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Abstract

Broadly speaking, cluster analysis is the organization of a data set into meaningful groups and

mixture model-based clustering is recently receiving a wide interest in statistics. Historically,

the Gaussian mixture model has dominated the model-based clustering literature. When

model-based clustering is performed on a large number of observed variables, it is well known

that Gaussian mixture models can represent an over-parameterized solution. To this end, this

thesis focuses on the development of novel non-Gaussian mixture models for high-dimensional

continuous and categorical data. We developed a mixture of joint generalized hyperbolic

models (JGHM), which exhibits different marginal amounts of tail-weight. Moreover, it takes

into account the cluster specific subspace and, therefore, limits the number of parameters

to estimate. This is a novel approach, which is applicable to high, and potentially very-

high, dimensional spaces and with arbitrary correlation between dimensions. Three different

mixture models are developed using forms of the mixture of latent trait models to realize

model-based clustering of high-dimensional binary data. A family of mixture of latent trait

models with common slope parameters are developed to reduce the number of parameters

to be estimated. This approach facilitates a low-dimensional visual representation of the

clusters. We further developed the penalized latent trait models to facilitate ultra high

dimensional binary data which performs automatic variable selection as well. For all models

and families of models developed in this thesis, the algorithms used for model-fitting and
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parameter estimation are presented. Real and simulated data sets are used to assess the

clustering ability of the models.
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Chapter 1

Introduction

1.1 Overview

1.1.1 What is High-Dimensional Data?

How to analyze high dimensional data is a topic that has been receiving increasing attention

over the past few years. Data collection has become easier and faster due to technology

advances, and every aspect of our lives is influenced by data. Companies are keen to enlarge

their traditional data sets with social media data, browser logs, as well as text analytics

and sensor data to get a more complete picture of their customers; most sports teams use

GPS equipment and video analytics that track the performance of players and use smart

technology to track athletes’ nutrition and sleep as well as their emotional wellbeing; and a

number of cities are trying to optimize traffic flows based on real time traffic information as

well as social media and weather data. So not only do we have a large amount of data, but

it also tends to be complex and messy in comparison to traditional data.
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1.1.2 Cluster Analysis

Cluster analysis is the organization of large data sets into meaningful clusters (groups).

Clustering algorithms can be categorized based on how the underlying models operate. The

similarity between objects can be determined using distance measures over the various dimen-

sions in the data set or by gathering individuals that have arisen from the same distribution

using a probabilistic framework.

Clustering algorithms based on distance measures (e.g., k-means clustering (MacQueen,

1967), hierarchical clustering (Ward J., 1963)) have received much attention in literature.

The k-means paradigms are simply divisions of the set of data objects into non-overlapping

subsets such that each data object is in exactly one subset. On the other hand, hierarchical

clustering joins data objects together in a hierarchical fashion from the closest, that is most

similar, to the furthest apart, that is the most different. Therefore we obtain a graphical

representation of the matrix of distances (i.e., a dendrogram or tree). Traditional clustering

algorithms based on distance measures cannot cope with high-dimensional and/or complex

data sets because of their high complexity and computational cost. The standard hierar-

chical clustering methods can handle data with both numerical and categorical values (e.g.,

Anderberg, 1973; Jain and Dubes, 1988). However, the quadratic computational cost makes

them less suitable for clustering large data sets. On the other hand, the k-means clustering

method is efficient for processing large data sets. It minimizes a cost function by changing

the means of a cluster. This prohibits it from being used in applications where categorical

data are involved.

Model-based clustering provides an alternative to distance-based methods for cluster-

ing. McNicholas (2016) defines a cluster as a unimodal component within an appropriate

finite mixture model. Herein, we use the definition by McNicholas (2016). However, when

2
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model-based clustering is performed on a large number of observed variables, it is well

known that it can be over-parameterized and very computationally intensive, as, besides

the mixing weights, it is required to estimate the mean vector and the covariance matrix

for each component (McLachlan and Peel, 2000a). McNicholas (2016) further explains that

an “appropriate” mixture model is one that is appropriate in light of the data under con-

sideration, that the model has the necessary flexibility, or parameterization to fit the data.

Increasing attention has been drawn to this problem, aimed at parameterizing the generic

component-covariance matrix (Celeux and Govaert, 1995; Fraley and Raftery, 1998; Browne

and McNicholas, 2014) or at performing dimensional reduction in each component through

latent variables (McLachlan et al., 2003; Bouveyron et al., 2007; McNicholas and Murphy,

2008, 2010; Baek et al., 2010; Vermunt, 2007; Browne and McNicholas, 2012; Gollini and

Murphy, 2014; Murray et al., 2014). The models developed in this thesis add to this growing

body of work and offer advantages not necessarily provided by these other models.

1.2 Thesis Structure

1.2.1 Chapter 2

Background details on finite mixture models, some non-Gaussian distributions often used in

model-based clustering and latent trait models for the analysis of binary data. Dimension

reduction techniques for clustering high-dimensional data are discussed, followed by param-

eter estimation techniques. Methods for model-selection and performance assessment are

also discussed.

3
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1.2.2 Chapter 3

Mixtures of joint generalized hyperbolic models are developed via a novel distribution, a

joint generalized hyperbolic model (JGHM). Algorithm for model parameter estimation is

presented. The clustering ability of the model is illustrated on real and simulated data and

the models are compared.

1.2.3 Chapter 4

A mixture of latent trait models via contaminated Gaussian distributions (MLTCG) is pro-

posed. We assume that the low dimensional continuous latent variable comes from a contam-

inated Gaussian distribution and therefore picks up extreme patterns in the observed binary

data while clustering. The clustering performance is demonstrated on real and simulated

data and the models are compared.

1.2.4 Chapter 5

A penalized mixture of latent trait models (PMLTM) for clustered binary data is developed:

we assume that the data have been generated by a mixture of latent trait models and we

shrink the slope parameters, with a gamma-Laplace penalty function. The newly devel-

oped variational EM algorithm provides closed-form estimates for model parameters and

avoids intensive searches of the tuning parameters through model selection criterion such as

Bayesian information criterion. The clustering results are reported for several data sets. A

comparison between selected programming languages is shown on simulated and real data.

4
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1.2.5 Chapter 6

We propose a mixture of multinomial latent trait models with common slope parameters

(MMCLT). We implement a multinomial logistic response function for the use of clustering

categorical data when there exists more than two categories. The sharing of the slope

parameters reduces the number of parameters to a manageable size; however, each latent

trait still has a different effect in each group. A new variational EM algorithm based on two

quadratic lower bounds to the multinomial likelihood is developed.

1.2.6 Chapter 7

The ideas and methods demonstrated in this thesis are summarized in this last chapter.

Suggestions for future work are discussed.

1.3 Impact

The impact of this work is summarized here. The principal novel features of this work are:

(i) The mixture of joint generalized hyperbolic models is developed based on generalized

hyperbolic distributions which represent perhaps the most flexible in a recent series

of alternatives to the Gaussian mixture model for clustering and classification. The

component specific subspaces reduce the number of parameters significantly to realize

high-dimensional data clustering.

(ii) We extend the mixture of latent trait analyzers to accommodate extreme patterns while

clustering. The MLTCG model can automatically detect extreme observations and

therefore be more accurate about cluster identification. The MLTCG model represents

a useful tool for finding extreme patterns in clustered high-dimensional binary data

5
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because they cannot be easily visualized.

(iii) The PMLTM model enables us to encourage sparsity in estimating the slope parame-

ters, thus reducing the number of free parameters considerably, and achieves automatic

variable selection for clustered high dimensional binary data. The component-specific

independent tuning parameters avoid the over-penalization that can occur when infer-

ring a shared tuning parameter on clustered data. The new EM algorithm provides

efficient parameter estimation.

iv The development of the MMCLT model makes an important contribution to litera-

ture on mixture models capable of handling high-dimensional categorical data. More

specifically, this work extends a vein of research on mixture of latent trait models.

Furthermore, the new variational EM algorithm is developed based on two quadratic

lower bounds to the multinomial likelihood.

6



Chapter 2

Background

2.1 Model-Based Clustering

2.1.1 Overview

Model-based clustering is a fundamental statistical approach for clustering, where data are

clustered using some assumed mixture modelling structure and the group memberships are

“learned” in an unsupervised fashion. A finite mixture model is a convex combination of a

finite number of simple component distributions. Therefore, the density of a general finite

mixture model is given by

f(xi|Θ) =
G∑
g=1

πgpg (xi;θg) , (2.1)

where G is the number of components, πg (πg ∈ (0, 1], and
∑G

g=1 πg = 1) is the probability

that an observation xi belongs to group g and θg contains unknown parameters in the mixture

model. The EM algorithm (Bock and Aitkin, 1981) is used to find the MLE (maximum

likelihood estimates) of the parameters.
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2.1.2 Finite Mixture Models for Real-Valued Data

The Gaussian mixture model is probably the most well known in literature (e.g., Wolfe, 1963;

Banfield and Raftery, 1993; Celeux and Govaert, 1995; Fraley and Raftery, 2002). Mixture

model approaches have shown promising results with large data sets and data sets with noise.

We can use a simple example to illustrate the need for model-based clustering. Consider sim-

ulated data with two variables, three components and added noise (X1 ∼ Uniform[−10, 10],

X2 ∼ Uniform[−10, 10]). When k-means is used to cluster this data set, it does a poor

job of finding the true clusters because of the background noise. Instead, we try using a

model-based algorithm. Figure 2.1 shows the plots of classification when G = 4. Moreover,

model-based methods offer better interpretability because the model parameters directly

characterizes the clusters. A limitation of model-based clustering with high-dimensional

data is that if the dimension of the data is high relative to the number of observations, then

the covariance estimates in the ellipsoidal models will often be singular. Hence, more parsi-

monious models are proposed (e.g., McNicholas and Murphy, 2008; Browne and McNicholas,

2012).

2.1.2.1 Finite Mixture Models for Clustering Non-Continuous Data and Mixed

Data

For non-continuous data, one needs to specify pg(xi;θg) in Equation 2.1 through probability

mass functions. While there are plenty of choices for univariate non-continuous distributions,

the use of multivariate non-continuous distributions for the definition of the mixture models

is limited due to the difficulty in constructing models that allow flexibility on the dependence

structure. Recent work include finite mixtures of multinomial distributions (Jorgensen, 2004)

for categorical data and finite mixtures of multivariate Poisson distributions (Karlis and

8
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(b) K-means Partition
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(c) Model-Based Clustering

Figure 2.1: Comparison between k-means and model-based clustering.

Meligkotsidou, 2007) for count data. However, these models are limited in application due

to the high parameterization.

A new framework via mixtures of copulas has been proposed to accommodate the mod-

elling of data with either continuous or non-continuous domains. Copulas offer the means
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for constructing multivariate models due to the flexibility in describing dependence among

mixture components and allows the easy construction of multivariate models with prescribed

marginals. A few attempts on copula-based mixture models have already been made (see,

for examples, Jajuga and Papla, 2006; Di Lascio and Giannerini, 2012; Vrac et al., 2012;

Marbac et al., 2014b; Kosmidis and Karlis, 2016). More investigations are needed for the

application of the framework on scenarios with high-dimensional data. A wide-range of

parsimonious parameterization between exchangeable and unstructured correlation matrices

can be obtained by drawing ideas from parsimonious parameterizations in Gaussian mixture

models like the eigenvalue decomposition proposed in Celeux and Govaert (1995). It can

be directly applied to any copula family that is parameterized in terms of a full covariance

matrix, allowing the comparison of a wide range of parsimonious models.

2.2 Non-Gaussian Distributions

2.2.1 The Generalized Hyperbolic Distribution

The generalized hyperbolic distribution (GHD) represents perhaps the most flexible among

the recent series of alternatives to the Gaussian mixture model. The GHD is capable of

handling skewness and heavy tails, and has many well-known distributions as special or

limiting cases (Table 2.1).

The generalized hyperbolic distribution (McNeil et al., 2015) takes the form

fGHD(x|θ) =

[
χ+ (x− µ)′Σ−1(x− µ)

ψ +α′Σ−1α

](λ−p/2)/2

×
[ψ/χ]λ/2Kλ−p/2

(√
[ψ +αΣ−1α][χ+ (x− µ)′Σ−1(x− µ)]

)
(2π)p/2 | Σ |1/2 Kλ(

√
χψ)exp(µ− x)′Σ−1α

,

(2.2)

where x is a p-dimensional data vector, Kλ(·) is the modified Bessel function of the third

10
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Table 2.1: Generalized hyperbolic distribution and its special and limiting cases (Prause,
1999).
GHD GIG λ χ ψ

General case General case ∈ R > 0 > 0
Hyperbolic Positive Hyperbolic (p+ 1)/2 > 0 > 0
GIG ∈ R → 0 const.
Normal-inverse Gaussian Inverse Gaussian −1

2
> 0 > 0

Variance gamma Inverse gamma > 0 > 0 > 0
Student’s t Gamma −v

2
< 0 v > 0 0

Skewed Laplace (p+ 1)/2 0 > 0
Normal ∈ R →∞ →∞

kind with index λ, and θ = (µ,Σ,α, λ, χ, ψ) is a vector of parameters. A mixture of gener-

alized hyperbolic distributions has been developed for clustering by Browne and McNicholas

(2015a).

One attractive feature of the GHD is that the p-dimensional random variable X can be

generated via the relationship

X = µ+Wβ +
√
WV ,

where V ∼ MVN(0,Σ) and W ∼ GIG(Ω, 1, λ), cf. Browne and McNicholas (2015a). Under

this parameterization, the density of the generalized hyperbolic distribution is

fGHD(x|θ) =

[
ω + (x− µ)′Σ−1(x− µ)

ω + β′Σ−1β

](λ−p/2)/2

×Kλ−p/2

(√
[ω + βΣ−1β][ω + (x− µ)′Σ−1(x− µ)]

)
× (2π)p/2 | Σ |1/2 Kλ(

√
ω)exp(µ− x)′Σ−1β,

(2.3)

andW |x ∼ GIG(ω+βΣ−1β, ω+(x−µ)′Σ−1(x−µ, λ−p/2). This parameterization yields

tractable expected values that lead to the development of a computationally efficient E-step

for fitting the MJGHM model in Chapter 3.
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2.2.2 Multiple Scaled Distributions

Forbes and Wraith (2014) show that the density of the random variable X from a multiple

scaled normal variance mixture can be written

f(x|µ,D,A, θ) =

∫ ∞
0

· · ·
∫ ∞

0

φp(x|µ,D∆wAD
′)

× fW (w1, . . . , wp|θ)dw1 . . . dwp,

(2.4)

where φp(X|µ,D∆wAD
′) is the multivariate Gaussian density and ∆w = diag(w1, . . . , wp)

is a diagonal weight matrix where w1, . . . , wp are independent, and fW (w1, . . . , wp|θ) is a

p-variate density function with parameter θ. Forbes and Wraith (2014) focused on a mul-

tiple scaled t-distribution. Later, Franczak et al. (2015) proposed a mixture of multiple

scaled shifted asymmetric Laplace (MSSAL) distributions for clustering applications. The

upper level sets of the MSSAL density are guaranteed to be convex, and therefore ideal for

clustering.

2.3 Dimensionality Reduction

2.3.1 Latent Variable Models for Continuous Data

Mixtures of factor analyzers is a statistical method which concurrently performs clustering

and within each cluster, local dimensionality reduction. Assume that the distribution of

the observation Xi is modelled using a q-dimensional vector of continuous latent variable,

Ui ∼ MVN(0, Iq), where q is generally much smaller than p. The generative model is given

by:

Xi = µg + ΛgUig + εig with prob. πg,

12
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where Λg is known as the factor loading matrix and εig ∼ MVN(0,Ψg)

with Ψg = diag(ψ1g, . . . , ψpg). The Ui and εi are both independently distributed and are

independent of each other. Thus the marginal distribution of X in the gth component is

MVN(µg,ΛgΛ
′
g+Ψg). Many versions of the mixture of factor analyzers have been developed

over time (e.g., Ghahramani and Hinton, 1996; Tipping and Bishop, 1999; McLachlan and

Peel, 2000b; Yoshida et al., 2004; McNicholas and Murphy, 2008; Baek et al., 2010).

2.3.2 Latent Variable Models for Non-Continuous Data and Mixed

Data

Mixture models with latent structure have been considered for the analysis of non-continuous

data and mixed type data. Mixture of latent class analysis and mixture of latent trait anal-

ysis are two commonly used latent variable models for categorical data and mixed data. In

latent class models, the dependence in the data is explained by a categorical latent vari-

able that identifies groups and the response variables are independent (known as the local

independence assumption). Latent class models are widely used for model-based clustering

of categorical data and mixed data (e.g., Goodman, 1974; Celeux and Govaert, 1991; Bier-

nacki et al., 2010). However, if the condition of independence within the group is violated,

latent class models tend to overestimate the number of components and can be potentially

misleading. Different models relax the conditional independence assumption. The multi-

level latent class models (Vermunt, 2003, 2007) assume that the conditional dependency

between the response variables can be explained by other unobserved variables. Marbac

et al. (2014a) propose a conditional modes model which groups the response variables into

conditionally independent blocks. The corresponding block is a parsimonious multinomial

distribution which brings out the intra-class dependency between variables. However, the

13
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model is difficult to estimate if the data set has a large number of variables.

The latent trait models use a continuous univariate or multivariate latent variable to

model the dependence among the categorical or mixed response variables. Recently proposed,

mixtures of latent trait models for the analysis of categorical and mixed response variables

include work by Muthen et al. (2006), Vermunt (2007), Khan et al. (????), Browne and

McNicholas (2012), Cagnone and Viroli (2012), Gollini and Murphy (2014).

2.3.3 Subspace Clustering via Gaussian Mixture Models

A unified approach for model-based subspace clustering is introduced by Bouveyron et al.

(2007). Within the Gaussian mixture model framework, this approach assumes that class

conditional densities are Gaussian MVN(µg,Σg) for g = 1, . . . , G. Let Qg consist of the

eigenvectors of Σg as columns and Φg are the eigenvalues. Then the component covariance

matrices Σg, for g = 1, . . . , G, can be written Σg = QgΦgQ
′
g, where Φg is divided into two

blocks

Φg =





φg1 0

0. . .

0 φgqg

0
bg 0

. . .

0 bg

with φgj > bg, j = 1, . . . , qg and qg < p. The component-specific subspace Eg is defined as the

affine space rotated by the qg eigenvectors associated with the eigenvalues φgj. Drawing ideas

from model-based subspace clustering, Chapter 3 describes the joint generalized hyperbolic

model (JGHM) which projects p-dimensional X onto two subspaces.
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2.4 Mixture of Latent Trait Models and Penalized Latent

Variable Models

2.4.1 Mixture of Latent Trait Models

2.4.1.1 Overview

Gollini and Murphy (2014) assume that the conditional distribution of xi given that the

observation is from group g (i.e., zig = 1) is a latent trait model with parameters bmg, wmg;

and the latent variable Yi ∼ N(0, I). Thus, the MLTA model is of the form,

p(xi) =
G∑
g=1

ηg

∫
Yi

p(xi|yi, zig = 1)p(yi)dyi, (2.5)

where

p(xi|yi, zig = 1) =
M∏
m=1

[πmg(yi)]
xim [1− πmg(yi)]1−xim ,

and the response function for each group is given by

πmg(yi) = p(xim = 1|yi, zig = 1) =
1

1 + exp(−(bmg + w′mgyi))
,

where bmg and wmg are the model parameters.

In particular, bmg has a direct effect on the probability of a positive response to the

variable m given by an individual in group g,

πmg(0) = p(xnm = 1|yn = 0, zng = 1) =
1

1 + exp(−bmg)
.

The value πmg(0) is the probability that the median individual in group g has a positive

response for the variable m. The value of the slope parameters account for the correlation

between the observed response variables.
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The log-likelihood can be written as,

l =
n∑
i=1

log

 G∑
g=1

ηg

∫
Yi

M∏
m=1

p(xim|yi, zig = 1)p(yi)dyi

 . (2.6)

2.4.2 Mixture of Latent Trait Models with Common Slope Param-

eters

Tang et al. (2015) introduce the mixture of latent trait models with common slope parameters

(MLCT) that restricts the MLTA model by using common slope parameters that reduce the

number of parameters to a manageable size; still, each latent trait has a different effect in

each component. It also facilitates low-dimensional visual representation of components with

posterior means of the continuous latent variables corresponding to the observed data. The

MCLT model assumes there is a d-dimensional continuous latent variable Y underlying the

behaviour of the M binary response variables, where Y comes from G different components,

i.e., Yig ∼ MVN(µg,Σg). In addition, all latent traits share a set of common slope parameters

W = (w1, . . . ,wM) in the logistic function.

Therefore , the MCLT model takes the form,

p(xi) =
G∑
g=1

ηgp(xi|zig = 1) =
G∑
g=1

ηg

∫
Yig

p(xi|yig, zig = 1)p(yig)dyig,

where

p(xi|yig, zig = 1) =
M∏
m=1

[πmg(yig)]
xim [1− πmg(yig)]1−xim ,

and the response function for each categorical variable in each component is

πmg(yig) = p(xim = 1|yig, zig = 1) =
1

1 + exp{−w′myig}
,

where wm is the common model parameter and the latent variable Yig ∼ MVN(µg,Σg).
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Therefore, the model is a finite mixture model in which the gth component latent variable

Yig is MVN(µg,Σg) and the mixing proportions are η1, η2, . . . , ηG.

2.4.2.1 Approximations to the Log-Likelihood of Latent Trait Models

In the mixture of latent trait models, the integral in Equation 2.5 is intractable. A variational

approach (Jaakkola and Jordan, 2000) can be used for a fast algorithm since it has a closed-

form solution for parameter updates and provides a lower bound approximation to the log-

likelihood (Chapters 4, 5, and 6)

Jaakkola and Jordan (2000) first proposed a variational approximation for the predictive

likelihood in a Bayesian logistic regression model and also briefly considered the “dual”

problem, which is closely related to the latent trait model. The variational approximation

of the logistic function

p(xi|yi, zig = 1) =
exp(yi)

1 + exp(yi)
= (1 + exp(−yi))−1,

can be approximated by the exponential of a quadratic form involving variational parameters

ξng = (ξi1g, ..., ξimg), where ξimg 6= 0 for all m = 1, ...,M .

Now, the lower bound of each term in the log-likelihood takes the form,

L(ξig) = log(p(xi|ξig) = log

(∫ M∏
m=1

p(xim|yi, zig = 1, ξimg)p(yi) dyi

)
,

where

p(xim|yi, zig = 1, ξimg) = σ(ξimg) exp

(
Aimg − ξimg

2
+ λ(ξimg)(A

2
img − ξ2

img)

)
,

Aimg = (2xim − 1)(bmg +w′mgyi),

λ(ξimg) = (
1

2
− σ(ξimg))/2ξimg,

σ(ξimg) = (1 + exp(−ξimg))−1.

This approximation is used to obtain a lower bound for the log-likelihood estimation that
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leads to the development of a computationally efficient E-step for fitting the MLTCG,

PMLTM and MMCLT models in Chapters 4, 5 and 6.

2.4.3 Penalized Latent Variable Models

A problem that arises with fitting high-dimensional binary data via a latent variable model

is the large number of parameters required. Penalized latent variable models are developed

to carry out dimension reduction and variable selection simultaneously. There has recently

been an increasing interest in penalized latent variable models (see Houseman et al., 2007;

DeSantis et al., 2008). Houseman et al. (2007) propose a penalized item response theory

model with univariate traits which penalizes the item-response slopes with ridge penalties.

However, it doesn’t take into account the potential group structure of the data, and Gauss-

Hermite quadrature is required to approximate the likelihood. DeSantis et al. (2008) develop

a penalized latent class model to facilitate analysis of high-dimensional ordinal data. A

ridge penalty is introduced to the feature-based parameterization of class-specific response

probabilities to stabilize maximum likelihood estimation. Both methods adopt a shared

tuning parameter among variables and require a model selection criterion to choose it.

The Lasso estimator (Tibshirani, 1996) often yields solutions with some parameter esti-

mates being exactly 0. Galimberti et al. (2009) develop a penalized factor mixture analysis

which contextually performs dimension reduction and variable selection by shrinking the

factor loadings through a penalized likelihood method with a Lasso penalty. Results proved

the capability of the model to select the relevant variables in the presence of a large num-

ber of irrelevant ones. However, they use shared tuning parameters for all variables and an

exhaustive search using BIC is required to chose the tuning parameters.

18



Ph.D. Thesis - Yang Tang McMaster - Mathematics and Statistics

2.5 The EM Algorithm and Extensions

2.5.1 The EM Algorithm

The EM algorithm (Dempster et al., 1977) is an iterative computational procedure for cal-

culating maximum likelihood estimates when data are incomplete. The EM algorithm is

commonly used for the fitting of mixture models and parameter estimation in model-based

clustering where the incomplete data arises from the unobserved cluster label, and in some

cases, other latent variables. On each iteration of the EM algorithm, there are two steps

– an expectation step (E-step), where the complete-data likelihood is calculated based on

current model parameters, and a maximization step (M-step), where the expected value of

the complete-data log-likelihood is maximized with respect to the model parameters. The

algorithm alternates between the E and M-steps until some convergence criterion is reached.

In this thesis, we use several alternatives of the classical expectation-maximization for model

fitting. McLachlan and Krishnan (2007) gave a detailed review of the EM algorithm and its

extensions.

2.5.2 The Generalized EM Algorithm

The generalized EM algorithm (GEM) is applied when the solution to the M step does not

exist in closed-form, and it may not be feasible to attempt to find the value of Θ that globally

maximizes the function Q(Θ,Θ(t)). Thus, the M-step in GEM requires Θ(t+1) to be chosen

such that

Q(Θ(t+1); Θ(t)) ≥ Q(Θ(t); Θ(t))
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holds. Instead of maximizing the Q-function Q(Θ,Θ(t)), one chooses Θ(t+1) to increase the

Q function over its value at Θ = Θ(k). Dempster et al. (1977) showed that the likelihood is

not decreased after a GEM iteration so a GEM sequence of likelihood values must converge

if bounded above.

2.5.3 The ECM Algorithm

Meng and Rubin (1993) introduce a variant to the EM algorithm, the expectation-conditional

maximization (ECM) algorithm, for use in the instance that the complete-data likelihood

estimation is relatively complicated. The ECM algorithm replaces a complicated M-step

by a number of computationally simpler conditional maximization steps (CM-steps). The

ECM algorithm shares the convergence properties of the classic EM algorithm. Moreover,

the algorithm usually converges more quickly in terms of total computation time, though it

may require more iterations to reach convergence.

2.5.4 The EM Algorithm for Maximum a Posteriori and Maximum

Penalized Estimation

The EM algorithm is easily modified to find the mode of a posterior distribution in a Bayesian

framework, producing the maximum a posteriori (MAP) estimate corresponding to some

prior density p(Θ) for Θ. On the (t + 1)th iteration, instead of estimating the complete-

data likelihood, we calculate the conditional expectation of the log complete-data posterior

density given the observed data using the current MAP estimate Θ(t). That is,

EΘ(t){log p(Θ|complete-data)|observed data} = Q(Θ,Θ(t)) + log p(Θ).

We choose Θ(t+1) to maximize the log complete-data posterior density in the M-steps. The

objective function in the M-step is equal to Q(Θ,Θ(t)) augmented by the log prior density
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log p(Θ). The imposition of a Bayesian prior for Θ almost always makes the objective

function more concave.

2.6 The MM Algorithm

In minimization problems, MM stands for majorize-minimize, and in maximization prob-

lems, MM stands for minorize-maximize. The majorization-minizmation algorithm (Hunter

and Lange, 2004) is an optimization method that is particularly useful in high-dimensional

problems. The MM algorithm substitutes a simple optimization problem for a difficult one

by separating the variables, avoiding large matrix inversions or turning a non-differentiable

problem into a smooth problem. Let g(Θ|Θ(t)) denote a real-valued function of Θ whose

form depends on Θ(t). The function g(Θ|Θ(t)) is said to majorize Q(Θ,Θ(t)) at point Θ(t)

provided

g(Θ|Θ(t)) ≥ Q(Θ,Θ(t)),

g(Θ(t)|Θ(t)) = Q(Θ(t)).

Therefore, in the MM algorithm, we minimize the majorizing function g(Θ|Θ(t)) rather

than the actual function Q(Θ,Θ(t)) and the MM procedure is numerically stable because it

forces Q(Θ) to not increase after a MM iteration. With straightforward changes, the MM

algorithm also applies to maximization rather than minimization: To maximize the function

Q(Θ,Θ(t)), we minorize it by a surrogate function g(Θ|Θ(t)) and maximize g(Θ|Θ(t)) to

produce the next iteration Θ(t+1).

Indeed, every EM algorithm is a special case of the more general class of MM algorithms,

which typically exploit convexity rather than missing data in majorizing or minorizing an

objective function.
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2.6.1 Convergence

There are a variety of ways to measure convergence. One common approach is in terms of

either the size of the relative change in the parameter estimates or the log likelihood. One

stops the algorithm when the increase in the log-likelihood between continuous iterations is

less than a given threshold ε, i.e.,

logL(Θ(t+1) |X)− logL(Θ(t) |X) < ε.

However, this is a measure of “lack of progress” and not of actual convergence.

Böhning et al. (1994) exploited Aitken’s acceleration procedure (Aitken, 1926) which

can be used as a convergence criterion. This stopping criterion determines convergence by

estimating the limiting value of the log-likelihood at each iteration of the EM algorithm.

The Aitken acceleration at iteration t is

a(t) =
l(t+1) − l(t)

l(t) − l(t−1)
,

where l(t) is the log-likelihood at iteration t. An asymptotic estimate of the log-likelihood at

iteration t is

l(t)∞ = l(t−1) +
1

1− a(t−1)
(l(t) − l(t−1)).

Böhning et al. (1994) suggest considering an algorithm to be converged when

|l(t+1)
∞ − l(t)∞ | < ε.

For all algorithms developed in this thesis, convergence is determined via Aitken’s accel-

eration. The stopping criterion suggested by Böhning et al. (1994) is used with ε = 0.01.
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2.7 Model Selection and Performance Assessment

2.7.1 Model Selection

The Bayesian information criterion (BIC; Schwarz, 1978) is commonly used for model selec-

tion in model-based clustering. The BIC takes the form,

BIC = −2l + k log n, (2.7)

where l is the maximized log-likelihood, k is the number of free parameters to be estimated

in the model, and n is the number of observations. Schwarz (1978) proved that, if one of the

models M1, . . . ,Mm is correct, so that there is a true Θ in that model, as n becomes large,

the probability approaching 1, BIC will select the best model. Poskitt (1987) and Haughton

(1988) extended and improved Schwarz’s work, showing that consistency held also under

less restrictive conditions. The BIC is used as a model selection criterion throughout the

thesis to select the number of clusters G and the dimension of the latent variable Y , the

covariance structure and the number of dimensions of the component specific subspaces

where appropriate. When defined as in Equation 2.7, models with lower values of BIC are

preferable.

2.7.2 The Adjusted Rand Index

For high-dimensional binary data, particularly when the number of observations n is not very

large relative to their dimension m, it is common to have a large number of patterns with

small observed frequency. Accordingly, we cannot use a χ2 test to check the goodness of the

model fit. To assess the model performance, a measure of agreement is needed. When the

true underlying groups are known, the clustering performance of the models can be assessed
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by comparing the known class labels to the estimated group memberships. We assign each

observation xi ∈ {x1, . . . ,xn} to one and only one group g, g = 1, . . . , G, with the largest

corresponding zig value after convergence. These are referred to as the MAP classifications.

The Rand index (Rand, 1971) is simply calculated as pairwise agreements between the true

class labels and the MAP classification,

number of pairwise agreements
total number of pairs

. (2.8)

The Rand index lies between 0 and 1. When two partitions agree perfectly, the Rand index

is 1. A problem with the Rand index is that the expected value of the Rand index of two

random partitions does not take a constant value (say zero) and smaller values are difficult

to interpret. Therefore, Hubert and Arabie (1985) proposed the adjusted Rand index (ARI).

The ARI is the corrected-for-chance version of the Rand index. The general form of the ARI

is
index− expected index

maximum index− expected index
,

which is bounded above by 1, and has expected value 0 under random classification.
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Chapter 3

Mixtures of Joint Generalized

Hyperbolic Models

3.1 Introduction

In this chapter, mixtures of joint generalized hyperbolic models are developed via a novel

distribution, a joint generalized hyperbolic model (JGHM). The JGHM exhibits different

marginal amounts of tail-weight. Drawing ideas from model-based subspace clustering (Bou-

veyron et al., 2007), we take into account the cluster specific subspace to limit the number

of parameters to estimate. This is a novel approach, which is applicable to high – and

potentially very-high – dimensional spaces and with arbitrary correlation between dimen-

sions. A multi-cycle expectation-conditional maximization (MCECM) algorithm (Meng and

Rubin, 1993) is used for parameter estimation and BIC is used to determine the number

of components and the dimensions of the subspaces. This method is a robust asymmetric

clustering method for high-dimensional data — “asymmetric" in the sense that the clusters

can be asymmetric. Our proposed method is illustrated and compared to standard clustering

25



Ph.D. Thesis - Yang Tang McMaster - Mathematics and Statistics

methods, on simulated and real data.

In Section 3.2, we introduce our mixture of joint generalized hyperbolic models for asym-

metric clustering of high-dimensional data (MJGHM-HDClust). Then, the performance of

our model is assessed (Section 3.3) and some potential real world applications for subspace

clustering are discussed (Section 3.4). The paper concludes with a discussion and suggestions

for future work in Section 3.5.

3.2 A Mixture of Joint Generalized Hyperbolic Models

3.2.1 Overview

Drawing ideas from model-based subspace clustering (Bouveyron et al., 2007), the joint gen-

eralized hyperbolic model (JGHM) chooses to project p-dimensional X onto two subspaces.

We assume there is a q-dimensional subspace which best preserves the variance of the data

and is much smaller than the original space. There exists a q-dimensional latent variable

W that controls the concentration in the first q dimensions of [Γ′x], where Γ is a matrix of

eigenvectors associated with the eigenvalues Φ = (φ1, φ2, . . . , φp) with φ1 > φ2 · · · > φp; and

λ = (λ1, . . . , λq)
′ is a q-dimensional index parameter. In addition, outside the q-dimensional

subspace, the noise variance is modelled by a single parameter b and a univariate latent
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variable A where A ∼ GIG(ω0, 1, λ0). Therefore, the JGHM takes the form

f(x|µ,β,Γ,φ, b,Ω,λ, ω0, λ0) =

q∏
j=1

∫ ∞
0

ρ1([Γ′x− µ−∆wβ]j |0, φjwj)hW (wj |Ωj , 1, λj)dwj

×
∫ ∞
0

p∏
k=q+1

ρ1([Γ′x− µ− aβ]k|0, b× a)hA(a|ω0, 1, λ0)da

=

q∏
j=1

[
Ωj + φ−1j ([Γ′x]j − µj)2

Ωj + β2
jφ
−1
j

]λj− 1
2

2 Kλj− 1
2

(√[
Ωj + β2

jφ
−1
j

] [
Ωj + φ−1j ([Γ′x]j − µj)2

])
(2π)

1
2φ

1
2
j Kλj (Ωj) exp

{
− ([Γ′x]j−µj)βj

φj

}

×


ω0 + b−1

p∑
k=q+1

([Γ′x]k − µk)2

ω0 + b−1
p∑

k=q+1

β2
k


(λ0−

p−q
2

)

2
Kλ0− p−q2

√√√√[ω0 + b−1
p∑

k=q+1

β2
k

][
ω0 + b−1

p∑
k=q+1

([Γ′x]k − µk)2

]
(2π)

p−q
2 b

p−q
2 Kλ0(ω0) exp

−
p∑

k=q+1

([Γ′x]k−µk)βk

b


.

(3.1)

As such,

Wj|x ∼ GIG(Ωj + β2
jφ
−1
j ,Ωj +

[Γ′x]j − µj
φj

, λj −
1

2
),

and

A|x ∼ GIG(ω0 + b−1

p∑
k=q+1

β2
k , ω0 + b−1

p∑
k=q+1

([Γ′x]k − µk)2, λ0 −
p− q

2
).

We use a mixture of JGHMs for model-based clustering and classification. The MJGHM

is then given by

f(x|Ψ) =
G∑
g=1

πgfJGHM(x|Γg,µg,βg,φg, b,Ωg,λg, ω0g, λ0g),

in which we assume component specific subspaces and the dimension qg of the subspace can

be considered as the number of dimensions required to describe the main features of the gth

component. The mixing proportions are π1, π2, . . . , πG. It would generally be advantageous

to use the MJGHM because the GHD is a flexible distribution, capable of handling skewness

and heavy tails, and has many well known distributions as special or limiting cases.
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3.2.2 Parameter Estimation

To fit the models, we adopt the MCECM, which is a variant of the well-known EM algo-

rithm. In our case, the missing data comprise the group memberships zig, where zig = 1 if

observation i belongs to component g and zig = 0 otherwise. The multidimensional latent

variables ∆Wg = diag(W1g, · · · ,Wqgg, AgIp−qg)(g = 1, · · · , G) are assumed to follow GIG

distributions. Therefore, the complete-data CD consist of the observed xi together with the

zig and the ∆Wig
and complete-data log-likelihood is given by:

lc(Ψ|CD) = l1c(π|CD) + l2c(θ|CD) + l3c(υ|CD) + l4c(τ |CD),

where

l1c(π|CD) =
n∑
i=1

G∑
g=1

zig log πg,

l2c(θ|CD) =
n∑
i=1

G∑
g=1

zig

{
log fp

(
[Γ′gxi]|µg + ∆wigβg,∆wigΦg

)}
,

l3c(υ|CD) =
n∑
i=1

G∑
g=1

zig

{ qg∑
j=1

(log hW (wijg|Ωjg, 1, λjg))
}

and

l4c(τ |CD) =
n∑
i=1

G∑
g=1

zig

{
log hA(aig|ω0g, 1, λ0g)

}
,

where π = (π1, . . . , πG), fp
(
[Γ′gxi]|µg + ∆wigβg,∆wigΦg

)
is the density of a multivariate

Gaussian distribution with mean µg + ∆wigβg and Φg = diag(φ1, φ2, . . . , φqg , bgIp−qg);

accordingly, θ = {Γg,µg,βg,φg, bg}Gg=1.

We also have υ = {Ωg,λg}Gg=1 and τ = {ω0g, λ0g}Gg=1.

The MCECM algorithm iterates between two CM-steps and an E-step is performed before

each CM-step. They arise from the partition Ψ = (Ψ1,Ψ2),

where Ψ1 = (πg,µg,βg,φg, bg,Ωg,λg, ω0g, λ0g) and Ψ2 = Γg.
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1. The E-step: We compute the expected value of the complete-data log-likelihood in

the E-step using the expected values of the missing data in lc(Ψ|CD). We require the

following expectations:

E [Zig|xi] =
πgf(xi|Ψg)∑G
h=1 πhf(xi|Ψh)

=: ẑig.

The expected values of the multidimensional latent variables can be written as:

E [Wijg|xi, zig = 1] =

√
eijg
djg

Kλjg+1/2(
√
eijgdjg)

Kλjg−1/2(
√
eijgdjg)

=: E1ijg

E
[
W 2
ijg|xi, zig = 1

]
=
eijg
djg

Kλjg+3/2(
√
eijgdjg)

Kλjg−1/2(
√
eijgdjg)

=: E2ijg

E
[

1

Wijg

|xi, zig = 1

]
=

√
djg
eijg

Kλjg+1/2(
√
eijgdjg)

Kλjg−1/2(
√
eijgdjg)

− 2λjg − 1

eijg
=: E3ijg

E [logWijg|xi, zig = 1] = log

√
eijg
djg

+
∂

∂υ
log
(
Kυ(

√
eijgdjg)

)
|υ=λjg−1/2 =: E4ijg

where djg = Ωjg + β2
jgφ
−1
jg and eijg = Ωjg +

[Γ′gxi]j−µjg
φjg

.

E [Aig|xi, zig = 1] =

√
e0ig

d0g

Kλ0g−(p−qg)/2+1(
√
e0igd0g)

Kλ0g−(p−qg)/2(
√
e0igd0g)

=: EA1ig

E
[
A2
ig|xi, zig = 1

]
=
e0ig

d0g

Kλ0g−(p−qg)/2+2(
√
e0igd0g)

Kλ0g−(p−qg)/2(
√
e0igd0g)

=: EA2ig

E
[

1

Aig
|xi, zig = 1

]
=

√
d0g

e0ig

Kλ0g−(p−qg)/2+1(
√
e0igd0g)

Kλ0g−(p−qg)/2(
√
e0igd0g)

− 2λ0g − (p− qg)
e0ig

=: EA3ig

E [logAig|xi, zig = 1] = log

√
e0ig

d0g

+
∂

∂υ
log
(
Kυ(

√
e0igd0g)

)
|υ=λ0g−(p−qg)/2 =: EA4ig,

where d0g = ω0g + b−1
g

p∑
k=qg+1

β2
kg, and e0ig = Ω0g + b−1

g

p∑
k=qg+1

([Γ′gxi]k − µkg)2.
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Thus we have

E[∆Wig
] = diag(E1i1g, E1i2g, . . . , E1iqgg, EA1igIp−qg),

E[∆ 1
Wig

] = diag(E3i1g, E3i2g, . . . , E3iqgg, EA3igIp−qg),

E[∆W 2
ig

] = diag(E2i1g, E2i2g, . . . , E2iqgg, ÊA2igIp−qg).

2. CM-step 1: The first CM-step on the (t+1)th iteration requires the calculation of Ψ
(t+1)
1

as the value of Ψ1 that maximizes Q(Ψ|Ψ(t)) with Ψ2 fixed at Ψ
(t)
2 . In particular,

we obtain the update for the mixing proportions from π̂
(t+1)
g = n

(t)
g /n, where ng =∑n

i=1 ẑ
(t)
ig . The elements of the location parameter µg and skewness parameter βg are

replaced with

µ
(t+1)
jg =

∑n
i=1 ẑ

(t)
ig [Γ

′(t)
g xi]j

(∑n
i=1 ẑ

(t)
ig E[∆Wig

]
(t)
j

n
(t)
g

E[∆ 1
Wig

]
(t)
j − 1

)
∑n

i=1 ẑ
(t)
ig

(∑n
i=1 ẑ

(t)
ig E[∆Wig

]
(t)
j

n
(t)
g

E[∆ 1
Wig

]
(t)
j − 1

)
and

β
(t+1)
jg =

∑n
i=1 ẑ

(t)
ig [Γ

′(t)
g xi]j

(∑n
i=1 ẑ

(t)
ig E[∆ 1

Wig

]
(t)
j

n
(t)
g

− E[∆ 1
Wig

]
(t)
j

)
∑n

i=1 ẑ
(t)
ig

(∑n
i=1 ẑ

(t)
ig E[∆Wig

]
(t)
j

n
(t)
g

E[∆ 1
Wig

]
(t)
j − 1

) ,

respectively, where j = 1, 2, . . . , p and [Γ
′(t)
g xi]j is the jth element of the matrix [Γ

′(t)
g xi].

We update the diagonal elements hjg of the empirical covariance matrix of [Γ′gX]j|∆Wg ,

h
(t+1)
jg = 1

n
(t)
g

∑n
n=1

{
ẑ

(t)
ig ([Γ

′(t)
g xi]j−µ

(t+1)
jg )2−2ẑ

(t)
ig ([Γ

′(t)
g xi]j−µ

(t+1)
jg )β

(t+1)
jg E[∆Wig

]
(t)
j +ẑ

(t)
ig (E[∆

W2
ig

]
(t)
j (β2

jg)(t+1)
}
.
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We then order h(t+1)
jg from the largest to the smallest in order to determine the sub-

spaces. Now we obtain

φ
(t+1)
jg =

1

n
(t)
g

n∑
i=1

ẑ
(t)
ig

[
E

(t)
3ijg([Γ

′(t)
g xi]j − µ

(t+1)
jg )2 − 2([Γ′(t)g xi]j − µ

(t+1)
jg )β

(t+1)
jg + E

(t)
1ijg(β

2
jg)

(t+1)
]

and

b(t+1)
g =

1

n
(t)
g (p− qg)

n∑
i=1

ẑ
(t)
ig

p∑
k=qg+1

[
EA

(t)
3ig[Γ

′(t)
g xi]

2
k + EA

(t)
3ig(µ

2
kg)

(t+1) + EA
(t)
1ig(β

2
kg)

(t+1)

−2EA
(t)
3ig[Γ

′(t)
g xi]kµ

(t+1)
kg − 2[Γ′(t)g xi]kβ

(t+1)
kg − 2µ

(t+1)
kg β

(t+1)
kg

]
,

respectively.

The qj-dimensional concentration parameter Ωg and index parameter λg are estimated

by maximizing the function

qjg(Ωjg, λjg) = − logKλjg(Ωjg)+(λjg−1)

∑n
i=1 ẑigE4ijg

ng
−Ωjg

2

(
n∑
i=1

ẑigE1ijg +
n∑
i=1

zigE3ijg

)
.

This leads to

λ
(t+1)
jg =

∑n
i=1 ẑigE4ijg

ng
λ

(t)
jg

[
∂

∂v
logKv(Ω

(t)
jg )|

v=λ
(t)
jg

]−1

and

Ω
(t+1)
jg = Ω

(t)
jg −

[
∂

∂v
qjg(v, λ

(t+1)
jg )|

v=Ω
(t)
jg

] [
∂2

∂v2
qjg(v, λ

(t+1)
jg )|

v=Ω
(t)
jg

]−1

.

The univariate parameters ω0g and λ0g are estimated following Browne and McNicholas

(2015a).

3. CM-step 2: To update the component eigenvector matrices Γg, our goal is to minimize

the matrix trace function

f(Γg) =
1

2
Tr

(
n∑
i=1

ẑigxix
′
iΓgΦ̂gE[∆ 1

Wig

]Γ′g

)
− Tr

(
n∑
i=1

ẑigΦ
−1
g (E[∆ 1

Wig

]µg + βg)x
′
iΓg

)
+ constant.

We follow Kiers (2002) and Browne and McNicholas (2014) by using a majorization
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function for the minimization of f(Γg) and it takes the form

f(Γg) ≤ constant + Tr (FtΓg) ,

where

Ft =
n∑
i=1

(
−ẑ(t)

ig (Φ−1
g )(t+1)(E[∆ 1

Wig

](t)µ(t+1)
g + β(t+1)

g )x′i

)
+

n∑
i=1

(
ẑ

(t)
ig xix

′
iΓgE[∆ 1

Wig

](t)(Φ−1
g )(t+1) − ẑ(t)

ig α
(t+1)
ig xix

′
iΓg

)
,

Φ
(t+1)
g = diag(φ

(t+1)
1g , φ

(t+1)
2g , . . . , φ

(t+1)
qgg , b

(t+1)
g Ip−d), and αig is the largest value of the

diagonal matrix (E[∆ 1
Wig

](t)(Φ−1
g )(t+1)). Suppose we obtain the singular value decom-

position

−Ft = PtBtR
′
t and Γ(t+1)

g = RtP
′
t .

4. Convergence criterion: The convergence of our MCECM algorithm is determined using

a criterion based on the Aitken acceleration (Chapter 2.5.3).

3.2.3 Model Identifiability

Before investigating the identifiability of our mixture of joint generalized hyperbolic models

(MJGHM), it is convenient to rewrite the model density as

f(x|µ,β,Γ,φ,b,Ω,λ,ω0,λ0)=
∏q
j=1

∫∞
0 ρ1([Γ′x−µ−∆wβ]j |0,φjwj)hW (wj |Ωj ,1,λj)dwj

×
∫∞
0

∏p
k=q+1 ρ1([Γ′x−µ−aβ]k|0,b×a)hA(a|ω0,1,λ0)da

=
∏q
j=1

[
Ωj+φ−1

j
([Γ′x]j−µj)2

Ωj+β2
j
φ−1
j

]λj− 1
2

2 K
λj−

1
2

(√
[Ωj+β2

j
φ−1
j ]

[
Ωj+φ−1

j ([Γ′x]j−µj)
2
])

(2π)
1
2 φ

1
2
j
Kλj

(Ωj) exp

{
−

([Γ′x]j−µj)βj
φj

}

×

ω0+b−1
p∑

k=q+1
([Γ′x]k−µk)2

ω0+b−1
p∑

k=q+1
β2
k


(λ0−

p−q
2 )

2 K
λ0−

p−q
2


√√√√√
ω0+b−1

p∑
k=q+1

β2
k

ω0+b−1
p∑

k=q+1
([Γ′x]k−µk)2




(2π)
p−q

2 b
p−q

2 Kλ0
(ω0) exp

−
p∑

k=q+1
([Γ′x]k−µk)βk

b



.
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The identifiability of the MJGHM depends on the identifiability of the mixture of univari-

ate generalized hyperbolic distributions which has been proved in Browne and McNicholas

(2015a). In Proposition 1, we extend the results in Browne and McNicholas (2015a), and

show that the mixture of joint generalized hyperbolic models (MJGHM) is identifiable as-

suming correct choice of qg (g = 1, . . . , G).

Theorem 3.2.1. Let Σ be a square, symmetric real-valued p × p matrix with p linearly

independent eigenvectors. Then there exists a symmetric diagonal decomposition

Σ = QΛQ′,

where the columns of Q are the orthogonal and normalized eigenvectors of Σ, and Λ is the

diagonal matrix whose entries are the eigenvalues of Σ. Further, all entries of Q are real

and we have Q−1 = Q′.

Proposition 3.2.2. The joint generalized hyperbolic models generate identifiable finite mix-

tures assuming the correct choice of qg (g = 1, . . . , G).

Proof. Similar to Tortora et al. (2014), we consider moving the amount t in a direction z,

setting x = tz. If z is equal to the kth eigenvector (k = 1, . . . q) then the density reduces to

ck

[
Ωk + φ−1

k ([t− µk)2

Ωk + β2
kφ
−1
k

]λk− 1
2

2
Kλk− 1

2

(√[
Ωk + β2

kφ
−1
k

] [
Ωk + φ−1

k (t− µk)2])
(2π)

1
2φ

1
2
kKλk(Ωk) exp{− (t−µk)βk

φk
}

,
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where

ck =

q∏
j=1,j 6=k

[
Ωj + φ−1

j (µj)
2

Ωj + β2
jφ
−1
j

]λj− 1
2

2 Kλj− 1
2

(√[
Ωj + β2

jφ
−1
j

] [
Ωj + φ−1

j (µj)
2])

(2π)
1
2φ

1
2
j Kλj(Ωj) exp{ (µj)βj

φj
}

×


Ω̄ + b−1

p∑
d=q+1

(µd)
2

Ω̄ + b−1
p∑

d=q+1

β2
d


(λ̄− p−q2 )

2 Kλ̄− p−q
2

√√√√[Ω̄ + b−1
p∑

d=q+1

β2
d

][
Ω̄ + b−1

p∑
d=q+1

(µd)2

]
(2π)

p−q
2 b

p−q
2 Kλ̄(Ω̄) exp


p∑

d=q+1
(µd)βd

b


.

Therefore, the density is proportional to

f(t|θ) ∝
q∏
j=1

[
Ωj + φ−1

j ([t− µj)2

Ωj + β2
jφ
−1
j

]λj− 1
2

2 Kλj− 1
2

(√[
Ωj + β2

jφ
−1
j

] [
Ωj + φ−1

j (t− µj)2])
(2π)

1
2φ

1
2
j Kλj(Ωj) exp

{
− (t−µj)βj

φj

}

×


ω0 + b−1

p∑
k=q+1

(t− µk)2

ω0 + b−1
p∑

k=q+1

β2
k


(λ0−

p−q
2 )

2 Kλ0− p−q2

√√√√[ω0 + b−1
p∑

k=q+1

β2
k

][
ω0 + b−1

p∑
k=q+1

(t− µk)2

]
(2π)

p−q
2 b

p−q
2 Kλ0(ω0) exp


p∑

k=q+1
(y−µk)βk

b


.

Browne and McNicholas (2015a) state that “if the parameterizations are one-to-one, then if

one parameterization is shown to be identifiable, the others are identifiable as well.” Accord-

ingly, similar to Browne and McNicholas (2015a), we let δj = βj/φj, αj =
√

Ωj/φj + β2
j /φ

2
j

and κj =
√
φjΩj. For large z, the Bessel function can approximated by

Kλ(z) =

√
π

2z
e−z
[
1 +O

(
1

z

)]
,

and the characteristic function for a normal variance-mean density can be written as

ϕX(t) = exp{itµ}MW

(
βti− 1

2
σ2t2|λ,Ω

)
.

Therefore, the characteristic function for the joint generalized hyperbolic models can be
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written as

ϕX(v) =

q∏
j=1

exp{i|Γ′v|jµj}
[
1 +

φj|Γ′v|2j − 2βj|Γ′v|ji
Ωj

]−λj/2 Kλj

(√
Ωj

[
Ωj + (φj|Γ′v|2j − 2βj|Γ′v|ji)

])
Kλj(Ωj)

× exp{i|Γ′v|′2µ2}
[
1 +

b|Γ′v|′2|Γ′v|2 − 2β′2|Γ′v|i
ω0

]−λ0/2

×
Kλ0

(√
ω0 [ω0 + (b|Γ′v|′2|Γ′v|2 − 2β′2|Γ′v|2i)]

)
Kλ0(ω0)

,

where |Γ′v|2 is the (q + 1)th to pth columns of |Γ′v|, µ2 = (µq+1, . . . , µp)
′, and β2 =

(βq+1, . . . , βp)
′. Now if we consider moving t in the direction z, v = tz and for large t, the

characteristic function is

ϕX(v = tz)

∝ exp

it
p∑
j=1

|Γ′z|jµj − t
q∑
j=1

κj ||Γ′z|j | − t
√
bω0

p∑
k=q+1

|Γ′z|k − log(t)

 q∑
j=1

λjI(|Γ′z|j 6= 0) + λ0

+O(1)


∝ exp

itz′Γµ− t
 q∑
j=1

κj ||Γ′z|j |+
√
bω0

p∑
k=q+1

|Γ′z|k

− log(t)

 q∑
j=1

λjI(|Γ′z|j 6= 0) + λ0

+O(1)

 .

From Yakowitz and Spragins (1968), there exists z such that the tuple(
z′Γµ,

q∑
j=1

κj||Γ′z|j|+
√
bω0

p∑
k=q+1

|Γ′z|k,
q∑
j=1

λjI(|Γ′z|j 6= 0) + λ0

)
is pairwise distinct for all g = 1, . . . , G and reduces to a mixture of univariate hyperbolic

distributions, which has been proved identifiable in Browne and McNicholas (2015a).

3.2.4 Computational Aspects

We start with ten random initializations of the algorithm by randomly assigning each ob-

servation to one of the G components. After fitting models for all values of G and qg, we

select the model with the lowest BIC. We compare our approach with the classic Gaussian
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parsimonious clustering models (GPCM) from R packagemixture (Browne et al., 2015) and

high-dimensional data clustering (HDDC) approach from R packageHDclassif (Bergé et al.,

2012). It is worth noting that the MJGHM-HDClust model proposed here does not need

to numerically invert covariance matrices, which often fails for singularity reasons. During

our experiments, we found the classical Gaussian parsimonious clustering models (GPCM)

from R package mixture (Browne et al., 2015) do not always converge, especially for high-

dimensional data. We also compare with the parsimonious Gaussian mixture models from

R package pgmm (McNicholas et al., 2011) in our real data application.

3.3 Simulation Studies

To illustrate the accuracy of the proposed MJGHM-HDClust model, we perform simulation

experiments on three datasets. Each one of the three datasets consists of 500 data points

(i.e., n = 500) with different dimensionality (p1 = 100, p2 = 200, p3 = 500). For each data

set, two Gaussian densities are simulated in Rp with the mixing proportions π1 = π2 = 0.5.

The BIC is used for selecting the best model and ARI can be calculated because the true

partitions are known. Thus, a comparison of approaches MJGHM-HDClust, HDDC (via R

package HDclassif), and GPCM (via R package mixture) is carried out. We present the

model structures selected by the lowest BIC values and the ARI values associated with the

clustering results (Table 3.1). With the MJGHM-HDClust approach, the BIC selected G = 2

components in all cases, which is correct. The ARI values for selected models are very high

for all p, even when p is as large as the sample size n. On the other hand, for the HDDC

and GMM approaches, the BIC failed to choose the correct number of groups in all cases,

and the ARI value decreases as p increases. In addition, the GPCMs do not always converge

for p = 200 and p = 500. It is notable that the MJGHM-HDClust approach outperformed
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HDDC and GPCM in all cases, even though the samples were generated from Gaussian

mixture models. We have also given plots of the first two dimensions of the transformed

spaces of the data (Figure 3.2). The clusters are very well separated in these projections

when compared to the original space (Figure 3.1).

Table 3.1: Model selection, and ARI values for the MJGHM-HDClust, HDDC, and GPCM
approaches for different values of p.

MJGHM-HDClust HDDC GPCM
p = 100 p = 200 p = 500 p = 100 p = 200 p = 500 p = 100 p = 200 p = 500

G 2 2 2 3 5 5 3 3 5

qg/Σg (2, 3) (15, 12) (23, 15) (14, 32, 22) (14, 23, 18, 3, 18) (4, 68, 41, 9, 24) VII VII VII
BIC 282252 482159 727036 240254 472508 794696 234448 491205 694239

ARI 0.97 0.97 0.95 0.43 0.25 0.21 0.67 0.47 0.33
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(a) p = 100 (b) p = 200

(c) p = 500

Figure 3.1: Plots of the first two dimensions from the original data sets for different values
of p.
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(a) p = 100 (b) p = 200

(c) p = 500

Figure 3.2: Plots of the first two dimensions from the transformed spaces (MJGHM-
HDClust).
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3.4 Real Data

3.4.1 Italian Wines

The Italian wines data (Forina et al., 1986) has been widely used in literature. The data

set includes 178 wines and each wine belongs to one of the three types: Barolo, Grignolino

or Barbera. The chemical and physical properties of each wine are listed in Table 3.2. This

data set is available from the R package pgmm (McNicholas et al., 2011). The MJGHM-

HDClust models were fitted to these data for G = 1, 2, . . . , 4 and qg = 2, 3, 5, 8, 10. The

lowest BIC occurs at the 3-cluster, q = (8, 5, 3) model. The BIC value is 16984.

Table 3.2: Twenty-seven chemical and physical properties for the Italian wines.
Item Property Item Property
1 Alcohol 15 Total phenols
2 Suger-free extract 16 Flavanoids
3 Fixed acidity 17 Nonflavanoid phenols
4 Tartaric acid 18 Proanthocyanins
5 Malic acid 19 Color intensity
6 Uronic acids 20 Hue
7 pH 21 OD280/OD315 of diluted wines
8 Ash 22 OD280/OD315 of flavanoids
9 Alcalinity of ash 23 Glycerol
10 Potassium 24 2,3-butanediol
11 Calcium 25 Total nitrogen
12 Magnesium 26 Proline
13 Phosphate 27 Methanol
14 Chloride

A summary of the best models from the MJGHM-HDClust, HDDC, GPCM, and the

PGMM approaches is shown in Table 3.3. The MJGHM-HDClust approach and PGMM

approach yield excellent clustering results (ARI= 0.95) and outperform the chosen two-

component Gaussian mixture models and the HDDC approach. There are only three mis-

classified wines in comparison with the true labels (Table 3.4). It is worth noting that

MJGHM-HDClust is one of the few methods in the literature using all 27 variables of the
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wine data set and yielding excellent clustering results.

Table 3.3: A comparison of four different approaches.
Approach G Model BIC ARI

MJGHM-HDClust 3 (q1, q2, q3) = (8, 5, 3) 16984 0.95
HDDC 2 (q1, q2) = (2, 1) 12657 0.41
PGMM 3 q = 4 & CUU 11428 0.96
GPCM 2 EVE 12068 0.49

Table 3.4: Cross-tabulation of the type of wines and predicted classifications.
Class/True Barolo Grignolino Barbera ARI
1 59 2 0

0.952 0 68 0
3 0 1 48

3.4.2 Breast Cancer Diagnostic Data Set

The breast cancer diagnostic data was originally reported on by Street et al. (1993). They

give data on 569 cases of breast tumours: 357 benign and 212 malignant. Ten real-valued

features are computed for each cell nucleus (Table 3.5). The mean, standard error, and

the “worst” or the largest of these features were computed for each image, resulting in 30

attributes. For instance, attribute 3 is mean radius, attribute 13 is the standard error of

radius and attribute 23 is the worst radius. The MJGHM-HDClust models were fitted to

these data for G = 1, 2, . . . , 4 and qg = 2, 3, 5, 8, 10. The lowest BIC occurs at the 2-cluster,

q = (8, 5) model. The BIC value is 20432. Figure 3.3 shows the minimum BIC for two-

component models for each pair (q1, q2).

A summary of the best models from the MJGHM-HDClust, HDDC, PGMM and GPCM

approaches is shown in Table 3.6. The respective classification results reveal that the chosen

two-component MJGHM-HDClust yields relatively good clustering result (ARI= 0.70) and
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q1
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Figure 3.3: A heat map representation of the minimum BIC value for each value of (q1, q2)
where the minimum is taken over the two-component models.

outperforms the other approaches we compared with. Moreover, the MJGHM-HDClust gives

us the correct number of components compared to the other approaches.

Plots of the first three dimensions of the transformed spaces for each component with

group labels (Figure 3.4) indicate that the groups are well separated in the latent space.

Table 3.5: Ten features are considered for breast cancer diagnosis.
Item Feature Item Feature
1 Radius 6 Compactness
2 Texture Intensity 7 Concavity
3 Perimeter 8 Concave Points
4 Area 9 Symmetry
5 Smoothness acid 10 Fractal Dimension
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Table 3.6: A comparison of four different approaches.
Approach G Model BIC ARI

MJGHM-HDClust 2 (q1, q2) = (8, 5) 20432 0.70
HDDC 4 (q1, q2, q3, q4) = (4, 3, 3, 3) 26673 0.09
PGMM 4 q = 4 & UUU 12083 0.35
GPCM 4 VEE 24367 0.22

Table 3.7: Cross-tabulation of type of the tumours and predicted classifications.
Class/True Benign Malignant ARI
1 30 343 0.702 164 15

Figure 3.4: Left: Plot of the first three dimensions of the transformed spaces for Group 1.
Right: Plot of the first three dimensions of the transformed spaces for Group 2.
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3.5 Discussion

We introduce the asymmetric clustering for high-dimensional data via a mixture of joint

generalized hyperbolic models, referred to as the MJGHM-HDClust, for model-based clus-

tering. The MJGHM-HDClust approach proposed here does not need to numerically invert

covariance matrices, which makes it ideal for high-dimensional data clustering. We develop

the MJGHM-HDClust approach based on the generalized hyperbolic distributions which

represent perhaps the most flexible in a recent series of alternatives to the Gaussian mix-

ture model for clustering and classification. Parameter estimation is carried out using a

multi-cycle ECM algorithm and Bayesian information criterion is used for model selection.

Comparing the MJGHM-HDClust, HDDC, PGMM, and GPCM approaches yielded some

interesting results. Two real data sets were considered for illustration: the Italian wine

data and the breast cancer diagnostic data. The MJGHM-HDClust approach was the only

approach giving great classification performance in both cases. The PGMM approach gave

excellent classification results for the Italian wine data but performed poorly when fitted to

the breast cancer diagnostic data.

Although illustrated for clustering, the MJGHM-HDClust approach can also be applied

for semi-supervised classification and discriminant analysis.
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Chapter 4

Mixture of Latent Trait Models via the

Contaminated Gaussian Distributions

4.1 Introduction

In this chapter, we explore the possibility of discovering “extreme patterns” of binary data

by drawing ideas from the mixture of contaminated Gaussian distributions (Punzo and Mc-

Nicholas, 2016). A contaminated Gaussian distribution (Figure 4.1) is a two-component

Gaussian mixture in which one of the components – with a large prior probability – repre-

sents normal observations, and the other – with a small prior probability, the same mean

and an inflated covariance matrix – represents the extreme points (Aitkin and Wilson, 1980).

For continuous multivariate random variables, the mixture of contaminated Gaussian distri-

butions accommodates outlying observations, spurious observations, or noise. Our goal is to

automatically detect patterns with lower probability of appearing while clustering in multi-

dimensional binary data, which we collectively refer to as extreme patterns. We propose a

mixture of latent trait models which assumes the low dimensional continuous latent variable
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comes from a contaminated Gaussian distribution and therefore picks up extreme patterns

in the observed binary data while clustering.

Figure 4.1: Plot of data from a contaminated Gaussian distribution.

The model-based clustering framework is outlined in Section 4.2, and an expectation-

conditional maximization (ECM) algorithm for parameter estimation is outlined. Applica-

tion on artificial and real data are presented in Section 4.3 and the chapter concludes with

some discussion in Section 4.4.
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4.2 The Mixture of Latent Trait Model via Contami-

nated Gaussian Distributions

4.2.1 The Latent Trait Models via Contaminated Gaussian Distri-

butions

Latent trait models via a contaminated Gaussian distribution can be used to model a set of

n multivariate binary (categorical) observations. We assume that there is a D dimensional

continuous latent variable Yi = {yi1, . . . , yiD} underlying the behaviour of the M categorical

response variables within each observation. The latent trait model via a contaminated

Gaussian distribution assumes that,

p(xi|Θ) =

∫
yi

p(xi|yi;α,w)p(yi|τ, η)dyi, (4.1)

where the conditional distribution of xi given yi is

p(xi|yi) =
M∏
m=1

(pm(yi))
xim(1− pm(yi))

(1−xim),

and the response function is a logistic function

pm(yi) = p(xim = 1|yi) =
1

1 + exp(−(αm +w′myi))
,

where αm is the intercept and wm are the slope parameters in the logistic function. The

continuous latent variable Yi comes from a contaminated Gaussian distribution

p(yi; τ, η) = τp(yi | ci = 1) + (1− τ)p(yi | ci = 0),

Yi | ci = 1 ∼ MVN(0, I),

Yi | ci = 0 ∼ MVN(0, ηI),

47



Ph.D. Thesis - Yang Tang McMaster - Mathematics and Statistics

where τ ∈ (0.5, 1) is the prior probability of a randomly chosen Yi coming from MVN(0, I)

and η denotes the degree of contamination. Because of the assumption η > 1, it can be

interpreted as the increase in variability due to the extreme values.

The mixture of latent trait model via contaminated Gaussian distributions (MLTCG) is a

mixture latent trait model and the latent variables are random variables from a contaminated

Gaussian distribution

p(xi) =
G∑
g=1

πg

∫
yig

p(xi|yig;αg,wg)p(yig|τg, ηg)dyig, (4.2)

where πg,αg,wg, τg, ηg are component specific parameters.

4.2.2 Model Identifiability

The identifiability of our model depends on the identifiability of the latent trait part as well

as the identifiability of the mixture of contaminated Gaussian distributions. The identifi-

ability of the mixture of contaminated Gaussian distributions has been proved by Punzo

and McNicholas (2016) and Knott and Bartholomew (1999) gives a detailed explanation of

model identifiability in the latent trait models context.

4.2.3 Model Fitting

To fit the MLTCG model, we adopt the ECM algorithm (Section 2.5.3). In this case, there

are two sources of incomplete data: one arises from the fact that we do not know the

component labels zi and the other arises from the fact that we do not know whether an

observation in group g is normal or extreme. To denote the second source of missing data,

we use ci = (ci1, ci2, . . . ciG) where cig = 1 if observation i in group g is normal and cig = 0

if observation i in group g is extreme. Therefore, the complete-data log-likelihood can be
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written

lc =
n∑
i=1

G∑
g=1

zig

(
log πg + cig log p(xi|yig1;αg,wg) + cig log τg + cig log p(yig1; 0, I)

+ (1− cig) log(1− τg) + (1− cig) log p(xi|yig2;αg,wg) + (1− cig) log p(yig2; 0, ηgI)

)
.

(4.3)

The ECM algorithm iterates between three steps, an E-step and two CM-steps, until con-

vergence. The parameter vector θg is partitioned in θg = {θg1,θg2}, where θg1 = {ξg} and

θg2 = {αg,wg, ηg, πg}.

1. We estimate zig and cig

z
(t+1)
ig =

π
(t)
g exp(L

(t)
ig )∑G

g=1 πg exp(L
(t)
ig )

,

c
(t+1)
ig =

τg exp(L(ξ
(t)
ig1))

τg exp(L(ξ
(t)
ig1)) + (1− τg) exp(L(ξ

(t)
ig0))

.

2. We then update πg and τg

τ (t+1)
g =

∑n
i=1 z

(t+1)
ig c

(t+1)
ig∑n

i=1 z
(t+1)
ig

.

When the MLTCG models are used for detecting extreme patents, (1− τg) represents

the percentage of extreme observations and the proportion of normal observations is

at least equal to a pre-determined value τ ∗g (i.e., τ ∗g = 0.5). In this case, we perform

a numerical search of the maximum τ
(t+1)
g using the optimize() function, over the

interval (τ ∗g , 1), of the function
n∑
i=1

z
(t+1)
ig

(
c

(t+1)
ig log τg + (1− c(t+1)

ig ) log(1− τg)
)
.
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Herein, we use this approach to update τg and we take τ ∗g = 0.5 for g = 1, . . . , G.

π(t+1)
g =

∑n
i=1 z

(t+1)
ig

n
.

3. Estimate the likelihood: We approximate the posterior density for p(yig|xi, z(t+1)
ig = 1)

by its variational lower bound p(yig|xi, z(t+1)
ig = 1, ξ

(t)
ig ) (Section 2.4.2.1), which is a

MVN(µ
(t+1)
ig ,Σ

(t+1)
ig ) density, where

E(Cov(Yig)|c(t+1)
ig = 1) =

[
ID − 2

M∑
m=1

B(ξtimg1)w(t)
mgw

′(t)
mg

]−1

=: Σ
(t+1)
ig1 ,

E(Yig|c(t+1)
ig = 1) = Σ

(t+1)
ig1

[
M∑
m=1

(
xim −

1

2
+ 2B(ξ

(t)
img1)α(t)

mg

)
w(t)
mg,

]
:= µ

(t+1)
ig1 ,

E(Cov(Yig)|c(t+1)
ig = 0) =

[
1

ηg
ID − 2

M∑
m=1

B(ξtimg0)w(t)
mgw

′(t)
mg

]−1

=: Σ
(t+1)
ig0 ,

E(Yig|c(t+1)
ig = 0) = Σ

(t+1)
ig0

[
M∑
m=1

(
xim −

1

2
+ 2B(ξ

(t)
img0)α(t)

mg

)
w(t)
mg,

]
:= µ

(t+1)
ig0 ,

where B(ξ
(t)
img) = (1

2
− σ(ξ

(t)
img))/2ξ

(t)
img and σ(ξ

(t)
img) =

(
1 + exp(−ξ(t)

img)
)−1

.

4. CM steps 1: Optimize the variational parameter ξ(t+1)
img . Owing to the EM formula-

tion, each update for ξimg corresponds to a monotone improvement to the posterior

approximation. The updates are

ξ
2(t+1)
img1 = w

′(t)
mg

(
Σ

(t+1)
ig1 + µ

(t+1)
ig1 µ

′(t+1)
ig1

)
w(t)
mg + 2α(t)

mgw
′(t)
mgµ

(t+1)
ig1 + α2(t)

mg

and

ξ
2(t+1)
img0 = w

′(t)
mg

(
Σ

(t+1)
ig0 + µ

(t+1)
ig0 µ

′(t+1)
ig0

)
w(t)
mg + 2α(t)

mgw
′(t)
mgµ

(t+1)
ig0 + α2(t)

mg .

5. CM step 2:

Update parameter αmg,wmg based on the posterior distributions corresponding to the
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observations in the data set:

ŵ(t+1)
mg =

−

[
2

n∑
i=1

z
(t+1)
ig

(
c

(t+1)
ig B(ξ

(t+1)
img1 )E[yig1y

′
ig1](t+1)

)(
(1− c(t+1)

ig )B(ξ
(t+1)
img0 )E[yig0y

′
ig0](t+1)

)]−1

×

[
n∑
i=1

z
(t+1)
ig (xim − 1/2)

(
c

(t+1)
ig µ̂

(t+1)
ig1 + (1− c(t+1)

ig )µ̂
(t+1)
ig0

)]
,

where ŵ(t+1)
mg = (w

′(t+1)
mg , α

(t+1)
mg )′, µ̂(t+1)

ig = (µ
′(t+1)
ig , 1)′, and

E[yigky
′
igk] =

 Σ
(t+1)
igk + µ

(t+1)
igk µ

(t+1)
igk µ

(t+1)
igk

µ
′(t+1)
igk 1

 .
Update ηg by optimizing the following log likelihood with respect to ηg and subject to

ηg > 1,

−d
2

n∑
i=1

(
z

(t+1)
ig (1− c(t+1)

ig ) log ηg

)
− 1

2

n∑
i=1

z
(t+1)
ig

(
1− c(t+1)

ig

ηg

)
E[y

′(t+1)
ig0 y

(t+1)
ig0 ],

where E[y
′(t+1)
ig0 y

(t+1)
ig0 ] = Tr(E[y

(t+1)
ig0 y

′(t+1)
ig0 ]) = Tr(E[y

(t+1)
ig0 y

′(t+1)
ig0 ]).

6. Obtain the lower bound of the log likelihood at the expansion point ξng

L(ξ
(t+1)
ig1 ) =

M∑
m=1

(
log(δ(ξ

(t+1)
img1 ))−

ξ
(t+1)
img1

2
−B(ξ

(t+1)
img1 )ξ

2(t+1)
img1

)

+
1

2
log |Σ(t+1)

ig1 |+
1

2
µ
′(t+1)
ig1 Σ

−1(t+1)
ig1 µ

(t+1)
ig1 ,

L(ξ
(t+1)
ig0 ) =

M∑
m=1

(
log(δ(ξ

(t+1)
img0 ))−

ξ
(t+1)
img0

2
−B(ξ

(t+1)
img0 )ξ

2(t+1)
img0

)

+
1

2
log |Σ(t+1)

ig0 |+
1

2
µ
′(t+1)
ig0 Σ

−1(t+1)
ig0 µ

(t+1)
ig0 ,

the L(t+1)
ig = log

(
τ

(t+1)
g exp(L(ξ

(t+1)
ig1 )) + (1− τ (t+1)

g ) exp(L(ξ
(t+1)
ig0 ))

)
, and

l(t+1) ≈
n∑
i=1

log

(
G∑
g=1

π(t+1)
g exp(L

(t+1)
ig )

)
.
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4.3 Data Analysis

In this section, we evaluate the performance of the MLTCG model on artificial and real

data sets. Particular attention will be devoted to the problem of contamination parameter

recovery and model selection in simulation study, clustering results and detecting extreme

patterns in the application of real data.

4.3.1 Simulation Studies

To illustrate the ability of parameter recovery for the proposed MLTCG model, we perform a

simulation experiment on a 25-dimensional binary data set (i.e., M = 25). The observations

are generated from a MLTCG model with a two-component mixture (G = 2, π1 = π2 =

0.5). The latent variables are two-dimensional multivariate Gaussian distribution. Each

component consists of 80% normal patterns and 20% extreme patterns (i.e., τ1 = τ2 = 0.8)

and degree of contamination η1 = η2 = 2.5. We choose sample sizes n ∈ {100, 200, 500} and

run 100 simulations for each sample. Data were fitted using G = 2 and D = 2, and starting

randomly. Table 4.1 presents the value of the estimated contamination parameters and

standard errors of these estimates for n = 100, 250, 500. The standard errors are relatively

low when n = 100 and decrease with increasing sample size n.

Table 4.1: Estimated values for η and τ .
n = 100 n = 250 n = 500

ηg (SE) τg (SE) ηg (SE) τg (SE) ηg (SE) τg (SE)
Group 1 2.37 (0.25) 0.79 (0.03) 2.51 (0.10) 0.80 (0.01) 2.51 (0.08) 0.80 (0.01)
Group 2 2.45 (0.22) 0.80 (0.03) 2.50 (0.10) 0.80 (0.01) 2.50 (0.07) 0.80 (0.01)

The samples with 500 observations were fitted using G ∈ {1, 2, 3, 4, 5} and D = 2. The

left panel of Figure 4.2 displays the BIC values averaged on the 100 samples for each value
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of G. As shown in the right panel of Figure 4.2, on average the ARI has a maximum for

G = 2. This result is an evidence of the BIC selecting the “best” model.
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Figure 4.2: Left: BIC values averaged on the 100 samples for each value of G. Right: ARI
averaged on the 100 samples for each value of G.

4.3.2 U.S. Congressional Voting

We assess the performance of the MLTCG model on the U.S. Congressional Voting data. A

U.S. congressional voting data set (Lichman, 2013) has been widely used in literature (e.g.,

Ratanamahatana and Gunopulos, 2002; Gollini and Murphy, 2014; Tang et al., 2015). This

data set includes votes of 435 members of the U.S. House of Representatives on sixteen key

issues in 1984 with three different type of votes: yes, no, or undecided. The representative’s
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party is labeled as a Democrat or a Republican. The issues voted on are listed in Table 4.2.

There are 11% undecided votes for issue 2 and 23% for issue 16. All other issues have less

than 5% undecided votes.

Table 4.2: The issues voted on in the U.S. congressional voting data.
Item Issue Item Issue
1 Handicapped Infants 9 MX Missile
2 Water Project Cost-Sharing 10 Immigration
3 Adoption of the Budget Resolution 11 Synfuels Corporation Cutback
4 Physician Fee Freeze 12 Education Spending
5 El Salvador Aid 13 Superfund Right to Sue
6 Religious Groups in Schools 14 Crime
7 Anti-Satellite Test Ban 15 Duty- Free Exports
8 Aid to Nicaraguan ‘Contras’ 16 Export Administration Act/South Africa

We compare our results to those obtained by fitting a MLTA model and a MCLT model.

The MLTCG were fitted to these data for D = 1, 2, . . . , 4 and G = 1, 2, . . . , 4. The minimum

BIC (Table 4.3) occurs at the 2-components, 2 dimensional model. The BIC value is 9918.

Table 4.3: The estimated BIC for the models with D = 1, 2, 3, 4 and G = 1, 2, . . . , 4.
G=1 G=2 G=3 G=4

D=1 10509 11480 10282 10558
D=2 10557 9918 10305 10713
D=3 12176 10282 10712 11364
D=4 12258 10612 11354 12051

A summary of the best models for the MLTA, PMLTA, MCLT and MLTCG approaches

is shown in Table 4.4. It can be seen that the highest ARI value (0.77) is obtained using the

MLTCG model.

Table 4.4: A comparison of 4 different approaches.
Model G D BIC Σg ARI

1 MLTA 3 1 9812 n/a 0.42
2 PMLTA 4 2 9681 n/a 0.47
3 MCLT 2 5 9597 EVI 0.64
4 MLTCG 2 2 9918 n/a 0.77
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The classification table for group membership versus party membership for the selected

model (G = 2, D = 2) is presented in Table 4.5. In comparison with the true party

membership, there are only 26 misclassified representatives (i.e., 94.02% accuracy) associated

with the chosen model. Group 1 consists mainly of Republican representatives, and Group 2

consists mainly of Democratic representatives. Due to the number of variables, it is difficult

to know the possible presence of extreme patterns. The selected MLTCG model recognizes

the presence of the two groups when we consider the normal points together with the extreme

points. The advantage of our approach is that not only can we cluster in the presence of

extreme patterns, but we can also identify them. When we view the results of our analysis,

we see that there are 161 extreme observations, and it is not surprising that 20 out of 26

misclassified observations are considered extreme observations.

Table 4.5: Cross-tabulation of the parties and predicted classification for our chosen model
(G = 2, D = 2) for the U.S. Congressional Voting data.

Group 1 Normal/Extreme Group 2 Normal/Extreme

Republican 7 1 161 118
6 43

Democrat 248 150 19 5
98 14

Table 4.6 and 4.7 shows the median probability πmg(0) for each of the clusters. The prob-

abilities of positive responses for the “A” variables (yes/no vs. undecided) for the median

individuals in all clusters are always high with only one exception in the normal observations

in Group 1, for variable number 16, where π16 1n(0) = 0.37. Thus, the majority of represen-

tatives voted on most issues, but with a slightly higher voting rate in extreme observations

on all issues. Due to the high voting rates, most probabilities given for “B” variables (yes vs.

no/undecided) can be interpreted in terms of voting yes versus no.

It can be observed that the responses for the median individual in Group 1 are oppo-

site to the ones given by the median individual in Group 2 for most issues. The extreme
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observations in Group 1 showed different voting behaviour on Issue 5 (El Salvador Aid), 9

(MX Missile) and 16 (Export Administration Act/South Africa) (Table 4.6). The extreme

observations in Group 2 showed different voting behaviour on Issue 7 (Anti-Satellite Test

Ban), 12 (Education Spending), 13 (Superfund Right to Sue), and 16 (Export Administration

Act/South Africa) (Table 4.7).

Table 4.6: A comparison of the probability of a positive response for individuals classified
as “Normal” vs. “Extreme” in Group 1.

Y/N vs. Undecided Normal Extreme Y vs. N/Undecided Normal Extreme
1A 0.97 0.98 1B 0.63 0.58
2A 0.89 0.92 2B 0.54 0.35
3A 0.98 0.98 3B 0.88 0.91
4A 0.96 0.99 4B 0.03 0.05
5A 0.96 0.99 5B 0.33 0.00
6A 0.94 0.99 6B 0.56 0.30
7A 0.96 1.00 7B 0.64 0.93
8A 0.98 0.99 8B 0.76 0.98
9A 0.86 1.00 9B 0.51 0.96
10A 0.98 1.00 10B 0.39 0.59
11A 0.94 0.99 11B 0.54 0.39
12A 0.93 0.95 12B 0.18 0.05
13A 0.96 0.95 13B 0.37 0.14
14A 0.96 0.98 14B 0.36 0.27
15A 0.93 0.97 15B 0.57 0.69
16A 0.37 1.00 16B 0.33 1.00
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Table 4.7: A comparison of the probability of a positive response for individuals classified
as “Normal” vs. “Extreme” in Group 2.

Y/N vs. Undecided Normal Extreme Y vs. N/Undecided Normal Extreme
1A 0.95 1.00 1B 0.14 0.29
2A 0.85 0.92 2B 0.54 0.25
3A 0.95 1.00 3B 0.06 0.33
4A 0.96 1.00 4B 0.93 0.92
5A 0.96 1.00 5B 0.94 0.98
6A 0.98 1.00 6B 0.95 0.81
7A 0.93 1.00 7B 0.04 0.67
8A 0.92 0.98 8B 0.03 0.33
9A 0.96 1.00 9B 0.03 0.27
10A 0.97 1.00 10B 0.44 0.67
11A 0.90 0.98 11B 0.17 0.17
12A 0.89 0.96 12B 0.17 0.77
13A 0.92 0.94 13B 0.89 0.58
14A 0.93 1.00 14B 0.91 1.00
15A 0.91 0.94 15B 0.02 0.21
16A 0.80 1.00 16B 0.36 1.00

4.4 Discussion

The MLTCG model has been introduced for robust clustering of binary data. The MLTCG

model can be viewed as a generalization of the MLTA that accommodates extreme patterns in

binary data via contaminated Gaussian distributions. The MLTCG model can automatically

detect extreme observations while clustering. It is demonstrated that the MLTCG model

is effective in clustering. Real data are often “contaminated” and it is difficult to detect

extreme observations in high-dimensional binary data because the data cannot be easily

visualized. When applied to the U.S. Congressional Voting data, our approach performed

better in terms of classification when compared to the MLTA and MCLT models. The model

parameters are interpretable and provide a characterization of the extreme observations.
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Chapter 5

Penalized Mixture of Latent Trait

Models

5.1 Introduction

In this chapter, we propose a penalized mixture of latent trait models (PMLTM) for clustered

binary data: we assume that the data have been generated by the MLTA model and we shrink

the slope parameters, with a gamma-Laplace penalty function. The PMLTM model enables

us to encourage sparsity in estimating the slope parameters, thus reducing the number of

free parameters considerably and achieving automatic variable selection. Moreover, the

component-specific independent tuning parameters avoids the over-penalization that can

occur when inferring a shared tuning parameter on clustered data. The newly developed

variational EM algorithm provides closed-form estimates for model parameters and avoids

intensive searches of the tuning parameters through a model selection criterion such as BIC.

This chapter is outlined as follows: In Section 5.2, we first introduce a penalized mixture

of latent trait models via non-convex penalties to realize automatic variable selection; then a
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new variational EM algorithm is developed for obtaining the penalized model parameters as

well as estimates for the component specific tuning parameter λg. The data simulations are

presented in Section 5.3. Our approach is then applied to two real data sets (Section 5.4),

and we conclude in Section 5.5.

5.2 Model-Based Clustering via a Penalized Mixture of

Latent Trait Models

5.2.1 Penalized Mixture of Latent Trait Models via Non-Convex

Penalties

We assume that the conditional distribution of xi in component g is a latent trait model (see

details in Section 2.4.1.1). A potential drawback of the MLTA for high-dimensional data is

the large number of parameters to be estimated. In particular, the model in Equation 2.5

involves (G − 1) + (G ×M) + G × (M × D − D × (D − 1)/2) free parameters, of which

G× (M ×D −D × (D − 1)/2) are the parameters w1, . . . ,wG.

Therefore, we propose the use of a penalized log-likelihood using the form,

Q(Θ) = l(Θ)− C(Θ), (5.1)

where l(Θ) is the log-likelihood of the model (5.1) and C(Θ) is a penalty term. Similar to the

Lasso penalty for regression (Tibshirani, 1996), we propose the use of fat-tailed and sparsity-

inducing independent Laplace prior for each coefficient wmg. To account for uncertainty

about the appropriate level of variable-specific regularization, each Laplace rate parameter
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λjg is left unknown with a gamma hyperprior. Thus,

π(wmg, λmg) =
rs

Γ(s)
λs−1
mg exp{−rλmg}

D∏
d=1

λmg
2

exp{−λmg|wdmg|}, s, r, λmg > 0 (5.2)

This is a departure from the usual shared λ model. However, available cross-validation

(e.g., via solution paths) and fully Bayesian (i.e., through Monte-Carlo marginalization)

methods for estimating wmg under unknown λmg are prohibitively expensive. A novel al-

gorithm is proposed for finding posterior mode estimates of the slope parameters (MAP

estimates) while treating λmg as missing data via an EM algorithm. The MAP inference

with fixed λmg is equivalent to likelihood maximization under an L1-penalty in the Lasso

estimation and λmg ∼ Gamma(s, r) leads us to a non-convex penalty (Figure 5.1),

C(wmg) = − log

∫
λmg

π(wmg, λmg; s, r)dλmg, s, r, λmg > 0

= (s+D) log(1 +
D∑
d=1

|wdmg|/r) + constant.
(5.3)
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Figure 5.1: The gamma-Laplace penalty (s+D) log(1 +
∑D

d=1 |wd|/r) for s = 1 and r = 1/2.
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5.2.2 Motivation for Gamma-Laplace Penalties

One unique aspect of our approach is the use of independent gamma-Laplace priors for each

slope parameter wmg. The Laplace prior for wmg encourages sparsity in wmg through a

sharp density spike at wmg = 0 and MAP inference with fixed λmg is equivalent to likelihood

maximization under an L1 penalty in the Lasso estimation and selection procedure of Tib-

shirani (1996). In the Bayesian inference for Lasso regression, conjugate gamma hyperpriors

are a common choice for the rate parameter λ, e.g., Park and Casella (2008); Yuan and Wei

(2014). However, we feel that independent rate parameter λmg provides a better represen-

tation of prior utility, and it avoids the over-penalization that can occur when inferring a

shared rate parameter on clustered data.

As detailed in Section 5.2.1, our approach yields an estimation procedure that corresponds

to likelihood maximization under a specific non-convex penalty that can be seen as a re-

parametrization of the ‘log-penalty’ described in Mazumder et al. (2012). Like the standard

Lasso, singularity at zero in C(wmg) causes some coefficients to be set to zero. However, un-

like the Lasso, the gamma-Laplace has gradient C ′(wmg) = ±(s+D)/ log(1+
∑D

d=1 |wdmg|/r)

which disappears as
∑D

d=1 |wdmg| → ∞, leading to the property of unbiasedness for large co-

efficients (Fan and Li, 2001).

Commonly, the rate parameter λ is selected using cross-validation (CV) or an information

criterion such as BIC. However, our independent λmg would require searches of impossibly

massive dimension. Moreover, CV is sensitive to the data sample where it is applied. That

said, one may wish to use CV to choose s or r in the hyperprior, because results are less

sensitive to these parameters than they are to a fixed penalty; a small grid of search locations

should be sufficient.
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5.2.3 Interpretation of the Model Parameters

The interpretation of the model parameters can be exactly as in MLTA and IRT models.

In the finite mixture model, ηg is the proportion of observations in the gth component.

The characteristics of component g are determined by the parameters αmg and wmg. In

particular, the intercept αmg has a direct effect on the probability of a positive response to

the variable m given by an individual in group g, through the relationship

πmg(0) = p(xim = 1|yn = 0, zng=1) =
1

1 + exp(−αmg)
.

The value πmg(0) is the probability that the median individual in group g has a positive

response for the variable m. However, when the data set has very low percentage of positive

responses (e.g., text data), the value of πmg(0) can be very low for all items across all com-

ponents. Thus we use the slope parameters to characterize each component in Section 5.4.

The slope parameters wg are known as discrimination parameters in the item response

theory. The larger the value of wdmg, the greater the effect of factor yd on the probability of

a positive response to item m in group g. The quantity wdmg can be used to calculate the

correlation coefficient between the observed item xi and the multivariate latent variable Yi.

In the latent trait case, the slope parameters cannot be interpreted as correlation coefficients,

because they are not bounded by 0 and 1 as a correlation would be. However, it is possible to

transform the loadings so that they can be interpreted as correlation coefficients in exactly

the same way as in factor analysis. The standardized wdmg is given by

w∗dmg =
wdmg√

1 +
∑D

d=1 w
2
dmg

. (5.4)

The purpose of the Laplace prior for wmg is to encourage sparsity in wmg, therefore

identifying non-informative variables for each component. When the mth row of the slope

parameter matrix in gth component is zero everywhere (w1mg, w2mg . . . wDmg = 0), then the
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corresponding variable is not informative. In addition, w∗dmg = 0 indicates that item m is

independent from latent trait yd in component g.

5.2.4 Model Identifiability

The identifiability of our model depends on the identifiability of the latent trait part as well

as the identifiability of the mixture model. The identifiability of the mixture models has been

discussed by several authors (e.g., McLachlan and Peel, 2000a). Knott and Bartholomew

(1999) introduces the model identifiability issue in the latent trait analysis. A necessary

condition for model identifiability is that the number of the free parameters to be estimated

not exceed the number of possible data patterns. However, this condition is not sufficient.

The slope parameters wg are only identifiable with a d × d constraints. This is important

when determining the number of free parameters in the model.

5.2.5 A New Variational EM Algorithm for Parameter Estimation

5.2.5.1 Prior Specification

A classical assumption is to suppose the independence between the prior distribution, thus

p(Θ) =
G∏
g=1

p(ηg)

(
M∏
m=1

D∏
d=1

p(wdmg)p(αmg)
n∏
i=1

p(ξimg)

)

where ηg ∼ Dirichlet(1
2
, . . . , 1

2
), αmg ∼ N(0, 1), Wdmg ∼ Laplace(0, λmg), and ξimg ∼

Uniform[0, 20].

5.2.5.2 Parameter Estimation

We use the EM algorithm to fit our model which is a natural approach for MAP estimation

when data are incomplete. In our case, there are three sources of missing data: {zi}ni=1
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arises from the fact that we do not know the cluster labels, {yi}ni=1 is the D dimensional

continuous latent variable, and {λm}Mm=1 is the unknown Laplace rate parameter.

The purpose of the M-steps of the EM algorithm is to find the MAP estimates of Θ by

maximizing the conditional expectation of the log (complete-data) posterior log p(Θ|x,y, z,λ)

which could be easily obtained:

log p(Θ|x,y, z,λ) ∝
n∑
i=1

G∑
g=1

log p(xi|θg,yi, zig) + log p(θg|zig,λg). (5.5)

1. E-step: Estimate zig with

zt+1
ig =

ηgp(θg|xi)∑G
h=1 ηhp(θh|xi)

.

2. M-step: Estimate ηn

ηt+1
g =

n
(t+1)
g − 1/2

n−G/2
.

3. E-step: Estimate the log posterior

(a) E-step: Compute the latent posterior statistics for p(yi|xi, z(t+1)
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where s, r > 0 are shape and rate parameters of the gamma hyperprior which are

pre-determined.

(c) M-step: Optimize the variational parameter ξimg in order to make the approxi-
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ig = 1, ξ
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some of which are expected to go to zero.

4. Obtain the lower bound of the log-likelihood at the expansion point ξig:
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2
.

5. Convergence criterion: The convergence of our variational EM algorithm is determined

by the criterion described in Section 2.6.1.

5.2.6 Selection of Programming Languages

When fitting the PMLTM model using R, as the number of items becomes large, the task

becomes increasing burdensome. Therefore, we implement our algorithm in two scripting

languages, R and Python, and compare the performance between them. Python is an elegant

open-source language that has become popular in the scientific community. We use the

Numpy library for matrix operations and Scipy.stats library for the use of probability

distributions and statistical functions. Moreover, Python does not generate copies of the

objects in an array or a list when slicing arrays and lists which may save memory and

shorten the runtime.

5.3 Simulation Study

To illustrate the proposed PMLTM model, we perform simulation experiments. A set of

100 samples of n = 500 observations has been generated from a PMLTG model with a

two-component mixture (G = 2, π1 = π2 = 0.5). The latent variable is generated from a
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Gaussian distribution (i.e. Y ∼ N(0, 1)). Table 5.1 reports the slope parameters w used

to generate a set of M = 10 observed variables. For each sample, the value of the gamma

hyperprior [s, r] was selected from [0.1, 0.5], [0.5, 0.5], [1, 0.5], and [2, 0.5]. Table 5.2 shows

the BIC and ARI values averaged on the 100 samples for each combination of s and r. As

shown in Table 5.2, on average, the BIC has a minimum and ARI has a maximum when

[s, r] = [1, 0.5]. Therefore, we use [s, r] = [1, 0.5] in future data application.

Table 5.1: Component specific slope parameters.
Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10

w1 0 0 0 0 0 0.5 -0.4 0.3 0.7 1.5
w2 -1.0 -3.8 0.6 -0.7 4.5 0 0 0 0 0

Table 5.2: BIC and ARI values averaged on the 100 samples for each combination of [s, r].
s = 0.1, r = 0.5 s = 0.5, r = 0.5 s = 1, r = 0.5 s = 2, r = 0.5

BIC 17512 13620 13525 13584
ARI 0.70 0.72 0.74 0.74

5.3.1 A Comparison of the Selected Programing Language: R vs.

Python

Table 5.3 shows a comparison of the average run time over 100 loops of the E-step function

and M-step function using R and Python (G = 2, D = 2, n = 100). Python runs approxi-

mately 103 times faster than R for the E-step function and 190 times faster for the M-step

function.

Table 5.3: A comparison between R vs. Python
Function Number of Loops Python R
E-Step 100 loops 15.4ms/loop 1.6s/loop
M-Step 100 loops 4.19ms/loop 0.8s/loop
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5.4 Application

5.4.1 U.S. Congressional Voting

We assess the performance of the PMLTM model using the U.S. Congressional Voting data.

We compare our approach to MLTA, MCLT, and MLTCG models. A summary of the

best models for the MLTA, PMLTA, MCLT, MLTCG and PMLTM approaches is shown in

Table 5.4. The ARI value obtained using PMLTM model is higher than using the MLTA

and PMLTA models. Due to the presence of possible extreme pattens (Table 4.5), the ARI

value obtained by the MLTCG model is the highest.

Table 5.4: A comparison of 5 different approaches.
Model G D BIC ARI

1 MLTA 3 1 9812 0.42
2 PMLTA 4 2 9681 0.47
3 MCLT 2 5 9597 0.64
4 MLTCG 2 2 9918 0.77
5 PMLTM 2 1 9288 0.58

The classification table for group membership versus party membership for the selected

model (G = 2, d = 1) is presented in Table 5.5. In comparison with the true party member-

ship, there are 52 misclassified representatives associated with the chosen model. Group 1

consists mainly of Republican representatives, and Group 2 consists mainly of Democratic

representatives.

Table 5.5: Cross-tabulation of party and predicted classification for our chosen model (G = 2,
d = 1) for the U.S. Congressional Voting data.

1 2
Republican 151 17
Democrat 35 232

Table 5.6 shows the correlation coefficients for each of the 16 items for each group g.
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All the correlation coefficients are positive and large for the “A” variables except item 2 and

item 16, which indicates that the latent variable Y has a large effect on the probability of

a positive response to vote in both groups. Thus, the majority of representatives voted on

most issues and most probabilities given for “B” variables can be interpreted in terms of

voting yes versus no.

It can be observed that the correlation coefficients for Group 1 are opposite to the ones

for Group 2 for all non-zero items. Items 2 (Water Project Cost-Sharing), 10 (Immigration),

and 16 (Export Administration Act) have zero correlation coefficients for both groups, which

implies that the corresponding variables are not informative to clustering. In addition, the

correlation coefficients for items 1 (Handicapped Infants), 6 (Religious Groups in Schools),

14 (Crime), and 15 (Duty- Free Exports) are zero for Group 2, which implies that the

multivariate latent variable Y has no effect on the probability of a positive response to these

items. Therefore, the latent variable can be interpreted as a “general” factor relating to the

areas of military and foreign affairs. Crespin and Rohde (2010) drew a similar conclusion and

they found distinct voting differences in the area of military, foreign affairs and agriculture

in appropriations voting.

5.4.1.1 Computational Time: R vs. Python

Table 5.7 shows a comparison of the average run time for 10 runs using R and Python when

G = 2 and D = 1. Python runs approximately 107 times faster than R.

5.4.2 Boston Airbnb Reviews

This data set includes detailed English comments on the Airbnb website in the Boston area

from 65275 guests (n = 65275) since 2008. We perform some pre-processing of the text

data (i.e., converting the text to lower case, removing numbers and punctuation, removing
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Table 5.6: Correlation Coefficients w∗mg for Group g for each of 16 votes in the U.S. Con-
gressional Voting data.

Y/N vs. Undecided G1 G2 Y vs. N/Undecided G1 G2
1A 0.54 0.66 1B -0.25 0
2A 0.36 0.38 2B 0 0
3A 0.53 0.93 3B -0.29 0.51
4A 0.55 0.57 4B 0.35 -0.43
5A 0.55 0.57 5B 0.53 -0.44
6A 0.57 0.65 6B 0.47 0
7A 0.54 0.79 7B -0.30 0.42
8A 0.51 0.70 8B -0.46 0.55
9A 0.52 0.57 9B -0.46 0.29
10A 0.56 0.56 10B 0 0
11A 0.49 0.87 11B -0.17 0.15
12A 0.46 0.48 12B 0.27 -0.39
13A 0.50 0.53 13B 0.33 -0.26
14A 0.54 0.65 14B 0.51 0
15A 0.48 0.69 15B -0.40 0
16A 0.34 0.10 16B 0 0.09

Table 5.7: A comparison between R vs. Python
Number of Runs Python R

10 runs 288ms/run 31s/run
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stop words, and stemming). These basic transforms are available within the R package tm

(Feinerer and Hornik, 2015). We then create a matrix with each comment as a row and each

word as a column. If a word is mentioned in a comment, the response for the corresponding

cell is coded as 1, and otherwise is 0. The term matrix contains 43584 words, most of them

being infrequently used, which we refer to as “sparse terms”. We remove sparse terms that

appear less than 2% in all reviews because we are often not interested in such terms. At the

end of this pre-processing step, the term matrix consists of 278 words (i.e., M = 278) and

we generate a word cloud (Figure 5.2) to provide a quick visual overview of the frequency of

the words in the final term matrix.

enough
last

especi
absolut

kitchen

south

accommod
descript

sleep
best

latefantast

incred

overal

peoplth
in

g

car

part

plan

get

safe

nearbi

away
see

extrem

everyth

provid

host
space

well

thank

ever

awesom
metro

good
howev

ask
public

clear

fine

distanc

small

stay

apart

eat

work

take

meet

long

trip

help
plenti

respons

sure
town

equip

arriv

took

love
use

definit stop

expect wonder

build

night
though

enjoy

kind

view

walk

spacious

nice

old

share

ex
pl

or give

show

earli

never

easi
met

decor

say

made

comfi

person

pretti

coupl

lot

morn

went

hill

shower

center

short
block

bit

reserv

local
pleasant

door

one

street

flight

dure

key

wifi

quiet

train

problem

conveni

befor

although

airport
offer

dont

amen

area

plus

downtown

transport
subway

water

cute

ani

way

check

bedroom

common

avail

live

gave

mani

direct

hospit

anyth

abl

super

clean

back

bar

can

return

need

big

excel

unit

veri
breakfast

everi

also

will

privat

visit

suggest

station

onli

famili

great

found

lo
ok

coffe

guest

book

room
inform

came

leav

even

line

whole

bathroom

recommend

anyon

two

right

cozi

spot

just

week

comfort
amaz

charm

far

w
ee

ke
nd

make

beauti

neighborhood

left

care

appreci

floor

got

accur

park

respond

north

price

instruct

detail

home
new

answer

bed

sh
op

experi

list light

welcom

travel

first

studio

high

citi

checkin

littl

realli

quick

be
ca

us

quit

time
towel

locat

question
exact

food

sinc

bus

within

flexibl

pictur

ho
te

l

fr
ie

nd

perfect

contact

m
in

ut

al
w

ay

includ

day

m
uc

h

neighbourhood

communic

close

find

know

better

feel

around

store

near

hope

etc

busi

felt

larg

issu

co
m

e

describ

w
ar

m

full

access

ne
xt

like

restaur

let

didnt

want

central

min

hous
couldnt

end

thought

easili

Figure 5.2: A word cloud for the final term matrix of the Airbnb comments.

The PMLTM model is fitted to these data for D = 1, 2, 3, 4, 5 and G = 1, 2, 3, 4, 5. We
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run all models in both R and Python. It takes us more than 24 hours to get the results

using R while Python only takes 106 minutes. The minimum BIC occurs at the 3-cluster,

2-dimensional PMLTM model. The BIC value is 869496. The classification table for group

membership of the selected model (G = 3, d = 2) is presented in Table 5.8. We also include

average sentiment scores for each group which are calculated using the built-in Python library

nlkt (natural language toolkit). The sentiment of each comment: positive, negative, or

neutral is presented using a score ranging from 0 to 1. Because each comment could contain

positives and negatives at the same time, a compound score is presented as well. Each

compound score ranges from -1 to 1; -1 for an overall unpleasant tone and 1 for an overall

pleasant tone. Group 1 consists of mainly very positive comments. The compound score

is 0.95 which indicates that the overall tone of the comments is very positive. The average

positivity score in Group 1 is 0.30. Group 2 is a small group that consists of comments that

have a slightly negative tone overall. It is worth noting that the average negativity score

is higher than the average positivity score in Group 2. Group 3 consists of mainly positive

comments as well, and the average compound score is lower in Group 3 when compared to

Group 1.

Table 5.8: The predicted classification and the sentiment scores for our chosen model (G = 3,
d = 2) for the Airbnb data.

Group Number of Observations Compound Negativity Neutrality Positivity
Group 1 39492 0.95 0 0.70 0.30
Group 2 5605 -0.35 0.07 0.86 0.05
Group 3 20178 0.58 0 0.68 0.32

Table 5.9 shows the high-loading words for each latent trait in each group. We note that

the first latent trait y1 is concerned with the listings (e.g., location of the property, condition

of the property, etc.) whereas the second latent trait y2 is concerned with the host. We can

further characterize our groups from this observation. The comments in Group 1 and Group
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3 both have an overall positive tone. However, comments in Group 1 are more specific about

the listings and the hosts. Moreover, the positive comments are more intense in Group 1

by using words such as “absolute”, “amazing” and “awesome”. Group 3 mainly consists of

generic positive comments (see Table 5.10); they are less specific about the properties or

the hosts. Most high-loading words in Group 2 are considered neutral, but words such as

“disappoint” and “never” are negative terms. It is worth noting that there are comments in

Group 2, which, even though we would say the sentiment with regards to the host is positive,

the sentiment of the overall paragraph is negative (see Table 5.10).

Table 5.9: High-loading words for each latent trait of our chosen model (G = 3, d = 2) for
the Airbnb data.

Group1 y1 absolute, accur, amaz, awesom, bar, bedroom, big, bus, easili, equip, floor, lot, metro, store
y2 answer, anything, apprici, ask, next, plus, return, reserv

Group2 y1 busi, discript, cute, detail, ever, par, never, old, explor, north, plan, south, studio, view
y2 checkin, common, contact, couldn’t, disappoint, suggust

Group3 y1 found, stay, spot, care
y2 welcome, help, pleasent, next, good, book, host, friend, suggest
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Table 5.10: Sample reviews of our chosen model (G = 3, d = 2).
Group Reviews

Group 1

1. "The place is really well furnished, pleasant and clean. Islam was very helpful, you can feel free
to ask him virtually anything and he’ll help you. He was fun too, very cool talking to him.
Oh, and the place is pretty conveniently located too. Highly recommended. The neighbourhood
might not be the cleanest in Boston (my gf liked Brooklyne much more in that matter),
but this is a great location and price for value overall."
2. "Perry’s house is much cleaner and bigger than it is in the pictures. We are very happy to stay
at his apartment. Perry is also very friendly and thoughtful. He explained all the instructions very
clearly and he kept contacting us to know if we had any question. The house is located in a nice
neighborhood, about 5 minute walking to a train/subway station."
3. "We stayed here for almost 2 months when we relocated to Boston quite quickly. The apartment
was very clean and very new. Perry went out of his way on multiple occasions to make sure that me,
my husband and our 18 month old son had everything we needed. The kitchen and bathroom are
very newly renovated and the kitchen had everything we needed (appliances, pots/pans, etc). We had
a great experience here and would definitely recommend it."

Group 2

1. "Izzy’s communication is very good. All communication was done via text or AirBnB messaging.
Directions and house details were well spelled out and clear. I was in the basement room of the 3
rooms he rents out. Everything is clean but spares. I would not consider it cozy but it was a very
good value."
2. "We were rather disappointed with this accommodatiion. The host did not even meet us, but left
rather complicated instructions to access the keys to the apartment. We did not meet the host at all
during our stay, or even hear from him as to how we were getting on. The apartment was somewhat
shabby, and not really like the image indicated, as this only showed a small corner of one room. The
kitchen was tiny, and although quite well equipped, it badly needed redecoration and a good clean.
In addition, the apartment backed onto a yard with three dumpsters, and on 4 occasions we were
awakened early in the morning by the noise of the dumpsters being emptied."
3. "I fell in love with the view of this apartment. Fenway out the window as promised. My expectations
were pretty low going in because I realized it was very basic budget accommodations. Sean was helpful
with the different questions I had about the city. The instructions for obtaining lockbox key were very clear.
The location is great and the building old and had a lot of character. I came to town with a friend of mine
for the night to catch the Red Sox game. We understood it to have a large enough bed to accommodate us
since it says 1 to 4 people. When we arrived the bed seemed quite small. When I asked Sean about it he
told me that there was 2 mattresses on top of each other and to take them apart and he thought that
there were sheets in the closet for both ( there were not) we had explored Boston all day and didn’t return
til 1 am..pulling a mattress apart was not what I wanted to do. We were so tired and since there was only
1 sheet we decided to just be very cozy. The bed was comfortable and we slept well until around 5 am
when people were down in the alley going through glass bottles in the trash dumpsters which was very
loud. (Not sure if that happens all the time) The kitchen is small but would be helpful if you needed one.
I would not recommend having 4 people stay as it would be quite cramped ( but if you are looking for a
budget place with a great view..this would work. )"

Group 3
1. "GREAT SPACE, PERFECT LOCATION, AWESOME PEOPLE!! Definately will be back!!!!"
2. "We liked the apartment but not the three flights of steps to get to it."
3. "Everything was great - as described and expected."
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5.5 Discussion

In this chapter, we extend the MLTA model by introducing gamma-Laplace penalties on the

slope parameters. The PMLTM model enables us to encourage sparsity in estimating the

slope parameters, thus reducing the number of free parameters considerably. The component-

specific tuning parameters avoid the over-penalization that can occur when inferring a shared

tuning parameter on clustered data. The PMLTM model retains the ability to investigate

the dependence between variables while clustering with the added advantage of being able

to model very high-dimensional binary data (e.g., text data).

The excellent clustering behaviour of this method has been shown by two applications: on

the U.S. Congressional Voting and the Boston Airbnb reviews data sets. In both cases, the

model found groups that were intuitive in their interpretation. Applying the PMLTM model

to the Boston Airbnb reviews data showed that the method scales to far larger datasets than

any other model-based clustering methods for binary data.
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Chapter 6

Mixture of Multinomial Latent Trait

Models with Common Slope Parameters

6.1 Introduction

In this chapter, we introduce the MMCLT models that generalize the MCLT model by

implementing multinomial logistic response function for clustering categorical data. The

sharing of the slope parameters reduces the number of parameters to a manageable size;

however, each latent trait still has a different effect in each group. A variational EM algorithm

based on two quadratic lower bounds to the multinomial likelihood, a loose static bound

(Böhning, 1992, Böhning bound) and a multivariate sharp bound (Browne and McNicholas,

2015b, Browne-McNicholas bound), is developed.

This chapter is organized as follows: The framework of MMCLT is introduced in Sec-

tion 6.2. The variational EM algorithm and the model fitting are laid out in Section 6.3.

Our approach is then applied to a real data set (Section 6.4), and we conclude in Section 6.5.
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6.2 Mixture of Multinomial Latent Trait Models with

Common Slope Parameters

6.2.1 Overview

Let k = 0, 1, . . . , (K − 1) denote the number of categories of variable m. The indicator

variable xnm = k is represented by a K-dimensional vector in which kth element is set to 1

and all remaining elements to 0 (Equation 6.1).

xnm(k)

 1 if the response falls in category k

0 otherwise
(6.1)

We denote a full response pattern for one individual by xi = (xi1,xi2, . . . ,xiM). Similarly to

the MCLT model, we assume that each observation xn comes from one of the G components

and we have zi = (zi1, . . . , ziG) to identify the group membership. Further, given that the

observation is from group g (i.e. zig = 1), we assume that the conditional distribution is a

latent trait model with a multinomial logistic response function. Thus, the MMCLT model

takes the form

p(xi) =
G∑
g=1

ηgp(xi|zig = 1) =
G∑
g=1

ηg

∫
Yig

p (xi|yig, zig = 1) p (yig) dyig,

where

p (xi|yig, zig = 1) =
M∏
m=1

K−1∏
k=0

(πmgk(yig))
xim(k) ,
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and the multinomial response function for xim(k) of each group is

πmgk(yig)



p (xim(0) = 1|yig, zig = 1)

= exp
(

1− log
(

1 +
∑K−1

k=1 exp(γimgk)
))

k = 0

p (xim(k) = 1|yig, zig = 1)

= exp
(
γimgk − log

(
1 +

∑K−1
k=1 exp(γimgk)

))
k = 1, . . . K − 1,

(6.2)

where γimgk = wmkyig and the d-dimensional latent variable Yig ∼ MVN(µg,Σg). We denote

the common model parameter wm as

wm =



0 · · · 0

wm11 · · · wm1d

...
...

...

wmK1 · · · wmKd


K×d

.

The first row of wm must be set to zero to ensure identifiability. The complete-data log-

likelihood is then given by

l =
n∑
i=1

log

 G∑
g=1

ηg

∫
Yig

M∏
m=1

K−1∏
k=0

p(xim(k)|yig, zig = 1)p(yig)dyig

 . (6.3)

Similar to Tang et al. (2015), we consider a further parametrization of the covariance

matrices Σ1, . . . ,Σg of the mixture components following the work of Celeux and Govaert

(1995). The 14 models in Table 6.1 are considered.

6.2.2 Interpretation of Model Parameters

The interpretation of ηg is the same as in the finite mixture model; ηg is the mixing proportion

for component g and corresponds to the prior probability that a randomly chosen individual

is in the gth component.

The property of the observations within the group g is represented by the common slope
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Table 6.1: Some important characteristics of parameterizations of Σg and the number of
free parameters in the model.

Model Σg Vol/Shape/Orientation Number of free parameters

1 SQAQ′ EEE G− 1 + d
(∑M

m=1m(Km − 1) +G
)

+ d(d+ 1)/2− d2

2 SgQAQ
′ VEE G− 1 + d

(∑M
m=1m(Km − 1) +G

)
+ d(d+ 1)/2 +G− 1− d2

3 SQAgQ
′ EVE G− 1 + d

(∑M
m=1m(Km − 1) +G

)
+ d(d+ 1)/2 + (G− 1)(d− 1)− d2

4 SgQAgQ
′ VVE G− 1 + d

(∑M
m=1m(Km − 1) +G

)
+ d(d+ 1)/2 + (G− 1)d− d2

5 SQgAQ
′
g EEV G− 1 + d

(∑M
m=1m(Km − 1) +G

)
+G(d(d+ 1)/2)− (G− 1)d− d2

6 SgQgAQ
′
g VEV G− 1 + d

(∑M
m=1m(Km − 1) +G

)
+G(d(d+ 1)/2)− (G− 1)(d− 1)− d2

7 SQgAgQ
′
g EVV G− 1 + d

(∑M
m=1m(Km − 1) +G

)
+G(d(d+ 1)/2)− (G− 1)− d2

8 SgQgAgQ
′
g VVV G− 1 + d

(∑M
m=1m(Km − 1) +G

)
+G(d(d+ 1)/2)− d2

9 SV EEI G− 1 + d
(∑M

m=1m(Km − 1) +G
)

+ d− d2

10 SgV VEI G− 1 + d
(∑M

m=1m(Km − 1) +G
)

+G+ d− 1− d2

11 SVg EVI G− 1 + d
(∑M

m=1m(Km − 1) +G
)

+Gd−G+ 1− d2

12 SgVg VVI G− 1 + d
(∑M

m=1m(Km − 1) +G
)

+Gd− d2

13 SI EII G− 1 + d
(∑M

m=1m(Km − 1) +G
)

+ 1− d2

14 SgI VII G− 1 + d
(∑M

m=1m(Km − 1) +G
)

+G− d2

parameter wm and the hyperparameters of the latent variable Yng. In particular, we can

write the response function πmgk with “median” response probabilities

πmgk(µg) = exp

(
wmkµg − log

(
1 +

K−1∑
k=1

exp(wmkµg)

))
. (6.4)

The interpretation of πmgk(µg) is the probability that the median individual in group g has

a positive response for the variable m and category k.

The discriminating power of the latent variable yng is indicated by the spread of the

wm(k)∗ = wm × diag(Σ
1
2
g ) considered as a function of k. A large spread produces large dif-

ferences between the corresponding response probabilities in the variable m for observations

from group g.

Moreover, the mean µg and covariance matrix Σg of component g can be used to provide

low dimensional plots of the cluster.
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6.2.3 Related Models

The MMCLT model has a lot of common characteristics with a number of models in litera-

ture, especially, with regards to item response theory.

The MMCLT model can be seen as a categorical version of the mixture of factor analyzers

with common factor loadings (MCFA) (Baek et al., 2010). The loading matrix in the MCFA

model is analogous to the common slope parameters; the component means and the mixing

proportions take identical roles in both models.

Bolt et al. (2001) considers a mixture of nominal response model (MNRM) for multiple-

choice data. A natural parameter ygmk is written as:

ygmk = λmkθ + ξgmk,

and the resulting mixture nominal response model as

Pgmk =
exp(ygmk)∑K
k=1 exp(ygmk)

.

This model has a close connection to the proposed MMCLT model. Key differences

between our model and the MNRMmodel are that we focus on common slope parameters and

multivariate trait parameters; we further introduce a computationally efficient alternative

algorithm for fitting the model without the need to adopt to a Markov Chain Monte Carlo

estimation or quadrature methods.

6.2.4 Model Identifiability

The identifiability of our model depends on the identifiability of the latent trait part as well

as the identifiability of the mixture model. The identifiability of the mixture models has

been discussed by several authors (e.g., McLachlan and Peel, 2000a). Tang et al. (2015)

give a explanation of the model identifiability in the latent trait models with common slope
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parameters. They also introduce a cut-off value for the common slope parameters, i.e.,

|wmkd| ≤ 10. By restricting the slope parameters, they prevent the estimated covariance

matrix from converging to singular matrices. Knott and Bartholomew (1999) mention that

this estimation of slope parameters can increase without limit due to small sample sizes.

Therefore, we adopt the same cut-ff for the common slope parameters in this chapter.

6.3 Variational Bounds for Model Fitting

6.3.1 Variational Methods

Because there is no conjugate family for the multinomial logistic model, variational approx-

imations have been proposed to fit latent trait models. We take a second order Taylor series

expansion of the log-sum-exp (LSE) function around a point ξ

lse(γimg) = lse(ξim) +∇lse(ξim)(γimg − ξim) +
1

2
(γimg − ξim)′H(ξim)(γimg − ξim),

where γimg = Wmyig. An upper bound to the LSE function can be found by replacing the

Hessian matrix H(ξ) which appears in the second order term. Böhning (1992) and Krish-

napuram et al. (2005) propose a fixed matrix B such that B − H(ξ) is positive definite

for all ξ. Browne and McNicholas (2015b) derive a sharp quadratic bound for a multivari-

ate LSE function by replacing the Hessian matrix H(ξ) with B∗, which can be seen as a

multivariate analogue of the variational bound for binary responses proposed by Jaakkola

and Jordan (2000). For a given point ξ, lse(γimg|B∗) ≤ lse(γimg|B) for all x or equiva-

lently, B � B∗ � 0. Both variational bounds allows for the computation of an approximate

log-likelihood in closed-form. In this case the lower bound of each term in the log-likelihood,

L(ξi) = log(p(xi|ξi) = log

(∫ M∏
m=1

p(xim|yi, ξim)p(yi) dyi

)
,
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where

p(xim|yi, ξim) = (ximγim − lse(ξim) + π′m(ξim)ξim

+(B(ξim)ξim − πm(ξim))′γim −
1

2
γ ′imB(ξim)γim −

1

2
ξ′imB(ξim)ξim

)
,

B(ξim) =


1
2

(
IK−1 − 1K−11

′
K−1/K

)
for Böhning bound,(

diag[b(ξim0), . . . , b(ξim(K−1))] + b(ξimK)1K−11
′
K−1

)−1 for Browne-McNicholas bound,
(6.5)

where b(ξimk) = 2×max
{
ξimk−1−log(ξimk)

(1−ξimk)2 , 1
}

;

γim = wmyi,

lse (ξim) = log

(
1 +

K−1∑
k=1

ξim

)
,

where K is the number of categories, ξim is the vector of variational parameters, IK is the

identity matrix of size K ×K and 1K is a vector of ones of length K.

Although the Browne-McNicholas bound is the tightest bound for a given point, it has

higher computational complexity. The reason is that B(ξim) now depends on ξ and hence

on i, which means we need to compute a different posterior covariance matrix for each i

(Equation 6.5). By using the Böhning bound we need only invert the posterior covariance

matrix once. Its computational efficiency becomes the most attractive feature, especially

in the multinomial case. In this chapter, we study both bounds to explore the speed vs

accuracy trade-off.

6.3.2 Model Fitting

Here we derive a variational EM algorithm to obtain the approximation of the likelihood:
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1. E-Step: Estimate z(t+1)
ig with:

z
(t+1)
ig =

η
(t)
g exp(L(ξ

(t)
ig ))∑G

g=1 η
′(t)
g exp(L(ξ′

(t)
ig ))

.

2. M-Step: Estimate η(t+1)
g using

η(t+1)
g =

∑n
i=1 z

(t+1)
ig

N
.

3. Estimate the lower bound of log-likelihood via a K × 1 variational parameter vector

ξimg:

(a) E-Step: We approximate the latent posterior statistics for p(yig|xi, z(t+1)
ig = 1) by

its variational lower bound p(yig|xi, z(t+1)
ig = 1, ξ

(t)
ig ), which is a N(υ

(t+1)
ig ,ϕ

(t+1
ig ))

density:

(ϕig)
(t+1) =

(
(Σ−1

g )(t) +
M∑
m=1

w′(t)m B(ξimg)w
(t)
m

)−1

,

υ
(t+1)
ig = ϕ

(t+1)
ig

(
(Σ−1

g )(t)µ(t)
g +

M∑
m=1

(w′(t)m

(
xim +B(ξimg)ξ

(t)
img − πmg(ξ

(t)
img)

))
,

where

B(ξimg) =


1
2

(IK − 1K1′K/(K + 1)) Böhning bound,(
diag[b(ξimg1), . . . , b(ξimgK)] + b(ξimg(K+1))1K1′K

)−1Browne-McNicholas bound,
(6.6)

where b(ξimgk) = 2×max
{
ξimgk−1−log(ξimgk)

(1−ξimgk)2 , 1
}

;

and πmg(ξ
(t)
img) = exp

{
ξ

(t)
img − log

(
1 +

∑k−1
k=1 exp(ξ

(t)
imgk)

)}
.

(b) M-Step: Optimize the variational parameter vector ξ(t+1)
img .

i. By using the Böhning bound, one can show that the optimal value is

ξ
(t+1)
img = w(t)

m υ
(t+1)
ig .
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This follows from the fact that the Böhning bound is tight for the LSE func-

tion when ξimgk = γimgk.

ii. For Browne-McNicholas Bound, the update for ξimg can be written as

ξ
(t+1)
img = ξ

(t)
img +

1

2

∂Qimg

∂ξimg
|
ξimg=ξ

(t)
img
.

(c) Update accumulated sufficient statistics for the parameters wm, µg, and Σg based

on the closed-form posterior distributions corresponding to the observations in the

data set:

Σ(t+1)
g =

1

ng

n∑
i=1

z
(t+1)
ig ϕ

(t+1)
ig ,

µ(t+1)
g =

1

ng

n∑
i=1

z
(t+1)
ig υ

(t+1)
ig ,

where ng = z1g + · · ·+ zng and

vec(w(t+1)
m ) =

(
G∑
g=1

n∑
i=1

zigB(ξ
(t+1)
img )⊗

(
ψ

(t+1)
ig + υ

(t+1)
ig υ

′(t+1)
ig

))−1

vec

(
G∑
g=1

n∑
i=1

z
(t+1)
ig

(
xim +B(ξ

(t+1)
img )ξ

(t+1)
img − πmg(ξ

(t+1)
img )

)
υ
′(t+1)
ig

)
.

(d) Obtain the lower bound:

L(ξ
(t+1)
ig ) =

M∑
m=1

(
−lse(ξ(t+1)

img ) + π′mg(ξ
(t+1)
img )ξ

(t+1)
img −

1

2
ξ
′(t+1)
img B(ξimg)ξ

(t+1)
img

)

−
µ′(t+1)

g (Σ−1
g )(t+1)µ

(t+1)
g

2
+

1

2
log
|ϕ(t+1)

ig |
|Σ(t+1)

g |
+
υ′

(t+1)
ig (ϕ−1

ig )(t+1)υ
(t+1)
ig

2
,

where

lse
(
ξ

(t+1)
img

)
= log

(
1 +

K−1∑
k=1

ξ
(t+1)
imgk

)
,

and the log-likelihood:

l(t) ≈
n∑
i=1

log

(
G∑
g=1

η(t+1)
g exp(L(ξ

(t+1)
ig ))

)
.
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4. Return to Step 1.(a). Stops when convergence is reached.

6.4 Application

6.4.1 Mushroom Data

The mushroom data set includes descriptions of 8124 hypothetical samples corresponding to

23 species of gilled mushrooms in the Agaricus and Lepiota Family. Each species is classified

as edible or poisonous. We adopt 21 attributes: three describe the cap, one describes the

bruises, one describes the odor, four describe the gill, five describe the stalk, two describe

the veil, two describe the ring, one describes the spore, one describes the population and one

describes the habitat. All attributes have different numbers of nominal categories (Table 6.2).
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Table 6.2: Attributes for the mushroom data.

Attribute Name Number of Categories

1 Cap-shape 6

2 Cap-surface 4

3 Cap-color 10

4 Bruises 2

5 Odor 9

6 Gill-attachment 2

7 Gill-spacing 2

8 Gill-size 2

9 Gill-color 12

10 Stalk-shape 2

11 Stalk-surface-above-ring 5

12 Stalk-surface-below-ring 4

13 Stalk-color-above-ring 4

14 Stalk-color-below-ring 9

15 Veil-type 9

16 Veil-color 4

17 Ring-number 3

18 Ring-type 5

19 Spore-print-color 9

20 Population 6

21 Habitat 7

The fourteen MMCLT models were fitted to these data for d = 1, . . . , 3 and G = 1, . . . , 3.
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The minimum BIC occurs at the 2-component, 2-dimensional latent trait model via Browne-

McNicholas bound and Σg = SVg, which is considered as the “best” model. The BIC value

is 584926. Table 6.3 presents the classification of the group membership with the true label.

Table 6.3: Cross-tabulation of true and predicted classification for our chosen model (EVV,
G = 2, d = 2, Browne-McNicholas bound) for the mushroom data.

1 2
Edible 527 3681
Poisonous 3469 477

6.4.1.1 A Comparison of variational bound: Böhning and Browne-McNicholas

The key statistics on the best models via Böhning bound and Browne-McNicholas bound are

shown in Table 6.4. The highest ARI value (0.57) is obtained using the Browne-McNicholas

bound, which can be expected, because the Browne-McNicholas bound is the sharp quadratic

bound of the LSE function. However, the Browne-McNicholas bound has much higher com-

putational complexity. The speed issue becomes serious when dealing with categorical vari-

ables. For computational simplicity, we use Böhning bound for the next data example.

Table 6.4: A comparison of two different variational bounds.

Variational Bound G D BIC Σg ARI Time per Iteration
1 Böhning 2 3 591379 VEV 0.53 20 sec
2 Browne-McNicholas 2 2 584926 EVV 0.57 121 sec

The estimated posterior mean with true group labels using different bounds are presented

in Figure 6.1.

87



Ph.D. Thesis - Yang Tang McMaster - Mathematics and Statistics

(a) Böhning bound (b) Browne-McNicholas bound

Figure 6.1: Plots of the estimated posterior mean for different bounds.

6.4.2 U.S. Congressional Voting

The U.S. congressional voting data set is also used to illustrate the MMCLT model. The

responses are coded into three categories (K = 3): 1=yes, 2=no and 3=undecided and we

treat response “no” (k = 2) as a reference category. The fourteen MMCLT models were fitted

to these data for d = 1, 2, . . . , 5 and G = 1, 2, . . . , 5. The minimum BIC (BIC= 20197) occurs

at the 3-group, 2-dimensional latent trait model and Σg = SgQgAgQg, which is considered as

the “best” model. The divergence of the estimation occurs sometimes due to the small sample

size. One or more of the elements in µ appear to be increasing without limit. However, the

divergence of the estimation happens much less when using the fixed Böhning bound than

the Browne-McNicholas bound. The classification table of the group membership with party

membership is presented in Table 6.5. A 3-components and 2-dimensional latent trait model

is selected according to our model selection criteria. Group 1 consists mainly of Democratic

congressman, and Group 2 consists mainly of Republican congressman. Group 3 is a small

88



Ph.D. Thesis - Yang Tang McMaster - Mathematics and Statistics

group consists of voters from both parties.

Table 6.5: Cross-tabulation of party and predicted classification for our chosen model (VVV,
G = 3, d = 2) for the U.S. Congressional Voting Data.

1 2 3
Republican 35 225 7
Democrat 141 12 15

A visual representation of the estimated posterior mean of the best model is presented

(Figure 6.2). Group 1 and Group 2 are well separated. Group 3 is a very small group consists

of voters from both group.

Figure 6.2: Projection of the estimated posterior mean for the best model with true group
labels
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6.5 Discussion

The mixture of multinomial latent trait models with common slope parameters (MMCLT)

provides an additional methodology for model-based clustering of high-dimensional multi-

nomial categorical data. A comparison of two different variational lower bounds (Böhning

bound vs. Browne-McNicholas bound) has been carried out. The Browne-McNicholas bound

is the first direct extension of the Jaakkola bound to the general categorical case. However,

we demonstrate that the Böhning bound is useful and efficient when the number of categories

K is large.
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Chapter 7

Conclusions

7.1 Summary

The work developed in this thesis represents a significant contribution to the growing body

of work on mixture models capable of clustering high-dimensional continuous and non-

continuous data. In Chapter 3, we introduce asymmetric clustering for high-dimensional

data via a mixture of joint generalized hyperbolic models. This is a novel approach which

is applicable to high, and potentially very-high, dimensional continuous data. The use of

generalized hyperbolic distribution is particularly useful for clustering applications to avoid

making assumptions about the distribution of the underlying groups.

In the next three chapters, we develop models for model-based clustering of high-dimensional

binary and categorical data, a topic that has received relatively little attention. In Chapter

4, we explore the possibility of discovering “extreme patterns” of binary data while cluster-

ing by drawing ideas from the mixture of contaminated Gaussian distributions. This is the

first instance of a mixture model handling binary data with possible extreme patterns.The

PMLTM is developed in Chapter 5. The motivation is to develop a model-based clustering
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framework for very-high dimensional binary data (e.g., text data). The proposed gamma-

Laplace penalties on the slope parameters successfully reduce the number of free parameters

and identify non-informative variables to clustering. The component-specific tuning param-

eters avoid the over-penalization that can occur when inferring a shared tuning parameter

on clustered data.

In Chapter 6, a mixture of latent trait models is extended by using a multinomial logistic

response function to accommodate categorical data, a topic that has remained relatively

unexplored in clustering literature. We use two variational lower bounds to approximate the

likelihood. We also apply both bounds to real data in order to explore the speed vs accuracy

trade-off.

7.2 Future Work

7.2.1 Improvements to Computational Efficiency

There are computational challenges to be addressed in fitting the MJGHM-HDClust model

in Chapter 3. We will investigate the possibility to avoid calculating the full p× p eigenvec-

tor matrix Γ which will greatly reduce the runtime. Alternatives to BIC for selecting the

dimensionality of the component-specific subspace qg can also be studied.

In Chapter 5, we demonstrate the usefulness of using Python when compared to R. De-

veloping analogous Python code for MJGHM-HDClust (Chapter 3), MLTCG (Chapter 4),

and MMCLT (Chapter 6) will possibly improve the runtime dramatically. In addition, par-

allel computing implementation are possible solutions to help address the computational

challenge.
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7.2.2 Parsimonious Extensions to the PMLTM Model

A parsimonious family of the mixture of latent trait models is developed by using common

slope parameters and applying restrictions to the components of the decomposed covariance

matrices in Tang et al. (2015). Analogous families of parsimonious models could be developed

for the PMLTM model to further reduce the number of parameters to be estimated, which

would make this model even more powerful for the analysis of high-dimensional binary data.

Probabilities on restricting the turning parameter λ can be explored as well.

7.2.3 Properties of the Variational Approximation in the MMCLT

Model

We wish to study the asymptotic properties of the variational approximation in the MM-

CLT model in Chapter 6. A simulation study can be carried out to investigate the speed vs.

accuracy trade-off in detail between Böhning bound and Browne-McNicholas bound. Addi-

tionally, we are interested in other approximation methods to the multinomial likelihood.
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