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ABSTRACT 

In North America, heat treating adds about $15 billion per year in value to metal 

goods by imparting specific properties that are required if parts are to function successfully. 

Heat treating is an energy-intensive industry, requiring about 500 trillion BTUs (~ 0.5 trillion 

ft3 of natural gas) per year, which accounts for about 20% of the total cost ofthe business. 

Considering this huge demand on energy resources and its significant impact on the 

environment, in the year 1996, members of the heat treating industry represented by the ASM 

Heat Treating Society and the Metal Treating Institute (MTI) met and discussed the future of 

the heat treating industry in North America. A vision was developed known as "Heat 

Treating Industry Vision-2020". In that vision, the industry identified key research areas 

among which was the development of integrated process models. The industry recognized 

that most current heat-treating procedures are based on the experience of the heat treater. 

Trial-and-error often results in operations or components that are functional but not 

optimized. 

The present study is concerned with the development of process models of gas 

nitriding operations using Artificial Neural Networks (ANNs). Data required for the 

development of ANN s have been acquired from experiments carried out at the industrial 

partner site, V AC AERO International, Oakville, Ontario. Two types of ANNs have been 

developed and tested using the experimental data. The two models were able to predict 
IV 



various case depths produced by the nitriding process with reasonable accuracy in the ± 20% 

range. Predictions of the white layer thickness were in the ± 40% range. The sensitivity of 

predictions due to measurement errors has been investigated. The range of measurement 

error of the current study did not have a significant effect on the ANNs predictions. 

The effect of rate of cooling after the nitriding operation on the developed case depths has 

also been investigated. Cooling rates in the range of3° F/min to about 20 °F/min were tested. 

Results indicated that this range of cooling rates do not have a significant effect on the 

developed case depths. 

The present study has confirmed that ANNs models have the ability to be trained and 

applied to multivariable systems which renders ANNs the most suitable tool to develop 

integrated models for heat treating processes. 
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Chapter 1 

INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction 

Steel is often called a ''wonder metal" because of its tremendous flexibility in 

heat-treating and metal working to produce a wide variety of mechanical, physical and 

chemical properties, for example, the hardness can be increased by up to 500% just by 

changing the cooling rate from austenizing temperature from extremely slow to 

extremely fast. The generally accepted definition ofheat treatment is; a combination of 

heating and cooling operations, timed and applied to a metal or alloy in the solid state in a 

way that will produce desired properties [1,2]. 

Surface treatment is a type of heat treatment and is also known as surface 

modification or surface engineering. It can be divided into two distinctive groups: 

deposition and diffusion techniques surface treatments. Deposition surface treatments are 

characterized as transporting a metallic substance from source metal and depositing it 

onto the surface of another metal. These techniques include electroplating, hard coating 

(thermal flame spray), physical vapour deposition (PVD) and chemical vapor deposition 

(CVD). Diffusion surface treatments involve surface and subsurface modification without 

any additional buildup or increase in part dimensions. They are further subdivided into 

two distinctive categories: thermo- chemical and thermal. Thermo-chemical diffusion 

1 
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techniques, namely nitriding, carburizing, carbonitriding, ferritic nitrocarburizing and 

boronizing are characterized as diffusing an element, such as nitrogen, carbon, sulfur, 

boron, and oxygen, into the surface of the steel by the application of the appropriate 

amount of heat, time, and the steel surface catalytic reaction. Figure 1.1 shows the 

process temperature range and process characteristics of different thermo-chemical 

diffusion techniques. Thermal techniques, e.g. flame hardening, laser heat treatment, 

induction hardening treatment, etc., are those that modify the surface phases of steel 

containing sufficient carbon to allow the transformation from austenite to martensite 

when appropriate amount ofheat is applied to the immediate surface [3]. 

Of the thermo-chemical diffusion techniques, nitriding is the introduction of 

nitrogen in the surface layers of ferrous alloys by holding the surface at a suitable 

temperature below the lower transformation temperature, (Ac1) as shown in Figure 1.2 for 

pure iron, in contact with a nitrogen- rich environment. Different phases (a, y' and s) 

formed during the process are shown in Figures 1.2, 1.3 and.1.4 and discussed in section 

1.2.1.1. Nitriding can be classified into three types: gas, ion and salt bath nitriding (Table 

1.1 ). They can be applied to all steels but the best results are obtained in those steels that 

contain one or more of the major nitride-forming alloying elements such as aluminum, 

vanadium, chromium, and molybdenum. The nitrogen must be supplied in the atomic or 

nascent form; molecular nitrogen will not react [1, 2, 4]. Gas nitriding seems to be more 

promising than the other methods from the standpoint of simplicity of equipment and 

variety of geometry and sizes of treated parts [ 5]. 

2 
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Carburize 

Diffuses carbon 
and nitrogen into 
the steel surface. 
Process 
temperatures 
1550-1650° F 
(845-900°C) 
Case depth: 
Shallow 

Thermo-chemical diffusion 
techniques 

Carbo nitride 

Diffuses carbon, 
nitrogen, sulfur, 
oxygen (individually 
or combined into the 
steel surface. Process 
temperature 
1050-1300° F 
(565-705°C) 
Case depth: 
Shallow 

Ferri tic 
Nitrocarburizing 

Diffuses carbon 
into the steel 
surface. Process 
temperatures 
1600-1950° F 
(870-1 065°C) 
Case depth: 
Medium 

Boronize 

Diffuses Boron 
into the steel 
surface. Process 
temperatures 
1400-2000 °F 
(760-1095°C) 
Case depth: 
shallow 

Figure 1.1: Characteristics ofthermo-chemical diffusion techniques [4] 

Nitride 

Diffuses 
Nitrogen into the 
steel surface. 
Process 
temperatures 
600-1100 °F 
(315-590°C) 
Case depth: 
shallow 
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Figure 1.2: Iron-Nitrogen (Fe-N) phase diagram (Thermocalc® software) 
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Figure 1.4: Area "B" of Fe-N phase diagram 
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Table 1.1: Characteristics ofnitriding processes [4] 

Process Typical case Typical base 
Process Nature of case 

temmperature(0 F) depth (JI.mm) mmetals 

Diffused Nitrogen 
Alloy steels, 

Gas and Nitrogen 900-1100 125-750 
Stainless steels, 

compounds 

Diffused Nitrogen 
Alloy steels, 

Ion and Nitrogen 650-1050 75-750 
Stainless steels, 

compounds 

Diffused Nitrogen 
Most ferrous alloys 

Salt-bath and Nitrogen 950-1050 25-750 

compounds 
including cast irons 

For material scientists and engineers, a common goal is the determination of the 

relationship between the structure of a material and its properties. Obviously, the ability to 

predict the properties of materials prior to their synthesis and processing would be of 

tremendous value in optimizing the end product. To achieve the goal of properties prediction, 

modeling of heat treatment operations is required. Modeling is actually an approximation of 

reality. Practical processes and systems are generally very complicated and must be 

simplified through idealizations and approximations to make the problem solvable. A good 

model preserves all properties of interest. Different types of modeling techniques: analytical, 

numerical and empirical have been used in thermal processing of materials [6]. However, 

6 
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there are situations in which the available models only deal with small part of the required 

problem [7]. Artificial Neural networks (ANNs) consist of artificial neurons discussed in 

reaction section 1.2.4.1, have emerged as new branch of computing that have shown 

remarkable performance when used to model complex linear and non-linear relationships. A 

neural network is a machine that is designed to model the way in which brain performs a 

particular task or function of interest; the network is usually implemented by using electronic 

components or is simulated in software on a digital computer [8]. This mathematical 

technique is especially useful for simulation of any correlation that is difficult to describe 

with physical models because of the neural network's ability to learn by example and 

recognize patterns in a series of input and output values from input data sets. Nowadays, 

ANNs are commonly used in the field of material science and physical metallurgy [9]. The 

main objective of the present study is to investigate the use of ANNs in modeling the gas 

nitriding surface treatment process. 

Connection Weights 

Activation --"...Outgoing 
Function ~ Signal 

Figure 1.5: An artificial neuron [10] 
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1.2 Literature review 

Gas Nitriding is a case-hardening process whereby nitrogen is introduced into the 

surface of a solid ferrous alloy by holding the metal at a suitable temperature (below Ac1 

for ferritic steels) as shown in figure 1.2 in contact with a nitrogenous gas, usually 

ammonia. The nitriding temperature for all steels is between 925 and 1100 ° F ( 495 and 

590 °C) At these temperatures, the ammonia dissociates into its components according to 

the following reaction [5]. 

2NH3-r---•1Jo2N + 3H2 (1.1) 

Nitrogen is very active at the moment of dissociation of the ammonia gas, 

combines with iron and alloying elements in the steel to form nitrides. These nitrides 

form on the steel surface as a fine dispersion and impart extremely high hardness to the 

surface without the need for quenching. Today cams, gear pinions, shafts, seals, cylinder 

barrels, clutches, piston rings, and many other devices are hardened by nitriding. The 

aircraft industry makes extensive use of nitrided parts when lubrication is marginal. With 

requirements for wear and fatigue resistance at relatively high temperatures becoming 

more and more severe in many fields, it seems certain that applications for nitriding will 

still increase in number in the future [ 11]. 

Advantages of the nitriding process are [ 4]: 

1. To obtain high surface hardness 

2. To increase wear resistance and anti-galling properties 

8 
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3. To improve fatigue life 

4. To improve corrosion resistance (except for stainless steels) 

5. To obtain a surface that is resistant to the softening effect of heat treatment up 

to the nitriding temperature. 

Gas nitriding can be employed as a single-stage process or a double-stage process. 

In single stage process, a temperature in the range of about 925 to 975°F ( 496 to 524°C) 

is used, and the ammonia dissociation by volume ranges from 15% to 30%. This process 

produces brittle "white layer". The double-stage process known as the "Floe Process" 

was developed by Carl Floe in the middle of the twentieth century has the advantage of 

reducing the thickness of the white nitrided layer. In the first stage of the double-stage 

process the ammonia dissociation is held at 20 % by volume for a period of 5 to 10 hrs at 

975 °F. During this period the white layer is established and the useful nitrides start to 

form by diffusion of nitrogen out of it. In the second stage, the ammonia dissociation is 

increased to 65 to 80% by volume, and the temperature is usually raised to 1010 -1050°F 

(543- 565°C). During this second stage the gas composition (furnace atmosphere) is such 

that it maintains only a thin white layer on the finished part. A typical structure of the 

case produced by this method is shown in Figure 1.6. Generally, an external ammonia 

dissociator discussed in section 2.2.3 is necessary for obtaining the required second-stage 

dissociation [2]. 

9 
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White 
layer 

McMaster - Mechanical Engineering 

Diffusion zone 

Figure 1.6: A photomicrograph showing a nitrided case with white layer and diffusion 

zone [12]. 
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1.2.1 Investigations on gas nitriding 

1.2.1.1 Nitrided case structure and properties 

Ammonia decomposes or dissociates in accordance with equation (1.1 ). At the instant 

of decomposition, the liberated nitrogen will exist as nascent or atomic nitrogen and as 

such can be absorbed by the steel. Nitrogen has an atomic diameter of0.142 nm and is 

dissolved in iron in interstitial positions in octahedral voids of the cubic lattice that have a 

maximum diameter of 0.038 nm in BCC (body centered cubic) alpha (a) ferrite iron and a 

maximum diameter of0.104 nm in FCC (face centered cubic) gamma (y) iron. 

Depending on the values of the nitriding potential KN to be discussed in section 1.2.1.2 

and temperature T, nitriding of pure iron according to the binary Fe-N phase diagram 

shown in figure 1.2 and the modified Lehrer diagram shown in figure 1. 7 leads to the 

formation of the following phases from core to surface of nitrided case. 

1. Body-centered cubic a-iron, which dissolves .001 wt% N at room temperature and 

0.115%N at 590 °C (1095 °F). 

2. The face-centered cubic r' phase exists at nitrogen concentrations from 5.3% to 

5.75% Nand consists ofFe4N. 

3. The a-phase (Fe2-3N) exists, at various temperatures, in the region of nitrogen 

concentrations from 4.35% to 11.0% by weight. 

4. The ~-phase (not shown) is formed at nitrogen concentrations not less that 11.0% 

and it consists ofF e2N. 

11 
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A typical nitrided case consists of two zones, a compound zone and a diffusion zone, the 

layer consisting of y' and e-phase is the compound zone commonly known as the "white 

layer" because of its appearance after a nital etch. The diffusion zone consists of a-solid 

solution of nitrogen in iron and alloy nitrides [13]. 

700 600 550 500 450 400 oc 
1.5 31.6 

_,. .. " 

---- - 17.8 --10.00% N-%J\i .------
----1 9.75.---- - 10.0 

Fe -N - 5.6 
5.897 

0.5 - 3.2 -
5.89 !::! 

";" 

E - 1.8 y' .... 
as -0 5.87 %N - 1.0 z 
~ 

5.85 

-0.5 - 0.3 

-1 - 0.1 
0.001 

-1.5 0.03 
1.0 1.1 1.2 1.3 1.4 1.5 x10-3 1/K 

Figure 1.7: Modified Lehrer diagram showing the phases stable at a given KN and T 
[14]. 
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1.2.1.2 Control of gas nitriding process 

Since the early beginnings of gas nitriding controlling, the percentage of the 

dissociated ammonia (PD) was considered the appropriate control parameter. This 

parameter is easily (but discontinuously) measured using the ammonia dissociation 

burette, which is calibrated directly in PD. This method has an inherent error in it [5], as 

the measured ammonia content is not equivalent to the actual degree of dissociation. In 

ammonia dissociation , Eq. 1.1, two molecules of ammonia gas dissociate to two atoms or 

one molecule of nitrogen gas and three molecules of hydrogen gas. This increase in 

volume dilutes the ammonia content, as do additional gases, and must be taken into 

account in determining the actual degree of dissociation. 

In the 1990's, however, a new control parameter, the nitriding potential KN, was 

introduced. This parameter is defined by the equation 1.2 [5]. 

(1.2) 

where: PNn3 is the partial pressure of Ammonia in the produced atmosphere and 

Pm is the partial pressure of Hydrogen in the produced atmosphere, the hydrogen 

being a product of the dissociated ammonia. 
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1.2.1.3 Nitriding is a complex and multivariable process [15-18] 

Maldzinski et. al. [15] has indicated that in comparison with carburizing, nitriding 

is more difficult to describe from the point of view of thermodynamics and kinetic laws. 

The creation process of a nitrided layer comprises many stages as shown in figure 1.8, 

which include the following: 

1. Transport of ammonia in the gas phase and adsorption of gas molecules at the 

solid surface, 

2. Chemical reaction at the surface (ammonia dissociation), which depends on the 

pressures of the partial components of the atmosphere. 

3. Desorption of reaction products (N2 and H2), which is influenced by the general 

rate of gas flow. 

4. Transport of nitrogen atoms through the surface and diffusion into the material, 

and 

5. Creation ofmultiphase nitrided layer (a-Fe (N),y', e). 
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As a prerequisite for the predictability of properties obtained by a nitriding 

treatment of iron based work pieces, the relation between the process parameters and the 

composition and the structure of the surface layer produced must be known. Interaction 

between thermodynamics, kinetics and process control of nitriding revealed that 

thermodynamics of iron nitrides are governed by the ordering of nitrogen atoms on their 

sub lattice. Kinetics provide data for the diffusion coefficients of nitrogen in 8 and r' iron 

nitrides. 

A large number of variables influence the nitriding process including the method 

ofnitriding (Gas, Ion, Salt-bath) temperature, duration of the process, cooling rate, depth 

of penetration, and type of material being processed, pre and post surface treatments [18]. 

Friehling et. al. [19] studied the effects of pre-oxidation on the nitrding kinetics and 

found that an oxidation treatment prior to nitriding dramatically reduces the incubation 

time. Enhanced nucleation is attributed to accelerated dissociation kinetics ofNH3 at the 

oxide surface as compared to the clean iron surface. 

Baranowska et. al. [20] found that cathode sputtering used as pre-treatment before 

gas nitriding increases the rate of nitride layer formation. This phenomenon is also 

observed when the neutral gas (argon) is used as sputtering gas. 

Thermodynamic description of gas nitriding given by Fe-N equilibrium diagram shown 
! ,I, 

in figure 1.2 provides information about nitrogen concentration in a, r' and s at the aJ 

a+ r'' a+ r' I r' 'r' I r' + E and r' + sl s phase boundaries. The Nitriding potential-

temperature (KN-T) diagram shown in figure 1. 7 is an experimentally developed version 

of the Lehrer diagram (developed by E. Lehrer in 1930) with added adsorption isotherms 
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for nitrogen. It quantitatively describes correlations between concentration of nitrogen in 

a, y' and E phases on the one hand, and the nitriding potential of the atmosphere KN and 

temperature on the other. 

Maldzinski et al. [21] has indicated that there still are gaps in the state of 

knowledge that need to be filled in order to obtain a full description and understanding of 

the process of nitriding of iron. Despite the publication of various reports in the field of 

thermodynamics and kinetics of nitriding, there still remains lack of some data essential 

to the full description of layer growth during nitriding of iron. 

Maldzinski indicated that his model does not take into account the intermediate 

period of nucleation of the y' phase, coagulation of nuclei to continuously cover the ferrite 

surface withy' , or the time period for the establishment of local equilibrium between the 

surface concentration of nitrogen and the atmosphere. Experimental research has revealed 

that at low values of nitriding potential y' and E phases nucleate very slowly and it is only 

after substantial amount oftime ( 40 hrs at KN=0.25 bar-112
) that it becomes a continuous 

compact layer. Even more time is needed for the attainment of local equilibrium between 

the surface concentration of nitrogen and the atmosphere. With higher nitriding potential, 

these effect occur faster; only about 3 hours at KN=l.25 bar-112
• Maldzinski has also 

investigated growth kinetics ofnitrided layers on pure iron and low carbon steels (up to 

0.2%C) and found these layers to be the same, however higher carbon contents exert a 

certain effect on growth kinetics of the layer and on its zone structure as well as fmal phase 

composition. Greater differences in growth kinetics of nitrided layers should be expected 

on alloyed steels. The rate of growth of the a (diffusion) zone is determined by the content 
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of alloying elements; both nitride forming (Aluminum, chromium, vanadium, tungsten, and 

molybdenum) and non-nitride forming and growth rate falls with their increase. Maldzinski 

hypothesized that the growth of the compound layer does not appear to be affected by the 

content of nitride forming elements but does depend on the nickel content. Maldzinski also 

suggested that alloy steels require more evaluation of the effects of alloying elements on 

growth kinetics. 

1.2.1.4 Investigations on the two stage nitriding process 

Maldzinski et al. [21] suggested that nitriding of parts can be done in two 

processes, a single stage and a two stage process . The single stage process is carried out 

with a nitriding potential KN that is constant in time and located on the KN-T phase 

diagram shown in figure 1. 7. The two stage process is carried out with the first stage at 

appropriately high nitrogen potential (KN: K~'r' <<K~<Kt'e) allowing rapid 

nucleation and growth of the r' phase, and the second stage with KN lowered in order to 

retard the growth of the y' phase and perhaps to cause some reduction in its extent. They 

showed that the thickness of the y' zone attained in a single stage process was the same 

as a two stage process but the total cycle time was less. They also argued that all types of 

morphologies of nitrided case could be obtained using a two stage process with economy. 

In order to accelerate the nitriding process and eliminate embrittlement of the 

nitrded layer, and conserve ammonia, Lakhtin [22] recommended a nitiriding regime in 

which the nitrogen potential of the atmosphere in the beginning of the process is 
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maintained at a high level for the first few hours (saturation period) and then decreased 

(diffusion period). 

By changing the degree of dissociation of the ammonia (the nitrogen potential) in 

the furnace at all nitriding temperatures one can control the phase composition and the 

nitrogen concentration in the a-phase, e.g. when the degree of dissociation of the 

ammonia in nitriding process is increased to 50-60%, a high hardness nitride layer is 

formed on the surface: for 80-90% dissociation only internal nitriding occurs. 

The two stage process is an environmentally friendly as ammonia consumption is reduced 

as compared to the single stage process with similar case characteristics. 

1.2.1.5 Investigations on the white layer reduction techniques 

Rose et al. [23] found that the nitriding of ferrous materials has grown in popularity 

due to the ability to achieve significant surface hardness with minimal distortion. 

However, due to the increased manufacturing competition and desire to eliminate post 

heat-treating operations the need for white layer reduction and control has increased 

dramatically. They have compared a number of techniques that were developed to solve 

the white layer quandary and divided these elimination techniques into two groups: 

• Processes that function during the actual nitriding cycle 

• Processes that function after the end of the nitriding cycle. 

They rated each reduction technique using the following four criteria 

1. Effectiveness 

2. Case integrity, with respect to surface damage 
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3. Case hardness 

4. Economics of the process 

and appraised the two stage gas nitriding "Floe Process" as the best commercially 

available white layer reduction technique. 

1.2.2 Modeling techniques used in thermal processing 

Thermal processitlg of materials refers to the use of thermal energy (heating and 

cooling) in order to impart desired mechanical properties in manufactured metal 

components. With the substantial growth in new and advanced materials e.g. specialized 

alloys, composites, ceramics and semiconductor materials, thermal processing has 

become particularly important. 

Modeling is one of the most crucial elements in the design and optimization of 

thermal materials processing systems. Practical processes and systems are generally very 

complicated and must be simplified through idealizations and approximations to make 

the problem solvable. This process of simplifying a given problem so that it may be 

represented in terms of a system of equations, for analysis, or a physical arrangement, for 

experimentation, is termed as modeling. There are different types of modeling techniques 

mathematical, statistical, empirical, numerical and artificial neural network modeling 

[6,24,25,26,27,28]. All are being used in thermal processing of materials. 

Mathematical models form the basis for simulation, so that behaviour and 

characteristics of the system may be investigated without actually fabricating a prototype. 
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In addition, the simplifications and approximations that lead to a mathematical model 

also indicate the dominant variables in a problem. 

Kang et al. [27] has used mathematical modeling in the modeling and simulation 

of load heating in heat treatment furnaces. He carried out two case studies for the heat 

transfer in the heat treatment of blades and drill bits. 

Golodnikov et.al [24] used statistical models as tool to reduce time and cost 

associated with the development and selection of metallic alloys. A multiple regression 

model was developed which can accurately predict tensile yield strength of high strength 

low alloy steel based on its chemical composition and processing parameters. Quantile 

regression was used to model the fracture toughness response. Also discriminative 

analyses of steels using fitted regression models was done and the results were compared 

with the conclusions made solely on the basis of actual experimental data. The 

comparison showed that the statistical modeling approach yields results similar to those 

obtained by experiments. 

Genel [25] made comparison of empirical modeling and Artificial neural 

networks modeling (ANNs) modeling, to be discussed in section 1.2.4. He used a case of 

relationship between ion nitrided case depth with chromium content as well as process 

time. 

Numerical modeling and simulation is used in heat treatment operations to make 

metallurgical, thermal and thermoplastic calculations. Heat treatment and especially 
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quenching causes distortion and sometimes cracking of a quenched part .To eliminate 

these undesired effects the whole cycle of heat treatment was simulated by Slovacek [28] 

using FEM (Finite element modeling) . The goal of this simulation was to bring the 

whole cycle ofheat treatment to optimum to reach the lowest level of residual stresses 

possible at the end and to meet the required mechanical properties . 

1.2.3 Investigations on modeling and simulation of gas nitriding 

Various attempts have been made for the numerical simulation of nitrided layer 

growth on pure iron and steels. Maldzinski et. al. [18] developed a mathematical model 

constituting a set of differential equations, correlating physical parameters such as 

diffusion coefficient, activation energy, nitrogen concentration, etc. These parameters in 

turn depend on certain process variables, such as temperature and nitriding potential. 

Numerical solution of these equations allowed the determination of variations in layer 

thickness as function of these parameters. The numerical results of the gas nitriding 

process demonstrated the influence of the nitriding potential of NH3-H2 atmosphere on 

the composition and growth kinetics of r' and E- nitride layers on pure iron. Their 

simulations made use of the recently developed Kw T phase diagram, figure 1. 7, and 

growth kinetics models for both phases. Simulation results indicated optimum 

possibilities of process control for the formation of layers and predictable phase 

composition, thickness of particular zones, and surface nitrogen concentrations. Growth 

kinetics of the nitrided layers ( e/ r' and a solid solution) on alloy steels with reference to 

22 



M.A.Sc. Thesis- Umar Afzaal McMaster- Mechanical Engineering 

the role of nitride forming and other alloying elements in process kinetics were also 

discussed. 

Keddam et. al. [29] have shown that it is possible to predict both microstructural 

constitution nature and thicknesses of nitrided layers as well as the nitrogen profile within 

the formed phases during gas nitriding of pure iron. The numerical simulation results 

using diffusion equations as well as the experimental data from literature were presented 

and compared. No significant discrepancy was found between the computed results and 

those obtained experimentally within a certain range. They argued that their diffusion 

model can be extended to be applied to nitriding steels (steel containing nitride forming 

elements). 

Krukovich [30] suggested that simulation of the nitriding process allows one to 

solve many practical problems of process control. 

1.2.4 Investigations on Artificial neural network (ANN) modeling 

Haque et.al. [31] reported that Artificial neural networks (ANNs) are 

revolutionary computing paradigms that try to mimic the biological brains. These ANNs 

are modeling techniques that are especially useful to address problems where solutions 

are not clearly formulated or where the relationships between inputs and outputs are not 

sufficiently known. ANNs have the ability to learn by example. Patterns in a series of 

input and output are recognized. This acquired 'knowledge' can then be used by the ANN 

to predict unknown output values for a given set of input values. Alternatively, ANNs can 
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also be used for classification. In this case, the ANN output is a discrete category to 

which the item described by the input values belongs. 

Guanghui et. al.[32] used an artificial neural network model to predict flow 

boiling curves. Boiling is a complex, multi-variable phenomenon. So far there is no 

complete theoretical correlation to predict boiling heat flux during all boiling regions 

specifically as a function of wall superheat. To solve this problem the authors trained an 

artificial neural network using data of past four decades, the ANN was then used to 

predict the complete boiling curve. The heat flux as function of the wall superheat was 

predicted using the ANN model. 

1.2.4.1 Structure and characteristics of Artificial neural networks 

An artificial neural network as shown in Figure 1.9 is composed of simple 

interconnected elements called processing elements (PEs) or artificial neurons [31]. 

Input layer Hidden layer Output layer 

Figure 1.9: Structure of an artificial neural network 
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The structure of an artificial neuron is shown in Figure 1.1 0. 

Inputs Weights Bias Transfer Output 
b function 

Figure 1.10: An artificial neuron [33]. 

Each PE has an input and an output side. The connections on the input side 

correspond to the dendrites of the biological neuron and provide the input from other 

PEs . The connections on the output side correspond to the axon and transmit the output. 

Synapses are mimicked by providing connection weights between the various PEs and 

transfer functions or bias within the PEs. The activation of the PE results from the sum of 

the weighted inputs and can be negative, zero, or positive. This is due to synaptic weights, 

which represent excitatory synapses when positive (wi>O) or inhibitory ones when 
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negative (wi<O). The PE output is computed by applying the transfer function to the 

activation, which is the result of the synaptic weights that can be negative, zero, or 

positive. The type of transfer function to be used depends on the type of ANN to be 

designed. Although several functions have been used as transfer functions, the most 

widely used is the sigmoid function. 

The learning paradigm can be of 'Supervised or Unsupervised learning'. The most 

widely used supervised learning algorithm/s is the back propagation algorithm. 

Erb [34] characterized neural networks by their architecture, transfer function, and 

learning paradigm. The term 'architecture ofthe neural network' refers to the number of 

layers in the network and the number of the neurons in each layer. The number of 

neurons in the input layer and output layer are determined by the number of input and 

output parameters, respectively. In order to fmd the optimal architecture, different 

numbers of neurons in the hidden layer has to be attempted. 

Genel [25] used a back propagation (BP) algorithm to train a multilayer, 

feed -forward ,neural network, which is simple, reliable ,and most commonly utilized for 

modeling of complex linear and non linear relationships. In order to decide on the 

optimum structure of the neural network, the rate of error convergence was checked by 

changing the number of hidden neurons and adjusting the learning rate and momentum 

coefficient. In essence, back-propagation training adapts a gradient decent approach of 

adjusting the ANN weights. During the training of an ANN, it is presented with the data 

thousand of times (called cycles). After each cycle, the error between the ANN output 
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(predicted) and the actual (or desired) values are propagated backward to adjust the 

weight in a manner mathematically guaranteed to converge. 

Guo et. al. [35] used a BP algorithm and reported that the training time increases 

dramatically when the number of outputs increases. Therefore, setting up a series of ANN 

models where each model deals with only one output value significantly simplifies and 

speeds up the training of the ANN model. They reported that the back propagation 

algorithm might not always fmd the correct weights for the optimum solution, a number 

ofre-initializations andre-trainings ofthe network were carried out to obtain the best 

solution. 

Neural networks of other types may also be considered in model creation, such as 

radial basis function networks. Such networks may require more neurons than standard 

feed forward back propagation networks, but often they can be designed in a fraction of 

the time it takes to train standard feed forward networks. 
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1.2.4.2 Investigations on the use of Artificial neural networks in materials science 

ANN s have been applied to model complicated processes in many engineering 

fields: aerospace, automotive, electronics, manufacturing, robotics, telecommunications etc. 

For the last few years, many researchers [26, 35-39] have used various types of ANN 

modeling techniques in materials science and engineering fields. 

Bhadeshia [26] indicated that neural network analysis has had a liberating effect 

on material science, by enabling the study of incredibly diverse phenomena, which are not 

as yet accessible to physical modeling. The methodology is used extensively in process 

control, process deign and alloy design. Over recent years the interest in the ANN 

modeling in the fields of physical metallurgy and materials science has increased rapidly. 

Gou et. al. [35] used ANN to correlate between the processing parameters and 

properties of maraging steels (Steel developed mainly for aerospace and tooling 

applications). The input parameters of the model consisted of alloy composition, processing 

parameters including cold deformation degree, aging temperature, and ageing time, and 

working temperature. The outputs of the ANN model include property parameters namely: 

ultimate tensile strength, yield strength, elongation, and reduction in area, hardness, 

notched tensile strength, Charpy impact energy, fracture toughness, and martensitic 

transformation start temperature. 

Genel [9] extracted tensile material data for seventy-three different types of steels 

for training four separate neural networks to model individual fatigue properties. Fatigue 

strength coefficient and fatigue ductility (strain) coefficient values, which primarily 

characterize the curves of the strain amplitude verses life reversals, were predicted with 
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high accuracy of approximately 99 and 98%, respectively. It was concluded, that predicted 

fatigue properties by the trained neural network model seem more reasonable compared to 

approximate methods, which were formerly suggested based on tensile material data. In 

ANN modeling there is no need to make a prior assumption about concerned material 

behaviour, making it superior to other conventional prediction techniques. 

1.2.4.3 Artificial neural network modeling of nitriding processes 

Filetin et.al. [40] indicated that the selection of the nitriding process parameters is 

based on experience . There are no successful mathematical and/or numerical models for 

the simulation of nitriding process simulation. ANN has proved to be a good choice for 

prediction of microstructure and hardness profiles as function of the nitriding parameters. 

Time, temperature, and nitriding-alloying level. 

Zhecheva et. al. [36] indicated that ANN models can be created and used to 

correlate between processing parameters of nitriding and hardness of titanium alloys. It can 

also be used to optimize the processing parameters and alloy composition in order to 

achieve desired properties for various applications. 

1.2.4.4 Techniques for evaluation of the performance of artificial neural network 

modeling 

Different criteria can be used for judging ANN model performance. Haque 

et.al.[31] used the correlation coefficient, r, and the coefficient of multiple 

determination ,R, squared. 
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Gou et al [35] used mean relative error and error deviation. However, the main 

quality indicator of a neural network is its generalization ability, i.e., its ability to predict 

accurately the output of unseen test data. 

1.2.4.5 Investigations on data preparation, data availability and predictive power of 

artificial neural network 

A neural network is usually trained using a large number of input and output data. 

Because ANN modeling is of statistical nature, so the performance of an ANN model is 

based on the size of the data used for model training [35]. 

Data is usually divided into a training set, which is about two thirds of the available 

data, and a validation set as the remaining one third of the available data. The validation 

data set is used to check the generalization ability of the ANN model. ANN modeling 

usually requires some trial and error to achieve a suitable and stable network. A good 

sampling of the data and proper selection of input parameters for the training data set 

improve prediction performance and reduce training time. 

Velten et.al. [38] concluded that the quality of predictions based on ANN increases 

with increasing available data sets. 

Filetin et. al.[40] used 275 data pairs in training and 93 data pairs in the validation 

of an ANN model developed to predict nitriding time. He also used 203 data pairs in 

training and 12 data pairs in the validation of an ANN model to predict surface hardness. 

Zhecheva et. al. [36] used 116 data pairs with 78 in the training set and 38 in test set. 
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Genel [9] found that neural network can learn from experience (training), and can 

predict fatigue data with high accuracy throughout the range of experimental data, however, 

it cannot be used to extrapolate accurately. The prediction of an ANN is only valid in the 

range of tensile material data and its corresponding fatigue data. 

Sukthomya [39] concluded that extrapolation is unreliable. He found that 

appropriate response of the trained network cannot be expected, when any of the inputs lie 

outside of the data ranges used in training. 

1.2.5 Objective of the present study 

The first objective of the present study is to use ANNs modeling in identifying 

which process parameters influence the outcome of the two stage gas nitriding of 

Nitralloy 135M low alloy steel. In addition to that ,using the nitriding potential ,KN, as the 

main control parameter, the second objective is to investigate the nitriding ability of 

ammonia gas as opposed to burette dissociation method while using dissociated ammonia 

as dilution gas . The aim is to achieve zero white layer thickness as demanded by the 

Aerospace Materials Specification (AMS) 2759/10, "Automated control of Gas Nitriding 

using nitriding potential". 
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Chapter2 

The Experimental Facility 

2.1 Introduction: 

Gas nitriding is a case-hardening process in which machined and heat-treated 

steel components are subjected to the action of a nitrogenous medium, commonly 

ammonia gas, at temperatures ranging from 925° F -1 050°F ( 490°C -565°C). Gas 

nitriding is performed in a gas-tight box furnace in such a way that ammonia gas can 

circulate freely around treated parts. Nitriding cycles can last for a day or longer 

according to the desired thickness of the nitrided case. Two stage Floe process gas 

nitriding test cycles were run based on a matrix of designed experiments (discussed in 

Chapter 3) to collect data for the development of the Artificial neural network model. The 

first stage of the nitriding cycles was run at using: 

KN=8 bar-l/2, time(t) = 5hrs, temperature(T) = 975 °F .The second stage of test runs was 

performed using different combinations of four values of KN: 0.3,0.45,0.6 and 

0.8 bar-ll2,three values oft=lO, 20 and 30 hrs, three values ofT=1010,1030 and 1050 °F. 

Gas nitriding facilities of the industrial partner in the present study, VAC AERO 

International Inc., Oakville, Ontario, were used to acquire all the experimental data 

needed for the investigation. Details of the experimental facility are discussed next. 
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2.2 Experimental facility 

A schematic of the experimental facility used in this study is shown in Figure 2.1. 

It is composed of the three following systems: 

• The process and purging gas supply system 

• The nitriding furnace with its control panel 

• The ammonia cracker for the supply of the dissociated ammonia. 

2.2.1 Process and purging gas supply 

Metallurgical grade anhydrous ammonia liquid (max 35 ppm water) with a 

chemical formula NH3, was used as the process gas supply. It is stored in an above 

ground container as shown in Figure 2.2.The container was manufactured by Sparling 

Tank Company and has a capacity of 1375 U.S.W.G (5.2 cubic metres). Gaseous 

ammonia from the container is also supplied to ammonia dissociator (cracker) for 

dissociation to nitrogen (N2) and hydrogen (H2) gas. 

Nitrogen is used as a purging gas and is supplied to the experimental facility from 

the common plant. The nitrogen gas header connected to the plant liquid nitrogen storage 

tank through an evaporator is shown in Figure 2.3. 
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Figure 2.1: Schematic of the experimental facility 
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Figure2.2: Above ground liquid ammonia container 

Evaporator 

Figure 2.3: Liquid nitrogen storage tank and evaporator 

Storage 
tank 

35 



Cooling 
stand 

M.A.Sc.Thesis-Umar Afzaal McMaster-Mechanical Engineering 

2.2.2 Nitriding furnace and its control panel 

Gas nitriding furnace is an electrically heated furnace and can be sub-divided into the 

following sections: 

• Heat source 

• The Retort and the retort lid, and the load basket 

• Control panel 

• Cooling stand Heat source with 
retort placed inside 

Figure 2.4: A general view of the gas nitriding furnace 

Control 
panel 
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2.2.2.1 Heat source 

The electric heat source has a rating of 60 KV A. 

2.2.2.2 The Retort, the lid, and the load basket 

The retort and its lid shown in Figures 2.5-2.9 are made oflnconel600.1t holds 

the load basket and provide gas tight conditions during the nitriding cycle. The retort has 

an internal diameter of23 3/4", height of 48 1/8" and volumetric capacity of 12.34 cubic 

feet .The lid has diameter of22", height of7 3/4" and a flange of diameter 29 114". The 

retort has piping arrangement for supply and exhaust of process, dilution and purging 

gases. The material to be nitrided is suspended or placed in the load basket shown in 

Figure 2.8 . The basket is then lowered in the retort and covered with the lid shown. There 

is an atmosphere circulation fan and motor installed on the lid. This fan was added to the 

furnace as part of a furnace modification process that had to be implemented in order to 

improve the uniformity of the atmosphere distribution inside the furnace. More details 

will be discussed in section 2.3. 

Figure 2.9 shows the path of circulation of nitriding gas inside the furnace. The 

flow is maintained by a centrifugal fan that discharges the gas and it is directed to flow in 

the annular gap of (7 /8 ") between the retort and the liner by deflector shown in Figure 2. 7. 

The gas is turned back after striking the base of retort and flows in the basket space 

where the parts to be nitrided are placed. The gas then flows into the eye of the fan. A 

part of the gas is discharged to the atmosphere to maintain a slight positive pressure of 
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25m bar in the retort. The pressure is maintained by a butterfly valve and P .I.D control 

loop discussed in section 2.2.2.3. 

Figure 2.5: Retort being lowered in cooling stand 

Figure 2.6: Interior view of retort showing load basket and ammonia inlet pipe 
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Deflector 

Figure 2.7: Retort lid with atmosphere circulation fan and deflector 

Figure 2.8: A general view of load basket with liner 

39 



M.A.Sc.Thesis-Umar Mzaal McMaster-Mechanical Engineering 

l 1 J 

I 5 

i 

I I /3 
_I HJ. ; !! .I! II 

_A r I II 
~ 

" 

6 

- ' ~~~ Ji I~ 
I ~ I 

4 
~ "l I II 

-:!~ I 11 
~'-"" 

Ill i 1 
1 

I 
l 

2 l 

I 
" ! 
l 

' l 
I 
' 
I 
~ 

• 
I 
' 

lt ' 1 I 
...- ,..... 

; 

Figure 2.9: A section view of retort and lid assembly showing the gas circulation 
1-Furnace retort, 2-Load basket with liner, 3-Retort lid, 4-Centrifugal 
circulation fan, 5-Fan motor, 6-Atmosphere exhaust pipe 
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2.2.2.3 The Control Panel 

The control panel is model 9210 manufactured by Super Systems Inc. It is the 

heart of the gas nitriding operation and controls all parameters under investigation. 

Mass flow 
controllers 

Figure 2.10: A pictorial view of nitriding control panel model 9210 

ser 
interface 

Hydrogen 
and oxygen 
cell container 

There are three mass flow controllers installed in the control panel. One for the 

ammonia gas, the dissociated ammonia and the nitrogen gas. Only the ammonia and the 
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dissociated ammonia mass flow controllers were used during the experimentation. The 

mass flow controllers are based on thermal sensing technique and work as follows: 

A precision power supply as shown in figure 2.11 provides a constant power input 

(P) at the heater, which is located at the midpoint of the sensor tube. At zero or no flow 

conditions, the amount of heat received by each temperature sensor (one upstream and 

one downstream of the heater) is equal; therefore the temperatures Tt and T2 are equal. 

When gas flows through the tube, the upstream sensor is cooled and the downstream 

sensor is heated producing a temperature difference. The temperature difference T 2-T 1 is 

directly proportional to the gas mass flow. 

The governing equation is: 

I!..T=A* P*C *m p (2.1) 

where, I!..T= Temperature difference T2-T1 COK), Cp= Specific heat ofthe gas at constant 
pressure (kJ/kg-°K), P= Heater power (kJ/sec),m=mass flow (kg/sec) A=constant of 
proportionality (82-K 2 /kJ2) 

A bridge circuit interprets the temperature difference and a differential amplifier 

generates a linear 0-5 V de signal directly proportional to the gas mass flow rate. The 

sensor tube has the same linear pressure drop/flow relationship. The ratio of the restrictor 

flow to the sensor tube flow remains constant over the range ofthe meter. Different 

restrictors have different pressure drops and produce controllers with different full scale 

flow rates. The mass flow controller also has an integral control valve and control circuit. 
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The control circuit senses any difference between set point and the flow sensor signal and 

adjusts the current in the modulating solenoid valve to increase or decrease the flow . 

05Vcl:: 

.. 

Enlarged 
Area 

IN 

Figure 2.11: Flow sensor operational diagram [41] 
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Also there is a hydrogen sensor that is capable of measuring the hydrogen 

percentage in the dissociated ammonia and an oxygen sensor for measuring atmosphere 

oxygen content after nitrogen purging.Both sensors/cell are shown in figure 2.12. 

Figure 2.12: Hydrogen and oxygen sensors installed in the control panel 

Three P .I.D (Proportional Integral Derivative) controllers are used. One each for 

the nitriding potential control, the back pressure control of the furnace, and the 

temperature control. 
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2.2.2.4 The Cooling stand 

At the end of the second stage of the nitriding cycle the furnace retort is placed in 

the cooling stand. The cooling stand is a metal structure with a fan installed at its bottom 

directly driven by 1750 RPM motor to bring about forced '!ir cooling. 

Figure 2.13: A pictorial view of the cooling stand with the retort inside 

Retort 
placed in 

the cooling 
stand 

The 
cooling 
stand 
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2.2.3 The Ammonia dissociator 

The ammonia dissociation (cracking) takes place according to the following 

reaction .It is an endothermic reaction and takes place at 1700°F (927°C) in the presence 

of a nickel catalyst. 

N2(g) + 3H2(g) MI= +92.22 kJ/mole (2.2) 

The above reaction is the preferred method of preparing the highest purity, 

oxygen-free nitrogen. This reaction was conducted in LINDBERG ammonia dissociator, 

shown in Figure 2.14. There are three main parts of the dissociator: 

• Reaction chamber 

• Gas cooler 

• Instrument panel 

Ammonia from storage tank is fed directly to the dissociator, which is heat 

resistant, electrically heated coiled pipe surrounded by refractory material. Hot 

dissociated ammonia is piped to an air-cooled heat exchanger and then goes to the 

nitriding furnace. The instrument panel carries the gauges for gas pressure and flow meter 

for the dissociated gas flow. 
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Instrument 
panel 

Figure 2.14: LINDBERG Ammonia dissociator 

Figure 2.15: Ammonia dissociator gas cooler 

Reaction ----
chamber 

47 



Centrifugal 
fan 

M.A.Sc.Thesis-Umar Afzaal McMaster-Mechanical Engineering 

2.3 Furnace modification 

Originally i.e., before the start of the experimentation, the nitriding furnace was of 

overpressure circulation type. The results of the preliminary nitriding cycles indicated 

non-uniformity in the microstructure of the treated sample~. A modification was 

implemented to install a furnace circulation fan to make the distribution of the nitriding 

gas inside the furnace uniform. A centrifugal fan with a diameter of 310 mm and made of 

AISI 310 SS was installed in the lid as shown in figure 2.16. The fan is powered by a 

directly coupled 2.2 KW, 3600 RPM motor. The fan can maintain a flow rate of 1483 

ft3 /min at nitriding temperature of 11 00°F. 

Figure 2.16: A general view of modified furnace retort lid 
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Chapter 3 

Experimental Methodology 

A set of two-stage Floe process gas nitriding test cycles was developed, planned, 

and run to collect the data for Artificial Neural network (ANN) modeling. The data was 

used to train the ANN model and the trained network was used to predict the nitrided 

case characteristics: 

• The total case depth (f.lm@ 40 HRC, Hardness Rockwell C scale), 

• The effective case depth (f.lm@ 50 HRC), 

• The case depth in f.!m @ 60HRC, 

• The compound (white) layer thickness in f.!m, 

• The superficial hardness (HR 15N). 

Nitrided case properties are affected principally by input process parameters or 

factors: 

• Nitriding potential (KN), 

• cycle time (t) , 

• cycle temperature (T) , 
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• material composition. 

Three geometrically uniform samples of low alloy steel (Nitralloy 135M) having 

a composition as given in Table 3.1 were nitrided in each cycle using a range of values of 

process parameters given in Table 3.2. 

All steps in data collection from design of experiments to mechanical testing and 

metallographic examinations are discussed in the following sections. 

Table 3.1: Percentage composition ofNitralloy 135M low alloy steel 

Carbon Manganese Silicon Chromium Molybdenum Aluminum 

0.40 0.60 0.30 1.60 0.35 1.20 

Table 3.2: Values of process parameters used in experimentation. 

Nitriding potential Cycle time Temperature 
Stage 

KN (bar -1!2) t(hrs) OF 

First 8 5 975 

Second 0.3 0.45 0.6 0.8 10 20 30 1010 1030 1050 
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3.1. Design of Experiments 

The technique of defining and investigating all possible conditions in a set of 

experiments involving multiple factors (parameters) is known as the design of 

experiments. This technique is also referred to as factorial design. The motivation of 

design of experiments is to obtain more (or better) information with less work [ 42]. 

In the present study, experiments were planned to obtain data to investigate the 

effects of three factors in the second stage of the gas nitriding cycle, namely, the nitriding 

potential at four levels, the cycle time at three levels and the temperature at three levels. 

The same factors were kept constant in the first stage of the nitriding process, see Table 

3.2. 

Multilevel full factorial design of the study comes out to 36 combinations of all 

possible factors and levels. The experiments were designed using MINIT AB® software. 

Also, a Taguchi partial factorial design was developed using the same software to get an 

orthogonal array; L<> having 9 trial runs. An orthogonal array is a set of tables used to 

determine the least number of experiments and their conditions [ 42]. The cycles were 

designated using an alphanumeric symbol "NN (x)" where "x" denotes cycle run number. 

Both types of designs are included in appendix I. Appendix 2 contains all the details of 

the actual cycles used in the study. 

3.2. Sample preparation 

Two rods of quenched and tempered Nitralloy 135M having core hardness of 
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34.6 HRC and 34 HRC were used to prepare the test samples. Test sample were 25.4 mm 

in diameter and 6.35 mm thickness as shown in Figure 3.1. For each cycle, six samples 

were used. Three of the samples were engraved with the sample number (to be discussed 

shortly) and were used for nitriding operation results. One side of each sample was 

slightly notched as shown in figure 3.1 to indicate its orientation in the furnace with the 

notched side facing the center of the furnace in all cycles. Both sides, plane and notched, 

of each sample were tested for case characteristics. The other three plane samples 

(without engraving) were used to attach three thermocouples to measure sample 

temperature, which was used to assess temperature uniformity in the furnace during each 

run. The samples were cleaned with methanol and dried before placement in furnace. The 

samples were designated using the cycle number as a prefix and alphanumeric characters 

"8 (y)" where "y" denotes the sample number. For example three specimens 81, 82 and 

83 nitrided in cycle NNI are designated as: NN181, NN182 and NN183, respectively, 

and their respective notched sides are designated as: NN181N, NN1S2N and NN183N. 
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Notch made 
in specimen 

d iu .=25.4 

McMaster-Mechanical Engineering 

6 .35 

AU dimensions in mm 

Figure 3.1: A typical specimen ofNitralloy 135M 
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3.3. Set up prior to running each test cycle 

3.3.1. Specimen placement 

The three engraved and the three unmarked specimens were hanged using steel 

wire to the load basket as shown in figure 3.2. Samples were oriented to hang from the 

spokes on the third basket at approximately 120° apart from each other, as shown in 

figure 3.3. 

Basket for 
load 
placement 

Figure 3.2 : A pictorial view of the furnace retort load basket 
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Figure 3.3: Load basket spokes with three specimens placed at 120° each. 

Specimen 
with notched 
side facing 
the center of 
furnace 
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3.3.2 Attachment of sample thermocouples: 

Three type-K,l /16" diameter thermocouple were attached to the three unnotched (plane) 

samples hanged from spokes adjacent to the three notched samples. Thermocouples were 

connected to the data acquisition system after emanating from the furnace through a 

manifold in the flange of the furnace retort ,as shown in figure 3.4. 

Figure 3.4: Furnace retort with fixture used for thermocouples installation. 

Type -K 
thermocouples 

Attachment 
used for 
thermocouple 
installation 
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3.4. Typical experimental procedure 

a) The basket is lifted with overhead crane and placed in the furnace retort. 

b) The furnace lid is plac.ed and tied with bolts. 

c) Set points of input parameters of the designed run ~ntered in the furnace control 

panel, see figure 3.5. 

d) The furnace circulation fan is set on and purging with Nitrogen is started and 

temperature is ramped up. 

e) As soon as the oxygen cell indicates less than 1% percent oxygen in the retort, 

ammonia supply is set on. 

f) P .I.D controllers control the furnace temperature, the nitriding potential, and 

maintain a slight positive pressure of 25 millibar in the retort. 

Figure 3.5: Control panel user interface 
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3.5 Data collection 

Data collection is divided into the following sequential steps: 

1. Superficial hardness testing 

2. Micro hardness testing for the determination of the _case depths at three hardness 
values 40, 50, and 60 HRC. 

3. Metallographic examination for the determination of the white layer thickness. 

3.5.1 Rockwell superficial hardness testing 

Rockwell Superficial hardness testing using 15N scale was done by using a 

NEW AGE INDENTRON superficial hardness tester, shown in figure 3.6. 

Indenter 

Figure 3.6: Newage Indentron superficial hardness tester with 
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The major load was 15 kgf; minor load was 3 kgf. The indenter used was of 

Sphere-conical diamond type as shown in figure 3. 7. 

Figure 3. 7 Enlarged view of Sphere-conical diamond type indenter for Superficial 
hardness tester [43]. 

3.5.2 Micro hardness testing 

3.5.2.1 Sample sectioning 

Samples were sectioned on an IMPTECH EUROPE Abrasive cutter shown in 

figure 3.8,using Exicut technique. In the exicut technique, the abrasive cutoff wheel 

moves forward and backward through the work piece while rotating . The result is simpler 

and faster cutting and a significant reduction in the consumption of abrasive cutoff 

wheels. The combined rotating and oscillating movements of the wheel improves the 

cooling by allowing easier access of the coolant to the surface being cut. Figure 3.9 

shows the Exicut technique in operation. 
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Figure 3.8. IMPTECH EUROPE abrasive cutter powered by a 2.2kW, 
2800 RPM motor. 

'./heel Move...,.,nt 

Contact Ar.,o. 

Figure 3.9. Exicut technique in operation 
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3.5.2.2 Sample Mounting 

Mounting of the samples is needed for various reasons: for storage, for use in the 

grinding /polishing machine and for edge retention in metallographic examination. 

BUEHLER SIMPLIMET 3 hydro pneumatic mounting press, shown in figure 3.10 ,was 

used for hot mounting of the specimens. Struers Duro fast black epoxy thermosetting resin 

was used as mounting material and the mold size used was of diameter 30 mm. 

Figure 3.10. BUEHLER SIMPLIMET 3 hot mounting machine 
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3.5.2.3 Grinding and polishing 

All steps involved in grinding and polishing operations were carried out on a 

STRUERS ROTOPOL-2 grinding/polishing machine, shown in figure 3.11. 

Grinding/ 
polishing 
surfac_e __ 

Specimen 
holder 

Figure 3.11 STRUERS ROTOPOL-2 grinding /polishing machine 

3.5.2.3.1 Plane or coarse grinding 

The aim of plane grinding is to make the sample surface as a flat plane and to 

remove scratches and damaged layers produced during cutting. Scratches and disturbed 

layers produced in this stage should be easily removed during subsequent steps. Plane 

grinding was carried out with a surface named MD-Piano 600 (micro grit size 600= 13 

microns) at 300 RPM with water as lubricant. 
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3.5.2.3.2 Fine grinding 

The fme grinding stage is the most important of the entire preparation sequence. 

Any previously deformed layers from plane grinding not removed at the fine grinding 

stage and any excessive damage created at this stage are likely to remain to the end of the 

preparation process, which may cause misinterpretation of the microstructure. Therefore, 

the purpose of the fine grinding stage is to remove the entire deformed layer from plane 

grinding without introducing any more deformation than necessary. Fine grinding was 

carried out by using a combination of surface named MD-Allegro, abrasive diamond 

suspension size 9 microns at 150 RPM with lubricant DP Green. 

3.5.2.3.3 Polishing 

The purpose of the polishing stage is to remove all the scratches and deformed 

layer from the previous grinding steps. The resulting surface should be scratch free, relief 

free and planar. 

Polishing was carried out in two steps using surfaces MD-Dur with 3 micron 

abrasive and DP Green lubricant and MD Nap with 1 micron abrasive and DP Green 

lubricant. 

3.5.2.3.4 Vickers micro hardness testing 

Micro- hardness testing was carried out to determine the case depths in microns 

(f.lm) at three values of hardness 40HRC, 50 HRC and 60 HRC. Case depth to 40 HRC 

and 50 HRC are termed as" total case" and "effective case", respectively. Vickers 
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Microhardness testing was performed using a MITUTOYO MVK-HO type of tester, 

shown in figure 3.12, and the results were interpreted into the desired case depth values 

using Clemex® CMT image analysis software and a high resolution camera. The load 

used was 100gfand dwell time was 15 sec. Figure 3.13 shows a typical profile of indents 

on a nitrided case. Figure 3.14 explains the geometry of the indent. Figure 3.15 gives the 

calibration curve of the Microhardness tester. 

High-resolution camera 

Figure 3.12: MITUTOYO MVK-HO Mcirohardness tester 
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Figure 3.13: Indents on a nitrided case ofNitralloy 135M (x400) 

Figure 3.14: Vickers diamond indenter indentation profile [44] 
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Figure 3.15: Calibartion curve ofMitutoyo microhardness tester 

3.5.3 Metallographic examination 

The metallographic examination of the nitrided samples was conducted to 

determine the thickness of the white compound (layer) in microns (!J.m) developed during 

the process. 

3.5.3.1 Etching 

Specimens were etched using 3% Nita! etchant having a volume-by-volume 

composition of 3ml HN03 in 97ml Methanol. 

3.5.3.2 Storage after etching 
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After etching the specimens were ultrasonically cleaned to remove the etchant 

remaining in the pores, cracks, or interfaces between specimen and mount. Specimens 

were dried using an electric dryer and stored in desiccators. 

3.5.3.3 Optical microscopy 

White layer thickness examination of samples was conducted using a ZEISS 

optical microscope. Image analysis was done using a NORTHERN ECLIPSE® software 

as shown in the figure 3 .16.A typical result from the white layer examination is shown in 

figure 3.17. 

Optical 
microscope 

Figure 3.16: ZEISS optical microscope and computer with image analysis software. 
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Figure 3.17. A photomicrograph of sample "NN32S013" nitrided for 20 hrs 
at a KN thickness of0.45 and 1050 °F.White layer thickness is about 
12.11 J.!m (x1000). 

3.6. Data compilation 

All the data collected was compiled in spreadsheet format, a sample of which is 

included in Appendix 3.Spreadsheets were prepared included in the Appendices 4-13 for 

the modeling of each of the five process parameters using the two ANN modeling 

techniques discussed in Chapter 4. 
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Chapter 4 

Results and Discussion 

Introduction 

The main objective of the present study is to use real data collected from gas 

nitriding cycles to develop an Artificial neural network model that can predict case 

depths, white layer thickness, and superficial hardness of gas nitrided samples. Two ANN 

models have been developed and used in the present study. A multilayer perceptron 

(MLP) type model using Back-propagation adaptive gradient descent algorithm and a 

Radial basis function type neural network model were designed and tested using the same 

data. In addition to the development of the two ANN models, investigations of reverse 

modeling, non-uniformity of the microstructure due to effects of cooling rate and prior 

heat treatment of samples have also been considered and will be discussed below. 

4.1. Artificial Neural Network (ANN) modeling 

4.1.1. Introduction to NeuralWare® Predict 

NeuralWare® Predict is an integrated, state-of-the-art tool for rapidly creating and 

deploying prediction and classification applications. Predict combines neural network 

technology with genetic algorithms, statistics, and fuzzy logic to automatically fmd 

optimal or near-optimal solutions for a wide range of problems. 
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Predict analyzes input data to identify appropriate transforms, partitions the input 

data into training and test sets, selects relevant input variables, and then constructs, trains, 

and optimizes a neural network tailored to the problem. In Microsoft® Windows 

environments NeuralWare® Predict can be run either as an add-in for Microsoft Excel to 

take advantage of Excel's rich data handling and graphing capabilities, or as a command 

line program that offers powerful batch mode processing [45]. 

4.1.2. Modeling using a (MLP) ANN model developed using NeuralWare® Predict 

Prediction of nitriding case characteristics of total case depth (at 40HRC), 

effective case depth (at 50HRC), case depth (at 60HRC), superficial hardness and white 

layer thickness are presented in Table 4.1. Input to the model was the parameters of the 

second stage of the nitriding cycle, namely, KN, t ,and T. 
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Table 4.1. Consolidated results ofNeuralWare modeling 

Predicted Number of data points 
Maximum 

Parameter 
percentage 

Number of data difference based on 
Total points used for experimental value 

model validation 

Case depth in flm at 
111 20 14.00 

60HRC 

Effective case in f.!m 
143 29 12.27 

at50HRC 

Total case in f.!m 
122 19 13.48 

depth at 40HRC 

Superficial hardness 
167 32 -4.78 

(HR 15N) 

White layer 
148 30 >40 

thickness in flm 

NeuralWare Predict was trained and validated using the data for each of the 

characteristics of three types of case depths, superficial hardness and white layer 

thickness using values from Appendices 4-8. After training of the neural model it predicts 

the value of modeled characteristic for validation data (discussed in Section 4.1.4). The 

predicted values were compared with experimental values for each validation data point 

and the percentage difference based on the experimental value were calculated. The 

maximum percentage difference was noted. 

It is evident from table 4.1 that more data points for training result in lower 

maximum percentage difference for three types of case depth with best prediction for 

effective case depth. 
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Superficial hardness prediction is the best of the five characteristics. It is 

over predicted i.e. the value predicted by the model is larger than the experimental 

value. 

White layer thickness has more data points than any of the characteristics but has 

high value of error. This indicates that although number of data points used for training 

are more, the main factor is the process of gas nitriding itself i.e. the first stage of 

nitriding cycle. White layer is formed during the first stage and is diffused in the case 

during the second stage of the cycle. Since the parameters of first stage were not used as 

input parameters in the training of neural network model the prediction of white layer 

thickness has high percentage error as compared to other case characteristics prediction. 

4.1.3. Modeling using Radial Basis Function (RBF)neural network 

Nitriding cycles data was also used to build a Radial Basis function neural 

network using Mathworks® MATLAB 7.0 Newrbe function. Results of the (RBF) ANN 

model are summarized in table 4.2. 
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Table 4.2 Consolidated results of the Radial Basis Function neural network model. 

Predicted Number of Data points 
Maximum 

parameter 
percentage 

Number of data difference based on 
Total points used for experimental value 

validation 

Case depth in J.Lm 
30 7 12.56 

at60HRC 

Effective case in 
30 7 6.57 

J.Lmat50HRC 

Total case in J.Lm 
30 7 7.32 

depth at 40HRC 

Superficial 
hardness (HR 30 7 -12.23 

15N) 

White layer 
30 7 >50 

thickness in J.Lm 

Radial Basis Function neural network was trained and validated using the data for 

each of the characteristics of three types of case depths, superficial hardness and white 

layer thickness using values from Appendices 9-13 .After training of the neural model it 

predicts the value of modeled characteristic for validation data (discussed in Section 

4.1.4).The predicted values were compared with experimental values for each validation 
data 

point and the percentage difference based on the experimental value were calculated. The 

maximum percentage difference was noted. 

Comparing Tables 4.1 and 4.2 one figures out marked difference in the number of 

datapoints used for the training and validation of neural networks. It is because as shown 

in Appendices 4-8 about the data used for training and validation ofNeuralWare Predict, 
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Multilayer perceptrons can be trained on different values of outputs (case characteristics 

using same values of inputs (process parameters )work with same values of input and 

different outputs but Matlab 7.0 Newrbe function produces an error due to rank 

deficiency problem in this case. So the average values of case characteristics for all the 

30 gas nitriding test cycles were used for training and validation. 

It can be noted from table 4.2 that the prediction of three case depths is similar as 

using Multilayer perceptrons. 

Prediction of superficial hardness is the best of all the case characteristics. But its 

over predicted. 

White layer thickness prediction has high value of maximum percentage 

difference because ofthe reasons discussed in section 4.1.2. 

4.1.4. Characteristics of validation data for modeling 

Data sets used for the validation of both ANN models consisted of values of input 

process parameters that were within the range of values of data used to train the model. 

This is due to inherent ability of Artificial Neural Networks to interpolate as compared to 

extrapolation. Out of the 30 gas nitriding test cycles; 23 cycles were used for training and 

process parameters of 7 cycles qualified for usage as validation cycles. 
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4.1.5 Reverse modeling 

Data ofnitriding cycles of three types of case depth values (total, effective and 

case depth at 60 HRC), superficial hardness and white layer thickness were used to train 

MLP neural network model and the model was used to predict process parameters ofKN, 

t and T. This type of modeling is called reverse modeling. The models were then 

validated and results are presented in Table 4.3. 

Reverse modeling was done using different combination of input parameters of 

case depth, superficial hardness and white layer thickness, consequently the following 

four cases were formed and modeled given by Table 4.3. 
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Table 4.3: Results of reverse neural network modeling 

Case 
Input Parameters Number of datapoints 

Maximum percentage 
Number error 

Total Validation KN t T 
Total Case depth, 

1 
Effective case depth, 

111 20 -23.52 -61.54 -1.84 
Case depth 
(a)60HRC 

Total Case depth, 
Effective case depth, 

2 Case depth 111 20 -33.66 -101.3 -1.79 
@60HRC,Superficial 

hardness 
Total Case depth, 

Effective case depth, 
3 Case depth 111 20 -34.53 -71.0 -1.83 

@60HRC, White 
layer thickness 

Total Case depth, 
Effective case depth, 

Case depth 
4 @60HRC, 111 20 -28.20 -82.56 -1.41 

Superficial hardness, 
White layer 
thickness 

The results of reverse modeling have high percentage error because the data 

points used for training are not unique. The training data consist of results from 23 test 

cycles. To increase available data, case characteristics of three samples with two sides of 

each sample with some deletions were used a training data. Also the results indicate over 

prediction of the process parameters by the MLP neural network for all the cases. 

Additionally the prediction of temperature is the best for all cases followed by 

Nitriding potential and cycle time. 
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4.2. Investigations of the non-uniform/discontinuous structure of white layer 

The results of some nitrided case microstructure indicated non-uniform/ 

discontinuous white layer. An example is shown in figures 4.1 (a) and (b). Both 

photomicrographs show portions of the microstructure of the same sample titled 

"NN11 S31" nitrided in a cycle NN11 with the parameters listed in Table 4.2. The white 

layer variation from one portion of same side of sample to the other was 3000%. 

Table 4.4: Cycle parameters for NN11 

Parameter Stage 1 Stage 2 
KN (bar- 112

) 8.0 0.8 
t ( hrs) 5 20 
TCF) 975 1030 

(a) (b) 

Figure 4.1: Two photomicrographs showing non-uniform portion of the white layer 
with thickness a) 30.79 1-1m. b) 0.01-1m (x1000) for the sample NN11S31 
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Two reasons for the above anomaly were investigated. 

• Effect of cooling rate from nitriding temperature 

• Effect of pre treatment of the used Nitralloy bars 

4.2.1. Effect of cooling rate from nitriding temperature: 

Two Nitriding cycles with identification number NN29 & NN39 were run using 

the same values of input parameters for both stages of the nitriding cycle. At the end of 

the cycle, the retort and the samples were cooled at the fastest and slowest possible 

cooling rates using the experimental setup. For the slowest cooling rate, the furnace 

heater was turned off and the retort was left to cool down inside the furnace from a 

temperature of 1030°F .The cooling rate recorded for the case was 3 °F/min. For the 

fastest cooling rate, the retort was lifted from the furnace and immediately placed on the 

cooling stand. The cooling rate recorded in this case was 19.68 °F/min, which is 

approximately 85% faster than the slowest cooling rate. The results of this investigation 

are shown in Table 4.5 and the white layer photomicrographs are presented in Figures 4.3 

and 4.4. 
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Table 4.5: Nitrided sample properties from two cycles NN29&NN39 to compare 
effect of cooling rate 

Sample 
NN29S92 NN39S122 

number 

Cycle 
Nitriding Cycle 

Temperature 
Nitriding Cycle 

Temperature 
potential time potential time parameters (bar-112) (hrs) (OF) (bar-112) (hrs) (OF) 

First stage 8.00 5 975 8.00 5 975 
Second stage 0.45 10 1030 0.45 10 1030 

Average 
cooling rate 
for first 40 

minutes after 3.00 19.68 
completion 

of cycle 
e F/min) 
Total case 

348.33 347.08 
depth (J.tm) 
Effective 

case depth 248.33 270.83 
(J.tm) 

Case depth 
at60HRC 168.33 171.25 

(J.tm) 
Superficial 
hardness 94.5 94.7 

(HR-15N) 
White layer 
thickness 16.81 16.77 

(J.tm) 
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White 
layer 

Figure 4.2. A photomicrograph of white layer of thickness 16.38f.lm from sample 
NN29S92 (xlOOO). 

White 
layer 

Figure 4.3: A photomicrograph of white layer of thickness 16.06f.lm from sample 
NN39S122 (xlOOO). 
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It is deduced from the afore mentioned results that the cooling rate from the nitriding 

temperature at the end of second stage of nitriding has no effect on the morphology of the 

white layer. 

4.2.2. Effect of the pre treatment of the used Nitralloy bars 

The nitriding test specimens were cut from two rods that were hardened and 

tempered in different cycles. The heat treatment recipes were the same as those shown in 

Table 4.6.The microstructure was studied using SEM (Scanning electron microscopy) 

and optical microscopy. As shown in Figures 4.5-4.8 .No difference was observed in the 

structure. 

Table 4.6: Hardening and tempering sequence ofNitralloy 135M bars 

Heat Average 
Raise Quench Temper 

hardness 
uniformly temperature 

(HRC) 

1450° F hold 
Bar 1 Bar2 

for 20 minutes 1750° F hold 1175° F for 2 
in Nitrogen for 1 hour 

Oil 
hours in air 

34.6 34.0 
atmosphere 
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Optical microscopy results are given below. The grain structure is not abnormally 

different. 

Figure 4.4. Nitralloy 135M bar 1 tempered martensite grain structure (xlOOO) 

Figure 4.5. Nitralloy 135M bar 2 tempered martensite grain structure (xlOOO). 
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The microstructure of samples was observed using SEM microscopy using five times 

more magnification than optical microscope and results are given below. 

Figure 4.6. SEM image ofNitralloy 135M bar 1(x5000). 

Figure 4.7. SEM image ofNitralloy 135M bar 2 (x5000). 
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No variation to suggest difference in white layer non-uniformity was noted. 

4.3. Nitriding parameter variation profile during a typical cycle 

Figures 4.8, 4.9, 4.10 and 4.11 show a typical pro~le of parameters T and KN 

variation during the first stage (5hrs) and second stage (lOhrs) of the nitriding 

NN29cycle .The set points for KN were 8 and 0.45 bar-112 and T were 975 °F and 1030 op 

for first and second stages, respectively. As can be seen from figures 4.8 and 4.9 the 

temperature variation as indicated by one furnace atmosphere and two load 

thermocouples is± 5 °F which is within the specified limits set by AMS 2759 series 

specifications. 

Temperature variation in first stage of cycle NN29 at a set point 
temperature of 975deg F 

990 

u.. 985 

~ 980 , (;/A c 975 "tY "''-' u "v•• ........ ....... - TempPV 
Cll 
5 970 f\ -TC#1 .... 
I! 965 
Cll 

-TC#2 
c. '1\ E 960 
Cll ..... 955 

950 
0 50 100 150 200 250 300 350 400 

Time (minutes) 

Figure 4.8. Temperature temporal variation during 5 hrs of first stage of cycle NN29 
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Temperature variation with time in second stage of 
cycle NN29 at a set point temperature of 1030 deg F 

1050 ·--- ·-····· 
i 

1045 I 

Ll. 1040 
i 1035 

JiV 
.5 1030 

\I 
-TerrpPJ 

Gl 1025 - TC#1 ... 
:::J ! .... 1020 ca 

i -TC#2 ... 
Gl 1015 a. ! E 1010 I 

~ 1005 J 
1000 

340 390 440 490 540 590 640 690 740 790 840 890 940 990 

Time (minutes) 

Figure 4.9. Temperature temporal variation during 1 0 hrs of second stage of cycle 
NN29 

Also from figures 4.10 and 4.11 the nitriding potential variation is within 

±0.1 bar-112 for the first stage and within 0.05 bar-112 for the second stage of nitriding cycle. 

The variation in nitriding potential is within the limits specified by AMS specification 

2759/10. 
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Nitring potential variation with time in first stage ofcycle NN29 at a set point 
set point of 8.0 bar(-1/2) 
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Figure 4.10: Nitriding potential temporal variation during 5 hrs of first stage of cycle 
NN29 
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Figure 4.11: Nitriding potential temporal variation during 10 hrs of second stage of cycle 
NN29 
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4.4 Sensitivity analysis 

Predictions obtained from the MLP artificial neural network model developed 

using the NeuralWare® Predict were subjected to a sensitivity analysis. 

The resolution of the control system for KN is ±0.01 bar-112, and temperature is 

±1 °F. The altered values ofKN as given by table 4.7 were used in the training of the MLP 

neural network model. The effect of the altered values on the accuracy of the prediction 

of the case depth at 60 HRC were examined. The maximum percentage error on the 

validation set was found to be 14.80 % whereas the maximum percentage error on 

validation set using the actual (not altered) values was 14.00%. No significant variation 

was found. 

Table 4. 7 : Nitriding potential values used in the sensitivity analysis 

Parameter Actual value Altered values 

varied bar-112 bar-112 

0.3 0.295 

KN 0.45 0.445 

0.6 0.595 

0.8 0.795 

Also for the case of temperature there was ±2.2°F deviation in load 

thermocouples readings and ±5.0°F in temperature uniformity as measured by 
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furnace atmosphere thermocouple. Due to this it was almost impossible to gauge 

the effect of temperature on sensitivity analysis. 

As part of sensitivity analysis a calibration curve of the Microhard.ness 

tester was obtained as shown in figure 3.15. 
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Chapter 5 

Conclusions 

Multivariate two-stage gas nitriding process for Nitralloy 135M was studied and 

significant parameters affecting the process; and characteristics defining the nitrided case 

were identified. AMS 2759/10 specification was used as a guide for controlling the 

process using Nitriding potential (KN) parameter as opposed to percentage dissociation. 

A set of experimental data of process input and output parameters of nitriding test cycles 

were collected. Data was analyzed and partitioned into training and validation sets. The 

data sets were used to develop Multilayer Perceptron type ANN models using 

NeuralWare® Predict software. Another type of neural network model called Radial Basis 

function was also built using MATLAB 7.0 Newrbe function The results and discussion 

of model prediction using validation data were presented in Chapter 4. 

In addition the data sets were used for reverse modeling i.e. prediction of process 

control parameters (KN, t and T) using case characteristics (case depths, superficial 

hardness and white layer thickness). 

Further to that investigation on the effects of cooling rate after nitriding and prior 

heat treatment; on the microstructure of nitrided material i.e. Nitralloy 135M was done. A 

summary of investigations and neural network modeling of gas nitriding are given. 
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Parameters affecting gas nitriding process: 

Four parameters were identified as having greatest effect on the process: 

1. Nitriding potential 

2. Cycle time 

3. Cycle temperature 

Effect of data points on the Neural network modeling: 

Artificial Neural modeling results using Multilayer perceptron and Radial Basis 

Function structure are strongly dependant on the data points available for training. 

This is evident from the modeling results of case depths in which effective case depth, 

with most number of data points for training has lowest value of maximum percentage 

difference i.e. 12.27 and 6.57% for MLP and RBF network respectively. 

Prediction of white layer thickness: 

The prediction of white layer thickness was poor. Although the number of data 

points for training was higher as compared to those used for the other parameters (case 

depths and superficial hardness). This is attributed to the fact that white layer formed on 

the case, is the result of process during the first stage of gas nitriding operation and we 

did not use first stage input parameters at all in the building of artificial neural network 

model.Also deficiencies in metallographic examination and the effects of kinetics of gas 

nitriding contributed to poor prediction. 
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Results of reverse modeling: 

Reverse modeling i.e. prediction of process parameter for a particular case 

characteristic has great significance for heat treatment industry. The scarcity of unique 

data points used for reverse modeling caused poor reverse modeling results. 

Effect of prior heat treatment on the microstructure of nitrided case: 

Nitralloy 135M bars used for preparing samples for the nitriding cycles were 

hardened and tempered to achieve a specific hardness value. The heat treatment was done 

in separate cycles for both bars. Microhardness testing and metallographic examination of 

bars was done to determine the effect of non-uniformity of microstructure prior to gas 

nitriding. The microstructure was found to be similar. Prior heat treatment has no effect 

on gas nitrided case results. 
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Chapter 6 

Recommendations and Future work 

The following are the recommendations of the project: 

1. More cycles should be run as the Artificial Neural Network performance 

(Prediction power) is dependant on the number of data points. 

2. The scope of design of experiments for data collection should be increased to 

include parameters from the first stage of the gas nitriding cycle because the 

prediction of white layer is principally dependant on the conditions prevalent 

during the first stage of nitriding cycle. 

3. Thermocouples should be spot welded to the sample to be nitrided rather than on 

samples placed adjacent to the test coupons. 

4. All cycles should be of total duration (first stage plus the second stage) longer 

than 15 hours, equal or shorter cycles result in non-uniform case structure with 

regards to white layer morphology. 

5. Micro hardness testing using the Vickers Hardness method should be done with 

load greater than 1 OOgf (used in the current experimentation), as this load is at the 

borderline of load at which the hardness value is dependant on the load. 

6. New and better a metallographic techniques for sample testing should be explored. 
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7. Modeling of gas nitriding using other multivariate modeling methods like PCA 

(Principal Component Analysis) and PLS (Projection to latent structures) should 

be explored. 
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Appendix-l(a) 

Ta20chi partial factorial desip(oriltinal desi28) 

Nitriding Potential Cycle time Temperature Cycle number Repeat cycle 

0.3 10 1010 NN4 
0.3 20 1030 NN15 NN25 
0.3 30 1050 NN17 
0.5 10 1030 
0.5 20 1050 
0.5 30 1010 
0.8 10 1050 NN5 
0.8 20 1010 NN8 NN23 
0.8 30 1030 NN16 

With revised Nitriding potential to include 0.45 

Nitriding Potential Cycle time Temperature Cycle number Repeat cycle 
0.3 10 1010 NN4 
0.3 20 1030 NN15 NN25 
0.3 30 1050 NN17 

0.45 10 1030 NN29 
0.45 20 1050 NN32 
0.45 30 1010 NN33 
0.8 10 1050 NN5 
0.8 20 1010 NN8 NN23 
0.8 30 1030 NN16 

99 



M.A.Sc. Thesis- Umar Afzaal McMaster -Mechanical Engineering 

Appendi:x-l(b) 
Multilevel full factorial desi2n 

NitridiJ!g Potential .Cycle time Temperature 
0.80 30.0 1030.0 
0.30 20.0 1030.0 
0.45 20.0 1030.0 
0.80 30.0 1050.0 
0.60 10.0 1010.0 
0.60 10.0 1050.0 
0.30 20.0 1050.0 
0.60 20.0 1030.0 
0.60 30.0 1030.0 
0.80 10.0 1050.0 
0.60 10.0 1030.0 
0.80 20.0 1030.0 
0.45 10.0 1010.0 
0.45 20.0 1010.0 
0.30 10.0 1010.0 
0.60 20.0 1010.0 
0.30 10.0 1030.0 
0.80 20.0 1010.0 
0.45 30.0 1050.0 
0.60 30.0 1010.0 
0.30 30.0 1010.0 
0.80 10.0 1010.0 
0.30 30.0 1050.0 
0.80 10.0 1030.0 
0.30 20.0 1010.0 
0.80 30.0 1010.0 
0.80 20.0 1050.0 
0.60 20.0 1050.0 
0.30 10.0 1050.0 
0.45 10.0 1050.0 
0.45 30.0 1010.0 
0.60 30.0 1050.0 
0.45 10.0 1030.0 
0.30 30.0 1030.0 
0.45 30.0 1030.0 
0.45 20.0 1050.0 
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Appendix-2 

Details of all the actual cycles used in the study 

Cycle identification 
Date Samples 

Cycle Parameters 
number# Stagel Stage2 

NNl 6-Jun-05 Sl, S2, S3 975F, Shrs, Kn=8 IOIOF, lOhrs, Kn=0.6 

NN2 16-Jun-05 S4,S5,S6 975F, Shrs, Kn=8 1010F, lOhrs, Kn=0.6 

NN3 17-Jun-05 S7, S8, S9 975F, Shrs, Kn=8 1010F, 10hrs, Kn=0.8 

NN4 20-Jun-05 SlO, Sil, S12 975F, Shrs, Kn=8 IOIOF, lOhrs, Kn=0.3 

NNS 22-Jun-05 Sl3, Sl4, SIS 975F, Shrs, Kn=8 1050F, 10hrs, Kn=0.8 

NN6 23-Jun-05 S16,S17,S18 975F, Shrs, Kn=8 1050F, lOhrs, Kn=0.3 

NN7 26-Jun-05 S19,S20,S21 975F, Shrs, Kn=8 1050F, lOhrs, Kn=0.6 

NN8 28-Jun-05 S22,S23,S24 975F, Shrs, Kn=8 1010F, 20hrs, Kn=0.8 

NN9 30-Jun-05 S25,S26,S27 975F, Shrs, Kn=8 1010F, 20hrs, Kn=0.6 

NNIO 2-Jul-05 S28,S29,S30 975F, Shrs, Kn=8 1010F, 20hrs, Kn=0.3 

NNil 4-Jul-05 S31, S32, S33 975F, Shrs, Kn=8 1 OSOF, 20hrs, Kn=0.8 

NN12 6-Jul-05 S34, S35, S36 975F, Shrs, Kn=8 1 OSOF, 20hrs, Kn=0.3 

NN13 8-Jul-05 S37, S38, S39 975F, Shrs, Kn=8 1050F, 20hrs, Kn=0.6 

NN14 10-Jul-05 S40,S4l,S42 975F, Shrs, Kn=8 1030F, 20hrs, Kn=0.8 

NN15 13-Jul-05 S43,S44,S45 975F, Shrs, Kn=8 1030F, 20hrs, Kn=0.3 

NN16 15-Jul-05 S46,S47,S48 975F, Shrs, Kn=8 1010F, 30hrs, Kn=0.8 

NN17 18-Jul-05 S49, SSO, S51 975F, Shrs, Kn=8 1050F, 30hrs, Kn=0.3 

NN18 20-Jul-05 S52, S53, S54 975F, Shrs, Kn=8 1050F, 30hrs, Kn=0.8 

NN19 27-Jul-05 S55, S56, S57 975F, Shrs, Kn=6.9 1010F, lOhrs, Kn=0.8 

NN20 28-Jul-05 S58, S59, S60 975F, Shrs, Kn=6 1010F, lOhrs, Kn=0.8 

NN21 30-Jul-05 S61, S62, S63 950F, Shrs, Kn=8 1010F, !Ohrs, Kn=0.8 

NN22A [NN7 dupl] 9-Nov-05 
S64,S65,S66,S67, 

975F, Shrs, Kn=8 1050F, !Ohrs, Kn=0.6 
S68 

NN22 [NN7 dupl] Il-Nov-05 
S69, S70, S71, S72, 

975F, Shrs, Kn=8 1050F, 10hrs, Kn=0.6 
S73 

NN23 [NN8 dupl] 12-Nov-05 S74,S75,S76 975F, Shrs, Kn=8 1010F, 20hrs, Kn=0.8 

NN24 [NN12 dupl] 14-Nov-05 S77, S78, S79 975F, Shrs, Kn=8 1050F, 20hrs, Kn=0.3 

NN25 [NN15 dupl] 18-Nov-05 S80, S81, S82 975F, Shrs, Kn=8 1030F, 20hrs, Kn=0.3 

NN26 18-Nov-05 S83,S84,S85 975F, Shrs, Kn=8 1030F, 6.6hrs, Kn=0.6 

NN27 9-Dec-05 S86,S87,S88 975F, Shrs, Kn=8 1010F, 13hrs, Kn=0.3 

NN28 [NN4 dupl] 24-Feb-06 S89, S90, S91 975F, Shrs, Kn=8 IOIOF, 10hrs,Kn=0.3 

NN29 26-Feb-06 S92,S93,S94 975F, Shrs, Kn=8 1030F, IOhrs, Kn=0.45 

NN27 A 5-Mar-06 S95A, S96A, S97A 975F, Shrs, Kn=8 IOIOF, 2.25hrs, Kn=0.3 

NN30 6-Mar-06 S95,S96,S97 975F, Shrs, Kn=8 1010F, 17.75hrs, Kn=0.3 

NN31 14-Mar-06 S98,S99,S100 975F, Shrs, Kn=8 lOIOF, 30hrs, Kn=0.3 

NN32 23-Mar-06 S101, S102, S103 975F, Shrs, Kn=8 1050F, 20hrs, Kn=0.45 

NN33 25-Mar-06 S104, S105, S106 975F, Shrs, Kn=8 IOIOF, 30hrs, Kn=0.45 

NN34 27-Mar-06 Sl07,S108,S109 975F, Shrs, Kn=8 1030F, 30hrs, Kn=0.8 

NN35 30-Mar-06 SilO, Sill, S112 975F, Shrs, Kn=8 1010F, 20hrs, Kn=0.45 

NN36 2-Apr-06 Sil3, Sil4, S115 975F, Shrs, Kn=8 1030F, 20hrs, Kn=0.45 

NN37 4-Apr-06 Sil6, Sil7, Sil8 975F, Shrs, Kn=8 1 030F, 20hrs, Kn=0.6 

NN38 6-Apr-06 Sil9, S120, S121 975F, Shrs, Kn=8 1030F, lOhrs, Kn=0.8 

NN39 1-Jun-06 S122 Sl23 S124 975F, Shrs, Kn=8 1030F, 10hrs, Kn=0.45 
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Appendix-3 
Typical spreadsheet of data collected for samples in each cyclce 

1Cy_cle29: Hardness Test 

Superficial Hardness 
Diamond cone Indenter IHR15Nl 
Sample NN29 S92 NN29 S92N NN29 S93 NN29 S93N NN29 S94 NN29 S94N 

94.2 94.6 94.7 94.7 94.6 94.7 
94.6 94.7 94.7 94.6 95.0 94.8 

~ 94.2 94.4 94.7 94.8 94.7 94.4 {j 
~ 94.4 94.5 94.7 94.5 94.8 94.2 

$1 94.4 94.9 94.1 95.0 94.4 94.5 
94.1 94.7 94.8 94.5 94.8 94.6 
94.2 94.6 94.4 94.6 94.3 94.5 
94.5 94.5 94.3 94.4 91.2 94.7 

Min 92.8 94.4 94.1 94.4 91.2 94.2 
Max 94.6 94.9 94.8 95.0 95.0 94.8 
Average 94.3 94.6 94.6 94.6 94.2 94.6 
StdDev 0.18 0.16 0.25 0.19 1.24 0.19 

Micro Hardness 
Vickers Indenter [HY 1 OOgt] 
Depth Hardness 

NN29 S92 NN29 S92N NN29 S93 NN29 S93N NN29 S94 NN29 S94N 

1 1083 1060 1060 1060 1131 1106 

2 1060 1038 1060 1083 1060 1060 

4 920 902 885 902 920 938 

6 736 711 749 724 749 749 

8 622 622 612 633 654 633 

10 495 510 517 510 517 455 

15 360 352 388 347 369 365 

20 360 331 388 335 3434 347 

25 352 327 360 331 347 339 

125 339 339 343 335 343 335 
Maximum 

value 

Samples NN29 S92 NN29 S92N NN29 S93 NN29 S93N NN29 S94 NN29 S94N 
Case Depth 

13.8 13.7 14.8 13.6 14.2 13.5 
(40HRC) mils 
Effective Case 

Depth (50HRC) 9.8 10.0 10.2 10.0 10.2 9.4 
mils 

(60HRC) mils 6.7 6.3 6.8 6.6 7.1 6.9 

60/50HRC 
68.4 63.0 66.7 66.0 69.6 73.4 

ratio lo/<>l 
Whilte layer 

thickness( micro 16.39 17.33 13.99 18.68 12.53 17.22 
ns) 

Notes on White 
lay_er 
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Appendix-4 

Training and validation data for case depth at 60HRC prediction using NeuraiWare Predict 

Nitriding 
Cycle time Furnace temp case depth at 60HRC 

Sample potential (bar-
(hrs) (degF) (microus) 

1/2) 

1 NN27 NN27A S95A 0.3 2.25 1010 127.50 
2 NN27 NN27A S95AN 0.3 2.25 1010 127.50 
3 NN28 S89 0.3 10 1010 147.50 
4 NN28 S89N 0.3 10 1010 147.50 
5 NN28 S90 0.3 10 1010 147.50 
6 NN28 S90N 0.3 10 1010 142.50 
7 NN28 S91 0.3 10 1010 142.50 
8 NN28 S91N 0.3 10 1010 140.00 
9 NN6 S16 0.3 10 1050 170.00 
10 NN6 S17 0.3 10 1050 177.50 
11 NN27 S86N 0.3 13 1010 152.50 
12 NN27 NN30 S95 0.3 17.75 1010 165.00 
13 NN27 NN30 S95N 0.3 17.75 1010 170.00 
14 NN10 S28N 0.3 20 1010 157.50 
15 NN10 S29N 0.3 20 1010 153.00 
16 NN25 S80 0.3 20 1030 182.50 
17 NN25 SSON 0.3 20 1030 170.00 
18 NN25 S81 0.3 20 1030 167.50 
19 NN25 S81N 0.3 20 1030 160.00 
20 NN25 S82 0.3 20 1030 180.00 
21 NN25 S82N 0.3 20 1030 170.00 
22 NN24 S77 0.3 20 1050 172.50 
23 NN24 S78 0.3 20 1050 180.00 
24 NN24 S78N 0.3 20 1050 182.50 
25 NN24 S79 0.3 20 1050 187.50 
26 NN31 S98N 0.3 30 1010 160.00 
27 NN17 S49 0.3 30 1050 165.00 
28 NN17 S50 0.3 30 1050 165.00 
29 NN17 S50N 0.3 30 1050 167.50 
30 NN17 S51 0.3 30 1050 162.50 
31 NN17 S51N 0.3 30 1050 165.00 
32 NN29 S92 0.45 10 1030 167.50 
33 NN29 S92N 0.45 10 1030 157.50 
34 NN29 S93 0.45 10 1030 170.00 
35 NN29 S93N 0.45 10 1030 165.00 
36 NN29 S94 0.45 10 1030 177.50 
37 NN29 S94N 0.45 10 1030 172.50 
38 NN35 SllO 0.45 20 1010 172.50 
39 NN35 SllON 0.45 20 1010 165.00 
40 NN35 S112 0.45 20 1010 160.00 
41 NN35 S112N 0.45 20 1010 167.50 
42 NN36 S113 0.45 20 1030 175.00 
43 NN32 S101 0.45 20 1050 182.50 
44 NN32 S101N 0.45 20 1050 177.50 
45 NN32 S102 0.45 20 1050 202.50 
46 NN32 S102N 0.45 20 1050 210.00 
47 NN32 S103 0.45 20 1050 212.50 
48 NN33 S104 0.45 30 1010 202.50 
49 NN33 S104N 0.45 30 1010 230.00 
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Training and validation data for case depth at 60HRC prediction using NeuraiWare Predict 

50 NN33 S105 0.45 30 1010 202.50 
51 NN33 S105N 0.45 30 1010 202.50 
52 NN33 S106 0.45 30 1010 202.50 
53 NN33 S106N 0.45 30 1010 210.00 
54 NN2 S4 0.6 10 1010 152.50 
55 NN2 S4N 0.6 10 1010 167.50 
56 NN2 S6 0.6 10 1010 157.50 
57 NN2 S6N 0.6 10 1010 152.50 
58 NN26 S83 0.6 6.6 1030 162.50 
59 NN26 S83N 0.6 6.6 1030 167.50 
60 NN26 S84 0.6 6.6 1030 160.00 
61 NN26 S84N 0.6 6.6 1030 167.50 
62 NN26 S85 0.6 6.6 1030 172.50 
63 NN26 S85N 0.6 6.6 1030 165.00 
64 NN22 869 0.6 10 1050 195.00 
65 NN22 S69N 0.6 10 1050 182.50 
66 NN22 S70 0.6 10 1050 180.00 
67 NN22 S70N 0.6 10 1050 202.50 
68 NN22 S71 0.6 10 1050 190.00 
69 NN22 S71N 0.6 10 1050 187.50 
70 NN22 S72N 0.6 10 1050 177.50 
71 NN22 S73 0.6 10 1050 170.00 
72 NN22 S73N 0.6 10 1050 187.50 
73 NN9 S25 0.6 20 1010 190.00 
74 NN9 S27N 0.6 20 1010 207.50 
75 NN37 S117 0.6 20 1030 220.00 
76 NN37 Sl17N 0.6 20 1030 225.00 
77 NN37 SUS 0.6 20 1030 220.00 
78 NN37 S118N 0.6 20 1030 220.00 
79 NN13 S37 0.6 20 1050 227.50 
80 NN13 S39 0.6 20 1050 227.50 
81 NN3 S7 0.8 10 1010 180.00 
82 NN3 S7N 0.8 10 1010 177.50 
83 NN3 S8 0.8 10 1010 182.50 
84 NN3 S8N 0.8 10 1010 172.50 

85 NN3 S9 0.8 10 1010 182.50 

86 NN3 S9N 0.8 10 1010 182.50 
87 NN38 S119 0.8 10 1030 187.50 
88 NN38 S119N 0.8 10 1030 187.50 
89 NN38 Sl20 0.8 10 1030 190.00 
90 NN38 Sl20N 0.8 10 1030 205.00 
91 NN38 S121 0.8 10 1030 202.50 
92 NN38 S121N 0.8 10 1030 187.50 
93 NN5 S13 0.8 10 1050 220.00 
94 NN5 S13N 0.8 10 1050 220.00 
95 NN5 S14 0.8 10 1050 222.50 
96 NN5 S14N 0.8 10 1050 225.00 
97 NN5 S15 0.8 10 1050 212.50 
98 NN5 Sl5N 0.8 10 1050 210.00 
99 NN23 S74 0.8 20 1010 202.50 
100 NN23 S74N 0.8 20 1010 215.00 
101 NN23 S75 0.8 20 1010 202.50 
102 NN23 S75N 0.8 20 1010 222.50 
103 NN23 S76N 0.8 20 1010 215.00 
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Training and vaUdation data for ease depth at 60BRC prediction using NeuraiWare Predict 

104 NN14 S41 0.8 20 1030 257.50 
105 NN14 S41N 0.8 20 1030 242.50 
106 NNll S33 0.8 20 1050 272.50 
107 NN16 S47N 0.8 30 1010 207.50 
108 NN16 S48 0.8 30 1010 215.00 
109 NN34 S108N 0.8 30 1030 240.00 
110 NN18 S53 0.8 30 1050 242.50 
111 NN18 S54 0.8 30 1050 267.50 
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Appendix-5 
Training and vafidation data for eJIJeetive ease depth prediction using NeuralWare Predict 

Nitriding 
Cycle time Furnace temp Effective ease depth 

Sample potential (bar -
112) 

(hrs) (degF) at SOHRC (microns) 

1 NN27 NN27A S95A 0.3 2.25 1010 160.00 
2 NN27 NN27A S95AN 0.3 2.25 1010 162.50 
3 NN28 S89 0.3 10 1010 212.50 
4 NN28 S89N 0.3 10 1010 222.50 
5 NN28 S90 0.3 10 1010 212.50 
6 NN28 S90N 0.3 10 1010 212.50 
7 NN28 S91 0.3 10 1010 210.00 
8 NN28 S91N 0.3 10 1010 197.50 
9 NN6 S16 0.3 10 1050 245.00 
10 NN6 S16N 0.3 10 1050 237.50 
11 NN6 S17N 0.3 10 1050 212.50 
12 NN6 S18N 0.3 10 1050 225.00 
13 NN27 S86N 0.3 13 1010 270.00 
14 NN27 NN30 S95 0.3 17.75 1010 277.50 
15 NN27 NN30 S95N 0.3 17.75 1010 282.50 
16 NN10 S28 0.3 20 1010 283.00 
17 NN10 S28N 0.3 20 1010 285.00 
18 NN25 S80 0.3 20 1030 310.00 
19 NN25 S80N 0.3 20 1030 312.50 
20 NN25 S81 0.3 20 1030 300.00 
21 NN25 S81N 0.3 20 1030 300.00 
22 NN25 S82 0.3 20 1030 312.50 
23 NN25 S82N 0.3 20 1030 302.50 
24 NN24 S77N 0.3 20 1050 320.00 
25 NN24 S78N 0.3 20 1050 327.50 
26 NN24 S79 0.3 20 1050 340.00 
27 NN31 S99 0.3 30 1010 315.00 
28 NN31 S99N 0.3 30 1010 312.50 
29 NN31 S100 0.3 30 1010 310.00 
30 NN31 S100N 0.3 30 1010 312.50 
31 NN17 S49 0.3 30 1050 400.00 
32 NN17 S49N 0.3 30 1050 382.50 
33 NN17 SSO 0.3 30 1050 400.00 
34 NN17 SSON 1!1.3 30 1050 402.50 
35 NN17 S51 1!1.3 30 1050 407.50 
36 NN29 S92 0.45 10 1030 245.00 
37 NN29 S92N 0.45 10 1030 250.00 
38 NN29 S93 0.45 10 1030 255.00 
39 NN29 S93N 0.45 10 1030 250.00 
40 NN29 S94 0.45 10 1030 255.00 
41 NN29 S94N 0.45 10 1030 235.00 
42 NN35 SllO 0.45 20 1010 285.00 
43 NN35 SllON 0.45 20 1010 277.50 
44 NN35 S112 0.45 20 1010 265.00 
45 NN35 S112N 0.45 20 1010 272.50 
46 NN36 S113 0.45 20 1030 300.00 
47 NN36 S113N 0.45 20 1030 302.50 
48 NN36 S114 0.45 20 1030 305.00 
49 NN36 S114N 0.45 20 1030 305.00 
50 NN36 S115 0.45 20 1030 300.00 
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Training and validation data for etieetive case depth prediction using NeuraiWare Predict 
51 NN36 S115N 0.45 20 1030 295.00 
52 NN32 SlOt 0.45 20 1050 337.50 
53 NN32 SlOlN 0.45 20 1050 335.00 
54 NN32 Sl02 0.45 20 1050 345.00 
55 NN32 S102N 0.45 20 1050 347.50 
56 NN32 Sl03 0.45 20 1050 320.00 
57 NN32 Sl03N 0.45 20 1050 327.50 
58 NN33 Sl04 0.45 30 1010 317.50 
59 NN33 Sl04N 0.45 30 1010 325.00 
60 NN33 Sl05 0.45 30 1010 327.50 
61 NN33 Sl05N 0.45 30 1010 312.50 
62 NN33 S106 0.45 30 1010 325.00 
63 NN33 S106N 0.45 30 1010 312.50 
64 NN2 S4 0.6 10 1010 222.50 
65 NN2 S4N 0.6 10 1010 230.00 
66 NN2 S6 0.6 10 1010 222.50 
67 NN2 S6N 0.6 10 1010 227.50 
68 NN26 S83 0.6 6.6 1030 220.00 
69 NN26 S83N 0.6 6.6 1030 230.00 
70 NN26 S84 0.6 6.6 1030 225.00 
71 NN26 S84N 0.6 6.6 1030 227.50 
72 NN26 S85 0.6 6.6 1030 225.00 
73 NN26 S85N 0.6 6.6 1030 227.50 
74 NN22 S69 0.6 10 1050 310.00 
75 NN22 S69N 0.6 10 1050 302.50 
76 NN22 S70 0.6 10 1050 285.00 
77 NN22 S70N 0.6 10 1050 307.50 
78 NN22 S71 0.6 10 1050 297.50 
79 NN22 S71N 0.6 10 1050 295.00 
80 NN22 S72 0.6 10 1050 287.50 
81 NN22 S72N 0.6 10 1050 287.50 
82 NN22 S73 0.6 10 1050 295.00 
83 NN22 S73N 0.6 10 1050 282.50 
84 NN9 S25 0.6 20 1010 287.50 
85 NN9 S27 0.6 20 1010 297.50 
86 NN9 S27N 0.6 20 1010 292.50 
87 NN37 S116 0.6 20 1030 327.50 
88 NN37 Sl16N 0.6 20 1030 320.00 
89 NN37 S117 0.6 20 1030 312.50 
90 NN37 S117N 0.6 20 1030 312.50 
91 NN37 Sl18 0.6 20 1030 312.50 
92 NN37 S118N 0.6 20 1030 322.50 
93 NN13 S37 0.6 20 1050 332.50 
94 NN13 S38N 0.6 20 1050 330.00 
95 NN13 S39 0.6 20 1050 340.00 
96 NN13 S39N 0.6 20 1050 332.50 
97 NN3 S7 0.8 10 1010 242.50 
98 NN3 S7N 0.8 10 1010 247.50 
99 NN3S8 0.8 10 1010 242.50 
100 NN3 S8N 0.8 10 1010 247.50 
101 NN3 S9 0.8 10 1010 260.00 
102 NN3 S9N 0.8 10 1010 247.50 
103 NN38 S119 0.8 10 1030 290.00 
104 NN38 Sl19N 0.8 10 1030 285.00 
105 NN38 S120 0.8 10 1030 310.00 
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Training and valldation data for effeetive ease depth prediction using NeuraiWare Predict 
106 NN38 8120N 0.8 10 1030 290.00 
107 NN38 S121 0.8 10 1030 290.00 
108 NN38 S121N 0.8 10 1030 280.00 
109 NN5 813 0.8 10 1050 317.50 
110 NN5 S13N 0.8 10 1050 310.00 
111 NN5 814 0.8 10 1050 315.00 
112 NN5 S14N 0.8 10 1050 325.00 
113 NN5 815 0.8 10 1050 310.00 
114 NN5 S15N 0.8 10 1050 317.50 
115 NN23 874 0.8 20 1010 312.50 
116 NN23 S74N 0.8 20 1010 302.50 
117 NN23 875 0.8 20 1010 315.00 
118 NN23 S75N 0.8 20 1010 310.00 
119 NN23 S76N 0.8 20 1010 307.50 
120 NN14 S40 0.8 20 1010 317.50 
121 NN14 S40N 0.8 20 1030 322.50 
122 NN14 S41 0.8 20 1030 330.00 
123 NN14 S41N 0.8 20 1030 337.50 
124 NN14 S42 0.8 20 1030 325.00 
125 NN14 S42N 0.8 20 1030 327.50 
126 NN11 832 0.8 20 1030 357.50 
127 NNll 833 0.8 20 1050 372.50 
128 NN11 833N 0.8 20 1050 362.50 
129 NN16 S46 0.8 30 1010 365.00 
130 NN16 S46N 0.8 30 1010 372.50 
131 NN16 S47 0.8 30 1010 372.50 
132 NN16 S48N 0.8 30 1010 362.50 
133 NN34 8107 0.8 30 1030 417.50 
134 NN34 S107N 0.8 30 1030 420.00 
135 NN34 S108 0.8 30 1030 407.50 
136 NN34 8108N 0.8 30 1030 415.00 
137 NN34 8109N 0.8 30 1030 405.00 
138 NN18 852 0.8 30 1050 422.50 
139 NN18 852N 0.8 30 1050 427.50 

140 NN18_853 0.8 30 1050 422.50 

141 NN18 853N 0.8 30 1050 425.00 
142 NN18 854 0.8 30 1050 425.00 
143 NN18 854N 0.8 30 1050 427.50 
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Appendix-6 

Training and validation data for total case depth prediction using NeuraiWare Predict 

Nitriding 
Cycle time Furnace temp 

Case depth at 
Sample potential (bar - 40HRC 

1/2) 
(hrs) (degF) 

(microns) 

1 NN27 NN27A S95A 0.3 2.25 1010 220.0 
2 NN27 NN27A S95AN 0.3 2.25 1010 200.0 
3 NN28 S89 0.3 10 1010 247.5 
4 NN28 S89N 0.3 10 1010 267.5 
5 NN28 S90 0.3 10 1010 247.5 
6 NN28 S90N 0.3 10 1010 247.5 
7 NN28 S91 0.3 10 1010 242.5 
8 NN28 S91N 0.3 10 1010 255.0 
9 NN6 S16 0.3 10 1050 347.5 
10 NN6 Sl6N 0.3 10 1050 342.5 
11 NN6 S17 0.3 10 1050 347.5 
12 NN27 S86 0.3 13 1010 327.5 
13 NN27 S86N 0.3 13 1010 350.0 
14 NN27 NN30 S95 0.3 17.75 1010 352.5 
15 NN27 NN30 S95N 0.3 17.75 1010 347.5 
16 NNlO S28 0.3 20 1010 337.5 
17 NNlO S28N 0.3 20 1010 360.0 
18 NNlO S29N 0.3 20 1010 352.5 
19 NN25 S80 0.3 20 1030 362.5 
20 NN25 S80N 0.3 20 1030 370.0 
21 NN25 S81 0.3 20 1030 362.5 
22 NN25 S81N 0.3 20 1030 362.5 
23 NN25 S82 0.3 20 1030 372.5 
24 NN25 S82N 0.3 20 1030 360.0 
25 NN24 S77N 0.3 20 1050 397.5 
26 NN31 S98N 0.3 30 1010 367.5 
27 NN31 S99 0.3 30 1010 370.0 
28 NN31 S99N 0.3 30 1010 362.5 
29 NN31 SlOO 0.3 30 1010 367.5 
30 NN31 SlOON 0.3 30 1010 370.0 
31 NN17 S49 0.3 30 1050 467.5 
32 NN17 S49N 0.3 30 1050 465.0 
33 NN17 SSO 0.3 30 1050 472.5 
34 NN17 SSON 0.3 30 1050 475.0 
35 NN17 SSt 0.3 30 1050 472.5 
36 NN29 S92 0.45 10 1030 345.0 
37 NN29 S92N 0.45 10 1030 342.5 
38 NN29 S93 0.45 10 1030 350.0 
39 NN29 S93N 0.45 10 1030 340.0 
40 NN29 S94 0.45 10 1030 355.0 
41 NN29 S94N 0.45 10 1030 337.5 
42 NN35 SllO 0.45 20 1010 355.0 
43 NN35 SllON 0.45 20 1010 355.0 
44 NN35 S112 0.45 20 1010 355.0 
45 NN35 Sl12N 0.45 20 1010 345.0 
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Training and validation data for total case depth prediction using NeuraiWare Predict 

46 NN36 8113 0.45 20 1030 362.5 
47 NN36 Sl13N 0.45 20 1030 370.0 
48 NN36 8114 0.45 20 1030 367.5 
49 NN36 S114N 0.45 20 1030 360.0 
50 NN36 SUS 0.45 20 1030 360.0 
51 NN32 8101 0.45 20 1050 442.5 
52 NN32 SlOlN 0.45 20 1050 455.0 
53 NN32 8102 0.45 20 1050 455.0 
54 NN32 S102N 0.45 20 1050 465.0 
55 NN32 S103N 0.45 20 1050 442.5 
56 NN33 8104 0.45 30 1010 370.0 
57 NN33 S105N 0.45 30 1010 370.0 
58 NN33 S106N 0.45 30 1010 370.0 
59 NN26 S83 0.6 6.6 1030 282.5 
60 NN26 S84 0.6 6.6 1030 310.0 
61 NN26 S84N 0.6 6.6 1030 315.0 
62 NN26 885 0.6 6.6 1030 292.5 
63 NN26 S85N 0.6 6.6 1030 305.0 
64 NN2 S4 0.6 10 1010 315.0 
65 NN2 S6 0.6 10 1010 310.0 
66 NN2 S6N 0.6 10 1010 307.5 
67 NN22 869 0.6 10 1050 360.0 
68 NN22 S69N 0.6 10 1050 372.5 
69 NN22 870 0.6 10 1050 352.5 
70 NN22 S70N 0.6 10 1050 362.5 
71 NN22 871 0.6 10 1050 365.0 
72 NN22 S71N 0.6 10 1050 352.5 
73 NN22 872 0.6 10 1050 352.5 
74 NN22 S72N 0.6 10 1050 352.5 
75 NN22 873 0.6 10 1050 367.5 
76 NN22 S73N 0.6 10 1050 357.5 
77 NN9 825 0.6 20 1010 362.5 
78 NN9 827 0.6 20 1010 355.0 
79 NN9 S27N 0.6 20 1010 362.5 
80 NN37 Sl16N 0.6 20 1030 370.0 
81 NN37 8117 0.6 20 1030 365.0 
82 NN37 Sl17N 0.6 20 1030 365.0 
83 NN37 S118N 0.6 20 1030 387.5 
84 NN13 837 0.6 20 1050 435.0 
85 NN13 838N 0.6 20 1050 435.0 
86 NN13 839 0.6 20 1050 457.5 
87 NN13 839N 0.6 20 1050 440.0 
88 NN3 S7N 0.8 10 1010 352.5 
89 NN3 S8 0.8 10 1010 347.5 
90 NN3 S8N 0.8 10 1010 352.5 
91 NN38 8119 0.8 10 1030 357.5 
92 NN38 S119N 0.8 10 1030 360.0 
93 NN38 8120 0.8 10 1030 360.0 
94 NN5 813 0.8 10 1050 367.5 
95 NN5 814 0.8 10 1050 370.0 
96 NN5 S14N 0.8 10 1050 375.0 
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97 NN5 S15 0.8 10 1050 367.5 
98 NN5 S15N 0.8 10 1050 370.0 
99 NN23 S74 0.8 20 1010 365.0 
100 NN23 S74N 0.8 20 1010 357.5 
101 NN23 S75 0.8 20 1010 367.5 
102 NN23 S75N 0.8 20 1010 367.5 
103 NN23 S76N 0.8 20 1010 367.5 
104 NN14 S40 0.8 20 1030 380.0 
105 NN14 S40N 0.8 20 1030 412.5 
106 NN14 S41 0.8 20 1030 387.5 
107 NN11 S31 0.8 20 1050 465.0 
108 NN11 S32 0.8 20 1050 460.0 
109 NN11 S33 0.8 20 1050 490.0 
110 NN11 S33N 0.8 20 1050 467.5 
111 NN16 S46 0.8 30 1010 460.0 
112 NN16 S46N 0.8 30 1010 465.0 
113 NN16 S47 0.8 30 1010 462.5 
114 NN16 S48N 0.8 30 1010 457.5 
115 NN34 S108 0.8 30 1030 477.5 
116 NN34 S108N 0.8 30 1030 480.0 
117 NN18 S52 0.8 30 1050 485.0 
118 NN18 S52N 0.8 30 1050 487.5 
119 NN18 S53 0.8 30 1050 482.5 
120 NN18 S53N 0.8 30 1050 487.5 
121 NN18 S54 0.8 30 1050 487.5 
122 NN18 S54N 0.8 30 1050 485.0 
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Training and validation data for Snperfieial hardness predietion using NenralWare Prediet 

Nitriding 
Fnrnaee temp 

Sample potential (bar - Cyele time (hrs) 
(degF) 

Superfieial hardness (HR 15N) 
112) 

1 NN27 NN27A S95A 0.3 2.25 1010 94.5 
2 NN27 NN27A S95AN 0.3 2.25 1010 94.8 
3 NN28 S89 0.3 10 1010 94.2 
4 NN28 S89N 0.3 10 1010 94.2 
5 NN28 S90 0.3 10 1010 94.2 
6 NN28 S90N 0.3 10 1010 94.1 
7 NN28 S91 0.3 10 1010 94 
8 NN28 S91N 0.3 10 1010 94.2 
9 NN6 S16 0.3 10 1050 94.1 

10 NN6 S16N 0.3 10 1050 94.1 
11 NN6 S17 0.3 10 1050 93.9 
12 NN6 S17N 0.3 10 1050 93 
13 NN6 S18 0.3 10 1050 90.8 
14 NN6 S18N 0.3 10 1050 91.5 
15 NN27 S86 0.3 13 1010 94.6 
16 NN27 S86N 0.3 13 1010 94.6 
17 NN27 NN30 S95 0.3 17.75 1010 94.1 
18 NN27 NN30 S95N 0.3 17.75 1010 94 
19 NN10 S28 0.3 20 1010 91.4 
20 NNlO S28N 0.3 20 1010 93.4 
21 NN10 S29 0.3 20 1010 90 
22 NN10 S29N 0.3 20 1010 92.6 
23 NN10 S30 0.3 20 1010 91.2 
24 NNlO S30N 0.3 20 1010 90.6 
25 NN25 S80 0.3 20 1030 93.8 
26 NN25 SBON 0.3 20 1030 94.2 
27 NN25 S81 0.3 20 1030 94.3 
28 NN25 S81N 0.3 20 1030 94.4 
29 NN25 S82 0.3 20 1030 93.9 
30 NN25 S82N 0.3 20 1030 94.4 
31 NN24 S77 0.3 20 1050 93.6 
32 NN24 S77N 0.3 20 1050 94.2 
33 NN24 S78 0.3 20 1050 93.6 
34 NN24 S78N 0.3 20 1050 94 
35 NN24 S79 0.3 20 1050 93.5 
36 NN24 S79N 0.3 20 1050 93.9 
37 NN31 S98 0.3 30 1010 91.2 
38 NN31 S98N 0.3 30 1010 94.2 
39 NN31 S99 0.3 30 1010 93.3 
40 NN31 S99N 0.3 30 1010 91.9 
41 NN31 S100 0.3 30 1010 93.6 
42 NN31 SlOON 0.3 30 1010 91.9 
43 NN17 S49 0.3 30 1050 93.6 
44 NN17 S49N 0.3 30 1050 94 
45 NN17 SSO 0.3 30 1050 92.6 
46 NN17 SSON 0.3 30 1050 93.5 
47 NN17 S51 0.3 30 1050 94 
48 NN17 S51N 0.3 30 1050 93.3 
49 NN29 S92 0.45 10 1030 94.3 
50 NN29 S92N 0.45 10 1030 94.6 
51 NN29 S93 8.45 10 1030 94.6 
52 NN29 S93N 8.45 10 1030 94.6 
53 NN29 S94 0.45 10 1030 94.2 
54 NN29 S94N 0.45 10 1030 94.6 
55 NN35 SUO 0.45 20 1010 94.5 
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56 NN3S SllON 0.45 20 1010 94.5 
57 NN3S S111 us 20 1010 94.5 
S8 NN3S Sl11N us 20 1010 94.5 
59 NN3S Sl12 0.45 20 1010 94.4 
60 NN3S Sll2N us 20 1010 94.7 
61 NN36 Sl13 0.45 20 1030 94.6 
62 NN36 Sl13N 0.45 20 1030 94.6 
63 NN36 S114 us 20 1030 94 
64 NN36 Sl14N 0.45 20 1030 94.4 
65 NN36 SUS 0.45 20 1030 94.6 
66 NN36SUSN 0.45 20 1030 94.7 
67 NN32 SlOl 0.45 20 1050 94.3 
68 NN32 SlOlN us 20 1050 94.4 
69 NN32 Sl02 0.45 20 1050 94.7 
70 NN32 Sl02N us 20 1050 94.3 
71 NN32 Sl03 0.45 20 1050 93.2 
72 NN32 Sl03N us 20 1050 94.2 
73 NN33 Sl04 us 30 1010 94.7 
74 NN33 Sl04N 0.45 30 1010 94.6 
75 NN33 SlOS us 30 1010 94.6 
76 NN33 SlOSN 0.45 30 1010 94.6 
77 NN33 Sl06 0.45 30 1010 94.1 
78 NN33 Sl06N 0.45 30 1010 94.7 
79 NN2 S4 0.6 10 1010 92.7 
80 NN2 S4N 0.6 10 1010 94.1 
81 NN2 S6 0.6 10 1010 92.3 
82 NN2 S6N 0.6 10 1010 92.5 
83 NN26 S83 0.6 6.6 1030 94.6 
84 NN26 S83N 0.6 6.6 1030 94.6 
8S NN26 S84 0.6 6.6 1030 94.5 
86 NN26 S84N 0.6 6.6 1030 94.8 
87 NN26 S8S 0.6 6.6 1030 94.6 
88 NN26 S8SN 0.6 6.6 1030 94.7 
89 NN22 S69 0.6 10 1050 93.9 
90 NN22 S69N 0.6 10 1050 94.4 
91 NN22 S70 0.6 10 1050 94.1 
92 NN22 S70N 0.6 10 1050 94.1 
93 NN22 S71 0.6 10 1050 94.3 
94 NN22 S71N 0.6 10 1050 94.5 
95 NN22 S72 0.6 10 1050 94 
96 NN22 S72N 0.6 10 1050 94.4 
97 NN22 S73 0.6 10 1050 94 
98 NN22 S73N 0.6 10 1050 94.2 
99 NN9 S2S 0.6 20 1010 92.3 
100 NN9 S2SN 0.6 20 1010 91.6 
101 NN9 S27 0.6 20 1010 93.1 
102 NN9 S27N 0.6 20 1010 94 
103 NN37 S116 0.6 20 1030 92.9 
104 NN37 Sl16N 0.6 20 1030 94.2 
lOS NN37 S117 0.6 20 1030 92.7 
106 NN37 S117N 0.6 20 1030 93.1 
107 NN37 SUS 0.6 20 1030 93 
108 NN37 S118N 0.6 20 1030 93.2 
109 NN13 S37 0.6 20 1050 92.8 
110 NN13 S37N 0.6 20 1050 89.2 
111 NN13 S38 0.6 20 1050 92.4 
112 NN13 S38N 0.6 20 1050 89.3 
113 NN13 S39 0.6 20 1050 92.2 
114 NN13 S39N 0.6 20 1050 90 
us NN3 S7 0.8 10 1010 91 
116 NN3 S7N 0.8 10 1010 92.6 
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117 NN3 S8 0.8 10 1010 93.6 
118 NN3 S8N 0.8 10 1010 93.7 
119 NN3 S9 o.s 10 1010 94.1 
120 NN3 S9N 0.8 10 1010 93.5 
121 NN38 S119 0.8 10 1030 92.7 
122 NN38 Sl19N 0.8 10 1030 93.1 
123 NN38 Sl20 0.8 10 1030 92.6 
124 NN38 S120N 0.8 10 1030 92.9 
125 NN38 S121 o.s 10 1030 93.2 
126 NN38 S121N 0.8 10 1030 93.2 
127 NN5 Sl3 0.8 10 1050 94.2 
128 NN5Sl3N 0.8 10 1050 94.1 
129 NN5 S14 0.8 10 1050 94 
130 NN5 S14N 0.8 10 1050 94.2 
131 NN5 S15 0.8 10 1050 93.8 
132 NN5 S1SN 0.8 10 1050 94 
133 NN23 S74 0.8 20 1010 93.8 
134 NN23 S74N 0.8 20 1010 94.2 
135 NN23 S75 0.8 20 1010 94 
136 NN23 S7SN 0.8 20 1010 94 
137 NN23 S76 0.8 20 1010 91.4 
138 NN23 S76N 0.8 20 1010 94.2 
139 NN14 S40 0.8 20 1030 94.3 
140 NN14 S40N o.s 20 1030 94.6 
141 NN14 S41 0.8 20 1030 93 
142 NN14 S41N 0.8 20 1030 94.2 
143 NN14 S42 0.8 20 1030 93.6 
144 NN14 S42N 0.8 20 1030 94.1 
145 NN11 S31 0.8 20 1050 91.6 
146 NN11 S31N 0.8 20 1050 89.2 
147 NN11 S32 0.8 20 1050 92.3 
148 NN11 S32N 0.8 20 1050 90.2 
149 NN11 S33 0.8 20 1050 92.5 
150 NN11 S33N 0.8 20 1050 93.5 
151 NN16 S46 0.8 30 1010 94 
152 NN16 S46N 0.8 30 1010 94.8 
153 NN16 S47 0.8 30 1010 93.5 
154 NN16 S47N 0.8 30 1010 93.7 
155 NN16 S48 0.8 30 1010 92.4 
156 NN16 S48N o.s 30 1010 94.6 
157 NN34 S107 0.8 30 1030 94 
158 NN34 S107N 0.8 30 1030 94.1 
159 NN34 S108 0.8 30 1030 93.5 
160 NN34 S108N 0.8 30 1030 94.5 
161 NN34 S109 0.8 30 1030 92.8 
162 NN34 S109N 0.8 30 1030 94.7 
163 NN18 SS2 0.8 30 1050 94.6 
164 NN18 S52N 0.8 30 1050 94.9 
165 NN18 SS3 0.8 30 1050 94.7 
166 NN18 SS3N 0.8 30 1050 94.7 
167 NN18 SS4 0.8 30 1050 94.2 
168 NN18 SS4N 0.8 30 1050 94.5 
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Training and validation data for white layer thickness prediction using NeuraiWare Predict 

Nitriding potential Cycle time Furnace temp 
White layer 

Sample 
(bar -112) (brs) (degF) 

thicknes in 
microns 

1 NN27 NN27A S95A 0.3 2.25 1010 15.24 

2 NN27 NN27A S95AN 0.3 2.25 1010 17.43 

3 NN28 S89 0.3 10 1010 13.00 

4 NN28 S89N 0.3 10 1010 17.95 

5 NN28 S90 0.3 10 1010 13.99 

6 NN28 S90N 0.3 10 1010 15.45 

7 NN28 S91 0.3 10 1010 12.32 

8 NN6 S16 0.3 10 1050 16.60 

9 NN6 S16N 0.3 10 1050 16.08 

10 NN6 S17 0.3 10 1050 13.57 

11 NN6 S17N 0.3 10 1050 10.20 

12 NN6 S18 0.3 10 1050 7.73 

13 NN27 S86 0.3 13 1010 14.09 

14 NN27 S86N 0.3 13 1010 17.43 

15 NN27 NN30 S95 0.3 17.75 1010 13.47 

16 NN27 NN30 S95N 0.3 17.75 1010 13.57 

17 NN10 S28 0.3 20 1010 7.83 

18 NN10 S28N 0.3 20 1010 14.30 

19 NN10 S29N 0.3 20 1010 7.62 

20 NN10 S30N 0.3 20 1010 12.42 

21 NN25 S80 0.3 20 1030 10.86 

22 NN25 S80N 0.3 20 1030 17.01 

23 NN25 S81 0.3 20 1030 16.81 

24 NN25 S81N 0.3 20 1030 17.85 

25 NN25 S82 0.3 20 1030 13.47 

26 NN25 S82N 0.3 20 1030 20.88 

27 NN24 S77 0.3 20 1050 20.21 

28 NN24 S77N 0.3 20 1050 17.54 

29 NN24 S78 0.3 20 1050 14.41 

30 NN24 S78N 0.3 20 1050 12.94 

31 NN24 S79 0.3 20 1050 11.69 

32 NN24 S79N 0.3 20 1050 13.67 

33 NN31 S98 0.3 30 1010 15.34 

34 NN31 S98N 0.3 30 1010 16.91 

35 NN31 S99 0.3 30 1010 13.57 

36 NN31 S99N 0.3 30 1010 16.39 

37 NN31_S100N 0.3 30 1010 13.15 

38 NN17 S49 0.3 30 1050 9.40 

39 NN17 S49N 0.3 30 1050 16.81 

40 NN17 S50 0.3 30 1050 15.03 

41 NN17 S50N 0.3 30 1050 12.73 

42 NN17 S51 0.3 30 1050 12.84 
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43 NN17_851N 0.3 30 1050 13.36 

44 NN29 S92 0.45 10 1030 16.39 

45 NN29 S92N 0.45 10 1030 17.33 

46 NN29 S93 0.45 10 1030 13.99 

47 NN29 S93N 0.45 10 1030 18.68 

48 NN29 S94 0.45 10 1030 12.53 

49 NN29 S94N 0.45 10 1030 17.22 

50 NN35 SUO 0.45 20 1010 13.47 

51 NN35 SllON 0.45 20 1010 15.14 

52 NN35 Sll2 0.45 20 1010 14.72 

53 NN35 S112N 0.45 20 1010 14.93 

54 NN36 Sl13 0.45 20 1030 12.00 

55 NN36 Sl13N 0.45 20 1030 17.85 

56 NN36 Sl14 0.45 20 1030 15.14 

57 NN36 S114N 0.45 20 1030 15.45 

58 NN36 S115 0.45 20 1030 15.14 

59 NN36 S115N 0.45 20 1030 18.68 

60 NN32 SlOt 0.45 20 1050 11.69 

61 NN32 SlOlN 0.45 20 1050 15.34 

62 NN32 S102 0.45 20 1050 15.87 

63 NN32 Sl02N 0.45 20 1050 16.28 

64 NN32 Sl03 0.45 20 1050 12.11 

65 NN32 S103N 0.45 20 1050 16.39 

66 NN33 S104 0.45 30 1010 11.69 

67 NN33 S104N 0.45 30 1010 15.34 

68 NN33 S105 0.45 30 1010 16.60 

69 NN33 Sl05N 0.45 30 1010 13.78 

70 NN33 S106 0.45 30 1010 16.05 

71 NN33 Sl06N 0.45 30 1010 16.70 

72 NN2 S5 0.6 10 1010 5.69 

73 NN2 S5N 0.6 10 1010 9.29 

74 NN26 S83 0.6 6.6 1030 12.73 

75 NN26 S83N 0.6 6.6 1030 16.60 

76 NN26 S84 0.6 6.6 1030 13.47 

77 NN26 S84N 0.6 6.6 1030 14.82 

78 NN22 S69 0.6 10 1050 15.76 

79 NN22 S69N 0.6 10 1050 17.33 

80 NN22 S70 0.6 10 1050 12.42 

81 NN22 S70N 0.6 10 1050 14.41 

82 NN22 S71 0.6 10 1050 18.59 

83 NN22 S71N 0.6 10 1050 13.88 

84 NN22 S72 0.6 10 1050 12.94 

85 NN22 S72N 0.6 10 1050 14.72 

86 NN22 S73 0.6 10 1050 15.76 

87 NN22 S73N 0.6 10 1050 16.91 

88 NN9 S25 0.6 20 1010 10.86 

89 NN9 S25N 0.6 20 1010 0.00 

90 NN9 S26 0.6 20 1010 10.20 
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91 NN9 S26N 0.6 20 1010 7.60 

92 NN37 S116 0.6 20 1030 13.15 

93 NN37 S116N 0.6 20 1030 14.30 

94 NN37 S117 0.6 20 1030 16.28 

95 NN37 S117N 0.6 20 1030 15.97 

96 NN37 S118 0.6 20 1030 11.27 

97 NN37 S118N 0.6 20 1030 13.15 

98 NN13 S38N 0.6 20 1050 6.37 

99 NN13 S39 0.6 20 1050 19.10 

100 NN13 S39N 0.6 20 1050 14.20 

101 NN3 S7 0.8 10 1010 15.14 

102 NN3 S7N 0.8 10 1010 13.99 

103 NN3S8 0.8 10 1010 0.00 

104 NN3 SSN 0.8 10 1010 7.99 

105 NN3 S9 0.8 10 1010 0.00 

106 NN3 S9N 0.8 10 1010 18.48 

107 NN38 S119 0.8 10 1030 16.08 

108 NN38 S119N 0.8 10 1030 15.76 

109 NN38 S120 0.8 10 1030 13.05 

110 NN38 S120N 0.8 10 1030 14.20 

111 NN38 S121 0.8 10 1030 15.45 

112 NN38 S121N 0.8 10 1030 14.41 

113 NN5 S13 0.8 10 1050 24.22 

114 NN5 S13N 0.8 10 1050 21.19 

115 NN5 S14 0.8 10 1050 19.52 

116 NN5 S14N 0.8 10 1050 22.34 

117 NN5 S15 0.8 10 1050 19.42 

118 NN5 S15N 0.8 10 1050 19.83 

119 NN23 S74 0.8 20 1010 17.23 

120 NN23 S74N 0.8 20 1010 18.68 

121 NN23 S75 0.8 20 1010 14.61 

122 NN23 S76N 0.8 20 1010 10.61 

123 NN14 S40 0.8 20 1030 19.83 

124 NN14 S40N 0.8 20 1030 22.96 

125 NN14 S41 0.8 20 1030 25.68 

126 NN14 S41N 0.8 20 1030 18.89 

127 NN14 S42 0.8 20 1030 18.06 

128 NN14 S42N 0.8 20 1030 20.25 

129 NNll S31 0.8 20 1050 26.93 

130 NNll S31N 0.8 20 1050 30.79 

131 NN11 S32 0.8 20 1050 2S.S7 

132 NN11 S32N 0.8 20 1050 22.34 

133 NN16 S46 0.8 30 1010 28.28 

134 NN16 S46N 0.8 30 1010 22.86 

135 NN16 S47 0.8 30 1010 12.84 

136 NN16 S48 0.8 30 1010 15.76 

137 NN16 S48N 0.8 30 1010 25.60 

138 NN34 S107 0.8 30 1030 17.33 

139 NN34 S107N 0.8 30 1030 19.62 

140 NN34 S108 0.8 30 1030 19.21 
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141 NN34 S108N 0.8 30 1030 19.21 

142 NN34 S109N 0.8 30 1030 19.11 

143 NN18 S52 0.8 30 1050 25.99 

144 NN18 S52N 0.8 30 1050 27.54 

145 NN18 S53 0.8 30 1050 24.53 

146 NN18 S53N 0.8 30 1050 27.77 

147 NN18 S54 0.8 30 1050 27.98 

148 NN18 S54N 0.8 30 1050 27.66 
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Training and testing data for case depth @ 60 BRC prediction using Radial Basis Function Neural Network 

Nitriding 
Cycle time Furnace temp Case depth at 60BRC 

Sample potential (bar-
1/2) 

(hrs) (degF) (microus) 

1 NN27 0.3 2.25 1010 127.50 
2 NN28 0.3 10 1010 144.58 
3 NN6 0.3 10 1050 164.17 
4 NN27A 0.3 13 1010 148.75 
5 NN30 0.3 17.75 1010 167.50 
6 NN10 0.3 20 1010 157.50 
7 NN25 0.3 20 1030 171.67 
8 NN24 0.3 20 1050 178.50 
9 NN31 0.3 30 1010 160.00 
10 NN17 0.3 30 1050 164.17 
11 NN29 0.45 10 1030 168.33 
12 NN35 0.45 20 1010 166.25 
13 NN36 0.45 20 1030 170.00 
14 NN32 0.45 20 1050 197.00 
15 NN33 0.45 30 1010 208.33 
16 NN2 0.6 10 1010 157.50 
17 NN26 0.6 6.6 1030 165.83 
18 NN22 0.6 10 1050 185.33 
19 NN9 0.6 20 1010 203.33 
20 NN37 0.6 20 1030 218.00 
21 NN13 0.6 20 1050 227.25 
22 NN3 0.8 10 1010 179.58 
23 NN38 0.8 10 1030 193.33 
24 NN5 0.8 10 1050 218.33 
25 NN23 0.8 20 1010 211.50 
26 NN14 0.8 20 1030 250.00 
27 NNU 0.8 20 1050 272.50 
28 NN16 0.8 30 1010 211.25 
29 NN34 0.8 30 1030 240.00 
30 NN18 0.8 30 1050 255.00 
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Training and testing data for effective case depth prediction using Radial Basis Function Neural Network 

Nitriding 
Cycle time Furnace temp Effective case depth 

Sample potential (bar-
(hrs) (degF) at 50HRC (microns) 

1/2) 

1 NN27 0.3 2.25 1010 161.25 
2 NN28 0.3 10 1010 211.25 
3 NN6 0.3 10 1050 230.00 
4 NN27A 0.3 13 1010 270.00 
5 NN30 0.3 17.75 1010 280.00 
6 NNlO 0.3 20 1010 284.00 
7 NN25 0.3 20 1030 306.25 
8 NN24 0.3 20 1050 329.17 
9 NN31 0.3 30 1010 312.50 
10 NN17 0.3 30 1050 398.50 
11 NN29 0.45 10 1030 248.33 
12 NN35 0.45 20 1010 275.00 
13 NN36 0.45 20 1030 301.25 
14 NN32 0.45 20 1050 335.42 
15 NN33 0.45 30 1010 320.00 
16 NN2 0.6 10 1010 225.63 
17 NN26 0.6 6.6 1030 225.83 
18 NN22 0.6 10 1050 295.00 
19 NN9 0.6 20 1010 292.50 
20 NN37 0.6 20 1030 317.92 
21 NN13 0.6 20 1050 333.75 
22 NN3 0.8 10 1010 247.92 
23 NN38 0.8 10 1030 290.83 
24 NN5 0.8 10 1050 315.83 
25 NN23 0.8 20 1010 309.50 
26 NN14 0.8 20 1030 326.67 
27 NN11 0.8 20 1050 364.17 
28 NN16 0.8 30 1010 368.13 
29 NN34 0.8 30 1030 413.00 
30 NN18 0.8 30 1050 425.00 
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Training and testing data for total case depth prediction using Radial Basis Function Nenral Network 

Nitriding 
Cycle time Furnace temp Case depth at 40BRC 

Sample potential (bar-
1/2) 

(hrs) (degF) (microus) 

1 NN27 0.3 2.25 1010 210.00 
2 NN28 0.3 10 1010 251.30 
3 NN6 0.3 10 1050 345.80 
4 NN27A 0.3 13 1010 338.80 
5 NN30 0.3 17.75 1010 350.00 
6 NN10 0.3 20 1010 349.90 
7 NN25 0.3 20 1030 365.00 
8 NN24 0.3 20 1050 380.00 
9 NN31 0.3 30 1010 367.90 
10 NN17 0.3 30 1050 470.50 
11 NN29 0.45 10 1030 345.00 
12 NN35 0.45 20 1010 352.50 
13 NN36 0.45 20 1030 364.00 
14 NN32 0.45 20 1050 452.00 
15 NN33 0.45 30 1010 370.00 
16 NN2 0.6 10 1010 310.80 
17 NN26 0.6 6.6 1030 301.00 
18 NN22 0.6 10 1050 359.50 
19 NN9 0.6 20 1010 360.00 
20 NN37 0.6 20 1030 371.90 
21 NN13 0.6 20 1050 441.90 
22 NN3 0.8 10 1010 350.80 
23 NN38 0.8 10 1030 359.20 
24 NN5 0.8 10 1050 370.00 
25 NN23 0.8 20 1010 365.00 
26 NN14 0.8 20 1030 393.30 
27 NN11 0.8 20 1050 407.60 
28 NN16 0.8 30 1010 461.30 
29 NN34 0.8 30 1030 478.80 
30 NN18 0.8 30 1050 485.80 
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TrainJng and testing data for superficial hardness prediction using Radial Basis Function Neural Network 

Nitriding 
Cycle time Furnace temp Average superficial 

Sample potential (bar -
(hrs) (degF) hardness (HR 15N) 

1/2) 

1 NN27 0.3 2.25 1010 94.65 
2 NN28 0.3 10 1010 94.15 
3 NN6 0.3 10 1050 92.90 
4 NN27A 0.3 13 1010 94.60 
5 NN30 0.3 17.75 1010 94.05 
6 NN10 0.3 20 1010 91.53 
7 NN25 0.3 20 1030 94.17 
8 NN24 0.3 20 1050 93.80 
9 NN31 0.3 30 1010 92.68 
10 NN17 0.3 30 1050 93.50 
11 NN29 0.45 10 1030 94.48 
12 NN35 0.45 20 1010 94.52 
13 NN36 0.45 20 1030 94.48 
14 NN32 0.45 20 1050 94.18 
15 NN33 0.45 30 1010 94.55 
16 NN2 0.6 10 1010 92.90 
17 NN26 0.6 6.6 1030 94.63 
18 NN22 0.6 10 1050 94.19 
19 NN9 0.6 20 1010 92.75 
20 NN37 0.6 20 1030 93.18 
21 NN13 0.6 20 1050 90.98 
22 NN3 0.8 10 1010 93.08 
23 NN38 0.8 10 1030 93.00 
24 NN5 0.8 10 1050 94.05 
25 NN23 0.8 20 1010 93.60 
26 NN14 0.8 20 1030 93.97 
27 NNll 0.8 20 1050 91.55 
28 NN16 0.8 30 1010 93.83 
29 NN34 0.8 30 1030 93.93 

30 NN18 0.8 30 1050 94.60 
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Appendix-13 

Training and testing data for white layer thickness prediction using Radial Basis Function Neural Network 

Nitriding 
Cycle time Furnace temp White layer thickness 

Sample potential (bar-
(hrs) (degF) in microns 

1/2) 

1 NN27 0.3 2.25 1010 16.34 
2 NN28 0.3 10 1010 14.54 
3 NN6 0.3 10 1050 12.39 
4 NN27A 0.3 13 1010 15.76 
5 NN30 0.3 17.75 1010 13.52 
6 NN10 0.3 20 1010 10.54 
7 NN25 0.3 20 1030 16.15 
8 NN24 0.3 20 1050 15.08 
9 NN31 0.3 30 1010 15.07 
10 NN17 0.3 30 1050 13.47 
11 NN29 0.45 10 1030 16.02 
12 NN35 0.45 20 1010 14.56 
13 NN36 0.45 20 1030 15.71 
14 NN32 0.45 20 1050 14.61 
15 NN33 0.45 30 1010 15.03 
16 NN2 0.6 10 1010 5.64 
17 NN26 0.6 6.6 1030 14.40 
18 NN22 0.6 10 1050 15.27 
19 NN9 0.6 20 1010 9.55 
20 NN37 0.6 20 1030 14.02 
21 NN13 0.6 20 1050 13.22 
22 NN3 0.8 10 1010 13.90 
23 NN38 0.8 10 1030 14.82 
24 NN5 0.8 10 1050 21.09 
25 NN23 0.8 20 1010 15.29 
26 NN14 0.8 20 1030 20.95 
27 NNll 0.8 20 1050 29.77 
28 NN16 0.8 30 1010 21.07 
29 NN34 0.8 30 1030 18.89 

30 NN18 0.8 30 1050 26.91 
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