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Abstract

Vehicular ad-hoc networks will be the next step towards intelligent transportation

systems. Roadside infrastructure is a key component of these systems that will even-

tually support various applications such as road safety, transportation services, info-

tainment, and in-vehicle Internet access.

This thesis considers the problem of roadside unit (RSU) placement and configura-

tion in vehicular networks. The goal is to select the RSU locations and configurations

such that the sum of capital and operational expenditure costs is minimized. Histor-

ical vehicular traffic traces and a set of RSU candidate locations are used as inputs.

First, the problem is formulated as an integer linear program (ILP), which provides

a lower bound on the total cost, and can be found for moderate size problems. A

practical algorithm called Minimum Cost Route Clustering (MCRC) is then intro-

duced that solves a relaxed version of the ILP and uses a novel rounding procedure

to obtain real RSU placements. The algorithm takes into account the energy costs

incurred by transmitting vehicular requests when the latter are scheduled using a

minimum energy online scheduler. Performance results are presented that show that

the proposed algorithm performs well compared to the case where placements are

done without considering both capital and operational expenditure costs.
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The problem of capacity augmentation is then addressed, as a way of adjust-

ing the initial RSU network design, and serves to counterbalance its failure to take

causality into account. The objective is to find an RSU radio capacity assignment

that minimizes the long-term operating expenditure costs subject to meeting packet

deadline constraints, subject to a given packet loss rate target. A procedure, referred

to as the Capacity Augmentation (CA) Algorithm, is proposed that iterates over the

RSUs, selecting candidates for capacity augmentation based on their packet loss rate

sensitivities. A variety of results is presented that characterize and compare the per-

formance of the CA Algorithm using a greedy online packet scheduler. It is shown

that the CA Algorithm is an efficient way to assign RSU radio capacity that achieves

the desired performance objectives.

The thesis then considers the problem of RSU job scheduling when vehicle routes

are unknown. The objective is to minimize the long-term RSU energy costs, subject to

satisfying hard deadline constraints and a packet loss criterion. A scheduler referred

to as the Route Coverage Expectation Scheduler (RCES) is proposed that uses the

historical traffic traces of an urban road network to estimate vehicular motion and the

energy costs needed for RSU-to-vehicle communications. The algorithm schedules job

requests across multiple RSUs whenever possible, by assigning part of a request to

the current RSU and by deferring the remainder to future RSUs. A variety of results

is presented that show that the RCES Algorithm achieves a packet drop ratio similar

to that achieved when routes are known, with only a modest increase in energy cost.

iv



Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisor,

Professor Terence D. Todd, for his continuous support of my Ph.D. study and re-

search, for his patience, motivation, and immense knowledge. His guidance helped

me with my research and the writing of this thesis. His insight and the critical

thought provoking discussions we had were a huge influence on my way of thinking

and his attention to detail showed me how quality work is crafted. I would also like to

thank Dr. George Karakostas as my co-supervisor for his continuous support of my

Ph.D. study and research. His thoughtful advice and insightful criticism had greatly

motivated me throughout my Ph.D. program.

I extend my warm thanks to the rest of my supervisory committee and the mem-

bers of the examining committee for reading my thesis and for their valuable sugges-

tions and comments. I thank my fellow members of the Wireless Networking Group

for their support and comments. I would like to thank my parents for their continuous

support throughout these years.

Finally, I would like to thank my wife for her patience, understanding and for

putting up with late working nights. It would have been impossible without you.

v



Abbreviations

AHP Analytic Hierarchy Process

AP Affinity Propagation

BEH Balloon Expansion Heuristic

BIP Binary Integer Program

BRP Bayesian Route Predictor

CA Capacity Augmentation

CAPEX Capital Expenditure

CCH Control Channel

CEPT European Conference of Postal and Telecommunications Adminis-

trations

CLB Cooperative Load Balancing

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

CWM Cumulative Weight-based Method

vi



DOT Department of Transportation

DSRC Dedicated Short Range Communication

EDF Earlier-Deadline-First

ETSI European Telecommunications Standards Institute

FCC Federal Communications Commission

GMCF Greedy Minimum Cost Flow

ILP Integer Linear Program

IoT Internet of Things

ITS Intelligent Transportation Systems

LOS Line-of-Sight

LP Linear Program

MAC Medium Access Control

MANET Mobile Ad-hoc Network

MCCP Minimum Capital Cost Placement

MCRC Minimum Cost Route Clustering

ML Machine Learning

OBU On-Board Unit

OPEX Operational Expenditure

vii



PLPR Primal Linear Programming Relaxation

PMCP Probabilistic Maximum Coverage Problem

RCES Route Coverage Expectation Scheduler

RSU Road-Side Unit

SAM Service Announcement Message

SoI Site of Interest

SCH Service Channel

SUMO Simulation of Urban MObility

TIS Topology-aware Intersections Selection

TTL Time-to-Live

V2I Vehicle-to-Infrastructure

V2V Vehicle-to-Vehicle

V2X Vehicle-to-Vehicle and Vehicle-to-Infrastructure

VANET Vehicular Ad-hoc Network

WAVE Wireless Access in Vehicular Environments

WSA WAVE Service Advertisement

WHO World Health Organization

viii



Contents

Abstract iii

Acknowledgements v

Abbreviations vi

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Road-Side Unit Placement in VANETs . . . . . . . . . . . . . . . . . 2

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Vehicular Ad-hoc Networks . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Wireless Communication in Vehicular Ad-hoc Networks . . . . . . . . 9

2.4 Roadside Units in Vehicular Ad-hoc Networks . . . . . . . . . . . . . 12

2.4.1 The Need for Roadside Infrastructure . . . . . . . . . . . . . . 12

2.4.2 Roadside Units as Infrastructure . . . . . . . . . . . . . . . . . 15

2.5 Roadside Unit Placement in Vehicular Ad-hoc Networks . . . . . . . 16

ix



2.5.1 Assumptions and Challenges . . . . . . . . . . . . . . . . . . . 16

2.5.2 Static vs. Mobile RSU Deployment . . . . . . . . . . . . . . . 21

2.5.3 Budget-Constrained RSU Deployment . . . . . . . . . . . . . 23

2.5.4 Minimizing the Number of Deployed RSUs . . . . . . . . . . . 30

2.5.5 RSU Placement and RSU Configuration . . . . . . . . . . . . 39

2.5.6 RSU Placement and OPEX . . . . . . . . . . . . . . . . . . . 43

3 RSU Placement and Configuration in VANET 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 RSU Placement and Configuration Problem . . . . . . . . . . . . . . 54

3.5 Minimum Cost Route Clustering Algorithm . . . . . . . . . . . . . . 57

3.6 Performance Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6.1 The Effect of Per RSU Capital Cost . . . . . . . . . . . . . . . 69

3.6.2 The Effect of Request Size . . . . . . . . . . . . . . . . . . . . 79

3.6.3 The Effect of the Request Arrival Rate . . . . . . . . . . . . . 84

3.6.4 The Effect of the Request Time-to-Live (Deadline) . . . . . . 87

3.6.5 The Effect of the Vehicle Arrival Rate . . . . . . . . . . . . . 90

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4 Capacity Augmentation in Energy Efficient Vehicular Roadside In-

frastructure 95

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

x



4.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Capacity Augmentation Algorithm . . . . . . . . . . . . . . . . . . . 99

4.5 Performance Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5 Energy Efficient Roadside Unit Transmission Scheduling with Un-

known Vehicle Routes 114

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4 The Route Coverage Expectation Scheduler (RCES) . . . . . . . . . . 119

5.5 Performance Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.5.1 The Effect of the Number of Deployed RSUs . . . . . . . . . . 124

5.5.2 The Effect of Vehicle Arrival Rate and Request Arrival Rate . 128

5.5.3 The Effect of Request Size and Request Time-to-Live . . . . . 131

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6 Conclusions and Future Work 136

xi



List of Figures

2.1 Frequency allocation in U.S. (top) and Europe (bottom) (Campolo and

Molinaro, 2013). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Simulation Terminology. . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 City Grid with RSU Candidate Site Locations. . . . . . . . . . . . . . 66

3.3 The Effect of Per RSU Capital Cost on Single-Choice RSU Placement

with Low Vehicle Traffic Load. . . . . . . . . . . . . . . . . . . . . . . 71

3.4 The Effect of Per RSU Capital Cost on Single-Choice RSU Placement

with High Vehicle Traffic Load. . . . . . . . . . . . . . . . . . . . . . 72

3.5 The Effect of Per RSU Capital Cost on Multiple-Choice RSU Place-

ment with Low Vehicle Traffic Load. . . . . . . . . . . . . . . . . . . 73

3.6 The Effect of Per RSU Capital Cost on Multiple-Choice RSU Place-

ment with High Vehicle Traffic Load. . . . . . . . . . . . . . . . . . . 74

3.7 The Effect of Per RSU Capital Cost on Single-Choice RSU Placement

with Low Vehicle Traffic Load. The Online Experiments Use the De-

sign Trace as Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.8 The Effect of Per RSU Capital Cost on Single-Choice RSU Placement

with High Vehicle Traffic Load. The Online Experiments Use the De-

sign Trace as Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

xii



3.9 The Effect of Request Size on Single-Choice RSU Placement with High

Vehicle Traffic Load. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.10 The Effect of Request Size on Multiple-Choice RSU Placement with

High Vehicle Traffic Load. . . . . . . . . . . . . . . . . . . . . . . . . 83

3.11 The Effect of Request Arrival Rate on Single-Choice RSU Placement

with High Vehicle Traffic Load. . . . . . . . . . . . . . . . . . . . . . 85

3.12 The Effect of Request Arrival Rate on Multiple-Choice RSU Placement

with High Vehicle Traffic Load. . . . . . . . . . . . . . . . . . . . . . 86

3.13 The Effect of Request Time-to-Live on Single-Choice RSU Placement

with High Vehicle Traffic Load. . . . . . . . . . . . . . . . . . . . . . 88

3.14 The Effect of Request Time-to-Live on Multiple-Choice RSU Place-

ment with High Vehicle Traffic Load. . . . . . . . . . . . . . . . . . . 89

3.15 The Effect of Vehicle Arrival Rate on Single-Choice RSU Placement. 91

3.16 The Effect of Vehicle Arrival Rate on Multiple-Choice RSU Placement. 92

4.1 The Effect of Capacity Augmentation Algorithm on RSU Placement

Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2 The Capacity Augmentation Algorithm Progress in each of Iteration. 110

4.3 The Effect of Unlimited Capacity on the Capacity Augmentation Al-

gorithm Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.1 The Effect of Number of Deployed RSUs (the First Policy). . . . . . . 125

5.2 The Effect of Number of Deployed RSUs (the Second Policy). . . . . 126

5.3 The Effect of Vehicle Arrival Rate. . . . . . . . . . . . . . . . . . . . 129

5.4 The Effect of Request Arrival Rate. . . . . . . . . . . . . . . . . . . . 130

5.5 The Effect of Request Size. . . . . . . . . . . . . . . . . . . . . . . . . 132

xiii



5.6 The Effect of Request Time-to-Live (TTL). . . . . . . . . . . . . . . . 133

xiv



Chapter 1

Introduction

1.1 Overview

Equipping vehicles with wireless communication capabilities is expected to be the

next step towards Intelligent Transportation Systems (ITS). Vehicular ad-hoc net-

works (VANETs) will be essential components of this functionality that will help

enable future road services. VANETs will eventually support various applications

such as road safety, intelligent transportation, location-dependent advertisement, and

in-vehicle Internet access. This area has attracted much attention from government,

industry, and academia in recent years.

Roadside units (RSUs), which are often deployed at intersections, mainly extend

the communication range of VANETs, run safety, and non-safety applications, and

provide Internet connectivity to vehicular onboard units (OBUs) as an alternative to

cellular-based access technologies. RSU deployment includes two cost components,

the capital expenditure (CAPEX) and the operational expenditure (OPEX) costs.
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Unlike the solutions focused on minimizing the number of deployed RSUs or mini-

mizing the CAPEX, we consider both of these cost components. This thesis provides

a methodology that combines the CAPEX and the OPEX costs in the deployment

process.

1.2 Road-Side Unit Placement in VANETs

This thesis focuses on the problem of roadside unit (RSU) placement and configura-

tion in vehicular networks. The goal is to select the RSU locations and configurations

such that the sum of CAPEX and OPEX costs is minimized. Our methodology con-

siders two phases. The first is the design of the network itself, which is an offline

problem, and occurs before any RSUs are deployed. In the offline design, we take

historical vehicular traffic traces including vehicular communication requests and the

RSU candidate location information as inputs. The output of the offline phase is an

RSU network design, i.e., the set of RSU placements to be made and their (fixed)

configurations.

Once the offline RSU network design is completed, the RSUs are installed and

subjected to online vehicular traffic flow job requests. When an RSU is deployed and

in operation, it incurs long-term operating costs due to its energy use. The objective

of the offline design is to choose a subset of the candidate locations such that the sum

of CAPEX and OPEX costs is minimized and that vehicular traffic requirements are

met. An integer linear program (ILP) is first formulated that computes a minimum

total cost RSU placement as a lower bound. The ILP has a prohibitive solution time,

even for moderate traffic size instances that makes it impractical for real network de-

signs. A practical algorithm called Minimum Cost Route Clustering (MCRC) is then

2
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introduced that solves a relaxed version of the ILP and uses a novel rounding pro-

cedure to obtain real RSU placements. The algorithm takes into account the energy

costs incurred by transmitting vehicular requests when the latter are scheduled using

a minimum energy online scheduler. Performance results are presented that show

that the proposed algorithm performs well compared to the case where placements

are done without considering both capital and operational expenditure costs.

The problem of capacity augmentation is then addressed, as a way of adjust-

ing the initial RSU network design, and serves to counterbalance its failure to take

causality into account. The objective is to find an RSU radio capacity assignment

that minimizes the long-term operating expenditure costs subject to meeting packet

deadline constraints, subject to a given packet loss rate target. A procedure, referred

to as the Capacity Augmentation (CA) Algorithm, is proposed that iterates over the

RSUs, selecting candidates for capacity augmentation based on their packet loss rate

sensitivities. A variety of results is presented that characterize and compare the per-

formance of the CA Algorithm using a greedy online packet scheduler. It is shown

that the CA Algorithm is an efficient way to assign RSU radio capacity that achieves

the desired performance objectives.

The thesis then considers the problem of RSU job scheduling when vehicle routes

are unknown. The objective is to minimize the long-term RSU energy costs, subject to

satisfying hard deadline constraints and a packet loss criterion. A scheduler referred

to as the Route Coverage Expectation Scheduler (RCES) is proposed that uses the

historical traffic traces of an urban road network to estimate vehicular motion and the

energy costs needed for RSU-to-vehicle communications. The algorithm schedules job

requests across multiple RSUs whenever possible, by assigning part of a request to

3
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the current RSU and by deferring the remainder to future RSUs. A variety of results

is presented that show that the RCES Algorithm achieves a packet drop ratio similar

to that achieved when routes are known, with only a modest increase in energy cost.

1.3 Thesis Organization

In Chapter 2, the background information related to this thesis is introduced. The

role and capabilities of RSUs in VANETs from a standards and application point

of view are presented. The necessity of RSU infrastructure from different points of

view is discussed. The chapter also provides a comprehensive review of the research

efforts related to RSU deployment in VANETs, with emphasis on cost and energy

minimization of the deployed network.

In Chapter 3, the problem of RSU placement and configuration in VANETs is

presented. The optimization problem is formulated as an ILP, which provides a lower

bound on the total cost, and can be found for moderate size problems. MCRC is

then introduced, as a practical algorithm. The MCRC Algorithm is compared with

RSU placements that minimize only CAPEX, referred to as Minimum Capital Cost

Placement (MCCP). The performance of the MCRC Algorithm is investigated in

different scenarios that show its advantage in terms of total cost and request drop

ratio.

Chapter 4 investigates the problem of capacity augmentation in energy efficient

RSU deployments. The CA Algorithm is presented that iterates over the RSUs,

selecting candidates for capacity augmentation based on a combination of the RSU

loss rate sensitivities and their capacity augmentation costs. A variety of results is

presented that show that the CA Algorithm achieves a very significant decrease of

4
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the drop ratio with only a very moderate (if any) increase of the network total cost.

In Chapter 5, the problem of RSU job scheduling is discussed when vehicle routes

are unknown. The RCES Algorithm is introduced that uses the topology of an urban

road network and historical traffic traces to extract vehicular motion statistics. Re-

sults show that employing the RCES Algorithm, when vehicle routes are unknown,

achieves a drop ratio similar to that achieved when these routes are known, with only

a modest increase in energy cost.

The thesis is concluded in Chapter 6 with suggestions for possible future work.

5



Chapter 2

Background

2.1 Introduction

More than a billion vehicles are currently on the road, worldwide, and this number is

expected to surpass 2 billion by the year 2035. This, coupled with new technological

improvements in areas such as safety and self-driving, is initiating a new era in trans-

portation systems. On the infrastructure side, cellular-based access technologies are

suffering from high costs of service (as a result of high CAPEX and OPEX) and data

traffic congestion due to mobile data traffic growth. Roadside infrastructures, based

on Dedicated Short Range Communication (DSRC), may provide a more flexible so-

lution to these problems. As a result, VANETs have attracted much attention from

government, industry, and academia in recent years.

This chapter presents an overview of previous work related to roadside infrastruc-

tures. First, we start with a brief discussion of VANET applications and their unique

characteristics and challenges. Then, we overview DSRC features, including Wire-

less Access in Vehicular Environments (WAVE) standards. Following this, we discuss

6
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VANET infrastructure from different perspectives and RSU deployment strategies.

2.2 Vehicular Ad-hoc Networks

The U.S. Department of Transportation (DOT) estimated that DSRC-based commu-

nications between vehicles could reduce up to 82% of all road crashes in the U.S. and

about 40% of all crashes occurring at intersections. This can save thousands of lives

and billions of dollars (Zheng et al., 2015; Wu et al., 2013). In addition to the waste

of energy and the production of greenhouse gasses and other environmentally harmful

pollutants, traffic congestion is an obstacle to economic growth (Force, 2012). Thus,

the current transportation systems have room for significant improvements regarding

safety and efficiency.

VANETs will be essential components of Intelligent Transportation Systems (ITS)

that eventually support various applications such as road safety (e.g., collision detec-

tion, lane change warning, and cooperative merging), intelligent transportation (e.g.,

traffic signal control and intelligent traffic scheduling), location-based advertisement

and services (e.g., point of interest and route optimization), and in-vehicle Internet

access (Lu et al., 2014).

VANET operation can include both vehicular onboard units (i.e., OBUs), and

fixed roadside unit infrastructure (i.e., RSUs). The latter is typically installed along

the roadside or at intersections where power grid connectivity is common (Al-Sultan

et al., 2014). There are three modes of communication between RSUs and OBUs: (i)

vehicle-to-vehicle (V2V), where an OBU communicates with other OBUs, (ii) vehicle-

to-infrastructure (V2I), where an OBU communicates directly with an RSU, and, (iii)

7
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combination of V2V and V2I, where an OBU communicates with an RSU in multi-

hop fashion when direct communication is not possible (Lu et al., 2014; Al-Sultan

et al., 2014; Cunha et al., 2016).

VANETs have some unique characteristics that differentiate them from a Mobile

Ad-hoc Network (MANET). These characteristics include (Al-Sultan et al., 2014;

Cunha et al., 2016; Lu et al., 2014; Wu et al., 2013):

1. Highly dynamic topology : Vehicle speed, which on average is 50 km/h in urban

areas and 100 km/h in highways, creates a highly dynamic environment, in

which the lifetime of the link between vehicles is short, especially when vehicles

are moving in opposite directions.

2. Intermittent connectivity : As a result of the highly dynamic topology, the link

connectivity frequently changes. Thus, the link between vehicles can disconnect

in the middle of the transmission or before they can start communicating. The

transmission power can be increased to prolong the link lifetime, which can

degrade the throughput.

3. High computational ability with no power constraints : Vehicles can be equipped

with plenty of sensors and computational resources, such as processors, memory,

and GPS. The vehicle battery can also provide continuous power to the OBUs.

4. Predictable mobility : Although vehicles have high mobility patterns, they are

constrained by road topology, traffic signs (such as speed limit, traffic light), and

other traffic conditions (such as other vehicles, weather, etc.). These constraints

can be helpful to predict the position of vehicles.

8
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5. Propagation model : The nature of the obstacles in areas where VANET oper-

ates, i.e., urban areas, rural areas, and highways, is different. Therefore, the

propagation model that works in one environment is not necessarily accurate

for others. For example, the free-space propagation model is usually used in

highways, but, in urban areas, shadowing, multi-path, and fading effects are

very common. Multi-path delay spread causes frequency selectivity, and the ve-

hicle mobility causes Doppler effects and time-selective fading channels. In V2V

communications, the line-of-sight (LOS) path can be easily blocked, which may

lead to a significant attenuation and packet loss (e.g., buildings at intersections,

trucks at highways).

2.3 Wireless Communication in Vehicular Ad-hoc

Networks

Recognizing the importance of VANETs, the U.S. Federal Communications Commis-

sion (FCC) has allocated a 75 MHz bandwidth to DSRC for ITS radio services (U.S.

Federal Communications Commission, 2004) (a 50 MHz bandwidth was also allo-

cated by the European Conference of Postal and Telecommunications Administrations

(CEPT) (Campolo and Molinaro, 2013)). DSRC includes the IEEE 802.11p (PHY

and MAC layers) and IEEE 1609 (upper layers) standards, which refer to Wireless

Access in Vehicular Environments (WAVE) (Lu et al., 2014; Al-Sultan et al., 2014).

A similar access layer is defined by the European Telecommunications Standards

Institute (ETSI) that also includes 802.11p (Campolo and Molinaro, 2013).

In the U.S., the allocated spectrum is divided into seven channels of 10 MHz

9
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the requirements of most of the safety
applications
Synchronization is achieved through the

Coordinated Universal Time (UTC) signal from
satellites. In cases of unavailability of satellite
positioning systems on board or temporary signal
loss (e.g., in tunnels, urban canyons, and densely
treed streets), vehicular devices can also use a
distributed synchronization approach, based on
timing signals received from other devices. 

Immediate access allows immediate switching
to the SCH without waiting for the nominal
beginning of the SCH interval. Extended access
allows continuous communications over the SCH
without pauses for CCH access. These latter
schemes are designed to facilitate the exchange
of a large amount of non-safety data during the
SCH interval.

Even if the 1609.4 standard does not explicit-
ly restrict the use of CCH and SCH channels to
any particular traffic type (except for IP packets
not allowed on CCH), so far the default assump-
tion has considered control and safety messages
conveyed on the CCH, and other DSRC services
on the SCH. One of the main advantages of this
approach is the capability of single-radio devices
to participate in safety data exchange and also
profit from other services offered on the SCH.
Such a capability is considered especially attrac-
tive as an initial deployment strategy to push
DSRC market penetration. On the other hand,
this default deployment option motivated the
proliferation of works addressing channel switch-
ing inefficiencies, which is among the topics of
the next section.

The identified inefficiencies have encouraged
the U.S. Department of Transportation (DOT)
and the Crash Avoidance Metrics Partnership
(CAMP) Vehicle Safety Communications 2
(VSC2) Consortium [11] to investigate a new
deployment option, which is not explicitly in
conflict with 1609.4 and is compliant with the
FCC decision about the use of channel 172.

Based on this revisited interpretation, CCH is
left for the exchange of management informa-
tion only, including WSAs, while chanel 172 is
dedicated to V2V safety traffic (BSMs). The
U.S. DOT began a year-long model deployment
in August 2012, equipping nearly 3000 vehicles
with DSRC devices that send BSMs on channel
172. This model deployment is expected to form
the basis for U.S. DOT decisions about actual
vehicle safety communications deployment in the
years to come. Waiting for an official decision,
in the remainder of the article we consider both
deployment options by referring to the solution
with BSMs on the CCH as 1609.4 default, and to
the solution with BSMs on channel 172 as FCC-
compliant.

Possible transceiver configurations in the

Figure 2. Frequency allocation in the United States (top) and Europe (bottom).
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of bandwidth. The channels are evenly numbered from 172 to 184. Channel 178

is the control channel (CCH), and the rest are service channels (SCHs). Among

the six SCHs, channels 172 and 184 are reserved for public safety applications that

involve the safety of life and property, including V2V collision avoidance and road

intersection collision mitigation. Other channels can be used for safety and non-safety

applications (Al-Sultan et al., 2014; Campolo and Molinaro, 2013; Cunha et al., 2016).

In Europe, the allocated spectrum is divided into five channels: one CCH and four

SCHs. The first two SCHs are road safety services, and the other two SCHs are for

general-purpose ITS services. ETSI also allocated 20 MHz for future ITS applications

(Campolo and Molinaro, 2013; Cunha et al., 2016). Figure 2.1 shows the frequency

allocation in U.S. and Europe.

Although WAVE does not explicitly restrict CCH to any particular traffic type
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(except for IP packets not allowed on CCH), CCH is considered for the exchange

of management information only, including WAVE service advertisements (WSAs)

in 1609 and service announcements (SAMs) in the ETSI architecture (Campolo and

Molinaro, 2013). However, under some circumstances, CCH is also considered for

safety communications (Al-Sultan et al., 2014; Campolo and Molinaro, 2013). WSAs

and SAMs are the messages that contain information about the services that are

about to be offered and necessary parameters for the users to receive the services

(e.g., the selected SCH) (Campolo and Molinaro, 2013).

WAVE allows multi-channel operations of single-radio and dual-radio devices.

Single-radio devices can only listen to one frequency at a time, but they can switch

between CCH and one of the SCHs to take advantage of provided services on the

SCHs. Devices with dual-radio capability can tune to two different frequencies (e.g.,

CCH and one of the SCHs) simultaneously, but, this capability comes at the higher

cost. In fact, single-radio transceivers are considered as a short-term solution for de-

ploying OBUs and dual-radio transceivers as a mid- to long-term solution (Campolo

and Molinaro, 2013).

DSRC/WAVE supports an environment in which vehicle speeds can be up to 200

km/h, and the communication range can reach up to 1000m, with a data rate of

more than 27 Mbps (Al-Sultan et al., 2014; Lu et al., 2014; Cunha et al., 2016; J. A.

Volpe National Transportation Systems Center, 2008). The goal of DSRC/WAVE is

to provide a highly reliable communication means with low latency to meet vehicle

safety application requirements (Wu et al., 2013; Cunha et al., 2016).
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2.4 Roadside Units in Vehicular Ad-hoc Networks

2.4.1 The Need for Roadside Infrastructure

The necessity of an infrastructure for VANETs has been discussed in the literature

from different points of view, from connectivity to Internet access.

Connectivity

VANETs were originally developed for V2V communications to allow vehicles to com-

municate with each other in an ad-hoc manner, either directly or indirectly through

the carry-and-forward mechanism with a proper routing protocol. However, the effi-

ciency of V2V communication degrades as vehicle density decreases especially in areas

like highways, rural areas, and during the off-peak hours in urban areas. In informa-

tion dissemination scenarios, for example, vehicles may receive the information after

a long delay and some vehicles may never receive it at all. With no infrastructure,

the vehicular systems are only limited to a short communication range, with routing

issues such as delay and incorrect routing. It has been shown that a minimum sup-

port of VANET infrastructure has a significant impact on the overall efficiency of the

network (Kchiche and Kamoun, 2014; Silva et al., 2016; Li et al., 2015; Zou et al.,

2011; Liang et al., 2012).

Medium Access Control (MAC)

The current medium access control (MAC) protocol in WAVE is based on carrier

sense multiple access with collision avoidance (CSMA/CA) in which collisions may

occur indefinitely due to the non-deterministic back-off mechanism, particularly in
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high-speed and high-density environments. Relying on the roadside infrastructure is

one of the choices to implement a deterministic MAC protocol for vehicular networks,

to guarantee real-time behavior and safety, as users are more likely to trust a network

with roadside infrastructure management (Meireles et al., 2016).

Security and Privacy

As in other types of networks, VANETs also face security and privacy challenges,

which are intrinsic and unique due to their unique characteristics. Roadside infras-

tructure can also play an important role in assuring security and privacy preservation

of vehicles (Cunha et al., 2016; Sun et al., 2010; Wang and Chang, 2011; Li et al.,

2013; Aslam et al., 2016).

Safety and Emergency Services

V2V based communications are crucial to spreading the warning messages to the

surrounding vehicles, e.g., safety messages for lane changing, emergency braking,

sudden hard braking, and maintaining braking distance (Patil and Gokhale, 2013;

Al-Sultan et al., 2014; Lu et al., 2014). Regarding traffic safety, the advantage of

having an infrastructure in vehicular networks is twofold. First, the Internet access

that is provided through infrastructure can be used by vehicles to communicate with

the emergency services immediately. According to the statistics, many deaths occur

between the time of the accident and the time of arriving medical assistance on the

road. Within the first hour of a car crash, called the golden hour, medical intervention

by a specialized team can save lives with the high probability. Hence, any technology

that reduces the notification time of an accident will increase the survival chance of
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injured people. Second, the safety messages can be rebroadcast to more vehicles in

less time, especially in low-density areas (Barrachina et al., 2013; Liu et al., 2014,

2016).

Intelligent Transportation System (ITS) related Services

VANETs can support a variety of ITS services such as traffic congestion control, traffic

light control, differentiated road pricing and tolling, and disseminating information

about road congestion, pavement condition, route status, travel time estimation, air

pollution levels, etc. (Rashidi et al., 2012; Abdrabou and Zhuang, 2011; Xiong et al.,

2013; Patil and Gokhale, 2013). In a typical vehicular network, vehicles can be

equipped with various sensors to collect real-time traffic and environmental data.

They can also read any sensor that is installed along the road. This process can

be either periodic or event-triggered. All sensor readings will be tagged with a time-

stamp and the geographical coordinates, which can be obtained, e.g., from a GPS, and

will be reported to a remote control center through an infrastructure. The processed

data can be accessed by vehicles through the same infrastructure (Xiong et al., 2013;

Rashidi et al., 2012; Abdrabou and Zhuang, 2011).

Information and Entertainment (Infotainment)

VANETs are primarily focused on travel safety and efficiency. However, in order

to accelerate the market penetration of DSRC-equipped devices, they also support

value-added services such as infotainment (e.g., email, news, streaming, etc.) and

commercial applications (e.g., location-based advertising, etc.) (Trullols et al., 2010;

Abdrabou and Zhuang, 2011; Xiong et al., 2013; Campolo et al., 2011; Patil and
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Gokhale, 2013). Drivers and passengers spend on average 541 and 274 hours per

person per year in vehicles in America and Europe, respectively. As the number of

mobile Internet applications and social network services increases, accessing to the

rich-media contents on the Internet at anytime from anywhere becomes one of the

must-have features of VANET (Liu et al., 2013).

2.4.2 Roadside Units as Infrastructure

The full benefits of DSRC technology can only be realized when it is widely adopted

by the market. However, justifying the benefits of RSU infrastructure is not easy,

especially when existing infrastructures provide both safety and traffic efficiency, as

well as Internet access for other ITS applications (Tonguz and Viriyasitavat, 2013).

In the case of a car crash, for example, a notification system that is triggered by

an event, e.g., airbag release, sends emergency messages to nearby emergency re-

sponders. But, in the future, applications may participate in accident prevention by

warning the driver or by automatically braking. V2X communications can also warn

approaching vehicles of accident locations. Emergency responders can strategically

prepare themselves for the accident scene if emergency video streaming is available

(Cunha et al., 2016).

Cellular networks are considered to be economically efficient to support V2I com-

munications since they have been widely deployed (Zheng et al., 2015; Kumrai et al.,

2014). Using cellular networks to access the Internet inside fast moving vehicles suf-

fers from low bandwidth, high cost, and long delay. RSU infrastructure is another

solution that can provide mobile vehicles with high-speed and low-cost Internet ac-

cess services (Liu et al., 2013). As reported in (Xiong et al., 2013), the feasibility of
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RSU-based Internet access for non-interactive applications is confirmed through vari-

ous experiments. With the emergence of Internet of Things (IoT), requests for higher

bandwidth will increase significantly, which makes it almost infeasible for cellular

networks to handle vehicular data traffic. In fact, it has been proposed in the liter-

ature that RSU infrastructure could be used to offload cellular network data (Bazzi

et al., 2015). On the other hand, the ITS services widely rely on the information that

vehicles collect and upload to ITS servers, which is currently done through cellular

networks (Bazzi et al., 2015). Since vehicles voluntarily participate in sensing and

collecting data for ITS purposes, providing free Internet access to vehicles will give

them incentives to collect information (Kumrai et al., 2014).

The main functionalities of the RSU infrastructure in VANETs include extend-

ing the communication range of the ad-hoc network, running safety and non-safety

applications, and providing Internet connectivity for OBUs (Al-Sultan et al., 2014).

More specifically, RSUs can allow access to Internet gateways that provide a variety

of mobile services as an alternative to cellular-based access technologies (Lu et al.,

2014; Liu et al., 2013).

2.5 Roadside Unit Placement in Vehicular Ad-hoc

Networks

2.5.1 Assumptions and Challenges

Deployed RSUs have a significant impact on the reliability of VANETs and informa-

tion exchange (Mehar et al., 2015). In fact, deploying more RSUs can guarantee a

better connectivity, coverage and performance (Campolo et al., 2011; Patra et al.,
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2014). However, installing a sufficient number of RSUs to provide full coverage such

that every vehicle can always be connected to at least one RSU leads to large installa-

tion and maintenance costs (Abdrabou and Zhuang, 2011; Xiong et al., 2013; Li et al.,

2015). A simple RSU, for example, has a CAPEX of 13, 000 to 15, 000 USD per unit,

and OPEX of up to 2, 400 USD per unit per year (Tonguz and Viriyasitavat, 2013).

The gaps between the coverage areas force OBUs to buffer data until they meet an

RSU, which can be a viable solution to delay tolerant applications, but not for safety-

critical applications (Rashidi et al., 2012). Ideally, RSUs should be widely deployed

to provide continuous coverage or connectivity, however, ensuring such deployment is

not possible during the initial stages of VANET deployment because of its prohibitive

cost and the lack of market penetration of VANET enabled vehicles (Campolo et al.,

2011; Aslam and Zou, 2011; Aslam et al., 2012; Liu et al., 2016). Therefore, it is

always preferable to deploy a minimum number of RSUs (Liu et al., 2014). In fact,

authorities may limit this number or the maximum budget for deploying RSUs, espe-

cially in areas with sparse population (Barrachina et al., 2013). Even in urban areas,

covering the whole area may be inefficient and uneconomical (Xie et al., 2013). For

example, the interference generated by the dense deployment of RSUs may decrease

the performance of message propagation. Also, the redundant deployment of RSUs

without proper placement may contribute a little to the performance improvement,

while it imposes a huge deployment cost (Tao et al., 2014).

The trade-off between the performance of VANETs and the deployment cost mo-

tivated two types of deployment strategies. The first approach focuses on the quality

of deployment outcome such as improving the connectivity, coverage, delay, etc., with

a limited budget. This is a budget-constrained strategy. The second strategy is the
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quality-constrained approach, in which the deployment cost is minimized subject to

a minimum required quality of service. Some applications require a minimum quality

of service to prove their effectiveness, which cannot be compromised by limiting the

cost. Therefore, the latter approach seems more appropriate, since it can give the

authorities a sense of deployment cost that can guarantee a given minimum essential

quality of service.

The effectiveness of VANETs mostly depends on the location of RSUs and their

density (Aslam et al., 2012). There are many factors that influence RSU placement

decisions, such as the topological and topographical characteristics of road networks,

the temporal and spatial traffic characteristics of the roads, present and projected

traffic patterns, the availability of the communication and power supply networks

along the roads, the variety of services that are emerging and their communication

profile, and the requirements of the road operator (Patil and Gokhale, 2013; Rizk

et al., 2014).

Of course, VANETs will take some time until they become ubiquitous; during the

early stages of deployment, a small fraction of vehicles will be equipped with DSRC

devices, and the RSU coverage will be spotty or limited to main streets in urban areas.

But eventually, VANETs will enable a broad range of applications (Malandrino et al.,

2012; Aslam et al., 2016). Nevertheless, it will still be impractical to densely cover

remote and rural areas with RSUs (Abdrabou et al., 2013; Wang et al., 2016).

Another challenge faced when deploying RSUs is the temporal and spatial fluc-

tuations of the vehicular traffic. The population of vehicles on the roads has a non-

uniform distribution, both in time (time of day, the day of the week, holidays, etc.)

and space (urban and suburban areas, around the highway exits and in between,
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etc.) (Wu et al., 2012; Liya et al., 2013). Regarding the spatial fluctuations, RSUs

are mostly proposed to be installed at locations with high vehicle density, so that

more vehicles can benefit, although, if the main goal of deploying RSUs is to reduce

the information dissemination delay, deploying them at less dense locations may be

more beneficial (Mehar et al., 2015). To tackle the temporal fluctuations, RSUs can

be deployed according to the projected traffic peak, the average traffic level, or sep-

arately, for each different time period (Wang et al., 2014; Vageesh et al., 2014; Kim

et al., 2016). When RSUs are deployed, they continuously work to provide services

(Tao et al., 2014); hence, RSUs can be put to sleep whenever it is possible to save

energy (Vageesh et al., 2014) or they can be powered by renewable energy sources to

save energy costs (Vageesh et al., 2014).

The RSU deployment problem usually starts with a known set of candidate lo-

cations. Based on the objective function, a subset of locations will be selected. Po-

tentially, any point on the map can be considered as a candidate location, which

can translate to a set of infinite candidate locations. This raises some practical is-

sues, since not every location can accommodate all requirements of RSU installation.

The output of the deployment algorithm, for example, could be on private land, or

there could be obstructions such as hills or buildings that block the RSUs (Patil and

Gokhale, 2013). The candidate locations can be predetermined based on the avail-

ability of power sources and backhaul connections, e.g., traffic light poles. However,

in general, intersections and road segments can be considered as candidate locations

for RSU deployment. Since more candidate locations increase the complexity of RSU

placement algorithms, some previous work (e.g., (Trullols et al., 2010; Lee and Kim,

2010; Wang and Chang, 2011; Aslam et al., 2012; Lin, 2012; Chi et al., 2013b,a; Wang
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et al., 2014; Yan et al., 2014)) limits their candidate locations only to intersections.

Whether intersections are better candidates than road segments or not depends on

the application. For example, for collection and dissemination of small messages,

intersections are better locations than road segments (Trullols et al., 2010; Campolo

et al., 2011). However, data dissemination in long road segments may suffer from long

delays, which may violate the requirements of the application. To solve this issue, a

long road segment can be divided into small segments with their breaking points as

RSU candidate locations (Liu et al., 2014; Liang et al., 2012).

RSUs are considered to be interconnected (Aslam et al., 2012), either through

wired lines or wireless communication, but not necessarily all RSUs are gateways to

the Internet (Li et al., 2015). Obviously, RSUs are connected through direct wireless

links only if they are within each other’s transmission range. Two RSUs can also

be indirectly connected if there is a flow of vehicles that can carry-and-forward the

messages from one RSU to another (Chi et al., 2013a,b). To disseminate information

when a few RSUs are deployed, V2V communications can be used to extend the RSU

coverage. However, the gain that can be achieved through V2V communications

strictly depends on the particular cooperation paradigm, which makes it difficult to

evaluate in the general case (Trullols et al., 2010; Xie et al., 2013).

There are three types of RSU deployment strategies. The first category does not

take into account the vehicle mobility information, and, similar to the base station

deployment of cellular networks, the densest locations are targeted. On the other

side of the spectrum is the second category, which uses the full historical trajectory

of vehicles, i.e., realistic vehicular mobility traces. Since the full knowledge of all

vehicle trajectories may lead to a large computational complexity, the third category
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of deployment strategies relies on traffic patterns, such as the turning probabilities

of vehicles at intersections and the migration ratios of vehicles between urban cells,

which may be available or can be extracted from real traces (Silva et al., 2016; Xie

et al., 2013). Of course, the assumption in the second and the third approaches

is that the mobility pattern is similar for long periods, which is true for real-world

traffic traces, and, therefore, a deployment strategy based on a history log of vehicle

movements will work well in the future (Lee and Kim, 2010).

RSU infrastructure can provide high-speed Internet access to vehicles. However,

the connection time between vehicles and RSUs is short, because of their speeds.

As a result, a vehicle may not be able to download an entire media file from a single

RSU, and therefore, large files are always downloaded through file fragmentation. The

location of deployed RSUs, the travel path of vehicles, and the road traffic conditions

can affect file downloading in VANETs (Liu et al., 2013). In fact, tracking vehicles is

crucial in VANETs for communication protocols as well as applications and services

that can benefit from this type of information (Cunha et al., 2016), e.g., energy-aware

scheduling algorithms (Hammad et al., 2013; Khezrian et al., 2015). Tracking requires

a mechanism to identify the path of a vehicle in the network and predict the next

positions, if necessary. Of course, any approach for this purpose should consider the

privacy protection of users (Cunha et al., 2016).

2.5.2 Static vs. Mobile RSU Deployment

RSUs are fixed entities installed at intersections and along the road. However, in the

initial stages of DSRC deployment, several factors such as cost, complexity, existing

systems, and lack of cooperation between government and private sectors, hinders
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the deployment of RSUs (Tonguz and Viriyasitavat, 2013). As a solution to the low

market penetration of RSUs, especially in the early phases of RSU deployment, some

work proposes that cars and buses can serve as RSUs.

Reference (Campolo et al., 2011) conducted an experiment to investigate the ben-

efit of mobile RSUs, which concludes that static RSUs are preferable to provide

connectivity to vehicles. The mobile RSUs, i.e., special vehicles such as police cars,

buses, and trams can offer connectivity services to nearby vehicles, can lead to easy,

low-cost, fast, and low power deployment, at the expense of an intermittent connec-

tivity. There should be a large number of moving RSUs to provide the same level of

connectivity as static RSUs. Another observation the authors made is that a hybrid

scenario, where both static and mobile RSUs provide connectivity services to vehi-

cles, achieves a better performance compared to the scenario with only static RSUs.

Reference (Malandrino et al., 2012) investigates the possibility of exploiting parked

vehicles to extend the RSU service coverage. The authors focus on content down-

loading and aim to maximize the freshness of the content as well as the efficiency of

the radio resource utilization.

Reference (Tonguz and Viriyasitavat, 2013), on the other hand, focuses only on

cars and proposes that certain DSRC-equipped vehicles can play the role of temporary

RSUs, i.e., relaying messages to nearby vehicles and acting as a communication bridge

for other vehicles. The authors propose a biologically inspired self-organizing network

approach. Then, a specific safety application is used to illustrate the feasibility of the

proposed solution, which tries to address some key questions, such as the method of

selecting vehicles as temporary RSUs, the tasks of temporary RSUs, and the duration

of serving as an RSU.
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Reference (Kim et al., 2016) considers an RSU deployment strategy with static

and mobile RSUs so that their spatiotemporal coverage is maximized under a budget

constraint. Three types of RSUs are considered. The first is a static RSU that is

deployed at a fixed location. The second is a mobile but uncontrollable RSU that is

deployed on public transportation vehicles such as buses or light rails, whose routes

are known in advance. The third is a mobile and fully controllable RSU that is

deployed on a local government vehicle. The deployment cost of each type is assumed

to be fixed and known in advance.

Mobile RSUs may have less deployment cost, but they increase the complexity of

the problem. However, similar to sleep scheduling of static RSUs, mobile RSUs can

play an important role in tackling temporal fluctuations of the vehicular traffic.

2.5.3 Budget-Constrained RSU Deployment

Deploying RSUs is mainly considered as a way to improve the connectivity problem of

V2V communications in VANET (Tonguz and Viriyasitavat, 2013; Mehar et al., 2015;

Zou et al., 2011; Patil and Gokhale, 2013; Brahim et al., 2014; Tao et al., 2014), as

well as a means to provide Internet access to a variety of ITS based applications and

infotainment applications. The solutions that have been introduced in the literature

to solve the RSU placement problem mostly focus on the former, i.e., connectivity im-

provement of V2V communication. Therefore, this group of work uses objectives such

as throughput, delay, coverage, vehicle contact with an RSU, and contact time with

an RSU, subject to a constraint on the number of available RSUs or the maximum

permitted CAPEX cost.

Reference (Wu et al., 2012) considers the RSU placement problem over a highway
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scenario, where vehicles can communicate with RSUs directly or through multi-hop

relaying. The road has multiple lanes and is divided into segments of RSU coverage

range. RSUs and vehicles are assumed to have the same transmission range. The

objective of this work is to determine the road segments for RSU installation so

that the aggregated uplink throughput is maximized subject to a limited deployment

budget. Assuming that all RSUs are identical and of the same cost, the total number

of deployed RSUs is constrained. As the achievable throughput can be degraded as

the number of hops increases, the hop count in each multi-hop relaying path is also

limited. By taking the effects of interference, vehicle population, and their speed into

account, the achievable data rate and the lifetime of the link are then derived.

Reference (Aslam and Zou, 2011) considers the RSU placement problem over

a highway. The highway is divided into equal-length segments of twice the RSU

coverage range. For a given number of RSUs, the objective is to find segments to

install RSUs, so that the average time of reporting an event to the nearby RSU

is minimized. For simplicity, the density and the speed of vehicles are considered

constant, the vehicles arrive according to a Poisson process, and two simple event

distributions (flat and step) over the road are considered. The authors introduce

a heuristic algorithm, called Balloon optimization. Reference (Aslam et al., 2012)

focuses on urban areas. Similar to (Aslam and Zou, 2011), the objective is to install

a given number of RSUs, so that the average reporting time of an event to an RSU is

minimized and a given fraction of roads are covered by RSUs. In this work, only the

major roads that carry the majority of the traffic load are considered. Two simple

distributions are considered for event/incident distribution. In the first model, roads

have different, but flat event distributions. In the second model, not only roads have
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different distributions, but also events happen more frequently around intersections

than in the middle of the road. Each intersection is an RSU candidate location.

Vehicles follow a Poisson distribution as they enter each sub-segment of the roads. The

possibility of taking a specific route is based on the fraction of the vehicles traveling

through that route. The average reporting time over a single path is then relaxed

to the average reporting time over the entire region. Therefore, the relaxed problem

minimizes the total reporting time over the entire region. The problem is formulated

as a binary integer program (BIP) and solved by a branch-and-bound algorithm.

Also, a heuristic algorithm is developed, called balloon expansion heuristic (BEH); it

iteratively removes RSU candidate locations that do not satisfy certain criteria, one

by one, until the objective is achieved.

For a given number of RSUs, transmission range, and overlap ratio, Reference (Lee

and Kim, 2010) solves the RSU placement problem by maximizing the possibility that

a vehicle can access an RSU. In this scheme, all intersections are considered as initial

RSU candidate locations. A history log of vehicles on a real city is used, based on

the assumption of daily similarity of mobility patterns. The locations of the vehicles,

regardless of their timestamps, are marked as a dot on a map. A vehicle is considered

connected to an RSU if it is inside the coverage range. Iteratively, the RSU with the

maximum number of dots in its coverage area, which is far enough from previously

opened RSUs (according to the allowed overlap ratio) will be opened. This procedure

continues until the number of opened RSUs reaches the target value.

Reference (Trullols et al., 2010) formulates the deployment of a given number of

RSUs in an urban area as a maximum coverage problem. In an environment for
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disseminating information, the goal is to find a placement strategy so that the dis-

semination of information is maximized. The authors argue that the intersections are

better locations than road segments for deploying RSUs, by comparing the results of

placing a single RSU at the middle of a road segment first and then at an intersection

ending the same road. Therefore, they only consider the intersections as RSU candi-

date locations. The authors divide the problem into two cases. First, it is assumed

that the information has a small size and a vehicle just needs to get in contact with

an RSU at least once. Therefore, the number of vehicles that come in contact with

RSUs will be maximized. In the second case, the contact time of vehicles with RSUs

also matters. In this case, both the number of served vehicles and the vehicle-to-RSU

contact time will be maximized. For the first case, several algorithms are introduced

where one does not require the global knowledge of the road topology, and another

deals with the case that the identity of vehicles is unknown. In the second case, the

algorithms are adjusted to tackle the additional requirement of the problem, which

guarantees a minimum value of contact time for each vehicle.

To protect the privacy of drivers during the planning stage, Reference (Silva et al.,

2015) introduces a probabilistic maximum coverage problem (PMCP) for allocating

RSUs using only partial mobility information, instead of full knowledge of vehicle

trajectories. Partial mobility information consists of the turning probability of ve-

hicles at intersections, or in general term, the probability of migrating vehicles from

an urban cell to its adjacent cell. Similar to the work in (Trullols et al., 2010), it is

assumed that the information that is about to be collected or disseminated, is small

and self-contained. Therefore, the objective is to select a given number of urban cells

to install RSUs so that the number of distinct vehicles that come in contact with
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RSUs is maximized. Placing RSUs inside the cells is not discussed in this work. A

heuristic algorithm based on the work of (Trullols et al., 2010) is introduced, which

starts with the cell with the highest vehicle concentration and then iteratively projects

the flow of uncovered vehicles between the cells and selects the cells with the highest

projection of the vehicle flow, until the given number of RSUs is opened. Reference

(Silva et al., 2016) improves the work of (Silva et al., 2015) significantly. Unlike the

work of (Silva et al., 2015) that uses only the migration ratios of 4 out of 8 adjacent

cells to project the flow of uncovered vehicles, Reference (Silva et al., 2016) considers

the migration ratios between all pairs of urban cells.

Reference (Wang et al., 2014) formulates the RSU placement problem as a mobility

clustering problem by adopting an affinity propagation (AP) algorithm (Frey and

Dueck, 2007). In this work, some of the intersections are considered as RSU candidate

locations. For every particular time period, such as rush hours and off-peak hours, the

AP algorithm is used to find cluster centers, and, in the end, the union of the cluster

centers are the final solution to the RSU deployment problem. The intuition behind

this approach is to find intersections with higher influence on adjacent intersections,

e.g., intersections with more vehicles passing by, congested intersections with low

average velocity, etc. The AP algorithm can also determine the optimal number of

clusters and consequently the number of deployed RSUs. However, when the number

of deployed RSUs exceeds the budget, the algorithm needs to be re-executed with a

different preference initialization.

Reference (Patil and Gokhale, 2013) introduces an RSU placement algorithm

based on Voronoi diagrams. For a given number of RSUs, the area covered by RSUs is

maximized subject to a maximum allowable delay bound. In this approach, a region
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is partitioned into polygons centered around RSUs, and the maximum tolerable delay

in disseminating data packets from RSUs to vehicles using V2I and V2V communi-

cations is used as a criterion to form the polygons. Also, by assigning each vehicle to

only one RSU, i.e., the nearest RSU, the number of vehicles served by each RSU is

maximized. First, the RSUs will be placed at some initial positions, either randomly

or uniformly. Then, the maximum delay that an RSU-generated packet experiences

is used to create the RSU neighborhood map in the Voronoi diagram, where the ex-

tended range of RSUs defines the contours of the polygons. The neighborhood map

depends on the initial placement of the RSUs, which may lead to some overlapped

areas as well as some uncovered areas.

In Reference (Rizk et al., 2014), the RSU placement problem is considered as a

maximum coverage problem in urban and rural areas. In this work, any site of interest

(SoI) can be a candidate location for RSU placement, including intersections, road

curves, or any other points that can benefit from installing RSUs. It assumes that the

SoIs are initially prioritized and sorted according to their importance and operator

preferences. Then, an overlap-based greedy algorithm is introduced, which iteratively

selects the next SoI and adds it to the final list if its overlapping ratio with the RSUs

already in the final list does not exceed a threshold. This process continues until it

reaches the operator stopping criteria. Reference (Makkawi et al., 2015) continues

the previous work, by introducing a cumulative weight-based method (CWM) for

placing RSUs in urban, rural and mountain areas. Again, it is assumed that a sorted

list of SoIs based on operator preferences is given to the RSU placement algorithm.

CWM starts by calculating the cumulative weight of SoIs, which is a summation of

the weights of the SoI itself and its neighbors. Any two SoIs, whose distance is less
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than two times the RSU coverage radius, are considered neighbors. SoIs are sorted

based on their initial weights in descending order. SoIs with the same initial weight

are sorted based on their cumulative weights in descending order. Finally, redundant

SoIs are removed. For any two SoIs that have a distance of less than the RSU coverage

radius, the SoI that comes later in the sorted list is removed. This process continues

until no such removals are possible.

Reference (Cheng et al., 2015) introduces geometry-based sparse coverage pro-

tocols for deploying RSUs over an urban area. By providing a new definition for

coverage value, the authors aim to capture the spatiotemporal features of the vehic-

ular traffic, i.e., vehicular density, traffic flow and vehicle speed, as a measurement

of the importance of covering each urban cell. Then, a revised version of a classical

density-based algorithm groups some of the fixed-sized urban cells into clusters, called

hot-spots, and removes the rest of the cells. Each hotspot contains the cells that have

to be covered. After defining the RSU candidate locations based on the shape and

other features of the road network, two formulations of the coverage problem are pro-

posed. In the first formulation, the weighted mean coverage is maximized subject to

a budget constraint, while in the second, the deployment cost is minimized subject to

a quality constraint. These formulations are then modeled as the budgeted maximum

coverage problem and the set cover problem, respectively. Since these problems are

symmetrical, they are solved by the same greedy algorithm proposed by the authors.

The authors also use a genetic algorithm to solve the RSU placement problem.

For more of these approaches, see References (Campolo et al., 2011; Barrachina

et al., 2013; Cavalcante et al., 2012; Xie et al., 2013; Jiang et al., 2014; Brahim et al.,

2014; Eftekhari et al., 2015).
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2.5.4 Minimizing the Number of Deployed RSUs

Minimizing the number of deployed RSUs subject to performance requirements such

as network connectivity and road coverage has been studied in the literature. This is

typically done under the assumption that all RSUs are identical, with no attention

to each RSU configuration.

Highway Scenario

Reference (Abdrabou and Zhuang, 2011) considers the RSU placement problem on

a one-dimensional road network. By maximizing the separation distance between

adjacent RSUs on a low-density VANET subject to a maximum vehicle-to-RSU data

packet delivery delay with a predetermined delay violation probability, the minimum

number of RSUs required to cover the road segment can be estimated. The authors

restrict their focus to highways or rural areas with low vehicle density and high speed,

where vehicle-to-vehicle and vehicle-to-RSU connectivity are disrupted. The proposed

approach is not applicable to cases where no packet relaying is possible, or a multi-

hop path from a vehicle to an RSU can be found with a high probability. Vehicles are

distributed as Poisson points over the road segment (spatial Poisson distribution),

and they travel with two possible speeds between which they alternate. All RSUs

have one channel, which allows only one direct communication between each RSU

and one of the vehicles inside its coverage area.

Reference (Abdrabou et al., 2013) looks at a different case of the work presented

in (Abdrabou and Zhuang, 2011). Vehicles store and carry their packets until they

meet an RSU, but, vehicles moving in the opposite direction will receive copies of

those packets and will carry them to the nearest RSU, if they encounter one before
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they leave the road. For simplicity, only the vehicles moving in one of the directions

are assumed to be data packet generators, while the vehicles moving in the opposite

direction are considered packet carriers. All vehicles moving in the same direction are

assumed to have the same constant speed, and the vehicles moving in the opposite

direction have a different constant speed. The main objective is to find the maximum

separation distance between adjacent RSUs such that a certain required vehicle-to-

RSU packet delivery delay is probabilistically satisfied for the first arrived copies of

the majority of vehicles packets, and only a small fraction of packets are delivered

late or lost.

Reference (Liya et al., 2013) designs a randomized algorithm to find an approx-

imate distance between two consecutive RSUs in a highway that can guarantee the

message delivery from any accident site with a given probability and within a certain

time. Then, by assuming an equal distance deployment of RSUs, the minimum num-

ber of RSUs can be obtained by maximizing the distance between RSUs subject to a

given delivery probability. Vehicles are assumed to be traveling on a road consisting

of multiple lanes with speeds within a certain range. Vehicles can access an RSU di-

rectly or through multi-hop relaying. Vehicle density is also assumed to be constant

along the road segment. The randomized algorithm initially starts with two times

the transmission range of an RSU, and iteratively increases the distance between two

RSUs until the connectivity requirements of the system cannot be satisfied.

Reference (Liu et al., 2016) analyzes the delay of transmitting alert messages along

a highway when the clusters of vehicles are disconnected, and the messages should

be relayed by other vehicles until they meet an RSU. The relationship between sys-

tem parameters such as traffic flow density, transmission range, and delay, is derived.
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Then, for any given delay bound and by assuming that RSUs can be uniformly dis-

tributed along the highway, the optimal number of RSUs is calculated. Vehicles

are grouped into clusters, where cluster members can communicate with each other

within two hops. Clusters can communicate with each other through different or

common gateways, which are cluster nodes located at the end sides of their clusters,

or directly through cluster heads, which are cluster nodes reachable by their cluster

members within one hop. If adjacent clusters cannot communicate with each other,

the messages should be carried by vehicles until they reach the end of the highway or

meet an RSU.

Reference (Patra et al., 2014) proposes an analytic hierarchy process (AHP) to

solve the RSU placement problem on a highway-like road, and uses expected RSU-

to-RSU delay as a performance metric to compare the performance of AHP with

uniform and hotspot placement strategies. The goal is to put RSUs as far away from

each other as possible, to minimize the number of deployed RSUs, and consequently,

to minimize the total cost of deployment. In this approach, a highway-like road

with multiple lanes and intersections is divided into equal-length segments, each of

which is characterized by its vehicle density, vehicle speed, and event generation rate.

The vehicle population follows a Pareto distribution for various densities, and vehicle

speeds follow a truncated exponential distribution. The size of the road segments is

twice the transmission radius of RSUs and vehicles, and at most one RSU can be

placed at the center of each road segment. A message generated by an RSU will

be delivered to the next RSU using the carry-and-forward model with the help of

vehicles moving in that direction as relay stations. AHP decomposes the problem

into a hierarchy of goal, criteria, and alternatives. Then, it chooses the appropriate
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segment for RSU deployment, according to system parameters such as vehicle density,

vehicle speed, and event generation rate, and uses alternative segments for evaluation.

AHP iteratively selects the next best segment to place RSU until the expected RSU-

to-RSU delay is achieved.

To achieve the minimum number of deployed RSUs in a sparse highway, Reference

(Wang et al., 2016) also tries to maximize the distance between RSUs. The authors

develop a mathematical model to describe the relationship between the average deliv-

ery delay of road condition messages that are randomly generated on a bidirectional

road segment and the deployment distance between two neighboring RSUs. This

model also takes into account the vehicle speed, the vehicle density, and the likeli-

hood of an incident. A highway with two lanes in opposite directions is considered,

where traffic load and connectivity is low. It is assumed that the vehicles moving in

the same direction have an inter-vehicle spacing with exponential distribution and a

random speed with truncated normal distribution. The information about the ran-

dom incident that occurs between RSUs, will be collected by the first vehicle arriving

at the incident location. The collected information will be delivered to both RSUs

directly or indirectly via multi-hop relaying. The average information delivery delay

is defined as the average time between the incident and receiving the incident infor-

mation by both RSUs. The RSUs are considered disconnected; hence, the calculation

is based on the last RSU that receives the information. It is argued that in a sparse

scenario, the delay of the direct transmission and the delay caused by contention at

the MAC layer are much smaller than the delay caused by carry-and-forward of the

message, and are simply ignored.
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Urban Scenario

In an urban scenario, uniform RSU placement is not always possible. Therefore, their

locations are selected from intersections and streets. Nevertheless, the goal is still to

install the minimum number of RSUs at a subset of these candidate locations.

Reference (Liu et al., 2014) considers the RSU placement problem in an urban

area with the objective of finding the minimum number of RSUs to deploy so that the

alert messages would be propagated to RSUs within a delay bound. An alert message

can be delivered to an RSU through direct communication or through a carry-and-

forward model. For simplicity, it is assumed that each road segment has a constant

vehicle density for the entire segment and that the forwarding period is constant for

all the forwarded messages. Therefore, if the vehicle density is not enough, the alert

message cannot be forwarded, and it will be carried until the vehicle reaches an RSU.

Primarily, intersections are considered to be candidate locations for deploying RSUs,

although any long road whose transmission delay is larger than the delay bound, is

segmented and its cut-off points are considered as intersections as well. If an alert

message from any point of a road can be successfully delivered to an RSU within the

given delay bound, the road is considered to be covered by that RSU. The goal is to

cover all the roads with a minimum number of RSUs, and is formulated as a classic

set cover problem. The problem is solved by integer linear programming (ILP) and a

heuristic greedy algorithm.

Reference (Chi et al., 2013b) introduces an intersection-priority-based RSU place-

ment methodology to gather the traffic data from intersections. The authors seek the

optimal number and positions of RSUs so that all intersections are covered, and RSUs

are connected to each other, while the number of RSUs is minimized. An intersection
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is considered covered by an RSU if it is within the transmission range of that RSU.

The intersection priority concept is introduced as a measure of intersection impor-

tance in the process of deploying RSUs. It is a weighted summation of traffic factors

such as vehicle density, intersection popularity, etc. Three heuristic algorithms are

then proposed: greedy, dynamic, and hybrid. Initially, all intersections are considered

as candidate locations for RSU deployment. The greedy algorithm iteratively places

an RSU at the intersection with the highest priority and removes all intersections

within the transmission range of the RSU from the list of RSU candidate locations

until all intersections are covered. In the dynamic approach, however, RSUs are

evenly distributed so that the overlapped area will be minimized. Finally, the hybrid

approach combines the two approaches.

Reference (Chi et al., 2013a) provides an RSU placement algorithm based on

the concept of intersection-connectivity between intersections. This is defined for

two intersections based on the number of vehicles passing through both, i.e., by the

probability that the traffic information from one intersection can be carried-and-

forwarded to the other intersection by those vehicles. The connectivity between each

intersection pair is approximated by the average traffic volume on the path between

the two intersections. If there are more than one path, the path with the highest

connectivity is considered. The proposed RSU placement algorithm starts with the

hybrid algorithm introduced in (Chi et al., 2013b) to find the initial RSU candidate

locations according to the intersection priorities, where all intersections are covered,

and the overlapped coverage is minimized. Then, the RSU connectivity network is

constructed. In this network, two RSUs are connected either directly, if they are

within transmission range, or indirectly, through the intersection-connectivity of the
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intersections where RSUs are installed. Then, iteratively, the RSU with the minimal

effect on the RSU connectivity and coverage will be removed, if the remaining RSU

connectivity and coverage is still bigger than a given threshold.

RSUs play a major role in providing services to vehicles while preserving their

privacy. Reference (Wang and Chang, 2011) considers the RSU placement problem

with the objective of minimizing the number of deployed RSUs in the city, so that

the issued certificates can be updated before they expire on all driving routes. The

driving route between an origin and a destination is determined by the navigation

system based on the status of each road. It is assumed that the driving time on each

route is known in advance. It is also assumed that the RSUs can only be deployed

at intersections. Hence, the driving time of each road should be less than or equal to

the length of the valid certificate interval. Three heuristic algorithms are introduced.

The most driving routes first method sorts the intersections in descending order of the

number of driving routes passing through the intersections, and places RSUs at the

intersections one by one, until the certificate can be updated in time on all driving

routes. The most satisfied intersection pairs first method iteratively places the next

RSU at the intersection with the maximum number of new origin-destination pairs

that can benefit from the newly deployed RSU in terms of successful certificate update,

until the certificates on all driving routes can be updated successfully. The critical

intersections first method places RSUs at the critical intersections first, and then,

continues with the most satisfied intersection pairs first method, until the certificate

on all driving routes can be updated successfully. An intersection that connects two

consecutive roads with the total driving time of more than the valid certificate interval

is considered critical.
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Reference (Kumrai et al., 2014) formulates the RSU placement problem as a two-

objective optimization problem that minimizes both the number of deployed RSUs

and the fraction of areas with no coverage. A genetic-based heuristic algorithm is

then introduced that seeks the Pareto-optimal RSU positions.

Considering RSUs as a means of providing high-speed Internet access to vehicles,

Reference (Liu et al., 2013) proposes an RSU deployment strategy for file-downloading

that guarantees the file downloading success ratio and delay requirements with the

lowest RSU deployment cost. Assuming the randomness of RSU deployment and road

traffic conditions, a vehicle state, i.e., being inside the coverage area of an RSU or non-

coverage area, is modeled as a time continuous homogeneous two-state Markov chain.

Then, the relationship between the density of deployed RSUs and the probability

of successfully downloading a file within a satisfying delay is derived. The RSU

deployment problem maximizes the distance between deployed RSUs, subject to a

satisfactory file downloading success ratio; its solution gives a mean non-coverage

length for different values of mean coverage length. To deploy RSUs in an urban area,

the urban road network is first modeled as a weighted graph, where intersections and

streets are nodes and edges, respectively. The weight of an edge is the average passing

time of the corresponding street. Then, a heuristic algorithm based on the depth-first

traversal of the graph is designed, which traverses its edges and alternatively generates

random coverage and non-coverage lengths with the mean values calculated from the

solution of the RSU deployment problem.

To disseminate sensitive information, such as safety information, Reference (Yan

et al., 2014) aims at finding the intersections to install access points so that all the

vehicles driving in the area will pass by at least one of the selected intersections. The
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authors introduce the topology-aware intersections selection (TIS) problem, whose

objective is to select a minimum number of intersections so that the selected inter-

sections intersect every possible path taken by drivers. Each eligible path includes at

least two intersections. If the geographic area can be presented as a planar graph, the

solution to the TIS problem is proved to be the solution to the vertex cover problem.

A class of heuristics is then proposed. They transform a planar graph into a bipar-

tite graph, solves the vertex cover problem by converting it to a maximum matching

problem, and obtains the exact solution by applying an existing algorithm, such as

Hopcroft-Karp. Then, the graph is converted back to the original planar graph, and

the solution is adjusted accordingly. RSUs will be deployed at the selected intersec-

tions.

Reference (Xiong et al., 2013) proposes an RSU deployment strategy in which the

number of deployed RSUs is minimized while guaranteeing a predetermined vehicle-

to-RSU contact probability. The contact probability is defined as the probability of a

vehicle entering the communication range of at least one RSU within a given traveled

distance after entering the region. The authors argue that there is a time-stable

statistical mobility pattern in actual vehicular traces. By dividing the area into a

set of non-overlapped uniform zones, the transition probabilities of vehicles between

zones within time units of 20 minutes are estimated from an actual trace. A mobility

graph is then formed with the zones as the nodes and the transition probabilities

as the weights of the edges between neighboring zones. The mobility graph is then

simplified by removing the useless vertices and the edges with very small transition

probabilities. For simplicity, it is assumed that each zone can be covered by the

transmission range of an RSU. Then, the RSU placement problem is transformed
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into the minimum vertex subset selection problem, and a heuristic greedy algorithm,

called RoadGate, is introduced. RoadGate greedily searches for the vertex that can

maximize the number of vertices that can reach this vertex with a minimum predefined

probability. At each iteration, the vertices that benefit from the selected vertex will

be removed, and the next vertex will be selected from the remaining vertices.

Reference (Hu et al., 2016) considers the RSU rental problem for data dissemi-

nation to vehicles. In the RSU rental problem, RSUs are already deployed, but the

provider wants to rent the minimum number of the RSUs to cover all of the vehi-

cles, while the probability of each vehicle successfully receiving data is no less than a

threshold. A graph model is first formed to describe the moving pattern of vehicles.

Vehicles and deployed RSUs are vertices of this graph. Each vehicle is only connected

to the RSUs that it passes by, and the weights of these edges are equal to the probabil-

ity of receiving data from these RSUs successfully. It is assumed that the probability

values can be derived from the history records. A greedy heuristic algorithm is then

proposed, which iteratively selects the RSU that has the maximum effect on both the

coverage of more new vehicles and the probability increase of receiving data success-

fully, until all vehicles are covered with a minimum required probability for receiving

data successfully.

2.5.5 RSU Placement and RSU Configuration

Similar to cellular network design, the RSU deployment problem is a heterogeneous

network design. That is, RSUs can have different settings and configurations, such

as coverage range, power level, power source, antenna type, channel capacity, etc.

These have to be determined during the planning phase of the network. Different
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frameworks and approaches have been introduced in the literature to tackle these

issues; from single to multiple configurations for each candidate location.

To collect/disseminate information using V2I communication, Reference (Lin,

2012) studies the RSU placement problem with the objective of minimizing the de-

ployment cost, subject to covering all intersections. The problem is formulated as a

binary integer programming problem and is solved by a branch-and-bound algorithm.

All intersections are considered as RSU candidate locations. If an intersection is not

suitable for placing an RSU, a large installation cost is used in the objective function.

Each candidate location is assumed to have a different deployment cost based on the

location and the backhaul connection (i.e., one configuration for each location). All

intersections within the transmission range of an RSU are considered covered, and

each intersection should be covered by at least one RSU.

Reference (Liang et al., 2012) formulates the problem of RSU placement and

selecting their configurations, i.e., power level and antenna type, as an integer linear

program (ILP). The remaining configuration settings, such as backhaul connectivity

type can be optimized for each RSU individually, based on available resources and the

overall cost. The total deployment cost is minimized subject to covering a minimum

desired percentage of streets with limited multi-hop packet relaying. Setting the

maximum multi-hop relaying to zero results in a purely I2V network. For simplicity,

all intersections are assumed to be RSU candidate locations. Long streets are divided

into short segments, whose end points are also considered RSU candidate locations.

Multiple temporal traffic realizations are considered that can represent different times

of the day or week and have different coverage requirements. A set of intersections

with high accident rate is defined with a 100% coverage requirement to incorporate
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spatial traffic conditions.

Reference (Li et al., 2015) considers the RSU placement problem where emergency

messages are disseminated to all vehicles on the road through RSUs if vehicles are

within RSU transmission range, or by a carry-and-forward method otherwise. The

transmission time of a message is considered negligible. A set of candidate locations

is given with two types of RSUs, at most one of which can be installed at each

location. The first type is connected to an information center via wire with a larger

communication range, but with a higher cost. The second type is connected to other

RSUs through wireless communication as an extension of the first type and only

disseminates the messages it receives from other RSUs; hence, it should be placed

within the transmission range of at least another RSU. For a given delay bound, the

objective is to find an optimal placement of the RSUs such that the total deployment

cost is minimized and the emergency message can be received by all vehicles within

the delay bound. First, a greedy algorithm is introduced that iteratively selects an

RSU with the minimum per newly covered road segment cost. If the new RSU is

outside the transmission range of already placed RSUs, its type is limited to the first

type. A two-stage algorithm is then proposed, which places the first type of RSU

during the first stage, by employing the greedy algorithm. When the percentage of

the covered roads reaches a threshold value, the second stage of the algorithm starts

by placing the second type of RSU until all road segments are covered.

Reference (Song et al., 2015) proposes a hierarchical RSU network architecture

composed of three layers/types of RSU with different coverage radii. The problem is

formulated as an integer linear program (ILP), which minimizes the total deployment

cost subject to satisfying the coverage and minimum data rate requirements, and
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takes radiation constraints into consideration. A set of candidate locations, where

uninterrupted power can be provided, is given. A set of test points is defined to

measure the achievable data rate and radiation intensity. Vehicles are assumed to

be uniformly distributed with uniform traffic demand. Each test point is assigned to

exactly one RSU. A ray-tracing technique is adopted for RSU coverage evaluation,

and since the focus is on the long-term planning and design, small-scale fading is not

considered. In addition to solving the ILP directly, a heuristic algorithm is also intro-

duced, which starts by sorting the RSU types in descending order of their coverage.

Using the second type of RSU, test points will be covered, and other types are only

used to improve the coverage.

To overcome the shortcomings of VANETs, Reference (Mehar et al., 2015) pro-

poses an RSU placement strategy to improve the network connectivity for delay-

sensitive applications. The goal is to select the best RSU locations so that the com-

bination of the total RSU deployment cost and the total message delivery delay to

the nearest RSU is minimized, and the message delivery delay from any road segment

to the closest RSU is less than a given threshold. Different candidate locations can

have different RSU installation costs. A heuristic algorithm is introduced to solve the

optimization problem. Traffic information, such as density and speed, is used to find

the RSU candidate locations by calculating the connectivity probability. All roads

are divided into equal-length segments with the length of twice the RSU transmission

range. The midpoints of the road segments with low connectivity probability are

considered as candidate locations, because, in road segments with a high probability

of connectivity, V2V communication can be used to exchange information. Dijkstra’s

algorithm is used to find the delivery delay from any point on a road segment to the
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closest RSU, and a genetic algorithm is used to find the final deployment positions.

The vehicle density changes over time and from one road segment to another.

2.5.6 RSU Placement and OPEX

Deploying RSUs is a costly process, but, costs are not limited to CAPEX only. The

operating cost of RSUs is high because of their continuous activity, providing services

(Tao et al., 2014). Some previous work deals with this issue.

Reference (Zhang et al., 2015) studies the energy-efficient RSU placement problem

on a winding road by minimizing the RSU transmission power, so that all vehicles

on the road are covered. The road is approximated with a predefined number of

continuous ellipses to represent the possible locations of vehicles, and a given number

of RSUs with the same transmission power should be deployed to cover the road.

The problem is formulated as a non-convex problem, which is then converted to solv-

ing a convex problem using linear approximation, an S-procedure, and semi-definite

relaxation.

Reference (Vageesh et al., 2014) considers the energy-efficient RSU placement

strategy in which RSUs will be scheduled into a sleep mode for a fixed interval to

save energy. The energy consumption of the RSUs is only limited to the uplink

direction, i.e., the energy consumed to receive data packets, a common case for data

collection. Vehicles are assumed to be distributed according to a Poisson distribution

along a one-dimensional two-way road. Also, vehicles arrive at the road according to

a Poisson process, and the average vehicle density is constant. A packet generated

by a vehicle can be communicated to an RSU either directly or by multi-hop relaying

with a limited hop count due to a delay bound. A set of candidate locations is
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considered, where the distance between every two adjacent locations is at least twice

the transmission range of an RSU. All RSUs are powered by the grid and solar energy

sources, although the former is only used when there is not enough battery energy

available. According to historical traffic data and its variation over time, a static

schedule is computed to put RSUs into sleep mode. Time is divided into equal-

length time slots each of which captures a particular road traffic condition. For

every time slot, a subset of candidate locations for RSU deployment is determined,

so that a minimum required packet delivery ratio can be achieved. Any candidate

location where an RSU is required for at least one time-slot is finally selected for

deployment. The problem is formulated as a multi-objective optimization problem,

which minimizes (i) the number of deployed RSUs, (ii) the OPEX incurred by the

energy consumption of RSUs, and (iii) the fraction of grid energy consumed to the

total energy consumption of the RSUs. Minimizing the OPEX is considered a primary

objective, and a heuristic algorithm is used to solve the optimization problem for every

time slot. Solving the optimization problem for all time slots gives the locations to

deploy RSUs and their sleep schedules.
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Chapter 3

RSU Placement and Configuration

in VANET

3.1 Introduction

Vehicular ad hoc network (VANET) performance is clearly dependent on the RSU

deployment strategy and must take into account the services that will eventually be

supported. Most first generation VANETs will primarily focus on enabling vehicu-

lar safety applications; however, in time, they will also support ITS-related services

as well as Internet access for rich-media streaming applications. The bandwidth re-

quirements for collecting and disseminating safety messages is very small compared

to that available, although this type of application can have very stringent delay

response requirements. On the other hand, many non-safety applications may be

delay tolerant (e.g., on the order of one or two minutes), but, they may require much

higher bandwidth for relatively longer durations (Malandrino et al., 2014). It is clear

that a network that has been tailored to accommodate one type of application may
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obviously perform poorly when subjected to a range of different services. For this

reason, considering the diversity of applications and their performance requirements

is of utmost importance in the network planning phase.

Planning any infrastructure requires an upfront investment, i.e., capital expendi-

ture (CAPEX) costs. Afterwards, the designed network is subject to various main-

tenance and operating costs, i.e., the operational expenditure (OPEX) components.

Obviously, deploying more RSUs leads to higher CAPEX costs, however, it is not

always true that a deployment with a higher number of RSUs will lead to increased

OPEX costs. In fact, there can be a trade-off between these two cost components.

For example, decreasing the number of deployed RSUs and then increasing their cov-

erage range may reduce CAPEX costs, but, this may clearly increase longer-term

OPEX costs (Zhang et al., 2015). The OPEX costs of deployed RSUs can clearly

be very high, since they will constantly accumulate while services are being provided

(Tao et al., 2014). Conventional RSU deployment strategies typically assume that

CAPEX is the only prohibitive cost component in RSU deployment. For this reason,

minimizing the number of RSUs is usually the approach taken.

In this chapter, we consider the problem of RSU placement that minimizes the

sum of capital expenditure and operating expenditure costs. Our methodology con-

siders two phases of the RSU facility location problem. The first is the design of the

network itself, which is an offline problem, and occurs before any RSUs are deployed.

In the offline design, we take historical vehicular traffic traces and the RSU candidate

location information as inputs. The sample functions include the associated vehicular

traffic communication requests, which may be delay tolerant, i.e., each having an as-

sociated time deadline. The road description input also identifies candidate locations
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where RSUs can be placed, and each candidate location has an associated installation

(CAPEX) cost. The output of the offline phase is an RSU network design, i.e., the set

of RSU placements to be made and their (fixed) configurations. This is done before

any RSU is ever deployed.

Once the offline RSU network design is completed, the RSUs are installed and

subjected to online vehicular traffic flow job requests. In this case, the vehicular

traffic demands must be processed by the system in a causal fashion, as would be

the case in a deployed network. Once an RSU is deployed and in operation, it incurs

long-term operating (OPEX) costs due to its energy use. The objective of the offline

design is to choose a subset of the candidate locations such that the sum of CAPEX

and OPEX costs are minimized such that vehicular traffic requirements are met.

The main contributions of this work are summarized below.

1. To the best of our knowledge, this is the first work that focuses on minimizing

the combined capital and operating expenditure costs. The total RSU cost

includes both that of RSU installation, i.e., CAPEX, and long-term energy

operating, i.e., OPEX, components. This combination affects both the initial

placement costs of the RSUs, and their associated long-term operating costs.

2. An integer linear program (ILP) is formulated that computes a minimum total

cost RSU placement. The ILP has a prohibitive solution time, even for moderate

traffic size instances that make it impractical for real network designs.

3. A novel RSU placement algorithm is introduced, referred to as Minimum Cost

Route Clustering (MCRC). MCRC is obtained by solving the LP relaxation

of the ILP, and using a rounding procedure to obtain RSU placements based
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on the approximation algorithm of (Levi et al., 2012) for Capacitated Facility

Location problems. MCRC is efficient and can be used for large scale problems.

4. Results are presented that show that a conventional RSU placement that min-

imizes the total number of deployed RSUs, for example, may result in signifi-

cantly higher operating costs in the long-term. It is therefore natural to study

the placement of RSUs that minimize the combined CAPEX and OPEX costs.

A variety of performance results are presented that show that the MCRC Algo-

rithm outperforms RSU placements that directly solve the ILP, but minimize

only CAPEX expenditures. The results demonstrate the inherent inefficiency

introduced by considering only CAPEX costs.

The remainder of the chapter is organized as follows. Section 3.2 briefly overviews

the related work, which includes RSU placement strategies that focus on minimizing

the cost of deployed RSUs. In Section 3.3, a detailed description of our system model

is presented. An integer linear program (ILP) formulation of the RSU placement

and configuration problem is introduced in Section 3.4. Then, in Section 3.5, an LP-

based heuristic algorithm referred to as Minimum Cost Route Clustering (MCRC) is

introduced. Performance results are presented and discussed in Section 3.6. Finally,

this chapter is concluded in Section 3.7.

3.2 Related Work

Several solutions have been introduced in the literature for RSU deployment, which

can be categorized into two groups. The first category is budgeted-constrained op-

timization problem in which one or two features of the network are maximized or
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minimized, e.g., throughput (Wu et al., 2012), the number of vehicles that get in con-

tact with at least one vehicle (Trullols et al., 2010; Silva et al., 2015, 2016), coverage

(Patil and Gokhale, 2013; Rizk et al., 2014; Makkawi et al., 2015; Cheng et al., 2015),

delay (Aslam and Zou, 2011; Aslam et al., 2012). In this category, either the total

number of RSUs that is allowed to be deployed or the total available budget for RSU

deployment is limited to what authorities determined. Of course, the former assumes

that all RSUs are identical.

In the second category, the RSU deployment problem is formulated as a quality-

constrained optimization problem in which a minimum level of quality is determined

by the network operator and the total cost of deployment is minimized. This approach

seems to be more appropriate since the network operator can estimate the deployment

cost for a satisfactory level of service. In this category, also, the objective function

is either the minimization of the number of deployed RSUs (e.g., see References

(Abdrabou and Zhuang, 2011; Abdrabou et al., 2013; Liya et al., 2013; Liu et al.,

2016; Patra et al., 2014; Wang et al., 2016) for highway scenario and References (Liu

et al., 2014; Chi et al., 2013b,a; Wang and Chang, 2011; Kumrai et al., 2014; Liu

et al., 2013; Yan et al., 2014; Xiong et al., 2013; Hu et al., 2016) for urban scenario)

or the minimization of the total CAPEX (e.g., see References (Lin, 2012; Liang et al.,

2012; Li et al., 2015; Song et al., 2015; Mehar et al., 2015)).

Assuming identical RSUs is not necessarily realistic since not all locations have

the same characteristics such as tempo-spatial traffic pattern, grid power availability,

and backhaul connection options. Therefore, deploying identical RSUs may not be

the right solution for general scenarios. Also, considering RSU configuration with-

out paying attention to OPEX may lead to a placement with large operating costs.
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Reference (Zhang et al., 2015), for example, uses transmission power, which controls

RSU radio coverage range, to represent OPEX costs. The objective is to minimize

the transmission power while achieving full road coverage with minimum OPEX. In

this study, all RSUs are considered identical and the proposed algorithm takes the

number of RSUs as an input parameter. The problem is therefore solved for different

numbers of RSUs to obtain the value that leads to minimum OPEX cost. Reference

(Vageesh et al., 2014), also assumes that RSUs are identical. A multi-objective op-

timization is used to minimize both the number of RSUs and the OPEX. However,

since it focuses only on vehicle data collection, the energy consumption of each RSU

happens during data reception, standby, and awakening periods. By breaking down

the problem into a set of independent time slots, the minimum number of RSUs that

satisfies the packet delivery ratio is determined. The union of the solutions for all

time slots determines the RSU deployment. Each RSU goes to sleep during the time

slots when it was not part of the solution. All RSUs use their battery energy, charged

by a solar panel, and only use grid power if there is not enough battery power to

operate.

The current approaches proposed in the literature either focus on RSU config-

uration with no attention to OPEX or focus on OPEX with no attention to RSU

configuration. To the best of our knowledge, our work is the first that proposes a

framework to jointly select RSU configurations and their deployment locations, while

minimizing the sum of CAPEX and OPEX costs. This is done by incorporating

energy aware scheduling into the design process.
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3.3 System Model

The problem that is addressed is that of RSU facility placement. Our results, there-

fore, involve two phases. The first is the offline design phase, during which RSU

placements are made that determine the designed network of RSUs. The second is

an online performance assessment of the designed network that quantifies the quality

of the offline design. These are discussed in more detail, as follows.

• Offline Design: In the offline design, historical vehicular traffic traces and RSU

candidate location information are used as inputs. Since this process is offline,

the traffic traces used are therefore completely known to the offline design algo-

rithm, and the packet scheduling that occurs can also have complete knowledge

of the offline design traffic traces. The output of this process is a network de-

sign, i.e., a set of RSU placements and their chosen configurations, taken from

the candidate location inputs.

• Online Performance: Once the offline design is completed, the RSUs are in-

stalled and are subjected to vehicular traffic data experiments. In this phase,

vehicular traffic demands must be processed by the system in a causal fashion,

as would be the case in a deployed network. These experiments are therefore

performed using traffic input traces that are different from those used in the

offline design phase. In this case however, the inputs are provided to the system

in real time and packet transmissions must be scheduled in a causal fashion,

based solely on past and current inputs.

The overall objective of the design is to create offline RSU placements and con-

figurations so that the network can properly schedule online vehicular demands, and
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such that the total of the RSU opening and service costs, discussed below, are mini-

mized. In online operation, vehicles are assumed to travel along a given road network

and generate requests for service that are communicated on an uplink channel to the

next RSU that is encountered. The responses to these requests are then scheduled

and served by one or more RSUs over time slotted downlink channels. Each request

has an associated time deadline.

When an RSU is installed in the offline design phase, we pay an opening cost, and

to serve a vehicle by an opened RSU in the online phase, we pay a service cost. These

are defined as follows:

Opening cost: The opening cost of an RSU is determined by its location and its

configuration settings (such as its backhaul connection type, power source, channel

capacity, coverage range, antenna type, etc.). A location-based RSU cost analysis was

done in (J. A. Volpe National Transportation Systems Center, 2008). Our model can

accommodate non-homogeneous RSUs that are operated with different costs (e.g.,

operated by the wired electrical power grid or by solar power (J. A. Volpe National

Transportation Systems Center, 2008)), in addition to limited but different coverage

range. This limitation on the maximum coverage range is sometimes used to control

radio interference levels (U.S. Federal Communications Commission, 2004; Al-Sultan

et al., 2014; J. A. Volpe National Transportation Systems Center, 2008).

Service cost: It is assumed that the RSUs use power control when communi-

cating with the vehicles, i.e., they adapt their transmit power in order to maintain a

constant bit rate (Hammad et al., 2013; Khezrian et al., 2015). This is in contrast

to the use of rate adaptation, but even in this latter case, an RSU will experience

different energy expenditures on links with different path loss. The lower bit rates on
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poorer links will result in longer packet transmit times (Hammad et al., 2015). The

energy cost of this communication thus depends on the radio link propagation condi-

tions. The total operating cost depends on the planning time horizon, i.e., the time

period over which the RSU cost is amortized, which may be as long as one or more

decades. We assume that the vehicle traffic load input trace is statistically represen-

tative of the traffic flow and we can normalize the operating cost to the long-term

planning time horizon.

Once an RSU has been deployed, it remains in continuous operation serving vehic-

ular requests. Each vehicle request has a release date, i.e., the time when the request

is generated, and a due date, i.e., the deadline of the associated RSU response. A re-

quest that is un-served or is served beyond its due date is counted as a dropped request.

We assume that a vehicle generating a request, communicates its size, release, and

due dates to the first RSU it encounters, and, therefore, the system is aware of these

parameters for scheduling purposes. This formulation is very general in that it can

be used to model a wide range and mix of application quality-of-service requirements.

For example, if traffic with real-time or time-critical constraints is to be considered,

the dropping rate and job deadlines can be adjusted accordingly. In a similar way,

delay tolerant traffic can be modelled using appropriate settings. The results given

in Section 3.6 take this latter approach. The job deadline and loss parameters may

also determine the level of network radio coverage permitted in the RSU placement.

For example, tight delay constraints will tend to dictate that contiguous coverage is

required throughout the network. Conversely, in data dissemination types of appli-

cations, there may be considerable delay tolerance, which will permit partial radio

coverage.
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It is assumed that the route of a vehicle is known, and that each vehicle com-

municates to the system (through the first RSU encountered) its current location,

final destination, and intended route (Zou et al., 2011; Ali et al., 2014b). This is

a reasonable assumption, since drivers tend to follow their habits and traffic infor-

mation in planning their daily route to work, home or other destinations (Cascetta,

2009). This assumption is also consistent with the driver-less car functionality that is

beginning to appear. During our experiments, we will assume that the vehicle traffic

and request flows are stable, i.e., the traffic flow and requests are characterized by a

constant arrival rate (that would typically be chosen to accommodate worst case traf-

fic conditions), which can be seen as the arrival rate at traffic equilibrium (Cascetta,

2009).

3.4 RSU Placement and Configuration Problem

The system model is more formally defined as follows. Let N = {1, . . . , N} be the set

of RSU candidate locations, and V = {1, . . . , V } be the set of vehicles serviced by the

installed RSUs, each with a set of requests Rv, and |Rv| = Rv. Let R = ∪v∈VRv =

{1, . . . , R} be the set of all requests. Request r has an associated download size in

time slots, denoted by `r. With a slight abuse of notation, we will refer to an RSU

installed at location n as ‘RSU n’. We define decision variables Yn, so that Yn = 1 if

RSU n is installed, and Yn = 0 otherwise. The cost of opening an RSU at location n

is fn. Let T = {1, . . . , T} be the set of time slots; within a time slot, RSU n has the

capacity to transmit to at most un vehicles, and a vehicle can communicate with at

most one RSU. Note that fn and un depend only on the location n, i.e., RSUs installed

in different locations are allowed to be of different types with different opening costs.
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We define the decision variables, Xntr, such that Xntr = 1 if RSU n serves request

r of vehicle v during time slot t, and Xntr = 0 otherwise. The energy cost for servicing

this request is denoted by cntr. We define Pn,v(t) as the communication cost between

RSU n and vehicle v during time slot t. Pn,v(t) depends on the RSU-vehicle distance

(and other propagation effects) in time slot t. This is done by first computing the

transmit power needed to overcome the path loss from RSU n to vehicle v at time t,

such that a target SNR is achieved that supports the chosen data rate. This power is

added to the quiescent radio power consumption, and the total energy is computed

by multiplying by the time slot duration (Hammad et al., 2013). When vehicle v is

within the coverage area of RSU n during time-slot t, cntr = Pn,v(t) if the request r

is serviced after its release date and before its deadline, and cntr =∞ otherwise.

In order to enforce the servicing of all requests, if possible, we define the non-

serviced portion of request r by variable Zr, and give it a large cost, Dr. That is, if

Zr > 0, then request r is dropped and incurs a very large cost DrZr. As a result, in the

optimization defined below, the scheduler will never drop a request, unless there is a

capacity constraint violation. Since this part of the objective function is an artifice

to ensure service, it will not be included in the total cost we present in the results

obtained.

Given the above definitions and for a given input traffic design trace, we formulate

the optimum cost as an integer linear program. This provides a lower bound on the

total cost and is used in Section 3.5 to obtain a practical RSU placement algorithm

using a novel rounding procedure. The optimization is given as follows and discussed

below.
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min
X,Y,Z

∑
n∈N

fnYn +
∑
n∈N

∑
t∈T

∑
r∈R

cntrXntr +
∑
r∈R

DrZr (ILP)

subject to:

Zr +
∑
n∈N

∑
t∈T

Xntr = `r ∀r ∈ R (3.1)

Xntr ≤ Yn ∀n ∈ N , t ∈ T , r ∈ R (3.2)∑
r∈R

Xntr ≤ unYn ∀n ∈ N , t ∈ T (3.3)

∑
n∈N

∑
r∈Rv

Xntr ≤ 1 ∀t ∈ T , v ∈ V (3.4)

Yn, Xntr ∈ {0, 1} ∀n ∈ N , t ∈ T , r ∈ R (3.5)

Zr ∈ {0, 1, . . . , `r} ∀r ∈ R (3.6)

The objective function in (ILP) consists of three terms. The first is the total

CAPEX cost that sums the individual capital costs of each placed RSU, i.e., the cost

is fn when RSU n is placed (Yn = 1), and zero otherwise. In general, fn consists of

hardware and installation costs of RSU n, which may be site dependent. The prior in-

cludes the chosen configuration of the RSU, i.e., items such as the radio configuration

(un, etc.), the antenna type, power option (grid/solar, etc.), and backhaul connection

type (J. A. Volpe National Transportation Systems Center, 2008). The second term

is the OPEX costs associated with operating the RSU. RSU n incurs an energy cost

of cntr for transmitting request packet r in time slot t.

The final term in ILP is used to minimize the un-served fraction of requests, Zr
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for request r using a large penalty Dr, as discussed previously.

Constraint (3.1) guarantees that requests are satisfied and Constraint (3.3) en-

forces the capacity constraint for the RSUs. Constraint (3.4) implies that only one

request of vehicle v can be serviced during time slot t. Note that (3.3) and (3.5) imply

Constraint (3.2), but the latter is crucial for our rounding heuristic, strengthening

the LP relaxation presented below. It is also clear from the above formulation, that

vehicle job requests are splittable, in that they may be serviced across multiple RSUs.

Solving (ILP) is NP-complete, since if restricted to a single time-slot and capacities

of 1, it becomes the classic minimum facility location problem, which is NP-complete

(Vazirani, 2003). Therefore we turn to approximation algorithms.

3.5 Minimum Cost Route Clustering Algorithm

Our proposed heuristic is based on the following primal LP relaxation of (ILP). Unlike

(ILP), it can be solved in polynomial time complexity but does not give integral

solutions for the decision variables. This issue is addressed by using the rounding

procedure discussed below.

min
X,Y,Z

∑
n∈N

fnYn +
∑
n∈N

∑
t∈T

∑
r∈R

cntrXntr +
∑
r∈R

DrZr s.t. (PLPR)

Zr +
∑
n∈N

∑
t∈T

Xntr ≥ `r ∀r ∈ R (3.7)

Constraints (3.2)− (3.4)
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Yn ≤ 1 ∀n ∈ N (3.8)

Zr ≤ `r ∀r ∈ R (3.9)

Yn, Xntr, Zr ≥ 0 ∀n ∈ N , t ∈ T , r ∈ R (3.10)

Rounding the solution of (PLPR) to an integral one is non-trivial, since the in-

tegrality gap for this relaxation is infinite (Kolliopoulos and Moysoglou, 2015). Levi

et. al. (Levi et al., 2012) introduced an LP-based approximation algorithm for the

capacitated facility location problem, in which the service has no time constraints,

the service cost is time-independent, and there is no capacity associated with clients.

It consists of a two-phase clustering procedure, followed by a rounding algorithm,

and has a provable approximation factor of 5 when the connection costs are in a met-

ric space. Unfortunately, our model is more complicated than the problem in (Levi

et al., 2012), and, moreover, our operating costs do not come from a metric space;

therefore, the known approximation factor guarantees for facility location problems

do not necessarily apply in our case. Accordingly, we develop a novel heuristic re-

ferred to as the Minimum Cost Route Clustering (MCRC) algorithm, which operates

in two steps. In the first, all (partially) opened RSUs from the solution of (PLPR)

are partitioned into clusters. In the second step, the rounding algorithm installs all

fully opened RSUs in each cluster, and continues installing fractionally open RSUs,

until it opens enough RSUs to satisfy all service requirements for that cluster.

The algorithm starts with the fractional solution of (PLPR). This solution consists

of (partially) opened RSUs and (fractional) request assignments to the (partially)

opened RSUs. In the next step, our algorithm moves the fractional requests of vehicles

from one RSU to another, so it can fully open some RSUs and fully close the rest,
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thus producing an integer solution. It is obvious that the displacement of requests

increases the assignment costs and, although we cannot guarantee an upper bound

for this increase, as done in (Levi et al., 2012), our simulation results show that the

extra cost of assignment displacements is low.

As argued in (Levi et al., 2012), moving assignments too much leads to pro-

hibitively expensive results. For this reason, a clustering step is used before the

rounding procedure. It divides the problem into subproblems, and the rounding of

their fractional solutions is done separately for each. The clustering step imposes an

extra cost, which is due to the aggregated effect of rounding the fractional solutions

in each sub-problem.

Algorithm 1 shows the details of our algorithm. Let (X, Y ) be the optimal solution

to (PLPR) (assuming that all requests are feasible and Z = 0), and αr the optimal

dual variables for relaxed constraints (3.7). The two steps of Algorithm 1 are denoted

as Clustering and Rounding.

In Clustering, we partition the RSUs with Yn > 0 (F) into clusters, each of which

will be “centered” around a vehicle that we call the cluster center. More specifically,

for each vehicle v, we define αv to be the summation of αr`r over all its requests. αv

shows the contribution of each vehicle in the total deployment and connection costs,

and decreases as the number of vehicles increases, but it increases as the number of

requests per vehicle increases. The exact explanation of the use of αv in the objective

function of the dual of (PLPR) can be found in (Levi et al., 2012).

Let Fv be the set of (partially) opened RSUs that (fractionally) serve vehicle v.

Let S be the set of cluster center candidates (initially the set of all vehicles), and C be

the set of current cluster centers (initially empty). We use Nv to denote a potential
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Algorithm 1 Minimum Cost Route Clustering

1: Let (X,Y ) be the solution to (PLPR) and α the dual variables for constraints (3.7)
2: Let η be the clustering threshold
3: . Step 1: Clustering
4: F := {n ∈ N : Yn > 0} . (partially) opened RSUs
5: for all v ∈ V do
6: Fv :=

{
n ∈ F :

∑
t∈T

∑
r∈Rv

Xntr > 0
}

. RSUs that fractionally serve vehicle v
7: αv :=

∑
r∈Rv

αr`r.
8: end for
9: Initialize:

10: C := ∅ . cluster centers
11: S := V . cluster center candidates
12: Nv := ∅, ∀v ∈ S . one potential cluster per vehicle v
13: while S 6= ∅ do
14: for all v /∈ C do
15: Bv := {n ∈ Fv : n /∈ ∪k∈CNk, cnv ≤ mink∈C cnk}
16: end for
17: S := {v /∈ C : maxn∈Bv ,t∈T ,r∈Rv Xntr > η}
18: Pick v ∈ S with the smallest αv value and if there are more than one, pick the one

has the largest
∑

n∈Bv unYn.
19: Set Nv := Bv, C = C ∪ {v}
20: end while
21: U := F − ∪k∈CNk
22: for all n ∈ U do
23: v := arg mink∈C cnk
24: Nv := Nv ∪ {n}
25: end for
26: . Step 2: Rounding
27: for all Cluster centers v ∈ C do
28: Open all of the fully opened RSUs in Nv.
29: Qv := {n ∈ Nv : Yn < 1}
30: Dleft :=

∑
n∈Qv

unYn
31: Sort the RSUs in Qv in increasing order of (fn/un + cnv)
32: while Dleft > 0 do
33: Let n be the next RSU in the sorted list
34: Open RSU n
35: Dleft := Dleft −min (Dleft, un)
36: Qv := Qv\ {n}
37: end while
38: end for
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cluster centered around vehicle v. Initially, Nv is empty for all vehicles.

At every iteration of lines 13-20, we define a set Bv for every vehicle v in S, as

long as the latter is non-empty. Of all RSUs in Fv, set Bv contains only those that

have not been assigned to any clusters yet and that are “closer” to v than all cluster

centers currently in C, according to a closeness function that is based on the average

connection cost between a vehicle v and an RSU n, i.e.,

cnv =

∑
t∈Tnv

Pn,v(t)

|Tnv|
(3.11)

where Pn,v(t) is the communication cost between vehicle v and RSU n at time slot t,

and Tnv is the set of time slots during which vehicle v is inside the coverage area of RSU

n. Unlike many clustering techniques that create clusters of clients around facilities,

our algorithm is based on forming clusters of facilities (RSUs) around some candidate

clients (vehicles) (Levi et al., 2012). Therefore, a dense network with more vehicles

does not have much effect on Bv. On the other hand, a dense network with more RSU

candidates may increase the size of Bv. This approach prevents the creation of too

many clusters, which will eventually reduce the extra costs incurred by opening the

fractional RSUs in the clusters. The intuition behind this is as follows: The removal

of RSU n from Bv because it is closer to some other vehicle v′, implies that the two

vehicles v, v′ share part of their routes. Therefore, we can divide the route of v in two

parts, the part that is shared with v′, and the part that is not; we charge v with only

the cost of the latter.

Throughout the Clustering phase, set S contains all RSUs that are candidates for

opening; these are the RSUs that are (partially) open by at least a preset factor η,

called the clustering threshold. Parameter η can be preset to any value between 0 and
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1, but in our case we set η = 0 to force all partially opened RSUs to be candidates

for full opening. In each iteration, we pick the vehicle v ∈ S with the smallest αv

value (we break ties by picking the vehicle that has the largest capacity in Bv). We

form a cluster centered at v, with Nv = Bv and update sets C and S accordingly. We

continue this procedure while S is not empty. After that, there can still be RSUs in

F that are not assigned to any cluster. Each of those RSUs is assigned to the cluster

whose center is closer to it.

Clustering is followed by Rounding. For each cluster Nv, and after opening all

RSUs with Yn = 1, we start opening the rest of the RSUs in this cluster, called Qv,

one-by-one and in increasing order of (fn/un + cnv), until all capacity requirements

of this cluster are satisfied. Qv is the set of cluster members for vehicle v after we

remove the fully opened RSUs in the set, i.e., Qv is the set of partially opened RSUs

in the cluster where v is its cluster center. After enough RSUs have been opened, we

schedule the requests to time-slots and RSUs. Since the capacity of the opened RSUs

is sufficient to serve all the requests, this offline scheduling problem is feasible, i.e.,

the additional request drop ratio is zero (recall that we already have that Z = 0).

It can easily be shown that if N, V,R, T are the number of candidate locations,

vehicles, request units, and time slots, respectively, and under the natural assumption

N ≤ V , the time complexity of the MCRC algorithm is O (N2TR +N3V ).

Multiple-Choice RSU Placement: In the model described above, there is only

one choice for the RSU to be opened at a candidate location. We can easily generalize

this, by allowing the RSU to be chosen from a set of different types; however, we still

require that at most one RSU is opened at any candidate location. The only change

needed is the extension of the Y variables, to have one for each choice at a location
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(instead of one per location), and the extra constraint that the sum of these variables

must be at most 1 at every location. Algorithm 1 does not need to change significantly;

we just remove the rest of the choices at a location, once we decide to open an RSU

of a specific type.

3.6 Performance Results

In this section, the performance of the proposed RSU placement algorithm is consid-

ered. In order to evaluate the performance of MCRC, in the first two sets of results,

two different on-line scheduling algorithms were used to assess the placements that

the algorithm generates. The first is the GMCF scheduler introduced in (Hammad

et al., 2013). GMCF schedules requests on a single RSU using a minimum cost flow

graph formulation that minimizes total service cost over a finite scheduling window.

The second algorithm is the one-objective min-max scheduler presented in (Khezrian

et al., 2015). This algorithm schedules requests across multiple RSUs and attempts

to minimize the maximum service cost on any of the RSUs. Since our goal is to

minimize the total service cost on multiple RSUs, the schedulers are adapted to work

in this setting. These two schedulers are referred to as the Energy Scheduler and the

Min-Max Scheduler, respectively, and both are non-preemptive. Since we find that

the energy performance of the two schedulers is very close, in most of our results, we

use only the Energy Scheduler.

Our proposed algorithm is compared with RSU placements that minimize only

CAPEX, referred to as the Minimum Capital Cost Placement (MCCP) algorithm.

This is motivated by the work discussed in Section 3.2, which can be adapted to our

problem by removing OPEX from the objective function of (ILP). MCCP solves the
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resulting ILP exactly, to obtain RSU placements that minimize the total CAPEX

cost, subject to satisfying the same constraints as MCRC. It is there a lower bound

on the cost that can be obtained by any RSU placement algorithm with the objective

of minimizing capital cost or minimizing the number of RSUs. The comparisons

between MCRC and MCCP therefore show the advantage of taking OPEX costs into

account (i.e., MCRC), compared to existing approaches that focus on CAPEX cost

reduction alone.

The performance evaluation is done using 10 vehicular traffic trace inputs, where

each trace consists of Poisson process vehicular arrivals to the system at the designated

mean arrival rate. This is illustrated in Figure 3.1. As shown at the top of the figure,

one trace is first used for the offline RSU design and placement, which determines the

CAPEX deployment cost. After the design phase, the remaining 9 traces are then used

as inputs to the online experiments, which determine the OPEX costs. As discussed

previously, it is assumed that the traces represent equilibrium traffic conditions, so

that worst-case conditions can be accommodated. The total cost presented in the

simulation results is the sum of the two, and the plotted OPEX cost is obtained by

averaging the service costs over each simulation run for the 9 online traffic traces.

Nine traffic traces were used for the online experiments, since their individual results

were found to be very close. The same approach is used in Chapters 4 and 5.

Uniform service request generation is used for all vehicles, i.e., the same arrival

rate, size, and time-to-live (TTL). As in (Maia et al., 2013; Dai et al., 2013), we

assume that TTL is 40 time slots for each request. The maximum request drop rate

is set to 5%. Before doing all of the simulation runs, we experimented with the length

of the offline design trace to ensure that it was sufficiently long to obtain algorithm
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Figure 3.1: Simulation Terminology.

convergence. Our ultimate goal is to make comparisons between MCRC and MCCP.

But since MCCP requires the solution of a large ILP, it does restrict the length of

the trace that can be used in the RSU placement phase. For the results, MATLAB

was used to find the MCRC placements after using CPLEX to solve (PLPR). For the

four experiments presented below, the solution times for the MCRC algorithm were

quite low, as expected. The per run solution times ranged from, 109 to 283 seconds

(150 average), 326 to 740 seconds (421 average), 272 to 740 seconds (421 average),

and, 815 to 2411 (1393 average), respectively.

A Manhattan grid road configuration is used, consisting of three horizontal and
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Simulation Settings

City Configuration and RSU candidate Site locations

Figure 3.2: City Grid with RSU Candidate Site Locations.

5 vertical streets that are all bidirectional. The Manhattan street network is widely

used and is an example of a road network with lots of potential traffic mixing, which

tends to make the RSU placement problem difficult. Since it originates from the

road configuration in New York City, USA, it is often used to model dense urban

traffic scenarios (Maia et al., 2013; Aslam et al., 2012). The smallest block has a 1

km2 area, which gives a total deployment region of 11.25 km2. Figure 3.2 shows the

city grid with the candidate RSU site locations used as input. To calculate the RSU

candidate locations, we divide each street into segments of length equal to twice the

RSU coverage range, and the center of each segment is taken as an RSU candidate

location. Note that the beginning and the end of each street are under the coverage of

the RSUs at the intersections, and therefore, those two sections are subtracted from

the length of the street.
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It has been shown that microscopic models are the most appropriate for VANET

simulations (Martinez et al., 2011; Harri et al., 2009; Spaho et al., 2011). Accord-

ingly, we use the Simulation of Urban MObility (SUMO) tool, which is a microscopic

mobility generator along with its other capabilities (Krajzewicz et al., 2012). Vehi-

cles arrive to the city according to a Poisson process. Note that their route selection

affects both the RSU placement and the scheduling of requests; for example, if one

allows only routes through a single street, the placement of RSUs will be obviously

biased towards that street. For our experiments, the source and destination of each

vehicle trip are selected uniformly from the set of intersections (Zou et al., 2011; Li

et al., 2009), and their route is the shortest path connecting the source to the des-

tination, as calculated by Dijkstra’s algorithm, and using the average travel time of

each street according to its length, speed limit, and expected traffic density (Patil

and Gokhale, 2013; Wang and Chang, 2011; Cascetta, 2009; Song et al., 2014). The

vehicle traces are 30 minutes in duration. In Figure 3.2, all streets are two-way. The

second street from the top and the third street from the left are 5-lanes with 60 km/h

speed limits. The rest are 4-lanes with a 50 km/h speed limit. At intersections, the

right-most lane is for right turns and the left-most lane is for left turns. Both also

allow straight-through traffic. All intersections are controlled by traffic lights using a

standard configuration, as follows. The traffic light logic programs used are similar

at all intersections and have 10 phases. In the first (30 second) phase, right turns

and straight-through traffic is allowed for vehicles facing a green light. Vehicles are

allowed to make a left turn if no vehicle from incoming streams has higher priority.

In the second (5 second) phase, green lights turn yellow (amber) and vehicles will

decelerate while approaching the intersection for a turn, otherwise they pass through.
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The third phase is a left turn light and vehicles have 10 seconds to make a left turn.

During this phase, only right turns are allowed if there is no vehicle with higher pri-

ority. In the next (5 second) phase, the left turn light turns yellow (amber). During

the fifth phase, the lights are red for all directions for 2 seconds. These phases repeat

for the opposite direction.

A distance dependent exponential path-loss model with log-normal shadowing

(Rappaport, 2001) is used to determine the transmit power needed over a given link.

The transmission power between a transmitter and a receiver, Pt,r, can be expressed

by

Pt,r = Pt,0Psh

(
dt,r
dt,0

)α
(3.12)

where dt,0 is the reference distance, Pt,0 is the reference power at the reference distance,

Psh is a random variable that models the shadowing effect of the channel, α is the path

loss exponent, and dt,r is the distance between the transmitter and the receiver. The

shadowing effect of the radio channel can be modeled as a random variable with log-

normal distribution which has a zero mean (in dB) and a standard deviation of σdB =

4. Table 3.1 summarizes these and the other parameters used in our experiments.

The effect of single RSU capital cost, request size, request arrival rate, request

time-to-live (deadline), and vehicle arrival rate is studied. Two experiments were per-

formed that show the trade-off between the two components of the total deployment

cost, i.e., the opening and service costs. In the first experiment, which is referred to

as “single-choice RSU placement”, we give one option for the RSU configuration at

each candidate site location. Both MCRC and MCCP algorithms decide the locations

where RSUs of that type are placed. In the second, referred to as “multiple-choice
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Table 3.1: Simulation Parameters
Parameter Name Parameter Value(s)
Planning Time Horizon 20 years
Candidate Site Locations 37 sites
RSU Coverage Range 250 m each side
Data Rate 6 Mbps
Vehicle Arrival Rate 0.5 and 1.0 per sec.
Request Arrival Rate 0.0125 per time slot
Request Size 8 time slots
Request Time-to-Live 40 time slots
Street Speed Limit 50 or 60 km/h
Street Number of Lanes 4 or 5
Traffic Light Control Yes
Path Loss Exponent α = 2.7
Shadowing Standard Deviation σdB = 4

RSU placement”, the output of each algorithm also includes the RSU configuration

to be chosen for each selected candidate location.

In some of the experiments, two different vehicular traffic load conditions were

considered. The first is when the vehicle arrival rate is one vehicle per time slot,

referred to “Low Vehicle Traffic Load”. This value is then doubled and the associated

experiments are referred to as “High Vehicle Traffic Load”.

3.6.1 The Effect of Per RSU Capital Cost

In this first set of results we evaluate the effect of the per RSU capital cost. RSU

placements are compared for both single and multiple choice RSU placement. For

the first and the third low vehicle load experiments (Figures 3.3 and 3.5), the traffic

traces consisted of vehicular arrival numbers ranging from 997 to 1228 and consisting

of 2958 to 3733 job requests. In the second and the fourth high traffic load experiments

(Figures 3.4 and 3.6), the corresponding numbers ranged from 1961 to 2464 vehicular
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arrivals and 6545 to 8760 job requests. To properly evaluate the performance of our

algorithm, we consider a basic unit cost for each RSU type, and then, we multiply

every basic unit cost by the same factor, referred to as the “capital cost factor” during

the experiment. The basic unit cost is equal to $1,000 and $1,500 for grid-powered

and solar-powered RSUs, respectively (J. A. Volpe National Transportation Systems

Center, 2008). The single RSU capital cost at each point is equal to its corresponding

cost factor multiplied by the basic unit cost. Figures 3.3 and 3.4 show the results

of this experiment for single-choice placement, and Figures 3.5 and 3.6 show the

multiple-choice case. In the first two sets of results, the OPEX, CAPEX and total

cost components are shown in separate subplots. In the remainder of the results, only

the total cost is plotted.

In Figures 3.3, 3.4, 3.5 and 3.6, the horizontal axis shows the factor by which the

single RSU capital cost is increased. The total cost of RSU deployment are shown in

Figures 3.3, 3.4, 3.5 and 3.6. The Energy and Min-Max schedulers for both MCRC

and MCCP RSU placement are shown with different line patterns and markers in the

first two figures. Note that because the ILP is too big to solve exactly, we use the

relaxed LP as our lower bound. In each subfigure, the LP lower bound service/opening

cost component is shown as a black solid line. It is important to note that the LP

is only a lower bound on total cost, not on the individual service and opening costs.

This can be seen in Figure 3.3, for example, where the service cost falls below the

service cost of the LP for capital cost factors greater than about 10.

As seen in Figures 3.3 and 3.4, and, as is the case in the multiple-choice experi-

ments, the MCCP algorithm is insensitive to the service cost as it opens the minimum

number of lower opening cost RSUs that are needed to serve requests. For this reason,
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Figure 3.3: The Effect of Per RSU Capital Cost on Single-Choice RSU Placement
with Low Vehicle Traffic Load.
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Figure 3.4: The Effect of Per RSU Capital Cost on Single-Choice RSU Placement
with High Vehicle Traffic Load.
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Figure 3.5: The Effect of Per RSU Capital Cost on Multiple-Choice RSU Placement
with Low Vehicle Traffic Load.
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Figure 3.6: The Effect of Per RSU Capital Cost on Multiple-Choice RSU Placement
with High Vehicle Traffic Load.
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when the per RSU capital cost changes, the MCCP algorithm opens the same set of

RSUs. As a result, the opening cost increases linearly with per RSU capital cost and

the service cost remains constant for different per RSU capital costs.

On the other hand, the MCRC algorithm tries to trade off the opening and service

cost components and tends to outperform MCCP. In Figures 3.3 and 3.4, there are

four regions that can be seen in the service cost subfigures. The first region starts with

a flat service cost, followed by a smooth increase. In these regions, which correspond

to less expensive RSUs, the MCRC algorithm opens more RSUs to reduce the service

cost. This approach continues until there is no more decrease in the service cost. This

happens either when there are no more RSUs to open, or when opening more RSUs

increases the opening cost without improving the service cost.

The third region has a sharper slope compared with the second. As the single RSU

capital cost increases, the MCRC algorithm concentrates the requests on a smaller

number of RSUs. Although the service cost increases, the overall cost increases at a

lower rate. This is because of RSU capacity limitations. After a certain point, there is

no way to decrease the number of opened RSUs. This corresponds to the fourth region

that has a lower rate by which the service cost increases. There are two reasons for

this. Either request deadlines prevent the MCRC algorithm from transferring them

from one RSU to another, or, one or more RSUs reach their capacity limit, so that

they cannot accept more requests. If both of these happen, the RSU inevitably drops

requests.

Note that at the end of the third region and during the fourth, where the MCCP

algorithm shows better performance, the opening cost becomes the dominant com-

ponent of the objective function. The MCRC algorithm opens a smaller fraction of
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RSUs to bring down the opening cost.

The four regions discussed above happen at different per RSU capital cost factors

and depend on the vehicle traffic load, the data traffic load, and the RSU placement

model, i.e., single-choice or multiple-choice. For example, when vehicle traffic load

increases, as in Figure 3.4 compared to Figure 3.3, the data traffic load increases,

which causes an increase in the service cost. When there is insufficient capacity,

opening more RSUs also leads to higher opening costs. When there are no more

RSUs to open or when request deadlines do not allow additional loading, increasing

the vehicle arrival rate only increases the service cost. Since the MCRC algorithm

takes service costs into account during the offline RSU placement, this results in an

increased range of capital cost factors over which the total cost is lower than that of

the MCCP algorithm. The total cost crossing point of the two algorithms goes from a

capital cost factor of 12 in Figure 3.3 to 18 in Figure 3.4. The effect of vehicle arrival

rate is discussed in more detail in Section 3.6.5.

A similar behaviour occurs in the multiple-choice experiments, whose total cost is

shown in Figures 3.5 and 3.6, but for different reasons. There are two options available

at each RSU candidate location, i.e., grid and solar-powered RSUs. The latter are

more expensive, but their service cost is lower. This gives the MCRC algorithm more

flexibility to trade off these cost components. This can be done using fewer RSUs

compared to the similar scenario in single-choice RSU placement. For example, in

Figures 3.3 and 3.4, at a capital cost factor of 1, the service cost cannot be reduced,

since there are no more RSUs to open. But at the same capital cost factor, the service

cost in Figure 3.5 is almost one third of the service cost in Figure 3.3, and the service

cost in Figure 3.6 is almost one fourth of the service cost in Figure 3.4. This is true
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even though there are more RSUs to be opened and happens during the first and

second regions by opening more solar-powered RSUs instead of grid-powered RSUs.

During the third and the fourth regions, when the single RSU capital cost becomes

higher than the service cost, the MCRC algorithm not only concentrates the requests

to a smaller number of RSUs, but also prefers grid-powered RSUs. This causes a

sharper slope in the service cost.

By comparison, the opening cost remains almost the same for the single and multi-

ple choice cases. Even though the more expensive RSUs are used, a fewer number are

opened. As a result, the total cost from the MCRC algorithm in the multiple-choice

RSU placement case shows improvement compared to the single-choice placement.

The crossing point of the two algorithms moves from a capital cost factor of 12 in

Figure 3.3 and from 18 in Figure 3.4, to 20 and 80 in the multiple-choice case, respec-

tively. On the other hand, the MCCP algorithm ignores the service cost, and only

opens grid-powered RSUs. As a result, the service cost of the MCCP algorithm in the

multiple-choice case is almost double that in Figure 3.4, which degrades its overall

performance, as seen in Figure 3.6.

As discussed earlier, if the traffic input surpasses the network capacity, some of the

requests will be dropped. In this case, the LP solutions show the regions in which the

network is saturated and this can be detected at early stages of the network design.

The request drop ratio of the offline LP, lower bound, in Figures 3.4 and 3.6 is equal

to 0.1%.

The comparison between the MCRC and MCCP algorithms in terms of the request

drop ratio shows that the former has better performance. In the single-choice RSU

placement, i.e., Figures 3.3 and 3.4, the request drop ratio of the MCRC algorithm,
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regardless of the scheduling algorithm is about 0.02%, while the MCCP algorithm

has the request drop ratio of 0.6% and 0.5% for the energy scheduler and the min-

max scheduler, respectively. As the vehicle arrival rate increases, the competition

between vehicles increases. Therefore, more requests are expected to be dropped. In

the multiple-choice RSU placement, i.e., Figures 3.5 and 3.6, the request drop ratio

of the MCRC algorithm is equal to 2.2% and 1.6% for using the energy scheduler and

the min-max scheduler, respectively. The request drop ratio of the MCCP algorithm

is equal to 3.0% and 2.4% for the energy scheduler and the min-max scheduler, respec-

tively. Similarly, in multiple-choice RSU placement, shown in Figures 3.5, the request

drop ratio of the MCRC algorithm is equal to 0.91% and 0.84% for the energy and

the min-max schedulers, respectively. The request drop ratio of the MCCP algorithm

is equal to 0.67% and 0.51% for the energy scheduler and the min-max scheduler,

respectively. In Figure 3.6, the request drop ratio of the MCRC algorithm is equal to

2.8% and 2.2% for the energy and the min-max schedulers. The request drop ratio

of the MCCP algorithm is equal to 3.8% and 3.0% for the energy scheduler and the

min-max scheduler. Since the performance of the two schedulers was found to be very

close, in the remaining graphs we only consider results for the energy scheduler.

Finally, to further demonstrate the quality of MCRC, Figures 3.7 and 3.8 show the

total cost of RSU deployment for Figures 3.3 and 3.4 respectively, when the online

experiments use the first vehicular trace that was used to obtain the offline RSU

placements. This shows that if the MCRC algorithm is given the correct trace, it still

outperforms MCCP. The crossing point of the two algorithms moved from a capital

cost factor of about 12 and 18 in Figures 3.3 and 3.4 to 16 and 25 in Figures 3.7 and

3.8 respectively. Note that Figures 3.7 and 3.8 have a slightly higher total cost than
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Figures 3.3 and 3.4. This is because of a higher average number of vehicles and job

requests than the other traces.

3.6.2 The Effect of Request Size

To evaluate the effect of request size on algorithm performance, we set the capital cost

factor to 10. This means that the capital cost of each grid-powered RSU and each

solar-powered RSU are equal to $10,000 and $15,000, respectively. Because of space

limitations, we only present the results for high vehicle traffic load. This means that

the vehicle arrival rate is equal to 1 vehicle per second, i.e., 2 vehicles per time slot.

Figures 3.9 and 3.10 show these results for the single-choice RSU placement and the

multiple-choice RSU placement, respectively. As before, 10 vehicular traces are used,

consisting of vehicular arrival numbers ranging from 1961 to 2464 and consisting of

6545 to 8760 job requests. In these results, we increase the size of each individual

vehicle request from 1 to 10.

The MCRC algorithm shows a slight advantage over the MCCP algorithm in

Figure 3.9. However, in Figure 3.10, the MCRC algorithm significantly outperforms

MCCP. As in the previous section, there are four regions. The first two correspond

to lower data traffic load. When the request size is small, the service cost is low.

Therefore, the MCRC algorithm reduces the number of opened RSUs and transfers

requests to the opened RSUs. After this, the only way to bring down the opening

cost is to open a smaller number of RSUs. This introduces an extra opening cost in

the rounding step of the MCRC algorithm.

In the last two regions, as the request size increases, so does the service cost.

However, this increase is not linear. This comes from the fact that vehicles have a
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Figure 3.7: The Effect of Per RSU Capital Cost on Single-Choice RSU Placement
with Low Vehicle Traffic Load. The Online Experiments Use the Design Trace as
Input.

80



Ph.D. Thesis - Naby Nikookaran McMaster - Electrical & Computer Engineering

Average Single RSU Capital Cost (×103)

1 2 3 4 5 6 7 8 10 12 16 20 25 30 40 50

T
ot
a
l
C
os
t

×106

0

0.5

1

1.5

2

2.5

3

3.5

4
Lower Bound (LP)
MCRC + Energy Sch.
MCCP + Energy Sch.

Figure 3.8: The Effect of Per RSU Capital Cost on Single-Choice RSU Placement
with High Vehicle Traffic Load. The Online Experiments Use the Design Trace as
Input.
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Figure 3.9: The Effect of Request Size on Single-Choice RSU Placement with High
Vehicle Traffic Load.
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Figure 3.10: The Effect of Request Size on Multiple-Choice RSU Placement with
High Vehicle Traffic Load.
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capacity limitation since they are equipped with single-radio transceivers. If some

parts of the request cannot be transferred to the next RSU, it is more likely that

they will be served when the vehicle is farther from the RSU. Also, the increase in

the request size requires more network capacity and as a result, both algorithms open

more RSUs. The MCRC algorithm opens more RSUs to moderate the service cost

increase. In Figure 3.10, the MCRC algorithm also switches to solar-powered RSUs

to take advantage of their low service cost. In terms of request drop ratio, the MCRC

algorithm shows better performance as before. In both algorithms, the request drop

ratio increases rapidly with the request size. Above request sizes of 8, even the LP

drops requests.

3.6.3 The Effect of the Request Arrival Rate

For the per RSU capital cost and the vehicle arrival rate, the same values are selected

as in Section 3.6.2. In these experiments, the 10 vehicular traces consisted of vehicular

arrival numbers ranging from 1961 to 2464. As the request arrival rates increase, the

average job requests vary between 2237 and 8149. Figures 3.11 and 3.12 show the

results of the single-choice and multiple-choice RSU placements, respectively.

To evaluate the MCRC algorithm, we increase the rate by which vehicles generate

their requests from 0.0025 requests per time slot to 0.015. All vehicles have the same

request arrival rate and each request has a size of 8. The results are similar to that

of Section 3.6.2 and the same arguments apply here. There is only one significant

difference, i.e., the rate that the service cost increases. The service cost increases

almost linearly with the request arrival rate, since there is more flexibility for load

balancing. In Section 3.6.2, the request arrival rate was fixed and we increased the
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Figure 3.11: The Effect of Request Arrival Rate on Single-Choice RSU Placement
with High Vehicle Traffic Load.
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Figure 3.12: The Effect of Request Arrival Rate on Multiple-Choice RSU Placement
with High Vehicle Traffic Load.
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size of the requests. However, in this case we fix the request size and increase the

request arrival rate.

3.6.4 The Effect of the Request Time-to-Live (Deadline)

These results are presented in Figures 3.13 and 3.14. The single RSU capital cost

factor is 10, the vehicle arrival rate is 2 per time slot, the request arrival rate is 0.0125

requests per time slot, and the request size is 8. As in Section 3.6.2, 10 vehicular traces

are used, consisting of vehicular arrival numbers ranging from 1961 to 2464 and 6545

to 8760 job requests.

In this section, we change the request time-to-live (TTL) from 20 to 160 time slots.

It can be seen from Figures 3.13 and 3.14 that as TTL increases, the RSU deployment

cost, mainly because of the service cost, decreases. At the lowest TTL value, both

algorithms in both the single-choice and multiple-choice RSU placement case, open

RSUs at all candidate site locations. This is because the short TTL does not allow any

request transfer between RSUs for the purpose of load concentration. In this case, the

request TTL is shorter than the travelling time of a vehicle inside the coverage area

of an RSU. However, as requests become more delay tolerant, the MCRC algorithm

transfers more requests between RSUs, so that it can both reduce the number of

opened RSUs and also serve more requests at energy favourable positions. As a

result, the opening cost and the service cost, and consequently, the total cost of RSU

deployment decreases. Similar to the previous sections, the MCRC algorithm shows

its advantage in the multiple-choice RSU placement by selecting more solar-powered

RSUs over grid-powered RSUs.

87



Ph.D. Thesis - Naby Nikookaran McMaster - Electrical & Computer Engineering

Request Time to Live

20 40 60 80 100 120 140 160

T
o
ta
l
C
o
st

×106

0

0.5

1

1.5

2

2.5
Lower Bound (LP)
MCRC + Energy Sch.
MCCP + Energy Sch.

Figure 3.13: The Effect of Request Time-to-Live on Single-Choice RSU Placement
with High Vehicle Traffic Load.
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Figure 3.14: The Effect of Request Time-to-Live on Multiple-Choice RSU Placement
with High Vehicle Traffic Load.
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3.6.5 The Effect of the Vehicle Arrival Rate

The effect of the vehicle arrival rate on the RSU placement algorithms was briefly

discussed in Section 3.6.1. In this section, we further evaluate this effect. The single

RSU capital cost factor is 10, the vehicle arrival rate is 2 per time slot, the request

arrival rate is 0.0125 requests per time slot, the request size is 8, and the request

TTL is 40 time slots. Figures 3.15 and 3.16 show the results for the single-choice and

multiple-choice RSU placements, respectively. The vehicle arrival rate is changed from

0.5 vehicles per time slot to 2.5 vehicles per time slot. As before, 10 vehicular traces

are used. Since our goal in these experiments is to investigate the effect of vehicle

arrival rate on our algorithm performance, the average vehicular arrival numbers in

these traces vary between 515 to 2553 consisting of job requests between 1504 and

9599.

It can be seen in Figures 3.15 and 3.16 that the MCRC algorithm is as good as

MCCP in single-choice RSU placement, but not in the multiple-choice case. Similar

to the previous results, when the data traffic load is low, the difference between the

fractional solution and the rounded solution pushes the opening cost of the MCRC

algorithm to higher values. However, as the vehicle arrival rate increases, it balances

the load between more RSUs. Specifically, in Figure 3.16, as the service cost increases,

the MCRC algorithm switches to more solar-powered RSUs, which brings down the

service cost and consequently, improves the total cost of the deployment. The results

also show that the request drop ratio increases rapidly after the vehicle arrival rate

of 1.5 vehicles per time slot. Also, after 2 vehicles per time slot, the offline LP starts

to drop more requests. Consistently with the previous cases, the MCRC algorithm

has again a smaller request drop ratio than the MCCP algorithm.
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Figure 3.15: The Effect of Vehicle Arrival Rate on Single-Choice RSU Placement.
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Figure 3.16: The Effect of Vehicle Arrival Rate on Multiple-Choice RSU Placement.
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3.7 Conclusions

In this chapter, we have considered the problem of road-side unit (RSU) placement so

that the sum of installation and operating costs is minimized. In this type of system,

the total cost is a function of both capital expenditure (CAPEX) installation/opening

costs, and long-term energy operating (OPEX) costs. An integer linear program (ILP)

was first formulated that gives the minimum cost placement using a given set of inputs.

This was used as a lower bound on total cost and is attainable for small problem sizes

where the solution complexity is reasonable. To address larger problems, an algorithm

was then proposed that solves a relaxed version of the ILP and uses a novel rounding

procedure to obtain RSU placements, referred to as Minimum Cost Route Clustering

(MCRC). The placement decisions take into account the service costs associated with

the energy used to operate the RSUs, which is done using a minimum energy online

scheduler.

The performance of the MCRC algorithm was investigated in different scenar-

ios, where per RSU capital cost, request parameters (such as arrival rate, size, and

time-to-live), and vehicle arrival rate were changed. MCRC was compared with the

Minimum Capital Cost Placement (MCCP) algorithm that generates RSU placements

that only minimize capital costs. As was discussed in Section 3.6, MCRC outperforms

MCCP in RSU deployment cost, and it has less request drop ratio. In contrast to

the MCCP algorithm, which is insensitive to the service cost, the MCRC algorithm

creates a balance between the opening and service cost components. As a result, for

different per RSU capital costs, MCRC outperforms MCCP through load concentra-

tion and load balancing, whichever is more appropriate. As we increase the size of

the vehicle requests, the MCRC algorithm shows a slight advantage over the MCCP
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algorithm. However, in multiple-choice RSU placement, the MCRC algorithm sig-

nificantly outperforms MCCP. Similar results were found as the request arrival rate

and vehicle arrival rate were increased. By increasing the request time-to-live (i.e.,

extending the request deadline), the RSU deployment cost decreases through better

load concentration. The MCRC algorithm also shows its advantage in the multiple-

choice RSU placement case by selecting more solar-powered RSUs over grid-powered

RSUs, where appropriate.
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Chapter 4

Capacity Augmentation in Energy

Efficient Vehicular Roadside

Infrastructure

4.1 Introduction

Many future in-vehicle applications will be enabled using vehicular ad-hoc communi-

cations and networking. Roadside infrastructure is a key component of these systems

and will eventually provide a platform for new local vehicular services. In these types

of systems, road-side unit (RSU) costs include that of both RSU installation, i.e.,

CAPEX (capital expenditure) costs, and long-term operating, i.e., OPEX (operating

expenditure) costs. The latter costs include those associated with wired energy usage

over long time periods (Farbod and Todd, 2007; Badawy et al., 2010). An RSU de-

ployment that minimizes the sum of these cost components must jointly consider both

the initial RSU placement and their associated long-term service costs (Nikookaran
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et al., 2017).

A characteristic of many network design methods is that they do not take into

account the causality present in the traffic design traces that are used for the offline

design, i.e., they consider the set of design trace requests as known at the beginning of

the design process, and then proceed into designing a network that can accommodate

them. This is typically done by solving an Integer Program optimization. As a result,

and because of the causal nature of the stream of incoming requests, the causal online

scheduling during the operational life of the network may be suboptimal. In this

chapter, we consider RSU capacity augmentation as a method of adjusting the initial

network design, and to counterbalance its failure of taking causality into account. By

capacity augmentation we mean the upgrade of radio capacity for RSUs that have

already been placed.

Capacity augmentation in general, is not a novel idea. Once RSUs have been

deployed for example, capacity augmentation is needed to update the system, thus

accommodating evolving traffic conditions. Similarly, the output of an RSU design

placement algorithm may not meet the packet loss targets specified in the original

design specifications, which is the case considered in this chapter. RSU capacity

augmentation can be used in this case to provision the RSUs, thus meeting their

original performance objectives. This work introduces a procedure referred to as the

Capacity Augmentation (CA) Algorithm that can be used to perform this function.

We are given, as input, the RSU locations and their initial radio capacities, as well

as any set of historical vehicular traffic flow traces used by the design algorithm, i.e.,

the (design traces). These traces are representative of the expected traffic flow to be

accommodated by the augmented design. The objective of the design is to obtain a
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minimum total cost RSU radio capacity assignment that meets a given packet loss rate

target, and subject to packet deadline constraints. The CA Algorithm iterates over

the RSUs, selecting candidates for capacity augmentation based on a combination of

the RSU loss rate sensitivities and their capacity augmentation costs. The selection of

the RSU whose capacity is to be augmented is done in every iteration by running the

request scheduling algorithm on the design traces, treating them as an online (causal)

input, i.e., under actual operational conditions. The CA Algorithm terminates when

the request drop ratio improvement is below a preset threshold.

The intuition behind the CA Algorithm is to trade off CAPEX (paying for the

extra capacity) for decreasing the drop ratio during operation. A variety of results is

presented that characterize and compare the performance of the CA Algorithm using

a simple greedy online packet scheduler. The comparisons also use energy-optimal

offline scheduling obtained by solving an integer linear program formulation. It is

shown that the CA Algorithm achieves a very significant decrease of the drop ratio

with only a very moderate (if any) increase of the network total cost.

The remainder of the chapter is organized as follows. Section 4.2 briefly overviews

the related work. In Section 4.3, a detailed description of our system model is pre-

sented. Then, in Section 4.4, a heuristic algorithm referred to as capacity augmenta-

tion (CA) is introduced. Performance results are presented and discussed in Section

4.5. Finally, this chapter is concluded in Section 4.6.

4.2 Related Work

Capacity augmentation has been previously studied for a variety of different network-

ing scenarios. Reference (Ashraf, 2015) for example, discusses capacity augmentation
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in wireless mesh networks in order to maximize the aggregate throughput for all

network flows, and in Reference (Ahdi and Subramaniam, 2016), augmentation is

proposed using free-space optical (FSO) links to enhance the capacity of RF wireless

mesh networks. Two combinatorial optimizations are used in (Lin, 1994) for link set

capacity augmentation in networks supporting switched multi-megabit data service

(SMDS). The goal is to determine the amount of additional capacity required and its

location. The objective of the first formulation is to minimize the total routing cost

subject to a budget constraint, while in the second, the total capacity augmentation

cost is minimized subject to a set of shortest-path-routing constraints.

To the best of our knowledge, our work is the first that proposes a method for

road-side unit capacity augmentation in vehicular networks. Our approach is unique

in that the objective is to minimize the sum of capital expenditure and long-term

operating costs, such that a packet loss target is achieved subject to delay deadline

constraints. This is done by incorporating energy aware scheduling into the design

process.

4.3 System Model

Let S be the set of candidate RSU locations, and Ns = {1, . . . , Ns} be the set of

RSU configurations. Different site locations are allowed to have a different set of

configurations, e.g., different capacities, but at most one of these configurations can

eventually be installed at each site location, and let N = ∪s∈SNs. Let V be the set of

vehicles serviced by the installed RSUs, each with a set of requests Rv for a total of

R = ∪v∈VRv requests. Request r has a release date of ar and a deadline (due date)

of dr. In this work, we assume that any job request of size `r time slots is splittable
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into `r unit-size (in time slots) requests with the same deadline, that can be serviced

by different RSUs.

The problem that is addressed in this chapter is capacity augmentation of an exist-

ing RSU network. Once an RSU configuration (placement and capacity provisioning)

is given, the scheduling of requests are done so that at most one request of each ve-

hicle is being serviced by any RSU, each RSU serves at most one request during each

time slot, and requests are serviced before their deadline in order not to be dropped.

The energy cost for servicing a request is defined by a distance-dependent expo-

nential path-loss model with log-normal shadowing (Rappaport, 2001). The trans-

mission power between a transmitter and a receiver, Pt,r, can be expressed by Pt,r =

Pt,0Psh

(
dt,r
dt,0

)α
, where dt,0 is the reference distance, Pt,0 is the reference power at the

reference distance, Psh is a random variable that models the shadowing effect of the

channel, α is the path loss exponent, and dt,r is the distance between the transmitter

and the receiver. The shadowing effect of the radio channel is modeled as a random

variable with log-normal distribution which has a zero mean (in dB) and a standard

deviation of σdB = 4.

After getting an initial placement and provisioning of an RSU network (by solving

the ILP formulation in Chapter 3, for example), our capacity augmentation algorithm

CA (described in the following section) is run.

4.4 Capacity Augmentation Algorithm

The starting point of our proposed algorithm is a placement of RSU’s and their

provisioning with capacities calculated by a placement and provisioning algorithm.

Although any starting placement and provisioning can be used, in this work we will
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use the initial placement NO of RSU’s, and capacities U = un,∀n ∈ NO calculated

by the algorithm in (Nikookaran et al., 2017). The algorithm used for the on-line

scheduling of vehicle demands will be referred to as the Scheduling Algorithm, while

we will refer to our algorithm as the Capacity Augmentation algorithm. Throughout

its running, the set of RSU locations NO will never change. In each iteration, our

algorithm will increase the capacity of one RSU, and will test the new capacities, U ,

by running the Scheduling Algorithm: if there is no “substantial” improvement in the

loss rate for the traffic case we are using, then the algorithm terminates.

More specifically, before every iteration (lines 6-24 in Algorithm 2), the Scheduling

Algorithm is run with the current capacities, and its loss rate is calculated (lines 3-5

and 21-23). In case this loss rate is smaller than the target loss rate, defined by the

input parameter ξ (line 6), or the loss rate improvement from the previous iteration

is not more than input parameter ζ (line 8), the algorithm terminates. The loss rate

improvement is defined as the decrease of the Scheduling Algorithm loss rate within

a “window” of M iterations (where M is another input parameter).

For every RSU n, we calculate the distributed loss rate zn as follows (line 14):

zn =
∑
r∈R

(
Zr ·

un |Tnr|∑
k∈NO

uk |Tkr|

)
, (4.1)

where Tnr is the set of time slots during which request r can be served by RSU n.

Zr is defined to be 1 if request r is lost and zero otherwise. The idea behind this

calculation is to distribute the loss of request r over all RSU’s that could serve r. Each

RSU n receives a fraction of r equal to the fraction of total potential (capacity unit,

time slot) pairs that can be used to service r that belongs to n. Therefore, the larger

the ability (more capacity and/or more time a dropped request spends within range)
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Algorithm 2 Capacity Augmentation (CA) Algorithm

Input:
• Placement of opened RSUs NO, capacities U = {un,∀n ∈ NO}

• Traffic trace with requests R, time slots T , and communication cost matrix C =
[cntr]NO×T ×R

• Parameters ξ, ζ,M
Output: Adjusted capacities U = {un, ∀n ∈ NO}
1: Tnr := {time slots during which request r can be served by RSU n} for all n, r
2: i := 0 . Iteration Counter
3: Run Scheduling Algorithm (NO, U,R, T, C)
4: Zr := 1 if request r is dropped, 0 otherwise, ∀r ∈ R
5: loss[0] :=

∑
r∈R Zr

|R| . loss rate of Scheduling Alg.

6: while loss[i] > ξ do
7: if i ≥M − 1 then
8: if loss[i−M+1]−loss[i]

loss[i−M+1] < ζ then
9: break

10: end if
11: end if
12: i := i+ 1
13: for all n ∈ NO do
14: zn :=

∑
r∈R(Zr · un|Tnr|∑

k∈NO
uk|Tkr|)

15: δn := (capital cost after increasing RSU n capacity) - (capital cost with current
RSU n capacity)

16: ration := zn/δn . loss rate per unit of cost increase
17: end for
18: H := {n ∈ NO : un < umax

n }
19: n0 := arg maxn∈H{ration}
20: Increase un0 to the next available capacity for RSU n0

21: Run Scheduling Algorithm (NO, U,R, T, C)
22: Zr := 1 if request r is dropped, 0 otherwise, ∀r ∈ R
23: loss[i] :=

∑
r∈R Zr

|R|
24: end while
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of an RSU to service r, the higher is its responsibility for dropping r. Nevertheless,

the total responsibility of RSU n for dropped requests must take into account the

capital cost of increasing its capacity (to the next higher available capacity). This

cost δn is calculated in line 15 (in case the capacity of n cannot increase further,

we set δn := ∞). The more expensive it is to increase the capacity of n, the less

responsible it should be for the loss rate. Therefore, we assign to each RSU n a score

ration = zn/δn (line 16). The RSU with the highest score is chosen (line 19), and its

capacity is increased to the next available capacity level (line 20).

4.5 Performance Results

In this section, we evaluate the performance of the proposed capacity augmentation

algorithm. The set of opened RSUs and their capacities NO, U are the ones resulting

from solving the (offline) ILP formulation of the problem, using a given design traffic

trace as described in Chapter 3. Given the RSU placement and provisioning, a greedy

non-preemptive online scheduler is used. The scheduler tries to minimize the total

service cost of scheduled job requests, by assigning each job request to the energy-wise

cheapest time-slot amongst all RSU’s with available capacity, as long as the deadline

job constraints are met. In addition to the greedy online scheduler, in our results

we will use the optimal offline scheduling algorithm, which produces the minimum

cost schedule that satisfies the deadline constraints when the job requests are known

ahead of time. The optimal offline schedule is not implementable in our setting, since

the requests are not known ahead of time, but its performance is a lower bound for

any online scheduling algorithm (not just the greedy online scheduler used here).

We will see that the simple greedy scheduler we use is not far from the optimal
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offline scheduler in its performance, and, therefore, we will be able to assign any

performance improvements to the RSU capacity adjustments performed by algorithm

CA (Algorithm 2) rather than using a particular scheduler.

The performance evaluation is done using 10 vehicular traffic traces as input. The

vehicular arrivals in each trace are generated by a Poisson process with a predeter-

mined mean arrival rate (here 1.25 vehicles per second, i.e., 2.5 vehicles per time slot).

Vehicles also generate job requests according to a Poisson process, with mean arrival

rates uniformly selected between 0.01 to 0.02 per time slot. The sizes of vehicular

requests are generated from an exponential distribution, with mean value selected

uniformly between 4 and 8 time slots. Note that each request of size larger than

one time slot is divided into multiple requests of size one with the same release and

due dates, since we have assumed that job requests are splittable. In order to define

the deadline for each request, the number of time slots from its release date to its

due date (i.e., the request time-to-live) is chosen uniformly at random between 80 to

160 time slots. The traces used in our simulations are 30 minutes in duration. The

number of vehicle arrivals ranges between 1705 and 2286 (with an average of 2174),

and the number of total requests ranges between 28335 and 35693 (with an average of

33939). The first trace is used by both the initial placement algorithm of Chapter 3,

and by algorithm CA in order to do its capacity augmentations. The reason for this

choice is the fact that both algorithms are offline, run on known past traces before

an RSU placement is implemented. Then, the other nine traces are used to evaluate

the effects of algorithm CA on both the cost and the drop rate.

The vehicle routes were generated by using SUMO (Song et al., 2014). The source

and destination of vehicle trips are selected uniformly from the set of intersections,
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and each vehicle follows the shortest path from its source to its destination. The

average travel time of each street is calculated according to its length, speed limit,

and expected traffic density. Vehicles travel on a Manhattan grid with three horizontal

and five vertical streets, which are all bidirectional. All intersections are controlled

by traffic lights. The smallest block has a 1 km square area, which gives a total

deployment region of 11.25 km2. All RSUs are placed either at intersections or at the

middle point between two intersections. There are three available RSU types, with

capacity of 2, 4, or 6 respectively. All three types have a coverage range of 250 m on

each side. Following (Mahdian et al., 2006; Holmberg, 1994), the model we use for the

CAPEX fs of an RSU s is an affine function of capacity fs = f0s+f1s×us for all s ∈ Ns,

where f0s is the fixed cost for opening an RSU, and f1s × us is the part of CAPEX

which depends on RSU capacity us. In our simulations, we use the same CAPEX

coefficients for all RSUs; these coefficients are f0s = f0 = 4000, f1s = f1 = 2000, in

accordance with (J. A. Volpe National Transportation Systems Center, 2008; Kumrai

et al., 2014). This means that the CAPEX for any RSU s is fs = 4000 + 2000× us.

In assessing the total cost (CAPEX plus OPEX) in our simulations, we would like

to study different weightings of CAPEX in relation to OPEX. In order to do that, we

will multiply the CAPEX of an RSU with a factor we call the single RSU capital cost

factor. We will use four different multiplicative single RSU capital cost factors (1, 2, 3,

and 4) in our simulations; obviously, the effect of CAPEX on the total cost increases

as the single RSU capital cost factor increases. The goal of these experiments will be

to assess the effectiveness of algorithm CA when the influence of CAPEX to the total

cost ranges from lighter to heavier.

To summarize, these are the generic steps we follow in each experiment:
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1. Using the first traffic trace generated as explained above, solve the ILP in Chap-

ter 3 to calculate the RSUs placement and initial capacities.

2. Run the CA algorithm to calculate the adjusted capacities of the RSUs.

3. Run the optimal offline and the greedy online schedulers using the initial RSU

configuration on the design traffic trace used in step 1.

4. Run the greedy online scheduler using the initial RSU configuration on the

remaining 9 traffic traces (and average the results).

5. Run the greedy online scheduler using the CA placement on the traffic traces

used in step 4 (and average the results).

Each experiment was run for each of the 4 possible single RSU capital cost fac-

tors. The rationale behind step 3 (i.e., running both schedulers on the trace used to

calculate the initial RSU configuration), is the following: Using the initial placement

with the optimal offline scheduler and with the design trace gives a lower bound on

the performance of the initial configuration. Using the initial placement with the

greedy online scheduler and with the design trace gives us an idea of how detrimental

to the initial configuration is the online nature of job scheduling (although we use the

design trace itself).

Figure 4.1 shows the performance of using algorithm CA to adjust the initial

capacities. The total cost CAPEX+OPEX is shown in Figure 4.1a, and the drop

ratio achieved is shown in Figure 4.1b. Both the total cost and the drop rate are

shown for each of the 4 single RSU capital cost factors (1, 2, 3, and 4 on the x-axis).

The number of opened RSUs for each one of these factors are 25, 24, 24, and 24,

respectively.
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Figure 4.1: The Effect of Capacity Augmentation Algorithm on RSU Placement
Scheme.
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Running the initial RSU configuration with the optimal offline scheduler and the

design trace (i.e., the lower bound shown as “Initial + Offline Sch.”) is shown with a

solid black line and diamond markers. Obviously, it achieves the minimum possible

total cost, and the minimum drop rate. Note that the minimum drop rate is not

always 0%; this is due to the fact that the requests and their deadlines generated

by our random processes cannot always be serviced (i.e., there may be requests that

cannot be accommodated in any schedule). The results of using the online scheduler

and the design trace on the initial configuration output are denoted by “Initial +

Online Sch.”. Switching to the online scheduler that has to schedule the design trace

requests as they come, significantly increases the OPEX (and, hence, the total cost)

and the drop ratio, as can be seen in the figure.

We compare these results with the performance of applying algorithm CA on the

initial configuration, using the greedy online scheduler on the design trace, i.e., “CA

+ Online Sch.”. Observe that, while the total cost is similar to the cost incurred by

the initial configuration, the drop ratio achieved is very close to the lower bound. This

means that by investing more in CAPEX by buying more RSU capacity, algorithm

CA compensates for this cost increase by reducing OPEX by a similar amount, while

almost completely achieving its main goal, i.e., the reduction of drop ratio as much

as possible.

While the previous results are encouraging for the use of the CA algorithm, the

more important test is clearly running CA on the 9 traces that were not used in the

design phase. These 9 traces were generated with the same statistics as the design

trace. The averaged results of running the online scheduler with the initial config-

uration, and with the CA configuration are shown in Figure 4.1 denoted by “Initial
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+ Online Sch. (New Traces)” and “CA + Online Sch. (New Traces)”, respectively.

For comparison purposes, we have added results when we maximize the capacities of

all opened RSUs, i.e., the “Max. Cap. + Online Sch. (New Traces)” in Figure 4.1).

These results correspond to the case of using as much capacity as possible in order

to achieve the best possible drop ratio, while being oblivious to any cost increases.

As expected, running the three different configurations (Initial, CA, and Max.

Cap.) on the 9 new traces incurs larger total costs than running Initial and CA

on the design trace (Figure 4.1a). Obviously, the increase for the Initial and CA

configurations is due to increased OPEX costs, while the high total cost of max

capacity reflects its high CAPEX cost. Note though, that the discrepancy between

the latter and the costs of the Initial and CA configurations decreases as the CAPEX

cost becomes more dominant in the total cost (i.e., the single RSU capital cost factor

increases). This is due to the fact that as the CAPEX contribution to the total cost

increases, the initial configuration opens fewer RSUs and equips them with more (up

to max) capacity. Nevertheless, the cost incurred by maximizing all capacities is

always significantly greater than that using the Initial or CA configurations. On the

other hand, its drop ratio is very close to the lower bound (Figure 4.1b). Therefore,

if one is oblivious to costs, maximizing all capacities will give the best drop ratio. If

the total cost is a consideration, then Figure 4.1b shows that the CA configuration

has a much smaller drop ratio than the Initial configuration, while incurring almost

the same (actually smaller) cost as the Initial configuration, as seen in Figure 4.1a.

To better understand the performance of the CA algorithm, we show the perfor-

mance of the configuration resulting after each one of its iterations in Figure 4.2, for

the case of the single RSU capital cost factor of one (the leftmost points in Figure
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4.1). The total cost and its components, i.e., OPEX and CAPEX, are shown in Fig-

ures 4.2a and 4.2b, respectively. Figure 4.2c shows the request drop ratio for each

iteration. The results for the other single RSU capital cost factors is similar, and,

therefore, we concentrate on the case of single RSU capital cost factor of one.

As can be seen in Figure 4.2, there are two phases in the graphs. The first

phase (up to iteration 9) corresponds to a sharp decrease in the drop ratio. During

this phase, by adding capacity to those RSUs with the highest impact on the drop

ratio, algorithm CA creates opportunities to serve more vehicles at their favourable

positions relative to RSUs (from an energy point of view), while, at the same time, it

decreases the contention between requests for service. This causes both the OPEX and

the drop ratio to decrease. On the other hand, increasing RSU capacities increases

CAPEX. Hence, after a certain point (iteration 9), increasing capacities does not

affect OPEX by much, while CAPEX continues to increase, and as a result, the total

cost is increasing. During this second phase, the improvement of the drop ratio is

slow, especially when compared to its rapid drop during the first phase. This is to be

expected, since after a certain point the capacities of the RSUs are no longer an issue,

and increasing them does not improve significantly the OPEX or the drop ratio.

In all previous experiments, the RSUs were chosen from three types, with a max-

imum capacity of 6. Given that vehicular networks are built with an operational

horizon measured in decades, in the future it may be possible to increase RSU ca-

pacities much beyond the upper bound of 6. In order to assess the performance of

algorithm CA in this case, we run it with the same CAPEX model as before, but

without an upper bound on the available capacities. The results are shown in Figure

4.3. The curve “CA (Unlimited Cap.) + Online Sch. (New Traces)” shows the results
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Figure 4.2: The Capacity Augmentation Algorithm Progress in each of Iteration.
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of running algorithm CA without RSU capacity upper bounds. The other curves are

the result of the Initial and CA configurations from Figure 4.1, where RSUs have a

maximum capacity of 6. In these experiments, the highest capacities reached by al-

gorithm CA are 8, 9, 9, and 9 for single RSU capital cost factors 1, 2, 3, 4 respectively.

Note that these maximum capacities are not much higher from the upper bound of 6

used before.

We note that algorithm CA has a higher drop ratio when run with unlimited

capacities compared to the limited capacity case (although the total costs have the

reverse relationship). This can be explained as follows: First, reaching the capacity

upper bound on an RSU forces the algorithm to distribute its capacity increases to

other RSUs in order to decrease the overall drop ratio, and as a result, this distribution

of extra capacity eventually helps to service more requests within their deadlines.

Second, there is the pathological situation of a vehicle generating more requests than

can be serviced before the vehicle leaves the servicing RSU coverage area; therefore,

an RSU can have the highest impact on the request drop ratio and, at the same time,

increasing its capacity does not reduce the number of dropped requests. This causes

algorithm CA to focus on the wrong RSU and to continuously increase its capacity,

until it detects that the drop ratio has not improved (the length of window M in

Algorithm 2) and terminates.
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Figure 4.3: The Effect of Unlimited Capacity on the Capacity Augmentation Algo-
rithm Performance.
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4.6 Conclusions

This chapter has addressed the issue of capacity augmentation in energy efficient

road-side unit (RSU) deployments. The objective is to find RSU radio capacity aug-

mentation assignments that minimize the total capital expenditure and long-term op-

erating expenditure costs. This is subject to meeting packet deadline constraints with

a given packet loss rate target. An algorithm, referred to as the Capacity Augmenta-

tion (CA) Algorithm, was proposed that iterates over the RSUs, selecting candidates

for capacity augmentation based on their packet loss rate sensitivities. Results were

presented that characterize and compare the performance of the CA Algorithm using

a greedy online packet scheduler. It was shown that the CA Algorithm is an efficient

way to assign RSU radio capacity that can achieve the desired packet loss rate target

while reducing the sum of operating and capital expenditure costs.
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Chapter 5

Energy Efficient Roadside Unit

Transmission Scheduling with

Unknown Vehicle Routes

5.1 Introduction

In many applications, competing vehicular job requests may span across multiple

RSU coverage areas as the vehicle travels through the coverage region (Khezrian

et al., 2015). When the vehicle routes are known by the scheduler (Zou et al., 2011;

Ali et al., 2014a), then this information can be incorporated into the scheduling in

a straightforward manner. This may eventually be possible once self-driving vehi-

cle technology becomes widespread, since route information may be communicated

directly to the roadside infrastructure (Paden et al., 2016). However, when vehicle

routes are unknown, which is currently the case, the scheduling problem becomes

significantly more complicated.
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In this chapter we consider the problem of roadside unit job scheduling when vehi-

cle routes are unknown. The scheduler is given the topology of an urban road network

and historical traffic traces that are used to extract vehicular motion statistics. Given

this information, the scheduler must process online vehicular job requests that are

subject to hard deadline constraints and incurring a small packet loss. The objective

is to perform this scheduling in an energy efficient fashion, such that the long-term

energy service costs, i.e., operating costs (OPEX) of the RSUs are minimized. A

scheduler referred to as the Route Coverage Expectation Scheduler (RCES) is pro-

posed. RCES uses the historical input traffic traces to estimate vehicular motion and

the associated energy communication costs. RCES uses this information to schedule

job requests across multiple RSUs whenever possible. This is done by scheduling part

of a request on the current RSU and deferring the remainder to RSUs that the vehi-

cle may encounter in the future. The decision on request deferment is based on the

expected free capacity the vehicle will encounter in the near future. This expectation

is computed over all possible routes (up to a certain length) using the provided route

statistics as an input.

A wide variety of results is presented that show the performance of the proposed

scheduler. In particular, we compare RCES to optimal offline scheduling, where routes

are assumed to be known in advance. We also compare it with a simple greedy online

scheduler, which also knows vehicle routes at the time of scheduling. This algorithm

greedily assigns each job request to the energy-minimum time-slots among the RSU’s

with available capacity that the vehicle will encounter. RCES is also compared to

the scheduler in (Ali et al., 2014b), which attempts to assign all requests to the RSUs

on the current street using an earlier-deadline-first (EDF) scheduling policy. The
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results show that deploying RCES when vehicle routes are not known by the network

achieves a drop ratio similar to the drop ratio achieved when these routes are known,

with only a modest increase in energy cost.

We emphasize that these results were achieved under quite restrictive constraints,

since, apart from the vehicle routes that are not known, the online scheduler has to

comply with the request deadlines and is not allowed to preempt already scheduled

jobs. Hence, our results hold for a network satisfying few assumptions, and as a result,

are fit for more practical settings. Nevertheless, it may be the case that historical

data are not available, or it is not feasible to gather and store a large volume of such

data. Therefore, we explore the possibility of using classic Machine Learning (ML)

algorithms in order to estimate the statistical information used in scheduling. In

Section 5.5 we use a Bayesian estimator (Alpaydin, 2014) to deduce vehicle turning

probabilities at intersections, and use them to run RCES. It is shown that, while using

estimates produces worse performance, as expected, the performance degradation is

rather small. We leave the further exploration of ML techniques for future work.

The remainder of the chapter is organized as follows. Section 5.2 briefly overviews

the related work. In Section 5.3, a detailed description of our system model is pre-

sented. Then, in Section 5.4, a heuristic algorithm referred to as route coverage

expectation scheduler (RCES) is introduced. Performance results are presented and

discussed in Section 5.5. Finally, this chapter is concluded in Section 5.6.

5.2 Related Work

Reference (Gui and Chan, 2012) introduces a motion prediction-based scheduling

scheme for the case user routes are not known, in which RSUs cooperatively balance
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their loads by transferring part of their requests to nearby non-overloaded RSUs.

Each RSU schedules requests according to their priorities (i.e., remaining valid time

and unserved size) and if a request in the current queue cannot be served before

its deadline, it will be transferred to the next RSU with the highest probability to

encounter. If transfer is not possible, the RSU with the second highest probability

will be considered. The request will be dropped if none of the RSUs can serve this

request. Each request can only be transferred once.

Reference (Ali et al., 2014b) enhances the model introduced in (Gui and Chan,

2012), referred to as the cooperative load balancing (CLB) scheduler. It considers the

current street RSUs before considering those in the next encountered intersection. It

calculates the load situation of the transferee RSU at the arrival time of vehicle whose

request is about to transfer. If the request cannot be transferred to any RSU, it will

be dropped. Note that, unlike our setting, preemption of a job already assigned to

an RSU is allowed.

Reference (Ali et al., 2014a) modifies the CLB scheduler in (Ali et al., 2014b) by

changing the assumption to the case that the vehicles routes are known at the time

of scheduling. Therefore, it guarantees more load balancing than the CLB scheduler.

However, at every request transfer, the scheduler also transfers the request to the

RSU at the next intersection, in case the vehicle deviates from its route.

To the best of our knowledge, our work is the first that proposes a roadside unit

scheduler that operates with unknown routes and with the objective of minimizing

long-term energy operating costs under job deadlines and with small packet loss.
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5.3 System Model

In this work, vehicles moving within an urban network of RSUs are generating trans-

mission requests that have to be serviced by the RSUs. The basic premise of our work

is that the route of each vehicle within the city is not known. In order to schedule

the request transmissions, the scheduler is given the city topology (represented as

a directed graph), and historical data (e.g., past traffic traces) out of which it can

deduce: (i) A probability matrix P = [ps,s′ ], where ps,s′ is the probability of a vehicle

turning from street s to street s′ at an intersection. (ii) The average travel times for

all streets.

Let N be the set of given deployed RSUs with capacities U = {un,∀n ∈ N} and

V be the set of vehicles serviced by the deployed RSUs, each with a set of requests Rv

for a total of R = ∪v∈VRv requests. Request r has a release date of ar and a deadline

(due date) of dr. In this work, we assume that any job request of size `r time slots is

splittable into `r unit-size (in time slots) requests with the same deadline, that can

be serviced by different RSUs.

Let T be the set of time slots; within a time slot, RSU n has the capacity to trans-

mit to at most un vehicles, and a vehicle can communicate with at most one RSU

during a time slot. Scheduling a unit-size request r means the assignment of r to an

RSU n for service during a time-slot t. In our setting, scheduling is non-preemptive,

i.e., interrupting the service of a request, or changing the RSU and time-slot assign-

ment of a request is not allowed. When vehicle v is within the coverage area of

RSU n during time-slot t, the energy cost for servicing request r is cntr, defined by a

distance-dependent exponential path-loss model with log-normal shadowing (Rappa-

port, 2001), otherwise cntr =∞. The transmission power between a transmitter and
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a receiver, Pt,r, can be expressed by Pt,r = Pt,0Psh

(
dt,r
dt,0

)α
, where dt,0 is the reference

distance, Pt,0 is the reference power at the reference distance, Psh is a random variable

that models the shadowing effect of the channel, α is the path loss exponent, and dt,r

is the distance between the transmitter and the receiver. The shadowing effect of the

radio channel is modeled as a random variable with log-normal distribution which

has a zero mean (in dB) and a standard deviation of σdB = 4.

5.4 The Route Coverage Expectation Scheduler

(RCES)

The input to our proposed algorithm RCES, shown as Algorithm 3, is a road network

with RSUs installed, vehicular traffic statistics (mean traveling time of streets and

turning probabilities at intersections) based on historical traffic data, and a communi-

cation cost matrix. New vehicular job requests that need to be scheduled arrive in an

on-line fashion. Algorithm RCES greedily finds the time-slots of minimum communi-

cation cost to serve requests, trying to minimize the total energy cost of scheduling.

Note that the algorithm does not make any assumptions about the vehicle routes.

RCES schedules part of a request on the RSU which currently covers the vehicle’s

current location (if such an RSU exists), and leaves the rest to be serviced by RSUs

that the vehicle may encounter in the future. Any portion of the first part that could

not be scheduled before the vehicle leaves an RSU coverage area, will be postponed

along with the second part. The decision on how requests should be divided is based

on the expected value of free capacity the vehicle will encounter in the next ξmax

streets or before its request expires (whichever happens first), where ξmax is a preset
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algorithm parameter upper-bounding its lookahead. The expectation is calculated

over all possible routes within these limits, using the probabilities given as an input.

In our experiments we set ξmax = 3, as a trade-off between accuracy and efficient

computability.

Algorithm 3 Route Coverage Expectation Scheduler (RCES)

Input:
• Deployed RSUs, initial capacities

• Incoming requests R, time slots T , and communication costs for all requests,
RSUs and time-slots

• City graph G, street traveling times, intersection turning probability matrix P
Output: Online schedule of all non-dropped requests
1: for all t ∈ T do
2: Rt = set of postponed or released at time t requests
3: Drop from Rt requests whose deadlines cannot be met
4: while Rt 6= ∅ do
5: Rtd := {same vehicle, RSU requests in Rt with smallest deadline}
6: γn := overall available capacity in RSU n
7: Γi := expected overall available capacity in route i, ∀ routes i
8: ration := γn

γn+
∑

route i Γi

9: Pd := first (ration ·
∣∣Rtd∣∣) requests in Rtd

10: Schedule requests in Pd in current RSU
11: Postpone requests in Rtd\Pd
12: end while
13: end for

More specifically, set Rt contains the requests released during time-slot t, together

with all other requests that were previously postponed (line 2). If any request expires

before it can be served, it will be dropped, otherwise the request will be added to Rt

when the vehicle announces its arrival to an RSU coverage area. In lines 4-12, RCES

goes through all requests in Rt and either schedules them or postpones them. We

use an earlier-deadline-first policy to pick all requests in Rt with the same earliest

deadline, that were submitted to the same RSU by the same vehicle (line 5). In
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line 6, γn is the overall available capacity of the RSU currently covering the vehicle,

while in line 7, Γi is the expected overall available capacity in route i following the

current RSU. By ‘overall available capacity’ we mean the total number of time slots of

capacity available for the request we are currently serving (for example, if the vehicle

will be in an RSU’s coverage area during time slots 3, 4, 5, and 6, and during these

time slots the RSU has available capacity 2, then the overall available capacity in this

RSU is 8). In line 8, we calculate the ratio ration by which we partition the set Rt
d

into two parts, Pd and Rt
d\Pd. We postpone the requests in Rt

d\Pd, and schedule the

ones in Pd, if possible (lines 10-11).

Ratio ration (line 8) is the ratio of the overall capacity of the current RSU γn over

the expected overall capacity in all possible routes a vehicle may follow, including

the current RSU. To calculate the denominator, we enumerate all possible routes

of length at most ξmax or the request deadline (whichever comes first), and use the

given traffic statistics. The intuition behind this ratio, is the obvious motivation of

assigning to an RSU a portion of total remaining requests that is proportional to the

available capacity of this RSU over the expected available capacity the vehicle is (or

is going to be) encountering.

5.5 Performance Results

In this section, we evaluate the performance of algorithm RCES. We compare it with

the optimal offline scheduling algorithm, which produces the minimum cost sched-

ule that satisfies the deadline constraints when the job requests are known ahead of

time and the vehicle routes are known. Obviously this optimal schedule is not imple-

mentable in our setting, since the requests and the vehicle routes are not known ahead
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of time, but its performance is a lower bound for any online scheduling algorithm (not

just the online scheduler used here). We also compare it with a simple greedy online

scheduler that knows the routes of vehicles at the time it schedules their requests. It

greedily assigns each job request to the energy-wise cheapest time-slot among RSU’s

with available capacity that this vehicle encounters before the request deadline. We

use this simple algorithm as a benchmark for the advantages gained when the vehicle

routes are known, even when the simplest possible scheduler is used.

We compare the results of our proposed algorithm with an alternative scheduler

based on the algorithm of (Ali et al., 2014b) that attempts to assign all requests

to the RSUs located in the current street where a vehicle is traveling in a balanced

manner, and following the earlier-deadline-first (EDF) scheduling policy. We refer to

this algorithm as the Cooperative Load Balancing (CLB) algorithm. To have a proper

comparison, we have adapted algorithm CLB to our setting. Hence, the implemented

CLB algorithm is non-preemptive, since preemption (i.e., interrupting the service of

a request, or changing the RSU and time-slot assignment of a request) is not allowed.

Also, and unlike (Ali et al., 2014b), requests for CLB can be generated even when

vehicles are outside the RSUs coverage area, but vehicles communicate their job

requests to the first RSU they encounter. Requests can have different sizes (multiple

time-slots), but we assume they are splittable into multiple unit-size (in time slots)

requests with the same release and due dates, that can be served by different RSUs.

We use a time window of 5 time slots and β = 0.25 for the exponential weighted

moving average used in algorithm CLB.

The performance evaluation is done using 10 vehicular traffic traces as input. The
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vehicular arrivals in each trace are generated by a Poisson process with a predeter-

mined mean arrival rate (1.25 vehicles per second, i.e., 2.5 vehicles per time slot).

Vehicles also generate job requests according to a Poisson process, with mean arrival

rates uniformly selected between 0.01 and 0.02 per time slot. The sizes of vehicular

requests are generated by an exponential distribution, with mean value selected uni-

formly between 4 and 8 time slots. In order to define the deadline for each request,

the number of time slots from its release date to its due date (i.e., the request time-

to-live) is chosen uniformly at random between 80 to 160 time slots. The traces used

in our simulations are 30 minutes in duration. The first trace is used to calculate the

statistics used in our algorithm, i.e., the turning probabilities at intersections and the

mean traveling time of each street in the given city topology. We also use the first

trace to calculate the initial RSU placement. Then, the other nine traces are used to

evaluate the effects of the proposed scheduling algorithm on both the cost and the

drop rate. The average results from these nine traces are presented here.

When they are assumed to be known, vehicle routes are generated by using SUMO

(Song et al., 2014). The origin and the destination of vehicle trips are selected uni-

formly from the set of intersections, and each vehicle follows the shortest path from

its origin to its destination. The average travel time of each street is calculated ac-

cording to its length, speed limit, and expected traffic density. Vehicles travel on a

Manhattan grid with three horizontal and five vertical streets, which are all bidirec-

tional. All intersections are controlled by traffic lights. The smallest block has a 1

km square area, which gives a total deployment region of 11.25 km2. All RSUs are

placed either at intersections or at the middle point between two intersections. Three

RSU types with capacity of 2, 4, or 6 are used. All deployed RSUs have coverage
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range of 250 m on each side.

In all experiments, the results shown are the ones of the optimal offline scheduler,

the greedy online scheduler with known routes, as well as algorithms RCES and CLB.

5.5.1 The Effect of the Number of Deployed RSUs

In the first set of experiments (Figures 5.1-5.2), we investigate the effect of the number

of deployed RSUs on the algorithms.

The horizontal axes show the number of deployed RSUs and the vertical axes show

either the total cost of scheduling or the percentage of dropped requests. We consider

two different RSU placement policies. First, we use the RSU placement algorithm of

Chapter 3 (MCRC algorithm). The number of RSUs is 22, 24, 26, and 28 with a total

capacity of 60, 66, 68, and 70, respectively. These results are shown in Figure 5.1.

Second, for the results shown in Figure 5.2, RSUs are placed at all intersections (i.e.,

15 RSUs) and 4 additional streets are randomly chosen to randomly place additional

RSUs. Thus we get cities with 19, 23, and 27 RSUs, respectively. All these RSUs

have a capacity of 2.

As shown in Figures 5.1b, 5.2b, the drop ratio for all algorithms are close to each

other (and far from the lower bound). While this is not surprising for algorithms

RCES and CLB, and can be attributed to the fact that these algorithms do not

know the vehicle routes thus missing future opportunities for assigning requests to

available capacity, it is rather surprising that the greedy scheduler that knows the

routes performs similarly. This is due to the objective of the latter algorithm, which

is the minimization of service cost without much regard to how many requests are

dropped. Note that our algorithm RCES has a lower drop ratio than CLB, since
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Figure 5.1: The Effect of Number of Deployed RSUs (the First Policy).
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Figure 5.2: The Effect of Number of Deployed RSUs (the Second Policy).

126



Ph.D. Thesis - Naby Nikookaran McMaster - Electrical & Computer Engineering

the former is basing its estimates on the given traffic statistics, while the latter does

not make use of them; it just assigns as many requests as it can in the immediate

neighbourhood that is certain to be on a vehicle’s route (current street). Obviously,

the greater the number of deployed RSUs, the lower the drop ratio for all algorithms.

In terms of service cost (Figures 5.1a, 5.2a), there is a rather large difference

between the greedy scheduler that knows the routes and the algorithms that do not

(RCES and CLB), as expected. Nevertheless, the more sophisticated use of traffic

statistics by RCES as described above leads to a much lower service cost in comparison

to CLB. We can deduce that while not knowing the routes significantly increases the

service cost, use of known statistics by our algorithm greatly limits the difference.

Note that the service costs increase with the increase in the number of RSUs. This is

due to the previously dropped requests that can now be served, thus increasing the

service cost, but also reducing the drop ratio. Since the drop ratio is similar for all

algorithms, i.e., they drop roughly the same number of requests, the comparison of

their service costs is valid, i.e., no algorithm achieves a better service cost by dropping

many more requests than the others.

Finally, we include our results of running the RCES scheduler on vehicle motion

probability estimates produced by a classic Bayesian estimator (Alpaydin, 2014) (de-

noted as the online BRP scheduler in Figures 5.1-5.2), which is trained using the first

of our traces. Note that the drop ratio is slightly larger than that of RCES when

run on exact probabilities calculated from past data, but its energy cost is not sig-

nificantly larger (due, in part, to the larger number of dropped requests). We leave

further exploration of Machine Learning techniques for future work.
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5.5.2 The Effect of Vehicle Arrival Rate and Request Arrival

Rate

In this set of experiments, we assess our algorithm performance as the vehicle arrival

rate or the request arrival rate increase. These results are shown in Figure 5.3-5.4.

Figure 5.3 shows the effect of the vehicle arrival rate and Figure 5.4 shows the effect

of the request arrival rate.

We use a fixed set of RSUs as we increase the vehicle or request arrival rates.

There are 22 deployed RSUs with a total capacity of 70. In subfigures 5.3a and 5.3b,

the horizontal axes show the rate by which vehicles arrive per time slot. In subfigures

5.4a and 5.4b, the horizontal axes show the middle point of the interval from which

the rate by which a vehicle generates its requests is randomly chosen. As mentioned

before, the per time-slot request arrival rate is chosen uniformly at random between

0.01 and 0.02. As before, the results shown are produced by averaging over all (except

the first) traffic traces used in our experiments.

As expected, increasing the number of vehicles or requests will increase both the

service cost and the request drop ratio. However, note that the request arrival rate

increase has a worse effect than the vehicle arrival rate increase, on both the service

cost and the drop ratio. This is due to the limitation of at most one request per

vehicle serviced during each time slot: While two requests from two different vehicles

can be served by a single RSU (using two units of capacity), two requests from the

same vehicle cannot do the same. Again, RCES outperforms CLB in terms of service

cost, for the same reasons as above.
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Figure 5.3: The Effect of Vehicle Arrival Rate.
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Figure 5.4: The Effect of Request Arrival Rate.
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5.5.3 The Effect of Request Size and Request Time-to-Live

Finally, we evaluate the effects of the request size and the request time-to-live on the

algorithms (Figures 5.5-5.6). Figure 5.5 shows the effect of the request size, while

Figure 5.6 shows the effect of the request time-to-live.

We use the same fixed set of deployed RSUs as in the previous case. To increase the

request sizes, we increase the lower and upper limits from which the mean request

sizes for each vehicle are randomly chosen; the middle point of these intervals are

shown on the horizontal axes in subfigures 5.5a and 5.5b. Similarly, we increase the

lower and upper limits from which the mean request time-to-live values are randomly

chosen; the middle point of the intervals are shown on the horizontal axes of subfigures

5.6a and 5.6b.

The results show that increasing the request size has the same effects that increas-

ing the request arrivals has on both the service cost and the drop ratio. But, as can

be seen, this case has slightly lower service costs and drop ratios. This is due to the

fact that two requests of size one introduce more uncertainties in the input to the

scheduler than a single request of size two, since the first request will be scheduled

without knowing the effect of the later second request. On the other hand, a sin-

gle request of size two can be broken into two unit-size requests that can be better

scheduled. Again, RCES performs better than CLB, for the same reasons as the ones

discussed above.

Subfigures 5.6a and 5.6b show that increasing the request time-to-live is mostly

beneficial for the drop ratio (as expected), since it allows the scheduler to postpone

requests that cannot be serviced at the current RSU to the future. On the other

hand, there isn’t much of an effect on the service costs. Again, RCES performs better
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Figure 5.5: The Effect of Request Size.
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Figure 5.6: The Effect of Request Time-to-Live (TTL).
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than CLB. Note that the greedy scheduler with route knowledge does worse for higher

time-to-live values, because it greedily looks for time slots with smaller communication

cost. Oftentimes, this scheduler prefers to serve requests during much later time slots,

because in this way it saves some energy cost, but it suffers higher drop ratio as a

result.

5.6 Conclusions

This chapter considered roadside unit job scheduling when vehicle routes are un-

known. A scheduler referred to as the Route Coverage Expectation Scheduler (RCES)

was proposed. RCES uses historical input traffic traces to estimate vehicular motion

and the energy communication costs associated with RSU-to-vehicle transmission.

The scheduler processes online vehicular job requests that are subject to hard dead-

line constraints and a small packet loss. The objective is to schedule vehicular jobs

in an energy efficient fashion, so that the long-term energy service costs of the RSUs

are minimized. RCES does this by scheduling job requests across multiple RSUs,

scheduling the initial part of a request on the current RSU and deferring the remain-

der to RSUs that the vehicle may encounter in the future. A variety of results were

presented that show the performance of the proposed scheduler. Comparisons were

made to optimal offline scheduling, where routes are assumed to be known in advance,

a simple greedy online scheduler, which also knows vehicle routes, and a known sched-

uler that attempts to assign all requests to the RSUs on the current street using an

earlier-deadline-first (EDF) policy. The results showed that deploying RCES when

vehicle routes are not known by the network achieves a drop ratio similar to the drop

ratio achieved when these routes are known, with only a modest increase in energy
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cost.
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Chapter 6

Conclusions and Future Work

Vehicular Ad-hoc Networks (VANETs) will play an essential role in the future of

intelligent transportation systems (ITS) that will eventually enable a wide range of

services, from safety applications to infotainment services. Roadside infrastructure is

a key component of these systems, either through data collection and dissemination

or as a gateway to the Internet. The cost of deploying roadside units (RSUs) consists

of installation cost, i.e., CAPEX (capital expenditure), and long-term operating cost,

i.e., OPEX (operating expenditure). An RSU deployment that minimizes the sum

of these cost components must jointly consider both the initial RSU placement and

their associated long-term service costs.

This thesis investigated an RSU deployment strategy in which the location and the

configuration of RSUs are decided such that the sum of CAPEX and OPEX costs is

minimized and all vehicular traffic requirements are met. We used historical vehicular

traffic traces, a set of RSU candidate locations, and a set of RSU configurations

for each candidate location as inputs. The traces include vehicular communication

requests with associated time deadlines. The RSU placement problem consisted of
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two phases. The first phase is the design, where historical traces are used to identify

the RSU locations and their configurations. In the second phase, the deployed RSU

network is exposed to a new online vehicular traffic flow. In this phase, the vehicular

traffic demands are processed in a causal fashion.

In the first part of the thesis, we studied the RSU placement and configuration

problem in VANETs. First, the offline RSU placement and configuration problem was

formulated as an integer linear program (ILP), which was used as a lower bound on

total cost. Solving the ILP becomes impractical as the problem size grows. A heuristic

algorithm called Minimum Cost Route Clustering (MCRC) was then proposed to

address large-scale problems. The MCRC algorithm is an LP-based relaxation of

the ILP optimization problem, which used a novel clustering technique and rounding

procedure to obtain RSU placements and configurations. A variety of simulation

results was presented that suggests that unlike RSU placement algorithms that focus

only on the number of deployed RSUs or the capital cost of deploying RSUs, the joint

optimization of capital and operational expenditure costs has a lower total cost as

well as lower request drop ratio. The significant advantage of the MCRC Algorithm,

especially in multiple-choice RSU placement, was also pointed out since MCRC takes

into account the service costs associated with the energy used to operate the RSUs

during the placement and configuration decisions.

In the second part of the thesis, the problem of capacity augmentation of the

RSU network was studied as a solution to vehicular demand growth over time and

the necessity for higher RSU capacities. Many network design methods are based

on offline traffic traces. As a result, and because of the causal nature of the stream

of incoming requests, the causal online scheduling during the operational life of the
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network may be suboptimal. Therefore, the objective of the design is to obtain

a minimum total cost RSU radio capacity assignment that meets a given packet

loss rate target, and subject to packet deadline constraints. A heuristic algorithm,

referred to as the Capacity Augmentation (CA) Algorithm, was then introduced that

iterates over the RSUs, selecting candidates for capacity augmentation based on their

packet loss rate sensitivities. A variety of results was presented to show how the

CA Algorithm counterbalances the lack of causality in the RSU network design, and

achieves the desired packet loss rate target, while reducing the sum of operating and

capital expenditure costs.

In the third part of the thesis, we investigated another challenge that faces the

offline RSU network design, i.e., the effect of the a priori scheduler knowledge of

vehicular routes. In many applications, it may not be possible to fully serve a vehicle

request by a single RSU, and the request should be served by multiple RSUs as the

vehicle travels through their coverage areas. In such circumstances, the knowledge of

vehicle routes can be valuable. However, this information may not be available to the

network. The thesis considered the RSU placement that uses such past knowledge

during the offline design, but it does not have access to current route information

during the job scheduling process. A scheduler referred to as the Route Coverage

Expectation Scheduler (RCES) was proposed. RCES uses historical input traffic

traces to estimate vehicular motion and the energy communication costs associated

with RSU-to-vehicle transmission. The objective is to schedule vehicular jobs across

multiple RSUs in an energy efficient fashion so that the long-term energy service costs

of the RSUs are minimized. A variety of experiments was presented that shows that

employing the RCES Algorithm when vehicle routes are not known by the network

138



Ph.D. Thesis - Naby Nikookaran McMaster - Electrical & Computer Engineering

can achieve a request drop ratio similar to the request drop ratio achieved when these

routes are known, with only a modest increase in energy cost.

The work in this thesis can be extended in the future by considering the expansion

and reconfiguration of RSU networks. In this thesis, we assumed that the statistics

of vehicular demands are stable for the period of planning and operating the RSU

network. Also, we assumed that at the beginning of the planning phase, there is no

existing deployed RSU. The model that was introduced in Chapter 3 can be extended

in the future to accommodate not only already existing deployed RSUs but also the

possibility of installing new RSUs, closing, and reconfiguring existing RSUs. Another

extension is to consider a hybrid scenario in which unicast and multicast requests can

be processed by RSUs.

Future extensions to the algorithms proposed in Chapter 4 can take into account

the possibility of installing a new RSU in addition to the capacity augmentation of

the current RSUs. Another extension to this work would be the reduction of RSU

capacities wherever it is appropriate. This can be considered when the traffic pattern

changes and operating an RSU with higher capacity may be costly to the network.

Employing more sophisticated machine learning techniques would be another exten-

sion of the proposed algorithm in Chapter 5, and can further improve the system

performance.
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