵀ

1Σ
−1

11β1 + (β2 −Σᵀ
12Σ

−1

11β1)
ᵀ(Σ22 −Σᵀ

12Σ
−1

11Σ12)
−1(β2 −Σᵀ

12Σ
−1

11β1)

= βᵀ
1Σ

−1

11β1 + βᵀ
2|1Σ2|1β2|1. (B.6)

Finally, we substitute (B.3), (B.4), (B.5), and (B.6), and p = d1 + d2 into the

conditional density, and after some simple linear algebra, we obtain

fY2|Y1(y2 | y1) =

(
ω+δ(y1,µ1|Σ11)+δ(y2,µ2|1|Σ2|1)

ω+βᵀ

1Σ
−1

11 β1+β
ᵀ

2|1Σ2|1β2|1

)λ− d12 −
d2
2

2
[

ω+βᵀ

1Σ
−1

11 β1

ω+δ(y1,µ1|Σ11)

]λ−d1/2
2

(2π)
d2
2 |Σ22 −Σᵀ

12Σ
−1

11Σ12|
1
2

×

K
λ− d1

2
− d2

2

(√
(ω + δ(y1,µ1 | Σ11) + δ(y2,µ2|1 | Σ2|1))(ω + βᵀ

1Σ
−1

11β1 + βᵀ
2|1Σ2|1β2|1)

)
K
λ− d1

2

(√
(ω + δ(y1,µ1 | Σ11))(ω + βᵀ

1Σ
−1

11β1)
)

exp(−(y2 − µ2|1)
ᵀΣ

−1

2|1β2|1)
.

Set λ2|1 = λ− d1
2

, χ2|1 = ω+ δ(y1,µ1 | Σ11), and ψ2|1 = ω+βᵀ
1Σ

−1

11β1, then we obtain
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fY2|Y1(y2 | y1) =

[
χ2|1 + δ(y2,µ2|1 | Σ2|1)

ψ2|1 + βᵀ
2|1Σ2|1β2|1

]λ2|1− d22
2

×

(
ψ2|1
χ2|1

)λ2|1
2
K
λ2|1−

d2
2

(√
(ψ2|1 + βᵀ

2|1Σ2|1β2|1)(χ2|1 + δ(y2,µ2|1 | Σ2|1))
)

(2π)
d2
2 |Σ2|1|

1
2Kλ2|1(

√
χ2|1ψ2|1)exp(−(y2 − µ2|1)

ᵀΣ
−1

2|1β2|1)
.

Comparison with (2.10) reveals that this is a GHD in the parameterization of

McNeil et al. (2005) with

λ2|1 = λ− d1
2
, χ2|1 = ω + (y1 − µ1)

ᵀΣ
−1

11 (y1 − µ1),

ψ2|1 = ω + βᵀ
1Σ

ᵀ
11β, µ2|1 = µ2 + Σᵀ

12Σ
−1

11 (y1 − µ1),

Σ2|1 = Σ22 −Σᵀ
12Σ

−1

11Σ12, β2|1 = β2 −Σᵀ
12Σ

−1

11β1.
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