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Abstract

Model Driven Engineering (MDE) has gained a considerable attention in the software
engineering domain in the past decade. MDE proposes shifting the focus of the en-
gineers from concrete artifacts (e.g., code) to more abstract structures (i.e., models).
Such a change allows using the human intelligence more efficiently in engineering
software products. Model Transformation (MT) is one of the key operations in MDE
and plays a critical role in its successful application. The current MT approaches,
however, usually miss either one or both of the two essential features: 1) declarativity
in the sense that the MT definitions should be expressed at a sufficiently high level
of abstraction, and 2) formality in the sense that the approaches should be based on
precise underlying semantics. These two features are both critical in effectively man-
aging the complexity of a network of interrelated models in an MDE process. This
thesis tackles these shortcomings by promoting a declarative MT approach that is
built on mathematical foundations. The approach is called Query Structured Trans-
formation (QueST) as it proposes a structured orchestration of diagrammatic queries
in the MT definitions. The aim of the thesis is to make the QueST approach –that
is based on formal foundations– accessible to the MDE community. This thesis first
motivates the necessity of having declarative formal approaches by studying the vari-
ety of model synchronization scenarios in the networks of interrelated models. Then,
it defines a diagrammatic query framework (DQF) that formulates the syntax and
the semantics of the QueST collection-level diagrammatic operations. By a detailed
comparison of the QueST approach and three rule-based MT approaches (ETL, ATL,
and QVT-R), the thesis shows the way QueST contributes to the development of the
following aspects of MT definitions: declarativity, modularity, incrementality, and
logical analysis of MT definitions.
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Chapter 1

Introduction

1.1 Model Driven Engineering (MDE)

From the early days of computing, researchers and practitioners have attempted to
create further abstractions over the low level programming structures. In this di-
rection, Model Driven Engineering (MDE) proposes to even move further and shift
the focus of engineers from code to models (Schmidt, 2006; Stahl and Völter, 2006;
Kleppe et al., 2003). Model Transformation (MT) –defined as a translation of one
model to another model– is a key operation in MDE that plays a critical role in its
successful application (Sendall and Kozaczynski, 2003; Zhang et al., 2005). As MT
is developed and motivated within the context of MDE, we begin this chapter by
providing a brief history of MDE, its evolution, and its challenges. The subject of
the current thesis arises from the challenges that MDE faces in terms of engineering
model transformations.

1.1.1 MDE History

Since the early days of software engineering, the complexities of software systems
kept increasing. To manage this complexity, a variety of techniques have been sug-
gested, among which was increasing the level of abstraction. In particular, engineering
software systems based on models rather than concrete code is a technique that is
proposed by MDE and is shown to be promising (Selic, 2003; France and Rumpe,
2007; Schmidt, 2006; Stahl et al., 2006; Beydeda et al., 2005) at dealing with com-
plex software system developments. In an MDE process, the focus of a software
engineer shifts from the concrete level of implementation (code) to a more abstract
level of specification (model), and the development task ideally becomes more about
modelling and less about coding.

1
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MDE has gained further attention in industry and the research community af-
ter Model-Driven Architecture (MDA) first version (Miller et al., 2003) was released
by OMG (Object Management Group) in 2000. MDA suggests the following ideal
methodology in software development as an MDE process: platform-independent
models describing a software system at a high-level of abstraction are transformed
stepwise to platform-dependent models, from which executable source code is auto-
matically generated. The generated code can be discarded anytime, whereas models
are the primary artifacts to be maintained. Fig. 1.1(a) illustrates this pipeline-like
flow of transformations: models are always transformed unidirectionally from a higher
to a lower level of abstraction.

Models'

Code'

Models'

Code'

(b)'(a)'

Figure 1.1: MDE approaches: (a) suggested by the MDA document (b) practical
scenario that usually happens.

1.1.2 MDE Evolution

After the MDA proposal, it was soon revealed, however, that the suggested unidi-
rectional pipeline structure illustrated in Fig. 1.1(a) is very difficult to achieve in
practice, because of the following two reasons:

• Manual changes to the generated code (or lower level models) were often un-
avoidable in practice. Such changes make the models at the higher levels of
abstraction obsolete if the changes are not propagated back to the higher level
models. Thus, the arrows in Fig. 1.1(a) need to be bi-directional to represent
vertically bi-directional transformations or round-tripping.

2
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• Multiple high-level models often describe different aspects of a system in prac-
tice, and they have overlapping information; for example, the class diagrams
and the sequence diagrams in UML (Arlow and Neustadt, 2005) each specify
different (i.e., structural vs. behavioural) aspects of a software application;
however, they share some common information (e.g., class names, and their
corresponding method signatures). If one of these models at the same level of
abstraction is changed, it is expected that the changes are propagated horizon-
tally to the other models in the pipeline. From another perspective, models
which encompass all aspects of a system may be too unwieldy and difficult to
deal with in practice; this forces the modeller to capture different aspects of
a system employing different (types of) models that might share information.
Thus, bidirectional synchronization is not only needed vertically between the
abstraction layers but also horizontally within the abstraction layers.

The above two points transform the MDA pipe in Fig. 1.1(a) into a more realistic
view in Fig. 1.1(b) which sketches a network of interrelated models (NIM).

1.1.3 MDE Challenges

There exists a number of aspects we need to take into account when managing a net-
work of interrelated model. In transformations between the models, we need to first
separate the concerns and distinguish, for example, between the alignment, and syn-
chronization procedure (i.e., update propagation). Alignment is a heuristic process
of matching the elements in different models and often requires input from the user;
however, update propagation can be treated as an algebraic operation amenable to
full automation after an update policy is established (see Diskin et al. (2011a)). An-
other aspect is the multi-directionality of model synchronizations that means changes
between models are propagated in all directions in a mutually consistent way. Its
implementation via separate but mutually compatible procedures would require a
proof of compatibility, and would be very difficult to maintain as each direction of
change propagation is itself a complex model transformation. For the case of two
models, a common solution nowadays is to specify a consistency relation between the
models and leave the update propagation procedures to be inferred from this spec-
ification, so that they are always consistent by construction. Such an approach is
commonly referred to as bidirectional transformation or bx. We are not aware of any
implementation of the multi-directional case.

Specification of such complex synchronization procedures as discussed above is
not well understood, whereas clear specification is crucial for synchronization tool
builders and users; otherwise the tool builders would not have a sound foundation
to characterize the behaviour of the tool, and tool users would have no trust in
automatic synchronization carried out by such tools. Severe problems of adopting
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the industrial standard QVT-R (which treats the binary synchronization case) is a
typical example: despite the early availability of QVT-R tools on the market, its
adoption could hardly be considered successful. As argued by Stevens (2010), the
most probable reason for the failure is a set of major semantic issues. However,
different users might have different reasons for abandoning it. A few will explicitly
understand the problem with the semantics, and some will just see the difficulties of
using it, since it is not well-supported by the tools –probably because of the semantic
issues at first place. Moreover, building semantic foundations for QVT-R turned out
to be a challenging issue. A formal semantics for a relatively simple check-only mode
required rather intricate mathematical constructs based on symbolic graphs (Guerra
and de Lara, 2012); formalization of the enforce mode is still an open issue. Thus,
understanding of even a binary general synchronization is challenging, not to mention
the multi-ary case. The lack of a sound underlying theory leads to a shaky conceptual
framework, ambiguous terminology and flawed communication between tool users and
tool builders, and ultimately to deficient tools.

We have studied the domain of synchronization scenarios of a network of models in
more detail and the results of the study are presented in Chapter 21. The study shows
that there exist 44 different concrete synchronization types, and this number might
even increase when we add further dimensions to the taxonomy. The variety of the
synchronization types (as clearly revealed by the study) implies the possible variations
in the definition and the maintenance of their corresponding model transformations.
Such variation makes the task of defining a transformation and maintaining the model
interrelations complex. To deal with this complexity, we need to employ suitable
abstraction techniques that offer declarative methods with clear precise semantics in
transformation definitions. The content of the current thesis is a contribution in this
direction as will be explained further in the next section.

1.2 Aim of the Thesis

Examining the current MT languages in the literature reveals that they usually miss
one or both of the important features of declarativity and formality, both of which
are essential in dealing with the complexity of a network of models discussed in the
previous section. While graph-based approaches (Ehrig et al., 2006) have a sound
formal foundation based on graph transformations, they unfortunately lack enough
declarativity in terms of defining transformations at a higher level of abstraction (see
Sect. 1.3). In contrast, more declarative approaches like ATL (Jouault and Kurtev,
2006), and QVT-R (OMG, 2015) lack enough formality in their foundations. Even
aside from this restriction, as we will see in Chapter 5, the transformation definitions

1An extended version of this study is published by Diskin et al. (2016).

4



Ph.D. Thesis - Hamid Mohammad Gholizadeh McMaster - Software Engineering

in these languages are still very involved with the element-wise manipulation of the
model elements that makes them closer to imperative approaches.

The aim of the current thesis is to build a bridge between the engineering domain
and the mathematical world in the context of MT approaches by further development
of a Query-based Structured Model Transformation (QueST) approach that is formal
and yet more declarative than the current MT approaches. The rich formality be-
hind the QueST approach is already well developed in some previous works (Diskin,
1997, 1996, 2011; Diskin et al., 2012; Diskin and Maibaum, 2012; Diskin and Dingel,
2006; Diskin, 2008). This thesis introduces diagrammatic query framework (DQF)
that provides a foundation for the definition of collection-level diagrammatic query
operations that are used in the definitions of QueST MTs. DQF is defined in Chapter
3 and explained in Chapter 4. Besides, it develops MT engineering by comparatively
studying the QueST application to MT definitions in contrast to three rule-based MT
approaches (i.e., ETL (Kolovos et al., 2008), ATL (Jouault and Kurtev, 2006), and
QVT-R (OMG, 2015)). Chapter 5 is focused on comparing QueST with these rule-
based MT approaches showing QueST’s relative advantages in terms of declarativity,
modularity, and incremental design. Chapter 6 presents QueST’s application in log-
ical analysis of MT definitions by employing the formal language of Alloy (Jackson,
2002). Besides the QueST development, this thesis also contributes in the introduc-
tion of a 3D-taxonomical space of model synchronization scenarios mentioned earlier
in Sect. 1.1.3. It motivates the necessity of declarative approaches in MT definitions
by showing the variety of model synchronization scenarios. This work –though being
presented in Chapter 2– can be studied before or after the study of the other chapters
in this thesis.

In the following subsections, there is a brief elaboration on the aspects that will
be presented in this thesis.

1.2.1 The QueST Approach

The basic idea of MT definitions in QueST is acquired from the successful approach
of declaratively defining views in the relational databases. This way of defining trans-
formations in MDE was initially proposed by Diskin and Dingel (2006) and later on
developed more in Diskin’s work (Diskin, 2008, 2011). Similar to the database view
definitions, the MT definitions in QueST are specified over the metamodels (analo-
gous to the schemata in the databases), and are executed over the models (analogous
to the data in the databases). The view constructions in databases and metamodels
are different as the corresponding underlying structures are represented differently
(i.e., by relations in relational theory vs. by graphs in metamodeling). Furthermore,
the definitions in QueST are accompanied by graphical representations that provide
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useful diagrammatic models assisting the users during MT developments. An elab-
orate discussion of the approach will be provided during this thesis, specifically in
Chapter 4.

1.2.2 DQF Framework

Queries are the main ingredient of the QueST approach. They could be understood
generally as a function retrieving some information from the source model to build
the elements in the target model. Two main features of the QueST queries are as fol-
lows: 1) QueST queries are defined over the metamodel elements (collections) rather
than model elements (elements). 2) They have diagrammatic arities (see Sect. 3.2.1,
Definition 9) rather than ordinary tuple type arities. Queries are defined over meta-
models; thus their semantic definitions are based on the semantics of the metamodels.
Metamodel semantics can be defined either in a functorial setting or in a fibrational
setting. In a functorial setting, the semantics of M is defined as structure-preserving
mappings from M to some predefined universe (e.g., the category of sets and rela-
tions). In a fibrational setting, the semantics of M is defined as structure-preserving
mappings from a semantic domain (e.g., the category of graphs and homomorphisms)
into M1. For example, semantics of a metamodel is given by (typing) mappings from
data graphs into the metamodel graph. In Chapter 3, we will explain the metamodel
semantics in a fibrational setting in more details. The formality behind QueST queries
is previously discussed by Diskin (1997, 1996, 2011). In this thesis, we develop the
QueST framework by introducing the DQF framework which enables the specification
of the individual query definitions and executions more concretely. We aim to make
the QueST approach more accessible to the MDE community. We will define the
Diagrammatic Query Framework (DQF) in which queries are high-level collection-
wise operations with diagrammatic arities. Queries are defined over a metamodel by
matching their diagrammatic input arities over the metamodel graph, and augment-
ing the metamodel according to their corresponding output arities. We will explain
the concepts around the framework using examples and will provide corresponding
formal definitions in Chapter 4.

1.2.3 Comparative Analysis

Rule-based approaches, such as ETL, ATL, and QVT-R, are usually considered declar-
ative approaches for defining model transformations. As this thesis promotes QueST
as a declarative approach in MT engineering, Chapter 5 provides a comparative anal-
ysis between QueST and these rule-based approaches. QVT-R is chosen as it is

1This way of defining semantics is called fibrational semantic definition by Diskin and Wolter
(2008)
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the OMG standard approach to MT definitions. ATL is chosen as, to the best of
our knowledge, it is the most well-known MT language widely used by the commu-
nity. ETL is chosen as a consequence of our research visit to York University in the
UK where it was developed alongside a series of EOL-based (Kolovos et al., 2006)
languages to support model management activities. We will show that the query
operations in QueST are collection-level operations applied at the metamodel level
instead of instance-wise manipulation of elements at the model level. In this sense,
we say that QueST is more declarative than the studied rule-based approaches1. As
an analogy, the query operations is QueST are close to the declarativity of the SQL
(Date and Darwen, 1997) operations in contrast to record-by-record manipulation of
data in the language of Network (Taylor and Frank, 1976) or Hierarchical (Tsichritzis
and Lochovsky, 1976) databases. Besides this, our study shows that QueST offers
more flexibility in the construction of an MT definition in terms of MT definition
modularity and incremental development.

1.2.4 Logical Analysis of MT Definitions

Testing approaches, though having many advantages, usually can never guarantee the
absolute conformance of an MT definition to the expected properties. Specifically,
when an MT is involved in the development of critical systems, gaining additional
confidence regarding the correctness of a transformation is strictly demanded.

With the exception of the graph-based languages (such as Triple-Graph-Grammars
(Kindler and Wagner, 2007)), current MT approaches usually suffer from not provid-
ing enough formality that is essential for the logical analysis of MT definitions. For
example, QVT-R encountered many problems in even precisely defining its underly-
ing semantics (Stevens, 2010). Other languages like ATL do not initially come with
formal definitions. This makes it very difficult (if not impossible) to logically analyze
MT definitions that are defined in these approaches. Relying on the QueST formal
semantics, we will show the way an MT definition in QueST can be encoded as a
logical theory and the properties to be checked can be considered as propositions
in the encoded specification language. Thus, using the mathematical tools, it will
be possible to analyze the properties of QueST MT definitions. In this thesis, we
used the formal language of Alloy (Jackson, 2012) to demonstrate the encoding and
analysis techniques.

1In this thesis, we use declarativity to mean collection-level operations vs. element-wise opera-
tions. Employing this mechanism might, in turn, contribute to hiding explicit control structures.
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1.3 Related work

In the following, we will first explore the approaches that are proposed for defining
MTs in the MDE community. In the second part, we will explore the literature related
to the proposed techniques for analyzing model transformations.

1.3.1 MT Approaches

We can generally place the proposed transformation languages in the MDE commu-
nity into two major categories: 1) declarative rule-based approaches, 2) graph-based
operational approaches. In the first category, the transformation is basically defined
as a set of constructs called transformation rules that are usually executed nonde-
terministically over the source model; these rules have querying mechanisms that
select elements from the source model based on which the elements in the target are
constructed. ATL (Jouault and Kurtev, 2006), ETL (Kolovos et al., 2008) QVT-R
(OMG, 2015), and JTL (Cicchetti et al., 2010) are some of the well-known examples
from this category. All of these languages either use OCL (Warmer and Kleppe,
2000) or an OCL-like syntax to specify the queries. In the second category, a trans-
formation is defined as a number of Graph Transformation (GT) rules (Ehrig et al.,
2006). These rules are executed on the source model until they are no longer appli-
cable subject to certain defined execution policies. Triple Graph Grammars (TGG)
(Schürr and Klar, 2008), DSLTrans (Barroca et al., 2011), Story Diagrams (Fischer
et al., 2000), Henshin (Arendt et al., 2010), MOLA (Kalnins et al., 2005), and GReAT
(Balasubramanian et al., 2007) are examples of this category.

QueST proposes a different approach in the way a transformation is defined; it
promises to be more declarative than rule-based approaches and uses query blocks
rather than rules (see Chapter 5); however, at the same time it benefits from the
formality of graph transformation approaches in its core semantic definitions (see
Chapter 4).

As presented in Chapter 4, a QueST definition in the metamodel layer is built
by defining queries and mappings that exist at the metamodel level. In the MT
languages that employ the mapping idea, such as TGG, and QVT-R, the mappings
are in fact defined at the instance level. In recent work, Freund and Braune (2016)
demonstrate certain benefits of defining the mappings in the metamodel layer (similar
to what QueST does) such as automatic conformance of the generated models to
their corresponding metamodel which might be easily missed in rule-based and GT
approaches. However, the work is more focused on providing a generic transformation
algorithm that implements such metamodel-mappings.

In the following, we further explore the literature regarding the proposed rule-
based and the graph-based model transformation languages.
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Rule-based MT Approaches

A detailed comparison between QueST and three of the well-known rule-based MT
approaches will be provided in Chapter 5. However, since an important aspect of the
rule-based approaches is their corresponding query language, we examine querying
approaches further in this section.

The structure of a query language is heavily influenced by the underlying data
model over which it is defined. For example, navigational features are necessarily
supported by the query languages that operate on the graph data models. Relational
databases require the corresponding query language to provide relational operations
like relational Join and Union. From this perspective (i.e., the underlying data model
of the query languages), we can categorize the query languages as the following: 1)
Query languages for semi-structured data models 2) Query languages for structured
data models. In the first category, the schema information is dynamic and accom-
panied with the main data (Buneman, 1997; Abiteboul et al., 1997). This is the
reason that a semi-structured data model is sometimes called “self-describing”1. For
example, an XML document without a fixed schema corresponds to a semi-structured
data model2. In the second category, the schema information is fixed and is usually
well distinguished from the data itself. Relational databases (Codd, 1970) are the
famous examples of these data models; the schemata of the databases that define the
database structures are independently defined and separately maintained.

For each of the above categories, there exist many query languages. Lorel (Abite-
boul et al., 1997), UnQL (Buneman et al., 2000), XQuery (Boag et al., 2002), XML-
QL (Deutsch et al., 1999), and XIRQL (Fuhr, Norbert and Großjohann, Kai, 2001)
are some examples of the first category. IncQuery (Bergmann et al., 2010; Ujhelyi
et al., 2015), CYPHER (Kaur and Rani, 2013), SPARQL (Pérez et al., 2006), OCL
(Warmer and Kleppe, 2000), and SQL (Date and Darwen, 1997) are examples of the
second category. Since metamodels –similar to relational databases- are structured,
we examine the query languages of the second category a little bit more in the follow-
ing. The queries in IncQuery specify graph patterns to collect model entities. The
queries define the patterns similar to the methods used in the graph transformation
approaches (Ehrig et al., 2006). Cypher is a query language for the property graph
data model (Robinson et al., 2015); more specifically, it is used as the query language
of the graph database Neo4j (Webber, 2012). Similar to IncQuery, Cypher also uses
graph patterns to build the queries. SPARQL (Pérez et al., 2006) is another language
working similar to the above two query languages in terms of using graph matching

1Formally speaking, semi-structured data are modeled as some form of labeled, directed graphs.
2XML documents with predefined schemas and semi-structured data models are compared in

Goldman et al. (1999).
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patterns in constructing queries, instead. However, it is used to query RDF (Re-
source Description Framework) (Klyne and Carroll, 2004) documents. OCL (Object
Constraint Language) (Warmer and Kleppe, 2000) is the OMG proposed standard for
specifying constraints on models. However, its querying features such as navigating
the models and building collections of objects, make it suitable to be used as a query
language too. Finally, SQL (Date and Darwen, 1997) is a very well-known query
language used for declaratively defining queries over relational databases.

From the above list of query languages, OCL or OCL-like languages are the ones
that are currently used in the MT domain; for example, ETL, ATL, and QVT-R use
OCL, and JTL uses an OCL-like language. Further, except for SQL, all the other
query languages operate on the instance level. Thus, among all of the above query
languages, SQL is seemingly the most qualified query language that has a sound
formal basis and also is declarative enough to be used as an MT query language.
But, there is, unfortunately, an important obstacle towards using SQL in MDE as its
default underlying data model is relational schemas. QueST query operations that
will be introduced in Chapter 4 are high-level declarative operations –similar to SQL
operations– defined over metamodels rather than relational schemas.

Graph-based MT Approaches

Although QueST does not fit in the graph-based MT category, we briefly explore
the relevant literature and explain the techniques employed in this category with the
hope of providing a better distinction between them and the QueST approach.

In all of the graph-based approaches that are mentioned earlier (see page 8), trans-
formations are specified in terms of graph grammars. Among them, TGG (Kindler
and Wagner, 2007) is the one that allows interpretation of these rule bidirectionally.
In TGG, both the left-hand side and the right-hand side of graph rules are divided
into three blocks: one of these blocks is associated with the source model, another
is associated with the target model and the third one comprises nodes that relate
elements from the latter two blocks. The forward and the backward transformation
rules are derived automatically from these triple rules. Aside from TGG that has its
idiosyncratic way of treating graph transformation rules, the main difference between
the other approaches in this category is mostly concerned with the way they organize
and apply the ordinary graph transformation rules in one direction. In DSLTrnas
(Barroca et al., 2011), the graph transformation rules are arranged in layers; the
layers prioritize the rule applications; however, the rules within a layer are executed
in a non-deterministic fashion. In MOLA (Kalnins et al., 2005), the applications
of the graph transformation rules are defined using programming constructs such as
sequences, loops, and branching. GReAT (Balasubramanian et al., 2007) supports
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parallelism and recursion besides the basic programming constructs. In Story Dia-
grams (Fischer et al., 2000), the applications of the rules are controlled by structures
similar to UML activity diagrams. Finally, Henshin (Arendt et al., 2010) is used
for transforming EMF (Steinberg et al., 2008) models, and in addition to basic graph
transformation features, it provides a variety of transformation units to define control
structures for the rule applications.

1.3.2 MT Formal Analysis

Amrani et al. (2014) suggested identifying three aspects in approaching a model
transformation verification problem. These aspects are transformation aspect (i.e.,
MT language and its features), kinds of properties to be checked, and the techniques to
be used in an MT verification problem. Regarding the first aspect, we tend to consider
QueST as a framework with a formal semantics rather than a concrete implementation
language; nonetheless, QueST already provides a formal basis to be used for analysis
purposes, as it will be shown in Chapter 6. The type of properties that we will study
over QueST MTs are Transformation Dependent in the sense that the properties are
regarding a specific transformation, and are Input Independent in the sense that they
hold for any valid input model (see Amrani et al. (2014)). Finally, the technique that
is used falls within the category of theorem proving techniques as we use a logical
interpretation of MTs for analysis purposes.

Ab. Rahim and Whittle (2015) classified existing MT verification approaches.
Regarding their coarse-grained classification, the approach presented in this thesis
fits within the theorem proving (see Sect. 6.4.1) and model checking (see Sect. 6.1.4)
approaches. With respect to their finer-grained classification, the QueST approach
is considered formal; it automatically ensures type correctness1 (see Sect. 4.3.2); it
preserves the static semantics of models2 (see discussion in Sect. 4.3.2 and as an
example, Property 1 at Sect. 6.4.1), and the correspondence between source and
target3 can be formally verified (see, for example, Property 3 in Sect. 6.4.1).

Calegari et al. (2011) use a theorem proving technique in analyzing MT proper-
ties similar to our approach in Chapter 6. They presented an encoding of an ATL
transformation as a logical theory in Coq (Bertot and Castéran, 2013): metamodels
are translated to inductive types and model transformation rules to logical formulas,
and properties specified as propositions in the corresponding theory; then they used
the Coq theorem prover to analyze the properties. The differences mainly originate
from the differences in the underlying transformation approach (i.e., ATL rules vs.
QueST queries) and the encoding techniques; for example, they encoded metamodels

1“Elements in the target model are instances of elements in the target metamodel.”
2“The target model conforms to well-formedness constraints of the target metamodel”
3“The target model contains elements that correspond to elements in the source model”
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as inductive types in Coq while we encoded them as a family of sets and relations with
constraints in Alloy. This affects the way axioms are expressed in the corresponding
theories.

Büttner et al. (2012) provide an automatic translation of ATL transformations to
transformation models expressed as OCL theories, and used an OCL model finder to
analyze the properties. This work is similar to our work in this thesis with respect to
using an instance finder (as we used the Alloy instance finder) to check MT properties.

Maude (Clavel et al., 2002) is a high-level language that supports membership
equational logic and rewriting logic. Romero et al. (2007) encoded models and meta-
models in Maude. Troya and Vallecillo (2011) provided a formal semantics of ATL
using Maude that enables accessing the Maude toolkit to reason about the encoded
MT specifications. In contrast, we use Alloy for the MT logical encoding (see Sect. 6.1
for more details about Alloy); our MT logical encoding is also based on QueST rather
than ATL.

Alloy is used by Macedo and Cunha (2013) to encode QVT-R transformations and
provide alternative enforcement semantics for them. It is used by Cunha et al. (2013);
Maoz et al. (2011) to translate the UML class diagrams to verify their corresponding
properties. It is used by Anastasakis et al. (2007) to encode the source and the target
metamodels and specify the transformation rules as mapping relations. Gammaitoni
and Kelsen (2015) introduced a sub-language of Alloy called F-Alloy that is used
for expressing a functional mapping representing a transformation. The latter two
works (i.e., Anastasakis et al. (2007) and Gammaitoni and Kelsen (2015)) follow the
common MT paradigm that a source-to-target transformation is specified as a set
of mappings going from the source to the target elements, whereas in QueST these
mappings go in the opposite direction.

1.4 Thesis Structure

Chapter 2 presents the taxonomy of model synchronization scenarios organized in a
3D space. The discussions in this chapter show the complexity of the model trans-
formation domain, and the necessity of supplying MT with a more declarative and
abstract approaches. This can be seen as a general motivation for the subsequent
chapters. In Chapter 3, we provide the technical background for the framework,
which is compactly defined in a formal style. Specifically, we define the notions of
metamodel and model, and a diagrammatic query operation. Engineers interested
in quickly seeing the QueST framework in action can skip the formal definitions and
move to Chapter 4. In Chapter 4, we introduce the QueST approach in the definition
of MTs using a simple example. We also explain the concepts behind the diagram-
matic query framework (DQF) using examples. In Chapter 5, we compare queries
in QueST and rules in the rule-based approaches –ETL, ATL, and QVT-R. We will
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use two examples –the HappyPeople example introduced in Sect. 4.1, and the stan-
dard ClassToTable example– to carry out the comparative analysis. In Chapter 6, we
demonstrate the way a QueST MT definition can be logically verified against defined
properties. We will define properties over the same two examples above, and analyze
them using the Alloy analyzer and doing proofs manually. Finally, in Chapter 7, we
conclude this thesis and mention future works.

Appendix A.1 presents an encoding of the QueST ClassToTable example in Alloy.
Appendix A.2, Appendix A.3, and Appendix A.4 present the implementations of the
ClassToTable example in, respectively, ETL, ATL, and QVT-R.

1.5 Thesis Contributions

The four contributions of the thesis are presented in four consecutive subsections
below. Part (a) briefly describes the contribution, part (b) specifies the individual
contribution of the author.

A Taxonomy of Bidirectional Model Synchronization Scenarios

(a) This thesis provides a 3D taxonomical space of model synchronization scenarios.
We investigate the characteristics of (binary) model synchronization scenarios
from three perspectives: 1) informational symmetry, 2) organizational symme-
try, and 3) incrementality. We argued that these dimensions are orthogonal,
that is, their impact on the characteristics of a synchronization scenario is inde-
pendent. Based on this, we built a 3D taxonomical space, in which 44 different
types of synchronization are identified, and provided concrete examples instan-
tiating each type and illustrating its properties. This work is presented in
Chapter 2.

(b) An extended version of this work that includes the formalization of the syn-
chronization scenarios is published by Diskin et al. (2016). The author of this
thesis collaborated half and half with Diskin in this work except the excluded
formalization part (that was mainly developed by Diskin1). This paper received
contributions from the third and the fourth authors in terms of comments and
reviews.

A preliminary version of this work was published by Diskin et al. (2014) as a
conference paper. The author of the thesis contributed a quarter of that work.
The journal version essentially extended the conference paper. It (i) studied
in detail the process that we called linearization of synchronization dimension

1See the Appendix of the published work (Diskin et al., 2016) for the formalization of the syn-
chronization types.
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(by which a simple partially ordered set is considered as linearly ordered), (ii)
further investigated the mutual orthogonality of the dimensions, specifically
the org×info and org×inc planes, (iii) refined the incrementality dimension
to cover semi-incremental scenarios, (iv) explored a multitude of examples of
synchronization scenarios. These all allowed us to refine the taxonomy to cover
44 rather than 16 scenarios identified by Diskin et al. (2014).

Making the QueST Formalism Accessible to the MDE Community

(a) The QueST formalism as developed by Diskin (1997, 1996, 2011) is a formal
machinary. The current thesis contribution is to make this machinery accessible
to the MDE community. To this end, the thesis contributed the following: 1)
the QueST framework is completed by introducing the DQF framework which
enables the specification of the metamodel augmentation mapping S → Q(S)
more concretely, 2) it specifies QueST in the languages accessible to the MDE
community, and provides new examples of its application. The DQF framework
is presented in Chapter 3, and the explanation of QueST is presented in Chapter
4.

(b) A Doctoral Symposium paper was published by Gholizadeh (2013), and sev-
eral presentations were delivered within the NECSIS1 project annual workshops
(Gholizadeh, 2014, 2015). The DQF framework is not previously published.

Comparative Analysis of QueST and Rule-based MT approaches

(a) This thesis compares QueST with three commonly used rule-based MT ap-
proaches, namely ETL, ATL, and QVT-R. Based on this comparison, it presents
the way MT engineering can benefit from the declarativity and incrementality
features of the QueST approach. This work is presented in Chapter 5.

(b) A workshop paper by Gholizadeh et al. (2014) presents mainly the content of
Sect. 5.3.4. The author of the thesis was the main contributor (approx. ninety
percent) of this work. Other findings in this chapter are not published.

Logical Analysis of MT via QueST and Alloy

(a) MT approaches in practice usually lack enough formality in their foundations
and this makes it difficult to mathematically analyze transformation definitions.
This thesis shows the way QueST MT definitions can be encoded as a theory
in the language of Alloy, and the way its properties can be logically analyzed.
This work is presented in Chapter 6.

1Network on Engineering Complex Software Intensive Systems for Automotive Systems.
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(b) A workshop paper published by Gholizadeh et al. (2015) explains the tech-
niques using a simple example. The author of the thesis is the main contrib-
utor (approx. seventy-five percent) of that. Application of the method to the
ClassToTable example is not published.
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Chapter 2

Various Types of Synchronization
Scenarios

Modern applications require a shift towards networks of models related in various
ways, whose synchronization often needs to be incremental and bidirectional. This
new situation demands new features from transformation tools and approaches, and
a solid semantic foundation to understand and classify these features. A preliminary
step addressing this problem is to study the domain of synchronization scenarios. In
this chapter, we take three dimensions that affect the characteristics of synchroniza-
tion scenarios: informational dimension, organizational dimension (i.e., directional-
ity) and incrementality. We systematically study the characteristics of synchroniza-
tion scenarios along these dimensions. Then, we examine the mutual interaction of
these dimensions, and finally present a taxonomy of model synchronization scenarios,
organized into a 3D-space. Each point in the space refers to a specific synchroniza-
tion type. The taxonomy aims to help with identifying and communicating a proper
specification for the synchronization problem at hand and for the available solutions
offered by tools and MT approaches.

The technical discussions in this chapter provide further insights regarding the
variety of synchronization scenarios and motivate the usefullness of the QueST ap-
proach as a formal declarative MT framework. However, the content of the remaining
chapters can be studied independently of this chapter.

2.1 Introduction

Suppose that two models to be synchronized, A and B, are given together with a
consistency relation between them. Initially the models are consistent, and then one
of them, say, A, is changed with an update a : A→ A′. The first question (Q1) we
need to ask is whether this update destroys consistency or not. In the latter case,
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we call the update private, and do nothing. In the former case, we call the update
public, and need to act to restore consistency between models.

The action to maintain the consistency depends on the type of the update, and
the update propagation policy we assume as given. If update a is of a propagatable
type (or just propagatable), we need to find an update b : B → B′ on the other side,
which changes model B as minimally as possible but restores consistency (so that
models A′ and B′ are consistent). We then say that update a was propagated to the
B-side, and call b the result of propagation. The entire scenario is called incremen-
tal change propagation, or incremental synchronization. Importantly, incremental
synchronization allows having a public update on one side, say, a : A→ A′ and, con-
currently, a private update b∗ : B → B∗ on the other side. Then, after propagating
a to b : B∗ → B′, the consistency is restored and the updated private part of B∗ is
preserved in B′.

However, it may happen that the interaction between models is organized in such
a way that model A is not allowed to make changes like b on the B-side: if such a
change is needed, it can only be achieved by an immediate editing of model B rather
than being propagated from the A-side. In this case, update a must be rolled-back
(or modified to a different update of a propagatable type). Thus, the second question
(Q2) we need to ask about update a : A→ A′ is whether it is propagatable or not
according to the policy.

Finally, there are situations when consistency restoration is achieved by regen-
erating model B′ from scratch rather than by updating model B (and no a priori
given relationship between B and B′ is assumed to hold). We call this scenario
non-incremental change propagation, or non-incremental synchronization, from A to
B. Clearly, such a synchronization discards any private changes made on the B side.
Thus, the third basic question (Q3) we need to ask about change a : A→ A′ is whether
synchronization from A to B is incremental or not.

Questions Qi, i = 1, 2, 3 and their duals, i.e., similar questions Q′i about synchro-
nization from B to A originated with a change b : B → B′, capture the most basic
(we could also say ontological) features of the binary synchronization. Our idea of
classifying binary synchronization is that different combinations of answers to these
six questions determine different synchronization scenarios.

2.1.1 From Six Ontological Questions to a Taxonomy

Questions Q1 and Q3 (and their duals) have binary answers: either ‘yes’ or ‘no’
for each of them. Question Q2 is more complex: in fact, we need to partition all
possible public updates on the A-side into propagatable or not, and dually for the
B-side to answer question Q′2. Each such a partition can be classified with a three-
valued scale depending on whether all, some or none of public updates on one side
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are propagatable to the other side. Thus, each of the questions Q2 and Q′2 has
three possible answers for classifying a synchronization scenario. The total number of
possible answer combinations (we will say multi-answers) is 22×33×22 = 144, which
means that we have a variety of 144 different types of synchronization scenarios. This
would be an enormous taxonomy not easy to understand and use. In order to reduce
the number of types, we will perform two analyses.

The first is to analyse each multi-answer w.r.t. its practical meaning: it may
happen that a logically possible multi-answer is practically meaningless and hence
the respective type can be excluded from the taxonomy. For example, choosing
the answer ‘none’ for both Q2 and Q′2 would actually disallow any possibility of
synchronization, and this multi-answer should be excluded. For another example, it
does not make sense to consider incrementality (by answering question Q3) for a non-
existing update propagation (if Q2 is answered ‘none’). Later on, we will carefully
analyze such situations and exclude practically meaningless multi-answers, which will
significantly reduce the number of synchronization types to 76.

The second analysis aims to consider possibilities of merging several different
multi-answers into one type, if the differences between the respective scenarios do not
practically matter. We will see that, indeed, many pairs of multi-answers (and the
respective types) are mutually convertible into each other by swapping A and B (we
call such types dual). We will show that after replacing each pair of such types by
one type (that we call almost concrete), the number of types is reduced to 44.

A flat taxonomy encompassing 44 types is still not easy to manage. To address
the concern, we will develop a modularization mechanism by which 44 types will be
grouped into 16 abstract types, each one containing from two to four (almost) concrete
subtypes. Moreover, the set of these 16 types will be structured as a set of 16 points
disposed at vertices, edges and face centers of a three-dimensional cube, so that each
abstract type can be easily recognized by the triple of its coordinates (see Fig. 2.7
on page 34 where 16 abstract types are denoted by circles (with different frames);
numbers inside circles show the number of (almost) concrete subtypes.

Each axis of the space embracing the cube presents a linearization of the multi-
answer to a respective pair of ontological questions (Qi, Q

′
i), i = 1, 2, 3 discussed

above. Axis X is a linearization of the mutli-answers to the pair (Q2, Q
′
2), and

we call the respective coordinate an organizational symmetry; it characterizes the
organizational constraints to update propagations. Axis Y is a linearization of mutli-
answers to the pair (Q1, Q

′
1), and we call the respective coordinate an informational

symmetry; it characterizes relative information capacities of the models. (To be more
accurate, of the model spaces in which the models evolve). Finally, axis Z is a
linearization of mutli-answers to the pair of questions about incrementality (Q3, Q

′
3).

In the next section, we explain how linearization works, and define the three axes. In
Sect. 2.3 we join the axes together to build the cube, and discuss the modularization
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mechanism.

2.2 Three Dimensions of Model Synchronization

In this section, we discuss in detail the three dimensions of a binary synchronization:
org-symmetry, info-symmetry and incrementality. For each of them, we will introduce
a complete two-dimensional taxonomy classifying all logically possible cases. Then we
linearize the multitude of cases, and place them on an axis with several coordinates.
Later, in Sect. 2.3, we will build our 3D-taxonomic space from these axes.

2.2.1 Organizational Symmetry

In this section we consider organizational constraints to update propagation. A simple
such constraint is when one of the models (say, A), is considered entirely dominating
the other model B, so that consistency restoration always goes via propagating up-
dates on the A side to model B, and never in the opposite direction. This situation
is common when a low-level model B is generated from a high-level (abstract) model
A.

Example 1 (Compilation of Java programs). The dominated model B is bytecode
generated from a Java program A. If the latter is changed, it is recompiled so that
new bytecode is regenerated from scratch.

Example 2 (Model compilation). The dominated model B is a Java program gener-
ated from a UML model A. When A is changed, new code is regenerated from scratch
and overwrites the old one.

A more sophisticated version of this scenario is described next.

Example 3 (Incremental code generation). Consider a UML tool that generates code
stubs from class diagrams. When method signatures are changed in the class diagram,
code must be regenerated in such a way that method signatures are updated to be in
sync with the updated class diagram, but method bodies are to be preserved. That
is, while code’s public part (method signatures, class names, etc.) are updated to
reflect changes in the UML model, code’s private data—the method bodies—are kept
untouched.

In more detail, suppose that we have a UML model A0, and a Java program with
stubs B0 generated from A0, which is later completed to state B′0 by adding method
bodies (see the upper half of the inset figure below, in which horizontal dashed lines
indicate consistency, vertical arrows are updates, and the double line is identity).

Suppose that the UML models evolves to state A1, and we need to regenerate code,
but in such a way that method bodies (and other private data in B′0) are preserved.
Hence, rather than regenerating Java program B1 from scratch, we generate an update
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B′0 → B1 such that the private part of B′0 is preserved, and B1 is consistent with A1.
In other words, update A0 → A1 on the A-side is propagated to update B′0 → B1 on
the B-side. To complete the example, we assume that propagation of updates from
the code to the model is prohibited.

The paper is structured as follows. ZD I write a phrase
about our line of examples J Section 2 describes the three
dimension of a model synchronization in detail. In Sec-
tion 3.4 we explain how the three dimensions interact,
and together form the 3D space of the synchronization
types. Section 4 provides a formal semantic for the space.
Section 5 describes symmetrization and discusses its chal-
lenges. Section 6 presents related work and Section 7 con-
cludes the paper.

The paper is an essentially developed version of our
paper [? ] to appear in proceedings of ICMT 2014. A de-
tailed discussion of what is new in the present paper can
be found in Sect. 6.

2. Three Dimension of Model Synchronization

In this section we consecutively discuss in detail the
three dimensions of a binary synchronization: organi-
zational, informational and incrementality. For each of
them, we will introduce a complete two-dimensional tax-
onomy classifying all logically possible cases. Then we
will linearize the multitude of cases, and place them on an
axis with several coordinates. Later, in Sect. 3.4, we will
build our 3D-taxonomic space from these axes.

2.1. Organizational Symmetry
Suppose that two models to be synchronized, A and

B, are given together with a consistency relation between
them. Assume that A1 and B1 are two inconsistent states
of the models, and one of the models, or both, are to be
changed to restore consistency. There may be di↵erent
policies for such changes. A simple one is when one of
the models (say, A), is considered entirely dominating the
other model B, so that consistency restoration always goes
via changing B1 to B2 consistent with A1. This situation
is common when a low-level model B is generated from a
high-level (abstract) model A.

Example 1 (Compilation of Java programs). The
dominated model B is bytecode generated from a Java
program A. If the latter is changed, it is recompiled so
that new bytecode is regenerated from scratch.

Example 2 (Model compilation). The dominated model
B is a Java program generated from a UML model A.
When A is changed, new code is regenerated from scratch
and overwrites the old one.

A more intelligent version of this scenario is described
next.

Example 3 (Incremental code generation). Suppose a
UML tool that generates code stubs from class diagrams.
When method signatures are changed in the class dia-
gram, code must be regenerated in such a way that method
signatures are updated to sync with the updated class di-
agram, but method bodies are to be preserved. That is,
while code’s public part (method signatures, class names,
etc.) are updated to reflect changes in the UML model,
code’s private data —the method bodies— are kept un-
touched. In more detail, suppose that we have a UML
model A0, and a Java program with stubs B0 generated
from A0, which is later completed to state B1 by adding
method bodies (see the upper half of the inset figure, in
which horizontal dashed lines indicate consistency ZD

I pls make it a wrapped figure J).
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Suppose that the UML models evolves to state A1, and
we need to regenerate code, but in such a way that private
data in B1 are preserved. Hence, rather than regenerat-
ing Java program B2 from scratch, we generate an update
B1 ! B2 such that the private part of B1 is preserved, and
B2 is consistent with A1. We will say that update A0 ! A1
on the A-side is propagated to update B1 ! B2 on the
B-side.

To complete the example, we assume that propagation
of updates from the code to the model is prohibited.

In all examples above, model B is either never changed
manually and all its changes are propagated from the A
side, or, if B can still be edited, the changes are not prop-
agated to A, and are not allowed to destroy consistency
with A (otherwise they will be discarded by the next up-
date from the A side). We say that model A organization-
ally dominates model B, and write A>orgB.

Note that dominance is a property of an ordered pair of
models, so that relations >org and <org are di↵erent (but
mutually invertible). We will say that the case A<orgB,

3

In all examples above, model B is either never changed man-
ually and all its changes are propagated from the A side, or, if
B can still be edited, the changes are not propagated to A, and
are not allowed to destroy consistency with A (otherwise they will
be discarded by the next update from the A side). We say that
model A organizationally dominates model B, and write A>orgB.
Of course, the dominance in Example 2 is different from the domi-
nance in Example 3; later we will see that adding the incremental-
ity dimension to the specification allows us to distinguish the two
scenarios.

Note that dominance is a property of an ordered pair of mod-
els, so that relations >org and <org are different (but mutually
invertible); we will say that the case A<orgB (read “A is dominated by B”) is dual
to A>orgB (“A dominates B”). Both cases present a strictly asymmetric synchro-
nization, and we refer to them as org-asymmetric. This corresponds to what is often
called one-way or unidirectional transformation. We have an entirely different syn-
chronization type for code generation with roundtripping.

Example 4 (Roundtripping). Let A be a UML model and B a Java code generated
from A. We assume that changes are freely propagated in either direction based on
the history: the freshly updated model, being either the UML model or the Java code,
dominates and propagates its changes to the other side irrespectively to whether this
freshly updated model is A or B.

In such a case, we say that neither model organizationally dominates the other,
write A><orgB, and call this situation organizational symmetry. Note that relation
><org is symmetric: it is equal to its inversion.

There are also important synchronization cases in-between strict asymmetry and
strict symmetry considered above. A model can be partially dominating in the sense
that some (but not all) updates on this model are allowed to propagate to the other
side depending on the type of the update.

Example 5 (Partial roundtripping). Consider a modification of roundtripping Exam-
ple 4, in which the synchronization policy only allows some code (model B) updates,
e.g., changes in method signatures, to be propagated to the UML model A, whereas
other code updates that violate consistency will be discarded.

We call the case above organizational semi-symmetry and write A>≤orgB. Note
that the right part of the symbol indicates that only some updates on the B side are
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propagated to A, while the left part of the symbol indicates that all updates on the A
side can be propagated to B. The entire relationship is phrased as model A partially
dominates B, i.e., the direction of the entire relation is given by its “strong” half from
A to B.

The dual case is denoted by A≥<orgB (read model A is partially dominated by
B). It is realized in the following scenario with Java Development Tools (JDT) in
Eclipse IDE.

Example 6 (Outline view in JDT). The outline view A of some piece B of Java
code is regenerated from scratch every time B changes. JDT also allows the user to
make some selected operations in the outline view, e.g., renaming elements, or moving
elements within the hierarchy. These updates are then propagated to the code. Thus,
we have partial dominance A≥<orgB.

Note how inverting the relation of org-semi-symmetry from A>≤orgB in Exam-
ple 5 to A≥<orgB in Example 6 dramatically changes the roles of models and their
synchronization behavior.

In fact, partial dominance (semi-symmetry) is common in model synchronization.
A typical example is updatable (or editable) views in databases.

Example 7 (Updatable views.). Let an application use an abstract view A of a data
source B. All source updates can be propagated to the view, but the inverse propagation
can be problematic (the infamous view update problem) because, in general, the same
view state A can correspond to many different source states B: choosing any of them
is not appropriate in the database context, in which data in B must properly reflect a
real world state. However, some simple A- updates (e.g., those only affecting a direct
projection of a source table) can be propagated to B in a unique way. Thus, the view
is only partially dominated by the source, A≥<orgB (while a non-updatable view is
described by A<orgB). Only for simple projection views, we may have A><orgB.

The examples we considered motivate a taxonomic plane shown in Fig. 2.1(a).
The two axes of the plane correspond to the two directions of update propagation,
and their coordinates indicate whether none, some, or all of the possible updates can
be propagated in the direction that corresponds to the axis. Points in the plane are
org-dominance types, which are instantiated by different synchronization cases, for
example, those that we considered above.

So far, we have considered cases, whose type has at least one coordinate “all”.
Now we are going to discuss the other four types, and begin with the type some-some
or A≥≤orgB, for which both directions are sensitive to the update type, and only
some updates can be propagated in either direction. We present two examples.

Example 8 (Bi-partial roundtripping). Consider a symmetric modification of Exam-
ple 5, in which the synchronization policy prohibits some model updates, e.g., changes
in method signatures, to be propagated to the code, but these updates can be done on
the code side and propagated back to the model.
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Figure 2.1: Organizational Dimension of Model Sync

Example 9 (Class and sequence diagrams). Consider a system model consisting of
a UML class diagram (CD) and a UML sequence diagram (SD) with the following
synchronization policy. The structural part of the SD (a set of lifelines typed by
classes) is generated from the CD, and class name changes are not allowed in the SD.
Dually, the method signatures in the CD are generated from the SD, and changing
them in the CD is not allowed.

Thus, some-some org-symmetry, A≥≤orgB, assumes a proper subset of propagat-
able updates on either side. Importantly, these two sets of updates are mutually
complementary: any update on either side should be realizable by either a direct
update on the side, or by propagating a suitable update from the other side (or by
both like, e.g., Classes attribute names in Example 9). We will refer to this property
as completeness of the ≥≤org symmetry. It holds for both of the examples above.

Now consider the mutually dual types, none-some or A≤orgB, and some-none or
A≥orgB, when one side is an entirely passive receiver of updates from the other side,
but only some updates can be propagated from the latter. An essential disadvantage
of this synchronization is that some states are unreachable. For instance, in Example
9, if the class diagram was made an entirely passive, then class names cannot be up-
dated at all as the sequence diagram is also not allowed to change them. We assume
that such situation should be avoided, and we will exclude them from our taxonomy.
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Finally, the type none-none means that models evolve independently without syn-
chronization, and this case can be excluded from our taxonomy of synchronization
types. Thus, there are four essentially different types of organizational dominance:

• (strict) asymmetry when one side is entirely dominated (or passive) and the
other is entirely dominating (active);

• semi-symmetry, when the dominated side is not entirely passive and can prop-
agate some updates;

• two symmetric cases, when both sides are either fully active, i.e., (all-all), or
both are partially active, i.e.,(some-some); in the latter case we assume com-
pleteness so that any update can be reached.

Formally, the first two types appear as points X = 0 and X = 1
2

on the org-
symmetry axis in Fig. 2.1(b). Each of them is an abstract type in the sense that any
case instantiating it actually instantiates one of the two concrete subtypes specified
below the axis line. However, as each pair of such subtypes is mutually dual (the first
subtype is converted into the second by swapping its arguments, and conversely),
their distinction can be ignored and we say that types X = 0 and X = 1

2
are almost

concrete, or concrete up to duality (of their subtypes). In contrast, the abstract type
X = 1 has two essentially different concrete subtypes. We will refer to these two
concrete subtypes as rich and poor org-symmetry (given by, resp., types all-all and
some-some in the plane). If needed, we denote these subtypes by X = 1+ and X = 1−

resp. We also use shading to show whether the type is concrete or abstract: all types
in the plane Fig. 2.1(a) are concrete and colored black; the symmetry type X = 1 in
the axis Fig. 2.1(b) is abstract and blank; and asymmetric types X = 0 and X = 1

2

are almost concrete and grey. The integers inside the blank circles (i.e., abstract
types) specify the number of subtypes; we call them multiplicities (e.g., type X = 1
has multiplicity 2). We will use this notation and terminology throughout the paper.

2.2.2 Informational symmetry

Informally, we say that a model A is an abstract view of model B, if A can be built
from data provided by B. As in this process some information about model B can
be lost, different states of B can result in the same state of A, i.e., different B’s can
have the same view A. In this sense, we consider A as being more abstract than B.

More formally, we first assume given some consistency relation K ⊂ M×N over
model spaces M and N, in which models A and, resp., B reside (these spaces are
determined by the respective metamodels, or grammars for textual models, e.g., code).
If relation K is of one-to-many type, i.e., for any model B ∈ N, there is exactly one
A ∈ M such that (A,B) ∈ K, but there may be many B with (A,B) ∈ K, then we
say that A is a view of source B, or that A is informationally dominated by B, and
write A<infB.
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For instance, in Example 6 about JDT, the outline view A is a view on source B
in the formal sense above. Java program considered up to its executable content is
a view of the byte code it generates. And in the code generation examples, Ex. 2
and 3, the UML model (considered up to its code generation context) is a view from
which the source is generated: indeed, there may be multiple implementations of the
same UML model.

It is convenient to think about informational dominance in terms of private and
public (or shared) information. A view is entirely determined by the source and hence
does not have a private part: any change of the view destroys its consistency with the
source, and hence is a public update. In contrast, the source typically have private
data (called “implementation details” for the case of code generation), which can be
changed without affecting the view and thus are publicly invisible; in other words,
the source has private updates.

The direction of model transformation may coincide with the direction of infor-
mational dominance as in the JDT example (i.e., Ex. 6); then we refer to the case
as view computation. Alternatively, the direction of model transformation can be the
opposite to info-dominance as in the (byte) code generation examples; then we say
source generation or view implementation. The latter task is much more challeng-
ing than view computation because of an important constraint: the source is to be
created in such a way that its public (shared) part ensures the given view.
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Figure 2.2: Informational Dimension of Model Sync

A more detailed analysis of synchronization scenario in Ex.2 shows that the UML
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model also has some private data. First, layout of boxes and arrows, time-stamps,
etc. do not affect code generation and, thus, are private. Second, there may be
structural differences between two UML models, e.g., in their inheritance hierarchies,
which also result in the same code if the generator flattens the inheritance hierarchy.
Then we consider inheritance as private data as well. Thus, each of the models (the
UML model and the Java program it generates) has some private data not needed for
the other model, and also some public data important for the other model (we may
think of public data as shared but differently represented). We then write A><infB,
and refer to the cases as info-symmetry.

In fact, info-asymmetry, say, A<infB, is often a useful approximation of a symmet-
ric situation A><infB, in which A’s private data are ignored. All our code generation
examples are actually info-symmetric, but for many analyses it may be useful to
view them as info-asymmetric by ignoring models’ details not affecting the resulting
code. We thus have two theoretical models of code generation: info-symmetric and
info-asymmetric.

The plane in Fig. 2.2(a) classifies all possible cases of information relationships be-
tween two models. The two axes correspond to the two models, and their coordinates
say whether the model does (Yes), or does not (No), have a private part (denoted by
Aprv, Bprv resp.). Types A<infB and A>infB are dual.

Type A≈infB is a special case of info-symmetry, in which the consistency relation
is one-to-one and determines a bijection between two model spaces as illustrated by
the following example.

Example 10 (HTML-MediaWiki). Consider synchronizing a wiki article described in
a lightweight markup language like MediaWiki, and an equivalent HTML description
of the article. Neither of two models has private data: both models are just different
representations of the same information.

Thus, there are basically three different types of info-dominance:

• (strict) asymmetry when one side has private data whereas the other does not,

• two symmetric cases, when either both sides have private data (the rich info-
symmetry), or neither one (the poor one)

Formally, we have two abstract types each partitioned into two concrete types as
shown in Fig. 2.2(b) (we use the same notation as in Fig. 2.1b). If needed, we denote
the concrete symmetric types A><infB and A≈infB, by 1+ and 1− resp.

2.2.3 Incrementality

The third dimension of our taxonomical space is incrementality, a well-recognized
feature of model transformations. A non-incremental unidirectional model transfor-
mation t : M→ N from a model space M to a space N creates a new target model
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B = t(A) from scratch every time model A changes. An incremental model trans-
formation is supposed to be more intelligent: a delta a : A→ A′ on the A side is
transformed into a respective delta b = t∆(a) : B → B′ on the B side. Normally, the
change caused by b should be as minimal as possible, but it must restore consistency
between A′ and B′.

In some synchronization scenarios, incrementality is optional and only used to
improve efficiency. For example, incremental computation of the outline view in JDT
in Ex. 6 may improve efficiency when dealing with very large code files. Similarly,
efficiency of computing database views can be significantly improved, if they are com-
puted incrementally. There are, however, situations in which incrementality is crucial;
in these situations, a reasonable synchronization is essentially based on incremental-
ity. For example, this is the case for the incremental code generation in Ex. 3, since
losing method bodies with every change in the UML model that is propagated to
the code is not desirable, incrementality is required. Such a situation is typical when
updates are propagated to a side with private data, if the latter are to be preserved.
For example, propagation of database view updates is necessarily incremental.

In more details, an incremental transformation t takes a delta on one side, say,
a : A0 → A1, and the original model B0 on the other side, and produces a delta on
the other side, t(a,B0) = b : B0 → B1, which restores consistency between A1 and B1,
and keeps the private part of B0 unchanged in B1. Deltas can be seen or even imple-
mented as traces of what happened (or should happen) to individual model elements.
If correspondences between models A and B are also precisely traced, an update
propagation satisfying the requirements above can be assured (Diskin et al., 2011b;
Hermann et al., 2011). In case that not all necessary traces can be provided (e.g., up-
dates to code are often not tracked individually), a heuristics-based model-matching
tool can be used to infer traces, which are then used for a proper synchronization. In
this way, model comparison technologies can allow using synchronization tools that
rely on traces with editing tools that do not provide traces.

In some synchronization scenarios, incrementality of change propagation in one
direction is critical, while in the other direction is not.

Example 11 (Semi-incremental Roundtripping). Method bodies’ preservation, and
hence incrementality of the respective change propagation, are critical, whereas pre-
serving the layout of the class diagram in the reverse direction may be less important
so that the class diagram is regenerated from scratch if code changes.

Of course, for large models comprising thousands of elements, synchronization as
above is a logical possibility rather than a practically acceptable solution. However,
the next example with database views is quite practical and, moreover, common.

Example 12 (View maintenance). View updates are always incrementally propa-
gated: the source database cannot be arbitrarily “compiled” from the view (see also
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Figure 2.3: Incrementality of Model Sync

Ex. 7). In contrast, view computation can be incremental to improve performance,
or non-incremental, if performance is not an issue.

Thus, change propagation can be incremental in one direction and non-incremental
in the other direction.

The plane in Fig. 2.3(a) classifies all possible cases. The two axes correspond to
the two directions, and their coordinates say whether the changes are propagated
incrementally (Yes) or not (No). Logically, this plane is similar to the information
dominance plane Fig. 2.2: cases A<incB and A>incB are mutually dual, and there
are basically three different types:

• (strict) asymmetry when one direction is incremental whereas the other is not;
and

• two symmetric cases, when either both directions are incremental, or neither
one is.

However, in contrast to linearization of info-dominance, we think that using our
taxonomy would be easier if we keep the distinction between non-incrementality and
bidirectional incrementality on the surface rather than hide it inside an abstract
symmetric type. Hence, the incrementality plane is linearized as shown in Fig. 2.3(b):
all types in the axis are (almost) concrete.
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2.3 3D-Taxonomy of Model Synchronization

In this section, we discuss how the three dimensions work together, and join them
into a 3D taxonomic space encompassing 44 types of synchronization behavior. We
begin with a general discussion of different possibilities (perspectives) of viewing the
space, and then consecutively consider three 2D-projections of the space, which are
formed by three possible pairs of dimensions. We also develop a notational system
providing a unique index for each of the 44 types, and illustrate its use with a table
of examples for all types.

2.3.1 Different Ways of Viewing the Space

A 3D-space can be viewed in different perspectives: as the product of three separate
axes, or as the product of a 2D-plane (say, X×Y ) and the respective orthogonal axis
(Z). There are three such logical possibilities for our space, each one is based on a
respective 2D-plane: Org×Info, Info×Inc, or Org×Inc (where we used short names for
the axes). Each of these planes determines the corresponding perspective of viewing
model synchronization, and each one is useful.

We may consider incrementality of change propagation as a secondary detail of a
synchronization scenario, and classify a synchronization case by its position on the
plane Org×Info. This will give us an incrementality-agnostic view of synchroniza-
tion, which captures its most basic features, e.g., distinguishes view computation
(abstraction) and source generation (refinement or implementation) as we will see
in Sect. 2.3.2. Alternatively, we may consider incrementality as an important syn-
chronization feature as incremental update propagation allows the receiving model to
preserve its private data. In this sense, incrementality makes the receiving model less
dependent on the dominant model, and hence classifying synchronization scenarios on
the plane Org×Inc actually classifies dominance relations between the models, which
is also a useful projection of a synchronization case. Finally, as demonstrated by the
delta lens framework, the plane Info×Inc classifies the computational frameworks un-
derlying model synchronization rather than synchronization scenarios as such. The
latter are played out (according to their org-symmetry type) by using the change
propagation operations of the underlying computational framework. Below, we will
consecutively consider the three planes and the respective classifications; then we will
discuss the whole 3D-space.
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2.3.2 Org- × Info-Symmetry Plane

Recall the two cases of info-asymmetry, A<infB, considered above. The first is when
code B is (either incrementally, Example 3, or non-incrementally, Example 2) gen-
erated from an UML model A whose private data (i.e., those which do not affect
code generation) are ignored. The second is when A is an outline abstract view of
code B in Eclipse JDT (Example 6). Despite the same info-symmetry relationship
between the models, synchronization behavior in the two cases is essentially different.
In the former case, the view A is active and generates the source that appears as a
passive receiver of the view updates, A>orgB. In the latter case, the view is mostly a
passive receiver of the source updates, A<orgB (or A≥<orgB, if some updates can be
propagated from the view to the source). What determines the synchronization type
of the case is the combination of two parameters: the org- and the info-symmetry of
the models. These two parameters are independent, and can be considered as two
orthogonal coordinates forming the plane in Fig. 2.4(a).

The axes X and Y are, resp., the org- and info-symmetry dimensions specified
in Fig. 2.1(b) and Fig. 2.2(b). Correspondingly, the plane has six taxonomic points
or types. They are all abstract, and their multiplicities (integers inside the circles)
show how many (up to duality) concrete subtypes they have. For example, type (11)
in Fig. 2.4(a) has four concrete subtypes formed by all possible combinations of the
concrete subtypes of its coordinates (note the cluster of four black bullets (concrete
types) in the right top corner of Fig. 2.4(b)). Each of these concrete subtypes can be
denoted by expression (1i1j) with indexes i, j ranging over set {+,−} in which ‘+’
denotes the richer symmetry ((all, all) and (yes, yes) in, resp., the org-plane in Fig. 2.1
and the info-plane in Fig. 2.2, and ‘−’ refers to the poorer symmetry ((some, some)
and (no, no) respectively). For example, code generation with full roundtripping
Example 4 is a org- and info-symmetrically rich scenario of type (1+1+) (we assume
that private data of the UML model is not ignored by the synchronization). However,
synchronization of UML class and sequence diagram Example 9 has the poor org-
symmetry, and hence its type is (1−1+).

Similarly, abstract types (01), (1
2
1), and (10) in Fig. 2.4(a) also have four concrete

subtypes, but these are formed by two pairs of mutually dual subtypes, which we do
not usually need to distinguish (see the discussion of duality in Sect. 2.2.1). Hence, we
consider these types as having two (almost) concrete subtypes, and their multiplicities
are set to 2. These subtypes are denoted by expressions (1i0) or (x1i) with x∈{0, 1

2
}

and i∈{+,−} (see Fig. 2.4(b)) with the same meaning of + for rich, and − for
poor, symmetries resp. For example, partial roundtripping with model’s private data
taken into account is typed by (1

2
1+). For an instance of type (1

2
1−), consider the

wiki example Ex. 10, when in HTML only text changes are allowed whereas layout
changes can only be made in MediaWiki.
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Abstract types (00) and (1
2
0) are also split into two concrete subtypes, but ow-

ing to a different mechanism—interaction of asymmetries. Consider, for example,
type (00), and note that synchronization behaviors of cases (A<orgB,A<infB) and
(A<orgB,A>infB) are essentially different: the former is a (relatively simple) view
computation, the latter is a (typically complex) source generation. The same mech-
anism of asymmetries interaction works for type (1

2
0). In our taxonomic diagrams,

we will distinguish abstract types split into different concrete subtypes due to asym-
metries interaction by double-framing (to recall two asymmetric relations behind the
type).

For denoting subtypes created by asymmetries interaction, it is convenient to use
the following terminology and notation. If the same model dominates in both relations
constituting a subtype of abstract type (xy), we say that relations are equally directed
and denote the subtype by (xy)�. If the dominant models are different, we say that
relations are directed oppositely and denote the subtype by (xy)>< (see Fig. 2.4(b)).
For example, view computation is typed by (00)� if the view is not updatable, and
by (1

2
0)� if some view updates are possible. In contrast, model compilation is typed

by (00)><, and code generation with partial roundtripping is typed by (1
2
0)><.

We call the taxonomic planes in Fig. 2.4(a) and (b) abstract and concrete resp.
We will also say that the former is an abstract interface to the latter.

2.3.3 Org-Symmetry × Incrementality Plane

Pairing org-symmetry and incrementality produces the taxonomic plane in Fig. 2.5.
We interpret indexes Z = 0, 1

2
and 1 as none, one, and, resp., all of the propagatable

directions are incremental. Hence, when we have an org-asymmetric case X = 0 so
that only one direction is propagatable, the case is classified by (00) if this direction is
non-incremental, and by (01) otherwise. Type (01

2
) is excluded to avoid double typing.

Other 2D types are formed by straightforward “multiplication” of the respective 1D
types (points on the axes), and can be denoted in the same way as we did above
(e.g., the central double-framed abstract type has two concrete subtypes formed by
two possible combinations of directed relations: the same model dominates in both
dimensions or each model dominates in exactly one dimension).

The plane in Fig. 2.5 is convenient for classifying practical scenarios, in which
the info-symmetry is not a primary concern. For example, all code generation sce-
narios mentioned above can be treated in either the info-symmetric way, or info-
asymmetrically, if we ignore private data (layout, timestamps, etc.) of the UML
model.

Several examples are in order. Model compilation (non-incremental by default)
in Example 2 is of type (00), whereas incremental code generation in Example 3 is
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of type (01). Roundtripping in Example 4 can be (a) incremental in both direc-
tions, which gives us type (1+1); (b) semi-incremental, as in Example 11, which is
of type (1+ 1

2
); or (hypothetically) (c) fully non-incremental when both models and

code are “compiled” into each other, which is of type (10). Incremental code gen-
eration with partial roundtripping (Example 5) will be of type (1

2
1), if code changes

are also propagated incrementally, and of type (1
2

1
2
)� otherwise. For database view

maintenance (Example 12), source computation is always incremental. If the view
is non-incrementally computable and partially updatable, its type is (1

2
1
2
)><. Mak-

ing the view computation incremental changes the type to (1
2
1), and making it, in

addition, non-updatable results in type (01).

2.3.4 Info-symmetry × Incrementality Plane

Recall that code generation can be realized non-incrementally (Example 2) and in-
crementally (Example 3), and each of these realizations can be considered either
info-symmetrically or info-asymmetrically (when private details of UML models are
ignored). Hence, the absence or presence of incrementality can be seen as a new di-
mension orthogonal to info-symmetry, and together they form an abstract taxonomic
plane in Fig. 2.6.

Axis Y is the info-symmetry axis introduced in Fig. 2.2(b), and axis Z is the
incrementality axis from Fig. 2.3(b). Their product provides six types shown in the
figure, where we use notation introduced above for Fig. 2.4. Two types are almost
concrete (grey), while the rest four are abstract with multiplicity 2. Note the double-
framed type, whose two distinct (almost) concrete subtypes, (01

2
)� and (01

2
)><, are

formed by the interaction of asymmetries similarly to the ones discussed before for
Fig. 2.4.

Subtype (01
2
)� encodes the case when both relations are equally directed (i.e.,

one side is info-dominant and its change propagation is incremental), whereas type
(01

2
)>< encodes the case they are directed oppositely. For example, incrementally
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computed non-updatable view is of type (01
2
)�, while non-incremental but updatable

view is of type (01
2
)><. We delay considering more examples until the 3D-space will be

introduced in Sect. 2.3.5, because examples without their organizational coordinate
are not very interesting.

2.3.5 3D-space and Its Indexing

Although important and useful, 2D-projections of the space lack important aspects
of synchronization if considered separately. For example, the Org×Info plane is fun-
damental and allows to distinguish view computation from source generation, but
as we have seen, incrementality constitute an important complement to the orga-
nizational dimension and also affects dominance relations between the models. For
example, classifying dominance without incrementality does not allow us to distin-
guish between model compilation and incremental code generation. On the other
hand, classifying dominance relations by their type in the Org×Inc plane is also in-
complete as incrementality affect dominance only if the dominated model has private
data, whose presence or absence is specified by the third direction (info-symmetry).
And, as we stressed several times, the plane Info×Inc only classifies the compu-
tational frameworks rather than synchronization scenarios as such—classifying the
latter needs the organizational dimension. Thus, we do need to consider the entire
3D-space Org×Info×Inc for classifying scenarios within our 3D-framework.

As we will see, the 3D-taxonomy comprises 44 synchronization types, whose mul-
titude requires a modular presentation, and a convenient notation. Particularly, we
need a notation that allows unique indexing of the types. As a modularization mech-
anism to make the taxonomy manageable, we use the idea of having abstract types
comprising several concrete subtypes as we did it when considering 2D-planes. An
abstract interface to the space is shown in Fig. 2.7 (we will refer to it as the cube),
where circles denote abstract synchronization types. Multiplicities inside circles show
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the number of concrete subtypes up to their mutual duality. Below we will first
discuss how two subtyping mechanisms introduced above for 2D-planes, and a no-
tational system for subtype indexing, work for the 3D-space; then we will consider
several examples of 3D-classification. The section culminates with a table illustrating
each type with an example of synchronization.

Subtyping Mechanisms 1: Rich vs. Poor Symmetries

One subtyping mechanism (we also say type splitting) is due to different possible
combinations of poor and rich symmetries. The corresponding abstract types are
single-framed: these are all types in the upper face of the cube except the central
one, and two lower symmetric types (100) and (101) in Fig. 2.7 (recall that both
incrementality values z = 0 and z = 1 denote symmetric cases without subtypes).
Each of the subtypes can be denoted by superindexing the corresponding symmetric
index 1 with plus(+) for the rich symmetry, or minus(–) for the poor one, as it was
explained for Fig. 2.4(b). For example, if we consider code generation and do not
ignore the UML model’s private data, then model compilation is of type (01+0); fully
incremental roundtripping is of type (1+1+1); and semi-incremental roundtripping is
(1+1+ 1

2
). If we ignore the model’s private data, all the types above remain the same

except that the second coordinate changes to 0.

Subtyping Mechanisms 2: Interaction of Asymmetries

The second cause of abstract type splitting is the interaction of two asymmetric
(i.e., directed) relations. 3D-types formed by multiplying two directed relations are
denoted by double frames: there are five such types in the lower face of the cube
(i.e., (000), (1

2
00), (101

2
), (001), (1

2
01)), and one is in the upper face (i.e., (1

2
11

2
)). The

type (1
2
,0,1

2
) in the lower face is the product of three directed relations, and hence

triple-framed; we will consider it in the next subsection.
For all double-framed abstract types x0z in the lower face, either the org-symmetry

value x, or incrementality value z, denote a symmetric case, and hence interaction of
type xz with asymmetric relation y is simple. When a 3D-type xz× y is formed, and
the direction of y coincides with the direction of the asymmetric component in xz,
we have a subtype denoted by (xyz)�. If the directions are opposite, the subtype is
denoted by (xyz)><. For example, partial roundtripping, when both code generation
and backward model updates are incremental, is of type (1

2
01)><.

The multiplicity of the type (101
2
) is 4 because two types with different asymme-

try interaction are multiplied by two concrete types of org-symmetry, A><orgB and
A≥≤orgB. Splitting of the double-framed type in the upper face is analogous to split-
ting of the central type (1

2
1
2
) in Fig. 2.5, and subtypes are denoted in a similar way

with the info-symmetry index added, i.e., by (1
2
1i 1

2
)>< if the directions are opposite,
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and (1
2
1i 1

2
)� otherwise (with i ∈ {+,−} depending on whether the info-symmetry is

poor or rich).
It is useful to remember that rich or poor symmetries are indexed by superscript-

ing the respective 1-coordinate within the 3D-type at hand, whereas the type of
asymmetry interaction is indexed by superscripting the entire 3D-type.

Subtyping Mechanisms 3: Triple-asymmetry Interaction

The triple-framed type (1
2
01

2
) is formed by multiplying the type (1

2
1
2
) in the plane XZ

(Fig. 2.5) by the (almost) concrete info-asymmetric type Y = 0. Due to the interaction
of asymmetries, this multiplication consists of four subtypes. If the directions of org-
and info-asymmetry coincide, and incrementalty goes in the opposite direction, we
have the type (1

2
01

2
)�<, while if all three directions coincide, the type is (1

2
01

2
)�>.

Note that the order of the inequality symbols in the triple superindex coincides with
the order of dimensions (org-sym, info-sym, increm).

If the directions of org- and info-asymmetry are opposite, and hence give us an
abstract type (1

2
01

2
)><, we again have two concrete subtypes: (i) (1

2
01

2
)><>, if the direc-

tion of incrementality coincides with the org-asymmetry direction, and (ii) (1
2
01

2
)><<,

if the incrementality direction coincides with info-asymmetry.

3D-Classification at Work: Examples

With the notation introduced above, all 44 concrete (up to duality) types are provided
with a unique and, hopefully, suggestive index. Its general format is (xs11 x

s2
2 x3)α,

where xi, i = 1, 2, 3 is a dimension, and its superindex si ∈ {+,−} appears near
a coordinate xi, i = 1, 2 iff the coordinate is 1 and hence denotes the respective
symmetry; then si takes the value + for the rich symmetry, and value − for the
poor symmetry. The superindex α denotes the type of asymmetry interaction and
appears iff at least two of the three coordinates take their values from set {0, 1

2
}, i.e.,

at least two of the three inter-model relations are asymmetric (and hence directed).
If exactly two coordinates are such, then α is � if the two directions coincide, and α
is >< otherwise. If all three coordinates are directed, then α takes its value from set
{�>,�<,><>,><<} according to rules in Sect. 2.3.5.

To illustrate how our 3D-indexing works, we will begin with considering several
examples classified by four concrete subtypes of the abstract type (1

2
01

2
) at the center

of the bottom face in Fig. 2.7. We will also discuss some of the logically possible but
not very practical synchronization types.

A simple example of (1
2
01

2
)�< type is a non-incrementally maintained and partially

updatable database view (Ex. 12, recall that view updates are propagated incremen-
tally by default). It is also easy to see that view maintenance of type (1

2
01

2
)�> means

that the direction of the incrementality changes: view maintenance is incremental,
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but view updates (if allowed) will regenerate the source from scratch. Of course,
although logically possible, such synchronization policy would be prohibited in the
database world. An MDE counterpart of this example is an outline JDT view of code
with a non-incremental option of code generation (Ex. 6), which seems to be a bit
less prohibitive, but also practically non-desirable scenario that allows overwriting
code changes. Thus, type (1

2
01

2
)�> classifies practically non-desirable scenarios.

For exemplifying types T1 = (1
2
01

2
)><> and T2 = (1

2
01

2
)><<, we can take the follow-

ing two versions of the partial roundtripping example Ex.5: version (E51), in which
only code generation is incremental, and version (E52), in which only code-to-model
update propagation is incremental. The latter case is again practically less desirable:
while the public part of the code update will be propagated to the model and hence
preserved in the system, the private part of the code update will be overwritten with
the next update propagated from the model. In contrast, example (E51) is practi-
cally reasonable as the info-symmetry index Y = 0 shows that we ignore the model’s
private data.

There are other logically possible but not practically desirable types. For ex-
ample, such is type T3 = (1

2
1+ 1

2
)�, for which the info-dimension is symmetric, and

hence the superindex� specifies the interaction of org-asymmetry and uni-directional
incrementality, and shows that incrementally propagated updates go from the org-
dominating to the org-dominated side. Indeed, we note that the type allows both
sides to be updated, but one direction of change propagation is non-incremental, and
hence private data on the target side will be overwritten with every synchronization.
For example, for partial roundtripping (Ex.5) of type T3, the code-to-model direction
is not incremental, and hence private data of the model will be lost when code changes
are propagated to the model.

Table 2.1 provides illustrating examples for all 44 (almost) concrete types in the
taxonomy; the rightmost column enumerates all the examples for referencing. The
rows in the table are grouped w.r.t. their values for the three dimensions: for example,
the organizational dimension for the first eight rows is 0 (see column X), which means
that all examples in these rows are unidirectional. The rows within such a group
are further sub-grouped w.r.t. their info-symmetry (column Y), and the third sub-
grouping is based on incrementality (column Z). Finally, the Subtype column gives
the unique index of an individual type, whose instance is given by the example in the
respective row (see Sect. 2.3.5-2.3.5 for our indexing notation). Rows 17, 19, 21, 23
present pairs of mutually dual cases.

The examples are mainly based on the code generation scenario in MDE, except
several cases of poor info-symmetry, illustrated with HTML-MediaWiki (Ex. 10) vari-
ations. Rows for the types that classify practically “dangerous” scenarios, in which
private data can be lost as explained above for type T3, are shaded. We also remind
that incrementality enters the asymmetry interactions only if its index Z = 1

2
.
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Table 2.1: Examples for each synchronization subtype in the 3D space. For code
generation examples, “*-interpretation” means that model’s private data are not
ignored for classifying the example.

!
!
!
!
!
!
!

X Y Z Subtype Example  

O
rg = 0 

Inf = 0 

0 (000)>< Model compilation (Ex. 2), Compilation of Java programs (Ex. 1). 1 

(000)>> Outline view in JDT (Ex.6): the view is non-editable generated non-incrementally. 2 

1 (001)>< Incremental code generation (Ex. 3). 3 

(001)>> Outline view in JDT (Ex.6): the view is non-editable generated incrementally. 4 

Inf = 1 

0 (01+0) Model compilation (Ex. 2) in the *-interpretation. 5 

(01−0) HTML-MediaWiki (Ex.10): MediaWiki generation from HTML is non-incremental and unidirectional.  6 

1 (01+1) Incremental code generation (Ex. 3) --the *-interpretation. 7 

(01−1) HTML-MediaWiki (Ex.10): MediaWiki generation from HTML is incremental and unidirectional. 8 

O
rg = ½

 

Inf = 0 

0 (½00)>< Partial roundtripping (Ex. 5): both directions are non-incremental. 9 

(½00)>> View maintenance (Ex. 12):  partially updatable views that both directions are non-incremental. 10 

½ 

(½0½)>< > Partial roundtripping (Ex. 5): only code generation is incremental. 11 

(½0½)><< Partial roundtripping (Ex. 5): only code to model is incremental. 12 

(½0½)>>< View maintenance (Ex. 12): non-incrementally maintained and partially updatable views. 13 

(½0½)>>> View maintenance (Ex. 12): non-incremental source generation and partially updatable views (source gen inc.) 
Outline view in JDT (Ex. 6): the view is partially editable, code update is non-incremental but view update is incremental. 14 

1 (½01)>< Partial roundtripping (Ex. 5): both directions are incremental. 15 

(½01)>> View maintenance (Ex. 12):  partially updatable views that both directions are incremental. 16 

Inf = 1 

0 (½1+0) Partial roundtripping (Ex.5) in the *-interpretation: both directions are non-incremental.  17 

(½1−0) HTML-MediaWiki (Ex.10): text updates on the HTML side are prohibited, both directions are non-incremental. 18 

½ 

(½1+½)>< Partial roundtripping (Ex.5) in the *-interpretation: only code to model is incremental.  19 

(½1−½)>< HTML-MediaWiki (Ex.10):  text updates in HTML side is prohibited, only HTML to MediaWiki generation is incremental. 20 

(½1+½)>> Partial roundtripping (Ex.5) in the *-interpretation: only code generation is incremental.  21 

(½1−½)>> HTML-MediaWiki (Ex.10):  text updates in HTML side is prohibited, only MediaWiki to HTML generation is incremental. 22 

1 (½1+1) Partial roundtripping (Ex.5) in the *-interpretation: both directions are incremental.  23 

(½1−1) HTML-MediaWiki (Ex.10):  text updates in HTML side is prohibited, both direction is incremental. 24 

O
rg = 1 

Inf = 0 

0 (1+00) Roundtripping (Ex. 4): both directions are non-incremental. 25 

(1−00) Bi-partial roundtripping (Ex. 8): both directions are non-incremental.  26 

½ 

(1+0½)>< Roundtripping (Ex. 4): only code generation is incremental. 27 

(1−0½)>< Bi-partial roundtripping (Ex. 8): only code generation is incremental. 28 

(1+0½)>> Roundtripping (Ex. 4): only incremental from code to model. 29 

(1−0½)>> Bi-partial roundtripping (Ex. 8):  only incremental from code to model. 30 

1 
(1+01) Roundtripping (Ex. 4): both directions are incremental. 

Outline view in JDT (Ex.6): the view is fully editable and changes are incremental in both directions.  31 

(1−01) Bi-partial roundtripping (Ex. 8):  both directions are incremental. 32 

Inf = 1 

0 

(1+1+0) Roundtripping (Ex. 4) in the *-interpretation: both directions are non-incremental. 33 

(1+1−0) HTML-MediaWiki (Ex.10): both directions are non-incremental. 34 

(1−1+0) Bi-partial roundtripping (Ex. 8) in the *-interpretation:  both directions are non-incremental. 35 

(1−1−0) HTML-MediaWiki (Ex.10):  text updates and layout updates are prohibited in HTML and MediaWiki side, respectively, and 
both directions are non-incremental.  36 

½ 

(1+1+½) Roundtripping (Ex. 4) in the *-interpretation: only one direction is incremental. 37 

(1+1−½) HTML-MediaWiki (Ex.10):  only one direction is incremental. 38 

(1−1+½) Bi-partial roundtripping (Ex. 8) in the *-interpretation: only one direction is incremental. 39 

(1−1−½) HTML-MediaWiki (Ex.10):  text updates and layout updates are prohibited in HTML and MediaWiki side, respectively, and 
only one direction is incremental. 40 

1 

(1+1+1) Roundtripping (Ex. 4) in the *-interpretation: both directions are incremental. 41 

(1+1−1) HTML-MediaWiki (Ex.10): both directions are incremental. 42 

(1−1+1) Bi-partial roundtripping (Ex. 8) in the *-interpretation:  both directions are incremental. 
Class and sequence diagrams (Ex. 9):  both directions are incremental. 43 

(1−1−1) HTML-MediaWiki (Ex.10):  text updates and layout updates are prohibited in HTML and MediaWiki side, respectively, and 
only both directions are incremental. 44 
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Having classified scenarios, we can describe a model synchronization tool by the set
of scenarios the tool supports. For example, unidirectional ATL (in its standard non-
incremental version) supports synchronization of type (010) (with its info-rich and
info-poor subtypes); GRoundTram Hidaka et al. (2011) is a tool for info-asymmetric
bidirectional transformations that supports subtypes of type (101). QVT-R is in-
tended to support bidirectional rich info-symmetric transformations (11+0); however,
semantic issues usually limit its application to the poor info-symmetric cases (11−0).

2.4 Conclusion

The modern MDE requires a shift from model transformation pipelines to networks
of interrelated models, and poses several challenges for maintaining the integrity of
this network: support of bidirectionality, incrementality, informational symmetry,
and ultimately concurrent updates create a package of non-trivial technological and
theoretical issues to resolve. Having a taxonomy of synchronization behaviours, with
a clear semantics for each taxonomic unit, can help to manage these problems. In
this Chapter, we studied the various types of synchronizations scenarios and con-
structed a 3D taxonomic space that characterizes various synchronizations scenarios.
In the presented taxonomic space, two dimensions are computational and form a
plane classifying pairs of mutually inverse update propagation operations realizing
a bidirectional transformation. The third dimension is orthogonal to the plane and
classifies relationships of organizational dominance between the models to be kept in
sync.

Our study shows that there exist 44 different concrete synchronization types, and
this number might even increase when we add further dimensions to the taxonomy.
The variety of the synchronization types implies the possible variations in the def-
inition and the maintenance of their corresponding model transformations. Such
variation besides the internal complexities of models would make the task of defining
a transformation and maintaining the model interrelations complex. To deal with
this complexity, we need to employ suitable abstraction techniques that offer declar-
ative methods with clear semantics in transformation definitions. In the appendix of
the published work by Diskin et al. (2016), the taxonomical space –presented in this
chapter– is given formal semantics that is based on the QueST approach. The remain-
ing chapters in this thesis show the concrete application of QueST in MT definitions
and aim to make it accessible to the MDE community. The presented applications
in this thesis are confined to the non-incremental, unidirectional, and informationally
asymmetric scenarios according to the terminologies of this chapter.
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Chapter 3

The Technical Framework

In this Chapter, we first define models, metamodels, and other concepts we will use.
Then, we define high-level query operations that are used in the definition of MTs in
QueST. The definitions in this Chapter are aimed to be formal, and can be skipped
by the readers interested to know about the QueST approach in action; they can go
directly to Chapter 4.

3.1 Diagrammatic Constraints

The definitions in this section are adapted from Rutle (2010) and Diskin and Wolter
(2008). The machinery introduced in this chapter is called Diagrammatic Predicate
Framework (DPF) by Rutle (2010). These definitions are necessary for the estab-
lishment of the definitions in Sect. 3.2 that are introduced in the current thesis. We
assume the reader is already familiar with the model and metamodeling concepts in
general. Although we have provided the necessary definition in this section, the reader
might see the above two references for further examples and explanations about DPF.

3.1.1 Metamodels

We first define graph and graph homomorphism.

Definition 1 (Graph). A graph g is a tuple g = (V,E, s, t) where V and E are sets
of nodes and edges, respectively; s, t : E → V are functions mapping each edge to its
source and target node, respectively.

Definition 2 (Graph Homomorphism). Let g1 and g2 be two graphs with gi =
(Vi, Ei, si, ti) for i = 1, 2. A graph homomorphism f : g1 → g2, f = (fV , fE) consist
of two functions fV : V1 → V2 and fE : E1 → E2 that preserve the source and target
functions; i.e., fV ◦ s1 = s2 ◦ fE and fV ◦ t1 = t2 ◦ fE.
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A graph homomorphism f : g1 → g2 is inclusion if both fV , fE are inclusions. We
will denote inclusion homomorphisms with hook arrows (e.g., f : g1 ↪→ g2).

A Metamodel is a graph with a (possibly empty) set of constraints (see Definition
5). If a metamodel does not have any constraints, a model of a metamodel is any other
graph with a typing mapping (i.e., a graph homomorphism) targeting the metamodel
graph (see Definition 8). However, usually metamodels have some constraints. Thus,
we first need to define constraints.

Constraints are defined independently from any individual metamodel (see Rutle
(2010), Table 3.1). They are defined as predicates whose input arities (i.e., param-
eters) have graph shape rather than being tuples. This the reason they are called
diagrammatic constraints. We syntactically define the set of constraint (indepen-
dently of any metamodel) as follows.

Definition 3 (Signature of Diagrammatic Constraints). A signature of diagrammatic
constraints Σ = (CΣ, αΣ) consists of a set of constraint symbols CΣ and a mapping
αΣ that assigns an arity graph g to each constraint symbol c ∈ CΣ.

We will refer to each c ∈ CΣ in the above definition as a Dconstraint. For
example, we might have a Dconstraint [1..∗] whose arity graph is Fig. 3.1(a). Another
example could be [⊆] whose arity graph is Fig. 3.1(b). In practice, the signature of
the diagrammatic constraints are defined in the modeling environment.

R1	

R2	
X	 Y	

(a)	

X	
R1	 Y	

(b)	

Figure 3.1: Arities of Dconstraints

As mentioned before, a metamodel without any constraint is a simple graph. The
definition of a Dconstraint over a metamodel is a graph homomorphism from the
arity of the Dconstraint to the metamodel graph. We call this a marking of the
metamodel graph with a Dconstraint.

Note that constraints are applied to a graph shape. Thus, there might be con-
straints whose arity is a single node, or whose arity is a single arrow, or whose arity
is an arbitrary finite graph. The first two types are just special cases of the general
case.

Definition 4 (Marking of Metamodel with Dconstraint). A marking Mc of a (meta-
model) graph GM with a Dconstraint c is defined as a graph homomorphism from
αΣ(c) to GM.
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Gate	 out	

In	
Port	

X	
R1	

Y	 X	
R1	

Y	

Figure 3.2: Explicit definition of two atomic constraints.

Each marking of a metamodel is called an atomic constraint or an instance of a
Dconstraint. For example, Fig. 3.2 depicts two atomic constraint that are instances
of the same Dconstraint [1..0].

We are ready to define metamodel as follows.

Definition 5 (Metamodel). A metamodel M is a graph GM that is equipped with a
(possibly empty) set of markings with Dconstraints taken from a predefined signature
of diagrammatic constraints.

3.1.2 Models

If a metamodel M is not being marked with any Dconstraint (i.e., does not have any
atomic constraints), any other graph typed over M is a valid model for the metamodel.
The atomic constraints restrict the space of valid models to those that are compatible
with the constraints. To make these statements precise, we first need to define the
semantics of each Dconstraint; then, we define the compatibility notion.

Definition 6 (Semantics of Dconstraints). A semantic interpretation [[..]]Σ of a sig-
nature of diagrammatic constraints Σ = (CΣ, αΣ) is given by a mapping that assigns
to each Dconstraint c ∈ CΣ a set [[c]]Σ of graph homomorphisms i : O → αΣ(c) that
is called valid instances of c.

A modeling framework might employ different approaches in practice to spec-
ify Dconstraint semantics. One approach is to assign a boolean function to each
Dconstraint c that takes a graph homomorphism i : O → αΣ(c) as input and returns
either true or false, depending on the Dconstraint intended semantics. Another ap-
proach is to consider the converse of the homomorphism mappings, and assume that
nodes in the arity graph (of Dconstraints) are interpreted as sets and arrows are
interpreted as relations (see Sect. 4.1.2) and use concise relational notation to specify
the semantics (see Table 3.1 in Rutle (2010)). Thus, the language used to specify
the semantics of the constraints is a parameter to the DPF framework.
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Models of a metamodel should be compatible with the atomic constraints. To
define the compatibility notion precisely, we resort to the pullback operation in the
category of graphs and homomorphisms. For further information about the Pull Back
(PB) operation in this Category see the book by Ehrig et al. (2006).

Definition 7 (Constraint Compatibility). A typing mapping i : O → GM is compat-
ible with a marking (i.e., atomic constraint) Mc : c→ GM on a metamodel M if i′ in
the following pullback diagram is an element of [[c]]Σ (i.e., i′ ∈ [[c]]Σ).

GM c

O O′

i

Mc

i′

M ′
c

To check the compatibility of the constraint c, we only care about the parts of the
typing mapping whose image is the same as the image of the c marking (i.e., image
of Mc). Thus, according to the above definition, we extract this part (i.e., O′ → c)
and check whether it is a valid homomorphism with respect to the c semantics.

We now define a model of the metamodel as a typing mapping that conforms to
all the atomic constraints defined over the metamodel graph, as follows.

Definition 8 (Model). A model M conforming to a metamodel M is a pair M =
(O, Tm) such that O is a graph, and Tm : O → GM is a graph homomorphism that is
compatible with all the markings (i.e., atomic constraints) on M.

Morphism Tm : O → GM is sometimes called a pre-instance of the metamodel
M. If a pre-instance is compatible with all the atomic constraints of M, it is called a
(valid) model of M.

Definition 5 does not include the possible attributes1 that might be associated to
nodes and arrows in a metamodel. Accordingly, Definition 8 does not capture the
semantics (i.e., values) of such attributes. A more detailed formalization of models
and metamodels might be considering metamodels as attributed graphs, and models
as typed attributed graphs (see Ehrig et al. (2006) for the definition of these terms).
The syntax and semantics of the constraints defined in Definition 3 and Definition
6 in this thesis are, accordingly, based on this simpler interpretation of models and
metamodels. Thus, they are not intended to capture the constraints defined over
the attributes of the nodes and arrows in metamodels. Given these consideration
and owing to the assumption that models are considered finite graphs in MDE, the
verification of the constraints compatibility in Definition 7 is always decidable.

1By attributes, we almost mean what is called properties in UML
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3.2 Diagrammatic Queries

Query operations are the main building blocks of MT definitions in QueST (see Chap-
ter 4). The queries in QueST are defined over metamodels and are executed over
models. The input and output parameters in these queries are collections and the
shape of these parameters are graphical. This is the reason we call them diagram-
matic queries (Dquerys). In this section, we answer questions such as: What is the
Dquery syntax? How is the semantics of a Dquery defined? How is a Dquery defined
over a metamodel? Finally, how is it executed over a model? We also show that the
definition of Dquery execution is compatible with the query concepts in the sense
that the execution of Dquerys leave the original model elements intact.

3.2.1 Query Syntax

Each Dquery is syntactically identified with a query symbol and its corresponding
input/output arity that is a graph homomorphism defined as follows.

Definition 9 (Diagrammatic Arity). A diagrammatic arity A : Ain Aout is
an inclusion graph homomorphism with a domain Ain and a codomain Aout. Ain and
Aout are called the input and the output arity, respectively.

Each modeling framework defines a set of Dquerys (i.e., the query language sig-
nature). The users use these Dquerys to define MT definitions in QueST.

Definition 10 (Signature of Diagrammatic Queries). A signature of diagrammatic
queries D = (QD , αD) consists of a set of Dquery symbols QD and a mapping αD

that assigns a diagrammatic arity A to each Dquery symbol Q ∈ QD .

For example, we can define a signature that includes three query operations Q1,
Q2, Q3, whose corresponding diagrammatic arities are depicted in Fig. 4.15, Fig. 4.16
and Fig. 4.17, respectively.

As seen above, a Dquery signature (and also its semantics – as defined in Definition
14) is defined independently of any metamodel. To define a Dquery over a metamodel,
the user marks the metamodel graph with the Dquery’s corresponding input arity.
Such a marking is a graph homomorphism from the input arity of the Dquery into
the metamodel graph as follows.

Definition 11 (Marking of Metamodel with Dquery). Let Qin be the input arity of
a Dquery Q. A marking m of a (metamodel) graph GM with the Dquery Q is a graph
homomorphism m : Qin → GM.
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Metamodel Augmentation

Whenever a metamodel is marked with the input arity of a Dquery Q, the QueST
framework will augment the metamodel –by adding new nodes and arrows– accord-
ing to the Q output arity. The augmentation process is an application of a graph
transformation rule defined as follows.

Definition 12 (Metamodel Augmentation). An augmentation of a metamodel graph
GM with a Dquery marking m : Qin → GM is defined by the following pushout dia-
gram:

Qin Qout

GM Q(GM)

i

m m′

i′

PO

In the above diagram, Q(GM) is called the augmented metamodel (graph). Note
that i′ is an inclusion mapping, since i is so1. This means that the original elements
in the metamodel are kept intact during the augmentation process. m′ associates
the newly generated elements on the augmented metamodel with their corresponding
elements in the Dquery output arity. For the concrete examples of augmentation
process, see Sect. 4.4.

3.2.2 Dquery Semantics

We consider the input values of each Dquery to be homomorphisms into the input
arity of Dquery. So, we first define the collection of such homomorphisms as follows.

Definition 13 (Model Space). The model space G of a graph G is the collection of
all homomorphisms (i.e., models) t : V → G, such that V is just another graph.

Let Qin be the input arity of a Dquery Q. For a given input value (e.g., t1 :
V → Qin, t1 ∈ Qin), the semantics of Q should specify the way t1 will be augmented:
which elements will be added to V , and over which elements in Qout−Qin these new
elements will be typed. The constraint over the Dquery semantic specification is that
they should build pullback diagrams as follows.

Definition 14 (Semantics of Dquerys). Let Qin be the model space of the input arity
of the query Q. A semantic interpretation [[..]]D of a diagrammatic operation signature

1In a general category, pushouts do not necessarily preserve monomorphisms. However, this holds
true in the category of graphs and graph homomorphisms (see Ehrig et al. (2006), Fact 2.17)
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D = (QD , αD) is given by a mapping that assigns to each Dquery Q ∈ QD a function
[[Q]]D that accepts a model min : V → Qin from the model space Qin as an input, and
returns a pullback diagram as follows:

Qin Qout

V V ′

i

min

i′

mout

In the above definition, i and i′ are inclusion homomorphisms and min and mout

are models in the model spaces of Qin and Qout, respectively. Note that the semantic
function gets a model and returns a diagram. However, it is sometimes easier to
think it gets as input a model min : V → Qin and returns as output a model mout :
V ′ → Qout, and implicitly consider the existence of the above pullback diagram. The
reason we require the semantic function to return a pullback diagram is because it
ensures that no new data is added to the original types in Qin. This is a fundamental
requirement that distinguishes queries from updates.

We assume that all our queries are computable; that is, there is an algorithm that
takes a model (i.e., a typing mapping) as an input, and return a pullback square of
mappings as the output as shown above.

Query Execution

Let Qin ↪→ Qout be the diagrammatic arity of a Dquery Q, and assume the marking
Qin → GM is defined over the metamodel graph GM. Thus, we will have the following
diagram (after the execution of the metamodel augmentation step – see metamodel
augmentation in Sect. 3.2.1):

Qin Qout

GM Q(GM)

m m′

PO

Let also t : O → Qin be a valid model of the metamodel M. Thus we will have
the following diagram.
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Qin Qout

GM Q(GM)

O

i

m m′

q

t

We also assume that [[Q]] (i.e., the semantics of Q) is provided according to Defi-
nition 14. The QueST framework proceeds with the execution of Q as follows:

1. Using the marking m and the typing mapping t, the framework executes the

pullback operation on the diagram Qin m
↪−→ GM

t←− O as follows.

Qin Qout

GM Q(GM)

O∗

O

i

m m′

q

j

b

t

PB

The pullback execution generates Qin b←− O∗
j−→ O from which the homomor-

phism Qin b←− O∗ is the value homomorphism for the Q operation. (It is, in fact,
a model within the Qin model space.)

2. Using [[Q]], the framework completes the diagram in the previous step to the
one below. Note that the completed back face in a pullback diagram according
to Definition 14.

Qin Qout

GM Q(GM)

O∗ O′∗

O

i

m m′

b′

q

i′

j

b

t
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3. The framework executes the pushout operation on the bottom face (i.e., O ←−
O∗ ↪−→ O′∗) in the above diagram and brings back the results of the query
execution to the model as follows.

Qin Qout

GM Q(GM)

O∗ O′∗

O O′

i

m m′

b′

q

i′

j

b

i′′

t PO

4. Finally, it draws a homomorphism t′ : O′ → Q(GM) that completes the picture
to the one depicted in Fig. 3.3. This homomorphism is uniquely identified as
follows. Since the following diagram (i.e., the bottom face in the cube) is a
pushout diagram,

O∗ O′∗

O O′

i′

j j′

i′′

for any other object K as shown in the diagram bellow with homomorphisms
x : O → K and z : O′∗ → K for which the following diagram commutes, there
must exist a unique homomorphism t′ from O′ to K also making the diagram
commute:

O∗ O′∗

O O′

K

i′

j j′ z

i′′

x

t′

Let us take x, z, and K as the following: x = t◦q, z = b′ ◦m′, and K = Q(GM).
Since j ◦ x = i′ ◦ z (because of the commutativity of the diagrams in the other
surfaces), there exists a unique homomorphism from O′ to Q(GM).
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Qin Qout

GM Q(GM)

O∗ O′∗

O O′

i

m m′

b′

q

i′

j

b

i′′

t t′

Figure 3.3: A Dquery Execution cube

An interesting fact about the diagram in Fig. 3.3 is that the front and the right
faces are also pullback diagrams as shown by the following lemma.

Lemma 1. In the diagram at Fig. 3.3 the front and right faces are pullbacks.

Proof. The category of graphs and homomorphisms is an Adhesive Category, and
according to the Adhesive Category definition, pushouts along mono morphisms are
VK squares (Ehrig et al., 2006). The VK square definition is as follows. In Fig. 3.4,
a pushout (1) is a VK square if, for any commutative cube (2) with (1) in the bottom
and where the back faces are pullbacks, the following statement holds: the top face
is a pushout iff the front faces are pullbacks (we have borrowed the definition from
Ehrig et al. (2006)).

Pull	Back	 Pull	Back	

D	

A’	
C’	

B’	
D’	

A	
C	

B	
D	

A	
C	

B	(1)	

PushOut	

(2)	

Figure 3.4: Van Kampen square

Thus, according to the above definition, since in Fig. 3.3 the top face is a pushout
along a monomorphism, and the left and the back faces are pullbacks, and further the
bottom face is a pushout, then the right and the front faces must be pullbacks.
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The front face being a pullback in Fig. 3.3 clarifies that a Dquery execution does
not add any new data to the original types in the metamodel, as is expected. The
right face being pullback ensures that any new data (that is typed over the image of
m′) in the model is exactly the data generated by the Dquery.

The VK diagram in Fig. 3.3 is created as a result of one query execution. Lets
call it V K1. The next query execution would create another VK diagram V K2. The
front right edge of V K1 (i.e., t′ in Fig. 3.3) will be the front left edge of V K2. In
a similar way, the third query execution making V K3 will have a shared edge with
V K2.

3.3 Conclusion

This chapter provides the basic definitions necessary for the introduction of the QueST
approach. Metamodels are defined to be diagrammatic specifications –i.e., graphs
with diagrammatic constraints (Dconstraints). Diagrammatic constraints are defined
as predicates whose input parameters are of graph shape rather than tuples. They
are defined independently of any metamodel and are attached to a metamodel during
its definition. Models of a metamodel are defined to be homomorphisms into the
metamodel graph that are compatible with its constraints.

This chapter also defines high-level diagrammatic query operations (Dquerys).
Each Dquery has a graph shape input/output arity. Similarly to Dconstraints,
Dquerys are defined independently of metamodels or any MT definition. An ap-
plication of a Dquery over a metamodel is defined by a homomorphism from its input
arity into the metamodel graph. The chapter defines the constraints for the Dquery
semantic definitions and precisely explains each Dquery execution over a provided
model based on its provided semantic definitions. The chapter also shows that the
semantic definition of Dquerys are consistent with the general functionality of queries
as they keep the original elements intact by building pullback diagrams. Examples of
DQF queries applications will be provided in Chapter 4 when we explain the QueST
approach. All the model and metamodel graphs considered in the thesis are as-
sumed to be finite. All the Dconstraints considered in this thesis are assumed to be
decidable, and all the Dquery operations are computable.
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Chapter 4

Model Transformation in QueST

“The art of programming is the art of organizing
complexity, of mastering multitude and avoiding
its bastard chaos as effectively as possible.”

Edsger Dijkstra

In this chapter, we explain the QueST approach to the definition and the execution
of model transformations. As mentioned earlier in Chapter 1, the transformation def-
inition in QueST is similar to the definition of the views in relational databases; that
is, a target model is defined to be a view over the source model. The view specifica-
tion is defined via a series of queries defined over the source metamodel. Accordingly,
an MT execution happens by executing these queries over the provided source model
and generating the target model elements in a straightforward relabelling process.
We will start our explanation of the above concepts by introducing a simple example
and applying the QueST approach to it.

4.1 The HappyPeople Example

In QueST, a model transformation is defined on the metamodel layer and is executed
on the model layer. Thus, we first introduce the metamodels that are involved in the
running example.

4.1.1 Metamodels

In Chapter 3, we defined metamodels to be a graph with a (possibly empty) set of
diagrammatic constraints. We might refer to the nodes in a metamodel as either
classes or types, and edges as either arrows or associations. Fig. 4.1 shows the source
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Car$Person$
likes$

owns$
Vehicle$HappyPerson$

drives$

Source'Metamodel' Target'Metamodel'

[1..*]$

Figure 4.1: The HappyPeople example metamodels

Car	Person	
likes	

owns	
Vehicle	

HappyPerson	

drives	

Source	Metamodel	 Target	Metamodel	

map1	
[1..*]	

Figure 4.2: QueST definition of the HappyPeople MT

metamodel on the left and the target metamodel on the right. The source metamodel
has two nodes, Person and Car, and two arrows, likes and owns between Person and
Car indicating whether or not a person likes or owns a car in a provided model. The
[1..*] multiplicity constraint on owns denotes that no car is left without an owner in a
corresponding model. This can be precisely specified as ∀c : Car,∃p : Person|(p, c) ∈
owns. The target metamodel also has two nodes, HappyPerson and Vehicle, but
there exists only one arrow called drives between the latter two nodes denoting
whether or not a (happy) person drives a vehicle.

4.1.2 Metamodel’s Set/Relation Interpretation

In Chapter 3, we defined the models of a metamodel to be a family of homomorphism
into to the metamodel graph that are compatible with the metamodel constraints (see
Definition 8). In a model t : O →M, the graph O is called the datagraph of the model.
We refer to the nodes and edges of a datagraph as objects and references, respectively.
For example, Fig. 4.3 illustrates a model of the source metamodel in Fig. 4.2. This
datagraph has eight nodes: pi, i = 1..3 typed over Person, and ci, i = 1..3 typed over
Car. It has seven references: li, i = 1..4 typed over likes, and oi, i = 1..3 typed over
owns. The colon notation in this figure is used as an abbreviation to typing mapping
links (e.g., l3:likes means l3 is typed over likes).

The directions of the typing mapping links —as seen in Fig. 4.3— are from the
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Figure 4.3: Model of a metamodel as a typed graph
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datagraph to the metamodel graph. However, it is sometimes convenient to work
with the converse of these links; that is, the converse links connect each class to its
corresponding objects, and each association to its corresponding references in the
datagraph. Fig. 4.4 shows the same model as Fig. 4.3 at which the typing mapping
links are inverted. By inverting typing mapping links, Car is now mapped to three
elements ci, i = 1..3, and Person is mapped to three elements pi, i = 1..3. Thus, we
can interpret Car and Person as follows:

• [[Car]] = {ci}, i = 1..3

• [[Person]] = {pi}, i = 1..31.

The story of arrows is different. Two arrows in Fig. 4.4 are mapped as follows:
the arrow likes is mapped to references li, i = 1..4 and the arrow owns is mapped to
references oi, i = 1..3. Thus, they will be interpreted as follows:

• [[likes]] = {li}, i = 1..4

• [[owns]] = {oi}, i = 1..3

The elements of the above sets are edges in the data graph. Each edge has a source
and a target node. If we replace each edge with its corresponding pair of source and
target nodes, we will have the following sets of pairs.

• [[likes]] = {(p1, c1), (p1, c2), (p2, c2), (p3, c3)}

• [[owns]] = {(p1, c1), (p3, c2), (p3, c3)}

In replacing the edges with their corresponding pairs, it is possible we end up having
duplicates in either [[likes]] or [[owns]]. The reason is that nothing in the metamodel
definition (see Definition 8) prevents the two distinct edges having the same source
and target objects being typed over the same arrow in the metamodel. If we add a
constraint to our metamodel definition to prevent such cases2, we can avoid duplicates
in the above collections. By imposing this restriction, it is easy to see that the above
pairs are occurrences of the two following relation declarations.

• likes ⊆ Car × Person

• owns ⊆ Car × Person
Remark 1. In this thesis, we assume that two distinct references whose source and
target objects are the same in the datagraph can not be typed over the same arrow in
the metamodel graph.

1Instead of [[Car]] = {ci} notation, we might simply write Car = {ci}.
2UML declares such a constraint by declaring the respective association end to be unique.
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4.1.3 MT Specification

We intend to define a simple transformation between the models of the metamodels
in Fig. 4.1. The transformation specification is to translate models specifying people
who own and like cars to models of happy people who drive vehicles. There are two
requirements for the translation. The first is that cars and vehicles are considered to
be synonymous: every car in a source model should be a vehicle in the target model,
and vice versa. The second is a (very modest) criterion of happiness: A person in the
source is considered to be happy if there is at least one car that he both likes and
owns, and then he is allowed to drive such a car (or cars). In the next section, we
will see how we can define this transformation in QueST.

4.2 MT Definition in QueST

The target metamodel structure acts as a guideline in proceeding with the transfor-
mation definition in QueST; that is, for each element of the target, we need to identify
its corresponding element in the source, and if such an element does not exist, we
define it via queries. Thus, each class or association type in the target metamodel
should be mapped to a class or association type either originally present in the source
metamodel or defined by queries. Semantically, the mappings specify how the in-
stances of the target types are generated: if type X in the target is mapped to type Y
in the source, for every instance of X, an instance of Y will be generated during the
transformation execution1. We will define this execution semantics more precisely in
Sect. 4.3.1.

The user defines the target-to-source mappings according to the provided informal
MT specification. For example, in the running example, class Vehicle is mapped to
class Car (see map1 in Fig. 4.2), since there should be a one-to-one correspondence
between them, given the requirements of this MT in Sect. 4.1.3. For the other elements
in the target, we do not have corresponding direct elements in the source, so we need
to define the required elements by applying queries.

4.2.1 Metamodel Augmentation

Many target types do not usually have corresponding direct types among the source
metamodel elements; for instance, according to the HappyPeople specification, the
source metamodel does not have types directly corresponding to HappyPerson and
drives from the target metamodel. The QueST idea is to make explicit such “miss-
ing” elements by finding suitable queries against the source metamodel. Application

1Note that though the transformation will be executed in the source-to-target direction, the
mappings go in the opposite direction.
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Figure 4.5: Metamodel Augmentation

of such queries will allow us to define derived elements on the source side, and com-
plete the mapping by linking HappyPerson and drives with these derived elements.
We define the following three queries, namely, Q1, Q2, and Q3 to augment the source
metamodel:

1. Q1: Relation Intersection. This query takes the relation symbols owns

and likes, and produces another relation symbol Qboth that semantically is
their intersection relation (note the dashed curved green arrow labeled Qboth

in Fig. 4.5).

2. Q2: Domain Selection. This query takes the relation symbol Qboth as
an input and produces a sort symbol QPerson and a relation symbol QisA

from QPerson to Person. Semantically, QPerson is a subset of Person for
which the relation Qboth is defined and QisA is a subsetting relation (note the
QPerson dashed block square and the hollow-ended dashed green arrow QisA

from QPerson to Person denoting a subsetting relation in Fig. 4.5).

3. Q3: Arrow Composition. This query takes the relation symbols Qboth and
QisA as inputs and produces another relation symbol called Qdrives. Seman-
tically, Qdrives is the composition of QisA and Qboth (see the dashed green
arrow labeled Qdrives between QPerson and Car.) In fact, Qdrives = Qboth

as a set of pairs, but their domains are different.

As depicted in Fig. 4.5, definitions of the queries augment the source metamodel
by introducing new classes and associations. These augmented elements are all shown
with dashed green borders. The names for the derived elements are all prefixed with
the letter ‘Q’ to distinguish them from the original metamodel elements.
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Figure 4.6: QueST definition of the HappyPeople MT
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Figure 4.7: An MT definition abstract view in QueST

4.2.2 View-mapping Completion

After the source metamodel is appropriately augmented by the queries, we can com-
plete the MT definition by mapping the remaining unmapped elements in the target.
As shown in Fig. 4.6, map2 and map3 complete the target-to-source mapping in
our example. All the target-to-source mappings1 (i.e., map1 , map2 and map3 ) are
collectively encapsulated within the block arrow called view mapping in this figure.

Fig. 4.7 abstracts away some details from the Fig. 4.6 and abstractly depicts
a declarative MT definition structure in QueST. S and T are the source and target
metamodels, respectively; Q(S) is the augmented metamodel. V is the view mapping,
and I is an inclusion mapping denoting that S ⊆ Q(S). Note that we assume V to
be total but not necessarily injective. This pattern is followed by all the QueST MT
definitions.

4.2.3 Incremental Process

Given the source and the target metamodels, the user needs to complete a QueST
definition by following the below process:

1. Analyze the meaning of the elements (i.e., nodes and arrows) of the metamodel
T to find what they correspond to in model S.

1Note that what we call mapping here might also be called linking in the literature.

57



Ph.D. Thesis - Hamid Mohammad Gholizadeh McMaster - Software Engineering

2. For all elements in T with no corresponding match in S, find a query to define
it over S; if impossible, then transformation fails.

3. Augment S to Q(S).

4. Map T to Q(S).

In the above process, Step 3 is a heuristic task and could be carried out incrementally
as follows. Q(S) might include the definition of multiple queries, say Q1 to Qn. Not all
of these queries need to be defined over the original source metamodel; that is, each
query definition might use nodes and arrows added to the metamodel by the previous
queries. If the notation Q1(S) is fixed to denote the augmented metamodel after a
definition of Q1 over the metamodel S, then by the definition of a series of queries
Qi(i = 1..n) over S, the final augmented metamodel will be denoted asQn(..(Q1(S))..).
Therefore, Q(S) in Fig. 4.7 would be equal to Qn(..(Q1(S))..). Note that both the
value of n and the type of each individual query operation Qi vary for each particular
MT definition. For example, since we used three queries in the HappyPeople example
definition, we would have Q(S) = Q3(Q2(Q1(S))). Note the important property of
the QueST queries –i.e., their application over a metamodel augments it to another
metamodel1– allows this chaining of query definitions consecutively.

.

4.3 MT Execution in QueST

The target model is generated following two consecutive phases: 1) Execution of the
queries in the corresponding MT definition over the source model. 2) Retyping of
the query results in the previous phase to produce the target model elements. In the
following, we explain these two phases.

4.3.1 Query Executions

After an MT is defined at the metamodel level, any provided valid source model can
be translated to the corresponding target model using the definition. Suppose that
we have the definition in Fig. 4.7 and a model S typed over the source metamodel
S is provided; thus, we will have the structure shown in Fig. 4.8. T1 is the typing
mapping specifying the types of the elements in S (see Chapter 3 for more details
about typing mappings). Recall that Q(S) in Fig. 4.8 represents the definition of a
series of queries; that is, Q(S) = Qn(..(Q1(S))..). All of these queries are consequently
executed over the provided model S starting from Q1. The execution of each query

1See Definition 12 in Sect. 3.2
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T

Figure 4.8: An MT execution initial structure
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S
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Figure 4.9: Execution of all queries

adds new elements to the model. After the execution of all queries, we will have a
structure that contains all the query results as well as the source model elements. We
abstractly depicted this structure by a block square labeled as [[Q]](S) in Fig. 4.91.
[[Q]](S) connects to the initial diagram via two mappings as seen in the figure: 1) T2

is a typing mapping associating the query results (and the original elements) with
their corresponding types in the augmented metamodel; 2) I is an inclusion mapping
explicitly specifying that the main model elements are included in [[Q]](S). The entire
execution process is abstractly shown by a chevron labeled as “:qExe” in the figure.

As an example, let us consider that the source model in Fig. 4.10(a) is provided
as an input to the transformation definition in Fig. 4.6. Fig. 4.10(b) shows the result
of the first query (i.e., Q1) execution on this model. Recall that Q1 is the intersection
of likes and owns. Since p1 in the model owns and likes c1, it will have a Qboth

relation with c1. Similarly, p3 will have a Qboth relation with c3 as it both owns and
likes c3. Thus, as seen, two dashed blue arrows (typed as Qboth) are created as the
result of Q1 execution in Fig. 4.10(b).

The next query (i.e., Q2) execution applies on the result of the previous query. Q2

is the Domain Selectionquery and selects the Qboth domain and calls it QPerson. p1

and p3 comprise the Qboth domain; thus, as seen in Fig. 4.10(c), two new nodes typed
as QPerson are added to the model; Accordingly, these two nodes are connected to
their corresponding origins (i.e., p1 and p2) via two new arrows typed as QisA (see
Q2 definition in Page 56).

1In a color display or print, the reader might expect the following semantics for the colors in this
figure and almost all other figures and diagrams in this thesis: black (or grey) implies elements that
are given, green implies elements produced by the user, and blue implies elements automatically
generated (i.e., algebraically derived).
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Figure 4.10: HappyPeople definition execution over a provided sample source model
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Figure 4.11: The structure before relabelling process

Finally, the last query (i.e., Q3) executes. This query is the composition of Qboth
and QisA. Thus, two new arrows both typed as Qdrives (i.e., the query result type)
are added to the model as illustrated in Fig. 4.10(d).

4.3.2 Retyping Process

After all of the queries are executed, we will have the structure shown in Fig. 4.11.
The upper part of the figure is the MT definition (see Fig. 4.7) and the left square
is the result of the query execution phase (see Fig. 4.9). In the retyping phase, the
target model elements are generated by relabelling the elements in the augmented
model (i.e., [[Q]](S)). This relabelling/retyping process is carried out according to the
view mapping (i.e., V) definition in Fig. 4.11.

The semantics of the relabelling process can be concisely described as a pull-back
(Ehrig et al., 2006) operation over the diagram [[Q]](S) → Q(S) ← T in Fig. 4.11.
Thus, this figure is completed to obtain the one depicted in Fig. 4.12. The “:rType”
chevron in this figure abstractly represents the retyping (i.e., pullback) operation. T
is the generated target model, T3 is its corresponding typing mapping, and V is the
traceability mapping tracing back the generated elements to their origins. Note that
the category of graphs does have pullbacks (Ehrig et al., 2006) and we can always
compute “:rType”. However, there might be a question whether the model produced
by this pullback satisfies the constraints of the target metamodel. Here we indeed
need to require good properties of V (i.e., compatibility of V with constraints in T and
Q(S) –see Diskin and Wolter (2008)), but what we actually need is good properties
of queries that would provide these good properties of V .

The machinery of the pullback operation ensures that the generated targets are al-
ways structurally correct (i.e., they are pre-instances). However, the checking whether
they are also valid models is an additional step that can be carried out as follows1.
All the target metamodel constraints are expressed as a set of properties over the
QueST MT definition. This way, they can be verified using the techniques explained

1In the current MT approach –such as ATL and ETL– MT definitions do not ensure the generated
targets will be pre-instances. The user needs to verify this after every transformation execution.
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in Chapter 6.
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T1	 2	

T

:rType	
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Figure 4.12: Query Execution and Retyping operations

The “:rType” operation in Fig. 4.12 simply performs the following action: the
elements of [[Q]](S) that are typed over an element falling at the image of the view-
mapping V are picked as elements in the target model; then, the type of these elements
are changed to the corresponding types in the target metamodel. More precisely, the
following pseudo code imperatively specifies the relabelling procedure.

1 foreach (t in T) {

2 foreach (s in [[Q]](S)) {

3 if (T2(s) == V(t)){
4 add s to T ;
5 T3(s) = t;
6 }

7 }

8 }

In the above pseudo code, lines 1 and 2 iterate over the elements in the target
and the augmented source metamodel, respectively. Then, if the type of an element
in the augmented metamodel is equal to an element in the V codomain (see line 3),
that element is added to the target model (line 4), and its type is changed accordingly
(line 5).

Fig. 4.13 provides a concrete illustration of the running example structure before
the relabelling process. This figure shows the internal structures of the abstract node
blocks in Fig. 4.11. However, except the internal links of the view mapping V , the
internal links of the other block arrows are either hidden entirely or shown using colons
to avoid cluttering. For example, the typing mapping links of the source model and
the augmented model are shown by colons and the mapping links between the source
metamodel and the augmented metamodel are hidden. After an application of the
above relabelling procedure on the structure in Fig. 4.13, the elements in the target
model will be generated as seen in Fig. 4.14. As seen, five nodes and two arrows are
added to the target model. Since HappyPerson is mapped to QPerson in the MT
definition, all the elements in the augmented model with the type QPerson should
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Figure 4.13: The query execution phase for the running example

be added to the target model and their type should change to HappyPerson; thus,
two nodes h1 and h2 are added because of the two nodes of type “QPerson” in the
augmented model. Similarly, the three nodes v1, v2 and v3 are added to the target
model, because of three cars, and, finally, two arrows d1 and d2 are added because
of the two arrows of type “Qdrives” in the augmented model. The entire blue block
(with its respective typing mapping) constitute the generated target model for the
provided source model.

:QPerson	

:Q
isA

	
:Q
bo
th
	

:Q
dr
iv
e	

p1:Person	 p2:Person	 p3:Person	

c1:Car	 c2:Car	

:li
ke
s	

:o
w
ns
	

:o
wn

s	

:lik
es
	

:lik
es
	

c3:Car	

:li
ke
s	

:o
w
ns
	

:Q
bo
th
	

:QPerson	

:Q
isA

	

:Q
dr
iv
e	

p1:Person	 p2:Person	 p3:Person	

c1:Car	 c2:Car	

:li
ke
s	

:o
w
ns
	

:o
wn

s	

:lik
es
	

:lik
es
	

c3:Car	

:li
ke
s	

:o
w
ns
	

Car	Person	
likes	

owns	
[1..*]	

:qExe	

Car	Person	
likes	

owns	
Vehicle	

HappyPerson	

drives	

QPerson	
Qdr

ive	

Source	Metamodel	

QisA	
Qboth	

[1..*]	

h1:HappyPerson	

d1
:d
riv
e	

v1:Vehicle	 v2:Vehicle	 v3:Vehicle	

h2:HappyPerson	

d2
:d
riv
e	

:rType	

Figure 4.14: Target Model Generation.
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4.4 Diagrammatic Queries Explained

In the previous sections, we explained that the QueST queries augment metamodels
by adding new elements to them. In the following, we will explain that these queries
are diagrammatic operations (Dqueries); that is, their input and output arities are
graphs that are related by an inclusion homomorphism. We will also demonstrate that
the query applications are expressible by graph transformations, and their executions
construct pullback completion diagrams.

4.4.1 Queries’ Syntax

Recall from the HappyPeople example that the first query Q1 takes the likes and
the owns associations, and returns an association named Qboth (see Q1 definition at
page 56.) Syntactically, this intersection operation is applicable, provided that the
two input associations share common source and target domains. More precisely, Q1

is applicable when its input elements are in the form of the graph Q1
in illustrated in

Fig. 4.15. Q1
in consists of two arrows R1 and R2 with their corresponding domains

and codomains (labeled as X and Y , respectively). We call Q1
in the input arity of the

arrowIntersection operation. This operation application changes Q1
in to another

graph Q1
out illustrated in Fig. 4.15; that is, it adds one arrow R3 to the input arity

whose domain and codomain are X and Y , respectively. As seen in Fig. 4.15, the
output arity includes the input arity element; this is explicitly expressed by the dotted
links connecting the original elements in the input to their corresponding elements in
the output arity graph. The entire diagram in Fig. 4.15 is called the diagrammatic
arity of the arrowIntersection operation.

X	

Y	R1	

R2	

Q1in	

X	

Y	R1	

R2	

Q1out	
R3	

Figure 4.15: The arrowIntersection operation arity

Similar to the arrowIntersection operation above, the other operations used in
the HappyPeople example are also diagrammatic. The diagrammatic arity of the Q2

(i.e., domainSelection) operation is depicted in Fig. 4.16. As seen, the input arity
Q2

in consists of an arrow R1 with its corresponding domain X and codomain Y . The
operation takes this arrow and adds two new elements: 1) The node Z, and 2) The
arrow R2 between Z and X.
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R2	

X	

Z	
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Y	R1	

Q2in	 Q2out	

Figure 4.16: The domainSelection operation arity
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R1	
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Q3in	 Q3out	

Figure 4.17: The arrowComposition operation arity

Finally, Fig. 4.17 depicts the diagrammatic arity of the last operation Q3 (or
arrowComposition). The operation input arity consists of two arrows R1 and R2

such that the codomain of R1 coincides with the domain of R2. The output arity
adds a new arrow called R3 connecting the domain of R1 to the codomain of R2.

4.4.2 Metamodel Augmentation

To define a Dquery on a metamodel, the metamodel should be marked with the
Dquery input arity. Marking of a metamodel is precisely defined as a graph homo-
morphism whose domain is the input arity of the operation. For example, Fig. 4.18
depicts the marking of the source metamodel of the HappyPeople example with the
arrowIntersection input arity. X is mapped to Person, Y is mapped to Car, and
R1 and R2 are mapped to the like and the owns associations, respectively. Note that
the graph homomorphism indicating the markings does not need to be an injection.
For example, Fig. 4.19 illustrates a marking that is not injective, since Person is
marked as both X and Y . The associations married and loves are marked as R1 and
R2 is this figure, respectively.

Upon defining a marking M : Qin → GM over a metamodel graph GM using a
query Q : Qin → Qout, the metamodel is augmented and new elements are defined
automatically. This augmentation process is precisely defined as a graph transforma-
tion with the match Qin → GM and the rule Qin → Qout; that is, the arity of the Q
operation acts as the rule of the transformation operation and transforms the graph
GM based on the match Qin → GM. The transformation operation is a single pushout
operation (in the category of graphs and homomorphisms) and can be graphically
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Figure 4.18: Explicit marking of a metamodel
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Figure 4.19: Non-injective marking of a metamodel
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depicted as follows:

Qin Qout

GM G′M

i

m m′

i′

In the above diagram, the nodes are graphs and the arrows are graph homomor-
phisms. Since Qin ⊆ Qout, the above pushout operation always augments the meta-
model by adding new elements (or leaves it untouched). The above transformation
can be imperatively specified by the following pseudo code.

1 //Input: m : Q1
in → GM, i : Q1

in → Q1
out

2 //Ouput: m′ : Q1
out → G′M, i′ : GM → G′M

3 //-------------------------

4 var i′=new identity(GM) //create an identity arrow

5 var G′M= i′.codomain //create a copy of GM
6 var m′ =new homorphism(m) // create a copy of m

7 moveDomainAndCodomain(m, i, i′)
8

9 var newNodes=Q1
out.Nodes−Q1

in.Nodes

10 var newArrows=Q1
out.Arrows−Q1

in.Arrows
11 foreach (node in newNodes) {

12 var n=new Node() // create a new node

13 n.label=m.label+"."+node.label //set the label

14 G′M.Nodes.add(n)
15 m′.add(node→ n)
16 }

17 foreach (arr in newArrows) {

18 var a=new Arrow() // create a new arrow

19 a.label=m.label+"_"+arr.label //set the label

20 a.src = m′(arr.src)
21 a.trg = m′(arr.trg)
22 G′M.Arrows.add(a)
23 m′.add(arr → a)
24 }

25 return m′ : Q1
out → G′M, i′ : GM → G′M

In the above pseudo code, we first create an identity arrow over GM and call it
i′ (line 4). Then, we assign its codomain to G′M (line 5). Then, we create a copy of
homomorphism m and call it m′. Line 7 moves the domain and codomain of m′ along
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two injective arrows i, and i′, respectively. Then, we calculate the difference between
Q1

out and Q1
in (lines 9–10). The two for loops (lines 11–23) iterate over the nodes

and arrows in the difference list, and add elements to G′M and set the corresponding
mappings from m′ to those elements, accordingly. Note that the arrow i′ does not
change during the process. The return value of the pseudo code (line 25) includes the
elements shown in blue in the pushout diagram presented earlier.

Car	Person	

X	 Y	R2	
R1	

m’	

R3	

m_R3	

i	

i’	 owns	

likes	
Car	Person	

X	 Y	R2	
R1	

m	

R3	

owns	

likes	

GM

Figure 4.20: Augmentation process generates an arrow

The grey block elements in Fig. 4.20 illustrate the initial step before applying the
above pseudo code to the marking of the HappyPeople example source metamodel
with the Q1 operation. The blue dotted block elements in the figure are those that
are created after the execution of the pseudo code. For this specific example, the
difference between Qout and Qin is just an arrow (i.e., R3); thus, a new arrow (i.e.,
m R3) is added to the metamodel G′M (see line 20 in the pseudo code), and an
appropriate mapping link connecting R3 to m R3 is generated (see line 21). Note
that users can change the generated element names; for example, we renamed m R3

to Qboth when we were initially explaining the Q1 application at the HappyPeople
example (see Fig. 4.6).

4.4.3 Sequence of Query Definitions

Recall from Sect. 4.2.3 that query operations can be applied in a sequence to in-
crementally augment a metamodel; that is, the entire or parts of the outputs of
one operation can be used as inputs of the next. We have already seen the explicit
marking of a metamodel with the arrowIntersection operation in Fig. 4.18 and its
respective augmentations in Fig. 4.20. M R3 in this figure is the output of the query
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application. In the following, we demonstrate how this arrow is used as an input to
the next operation and, consequently, the output of the second operation is used as an
input of the third operation. The forthcoming figures will show the explicit markings
and the augmentation processes in this series of query applications (note that M R3

is called Qboth in these figures).

Car	Person	
likes	

owns	

QPerson	

QisA	
Qboth	

[1..*]	

R2	

X	

Z	

Y	R1	

Car	Person	
likes	

owns	Qboth	

[1..*]	

X	

Y	R1	

Figure 4.21: Marking of the metamodel with Domain Selection query and its aug-
mentation

Fig. 4.21 shows that the new element Qboth is used as the domainSelection

operation input: X and Y are matched with Person and Car, respectively; and R1 is
matched with the Qboth association. After this matching, the graph transformation
is executed and the node QPerson and the arrow isA are added to the metamodel
(see the right-hand side of the figure). Consequently, Fig. 4.22 shows the way the
input arity of the arrowComposition operation is matched with the elements of the
augmented metamodel that are generated in the previous steps: X, Y , and Z are
matched with, respectively, QPerson, Person, and Car; and R1 and R2 are matched
with the two generated elements from the previous steps, namely, QisA and Qboth.
The application of this query generates a new arrow called Qdrives between QPerson
and Car. This operation completes the augmentation process in the HappyPeople
example and the elements in the target metamodel are mapped to the elements in
this augmented metamodel (see Fig. 4.6 for this view-mapping).

4.4.4 Queries’ Semantics

The syntax of a query specifies the shapes of its input variables and also the shape of
its generated values. The semantics of a Dquery defines the values for the outputs,
given that the input variables are bound to some values.
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Figure 4.22: Marking of the metamodel with Arrow Composition query and its aug-
mentation

When a query is defined on a metamodel, all elements/variables of its input arity
are matched with some elements in the metamodel. For example, as seen in Fig. 4.23,
the input variables of the arrowIntersection operation are matched as follows: X,
Y , R1 and R2 are matched with Person, Car, likes, and owns, respectively. Now
suppose a model typed over this metamodel is provided as seen in the same figure. In
this model, John and Sara are typed over Person. The collection consisting of these
two people/nodes is a value for the variable X, since X is matched with Person. In
other words, we can say that the variable X is bound to the collection {John, Sara}.
Similarly, the arrows in the input arity should also be bound to some values. For
example, since R1 is matched with likes, and the references l1 and l2 are both typed
over likes, the collection consisting of the latter two references is the value of the
variable R1. In other words, we can say the arrow R1 is bound to the collection
{l1, l2} during the query execution. Following this approach, the complete list of
bindings for the provided match and the model in Fig. 4.23 will be as follows:

• X = {John, Sara}

• Y = {BMW,Ford}

• R1 = {l1, l2}

• R2 = {o1, o2}

Following the above approach, we can always get to the values of the input vari-
ables of a query Q. These values can be concisely specified as a homomorphism shown
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Figure 4.23: The variable binding in the arrowIntersection Dquery

in the following1:

Qin

O∗

bin

Assuming the above value for the Q input variable, the Q semantic is defined as
a function f : Qin → Qout that reads the value bin ∈ Qin, and generates an output
bout ∈ Qout (that is also a homomorphism) such that bin ⊆ bout (see Sect. 3.2.2 for
a more precise definition). For example, the arrowIntersection semantics can be
defined as the following:

1 //Input: (R1 : X → Y , R2 : X → Y )

2 //Ouput: (R1 : X → Y , R2 : X → Y , R3 : X → Y )

3 R_{3} = new Arrow(X,Y) // create an empty Arrow

4 foreach (r1 in R1) {

5 foreach (r2 in R2) {

6 if (r1.src=r2.src ∧ r1.trg=r2.trg){

7 // create a new reference of type R3

8 var r3 = new reference(R3)
9 r3.src=r1.src

1This value homomorphism is produced by the pullback operation as will be explained in Sect. 3.2
in a precise way.
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Figure 4.24: An example of a query execution over a metamodel

10 r3.trg=r1.trg

11 R3.add(r3)
12 }

13 }

14 }

15 return R3

The above pseudo code loops over the R1 collection. For each r1 reference in this
collection between the two nodes x1 and y1, whenever it finds a similar reference in
R2 (that is, a reference connecting the exact same nodes), it creates a new reference
r3 of type R3 linking the same exact nodes again (see lines 7 to 10) and adds it to
R3 at line 11. It finally returns R3 (line 15). If we execute the above pseudo code
for the configuration in Fig. 4.23, a new reference connecting John to BMW will be
generated as seen in Fig. 4.24. This new reference typed over Qboth is distinguished
with a blue dashed arrow in the figure.

Dquery definitions are MT independent; that is, they are defined once in the DQF
framework (see Definitions 9 and 14) and used over and over again in QueST MT
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definitions. Thus, it is important to distinguish the following two actions: 1) the def-
inition of a DQF query that happens at the DQF framework level and is independent
of any specific MT definition, 2) an application of such a DQF query to an MT defini-
tion (Definition 12). Thus, the user defines the syntax and semantics of a query once
and will use it multiple times or share it with others. For example, the syntax and
semantics of the arrowIntersection query are defined once independently of any
MT definition; however, the query can be used multiple times in any MT definition.

4.5 Conclusion

In this chapter, we presented the way an MT can be defined and executed in the
QueST approach. We provided an abstract picture of a QueST MT definition and
execution, and explained the concepts concretely using a simple example. The main
component of a QueST definition is a series of queries that are defined on a source
metamodel and extending it with adding new elements. This procedure is guided
by the structure of the target metamodel with the goal of replicating this structure
on the source side. After necessary queries are defined, the elements in the target
metamodel are mapped to the query results or the original source elements. The
entire MT definition process occurs on the metamodel layer. Thus, after an MT is
defined, it can be executed over any model conforming to the source metamodel in
the definition. To execute the definition, first, the defined queries are executed over
the source model; then, the target model elements are created in a straightforward
relabelling procedure using the final result of the query execution procedure in the
context of the MT definition structure.

The queries that are used in building transformations in QueST are not similar to
ordinary query operations: 1) they are high-level operations applied on the metamodel
elements; 2) they have diagrammatic arities. In Chapter 3 we defined the DQF
framework at which the syntax and semantics of these queries are specified. In this
chapter we illustrated their application in the definition of a QueST MT. The query
operations in DQF can be defined independently of any MT definition employed
in each concrete QueST MT definition. This enables the creation of a library of
diagrammatic queries that can be shared among the MT community. As the DQF
queries have homogenous input and output arities (they are both graphs), they can
be applied in a chain and make it possible to define MTs incrementally. The query
chaining mechanism all happens in the metamodel layer, without interfering in their
execution on any particular model.
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Chapter 5

QueST vs. Rule-Based MT
Approaches

“Simplicity is prerequisite for reliability.”

Edsger Dijkstra

There exist a variety of model transformation languages as we mentioned earlier in
Chapter 1. We placed them within the two categories of rule-based and graph-based
MT languages and briefly discussed their properties in Sect. 1.3. In this chapter, we
study the transformations written in QueST and contrast them with the ones written
in rule-based MT approaches ETL, ATL, and QVT-R. The dimensions along which
we want to compare these approaches with QueST are declarativity, incrementality
and modularity. More specifically, the questions we want to answer are as follows: 1)
Is QueST more declarative than these rule-based approaches? 2) Can we build MT
definitions by incrementally composing main structural components in each of these
approaches? 3) Are semantically related queries also syntactically collocated in the
MT definitions? Recall from Chapter 1 that MT is one of the key operations involved
in maintaining the network of inter-related models. We believe that all the above
aspects (i.e., declarativity, incrementality, and modularity) for an MT are essential
in effective maintenance of such a network. We will answer the above questions by
studying the main structural components of these approaches and their corresponding
input and output parameters. To put our study in a context we will implement two
examples in all of the four approaches (i.e., QueST, ETL, ATL, and QVT-R) and will
refer to these implementations in our discussions.

In the first part of this chapter, we provide implementations of the examples. We
will briefly explain the main structural components of ETL, ATL, and QVT-R and
provide the implementation of the HappyPeople example in these languages. (The
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QueST implementation is already provided in Sect. 4.1). Then, we introduce a richer
example called ClassToTable and implement it in QueST and each of the three rule-
based approaches. We will explain the way this transformation is decomposed to
rules/queries and are defined in these languages. In the second part of this chapter
we conduct our analysis. We first look at the main structural component of these
approaches and argue that QueST provides more declarative constructs than these
rule-base approaches. Then, we will examine the relations between the structural
components and source and target metamodels; such analysis will help to further
understand the organization of the structural components in MT definitions. Later
on, we examine wether we can compose/decompose the structural component to build
MT definitions incrementally. Then, we zoom in to the contents of the structural
components (i.e., rules and queries) and analyze the way QueST query contents are
represented in the other implementations. Finally we will conclude the chapter and
summarize our findings.

5.1 The HappyPeople Example

In Chapter 4, we introduced the HappyPeople example and provided its implemen-
tation in QueST. In the following sections, we provide its implementations in ETL,
ATL, and QVT-R.

5.1.1 The HappyPeople Example in ETL

An MT in ETL is specified via a set of rules. Each rule is associated with one
source type (i.e., source metamodel node) and one or more target types (i.e., target
metamodel nodes) as its parameters. A rule might have a guard expression that
constrains its application to a subset of source type instances. Semantically, during a
transformation execution, each node in the source instance is checked against all the
rules; if it matched a source type of a rule and satisfied its guard condition, one target
instance is created for each of the rule’s target type parameters; then the property
values of the created instances are populated according to the rule body expressions.
The arrows are treated as secondary citizens in ETL since their generation is expressed
within the rule bodies that are written for the nodes1.

Fig. 5.1 presents an implementation of the HappyPeople example in ETL. The im-
plementation consists of two rules PersonToHappyPerson (line 1) and CarToVehicle
(line 27). PersonToHappyPerson has a guard condition/constraint (lines 5–14); the
constraint states that for a person to be matched by the rule, the intersection of the

1As we will see later, arrows are treated in this way in ATL, and QVT-R too.
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ETL-MT1.etl

1 rule PersonToHappyPerson 
2   transform person : SourceMM!Person
3   to happyPerson : TargetMM1!HappyPerson{
4     
5   guard :   
6   not 
7   person.likes->asSet()->includingAll(person.owns->asSet())->
8 excludingAll(
9 person.owns->asSet()->excludingAll(person.likes->asSet())

10 )->
11   excludingAll(
12   person.likes->asSet()->excludingAll(person.owns->asSet())
13   )->
14 isEmpty()
15
16 for (car1 in person.likes){
17 for (car2 in person.owns){
18 if (car1==car2){
19 for (v in car1.equivalents("CarToVehicle")->asSet()){
20 happyPerson.drives.add(v);
21 }
22 }
23 }
24 }
25 }
26
27 rule CarToVehicle 
28   transform car : SourceMM!Car
29   to vehicle : TargetMM1!Vehicle {
30 }

Page 1

Figure 5.1: An Implementation of the HappyPerson Example in ETL.
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person’s liked cars with the person’s owned cars should not be empty. Since the inter-
section operation is not found directly supported in the ETL (Kolovos et al., 2010),
we have used a workaround (i.e., A∩B = ((A∪B)−(A−B))−(B−A)) to define it in
terms of union (see includingAll() at line 7) and subtraction (see excludingAll()

at lines 8–12) operations. The rule creates a happyperson node for each person node
that satisfies this expression. The body of the rule (lines 16–24) is an imperative
implementation that builds the arrows of type drives for the generated happyperson
nodes. The code is self-descriptive; the only part that needs further explanation is
line 19. The car1.equivalents("CarToVehicle") expression returns the vehicles
corresponding to car1 that are generated by the CarToVehicle rule.

The second rule (i.e., CarToVehicle) is very simple in comparison to the first one
described above. It neither has any guard expression nor any rule body. It matches
all the car instances in the source and generates one corresponding vehicle for each
of them.

5.1.2 The HappyPeople Example in ATL

ATL supports both declarative and imperative constructs in the definition of trans-
formation rules; however, as we are interested in the most high-level structures of
ATL in the transformation definitions, we will use the declarative constructs of the
language to implement the HappyPeople example. A declarative MT definition in
ATL consists of a set of matched rules. Each matched rule in ATL is interpreted as
follows: if the rule source pattern is matched to some source model elements, the
specified target elements will be generated, and the values specified in the rule body
will be assigned to the generated elements’ properties (if there were any). The rule
execution is nondeterministic, so no order is assumed in matching the rules over the
source model elements.

Fig. 5.2 presents an implementation of the HappyPeople example in ATL. This
implementation consists of two matched rules: 1) PersonToHappyPerson and 2)
CarToVehicle. Similar to ETL, the first rule translates the Person instances to the
HappyPerson instances in the target. The second rule translates the Car instances
to the corresponding Vehicle instances in the target. person in the first rule is an
instance variable and refers to an instance of a Person. SourceMM and TargetMM1

are references to the source and the target metamodels, respectively. Similar to ETL
guard expressions, the expression enclosed in parenthesis after “SourceMM!Person”
(line 6-8) is a boolean expression. The expression is written in the OCL (Warmer
and Kleppe, 2000) language and limits the matched elements to those satisfying this
condition. The expression is literally translated to the following semantics:

“Interpret the collection of a person’s liked cars as a set, and intersect it with the
collection of the cars the same person owns interpreted as a set; if this intersection is
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MT1.atl

1 module MT1;
2 create OUT : TargetMM1 from IN : SourceMM;
3 rule PersonToHappyPerson {
4 from
5 person : SourceMM!Person (
6 not person.likes->asSet()->
7 intersection(person.owns->asSet())
8 ->isEmpty()
9 )

10 to
11 happyPerson : TargetMM1!HappyPerson 
12 (
13 drives <-(person.likes->asSet()->
14 intersection(person.owns->asSet()))
15 )
16 }
17
18 rule CarToVehicle {
19 from
20 car : SourceMM!Car 
21 to
22 vehicle : TargetMM1!Vehicle 
23 }

Page 1

Figure 5.2: An Implementation of the HappyPerson Example in ATL.
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not empty, this person is selected.”
In ATL (similar to ETL), there are no independent rules for generating arrows.

Thus, their generations are necessarily incorporated into the node generation rules.
For example, as seen at lines 13–14 in Fig. 5.2, the drive arrow instances are generated
within the PersonToHappyPerson rule. These lines are translated literally as follows:

“take the cars collection that a person likes as a set, and intersect it with the cars
collection the same person owns as a set; then, convert the intersection result of cars
to the corresponding vehicles (that is achieved by the entire translation) and assign it
to be the person’s corresponding happypeson vehicles that he/she drives.”

The second rule CarToVehicle in the figure (line 19) neither has a guard expression
nor contributes to the generation of any arrow instance. It simply translates all the
car instances to their corresponding vehicle instances.

5.1.3 The HappyPeople Example in QVT-R

QVT-R (OMG, 2015) is the OMG proposed standard for defining model transforma-
tions. A QVT-R MT is defined using a set of constructs called relations in the QVT-R
terminology. Each relation definition specifies how some elements in the source model
are related to some elements in the target model. The relations are of two types: top
and non-top. At the time the QVT-R engine executes an MT definition, it ensures
that all the defined top relations hold true, by creating missing elements in the tar-
get. The enforcement of the non-top relations is triggered via top relations. Each
relation might come with a when clause and a where clause which act as pre- and
post-conditions, respectively, for the relation execution (Macedo and Cunha, 2013).
Each relation has at least two domain blocks that specify the source and target of
the relation. The contents of these domain blocks specify the pattern that is matched
against the provided models.

An implementation of the HappyPeople example in QVT-R is provided in Fig. 5.3.
Similar to the two previous implementations, the definition consists of two top rela-
tions PersonToHappyPerson and CarToVehicle. The first one generates instances of
HappyPerson and the second one generates instances of Vehicles. The generation of
the drives association instances is defined within the body of the first relation (see
line 8). The body of the domain blocks are patterns that are matched against the
provided models. For example, lines 3–6 specify a pattern that matches any person
who likes and owns the same car. This is achieved by binding the same variable called
car to both likes and owns associations (see OMG (2015) for detailed semantics of
the patterns and the variable bindings). For the matched person instance, the trans-
formation creates a corresponding happyPerson in a way that its drives association
is bound to the vehicle variable (lines 7–9). Note that the latter two variables (i.e.,
car and vehicle) are used as the input parameters in the when clause at line 11.
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Figure 5.3: An Implementation of the HappyPerson Example in QVT-R.

This means that the relation CarToVehicle should already be enforced (as it is the
precondition of PersonToHappyPerson) and the values of both variables are deter-
mined by the CarToVehicle relation. The relation CarToVehicle is a simple relation
and generates a vehicle for each car in the source. Note that it does not have any
pre-condition (i.e., when clause) and the source domain (line 16-17) pattern is empty,
so all the cars in the source model are matched when executing this relation.

5.2 The ClassToTable Example

In this section, we introduce a new example called ClassToTable that is more complex
than the HappyPeople example. We will examine this example and its definitions in
the rule-based and the QueST approaches, as we did for the HappyPeople example.

Class diagrams are used to specify the structure of the objects and their interrela-
tions in software systems. To save the status of these objects in a relational database,
they should be converted to records (i.e., elements of tables). More precisely, a class
diagram structure should be appropriately translated to a corresponding relational
schema. In the following, we first provide the metamodels of the class diagrams and
the database schemas; then, we define the transformation rules. Finally, we explain
the transformation implementations in QueST, ETL, ATL, and QVT-R.

80



Ph.D. Thesis - Hamid Mohammad Gholizadeh McMaster - Software Engineering

A"ribute	
------------------------------------------------	

Lbound	:	Int	
Ubound	:	Int	
Type:	String	

	

Associa:on	
--------------------------------------------

-	

Lbound	:	Int	
Ubound	:	Int	

Class	
---------------------------------------------------------	

isAbstract:Bool	

parent	

a(s	

[0
..1
]	

NamedElement	
--------------------------------------------------------------------------------	

name:	String	

trg	

src	 [1]	

[1]	

[noLoop]	

[isAbstract]	

(a)	 (b)	

pKeys	

Table	
Column	
-------------------------------------------	

Type	:	String	

refs	

[1..*]	

Fkey	

fCols	
[1..*]	

fKeys	

NamedElement	
--------------------------------------------------------------------------	

name:	String	

cols	[1..*]	

[1]	

[1]	

[isAbstract]	

[FKeyColIsValid]	

[			]	✓

Figure 5.4: Class Diagram and Database Schema metamodels

5.2.1 Source and Target Metamodels

Fig. 5.4(a) exhibits the class diagram (CD) metamodel. The Class type represents
the classes; the Association type represents the associations, and the Attribute

type represents the attributes in a class diagram. All these types inherit the name

property from the abstract type NamedElement.
Class has an abstract property indicating whether or not a class is abstract. The

association atts between Class and Attribute indicates which attributes belong to
a class. A class might have an inheritance relation with at most one other class;
this is specified by a loop association called parent over the Class type1. Each
attribute has a type (indicated by Type) and multiplicity-related properties (indicated
by Lbound and Ubound). Similar to an attribute, an association has multiplicity-
related properties Lbound and Ubound. Further, it should have one associated source
and one associated target class; this is denoted by two associations src and trg

between Association and Class in the metamodel.
The constraints associated with the metamodels are exhibited using the red en-

closing brackets. Many of them are multiplicity constraints on the associations; for
example, the multiplicity [1] at the end of the src association denotes that every
association in a class diagram should have one and only one class as its source. The
[0..1] constraint indicates that having a parent is not mandatory for each class, and
the [1] constraint on the tail of atts indicates that each attribute belongs to one and
only one class in a class diagram. Finally, the [noLoop] multiplicity indicates that
there exists no loop in the inheritance hierarchy of the corresponding class diagram.

Fig. 5.4(b) shows the metamodel of database schemas. Table, Column, and Fkey

represent, respectively, the tables, the columns, and the foreign keys, in a database
schema (DBS). All of these types inherit the abstract type NamedElement that has a

1In UML, a class might inherit more than one class; we assumed only the possibility of a single
inheritance in our simplified version.
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name property. The cols association between Table and Column indicates that each
table has at least one column associated with it; some of these columns are primary
keys; this is indicated by another association pKeys between Table and Column.
Each table might have foreign keys; the fKeys association between Table and Fkey

indicates this relation. The type property of Column specifies the column type. A
collection of columns might be associated with each foreign key; this is indicated
by the fCols association between Fkey and Column. Finally, the refs association
between the Fkey and the Table type indicates to which table each foreign key refers.

The constraints are indicated by red square-bracketed texts connected to the meta-
model elements. The [⊆] constraint specifies that the primary keys are columns of
the same tables. The [FKeyColIsValid] constraint states that the columns to which
each foreign key refers are a subset of table columns of which they are a part (i.e.,
fKeys;fCols ⊂ cols). The remaining constraints on the metamodel are the multi-
plicity constraints; for example, the [1] constraint on the refs association indicates
that every foreign key should refer to one and only one table. The other multiplicity
constraints are similarly interpreted.

5.2.2 ClassToTable Transformation Rules

There are different ways to translate a class diagram to its corresponding database
schema (Embley and Thalheim, 2012). We propose the following rules as the trans-
formation specification. For each class, we generate a table. Single-valued attributes
—those with a multiplicity of one or zero— of a class are translated to columns of the
corresponding table. A table is generated for each multi-valued attribute —those with
the multiplicity greater than one. These tables have two columns: one for keeping the
attribute values and another used as a foreign key referring to the table corresponding
to the attribute containment class. Single-valued associations (svAssoci) are handled
by foreign keys; for each svAssoci, we create a column in the table corresponding
to the source of the association. For each multi-valued association (mvAsspci), we
create a table with two foreign keys which refer to the source and the target of the
association, respectively. Inheritance is handled in a way similar to the single-valued
associations.

5.2.3 ClassToTable in QueST

As we already explained in Chapter 4, queries are the main building blocks of an
MT definition in QueST. These queries are built based on the following thought
process: Which elements in the source model generate elements of a specific target
type? This arises from the fact that each target type (i.e., target metamodel element)
is mapped to a query result defined on the source metamodel. This query collects
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the information that is required to build the target elements; for example, according
to the MT rules specified in Sec. 5.2.2, tables in a database schema are generated in
three different ways: 1) for each class, 2) for each multi-valued attribute, and 3) for
each multi-valued association. This can be specified by defining a query on the source
metamodel. Fig.5.5(a) exhibits this query definition in mathematical notation. Class
is the collection of all classes in the model, QmvAtt is the collection of all multi-valued
attributes and QmvAssoci is the collection of all the multivalued associations. The
plus (+) notation denotes the disjoint union operation and the expressions in the
“where” clause select the QmvAtt and the QmvAssoci collections. The � , � and
F signs on the Qtable, Qcol and QColumn in this figure will be used for comparison
purposes in Section 5.3.4.

(a)	

(b)	

QTable	=	Class+	QmvA/	+	QmvAssoci,		
								where	
															QmvA/={A/:	A/ribute	|	A/.Ubound	>	1}	
															QmvAssoci={	Associ:	AssociaCon	|	Associ.Ubound	>	1}	

QColumn	=	Class	+	QsvA/	+	Qparent	+	QsvAssoci	+	
													QmvA/	+	QmvA/	+	QmvAssoci	+	QmvAssoci		

							where	
															Qparent=Domain	(parent)	
															QmvA/={A/:	A/ribute	|	A/.Ubound	>	1}	
															QmvAssoci={	Associ:	AssociaCon	|	Associ.Ubound	>	1}	
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Figure 5.5: Query definitions

A"ribute	
------------------------------------------------	

Lbound	:	Int	
Ubound	:	Int	
Type:	String	

	

Associa3on	
--------------------------------------------

-	

Lbound	:	Int	
Ubound	:	Int	

Class	
---------------------------------------------------------	

isAbstract:Bool	

parent	

a5s	

NamedElement	
--------------------------------------------------------------------------------	

name:	String	

trg	

src	

pKeys	

Table	
Column	
-------------------------------------------	

Type	:	String	

refs	

Fkey	

fCols	 fKeys	

NamedElement	
--------------------------------------------------------------------------	

name:	String	

cols	

QTable	 QColumn	

Figure 5.6: QTable, QColumn, and Qcols query represented abstractly
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The blue dotted square named QTable in the right-hand side of Fig.5.6 abstractly
represents the above QTable definition. After this query definition, the Table type in
the target is mapped to this query (see the green arrow from Table to QTable in the
same figure). Note that all the possible ways leading to the generation of the tables in
the target are encapsulated within QTable, and this is implied by the Table to QTable

mapping. The other parts of the transformation are similarly defined by identifying
the required queries. For example, using the transformation specification, we need to
figure out how the columns are generated, and continue to answer similar questions
for all the other types (be it a square type or an arrow type) in the target metamodel.
Therefore, based on the MT specification, we write a query like the one shown in
Fig. 5.5(b) for the Column type and name it QColumn. As seen from the QColumn

definition, it is also a disjoint union of a family of collections similar to QTable. Each
of QmvAtt and QmvAtt collections (already defined in QTable) contributed twice in
the definition expression. QsvAtt and QsvAssoci are the selections of single-valued
attributes and single-valued associations, respectively, and Qparent is the domain
of the parent association. The entire query is shown abstractly as a dashed block
square labeled as QColumn in Fig. 5.7. Once again, since this query generates all the
columns in the target metamodel, Column in the target is mapped to this query using
a green arrow as seen in the figure.

Similar to node types in the target metamodel, arrow types should also be mapped
to query results (or an original association) in the source. Hence we draw an arrow
between the QTable and QColumn (see purple arrow called Qcols in Fig. 5.6) and
associate a query definition to this arrow. The definition should express the relation
between the elements of the QTable and QColumn. This is defined to be the union of
all the arrows which are indexed from one to eight in Fig.5.5(c); restr(atts) is the
restriction of the atts relation over the QsvAtt codomain; inv(src) is the inverse of
the src relation, and the id arrows are the identity relations over their domains.

Continuing the above process to the other types in the target metamodel will
bring us to the structure shown in Fig. 5.7. The entire figure shows the abstract
definition of the ClassToTable MT in QueST. The new green elements in Fig. 5.7
called QFKey, QpKeys, Qrefs, QfKeys, and Qfcols are all new query results whose
internal definitions are abstracted away in this picture. Note that there might be some
intermediate queries that are composed to build the results in this figure. However,
we did not present them here to keep the illustration simple. Further abstraction over
Fig. 5.7 will provide us with the structure in Fig. 4.7 that represents the common
structure in all QueST definitions.
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Figure 5.7: CD to DBS MT definition in QueST

5.2.4 ClassToTable in ETL, ATL, and QVT-R

The way a user thinks about the definition of an MT in rule-based approaches is
as follows: she thinks about each element in the source and the way this element
might contribute to the generation of elements in the target. We call the latter way
of thinking the source-to-target paradigm. Each element in the source might affect
the generation of multiple elements in the target. For example, for each class in the
ClassToTable example, one table, one column and one foreign key should be generated
in the target and also their corresponding references should be adjusted. Further, if a
class inherits another class, there should be an additional column acting as a foreign
key to model this relation between the corresponding generated tables.

In case multiple elements in the target model are generated from one specific
element in the source model, there exist two options: either the generation of all
those elements are handled within one rule, or it is divided into multiple rules. There
exists no specific guideline as to which approach should be followed.

In the ETL implementation of the ClassToTable example, we follow the first option.
The list of the rules and their corresponding specifications are presented in Fig. 5.8.
As seen, the definition is divided between five rules; however, each contributes in the
generation of more than one element in the target. The definitions of these rules are
all provided in Appendix A.2. However, we have put the first rule implementation in
Fig. 5.9 and briefly explain its content to illustrate its imperative nature.

In Fig. 5.9, line 3 defines an instance variable class that is considered an input
of the rule. Lines 4–5 define two instance variables, table and column, that are
considered outputs of the rule. That is, for every model element bound to class, two
model elements of types Table and Column will be generated and will be bound to
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ATL	
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ETL	
	

	

 Matched Rule Specification 
1 Class2Table Similar to “Class2Table” rule in ETL. 2 SubClass2Table 
3 mvAtt2Table Similar to “mvAtt2Table” rule in ETL. 
4 mvAssoci2Table Similar to “mvAssoci2Table” rule in ETL. 
5 svAtt2Col Similar to “svAtt2Col” rule in ETL. 
6 svAssoci2Col Similar to “svAssoci2Col” rule in ETL. 

 Relation Specification 
1 Class2Table 

Similar to “ Class2Table ” rule in ETL. 2       ClassToCol 
3 InherToCol 
4     InherToFkey 
5 mvAttToTable 

Similar to “mvAtt2Table” rule in ETL. 6     mvAttsToCol 
7     mvAttsToFkey 
8 mvAssociToTable 

Similar to “mvAssoci2Table” rule in ETL. 9      mvAssociToCol 
10      mvAssociToFkey 
11 svAttsToCol Similar to  “svAtt2Col” rule in ETL. 
12 svAssociToCol Similar to “svAssoci2Col” rule in ETL. 

 ETL Rule Description 
1 Class2Table For each class it generates a table and a column, which is also a primary key. If a class had a 

parent class, it generates another column as a foreign key referring to the parent class’s 
corresponding table. 

2 mvAtt2Table For each multi-valued attribute, generates a table, two columns, and one foreign key. One of the 
columns is the value column and the other one is the foreign key column; the foreign key refers 
to the owner class’s corresponding table. 

3 mvAssoci2Table For each multi-valued association, generates a table with two columns and two foreign keys, 
refereeing to, respectively, the source and to the target classes’ corresponding tables. 

4 svAtt2Col For each single-valued attribute, generates a column. 
5 svAssoci2Col For each single-valued association, generates a column and a foreign key that refers to the target 

class’s corresponding table. 

Figure 5.8: The list of rules of the ClassToTable example implementation in ETL

table and column, respectively. Lines 7–8 add the generated elements to the model
container1. Lines 10–12 set the values for the target elements’ properties. Lines 13
and 14 associate the generated column to the generated table as its column and as
its primary key, respectively; in other words, these two lines generate instances of
association types. The if condition at line 16 checks whether the class variable has
a parent class; if so, it generates another column (line 17) and a foreign key (line
22), and sets the corresponding associations between them (see lines 17–25). Line
28 starts a for loop that iterates over the attributes of the class, and if any single-
valued attribute is found, it adds the columns (corresponding to the attribute) to
the list of columns of the generated table (see line 30). As lines 17 and 22 show,
target elements can be generated inside the rules in ETL without being declared in
the rule interface/signature. Allowing this makes it impossible to identify the rule
functionality by just looking at a rule signature, and probably was a reason why it is
prohibited in ATL matched rules.

There exists no drastic differences in the way we can organize the rules in ATL
and QVT-R implementations in contrast to the ETL ones. However, as we mentioned
earlier, ATL and QVT-R provide some declarative constructs that make the rule
bodies relatively concise. The complete definition of the ClassToTable example in these
two approach are provided in Appendices A.3 and A.4. However, we have provided the
list of the rules for these implementations in Fig. 5.10 and Fig. 5.11. As seen from these
lists, the number of the rules in the ATL and the QVT-R implementations are greater
than the number of the rules in the ETL implementation. The reason is that we chose
the rules in the ATL and QVT-R implementations to be more granular than ETL ones.
For example, the Class2Table rule in the ETL definition is divided into two rules
in the corresponding ATL definition (see lines 1–2 in Fig. 5.10). The Class2Table

rule is even further divided into four rules in the the QVT-R implementation (i.e., see

1All the elements of the models should reside inside a container; this is a particular requirement
just imposed by the implementation framework.
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classToTableMT.etl

1 rule Class2Table      
2   transform 
3   class : myOO!Class
4   to table:myDB!Table,
5   column:myDB!Column{
6
7   dbschema.tables.add(table);
8   dbschema.tables.add(column);
9   

10   table.name=class.name;
11   column.name=class.name+"PK";
12   column.type="INT";
13   table.cols.add(column);
14   table.pKeys.add(column);
15   
16   if (not (class.parent=null)){
17   var col:new myDB!Column;
18   col.name="parent-"+class.parent.name+"PK";
19   col.type="INT";
20   table.cols.add(col);
21   
22   var f:new myDB!Fkey;
23   f.fCols.add(col);
24   table.fKeys.add(f);
25   f.ref=class.parent.getCorrTable();
26   }
27   
28   for (a : myOO!Attribute in class.atts) {
29 if (a.ubound = 1){
30     table.cols.add(a.equivalent("svAtt2Col"));    
31 }
32 } 
33 }
34
35 rule mvAtt2Table   
36   transform a : myOO!Attribute
37   to t:myDB!Table,
38   c1:myDB!Column,
39   c2:myDB!Column,
40   f:myDB!Fkey{
41   

Page 1

Figure 5.9: An example of an ETL rule
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4 mvAssoci2Table Similar to “mvAssoci2Table” rule in ETL. 
5 svAtt2Col Similar to “svAtt2Col” rule in ETL. 
6 svAssoci2Col Similar to “svAssoci2Col” rule in ETL. 

 Relation Specification 
1 Class2Table 

Similar to “ Class2Table ” rule in ETL. 2       ClassToCol 
3 InherToCol 
4     InherToFkey 
5 mvAttToTable 

Similar to “mvAtt2Table” rule in ETL. 6     mvAttsToCol 
7     mvAttsToFkey 
8 mvAssociToTable 

Similar to “mvAssoci2Table” rule in ETL. 9      mvAssociToCol 
10      mvAssociToFkey 
11 svAttsToCol Similar to  “svAtt2Col” rule in ETL. 
12 svAssociToCol Similar to “svAssoci2Col” rule in ETL. 

 ETL Rule Description 
1 Class2Table For each class it generates a table and a column, which is also primary key. If a class had a 

parent class, it generates another column as a foreign key referring to the parent class’s 
corresponding table. 

2 mvAtt2Table For each multi-valued attribute, generates a table, two columns, and one foreign key. One of the 
columns is value column and another one is the foreign key column; the foreign key refers to 
the owner class’s corresponding table. 

3 mvAssoci2Table For each multi-valued association, generates a table with two columns and two foreign keys. 
Foreign keys, respectively, refereeing to the source and to the target classes’ corresponding 
tables. 

4 svAtt2Col For each single-valued attribute, generates a column. 
5 svAssoci2Col For each single-valued association, generates a column and a foreign key that refers to the target 

class’s corresponding table. 

Figure 5.10: The ClassToTable example rules in the ATL implementationATL	
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6 svAssoci2Col Similar to “svAssoci2Col” rule in ETL. 

 Relation Specification 
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Similar to “ Class2Table ” rule in ETL. 2       ClassToCol 
3 InherToCol 
4     InherToFkey 
5 mvAttToTable 

Similar to “mvAtt2Table” rule in ETL. 6     mvAttsToCol 
7     mvAttsToFkey 
8 mvAssociToTable 

Similar to “mvAssoci2Table” rule in ETL. 9      mvAssociToCol 
10      mvAssociToFkey 
11 svAttsToCol Similar to  “svAtt2Col” rule in ETL. 
12 svAssociToCol Similar to “svAssoci2Col” rule in ETL. 

 ETL Rule Description 
1 Class2Table For each class it generates a table and a column, which is also primary key. If a class had a 

parent class, it generates another column as a foreign key referring to the parent class’s 
corresponding table. 

2 mvAtt2Table For each multi-valued attribute, generates a table, two columns, and one foreign key. One of the 
columns is value column and another one is the foreign key column; the foreign key refers to 
the owner class’s corresponding table. 

3 mvAssoci2Table For each multi-valued association, generates a table with two columns and two foreign keys. 
Foreign keys, respectively, refereeing to the source and to the target classes’ corresponding 
tables. 

4 svAtt2Col For each single-valued attribute, generates a column. 
5 svAssoci2Col For each single-valued association, generates a column and a foreign key that refers to the target 

class’s corresponding table. 

Figure 5.11: The ClassToTable example relations/rules in the QVT-R implementation
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rules 1-4 in Fig. 5.11). Note that such finer decomposition was also possible in the
ETL implementation; however, we just chose the list of rules differently in the three
implementations to illustrate different possibilities of decomposing an MT definition
in rule-based approaches.

5.3 Comparative Analysis

In previous sections, we explained implementations of two examples using ETL, ATL,
QVT-R and QueST. In the following sections, using these examples, we analyze
the following aspects of these approaches: 1) structural components, 2) their inter-
relations with metamodels, and 3) their composition mechanisms. By analyzing these
aspects and sketching the differences between these rule-based approaches and QueST
we explain the application of QueST in MT engineering from the following perspec-
tives: declarativity, modularity, and incremental design. We also perform a white-box
analysis to compare the way QueST queries are represented in the corresponding im-
plementations in these rule-based approaches.

5.3.1 Structural Components

Rules are the main structural components of rule-based approaches. In contrast,
queries are the main building blocks of the QueST approach. In the following, we
sketch the differences between these two concepts.

Rules

The rules provide a mechanism to navigate the source model element-by-element and
select them based on the provided properties. The target elements, accordingly, are
created based on the selected source elements. In ETL, this mechanism is achieved
by defining an instance variable of specific source type that is matched with a source
model element. A guard expression restricts matching of this variable during a rule
execution. For each matched element in the source, a corresponding instance is cre-
ated in the target and is assigned to the target instance variable. In other words,
the input(s) and output(s) of a rule are individual elements of, respectively, source
and target models. For example, in Fig. 5.1, see the source element instance variable
person at line 2, the guard expression at lines 6–14, and the target element instance
variable happyPerson at line 3. When person is matched with an element of a source
model, an instance of HappyPerson is created and assigned to the happyPerson vari-
able. The variables are also used within the body of the rules (see lines 16–24).

In ATL and QVT-R, though the expressions in the rule bodies are relatively more
declarative, the querying mechanism remains almost the same. For example, see the
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instance variables person (at line 7) and happyPerson (at line 11) in Fig. 5.2 that,
respectively, refer to an instance of Person and an instance of HappyPerson. In the
QVT-R implementation at Fig. 5.3, see the instance variables person at line 3 and
happyPerson at line 7 that serve a similar purpose.

Queries

Recall from Chapter 4 that the query operations in QueST are collection-wise op-
erations; that is, their corresponding inputs and outputs are collections of elements
rather than individual elements. For example, consider the Domain Selectionopera-
tion (i.e., Q2) used in the QueST HappyPeople example in Fig. 4.6; the query input
is the relation QBoth and its output is a set (i.e., QPerson) and a relation (i.e., isA)
–see the operation’s explicit arity illustrated in Fig. 4.17.

Comparison

QueST queries operate at a higher abstraction level than rules; that is, queries operate
on collections while rules operate on elements of collections. Fig. 5.12 visualizes this
difference between the rules and QueST queries. As seen, the queries’ inputs are the
metamodel elements, and their outputs are also metamodel elements. In contrast,
rules’ inputs and outputs are model elements. In this respect, we can say that QueST
queries are a more declarative construct than rules in rule-based approaches.

Rule	

Query	

MElem	 MElem	
Metamodel	

Level	

Model	Level	

Input	 Output	

MElem	 MElem	

Figure 5.12: Queries Operate on a more higher level of abstraction.

The declarativity, in the sense of working on higher levels of abstraction, is already
successfully applied in the database community. If we sketch an analogy between
database schemas and metamodels, the way QueST queries work on the metamodels
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is similar to the way in which SQL queries work on the relational schema, and the
way querying mechanisms work in the rule-based languages is similar to querying
languages of Network (Taylor and Frank, 1976) and Hierarchical (Tsichritzis and
Lochovsky, 1976) databases. The lower popularity of the Network and Hierarchical
approaches in contrast to the great success of relational databases that uses the SQL
language might be the good evidence of the benefits of declarative collection-wise
manipulation of data over their element-wise processing. However, there is always a
caveat of having to educate designers to think and write declarative queries.

5.3.2 Rules and Queries’ Relation to Metamodel Types

In the following, we analyze how rules and QueST queries are related to the source
and the target metamodel elements/types.

Rules

Examining the relations between the rules and the metamodel elements/types in the
studied rule-based languages (i.e., ETL, ATL, and QVT-R) provides us with the
model presented in Fig. 5.13. SElem and TElem in the figure represent, respectively,
the source and the target metamodel types. On the left, the defOn relation specifies
that each rule might be defined over one to many source metamodel types (see the
1..* multiplicity over defOn)1. The usedIn arrow is the converse of the defOn arrow.
Its 0..* multiplicity indicates that each source type might be used in zero to many
rules. For example, in the ATL ClassToTable example presented in Appendix A.3, the
Class type is used in both Class2Table and SubClass2Table, besides some others.

1..*	
Rule		SElem	 	TElem	defOn	

1..*	1..*	
gen	genBy	

0..*	
usedIn		

triggers	0..*	

Figure 5.13: Rules’ relations with source and target metamodel types.

On the right-side of the model in Fig. 5.13, the gen relation represents a rule contri-
bution in the generation of instances of a target type. For example, the mvAttToTable
rule in Fig. 5.9 generates instances from two different types Table and Column. The
1..* multiplicity over the gen relation indicates that a rule should be related to at

1In ATL and ETL, each rule can be defined over one and only one input type; however, in QVT-
R, there is no upper limit for the number of the input types over which a rule can be defined. We
left the multiplicity constraint to be 1..* to cover all scenarios.
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usesQ	
0..*	

Query		SElem	 	TElem	defOn	
0..*	0..*	
gen	genBy	

0..1	0..*	
usedIn	

Figure 5.14: QueST queries’ relations with source and target metamodel types.

least one target type. genBy is the converse of gen. Similarly, its 1..* multiplicity
indicates that the instances of a target type should be generated by at least one rule.
Note that there is no upper limit and the target type instances can be generated by
any number of rules. For example, tables are generated by both Class2Table and
mvAtt2Table in the ClassToTable rule-based implementations –see the description of
these rules in Fig. 5.8. The looping arrow called triggers over the rule entity will
be discussed in Sect. 5.3.3.

Queries

We did a similar analysis as above over the QueST queries to model the relations of
the queries with the metamodel elements. Fig. 5.14 summarizes the analysis result.
Similar to Fig. 5.13, SElem and TElem represent the source and the target metamodel
elements, respectively. The semantics of the arrows in Fig. 5.14 are the same as
Fig. 5.13; however, their multiplicities differ. As seen in Fig. 5.14, queries do not need
to use the source metamodel elements directly (see the 0..* multiplicity on defOn).
For example, Q2 in the HappyPeople example (see Sect. 4.2.1) uses a derived element
Qboth as its input1. As the 0..* multiplicity of the usedIn arrow indicates, a source
type might be used as an input for multiple queries. For example, Person is used as
the input of both Q1 and Q2 in the HappyPeople example (see Sect. 4.2.1 again).

On the right-side of Fig. 5.14, the 0..* multiplicity of the arrow gen implies that all
the queries do not need to contribute directly to the generation of the output elements.
For example, the Q1 output in Sect. 4.2.1 does not directly generate elements in the
target model, so it is not related to any target type; however, it is used as an input
of another query. The unrestricted upper-bound idicates that a query might have
multiple outputs that each might contribute to the generation of the instances of
variant types. We do not have such a query in our examples; however, in Fig. 4.6, if
we change the view-mapping such that HappyPerson is mapped to QPerson, Vehicle
is mapped to Person, and drives is mapped to QisA, then Q2 will be such a query
contributing to the generation of instances of both HappyPerson and drives.

1Note that Person and Car are also inputs of the Q2 query.
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The 0..1 multiplicity over the converse of gen (i.e., genBy) indicates that instances
of a specific type can only be generated by at most one query. For example, all the
tables in the ClassToTable example in Fig. 5.6 are generated from QTable. The reason
for the zero lower bound is that some target types might be directly mapped to source
types instead of query definitions. For example, in Fig. 4.6, Vehicle in the target
metamodel is directly mapped to Car in the source metamodel.

Comparison

The main differences between the two models in Fig. 5.13 and Fig. 5.14 originate from
the multiplicity constraints as follows.

• The gen relation multiplicity constraint in Fig. 5.14 states that some queries in
QueST do not directly generate target elements; these are helper queries that
contribute to incrementally building target models. In contrast, all the rules
should directly generate some target elements as the multiplicity of gen implies
in Fig. 5.13.

• The queries in QueST do not require direct use of source types (see the defOn

multiplicity in Fig. 5.14). In contrast, as seen in Fig. 5.13, it is mandatory
that the rules in the rule-based approaches use at least one source type in their
definitions.

• According to the genBy multiplicity in Fig. 5.14, all instances of a target type
are generated by at most one query in QueST. In contrast, multiple rules might
directly contribute to the generation of elements of a specific target type in the
rule-based approaches, as seen in Fig. 5.13.

According to the first and the second points above, the queries in QueST can use
derived elements/types —defined by other queries— instead of original source types.
They also do not need to directly contribute to the generation of the instances of target
types. These two points make it possible to break down complex queries into simpler
intermediary queries and incrementally construct them. We will further discuss this
aspect in Sect. 5.3.3.

The third point is an indicator of the target-to-source paradigm that QueST sug-
gests in MT definitions: an MT designer takes a type form a target metamodel and
thinks about constructing a query that generates all instances of this specific type.
The third point also enforces a simple modularity structure based on the shape of the
target metamodel and prevents the scattering of the related query definitions all over
the different parts of an MT definition as we will see in Sect. 5.3.4.
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5.3.3 Composition Mechanisms

In this section, we examine the composition mechanism that rule-based languages
offer in contrast to the QueST approach’s composition mechanism.

Rules

It is possible for a rule to trigger other rules’ execution. The triggers arrow at
Fig. 5.13 specifies this kind of relation between the rules. For example, the rules (i.e.,
relations) referenced within the where clauses of a QVT-R rule are triggered after the
execution of the original rule. Or, it is possible that a rule in ATL calls other rules
(called helper rules). Nonetheless, rules cannot be composed in the sense that the
outputs of a rule are used as the inputs of another rule. For example, as the rules’
specifications in Fig. 5.8 imply, all of the rules directly get their inputs from the source
model and generate elements in the target model (see also the rules’ definitions in
Appendices A.2, A.3, and A.4).

Queries

It is possible in QueST to compose queries into larger queries or decompose them into
smaller queries. For example, Q1 and Q2 in the HappyPeople example (see Sect. 4.2.1)
can be composed into one query. The arity of this composed query is presented in
Fig. 5.15. The query takes two arrows and generates a node and an arrow connecting
the node to the domain of the input arrows. Thus, instead of defining two queries Q1

and Q2, we could have defined one (instance of the) query presented is Fig. 5.15.

R3	

X	

Z	

Y	R1	

R2	X	

Y	R1	

R2	

Figure 5.15: The arity of the composed query

In the reverse direction, complex queries can be decomposed into simple ones in
QueST. For example, the query that defines QTable in Fig. 5.6 can be decomposed
into three queries as presented in Fig. 5.16. In this figure, Q1 selects single-valued
associations; Q2 selects single-valued attributes1; Q3 aggregates elements from the
latter two queries with the original Class type and builds QTable.

1Q1 and Q2 are, in fact, two instances of a single select operation with different select predicates.
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A"ribute	
--------------------------------------------------	

	lbound	:	Int	
	ubound	:	Int	
	type:	String	
	

Associa/on	
---------------------------------------------------------			

lbound	:	Int	
ubound	:	Int	

Class	
---------------------------------------------------------	

isAbstract:Bool	

parent	

a7s	

0..1	

NamedElement	
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	

name:	String	

trg	

src	

0..*	

	QmvAssoci	

	QmvA"	

QTable	

r1	

r2	

r3	

Q1	 Q2	

Q3	

Figure 5.16: QTable decomposition into three queries.

Comparison

In the following, we compare QueST and the rule-based approaches concerning the
compositionality features that they provide for building MT definitions.

In the rule-based approaches, an MT definition can be arbitrarily distributed
among different rules; that is, each rule takes responsibility for the generation of a
portion of a target model. However, since rules do not allow chaining, this distribu-
tion is one dimensional. Fig. 5.17 might help communicate this one-dimensionality
concept. In this figure, the chevrons represent the rules. The left and the right bar
represent a source and a target model, respectively. The horizontal arrows from the
source model to the rules indicate rules’ inputs. The horizontal arrows from the rules
to the target model indicate the rules’ output. As seen, all rules are aligned verti-
cally, each taking some responsibility in generating a portion of the target model;
however, they cannot collaborate horizontally to incrementally build target elements.
The reason is that the generation of a target element should occur in one step pass-
ing through only one rule. The dotted lines between the rules are instances of the
triggers relation in Fig. 5.13 and not outputs of the rules passed to other rules.

In contrast, an MT definition in QueST can be distributed both vertically and
horizontally among the queries. Fig. 5.18 illustrates this two-dimensional distribution.
The interpretation of the elements in this figure is similar to Fig. 5.17, except the
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R1	

R2	

R3	

R4	

R5	

target	
model	

source	
model	

Figure 5.17: Rule orchestration in a rule-based MT definition.

Q1	

Q2	

Q4	 Q5	

Q6	

Q3	

target	
model	

source	
model	

Figure 5.18: Query orchestration in a QueST MT definition.

Q1	

Q2	

Q3	

R1	

R2	

target	
model	

source	
model	

target	
model	

source	
model	

(a)	 (b)	

Figure 5.19: The Rules’ vs. Queries’ orchestration in the HappyPeople example.
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chevrons representing queries rather than rules. As seen, the queries can receive inputs
directly from the source model or other queries or both, and can serve as providers
of inputs to other queries, or directly generate a portion of the target model. For
example, Q3 receives inputs from Q1 and Q2, and generates a portion of the target
model. Q2 receives its input directly from the input model, and, in addition to
providing inputs to Q3, generates a portion of the target model. The queries that do
not directly contribute to the production of target model elements are faded in the
figure to distinguish them from the other queries. Recall that these queries are called
helper queries in QueST. Q1 and Q4 are helper queries in Fig. 5.18. Note that the
arrows between the queries in Fig. 5.18 are instances of the useQ relation in Fig. 5.14.
Fig. 5.19(a) and Fig. 5.19(b) present, respectively, the orchestration of the rules and
the queries in the HappyPeople example according to the corresponding definitions in
Sect. 5.1 and Sect. 4.2.1.

In a nutshell, the QueST two-dimensional pattern in structuring MT definitions is
more flexible than the one-dimensional pattern in rule-based languages. The reason
is that the complexity of the target model generation process can be divided into
smaller queries not only horizontally but also vertically, so an MT definition can be
achieved incrementally.

5.3.4 A White-box Analysis

In the previous sections, we compared the structural components of the rule-based
approaches and the QueST approach by considering the corresponding components
(i.e., rules and queries) as black-boxes. In this section, we perform a simple white-
box analysis by looking inside these components and comparing the way QueST query
definitions appear within the corresponding rule-based ones.

Analysis Explanation

We chose the ClassToTable example as the basis of our analysis. We carefully exam-
ined the rule contents in the ETL, ATL, and QVT-R implementations of this example
and marked the places at which query definitions from the QueST ClassToTable im-
plementation appear. We performed this for the three queries QTable, QColumn, and
Qcol and employed certain notations with the following semantics: 1) The � signs are
used to mark the parts corresponding to the generation of tables (the QTable query);
2) TheF signs are used to mark the parts corresponding to the generation of columns
(QColumn query), and 3) The � signs are used to mark the parts which associate the
columns to the tables (Qcols Query) — see the latter notations in Fig. 5.5. We fur-
ther add numbers above these markings that will correspond to the numbers in Fig.
5.5(c) for each marking; for example, 2

� refers to the mvAtt component of the QTable,
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and 3
� and 3

F refer to the Qparent arrow of Qcols, and the Qparent component of
QColumn, respectively.

Class Diagram To  DB Schema MT in ETL.etl

pre {
  "Running ETL".println();
  var dbschema : myDB!DBSchema;
}

rule ClassSchema2DBSchema 
  transform c : myOO!Schema
  to t:myDB!DBSchema{
  dbschema=t;
 }
rule Class2Table      
  transform c : myOO!Class
  to t:myDB!Table,
  pk:myDB!Column{
  
  dbschema.tables.add(t);
  dbschema.tables.add(pk);
  t.name=c.name;
  pk.name=c.name+"PK";
  pk.type="INT";
  
  t.cols.add(pk);
  
  t.pKeys.add(pk);
  
  if (not (c.parent=null)){
  var col:new myDB!Column;
  col.name="parent-"+c.parent.name+"PK";
  col.type="INT";
  
  t.cols.add(col);
  
  var f:new myDB!Fkey;
  f.fCols.add(col);
  t.fKeys.add(f);
  f.ref=c.parent.getCorrTable();
  }
  
  for (a : myOO!Attribute in c.atts) {

if (a.ubound = 1 ){
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    t.cols.add(a.equivalent("svAtt2Col"));
    
}

} 
}
rule mvAtt2Table   
  transform a : myOO!Attribute
  to t:myDB!Table,
  c1:myDB!Column,
  c2:myDB!Column,
  f:myDB!Fkey{
  
  guard : (a.ubound> 1 or a.ubound=-1)
  
  dbschema.tables.add(t);
  t.name=a.name;
  c1.name=a.name;
  c1.type=a.type;
  
  var oclass:myOO!Class=a.getOwningClass();
  c2.name=oclass.name+"PK";
  c2.type="INT";
  
  t.cols.add(c1);
  t.cols.add(c2);
  
  t.fKeys.add(f);
  f.ref=oclass.getCorrTable();
  f.fCols.add(c2);
}
rule mvAssoci2Table 
  transform a : myOO!Association
  to t:myDB!Table,
  c1:myDB!Column,
  c2:myDB!Column,
  f1:myDB!Fkey,
  f2:myDB!Fkey{
  
  guard : (a.ubound> 1 or a.ubound=-1)
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  dbschema.tables.add(t);
  
  t.name=a.name;
  c1.name=a.src.name+"PK";
  c1.type="INT";
  c2.name=a.trg.name+"PK";
  c2.type="INT";
  f1.fCols.add(c1);
  f2.fCols.add(c2);
  f1.ref=a.src.getCorrTable();
  f2.ref=a.trg.getCorrTable();
  
  t.cols.add(c1);
  t.cols.add(c2);
  
  t.fKeys.add(f1);
  t.fKeys.add(f2);

}

rule svAtt2Col 
  transform a : myOO!Attribute
  to c:myDB!Column{
  
  guard : (a.ubound = 1 )
  
  c.name=a.name;
  c.type=a.type;
}
rule svAssoci2Col 
  transform a : myOO!Association
  to c:myDB!Column,
  f1:myDB!Fkey{
  
  guard : (a.ubound = 1 )
  
  c.name=a.name+"-"+a.trg.name+"PK";
  c.type="INT";
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  a.src.getCorrTable().cols.add(c);
  
  f1.fCols.add(c);
  f1.ref=a.trg.getCorrTable();
  a.src.getCorrTable().fKeys.add(f1);
}
operation myOO!Attribute getOwningClass() : myOO!Class {
  return myOO!Class.all().selectOne(c|c.atts.includes(self)); 
}
operation myOO!Class getCorrTable(): myDB!Table {

var tbs:Bag= self.equivalents("Class2Table").flatten();
  //tbs.println();
  var t:myDB!Table=null;
  for (k in tbs){
  if (k.isTypeOf(myDB!Table)){
  t=k;
  }
  }
    return t;
}
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Figure 5.20: Query dispersal in ClassToTable ETL implementation.

ClassToTable.atl

1 -- @path myDB=/ATLClass2Table/metamodels/MyDBv3.ecore
2 -- @path myOO=/ATLClass2Table/metamodels/MyOOv3.ecore
3
4 module ClassToTable;
5 create UniversityDBSchema: myDB from UniversityClassDiagram: myOO;
6
7 rule Class2Table {
8 from
9 c: myOO!Class (

10 c.parent.oclIsUndefined()
11 )
12 to
13 t: myDB!Table (
14 name <- c.name,
15 pKeys <- Set{pk},
16 cols <- c.svAtts -> union(Set{pk})
17 ),
18 pk: myDB!Column (
19 name <- c.name + 'PK',
20 type <- 'INT'
21 )
22 }
23
24 rule SubClass2Table {
25 from
26 c: myOO!Class (
27 not c.parent.oclIsUndefined()
28 )
29 to
30 t: myDB!Table (
31 name <- c.name,
32 pKeys <- Set{pk},
33 cols <- c.svAtts -> union(Set{pk}) -> 

union(Set{refCol}),
34 fKeys <- fkey
35 ),
36 pk: myDB!Column (
37 name <- c.name + 'PK',
38 type <- 'INT'
39 ),
40 refCol: myDB!Column (
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41 name <- 'parent-' + c.parent.name + 'PK',
42 type <- 'INT'
43 ),
44 fkey: myDB!Fkey (
45 owner <- c,
46 ref <- c.parent,
47 fCols <- refCol
48 )
49 }
50
51 rule svAtt2Col {
52 from
53 a: myOO!Attribute (
54 a.ubound = 1
55 )
56 to
57 c: myDB!Column (
58 name <- a.name,
59 type <- a.type
60 )
61 }
62
63 rule mvAtt2Table {
64 from
65 a: myOO!Attribute (
66 a.ubound > 1 or a.ubound = -1
67 )
68 to
69 t: myDB!Table (
70 name <- a.name,
71 pKeys <- Set{c1,
72 c2},
73 cols <- Set{c1,
74 c2}
75 ),
76 c1: myDB!Column (
77 name <- a.name,
78 type <- a.type,
79 owner <- t
80 ),
81 c2: myDB!Column (
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82 name <- a.name + 'PK',
83 type <- 'INT',
84 owner <- t
85 ),
86 f1: myDB!Fkey (
87 owner <- t,
88 ref <- a.owner,
89 fCols <- c2
90 )
91 }
92
93 rule svAssoci2Col {
94 from
95 a: myOO!Association (
96 a.ubound = 1
97 )
98 to
99 c: myDB!Column (

100 name <- a.name + a.trg.name,
101 type <- 'INT',
102 owner <- a.src
103 ),
104 f: myDB!Fkey (
105 owner <- a.src,
106 ref <- a.trg,
107 fCols <- c
108 )
109 }
110
111 rule mvAssoci2Table {
112 from
113 a: myOO!Association (
114 a.ubound > 1 or a.ubound = -1
115 )
116 to
117 t: myDB!Table (
118 name <- a.name,
119 pKeys <- Set{c1,
120 c2},
121 cols <- Set{c1,
122 c2}
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123 ),
124 c1: myDB!Column (
125 name <- a.src.name + 'PK',
126 type <- 'INT',
127 owner <- t
128 ),
129 c2: myDB!Column (
130 name <- a.trg.name + 'PK',
131 type <- 'INT',
132 owner <- t
133 ),
134 f1: myDB!Fkey (
135 owner <- t,
136 ref <- a.src,
137 fCols <- c1
138 ),
139 f2: myDB!Fkey (
140 owner <- t,
141 ref <- a.trg,
142 fCols <- c2
143 )
144 }
145
146 rule ClassDiagram2DBSchema {
147 from
148 s: myOO!ClassDiagram
149 to
150 t: myDB!DBSchema (
151 tables <- s.classes -> union(s.getAllmvAssoci()) -> 

union(s.getAllmvAtt())
152 )
153 }
154
155 helper context myOO!ClassDiagram def: getAllmvAtt(): Set(myOO!

Attribute) =
156 myOO!Attribute.allInstances() -> select(a | a.ubound > 1 or 

a.ubound = -1);
157
158 helper context myOO!ClassDiagram def: getAllmvAssoci(): Set(myOO!

Association) =
159 myOO!Association.allInstances() -> select(a | a.ubound > 1 or 

a.ubound = -1);
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Figure 5.21: Query dispersal in ClassToTable ATL implementation.

To provide an abstract view of the marking results, we squeezed down the rule-
based definitions by greatly decreasing their corresponding font-sizes. The results of
the marking task performed over the ETL, ATL, QVT-R definitions are presented in
Fig. 5.20, Fig. 5.21, and Fig. 5.22, respectively. As these figures show, each marking
sign is dispersed over the entire code in all of the three definitions. For example,
the eight components of Qcols which are indexed from one to eight are scattered
throughout the entire definition and among the different rules in all of the three im-
plementations. This means that the different components of a QueST query in Fig
5.5 are dispersed all over the corresponding definitions in the rule-based implemen-
tations. Repeating the above experiment for the other queries in Fig. 5.7 reveals a
similar dispersal of their corresponding definitions over the entire code in the rule-
based implementations1.

1We did not put all of these markings in the figures to avoid cluttering the illustrations.
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Figure 5.22: Query dispersal in ClassToTable QVT-R implementation.

Rationale Behind Query Dispersal

It might be argued that what are presented in this thesis, as the definitions of the
ClassToTable example in ETL, ATL, and QVT-R are subjective, in the sense that
there might be different implementations for the ClassToTable example using these
languages, such that the demonstrated query dispersals are prevented. We believe
that the scattering of the QueST queries would happen in any implementation, be-
cause of the three reasons briefly discussed below:

• One to many and many to many relations. In Sect. 5.3.2, we analyzed
the structural components of the rule-based languages in relation to source and
target metamodel elements. We explained that, in the rule-based languages, the
instances of a target type are generated via different rules; that is, one target
metamodel element can be referenced in many rules/relations in a transforma-
tion definition. This makes the queries generating the instances of a specific
type spread between different rules/relations.

• Arrows are secondary elements. References to arrows in MT definitions in
ETL, ATL, and QVT-R happen by means of nodes; rules are defined primarily
for the nodes, and arrow definitions are implicit inside these rules. More con-
cretely, it is not possible to define an arrow as a target of a rule in ETL and
ATL, or as a target domain of a relation in QVT-R. This means that if the
queries generating nodes are dispersed, then the queries for generating the ar-
rows which are referenced by these nodes will also be dispersed. The � marking
signs appearing everywhere close to the F signs in Fig. 5.20-5.22 illustrate this
phenomenon.

• Flattening the graphical structure. ETL, ATL, and QVT-R are textual
languages, while as it may be seen from Fig. 5.7, MT definitions contain graph-
ical constructs. A representation of a graphical construct in a textual format
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causes a scattering of references to the graphical elements, inside the represen-
tation; for example, a node with several incoming edges in a graph would be
inevitably referenced in different places in the graph’s textual representation.

5.4 Conclusion

In this chapter, we compared QueST and rule-based approaches (i.e., ETL, ATL, and
QVT-R) from the following three perspectives: 1) the main structural components
of the approach, 2) the components’ relations to the metamodel elements, and 3) the
components’ composition mechanisms.

Structural Components. Rules are the main components of the MT definitions
in the rule-based languages. In contrast, queries are the main components in the
QueST definitions. We showed that rules process models element-by-element, while
queries process them as collections. In other words, rules are defined at the model
level, while queries are defined at the metamodel level.

Control Flow Complexities. The query definitions in QueST hide the imple-
mentation details (i.e., control flow structures) under the hood of declarative queries.
However, the control flow structures appear either inside the rule definitions or as trig-
gering dependencies between the rules in the rule-based approaches. As an analogy,
similar to the Join/Union operations in relational databases that hide the underlying
implementation control flows, the declarative queries in QueST abstract away control
flow implementation details.

Thinking Paradigm. The thinking paradigm in the rule-based approaches is
source-to-target; that is, the user thinks about the way each source model element
affects the generation of the elements in the target model. In contrast, the thinking
paradigm in QueST is target-to-source; that is, the user thinks about the queries that
generate elements of a specific metamodel element in the target.

Arrows Are Secondary. Arrows/associations in the rule bases approaches are
treated as secondary elements; that is, there cannot exist a rule whose input/output
parameters are arrows. In QueST, arrows are treated as first-class citizens. Each
query can accept arrows as its input/output parameters, in a similar way as it could
accept the nodes. In fact, the inputs/outputs of queries in QueST are diagrammatic
structures that include both nodes and arrows.

Incremental MT Definition. The outputs of one rule cannot be used as inputs
of another rule. In this sense, there exists no cooperative data flow between the
rules. In QueST, the outputs of queries might be bound to the inputs of other queries
and construct a chain of collaborative query definitions. This enables users to define
transformations incrementally in QueST.

MT Design Pattern. The rule-based approaches do not provide any specific
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guideline for the decomposition of the transformation definitions into rules. How-
ever, a specific blueprint (i.e., the target metamodel structure) always guides the
decomposition and the arrangement of the queries in any QueST MT definition.
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Chapter 6

Analysis of QueST MT Definitions

“Program testing can be used to show the presence
of bugs, but never to show their absence.”

Edsger Dijkstra

There exist two main approaches to verifying whether an MT definition satisfies
the requirements of a transformation. One way is to define test cases and run these
tests against the MT definition. Another way is to use mathematical tools and tech-
niques to check the properties of the MT definition. Using testing techniques to verify
MT definitions is quite straightforward and follows almost the same rules and tech-
niques used in testing ordinary software applications. In this respect, QueST MTs
can be treated similarly to other MT definitions. However, employing mathematical
techniques to verify an MT definition has a prerequisite: the existence of a math-
ematical structure/specification corresponding to the MT definition. Since QueST
is based on formal foundations, MT definitions in QueST have such corresponding
mathematical structure that enables property checking of MT definitions to be carried
out mathematically, besides the testing techniques.

In this chapter, we will demonstrate that each MT in QueST is equivalent to a log-
ical theory and checking properties for an MT is equivalent to analyzing correctness of
such properties (i.e., demonstrating that they are theorems) in its corresponding the-
ory. We will explain the idea by encoding the underlying theories of the two examples
used before (i.e., HappyPeople and ClassToTable) as Alloy (Jackson, 2002) specifica-
tions; then, we will define and analyze some properties over them to demonstrate the
way MT analysis can be carried out.

The basic idea of our approach to property checking is as follows: an MT definition
DDD is encoded as a logical theory ThThTh(DDD) in an appropriate logic; a property to be
checked is encoded as a logical proposition (sentence) PPP , and checking the property
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forDDD amounts to checking the validity of the semantic entailment ThThTh(DDD) |= PPP , which
means that all execution instances of DDD satisfy the property. For such a semantic
validity check, we can use a model checker or an instance generator like Alloy (for
a limited scope analysis). If the logic used for encoding is complete, we can replace
semantic validity by syntactic provability, ThThTh(DDD) ` PPP , so the problem would be
equivalent to proving or disproving the correctness of the proposition PPP in the theory
ThThTh(DDD). This process can be performed manually, or by receiving some assistance from
a theorem prover. We have not used a theorem prover; however, we exploited the
Alloy analyzer in refuting correctness of some defined properties. We also provided
manual proofs for the properties we defined over the examples used.

This chapter is organized as follows. First, we will provide an introduction to
the Alloy language explaining its syntax and semantics to keep the chapter self-
contained. Then, we will discuss the encoding techniques used in the encodings of
different parts of a QueST MT. We will present the encodings of the two running
examples we used in the previous chapters (i.e., ClassToTable and HappyPeople) as
Alloy theories/specifications. Following this, we will define some properties over these
MT definitions. We will analyze the properties against the MTs by running the Alloy
analyzer over the corresponding specifications, and manually prove the ones whose
correctness the analyzer cannot refute. Finally, we will conclude the chapter.

6.1 Alloy Background

Alloy (Jackson, 2012) is a formal language developed at MIT (Jackson, 2002) and
released along with a set of tools that together allow the building of the models of
systems and the analysis of their properties. The convenience of using the Alloy tools
and the language’s intuitive syntax were the main reasons we chose Alloy as the host
language for the QueST MT encodings. Alloy’s underlying language is relational
first-order logic with certain additional features that increase its expressive power
(Jackson, 2002). Its particular relational aspect is inspired by the Z language (Spivey
and Abrial, 1992) and Tarski’s relational calculus (Tarski, 1941).

Alloy is not primarily built for encoding transformations; thus, encoding an MT
in the language needs to exploit some techniques and applying some workarounds
that will be explained in the following sections. However, before then, we will briefly
introduce the language constructs.

6.1.1 Sets and Relations

Alloy’s primary concepts are sets and (binary) relations, so that any system is modeled
as a collection of sets and relations with a number of constraints defined over them.
Relations are understood both extensionally (as sets of ordered pairs, r ⊆ A × B)
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and navigationally as partial multi-valued mappings (thus, we might use r : A 9
B instead of R : A × B to give a relation declaration). The major operations of
the extensional view are ordinary set union, intersection, subtraction, and cartesian
product. The major operation of the navigational view is relation composition: the
relations r1 : A 9 B and r2 : B 9 C can be composed to build the relation
r1.r2 : A 9 C with the following semantics: ∀a : A,∀c : C, (a, c) ∈ r1.r2 ⇐⇒ ∃b :
B, (a, b) ∈ r1 ∧ (b, c) ∈ r2. Alloy provides these relational algebraic operations as well
as the operation of transitive closure. Moreover, Alloy provides notations for writing
FOL formulas with logical connectives and quantifiers. The left-most table in Fig. 6.1
provides a concise list of standard Alloy notations and their corresponding semantics
for sets and relations.

	

Set	and	Relation	operations	
symbol	 Description	

+	 Union	

&	 Intersection	

-	 Subtraction	

->	 Product	

.	 Composition	

~	 Converse	

*	 Reflexive	transitive	
closure	

^	 Transitive	closure	

#	 Cardinality	

Logical	Notations	
symbol	 Description	

not	or	!	 Not	
and		or	&&	And	
or	or	||	 OR	
implies	or	
=>	 Implication	

iff	or	<=>	 If	and	only	if	
=	 Equals	

>	 Greater	than	

>= Greater	than	or	equal	

<	 Less	

=<	 Less	than	or	equal	

in	 Sub-set	
	

Other	Notations	
symbol	 Description	
lone	 0..1	
one	 1..1	
set	 0..*	
some	 1..*	

abstract	 Abstract	set	
univ	 Union	of	all	unary	sets	
none	 Empty	set	

iden	
Identity	binary	
relation	

	

	
	
	
	
	
	
	
	
	
	

Figure 6.1: List of Alloy notations and their meaning.

Unary sets are declared using the sig keyword. For example, a set A is declared
as follows.

sig A{}

Binary or n-place relations are declared inside curly brackets coming after their
corresponding domains; for example, the following code declares two relations r1 :
A×B, and r2 : A×B × C.

sig A{r1:B, r2:B->C}

6.1.2 Constraints

Constraints are defined within fact blocks. For example, the following axiom

Axiom 1 (invIsTotal). ∀b : B, ∃a : A, (a, b) ∈ r1

104



Ph.D. Thesis - Hamid Mohammad Gholizadeh McMaster - Software Engineering

that constrains the converse of the relation r1 : A × B to be total is specified in
Alloy as follows:

fact { all b:B | some a:A | a->b in r1}

There exist certain predefined concise notations for frequently used constraints
such as cardinality constraints. The right-most table in Fig. 6.1 lists these concise
notations and their meaning. For example, the following lone notation requires the
relation r1 to be a partial function.

sig A{r1:lone B}

Another example is adding the one modifier in front of a set declaration that makes
it a singleton, as seen in the following.

one sig A{}

Until now, the constraints are specified using first-order logic notations (for ex-
ample, the forall and the some notations are used). The flexibility of the Alloy
language allows specifying constraints in other styles (Jackson, 2012, pp. 34). For
example, Axiom 1 (invIsTotal) can be alternately expressed in the navigational style
in Alloy as follows:

fact { all b:B | some b.~r1}

Even a pure relational algebraic style (Tarski, 1941) is supported in Alloy. Again,
Axiom 1 (invIsTotal) could be rewritten in relational algebraic style as follows:

fact {univ.r1=B}

Logical operators and connectives in Alloy have very intuitive notations. The
middle table in Fig. 6.1 lists these notations and their corresponding interpretations.

6.1.3 Analysis Features

Alloy provides two primary mechanisms to analyze a specification: 1) assertions, 2)
predicates. In the first method, Alloy searches for a counterexample to the specified
assertion. In the second method, Alloy attempts to find a model for the specification
that satisfies the specified predicate.

Assertions are defined within assertion blocks. For example, in the following, it is
asserted that each attribute belongs to one and only one class :

sig Class{atts: set Attribute}

sig Attribute {}

assert eachAttributesBelongToOneClass

{all a:Attribute | one a.~atts}
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Predicates are defined within pred blocks. For example, the above assertion ex-
pression is written within a predicate block as follows:

pred allAttAreInAClass{all a:Attribute | one a.~atts}

For further information regarding the employment of each mechanism (i.e., whether
to use assertions or predicates) during a system design and analysis, please refer to
Jackson (2012).

6.1.4 Scope Parameter

Alloy specifications can be analyzed using the Alloy analyzer tool. The tool uses scope
parameters whose values are implicitly or explicitly provided during an analysis task.
The scope parameters determine the maximum or the exact cardinality of unary
sets (i.e., signatures) that are used in verifying the underlying specifications. The
default scope value is four; that is, the maximum cardinality of all the unary sets in
a specification is assumed to be four. However, it is possible to customize this value
and increase or decrease it either for all the sets or exclusively for some of them in an
analysis run. As an analysis of a specification is always limited to the specified scopes
in Alloy, there exists no certainty that the analysis results would hold true when we
increase the scope boundaries.

Although the scope limitation might seem very restrictive at first, limited scope
analysis is shown to be very helpful in design and development of the systems. The
reason is that “most bugs have small counterexamples and if an assertion is invalid,
it probably has a small counterexample”. This last quoted statement is referred to as
the Small Scope Hypothesis (Jackson, 2012). However, to prove that an assertion for
an unlimited scope is also valid, we need to employ mathematical proofs as we will
see in Sect. 6.4. Note that the inability to provide automatic proofs to the correctness
of the assertions beyond the scope boundaries is not the limitation of Alloy per se, as
languages like first-order logic are generally undecidable.

6.1.5 Facts

In this chapter, we will use the following two facts.

Fact 1. Let Ri : Ai 9 Bi, i = 1, 2 be two relations, and f : A1 → A2, g : B1 → B2

two functions such that the following commutativity condition holds: R1.g = f.R2.
Then there is a uniquely defined function f ∗ g : R1 → R2 between relations as sets
such that for a pair (a, b) ∈ R1, f ∗ g(a, b) = (f(a), g(b)). Moreover, if functions
f, g are bijections, function f ∗ g is a bijection as well (and in this case, we say that
relations R1 and R2 are isomorphic).
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Proof. Straightforward.

Fact 2. Tow relations satisfying the conditions of Fact 1 have the same head and tail
multiplicities.

Proof. Straightforward.

Fact 1 will be used in the encoding of the view-mappings (see Sect. 6.2.2). Fact 2
will be used in proving Theorem 6.4.1 at page 115.

6.2 Encoding the HappyPeople Example

Before we start discussing the encoding techniques, let us fix some terminology. The
term “model” is sometimes used to refer to an Alloy specification in the Alloy termi-
nology. We already used this term to refer to an instance of a metamodel in MDE.
Thus, when we use model, we mean a metamodel instance by default unless it is clear
from the context that an Alloy specification is intended.

Recall from Chapter 4 (see Fig. 4.7) that a QueST definition consists of three major
components: 1) The source and the target metamodels, 2) The queries augmenting
the source metamodel, 3) The view-mappings associating the target types to the types
in the source or in the augmented source metamodels. In the following, we explain
the way we encode each of these components in Alloy.

6.2.1 Encoding Metamodel

Alloy’s view of the world as consisting of sets and relations perfectly matches the
understanding of metamodels in QueST1. Therefore, the source and the target meta-
models of an MT can be directly encoded in Alloy. In Fig. 6.2, lines 3,5 and 6 encode
the source metamodel, and lines 9 and 11 encode the target metamodel (see the
metamodels’ spec in Sect. 4.1.1). Classes become signatures/sets, and associations
become relations defined inside curly brackets after their corresponding domain sig-
nature; e.g., likes : Person 9 Car and owns : Person 9 V ehicle are two relations
defined under signature Person. The keyword set in these relations’ definitions spec-
ifies the multiplicity constraints 0..*. Line 6, specifies the multiplicity constraint 1..*
at the left-side of the owns relation in the source metamodel (see Fig. 4.1). The two
encoded relations –map1 and map2 at lines 10 and 12– are parts of the view mapping
links explained below; they are not parts of the target metamodel encoding.

1In the encoding of QueST MTs, we assume set/relation interpretations of metamodels (see
Sect. 4.4).
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1 open util/relation

2 //------ Source metamodel -------------

3 sig Person {likes ,owns:set Car ,

4 Qboth:set Car} //query definition

5 sig Car{}

6 fact{ all c:Car | some p:Person | c in p.owns}

7

8 //------ Target metamodel and view -mapping ---------

9 sig HappyPerson {drives:set Vehicle ,

10 map1: QPerson} //the mapping

11 sig Vehicle{

12 map2: Car} //the mapping

13

14 //the view -mapping constraints

15 fact{

16 //map1

17 bijection[map1 ,HappyPerson ,QPerson]

18 //map2

19 bijection[map2 ,Vehicle ,Car]

20 //commutivity constraints ensuring map3 (see Fact 1)

21 drives.map2=map1.Qdrives

22 }

23

24 //------ Query definitions -------------

25 //Relation Intersection Query

26 fact {Qboth = likes & owns}

27

28 //Domain Restriction Query

29 sig QPerson in Person{ Qdrives :set Car }

30 fact {QPerson = Qboth.univ }

31 fact { Qdrives = Qboth }

Figure 6.2: An encoding of the HappyPeople QueST example in Alloy
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6.2.2 Encoding Queries

We encode each query operation by adding to the Alloy specification a family of sets
and relations produced by the query. Recall from chapter 4 (see section 4.2.1), that
we have defined three queries for the HappyPeople example. The Relation Intersec-
tion Query (Q1) produces the relation Qboth. The Domain Selection Query (Q2)
produces the set QPerson and the relation QisA, and the Arrow Composition Query
(Q3) produces the Qdrives relation. In Fig. 6.2, see line 4 that defines Qboth and
line 29 that defines QPerson and Qdrives. Note that the QisA relation in Fig. 4.6
is encoded implicitly by the in keyword at line 29, denoting the subsetting relation
between QPerson and Person.

The semantics of the query operations are encoded as constraints. For Q1, line
26 ensures straightforward intersection semantics for Qboth. Lines 30–31 specify the
corresponding constraints for the Q2 and the Q3 results; QPerson = Qboth.univ at
line 30 makes QPerson equal to the projection of Qboth onto Person, and Qdrives =
Qboth at line 31 is, in fact, a concise encoding of Qdrives = QisA·Qboth, since QisA

is an identity relation.

6.2.3 Encoding Mappings

In the HappyPeople example, the view mapping consists of three mapping links or
just maps connecting the target metamodel with the source (augmented) metamodel.
Semantically, if a map links two classes (i.e., node types, like map1 and map2 ),
then it specifies a bijection between the corresponding sets, and we add to our Alloy
specification the corresponding facts (see lines 16–19 in Fig. 6.2). If a map links
relations (i.e., arrow types, like map3), semantically it means a bijection between
the relations as sets of pairs, and moreover, the following commutativity constraint:
if map3(h, v) = (p, c), then map1(h) = p and map2(v) = c. However, Alloy does
not allow us to define a relation between relations like map3 , and we need to find a
workaround. Fact 1 (see Sect. 6.1.5) helps here: the commutativity condition in this
fact implies the existence of the required mapping between associations, and adding it
to the Alloy spec (see line 21 in Fig. 6.2) completes the encoding of the view-mapping.
In this way, the entire Alloy specification in Fig. 6.2 encodes the HappyPeople example
in Fig. 4.6.

6.3 Encoding the ClassToTable Example

In the previous section, we explained the encoding techniques to specify the definition
of the HappyPeople example in Alloy. We can use the same techniques to encode the

109



Ph.D. Thesis - Hamid Mohammad Gholizadeh McMaster - Software Engineering

ClassToTable example (or any other QueST MT) in Alloy. If we assume the view-
mappings to be bijective1, we can simplify the encoding process as follows. We can
avoid the encoding of target metamodels and view-mappings and, instead, identify the
target metamodel with the view-mapping image. For example, as seen in Fig. 5.7, the
MT view-mapping is bijective; the Column type in the target metamodel is mapped to
the derived type QColumn. Thus, we will just encode QColumn and skip the encoding
of Column and the view-mapping link between Column and QColumn, consequently.
This does not cause any problem in verifying properties (see Remark 2 at page 116)

6.3.1 Encoding Metamodel

Fig. 6.3 presents the encoding of the ClassToTable example source metamodel in
Alloy. Lines 5–11 define the nodes/sets and arrows/relations, and lines 14–28 define
the constraints on the metamodel. Line 5 defines the signature Str to model strings.
Alloy does not provide support for the string type, so it should be modeled similarly
to other entities. The abstract keyword at line 6 makes NElement abstract; that
is, no direct instance of this node can exist. The rest of the encoding notations
are self-descriptive and are similar to what were explained in the encoding of the
HappyPeople metamodels. The constraint diamond (lines 14–16) ensures that each
attribute belongs to one and only one class. The constraint noLoop (lines 17–19)
ensures that the inheritance association (i.e., parent) is not circular. The caret (ˆ)
symbol at line 18 is the transitive closure operation (see Fig. 6.1). The constraints
defined inside the bounds block (lines 20–28) are the ones regarding the boundary
properties (lbound and ubound) of the Attribute and Association nodes in the
source metamodel. For example, line 21 ensures that the lbound (lower-bound) value
for the attributes is always greater than or equal to 0.

6.3.2 Encoding Queries

Similar to the HappyPeople example, queries are encoded by adding a family of sets
and relations produced by the queries. We will only explain the encoding of the query
that defines QTable in the ClassToTable example. The rest of the queries are similarly
encoded and their encodings are provided in Appendix A.1.

Recall from Sect. 5.3.3 (see Fig. 5.16), that we decomposed the definition of QTable
into three queries: Q1 defines QmvAssoci, Q2 defines QmvAtt and Q3 combines the two
elements (i.e., QmvAssoci and QmvAtt) and Class to construct QTable. Q1 and Q2

are select queries. In Fig. 6.4, Q1’s output (i.e., QmvAssoci) is encoded at lines 11–15.
Q2’s output (i.e., QmvAtt) is encoded at lines 4–8. The arrows connecting QmvAtt to

1In this thesis, we assume the view-mappings are bijective; however, for any MT definition with
a non-bijective view-mapping, it is straightforward to convert it to a one with a bijective mapping.
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1 //******************************************************

2 //-------------------Source metamodel -------------

3 //******************************************************

4 // ---metamodel nodes and arrows ---

5 sig Str{}

6 abstract sig NElement {name: one Str}

7 sig Class extends NElement

8 {parent :lone Class , atts: set Attribute}

9 sig Association extends NElement

10 {lbound , ubound: one Int , src , trg: one Class}

11 sig Attribute extends NElement{lbound ,ubound:one Int}

12

13 // ---constraints -------------------

14 fact diamond{

15 all a:Attribute | one c:Class | a in c.atts

16 }

17 fact noLoop{

18 all c:Class | not (c in c.^ parent)

19 }

20 fact bounds{

21 all a:Association | a.lbound >=0

22 all a:Association | not (a.lbound =0 and a.ubound =0)

23 all a:Association | (a.lbound <= a.ubound) or (a.ubound =-1)

24

25 all a:Attribute | a.lbound >=0

26 all a:Attribute | not (a.lbound =0 and a.ubound =0)

27 all a:Attribute | (a.lbound <= a.ubound) or (a.ubound =-1)

28 }

Figure 6.3: An encoding of the ClassToTable source metamodel in Alloy
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1 // −−−Helper q u e r i e s to b u i l d QTable
2 // −−QmvAtt1 d e f i n i t i o n−−−−−−−−−−−−
3 //∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
4 sig QmvAtt1 in Attr ibute {}
5 fact {
6 a l l a : Att r ibute |
7 ( a . ubound =−1 or a . ubound >1) i f f a in QmvAtt1
8 }
9 // −−QmvAssoci1 d e f i n i t i o n−−−−−

10 //∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
11 sig QmvAssoci1 in Assoc i a t i on {}
12 fact {
13 a l l a : As soc i a t i on |
14 ( a . ubound =−1 or a . ubound >1) i f f a in QmvAssoci1
15 }
16 //∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
17 // −− QTable query :
18 // −− the Table node in t a r g e t metamodel i s mapped to QTable
19 //∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
20 sig QTable extends NElement {
21 r1 : set QmvAssoci1 ,
22 r2 : set Class ,
23 r3 : set QmvAtt1 ,
24 a1 , a2 , a3 , a4 , a5 , a6 , a7 , a8 , Qcols , QpKeys : set QColumn ,
25 k1 , k2 , k3 , k4 , k5 , QfKeys : set QFKey
26

27 }
28 fact {
29 b i j e c t i o n [
30 QTable<: r3+QTable<: r1+QTable<: r2 ,
31 QTable ,
32 QmvAtt1+QmvAssoci1+Class ]
33 }
34 // −− t h i s i s to p o p u l a t e the name proper ty o f QTable e lements .
35 fact {
36 a l l q : QTable | q . r1 !=none => q . name=q . r1 . name else
37 q . r2 !=none => q . name=q . r2 . name else
38 q . r3 !=none => q . name=q . r3 . name
39 }

Figure 6.4: An encoding of the QTable query in Alloy
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Attribute, and QmvAssoci to Association in Fig. 5.16 are inclusion mappings and
are both encoded with the in keyword in Fig. 6.4 at lines 4 and 11, respectively. The
select predicates for Q1 and Q2 are encoded inside the fact blocks (see lines 13–14,
and lines 6–7). QTable is encoded between lines 20 to 39. The constraint inside the
first fact block (lines 29–32) is the encoding of Q3’s semantics. The second fact block
(i.e., lines 36–38) defines the name property of QTable. The complete encoding of
the ClassToTable example in Alloy can be found in Appendix A.1.

6.4 Analyses of MT Definitions

Sometimes the user is interested to ensure that a particular property is true for an MT
definition, and sometimes she is interested to check if a particular property does not
hold. We will examine both of these scenarios in this section. Having a corresponding
logical interpretation of an MT definition enables us to formulate these concerns as
propositions. We will use the Alloy analyzer to verify such propositions over the
two encoded MT definitions (i.e., HappyPeople, and ClassToTable). For each encoded
proposition, the analyzer attempts to find counter examples to refute the validity of
the proposition. If it fails, there is a chance that the proposition is valid; however,
a proof should be provided. We will provide manual proofs for such cases. We first
analyze the HappyPeople example and then the ClassToTable example.

6.4.1 Analyzing the HappyPeople Example

Recall the HappyPeople example is the translation of the people who like and own cars,
to people who are happy in case they both like and own the same vehicle. Suppose
we want to verify the correcness the following three input-output properties over this
definition:

• Property 1 : Every happy person drives at least one vehicle.

• Property 2 : All vehicles are driven by happy people.

• Property 3 : Happy persons only drive vehicles/cars they like.

Note that while Properties 1 and 2 are formulated entirely in the language of
the target metamodel, Property 3 involves both metamodels and assumes backward
traceability of happy persons and vehicles to persons and cars, respectively. We expect
Property 1 and Property 3 to hold true for the MT definition. For Property 2, we
expect to find a counterexample, since according to the MT definition in Sect. 4.1.3,
all cars should be translated to vehicles – never mind they are not owned or liked by
somebody. Thus, some of these vehicles should not be driven by any happy person.
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1 //--------Property definition -----------

2 //Prop1 : Every happy person drives at least one vehicle.

3 assert ass1 {

4 all p:HappyPerson | some v:Vehicle | p->v in drives

5 }

6 //Prop2: all vehicles are driven by happy people.

7 assert ass2 {

8 all v:Vehicle | some h:HappyPerson | h->v in drives

9 }

10 //Prop3: Happy persons only drive vehicles/cars they like.

11 assert ass3 {

12 all h:HappyPerson | all v:Vehicle |

13 h->v in drives => map1[h]->map2[v] in likes

14 }

Figure 6.5: Properties specified in Alloy

Having the Alloy specification presented in Fig. 6.2, we can formally define the
Properties 1-3 in Alloy as they are listed in Fig. 6.5. These properties are defined
inside assertion blocks that let us use the Alloy analyzer to check their validity. As
mentioned in Sect. 6.1.4, the Alloy analyzer works based on scope parameters; that is,
assertions are checked within a user-defined scope that limits the maximum number
of elements of each set. In the case that Alloy finds a counterexample within the
defined scope, it means the assertion is not valid; otherwise, the assertion is valid
within the scope and might be valid beyond it. We checked the three properties with
the number 20 assigned to the scope parameters of the sets. The analyzer did find
a counterexample for the second assertion refuting its correctness: there might be
some vehicles without a driver in the generated models. Fig. 6.6 exhibits one of these
counterexamples generated by the Alloy analyzer. In the figure, the source model
elements are presented in gray, the generated target model elements are presented in
blue, the query results are presented in green, and the traceability links are presented
in red (labeled with map1 and map2 ). Vehicle1 from the target model is an example
of a vehicle that is not driven by anybody as indicated in the figure.

For the first and the third property (i.e., the assertions ass1 and ass2 in Fig. 6.6),
Alloy could not find any counterexamples, meaning that they might be valid even for
an unlimited scope. One way to increase certainty about their validity is to increase
the scope parameter value to a higher number to cover more model instances; but
no matter how much we increase the scope boundaries, the uncertainty will never
disappear. To gain greater confidence, we need to provide a formal proof (which
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This	Vehicle	is	not		
driven	by	anybody	

Figure 6.6: A counterexample generated by the Alloy analyzer for Prop. 2

gives us absolute confidence modulo the adequacy of the formal encoding of the
subject matter). This could be done manually, or semi-automatically with a theorem
prover; however, as mentioned before, provability of FOL statements is undecidable
in general; the latter, of course, does not prevent the existence of decision procedures
for specific fragments and cases.

In the following, we will manually prove both of the above two properties.

Let ThThThH denote the encoded theory of the HappyPeople MT as specified in Fig. 6.2.

Theorem 1 (Property 1 Holds). Every happy person drives at least one vehicle,
formally: ThThThH |= ∀h:HappyPerson,∃v:Vehicle, v ∈ h.drives.

Proof. In fact, we need to prove that the multiplicity of relation drives is [1..*].
However, relations drives and Qdrives are isomorphic by the construction of ThThThH
(lines 16–21 in Fig. 6.2), and so by Fact 2 (see Sect. 6.1.5) we need to prove the [1..*]-
multiplicity of the relation Qdrives. As the relation Qdrives is total by construction
(line 30 in Fig. 6.2), relation Qdrives does have multiplicity [1..*].

Theorem 2 (Property 3 Holds). If a happy person drives a vehicle, this person likes
the corresponding car in the source model. Formally, ThThThH |=
∀h:HappyPerson, ∀v:Vehicle, v ∈ h.drives ⇒ map2 (v) ∈map1 (h).likes

Proof. As relations drives and Qdrives are isomorphic, we need to prove the
property in question for relation Qdrives: ThThThH |= c ∈ p.Qdrives ⇒ c ∈ p.likes
for all p ∈ QPerson, c ∈ Car (recall that QPerson is a subset of Person). Now it is
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easy to see that the property above means that Qdrives ⊆ likes, which is obvious
as Qdrives = Qboth and Qboth = owns ∩ likes; so, Qdrives ⊆ likes.

Remark 2. When we need to prove a property that involves target metamodel ele-
ments (which is a typical case), we replace those elements by their images in Q(S)
and rewrite the property accordingly.

6.4.2 Analyzing the ClassToTable Example

The property analysis task in the ClassToTable example is the same as the HappyPeople
example. In fact, the more complex an MT gets, the more difficult the proofs might
be; however, using the Alloy analyzer, an analysis task such as refuting correctness of
a property might be very easy even for a fairly complex MT such as the ClassToTable
example1, as we will see in this section. We intend to check the following three
properties over the ClassToTable example.

• Property 1 : The number of generated tables is equal to the number of classes.

• Property 2 : All the generated primary keys for a table are also columns of
the same table.

• Property 3 : All the generated tables have at least one foreign key.

In the first property, both of the source and target metamodels are involved. In
the second and the third property, the properties are regarding the validity of the
generated models, so only the target metamodel is involved. Since we expect that in
some ClassToTable transformation scenarios, the number of generated tables become
greater than the number of classes in the source, if the ClassToTable MT definition
was correct, Property 1 should not always hold true. There is also no restriction on
the generated tables as to always have foreign keys (according to the ClassToTable MT
specification –see Sect. 5.2.2), so we expect Property 2 to be also refuted. However,
we expect the MT definition to have the second property; otherwise, the generated
target models will not be valid database schemas. Note that the user can define many
of other properties considering different aspect of the ClassToTable transformation
specification and analyze the MT definition from multiple perspectives. The above
three properties are just examples to show the applicability of the approach.

Given the encoding of the ClassToTable example in Appendix A.1 (that is partially
explained in Sect. 6.3), we can express the above three properties in Alloy using the
assertion blocks. Fig. 6.7 presents these assertion definitions. The sharp (i.e., #)
notation at lines 3 and 13 is the cardinality operator. In line 8, the in keyword (i.e.,

1The ClassToTable specification is more than 200 lines of code.
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1 // ----Property 1----

2 assert ass1 {

3 #QTable = #Class

4 }

5

6 // ----Property 2----

7 assert ass2{

8 QpKeys in Qcols

9 }

10

11 // ----Property 3----

12 assert ass3 {

13 all t:QTable | #(t.QfKeys) >=1

14 }

Figure 6.7: ClassToTable sample properties specified in Alloy

the subsetting relation) is used over two relations QpKeys and Qcols as sets of pairs.
The other parts of the encodings are self-descriptive. As seen in these assertions, since
we did not encod the target metamodel in the ClassToTable example, target types are
substituted by their corresponding query definitions in the proposition encodings; for
example, in the assertion at line 3, instead of Table, we used its corresponding query
QTable.

We checked the assertions in Fig. 6.7 over the ClassToTable MT specification with
the number 20 assigned to the scope parameters of the sets. The Alloy analyzer
did find counterexamples for Property 1 and Property 3, refuting their correctness.
For the first property, Alloy provided the counterexample presented in Fig. 6.8. The
property asserts that the number of generated tables should be equal to the number of
classes. As seen, there exists only one class in the source model, while two tables are
generated in the target. The extra table (labeled as QTable1) is generated because of
one multi-valued attribute labeled as Attribute in the figure. Note how the generated
traceability link r3 traces back the generated table (i.e., QTable1) to its origin (i.e.,
Attribute) providing useful information regarding the invalidity of the property.

A counterexample generated for Property 3 is presented in Fig. 6.9. The property
asserts that all the generated tables should have at least one foreign key. As seen in
the figure, there exists no foreign key associated with the table labeled as QTable1.
Note again the traceability link r2 explicitly tracing this table back to its origin
(i.e., Class) making it possible to spot the place in the source model that causes the
violation of the stated property.
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Two	Tables	are	generated		
in	the	target	

Only	One	Class	
exists	in	the	source	

QTable1	is	generated		
because	of	this	A;ribute	

Traceability	Link	

Figure 6.8: A counterexample provided by the Alloy analyzer for Property 1.
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This	Table	does	not	have		
any	foreign	Key	

Traceability	Link	

Figure 6.9: A counterexample provided by the Alloy analyzer for Property 3.
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The Alloy analyzer could not find any counterexample for Property 2 at the defined
scope boundaries (i.e., 20 elements per sets). Increasing the scope boundaries to 30
also did not return any counterexample, making the property more likely to be a
theorem; however, one might want to prove the property. Let ThThThC denote the theory
of the ClassToTable example as specified in Appendix A.1.

Theorem 3 (Property 2 Holds). All the generated primary keys for a table are also
columns of the same table: ThThThC |= QpKeys ⊆ Qcols.

Proof. Straightforward from the QpKeys definition at line 147 and the Qcols

definition at line 127 of the ThThThC specification in Appendix A.1.

6.5 Conclusion

There exist two general approaches to checking the validity of the properties of an
MT definition: 1) testing 2) mathematical analysis (i.e., formal methods). The first
approach cannot guarantee the correctness of a property of a transformation, except
for the test models over which the property is being checked. The second approach can
provide a higher level of confidence by proving the correctness of a property for all the
possible inputs. The current MT approaches do not often provide a mathematical
basis to formally analyze MT properties, except the graph-based approaches (see
Sect. 1.3 for further discussion). In this chapter, we explained the techniques based
on which properties over QueST MT definitions can be formally specified and verified.

Each QueST MT definition amounts to its corresponding theory and checking
properties amounts to proving/disproving the correctness of the propositions (corre-
sponding to the properties) in this theory. We elucidated the way this mechanism
works using two examples (i.e., ClassToTable and HappyPeople). We presented the
theories underlying these two MT definitions by encoding them in Alloy. After we
carried out the theory encodings, we defined some properties and expressed them as
Alloy assertions/propositions. We used the Alloy analyzer to verify these properties.
The analyzer disproved some of the properties; however, it could not find counterex-
amples to refute the correctness of some others. The non-refuted properties, then,
are highly likely to be correct. We manually proved these properties to be theorems
in the corresponding MT theories.

The logical analysis technique of QueST is independent of Alloy and its analyzer
tool. Whether Alloy is much suitable for QueST MT analysis than some other formal
languages could be another research work. As we did not intent to compare the formal
languages and their corresponding tools in this chapter, we did not provide perfor-
mance data concerning the executed MT analyses with Alloy. The encoding process
of a QueST MT presented in this chapter is carried out manually. The metamodels
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are encoded as a family of sets and relations, and the view-mappings are encoded as
bijections. Queries are encoded via adding metamodel elements and constraints that
semantically bound these new elements to the query inputs (according to their cor-
responding semantics). The definition of each QueST query has a predefined syntax
(see Definition 10); it syntactically augments the metamodel in a predefined manner
(see Definition 12); it also should have given a predefined semantics –independently
of any specific MT definition (see Definition 14). Thus, it is possible to systematically
automate the Alloy encoding of each QueST query application. We left the further
investigation and the implementation of automatic encoding for future work. The
presented analysis methods in this chapter can be employed over any QueST MT
definition.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The current thesis can be seen as a bridge between an engineering domain (MDE)
and its abstract mathematical model (QueST). It attempts to make the two sides
closer, and communicate QueST’s promising advantages to the MDE community.

MDE proposes engineering software systems based on models rather than code.
Engineers build models of software, and these models are transformed to executable
code in a series of transformations. However, this promising idea is difficult to achieve
in practice. Models are complex entities and each might have thousands of elements;
engineering transformations between such complex entities and maintaining them is
a challenging task. Further, checking each transformation’s correctness is crucial to
ensuring the integrity of the entire network of interrelated models. All this places the
MT approaches at the heart of the MDE processes and emphasizes the critical role
of the declarative MT approaches to the success of MDE.

Concretely, this thesis contributes in the following aspects: 1) studying the var-
ious types of synchronization scenarios, 2) formal definition of the structure of dia-
grammatic queries, 3) comparative analysis of the QueST approach and the current
rule-based approaches, 4) applicability of the QueST approach in the development of
modularity, incrementality, and logical analysis of MT definitions.

Below, we briefly summarize the findings.
Shortcomings of the Current MT Approaches. Examining the current MT

approaches in the literature reveals that they usually miss either one or both of the
two necessary features in managing the complexity of MT definitions: 1) declarativity,
2) formal foundation. The declarativity abstracts away unnecessary implementation
details and focuses the user on high-level structures (i.e., models). In fact, using
abstraction is more or less what MDE is about, so declarative approaches should be
firmly expected to be used in the development of MT definitions. The formality,
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on the other hand, is essential to MT tool development, MT engineering, and MT
verification.

Query-based Structured MT Approach. In the current thesis, we developed
a Query-based Structured Model Transformation (QueST) approach that is formal
and more declarative than the current MT approaches. The formality behind the
QueST approach has been already well-established in the literature based on Cate-
gory Theory concepts. In the current thesis, we further developed the approach by
introducing a diagrammatic query framework (DQF). The declarativity of the ap-
proach is achieved by defining the MTs at the metamodel level and hiding the control
flow structures under the declarative query definition constructs.

MT Definition Process in QueST. The main components of an MT definition
in QueST are a series of queries defined on source metamodels. Discovering these
definitions is a heuristic process, guided by the structure of the corresponding target
metamodel; the goal is to replicate the target metamodel structure on the source side
by defining queries. After that, the elements of the target metamodel are mapped to
either types defined by the queries or the original source types. This is similar to how
views are defined in relational databases; however, in QueST, views are defined over
metamodels rather than relational schemas.

High-level Diagrammatic Queries. The queries used in defining transfor-
mations in QueST are high-level diagrammatic operations applied to the metamodel
elements. They are called diagrammatic as their corresponding input/output ari-
ties are graphs. They are considered high-level as their corresponding input/output
parameters are collections rather than individual instances. We introduced the dia-
grammatic query framework (DQF) based on which the syntax and the semantics of
these queries are defined. We provided formal definitions of the framework compo-
nents, and explained them with concrete examples. We also showed that the query
definitions in the framework are aligned with the general concept of queries in terms
of leaving the original data intact.

Comparative Analysis. We compared QueST and three rule-based approaches:
ETL, ATL, and QVT-R. QueST guides the MT designer’s thinking process in the
target-to-source direction, and focuses it at the metamodel level, while the rule-based
approaches guide it in the source-to-target direction and focus it at the model level.
QueST queries are more declarative constructs than are rules. They process models as
collections and abstract away the implementation details (i.e., control flow structures).
In contrast, rules process models element-by-element, and the control flow structures
sometimes appear either inside the rules or as triggering dependencies between the
rules. We argued that the decomposition of MT definitions in QueST is more flexible
than rule-based approaches. The reason is that the QueST queries can be chained and
construct MT definitions incrementally, while the structures of rules are not amenable
for building MT definitions incrementally.
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MT Verification in QueST. MT verification is critical to ensuring the correct-
ness of the transformations. The current MT approaches typically do not provide a
mathematical basis to formally analyze MT properties. We explained the technique
based on which properties over QueST MT definitions can be formally specified and
verified. Each QueST MT definition amounts to its corresponding theory, and check-
ing transformation properties amounts to proving/disproving the derivability of the
propositions. We elucidated the way this mechanism works for QueST MT defini-
tions. We have also demonstrated how these properties can be checked/analyzed with
Alloy.

7.2 Future Work

DQF Query Language. Ahough we defined the DQF framework, we did not
confine it to any particular set of diagrammatic query operations. One can define a
set of DQF operations constructing a specific DQF query language and investigate
its properties such as expressivity (e.g., whether the language is turing complete).

Language-level DQF Query Compositions. We showed the way query def-
initions can be composed consecutively in a QueST MT definition; however, we did
not define the machinery of composing two DQF operations in a DQF language, in-
dependently of their definitions on a metamodel. This composition mechanism and
the corresponding semantic definitions might be further investigated.

Alloy Automatic Encoding. We explained the encoding techniques, but have
not provided a tool to automatically encode QueST MTs as Alloy specifications. An
automatic encoding mechanism might be implemented as part of a DQF implementa-
tion. A tentative approach would be as follows: each diagrammatic query operation
in a DQF library comes with its Alloy encoding template. Whenever a query is used
in a QueST MT definition, the encoder uses its corresponding template to generate
the encoding in Alloy.

Empirical Studies. We compared QueST with three rule-based approaches.
There might be a possibility to carry out some empirical studies over the usability of
QueST in contrast to these approaches. However, this requires providing tool support
for the QueST approach comparable to that available for the rule based approaches.
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Appendix A

The ClassToTable Definitions

A.1 The ClassToTable Example Encoding in Alloy

(via QueST)

In Chapter 6, we presented some parts of the ClassToTable QueST encoding in AIloy.
The complete encoding of this example is provided in the following.

1 open u t i l / r e l a t i o n
2 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
3 //−−−−−−−−−−−−−−−−−−−Source metamodel−−−−−−−−−−−−−
4 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
5 // −−−metamodel nodes and arrows−−−
6 sig Str {}
7 abstract sig NElement {name : one Str }
8 sig Class extends NElement
9 {parent : lone Class , a t t s : set Attr ibute }

10 sig Assoc i a t i on extends NElement
11 { lbound , ubound : one Int , s rc , t rg : one Class }
12 sig Attr ibute extends NElement
13 { lbound , ubound : one Int}
14

15 // −−−c o n s t r a i n t s−−−−−−−−−−−−−−−−−−−
16 fact diamond{
17 a l l a : Att r ibute | one c : Class | a in c . a t t s
18 }
19 fact noLoop{
20 a l l c : Class | not ( c in c . ˆ parent )
21 }
22 fact bounds{
23 a l l a : As soc i a t i on | a . lbound >=0
24 a l l a : As soc i a t i on | not ( a . lbound =0 and a . ubound =0)
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25 a l l a : As soc i a t i on | ( a . lbound <= a . ubound ) or ( a . ubound=−1)
26

27 a l l a : Att r ibute | a . lbound >=0
28 a l l a : Att r ibute | not ( a . lbound =0 and a . ubound =0)
29 a l l a : Att r ibute | ( a . lbound <= a . ubound ) or ( a . ubound=−1)
30 }
31 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
32 //−−−−−−−−−−−−−−−−−−−−−−Queries−−−−−−−−−−−−−−−−−−−−
33 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
34 // −−−Helper q u e r i e s to b u i l d QTable
35 // −−QmvAtt1 d e f i n i t i o n−−−−−−−−−−−−
36 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
37 sig QmvAtt1 in Attr ibute {}
38 fact {
39 a l l a : Att r ibute |
40 ( a . ubound =−1 or a . ubound >1) i f f a in QmvAtt1
41 }
42 // −−QmvAssoci1 d e f i n i t i o n−−−−−
43 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
44 sig QmvAssoci1 in Assoc i a t i on {}
45 fact {
46 a l l a : As soc i a t i on |
47 ( a . ubound =−1 or a . ubound >1) i f f a in QmvAssoci1
48 }
49

50 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
51 // −− QTable query :
52 // −− the Table node in t a r g e t metamodel i s mapped to QTable
53 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
54 sig QTable extends NElement {
55 r1 : set QmvAssoci1 ,
56 r2 : set Class ,
57 r3 : set QmvAtt1 ,
58 a1 , a2 , a3 , a4 , a5 , a6 , a7 , a8 , Qcols , QpKeys : set QColumn ,
59 k1 , k2 , k3 , k4 , k5 , QfKeys : set QFKey
60

61 }
62 fact {
63 b i j e c t i o n [
64 QTable<: r3+QTable<: r1+QTable<: r2 ,
65 QTable ,
66 QmvAtt1+QmvAssoci1+Class ]
67 }
68 // −− t h i s i s to p o p u l a t e the name p rope r ty o f QTable e lements .
69 fact {
70 a l l q : QTable | q . r1 !=none => q . name=q . r1 . name else
71 q . r2 !=none => q . name=q . r2 . name else
72 q . r3 !=none => q . name=q . r3 . name
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73 }
74

75 // −−−Helper q u e r i e s to b u i l d QColumn
76 // −−QmvAssoci2 d e f i n i t i o n−−−−−−−−−−−−
77 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
78 sig QmvAssoci2 { isA : QmvAssoci1 }
79 fact {
80 b i j e c t i o n [ QmvAssoci2<: isA , QmvAssoci2 , QmvAssoci1 ]
81 }
82 // −−QmvAtt2 d e f i n i t i o n−−−−−−−−−−−−
83 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
84 sig QmvAtt2 { isA : QmvAtt1 }
85 fact {
86 b i j e c t i o n [ QmvAtt2<: isA , QmvAtt2 , QmvAtt1 ]
87 }
88 // −−QsvAssoci1 d e f i n i t i o n−−−−−−−−−−−−
89 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
90 sig QsvAssoci1 in Assoc i a t i on {}
91 fact {
92 a l l a : As soc i a t i on |
93 ( a . ubound =1 and ( a . lbound =1 or a . lbound =0))
94 i f f a in QsvAssoci1
95 }
96 // −−QsvAtt1 d e f i n i t i o n−−−−−−−−−−−−
97 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
98 sig QsvAtt1 in Attr ibute {}
99 fact {

100 a l l a : Att r ibute |
101 ( a . ubound =1 and ( a . lbound =1 or a . lbound =0))
102 i f f a in QsvAtt1
103 }
104 // −−Qparent1 d e f i n i t i o n−−−−−−−−−−−−
105 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
106 sig Qparent1 { cc : Class −>Class , s , t : Class }
107 { one cc and t=cc [ s ]}
108 fact {
109 parent=Qparent1 . cc and #Qparent1=#parent
110 }
111 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
112 // −− QColumn query :
113 // −− the Column node in t a r g e t metamodel i s mapped to QColumn
114 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
115 sig QColumn extends NElement
116 { r1 : set QsvAssoci1 , r2 : set QmvAssoci1 , r3 : set QmvAssoci2 ,
117 r4 : set Class , r5 : set Qparent1 , r6 : set QmvAtt1 ,
118 r7 : set QmvAtt2 , r8 : set QsvAtt1}
119 fact {
120 b i j e c t i o n [ QColumn<: r1+QColumn<: r2+QColumn<: r3+
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121 QColumn<: r4+QColumn<: r5+QColumn<: r6+
122 QColumn<: r7+QColumn<: r8 ,
123 QColumn ,
124 QsvAssoci1+QmvAssoci1+QmvAssoci2+Class+
125 Qparent1+QmvAtt1+QmvAtt2+QsvAtt1 ]
126 }
127

128 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
129 // −− Qcols query :
130 // −− the c o l s arrow in t a r g e t metamodel i s mapped to Qcols
131 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
132 fact {
133 a1 = ( QTable<: r1 ) . ˜ r2
134 a2 = ( QTable<: r1 ) . ˜ ( QmvAssoci2<: isA ) . ˜ r3
135 a3 = ( QTable<: r2 ) . ˜ r4
136 a4 = ( QTable<: r2 ) . a t t s . ˜ r8
137 a5 = ( QTable<: r2 ) . ˜ ( Qparent1<: s ) . ˜ r5
138 a6 = ( QTable<: r2 ) . ˜ s r c . ˜ r1
139 a7 = ( QTable<: r3 ) . ˜ r6
140 a8 = ( QTable<: r3 ) . ˜ ( QmvAtt2<: isA ) . ˜ r7
141 Qcols=a1+a2+a3+a4+a5+a6+a7+a8
142 }
143

144 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
145 // −− QFKey query :
146 // −− the FKey node in t a r g e t metamodel i s mapped to QFKey
147 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
148 sig QFKey { r1 : set QmvAssoci1 , r2 : set QmvAssoci2 ,
149 r3 : set Qparent1 , r4 : set QmvAtt1 , r5 : set QsvAssoci1 ,
150 e1 , e2 , e3 , e4 , e5 , Qrefs : set QTable ,
151 d1 , d2 , d3 , d4 , d5 , QfCols : set QColumn}
152 fact {
153 b i j e c t i o n [QFKey<: r1+QFKey<: r2+QFKey<: r3+
154 QFKey<: r4+QFKey<: r5 ,
155 QFKey,
156 QmvAssoci1+QmvAssoci2+Qparent1+
157 QmvAtt1+QsvAssoci1 ]
158 }
159

160 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
161 // −− QpKeys query :
162 // −− the pKeys arrow in t a r g e t metamodel i s mapped to QpKeys
163 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
164 fact {
165 QpKeys=a1+a2+a3+a7+a8
166 }
167 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
168 // −− QfKeys query :
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169 // −− the fKeys arrow in t a r g e t metamodel i s mapped to QfKeys
170 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
171 fact {
172 k1= ( QTable<: r2 ) . ˜ ( Qparent1<: s ) . ˜ ( QFKey<: r3 )
173 k2= ( QTable<: r3 ) . ˜ ( QFKey<: r4 )
174 k3= ( QTable<: r1 ) . ˜ ( QFKey<: r1 )
175 k4= ( QTable<: r1 ) . ˜ ( QmvAssoci2<: isA ) . ˜ ( QFKey<: r2 )
176 k5= ( QTable<: r2 ) . ˜ s r c . ˜ (QFKey<: r5 ) ctod−encoding
177

178 QfKeys=k1+k2+k3+k4+k5
179 }
180 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
181 // −− Qrefs query :
182 // −− the r e f s arrow in t a r g e t metamodel i s mapped to Qrefs
183 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
184 fact {
185 e1= (QFKey<: r1 ) . s r c . ˜ ( QTable<: r2 )
186 e2= (QFKey<: r2 ) . isA . t rg . ˜ ( QTable<: r2 )
187 e3= (QFKey<: r3 ) . t . ˜ ( QTable<: r2 )
188 e4= (QFKey<: r4 ) . ˜ a t t s . ˜ ( QTable<: r2 )
189 e5= (QFKey<: r5 ) . t rg . ˜ ( QTable<: r2 )
190 Qrefs=e1+e2+e3+e4+e5
191 }
192 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
193 // −− QfCols query :
194 // −− the f C o l s arrow in t a r g e t metamodel i s mapped to QfCols
195 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
196 fact {
197 d1= (QFKey<: r1 ) . ˜ ( QColumn<: r2 )
198 d2= (QFKey<: r2 ) . ˜ ( QColumn<: r3 )
199 d3= (QFKey<: r3 ) . ˜ ( QColumn<: r5 )
200 d4= (QFKey<: r4 ) . ˜ ( QColumn<: r6 )
201 d5= (QFKey<: r5 ) . ˜ ( QColumn<: r1 )
202 QfCols=d1+d2+d3+d4+d5
203 }

A.2 The ClassToTable Example in ETL

In the following four pages, an ETL implementation of the ClassToTable example in
Chapter 5 is provided.

1 pre {
2 ”Running ETL” . p r i n t l n ( ) ;
3 var dbschema : myDB! DBSchema ;
4 }
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5

6 r u l e ClassSchema2DBSchema
7 trans form c : myOO! Schema
8 to t :myDB! DBSchema{
9 dbschema=t ;

10 }
11 r u l e Class2Table
12 trans form c : myOO! Class
13 to t :myDB! Table ,
14 pk :myDB! Column{
15

16 dbschema . t a b l e s . add ( t ) ;
17 dbschema . t a b l e s . add ( pk ) ;
18 t . name=c . name ;
19 pk . name=c . name+”PK” ;
20 pk . type=”INT” ;
21

22 t . c o l s . add ( pk ) ;
23

24 t . pKeys . add ( pk ) ;
25

26 i f (not ( c . parent=n u l l ) ){
27 var c o l : new myDB! Column ;
28 c o l . name=” parent−”+c . parent . name+”PK” ;
29 c o l . type=”INT” ;
30

31 t . c o l s . add ( c o l ) ;
32

33 var f : new myDB! Fkey ;
34 f . fCo l s . add ( c o l ) ;
35 t . fKeys . add ( f ) ;
36 f . r e f=c . parent . getCorrTable ( ) ;
37 }
38

39 f o r ( a : myOO! Att r ibute in c . a t t s ) {
40 i f ( a . ubound = 1 ){
41

42 t . c o l s . add ( a . equ iva l en t ( ” svAtt2Col ” ) ) ;
43

44 }
45 }
46 }
47 r u l e mvAtt2Table
48 trans form a : myOO! Att r ibute
49 to t :myDB! Table ,
50 c1 :myDB! Column ,
51 c2 :myDB! Column ,
52 f :myDB! Fkey{
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53

54 guard : ( a . ubound> 1 or a . ubound=−1)
55

56 dbschema . t a b l e s . add ( t ) ;
57 t . name=a . name ;
58 c1 . name=a . name ;
59 c1 . type=a . type ;
60

61 var o c l a s s :myOO! Class=a . getOwningClass ( ) ;
62 c2 . name=o c l a s s . name+”PK” ;
63 c2 . type=”INT” ;
64

65 t . c o l s . add ( c1 ) ;
66 t . c o l s . add ( c2 ) ;
67

68 t . fKeys . add ( f ) ;
69 f . r e f=o c l a s s . getCorrTable ( ) ;
70 f . fCo l s . add ( c2 ) ;
71 }
72 r u l e mvAssoci2Table
73 trans form a : myOO! Assoc i a t i on
74 to t :myDB! Table ,
75 c1 :myDB! Column ,
76 c2 :myDB! Column ,
77 f 1 :myDB! Fkey ,
78 f 2 :myDB! Fkey{
79

80 guard : ( a . ubound> 1 or a . ubound=−1)
81

82 dbschema . t a b l e s . add ( t ) ;
83

84 t . name=a . name ;
85 c1 . name=a . s r c . name+”PK” ;
86 c1 . type=”INT” ;
87 c2 . name=a . t rg . name+”PK” ;
88 c2 . type=”INT” ;
89 f 1 . fCo l s . add ( c1 ) ;
90 f 2 . fCo l s . add ( c2 ) ;
91 f 1 . r e f=a . s r c . getCorrTable ( ) ;
92 f 2 . r e f=a . t rg . getCorrTable ( ) ;
93

94 t . c o l s . add ( c1 ) ;
95 t . c o l s . add ( c2 ) ;
96

97 t . fKeys . add ( f1 ) ;
98 t . fKeys . add ( f2 ) ;
99

100 }
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101

102 r u l e svAtt2Col
103 trans form a : myOO! Att r ibute
104 to c :myDB! Column{
105

106 guard : ( a . ubound = 1 )
107

108 c . name=a . name ;
109 c . type=a . type ;
110 }
111 r u l e svAssoc i2Col
112 trans form a : myOO! Assoc i a t i on
113 to c :myDB! Column ,
114 f 1 :myDB! Fkey{
115

116 guard : ( a . ubound = 1 )
117

118 c . name=a . name+”−”+a . t rg . name+”PK” ;
119 c . type=”INT” ;
120

121 a . s r c . getCorrTable ( ) . c o l s . add ( c ) ;
122

123 f 1 . fCo l s . add ( c ) ;
124 f 1 . r e f=a . t rg . getCorrTable ( ) ;
125 a . s r c . getCorrTable ( ) . fKeys . add ( f1 ) ;
126 }
127 opera t ion myOO! Attr ibute getOwningClass ( ) : myOO! Class {
128 re turn myOO! Class . a l l ( ) . s e l ec tOne ( c | c . a t t s . i n c l u d e s ( s e l f ) ) ;
129 }
130 opera t ion myOO! Class getCorrTable ( ) : myDB! Table {
131 var tbs : Bag= s e l f . e q u i v a l e n t s ( ” Class2Table ” ) . f l a t t e n ( ) ;
132 // t b s . p r i n t l n ( ) ;
133 var t :myDB! Table=n u l l ;
134 f o r ( k in tbs ){
135 i f ( k . isTypeOf (myDB! Table ) ){
136 t=k ;
137 }
138 }
139 re turn t ;
140 }

A.3 The ClassToTable Example in ATL

In the following four pages, an ATL implementation of the ClassToTable example in
Chapter 5 is provided.
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1 −− @path myDB=/ATLClass2Table/ metamodels /MyDBv3. ecore
2 −− @path myOO=/ATLClass2Table/ metamodels/MyOOv3. ecore
3

4

5 module ClassToTable ;
6 c r e a t e UniversityDBSchema : myDB from Univers i tyClassDiagram : myOO;
7

8 ent rypo int r u l e Metamodel ( ) {
9 do {

10 ’ATL I s running Class To Table Example ’ . p r i n t l n ( ) ;
11 }
12 }
13

14 r u l e Class2Table {
15 from
16 c : myOO! Class (
17 c . parent . o c l I sUnde f ined ( )
18 )
19 to
20 t : myDB! Table (
21 name <− c . name ,
22 pKeys <− Set {pk} ,
23 c o l s <− c . svAtts −> union ( Set {pk})
24 ) ,
25 pk : myDB! Column (
26 name <− c . name + ’PK’ ,
27 type <− ’ INT ’
28 )
29 }
30

31 r u l e SubClass2Table {
32 from
33 c : myOO! Class (
34 not c . parent . o c l I sUnde f ined ( )
35 )
36 to
37 t : myDB! Table (
38 name <− c . name ,
39 pKeys <− Set {pk} ,
40 c o l s <− c . svAtts −> union ( Set {pk}) −> union ( Set { r e fCo l } ) ,
41 fKeys <− fkey
42 ) ,
43 pk : myDB! Column (
44 name <− c . name + ’PK’ ,
45 type <− ’ INT ’
46 ) ,
47 r e fCo l : myDB! Column (
48 name <− ’ parent−’ + c . parent . name + ’PK’ ,
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49 type <− ’ INT ’
50 ) ,
51 fkey : myDB! Fkey (
52 owner <− c ,
53 r e f <− c . parent ,
54 fCo l s <− r e fCo l
55 )
56 }
57

58 r u l e svAtt2Col {
59 from
60 a : myOO! Att r ibute (
61 a . ubound = 1
62 )
63 to
64 c : myDB! Column (
65 name <− a . name ,
66 type <− a . type
67 )
68 }
69

70 r u l e mvAtt2Table {
71 from
72 a : myOO! Att r ibute (
73 a . ubound > 1 or a . ubound = −1
74 )
75 to
76 t : myDB! Table (
77 name <− a . name ,
78 pKeys <− Set {c1 ,
79 c2 } ,
80 c o l s <− Set {c1 ,
81 c2}
82 ) ,
83 c1 : myDB! Column (
84 name <− a . name ,
85 type <− a . type ,
86 owner <− t
87 ) ,
88 c2 : myDB! Column (
89 name <− a . name + ’PK’ ,
90 type <− ’ INT ’ ,
91 owner <− t
92 ) ,
93 f 1 : myDB! Fkey (
94 owner <− t ,
95 r e f <− a . owner ,
96 fCo l s <− c2
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97 )
98 }
99

100 r u l e svAssoc i2Col {
101 from
102 a : myOO! Assoc i a t i on (
103 a . ubound = 1
104 )
105 to
106 c : myDB! Column (
107 name <− a . name + a . t rg . name ,
108 type <− ’ INT ’ ,
109 owner <− a . s r c
110 ) ,
111 f : myDB! Fkey (
112 owner <− a . src ,
113 r e f <− a . trg ,
114 fCo l s <− c
115 )
116 }
117

118 r u l e mvAssoci2Table {
119 from
120 a : myOO! Assoc i a t i on (
121 a . ubound > 1 or a . ubound = −1
122 )
123 to
124 t : myDB! Table (
125 name <− a . name ,
126 pKeys <− Set {c1 ,
127 c2 } ,
128 c o l s <− Set {c1 ,
129 c2}
130 ) ,
131 c1 : myDB! Column (
132 name <− a . s r c . name + ’PK’ ,
133 type <− ’ INT ’ ,
134 owner <− t
135 ) ,
136 c2 : myDB! Column (
137 name <− a . t rg . name + ’PK’ ,
138 type <− ’ INT ’ ,
139 owner <− t
140 ) ,
141 f 1 : myDB! Fkey (
142 owner <− t ,
143 r e f <− a . src ,
144 fCo l s <− c1
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145 ) ,
146 f 2 : myDB! Fkey (
147 owner <− t ,
148 r e f <− a . trg ,
149 fCo l s <− c2
150 )
151 }
152

153

154

155 r u l e ClassDiagram2DBSchema {
156 from
157 s : myOO! ClassDiagram
158 to
159 t : myDB! DBSchema (
160 t a b l e s <− s . c l a s s e s −> union ( s . getAl lmvAssoci ( ) ) −> union ( s . getAllmvAtt ( ) )
161 )
162 }
163

164 he lpe r context myOO! ClassDiagram def : getAllmvAtt ( ) : Set (myOO! Att r ibute ) =
165 myOO! Attr ibute . a l l I n s t a n c e s ( ) −> s e l e c t ( a | a . ubound > 1 or a . ubound = −1);
166

167 he lpe r context myOO! ClassDiagram def : getAl lmvAssoci ( ) : Set (myOO! Assoc i a t i on ) =
168 myOO! Assoc i a t i on . a l l I n s t a n c e s ( ) −> s e l e c t ( a | a . ubound > 1 or a . ubound = −1);
169

170 he lpe r context myOO! Class de f : svAtts : Set (myOO! Att r ibute ) =
171 s e l f . a t t s −> s e l e c t ( a | a . ubound = 1 ) ;

A.4 The ClassToTable Example in QVT-R

In the following four pages, a QVT-R implementation of the ClassToTable example in
Chapter 5 is provided.

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −−− QVT−R trans format ion D e f i n i t i o n f o r Class Diagram to DB Schema
3 −−− Written by : Hamid Ghol izadeh
4 −−− v e r s i o n : v 1 .0
5 −−− h t t p ://www. g o l i z a d e h . net
6 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8

9 t rans fo rmat ion c2t (OO:myOO, DB:myDB) {
10 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 −− R e l a t e s each Class Diagram Schema to a schema
12 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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13 top r e l a t i o n ClassSchema2DBSchema {
14 checkonly domain OO cs :myOO: : Schema {} ;
15 e n f o r c e domain DB ds : myDB: : DBSchema {} ;
16 }
17 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
18 −− r e l a t i n g C l a s s e s To Tables
19 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20 top r e l a t i o n ClassToTable {
21 cn : S t r ing ;
22

23 checkonly domain OO c l : myOO: : Class {
24 classSchema = c l s :myOO: : Schema{} ,
25 name = cn
26 } ;
27 e n f o r c e domain DB tb : myDB: : Table {
28 schema = dbs :myDB: : DBSchema{} ,
29 name = cn
30 } ;
31

32 when {
33 ClassSchema2DBSchema ( c l s , dbs ) ;
34 }
35 where {
36 ClassToCol ( c l , tb ) ; −−r e q u i r e s c l a s s a t t r i b u t e s a l s o r e l a t e to t a b l e columns
37 }
38 }
39 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
40 −− c r e a t i n g pk column f o r each c l a s s
41 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
42 r e l a t i o n ClassToCol {
43 cn : S t r ing ;
44 checkonly domain OO c l : myOO: : Class {
45 name = cn
46 } ;
47 e n f o r c e domain DB tb : myDB: : Table {
48 c o l s=co l 1 : myDB: : Column{name = cn+’ pk ’ , type=’INT’} ,
49 pKeys=co l 1 : myDB: : Column{}
50 } ;
51

52 }
53 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
54 −− c r e a t i n g a column f o r every s i n g l e v a l u e a t t r i b u t e
55 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
56 top r e l a t i o n svAttsToCol {
57 an : S t r ing ;
58 t : S t r ing ;
59

60 checkonly domain OO at : myOO: : Att r ibute {
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61 name = an ,
62 owner=ow1 :myOO: : Class {} ,
63 type=t
64 } ;
65 e n f o r c e domain DB tb : myDB: : Column {
66 name = an ,
67 owner=ow2 :myDB: : Table {} ,
68 type=t
69 } ;
70 when {
71 not ( at . ubound > 1 or at . ubound=−1);
72 ClassToTable (ow1 , ow2 ) ;
73 }
74 where {
75 }
76 }
77 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
78 −− c r e a t i n g a t a b l e f o r each mult i−va lued A t t r i b u t e
79 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
80 top r e l a t i o n mvAttToTable {
81 an : S t r ing ;
82 co l 1 :myDB: : Column ;
83 co l 2 :myDB: : Column ;
84 ownerTable :myDB: : Table ;
85

86 checkonly domain OO at : myOO: : Att r ibute {
87 name = an ,
88 owner=ownerClass :myOO: : Class { classSchema = c l s :myOO: : Schema{}}
89 } ;
90 e n f o r c e domain DB tb : myDB: : Table {
91 name = an ,
92 schema = dbs :myDB: : DBSchema{}
93 } ;
94 when {
95 ClassSchema2DBSchema ( c l s , dbs ) ;
96 ( at . ubound > 1 or at . ubound=−1);
97 ClassToTable ( ownerClass , ownerTable ) ;
98 }
99 where {

100 mvAttsToCol ( at , tb , co l1 , c o l 2 ) ;
101 mvAttsToFkey ( at , tb , ownerTable ) ;
102 }
103 }
104 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
105 −− c r e a t i n g two c o l f o r each mult i−va lued a t t r i b u t e
106 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
107 r e l a t i o n mvAttsToCol {
108 an : S t r ing ;
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109 t : S t r ing ;
110

111 checkonly domain OO at : myOO: : Att r ibute {
112 name = an ,
113 type=t
114 } ;
115

116 e n f o r c e domain DB tb : myDB: : Table {
117 } ;
118 e n f o r c e domain DB co l 1 : myDB: : Column {
119 name = an ,
120 owner=tb ,
121 type=t
122 } ;
123 e n f o r c e domain DB co l 2 : myDB: : Column {
124 name = at . owner . name+’ID ’ , −−an+’ownerKey ’ ,
125 owner=tb ,
126 type=’INT ’
127 } ;
128 }
129 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
130 −−− c r e a t i n g two Foriegn keyes f o r each mult i−va lued a t t r i b u t e
131 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
132 r e l a t i o n mvAttsToFkey {
133 an : S t r ing ;
134

135 checkonly domain OO at : myOO: : Att r ibute {
136 name = an
137 } ;
138

139 e n f o r c e domain DB tb : myDB: : Table {
140 fKeys=f1 : myDB: : Fkey{ fCo l s=co l 2 :myDB: : Column {} , r e f=ownerTable :myDB: : Table {}} ,
141 c o l s=co l 2 :myDB: : Column {name=at . owner . name+’ID ’} ,
142 c o l s=co l 1 :myDB: : Column {name=an}
143 } ;
144

145 checkonly domain DB ownerTable : myDB: : Table {} ;
146 when {
147 mvAttsToCol ( at , tb , co l1 , c o l 2 ) ;
148 }
149 where {
150 }
151 }
152 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
153 −− c r e a t i n g a t a b l e f o r each mult i−va lued a s s o c i a t i o n
154 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
155 top r e l a t i o n mvAssociToTable {
156 a : S t r ing ;
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157 co l 1 :myDB: : Column ;
158 co l 2 :myDB: : Column ;
159 s rcTable :myDB: : Table ;
160 trgTable :myDB: : Table ;
161

162 checkonly domain OO a s s o c i : myOO: : As soc i a t i on {
163 name = a ,
164 associSchema = c l s :myOO: : Schema{}
165 } ;
166 e n f o r c e domain DB tb : myDB: : Table {
167 name = a ,
168 schema = dbs :myDB: : DBSchema{}
169 } ;
170 when {
171 ( a s s o c i . ubound>1 or a s s o c i . ubound=−1);
172 ClassSchema2DBSchema ( c l s , dbs ) ;
173 ClassToTable ( a s s o c i . s rc , s rcTable ) ;
174 ClassToTable ( a s s o c i . trg , trgTable ) ;
175 }
176 where {
177 mvAssociToCol ( a s so c i , tb , co l1 , c o l 2 ) ;
178 mvAssociToFkey ( a s so c i , tb , srcTable , trgTable ) ;
179 }
180

181 }
182 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
183 −− c r e a t i n g two c o l f o r each mult i−va lued a s s o c i a t i o n .
184 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
185 r e l a t i o n mvAssociToCol {
186 a : S t r ing ;
187

188 checkonly domain OO a s s o c i : myOO: : As soc i a t i on {
189 name = a
190 } ;
191

192 e n f o r c e domain DB tb : myDB: : Table {
193 } ;
194 e n f o r c e domain DB co l 1 : myDB: : Column {
195 name =a s s o c i . t rg . name+’ID ’ ,
196 owner=tb ,
197 type=’INT ’
198 } ;
199 e n f o r c e domain DB co l 2 : myDB: : Column {
200 name=a s s o c i . s r c . name+’ID ’ ,
201 owner=tb ,
202 type=’INT ’
203 } ;
204 }
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205 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
206 −−c r e a t i n g two f o r e i g n keys f o r each mult i−va lued a s s o c i a t i o n
207 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
208 r e l a t i o n mvAssociToFkey {
209 a : S t r ing ;
210

211 checkonly domain OO a s s o c i : myOO: : As soc i a t i on {
212 name = a
213 } ;
214 e n f o r c e domain DB tb : myDB: : Table {
215 fKeys=f1 : myDB: : Fkey{ fCo l s=co l 1 :myDB: : Column {} , r e f=trgTb : myDB: : Table {}} ,
216 fKeys=f2 : myDB: : Fkey{ fCo l s=co l 2 :myDB: : Column {} , r e f=srcTb : myDB: : Table {}}
217 } ;
218 checkonly domain DB srcTb : myDB: : Table {} ;
219 checkonly domain DB trgTb : myDB: : Table {} ;
220 when {
221 mvAssociToCol ( a s so c i , tb , co l1 , c o l 2 ) ;
222 }
223 }
224

225 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
226 −− c r e a t i n g a column f o r every I n h e r i t a n c e
227 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
228 top r e l a t i o n InherToCol {
229 cn : S t r ing ;
230 parentTable :myDB: : Table ;
231

232 checkonly domain OO c l : myOO: : Class {
233 name = cn
234 } ;
235 e n f o r c e domain DB tb : myDB: : Table {
236 c o l s=co l 1 :myDB: : Column{name = ’ parent−’+ c l . parent . name+’ID ’ , type=’INT’}
237 } ;
238

239 when {
240 c l . parent−>notEmpty ( ) ;
241 ClassToTable ( c l , tb ) ;
242 ClassToTable ( c l . parent , parentTable ) ;
243 }
244 where {
245 InherToFkey ( c l , tb , co l1 , parentTable ) ;
246 }
247

248 }
249 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
250 −−c r e a t i n g a FKey f o r each i n h e r i t a n c e
251 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
252 r e l a t i o n InherToFkey {

149



Ph.D. Thesis - Hamid Mohammad Gholizadeh McMaster - Software Engineering

253 cn : S t r ing ;
254

255 checkonly domain OO c l : myOO: : Class {
256 name = cn
257 } ;
258 e n f o r c e domain DB tb : myDB: : Table {
259 fKeys=f1 : myDB: : Fkey{ fCo l s=c o l :myDB: : Column {} , r e f=pTable :myDB: : Table {}}
260 } ;
261 checkonly domain DB c o l : myDB: : Column {} ;
262 checkonly domain DB pTable : myDB: : Table {} ;
263

264 }
265 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
266 −−c r a t i n g a column f o r each s i n g l e−va lued a s s o c i a t i o n
267 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
268 top r e l a t i o n svAssociToCol {
269 a : S t r ing ;
270 trgTable :myDB: : Table ;
271

272 checkonly domain OO a s s o c i : myOO: : As soc i a t i on {
273 name = a
274 } ;
275

276 e n f o r c e domain DB co l 1 : myDB: : Column {
277 name =a+a s s o c i . t rg . name+’ID ’ ,
278 owner=srcTable :myDB: : Table{}
279 } ;
280

281 when{
282 not ( a s s o c i . ubound>1 or a s s o c i . ubound=−1);
283 ClassToTable ( a s s o c i . s rc , s rcTable ) ;
284 ClassToTable ( a s s o c i . trg , trgTable ) ;
285 }
286 where{
287 svAssociToFkey ( a s so c i , srcTable , co l1 , trgTable ) ;
288 }
289 }
290 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
291 −− c r a t i n g a f o r e i g n key f o r each s i n g l e v a l u e a s o c i a t i o n
292 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
293 r e l a t i o n svAssociToFkey {
294 cn : S t r ing ;
295

296 checkonly domain OO a s s o c i : myOO: : As soc i a t i on {
297 name = cn
298 } ;
299 e n f o r c e domain DB tb : myDB: : Table {
300 fKeys=f1 : myDB: : Fkey{ fCo l s=c o l :myDB: : Column {} , r e f=trgTable :myDB: : Table {}}
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301 } ;
302 checkonly domain DB c o l : myDB: : Column {} ;
303 checkonly domain DB trgTable : myDB: : Table {} ;
304

305 }
306

307 }
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