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Abstract

This thesis explores the effects singularities have on stationary and dynamical prop-

erties of many-body quantum systems. In papers I and II we find that the ground

state suffers a Z2 symmetry breaking phase transition (PT) when a single impurity

is added to a Bose-Einstein condensate (BEC) in a double well (bosonic Josephson

junction). The PT occurs for a certain value of the BEC-impurity interaction energy,

Λc. A result of the PT is the mean-field dynamics undergo chaotic motion in phase

space once the symmetry is broken. We determine the critical scaling exponents that

characterize the divergence of the correlation length and fidelity susceptibility at the

PT, finding that the BEC-impurity system belongs to the same universality class as

the Dicke and Lipkin-Meshkov-Glick models (which also describe symmetry breaking

PTs in systems of bosons).

In paper III we study the dynamics of a generic two-mode quantum field following a

quench where one of the terms in the Hamiltonian is flashed on and off. This model is

relevant to BECs in double wells as well as other simple many-particle systems found

in quantum optics and optomechanics. We find that when plotted in Fock-space plus

time, the semiclassical wave function develops prominent cusp-shaped structures after

the quench. These structures are singular in the classical limit and we identify them

as catastrophes (as described by the Thom-Arnold catastrophe theory) and show that

they arise from the coalescence of classical (mean-field) trajectories in a path integral

description. Furthermore, close to the cusp the wave function obeys a remarkable set

of scaling relations signifying these structures as examples of universality in quantum

dynamics. Within the cusp we find a network of vortex-antivortex pairs which are

phase singularities caused by interference. When the mean-field Hamiltonian displays

a Z2 symmetry breaking PT modelled by the Landau theory of PTs we calculate

scaling exponents describing how the separation distance between the members of

each pair diverges as the PT is approached. We also find that the cusp becomes

infinitely stretched out at the PT due to critical slowing down.

In paper IV we investigate in greater detail the morphology of the vortex network

found within cusp catastrophes in many-body wave functions following a quench. In

contrast to the cusp catastrophes studied so far in the literature, these structures live

in Fock space which is fundamentally granular. As such, these cusps represent a new
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type of catastrophe, which we term a ‘quantum catastrophe’. The granularity of Fock

space introduces a new length scale, the quantum length lq = N−1 which effectively

removes the vortex cores. Nevertheless, a subset of the vortices persist as phase

singularities as can be shown by integrating the phase of the wave function around

circuits in Fock-space plus time. Whether or not the vortices survive in a quantum

catastrophe is governed by the separation of the vortex-antivortex pairs lv ∝ N−3/4

in comparison to lq, i.e. they survive if lv � lq. When particle numbers are reached

such that lq ≈ lv the vortices annihilate in pairs.
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Chapter 1

Introduction

Quantum mechanics is one of the pillars of modern physics and leads to the idea that

massive particles can behave as waves. The notion of matter waves first came from

de Broglie in 1924 [1] and ever since physicists have been studying them intensely in

a wide range of systems. One of the most dramatic displays of matter waves is in

a Bose-Einstein condensate (BEC) where a macroscopic number of massive bosonic

particles are condensed into a single quantum state. Such a state of matter was first

predicted by Einstein [2] in 1924 using Bose statistics [3] and was first experimentally

observed in 1995 [4, 5, 6]. The generation of two independent matter waves can be

achieved by splitting a BEC [7, 8, 9] and their merger leads to interference effects like

lasers for light.

When two BECs are weakly coupled, like in a system of a BEC in a double well

potential separated by a finite barrier, the energy difference between the single particle

ground state and first excited state is much less than the energy difference between

the ground state and all other single particle states. This leads to interesting coherent

behaviour like the tunneling of massive bosons between two macroscopically occupied

states localized in the left and right wells. This type of tunneling was first postulated

by Josephson [10] in the context of current tunneling between two superconductors

through an insulator, so the BEC in a double well potential is often called a bosonic

Josephson junction (BJJ).

The reduction of the single particle Hilbert space to just two states in a BJJ means

the size of the Hilbert space of the many-body states is equal to the number of bosons

plus one. This allows for exact numerical calculations to be done of system sizes

of up to 104 bosons using modest computational resources. On the experimental

side of things, through Feshbach resonances [11] and precise trapping potentials [11]

the interactions between bosons as well as their tunneling rate, respectively, can be

precisely controlled. This allows for the BJJ to be tuned over a wide range of regimes

making it an ideal system to do experiments with.

Theoretical and experimental work has focused on both steady-state and dynami-
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cal aspects of the BJJ. Some theoretical work includes spatial fragmentation [12, 13],

finite temperature effects [14, 15], low energy excitations [16] and phase diffusion [17].

While some experimental work has focused on controlling number and phase differ-

ence fluctuations [18, 19], fundamental quantum effects like continuous measurements

producing the Zeno effect [20] and using the BJJ as a thermometer [21].

Recently, research into coupling the BJJ to other quantum systems has also been

undertaken. Early research into coupled quantum systems focused on the interac-

tions between laser light and atoms resulting in the cooling of atomic motion in the

1980s [22, 23, 24]. This lead to many applications from atomic clocks and precision

measurements to the BJJ itself [25]. Optomechanics is another example and is an

extremely active field which aims at understanding and manipulating the interactions

between light in optical cavities and mechanical oscillators [26]. Both of these exam-

ples focus on the coupling of light and some other system and although the coupling

can lead to nonlinear behaviour, light by itself cannot. The BJJ, on the other hand,

is nonlinear because of the boson-boson interactions, so its coupling to other systems

should lead to new phenomena. On top of that, the BJJ has high controllability and

is macroscopically large making it an excellent candidate and perhaps a canonical

example of a system to couple to in order to observe nonlinear behaviour. Indeed, the

coupling of two species of BECs in a double well has helped in the study of transitions

from independent to synchronous quantum dynamics [27]. Even the coupling of a BJJ

to a small quantum system like a single atom has produced dramatic effects. Some

examples include a quantum dot inducing coherent shuttling of bosons from one well

to the other resulting in Josephson oscillations [28] and a fermionic impurity doing

the same [29]. In this thesis we show that impurity induced coherent tunneling in

the BJJ is the result of a second order Z2 symmetry breaking phase transition (PT)

of the ground state as the BEC-impurity interaction energy approaches some critical

value. In general, equilibrium PTs are associated with drastic changes in macroscopic

properties of the system as a parameter is tuned through some critical value. We

show the critical exponents which characterize this PT put it in the same universality

class as the Lipkin-Meshkov-Glick [30] and Dicke [31] models (among others) both of

which describe systems of two-state atoms coupling to themselves and light, respec-

tively. We emphasize the equivalence to the PT in the Dicke model, which results in

the coherent emission of light, because of its recent experimental confirmation in 2010

[32].

Non-equilibrium processes in many-body systems have also gained much interest

over the past decade as a result of developments in experimental technology involving

BECs [26]. There are two main protocols used to produce non-equilibrium behaviour:

(1) a sudden quench [33] where some parameter is flashed and kept on at t = 0 or

(2) a periodic perturbation [34] where a parameter is flashed on and off periodically.

In our simulations we use a combination of the two resulting in flashing on, then off
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(a kick) either the tunneling energy or interaction energy of the BJJ ground state at

t = 0.

In recent research it has been shown that after a sudden quench, dynamical proper-

ties of a system can change drastically depending on the strength of the quench, per-

haps signalling the existence of non-equilibrium PTs. In the one-dimensional XXZ

spin model critical speeding up was observed at a critical value of the quenched

anisotropy energy [35] and in the one-dimensional Bose-Hubbard model a quasista-

tionary state was separated from a rapidly thermalized state by a critical value of the

quenched interaction energy [36].

In general, the act of applying an external force on an otherwise isolated quantum

system produces excitations. The evolution of these excitations is determined by the

Schrödinger equation or equivalently the Feynman path integral [37] which weights

each path by an exponential whose (imaginary) phase is the inverse of Planck’s con-

stant, ~, multiplied by the classical action. A well known semiclassical approximation

to the path integral is the method of stationary phase [38] which uses the fact that as

~→ 0 the terms which contribute most to the integral are those which extremize the

action. Thus, one can get a good picture of the dynamics under most situations by

finding the critical points of the classical action. There are many mathematical tech-

niques used to analyze such situations with varying degrees of success, but one which

covers a broad range of phenomena is called Catastrophe Theory (CT). Developed by

René Thom in 1975 in his book Stabilité Structurelle et Morphogènése [39], CT applies

primarily to systems where the extremized value of some function is sought making

it ideal for analyzing quantum dynamics. The main results of CT are that in the

parameter space near the region where the extrema of the action coalesce the action

takes certain universal forms based on its number of parameters and dimensionality

and that these forms are stable to perturbations. These forms are called elementary

catastrophes (catastrophes for short).

The universal aspects of CT have been investigated in quantum systems by map-

ping the potential of a Hamiltonian to one of the catastrophes near an equilibrium

PT [40, 41, 42, 43, 44, 45], but very little has been done in the way of dynamics. In

fact, this author can only find two instances where CT was used directly to analyze

dynamics after a quench: a kicked quantum rotor [46] and plasma oscillations of a

quenched BJJ [47], both displaying cusp catastrophes. Neither paper analyzes the

effects of a PT on the resulting cusp, so the application of CT to dynamical PTs

represents a new field with as of yet untapped potential. The universal aspects of CT

give a possible path to making connections between seemingly very different systems

through their dynamical PTs. In this thesis we take the first step towards using CT

to analyze the semiclassical behaviour of a cusp produced by the dynamics of a kicked

BJJ as it approaches a critical point of an excited state PT.

Optics is the subfield of physics in which CT is featured most prominently [48,
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49]. It turns out that any reflecting, refracting or diffracting surface which is not

perfectly parabolic in shape will produce caustics (regions of high light intensity)

forming catastrophes. Common examples include the bright reflections of light on the

surface of water and the cusp shape of light reflecting from the inside of a coffee cup

onto the surface of the coffee inside it. It was Huygens who originally discovered that

the cusp was stable and was produced by light wavefronts [50], but did not realize it

was part of a hierarchy of catastrophes. The next progress came from Pearcey who

discovered the diffraction integral of the cusp [51] which takes the form of a Feynman

path integral, but he also did not know about the catastrophe hierarchy. After Thom

elucidated the universal forms of the catastrophes Arnol’d derived universal scaling

exponents for their intensities [52] and Berry derived a set of exponents describing the

dependence of the fringe spacings on the wavenumber for each one [53]. Within the

cusp the interference of the light waves produce a network of vortex-antivortex pairs.

The Berry exponents determine how the density of vortex-antivortex pairs change

with wavenumber. With light the vortices cannot be seen with the naked eye, but are

visible when magnified.

The vortices are points of undefined phase and zero intensity of the wave and

occur in the wave theory of light due to interference effects and the fact that the

waves are continuous. The second condition is subtle and only becomes important

when continuity of the wave breaks down. This happens when one needs to take

into account that light is composed of photons. This happens in other many-body

quantum systems like the BJJ for the same reason. We can ask the question, what

happens to vortices when the waves producing the cusp are discrete? This question

was partially answered by Berry and Dennis when they considered the particular

nature of light and found the vortices were smoothed out over a radius proportional

to
√

~ [54]. However, effects relating to the phase of the wave remained uninvestigated.

In this thesis, we look at the effects of granularity on the phase of the many-body

wavefunction in the BJJ and find some remnants of the vortices persist, but they too

vanish when a condition on the number of bosons in the BEC is met.

Thesis Outline

The first part of this work (Ch. 2) outlines the basic theories that are used in the papers

and is broken up into four major sections. Section 2.1 discusses general properties

of both classical and quantum equilibrium PTs and how PTs produce singularities

in some quantities. Section 2.2 discusses many-body quantum mechanics in general,

then focuses on the BJJ. Afterwards, Sec. 2.3 focuses on the addition of an impurity

to the BJJ and the resulting equilibrium PT. Finally, Sec. 2.4 discusses the basic ideas

of elementary CT and connects them to the three previous sections.

The second part (Ch. 3) presents four publications along with their summaries
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which represent the contributions of the author. The papers can be broken up into

two parts. Papers I and II both describe the second order PT resulting from the

interaction of the BJJ with an impurity; paper I taking a mean-field approach and

paper II taking a quantum approach. Papers III and IV describe how catastrophes

emerge in the dynamics of many-body quantum systems, but mainly focus on the BJJ

(without an impurity). Paper III focuses on the effects of an excited state PT on the

cusp and the vortices within it while paper IV focuses on the effects of discreteness

on the vortices.

In the third part (Ch. 4) a summary is given of the work presented as well as a look

forward to what other interesting questions the BJJ-impurity system can explore and

what CT can tell us about the connections between dynamics of different systems.

Finally, the last part (Appendix A) consists of a description of how catastrophes

emerge in the dynamics of single particle excitations in the transverse field Ising

model. A brief discussion is also given on the effects of the PT within the model on

the catastrophes. The results constitute new, but as of yet unpublished work.
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Chapter 2

Basic background theory of phase

transitions, quantum field theory

and catastrophe theory

2.1 Phase transitions

Phase transitions (PTs) are transitions between two or more phases of a system.

The PTs most people are familiar with are ones between the solid, liquid and gas

phases of water. During a PT certain properties of the system change, some times

discontinuously, as a set of parameters called driving parameters are tuned through

a set of critical values. For the case of water, it transitions from a solid to a liquid

as the temperature is increased through the PT at T = Tc ≈ 273K resulting in a

sudden decrease in density. PTs are often described as being non-analytic because

certain quantities which characterize the PT become discontinuous or singular. By

discontinuous we mean they take sudden jumps and by singular we mean they diverge.

The non-analyticity in the water example comes from the solid and liquid phases

having the same free energy at Tc resulting in a divergence of the compressibility.

PTs can be further characterized by the lowest order derivative of the free energy

(with respect to the driving parameter) which becomes discontinuous at the PT.

For instance, first order PTs happen when the first derivative of the free energy is

discontinuous. This quantity is called the order parameter and measures the order of

the phases. Usually the order parameter is zero in one phase and nonzero in the other.

For water ρs−ρ(T ) can act as the order parameter for the solid-liquid transition where

ρs is the density of ice and ρ(T ) is the density of the system at temperature T . Other

examples are magnetic systems where the total magnetization, M(T ), is the order

parameter for the transition between the paramagnetic and ferromagnetic phases. A

discontinuity in the second derivative of the free energy characterizes a second order
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PT which is the type we will focus on in this thesis. This quantity determines how

susceptible the order parameter is to changes in the driving parameter and is usually

called the susceptibility. Common susceptibilities are the specific heat, C ∝ −∂2fs
∂T 2

for PTs involving temperature and the magnetic susceptibility, χh ∝ −∂2fs
∂h2 for PTs

involving applied fields, where h is the applied magnetic field and fs, which we will

discuss later, is the singular part of the free energy.

The majority of PTs, and the ones we will look at, involve the breaking of some

symmetry. Indeed, symmetry breaking can be viewed as the cause of the change in

the order parameter between the two phases. In second order PTs some symmetry

is spontaneously broken via uncontrollable fluctuations. This is in contrast to first

order PTs where symmetry is broken manually by an applied field. Using magnetic

systems as an example, in the paramagnetic phase the magnetic spins point in random

directions, so rotating the system causes no change in the direction of total magneti-

zation. However, as the temperature decreases the spins align in the same direction

and we enter the ferromagnetic phase where rotating the system causes a change in

the direction of magnetization. The direction of magnetization that is ‘chosen’ in

the ferromagnetic phase is random because the thermal fluctuations that cause it are

random. In general, for PTs involving temperature the higher temperature phase has

more symmetry than the lower one.

What is shocking is that the scaling of physical quantities like correlations and

the susceptibilities given above are universal near the PT where the scaling forms

are independent of the microscopic details of the system and instead depend on the

symmetries and dimensionality of the free energy [55, 56]. This introduces the concept

of universality where systems differing wildly on the microscopic level can share certain

scaling properties on a macroscopic level near a PT if they have the same symmetries

and dimensionality. Both classical and quantum PTs exhibit universal behaviour in

some way and even though this thesis focuses on quantum PTs we will be purposefully

vague about the type of PTs discussed in the coming three sections. However, in the

section focusing on quantum PTs clear distinctions will be made.

2.1.1 Landau theory of phase transitions

It was Landau [57] who in the late 1930s argued that for a second order PT an order

parameter, m, must exist and that in the vicinity of the PT m � 1. He also argued

that the most important features of a PT are determined by expanding the free energy

in terms of m. In general m can be a vector, complex, or something even more exotic,

however we can go a long way toward describing second order PTs by keeping m a

scalar. Thus, the free energy takes the form

f(m; Λ) = f0(Λ) + b(Λ)m+ c(Λ)m2 +O(m3) (2.1)

7
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Figure 2.1: Mean-field properties of the energy and order parameter for different values of the reduced
driving parameter λ. (a) The free energy as a function of the order parameter m for λ > 0 showing
a single well and λ < 0 showing a double well. (b) The ground state value of the order parameter
as a function of λ where it becomes nonzero for λ < 0. (c) The ground state energy as a function of
λ where it also becomes nonzero for λ < 0. In both (b) and (c) the dashed line marks energetically
unstable values of both m0 and E0.

where the coefficients b, c, ... are some functions of the driving parameter, Λ, and f0 is

the part of the free energy independent of m, but not necessarily Λ, although, it is a

smooth function of it. Equation (2.1) is a simplified version of the Landau approach

to PTs provided m is uniform over the system. We make a further simplification by

noting near the PT we can define a critical value of Λ, Λc, and expand the coeffi-

cients in terms of a reduced driving parameter, λ = |Λ−Λc
Λc
| � 1. We can also apply

some symmetry constraints to f . For instance, for second order PTs (m changes con-

tinuously across the PT) f(m) = f(−m), so we only keep even orders of the order

parameter. Keeping only up to quartic terms, the free energy becomes

f(m;λ) ≈ a1λm
2 + a2m

4 (2.2)

where f0 has been removed and a1 and a2 are some constants that we will set to unity

without loss of generality. Also, we have kept up to first order in λ for the quadratic

term and zeroth order for the quartic term. The shape of Eq. (2.2) can be seen in

Fig. 2.1a for different values of λ. For λ > 0 there is a single minimum at m = 0,

while for λ < 0 there are two minima an equal distance away from m = 0 on either

side. The locations of the minima are found by extremizing Eq. (2.2), so we have

m0 =





0 , λ ≥ 0

±
√
|λ|
2

, λ < 0
(2.3)

and plugging this into the free energy gives the ground state energy in the two phases

E0 =

{
0 , λ ≥ 0

−λ2

4
, λ < 0 .

(2.4)
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where for Eqns. (2.3) and (2.4) the parameters a1 and a2 have been set to unity

without loss of generality. Both equations are plotted in Fig. 2.1 where we see the m0

image shows a pitchfork bifurcation for λ < 0. The dashed line shows the unstable

stationary point at m0 = 0 while the two symmetric curves are new stable solutions

representing the minima of the double well in image (a). We also see that for λ < 0

m0 ∝ |λ|β where β = 1/2. This is an example of a critical scaling exponent and

describes the behaviour of the order parameter near the PT. It is independent of the

microscopic details of the system and is therefore universal. Equation (2.4) shows

why the PT is of second order since the susceptibility, χλ = −∂2E0

∂λ2 , is discontinuous

at λ = 0: χλ ∼ 0 as λ→ 0+ and χλ ∼ 1/2 as λ→ 0−.

The one glaring problem with what we have done so far is we have neglected

fluctuations. We can see from Fig. 2.1 if we started with λ > 0 with the system in

its ground state and changed λ so it was negative, the system would still be in the

state m = 0 where the tiniest nudge one way or the other would evolve the system

to one of the new minima. Thus, the system is extremely sensitive to fluctuations

of m near the PT. m can also be allowed to vary in space i.e. m → m(~x) where ~x

usually represents real space, but can represent more abstract spaces. To account for

the energy cost of spatial variations of m we modify the free energy once again by

adding the lowest order correction

f(m,λ)→ f(m(~x), λ) =
s

2
(∇m(~x))2 + λm(~x)2 +m(~x)4 (2.5)

where the free energy is now an energy density and must be integrated over all of space

to get the total energy of the system. We are allowed to truncate f at the lowest order

of spatial fluctuations because near the PT the system is most sensitive to fluctuations

involving many particles [55] which corresponds to long wavelength deviations of m.

To quantify the degree of correlation of the fluctuations we introduce the correlation

length, ξ, which is singular at the PT, ξ ∝ |λ|−ν , where ν > 0 is the correlation length

critical exponent. In mean-field theory ξ ∝ |λ|−1/2 [56].

2.1.2 Singular part of the free energy

The two mean-field critical exponents β and ν are a part of a set which describes the

singular nature of various quantities at a PT in the thermodynamic limit, N → ∞.

Since many quantities are related through the free energy it is important to determine

the singular part of it. We go back to a uniform m starting with Eq. (2.2), however

we include an applied field, h, to make things more general, and simplify so that the

only parameters are h and λ

f(m;λ, h) = λm2 +m4 − hm . (2.6)

By minimizing f we can find h in terms of m and λ

9
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h(m,λ) = 2λm+ 4m3 (2.7)

and scaling m by its nonzero ground state value for h = 0, given in Eq. (2.3) gives

h(m,λ) = |λ|3/2
[

2

(
m

|λ|1/2
)

+ 4

(
m

|λ|1/2
)3
]
, (2.8)

thus m as a function of λ and h must take the form

m = |λ|1/2gh(h/|λ|3/2) (2.9)

where gh is some function. In the Landau theory Eq. (2.8) gives the universal form of

the scaling of m and h with respect to λ, so applying these scalings to the free energy

allows us to write it in its universal form as well

f(m;λ, h) = λ2

[
2

(
m

|λ|1/2
)2

+ 4

(
m

|λ|1/2
)4

−
(

h

|λ|3/2
)(

m

|λ|1/2
)]

. (2.10)

Finally, substituting Eq. (2.9) into Eq. (2.10) gives the singular part of f

fs(λ, h) = λ2gf (h/|λ|3/2) (2.11)

where gf is some function. What we have done is focused on the minima of the

free energy which is the singular part and through rescaling were able to reduce the

dependence of the free energy to two variables from three by eliminating the order

parameter.

The derivation of Eq. (2.11) was done using the uniform field Landau theory which

is the lowest order description of PTs. The major assumption going forward is that

beyond the Landau theory fs keeps the same form [56], but in general has different

exponents, so

fs(λ, h) = λ2−αgf (h/|λ|∆) . (2.12)

The exponents α and ∆ are the susceptibility and gap critical exponents and are the

same among systems in the same universality class. The reason for the exponent

(2 − α) is because once again the susceptibility is defined χλ ≡ −∂2fs
∂λ2 ∼ λ−α as

h→ 0. The form of Eq. (2.11) allows us to compute relations among different scaling

exponents, but we will do that in the following sections. For now, we go back to

spatially dependent fields and derive Eq. (2.11) in a more subtle, but general way

with a process called renormalization.

10
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2.1.3 Rescaling and renormalization

Now, we build on what we have done to find useful relations between the exponents

we have derived. First, we note that at the critical point λ = h = 0 we have scale

invariance because the correlation length diverges implying fluctuations take place

at all length scales. To explain scale invariance further we use a technique called

renormalization which allows us to look at the system at different length scales and

consists of three steps [55]:

1. There exists a short length cut off distance, a, which is usually a lattice spacing

or mean separation distance between atoms. If we use a different length scale we

must coarse-grain the order parameter by averaging over regions of size ba where

b > 1 is the scaling parameter,

m̃(~x) =
1

bd

∫
ddy m(~x+ ~y) (2.13)

where the integration is over a cell around ~x.

2. Since the system looks grainier after the averaging we rescale our lengths, ~x′ =

~x/b, so the minimum length scale is again unity.

3. The result of the previous two steps is that the fluctuations of m̃(~x′) may appear

larger than the original m(~x), so we tune the contrast by some factor, ζ, which

gives the final rescaled and renormalized field

m′(~x′) =
1

ζbd

∫
ddy m(b~x′ + ~y) . (2.14)

Now the system can be compared to the original before the rescaling process took

place. Under the renormalization procedure the parameters of the system also change

and in general are functions of every parameter from the unscaled system, R{λ} =

λ′(λ, h) and R{h} = h′(λ, h), where R is the renormalization procedure described

above. However, at the PT we have scale invariance, so we expect λ′ → 0 as λ → 0

and h′ → 0 as h→ 0. This means near the PT the leading order behaviour is

λ′ ≈ byλλ

h′ ≈ byhh , (2.15)

where byλ = ∂λ′

∂λ

∣∣
λ=h=0

and byh = ∂h′

∂h

∣∣
λ=h=0

, so R is a linear transformation of the

parameters. Also, the free energy does not change under this procedure [55, 56], so

V f(λ, h) = V ′f(λ′, h′) and since V ′ = V/bd, plugging in Eq. (2.15) gives the singular

part

11
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fs(λ, h) = b−dfs(b
yλλ, byhh)

ξ(λ, h) = b ξ(byλλ, byhh) . (2.16)

where we have also assumed the correlation length takes the same form and used

ξ′ = ξ/b. Using Eqns. (2.15) and (2.16) it is easy to see what the generalization to an

arbitrary number of parameters looks like. Since R is a linear transformation, then

the general form is

fs(x1, x2, ...) = brfs(b
r1x1, b

r2x2, ...) (2.17)

as long as fs is a homogeneous function.

We are free to choose any value of b we want however some values are more useful

than others. For instance, having b = λ−1/yλ changes Eq. (2.16) to

fs(λ, h) = λ
d
yλ gf (1, λ

− yh
yλ h) = λ

d
yλ gf (λ

− yh
yλ h)

ξ(λ, h) = λ
− 1
yλ gξ(1, λ

− yh
yλ h) = λ

− 1
yλ gξ(λ

− yh
yλ h) (2.18)

where gf and gξ are some functions. From these equations we can see ν = 1/yλ and

since ∂2fs
∂λ2 |h=0 ∝ |λ|−α, this means

α = 2− νd (2.19)

which is known as the Josephson hyperscaling relation. Comparing the free energy in

Eq. (2.18) to Eq. (2.12) we also see yh = ∆/ν. Other relations can be found between

other exponents by using Eq. (2.16), but we will be focusing on the above relation.

2.1.4 Finite Size Scaling

Strictly speaking there are no PTs in finite systems. However, experiments and nu-

merical simulations all use finite systems. Indeed, some quantum phenomena depend

on the finiteness of the the system since N−1, where N is the number of particles,

usually plays the role of ~ in many-body systems. The question we look to examine

here is how does the finiteness of a system affect its scaling properties.

For a system with volume Ld, where L is a length and d is the dimension, the

scaling of the singular part of the free energy is changed to [58]

fs(λ, L
−1) = b−dfs(b

1/νλ, bL−1) (2.20)

where we have left out the scaling of h for simplicity. We see the inverse size of

the system is just another parameter that we scale. It is easy to see in the infinite

12
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size limit, L → ∞, we return to our previous expression of the scaling of the free

energy given in Eq. (2.18). The factor of b in front of L−1 comes from the fact that in

the renormalization procedure length scales are scaled by b−1. Performing the same

rescaling we did earlier, i.e. having λb1/ν = 1 or b = λ−ν ∝ ξ∞ where ξ∞ is the

correlation length for L→∞, gives

fs(λ, L
−1) = |λ|2−αgf (L−1ξ∞) (2.21)

where the Josephson relation from Eq. (2.19) was used. We can see the critical

behaviour of gf (x) is governed by the ratio x = ξ∞/L. Looking at the two possible

limits, when L� ξ∞ we get back the scaling of Eq. (2.18) (for h = 0) while the limit

L � ξ∞ we should expect gf (x) to play some role in the critical behaviour. Putting

this in another way, we should only expect finite size effects when L � ξ∞ because

the correlation length cannot extend beyond the size of the system. What we end up

with is the relation

ξ(λ = λmax) = Lµ , (2.22)

so where the correlation length in the thermodynamic limit diverges at λ = 0, for

finite systems there is a maximum value at a potentially shifted critical point given

by λmax. We can look at the shift in the critical point by examining the susceptibility

when b = L

χλ(λ, L
−1) ≡ −∂

2fs
∂λ2

= L−dL2/νGf (L
1/νλ) (2.23)

where Gf (x) = −d2gf (x)

dx2 . This shows that if the new maximum is located at x0, then

its position scales as

λmax = x0/L
1/ν ∝ L−1/ν (2.24)

with respect to L. We also see the maximum value of χλ scales as

χλ(0, L
−1) = L−dL2/νGf (x0) ∝ L−dL2/ν or ∝ Lα/ν , (2.25)

thus even in finite systems thermodynamic limit critical scaling exponents can be

calculated. What is even more remarkable is we can also calculate the thermodynamic

limit critical value of the driving parameter, Λc, by examining the correlation length

when b = L

ξ(λ, L−1) = bξ(b1/νλ, bL−1)

= Lgξ(L
1/νλ) . (2.26)
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T

Lc

Figure 2.2: Temperature as a function of the parameter Λ. The black line marks Tc and the shaded
region highlights the region where thermal fluctuations dominate over quantum fluctuations.

We know in the limiting case L→∞ and finite λ, ξ(λ, 0) ∝ |λ|−ν , so gξ(x)→ x−ν as

x→∞, where x = L1/νλ. In the other limiting case of finite L, but λ→ 0, gξ(x)→ A

where A is some constant, so in this limit the inverse of the scaled correlation length

can be expanded around λ = 0 giving

L

ξ(λ, L−1)
= A+BλL1/ν (2.27)

where B is also a constant. This shows that at the true critical point of λ = 0 the

value of L/ξ for different system sizes is the same, namely A. This same technique

can be used for other parameters we know less about.

2.1.5 Quantum phase transitions

In general, both classical and quantum PTs are characterized by the vanishing of

an energy scale, ∆E, usually associated with the energy needed to cause excitations

from the ground state. The vanishing of ∆E is accompanied by a divergence of the

correlation length meaning there are fluctuations over all wavelengths of the system.

In classical PTs the fluctuations are thermal because ∆E → 0 as T → Tc. In quan-

tum PTs T = 0, so thermal fluctuations are frozen out, however due to competition

between non-commuting terms in a Hamiltonian which describe interactions between

degrees of freedom there are still quantum fluctuations. The interactions give rise to

interesting collective behaviour around a singularity at λ = 0, which, like in classi-

cal PTs, can be mathematically expressed in terms of scaling functions and scaling

exponents.

In Fig. 2.2 the temperature is plotted as a function of Λ where Λc is marked on the

T = 0 axis. The solid line is where the free energy is singular, i.e. where fluctuations

cause divergences in correlations and susceptibilities, and so marks Tc for a given

Λ. For T > 0 in the vicinity of the line the shaded region highlights where thermal
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fluctuations are dominant over quantum fluctuations and the temperature is such that

it satisfies the condition

kBT � ~ω? (2.28)

where ω? is some typical frequency at which the important degrees of freedom oscillate.

Essentially, this condition says that we only need to worry about thermal effects when

the average thermal energy is much larger than the average energy spacing in the

quantum spectrum. Although in reality there is always some nonzero temperature,

experimentalists are able to achieve very low temperatures on the order of hundreds of

picoKelvin (10−10K), so it is safe to assume in many experiments quantum fluctuations

dominate.

In this section we will make the switch from discussing singularities in the free

energy to discussing singularities in the ground state of the Hamiltonian because as

T → 0 fs → E0 where E0 is the ground state energy. We will use what we have learned

from the previous section, especially finite size scaling, and apply it to quantum PTs.

The quantum object we will mainly focus on is the fidelity susceptibility (FS), but

before that we will discuss the concept of fidelity in quantum systems. The quantum

fidelity is simply the overlap of an eigenstate of two Hamiltonians differing only by a

small perturbation. The standard approach to fidelity assumes the Hamiltonian takes

the form

H = H0 + λH1 (2.29)

where once again λ is the parameter tuned to drive the system through its PT. Usually

the fidelity is taken with respect to the ground state and is generally written as

F2 = |〈ψ0(λ− δλ/2)|ψ0(λ+ δλ/2)〉|2 (2.30)

where δλ� 1 is the perturbation. Before diving into the details we can already make

some qualitative judgements about how we expect F to behave near a PT. If both

λ − δλ/2 and λ + δλ/2 are on the same side of the critical point (either above or

below), then we expect F ≈ 1 because there is almost no difference between the two

ground states. However, when both ground states straddle the critical point we expect

a relatively large drop because both states have different symmetries and therefore

are quite different.

The simplicity of Eq. (2.30) allows for its use without any previous knowledge of

the system or the PT. However, there are some limitations in the effectiveness of F ,

namely the parameter δλ is supposed to be small, but beyond that its actual value in

calculations is subjective. Also, Eq. (2.30) does not give information on the number

or types of phases divided by the critical point; the only information it provides is

that there is a critical point.
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Next, we switch our focus to the FS and see how it overcomes the shortcomings of

the fidelity. The FS emerges naturally from an expansion of the fidelity in δλ

F2 = 〈ψ0(λ− δλ/2)|ψ0(λ+ δλ/2)〉〈ψ0(λ+ δλ/2)|ψ0(λ− δλ/2)〉

= 1 +
1

2

[
〈ψ0(λ)|∂

2ψ0(λ)

∂λ2
〉+ 〈∂

2ψ0(λ)

∂λ2
|ψ0(λ)〉

+ 2〈ψ0(λ)|∂ψ0(λ)

∂λ
〉〈∂ψ0(λ)

∂λ
|ψ0(λ)〉

]
δλ2 +O(δλ3) , (2.31)

where the linear term is zero, so the lowest order dependence on δλ is captured by

the quadratic term. This allows us to write

F2 ≈ 1− χF
2
δλ2 (2.32)

where we have defined

χF = −
[
〈ψ0(λ)|∂

2ψ0(λ)

∂λ2
〉+ 〈∂

2ψ0(λ)

∂λ2
|ψ0(λ)〉+ 2〈ψ0(λ)|∂ψo(λ)

∂λ
〉〈∂ψo(λ)

∂λ
|ψ0(λ)〉

]

(2.33)

as the FS. For numerical analysis a more useful way to express χF is by expanding the

shifted ground state using perturbation theory which allows us to write the fidelity

to leading order as

F2 = 1− δλ2
∑

n 6=0

|〈ψn(λ)|H1|ψ0(λ)〉|2
[En(λ)− E0(λ)]2

(2.34)

thus the FS takes the new form [59]

χF = 2
∑

n6=0

|〈ψn(λ)|H1|ψ0(λ)〉|2
[En(λ)− E0(λ)]2

(2.35)

which is useful when the eigenstates and eigenenergies can be calculated exactly nu-

merically.

We can gain some intuition about how χF behaves near a PT by knowing the gap

between the ground and excited states closes as ∆E = E1 − E0 ∝ |λ|−∆ where ∆

is once again the gap exponent [55]. Therefore, we should expect the FS to diverge

at the critical point if the matrix element 〈ψ1(λ)|H1|ψ0(λ)〉 6= 0. It will also help to

compare the FS to other forms of susceptibility we have encountered. In classical PTs

we have seen susceptibilities come from the second derivatives of the free energy with

respect to the driving parameter. The quantum version of the second derivative with

respect to some parameter is given in perturbation theory as
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∂2Ek(λ)

∂λ2
= 2

∑

n6=k

|〈ψn(λ)|H1|ψk(λ)〉|2
En(λ)− Ek(λ)

. (2.36)

It is important to remember that in the above expression the states and energies are

for the full Hamiltonian in Eq. (2.29), i.e. we are not expanding for small λ, but for

small δλ. Setting k = 0 in Eq. (2.36) and comparing it with Eq. (2.35) we see the FS

is more sensitive to the critical point due to the extra factor of 1
En(λ)−E0(λ)

.

Using finite size scaling theory it has been shown that away from the critical point

the FS scales as [59, 60]

χF (λ) ∝ L|λ|−2+dν (2.37)

and at the critical point it scales as

χF (0) ∝ L2/ν . (2.38)

Both scalings we could have guessed from our previous calculations as Eqns. (2.37)

and (2.38) can be calculated from Eqns. (2.23) and (2.25), respectively, using the

Josephson scaling relation. Something not discussed yet is the fact that χF can scale

differently on either side of the PT

χF ∝ |λ|−α± (2.39)

where α± corresponds to the scaling exponent as λ → 0±. From Eq. (2.19) the

different scalings can be achieved by having different ν and/or different d. What is

more common, and what is the case in this thesis in paper II, is d changes. This

doesn’t mean the dimension of the system changes, but that some length scale or

time scale changes its dependence on d.

2.2 Many-body quantum theory

Quantum many-body theory (QMBT) follows the regular quantum treatment of el-

evating classical objects to operators. In quantum mechanics (first quantization)

variables like the energy and momentum are turned into operators

E → Ĥ = i~∂t (2.40)

p → p̂ = −i~∂x (2.41)

and the Poisson bracket is replaced by the commutation relation between operators

[x̂, p̂] = i~ . (2.42)
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In QMBT (second quantization) fields, which are functions, are turned into operators

Ψ(x)→ Ψ̂(x) . (2.43)

Physically, the field operator acts on a many-body state to add a particle at or re-

move a particle from position x. QMBT gives us the tools to deal with a macroscopic

number of particles and therefore allows us to look at collective behaviour like phase

transitions. Because the field is now a quantum object it undergoes quantum fluctu-

ations and so obeys a new commutation relation

[
Ψ̂(x), Ψ̂(y)

]
= δ(x− y) (2.44)

which states that the order of field operators does not matter unless they are acting

on the same location in space. However, the field operators need not only act on

states described by spatial position. Like states in the first quantized theory, field

operators can be represented in different bases

first quantization : Ψ(x) =
∑

n

cnψn(x) (2.45)

second quantization : Ψ̂(x) =
∑

n

ψn(x)ân (2.46)

where the new operator, ân, now annihilates a particle in state n. Finally, where the

normalization condition in first quantization,
∫

dx |Ψ(x)|2 = 1, leads to the conserva-

tion of probability, the equivalent quantity in QMBT leads to the number operator,∫
dx Ψ̂†(x)Ψ̂(x) =

∑
n â
†
nân = N̂ .

In QMBT the Hamiltonian takes the general form

Ĥ =

∫
dx Ψ̂†(x)

[
− ~2

2m
∇2 + U(x)

]
Ψ̂(x) +

1

2

∫
dxdy Ψ̂†(x)Ψ̂†(y)V (x− y)Ψ̂(x)Ψ̂(y)

(2.47)

where U(x) is an external potential and V (x−y) is an interaction potential depending

on the distance between particles. It should be noted we have kept only pairwise

interactions where in general there could be interactions involving higher numbers

of particles, but for our purposes it will suffice. Equation (2.47) highlights a major,

but subtle difference between first and second quantization: in first quantized theory

physical quantities are represented in terms of single particle wave functions, but now

they have become operators acting on many-body states. This shift of focus from

wave functions to operators makes the analysis of macroscopically large systems more

accessible.
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2.2.1 Bose-Einstein condensate

A system of N identical bosons (integer spin particles) confined to a trap at temper-

ature T obeys Bose-Einstein statistics which means the expected number of particles

in each state at thermal equilibrium is given by the Bose-Einstein distribution

〈n̂i〉 ≡ ni(T ) = f(Ei, T ) =

(
e
Ei−µ
kBT − 1

)−1

(2.48)

where Ei is the energy of the ith state, µ is the chemical potential and kB is the

Boltzmann constant. The chemical potential is defined by the conservation of the

total number of particles N =
∑

i ni(µ) where for a large enough particle number

and low enough temperature it can be comparable to the ground state energy. This

means it becomes increasingly less likely to populate states above the ground state

as the temperature is lowered or more bosons are added. Therefore, there can be

a critical temperature, Tc, based on the physical details of the system where any

additional bosons can only be added to the ground state. The result is a macroscopic

occupation of the ground state called a Bose-Einstein condensate (BEC).

To get an idea of the physics behind Tc one can think of each boson being a little

wave. From de Broglie [1] we know the wavelength of each wave can be given in terms

of its momentum λ = ~/p. For a very weakly interacting gas of bosons the energy can

be approximated as being only kinetic and can be obtained using the equipartition

theorem which states for each degree of freedom the average energy is kBT/2. For

a three-dimensional gas we have E = p2

2m
= 3

2
kBT which means p =

√
3mkBT and

putting this together with the wavelength gives λ(T ) =
√

~2

3mkBT
. Now, we expect

the BEC to form when the wavelength becomes comparable to the particle separation

distance and since the average distance between particles is n−1/3, where n is the

number density, the critical temperature is

Tc =
~2n2/3

3mkB
. (2.49)

Although Eq. (2.49) isn’t exact it is only off by an overall factor, so its derivation is

a good way to illuminate some of the physics behind the formation of a BEC.

2.2.2 Bosonic Josephson junction

At sufficiently low temperatures a BEC can be utilized as a bosonic Josephson junction

by confining it in a double well potential. The barrier between the two wells must

be prepared in such a way as to provide a weak link between each well to allow

tunneling. This is accomplished when the energy associated with the barrier height is

below the chemical potential of the bosons in each well resulting in an exponentially
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small energy difference between the ground and first excited states [61]. The bosons

also interact and at temperatures where the interaction range is much smaller than

the average distance between bosons it can be approximated by two-body contact

collisions represented by the pseudopotential V (x− y) = gδ(x− y) where g = 4π~2a
m

,

where a is the s-wave scattering length and m is the mass of the boson. The scattering

length can be tuned to produce attractive (a < 0) and repulsive (a > 0) interactions.

In this thesis only repulsive interactions will be dealt with as attractive BECs tend

to be unstable [62]. Also, symmetries in the Hamiltonian, which we will go over near

the end of this section, show the many-body ground state for a < 0 depends on the

parameters of the system in the same way the many-body highest state does for a > 0,

so we can also get an idea of the attractive case from the repulsive one. In order to

maintain the two-mode approximation the boson interactions must not be able to

excite particles out of these modes. Under these conditions Eq. (2.47) becomes

ĤB =

Ĥ0︷ ︸︸ ︷∫
dx Ψ̂†(x)

[
− ~2

2m
∇2 + U(x)

]
Ψ̂(x) +

ĤI︷ ︸︸ ︷
g

2

∫
dx Ψ̂†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x) (2.50)

where Ψ̂(x) = ψg(x)b̂†g + ψe(x)b̂†e. The new many-body operators b̂†g and b̂†e (b̂g and

b̂e) create (annihilate) a boson in the ground and excited states, respectively, and

obey the usual bosonic commutation relation
[
b̂i, b̂

†
j

]
= δi,j. The wave functions ψg

and ψe are the first quantized versions of the field operators. When the ground or

excited states are macroscopically occupied their temporal evolution can be defined in

terms of the nonlinear Schrödinger equation otherwise known as the Gross-Pitaevskii

equation [63] (GPE)

i~
∂ψi(x)

∂t
=

[
− ~2

2m
∇2 + U(x) + gNi|ψi(x)|2

]
ψi(x) (2.51)

where i = g, e and Ni is the number of bosons in the ith mode. We can see the

interactions manifest themselves as an energy cost dependent on the density of bosons

ni(x) = Ni|ψi(x)|2 where
∫∞
−∞ dx |ψi(x)|2 = 1. The GPE is a mean-field description

of the field operators.

Sometimes a more useful basis of operators is the left/right (l/r) basis which is

given by symmetric and antisymmetric superpositions of the ground/excited basis

b̂r = (b̂g + b̂e)/
√

2 b̂l = (b̂g − b̂e)/
√

2 . (2.52)

Now the field operator is Ψ̂(x) = ψr(x)b̂r+ψl(x)b̂l where ψr(x) = [ψg(x) + ψe(x)] /
√

2

and ψl(x) = [ψg(x)− ψe(x)] /
√

2. Plugging in the field operator in the new basis into

Eq. (2.50) gives
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Ĥ0 = εrN̂r + εlN̂l − J(b̂†rb̂l + b̂†l b̂r) (2.53)

for the first term where N̂r = b̂†rb̂r, N̂l = b̂†l b̂l and

εl/r =

∫
dxψl/r(x)∗

[
− ~2

2m
∇2 + U(x)

]
ψl/r(x) (2.54)

J = −
∫

dxψl/r(x)∗
[
− ~2

2m
∇2 + U(x)

]
ψr/l(x) . (2.55)

The interaction term is more complicated, so to make things simpler the fact that the

single particle wave functions overlap very weakly inside the barrier is used [64]. Under

this approximations only bosons in the same well can feel the interaction potential

eliminating cross integrals, e.g.
∫

dx |ψl(x)|2|ψr(x)|2 and
∫

dx |ψl(x)|2ψl(x)∗ψr(x) and

we end up with

ĤI =
Ur
2
b̂†rb̂
†
rb̂rb̂r +

Ul
2
b̂†l b̂
†
l b̂lb̂l (2.56)

where

Ul/r = g

∫
dx |ψl/r(x)|4 . (2.57)

Using the definitions n̂ ≡ (N̂r − N̂l)/2 and N̂ ≡ N̂r + N̂l and for equal intra-well

interactions, U = Ul = Ur (not to be confused with the external potential U(x) in Eq.

(2.50)) the Hamiltonian becomes

ĤB = (εr − εl)n̂− J(b̂†rb̂l + b̂†l b̂r) + Un̂2 +
(εr + εl)

2
N̂ +

U

2

(
N̂2

2
− N̂

)
. (2.58)

Finally, defining ∆ε ≡ εr − εl and α̂ ≡ (b̂†rb̂l + b̂†l b̂r) and neglecting the constant N̂

terms we get [61, 64]

ĤB = ∆εn̂− Jα̂ + Un̂2 . (2.59)

Physically, ∆ε can be thought of as any bias in energy between the two wells and

is referred to as the tilt. The parameter J gives the strength of tunneling between

the two wells and is controlled by the height of the barrier between the two wells. U

contains g, so it gives the interaction energy between bosons in the same well and is

controlled by Feshbach resonance [11]. For the remainder of the thesis ∆ε will be set

to zero.

Due to the two-mode approximation if we assume the number of bosons is conserved

in an experiment the Hilbert space is spanned by N + 1 states. This is a slow scaling

21



Ph.D. Thesis - J. Mumford; McMaster University - Physics and Astronomy

with N for a many-body system, especially when compared to lattice systems like the

one-dimensional transverse field Ising model whose Hilbert space scales as 2N . This

means one can do exact numerical simulations of experimentally accessible regimes of

N = 103−104 bosons on average desktop computers. Thus, we should take some time

to examine the many-body states and operators in the l/r basis. Particle conservation,

[N̂ , ĤB] = 0, means the many-body states can be characterized by a single number

n = (Nr − Nl)/2 where Nl/r is the number of particles in the l/r wells. The states

range from |n = −N/2〉 for all the bosons in the left well to |n = N/2〉 for all the

bosons in the right well. In this basis the matrix elements of the n̂ and α̂ operators

are

〈n′|n̂|n〉 = n δn′,n (2.60)

〈n′|α̂|n〉 =

√(
N

2
− n

)(
N

2
+ n+ 1

)
δn′,n+1 +

√(
N

2
+ n

)(
N

2
− n+ 1

)
δn′,n−1 ,

(2.61)

so n̂ is diagonal as expected and α̂ is off-diagonal. Combining these into Eq. (2.59)

gives the tri-diagonal Hamiltonian matrix

Ĥn′,n =
(
Un2 + ∆εn

)
δn′,n

−J
[√(

N

2
− n

)(
N

2
+ n+ 1

)
δn′,n+1 +

√(
N

2
+ n

)(
N

2
− n+ 1

)
δn′,n−1

]

(2.62)

which allows for the computation of the energies of the system. In Fig. 2.3 the

spectrum for N = 100 is plotted where it shows the spectrum can be broken up

into three regions. The bottom third is roughly linear and corresponds to states

of the Hamiltonian dominated by the α̂ term. The eigenstates of α̂ are coherent

superpositions of the |n〉 states and closely resemble those of an harmonic oscillator

where the agreement gets better for larger N . The top third is roughly quadratic and

corresponds to states dominated by the n̂2 term. Due to this term being quadratic

the states in this region come in nearly degenerate pairs which are symmetric and

antisymmetric superpositions of the |n〉 states, i.e. ((|n〉+ | − n〉)/
√

2 and (|n〉 − | −
n〉)
√

2). In the middle region neither term dominates and its most notable feature is

the energy boundary at JN called the separatrix. The spectrum around the separatrix

is narrowly spaced resulting in a peak in the density of states.
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Figure 2.3: The energy spectrum of a BEC in a double well. The spectrum can be broken up into
three regions: interaction dominated where the states come in nearly degenerate pairs, tunneling
dominated where the states resemble those of an harmonic oscillator and a region where neither
dominates which contains the separatrix which is the boundary between the other two regions at
E = JN . The plot is for N = 100, ∆ε = 0 and Λ = UN

2J ≈ 5.8.

2.2.3 Mean-field theory

Mean-field theory is the first step in further understanding the physics behind the

three regions in Fig. 2.3. We have already seen mean-field theory in real space in the

GPE, however we can have analogous equations in Fock space when we demote the

creation/annihilation operators to complex numbers

b̂l/r →
√
Nl/r eiφl/r , b̂†l/r →

√
Nl/r e−iφl/r . (2.63)

Substituting these into Eq. (2.59) gives [65]

HMF ≡ lim
N→∞

ĤB

JN
= Λ

z2

2
−
√

1− z2 cosφ (2.64)

where φ = φr − φl, z = (Nr − Nl)/N . We have also divided through by JN and

defined a new parameter Λ ≡ UN
2J

. If we identity z with the angular momentum

and φ with the angular displacement, then HMF is the Hamiltonian of a pendulum of

mass Λ−1 with an angular momentum dependent length due to the square root factor.

The mean-field theory reduces the many-body system to a nonlinear single particle

and is therefore most accurate when all of the bosons are in a state which minimizes

fluctuations of n̂ and α̂. This occurs for the lowest (highest) energy many-body state

where all of the bosons are in the single particle ground (excited) state. To calculate

the energies we realize they correspond to stationary states of the pendulum where it

is either pointing straight down or straight up. Therefore, using Hamilton’s equations
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ż = −∂HMF

∂φ
, φ̇ =

∂HMF

∂z
(2.65)

for ż = φ̇ = 0 gives

Λz +
z cosφ√
1− z2

= 0 , −
√

1− z2 sinφ = 0 (2.66)

From the second equation we find φ = nπ (ignoring the trivial z = 1 solution)

where n = 0, 1, 2, ... which for the first equation gives z = 0 for Λ ≤ 1 and z = 0,

z± = ±
√

1− Λ−2 for Λ > 1. Plugging these into HMF gives

E±
JN

=

{
±1 , Λ ≤ 1

−1 , Λ
2

(
1 + 1

Λ2

)
, Λ > 1

(2.67)

where ± signifies the highest and lowest many-body energies, respectively. With the

value of Λ from Fig. 2.3 we get E−/JN = −1 and E+/JN ≈ 3 matching the minimum

and maximum energies in the figure.

The mean-field theory can also be used to describe interesting phenomena in the

dynamics of the BEC. For instance, self-trapping occurs for certain values of initial

number difference where the BEC does not oscillate back and forth between the two

wells when initially placed into one well, but gets trapped in that one well. In the

pendulum analogy this behaviour is analogous to oscillations about the downward

vertical position and the self-trapping is analogous to the pendulum having a large

enough angular momentum to make a full rotation. Barring any friction the pendulum

will keep swinging around indefinitely with some nonzero angular momentum. The

critical value of the number difference, zc can be calculated from the condition that

the total energy must be greater than the separatrix

Λ
z2

0

2
−
√

1− z2
0 cosφ0 > 1 (2.68)

where z0 and φ0 are the initial number and phase difference between the two wells.

For φ0 = 0 the critical number difference is |zc| = 2
√

Λ−1
Λ

, so it can only occur for

Λ > 1.

As previously mentioned the mean-field theory is accurate when the phase and

number difference between two wells are well defined. However, since they are con-

jugate variables this puts constraints on what values of Λ accomplish this because of

the uncertainty principle. To help define the region of validity we look at the ground

state many-body number difference fluctuations and the coherence, α [61], given by

∆n2 = 〈n̂2〉 − 〈n̂〉2 , α = 〈α̂〉 . (2.69)
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Figure 2.4: Coherence, α, and boson number difference fluctuations, ∆n2 as a function of Λ. In each
image three regimes are highlighted: (1) Rabi regime where the coherence is high and the number
difference fluctuations are large, (2) Josephson regime where the coherence is high and the number
difference fluctuations are small and (3) Fock regime where the coherence is low and the number
difference fluctuations are small. Each image is for N = 100.

Low ∆n2 means there is a well defined number difference while high α means there

is a well defined phase difference. Figure 2.4 shows these quantities for different

values of Λ for N = 100. It is clear that increasing Λ decreases both the coherence

and number difference fluctuations, however they begin to decrease substantially at

different values. For ∆n2 the decrease starts at Λ ≈ 1/4 and for α it starts at

Λ ≈ N2/4. From this result three regimes can be identified [66]: (1) the coherence is

high and the number difference fluctuations are large, (2) coherence is high and the

number difference fluctuations are small and (3) the coherence is low and the number

difference fluctuations are small. These regimes are defined by their range of Λ

• Rabi regime: Λ� 1/4,

• Josephson regime: 1/4� Λ� N2/4,

• Fock regime: Λ� N2/4.

The Rabi regime is dominated by the tunnelling term and so the eigenstates of Ĥ are

close to being coherent superpositions of Fock states. The Josephson regime is the

ideal regime for mean-field theory and corresponds to neither term dominating. The

Fock regime is dominated by the interactions term and therefore the Fock states |n〉
are close to the eigenstates of Ĥ. Throughout this thesis the value of Λ is in the range

10−1 ≤ Λ ≤ 101, so mean-field theory is often used as a starting point for analysis.
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2.2.4 Beyond mean-field theory

Beyond the mean-field theory the energies and wave functions of the lowest lying states

can be approximated by re-quantizing the mean-field Hamiltonian. This is done by

promoting z and φ to operators obeying the commutation relation [φ̂, ẑ] = 2i/N , so

1/N plays the role of ~. These steps represent a semiclassical description of the system

where aspects of both the mean-field (continuous z and φ) and first quantized (z and

φ are operators) theories are taken into account. For Λ < 1 the low-lying states

can be approximated as harmonic oscillator states by expanding the semiclassical

Hamiltonian about z = φ = 0

ĤSC ≈ (Λ + 1)
ẑ2

2
+
φ̂2

2
(2.70)

which gives the low lying energy spacing seen in Fig. 2.3 as

ωpl = 2J
√

Λ + 1 (2.71)

also known as the plasma frequency. Equation (2.70) also gives the variances in z and

φ

∆z2 =
1

N
√

Λ + 1
, ∆φ2 =

√
Λ + 1

N
(2.72)

which shows the mean field approximation gets better as N increases since the un-

certainty relation is ∆z∆φ ≥ N−1 which we could have gotten from the Robertson

relation ∆z∆φ ≥ 1
2
|〈[φ̂, ẑ]〉| and the commutation relation.

2.3 Adding an impurity

In this section we explore the new phenomena which arise from the addition of a

single impurity boson into the bosonic Josephson junction. In general, the impurity

can be a different atomic species than the bosons in the BEC or it can be the same

species, but in a different internal state. The same two-mode approximation as the

BEC applies to the impurity, so its field operator is Φ̂(x) = φr(x)âr + φl(x)âl where

â†l/r (âl/r) create (annihilate) the impurity in the left/right well and obey the usual

boson commutation relation [âi, â
†
j] = δi,j. The impurity interacts with the bosons

the same way the bosons interact amongst themselves, that is through direct contact

s-wave scattering, so VB,i(x − y) = gB,iδ(x − y) where gB,i =
4π~2aB,i

m
. However, the

impurity has no self-interaction. The subscript ’B,i’ has been used to show the BEC-

impurity interactions can be tuned separately from the boson-boson interactions. The

impurity can also tunnel through the barrier and experiences a tilt and we assume
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these energies can be tuned independently as well. Therefore, the Hamiltonian for

the impurity plus BEC-impurity interactions takes the form

Ĥi + ĤB,i = ∆εam̂− Jaβ̂ + 2Wn̂m̂ (2.73)

where the constant terms have been neglected. The operators m̂ = (â†râr − â†l âl)/2
and β̂ = â†râl + â†l âr have been introduced analogously to the BEC operators n̂ and

α̂, respectively. Also, the three new energies are

W =
gB,i

2

∫
dx|ψl/r(x)|2|φl/r(x)|2 (2.74)

Ja =

∫
dxφl/r(x)∗

[
− ~2

2m
∇2 + U(x)

]
φr/l(x) (2.75)

∆εa = εar − εal (2.76)

where

εal/r =

∫
dxφl/r(x)∗

[
− ~2

2m
∇2 + U(x)

]
φl/r(x) . (2.77)

Here, W > 0 is the impurity-BEC intrawell interaction energy, Ja > 0 is the impurity

tunnelling energy and ∆εa is the impurity tilt. The full BEC-impurity Hamiltonian

is

Ĥtot = ĤB + Ĥi + ĤB,i

= Un̂2 − Jα̂− Jaβ̂ + 2Wn̂m̂+ ∆εn̂+ ∆εam̂ (2.78)

where the reader is reminded ∆ε = ∆εa = 0 for the remainder of the thesis unless

specified otherwise.

With the addition of the impurity the Hilbert space of the entire system is enlarged.

Since the impurity is distinguishable from the bosons in the BEC the Hilbert space

doubles in size because it becomes a product of the two Hilbert spaces (1 + 1)× (N +

1) = 2(N + 1). Thus, even with the addition of the impurity simulations can be done

of experimentally large BECs. The Fock states of the system are now product states

of the impurity and BEC bases, |n〉|m〉 = |n,m〉. This changes the matrix elements

slightly from the form of Eq. (2.62) to
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Figure 2.5: The energy spectrum of an impurity in a BEC in a double well. The top two regions are
similar to those of the same system without the impurity shown in Fig. 2.3, but the bottom region is
different and is dominated by boson-impurity interactions. The quasidegenerate pairs in this region
are due to the (n,−m)→ (−n,m) in the 2Wn̂m̂ term in the Hamiltonian. The parameters used are
N = 40, U/J = 6, Ja/J = 1 and W/J = 15. These parameters were specifically chosen to highlight
the effect of the boson-impurity interaction term.

〈m′, n′|Ĥtot|n,m〉 =
(
Un2 + 2Wmn

)
δn′,nδm′,m

−J
[√(

N

2
− n

)(
N

2
+ n+ 1

)
δn′,n+1 +

√(
N

2
+ n

)(
N

2
− n+ 1

)
δn′,n−1

]
δm′,m

−Ja
[√(

1

2
−m

)(
1

2
+m+ 1

)
δm′,m+1 +

√(
1

2
+m

)(
1

2
−m+ 1

)
δm′,m−1

]
δn′,n

. (2.79)

The spectrum for N = 40 is shown in Fig. 2.5, but should not be regarded too seriously

as it can look quite different depending on the parameter choice. Specific parameters

were chosen to highlight the three major regions where as was the case without the

impurity we have the boson-boson interaction dominated and tunnelling dominated

regions. The bottom region is different as the states come in quasidegenerate pairs.

The degeneracy can be explained by looking at the boson-impurity interaction term,

2Wn̂m̂, where the pairs are due to the symmetry (n,−m)→ (−n,m). This symmetry

is important because it is what will be broken in the PT we will be discussing starting

in Sec. 2.3.3. The linearity comes from the fact that the term is linear in n̂.
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2.3.1 Mean-field theory with impurity

Since the mean-field approximation treats a many-body system like a single particle

it is exact for a single impurity. This is made clear by looking at a general quantum

state for the impurity, |imp〉 = ar|r〉+al|l〉, where ar and al are the probability ampli-

tudes for the impurity being in the right and left wells, respectively. The constraints

that we only can measure phase differences between the two states and probability

conservation, |ar|2 + |al|2 = 1, means that any impurity state is specified by only two

numbers. The transformation from creation and annihilation operators to complex

numbers

âl/r →
√
Ml/re

iαl/r â†l/r →
√
Ml/re

−iαl/r (2.80)

together with the fact we can only measure α = αr − αl and particle conservation

means the mean-field theory specifies the impurity state with two numbers. With Eq.

(2.63) the mean-field Hamiltonian is

HMF = lim
N→∞

Ĥtot

JN
= Λ

z2

2
−
√

1− z2 cosφ− Γa
√

1− y2 cosα + γyz/2 (2.81)

where the new parameters are Γa = Ja/JN and γ = W/J and the new variables are

y = Mr −Ml and α. It should be noted that the assumption Γa 6= 0 as N →∞ is an

important one, but it must be the case if the impurity hopping is to have any affect

on the system as a whole; something we will find is important for the criticality of

the system near a PT. We could find the mean-field ground and excited state energies

by finding the stationary solutions to the equations of motion with the additional

Hamilton’s equations α̇ = ∂HMF

∂y
and ẏ = −∂HMF

∂α
and the main result would be that

there is a critical value of γ, γc, that marks the location of a second order phase

transition. Instead, the semiclassical route will be taken to get this result because the

derivation is simpler and it will supplement results in papers I and II in chapter 3.

2.3.2 Beyond mean-field: Schwinger representation, Holstein-Primakoff

transformation

Schwinger representation

In this section we wish to find the ground state energy and critical value of the BEC-

impurity interaction energy. To do this we use the fact that since there are two single

particle modes this means the bosons in the BEC to be represented as a single particle

with spin using the Schwinger’s oscillator model of angular momentum [67]. For N

bosons the total spin is j = N/2 with z-component mz = n. Thus, in the spin

operator representation we have
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Ŝz =
1

2
(b̂†rb̂r − b̂†l b̂l) , Ŝx =

1

2
(b̂†rb̂l + b̂†l b̂r) , Ŝy =

i

2
(b̂†l b̂r − b̂†rb̂l) (2.82)

with the commutation relation [Ŝi, Ŝj] = iεijkŜk. This means the number difference

Fock states can be mapped to spin-j states, |N/2, n〉 ↔ |j,mz〉. The impurity can

similarly be represented as a spin-1/2 particle with Ŝi → σ̂ai (σ̂ai is a Pauli spin matrix)

giving the Hamiltonian

Ĥtot = UŜ2
z − 2JŜx − 2Jaσ̂ax + 2WŜzσ̂

a
z . (2.83)

Since the ground state of Eq. (2.83) has all of the bosons and the impurity in their

single particle ground states it is better to work in the ground/excited state basis. In

the spin representation the rotation of Ĥ by π/2 about the Ŝy axis is the same as the

transformations given in Eq. (2.52). Under the rotation the spin operators transform

as Ŝz → Ŝx, Ŝx → −Ŝz and the impurity Pauli matrices transform in the same way

giving

Ĥtot → eiπŜy/2Ĥtote
−iπŜy/2 = UŜ2

x + 2JŜz + 2Jaσ̂az + 2WŜxσ̂
a
x . (2.84)

Holstein-Primakoff transformation

In the Holstein-Primakoff transformation (HPT) the ground state of Ĥtot is taken to

be the vacuum state for a set of boson operators where each subsequent excitation is

the addition of one of these bosons to the vacuum. In the ground/excited state basis

the ground state is |GS〉 = | −N/2〉, so in the HPT we have

| −N/2 + n〉 → 1√
n!

(
f̂ †
)n
|0〉 . (2.85)

Each additional boson increases the spin by unity, so to maintain the commutation

relation amongst the spin operators the spin raising and lowering operators are

Ŝ− =
√
N

√

1− f̂ †f̂

N
f̂ , Ŝ+ =

√
Nf̂ †

√

1− f̂ †f̂

N
(2.86)

where Ŝx = 1
2
(Ŝ+ + Ŝ−) and Ŝy = i

2
(Ŝ− − Ŝ+) and Ŝz = f̂ †f̂ −N/2. To proceed one

realizes that the low lying states the square root in Eq. (2.86) can be set to unity, so

Ŝ− ≈
√
Nf̂ and Ŝ+ ≈

√
Nf̂ †. The approximations made to the BEC spin operators

are exact for the impurity spin operators, so σ̂a+ = ĝ† and σ̂a− = ĝ. Substituting these

into Eq. (2.84) gives

30



Ph.D. Thesis - J. Mumford; McMaster University - Physics and Astronomy

Ĥtot ≈ ĤSC =
UN

4

(
f̂ † + f̂

)2

+ 2J

(
f̂ †f̂ − N

2

)
+ 2Ja

(
ĝ†ĝ − 1

2

)

+
W
√
N

2

(
f̂ † + f̂

) (
ĝ† + ĝ

)
(2.87)

which is a Hamiltonian for two coupled harmonic oscillators. To make this com-

parison clearer the transformation f̂ →
√
Nf̂ is made, then f̂ ≡ 1

2
(2x̂ − ip̂x) and

ĝ ≡ 1
2
√

Γa
(2Γaŷ − ip̂y) giving

ĤSC

JN
≈ p̂2

x

2
+
p̂2
y

2
+ 2Γa

2

ŷ2 + 2(1 + Λ)x̂2 + 2γ
√

Γa x̂ŷ + E0 (2.88)

where E0 = −(Γa + 1) and the definitions of the new parameters are given in Sec.

2.3.1. To uncouple the harmonic oscillators we make another transformation

x̂ = q̂1 cos θ∗ + q̂2 sin θ∗ , ŷ = q̂2 cos θ∗ − q̂1 sin θ∗ (2.89)

where the angle satisfies the relation

tan 2θ∗ =

(
γ
√

Γa

Γa2 − 1− Λ

)
. (2.90)

The resulting Hamiltonian is two uncoupled harmonic oscillators

ĤSC =
1

2

(
p̂2

1 + p̂2
2 + ε2+q̂

2
1 + ε2−q̂

2
2

)
+ E0 (2.91)

with frequencies ε± given by

ε± =

√
(1 + Γa2 + Λ)±

√
(1− Γa2)2 + Γaγ2 + 2Λ(1− Γa2 + Λ/2) . (2.92)

2.3.3 Hints of a quantum phase transition

At the beginning of Sec. 2.1.5 we mentioned the vanishing of some gap energy as some

parameter approaches its critical value signalled the occurrence of a quantum PT. In

Eq. (2.92) ε− vanishes as

ε− ∼
√

γcΓa

1 + Γa2 + Λ
(γc − γ)1/2 , as γ → γ−c (2.93)

where

γc = 2
√

Γa
√

Λ + 1 . (2.94)
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Figure 2.6: Image (a) shows the order parameter z0, which is the ground state number difference
between the right and left wells, vs. the scaled BEC-impurity interaction energy. A pitchfork
bifurcation occurs at γ = γc signalling a PT. Due to fluctuations the system will evolve to one of the
two new states spontaneously breaking Z2 symmetry. Image (b) shows the ground state energy vs.
the scaled BEC-impurity interaction energy. Both images should be compared to the corresponding
images in Fig. 2.1 for the general Landau theory.

We can see in Eq. (2.94) that the closing of the gap does not depend on the boson-

boson interactions, so to simplify the analysis we can set Λ = 0 leaving only the

boson-impurity interactions. This lets us move ahead with finding the stationary

solutions to the mean-field equations of motion from the Hamiltonian in Eq. (2.81).

What we find is

{y0, z0} =




{0, 0} , γ ≤ γc{
± 1
γ

√
γ4−γ4

c

γ2+γ4
c /4
,∓ 1

γ

√
γ4−γ4

c

γ2+4

}
, γ > γc

, (2.95)

so when γ ≤ γc (normal phase) there are equal amounts of the BEC and impurity in

each well. However, when γ > γc (symmetry broken phase) the impurity expels some

of the BEC particles from the well it has chosen due to the repulsive interaction energy.

The impurity will expel more and more bosons as γ increases further. The well the

impurity chooses is determined randomly by quantum fluctuations and results in the

breaking of the Z2 symmetry of the normal phase. Equation (2.95) for z is plotted in

Fig. 2.6 along with the ground state energy for different values of the boson-impurity

interaction γ.

2.3.4 T > 0 phase transition

Given that every experiment takes place at finite temperatures it is necessary to

confirm the quantum PT found in the previous section survives. The boson-boson

interactions will once again be set to zero, so in the unscaled parameters the critical

BEC-impurity interaction energy is γc = 2
√

Γa. The partition function is given by

the trace over the degrees of freedom of the Boltzmann factor
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Figure 2.7: The critical temperature, Tc, given in Eq. (2.106) as a function of W . Above Tc the
phase has an equal number of bosons in each well. Below Tc there is a build-up of bosons in one well
over the other.

Z = Tre−βĤ , β =
1

kBT
(2.96)

where kB is the Boltzmann constant. To evaluate the trace, Eq. (2.83) is written in

terms of the elementary Pauli spin matrices

Ĥ

J
= −

N∑

i

(
σ̂ix + Γaσ̂ax −

γ

2
σ̂izσ̂

a
z

)
(2.97)

where Ŝz =
∑N

i σ̂
i
z and Ŝx =

∑N
i σ̂

i
x and we have used the scaled parameters defined

in 2.3.1. Before continuing we make an approximation to Eq. (2.97) by replacing the

impurity operators with their coherent state expectation values [68]

〈θ, φ|σ̂az |φ, θ〉 = − cos θ

〈θ, φ|σ̂ax|φ, θ〉 = sin θ cosφ . (2.98)

where the the minus sign in front of the cosine is a convention, so m = −1 corresponds

to θ = 0 on the Bloch sphere. The approximation does not have much justification

and is mainly used so some analytic results can be computed. However, the approx-

imation is expected to become more accurate as the number of particles and/or the

temperature increases, so thermal fluctuations dominate over the quantum fluctua-

tions. Since the bosons in the BEC don’t interact we can calculate the partition

function for a single boson and use the fact that ZN = (Z1)N . The Hamiltonian for a

single boson is

ĥ = −σ̂x − Γa sin θ cosφ− γ

2
σ̂z cos θ

=

(−Γa sin θ cosφ− γ
2

cos θ −1

−1 −Γa sin θ cosφ+ γ
2

cos θ

)
(2.99)
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which has eigenvalues

µ± = −Γa sin θ cosφ±
√

1 +

(
γ cos θ

2

)2

. (2.100)

Thus, for the BEC the partition function is

ZN =
(

Tre−βĥ
)N

=

(∑

s=±1

〈s|e−βĥ|s〉
)N

=
(
e−βµ+ + e−βµ−

)N

= 2NeβNΓa sin θ cosφ coshN


β
√

1 +

(
γ cos θ

2

)2

 (2.101)

The trace over the impurity degrees of freedom now becomes the integral over a sphere

Tra →
∫ 1

−1

∫ 2π

0
d(cos θ)dφ [69, 70], so the full partition function becomes

Z =
2N

2π

∫ 1

−1

∫ 2π

0

d cos θdφeβNΓa sin θ cosφ coshN

[
β

√
1 +

(γ
2

cos θ
)2
]
. (2.102)

Using the identity
∫ 2π

0
dφex cosφ = 2πI0(x), where I0 is the Bessel function of the first

kind, and substituting in x = cos θ gives the final form of the partition function

Z = 2N
∫ 1

−1

dxeΩ(x) (2.103)

where

Ω(x) = ln

{
I0(βNΓa

√
1− x2) coshN

[
β

√
1 +

(γ
2
x
)2
]}

. (2.104)

For N � 1 the major contributor to the integral is at x∗ which satisfies Ω′(x∗) = 0.

This condition gives the transcendental equation

(
γc
γ

)2

η(x∗) =
√

1− x2
∗ tanh [βη(x∗)] (2.105)

where η(x) =
√

1 +
(
γ
2
x
)2

and we have replaced the Bessel function with its asymp-

totic approximation, Ii(x) ∼ ex

2πx
as x → ∞. Looking at Eq. (2.105) we see the

maximum the RHS can be is unity, while the minimum of the LHS is (γc/γ)2. There-

fore, we expect the number of solutions to change at γ = γc which confirms the T = 0

result from the previous section. When γ > γc the number of solutions to Eq. (2.105)
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also depends on the temperature. The critical temperature at which the number of

solutions changes can be found by setting x∗ = 0 giving

kBTc
J

= arctanh

[(
γc
γ

)2
]−1

. (2.106)

Here, Tc marks the point which separates the z = 0 (T ≥ Tc) and z 6= 0 (T < Tc)

phases discussed in the previous section, thus the PT does survive. Note that the

broken symmetry phase occurs at a lower temperature than the normal phase agreeing

with the general statement made at the beginning of Sec. 2.1 regarding the more

ordered phase occurring at lower temperature. Equation (2.106) is plotted in Fig.

2.7 which should be compared to Fig. 2.2 showing the general crossover behaviour

between thermal and quantum PTs. Equation (2.106) is of the same form as the

Dicke model [70] which means we may find differences between the two systems if we

don’t take the asymptotic limit of the Bessel functions.

2.4 Catastrophe theory

2.4.1 Splitting lemma

The mathematics behind derivations in CT is beyond the scope of this thesis, however

the beauty of CT is the simplicity of its results. To gain an idea about the basis of

the results as well as when they are useful it is important to give them some context

with respect to similar theories. CT can be viewed as the third and latest major

step in the identification of local forms of functions. The first step is the implicit

function theorem which depends on first derivatives of the function; the second is the

Morse lemma which depends on second derivatives of functions; and the third is the

Thom’s splitting lemma which depends on higher than second order derivatives. A

basic outline of the three steps is given below [45]

Implicit Function Theorem. Given a function f(x), of a set of state variables, x =

(s,y) where s = (s1, s2, ...sp) and y = (y1, y2, ...yq), the equation

f(x) = 0 (2.107)

is a graph of a function y = y(s) provided locally at some point, s?, y can be linearized

around that point.

Morse Lemma. For simplicity we will take q = 1, so y = y is a scalar. If the linear

approximation does not work, i.e. ∇y|s? = 0, then at s? y is an extreme (either a

minimum, maximum, or saddle point). If the stability matrix is nonsingular,

det

∣∣∣∣
∂2y

∂si∂sj

∣∣∣∣ 6= 0 , (2.108)
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Table 2.1: Universal forms of yNM for co-dimension K ≤ 3. Co-dimension is defined as the dimen-
sionality of the control space minus the dimensionality of singularity. The state variables are given
by s = {s1, s2, ...} and the control parameters are given be C = {c1, c2, ...}.

name K germ G(s) perturbation P (s; C)
fold 1 s3

1 c1s1

cusp 2 s4
1 c2s

2
1 + c1s1

swallowtail 3 s5
1 c3s

3
1 + c2s

2
1 + c1s1

elliptic umbilic 3 s3
1 − 3s1s

2
2 c3(s2

1 + s2
2) + c2s2 + c1s1

hyperbolic umbilic 3 s3
1 + s3

2 c3s1s2 + c2s2 + c1s1

then in the vicinity of s∗ y can be approximated as being quadratic

y =
∑

i

λis
2
i (2.109)

where λi is an eigenvalue of the stability matrix. The condition in Eq. (2.108) means

any eigenvalue of the stability matrix being equal to zero causes it to be singular, so

it is a stringent constraint.

Splitting Lemma. The splitting lemma becomes useful when the stability matrix is

singular at some point which happens because one (or more) eigenvalue are equal to

zero. The splitting lemma says that there exists a smooth change of variables, s→ s′,

such that f can be put in the following form

y = yNM(s′1, ..., s
′
m) + yM(s′m+1, ...s

′
d) (2.110)

for d dimensions. Here yM is a function of d−m variables tangent to eigenvectors of

the stability matrix whose eigenvalues don’t vanish, so it is a Morse function and can

therefore be written in quadratic form. The function yNM is the non-Morse function

and so has a form beyond quadratic in the m variables.

2.4.2 Functional form of catastrophes

The splitting lemma is one of Thom’s key results because it breaks any function up

into interesting (non-Morse) and uninteresting (Morse) parts. The question then is

what determines the form of yNM? A typical function will not have a singular stability

matrix, however, in general y will also be a function of some control parameters, C

(physical examples include applied fields and driving parameters discussed in Sec.

2.1), such that λi = λi(C). This means there could be some value of the control

parameters which causes one or more eigenvalues to be zero. Thom showed that if

the non-Morse function is a function of m state variables and k control parameters,

yNM(s; C) = yNM(s1, ..., sm; c1, ..., ck), then it can be split into two parts
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yNM(s; C) = G(s) + P (s; C) (2.111)

where G(s) is referred to as the catastrophe germ and is the source of the singularity

of yNM. The function P (s; C) is the perturbation function of the germ and is linear

in the control parameters. Thom showed the number of state variables and control

parameters uniquely determines the form of yNM where the first five are given in Table

2.1. The functions are ranked in terms of their co-dimension, K. The co-dimension

is defined as the dimensionality of the control space minus the dimensionality of the

singularity, or in other words it is defined as the dimensionality of the space one needs

to explore the singularity.

The catastrophe functions in Table 2.1 are structurally stable in that they will

take the same form when perturbed further. To illustrate this we examine the cusp

germ G2(s) = s4 where the subscript is the co-dimension of the cusp catastrophe.

This function has a degenerate critical point at s = 0 that is a minimum. If we add

the perturbing function pε = εs2 to it where |ε| � 1, then s = 0 either becomes a

Morse minimum (non-degenerate minimum) or a maximum straddled by two minima

for positive and negative ε, respectively. In either case G2 + pε is drastically different

from G2. More specifically it is more stable than G2, but still unstable because adding

pδ = δs where |δ| � 1 changes things drastically again. However, Φ = G2 + pε + pδ is

stable since there always exists a transformation to remove s3 terms and put it back

into the form of Φ. Adding higher order terms also does not affect the stability since

if we have s4 + εsn where n ∈ Z : n > 4, then for ε < 0 the critical points are at s = 0

and s =
(

4
|ε|n

) 1
n−4

and since ε is very small the extra critical point that comes about

from adding the sn term is far away from the neighbourhood around s = 0 which we

are interested in. In general, the higher the order of the germ the more sensitive it

is to perturbations. The process of perturbing the germ until it is stable to further

perturbation is called unfolding.

2.4.3 Cusp catastrophe

Basic properties

The focus of this thesis in regard to catastrophes is the cusp catastrophe, so we provide

a dedicated discussion of it here. The cusp generating function is Φ2 = s4 + c2s
2 + c1s

where the subscript once again stands for the co-dimension of the cusp. The critical

points of Φ2 are given by

∂Φ2

∂s
= 4s3 + 2c2s+ c1 = 0 . (2.112)

Due to the fact that Eq. (2.112) is cubic it can have one to three real roots. The

number of real roots depends on the values of the two control parameters. In the
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c1

c2

Figure 2.8: The thick, black curves mark the values of the control parameters c1 and c2 which satisfy
the conditions ∂Φ2

∂s = ∂2Φ2
∂s2 = 0 and are given by Eq. (2.114). The insets show Φ2 as a function of

the state variable, s, for the different regions of the cusp.

control parameter plane seen in Fig. 2.8 regions depending on the number of real roots

are separated by two symmetric curves forming a cusp. The additional condition

∂2Φ2

∂s2
= 12s2 + 2c2 = 0 (2.113)

along with Eq. (2.112) gives the equation for the cusp

c1,± = ±
√

8

27
(−c2)3/2 (2.114)

where c1,± is the value of c1 on the cusp curve.

Figure 2.8 can be broken up into four regions

1. outside the cusp there is one real root

2. inside the cusp there are three real roots

3. on the fold curves emanating from the cusp point there are three real roots, but

two of them coalesce

4. at the cusp point at the origin all three real roots coalesce and this is the most

singular part of the cusp

The insets in Fig. 2.8 give Φ2 for different control parameter values where the real

roots are the extrema. If we take the cusp generating function as a potential for some

system the insets along the c1 = 0 axis represent a potential with no applied field

undergoing a second order PT where the cusp point (c1, c2) = (0, 0) is the critical

point. For a given value of c2 < 0 a first order PT occurs on the fold curve given in

Eq. (2.114).
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Subcatastrophes

Equation (2.114) can be explicitly shown to contain the fold catastrophe by first

realizing that solving for s in Eq. (2.113) gives s± = ±
√
|c2|
6

which are the values of

s where the two roots coalesce. Expanding Φ2 around s± and around the fold curve,

c1,±, gives

Φ̃2 ≈ A+By + y3 (2.115)

where Φ̃2 is the form of the fold generating function near the cusp curve. Also, we

have chosen to expand around the c1,+ fold curve, A is an unimportant constant,

B =
(

3
8a

)1/6
(c1 − c1,+) and y = s − s+. It is easy to see that the two real roots of

∂Φ̃2

∂y
= 0 coalesce when B = 0 or on the fold curve when c1 = c1,+.

Equation (2.115) for the cusp is a general result for all catastrophes, that is the

higher catastrophes contain the lower ones. In Fig. 2.9 we go in the other direction

and show that the elliptic umbilic catastrophe, whose generating function is shown in

Table 2.1, contains cusps. In (a) we show how the regions with different numbers of

real roots of ∂Φ3,eu

∂s1
= ∂Φ3,eu

∂s2
= 0 are separated in control parameter space, where Φ3,eu

is the elliptic umbilic catastrophe generating function. The image is three dimensional

as opposed to Fig. 2.8 due to there being one more control parameter for the elliptic

umbilic than the cusp. Image (b) shows a cross-section of image (a) for constant c1

(not to be confused with the cusp catastrophe c1) where three inward opening cusps

can clearly be seen. This shape is well known to be a three-cusped hypocycloid [71].

2.4.4 Physical meaning of structural stability

In science we depend on the repeatability of experiments, i.e. an experiment should

produce the same results when under the same conditions. This is of course an ideal-

ized notion of repeatability and in actual experiments, despite having a large degree

of control, unpreventable external influences have an effect on each run of the ex-

periment. Thus, the experimenter must decide what sort of outside influences they

want their experiment to be insensitive to. Likewise, in mathematical models, theo-

rists must account for all perturbations that have a large impact on the system. The

structural stability of catastrophes partially addresses this by giving the most general

function under the constraints of dimensionality and number of control parameters.

As an example, the Hamiltonian of the transverse field Ising model takes the form

of Φ2 in the mean-field theory where s is the total magnetization, c1 is the applied

magnetic field and c2 is the interaction energy between neighbouring sites. Any ex-

periment performed on this system will be done in the presence of Earth’s fluctuating

magnetic field causing different results for each run of the experiment. However, due

to the structural stability of Φ2 the Earth’s magnetic field only causes a shift of the
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Figure 2.9: Image (a) shows the boundary in control parameter space of the elliptic umbilic catas-
trophe which separates regions with different real roots of ∂Φ3,eu

∂s1
= ∂Φ3,eu

∂s2
= 0. Image (b) shows a

cross section of (a) for constant c1 which clearly displays three inward facing cusps also known as a
three-cusped hypocycloid.

cusp along the c1 axis. The form of the critical point remains unchanged where only

its position has changed.

In practice there can be some difficulty in knowing which catastrophe generating

function best captures the physics of a particular system. The transverse field Ising

model was stable to perturbations of Earth’s magnetic field, but what if there was a

perturbation involving a coupling between the spins and an additional degree of free-

dom? Terms like this take the form cs1s2 where we see in Table 2.1 they are accounted

for in higher order catastrophes, namely the hyperbolic umbilic catastrophe. Usually

the structural stability of catastrophes can be taken as equivalent to repeatability of

experiments, but only under perturbations of a certain type, so we cannot blindly

associate the two.

One may ask if second order PTs occur at all in nature because the free energy

given in Eq. (2.2) is unstable to perturbations linear in the state variable. The answer

is yes they do occur as a result of either artificially or naturally imposed symmetries.

Typically, in the lab experimentalists will not succeed entirely in imposing the desired

symmetry resulting in PTs in systems being weakly first order, however, as techniques

are refined the closer they can get to their goals in both eliminating the asymmetry

and accounting for its presence. An extremely relevant and recent example of this is

the experiment mapping the full phase diagram of a parity-symmetry breaking PT in

an ultracold atomic gas in a double well potential [72]. In that experiment the ground
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state energy takes the form of Eq. (2.2), but with a linear term from an energy bias

between the two wells. They were not able to remove the linear term, but were able

to account for its presence in the classification of the second order quantum PT.

2.4.5 Catastrophes in mean-field dynamics

Caustics

Mean-field dynamics takes place in the short wavelength limit where wave effects

governed by the Schrödinger equation are too small to be detected. In the mean-

field theory a system evolves along a definite path called a trajectory. It is unclear

where singularities might occur, and certainly there are none when speaking of a

single trajectory because a system evolves deterministically and uniquely. However,

what if identical copies of the system are made, each one starting in a different initial

state and they are allowed to evolve? One can easily imagine that if the system is

complicated enough some trajectories might overlap at some point. This overlapping

is the source of singularities in mean-field dynamics because the different paths are

no longer unique at those points. The general term for the region of focusing of

the trajectories comes from optics and is called a caustic coming from the Latin word

causticus meaning burnt. In optics caustics are the brightest features of light patterns

after reflection or refraction, and appear everywhere in our everyday lives from the

twinkling of starlight caused by the atmosphere to rainbows. This means we should

expect them to be the most noticeable features in the mean-field dynamics involving

many trajectories.

The singularities described above may seem artificial since on a macroscopic level

we only ever observe a single trajectory at a time. However, often semiclassical ap-

proximations are used to describe full quantum dynamics where a Wigner distribution

[73] of initial states are chosen to mimic an initial quantum state, but each trajectory

evolves classically. This type of approach is used in many semi-classical theories [74],

so there is justification for taking these singularities seriously.

The simplest example of a system which generates a caustic is the 1D simple

harmonic oscillator (SHO) which is described by the Hamiltonian

HSHO =
p2

2
+
x2

2
(2.116)

where p is the momentum and x is the position. Also, all constants have been set to

unity because they play no role in the proceeding analysis. For zero initial momentum

and initial position x0 the dynamics of x is given by x(t) = x0 cos t where we see each

trajectory is determined uniquely by the initial position. More importantly, each

trajectory has the same period, TSHO = 2π, so a caustic forms precisely at the point

(x, t) = (0, π/2) where every trajectory overlaps as seen in image (a) of Fig. 2.10.
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Figure 2.10: Dynamics for a distribution of initial states: (a) a simple harmonic oscillator and (b) a
pendulum. The trajectories of the harmonic oscillator come to a single point because they oscillate
at the same frequency, but when the system is slightly more complicated like the pendulum they
smear out into a cusp shape.

Although the SHO is one of the simplest systems displaying a caustic it does not

properly represent nature because it is idealized, and in terms of CT it is unstable

to perturbations. Any deviation in the curvature of the potential term from the

parabolic shape will result in a smearing of the focus point so it becomes an extended

region in space. In optics a great effort is directed toward the creation of perfect

lenses able to focus light rays to a single point, but it is impossible and the term used

for the inevitable smearing of the focus is ‘aberration’. In order to see the effects

of the smearing we look at another simple 1D system, the rigid pendulum, which is

described by the Hamiltonian

Hpend =
L2
z

2
− cos θ (2.117)

where Lz is the angular momentum in the z-direction (the direction is arbitrary)

and θ is the angular displacement from the downward position. For similar initial

states as the SHO, that is zero initial angular momentum, the angular displacement

dynamics is given by θ(t) = sin(θ0/2) cn[t| sin2(θ0/2)] where θ0 is the initial angular

displacement and cn[u|m] is the Jacobi Elliptic cosine function. We can see once

again each trajectory is determined by the initial displacement, however, due to the

departure of the cosine potential from the parabolic shape in the SHO, each trajectory

has a different period, Tpend = 4K[sin(θ0/2)] where K[x] is the elliptic integral of the
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first kind. This results in the caustics forming the now familiar cusp-shape seen in

image (b) of Fig. 2.10.

Connections to catastrophe theory

A natural question to ask is what exactly is the connection of the dynamics in Fig.

2.10 to CT? The first hint comes from the fact that the cusp exists in spacetime

signalling that space and time are related to the control parameters of the cusp gener-

ating function, c1 and c2. Second, we know from the Lagrange formalism of classical

mechanics any trajectory is determined from the principle of stationary action. This

means ∂S
∂θ0

= 0, where S is the action. When θ and t are such that they lie on the

caustic the action is stationary to higher order, so we have ∂2S
∂θ20

= 0. These two condi-

tions are the same as those for the cusp when θ0 is the state variable and S is the cusp

generating function. In general, S will look nothing like any catastrophe generating

function, however, near the caustics it can be Taylor expanded to look like them. For

the pendulum case near the cusp point CT tells us that the action must take the form

S ≈ c1(θ, t)θ0 +c2(θ, t)θ2
0 +θ4

0 where c1 and c2, now referred to as the canonical control

parameters are functions of the spacetime coordinates, now referred to as the physical

control parameters. CT tells us the form of S is universal for systems displaying a

cusp, but the dependence of the canonical parameters on the physical parameters is

not. However, near the cusp point they too can be expanded to leading order. For the

pendulum near the first cusp we have c1 ∝ θ and c2 ∝ (π/2− t) [75] where applying

the stationary conditions of the action gives the usual cusp equation θ ∝ (t−π/2)3/2.

Lastly, in Sec. 2.4.3 we discussed how the cusp is the boundary separating regions

with different numbers of real roots. When the generating function is the action the

number of real roots to ∂S
∂θ0

= 0 is the number of paths allowed at any (θ, t) coordi-

nate. This can be seen in (b) of Fig. 2.10 where outside the cusp only one trajectory is

allowed at any point and inside, close to the cusp point, three can overlap. Although

hard to see, on the fold caustic two trajectories overlap.

It should come as no surprise to us that the cusp appears in 1D dynamics because it

is the highest order catastrophe that can exist purely in two dimensions. This means

we already know the form of the action near the cusp itself, which is that of the

fold. Likewise, if we increase the spatial dimension by one we should expect dynamics

which resembles one or both of the umbilic catastrophes. CT has been used by us to

predict umbilic catastrophes in quantum dynamics in Fock space after a quench of a

BEC in a triple well when a cusp was seen in the dynamics after a similar quench of

a BEC in a double well [76].
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2.4.6 Catastrophes in waves

In quantum dynamics the evolution of a state is determined by the Feynman propa-

gator [37]

K(x, t;x0, t0) =
∑

all paths

eiS/~ (2.118)

where S is the action and the sum is over all paths originating at position x0 at time

t0 and ending at position x at time t. Also, ~ is Planck’s constant, although, in

many-body systems N can play the role of the inverse of Planck’s constant. In either

case the short wavelength limit discussed in the previous section corresponds to the

limits ~ → 0 (continuum) or N → ∞ (thermodynamic). When this happens the

only paths that contribute to the propagator are those given by the stationary action,

∂S/∂x0 = 0, and the rest cancel due to destructive interference. If we move away from

the ~→ 0 limit, but still have ~� 1, then the classical paths are still good and can be

used in various semiclassical wave approximations like the Wentzel-Kramers-Brillouin

(WKB) [77] method. However, these approximations also breakdown when the roots

of ∂S/∂x0 = 0 are degenerate. CT is exactly what is needed as it gives us universal

wave function forms around these critical regions. These forms were originally studied

in wave optics, so at first we will use focus on examples with light, then switch to

quantum wavefunctions.

Universal diffraction catastrophes

In the wave theory of optics it has been shown that a general wave function near a

singularity can be transformed into one of a finite set of diffraction integrals [78, 79, 80]

called ’diffraction catastrophes’ of the form

Ψ(C; k) =

(
k

2π

)n/2 ∫ ∞

−∞
· · ·
∫ ∞

−∞
dns eikΦ(s;C) (2.119)

where Φ is the catastrophe generating function and n is the corank of Φ, or the number

of directions in state space which are singular. Thus, the study of wavefunctions near

caustics boils down to the study of integrals given in Eq. (2.119), i.e. path integrals

with coalescing saddles. What is surprising is that the majority of the catastrophe

integrals are unknown to physicists. It should be noted that the bulk of the study

of these integrals was done in the context of optics, but we will find they describe

quantum wavefunctions near caustics as well. For now we look at the basic properties

of the cusp diffraction integral.

For the cusp Eq. (2.119) takes the form
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Figure 2.11: Images of the cusp catastrophe: (a) computer generated image of the amplitude
|Pe(c1, c2, 1)| and (b) an image of laser light focused onto a spatial plane after being focused by
a water-droplet lens. Dark and light colour signify regions of low and high intensity, respectively.
Both images are courtesy of Berry [48].

Pe(c1, c2; k) =

√
k

2π

∫ ∞

−∞
ds1 eik(c1s1+c2s21+s41) . (2.120)

This function (with k = 1) was first studied by Pearcey [51] and is therefore called

the Pearcey function and given the special notation Pe. From the mean-field theory

we know caustics form a cusp where outside of it no trajectories intersect and inside it

three trajectories intersect. Therefore, we should expect there to be a more intricate

interference pattern within the cusp. Looking at image (a) Fig. 2.11, which shows the

amplitude |Pe(c1, c2; k)| this is exactly what is found. Image (b) shows a photograph

of laser light focused by a water-droplet lens onto a spatial plane. The agreement

between the two images is very impressive as the Pearcey function is able to capture

45



Ph.D. Thesis - J. Mumford; McMaster University - Physics and Astronomy

-8 -6 -4 -2 0 2 4
0.0

0.5

1.0

1.5

c1

 Ai
Hc 1

L¤2

(a) (b)

Figure 2.12: Images of the fold catastrophe: (a) a photograph of the fold catastrophe produced by
light focused through a water-droplet lens and (b) a computer generated image of the intensity of
the Airy function which is the diffraction integral of the fold catastrophe. Image (a) is courtesy of
Berry [48].

even the finest details of the interference pattern in the cusp.

Before we go further discussing the interference pattern within the cusp we examine

the wavefunction form near the caustics, but away from the cusp point. We know

from the mean-field theory the caustics are described by the fold generating function.

This means the wavefunction takes the form

Ai(c1; k) =
k1/2

2π

∫ ∞

−∞
ds1 eik(c1s1+s31) (2.121)

which has been given the special notation Ai because it is a version of the Airy function

(when k = 1) [81]. In image (a) of Fig. 2.12 we show the caustic region away from

the cusp point of the same water-droplet focused light as in Fig. (2.11. Comparing

image (a) with the intensity of the Airy function in image (b) we see the Airy function

properly describes the qualitative features of the spacing of the fringes as well as the

decrease in intensity as one goes further inward from the dark side of the caustic.

Phase singularities: vortices

We can see within the cusp there is a regular pattern of dark (low intensity) and

light (high intensity) spots and at the centres of the darkest spots the intensity of the

wavefunction goes to zero. To have the amplitude of the wavefunction go precisely

to zero at any point may seem like it requires special conditions because it means all

contributing waves at that point exactly cancel out. However, Berry was able to show

that these zero intensity points are general features of wave interference patterns
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Figure 2.13: Image (a) shows the phase of the Pearcey function given in Eq. (2.120) in the control
parameter space. Image (b) shows a closeup of a vortex-antivortex pair where we can see the vortex
cores are points where curves of constant phase terminate.

[48]. The consequence of this is that a wavefunction of the form ψ = ρeiχ where

ρ is the amplitude and χ is the phase, has |ρ| = 0 at some point, then the phase is

undefined at that point and therefore takes all possible values. These points are phase

singularities and called ’wavefront dislocations’ by Nye and Berry [82] because of their

close similarity to dislocations in crystal structures. The fact that ψ is single-valued

means that around any circuit, C, enclosing a phase singularity, χ changes by ±2πn

where n = 0, 1, 2, . . . and determines the strength of the singularity. Mathematically,

this means

∮

C

dχ =

∮

C

∇χdr = ±2πn . (2.122)

Because the singularities are general features of interference patterns they come

in a wide variety both isolated and in groups. The ones within the cusp come in

vortex-antivortex pairs as shown in Fig. 2.13. Image (a) shows the phase of image

(a) in Fig. 2.11 and image (b) shows a magnified view of a particular vortex pair. The

colours represent the values of the phase from 0 to 2π where we can clearly see they

terminate at the dislocation points. For all pairs within the cusp the phase changes

by ±2π where it is +2π for one member of each pair and −2π for the other. These

sort of pairs appear in materials displaying the Kosterlitz-Thouless PT [83]. The

difference between the vortices found in those materials and the cusp vortices is the

cusp vortices never vanish and remain paired for finite k. In the limit k → ∞ all
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Table 2.2: Universal scaling exponents for the the catastrophe integrals with co-dimension K ≤ 3.
Here, β determines how the intensity scales, σj determines how the interference fringes scale and γ

determines how the volume in the control parameter space scales. β should not be confused with
the scaling exponent discussed in Sec. 2.1.

name β σj γ

fold 1/6 σ1 = 2/3 2/3
cusp 1/4 σ1 = 3/4, σ2 = 1/2 5/4
swallowtail 3/10 σ1 = 4/5, σ2 = 3/5, σ3 = 2/5 9/5
elliptic umbilic 1/3 σ1 = 2/3, σ2 = 2/3, σ3 = 1/3 5/3
hyperbolic umbilic 1/3 σ1 = 2/3, σ2 = 2/3, σ3 = 1/3 5/3

vortices get scrunched up into the cusp point, but then the mean-field theory takes

over because the wave theory no longer applies.

It is also interesting to consider the resemblance of the constant phase curves

around each pair to the curves of constant electric field around a pair of equally but

oppositely charged particles. Each vortex acts as a charged particle with constant

phase lines originating at one vortex and terminating at the other.

Universal scaling

As k → ∞ the spacing of the interference fringes goes to zero. We can ask the

question, how exactly do the spacings go to zero? It turns out the effects of k on the

spacings can be determined by rescaling s1 in Pe(c1, c2; k). If we define a new variable

of integration, s = k1/4s1, then the Pearcey function becomes

Pe(c1, c2, ; k) =
k1/4

√
2π

∫ ∞

−∞
ds ei(k

3/4s+k1/2s2+s4) , (2.123)

thus Pe(c1, c2, k) = k1/4Pe(k3/4c1, k
1/2c2; 1) which shows the k dependence of the fringe

spacing in the c1 and c2 directions is k−3/4 and k−1/2, respectively. This means as k →
∞ distances change anisotropically and the fine structure within the cusp becomes

elongated.

It turns out that every catastrophe integral has a set of exponents associated with

it describing the k →∞ behaviour. The general scaling equation is

Ψ(C; k) = kβΨ(kσjcj; 1) (2.124)

where 1 ≤ j ≤ K and where K is the number of control parameters describing the

caustic singularity. The exponent β is the “singularity index” as it is the singular part

of the wavefunction as k → ∞ and was first introduced by Arnol’d [52]. The fringe

spacing exponents, σj, were first introduced by Berry [53] along with the exponent
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γ =
K∑

j

σj (2.125)

describing how the volume in control parameter space scales. The values of these

exponents for the catastrophes given in Table 2.1 is given in Table 2.2 [48].

In paper III we study the dynamics of semiclassical many-body wave functions

after a term in the Hamiltonian is flashed on and off at t = 0. Furthermore, when

a symmetry of the Hamiltonian is broken by a second order PT we show k ∝ λq

where q ∈ Z and λ is the reduced driving parameter of the PT defined in Sec. 2.1.1.

This allows us to relate the scaling discussed in this section to scaling near a PT

discussed throughout Sec. 2.1. Relating the driving parameter to the wavenumber is

demonstrated explicitly when the action, S, in Eq. (2.118) is a homogeneous function

of space (can be abstract spaces like Fock space) and time. This means with proper

scaling of space and time the action becomes

S(λu1x, λu2t) = λuS(x, t) (2.126)

where the RHS is what we are after. This allows us to identify universal features

of quantum dynamics. This is novel because universality is usually discussed in the

context of equilibrium states.

2.4.7 Catastrophes in many-body quantum dynamics

The evolution in time of many-body quantum systems is smooth, but there is an innate

granularity in the dynamics due to the excitations being quantized. This raises many

questions regarding CT: (1) do catastrophes exist in many-body wave functions? (2)

if so, does the quantization destroy the fine details of the catastrophes like vortices?

(3) if they survive are they altered in any way?

The first of these questions has been answered recently by O’Dell [47] by analyzing

the dynamics of a BEC in a double well potential after a quench. Equation (2.59)

gives the Hamiltonian which generates the system’s dynamics. The procedure consists

of preparing the system with two independent BECs by having an infinite barrier

height, then at t = 0 suddenly dropping the barrier to some value and letting the

system evolve. Figure 2.14 shows the result of such a scheme for N = 100 bosons.

Here, we plot the intensity of the wave function in the number difference basis, z =

(Nr −Nl) /N , defined in Sec. 2.2.3 as a function of time. We can see cusps periodically

form along the z = 0 axis, but lose their shape near z = ±1 due to energy constraints.

The first cusp is not a true cusp because the initial state is |z = 0〉 which is a point,

but the second cusp is. Looking closer at the interference pattern near the cusp

point of the middle cusp we see a pattern similar to that of the Pearcey function

in Fig. 2.11, but it is in fact discretized by a new length scale, 1/N , introduced by
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z

t

Figure 2.14: Many-body dynamics after a quench of a BJJ. The initial state is |z = 0〉 which is two
independent BECs, then their coupling is flashed on at t = 0. Cusps form periodically around the
z = 0 axis as a result of the quench, however the cusp at t = 0 is not a true cusp because the wave
function is focused to a point there and cusps are extended objects. The image is for N = 100

the discreteness of the Fock space. This means details of the wave function cannot

be discerned past the length 1/N and the vortex cores are removed making their

exact locations unknowable. Remarkably, however, the vortices still exist as phase

singularities as can be shown by integrating the phase around square circuits in Fock-

space plus time. Thus, we get a partial answer to question number two, yes, the

vortex cores are destroyed, by the phase dislocations persist.

A full investigation of these questions is the subject of paper IV where we look at

the dynamics of the same system, but with a different quench scheme. We examine

the dynamics of an initial Gaussian distribution of Fock states after the interactions

between bosons of the BEC are flashed on and off at t = 0. Specifically, we look at

the competition between the vortex-antivortex separation distance in Fock space and

1/N .
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Publications

3.1 Paper I: Impurity in a bosonic Josephson junction: Swal-

lowtail loops, chaos, self-trapping, and Dicke model

Jesse Mumford, Jonas Larson, and D. H. J. O’Dell

Impurity in a bosonic Josephson junction: Swallowtail loops, chaos, self-trapping, and

Dicke model

Phys. Rev. A 89, 023620 (2014);

DOI: https://doi.org/10.1103/PhysRevA.90.063617

Copyright c© (2014) by the American Physical Society

Summary: This paper explores the effects of the inclusion of a single impurity in

a BEC in a double well potential. Specifically, we show at the mean-field level the

impurity is responsible for a Z2 symmetry breaking PT where at the critical BEC-

impurity interaction energy, Wc, the ground state changes from having equal amounts

of the BEC in each well to a build-up in one well over the other (the ’choosing’ of

one well over the other is what breaks the Z2 symmetry). We show as a result of the

PT the mean-field dynamics become chaotic by examining Poincaré sections in the

BEC-impurity phase space.

On the quantum side we show the ground state expectation value of the number

difference operator, Ŝz, is zero for W < Wc and nonzero for W > Wc. This confirms

the mean-field theory prediction of the existence of a PT where 〈Ŝz〉 is the order

parameter. Finally, we show the impurity induces dynamical trapping of the BEC

where the time average of 〈Ŝz(t)〉 is nonzero.

Content: All calculations with the exception of those done in Sec. VI, which were

done by Jonas Larson, were done by the author. The majority of the article was

written by the author with the following notable exceptions: most of the introduction,
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Sec. VII and conclusion were written by Duncan O’Dell, and Sec. VI was written by

Duncan O’Dell and Jonas Larson.
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Impurity in a bosonic Josephson junction: Swallowtail loops, chaos, self-trapping, and Dicke model
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We study a model describing N identical bosonic atoms trapped in a double-well potential together with a
single-impurity atom, comparing and contrasting it throughout with the Dicke model. As the boson-impurity
coupling strength is varied, there is a symmetry-breaking pitchfork bifurcation which is analogous to the quantum
phase transition occurring in the Dicke model. Through stability analysis around the bifurcation point, we show
that the critical value of the coupling strength has the same dependence on the parameters as the critical coupling
value in the Dicke model. We also show that, like the Dicke model, the mean-field dynamics goes from being
regular to chaotic above the bifurcation and macroscopic excitations of the bosons are observed. Although the
boson-impurity system behaves like a poor man’s version of the Dicke model, we demonstrate a self-trapping
phenomenon which thus far has not been discussed in the realm of the Dicke model.

DOI: 10.1103/PhysRevA.89.023620 PACS number(s): 03.75.Lm, 05.45.Mt, 03.75.Gg, 67.85.Pq

I. INTRODUCTION

The system comprising of a single quantum particle
tunneling in the presence of a many-particle environment is
of fundamental interest in the study of decoherence and is
relevant to certain well-known models such as the spin-boson
model and the Kondo problem [1,2]. In this paper, we consider
a trapped ultracold-atom version: a single distinguishable
“impurity” atom and N indistinguishable bosons all trapped
together in a double-well potential. Within the single-band
two-site Bose-Hubbard model, both the impurity and the
bosons become two level systems, i.e., pseudospins. This
model has previously been studied by Rinck and Bruder [3],
by us [4], and by Lu and co-workers [5]. Closely related but
distinct models that have been studied recently include the
cases of an impurity atom trapped in a double well and coupled
to a uniform Bose-Einstein condensate (BEC) [6], an atomic
quantum dot acting as a coherent single-atom or photon shuttle
between two BECs [7] or two optical resonator modes [8],
respectively, and of two impurities immersed in a BEC [9].
Also related are studies of double wells containing atoms of
two different species [10], a system suited to investigating
the quantum aspects of phase separation [11–13]. Away from
the immediate arena of cold atoms, essentially the same
Hamiltonian as we shall use here occurs in the Mermin
central-spin model (also known as the spin star model) which
can be pictured as a central distinguished spin coupled equally
to N surrounding spins located on the points of a star [14–16].

Various elements of our proposed system are already well
established in the laboratory, although combining them may of
course prove challenging. For example, tunnel-coupled atomic
BECs (bosonic Josephson junctions) have been realized in a
variety of different ways including the case where the double
well might be an actual external potential [17–26], or be
formed from two hyperfine states whose coupling is controlled
by microwave or radiofrequency fields (internal Josephson
effect) [27,28]. Although binary mixtures of BECs in the same
trap were first made in the early days of atomic BEC [29],
placing a precise number of atoms in a trap is a more recently
achieved feat [30]. One setup which comes close to the one

we have in mind here was created in an experiment where an
optical lattice containing a Bose-Fermi mixture was suddenly
ramped up to a large depth [31]. This resulted in an array of
traps, each containing either one or zero fermions together with
a small number of coherent bosons. The depth of the lattice
effectively shut off tunnel coupling between the wells in that
experiment, but ramping to smaller lattice depths would leave
tunneling switched on. We also note in this context that optical
lattices are versatile enough that they can be manipulated to
produce a lattice of double wells [32]. Yet another relevant
experiment has studied the fate of a superposition of two
motional states of fermionic atoms immersed in a BEC [33].

In our previous paper [4], we studied the symmetry-
breaking bifurcation that occurs in the ground state above
a critical value of the boson-impurity interaction strength.
The symmetry that is broken is a Z2 parity symmetry whose
physical order parameter is the expectation value of the
difference in the number of bosons between the left and right
wells (or the corresponding quantity for the impurity) which
spontaneously develops a nonzero value at the bifurcation.
From the energetic point of view, above the critical interaction
strength it becomes preferable for the impurity to localize
in one well and for the bosons to favor the other (assuming
a repulsive boson-impurity interaction) leading to a number
imbalance. Related symmetry-breaking bifurcations have been
studied experimentally in purely bosonic Josephson junctions
(no impurity) [28], in spin-orbit-coupled BECs [34], and in
BECs in cavities [35]. In the case of [28], the bifurcation arises
from the nonlinearity due to boson-boson interactions [36–45]
and is thought to become a full blown quantum phase transition
(QPT) in the limit that N → ∞ [36,42–45]. When the net
interaction energy is negative, this bifurcation occurs in the
ground state, spontaneously breaking the symmetry of the
Hamiltonian so that the bosons clump together in either
the left or right well (in the case of the internal Josephson
effect, a spontaneous polarization develops [40]). When the
interaction energy is positive, the bifurcation breaks the
symmetry of excited states and manifests itself physically as
the transition from oscillations to macroscopic self-trapping,
i.e., a dynamical phase transition [45]. In contrast to the purely

1050-2947/2014/89(2)/023620(18) 023620-1 ©2014 American Physical Society
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bosonic Josephson junction, in our system it is the nonlinearity
due to the boson-impurity interaction that leads to symmetry
breaking, and this can occur in the ground state for either
repulsive or attractive interactions. Self-trapping due to the
boson-impurity interaction can also occur as we shall see.

For a perfectly balanced double well, the number-difference
symmetry is only broken in the mean-field theory: in the
fully quantum treatment, the many-body wave function in
Fock space (number-difference space), which has Gaussian
fluctuations in the Bogoliubov approximation [46], develops
non-Gaussian number fluctuations in the critical regime and
eventually separates into two macroscopically distinguishable
pieces, i.e., a Schrödinger cat state. This state is notoriously
delicate and tiny external perturbations not included in the
Hamiltonian are liable to break the symmetry by effectively
introducing a tilt between the two wells. This collapses the
cat state and thereby restores the validity of the mean-field
result. Another difference between the full quantum theory
and the mean-field theory is that the latter is nonlinear and
this is the origin of the bifurcation which takes the form of a
three-pronged pitchfork when the number difference is plotted
as a function of the boson-impurity interaction strength and
appears as a swallowtail loop [4] (see Fig. 2) when the energy
is plotted versus an externally imposed tilt (which plays a
role analogous to quasimomentum [47]). These characteristic
loop structures also occur in many other bifurcating systems
including bosonic Josephson junctions [39], the band structure
of BECs in optical lattices [48–50] including at the Dirac
point for a honeycomb lattice [51], the band structure of
noninteracting atoms in cavity-QED [52], and the equivalent
of band structure for BECs in toroidal traps [53,54]. Their
presence has also been inferred experimentally due to a sudden
breakdown in adiabaticity during a parametric sweep of the tilt
between wells in a bosonic Josephson junction [55].

In this paper, we shall show that at the same time
the bifurcation appears, the mean-field dynamics goes from
regular to chaotic. Chaos in our system requires the pres-
ence of the impurity and does not occur in the ordinary
bosonic Josephson junction which is classically integrable
in the two-mode regime. Indeed, by adding an additional
degree of freedom such as spin chaos has been previously
predicted to appear in both mean-field BECs [56] and bosonic
Josephson junctions [57]. Alternatively, chaos may also occur
by removing energy conservation [58–61]. Chaos is a classical
phenomenon that is usually defined as exponential sensitivity
to initial conditions, that is, two arbitrarily close points in
phase space will diverge exponentially over time. In quantum
mechanics, precise trajectories do not exist and positions in
phase space can not be defined than better to an area of
size ≈ � precluding the possibility of exponential sensitivity.
Nevertheless, quantum systems whose classical limit is chaotic
do display tell-tale behavior such as level repulsion leading to
the idea of quantum chaos [62–65]. Here, we demonstrate
chaos via Poincaré plots giving stroboscopic sections through
classical (mean-field) phase space and we also monitor the
statistics of the quantum energy levels.

Similar regular-to-chaotic behavior as we observe has been
predicted [66–68] in the celebrated Dicke model. Indeed, in
this paper we make the claim that our model is a poor man’s
version of the Dicke model, behaving identically if one is close

to the bifurcation. The original Dicke model [69] described
N two-level atoms coupled to a single mode of the electro-
magnetic field and undergoes a quantum phase transition to a
superradiant phase corresponding to the collective emission
of photons at a critical value of the atom-light coupling
strength [70,71]. Alternatively stated, the Dicke model consists
of N spins coupled to a harmonic oscillator. The physical basis
of our claim of the equivalence of the two models is that very
near the critical point, the harmonic oscillator is barely excited
and can be truncated to just two states, and therefore behaves
like the two-state impurity atom in our model. The fact that at
a phase transition quantum fluctuations become important, but
that this point also coincides with the onset of chaos, which
is a classical phenomenon, suggests intriguing connections
between the quantum and classical worlds [72].

The layout of this paper is as follows: We introduce
the boson-impurity and the Dicke Hamiltonians in Sec. II;
Sec. III consists of an analysis of the stationary mean-field
problem including loops and the stability of the solutions;
Sec. IV discusses the critical properties of the quantum
ground state using an analogy to magnetism; in Sec. V we
show the emergence of classical chaos which is triggered by
the bifurcation and hence the presence of the impurity; the
following Sec. VI demonstrates self-trapping; and in Sec. VII
we analyze the nearest-neighbor statistics of the quantum
energy levels. We have also provided an appendix which
explains how we ensure that the eigenstates produced by
numerical diagonalization have well-defined parity.

II. MODEL

The simplest many-body description for bosons in a double-
well potential is the single-band two-site Bose-Hubbard
model. When an impurity atom is added, this takes the
form [3,4]

Ĥ = −J B̂ − J aÂ + W

2
�N̂�M̂

+ �ε

2
�N̂ + �εa

2
�M̂. (1)

Here, �N̂ ≡ b̂
†
Rb̂R − b̂

†
Lb̂L is the number-difference operator

between the two wells for the bosons, and B̂ ≡ b̂
†
Lb̂R + b̂

†
Rb̂L

is the boson hopping operator which also gives the coherence
between the two wells [73]. Likewise, �M̂ ≡ â

†
RâR − â

†
LâL

and Â ≡ â
†
LâR + â

†
RâL are the equivalent operators for the

impurity. We assume that both the boson and impurity
creation and annihilation operators obey the standard bosonic
commutation relations, i.e., [b̂α,b̂†

α] = [âα,â†
α] = 1 with α =

L,R and ones like [âα,b̂†
α] are identically zero. However,

because there is only one impurity, its statistics do not matter
and it could be a boson or a fermion. W parametrizes the
boson-impurity interaction, and J and J a are the hopping
amplitudes for the bosons and impurity, respectively. Using
similar notation, �ε and �εa are the respective differences
between the zero-point energies of the two wells, i.e., the
tilt, for the bosons and the impurity. It is important to point
out that we have chosen not to include direct boson-boson
interactions, assuming that they can be removed by a Feshbach
resonance if necessary [28]. In our previous paper [4], we did
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include them, but for many of the effects we are interested
in here, especially the bifurcation in the ground state, they
are a distraction that does not make a qualitative difference
to the behavior. One exception to this is the particular case of
attractive boson-boson interactions above a certain threshold
in which case they also cause a symmetry-breaking bifurcation
in the ground state as discussed in the Introduction. Another
point to note at this stage is that the Hubbard Hamiltonian
is a tight-binding approximation that neglects the change in
the mode wave functions due to interactions [74,75]. This
means that strong coupling polaron effects [76] are beyond our
treatment. Instead, the double-well system allows us to focus
upon the rich many-body aspects of the impurity problem.

The Hamiltonian in Eq. (1) can be reexpressed in the basis
of the symmetric and antisymmetric (S and AS) modes instead
of the left and right (L and R) modes. The S and AS modes
are the eigenmodes of the single-particle problem, i.e., in the
absence of interactions. Therefore, in the limit that W → 0,
the ground state corresponds to all the particles in the S mode
because it has lower energy. Using a simple Hadamard rotation
of the L and R creation (annihilation) operators, we have

b̂L = 1√
2

(b̂S + b̂AS), (2)

b̂R = 1√
2

(b̂S − b̂AS), (3)

and similar expressions hold for the impurity operators. In the
new basis, and for vanishing tilts �ε = �εa = 0, Eq. (1) takes
the form

ĤS,AS = 2J Ŝz + 2J aŜa
z + 2WŜxŜ

a
x , (4)

where the Schwinger spin representation has been used [77],
i.e., Ŝz ≡ (b̂†

ASb̂AS − b̂
†
Sb̂S)/2 = −B̂/2 and Ŝx ≡ (b̂†

ASb̂S +
b̂
†
Sb̂AS)/2 = −�N̂/2. Apart from the trivial U(1) symmetry

related to particle conservation, we note that the Hamiltonian
supports a Z2 parity symmetry under Ŝx → −Ŝx , Ŝy → −Ŝy ,
Ŝz → Ŝz, and equivalently for the impurity spin operators.
This spin rotation preserves the SU(2) angular momentum
commutation relations. Note that in the original L and R

bases, this symmetry is nothing but a reflection of the double
well about the origin. It follows that a nonzero tilt �ε �= 0 or
�εa �= 0 breaks this symmetry.

Our model Hamiltonian in the form of Eq. (4) shows some
resemblance to the Dicke Hamiltonian [69,78]

ĤD = ωBŜz + ωAĉ†ĉ + 2g(ĉ + ĉ†)Ŝx . (5)

Here, ĉ† (ĉ) are photon, i.e., boson, creation (annihilation) op-
erators and Ŝz and Ŝx are spin operators. Equation (5) describes
a spin-N/2 system coupled to the position coordinate of a
harmonic oscillator. The frequencies ωB and ωA are the spin
precession and harmonic oscillator frequencies, respectively,
and g is the coupling strength. This system experiences a QPT
at a certain critical value gc to be discussed further in the
following [79]. By comparison, Eq. (4) can now be thought
of as a system consisting of a spin-N/2 coupled to a spin- 1

2
particle (impurity) instead of the harmonic oscillator in the
Dicke mode. Here lies the most important distinction between
the two Hamiltonians: in the Dicke model, the coupling is to the

electromagnetic field which has infinitely many energy levels,
whereas there are only two levels for the impurity. Despite this
truncation of the Hilbert space of the Dicke model, the parity
symmetry of the boson-impurity model has its analog in the
Dicke model with ĉ → −ĉ and ĉ† → −ĉ†, and Ŝx → −Ŝx and
Ŝy → −Ŝy . These similarities mean that the boson-impurity
system behaves as a simplified, or poor man’s, Dicke model
that captures the crucial behavior near the QPT. We also note
that the rotating-wave approximation has not been imposed in
Eq. (4) or in Eq. (5).

In order to obtain many of the results presented in this paper,
we numerically diagonalize the Hamiltonian given in Eq. (1).
For N atoms this requires diagonalizing a (2N + 2) × (2N +
2) matrix which is tractable for N ∼ 1000 on a small computer
because of the linear scaling in N of the matrix dimension
and thus we can obtain numerically exact results. There are,
however, some subtleties involved which are reflected in the
physics of the system: From the above discussion we see
that in the absence of any tilt the eigenstates should all
have well-defined parity in the two-dimensional Fock space
(i.e., number-difference space) where the many-body quantum
state lives. However, numerical diagonalization routines do
not automatically respect this parity symmetry. The most
severe test occurs in the critical region where the quantum
state becomes non-Gaussian and eventually evolves into a
Schrödinger cat state made of two almost separated pieces in
Fock space connected only by exponentially small probability
amplitudes in-between. This may be viewed as arising from the
appearance of an effective double-well potential in Fock space:
for each even-parity state there is an odd-parity one and their
energies become almost degenerate except for an exponentially
small tunnel splitting when they lie below the barrier top.
Numerical routines find it hard to handle exponentially small
numbers at the same time as numbers of order unity and tend
to give eigenstates of broken parity above the critical value
of W , i.e., the eigenstates choose one well or the other. It is
amusing to reflect on the fact that numerical errors replicate
the effects of a physical environment! As we explain in the
Appendix A, we circumvent these problems by diagonalizing
the Hamiltonian in a basis which has well-defined parity so
that good parity in Fock space is enforced.

III. MEAN-FIELD ANALYSIS

We perform the mean-field approximation by replacing the
operators âL/R and b̂L/R in Eq. (1) with complex numbers

âL/R → aL/R = √
ML/R eiαL/R (t) [impurity], (6)

b̂L/R → bL/R = √
NL/R eiβL/R (t) [bosons], (7)

giving the mean-field Hamiltonian

HMF = −J
√

N2 − 4Z2 cos β − J a
√

1 − 4Y 2 cos α

+ 2WYZ + �εZ + �εaY. (8)

In the above expression, we have introduced the classical
variables giving the phase and population differences between
the L and R sides: α ≡ αR − αL, Y ≡ �M/2, β ≡ βR − βL,
and Z ≡ �N/2. It should be noted that the mean-field
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approximation is really only being applied to the boson field.
The mean-field representation for the impurity is in fact exact
because the quantum state of a spin- 1

2 is fully characterized by
the two real numbers α and Y which can be related to the two
angles on the Bloch sphere. Here, we are essentially utilizing
the boson-coherent-state ansatz to derive the semiclassical
Hamiltonian (8), but an equally good approach would be to
use spin-coherent states instead [68].

The equations of motion following from Eq. (8) can be
obtained from Hamilton’s equations [4]

α̇ = �εa

�
+ 2

W

�
Z + 4J a

�
Y cos α√
1 − 4Y 2

, (9)

Ẏ = −J a

�

√
1 − 4Y 2 sin α, (10)

β̇ = �ε

�
+ 2

W

�
Y + 4J

�
Z cos β√
N2 − 4Z2

, (11)

Ż = −J

�

√
N2 − 4Z2 sin β. (12)

Setting the left-hand sides to zero gives the stationary solutions
whose energies are plotted in Fig. 1 as a function of the
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FIG. 1. (Color online) Energies of the static solutions to the
mean-field equations (9)–(12) as a function of the tilt �ε. Each
panel has a different value of the boson-impurity interaction energy:
(a) W = 0.1J , (b) W = 0.5J , and (c) W = 2.5J . The various solu-
tions within each panel are characterized by their phase difference.
The four solutions are α = β = 0 (black circles), α = π and β = 0
(orange squares), α = 0 and β = π (blue diamonds), and α = β = π

(red triangles). All panels have J a = J , �εa = �ε, and N = 16.

tilt �ε. Ignoring the trivial solutions of Z = ±N/2 and
Y = ± 1

2 , we consider the solutions α = {0,π} and β = {0,π}
to Eqs. (9)–(12) giving four different combinations of the
phase differences. In terms of the double pendulum analogy
advanced in [4], the combination (α = β = 0) corresponds
to both pendula pointing straight down, (α = π, β = 0)
corresponds to the impurity pendulum pointing straight up
and the boson pendulum pointing straight down, and vice
versa for (α = 0, β = π ). The combination (α = π, β = π )
corresponds to both pendula pointing straight up. In Fig. 1,
each of these solutions is plotted with a different symbol.
Each panel is for a different value of W and illustrates how
swallowtail loops appear when W exceeds a certain critical
value Wc.

Let us focus upon Fig. 1(c) which is for W > Wc and
contains two swallowtail loops, one in the lowest- and one in
the highest-energy band. The area of the loops depends on W ,
but their positions up the vertical energy axis are determined by
J and J a . At �ε = �εa = 0, the top of the α = β = 0 band is
fixed at E = −NJ − J a even when the loop is formed, i.e., in
the presence of a loop E = −NJ − J a gives the energy of the
upper branch of the lower loop. Meanwhile, the next band
up, which has α = π , β = 0, is fixed at E = −NJ + J a .
The energy gap between the two lowest bands is therefore
2J a and the same goes for the energy gap between the two
highest bands. The appearance of two loops is in contrast to
the boson-only system where boson-boson interactions lead
to a single loop, either in the highest band for the case of
repulsive interactions or in the lowest band for the attractive
case [48].

To investigate the appearance of loops further, we have
plotted in Fig. 2 an enlargement of the lowest band. In Fig. 2(a)
(W < Wc) we have a smooth curve. In Fig. 2(b) (W = Wc) a
cusp forms at zero tilt heralding the emergence of the loop.
In Fig. 2(c) (W > Wc) a loop forms where the number of
solutions for (α = β = 0) increases from one to three for a
range of tilts. Each of these three solutions is distinguished
by its number differences which form a pitchfork bifurcation
when plotted as a function of W as illustrated in Fig. 3.

In order to see analytically how W causes the loop structure,
we perform a stability analysis in the region where the loop
first occurs. The lower band is characterized by α = β = 0
and the loop begins to form at zero tilt. Therefore, solving the
equations

2WZ + 4J a Y√
1 − 4Y 2

= 0, (13)

2WY + 4J
Z√

N2 − 4Z2
= 0 (14)

gives α = Y = β = Z = 0 as the point at which the loop
appears. If we define 	x = (α,Y,β,Z) and linearize 	̇x around
	x0 = (0,0,0,0), we obtain

	̇x = J (	x0)	x + O(	x2), (15)
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FIG. 2. (Color online) A closeup of the central region of the
lowest band showing the emergence of the swallowtail loop as the
boson-impurity interaction strength W is varied: (a) W = 0.475J ,
(b) W = Wc = 0.5J , and (c) W = 0.525J . The other parameters
used in this plot are J a = J , �εa = �ε, and N = 16. Of the three
branches of the loop, the unstable one is the upper one, i.e., the curved
part along the top.

where J (	x0) is the Jacobian matrix evaluated at 	x0:

J (	x0) =

⎡
⎢⎢⎢⎣

0 4J a 0 2W

−J a 0 0 0

0 2W 0 4J/N

0 0 −JN 0

⎤
⎥⎥⎥⎦ . (16)
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FIG. 3. Supercritical pitchfork bifurcation in the boson number
difference Z between the right- and left-hand wells for the lowest
band plotted as a function of the boson-impurity interaction strength
W . The solid and dotted lines signify stable and unstable solutions,
respectively. We see that the bifurcation occurs for both repulsive and
attractive boson-impurity interactions. The values of the parameters
are N = 500, �ε = �εa = 0, J a = J .

The stability of the system at 	x0 depends on the eigenvalues
of J (	x0). Every solution at 	x0 will be unstable if there is a
positive real eigenvalue because there will be solutions such
as 	x(t) = eλt . The eigenvalues are

λ1,± = −
√

2
( − J 2 − J a2 ±

√(
J 2 − J a2

)2 + JJ aW 2N
)
,

(17)

λ2,± =
√

2
( − J 2 − J a2 ±

√(
J 2 − J a2

)2 + JJ aW 2N
)
.

(18)

Looking at λ2,+ we find that the critical value of W when the
loop emerges is

Wc = 2

√
JJ a

N
. (19)

Comparing this with the critical coupling strength gc =√
ωAωB/4N , at which a phase transition occurs in the Dicke

model, we see that they have exactly the same dependence
upon the associated parameters in the two Hamiltonians given
in Eqs. (4) and (5) (the factor of 4 difference can be attributed
to the definitions we use). Where the boson-impurity system
experiences a bifurcation, the Dicke model experiences a QPT
in the limit that N → ∞ (see also Ref. [80]).

The preceding analysis also provides some information on
the type of bifurcation shown in Fig. 3. Since the stationary
point 	x0 = (0,0,0,0) goes from being stable to unstable as
W is increased through Wc, we have a supercritical pitchfork
bifurcation. This type of bifurcation is common for systems
with symmetry (HMF → HMF for zero tilt under 	x → −	x).
When W = Wc, λ1,± = λ2,± = 0 and the solutions experience
a process called “critical slowing down” where the decay
and growth times are no longer exponential. A pitchfork
bifurcation for Z has been observed experimentally in a
bosonic Josephson junction [28], in a spin-orbit-coupled
BEC [34], and at the onset of a density-wave instability in
a BEC in an optical cavity [35]. In fact, this latter problem
can be mapped onto the Dicke problem too [35,81–85]. If a
nonzero tilt is applied then the pitchfork opens up, as shown
in Figs. 5 and 6 in Ref. [4]. Considering Fig. 2, we can see that
a finite tilt delays the onset of the bifurcation to a larger value
of W because the loop is born at �ε = 0 and grows outwards.

The position in phase space of the new stable points can be
found analytically by solving Eqs. (13) and (14) for W > Wc,

	x± =
⎛
⎝0, ± 1

2W

√
N2W 4 − 16J 2J a2

N2W 2 + 4J a2 ,

0, ∓ 1

2W

√
N2W 4 − 16J 2J a2

W 2 + 4J 2

⎞
⎠ . (20)

As W → ∞, we have 	x± → (0, ± 1
2 ,0, ∓ N/2) correspond-

ing to the complete localization of all the particles in one well
or the other, as expected for a large interaction, attractive or
repulsive, between the impurity and bosons. Figure 4 plots
the mean-field energy in the Y − Z plane for the lowest band
for values of W close to Wc. As W passes through Wc, a
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FIG. 4. (Color online) Contour plots of the mean-field energy
HMF evaluated for the lowest band in the number difference (Y − Z)
plane. This figure shows how a double well forms when W > Wc:
(a) W = 0.5 Wc, (b) W = Wc, and (c) W = 1.5 Wc. The other
parameter values are J a = NJ , N = 100, and �ε = �εa = 0.
Lighter colored regions are higher in energy.

double well forms in Fock space (number-difference space)
in accordance with the Landau model for second-order phase
transitions. In Fig. 4, this double well forms along the diagonal
Z = −Y because we have set J a = NJ which means that
the hopping energies for the impurity and bosons contribute
equally to the total energy of the system. In general, the axis

of the double well can be at any angle in the Y − Z plane
depending on the parameters in HMF.

Defining χ = W/Wc, the energies at the minima when
W > Wc and for zero tilt are

E|W |>Wc
= −2JN

[√
(η + χ2)(1 + ηχ2)

2ηχ
− 1

]
, (21)

where η = JN/J a . When J a = JN , η = 1 giving

E|W |>Wc
= −JN [(χ + χ−1) − 2]. (22)

This corresponds to the case ωA = ωN and ωB = ω in the
Dicke model where the ground-state energy in the superradiant
phase becomes [86]

E|g|>gc
= −ωN

4
[(χ2 + χ−2) − 2]. (23)

We can see that Eqs. (22) and (23) differ slightly in their
dependence on χ . However, in the vicinity of the critical
coupling strengths we can set χ = 1 + δ where δ � 1 and
expand to leading order to give E|W |>Wc

/J = E|g|>gc
/ω =

−Nδ2. Thus, near the critical point, the ground-state energies
behave in exactly the same way.

IV. MAGNETIC PROPERTIES OF THE
QUANTUM GROUND STATE

We now shift our focus from the number-difference rep-
resentation of Eq. (1) to the spin representation of Eq. (4).
Recall that Ŝx is half the number difference between left and
right modes and Ŝz is half the number difference between the
antisymmetric and symmetric modes. The spin representation
allows us to interpret our system in terms of the familiar
concept of magnetization. In particular, we will examine the
dependence of 〈Ŝz〉 evaluated in the ground state upon the
control parameter W and we compare our results with those
obtained from the Dicke model by Emary and Brandes [67] and
Garraway [78]. In what follows, it is important to appreciate
that our quantum ground state has unbroken symmetry (see
the Appendix A) unless a tilt is added explicitly.

In this section only we use scaled versions of Eqs. (4)
and (5):

ĤS,AS = 2J Ŝz + 2J aNŜa
z + 2WŜxŜ

a
x

−�εŜx − �εaNŜa
x , (24)

ĤD = ωBŜz + ωAĉ†ĉ + 2g√
N

(ĉ + ĉ†)Ŝx, (25)

so that every term in each Hamiltonian is O(N ). This prevents
the boson terms from dominating in the thermodynamic limit
and ensures that the classical pitchfork bifurcation signals the
presence of a QPT. With this scaling, the critical coupling
parameters remain constant in the thermodynamic limit N →
∞; Wc = √

JJ a/2 and gc = √
ωAωB/2. Note that in Eq. (24)

we have also included the tilt terms. Positive values of tilts
correspond to external magnetic fields along the +x direction.
The tunneling parameters J and J a also correspond to external
magnetic fields, this time pointing along the −z direction.
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FIG. 5. (Color online) The “magnetization” 〈Ŝz〉 along z, or in
other words the degree of boson excitation in the S and AS bases (or,
equivalently, the degree of coherence between the L and R wells) in
the ground state and plotted as a function of W . Note the change in
behavior at the critical point W = Wc = 0.5J . The solid black curve
shows the N → ∞ case and the red dashed curves represent different
values of N : 2, 4, 6, 8, 10, where the arrow indicates the direction of
increasing N . The values of the other parameters are �ε = �εa = 0,
J a = J . According to Eq. (26), 〈Ŝz〉 → 0 as W → ∞.

Figure 5 displays 〈Ŝz〉 as a function of W . The dashed red
curves are each for a different value of N and were calculated
using the full quantum theory. The solid black curve gives the
thermodynamic limit, and was calculated using the mean-field
theory. According to the latter, when W > Wc, we have

lim
N→+∞

2〈Ŝz〉
N

= − J

2W

√
J a2 + 4W 2

J 2 + 4W 2
. (26)

It is perhaps surprising how small a number of bosons is
needed in order to converge to the N → ∞ limiting case,
which agrees with the fact that the model becomes critical in
the thermodynamic limit. Except when N is very small, all the
curves in Fig. 5 agree that when W < Wc the bulk of the bosons
remain in the symmetric mode, and when W > Wc there is a
macroscopic excitation into the antisymmetric mode tending
to an equal population so that the z magnetization vanishes as
W → ∞ in agreement with the prediction given by Eq. (26).
In this limit, the external “fields” J and J a are irrelevant in
comparison to the magnitude of the boson-impurity spin-x
coupling. If the L/R symmetry of the ground state was allowed
to be broken, then the system would choose to be aligned
along either x or −x. However, both cases correspond to an
equal superposition along z and −z and so the same 〈Ŝz〉 → 0
result would be obtained as in the unbroken-symmetry case.
Obviously, the symmetry breaking is visible if 〈Ŝx〉 is plotted.

The Dicke model shows very similar qualitative dependence
on g [67], the difference being the sensitivity: the Dicke model
has more excitations for equal values of g and W . This is
because the two-state nature of the impurity means that it can
saturate, unlike a harmonic oscillator. Thus, when W → ∞,
the excitation of the impurity asymptotes to 〈Ŝa

z 〉 = 0 (i.e.,
Y = ± 1

2 ), while the number of photons in the Dicke model
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FIG. 6. (Color online) The effect of a finite-boson tilt upon the
impurity magnetization. The left-hand column shows 〈Ŝa

z 〉 as a
function of W for the ground state which measures the degree of
excitation from the S mode into the AS mode (or, equivalently, the
coherence between the L and R modes). The right-hand column
shows 〈Ŝa

x 〉 which is the conjugate quantity to 〈Ŝa
z 〉. Each row is for a

different value of the boson tilt: (a) �ε = 0.01J , (b) �ε = 0.1J , and
(c) �ε = J . The dotted lines are each for a different N : 2, 4, 6, 8,
10, where the arrow indicates the direction of increasing N . The solid
black curve plots the N → ∞ limit for zero tilt, i.e., �ε = 0. The
values of the other parameters are J a = J , Wc = 0.5J , �εa = 0.

increases quadratically for large values of g:

lim
N→+∞

2〈ĉ†ĉ〉
N

= 2g2

ω2
A

(
1 − ω2

Aω2
B

16g4

)
. (27)

The degree of excitation of the impurity and the number of
photons will only be of the same order near the critical value
of g.

Let us now explicitly break the L/R symmetry of the double
well. A nonzero tilt breaks the Z2 parity symmetry and this
prevents the system from being critical in the thermodynamic
limit. The corresponding effect in the Dicke model is obtained
by driving the boson mode and/or the spins [87]. In Fig. 6, we
show the effect of different boson tilt values on the impurity
by plotting 〈Ŝa

z 〉 and 〈Ŝa
x 〉 as functions of W . Analogously

to the equivalent quantities for the bosons, the interpretation
of 〈Ŝa

z 〉 is that it gives the degree of excitation (number
difference) of the impurity from the S mode into the AS

mode or, equivalently, the degree of coherence of the impurity
between the L and R modes which vanishes when the impurity
settles into just one well (which well is determined by the
applied boson tilt). 〈Ŝa

x 〉 is the conjugate quantity and gives
the coherence between the S and AS modes or, equivalently,
the number difference between the L and R modes. We see
that the tilt does not have a great effect in the vicinity of
Wc until Fig. 6(c), where the tilt has the same magnitude as
the tunneling energy and the system “realizes” it is tilted.
To understand this better, we note that in the noninteracting
limit W = 0, the Hamiltonian in the S and AS bases for the
impurity is simply ĤI = 2J aŜa

z − �εaŜa
x . Hence, for W = 0
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FIG. 7. (Color online) Poincaré sections showing the emergence of chaos as W increases through Wc. Top row: (β,Z) plane with each
point corresponding to α = 0. Bottom row: (α,Y ) plane with each point corresponding to β = 0. From left to right, the plots increase in
W : (a) W = 0.5Wc, (b) W = 0.75Wc, (c) W = Wc, (d) W = 1.25Wc, and (e) W = 1.5Wc. The values of the other parameters are N = 500,
�ε = �εa = 0, J a = J , and Eshell = −501J . For each plot, 30 random on-shell initial conditions are used and are evolved over a period
τ = 150 (τ = J t/�). Please note the different ranges for each panel.

we have 〈Ŝa
z 〉 = −J a/

√
(4J a)2 + (�εa)2. This finite degree

of S and AS excitations, or equivalently, reduction in L

and R coherences even in the noninteracting regime is yet
another sign that for a nonvanishing tilt of the double well,
the criticality appearing in the thermodynamic limit is lost.
Indeed, the finite tilt restores the correspondence between
the mean-field and quantum 〈Ŝx〉 results: without a tilt, the
quantum system does not choose a particular well and enters a
Schrödinger cat state which has no classical correspondence.
Only when fluctuations due to an external environment are
included does the cat state collapse randomly to one or the
other of the two wells. On the other hand, in the presence of
tilt, the cat state never really forms.

V. MEAN-FIELD DYNAMICS

The main feature of classical (mean-field) dynamics in the
Dicke model is global chaos when g > gc [68]. In this section,
we employ Poincaré sections through phase space as a visual
tool to investigate the emergence of chaos in the boson and
impurity systems. Figure 7 shows Poincaré sections for the
bosons (top row) and the impurity (bottom row) as W is
increased at a fixed total energy. The dynamics takes place on
an energy shell with energy equal to that of the unstable point
located at (α,Y,β,Z) = (0,0,0,0), i.e., Eshell = −NJ − J a .
This corresponds to the center of the lowest band, and when the
loop appears it becomes the unstable upper branch of the loop.
We see that as W increases, chaos emerges and for W > Wc,
chaos is dominant and ergodicity is observed.

In Fig. 8, we show Poincaré sections on different energy
shells all with a fixed value of W = 1.5Wc (so that we are
always in the chaotic regime) in order to see how chaos
depends on our position in the spectrum. The energy shell
range is −JN − J a � Eshell � JN + J a which covers the

region between the two loops as shown in Fig. 1(c). The top
two rows are for the bosons and the bottom two rows are
for the impurity. Going from left to right, each plot shows an
increase in the energy shell by 100J which is 1

10 of the range
for J a = 2J and N = 498. We see that the region of phase
space accessible to the bosons is quite restricted, whereas the
impurity can access its entire phase space. This is due to the
small impurity hopping energy J a relative to JN . The bosons
can be thought of as a reservoir of energy, whose dynamic
behavior on a global scale is scarcely affected by the impurity.
However, locally the dynamics takes place in a band whose
thickness depends on J a; within the band, there is chaos.

In the bottom two rows of Fig. 8 we see that the dynamics of
the impurity gets less chaotic as the energy shell is increased,
and then becomes more chaotic again. To explain this, we
note that the initial and final energy shells sit on the unstable
branches of the lower and upper loops, respectively, and so
are expected to be maximally chaotic. The symmetry of the
classical stationary states about the point E = 0 [bottom plot
Fig. 8(f)] gives this reduction and then increases in chaos as
we move from one unstable branch to its symmetric twin.
The location in phase space of the second unstable point is
(±π,0, ± π,0). The top plot [Fig. 8(f)] shows the dynamics
of the bosons when Eshell = 0. We see that when β = 0 or
β = ±π , Z = ±N/2 and when Z = 0, β = ±π/2, so the
bosons are always at a maximal distance from the unstable
points in phase space. When we increase Eshell further, we see
the dynamics converges to regions around (β,Z) = (±π,0)
which causes an increase in chaotic behavior of the impurity.
The important point to make here is that for our parameters,
the energy needed by the impurity to access all of its phase
space is small compared to the energy of the entire system.
This means that the impurity has access to the regions around
(α,Y ) = {(0,0),(±π,0)}. However, because the unstable points

023620-8
60



IMPURITY IN A BOSONIC JOSEPHSON JUNCTION: . . . PHYSICAL REVIEW A 89, 023620 (2014)

Z
N

a

0.25

0.25

b c d e f

0.5 0.5
g

0.5 0.5

0.25

0.25

h

0.5 0.5

i

0.5 0.50.5

j

0.5

k

0.5 0.5

β π

Y

a

0.25

0.25

b c d e f

0.5 0.5
g

0.5 0.5

0.25

0.25

h

0.5 0.5

i

0.5 0.5

j

0.5 0.5

k

0.5 0.5

α π

FIG. 8. (Color online) Variation of Poincaré sections with energy shell. The top two rows show the (β,Z) plane with each point
corresponding to α = 0 and the bottom two rows show the (α,Y ) plane with each point corresponding to β = 0. From left to right,
the plots increase in energy shell: (a) Eshell = −500J , (b) Eshell = −400J , (c) Eshell = −300J , (d) Eshell = −200J , (e) Eshell = −100J ,
(f) Eshell = 0J , (g) Eshell = 100J , (h) Eshell = 200J , (i) Eshell = 300J , (j) Eshell = 400J , and (k) Eshell = 500J . The values of the other
parameters are N = 498, �ε = �εa = 0, J a = 2J , and W = 1.5Wc. For each plot, 30 random on-shell initial conditions are used and are
evolved over a period τ = 150 (τ = J t/�).

live in four-dimensional (4D) phase space, it is not enough
for just the impurity to access this point in order to achieve
maximum chaos: the bosons must at the same time access
(β,Z) = {(0,0),(±π,0)}. Therefore, the degree of chaos of the
impurity dynamics depends on how close the bosons are to
(β,Z) = {(0,0),(±π,0)}.

In order to locate the precise value of W at which
chaos emerges, we divide the impurity phase space into M

subintervals defining a probability as pi = mi/M where mi

is the number of points in the ith subinterval (and we run
the dynamics until

∑
mi = M). With this probability, we can

define an entropy in the usual way as

SMF = −
∑

i

pi ln pi. (28)

Equation (28) can be thought of as a way to quantify the
area of the phase space the impurity can explore. Even if the
value of SMF depends quantitatively on the partitioning of the
phase space, we expect it to show some generic qualitative
features. For example, looking at both extremes, if the points

can be found entirely in one subinterval, then SMF = 0 and
if the points are maximally spread, then pi = 1/M, for all i,
and SMF = ln M. Since a system becomes ergodic when chaos
is dominant, we expect higher values of SMF as W increases.
Looking at Fig. 9, this is exactly what we find. At W = Wc

there is a jump in SMF signaling the onset of ergodicity.
Next, we look at another common aspect of classical

chaos: sensitivity to initial conditions. Figure 10 shows
the time dependence of Y and Z for W < Wc (top row)
and W > Wc (bottom row). All dynamics takes place near
Eshell = −NJ − J a with two trajectories initially separated
by �Z/Z = �Y/Y = 10−4. For W < Wc, we see that both
trajectories remain close. However, for W > Wc we see the
trajectories begin to diverge at τ ≈ 10 signaling a loss of
information about the initial state of the system.

VI. IMPURITY-INDUCED SELF-TRAPPING

Generally speaking, classical trajectories that set off in
the vicinity of a stable fixed point remain close to the fixed
point. Thus, the pitchfork structure of the fixed points, as
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FIG. 9. (Color online) Mean-field entropy as a function of W

showing a jump at Wc. Each point is calculated using Eq. (28)
after dividing Poincaré sections for the impurity into subintervals
10−2 times the size of the αY plane. The other parameters of the
plot are J a = J , N = 500, �ε = �εa = 0, and Eshell = −501J . For
each calculation, 100 random on-shell initial conditions were used
and plotted until 20 000 intersections with the Poincaré plane were
produced.

demonstrated in Fig. 3, implies that the classical system can
become locked with a large population imbalance of the
bosons: a large fraction of the bosons remains in one well
and does not tunnel to the other well. This is the phenomenon
of self-trapping [37,38]. Self-trapping in bosonic Josephson
junctions derives from the self-interaction between the atoms
and can maintain large differences in the populations of the
two wells. Roughly speaking, the interaction effectively shifts
the onsite energies in the two wells, and whenever there is
a large population imbalance and strong shifts, the coherent
tunneling becomes heavily detuned which therefore hinders
the oscillations. While this effect is rather general, for atomic
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FIG. 10. (Color online) The atom number difference between the
right and left wells as a function of the dimensionless time parameter
τ (τ = J t/�). Each row corresponds to a different value of W : W =
0.5Wc (top row) and W = 2Wc (bottom row). Each plot is generated
using the same initial conditions for the number differences for the
bosons and the impurity on the energy shell Eshell = −100.5J . The
dashed red curves and solid blue curves differ by �Z/Z = �Y/Y =
10−4. The other parameter values are N = 100, J a = J , and �ε =
�εa = 0.

FIG. 11. (Color online) The evolution of the scaled boson popu-
lation imbalance (a), and the long-time time average of the imbalance
(b). In the upper plot, the dashed black curve displays the time
evolution for an interaction strength W = 1J . For this interaction
strength, no self-trapping occurs and the collapse of oscillations is
due to the buildup of impurity-boson correlations. For W = 4J (green
solid curve), self-trapping is clearly apparent. Plot (b) demonstrates
how the self-trapping sets in at around W ≈ 2J for the current
parameters. The initial state has all the bosons in the right well and the
impurity in the left well, and the rest of the parameters are J a = J ,
�ε = �εa = 0, and N = 100.

condensates it was first demonstrated in a BEC double-well
system [20].

The situation is different in the present setup where the
bosons are noninteracting and so self-trapping can only stem
from the boson-impurity interaction. A basic understanding
of this case can be gained by fixing a value of �M �= 0
and setting �ε = �εa = 0. Referring to the Hamiltonian (1)
expressed in the L and R bases we see that as far as the bosons
are concerned, the impurity acts as an effective tilt which is
the origin of the self-trapping. In this “adiabatic” picture, the
motion of the bosons is free and can be solved exactly. In a
complete description, the state of the impurity atom is itself
also evolving and the coupled boson-impurity dynamics must
be taken into account.

We demonstrate self-trapping by integrating the full quan-
tum model of Eq. (1) for an initial state of N bosons in the
right well and the impurity atom in the left well [88]. For
small interactions W , both the impurity and the bosons display
coherent oscillations between the two wells, as shown by the
dashed black curve of Fig. 11(a). The mixing of time scales in
this regime leads to a relaxation of the oscillations. During
the decay period, a large entanglement is shared between
the impurity and the bosons. Increasing W now leads to a
rapid decrease of the amplitude of the Josephson oscillations
in agreement with the expected trapping effect (green solid
line). An estimate of the degree of the self-trapping can be
obtained by calculating the long-time time average

ZST = 1

T2 − T1

∫ T2

T1

dt
〈�M̂〉
N/2

, (29)

where T2 � T1 � 0 are two long times (as discussed below,
there is another time scale for which the self-trapping is lost,
and T1 and T2 should be long compared to the Josephson
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FIG. 12. (Color online) The quantum energy levels (blue dots)
for N = 40, J a = 20J , W = 4J , Wc = √

2J , and �ε = �εa = 0.
N is chosen relatively small so that the finer details of the spectrum
are visible. The four horizontal lines give the positions of the
mean-field stationary solutions as shown in Fig. 1 and we have
maintained the same color scheme as there, namely, in ascending
order: E = −NJ − J a (α = β = 0, dashed black), E = −NJ +
J a (α = π, β = 0, dotted orange), E = NJ − J a (α = 0, β = π ,
dotted-dashed blue), E = NJ + J a (α = β = π , solid red). Note that
because W > Wc, the lowest- and highest-energy classical solutions
have loops and the positions given here correspond to the unstable
branch, that is, the highest and lowest branches of the lower and upper
loops, respectively.

oscillation period but short compared to the decay of the
trapping effect). Figure 11(b) shows the W dependence of ZST.
There is a sudden onset of self-trapping at around W ≈ 2J for
which the population imbalance increases rapidly and tends
asymptotically to 1. We have numerically determined that
the critical interaction WST for which self-trapping starts is
only weakly dependent of atom number N and J a , while it
scales linearly with J , more precisely WST ≈ 2J .The critical
coupling value here is Wc = 0.2 J , so WST ≈ 10 Wc.

As already mentioned, the Hamiltonian (1) supports a Z2

parity symmetry. Each parity sector constitutes a separate
spectrum and for nonzero W and in the large-N limit, the
two spectra become identical. The energy gap δ between
corresponding even- and odd-parity eigenstates is found to
close exponentially fast with N , i.e., δ ∼ exp(−aN ) for some
N -independent constant a. In the self-trapping regime, the gap
also closes exponentially with the interaction strength W , an
effect that is associated with below-barrier tunneling in the
double-well potentials that form in Fock space when W > Wc

and whose stationary points give the pitchfork bifurcation. To
illustrate this, the full energy spectrum is plotted in Fig. 12 for
different parameters than Fig. 11 to properly show the distinct
regions of the spectrum. The most striking feature of Fig. 12
is that inside the lower and upper loops, all the energy levels
are paired up in quasidegenerate pairs.

To see how self-trapping works schematically, consider
a state initially localized in the L well. This state can
be made by the superposition of an even-parity eigen-
state and an odd-parity eigenstate |L〉 = (|E〉 exp[−iωEt] +
|O〉 exp[−iωOt])/

√
2. If these states make up one of the

quasidegenerate pairs, then the difference in the two energies
is exponentially small δ = �ωO − �ωE and the time evolution

of the superposition into the |R〉 state is very slow. We have
verified this numerically and also that the characteristic time
for this collapse scales as τcol ∼ KN for some constant K .
Since our initial state is not near the ground state, W must
be increased past Wc until the loop envelops it and the effects
of the quasidegenerate pairs can be felt. It is for this reason
WST > Wc, and WST will of course be different for different
initial states. Naturally, this exponential growth of the collapse
time means that the collapse will most likely be far beyond
any realistic experimental observation. Of course, a general
self-trapped state will be a projection over many eigenstates
not just a single pair, but if the wave packet lies entirely within
one of the loops it will be self-trapped because it will be solely
made up of quasidegenerate even and odd pairs. However, the
energy separation between different pairs introduces a different
and larger energy scale than the tunnel-splitting effect and
hence a faster oscillation about the mean value of �N as can
be seen in the solid green curve in Fig. 11(a).

It has been argued that the mechanism behind self-trapping
in a bosonic Josephson junction can be viewed as a quantum
Zeno effect; the atom-atom interaction acts as an effective
measurement in which the state of single atoms is measured by
the remaining ones [89] (external measurement-induced Zeno
effects on self-trapping have also been discussed [90]). The
question then arises as to whether in the present self-trapping
setup the bosons perform an effective measurement on the
impurity (or vice versa)? During a standard quantum measure-
ment, the meter (e.g., the bosons) becomes entangled with the
system (e.g., the impurity) and in order for the measurement
to distinguish between the two possible states they should
be macroscopically distinguishable, i.e., a Schrödinger cat
state should form. Finally, the cat state is collapsed by an
environment and the state of the system can be read off
from the state of the meter with which it is now perfectly
classically correlated. The case of self-trapping is different
because deep in the self-trapping regime, the bipartite state
factorizes as the bosons and the impurity occupy definite
positions due to our initial preparation of the system and
are not in superpositions of both wells. In other words, they
are classically anticorrelated but there is approximately no
quantum entanglement shared between the two parties, i.e.,
the von Neumann entropy SvN = −Trim[ρ̂im log(ρ̂im)] (where
ρ̂im is the reduced density operator for the impurity atom,
the trace is over the bosons, and the logarithm is to base
two) approaches zero in the self-trapping regime, while the
correlator GNM = 〈�N̂�M̂〉/(N/2) goes towards −1. The
above arguments are demonstrated in Fig. 13: (a) shows the
time-averaged entropy and (b) the time-averaged correlator. It
is noteworthy that the convergence of the correlator is slower
than that of the entropy. We have not ruled out the quantum
Zeno effect being at work here because that too begins with
evolution from a known initial state. More discussion of the
von Neumann entropy for this system and particularly the
effect of tilt can be found in Sec. VIII of Ref. [4].

As a final remark, we note that the self-trapping effect
described here is related to population trapping [91] and
the locking of the atomic dipole to the quantized field
predicted by the Jaynes-Cummings model [92]. More pre-
cisely, when the field possesses a defined phase (e.g., a
large amplitude coherent state) and the atomic dipole is
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FIG. 13. The time-averaged von Neumann entropy SvN (a) and
scaled correlator 〈�N̂�M̂〉/(N/2) (b). The two plots demonstrate
the absence of entanglement and presence of classical anticorrelations
deep in the self-trapping regime. The initial state and the parameters
are the same as in Fig. 11.

aligned with the field (at zero detuning this implies that the
spin of the two-level particle points in the σx direction),
the atom and the field are phase locked. While the self-
trapping phenomenon discussed above has not been directly
studied in the Dicke model, we note that a direct outcome
of this atom-field locking has been considered in terms of
creation of Schrödinger cat states within the framework of the
Tavis-Cummings model (Dicke model with the rotating-wave
approximation applied) [93]. The same idea for preparation
of cat states was recently also considered in the present
impurity-boson model but again within the rotating-wave
approximation [94].

VII. LEVEL-SPACING DISTRIBUTION

The idea that there is a connection between the properties
of the energy levels of a quantum system and whether the
classical limit of that system is integrable (regular) or chaotic
goes back to Percival [62]. Berry and Tabor [63] first showed
that the energy levels of “typical” or “generic” classically
regular systems are, somewhat counterintuitively, distributed
randomly so that the probability distribution for the spacings
S between neighboring energy levels is Poissonian:

PP(S) = e−S . (30)

Conversely, they predicted that the energy levels of classically
chaotic systems should display level repulsion because they
are correlated with each other. More precisely, Bohigas,
Giannoni, and Schmit [95] conjectured that classically chaotic
systems which are time-reversal invariant (such as the real
symmetric Hamiltonian matrices under study here) should
obey level statistics which are the same as those of random
matrices drawn from the Gaussian orthogonal ensemble
(GOE), thus making a connection to the program initiated
by Wigner [96], with important contributions by Dyson [97],
of using random matrices to understand the properties of
complicated Hamiltonians. The nearest-neighbor spacings of
the GOE obey the Wigner-Dyson distribution which is given

approximately by

PWD(S) ≈ πS

2
e− πS2

4 . (31)

Counter examples to this paradigm do exist: not all regular
systems obey Poisson statistics as shown by the important case
of coupled harmonic oscillators [63]. In fact, some regular sys-
tems display level repulsion and even have GOE statistics [98].
Similarly, chaotic systems are known which do not obey
GOE [99]. Indeed, the elements of a GOE random matrix are
chosen randomly from a Gaussian distribution, whereas most
of the elements in our Hamiltonian are zero (in the Fock basis it
is tridiagonal). Physically, this means that the GOE describes
systems with infinite-range interactions [100], whereas the
boson-impurity system has short-range ones. Therefore, we
should not expect our system to necessarily conform to GOE
statistics. Systems with a mixed classical phase space, some re-
gions being regular and others chaotic, also defy classification
purely in terms of either a Poisson or a Wigner-Dyson distribu-
tion. Nevertheless, the Dicke model does behave generically,
obeying Poisson statistics when g < gc and Wigner-Dyson
statistics when g > gc provided enough spins (N � 10) are
included in the calculation [66,67]. Interestingly, if the Dicke
model is reduced to the Rabi model (a single spin coupled
to a harmonic oscillator), then it does not behave generically
any more, i.e., it displays neither Poisson nor Wigner-Dyson
statistics [101,102]. The Rabi model is generally considered
to be nonintegrable because the classical equations of motion
obtained by averaging the Heisenberg equations of motion
for the operators give chaotic motion [101], although recent
progress on quantum integrability [103] has led to the claim
that the Rabi model is in fact integrable (or quasi-integrable
[104]) in a different, purely quantum, sense and the difference
between the two designations is due to the lack of a quantum-
classical correspondence for a spin- 1

2 particle. In this section,
we address the question as to whether the simplified version of
the Dicke model discussed here has different spectral statistics
below and above Wc and, if so, whether this change is from
Poisson to Wigner-Dyson statistics?

The first step in obtaining the level-spacing distribution
is to separate the eigenvalues based on their symmetry.
Symmetries are in some sense special, or nongeneric, and
lead to degeneracies that will skew the statistics away from
universality. In particular, at zero tilt our Hamiltonian has a
Z2 parity symmetry that breaks it up into two independent
blocks (one even and one odd), each of dimension N + 1. We
perform statistics on the two parity blocks separately and add
the results together at the end [105].

The second step in obtaining the level-spacing distribution
is to unfold the spectrum of each block. This is a standard pro-
cedure which rescales the local mean level spacing �E/�N ,
where �N (E) is the number of levels lying in the energy range
�E, so that it is equal to unity, allowing spectral statistics
from different systems or also different regions of the same
spectrum to be compared despite originally having different
mean level spacings. To explain unfolding, we start from the
exact expression for the density of states

ρ(E) =
N+1∑
i=1

δ(E − Ei), (32)
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FIG. 14. (Color online) A part of the central section of the
spectral staircase for the odd-parity block of the Hamiltonian. N (E)
counts the number of energy levels below energy E. The exact value
of N (E) is given by the blue steps and the local average N̄ (E) is
given by the smooth red line. The latter is calculated from the former
by a polynomial fit. Parameter values are N = 500, J a = 0.68 NJ ,
W = 4.1 J ≈ 2.47 Wc, and �ε = �εa = 0.

where Ei is the energy of ith level, and define the spectral
staircase as

N (E) ≡
∫ E

−∞
dE′ρ(E′) =

N+1∑
i=1

θ (E − Ei), (33)

where θ is the Heaviside step function. This counts the number
of levels up to energy E. The idea of unfolding hinges upon
being able to separate the spectral staircase into an average, or
smooth part N̄ (E), and a fluctuating part Nfl(E):

N (E) = N̄ (E) + Nfl(E). (34)

The form of N (E) is depicted in Fig. 14 with the full staircase
in blue and the average N̄ (E) given by the smooth red curve.
N̄ (E) is related to the average level density ρ̄(E) ≡ �N/�E

as

N̄ (E) =
∫ E

−∞
dE′ρ̄(E′). (35)

To unfold the original energy levels {E1,E2, . . . ,EN+1} to a
new set {e1,e2, . . . ,eN+1}, one can use N̄ (E) as a map

ei = N̄ (Ei); i = 1,2, . . . ,N + 1 (36)

and this guarantees that ρ̄(e) = 1 as explained in [107]. The
final question is how to obtain N̄ (E), and we choose a method
where a low-order polynomial (maximum fourth order in our
case) is numerically fitted to the spectral staircase [98,108–
110]. The unfolded level spacings S are then given by

Si = ei+1 − ei ; i = 1,2, . . . ,N. (37)

It is important to appreciate that the description of the
spectral staircase in terms of an average part and a fluctuating
part is somewhat arbitrary. Indeed, by fitting the energy levels
to a high enough polynomial we could also capture the
fluctuations. The distinction between N̄ (E) and Nfl(E) only
makes sense if there is a clear separation of scales between
the two, with N̄ (E) only varying very little over the mean
level spacing 1/ρ̄(E). Returning to Fig. 12, we already see a
hint that the spectrum for boson-impurity model can undergo
abrupt changes at the energies corresponding to the classical
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FIG. 15. (Color online) Quantum energy levels (solid curves)
versus boson-impurity interaction W for N = 40 and �ε = �εa = 0.
This plot only shows the energies of the even-parity eigenstates as
the odd states behave similarly. The symbols mark the energies of
the classical stationary points using the same scheme as Fig. 1.
In particular, the four straight horizontal lines correspond to the
energies E = {−NJ − J a, − NJ + J a,NJ − J a,NJ + J a}, with
the formation of the loops at W = Wc (marked by the solid vertical
line) clearly visible. Other parameters: J a = 0.68 NJ .

turning points where the assumption of separation of scales
will break down (these kinks in the spectrum become more
obvious as N is increased). The change in the nature of the
spectrum at the energies of the classical stationary points can
also be seen in Figs. 15 and 16. The most striking feature
of Fig. 15, which plots energy levels as a function of W and
only has N = 40 so that we an identify individual energy
levels, is that the central portion of the spectrum (that lies
in the range −NJ + J a < E < NJ − J a and is bounded by
the orange squares at the bottom and the blue diamonds at
the top) is quite different from the other regions because it
contains avoided crossings as a function of W . The other
regions do not display any obvious avoided crossing structure
as a function of W . The loops that appear at the very bottom
and very top of the spectrum when W > Wc are clearly visible
in Fig. 15. The energy-level separations of states lying inside
the loops are slightly smaller than those of the neighboring
regions, and these are different again from those of the central
region, and hence the kinks in the spectrum in Fig. 12 at the
boundaries between the five different regions which exist when
W > Wc. This behavior can also be seen in Fig. 16, which
plots the nearest-neighbor energy separations when N = 500
for two different values of W , one with W < Wc and the other
with W > Wc. The central region is always distinctive due
to the avoided crossings, but the spacings become seemingly
irregular when W > Wc. The two downward-pointing cusps
near n = 100 and 400 correspond to the unstable branches of
the loops. It should be noted that in this section we have chosen
J a randomly so that it is incommensurate with J making the
system more generic.

The sudden changes in the level statistics at the boundaries
between the five regions oblige us to unfold each region
separately. Once they are unfolded, they can then be combined
although we choose not to combine the central region with the
other four because we find it always displays unique statistics.
The statistics are illustrated in Fig. 17 where the top row
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FIG. 16. (Color online) Nearest-neighbor energy-level spacings
for N = 500 and �ε = �εa = 0. This plot only shows the spacings
between the energies of the even-parity eigenstates: the odd-state
spacings behave similarly. Each panel has a different value of the
boson-impurity interaction energy: (a) W = 0.45J , (b) W = 4.1J .
Here, Wc = 1.66J . The other parameters are the same as Fig. 15.

corresponds to W < Wc and the lower row to W > Wc, while
the left column gives the combination of all the separately
unfolded statistics, including even and odd blocks, for all the
regions except the central one and the right column gives the
same but for the central region. We see that none of the statistics
correspond to either Poisson or Wigner-Dyson distributions.
In fact, the distributions shown in Figs. 17(a) and 17(c) are
reminiscent of those for the Rabi model given in Figs. 1
and 2 in [101]. We attribute this lack of genericity to having
two oscillators which retain much of their oscillator structure
despite the coupling. Indeed, when W = 0 (not shown), we
have two uncoupled oscillators with frequencies J and J a .
The spectrum is then of the rigid “picket fence” type [67],
familiar from the harmonic oscillator, and takes the form

Ek,l = J (2k − N ) + J a(2l − 1); k = 0,1,2, . . . ,N

l = 0,1. (38)

This structure is expected to be maintained as long as W � J .
At the other end of the scale, when W becomes very large
and dominates J and J a , the eigenvectors of the Hamiltonian
given in Eq. (1) tend to the number-difference eigenstates and
are doubly degenerate. The degenerate pairs again form a rigid
ladder with a spacing between the rungs of W/2.

Let us now consider intermediate values of W . When
W = 0.45J (which is less than Wc), we see from Fig. 17(a)
that the statistics of the outer regions of the spectrum have
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FIG. 17. (Color online) Probability distributions for nearest-
neighbor level spacings illustrating the difference between W <

Wc (top row) and W > Wc (bottom row). The left column is
for the total spectrum excluding the central region between the
(α = π, β = 0) and (α = 0, β = π ) classical stationary points, i.e.,
−NJ + J a < E < NJ − J a , and the right column is for the central
region of the spectrum only. For comparison, in the right column
we have also plotted the Wigner-Dyson distribution (solid red
curve) as given by Eq. (31). Parameters: N = 500, J a = 0.68 NJ ,
giving Wc = 1.66J . Top row: W = 0.45J ≈ 0.27 Wc; Bottom row:
W = 4.1J ≈ 2.47 Wc. �ε = �εa = 0. In order to make these plots,
the energy levels were unfolded as described in the text using a
polynomial of the form c0 + c1x + c3x

3 for panels (a) and (b) and a
polynomial of the form c0 + c1x + c2x

2 + c3x
3 + c4x

4 for panels (c)
and (d).

evolved into a Poisson-type distribution, while from Fig. 17(b)
the statistics of the central region is not of Poisson type but
is instead very symmetrically distributed around the average
value S = 1 (recall that unfolding sets S̄ = 1). Although we
refer to the statistics in Fig. 17(a) as Poisson type, they
are clearly not of the form given in Eq. (30) because they
do not begin at S = 0 and are tightly compressed into the
tiny range 0.998 � S � 1.006. Nevertheless, their structural
resemblance to a shifted, compressed, Poisson distribution
suggests that they represent random fluctuations on the back
of a very rigid oscillator spectrum. When W = 4.1J , which
is here greater than Wc, we see from Fig. 17(c) that the
fluctuations in the outer regions cover a much larger range
of S (about one order of magnitude larger) than when
W = 0.45J . They are also no longer Poisson type, with the
peak shifting from the lower end to near the top end of the
distribution. Comparing Figs. 17(a) and 17(c) shows that the
statistics clearly do change with W , and from the reshaping
of the distributions it seems reasonable to claim this effect
as level repulsion (note again that the unfolding still always
maintains S̄ = 1) arising from the chaotic behavior when
W > Wc.

The central region of the spectrum, meanwhile, does not
undergo any qualitative change in its level statistics as W

passes through Wc as can be seen by comparing Figs. 17(b)
and 17(d), although the statistics in 17(d) do seem a little
more irregular than in 17(b). In contrast to the outer four
regions of the spectrum, the nearest-neighbor level spacings in
the central region are spread fairly evenly over a wide range
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extending between 0 � S � 2. Although the statistics for the
central region are certainly not Poissonian, they do not really
follow the Wigner-Dyson distribution either. Nevertheless, the
fact that the peak occurs well away from S = 0 is perhaps a
manifestation of level repulsion which occurs both below and
above Wc.

In summary, we see that the single-impurity model dis-
cussed here does not reproduce the universal level statistics
that are seen so unambiguously in the Dicke model [66,67]
but instead gives nongeneric statistics with some similarities
to those given by the Rabi model [101]. Certain regions of
the impurity model spectrum seem to retain an oscillatorlike
nature even when W is large. This lack of universality
could be due to a number of factors, including the chaos
being in some sense weak, as can be inferred from the
persistence of integrable regions of phase space above Wc in
our Poincaré plots in Figs. 7 and 8. When considered in light
of the Kolmogorov-Arnold-Moser theorem [111–113], which
states that integrable tori are not all immediately destroyed
by a nonlinear perturbation (those with the most irrational
frequencies survive to larger perturbations), this suggests that
the nonlinearity in the single-impurity model is perturbative.
By contrast, Poincaré plots for the Dicke model [67,68]
display a mixed phase when g < gc, but very rapidly become
completely chaotic when g > gc providing N is large.

Of course, our system with a single impurity is only
one step away from integrability (pure boson case) and so
may not be irregular enough to see a clearer change from
Poissonian to Wigner-Dyson distributions. A more complex
Hamiltonian than Eq. (1) including, say, different intrawell
interactions [110] or more impurities, might show more
generic behavior.

VIII. DISCUSSION AND CONCLUSIONS

Placing the impurity system in a double-well potential
allows many-body effects to be brought to the fore in the
venerable impurity problem. Indeed, the quenching of kinetic
energy down to tunnel coupling allows us to achieve a strong
coupling regime such that there is a symmetry-breaking
bifurcation in the ground state due to the boson-impurity
interaction at the critical value Wc. This corresponds to a
macroscopic reorganization of the bosons and coincides with
the critical coupling for a similar symmetry-breaking QPT in
the Dicke model.

Using a stability analysis of the mean-field solutions, we
studied swallowtail loops that emerge in the energy spectrum
when plotted as a function of either W or the tilt �ε.
These loops play an important role in organizing the quantum
spectrum and determining its nature. Notice that, except for the
validity of the mean-field equations, there is no requirement
in our treatment that the bosons should form a BEC. In
the two-mode regime, a large fraction generally do form a
BEC although at the bifurcation the depletion can become
significant. However, the range of values of W where the
system is critical, i.e., where the fluctuations in atom numbers
between the two wells are non-Gaussian, is very narrow and
on general grounds (e.g., the Bogoliubov theory) is expected
to scale as 1/N2.

We used two different methods to show that classical (mean-
field) chaos appears when W > Wc: Poincaré plots showed a
fading of regular behavior and an increase in ergodicity, and
trajectories with close initial conditions remained close for
W < Wc, but diverged for W > Wc. Complementary to the
mean-field calculations, a statistical analysis of the quantum
energy levels revealed level repulsion sets in when W > Wc,
albeit only for certain regions of the spectrum, level repulsion
being one of the indicators of chaotic motion in the classical
limit. Chaotic classical motion also occurs in the Dicke
model above the QPT, but it is interesting to note that it is
totally absent in the purely bosonic case (no impurity) due
to the latter’s integrability even though it can also display
bifurcations and hence loops. The relationship between QPTs
and mean-field chaos is therefore not an exclusive one.

We also found that self-trapping can occur in this system
due purely to the boson-impurity interaction. We argued that
the “impurity-induced” self-trapping states occur within the
loops (as in the purely bosonic case) and have a lifetime scaling
exponentially with the number N of bosons and so should be
long lived for a moderate number of atoms. The self-trapping
does not set in at W = Wc because the loops are at that point
only of infinitesimal size, but as W grows the loops grow and
encompass a larger range of states.

We have claimed in this paper that the boson-impurity
system can be regarded as a poor man’s Dicke model. The
same qualitative behavior occurs in both systems, and they
appear to behave identically in the critical region with the
exception of the energy-level statistics which are generic for
the Dicke model (Poisson when g < gc and Wigner-Dyson
when g > gc) but nongeneric for the impurity model. It is
remarkable that such a drastic reduction in the size of the
Hilbert space preserves the critical features of the Dicke model.
The lesson of this work is perhaps that all that is needed is a
single additional state to simulate the presence of the harmonic
oscillator.

At this point, we are led to wonder whether the bifurcation
in the boson-impurity model is in fact a true second-order
QPT like in the Dicke model (and whether the two are in the
same universality class)? Studies of the purely bosonic case
suggest that this is likely [36,42–45]. A modified version of the
Dicke phase transition has recently been seen using cold atoms
inside an optical cavity which is illuminated from the side by
a laser [81]. Below the transition, most of the light passes
through the cavity, but above it the atoms spontaneously form
a matter-wave grating which efficiently scatters light into the
cavity. The phase transition can be continuously observed by
detecting the photons leaking through the end mirrors, but by
the same token this means that the system is open and this
modifies the critical behavior [82,85]. By contrast, our system
is closed and so it may in fact give a better match to the
quantum properties of the Dicke model.

In this paper, we have treated the many-body “environ-
ment”, the bosons, exactly but they could also be integrated
out to make connections to standard models of dissipative
environments [1]. The conceptual and technical simplicity of a
single impurity in a bosonic Josephson junction combined with
the controllability of ultracold atoms make this an appealing
toy model in which to study this type of problem and we hope
to exploit this further in the future.
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APPENDIX: A BASIS WITH WELL-DEFINED PARITY
IN FOCK SPACE

Numerical diagonalization routines do not generally respect
the parity of eigenstates that are nearly degenerate. This
directly impacts the calculations of 〈Ŝz〉 and the statistics of the
level spacings since we separate the Hamiltonian into even-
and odd-parity blocks. To overcome this obstacle, we force
the eigenstates to have a well-defined or good parity (GP) by

diagonalizing the Hamiltonian in a basis with given parity.
Instead of using the “bare” Fock basis |�N,�M〉, we use a
basis whose states are linear combinations of Fock states:

|GP〉 =
{

(|�N,�M〉 + | − �N, − �M〉)/√2,

(|�N,�M〉 − | − �N, − �M〉)/√2.
(A1)

After the diagonalization is complete, we still want to represent
the eigenstates of the Hamiltonian in the Fock basis, so we
rotate the parity states back with a unitary transformation

U † =
2N+2∑
n=1

|Fock(n)〉〈GP(n)|. (A2)

The Fock states now have good parity and can be used in our
calculations.
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66, 041603(R) (2002).
[11] H. T. Ng, C. K. Law, and P. T. Leung, Phys. Rev. A 68, 013604

(2003).
[12] X. Q. Xu, L. H. Lu, and Y. Q. Li, Phys. Rev. A 78, 043609

(2008).
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(2007); T. Betz, S. Manz, R. Bücker, T. Berrada, Ch. Koller, G.
Kazakov, I. E. Mazets, H.-P. Stimming, A. Perrin, T. Schumm,
and J. Schmiedmayer, Phys. Rev. Lett. 106, 020407 (2011).

[23] S. Levy, E. Lahoud, L. Shomroni, and J. Steinhauer, Nature
(London) 449, 579 (2007).

[24] K. Maussang, G. E. Marti, T. Schneider, P. Treutlein, Y. Li,
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We use fidelity susceptibility to calculate quantum critical scaling exponents for a system consisting of N

identical bosons interacting with a single impurity atom in a double-well potential (bosonic Josephson junction).
Above a critical value of the boson-impurity interaction energy there is a spontaneous breaking of Z2 symmetry
corresponding to a second-order quantum phase transition from a balanced to an imbalanced number of particles
in either the left- or the right-hand well. We show that the exponents match those in the Lipkin-Meshkov-Glick
and Dicke models, suggesting that the impurity model is in the same universality class. The phase transition can
be interpreted as a measurement of the position of the impurity by the bosons.

DOI: 10.1103/PhysRevA.90.063617 PACS number(s): 03.75.Lm, 03.65.Ta, 67.85.Pq, 05.30.Rt

I. INTRODUCTION

The fate of a single particle tunneling in a many-body
environment is a subject of fundamental interest not least
because of its connection to the decoherence problem in
quantum mechanics [1,2]. In this paper we study a related
system consisting of a single-impurity atom tunneling between
the wells of a double-well potential in the presence of N

indistinguishable bosonic atoms as illustrated schematically
in Fig. 1. The bosons are also trapped in the double-well
potential and thus form a bosonic Josephson junction in their
own right. This setup can be considered to be an elementary
example of a Bose-Fermi mixture, although, because the
statistics of the impurity do not matter, in practice it can be
a boson of the same species but in a different internal state.
The prospects for realizing such a system in the laboratory
are reasonably promising: a large number of experiments
have studied ultracold bosons trapped in external double-well
potentials [3–11], and others have realized the same effective
system in a single trap but where two internal states of the
atoms are coupled by microwave or radio frequency fields
(internal Josephson effect) [12,13]. Adding a well-defined
number of impurities is not easy but there has been some
progress in this direction in optical lattices [14,15].

A theoretical analysis of a bosonic Josephson junction
with an impurity has been given by Rinck and Bruder [16],
who found that by applying a tilt to the double-well a
multiparticle tunneling resonance could be induced towards a
state where the impurity was expelled to the higher lying well.
Subsequently, we undertook a study comparing the mean-field
and many-body properties and described the appearance of
a pitchfork bifurcation in the ground state of the mean-field
theory above a certain critical value Wc of the boson-impurity
interaction strength [17]. The mean-field bifurcation arises
from the spontaneous localization of the impurity in one of the
wells together with the localization of a majority of bosons in
the opposite well (assuming repulsive interactions). In the fully
quantum version Wc marks the onset of a splitting of the wave
function into two coherent pieces in Fock space (the space
spanned by the Fock states |�M,�N〉, corresponding to the
number differences �M = MR − ML and �N = NR − NL

between the left and the right wells for the impurity and
bosons, respectively). As W is increased further the Fock-

space splitting increases, and for large N it can develop into
a fully blown Schrödinger cat state which is a superposition
of two macroscopically distinguishable number differences
of bosons. This state is associated with a saturation of the
entanglement entropy between the impurity and the bosons
at S = kB ln 2. The formation of a Schrödinger cat state in a
macroscopic measurement device as a result of its coupling to
a microscopic system is usually considered to be an essential
element of quantum measurement [18,19]. One may therefore
take the view that the bosons in the present system act as a
quantum measurement device or meter which indicates the
position of the microscopic impurity atom. This meter can
be tuned between being microscopic (small N ) and being
macroscopic (large N ). The formation and collapse of the
Schrödinger cat state correspond here to a symmetry-breaking
phase transition (PT) [20–24].

In another study [25], we argued that in many respects
the impurity system behaves like the celebrated Dicke model
[26–28] for N two-level atoms coupled to a single mode of the
electromagnetic field whose Hamiltonian takes the form

ĤDicke = �ωâ†â + ω0Ŝz + 2√
N

λ(â + â†)Ŝx . (1)

Here â and â† annihilate and create, respectively, a photon
of energy �ω in the electromagnetic field and Ŝx and Ŝz

are collective spin operators that arise from treating the
two-level atoms, whose levels are separated by energy �ω0,
as pseudospins. Ŝz measures half the difference between
the number of atoms in the excited state and the number
in the ground state and its eigenvalues lie in the range
−N/2 . . . N/2. Ŝx = (Ŝ+ + Ŝ−)/2 measures the coherence
between the excited and the ground states of the atoms
and â + â† is proportional to the position operator for the
harmonic oscillator associated with the electromagnetic field.
In a related pseudospin formulation the Hamiltonian for the
bosonic Josephson junction plus impurity can be written (see
Sec. II for details)

Ĥ = 2NJaŜa
z + 2J Ŝz + 2WŜa

x Ŝx, (2)

where the superscript a denotes the impurity: J and J a are
the bare hopping frequencies between the two wells for the
bosons and impurity, respectively, and W parameterizes the
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FIG. 1. (Color online) Schematic of the proposed setup. A
bosonic Josephson junction consists of N identical bosons [repre-
sented by the small filled (blue) circles] which are able to tunnel
between the two sides of a double-well potential. To this is added a
single impurity atom [large filled (red) circle] which is also able to
tunnel between the two wells.

boson-impurity coupling strength. In this form the impurity
model is reminiscent of the Mermin central-spin model,
where a distinguishable central spin is surrounded by N

spins on a lattice which interact with the central spin with
an effectively infinite-range interaction so that all pairwise
interactions have the same magnitude [29–31]. In the impurity
model Ŝz measures the coherence of the bosons between
the two wells or, equivalently, half the difference in the
number of bosons in the antisymmetric and symmetric modes
formed, respectively, from the odd and even combinations of
the modes associated with each well. Ŝx measures half the
number difference between the two wells or, equivalently, the
coherence between their symmetric and their antisymmetric
combinations. Sa

x and Sa
z are the corresponding quantities for

the impurity. In the thermodynamic limit where N → ∞, the
ground state of the Dicke model undergoes a second-order PT
due to a spontaneous breaking of Z2 symmetry at the critical
coupling strength λc = √

ωω0/2 [32,33]. This PT bears a very
close resemblance to the bifurcation that occurs in the impurity
model at [17,25]

Wc =
√

JJ a/2. (3)

In the Dicke case the ground state below the transition (λ < λc)
is known as the normal state and is characterized by 〈Ŝx〉 = 0
and 〈â + â†〉 = 0, whereas the ground state above the transi-
tion is known as the super-radiant state because it corresponds
to a spontaneous macroscopic excitation of the electromag-
netic field with both 〈Ŝx〉 �= 0 and 〈â + â†〉 �= 0. Analogous
ground states occur for the impurity model: when W < Wc

both the boson and the impurity probability distributions
are symmetric, 〈Ŝx〉 = 0 and 〈Ŝa

x 〉 = 0, and both expectation
values acquire finite values in the symmetry-broken state
occurring when W > Wc. Furthermore, the dependence of the
ground-state energy on the scaled parameters W/Wc and λ/λc

is identical in the two models in the immediate vicinity of the
transition [25]. It is also notable that the mean-field dynamics
is, in both cases, regular below the transition and chaotic above
it [25,27]. In this paper we further investigate the bifurcation
in the impurity model by calculating the critical exponents in
order to establish whether it is indeed a second-order PT in the
same universality class as that in the Dicke model.

Although both the Dicke and the impurity models share
many common features, there is one glaring difference: the

Dicke model couples N spin-1/2 particles to a harmonic
oscillator, whereas the impurity model couples N spin-1/2
particles to one other spin. In essence, the impurity model
truncates the harmonic oscillator Hilbert space to just two
states, the ground state and the first excited state. The spin-1/2
representing the impurity can never become macroscopically
excited like the simple harmonic oscillator can. It is therefore
quite remarkable that the impurity model behaves like the
Dicke model, but the critical exponents we calculate here show
that very close to the transition a two-state Hilbert space for
the harmonic oscillator in the Dicke model suffices to describe
its critical properties.

In order to investigate the critical behavior and obtain the
critical scaling exponents we calculate the fidelity susceptibil-
ity (FS) of the ground state. Over the past decade the concept
of fidelity, which originated in quantum information theory
[34], has gained wide use in analyzing critical behavior and
classifying the universality of systems. It is most commonly
used to quantify changes in the ground state of a system over a
PT. This is done by calculating the product between the ground
state and itself at different points in parameter space,

F (W,δW ) = |〈ψ0(W )|ψ0(W + δW )〉|, (4)

where W is the tunable parameter that drives the PT and
ψ0 is the ground state. It is expected that F (W,δW ) will
tend to unity away from the critical region and reach a
minimum when W = Wc − δW/2, where the scalar product
will be between the ground state below and that above the
critical point. One of the first PTs to be studied using the
fidelity was the one-dimensional (1D) XY, model where it
was shown to decrease to a minimum near the critical point
[35]. Furthermore, the excited-state fidelity has been used to
characterize quantum PTs where the ground-state fidelity has
failed [36]. Since the fidelity is a quantity depending only on
the geometry of the Hilbert space and requires no knowledge
of the order parameter, it is useful in cases where the order
parameter of a system is not obvious and has been studied in a
variety of systems [37–39]. That being said, a more sensitive
and natural quantity to study, where no a priori knowledge of
the system is needed, is the FS [40,41]. The FS measures the
response of the fidelity to infinitesimal changes in the driving
parameter of the system. It is closely related to the second
derivative of the ground-state energy with respect to the driving
parameter, ∂2E0

∂W 2 , so the FS is also similar to the magnetic
susceptibility or specific heat when the driving parameters are
the magnetic field and temperature, respectively. This means
that the FS can be used to study the critical behavior of a
system through calculations of scaling exponents.

In this paper we add to work done by others [42–44]
regarding the scaling and criticality of bosons in a double-well
potential. We follow standard steps [45,46] to show that the
FS can be used to calculate scaling exponents for a general
system. We then use the FS to focus on the critical behavior
of the two-site boson-impurity Hubbard model. The paper is
organized in the following way: In Sec. II we go into more
detail about our model for the physical system under study.
In Sec. III we show how critical scaling exponents can be
extracted from the FS. In Sec. IV we apply the methods of
Sec. III to our system as well as extrapolating data to find
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numerical values for Wc. In Sec. V we find the FS critical
exponents analytically and in Sec. VI we give a summary and
outlook for further work. Some of the details of the analytic
calculations are reported in the Appendix.

II. MODEL

We model the bosonic Josephson junction plus impurity
system using the two-site Bose Hubbard Hamiltonian [16,17],

Ĥ = −NJaÂ − J B̂ + W

2
�N̂�M̂. (5)

Here, �N̂ ≡ b̂
†
Rb̂R − b̂

†
Lb̂L is the number difference operator

between the two wells for the bosons and B̂ ≡ b̂
†
Lb̂R + b̂

†
Rb̂L

is the boson hopping operator. �M̂ ≡ â
†
RâR − â

†
LâL and Â ≡

â
†
LâR + â

†
RâL are the equivalent operators for the impurity.

The L and R subscripts denote the left and right modes
and the creation and annihilation operators follow the usual
bosonic commutation relations, i.e., [b̂α,b̂†α] = [âα,â†α] = 1,
with α = L,R, and all other combinations of the boson
and impurity operators are 0. The scaling by N in the
first term in Eq. (5) is applied so that every term is O(N )
and therefore Wc takes a finite value in the thermodynamic
limit. The pseudospin formulation of the Hamiltonian given
in Eq. (2) is obtained from Eq. (5) by introducing the
symmetric and antisymmetric combinations of the L and R

modes, b̂L ≡ 1√
2
(b̂S + b̂AS) and b̂R ≡ 1√

2
(b̂S − b̂AS), and then

applying Schwinger’s oscillator model for angular momentum
[47], Ŝz ≡ (b̂†ASb̂AS − b̂

†
Sb̂S)/2 = −B̂/2 and Ŝx ≡ (b̂†ASb̂S +

b̂
†
Sb̂AS)/2 = −�N̂/2. An analogous set of transformations

applies to the impurity.
We do not include direct boson-boson intrawell (or inter-

well) interactions in our calculations and assume that they can
be removed (or the boson-impurity interaction enhanced) by a
Feshbach resonance if necessary. We do this both to highlight
the effect of the impurity and because it turns out not to change
the results in a qualitative way. Indeed, the nonlinearity due to
the boson-boson interactions can lead to results very similar
to those resulting from the boson-impurity interaction (the
impurity can be viewed as mediating an effective interaction
between the bosons). In the case of repulsive boson-boson
interactions, a purely bosonic system has no PT in the ground
state but does experience a symmetry-breaking bifurcation in
the excited states known as macroscopic self-trapping [48,49],
which has been seen in experiments [5]. If, on the other hand,
the boson-boson interactions are attractive, then there is a Z2

symmetry-breaking PT in the ground state above a critical
interaction strength where the bosons clump together in a
single well. This PT has been studied by Buonsante et al.
[44] and we find that the PT in our system falls in the same
universality class.

In previous work we found, through stability analysis
around the mean-field stationary points [25], that a pitchfork
bifurcation of �N occurs at a critical value of the boson-
impurity interaction Wc given in Eq. (3). For W < Wc,
�N = 0 and the bosons occupy each well equally. Above
Wc it becomes energetically favorable for the bosons to build
up in one well and the impurity to be localized in the opposite
well. This transition corresponds to the breaking of the Z2

symmetry, characterized by

(�M̂,�N̂,Â,B̂) → (−�M̂, − �N̂,Â,B̂). (6)

We consider W as the driving parameter and analyze the
system’s response to infinitesimal changes in it through the
FS.

III. FIDELITY SUSCEPTIBILITY

As mentioned in Sec. I, a more sensitive quantity than the
fidelity is the FS, which we denote χF. The two are related
through the Taylor expansion of Eq. (4) to second order:

F(W,δW ) ≈ 1 − χF(W )

2
(δW )2 + · · · . (7)

It can be viewed as the system’s response to an infinitesimal
change in the driving parameter. Equation (5) has the general
form

Ĥ = Ĥ0 + WĤI , (8)

where HI is considered to be the driving term of the system.
From perturbation theory [41] the FS is

χF(W ) =
∑
n�=0

|〈ψn(W )|ĤI |ψ0(W )〉|2
(En − E0)2

, (9)

where ψn(W ) and En are the nth eigenstate and eigenenergy
of the entire Hamiltonian, respectively. It is expected that for
finite N the FS scales as [45,46]

χF

Nd
∝ 1/|W − Wmax|α± , (10)

where α± is the scaling exponent above and below the quantum
critical point, respectively, Wmax is the value of W at which χF

is at a maximum, and χF/N
d is an intensive quantity. When

W = Wmax, χF will be limited by the size of the system, so we
have

χFmax ∝ Nμ. (11)

This quantity will diverge in the thermodynamic limit as
Wmax → Wc. In fact, when Eq. (5) is divided by N so that
each term is O(1) rather than O(N ), then the exponent μ

also gives the scaling of the energy gap between the ground
and the first excited states [50,51], as we have verified [52].
Figure 2 illustrates how χFmax, which is given by the peak of
each curve, depends on N . In order to capture the behavior of
both Eqs. (10) and (11) we use the form [45]

χF

Nd
= c

N−μ+d + g(W )|W − Wmax|α , (12)

where c is a constant and g(W ) is a nonzero function of W ,
both being intensive quantities. Since we are dealing with the
susceptibility of the ground-state wave function in the Fock
basis, N plays the role of the system size. With this in mind
we can use the finite-size scaling hypothesis [53], giving

f = N−1Y [Na(W − Wmax)], (13)

where f is the free energy density and Y is some function.
We expect Eq. (13) to vanish as W → Wmax and, at the same

063617-3
74



J. MUMFORD AND D. H. J. O’DELL PHYSICAL REVIEW A 90, 063617 (2014)

Χ F

1.6 1.7 1.8 1.9 2.0
0

100

200

300

400

500

600

700

W units of J

FIG. 2. (Color online) Fidelity susceptibility as a function of
W for different system sizes: N = 200 [dot-dashed (red) curve],
N = 400 [dotted (green) curve], N = 600 [dashed orange) curve],
and N = 800 (solid black curve). Here J a = 0.75J , so Wc = √

3J ,
which is shown by the vertical black line. It is clear that χF is not
symmetric about the transition, and hence the need for two indices
±α as indicated in Eq. (10).

time, the domain of the correlations to diverge. In this limit it
is natural to expect [54]

f ∼ ξ−1 ∼ (W − Wmax)ν, (14)

where ξ is the correlation length (in Fock space) and ν is
the correlation length critical exponent. Combining Eqs. (13)
and (14) gives the relation a = 1/ν. Using the fact that, in
general, the susceptibility due to W is χ = − ∂2f

∂W 2 , we can
show the reduced FS is a universal function of N and the
driving parameter

χFmax − χF

χF
= X[N1/ν(W − Wmax)], (15)

where X is some function. Finally, combining this equation
with Eq. (12) gives us the important scaling relation

α = ν(μ − d), (16)

which we use to help classify the boson-impurity system. It
should be noted that Eq. (15) has been defined by others [45,46]
with the exponent of N being ν instead of 1/ν, which we
have here. In the next section we numerically evaluate the FS
and, guided by the above scaling hypotheses, find the critical
exponents by collapsing the data onto universal curves.

IV. NUMERICAL RESULTS

Our results in this section are obtained by numerically
diagonalizing the Hamiltonian given in Eq. (5). An N -boson
system produces a (2N + 2) × (2N + 2) matrix, so a system
size of N ∼ 1000 can be easily accommodated, allowing us
to obtain exact results. We note that, due to symmetry, parity
is a conserved quantity, i.e., [Ĥ ,P̂ ] = 0, and hence all the
eigenvectors of our Hamiltonian are either even or odd in Fock
space. Since we perform FS calculations on the ground state
(which is of even parity), we can reduce the computation time
by considering only even-parity states. However, above Wc

the eigenstates typically come in even and odd pairs separated
by an exponentially small energy difference and numerical
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FIG. 3. (Color online) A log-log plot of χFmax as a function of N

for different values of J a : 0.75J [(red) squares], 1J [(blue) circles],
and 1.25J (black triangles). Inset: Slopes of the log-log plot as a
function of 1/N extrapolated in the 1/N → 0 limit. The range of
system sizes is 1000 � N � 3000.

diagonalization routines find it very hard to identify the parity
of such eigenvectors. Unless one is careful numerical errors
lead to eigenvectors with broken symmetry [17], and this
directly impacts our results since it is the critical region we
are concerned with in our calculations. We have outlined the
resolution to this problem in the Appendix of our previous
work [25], where we force the eigenstates to have definite
parity by diagonalizing the Hamiltonian in the parity basis.

Figure 2 shows the results of plugging the numerically
calculated eigenstates and energies for different system sizes
into Eq. (9). We observe a clear peak in the FS for each value
of N , which increases in height and sharpness as N increases.
This corresponds to the shrinking of the critical region and
Wmax → Wc as N → ∞. To find μ we first make a log-log
plot of χFmax as a function of N as shown in Fig. 3. We
fit the curves to a second-degree polynomial and extrapolate
their slopes in the limit 1/N → 0. In the inset we see that
the slopes converge to a value of μ � 4/3. We calculate μ

for different values of J a to show that μ does not depend
on J a and therefore is universal. Next, we use Eq. (15) to
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FIG. 4. (Color online) A plot of Eq. (15) for different system
sizes. The parameters and values of N are the same as those used
in Fig. 2. A value of ν � 3/2 results in the optimal overlay of the
curves. Inset: Magnification of the region around the origin.
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FIG. 5. (Color online) Extrapolated values of Wmax for different
values of J a : 0.75J [(red) squares], 1J [(blue) circles), and 1.25J

(black triangles). Dashed lines show quadratic fits for 1/N → 0 and
the system size range is 500 � N � 2500.

find ν by changing it in small increments until the average
overlay of data points for different values of N is maximized.
Figure 4 shows the scaled χF in the vicinity of Wmax, where
a maximum overlay is achieved for ν � 3/2. Figure 2 shows
that, below Wmax, χF is an intensive quantity, so we have d = 0
in Eq. (10). Above Wmax, χF has a linear dependence on N ,
so χF/N is an intensive quantity and d = 1. Using Eq. (16) to
calculate α± we obtain α− � 2 and α+ � 1/2. These values
of α±, μ, and ν (keeping in mind the different definitions of ν)
are the same as those obtained for the Lipkin-Meshkov-Glick
model numerically [46] and analytically [55], for the Dicke
model obtained numerically [56], as well as for the system
consisting of bosons in a double-well potential with attractive
interactions obtained analytically [44]. This suggests that the
boson-impurity system belongs in the same universality class
as these models and that the quantum PT is second order.

We now shift our focus back to the convergence of Wmax

to Wc in the thermodynamic limit. Using the same steps used
to determine μ we find the slope of a log-log plot of |Wc −
Wmax|δ as a function of N , giving the convergence scaling
exponent, δ, which we find to be the same as the inverse of the
correlation length exponent, so δ = 1/ν � 2/3. In Fig. 5 we
show the effectiveness of the FS in predicting Wc with 1/N

extrapolation. For three values of J a , using Eq. (3), we have
Wc = 1,

√
3, and

√
5, compared to the extrapolated values of

Wmax = 1.0062, 1.7387, and 2.2432 (all values are in units

TABLE I. Critical scaling exponents and analytic and extrapo-
lated values of the quantum critical point (QCP) for different values
of J a . Scaling exponents and QCP values are calculated with system
size ranges of 1000 � N � 3000 and 500 � N � 2500, respectively.
Circles, squares, and triangles refer to data in Figs. 3 and 5.

J a

0.25 (circles) 0.75 (squares) 1.25 (triangles)

μ 1.335(3) 1.334(2) 1.333(2)
ν 1.499(2) 1.504(5) 1.502(3)
Wc 1

√
3

√
5

WExtrap 1.0062(2) 1.7387(3) 2.2432(3)

of J ). With only five data points we find the two sets of values
to be in good agreement. Thus, if we were unable to find Wc

analytically, the FS would provide an excellent avenue for
determining values numerically. We summarize our numerical
results in Table I, where the uncertainties are standard errors
using a least-squares fit to our data.

V. ANALYTIC CALCULATION OF α±

In the thermodynamic limit the critical region collapses to
a point and fluctuations vanish away from this point. For large
systems away from the critical region this property allows us to
use a mean-field approximation to analyze the FS. In previous
work [17] we have shown that the mean-field Hamiltonian
corresponding to Eq. (5) is

HMF

N
= −J

√
1 − Z2 cosβ − J a

√
1 − Y 2 cosα + W

2
ZY.

(17)

In HMF we have defined β ≡ βR − βL and Z ≡ �N/N as the
boson phase and number difference between the two wells,
respectively, and α ≡ αR − αL and Y ≡ �M are similarly
defined for the impurity. The conjugate nature of the number
and phase variables means that Hamilton’s equations take the
form

α̇ = 1

�
∂H

∂Y
, Ẏ = −1

�
∂H

∂α
, (18)

β̇ = 1

�
∂H

∂Z
, Ż = −1

�
∂H

∂β
, (19)

and the stable stationary solutions (which includes the ground
state) of the system are

(α,Y,β,Z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(0,0,0,0), W � Wc;(
0, ± 1

W

√
W 4−16J 2J a2

W 2+4J a2

0, ∓ 1
W

√
W 4−16J 2J a2

W 2+4J 2

)
, W > Wc.

(20)

Note that for simplicity we have only displayed the solutions
for the case when W > 0, corresponding to a repulsive boson-
impurity interaction. An intuitive understanding of the role of
the impurity can be gained if we use the solutions in Eq. (20)
to simplify Eq. (17) by adiabatically eliminating the impurity
with the relation

Y = −Z

√
W 2 + 4J 2

W 2 + 4J a2 , (21)

giving us an effective Hamiltonian for the bosons alone,

Heff

N
= −J

√
1 − Z2 − J a

√
1 − Z2γ 2 − Wγ

2
Z2, (22)

where γ =
√

W 2+4J 2

W 2+4J a2 . Setting J a = J for further simplifica-

tion and scaling Eq. (22) by 2J gives an effective Hamiltonian
dependent on a single parameter, � = W/J ,

Heff

2NJ
= −|�|

4
Z2 −

√
1 − Z2. (23)
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A mean-field Hamiltonian of the same form occurs in the
case of a purely bosonic Josephson junction where the
microscopic origin of � is direct boson-boson interactions
[48,49]. Specifically, the minus sign in front of the first
term indicates effectively attractive boson-boson interactions.
Although we have calculated Heff here assuming repulsive
boson-impurity interactions, it turns out to be unchanged for
attractive interactions. Thus, the impurity always mediates
attractive effective boson-boson interactions [57,58], and it
is for this reason that the PT in the impurity model falls into
the same universality class as the clumping PT for attractive
bosons. We can visualize how this happens by considering the
impurity localized in one well and having |W | > Wc, so the
ground state will have a larger fraction of bosons in one well
than in the other. For W > 0 the impurity expels bosons from
the well it is in, and for W < 0 bosons are attracted to the
impurity. In both cases there is a buildup of bosons in one well
compared to the other, which is what happens when there are
attractive boson-boson interactions.

An analytic calculation of the scaling exponents for the
clumping transition for attractive bosons has been given in
Ref. [44]. Their method for calculating the FS consists of
approximating the ground-state wave function as a Gaussian
in Fock space centered at Z = 0 for W � Wc and a symmetric
superposition of Gaussians for W � Wc. In our calculations
we do not use a superposition of Gaussians for W � Wc

but, instead, choose to have a single Gaussian centered at
one of the two mean-field solutions, shown in Eq. (A1), to
represent the broken-symmetry phase. The difference in these
two approaches results in terms proportional to e−N |�−�c |,
so if we are sufficiently far from the critical region, then
each approach is equivalent. Using a different form of the
FS [44,59],

χF(�) = −1

2

d2

dδ�2
〈ψ0(�)|ψ0(� + δ�)〉|δ�=0, (24)

they are able to calculate analytic expressions for the FS.
Following their steps for Eq. (23), which we briefly outline
in the Appendix, we obtain

χF(�) =
⎧⎨
⎩

1
64(�−2)2 , � � �c;

N

|�|3
√

2(�2−4)
+ (�2−2)2

4�2(�2−4)2 , � � �c.
(25)

We can see that the scaling exponents are α− = 2 and
α+ = 1/2, agreeing with the numerical values calculated in
the previous section. Equation (25) shows the leading-order
behavior of the FS. Below �c there is a single leading term
because the Gaussian wave function is fixed at Z = 0, so
changes in � can only affect its size. Above �c changes in
� affect both the size and the position of the wave function,
giving two terms, where we see that in the thermodynamic
limit the position-dependent term dominates.

VI. SUMMARY AND DISCUSSION

In this paper we have studied a symmetry-breaking bi-
furcation in a bosonic Josephson junction driven by the
interaction with an impurity atom. The fact that the maximum
value of the FS, which can be viewed as a generalized
susceptibility, diverges in the thermodynamic limit confirms

that the symmetry breaking is associated with a second-order
PT (as expected from the continuous form of the bifurcation).
By numerically calculating the critical scaling exponents of the
FS and comparing them with those already known in the Dicke
and Lipkin-Meshkov-Glick models, as well as for a system
consisting of bosons in a double-well potential with attractive
interactions, we conclude that the PT in the impurity model lies
in the same universality class as these other models. For the two
exponents α± of the scaling of FS with W on either side of the
transition, we also carried out an analytic calculation, and good
agreement was found with the numerical result. We have also
shown through extrapolation of Wmax in the thermodynamic
limit that the FS can be used to predict Wc numerically, and
we find that it agrees with the analytic result calculated from
the mean-field theory.

Interpreting the bosons as a meter measuring the position
of the impurity, we have a particularly simple toy model for a
binary quantum measurement in terms of a PT which occurs
at a critical value of the system-meter interaction strength
[20–24]. Quantum mechanically, the ground-state probability
distribution goes from having Gaussian fluctuations around
�N = 0 to a superposition of two Gaussians, each centered
at one of the two bifurcating mean-field solutions. The latter
state becomes a Schrödinger Cat state if N � 1 and W > Wc.
Cat states are notoriously sensitive to perturbations and can
be expected to rapidly collapse into one of the two wells,
thereby breaking the symmetry. This collapse is implicit
in our model but it is interesting to ask whether a third
agent beyond the impurity and the bosons is necessary to
precipitate it. If the symmetry is broken by a classical field,
then it can be simply included in the Hamiltonian as a tilt
to the double-well potential [16,17,25], and as long as the
perturbation is infinitesimal the PT is not affected. However,
if the boson-impurity system is instead put into contact with
a quantum mechanical environment, then the effects can be
more marked. PTs in open quantum systems (systems coupled
to an environment) are now the subject of intensive research
[60,61], especially for the open Dicke model [62–65]. One
conclusion of this body of work is that the critical exponents
can be modified by the coupling to the environment and this
effect has been seen experimentally [66].

Finally, we mention that the impurity localization described
in this paper is somewhat different from that found in the
classic problem of an impurity in a uniform superfluid [67]
or its modern descendant, an impurity in an extended gaseous
Bose-Einstein condensate (BEC) [68–72]. For example, the
Bose-Hubbard Hamiltonian employed here is a tight-binding
model where the single-particle wave functions (modes) are
assumed to be unchanged by interactions, whereas the tran-
sition to a self-localized polaron state in an initially uniform
BEC involves a change in the impurity wave function from
delocalized to localized and the BEC develops a corresponding
density dip. Furthermore, the type of symmetry that is broken
in going from a uniform to a localized wave function is,
in general, different from the binary choice underlying Z2

symmetry breaking (see Ref. [73] for the case of a particle
living on 1D and 2D lattices with many lattice sites). However,
in 1D extended systems the Josephson model underlying the
physics studied here appears quite naturally as the impurity
splits the BEC in two and we would expect there to be
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connections [74,75]. We also point out that there are many
aspects to the impurity model and its close relatives beyond
those discussed here, including how the coherence of the
bosons is affected by the impurity [17,76,77] and system-bath
dynamics [78–81].
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APPENDIX: STEPS IN ANALYTIC CALCULATIONS

In this Appendix we briefly outline the steps used to derive
Eq. (25) from Eq. (23). We start by expanding Eq. (23) around
the minima above and below �c,

Z0 =
⎧⎨
⎩

0, � � �c,

±
√

1 − (
2
�

)2
, � > �c,

(A1)

where �c = 2. If we are sufficiently far away from �c,
then Heff is parabolic in shape around the minima, so the

leading-order term in the expansion will be the second, giving
a Schrödinger equation[

− d2

du2
+ h(�)u2

]
��(Z) = E��(Z), (A2)

where u = Z − Z0 and

h(�) =
{

N2

4 (−� + 2) , � � �c;
N2

32 �2
(
�2 − 4

)
, � � �c.

(A3)

Equation (A2) describes a harmonic oscillator in Fock space,
which means that the ground-state wave function will be a
Gaussian of the form

��(Z) = 1√
σ�

√
2π

e
− (Z−Z0)2

4σ2
� . (A4)

The difference between the � < �c and the � > �c wave
functions is due to Z0 through Eq. (A1) and the relation
σ 2

� = 1
2
√

h(�)
. With these forms of the ground state we can

use Eq. (24), giving

χF (�) = −1

2

d2

dδ�2

∫ ∞

−∞
��(Z)��+δ�(Z)dZ|δ�=0, (A5)

and from here we obtain the expressions given in Eq. (25).
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Abstract

As part of the quest to uncover universal features of quantum dynamics, we study catastrophes

that form in simple many-particle wave functions following a quench, focusing on two-mode

systems that include the two-site Bose–Hubbard model, and under some circumstances

optomechanical systems and the Dicke model. When the wave function is plotted in Fock space

certain characteristic shapes, that we identify as cusp catastrophes, appear under generic

conditions. In the vicinity of a cusp the wave function takes on a universal structure described by

the Pearcey function and obeys scaling relations which depend on the total number of particles

N. In the thermodynamic limit ( l dN ) the cusp becomes singular, but at finite N it is

decorated by an interference pattern. This pattern contains an intricate network of vortex–

antivortex pairs, initiating a theory of topological structures in Fock space. In the case where the

quench is a δ-kick the problem can be solved analytically and we obtain scaling exponents for

the size and position of the cusp, as well as those for the amplitude and characteristic length

scales of its interference pattern. Finally, we use these scalings to describe the wave function in

the critical regime of a '2 symmetry-breaking dynamical phase transition.

Keywords: quantum dynamics, ultracold gases, catastrophe theory, phase transitions

(Some figures may appear in colour only in the online journal)

1. Introduction

Universality is one of the most cherished concepts in physics.

Perhaps the best known example is near second-order (con-

tinuous) phase transitions where equilibrium properties such

as correlation lengths and susceptibilities diverge according to

power laws with universal exponents as a control parameter

approaches its critical value. In fact, physical systems are

partitioned into different universality classes, each char-

acterized by a particular set of critical exponents. Members of

the same class can be very different at the microscopic scale

and yet they display the same asymptotic scale invariance in

the critical regime.

Our goal in this paper is to study universality in non-

equilibrium behavior. Current paradigms in this area include

the Kibble–Zurek mechanism [1, 2] describing defect

production upon ramping through a second order phase

transition at a finite speed, and the eigenstate thermalization

hypothesis describing thermalization of isolated quantum

systems [3–5]. These problems have attracted the attention of

the cold atom [6–17] and cold ion [18, 19] communities

because such systems offer remarkable levels of coherence

and control, making them useful for testing fundamental

models of many-particle dynamics.

The universality we investigate here is somewhat dif-

ferent and occurs in the time-dependent many-particle wave

function itself (rather than, say, correlation functions). In

particular, we study striking geometric shapes that emerge in

Fock space following a quench, identifying them as the cat-

astrophes that are categorized by catastrophe theory (CT)

[20–22]. They can occur far from any phase transition,

although close to one they display familiar features such as
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critical slowing down. Catastrophes do in fact have a number

of features that are reminiscent of phase transitions, including

the occurrence of singularities, equivalence classes, and self-

similar scaling relations [23, 24].

A list of the structurally stable catastrophes with co-

dimension one, two and three is given in table 1. Each is

defined via its normal form or generating function ' s R; ;( )
each generating function is a polynomial in the state variables

� ys s ss , , ,1 2 3{ } but is linear in the control parameters

� yX Y ZR , , ,{ }. In this paper the physical role of the

generating function is as the mechanical action. In this way,

each canonical generating function is associated with a

canonical wave function via a Feynman path integral

�¨: r 'R s R sexp i ; d( ) [ ( ) ] [25, 26]. The state variables s

specify the ‘paths’ or configurations and the control para-

meters R provide the coordinates. In the simplest case of the

fold catastrophe this gives the Airy function [27], and in the

case of the cusp, which will be the main subject of this paper,

it gives the Pearcey function [28]. These functions, referred to

variously as wave catastrophes or diffraction integrals

[29, 30], have the status of special functions akin to, say,

Bessel functions, and their mathematical properties are sum-

marized in chapter 36 of reference [31]. In a typical physical

problem the action does not automatically present itself in one

of the normal forms listed in table 1, but the claim of CT is

that close to a singularity it can always be mapped onto one of

them. Finding the required transformation may not be easy,

but in the present paper we shall consider simple situations

where this can be done analytically.

It is important to point out that CT can be applied in a

number of different ways to quantum mechanics. Our use of

the catastrophe generating functions ' s R;( ) as actions is

distinct from other applications, such as taking the generating

functions as potentials to be used in the Schrödinger equation

[32, 33], although in both cases universal structures are

obtained which have a qualitative robustness. This important

property, which is known as structural stability, means that

catastrophes are qualitatively immune to perturbations and

hence occur generically with no need for special symmetry.

This is the reason behind their ubiquity.

Our application of CT in this paper is inspired by its use

in the description of optical caustics [29, 30, 34]. Caustics are

the result of natural focusing and occur widely in nature with

examples including rainbows, bright lines on the bottom of

swimming pools, twinkling of starlight [23], gravitational

lensing, and freak waves [35]. Being a general wave

phenomenon, caustics also appear in quantum waves such as

those describing the motion of cold atoms. The experiment by

Rooijakkers et al [36] observed caustics in the trajectories of

cold atoms trapped in a magnetic waveguide, Huckans et al

[37] observed them in the dynamics of a Bose–Einstein

condensate (BEC) in an optical lattice, and in the experiment

by Rosenblum et al [38] caustics appeared when a cold

atomic cloud was reflected from an optical barrier in the

presence of gravity. On the theoretical side, caustics have

been predicted to occur in atomic diffraction from standing

waves of light [39], in atom clouds in pulsed optical lattices

[40, 41], in the dynamics of particles with long-range inter-

actions [42], in the expansion dynamics of Bose gases

released from one- and two-dimensional traps [43], and they

can also produce characteristic features in the long-time (but

non-thermal) probability distribution following quenches in

optical lattices and Josephson junctions [44, 45]. Further-

more, although not identified as such by their authors, caus-

tics can be seen in figures in papers on the dynamics of BECs

encountering a supersonic obstacle [46], on the collapse and

subsequent spreading of a BEC of polaritons pulsed by a laser

[47] and in quantum random walks by interacting bosons in

an optical lattice [48].

The properties of caustics depend on the scale at which

they are viewed. At large scales they appear singular and the

proper description is via geometric ray theory, equivalent to

the classical (� l 0) limit of single-particle quantum

mechanics. In this theory the intensity tends to infinity as the

caustic is approached. At small scales, where the wavelength

is finite, the singularity is removed by interference. Each class

of caustic is dressed by a characteristic interference pattern

(wave catastrophe). In the many-particle problem there are

two new features: the first is a rather trivial replacement of �

by N1 , where N is the total number of particles. The second,

more fundamental difference, is an intrinsic granularity

imposed on wave catastrophes by the discreteness of the

number of particles [45]. This latter feature is particularly

apparent in Fock space which is the natural arena for many-

particle physics. In many-particle problems mean-field theory

plays the role of geometric ray theory: it applies in the limit

l dN and ignores the granularity of the particle number,

providing an effective single-particle description which is

usually nonlinear.

As an example, consider a BEC containing N ultracold

atoms. In the mean-field theory for condensed bosons the

condensate wave function Z tr,( ) obeys the Gross–Pitaevskii
wave equation (GPE)

⎛

⎝
⎜

⎞

⎠
⎟�

�Z
Z Z

s
s
� � � � �

t m
V gri

2
, 1

2
2 2( ) ∣ ∣ ( )

where V r( ) is the external potential and g characterizes the

strength of the interactions. This ‘first-quantization’ in terms

of a classical wave equation is sufficient to remove singula-

rities in coordinate space. However, in Fock space mean-field

theory predicts singular caustics that must be removed by

Table 1. Structurally stable catastrophes and their generating
functions with co-dimension -K 3. Co-dimension is defined as the
dimensionality of the control space minus the dimensionality of
singularity. R represents the control parameters and s the state
variables.

Name K Generating function ' s R;( )

Fold 1 �s Xs3

Cusp 2 � �s Xs Ys4 2

Swallowtail 3 � � �s Xs Ys Zs5 3 2

Elliptic umbilic 3 � � � � �s s s Z s s Ys Xs31
3

1 2
2

1
2

2
2

2 1( )
Hyperbolic umbilic 3 � � � �s s Zs s Ys Zs1

3
2
3

1 2 2 1

2
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second-quantizing the field, i.e. by building in the discrete-

ness of the number of field quanta (atoms) which is ignored

by the GPE (see figure 2 below) [45]. In this paper we shall

work in the semiclassical regime ( �N 1) where a continuum

approximation can be applied to Fock space although cru-

cially we retain the non-commuting nature of quantum

operators (such as the number and phase operators), in con-

trast to the mean-field approximation. Under this prescription

standard continuous wave catastrophes are recovered [49].

A singularity in Fock space can be considered to be an

example of a quantum catastrophe, i.e. a singularity in clas-

sical field theory that is removed by going over to quantum

field theory where the field amplitudes are quantized (atoms

in the case of BECs, photons in the case of electromagnetic

fields [50, 51]). Hawking radiation, where pairs of photons

are produced from the vacuum near a black hole, is an

example of a quantum catastrophe as has been pointed out by

Leonhardt [52] by considering the fate of a classical

electromagnetic wave propagating over an event horizon. The

wave suffers a phase singularity (it oscillates infinitely rapidly

and hence takes all values) when seen by an observer at

infinity. Indeed, there is no Hermitian operator for phase in

quantum mechanics and the concept of phase only becomes

well defined in the classical limit of a large number of quanta.

In this paper we study simple many-particle systems

involving just two modes. This includes the two-site Bose–

Hubbard model (a particular case of the Lipkin–Meshkov–

Glick model [53]), the Dicke model, various optomechanical

systems, and generally any collection of spins or pseudo-spins

in the single mode approximation (including the Ising model

with long-range interactions [54]). As we shall show in

section 2, in the semiclassical regime these models can be

mapped onto an effective Hamiltonian of the form

� �
H

N

p
V x

2
, 2

2ˆ ˆ
( ˆ) ( )

where V x( ˆ) is an operator with a nonlinear (anharmonic)

spectrum. Since this Hamiltonian has one degree of freedom,

the space where dynamical catastrophes live is the two-

dimensional x t,( )-plane known as the control space, and

according to CT the structurally stable catastrophes in two

dimensions are fold lines which can meet at cusp points (a

general feature of CT is that the higher catastrophes contain

the lower ones). We therefore expect from the very start that

the structures we see will be comprised of Airy and Pearcey

functions. Furthermore, all these models display second-order

phase transitions as a parameter is varied and this fact will

allow us to examine how catastrophes behave when the

Hamiltonian is tuned close to the critical point.

The plan for the rest of this paper is as follows: after

reviewing some examples of two-mode many-particle sys-

tems in section 2, we proceed in section 3 to study the clas-

sical (mean-field) dynamics of these systems following a

quench, showing how catastrophes arise as the envelopes of

families of classical trajectories compatible with the quantum

conditions. Specializing to the δ-kicked case in section 4, we

demonstrate the connection between the second-order phase

transition in the instantaneous Hamiltonian and the

appearance in the subsequent dynamics of different types of

cusp catastrophe in Fock space + time. In section 5 we

examine the quantum version of this behavior, showing how

the wave function can be mapped onto the Pearcey function.

This function obeys a set of scaling identities and we use

these to understand the scaling properties of the many-particle

wave function, including the size and position of the cusp, the

oscillations in the interference pattern that decorates it, as well

as topological features such as vortices. In section 6 we look

beyond the δ-kicked case and discuss the features we expect

when the system propagates under the full Hamiltonian. We

give our conclusions in section 7.

The results presented in sections 2 and 3 are largely

review, with the idea that granular catastrophes appear in the

Fock space of many-particle systems being introduced pre-

viously by one of us (DO) in [45]. However, the mapping

presented in sections 4–6 of δ-kicked two-mode many particle

wave functions onto the Pearcey function is to the best of our

knowledge new, including the connection to dynamical phase

transitions and the concept of quantized vortices in Fock

space.

2. Two-mode many-particle systems

In this section we show how various two-mode many-particle

Hamiltonians can be written in the form given in equation (2).

The Hilbert space of equation (2) is infinite, so it cannot

properly model highly excited states that feel the finiteness of

the original Hilbert space, however, when N is large and the

highest states are not excited equation (2) can be used as a

semiclassical approximation. Because N1 plays the role of �,

the operators x̂ and p̂ satisfy the commutation relation

�x p N, i[ ˆ ˆ] , and the classical limit � l 0 is the same as the

thermodynamic limit l dN . Away from this limit, the finite

value of the commutator must be preserved if singular caus-

tics are to be avoided in Fock space.

2.1. Two-site Bose–Hubbard model

We begin with the Bose–Hubbard model with two sites and N

particles. This can be used to describe a BEC in a double well

potential which has been realized in a number of experiments

[55–60]. In the single band regime the two modes can be

taken to be the ground states on each site and the Hamiltonian

is written [61]

� � �H Un J a a a a , 3BH
2

R L L R
ˆ ˆ ( ˆ ˆ ˆ ˆ ) ( )† †

where � �n a a a a 2R R L Lˆ ( ˆ ˆ ˆ ˆ )† † is half the number-difference

between the two sites labeled by L (left) and R (right). The

annihilation and creation operators obey the usual bosonic

commutation relations E�a a,L R L R L R[ ˆ ˆ ]† . U is the on-site

interaction energy between the bosons and can be positive or

negative depending upon whether the interactions are repul-

sive or attractive, and �J 0 is the intersite hopping energy.

The parameter - � UN J2BH , which is the ratio of the

interaction energy to the mode-coupling energy, determines

the behavior of the system. For attractive enough interactions,

3
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- � �1BH , the ground state suffers a '2 symmetry-breaking

phase transition where a majority of bosons clump on one site

or the other, as seen in the recent experiment by Trenkwalder

et al [60]. When - � �1BH the ground state is symmetric but

the dynamics can be divided into three regimes [61]: the Rabi

regime (� � - �1 1BH ) where the interactions (which pro-

vide the nonlinearity) are weak enough that the system

essentially behaves as N independent two-level oscillators
(pseudo-spins); the Josephson regime ( � - � N1 BH

2)

where both the interactions and the single particle hopping are
important; and the Fock regime (- � NBH

2) where interac-

tions dominate.

The many-particle wave function can be expanded

' § � � §t c t nn∣ ( ) ( )∣ in terms of the eigenstates §n∣ of n̂, i.e. in

terms of Fock states with well defined number differences. In

general the system is in superposition of number difference
states and the probabilities � � ' §c t n tn

2 2∣ ( )∣ ∣ ∣ ( ) ∣ define the

probability distribution in Fock space. There is no explicit

assumption of BEC although the bosons must be cold enough

to only occupy the lowest state on each site. By contrast, in

the Gross–Pitaevskii mean-field theory it is assumed that

there is condensate on each site with a perfectly well-defined

number difference n t( ) and phase difference G �t( )
G G�t tR L( ) ( ) between the two sites at all times [62], in other

words G% % �n 0. This implies a U(1) symmetry breaking in

which the phase difference is selected. Furthermore, the

number difference becomes a continuous variable rather than

a discrete one. The mean-field Hamiltonian is [63]

G� � - � �
ld

H

NJ
H

z
zlim

2
1 cos . 4

N

BH
BH BH

2
2

ˆ
( )

where it is customary to introduce �z n N2 , where

- -� z1 1, as the number difference scaled by the total

number of bosons. This Hamiltonian corresponds to that of a

pendulum where the role of the angular momentum is played

by the number difference and its angular position is given by

the phase difference. However, the length of the pendulum

depends on its angular momentum via the square root factor

which gives rise to a type of classical motion, called π-

oscillations, that is not present in the rigid pendulum [63]. In

the Rabi regime there are two stable stationary points, one at

G � 0 and the other at G Q� , the latter corresponding to the

pendulum standing upright. Small oscillations around G � 0

are called plasma oscillations (in analogy to similar excita-

tions in Josephson junctions) and were observed using cold

atoms in the pioneering experiments by Albiez et al [55] and

Levy et al [57]. π-oscillations, on the other hand, correspond

to small oscillations around G Q� and were seen in the

experiment by Zibold et al [58]. Both plasma and π-oscilla-

tions have a time-averaged number difference of � § �z 0 but

are distinguished by having a time-averaged phase differences

of G� § � 0 and G Q� § � , respectively. However, upon enter-

ing the Josephson regime there is pitchfork bifurcation in

which the stationary point at G Q� becomes unstable and is

replaced by two new stable stationary points which have

� § vz 0. These excited yet stationary states are responsible for

the phenomenon of macroscopic quantum self-trapping [64]

where an initial imbalance of boson number between the two

wells remains locked in place (rather than oscillating back and

forth) and is related to the Josephson ac effect in Josephson

junctions. The stationary point at G � 0 is unaffected by the

bifurcation but is separated from the new stationary points by

a separatrix. In the quantum theory the separatrix corresponds

to a peak in the density of states [65] and can be interpreted as

a dynamical phase transition in the thermodynamic limit [66].

The transition is of the '2 symmetry breaking type corresp-

onding to the choice of either � § �z 0 or � § �z 0.

The quantum dynamics is governed by the Schrödinger

equation �s '§ � '§Hi t BH∣ ˆ ∣ . Substituting in the expansion

over Fock states one obtains a set of �N 1 coupled differ-

ential-difference equations for the Fock space amplitudes

c tn ( ). These can easily be solved numerically [65], and can

also be tackled analytically in the semiclassical regime

[39, 45] revealing cusp catastrophes in the wave function in

Fock space plus time following a quench. The cusps have also

been discussed in terms of quantum collapses and revivals of

the initial state [67, 68].

For the purposes of this paper we seek a semiclassical

Hamiltonian in the form of equation (2). The mean-field

Hamiltonian given in equation (4) is close to the desired

structure and can be re-quantized by promoting z and f to

operators. However, in contrast to the original problem, we

now assume that ẑ (and Ĝ) has a continuous spectrum and

obeys the commutation relation G �z N, 2i[ ˆ ˆ] [65]. We refer

to this as the continuum approximation. There is still the

matter of the square root factor involving ẑ which means that

this Hamiltonian is not quite separated into ‘kinetic plus

potential energy’. To remedy this we write the wave function

(in the phase representation) as

�G: �
� �

G G-

��

c

n n

e e . 5
N

n N

N
n

N N

n2
cos

2

2

2 2

i
BH

( ) ( )
( )

! !
( )

Note that this wave function is not normalized.The time-

independent Schrödinger equation then becomes (in the

semiclassical regime N ? 1) [69]

G
G G�

- s :
s

�
-

� - � : � :
N

N E

J

2

2
cos 2 cos 1 ,

6

BH
2

2
BH

2
BH( )

( )

where � �
G

s
s

z
N

2iˆ in analogy to the standard relation

�� � s sp xiˆ . This suggests the effective Hamiltonian

G G
a
�
-

�
-

� - �
H

NJ
z

2

1

2
cos 2 cos 1 , 7BH BH 2

BH

2
BH

ˆ
ˆ ( ˆ ˆ ) ( )

where we use the prime to signify that equation (7) is the re-

quantized version of equation (3). Equation (7) has the form

of equation (2) where

G G G� �
-

� - �V
1

2
cos 2 cos 1 8

BH

2
BH( ˆ ) ( ˆ ˆ ) ( )

plays the role of an effective potential for the position coor-

dinate f [64] which we plot in figure 1. When - � 1BH we

see two minima, one at G � 0 and the other at G Q� o ,

4
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which are responsible for the plasma and π-oscillations,

respectively. As expected, the minimum at G Q� disappears

at - � 1BH corresponding to the destruction of the π-oscil-

lations. When - � 1BH the potential has just a single well and

two types of motion are possible: when the energy is below

the separatrix given by the barrier tops at �E NJ the motion

is oscillatory with time average G� § � 0 (plasma oscillations),

but when the energy is above the separatrix the phase can

continuously wind up in either the clockwise or anticlockwise

directions. Because of the winding, the angular momentum

also has a finite time-average implying that � § vz 0 (macro-

scopic quantum self-trapping).

2.2. Optomechanics

The second system we consider is the ‘membrane-in-the-

middle’ (MM) setup realized in optomechanics experiments

[70, 71]. It consists of an optical cavity divided in two by a

partially transmissive and elastic membrane. The cavity is

pumped by laser light through the end mirrors and the

membrane is deformed by the radiation pressure upon it. The

membrane can be pushed to the left or the right: if it is pushed

to the right, say, it reduces the length of the right hand cavity

and increases the length of the left hand cavity. This changes

the resonance frequency for each cavity resulting in a change

in the number of photons which in turn changes the radiation

pressure (this feedback is the origin of the nonlinearity in this

system). The total Hamiltonian is [72]

� � � �H H H H H , 9MM m l int p
ˆ ˆ ˆ ˆ ˆ ( )

where

X

H

I I

� �

� �

�

� � � �

H
p

m

m x

H g a a a a

H
V
xn

H V a a V a a

2 2

2

, 10

m

2 2 2

l R L L R

int

p R R R L L L

ˆ ˆ ˆ

ˆ ( ˆ ˆ ˆ ˆ )

ˆ ˆ ˆ

ˆ ( ˆ ˆ ) ( ˆ ˆ ) ( )

† †

† †

are the Hamiltonians for the membrane (mechanical harmonic

oscillator), light hopping between cavities by transmission

through the membrane, radiation pressure, and pump,

respectively. Here, like in the previous example, the left- and

right-hand cavity modes are labeled by L and R, respectively,

however, now these modes are occupied by photons instead

of massive particles. V is the cavity mode volume and is

related to the number of photons in a cavity by S�V N

where ρ is the number density of photons. The parameters ω

and g are the natural oscillation frequencies of the membrane

and light hopping, respectively, γ gives the interaction energy

due to radiation pressure and IL and IR give the pumping
strengths for the left and right cavities. The relevant parameter
in this system is HI X L- � �g m g2 2MM

2 2 2( )( [ ( )]) where

for - � 1MM the ground state of the system goes from being a

centered membrane with an equal number of photons in each

cavity to a shifted membrane with a buildup of light in one

cavity over the other which is the result of breaking the '2

symmetry of the system.

In experiments it is usually the case that the light field

evolves much faster than the membrane, i.e. X�g [73, 74],

so that the light ‘instantaneously’ adjusts to the position of the

membrane. The optical modes can then be adiabatically

eliminated to give an effective potential for the membrane

alone. To do this we assume the light satisfies the stationary

solutions of the equations of motion, � �a a 0R Lˆ̇ ˆ̇ , giving

I L I I H

L H

I L I I H

L H

��
� �
� �

��
� �
� �

a
V g V x

g x V

a
V g V x

g x V

i

i
, 11

R
s R L R

2 2 2 2

L
s L R L

2 2 2 2

ˆ
ˆ

ˆ

ˆ
ˆ

ˆ
( )

where we have introduced a cavity decay rate κ. We obtain

the effective potential by substituting equation (11) into

X
H

� � � � �p m x
V
n

V x

x

2 d

d
122ˆ̇ ˆ ˆ

( ˆ)
ˆ

( )

which upon integration gives the effective Hamiltonian for

the membrane [75]

X I

L H

a
� � �

� �
H

V

p

m

m x g

g x2 2

4
, 13MM

2 2 2 2

2 2 2 2

ˆ ˆ ˆ
ˆ

( )

where the transformations lp p Vˆ ˆ and lx x Vˆ ˆ were

made, so in �x p V, i[ ˆ ˆ] the limit l dV is again the same

as � l 0. We have also assumed the ground state is being

pumped, which for �g 0 means I I I� � �R L [76]. This
Hamiltonian is of the desired form given by equation (2).

Near the critical value of -MM it is sufficient to Taylor expand

the effective potential up to quartic terms so that it can take on

Figure 1. A plot of the effective potential GV ( ) for the two-site

Bose–Hubbard model as given in equation (8). Each curve is for a
different value of -BH: 0.5 (solid black), 1.0 (dashed red), and 1.5
(dotted blue). When - � 1BH there are two minima, one at G � 0

and the other at G Q� o , and motion about these points gives rise to
plasma- and π-oscillations, respectively. When - � 1BH the

potential features only a single minimum at G � 0. Two types of

motion are possible in this latter regime: plasma oscillations around
the minimum and macroscopic quantum self-trapping where the
energy exceeds the barrier top at G Q� o and the phase grows

continuously, either in the clockwise or anticlockwise direction.
Note that GV ( ) is periodic outside the fundamental domain

-Q G Q� � , but we have plotted twice this range so that the

properties of the potential near G Q� o are clear.
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a double-well shape. The transition from a single- to a double-

well describes the '2 symmetry breaking transition where the

membrane spontaneously displaces to the left or right. Fur-

thermore, this is a dynamical phase transition as the cavity is

pumped by laser light and hence is not in its ground state.

2.3. Dicke model in the Holstein–Primakoff representation

Lastly, we look at the Dicke model (DM) which describes a

collection of spin-1/2 particles coupled to a harmonic oscil-

lator. In its original context this was used to model collective

light emission (superradiance) by N two-level atoms coupled

to a single mode of the electromagnetic field [77]. Unlike in

the last example where we eliminated the degrees of freedom

of one part of the system, we keep both here. In a cold atom

context the DM has been realized using a BEC inside an

optical cavity [78, 79], where the two ‘spin’ states refer to two

different translational modes of the atoms. The DM Hamil-

tonian can be written

X X
D

� � � � �� �H S b b
S

b b S S
2

, 14zDM 0
ˆ ˆ ˆ ˆ ( ˆ ˆ)( ˆ ˆ ) ( )† †

where the Schwinger representation has been used to describe

the N two-level systems, each with excitation frequency X0, as

a large pseudospin of length �S N 2. The electromagnetic

field mode with frequency ω is acted on by the creation

(annihilation) operator b̂
†

(b̂) and the coupling with the spins

is given by χ. For D XX- � �2 1DM 0 the ground state

suffers a parity breaking ('2) phase transition resulting in a

spontaneous excitation of the harmonic oscillator, i.e. the

coherent emission of light by the atoms. The presence of

external pumping of the cavity once again means that this is a

dynamical rather than a ground state phase transition. To

describe the phase transition Emary and Brandes [80] used the

Holstein–Primakoff representation [81, 82] of spin operators

to write them in terms of ordinary annihilation and creation

operators

� � � �

� �
� �S a S a a S S a a a

S a a S

2 , 2

, 15z

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ( )

† † †

†

where �a a, 1[ ˆ ˆ ]† . The Holstein–Primakoff representation is

useful when the spin is only weakly excited above its ground

state which is the extremal spin projection state � � §S m S,∣ ,

so that � § �a a S2 1ˆ ˆ† , and the square roots can be expanded

in powers of S1 2 . By converting the annihilation and crea-

tion operators into position and momentum operators using

the standard definitions

⎜ ⎟ ⎜ ⎟
⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟
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w � w �
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i
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i
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y y
0

0

0

0

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ( )

†

†

they were able to show that equation (14) takes the form

⎡

⎣
⎢

⎛

⎝
⎜
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⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦
⎥

X X

D XX
X

I

I
X

� � � �

� � �

� � �

H p x p y

x y p

y p

1

2

i
1

1
i

, 17

x y

y

y

DM
2 2 2 2

0
2 2

0
0

0

ˆ ( ˆ ˆ ˆ ˆ )

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ( )

where

I X X X� � �y p S4 . 18
y0

2 2 2
0 0ˆ ( ˆ ˆ ) ( ) ( )

Even though HDM
ˆ has imaginary terms and a momentum

dependent potential, V x y p, , y( ˆ ˆ ˆ ), for �S 1 we can approx-

imate it by ignoring the commutation relation between the

operators in the square brackets. With the transformations

lx x Sˆ ˆ , lp p Sx xˆ ˆ , ly y Sˆ ˆ and lp p Sy yˆ ˆ ,

equation (17) becomes

X X

D XX
X

a
� � � �

� �

H

S
p x p y

xy
y

1

2

2 1
4

. 19

x y
DM 2 2 2 2

0
2 2

0
0

2

ˆ
( ˆ ˆ ˆ ˆ )

ˆ ˆ
ˆ

( )

together with the now familiar commutation relations

�x p S, ix[ ˆ ˆ ] , �y p S, iy[ˆ ˆ ] ( �x p, 0y[ ˆ ˆ ] and �y p, 0x[ˆ ˆ ] ). We

can see that since we kept both parts of the system the

Hamiltonian is two-dimensional and so generalizes the form

given in equation (2), but is nevertheless of the form of

kinetic plus potential terms and so our proceeding analysis

can be applied here as well.

In this section we have used various approximation

methods to write the Hamiltonians of some simple many-

particle systems in the form of a single effective quantum

particle like in equation (2). The results represent a semi-

classical approach to each system where we have assumed

they are large enough to be approximated by continuous

spectra, but we do not take the thermodynamic limit, so there

are still canonical commutation relations to be obeyed. It is in

this regime we will focus on investigating the quantum cri-

tical nature of catastrophes.

Once again, we emphasize that the catastrophes that exist

in all three models described above properly live in Fock

space. However, in the continuum approximation the funda-

mental discretization of Fock space vanishes, and hence the

distinction between quantum catastrophes and the standard

continuous wave catastrophes evaporates (for an analysis of a

quantum catastrophe see [49]). For simplicity, in the

remainder of this paper we will keep coming back to the

example system of the two-site Bose–Hubbard model,

although the basic results also apply to the optomechanical

and Dicke models.
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3. Catastrophes in classical dynamics

In the truncated Wigner approximation (TWA) one attempts

to mimic quantum dynamics by an ensemble of classical

trajectories [83, 84]. This method has been implemented for

the two-mode Bose–Hubbard model in [85] where they also

consider the effect of decoherence due to a continuous mea-

surement of the number difference between the two sites,

although we shall not include that additional feature here. The

initial conditions for the classical trajectories are sampled

from the initial quantum probability distribution, thus build-

ing in quantum fluctuations, but the subsequent time evol-

ution of these trajectories is purely classical.

For an initial state let us consider the physically realistic

situation where two independent condensates with an equal

number of atoms are suddenly placed in contact through a

tunneling barrier, i.e. a quench in the tunnelling rate from zero

to a finite value specified by -BH. According to Heisenbergʼs

uncertainty principle, if the number difference z is exactly

known then its conjugate variable f is completely unspecified

and hence the classical trajectories sampling the initial state

all have �z 0 0( ) but differ in their initial value of the phase

difference G 0( ), being equally distributed over the range

Q0, 2( ]. These trajectories are propagated in time by solving

Hamiltonʼs equations [63]

G G�
s
s

� - �
�

H

z
z

z

z1
cos , 20

BH
BH

2

˙ ( )

G
G� �

s
s

� � �z
H

z1 sin 21
BH 2˙ ( )

obtained from the mean-field Hamiltonian given in

equation (4). The results are plotted in figure 2 for - � 0.5BH

where we see that a repeated series of cusp catastrophes are

formed by the envelopes of the classical trajectories z t( ). To
find the TWA (classical) prediction for the probability dis-

tribution in Fock space at time t one should average over the

trajectories, i.e. break the z coordinate into little bins and

count the number of trajectories that arrive in each bin. In this

way one finds that the probability diverges on the cusps as the

number of trajectories becomes large (see, e.g., figure 2 in

[45]). It is worth pointing out that the cusps shown in figure 2

are not a special feature of the initial condition �z 0 0( ) .

Although this initial condition does give cusps which are

symmetric about z=0, the structural stability of catastrophes

ensures that they are robust to fluctuations in the initial con-

ditions which can also be imbalanced (see figure 5 below).

The cusps arise from the focusing effect of the minima in

the effective potential in the Hamiltonian. If the potential is

replaced by its expansion up to second order around the
origin, G Gx � � � - -V 1 1 2BH BH

2( ) [( ) ] , the focusing

becomes perfect due to the isochronous nature of harmonic

potentials: each cusp is reduced to a single focal point.

However, this is a non-generic situation because perfect focal

points are unstable to perturbations such as the inclusion of

the non-harmonic part of GV ( ) which smears them out into

cusps. The cusps are, by contrast, structurally stable. The

cusps in figure 2 are also stable against changes to the initial

conditions. These can be varied to include imbalanced wells,

or take vz 0 0( ) . Under these changes the cusp is modified

quantitatively but not qualitatively. It is also interesting to

note that in the Bogoliubov theory for the weakly interacting

Bose gas the equations of motion are linearized [86], meaning

that GV ( ) is replaced by its harmonic approximation, and

hence the Bogoliubov theory is unsuitable for describing

catastrophes in the two-mode problem.

To understand why we specifically see cusps in the two-

dimensional (z t, ) control space, consider the generating
function/action ' � � �s Xs Ys4 2 for co-dimension 2 cat-

astrophes in table 1. According to Hamiltonʼs principle the

Figure 2. Cusps in the classical dynamics of the two-mode Bose–
Hubbard model. Each curve is a solution of the mean-field equations
of motion (Hamiltonʼs equations) and gives the number difference
z t( ) between the left and right sites for - � 0.5BH . The initial

conditions are such that each trajectory starts with �z 0 0( ) but has a

different initial phase G 0( ) sampled uniformly from G Q�0 0, 2( ) [ ]
in accordance with the truncated Wigner approximation. We have
separated the trajectories into two groups: panel (a) shows those that
oscillate around G � 0 (plasma oscillations) and panel (b) shows

those that oscillate around G Q� (π-oscillations). Both groups are

excited under these conditions and we plot them separately for
clarity. Near � oz 1 the cusps reach the maximum excitation
possible in this system and hence curve off. This is a non-generic
feature specific to the bounded Fock space of our system. The red,
dashed–boxed region indicates the approximate location of the
generic or ‘pure’ cusp. Note that the quantum version of this figure is
plotted in figure 8(a).
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classical trajectories are those for which the action is sta-

tionary with respect to variations in the state variables which
characterize them. This gives s' s � � � �s s Xs Y4 2 03 .

On a catastrophe the action is stationary to higher order

s ' s � � �s s X12 2 0;2 2 2 physically this is the focusing

condition. Eliminating s from these two equations gives the

equation for a cusp

� o �Y X
8

27
223 2( ) ( )

and is plotted in figure 3. The insets at different points X Y,( )
depict the action' s X Y; ,( ) as a function of s. Being a quartic
function, Φ has at most three stationary points; each stationary

point corresponds to a classical trajectory. We see that there

are three classical trajectories reaching each point inside the

cusp and just one reaching each point outside. As we cross

one of the edges of the cusp (known as fold lines) two of the

solutions coalesce and annihilate leading to a singularity.

However, the most singular part is the point of the cusp where

all three solutions coalesce at once. In a specific system the

canonical coordinates X Y,{ } will not generally correspond to

the actual physical coordinates, but transformations can (in

principle) be found that relate the two. We will see an

example of this in section 5.

Structural stability implies that we need not be concerned

with the exact shape of the potential but rather with its general

features such as the number of stationary points. Accordingly,

in the rest of this paper we will confine our attention to a

general quartic potential

� � � �V x a a x a x a x . 230 2
2

3
3

4
4( ) ( )

In general the coefficients a2 and a4 depend on the parameters

of the system. If we assume there is one such parameter Λ

(like the ones identified in each example in section 2) which

drives the system through a second order phase transition then

we can take inspiration from the Landau theory of continuous

phase transitions and approximate the coefficients near the

critical point at -c as M- xa 22 ( ) and - x oa 14 ( ) , where

M � - � - -c c( ) is the reduced driving parameter. We have

set �a 00 without loss of generality because this just results

in an overall shift of the energy. On the one hand, when

�a 04 (with �a 03 ) we have either a single- or double-well

potential depending upon whether λ is positive or negative.

On the other hand, when �a 04 (with �a 03 ) for M � 0

there is a local minimum at x=0 sandwiched between two

global maxima at M� oox 2, and for M � 0 there is a

global maximum at x=0. This latter situation describes, for

example, π-oscillations providing the quartic potential is

understood as a Taylor series expansion about the point

G Q� . At the critical pointM � 0c , dynamics near this region

become unstable resulting in exponential divergence away

from it. This is important for the fate of π-oscillation cusps

because when the phase transition occurs the potential around

x=0 no longer focuses trajectories but instead becomes an

unstable stationary point that defocuses and destroys the

cusps.

4. δ-kicked Hamiltonians

A further simplification we shall make at this point is to

consider δ-kicked Hamiltonians. δ-kicks play an important

role in molecular physics where trains of short laser pulses are

used to align molecules [87–89] and in experiments involving

a small number of pulses molecules have been shown to

exhibit ‘classical alignment echoes’ where the initial align-

ment is revived after initially collapsing [90]. We note that in

the kicked rotor problem it is known that a cusp can form in

the angular position distribution [41] and also in the angular

momentum distribution [91]. In cold atom experiments one

can exert real-time control over both the trapping potential

and the interactions between the atoms which allows for a

broad range of options for kicking the system into a non-

equilibrium state. For example, the δ-kicked rotor can be

realized in a cold atomic gas by flashing on and off an optical

lattice [92], and in the case of a three-frequency periodic δ-

kick the system displays a form of Anderson localization in

time [93] at a critical kicking strength (equivalent to disorder

strength). The Greenʼs function for the probability distribu-

tion in this case happens to be an Airy function which gives it

a scaling invariance characteristic of a second-order phase

transition [94]. The critical behavior of the δ-kicked Lipkin–

Meshkov–Glick model has been investigated in refer-

ence [95].

We shall consider the simplest case of a single δ-kick to

one of the terms in the Hamiltonian while the rest is held

constant. This type of time evolution facilitates analytical

results and allows a very clean realization of the canonical

wave catastrophes. In fact, one can kick either of the terms in

the Hamiltonian (2) as what really counts is that we have two

non-commuting pieces at some instant, one of which is also

Figure 3. A plot of the canonical cusp as given by equation (22). It
consists of two fold lines that meet at a cusp point. The insets at
different points X Y,( ) show the cusp generating function

' � � �s X Y s Xs Ys; , 4 2( ) plotted as a function of s. Each

extremum of Φ corresponds to a classical trajectory; there are three at
each point inside the cusp and one at each point outside. Note that
equation (22) only has real solutions when X is negative. By
changing the signs of the terms in ' s X Y; ,( ) the cusp can instead be
made to live in the positive-X half plane.
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nonlinear. Thus, we consider two cases

E� �H t
p

V x
2

Case 1, 241

2
ˆ ( )

ˆ
( ˆ) ( )

E� �H
p

t V x
2

Case 2, 252

2
ˆ ˆ

( ) ( ˆ) ( )

where for now we have set N to unity. After the kick the

system evolves due to only one term which makes an ana-

lytical description easier, especially in the classical case

where Hamiltonʼs equations � s sx H p˙ , and � �s sp H x˙
can be solved trivially. For H1

ˆ one finds

� � � �x t x p p t t F x p0 , 0 260 0( ) ( ) ( ) ( ( )) ( )

and for H2
ˆ

� � � �x t t p x p t p F x0 , 0 0 . 270( ) ( ) ( ) ( ) ( ( )) ( )

In both expressions � �s sF x V x( ) is the force. We

therefore see that the classical trajectories are straight lines in

either the p t,( )- or x t,( )-plane with slopes determined by the

initial force or momentum.

The classical trajectories following a kick for various

incarnations of the quartic potential are plotted in figure 4. In

the top row �a 04 , and as the potential turns from a single to

a double well the dynamics evolve from featuring a single

cusp to two cusps. Note that the new cusps open in the

opposite direction to the original one. At the transition point

at M � 0 the cusp point is pushed off to � dt , a feature that

may be viewed as an example of critical slowing down of the

dynamics. Similarly, the two new cusps start at � dt at the

transition point and are brought down to finite times past the

transition. In the bottom row �a 04 , and there is a single

cusp generated by the central minimum of the potential when

M � 0, which becomes a maximum for M � 0 leading to a

divergence of the trajectories. The difference between positive

and negative a4 is also shown in figure 5, as well as including

the effect of an asymmetric potential by having va 03 . We

see that the images still retain their qualitative cusp form, but

are now skewed by the asymmetry.

5. Catastrophes in quantum dynamics

5.1. Mapping to the pearcey function

In the quantum description of the kicked system the evolution

operator can be written as the product of two terms; one

describing the kick at t=0 and the other describing the

subsequent evolution [96]. As for the classical problem, we

will consider two cases; Case 1: Hamiltonians with a kicked

kinetic term (H1), and Case 2: Hamiltonians with a kicked

potential term (H2). The evolution operators in these two

cases are - � � �e eV x t p
1

i i 22ˆ ( ˆ) ˆ and - � � �e ep t V x
2

i 2 i2ˆ ˆ ( ˆ),

respectively. The stability of the cusp to perturbations allows

us to choose a wide range of initial states, however, with

simplicity in mind we choose the ground state of the non-

kicked term in the M � 0 (symmetric) phase, so for case one

¨Z § � � § � §
�d

d
x p p0 d0 1 0 0∣ ∣ ∣ and for case two Z § �0 2∣

¨� § � §
�d

d
p x x0 d0 0∣ ∣ . Applying the evolution operators to

these initial states gives the amplitude of being at any point in

Figure 4. Classical dynamics for kicked Hamiltonians with a quartic potential whose shape is indicated by the red dashed curve in each panel.
The top row has �a 04 and the bottom row has �a 04 . The reduced parameter λ decreases from left to right so that �a 22 , �a 02 and

� �a 22 in the left hand, central and right hand columns, respectively. Each black solid line is a classical trajectory with a different initial

� �x 3, 3[ ]. If the kinetic term is kicked then the dynamics take place in the p t,( )-plane, whereas if the potential term is kicked they take

place in the x t,( )-plane. The images are similar to what one would find in the geometric theory of light where incoming parallel rays (not

shown) reflect from a mirror with the same local curvature as the potential.
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x or p at time t
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To make the connection to CT we substitute the quartic

potential defined in equation (23) into equations (28) and (29)

giving

Z
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where X YPe ,[ ] is the Pearcey function [28]

¨� �d

d
� � �X Y sPe , d e , 32Ys Xs si 2 4

[ ] ( )( )

which is the wave catastrophe corresponding to the cusp

[28, 31, 34, 97–100] and is plotted in figure 6. The phase

factors multiplying the wave functions are

R � � � � � �p t a
a

a

a t

a

a a t

a
px

x
a, ;

32

3

256 16 2
,

33

t m
m

1 0
3
2

4
2

3
4

4
3

2 3
2

4
2

2

( )

( )

R � � � � � �x t a
a

a t

a

a

a a

a

a x

a t

x

t
a, ;

32

3

256 16 4 2

34

2 0
3
2

4
2

3
4

4
3

2 3
2

4
2

3

4

2

( )

( )

where � a a a aa , , ,0 1 2 3{ } are the four parameters specifying

the quartic potential. The quantity xm is required if the quartic

potential V x( ) is a Taylor series expansion about the point

vx 0m in which case all values of x are measured from xm;

otherwise �x 0m . The transformation between the physical

coordinates and parameters and the canonical state variables

and control parameters is given, for Case 2, by

⎛

⎝
⎜

⎞

⎠
⎟� �

��
� �

�
� � �

s a x
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We see that classical paths, as characterized by s2, are spe-

cified by their initial x coordinate x0. Also, the canonical

control parameter Y mixes the physical coordinates x t,( )
whereas X is a function purely of t. For Case 1 the transfor-

mations are closely related to those of Case 2

�
�
�

s t s

X t t X t

Y p t t Y p t

a a

a a

; ;

, ; , ; . 36

1
1 4

2

1 2

1
3 4

2

( ) ( )

( ) ( ) ( )

It is easier to see the fine details within a cusp opening in

the positive t direction than the negative t direction, so we will

assume �a 04 . With our definitions of a2, a3 and a4 in the

previous section, equation (35) becomes

M

�

�
�

�

s x

X t a
t

t

Y x t
x

t

;
1

2

, , 37

2 0

2

2

( )
( )

( ) ( )

where the relation of the variables between the two cases is

the same as those given in equation (36).

5.2. Scaling exponents

The critical behavior of the ground states of the models stu-

died in this paper have been investigated by a number of

authors. For example, the critical exponents for the two-mode

Bose–Hubbard model have been calculated in reference

[101], and for the closely related Lipkin–Meshkov–Glick

model in references [102, 103]. Similarly, the critical expo-

nents of the Dicke model have been investigated in references

[80, 104]. Part of the power of the methods developed in this

paper is that they give us access to the scaling properties

of non-equilibrium states. In particular, in the vicinity of a

catastrophe the quantum wave function obeys a remarkable

Figure 5. Trajectories for the case of a kicked kinetic term (H1) with
different initial � �p 2, 2[ ] for different values of a4: (a) �a 14 and

(b) � �a 14 . For both images � �a a 12 3 .
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self-similarity relation given in equation (38) below, with

respect to the scale factor λ and this allows us to quantify the

non-equlibrium critical behavior in terms of critical expo-

nents. Consider first the classical scaling which governs both

the position and size of the cusp. From figure 3 we see that the

cusp point is located at � �X Y0, 0cusp cusp( ) in the canonical
coordinates. Using equation (37) to convert to physical

coordinates we find that the cusp point is shifted to finite
times M� ��t x, 0cusp

1
cusp( ). One can think of tcusp as the

time it takes the system to respond to the initial kick: the fact

that l dtcusp as M l 0 can be viewed as critical slowing

down. Using tcusp as the natural time scale allows us to define

a time coordinate U M� �t t tcusp which is invariant with λ.
The analogous coordinate for the transverse direction is

obtained by substituting X and Y in the canonical cusp

formula given in equation (22) by the relevant quantities

according to the above transformations and then replacing the

time coordinate by the scaled time U M� t. One finds

Mrp 1 2 and Mrx 1 2 for Case 1 and Case 2, respectively.

Thus, as the critical point is approached the cusp not only

starts at later times but also shrinks in its transverse extent. An

invariant coordinate for the transverse direction can therefore

be defined as [ M M� �x p1 2 1 2.

The quantum case is richer than the classical one due to

the interference pattern decorating the cusp, as shown in

figure 6. To get at the purely quantum features we work in the

[ U,( ) coordinate system because these make Hamiltonʼs

equations invariant with λ so that the cusp remains fixed in

the [ U,( )-plane even as λ is varied. Crucially, the action is

not scale invariant and this is the source of the extra scaling

properties of the quantum problem. Substituting in the new

variables gives M' l 'B
B
B, where B � 1, 2 for Case 1 and

Case 2, respectively. The index α has no physical significance

and is only used for convenience in distinguishing the dif-

ferent scalings between the two cases. The factor of MB does

not appear in the generating function for the canonical Pear-

cey function, but it can be absorbed into the control

Figure 6. The wave function of a cusp catastrophe (the Pearcey function) for N=1 plotted as a function of the scaled control parameters ζ
and τ, i.e. Fock space and time. One sees that the underlying classical skeleton provided by the cusp is decorated by an intricate interference
pattern with several levels of structure, and a slice at a fixed time through a fold line gives an Airy function provided one is not too close to
the cusp point. In the ([ U, ) coordinate system the classical cusp structure is held fixed, but the interference pattern evolves with MBN . In the

deep quantum regime where -MBN 1 the ‘fringes’ are large. By contrast, in the opposite semiclassical regime MB �N 1 the oscillations are
very rapid and the fringe spacing is small. Inside the cusp there is a network of vortex–antivortex pairs. Panels: (a) Z2

2∣ ∣ , (b) a closeup of a

vortex-antivortex pair which together form a dipole, and (c) the phase of the same pair as (b). In (a) and (b) blue indicates a small amplitude
and red a large amplitude.
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parameters and state variable if they are rescaled in a part-

icular way that depends on three indices: β, TX and TY . The

first index is known as the Arnold index, and the other two as

Berry indices. The rescaling thus returns us to the Pearcey

function but with new control parameters scaled by MB and

forms the basis for identifying the scaling properties of the

catastrophe as λ is varied. Following this procedure through,

we find we can write the wave functions in equations (30) and

(31) in the manifestly self-similar form

⎜ ⎟
⎛

⎝

⎞

⎠
Z [ U M

M

U
M MrB

BC
B T

B
B T

BX Y, ; Pe , , 38X Y( ) [ ] ( )

where the proportionality sign indicates that we have

neglected overall phase and constant factors as they play no

role in the following analysis. A derivation of equation (38)

for Case 2 is given in the appendix. The Arnold index governs

how the amplitude of the wave function depends on the scale

factor λ. In the case of the cusp catastrophe it takes the value

C � 1 4 [34]. The Berry indices dictate how rapidly the

interference pattern varies in control space: in general the

scaling in each direction is different and for the cusp they are

T � 1 2X and T � 3 4Y [34].

With the wave function in the form of equation (38) it

is easy to see that the probability density in Fock space at

the cusp point scales as Z MrB
BC2 2∣ ∣ , and so for the two

cases we have Z Mr1
2 1 2∣ ∣ and Z Mr2

2∣ ∣ . Thus, as M l 0

the cusp melts away, which is expected since the focusing

region of the effective potential shrinks (when �a 04 )

causing fewer Fock states to contribute to the cusp. The

interference pattern, meanwhile, varies more slowly as

M l 0 with the fringe spacing tending to infinity in this

limit. The scaling properties of the cusp wave function are

summarized in table 2.

So far we have set N to unity, but now we will take a look

at the effects of its inclusion. In each example we gave in

section 2 we saw that the transformations made to the original

many-particle Hamiltonian converted it to an effective single

particle Hamiltonian l aH NHˆ ˆ . The action undergoes the

same transformation and this implies that the Pearcey function

changes to
�̈d

d � � �sd e N Ys Xs si 2 4( ), which means that N1

plays the same role as � does in single particle path integrals.

In particular, the thermodynamic limit, l dN is the same as

the classical limit, � l 0. Furthermore, we see that N mul-

tiplies the action in the same way asMB did above, and thusMB

is replaced by MBN in the full theory. This implies that there is

a clash of limits between the thermodynamic limit l dN

and the ‘critical’ point M l 0.

5.3. Vortices in fock space + time

Another remarkable feature of the interference pattern

described by the Pearcey function is that it contains an

intricate network of nodes [28, 98, 100]. This ‘fine structure’

can be seen by zooming in on the wave function as shown in

panels (b) and (c) of figure 6. Examining the phase χ reveals

that the nodes coincide with phase singularities where χ takes

all possible values. Furthermore, χ circulates around the

nodes in either a clockwise or anticlockwise sense such that in

going around once it changes by Qo2

D Q� od 2 . 39∮ ( )

This is a topological feature that does not depend on the path

of integration providing it only encircles one node. All these

properties are familiar from quantized vortices that occur in

coordinate space in superfluids, type II superconductors and

also optical fields (where they are referred to as dislocations

[30, 34]). The difference is that here they occur in Fock space

plus time. Note that the phase of the Fock space amplitudes

should not be confused with, e.g. the relative phase in the

two-mode Bose–Hubbard model, which is a different object.

Inside the cusp the vortices are arranged in vortex–anti-

vortex pairs, whereas outside the cusp there is a line of single

vortices along each fold line. The Berry indices govern the

scaling of distances in the control plane and so can tell us how

the separation between a vortex and its antivortex changes

with λ. For a vortex–antivortex pair at positions B BX Y,v v( ) and
B BX Y,av av( ), respectively, the physical distance between them,

dα, scales as

M M
�

�
�

�
B

B B

BT

B B

BT
d

X X Y Y
40

v av 2

2

v av 2

2X Y

( ) ( )
( )

and so increases as Mc is approached. However, since T TvX Y

the two directions do not scale in the same way and the

vortices become stretched out anisotropically. This effect

persists in the [ U,( ) coordinates as shown in figure 7.

The scaling of distances in the classically invariant

[ U,( )-plane is less obvious because ζ and τ are functions of X

and Y. However, we can get the leading order behavior as

M l 0. First, we note a given vortex moves around within the

cusp as λ is varied such that MBT BXX and MBT BYY remain con-

stant. If we find a particular vortex for a given λ such that

M �BT
B BX AX and M �BT

B BY BY where �BA 0 and Bα are

constants, then we can find out how the vortices scale in ζ and

τ. Using equation (36) together with equation (37) we find for

Table 2. Critical scaling exponents of λ for the cusp catastrophe,
where the critical point is at M � 0. The first two columns refer to
classical properties of the cusp: the exponent for the cusp size refers
to the scaling in the transverse direction (p or x), and the exponent
for the position refers to the location of the cusp point tcusp in the

time direction. The remaining three columns refer to quantum
properties and assume that the classical properties of the cusp are
held fixed by working in the ([ U, ) coordinates. The exponent for the

probability density at the cusp point Z MB 0, 1, 2∣ ( )∣ is BC2 , where β is

the Arnold index and B � 1, 2 for Case 1, 2. The last two columns
give the scaling of the interference fringes, where TX and TY are the
Berry indices. Thus, as M l 0 the fringe spacing diverges as M BT� X

and M BT� Y in the X and Y directions, respectively.

Classical Quantum

Kicked term Size Position Z 2∣ ∣ B TX B TY

Kinetic (Case 1) 1/2 −1 1/2 1/2 3/4
Potential (Case 2) 1/2 −1 1 1 3/2
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Case 1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟U

M

M
� � � �

T

TA

A
1

2
1 1 , 411

2

2

2

1
2X

X

( )

so for MT � A1X we have U M Mr �T� �2 1X and therefore

[ M Mr �T� � �1 4 1Y . For Case 2

U � �
�M T

1
1

1
, 42

A2

X2

2

( )

∣ ∣

so U l d as M l A2 2∣ ∣ and since A2 is different for each

vortex the limit depends on which vortex we are looking at.

Even though the quantitative features of the scalings are

different between the [ U,( )- and X Y,( )-planes, qualitatively
the fate of vortex pairs is the same in that the distance

between the members of each pair diverges as M l 0. The

increase in distance and smearing of a single vortex pair can

be seen in figure 7 by comparing image (a) to image (b). The

ratio between the ζ and τ axes for each image is kept constant,

so the smearing of the region around the vortices is not

affected by the change in scale.

Bringing back N, we saw above that the scaling factor MB

is replaced by MBN . The question then arises, at what value of

this scaling factor is the separation between the vortices and

the antivortices large enough so that they are visible? If we

assume that in an experiment there is a value of the scaling

total factor M �BN C below which they become distinguish-

able, then for a particular number of particles N the parameter

λ must be tuned to values smaller than BC N 1( ) for the

individual vortices and antivortices to become visible.

5.4. Effect of kick strength

Here, we briefly show how the criticality of the cusp can be

explored without approaching the critical point of V x( ) by

changing the strength of the kick being applied. If the kick

has strength Q, then E Elt Q t( ) ( ) in our calculations. The

result of this is that p and x are no longer treated on the same

footing because applying a stronger kick increases the

‘momentum’ of the system which causes the cusp to appear at

earlier times. Therefore, if we seek classically invariant

coordinates where varying Q or λ only changes the quantum

properties of the cusp, like equation (38), we must modify our

previously defined classically invariant coordinates ([ U, ).

Suitable new coordinates are U M� Q t , [ M� xx and

[ M� Qpp . These result in the transformation M lB

MB B�Q2 3, so for Case 1 and Case 2 we have M �Q 1 and M Q2 ,

respectively, and we can achieve the same critical behavior by

varying Q while fixing λ. The inverse relation of Q between

the two cases arises because when the kinetic term is kicked

(Case 1) with greater strength only amplitudes with small

initial p contribute to the cusp until in the limit l dQ only

�p 00 contributes and the cusp vanishes. The inverse limit
for the kicked potential term (Case 2) accomplishes the same

thing because as lQ 0 the nonlinearity, which is responsible

for the cusp, is removed. Thus, systems with no phase

transition at all can show the same critical behavior as a

system with a second order phase transition by applying

weaker kicks.

6. Non-δ-kick quenches

The δ-kick quench allows for a simple analytic treatment and

it also produces a single cusp, whereas for quenches where

both terms in the Hamiltonian are present one typically gets

oscillatory classical dynamics and hence multiple cusps, like

in figure 2 and also in its quantum version figure 8. The

interference between the different cusps makes the quantum

wave function more complicated, although one cusp will

dominate in the immediate vicinity of its cusp point. For these

other types of quenches we do not expect the critical scaling

to be the same as the kicked cases, but we do still expect there

to be some form of scaling because this is a feature of the

Pearcey function and the basic claim of CT is that any

Figure 7. Evolution of a vortex–antivortex pair as λ is varied. Each panel shows Z2∣ ∣ plotted in Fock space plus time in the immediate vicinity

of the same pair of vortices for: (a) M � 150 (far from the phase transition), and (b) M � 12 (approaching the phase transition). In order to
demonstrate the apparent stretching of the vortices as they move apart, the aspect ratio U [% % for the window remains unchanged.
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structurally stable singularity must be mappable onto one of

the canonical catastrophes.

In fact, we can still make some scaling arguments based

on the results from the kicked cases. In deriving equation (38)

we defined the new coordinates [ M M� �x p and

U M� t which were used to remove any classical scaling from

the dynamics by making Hamiltonʼs equations scale invariant

in λ. The cusp generating function, which represents the

action, was not scale invariant and the transformation resulted
in M' l ' (Case 1) and M' l '2 (Case 2). One can pro-

ceed in a similar vein in the case of the full Hamiltonian

� �H p V x22 ( ), where the potential M� oV x x x2 4( ) , by

looking for scalings of the classical coordinates that leave

Hamiltonʼs equations invariant. Hamiltonʼs equations in this

case are

�x p, 43˙ ( )

M� � Bp x x2 4 443˙ ( )

and defining the new coordinates

[ M� x , 45x ( )

[ M� p , 46p ( )

U M� t 47( )

transforms them to

[ [� , 48x p
˙ ( )

[ [ [� � B2 4 , 49p x x
3˙ ( )

where the time derivative is now with respect to τ.

Plugging the new coordinates into the action �S
¨ M�p V x t2 ; d2[ ( )] gives ¨M [ [ U� �S V2 d

p x
3 2 2[ ( )] .

Therefore, the action is transformed to MlS S3 2 . Interest-

ingly, the exponent, 3/2, is halfway between the exponents

for the two kicked cases signaling each term in the Hamil-

tonian is playing an equal role in generating the dynamics.

Figure 8. The amplitude of the wave function for the two-mode Bose–Hubbard model with 100 bosons following a quench at t=0 where
both terms in the Hamiltonian are present for the subsequent evolution. The initial state for all four panels is the Fock state with zero number
difference, corresponding, for example, to a situation where two initially independent BECs are suddenly connected by a tunnelling barrier.
The upper row gives the wave function in the number difference (z) basis and the lower row gives it in the phase difference (f) basis. Each
column is for a different value of -BH: the left column is for - � 0.5BH , so π-oscillations are possible and the right column is for - � 1.5BH

where π-oscillations are excluded. The cusps created by the π-oscillations open toward the negative t direction in both (a) and (c), the other
cusps are due to plasma oscillations. Note that Panel (a) is the quantum version of figure 2 when both figures 2(a) and (b) are laid on top of
each other.
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Under these transformations the propagator is

�¨[ U [ U [ U� M [ UK , ; , e . 50N S
0 0

i 3 2

( ) [ ( )] ( )[ ( )]

We shall not analyze the quantum dynamics this generates

here, but we note that an analytic treatment of the wave

function that is valid away from the immediate region of the

cusp points has been given by one of us (DO) in reference

[45]. It uses a uniform approximation to extract the Airy

function that decorates the fold lines that emanate from the

cusp point.

Let us instead confine ourselves to a numerical solution

obtained by an exact diagonalization of the full quantum

Hamiltonian given in equation (3) for the two-mode Bose–

Hubbard model and consider its qualitative features. The

results are plotted in figure 8 which shows the dynamics of

the modulus of the wave function where the initial state is the

single number difference (Fock) state §0∣ , so at t=0 the
system has exactly N 2 bosons on each site. The top row

shows the wave function in the number difference (z) basis

where panel (a) is for - � 0.5BH and represents the quantum

version of the combined panels of figure 2. Once again we

can see the periodic cusps from plasma and π-oscillations

opening in the postive and negative t directions, respectively.

Their combined interference pattern forms a periodic diamond

structure which grows in time. Panel (b) shows the same

dynamics except - � 1.5BH , so the π-cusp vanishes. Panels

(c) and (d) show the wave function in the phase difference (f)

basis for the same values of -BH as in (a) and (b), respec-

tively. The periodic π-cusp is clearly visible at the center of

(c) bordered by half cusps from the plasma oscillations

around zero phase difference. In (d) the plasma-cusps remain,

but the π-cusps have vanished due to the excited state phase

transition. The f basis is useful because we can use the

potential in equation (7) to give us the scaling of the size and

position of the cusps as M l 0, namely, Mr �tcusp
1 2 and

G Mrcusp
1 2. These scalings were already anticipated in

equations (45) and (47).

The main difficulty in numerically determining the

scaling of the vortices’ separation comes from the interference

with the plasma cusp, but the scalings above can help to

design a better initial state which shows the cusps and their

vortices more clearly. One might consider using a super-

position of Ĝ-states around π instead of the §0∣ ẑ -state which

inconveniently gives a broad superposition over all Ĝ-states.

Finally, we note that in the exact solution plotted in figure 8,

Fock space is discrete and this can smear out the vortex cores

making their positions difficult to track. However, this dis-

cretization shrinks with increasing N, becoming invisible for a

large enough system.

7. Discussion and conclusion

The main message of this paper is that close to a singularity

the wave function takes on a universal form, namely one of

the structures predicted by CT. These catastrophes obey

scaling laws and also occur generically during dynamics

without the need for fine tuning. This means we expect them

to occur in a wide variety of situations, as is the case in optics,

through analogues of the phenomenon of natural focusing. Of

course, in high symmetry situations catastrophes can reduce

to simpler structures (e.g. points rather than cusps) but these

unfold to one of the canonical catastrophes when that sym-

metry is broken. We therefore come to the perhaps counter-

intuitive conclusion that singularities represent islands of

predictability in a sea of complexity, acting as organizing

centers around which the wave function can only take on one

of a limited number of forms and has well defined properties.

In previous work [45], we showed that in many-particle

problems wave catastrophes occur in Fock space. They are

naturally discretized by the granularity of the particles but

become singular in the mean-field limit where the dis-

cretization is neglected. In this paper we worked within the

continuum approximation where the granularity is neglected,

but in contrast to the mean-field approximation the essential

quantum nature of the number and phase operators is pre-

served as encapsulated by the commutation relation

G �z N, 2i[ ˆ ˆ] . Furthermore, we specialized to the case of a δ-

kick quench as this allows us to analytically solve for the

Fock-space wave function of two-mode problems and repre-

sent it as a Pearcey function which is the universal wave

function associated with cusp catastrophes. In particular, the

centrepiece of our analysis is the result given in equation (38)

which shows how the wave function scales with a parameter

λ which controls a second-order dynamical phase transition:

the scaling exponents for various properties of the wave

function are summarized in table 2 and include both classical

(mean-field) aspects such as the position and size of the cusp

as well as quantum (many-particle) aspects such as the

amplitude of the interference pattern and its fringe spacing in

different directions.

A physical example where this general two-mode wave

function applies is to the two-mode Bose–Hubbard model

where there is a dynamical phase transition describing the

appearance/disappearance of π-oscillations. Since our treat-

ment is based on a general quartic potential (where λ controls

the size of the quadratic term), it can be applied to other

dynamical phase transitions too. The classical scaling of the

cusp is independent of which term in the Hamiltonian is

kicked, but when we go to the quantum theory kicking the

potential term results in the cusp being more sensitive to

changes in the control parameter λ as compared to when the

kinetic term is kicked. As the phase transition is approached

(M l 0) the cusp appears at later times and also shrinks, i.e.

grows more slowly with time. The quantum aspects of the

scaling mean that the interference peaks become fainter and

farther apart as M l 0. When we explicitly include the

number of particles N in the theory we find that the scaling

parameter is transformed to M Ml N and there is therefore a

clash of limits between the phase transition as M l 0 and the

thermodynamic limit l dN .

Apart from its scaling properties, another important fea-

ture of the Pearcey function is a network of vortex–antivortex

pairs inside the cusp. When applied to many-particle
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dynamics this implies that there are vortex–antivortex pairs in

the two-dimensional plane given by Fock space plus time. As

far as we are aware the observation that there can be topo-

logical structures in such spaces, which are the Hilbert spaces

describing many-particle quantum systems, is new and war-

rants further investigation. In the present context we find that

as the phase transition is approached the vortex-antivortex

pairs are pulled apart in an anisotropic manner described by

the two Berry indices.

A key question is whether the present analysis can be

applied to more complicated many-particle systems. In the

three mode case (corresponding, e.g., to the three-site Bose–

Hubbard model) the control space is three dimensional (two-

dimensional Fock space plus time) and following a quench

one indeed finds K=3 catastrophes (swallowtail, elliptic

umbilic, hyperbolic umbilic) [105]. In principle one can

continue on to more modes and hence to higher catastrophes

but the increasing complexity of the catastrophes as K

becomes large would make this a challenging task for even a

moderately sized lattice of sites as there is essentially too

much information. A more promising approach in this case

would be to switch to a statistical version of CT where the

statistics of the fluctuations of the wave function are the

central objects of interest [23].
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Appendix. Derivation of scaled wave function

Here, we explicitly go through the steps in deriving

equation (38) for Case 2 (kicked potential) starting with

equation (29) (the derivation for Case 1 is similar). To sim-

plify the notation we will ignore all numerical factors and

overall phases. We start by substituting equation (23) with

�a 00 , M�a 22 , �a 03 and � oa 14 into equation (29)

⎡

⎣
⎢

⎤
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We then substitute in the rescaled position and time variables,

U M� t and [ M� x so the cusp is stationary with respect

to λ in the rescaled plane giving
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where we have used the fact that � �X Y X YPe , Pe ,[ ] [ ]. We

can see equation (A.2) matches equation (38) for the kicked

potential case (B � 2) given the Arnold index, C � 1 4, and

Berry indices, T � 1 2X and T � 3 4Y . The B sign indicates

whether the quartic term in the potential is positive or nega-

tive, respectively.
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Summary: In this paper we go beyond the semiclassical theory and look at the full

many-body quantum dynamics of a BEC in a double well under the same quench

scheme described in the previous paper (paper three). Due to the discrete nature of

Fock space in the many-body theory a new length scale is introduced, lq ∝ N−1, where

N is the number of bosons in the BEC. We explore the effects of the competition be-

tween lq and lv ∝ N−3/4, the distance between vortex and anti-vortex pairs within the

cusp catastrophe produced by the dynamics. What we find is that for system sizes

where lv � lq the vortices within the cusp resemble those of the Pearcey function

(cusp catastrophe diffraction integral), but for system sizes where lv ≤ lq the vortices

can vanish due to the inability to discern any details of the wave function beyond N−1.

Content: The majority of the writing was done by the author with the exception

of the introduction and conclusion which were written by Duncan O’Dell. All of the

numerical and analytic work was done by the author with the exception of the code

used to find the vortices which was written by Eric Turner. Donald Sprung provided

guidance over the whole research project.

98



Morphology of a quantum catastrophe

J. Mumford, E. Turner, D. W. L. Sprung, and D. H. J. O’Dell
Department of Physics and Astronomy, McMaster University,

1280 Main St. W., Hamilton, ON, L8S 4M1, Canada
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Catastrophe theory [1, 2] describes singularities that
occur widely in the natural world in the form of caustics.
Examples include rainbows [3], twinkling starlight [4],
freak waves [5] and large scale structure in the universe
[6]. Wave catastrophes have three levels of structure: at
large scales the geometric ray caustic is singular, at the
wavelength scale interference smooths the singularity and
produces universal diffraction patterns [2, 7], and at sub-
wavelength scales there are dislocations (nodes) around
which the wave function circulates as a vortex [8, 9]. Here
we study the morphology of cusp catastrophes which are
fundamentally granular. They occur, for example, in the
Fock space of quantum field theories and are well be-
haved as long as the field excitations are quantized [10].
However, quantum catastrophes become singular in the
classical field limit where the number of excitations is
continuous. Furthermore, their dislocations are nodeless
and compete with a new length scale arising from the
granularity, being created or annihilated in pairs as the
number of quanta is varied.

A famous example of the necessity of quantizing ex-
citations of fields (second-quantization) is Planck’s spec-
trum which avoids the ultraviolet catastrophe by treat-
ing the electromagnetic field in terms of photons. The
term ‘quantum catastrophe’ was used by Leonhardt [11]
to describe the phase singularity suffered by a classical
wave crossing an event horizon and is resolved in quan-
tum field theory by the emission of pairs of photons as
Hawking radiation. Related ideas have been discussed by
Berry and Dennis [12, 13], also in the context of optical
phase singularities. However, neither of these phenom-
ena has an obvious connection to catastrophe theory [14]
which describes structurally stable (and hence generic)
singularities in theories obeying a variational principle.
In this letter we examine catastrophes in a simple quan-
tum field composed of just two modes. Physical exam-
ples include the two polarization states of photons in a
laser beam [15, 16], the Lipkin-Meshkov-Glick model in
nuclear physics [17], the Ising model with infinite range
interactions [18], and two coupled Bose-Einstein conden-
sates (BECs), or fermionic superfluids, forming a Joseph-
son junction [19–22].

We use the term quantum catastrophe to describe situ-
ations where the action in the Feynman path integral rep-
resentation of a quantum field takes on one of the canon-
ical generating functions of catastrophe theory. The re-
sulting complex wave catastrophe will be the object of
central interest. This is distinct from other work where
catastrophe generating functions are used as potentials
in the Schrödinger equation [23, 24].

FIG. 1: Thom’s elementary catastrophes are the only struc-
turally stable singularities in up to four dimensions. Stabil-
ity against perturbations removes any symmetry requirement
which accounts for their widespread appearance in nature.
The first catastrophe in the hierarchy is the fold and the
second is the cusp which is shown above. The cusp is gen-
erated by a quartic action I(C1, C2; s) = C1s + C2s

2 + s4,
where (C1, C2) are control parameters, and s parameterizes
paths. Classical paths satisfy the principle of stationary ac-
tion ∂I/∂s = 0, the solutions of which are plotted as the
3D surface in (a). The folded portion has three solutions for
every point (C1, C2) underneath it and the non-folded por-
tion has one. The boundary between them forms a cusp
C1 = ±

√
8/27(−C2)3/2 in the control plane: it is made of

two fold lines where the action is stationary to higher order
∂2I/∂s2 = 0, giving the locus of points where two solutions
coalesce. (b) Light reflects from the inside of a cup. Its cir-
cular (i.e. non-parabolic) shape focuses the light imperfectly
forming a cusp at the bottom.

Consider a bosonic field with two modes and the associ-
ated annihilation operators â and b̂. Using the Schwinger
representation Ŝx ≡ (â†b̂ + b̂†â)/2, Ŝy ≡ (â†b̂ − b̂†â)/2i
and Ŝz ≡ (â†â− b̂†b̂)/2, the problem can be mapped onto
a quantum spin of length N/2, where N = Na + Nb is
the total number of excitations [25]. The quantum state
of the field |Ψ〉 =

∑
az|z〉 is fully specified by the ampli-

tudes az of the Fock states |z〉 which correspond to the
discrete difference in the number of excitations between
the two modes: z ≡ 2Sz/N = (Na−Nb)/N , where z takes
values between -1 and +1 in steps of 2/N . Dynamics are
obtained by evolving with a Hamiltonian which can al-
ways be written in terms of the three spin operators.
Consider, for example, the two-site Bose-Hubbard model
ĤBH = UŜ2

z − ΩŜx. This describes a bosonic Josephson
junction where U is the on-site interaction energy and Ω
governs the hopping between sites. In cold atom exper-
iments U can be tuned by a Feshbach resonance and Ω
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by laser or microwave intensity [26].
The structurally stable catastrophes which occur are

determined by the dimension of control space. Here, Fock
space is one dimensional with z acting as the coordinate.
Time evolution adds a second coordinate giving a two
dimensional control space. We therefore expect generic
singularities to take the form of cusp catastrophes [1,
2] (see Fig. 1). Being two dimensional, the cusp is the
simplest catastrophe exhibiting vortices in its diffraction
pattern.

In the classical (mean-field) description the field exci-
tation is continuous and a new quantity, phase, emerges.
More precisely, the phase difference φ ≡ φa − φb be-
tween two condensates is the conjugate variable to z and
can be directly measured in interference experiments [27,
28]. The Hamiltonian becomes limN→∞ 2HBH/NΩ ≡
Hclass = Λz2/2 −

√
1− z2 cosφ [30] and a single param-

eter Λ = UN/Ω fully determines the dynamics (for the
quantum dynamics given below we also need to specify
N). In the truncated Wigner approximation [29] the dy-
namics is treated by propagating classical solutions sam-
pled from an initial quantum probability distribution as
shown in Fig. 2. Each curve z(t) is a solution of Hamil-
ton’s equations φ̇ = ∂Hclass/∂z and ż = −∂Hclass/∂φ for
a different value of the initial number difference z0, and
time is scaled as t→ Ωt/h̄. For the initial quantum state
we choose a completely undefined number difference cor-
responding to a perfectly defined phase difference. Thus,
the set of initial points {z0} is uniformly distributed over
the range −1 ≤ z0 < 1 and evolves into a repeated train
of cusps as seen in Fig. 2(a). These correspond to the
first, or geometric, level of a catastrophe and are singu-
lar. They are rendered finite by second quantization.

The precise form of the Hamiltonian will not affect the
qualitative shape of any structurally stable singularities.
Let us make the Hamiltonian simpler so we only have to
deal with a single cusp by flashing the nonlinear term on
and off instantaneously at t = 0 and also replace

√
1− z2

by unity which is valid when |z| � 1. This gives the
Hamiltonian for a δ-kicked rotor

Ĥkick/NJ = Λẑ2δ(t)/2− cos φ̂. (1)

The classical trajectories generated by Hkick are straight
lines in the (z, t)-plane and form a single cusp as shown
in Figure 2(b).

In quantum theory dynamics is generated by
the application of the evolution operator to the
initial state |Ψ(t)〉 = Û(t, t0)|Ψ0〉. For Ĥkick

we find Û(t, t0) = T {exp[−(i/h̄)
∫ t
t0
Ĥ(t′)dt′]} =

exp[itN cos φ̂] exp[−iΛNẑ2/2], where T is the time or-
dering operator [31]. We take the initial state to be a
discrete Gaussian normalized to N and with a width in-
versely proportional to Λ

|Ψ0〉 =

√
4Λ

erf(2Λ/π)π3/2

N/2∑

m=−N/2
e−2(zmΛ/π)2 |zm〉, (2)

a b

FIG. 2: Geometric cusps in Fock space as a function of time
in a two mode field. The initial state has a well defined phase
difference and Λ is quenched at t = 0. (a) The trajectories
generated by the classical Bose-Hubbard Hamiltonian Hclass

form a train of cusps. (b) The kicked Hamiltonian Hkick gen-
erates a single cusp. The trajectories for the latter are straight
lines: z(t) = −2t sin(2Λz0) + z0 (the phase trajectories are
constants: φ(t) = φ0 = 2Λz0). In both images Λ = 2.1 and
the vertical back pane shows the probability density obtained
by binning the trajectories arriving at the final time shown.
The probability density diverges on the geometric cusp giving
caustics.

where zm = 2m/N and erf(x) is the error function. This
choice captures a significant range of classical trajecto-
ries and is more general than assuming a flat distribution.
Under time evolution the Fock-space wave function be-
comes (see Methods)

Ψ(zn, t) = 〈zn|Û(t)|Ψ0〉 =

√
4Λ

erf(2Λ/π) N2π3/2

×
N/2∑

p,m=−N/2
e−2( Λzm

π )2

e−iN(
Λz2m

2 −t cosφp− zn−zm2 φp) (3)

where φp = 2πp
N+1 is a quantized phase [32], and we have

neglected an unobservable overall phase factor.
It is useful to define a continuum approximation, ap-

plicable in the semiclassical regime N � 1, where φ and
z are continuous and yet quantized via [φ̂, ẑ] ≈ 2i/N [33].
In this approximation the wave function can be written
as a Feynman path integral (see Methods)

Ψ(z, t) ∝
√
N

∫ ∞

−∞
du e−

u2

2π2 e
iN

(
u2
8Λ +t cosu+ zu

2

)
(4)

and mapped onto the Pearcey function Pe(C1, C2) =∫∞
−∞ ds exp[i(C1s + C2s

2 + s4)], which is the universal
diffraction integral for the cusp catastrophe [8]. Expand-
ing the exponent of Eq. (4) around u = 0 gives

Ψ(z, t) ∝
(
N

t

)1/4 ∫ ∞

−∞
ds e−ζ(t)s

2/
√
N

×ei(N3/4Y (z,t)s+N1/2X(t)s2+s4) (5)
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FIG. 3: A wave catastrophe (top row) versus a quantum catastrophe (bottom row). The latter is fundamentally granular
but becomes a wave catastrophe in the continuum approximation. In both cases the divergences found in the geometric
cusp (indicated by the black curves) are removed by interference. Panel (a) plots the probability density obtained from the
continuum approximation given in Eq. (4). Panel (b) plots the phase of the same wave function. Black dots mark the positions
of dislocations which lie at termination points of lines of constant phase: there is a single line of vortices on each side outside
the cusp and a proliferating pattern of oppositely rotating vortex-antivortex pairs inside the cusp. Panels (c) and (d) are
obtained from the second-quantized result given in Eq. (3). The probability amplitudes in this case exist on a discrete grid
which we represent as ribbons of finite width 2/N , which is the quantization length. The dislocation nodes therefore cease to
exist unless by some chance they fall precisely on a grid line. Nevertheless, the quantized rotation around the dislocations is
preserved. Comparing (b) and (d) we see that some vortex pairs are missing due to the granularity introduced by quantization.
All images are generated with N = 50, Λ = 2.1, and t0 = 1/(4Λ) is the tip of the cusp.

where s = (Nt/24)1/4u, X(t) = ( 1
4Λ − t)

√
6/t, Y (z, t) =

z(3/2t)1/4 and ζ(t) =
√

6
π4t . The integrand is identical

to that of Pe(Nσ1Y,Nσ2X) except for an additional real
Gaussian envelope factor which, however, does not affect
the properties of the interference pattern. The exponents
σ1 = 3/4 and σ2 = 1/2 are Berry indices that govern the
scaling of fringe spacings as a function of N in the (X,Y )-
plane [4]. The wave function at two different values of N
has the self-similar scaling property

Ψ {Y,X;N2} =
(
N2

N1

)β
Ψ
{(

N2

N1

)σ1

Y,

(
N2

N1

)σ2

X;N1

}

(6)

where β = 1/4 is the Arnold singularity index. Varying
N is analogous to varying the wavenumber of diffracting
waves and has no effect on the geometric caustic which
is independent of N and fixed in the (z, t)-plane.

The continuum approximation and the exact second-
quantized theory are compared in Fig. 3. The for-
mer corresponds to the standard wave catastrophe and
has infinite resolution, allowing dislocations (vortices)
to be perfectly resolved. Writing the wave function as
Ψ = ρ exp[iθ], where θ should not be confused with φ,
the total phase change around any circuit that contains
a single dislocation yields

∮
∇θ ·dl = ±2π corresponding

to a quantized vortex or antivortex. Remarkably, per-
forming the same integral in the discrete case (with a
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FIG. 4: Two magnified regions of the quantum catastrophe
shown in Fig. 3(d). Panel (a) shows a region where a vortex-
antivortex pair (filled circles) is detected and also indicates the
location of the corresponding pair in the continuum approx-
imation (unfilled circles) from Fig. 3(b). The dashed black
box with arrows shows the integration path, exaggerated in
the time (horizontal) direction to make it visible, but exact
in the transverse direction due to the minimum length scale
2/N . When just one continuum vortex is enclosed by the inte-
gration path it survives the discretization as does its partner.
However, as seen in panel (b), when both members of a con-
tinuum pair are enclosed they cannot be distinguished and
annihilate each other.

suitable protocol for handling the discrete steps in the
circuit–see Methods) also yields ±2π. This is despite the
fact that the vortex cores themselves do not survive the
quantization: in general granular vortices are not asso-
ciated with nodes in the amplitudes az(t). The black
dots in Fig. 3(d) therefore indicate non-vanishing circuit
integrals rather than nodes. Note that apart from the dif-
ference in positions of the dislocations in the z direction
between Figs. 3(b) and 3(d), there are also discernible
differences in their positions along the t direction (see
also Fig. 4). This indicates that the second-quantized
case is not merely a discrete sampling of the continuum
case but has its own morphology.

A further consequence of granularity is that certain
vortex pairs are missing altogether. Fig. 4 shows two
magnified regions of Fig. 3(d) highlighting cases of both
extant and missing pairs. A vortex annihilates with
its antivortex partner when they both fall within the
same discrete integration circuit. We can use the scal-
ing properties of the continuum wave function to indi-
cate the regime where vortices will be visible and hence
when the quantum cusp will resemble the continuous
Pearcey function. According to the discussion below
Eq. (5), the wave catastrophe behaves as Pe(C1, C2) =
Pe(z[3N3/2t]1/4, (6N/t)1/2[t0 − t]). Focusing on the de-
pendence in the z direction, i.e. along C1, we see that
the distance between any two points, and in particular
between the two members of a vortex-antivortex pair,
scales as dv ∝ N−3/4. Forming the ratio with the quan-
tization length dq = 2/N gives the resolution parameter

R = dv/dq ∝ N1/4 . (7)

The dependence on N is weak, but in principle all the
vortices present in the Pearcey function should appear in
the quantum cusp if there are a large enough number of
excitations (R � 1). However, the quantum catastrophe
only becomes indistinguishable from the continuum wave
catastrophe in the limit N →∞ at which point both are
singular and correspond to the geometric cusp. In this
sense the continuum approximation represents an ideal-
ization that can never quite be reached. According to
the scaling relation Eq. (6), the probability density |Ψ|2
on the cusp diverges as N1/2. Granularity breaks this
continuous classical scaling property, leading to the dis-
appearance of vortex pairs, and can therefore be viewed
as a type of quantum anomaly.

Quantum catastrophes can be observed in experi-
ments with two coupled BECs by measuring the time-
dependence of the probability distribution for either the
number difference [19, 22, 26], or the phase difference
[27, 28], as both of these variables will in general display
cusps following a quench in Λ [34]. We have studied the
quantum cusp for a specific Hamiltonian and initial con-
ditions but the power of catastrophe theory is that the
same results apply qualitatively to the dynamics of any
two-mode quantum field, and higher catastrophes will be
exhibited in higher mode fields. The significance of quan-
tum catastrophes is that they extend the application of
catastrophe theory beyond mean-field theory and so be-
come particularly important near phase transitions [35].

METHODS

Number and Phase states

For pedagogical reasons, in this section we work with
Ŝz rather than ẑ. The two are simply related via
Ŝz = Nẑ/2. The eigenstates of Ŝz are the spin states
Ŝz|N/2,m〉 = m|N/2,m〉, where 〈N/2,m|N/2, n〉 =
δmn. We suppress the “spin magnitude” label N/2 and
write |N/2,m〉 simply as |m〉. The eigenvalues m are
integers or half-integers depending upon whether N is
even or odd. When N is even the N + 1 eigenvalues are
m = {−N/2,−N/2 + 1, . . . ,−1, 0, 1, . . . , N/2 − 1, N/2}.
The conjugate variable to Sz is the discrete phase differ-
ence φp = φ0 + 2πp/(N + 1) [32] where φ0 is an arbitrary
constant which we set to zero, and p takes the same val-
ues as m. The discrete phase differences are N+1 equally
spaced angles around a circle and are eigenvalues of the
phase operator φ̂|φp〉 = φp|φp〉, where 〈φp|φq〉 = δpq. The
number and phase states form discrete Fourier transform
pairs: |φp〉 = (N + 1)−1/2

∑N/2
m=−N/2 exp[imφp]|m〉 and

|n〉 = (N + 1)−1/2
∑N/2
p=−N/2 exp[−imφp]|φp〉.
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Quantum state in Fock space

The evolution operator can be written in terms of Ŝz
and φ̂ as Û(t) = exp[iNt cos φ̂] exp[−i(2Λ/N)Ŝ2

z ] [31].
Applying this to the initial Gaussian state |Ψ0〉, the am-
plitude to be found in the nth Fock state at time t > 0
is

Ψ(n, t) = 〈n|Û(t)|Ψ0〉 =

√
4Λ

erf(2Λ/π)π3/2

×
N/2∑

m=−N/2
e−2( 2Λm

πN )2

e−i 2Λ
N m2〈n|eiNt cos φ̂|m〉 . (8)

The matrix element on the right hand side can be evalu-
ated by projecting over the phase basis: exp[iNt cos φ̂] =∑N/2
p=−N/2 exp[iNt cosφp]|φp〉〈φp|, giving

Ψ(n, t) =

√
4Λ

erf(2Λ/π)π3/2

1
N + 1

×
N/2∑

m,p=−N/2
e−2( 2Λm

πN )2

ei(− 2Λ
N m2+(n−m)φp+Nt cosφp)(9)

where we have used 〈n|φp〉 = 1√
N+1

einφp .

Continuum approximation

In the semiclassical regime N � 1 we can attempt
to replace the discrete sums in Eq. (9) by continuous
integrals. However, the Euler-Maclaurin formula [7]

b∑

m=a

f(m) ∼
∫ b

a

f(m)dm+
f(a) + f(b)

2

+
∞∑

s=1

B2s

(2s)!

[
f (2s−1)(b)− f (2s−1)(a)

]
,(10)

indicates that the direct replacement of a sum by an in-
tegral is only valid, even in this regime, if f(m) is slowly
varying [in this formula Bi denotes a Bernoulli number
and f (j)(m) the jth derivative of f(m)]. This condition is
met for the exponent nφp because, by assumption, we are
limiting ourselves to |n| � N , i.e. |z| � 1, and also holds
for Nt cosφp. Thus, we put

∑N/2
p=−N/2 → N/(2π)

∫ π
−π dφ,

and write the wave function as

Ψ(n, t) ∼ 1
2π

√
4Λ

erf(2Λ/π)π3/2
×

∞∑

m=−∞

∫ π

−π
e−2( 2Λm

πN )2−i( 2Λ
N m2+mφ)

︸ ︷︷ ︸
g(m)

ei(Ntcosφ+nφ)dφ .(11)

where we have also extended the sum over m to ±∞.
The remaining factors, denoted by g(m) in Eq. (11), are

highly oscillatory and cannot be replaced by an integral.
However, they can be handled using the Poisson summa-
tion formula [36]

∞∑

m=−∞
g(m) =

∞∑

k=−∞

∫ ∞

−∞
g(m) e−2πimk dm (12)

which is exact. The Fourier transform of g(m) is
∫ ∞

−∞
g(m) e−2πimk dm

=

√
π3N2

2Λ(iNπ2 + 4Λ)
e−

π2N2(φ−2πk)2

2(π4N2+16Λ2) ei
π4N3(φ−2πk)2

8Λ(π4N2+16Λ2)

≈
√
πN

2Λi
e−

(φ−2πk)2

2π2 ei
N(φ−2πk)2

8Λ (13)

where in the last step we assumed N � Λ. Substituting
into Eq. (11), we obtain the asymptotic continuum ap-
proximation to the Fock-space wave function as quoted
in Eq. (4) in the main text

Ψ(z, t) ∼ e−iπ/4
√
N√

2π5/2erf(2Λ/π)

∫ ∞

−∞
e−

u2

2π2 eiN
(
u2
8Λ +tcosu+ zu

2

)
du

(14)
where we have substituted in u = φ−2πk and n = Nz/2,
and used the fact that

∑∞
k=−∞

∫ π(1−2k)

−π(1+2k)
du =

∫∞
−∞ du.

Numerical location of vortices

To find the locations of vortices in Figs. 3 and 4 we
divided the (z, t)-plane into a grid of cells and calcu-
lated the total phase change around the perimeter of
each cell. If a cell contains a single vortex the phase
change is ±2π. The grid spacing should be small enough
to resolve individual vortices: In the continuum case we
used ∆z = 0.1/N and ∆t = 0.001. In the granular
case the z direction is of course already discretized at
∆z = 2/N , and for the time direction we again used
∆t = 0.001. There is ambiguity in assigning a phase dif-
ference between two discrete points as it is impossible to
tell whether the phase difference is θ2 − θ1 (the “short
way” around the phase circle) or θ2 − θ1 − 2π (the “long
way” around the phase circle). This problem does not
arise in continuum systems where one can always make
the numerical grid smaller until the phase difference be-
comes vanishingly small, but in a fundamentally discrete
system this is not possible. We adopted the convention
of always choosing the smallest phase difference between
the two points, i.e. we mapped the phase difference into
the range −π < θ < π. There is also some arbitrariness
in the placement of the black dots marking the disloca-
tions in the discrete cases shown in Figs. 3 and 4. As the
circuits cannot be shrunk to a size of less than 2/N in the
z direction, we opted for the most democratic placement
of the dots which is between two “ribbons” of width 2/N
(each ribbon represents a single Fock space amplitude).
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Number of excitations required to resolve vortices

An estimate for the minimum value of N required to
preserve any particular vortex pair can be obtained by
considering the positions of vortices in the Pearcey func-
tion, which are tabulated in reference [7], and comparing
their separation with the discretization length 2/N . This
approach treats the quantum catastrophe as simply a dis-
cretely sampled version of the Pearcey function, when in
fact it is not, but is nevertheless a useful starting point.
According to the discussion below Eq. (5), the canonical
coordinates (C1, C2) are related to the physical coordi-
nates as C1 = (3N3/2t)1/4z and C2 = (6N/t)1/2(t0 − t),
where t0 = 1/(4Λ). Denoting the distance between two
vortices, labelled by a and b, in the C1 direction as ∆C1

we have ∆C1 = (3N3/2)1/4[za/t
1/4
a − zb/t1/4b ]. The vor-

tices in a pair occur at almost the same time so we shall
put ta ≈ tb = t. In order to be preserved under quanti-
zation we require |za − zb| >∼ 2/N . Thus, we find

Nmin ≈
24
t

1
(∆C1)4

. (15)

Solving the relation (C2)2t/6N = (t0−t)2 for t we obtain

1
t

=
1
t0

(
1 +

α

2N
− 1

2

√
α2

N2
+ 4

α

N

)
(16)

where α = (C2)2/(6t0). Combining Eqns. (15) and (16)
yields

Nmin =
8Λ

(∆C1)2

[
12

(∆C1)2
− |C2|

]
. (17)

The vortices shown in Fig. 4(b) occur at (Ca1 =
1.41101, Ca2 = −5.55470) and (Cb1 = 2.36094, Cb2 =
−5.52321) in the Pearcey function [7]. For the purposes
of evaluating Eq. (17), we take C2 to be the average of
Ca2 and Cb2. This gives Nmin ≈ 69 Λ and provides an
upper bound as the actual value depends upon precisely
where the pair fall: as long as they straddle a circuit
boundary they can in fact have a very small separation
and yet survive because they will be counted as sepa-
rate objects. Calculating the quantum case exactly for
Λ = 2.1 we find that upon increasing N gradually from
small values this vortex pair pop in and out of existence
but finally become a permanent feature at N ≈ 60 (we
checked up to N = 300). This is safely within the upper
bound Nmin = 144 set by Eq. (17).
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Chapter 4

Conclusions

This thesis explored the effects singularities have on the steady-state and dynamical

properties of many-body quantum systems, emphasizing the BJJ. For the steady-

state effects it was shown that N bosons forming a Bose-Einstein condensate (BEC)

in a double well is extremely sensitive to the inclusion of a single impurity. In the

mean-field theory the Landau theory of phase transitions (PTs) showed there existed

a spontaneous PT breaking Z2 symmetry at a critical value of the BEC-impurity

interaction energy, Λc. The PT separates two phases where the symmetric phase

consists of an equal amount of the BEC in each well and the symmetry broken phase

consists of a buildup of the BEC in one well over the other. In the mean-field dynamics

the system went from having regular motion in the symmetric phase to having chaotic

motion in the symmetry broken phase where it was also shown the system was ergodic.

To see if the PT persisted through to the quantum theory, fidelity susceptibility (FS),

χF , was used to determine the susceptibility of the ground state to changes in Λ.

The FS exhibited singular behaviour at Λc in the thermodynamic limit, N →∞, by

diverging, thus confirming the existence of the PT. To characterize the divergence,

scaling exponents were calculated for the FS where it was found that the divergence

was asymmetric with χF ∼ |λ|−2 as λ → 0− and χF ∼ |λ|−1/2 as λ → 0+ where

λ = (Λ− Λc) /Λc is the reduced BEC-impurity interaction energy. The source of the

asymmetry was found to be the difference in the dependence on N of the energy level

spacing on either side of the PT. The correlation length in Fock space was also found

to diverge like ξ ∼ |λ|−3/2 as λ→ 0. These exponents were used to determine that the

BEC-impurity system belonged in the same universality class as the Lipkin-Meshkov-

Glick and Dicke models which are also systems of N bosons.

The second half of this thesis focused on mean-field and semiclassical dynamics of a

BEC in a double well (without an impurity) after a quench which involved flashing on,

then off, a term in the Hamiltonian at t = 0, then allowing the system to evolve. The

dynamics occurred in the Fock-space plus time plane displaying a cusp shape from

oscillations around zero number and phase difference (plasma oscillations) between
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the two wells for all repulsive boson-boson interactions and from oscillations around

zero number difference and π phase difference (π oscillations) for interactions less

than some critical value, Uc. Thus, the transition from a cusp to no cusp at Uc can

be considered as a dynamical PT.

Within the cusps were networks of vortex-antivortex pairs which are points of

zero amplitude and undefined phase (not to be confused with the phase difference

between the two wells). To analyze the cusps and vortices we were able map the

action to the cusp generating function given by catastrophe theory (CT). We then

were able to map the wave function around the cusp to the Pearcey function which

is the diffraction integral form of the cusp. The Pearcey function comes with scaling

exponents describing how distances between the vortices scale with wavenumber. Our

main result was to show a relation between the boson-boson interaction energy and the

wavenumber, so the critical exponents were used to describe the singular behaviour

of the divergence of the distance between vortices as Uc was approached.

Finally, we went beyond the semiclassical theory to the full many-body quantum

theory to describe how second quantization affects cusps. The cusp we analyzed was

formed by the plasma oscillations after the boson-boson interactions were flashed

on, then off at t = 0. Due to second quantization, a minimum length scale, lq =

N−1, was introduced which resulted in the destruction of the vortices because their

locations could no longer be discerned since they are points. However, remnants of

them remained as there were still circuits in the Fock space plus time plane producing

phase changes (again, not the phase difference between the two wells) of ±2π. We

found these remnants persisted so long as lv � lq where lv ∝ N−3/4 is the distance

between vortices in Fock space. When lv ≈ lq the remnants were also destroyed in

pairs.

Overview and outlook

The work presented in this thesis on the BEC-impurity system represents the char-

acterization of its critical behaviour. The next step will be to see if what we have

found has any use. A promising topic to pursue is measurement theory. The fact

that quantum fluctuations depend on the number of bosons, N , in a BJJ means it

can potentially fulfill many different roles in the context of measurement theory when

coupled to an impurity (qubit). If the BJJ plays the role of the measurement device it

can be tuned from classical (large N) to quantum (small N) which can help elucidate

the issues dealing with the interactions between measurement devices and quantum

systems. When N is very large the BJJ can be considered as the environment of the

qubit. Environment induced decoherence is an intensely studied topic these days [84]

which may help explain the cause of wavefunction collapse upon measurement. The

ramping on and off of qubit-environment interactions has been studied with interac-
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tions between the transverse field Ising model (environment) and a spin-1/2 particle

(qubit) [85]. It was shown that the decoherence of the qubit was sensitive to the

PT in the Ising model opening up the possibility of using PTs in the environment to

control the coherence of qubits. This system is especially relevant because it has been

shown that the transverse field Ising model with infinite interaction distance can be

mapped to the BJJ [86]. The BJJ has a second order PT for attractive boson-boson

interactions and although attractive interactions makes the BEC unstable to collapse

the PT has been recently confirmed experimentally [72]. Another approach to take

would be to make the BJJ the quantum system and make the impurity the measure-

ment device. It has been shown that impurities make good nondestructive probes of

excitations within a BEC in a linear trap [87].

It is difficult to determine how CT might be used to study dynamical PTs in the

future because this approach is still in its early stages. The first step should be to

study the catastrophes that appear in the dynamics we see now before turning to

PTs. Currently, there are papers showing the emergence of caustics in the dynamics

of a cold atoms in an optical lattice [88] and in a magnetic trap [89]after a quench.

However, there is no discussion about the catastrophes formed by the caustics nor their

universal properties. Similar experimental results come from recent papers showing,

but not identifying, catastrophes in the dynamics of single particles ’walking’ around

on lattices [90, 91]. The fact that catastrophes are appearing in the dynamics of

such different systems provides evidence of their universality and stability as well as

provides motivation for their study.

A major hurdle in the study of catastrophes in many-body quantum systems is

establishing exactly how their diffraction integral forms emerge from quantum fluc-

tuations. Statistical methods have been used by Berry [53] to describe the twinkling

of starlight and although the work was done at the mean-field level, this suggests it

could be extended to include quantum fluctuations near PTs. In the BJJ we have

only considered a quantum field with a small number of modes (two), so the viabil-

ity of this approach for a larger number of modes remains to be demonstrated. The

possible exception to this is the transverse field Ising model discussed in Appendix A

because it has as many modes as it has sites. Thus, this latter work has potential for

considerable significance.
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Appendix A

Catastrophes in the transverse field

Ising model

In this section we derive the ground state for the transverse field Ising model (TFIM)

and show cusp-like structures form in the dynamics of single particle excitations. We

start with the TFIM Hamiltonian

H = −J
∑

j

Sxj S
x
j+1 − h

∑

j

Szj (A.1)

where J is the hopping energy between adjacent sites and h is some applied field in

the z direction.

Jordan-Wigner Transformation

The Jordan-Wigner transformation changes the TFIM from a chain of 1/2-spins to

free fermions with the following transformations [92]

Szj = f †j fj − 1/2

S+
j = f †j eiπ

P
l<j nl

S−j = fje
−iπ

P
l<j nl . (A.2)

Substituting these into Eq. (A.1) gives
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H = −J
4

∑

j

(
f †j f

†
j+1ei2π

P
l<j nleiπnj + f †j fj+1e−iπnj + fjf

†
j+1eiπnj

+fjfj+1e−i2π
P
l<j nle−iπnj

)
− h

∑

j

f †j fj

H = −J
4

∑

j

(
f †j f

†
j+1 + f †j fj+1 − fjf †j+1 − fjfj+1

)
− h

∑

j

f †j fj (A.3)

where we have removed the constant term hN/2. We have also used the fact that

ei2π
P
l<j nl = 1 and

f †j e±iπnj |...1j...〉 = 0 f †j e±iπnj |...0j...〉 = |...1j...〉
fje
±iπnj |...1j...〉 = −|...0j...〉 fje

±iπnj |...0j...〉 = 0 .

Fourier Transform

Here, we transform Eq. (A.3) from spatial operators to momentum operators with the

Fourier transformation

fj =
1√
Ns

∑

k

dke
−ikRj ; Rj = ja, k ≡ kn =

2πn

L
(A.4)

giving

H = − J

4Ns

∑

j

∑

k,k′

d†kd
†
k′e

i(k+k′)Rjeik
′a + d†kdk′e

i(k−k′)Rje−ik
′a − dkd†k′e−i(k−k

′)Rjeik
′a

− dkdk′e
−i(k+k′)Rje−ik

′a − h

Ns

∑

j

∑

k,k′

d†kdk′e
i(k−k′)Rj

H =
∑

k

J

4

(
−d†kd†−ke−ika − d†kdke−ika + dkd

†
ke
ika + dkd−ke

ika
)
− hd†kdk (A.5)

where we have used the fact that
∑

j ei(k±k
′)Rj = Nsδk,∓k′ . In Eq. (A.5) the range

of the sum is k ∈ [−π/a, π/a], however if we have the range over positive k the

Hamiltonian becomes

H =
∑

k≥0

εk

(
d†kdk − d−kd†−k

)
+ i∆k

(
d†kd

†
−k − d−kdk

)
(A.6)

where εk = −J
2

cos ka− h, ∆k = J
2

sin ka and we have neglected the constant ground

energy term E0 = J
2

∑
k≥0 cos ka. The Hamiltonian can be written in a simpler form
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H =
∑

k≥0

(
d†k d−k

)
hk

(
dk
d†−k

)
(A.7)

where

hk =

(
εk i∆k

−i∆k −εk

)
(A.8)

and its eigenvalues give the energies of the system

ωk = ±
√
ε2k + ∆2

k . (A.9)

Bogoliubov Transformation

To diagonalize Eq. (A.6) we make the canonical transformation from the dk, d
†
k oper-

ators to the Bogoliubov operators, γk, γ
†
k

(
γk
γ†−k

)
= Bk

(
dk
d†−k

)
(A.10)

where

Bk =

(
uk ivk
ivk uk

)
(A.11)

and the anticommutation relations
{
γk, γ

†
k′

}
= δk,k′ leads to the constraint u2

k+v2
k = 1.

Thus, to find the values of uk and vk we need

BkhkB
†
k =

(
ωk 0

0 −ωk

)
(A.12)

which gives

uk =

√
ωk + εk

2ωk
, vk =

√
ωk − εk

2ωk
. (A.13)

Now the Hamiltonian can be written in diagonal form

H =
∑

k≥0

ωk

(
γ†kγk + γ†−kγ−k − 1

)
(A.14)

where we see the ground state is the Bogoliubov vacuum state defined as γk|0̃〉 (the

tilde is to distinguish from the dk operator vacuum) with energy E0 = −∑k≥0 ωk.

We can find the Bogoliubov vacuum in terms of the dk vacuum with the ansatz
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|0̃〉 = G(d†kd
†
−k)|0〉 (A.15)

where G(x) is some yet to be determined function of x. This ansatz is motivated by

conservation of momentum. Taylor expanding G(x) gives

[
G(0) +G′(0)d†kd

†
−k

]
|0〉 (A.16)

where we have neglected all terms beyond quadratic in the creation operator because

they give zero when acting on the vacuum. Combining this with the fact that γk =

ukdk + ivkd
†
−k and γk|0̃〉 = 0 we get the condition

ukG
′(0) = −ivkG(0) =⇒ G(d†kd

†
−k) = Cke

−i vk
uk
d†kd
†
−k (A.17)

for a particular k where Ck is some constant. The normalization condition 〈0̃|0̃〉 = 1

gives Ck = uk, so the normalized ground state for all k as

|0̃〉 =
∏

k≥0

uke
−i vk

uk
d†kd
†
−k |0〉 =

∏

k≥0

[
uk − ivkd†kd†−k

]
|0〉 (A.18)

Dynamics of single particle excitations from the ground state

We can ask how the system evolves when a single particle is added to the ground

state, whether it is a Bogoliubov quasi-particle or a regular fermion. The dynamics

of a general state in the quasi-particle basis is given by |ψ(t)〉 =
∑

k ck(t)|k̃〉 where

the amplitudes are ck(t) = 〈k̃|ψ0〉e−iωkt. For a single quasi-particle placed at position

Rj in the vacuum the resulting dynamics is

|ψ(t)〉 = e−iHtγ†j |0̃〉 =
1√
Ns

∑

k

e−ikRje−iHtγ†k|0̃〉

=
eiE0t

√
Ns

∑

k

e−ikRje−iωkt|k̃〉 (A.19)

where the amplitudes are ck(t) = eiE0t√
Ns

e−ikRje−iωkt. If we want to find the amplitudes

of the position of the quasi-particle we have

〈R̃i|ψ(t)〉 =
1√
Ns

∑

k

eiRikck(t) =
eiE0t

Ns

∑

k

ei(Ri−Rj)ke−iωkt . (A.20)

If a � 1, Ns � 1, but Nsa = L � 1, then we can change the sum into an integral,
2π
L

∑π/a
k=−π/a →

∫∞
−∞ dk. We are interested in the dynamics caused by the oscillations

about k = 0, so we expand the energy around this point
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ωk
J/2

=
√

1 + g2 + 2g cos ka

≈ |1 + g| − g

2|1 + g|k
2 +

g(1− g + g2)

24|1 + g|3 k4 (A.21)

where we have defined a new parameter g = 2h/J and we see we get divergences at

g = gc = −1 signaling a phase transition (PT). We can see the effect the PT has on

the energy in Fig. A.1 where around the minimum at k = 0 the spectrum becomes

linear in k. For small momenta and for g < 0, but away from gc we can substitute

Eq. (A.21) into Eq. (A.20) giving

〈R̃|ψ(t)〉 =
ei(E0−1−g)t

2π

∫ π

−π
e
i

»
(R−R′)k− |g|t

2|1+g|k
2+
|g|(1−g+g2)t

24|1+g|3
k4

–
dk (A.22)

where we have set a = 1 for simplification. Making the substitution u =
(
|g|(1−g+g2)t

24|1+g|3

)1/4

k

transforms Eq. (A.22) into

〈R̃|ψ(t)〉 = A(t)

∫ π

−π
ei[Y (R,t)u+X(t)u2+u4]du

= A(t) Pe∗ [X(t), Y (R, t)] (A.23)

where Pe∗ [X, Y ] is a truncated Pearcey function Pe [X, Y ] =
∫∞
−∞ ei[Y u+Xu2+u4]du and

X(t) = −
√

6t|g||1 + g|
1− g + g2

Y (R, t) = (R−R′)
(

24|1 + g|3
t|g|(1− g + g2)

)1/4

A(t) =
ei(E0−1−g)t

2π

(
24|1 + g|3

t|g|(1− g + g2)

)1/4

. (A.24)

The analysis done so far has been fine away from gc, but what happens at the

critical point? We see from Eq. (A.9) the energy around k = 0 becomes

ωk
J/2

= 2| sin ka/2|

≈ |k|+ |k|
3

24
, (A.25)

so adding a quasi-particle at position R at the critical point gives
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Figure A.1: ωk as a function of k for different values of g: g = −1.5 (solid, black), g = gc = −1.0
(dashed, red) and g = −0.5 (dotted, blue). One can see on either side of gc k = 0 is a global minimum,
so it is different from a second order PT where a global minimum becomes a local maximum.

〈R̃|ψ(t)〉 =
eiE0t

2π

∫ π

−π
e
i

»
(R−R′)k−t|k|− t|k|

3

24

–
dk

=
eiE0t

π

∫ π

0

cos [(R−R′)k] e
−i
h
tk+ tk3

24

i
dk

=
eiE0t

π

(
24

t

)1/3 ∫ π

0

cos [B(R−R′, t)s] e−i[C(t)s+s3]ds (A.26)

where in the last line we made the substitution k = (24/t)1/3s, so

B(R−R′, t) =

(
24

t

)1/3

(R−R′) (A.27)

C(t) = (24 t2)1/3 . (A.28)

We can see at g = gc the amplitude turns into half an Airy function in a sinusoidal

envelope determined by the distance R−R′.
Instead of looking at the dynamics produced by the placement of quasiparticle in

the ground state at position R′, let us look at the dynamics after a fk, f
†
k particle

is placed in the ground state at position R′. We start by finding the d†k operator in

terms of the quasiparticle operators using Eq. (A.10) which gives

d†k = ukγ
†
k + ivkγ−k . (A.29)

We know that f †j = 1√
Ns

∑
k d
†
ke
ikRj , so the dynamics produced by the addition of a

particle is
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|ψ(t)〉 = e−iHtf †j |0̃〉 =
1√
Ns

∑

k

eikRje−iHt
(
ukγ

†
k + ivkγ−k

)
|0̃〉

=
eiE0t

√
Ns

∑

k

eikRje−iωktuk|k̃〉 . (A.30)

The amplitude to be at position Ri is

〈R̃i|ψ(t)〉 =
eiE0t

Ns

∑

k

ei(Rj−Ri)ke−iωktuk (A.31)

where we can see the difference between this equation and Eq. (A.20) is the factor of

uk.

Figure A.2 shows the dynamics resulting from the two different initial states of

placing a single particle in the ground state at site zero. We can see in the first

column where g = −1.5 the dynamics is qualitatively the same where we see a cusp

with the usual pattern of dark and bright spots within it. In the middle column

where g = gc = −1.0 again both are the same and they become blurrier than the first

column which is expected as the wave function for both no longer takes the form of

a truncated Pearcey function, but of a truncated Airy function. In the final column

on the right where g = −0.5 we do see a different from placing a Bogoliubov particle

(top) and a regular fermion (bottom). The fermion dynamics is blurrier than the

Bogoliubov dynamics. The reason for this is because the major contributor to the

form of the wave function for t > 0 is the state k = 0 and u0 = 0.

The black curves represent the cusp which is calculated from the cusp equation

Y = ±
√

8

27
(−X)3/2 (A.32)

and the parameters in the Eq. (A.24) giving

R = ± 4t|g|
3
√

1− g + g2
. (A.33)

Interestingly enough in the plane of the physical coordinates (t, R) the cusp is not a

cusp at all due to t being linear. Nevertheless, the fact that wave function can be

transformed into the canonical form with coordinates (X, Y ) means it retains features

of the cusp such as the interference pattern within it.
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Figure A.2: Dynamics of the intensity of the wave function with initial condition of a Bogoliubov
particle placed in the ground state at site zero (top row, (a)−(c)) from Eq. (A.20) and a fermion from
the Jordan-Wigner transformation placed into the ground state at site zero (bottom row, (d)− (f))
from Eq. (A.31). Each column is for a different values of g and are the same as in Fig. A.1: g = −1.5
(left column), g = −1.0 (middle column) and g = −0.5 (right column). One can see the dynamics are
pretty similar until g > gc where the fermion placed dynamics is blurry compared to the bogoliubov
placed dynamics. In both cases the cusp from the dynamics is blurry at g = gc which is what is
expected as the corresponding semiclassical wave function no longer takes the form of the Pearcey

function. The black curves form the cusp from the equation Y = ±
√

8
27 (−X)3/2.
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