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Abstract 

In this thesis, we present a novel signalling scheme for blind channel identification of 

Alamouti space-time coded (STBC) channel and a space-time coded multiple-input 

single-output (MISO) system under flat fading environment. By using Jrary and q-ary 

PSK signals (where p and q are co-prime integers), we prove that a) under a noise-free 

environment, only two distinct pairs of symbols are needed to uniquely decode the 

signal and identify the channel, and b) under complex Gaussian noise, if the pth and 

qth order statistics of the received signals are available, the channel coefficients can 

also be uniquely determined. In both cases, simple closed-form solutions are derived 

by exploiting specific properties of the Alamouti STBC code and linear Diophantine 

equation theory. 

When only a limited number of received data are available, under Gaussian noise 

environment, we suggest the use of the semi-definite relaxation method and/or the 

sphere decoding method to implement blind ML detection so that the joint estimation 

of the channel and the transmitted symbols can be efficiently facilitated. Simulation 

results show that blind ML detection methods with our signalling scheme provide 

superior normalized mean square error in channel estimation compared to the method 

using only one constellation and that the average symbol error rate is close to that of 

the coherent detector (which necessitates perfect channel knowledge at the receiver), 

particularly when the SNR is high. 
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SISO 
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SDR Semi-Definite Relaxation 

BQP Boolean Quadratic Programming 

SE search Schnorr-Euchner search 
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Notations 

a 

a 

A 

(·f 

(-)* 

(·)H 

(. )i 

[a]i or ai 

[A]ij or aii 

IAI or det(A) 

vec(A) 

Ia I 
llalb 
IIAIIF 

J 

Im 

At 0 

A>- 0 

tr(A) 

Scalar a, lowercase letter denotes scalar 

Vector a, boldface lowercase letter denotes column vector 

Matrix A, boldface uppercase letter denotes matrix 

the transpose of a vector or a matrix 

the conjugate of a scalar or a vector or a matrix 

the hermitian of a vector or a matrix 

the power i of a scalar or a matrix 

the ith element of vector a 

the (i,j)th element of matrix A 

the determinant of matrix A 

the column vector obtained by stacking the columns of matrix A 

the absolute value of scalar a 

the Euclidean norm, defined as llall~ = aHa 
the Frobenius matrix norm, defined as IIAII} = tr(AAH) 

the imaginary unit, defined asP = -1 

the m x m identity matrix 

A is a positive semi-definite matrix 

A is a positive definite matrix 

the sum of all diagonal elements of matrix A 

Vlll 



<C the complex number set 

lR the real number set 

zt the positive integer set 

S the constellation set 

A the feasible set 

exp(t) et 

r X l the greatest integer not exceeding X 

X mod N X mod N denotes X - N r N l' N =1- 0 

arg minx f ( x) the minimizing argument of the function f ( x) 

arg( ·) the phase angle in an interval 0 ::; arg( ·) < 21r 

E[·J the statistical expectation operator 

s = Quant(t) the quantization operator sets s to the element of S 

that is closest (in terms of Euclidean distance) to t 

round(x) 

sign(x) 

Mrand 

gcd(m, n) 

cp(n) 

('::) 
min 
n! 

n!! 

the quantized integer closest to x E lR 

1 if x > 0, and -1 if x ::; 0 

the number of randomization 

the greatest common divisor of positive integers m and n 

the Euler function; i.e., the number of all positive integers 

that do not exceed n and are prime to n 

the binomial coefficient '( m~ )' n. m n. 

n is divisible by m 

n(n-1)(n-2)···1 

n(n- 2)(n- 4) · · · 2 (or 1), if n is even (or odd) 
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Chapter 1 

Introduction 

1.1 The Channel Estimation Problem 

Wireless communication is a fast growing field in the communication industry because 

it has many applications, such as cellular mobile communication, multimedia trans

mission, wireless sensor networks, etc. With the explosive proliferation of personal 

computers, especially laptop and palmtop computers, many potential applications 

and services appear. As a result, reliable and high-speed information transmission 

through wireless communication systems is required. 

In wireless communication, after the signals are transmitted from the source, a 

number of distinct path rays arise from the source to the receiver due to the scatter

ing, reflection and diffraction from the objects surrounding the source. While these 

so-called "multipath propagation" phenomena may cause attenuation of the signal, 

they can also lead to spreading of the signal in time, frequency and space domains. 

Such multipath interference and distortion on the received signal significantly af

fects transmission accuracy and efficiency. To mitigate such distortion and improve 

the spectral efficiency, techniques employing multiple antennas and space-time block 

coding [1-4] which maintain satisfactory performance over fading channels have been 

1 
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proposed recently. In the particular case of downlink (such as that of a mobile system 

receiving signals from a base station), the receiver is typically required to be small 

and hence may not be practical to deploy multiple antennas at the receiver. For this 

reason, the base station is usually equipped with multiple transmitter antennas, and 

a space-time coding technique is used to introduce correlation between the transmit

ted symbols from different antennas (in spatial domain) at different time slots (in 

temporal domain) and thus, achieves transmission diversity and power gain over the 

uncoded system. 

In particular, since Alamouti [3] first established a very simple orthogonal space

time block code (OSTBC), the OSTBC [3,5] has attracted much attention because it 

can achieve maximum diversity and because its coherent maximum likelihood detec

tion can be realized as a linear processor. However, in order to optimally decode an 

OSTBC, full channel state information (CSI) must be exactly known at the receiver. 

Unfortunately, wireless channels often change with time, and perfect knowledge of CSI 

is not easy to be tracked at the receiver. Although noncoherent detection schemes 

based on differential encoding techniques [8-11] can also be employed here with no 

requirement for channel estimation directly, nonetheless, these schemes often suffer 

from error propagation resulting in loss of performance [3]. Therefore, channel estima

tion becomes a key issue in space-time communication system design and influences 

the reconstruction of input signals at the receiver. 

In the existing channel estimation methods, classical training-based schemes [6, 7] 

transmit both training signals and information-carrying signals, and utilize the train

ing signals and the observation at the receiver to estimate the channel. However, the 

resulting limitation of effective data throughput [6, 7] represents a penalty in perfor

mance. To avoid having to transmit training signals, considerable research efforts 

have been directed to develop techniques of "blind channel estimation" [12, 13, 17] 

recently. These techniques identify and estimate the transmission channel using only 
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the received (perhaps noisy) signals at the receiver. The essence of these algorithms 

is to exploit the structure of the channel and/ or the property of transmitted signals. 

The subspace method is one such method exploiting the channel structure and the 

second order statistics of input signals [18-20]. Another important example of such 

blind estimation methods is the ML method of detection [13] which is usually opti

mal for large samples but in general, does not have a closed-form solution. Also, its 

implementation may be too complicated due to the existence of local maxima. 

In a special downlink case of the Alamouti STBC channel, the currently available 

blind channel estimation methods [32-38] all have the ambiguity issues, which need 

to be resolved by adding pilot symbols. Thus, these methods can only be called 

semi-blind and the need for the pilot symbols further renders the spectral efficiency 

not fully exploited. Also, some blind methods [21-25] handle the channel estimation 

problem with the exploitation of signal properties, e.g., finite alphabets, symmetry, 

constant modulus, etc. However, for the Alamouti STBC channel, these methods 

still have ambiguity issues and thus, cannot provide a precise channel estimate since 

the phase properties of communication signals have not been fully exploited. To 

resolve these ambiguities in estimation of Alamouti STBC channel, we propose a new 

signalling scheme for blind channel estimation in this thesis. 

1.2 Contribution of this Thesis 

The goal of this thesis is to develop a novel signalling scheme for blind channel esti

mation to resolve the ambiguity issues in estimation of Alamouti STBC channel and 

a space-time coded MISO channel [31]. 

For the Alamouti STBC channel, we observe that the essential reason for the 

existence of rotational ambiguity or sign ambiguity in the currently available channel 

estimation methods is that the objectives in their formulated optimization problems 
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are invariant under some rotation transformation for the commonly used QAM and 

PSK constellations. A proper signalling scheme is therefore needed to resolve the 

ambiguity. In this thesis, our important contribution is that the proposed blind 

channel estimation technique can eliminate the ambiguity by co-transmitting of a 

p-ary PSK and a q-ary PSK signal, with p and q being co-prime. Using this new 

strategy, we prove that a) in the noise-free case, only two distinct pairs of symbols 

are needed to uniquely determine the channel coefficients and decode the signal, and 

b) in the case for which complex Gaussian noise is present and for which the pth-order 

and qth-order statistics on the received signals are available, the channel coefficients 

can also be uniquely determined. In both cases, simple closed-form solutions are 

derived by exploiting specific property of the Alamouti code and linear Diophantine 

equation theory. When only limited received signals are available, we equip blind ML 

detection methods with our signalling scheme, and propose to use the semi-definite 

relaxation (SDR) algorithm [37, 41, 42] or the sphere decoding algorithm [?, 43] to 

approximate ML detection so that the joint estimation of the channel and symbols 

can be efficiently implemented. 

As an extension of our technique to other channels, we apply a specific space-time 

coding technique [31] to multi-input single-output system with an even number of 

transmitter antennas. We demonstrate this system has an equivalent representation 

which consists of multiple Alamouti STBC subchannels. Hence, our blind channel 

estimation technique is also useful to the estimation of this particular space-time 

coded MISO communication system. 

1. 3 Structure of this Thesis 

The thesis is structured as follows: 

• In the introductory chapter, we present the channel estimation problem and 
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briefly introduce the existing channel estimation methods. We also outline the 

primary contributions of this thesis. 

• In the second chapter, we first introduce the channel model of linear MISO 

communication system. Then, we discuss a simple case of Alamouti STBC 

channel and a space-time code for linear MISO system. Finally, we derive a 

equivalent representation for this space-time coded MISO system. 

• In Chapter 3, we review the existing channel estimation algorithms in three 

main categories: training-based methods; (semi-) blind methods; and others. In 

particular, we discuss the currently available blind channel estimation methods 

for the Alamouti STBC channel and analyze the existence of ambiguities in 

these methods. 

• In Chapter 4, we propose a simple signalling scheme for the estimation of Alam

outi STBC channel. Simple closed-form solutions and simulation results are 

presented in both the noise-free and the complex Gaussian noise cases. 

• In Chapter 5, we consider the application of our signalling scheme to blind ML 

detection methods for Alamouti STBC channel. We further employ the SDR

ML algorithm and the sphere decoding algorithm to efficiently solve this blind 

ML channel estimation and symbol detection problem. 

• In Chapter 6, we discuss conclusion on this work and some suggestions for future 

work. 

• In appendix, we provide the proofs of two theorems given in Chapter 4 and also 

include a description of the Euclid Algorithm. 



Chapter 2 

MISO Communication System 

In this chapter, we consider the application of space-time coding technique to linear 

MISO communication system equipped with an even number of transmitter antennas. 

We first discuss a simple case of Alamouti STBC channel. Then, utilizing a space

time coding scheme proposed by Shang-Ho Tsai [31], we establish the model of this 

space-time coded MISO system and derive its equivalent system representation. 

2.1 MISO Channel Model 

Here, we introduce the general complex baseband model of a linear MISO system 

which has N transmitter antennas and a single receiver antenna, as shown in Fig

ure 2.1. Each of the transmitter antennas synchronously sends one symbol in one 

time slot, i.e., symbols x1 , x2 , • • · , x N are simultaneously transmitted from Antenna 1 

to Antenna N. Hence, the received signal z in the baseband is a linear superposition 

of these transmitted symbols perturbed by additive noise~, 

(2.1) 

6 
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Transmitter 2 

y!:J__ f 
---1-.J~ -- I 

7 h ----- ""' y 
----..I... -~~------ ---1 EEJ---> ., Receiver 

I _..., 

I -

Transmitter I 

--
-
_ ....... ?~ _h!J----

Transmitter N .I 

Figure 2.1: Diagram of MISO wireless communication system 

where xk, k = 1, · · · , N are independently selected from a signal set with unit aver

age power, hk denotes the channel coefficient from the k-th transmitter antenna to 

the receiver antenna, and ~ denotes the circularly-symmetric complex independent 

Gaussian noise with zero-mean and variance a 2
. Here, noise is said to be circularly

symmetric complex independent Gaussian if its real and image parts are both i.i.d. 

Gaussian random variables with N(O, a 2 /2). 

Throughout this thesis, we only consider flat fading environments in which all 

fading coefficients hk, k = 1, · · · , N are assumed to be independent and constant over 

one observable period and may randomly change in next observable period. 

For a particular time slot, if we stack all transmitted symbols xk, k = 1, · · · , N 

on different transmitter antennas into a vector x of dimension N x 1 and stack all 

channel coefficients hk, k = 1, · · · , N into a vector h of dimension N x 1, then the 

received signal z in Eq. (2.1) can be rewritten in a compact matrix form as 

z = xh+~ (2.2) 
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2.2 Alamouti STBC Channel Model 

To apply space-time coding technique to linear MISO system, we first introduce a 

simple case of the Alamouti STBC channel model in this section. 

--~ 
; 

TXI 
I 

Rx 
- .J., 

sl----. Alamouti --->ffi Space-Time ~-----) --~ 
Sz _____. Encoder TX2 --

Figure 2.2: Diagram of the Alamouti STBC channel 

The Alamouti STBC code was first established by Alamouti [3] for a flat fading 

wireless communication system with two transmitter antennas and a single receiver 

antenna as shown in Fig. 2.2. The transmitted symbols from the two transmitter 

antennas arrive at the receiver via two different channels. Thus, the discrete baseband 

received signal can be written as 

(2.3) 

where z is the received signal, h1 and h2 are the respective channel coefficients from 

the transmitter Antennas 1 and 2 to the receiver antenna, s1 and s2 are the two 

corresponding transmitted symbols from these two antennas, and ~ is a circularly 

symmetric complex Gaussian noise with zero-mean and variance CI2 . Throughout this 

thesis, we assume that lh1l2 + lh2 1
2 =1- 0 and h1 and h2 remain constant within T 

transmission time slots. 

If this system employs the Alamouti space-time block coding scheme, each set of 

two transmitted symbols spans over two consecutive time slots which is designated 

a frame. For example, during the first time slot of the ith frame, si1 and si2 are 

simultaneously transmitted from Antennas 1 and 2, respectively; during the second 
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time slot of the ith frame, -s:2 and s:1 are transmitted simultaneously from Antennas 

1 and 2, respectively. Thus, the Alamouti code of the ith frame has the following 

structure 

(2.4) 

' 

and we can further get SiSfl = (Jsi1l2 + Jsi2J 2)I2, i.e., column or row vectors of Si 

are orthogonal to each other and both have equal norm. Thus, the Alamouti code 

actually is a two-dimensional OSTBC [5]. Furthermore, at the receiver antenna, the 

received signals in the two consecutive time slots of the ith frame can be written in 

a matrix form 

(2.5) 

where [~i(1), ~i(2)]T denotes the circularly-symmetric complex Gaussian noise vector 

with zero-mean and variance 0"
2I2 in the two time slots. 

As we can observe in Eq. (2.5), each one of the channel coefficients hk, k = 1, 2 has 

been used twice to transmit signals. After using the "symbol conjugate" operator, 

the conjugated received signals of the ith frame can be expressed by 

(2.6) 

where zi(1) = zi(1) and .Zi(2) = zi(2). The two column vectors of the equivalent 

channel matrix, say, [ h1 , h;]T and [ h2 , - hif, are orthogonal and thus, no interference 

exists between the transmission of si1 and si2. If the channel matrix H = [h1 h2
] 

h; -hi 
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is exactly known a.t the receiver, left-multiplying both sides of Eq. (2.6) by HH, we 

ha.ve 

which ca.n be further rewritten a.s 

with 

hz] H[~i(l)l (2.7) 

-hi ~;(2) 

(2.8) 

Now, from Eq. (2.8), we can simply quantize Zi(l) and Zi(2) respectively to get the 

estimation of the signals si1 and si2 , i.e., 

(2.9) 

where n = 1, 2 and S denotes the constellation set. Therefore, it shows that the 

orthogonal structure of the channel matrix can greatly simplify the complexity of 

decoding method. 



M.A.Sc. Thesis - L. Zlwu -McMaster - Electrical & Computer Engineering 11 

2.3 A Space-Time Coded MISO System 

In this section, we introduce a space-time code design and apply it to linear MISO 

communication system with an even number of transmitter antennas, as shown in 

Figure 2.3. When a permutation matrix and a discrete Fourier transform (DFT) 

matrix are employed at both ends, we can derive an alternative representation for 

this space-time coded MISO system. 

Space-Time 
---+1 Encoder 

X 

Figure 2.3: Diagram of space-time coded MISO system 

2.3.1 A Space-Time Code Design 

In [31], Shang-Ho Tsai et al. proposed a rate-one space-time block code to a multiple

antenna system. To describe this space-time coding scheme, we define a vector :X of 

dimension N x 1, with its kth element given by 

[x]k = { [x*]k, 
[-x*]k, k = 2, 4, · · · , N 

k = 1, 3, · · · , N- 1 
(2.10) 

During N time slots, say, t = 1,2,··· ,N, vector x = [x1,x2 , ... ,xN]T is space

time coded by the following procedure, 

• When t is odd, we transmit xk by the antenna indexed [ ( (k- t) mod N) + 1]. 

• When tis even, we transmit [x]k by the antenna indexed [ ( (t- k) mod N) + 1]. 
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Therefore, we obtain the N x N space-time block code X with its ( u, v )-th element 

expressed as 

{ 

X[((u+v-2}modN}+l]l 
[X]uv = 

( -1)vxf((u-v) mod N}+l]' 

u=1,3, ... ,N-1 

u=2,4, ... ,N 
(2.11) 

for v = 1, 2, · · · , N. 

For example: a. 6 x 6 dimension space-time block code X is 

XI x2 X3 X4 X5 X6 

x* - 2 x* I -x6 x5 -x4 x* 3 

X= 
X3 x4 X5 X6 XI x2 

(2.12) 

-x5 x* 3 -xi x* I -x6 x* 5 

X5 x6 XI X2 X3 x4 

x* - 6 x* 5 -x4 x; -xi x* I 

where the row denotes the time dimension, (i.e., the uth row denotes the symbols 

transmitted by the N antennas at the uth time slot), and the column denotes the 

space dimension, (i.e., the vth column denotes the symbols transmitted by the vth 

antenna. during the N time slots). In other words, the symbol [X]uv is transmitted 

from the v-th antenna. at the u-th time slot. 

During N transmission time slots, by assuming that the channel is invariant, we 

can stack the N received signals Zk, k = 1, 2, · · · , N into a vector z and express the 

block transmission model in a matrix form as 

z = Xh+e (2.13) 

where z = [zi, z2 , • • • , zNjT, X is the N x N space-time block code matrix, h 

[hi, h2, ... 'hN]T, and e = [6, 6, ... '~NJT is the Gaussian noise vector. 
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Space-Time 
Encoder 

X 

Symbol 
Conjugation 

~------------ _____________ ) 
'{ 

H 

Figure 2.4: Diagram of space-time coded MISO system with precoders 

2.3.2 Equivalent Representation of the Space-Time MISO 

System 

As shown in Figure 2.4, if a permutation operator and DFT operator are used at 

both ends, we will obtain an equivalent system representation for the above space

time coded MISO system. In the following, we will give its derivation in details. 

At the transmitter part, the input signal vectors= [s 1 , s2 , · · · , sNf is sequentially 

passed through a permutation matrix P, a inverse discrete Fourier transform (IDFT) 

matrix F, and the space-time encoder discussed in previous subsection. The ( u, v )-th 

element of this permutation matrix P is given by 

! 
1 u = 1 2 · · · !!.. v = 2u - 1 

' ' ' ' 2' 

[P]uv = 1 u =!!.. + 1 !!.. + 2 · · · N v = 2u- N 
' 2 ' 2 ' ' ' 

0, otherwise 

(2.14) 

For example: if N = 6, matrix P has the following structure, 
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1 0 0 0 0 0 

0 0 1 0 0 0 

0 0 0 0 1 0 
P= 

0 1 0 0 0 0 

0 0 0 1 0 0 

0 0 0 0 0 1 

Further, the (u, v)-th element of the IDFT matrix F is given by 

[F] = _1_ ei~(u-l)(v-1) 
uv v'N 

(2.15) 

(2.16) 

for u = 1, 2, · · · , N and v = 1, 2, · · · , N. Therefore, the symbol vector to be space

time encoded, denoted by x, is 

x=FPs (2.17) 

coded by the coding technique in Eq. (2.11). 

When the encoded matrix X is transmitted from N antennas over N time slots, 

we obtain N received signals zk, k = 1, 2, · · · , N from Eq. (2.13) at the receiver. As 

observed in Figure 2.4, the received signals are then through "symbol conjugate" 

operator, i.e., 

k=1,3,···,N-1 

k =2,4,··· ,N 

After some mathematical manipulations, the vector z can be expressed as 

Hx+{ = HFPs+{ 

(2.18) 

(2.19) 
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where the noise vector e is 
k = 1, 3, · · · , N- 1 

k = 2,4, · · · ,N 

and the ( u, v )-th element of channel matrix H is determined by 

[H]uv = { h[((v-u)modN)+lj, U = 1, 3, · ·' , N- 1 

( -l)v-1hf((u-v}modN)+l]' U = 2, 4, ... 'N 

(2.20) 

(2.21) 

for v = 1, 2, · · · , N. For example: the 6 x 6 space-time coded channel matrix H has 

the following form 

h1 h2 h3 h4 hs h6 

h2 h* - 1 h* 6 h* - 5 h* 4 h* - 3 

H= 
hs h6 h1 h2 h3 h4 

(2.22) 
h* 4 -h; h* 2 h* - 1 h* 6 -h; 

h3 h4 hs h6 h1 h2 

h* 6 -h; h* 4 h* - 3 h* 2 -hi 

Subsequently, vector z is sent through the DFT operator FH and the permutation 

operator pH, namely, left-multiplying both sides of Eq. (2.19) by matrices FH and 

pH, we have 

(2.23) 

To simplify the notation of the above equation, we define N x 1 vector z ~ PHFH z, 
- 6 - 6 -

N x N matrix H = pHFHHFP, and N x 1 vector~= PHFH~. Then, an equivalent 
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system model is thus established as 

(2.24) 

Notice that matrix H has the following structure, 

hu h12 0 0 0 0 

hi2 -hi1 0 0 0 0 

0 0 h21 h22 

(2.25) 
0 0 h22 -h21 

H= 
0 0 

0 0 

0 0 0 0 h!:!. 1 h!:!. 2 
2' 2' 

0 0 0 0 hli_ 2 -hli_1 
2' 2' 

where 

. 1r z- z+ -1 N [ N-
1 

( 2 ( · 2 · N 2)) 
N ~ u=~dd exp J N v-2-- u 2 h[((v-u)moctN)+I] 

~ (. 27r ( i- 2 i + N- 2) v-1 * ] + u=~enexp J N V-2-- U 2 ( -1) h[((u-v)modN)+l] 

for i = 1, 2, · · · , J¥-. As we can observe Eq. (2.25), matrix H has a block-diagonal 

structure with all off-block-diagonal elements being zero. Therefore, the channel 
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s Alamouti 
I 

sz --~~~S~T~B~C~j-~ 

s Alamouti 
3 

S 4 ---+L_~ST~B~C~j-~ 

- ' -~NJ.2:.l I N/2 

s 
N-l 

s 
Alamo uti 

STBC 
-=~E9--> y ·~ . z -=-- ) ~ ~ 

N 
hN/2.2 

Figure 2.5: Equivalent Representation of the system in Figure 2.4. 

model in Eq. (2.24) can be further represented by 

(2.27) 

[
hil hi2] S· = where Zi = [z2i-l,Z2i]T, it= - - ' 1 [s2i-l,s2i]T, and ei = [~2i-1,~2i]T 
h;2 -h:l 

for i = 1, 2, · · · , £¥-. Here, each subchannel has exactly the same structure as the 

Alamouti space-time coded channel in Eq. (2.6), i.e., 

(2.28) 
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Remark: 

a) Eq. (2.24) to Eq. (2.28) tell us that the space-time coded MISO communication 

system given by Eq. (2.13) can be equivalently represented by multiple Alamouti 

STBC subchannels if a particular permutation matrix and a DFT matrix are 

properly utilized at both ends. In Figure 2.5, we depict this alternative system 

representation. 

b) As a result, the channel estimation problem for this space-time coded MISO 

system is similar to that problem for the Alamouti STBC channel. 

Therefore, in the following chapters of this thesis, we will concentrate on the channel 

estimation problem for the Alamouti STBC channel. 



Chapter 3 

Review of Channel Estimation 

Methods 

In the introductory chapter, we stated that multiple antennas and STBC [1-4] have 

been deployed in recent wireless communication system design to improve the spec

tral efficiency and mitigate multi path interference distortion. In particular, the OS

TBC [3, 5] has attracted much attention because it enables full diversity with a linear 

processing ML detector. However, all these advantages are based on the exact knowl

edge of the channel coefficients being available at the receiver. Since most wireless 

channels change with time, perfect knowledge of CSI is not easy to be tracked at the 

receiver. Channel estimation is thus required. 

Up till now, various channel estimation methods including training-based tech

niques and blind (semi-blind) estimation methods, have been proposed for space-time 

communication systems. In this chapter, we briefly describe these estimation methods 

in categories. Then we turn our attention to blind channel estimation methods for the 

Alamouti STBC channel, and further analyze the reason of existing the ambiguities 

in these methods. 

19 
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3.1 Training-based Channel Estimation 

The basic idea of training-based estimation methods is to estimate the channels ei

ther from the observations of only training signals or from the observations of the 

superposition of training and information signals. The former methods transmit the 

training symbols, which are known at both the transmitter and the receiver, andes

timate the channels using these symbols and their resulting observations. The latter 

methods transmit the training symbols multiplexed with information bearing symbols 

and then, estimate the channels by exploiting all the observations of these symbols 

and the statistics of information symbols. 

Training-based estimation methods simplify the challenging task of the receiver 

design. However, a substantial penalty in performance comes from the limitation 

of effective data throughput [6, 7]. The reason is that training signals do not carry 

any information, i.e., the more training signals are imbedded in a data packet, the 

less information signals can be transmitted. Thus, it turns out to be a tradeoff 

between the bandwidth efficiency and estimation accuracy. That is, more training 

symbols will provide better channel estimation and less decoding error; otherwise, 

fewer training symbols will result in worse channel estimation and more decoding 

error. In addition, the training-based schemes are not effective and practical in fast 

fading channels whose fading coefficients are only invariant over small data packet. 

3.2 Blind (Semi-Blind) Channel Estimation 

In recent years, "blind channel estimation" [12, 13, 17] has received considerable re

search interests. These techniques use only the received (perhaps noisy) signals at 

the receiver to identify and estimate the transmission channel. The essence of these 
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methods is to exploit the structure of the channel and/or the property of transmit

ted signals. In the following section, we will describe two important blind channel 

estimation methods, i.e., the statistic-based methods (second-order and higher-order 

statistic) and the ML-based method. 

3.2.1 Second-Order Statistical Method 

Second-order statistical methods [18-20] exploit the signal or noise subspace from the 

second-order statistics on the received signals. Input signals are randomly produced 

with a known second-order statistics (distribution), and the additive noises are un

correlated with input signals. These statistical methods are often able to give an 

estimate of the channels in closed-form structure. 

In blind channel estimation, the subspace method is one such method commonly 

used because of the simplicity and computation efficiency. The subspace-based meth

ods require either the channel has a specific structure like block-Hankel matrix or the 

transmitted space-time code matrix has a block-Toeplitz structure. 

In addition, the second-order statistical methods usually need a large amount 

of samples to achieve near maximum likelihood performance. In other words, the 

channel is commonly required to remain constant in a long observation period. 

3.2.2 Higher-Order Statistical Method 

In the scenarios where second-order statistics are not sufficient to assure the identi

fication or estimation of channels, higher-order statistics in both time and frequency 

domains may be exploited for estimating the channels [26,28-30]. For example, single

input single-output (SISO) communication system cannot employ the multichannel 

diversity. Higher-order statistics on the observations is thus needed in channel esti

mation. 
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Higher-order statistical methods, compared to second-order statistical methods, 

usually require many more samples to precisely estimate the channel. As a result, 

these higher-order statistical methods always need expensive computation complexity. 

3.2.3 Maximum Likelihood (ML) Method 

Another important parameter estimation algorithm is the Maximum Likelihood (ML) 

estimation method, which is theoretically optimal for large samples so as to carry out 

the linear minimum variance unbiased estimators [13]. 

In the following, we describe the theory of ML estimation method. Let p(z!x) 

denote the conditional probability density function (PDF) with z being the obser

vation and x being the deterministic parameter. Given only the observation z, the 

task is to estimate the parameter x by its most likely value such that the associated 

conditional PDF p(z!x) can achieve the maximum value. Thus, we write p(zix) as a 

function of x, which is referred as the likelihood function. The ML estimation method 

is employed in signal detection at the receiver based on a simple idea that different 

transmitted signals produce distinct received signals, and any given received signal is 

more probable to come from the transmitted signal than other signals. 

When the ML method is applied to blind channel estimation problem, input signal 

vector x = [x1,x2 ,··· ,xN]T and channel vector h = [h1,h2 ,··· ,hNJT in Eq. (2.2) 

become both unknown deterministic parameters to be estimated. In other words, the 

goal of blind ML channel estimation method is to find the most reasonable values 

for both input signals and channel coefficients to achieve the maximum value of the 

conditional PDF, i.e., 

{:X, h} = argmax logp (zjx, h), 
x,h 

(3.29) 

where p (z!x, h) is the conditional PDF of the received signal z conditioned on both 
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the input signal vector x and the channel vector h. 

In general, the blind ML channel estimation method does not yield a closed-form 

solution to the channel, but generally derive an optimization problem instead, e.g. 

the problem (3.29). Such problem is often solved by numerical algorithms which re

cursively converge to the minimum value of cost function. Despite of the possibility of 

achieving the minimum value, there still exist several important issues, e.g. the num

ber of samples, convergence speed, the existence of local minima and initialization. 

All these greatly affect the performance and computational expense. 

In particular, if input signals come from a finite alphabet set, the joint estima

tion of the channel and input signals usually involves an exhaustive search, whose 

computational complexity may make it infeasible for large number of input signals. 

3.3 Signal Property Exploitation Technique 

There are several other blind equalizer design and channel estimation methods which 

exploit the properties of input signals instead of the specific structures of channels. 

Digital communication signals possess many properties, such as source independence, 

constant modulus, finite alphabet, symmetry and so on [12]. These properties can be 

utilized to blindly identify or estimate channels, for example, 

1. Constant Modulus property: Some communication signals possess constant 

modulus (CM) property, i.e., the envelope of the signal is constant. FM signal 

and phase modulated signal are examples of such CM signals. This property 

is widely used in recent blind equalizer design and source separation problem, 

such as constant modulus algorithm (CMA) [14-16,21]. In some subspace-based 

channel estimation methods, the CM property and the second order statistics 

of the Pulse Shift Keying (PSK) constellation signals are exploited to arrive at 

the solution of the channel estimate being the eigenvectors of a simultaneous 
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diagonalization problem [12]. 

2. Symmetry property: In [24, 25], the symmetry property of the quadrature am

plitude modulation (QAM) signals is employed, instead of the second order 

statistics, to blindly equalize the fractional channels [22], [23] by solving convex 

optimization problems. 

Despite of the exploitation of these signal properties, there still exist phase ro

tational ambiguity and sign ambiguity issues in blind equalization and channel es

timation methods. The reason for this is that these methods did not fully employ 

the phase properties of digital communication signals. Although these methods can 

easily identify the amplitude information of channels, but the phase information still 

cannot be identified. 

3.4 Differential Encoding Technique 

Recently, some noncoherent detection schemes have been proposed. Contrary to 

coherent detection which fully necessitates the channel state information at the re

ceiver, noncoherent detection schemes explore differential encoding and decoding tech

nique [8-11] to directly detect the input signals with no requirement for channel es

timation. However, compared to coherent detection [3], these methods often suffer 

from error propagation resulting in loss of performance at high SNR. 

3.5 Ambiguity Analysis for the Estimation of 

Alamouti STBC Channel 

In previous sections, we reviewed a number of classical channel estimation and symbol 

detection methods applicable for the OSTBC system [32-38]. In this section, we will 
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consider the special case of the Alamouti STBC channel and discuss the blind channel 

estimation methods in such case. 

By exploiting the orthogonality of the Alamouti code, the subspace method was 

applied to such a system so as to obtain an exact value of the channel matrix up 

to an unknown unitary matrix factor [32]. This rotational ambiguity results in the 

channel not being able to be identified uniquely even in the noise-free case. Although 

such ambiguity can be partially resolved by using different linear precoders for odd 

and even symbols to warrant channel identifiability [33], it still suffers from scale 

ambiguity which essentially cannot be handled by the subspace method based on 

solving a quadratic optimization problem. An improved transmission scheme using 

a linear precoder with different powers at the different transmitted symbols was pro

posed in [34, 35], and a closed-form solution to the channel estimation was derived. 

Unfortunately, this scheme requires an assumption that the noise power is known in 

advance, and there is still the sign ambiguity. 

In addition, to address the rotational ambiguity in the blind ML channel es

timation and symbol detection problem, several schemes have also been proposed 

in [36, 37]. The essence of these methods is to derive the objective function for ML 

detection as a homogenous quadratic function and therefore, the resulting optimiza

tion problem can be efficiently solved using the SDR-ML detector [36, 37] or sphere 

decoder [37, 43]. Unfortunately, a rotational ambiguity of the detected signal still 

exists. Since pilot symbols have to be added, these schemes can only be called semi

blind and the need of the pilot symbols in these methods to resolve the rotational 

ambiguity further renders the spectral efficiency not fully exploited. 

From the results in [32, 36, 38], we observe that the essential reason for the ex

istence of rotational ambiguity or sign ambiguity in the currently available blind 

channel estimation methods for the Alamouti STBC channel is that the objectives 
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in their formulated optimization problems are invariant under some rotation trans-

formation for the commonly used QAM and PSK constellations. This can be clearly 

demonstrated as follows: Let {si1 ,si2} and {s(i+l)I,s(i+l)z} be the two selected pair 

of symbols to be transmitted in the consecutive ith and (i + 1)th frame and let the 

transmitted signal matrix and the channel coefficient vector be respectively given by 

Sil Siz 

s£ -s:z s:l 
and 

h ~ [~:] (3.30) 
S(i+l)l S(i+l)2 

-s(i+l)2 8 (i+I)l 

1. For a square QAM constellation So, then both {sil,si2},{s(i+I)I,s(i+l)Z} E 

S0 . At the receiver, the received signals in the four time slots z 

[zi(1) zi(2) zi+1(1) zi+l(2)]T can be written in two different ways 

z = S h = S' h' (3.31) 

where 

I [0 -1] s = s 
1 0 [ ]

H 
0 -1 

and h' = 
1 0 

h (3.32) 

Thus, using the received vector z to detect the symbols and to estimate the 

channel coefficients may result in two possible sets of solutions: { S, h} or, 

{S', h'}. 

2. Similarly, rotational ambiguity exists if only one M-PSK constellation SM is 

used. In this case, for the two consecutive frames, {sib si2}, {s(i+l)b S(i+I)z} E 

SM. Thus, from the transmitted symbols in two consecutive frames of the 
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Alamouti STBC channel, the received signals can be written as 

(3.33) 

where S is given by Eq. (3.30), Sm Sd. ( j'h:!!!s. -j'h:!!!s.) h 1ag e M , e M , m 

dl.ag(e_1.z,M'"'' ·2mrr) el!Vf h, m = 0, · · · , M - 1. 

From the two cases above, it can be seen that if the symbols are chosen from the 

same constellation for transmission through the Alamouti STBC channel, then nei

ther the symbols nor the channel coefficients can be uniquely determined. No matter 

how many frames of symbols are transmitted by increasing the number of rows in S 

of Eq. (3.30), as long as the symbols are selected from only one constellation, rota

tional ambiguity will exist. In order to eliminate the ambiguity, the careful designed 

signalling scheme should be sought. This is the main idea of this thesis. 



Chapter 4 

Blind Channel Identification with a 

New Signalling Scheme 

In this chapter, we propose a novel signalling scheme for unique blind identification 

of the Alamouti STBC channel. Using this new strategy, we will prove that a) in the 

noise-free case, only two distinct pairs of symbols are needed to uniquely determine 

the channel coefficients and decode the symbols, and b) in the case for which complex 

Gaussian noise are added and for which the pth-order and qth-order statistics on the 

received signals are available, the channel coefficients can also be uniquely determined. 

In both cases, simple closed-form solutions are derived. 

4.1 The Proposed Signalling Scheme 

Now, we present the simple signalling scheme as follows: 

Let Sp and Sq represent the p-PSK and q-PSK constellation sets respectively, 

where p and q are predetermined positive co-prime integers. Suppose in the first time 

slot of the ith frame, we transmit from Antenna 1 a symbol Spi E Sp, i.e., selected 

from the p-PSK constellation, and from Antenna 2 a symbol Sqi E Sq, i.e., selected 

28 
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from the q-PSK constellation. Then, according to the Alamouti scheme, the received 

signal vector for the ith frame is 

i=1,2, ... ( 4.34a) 

Or, in more compact matrix form, 

i = 1,2, ... (4.34b) 

Where Zi = [zi(1) Zi(2)]T, h = [hi h2jT, ei = [~i(1) ~i(2)jT, and Si = [~p: S:i]· 
sqi spi 

Eqs. (4.34) represent the new designed signalling scheme proposed in this thesis for 

the ith frame of the Alamouti coding scheme. In the following sections, we will show 

that this proposed strategy can facilitate the blind unique detection of the transmitted 

signals in the noise-free case and identification of the channel coefficients in the noisy 

case. 

4.2 Blind Unique Channel and Signal Identifica-

tion in Noise-Free Case 

In this section, we will examine the proposed signalling scheme above under the noise

free environment. In two consecutive frames i and i + 1, we send out the symbol pairs 

{spi,Sqi},{-s;i,s;ri} and {sp(i+l),Sq(i+l)},{-s;(i+l)'s;(i+l)} for the four consecutive 

time slots, where Spi, Sp(i+l) E SP, and Sqi, Sq(i+l) E Sq. Thus, if there is no noise, from 
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Eqs. (4.34), we have the received signals for the two consecutive frames given by, 

Solving Eqs. ( 4.35) for h yields 

h 1 H -S· Z· 2 • • 

Eliminating h in the above equation yields 

[ 

a·1 a·2] where Ai = '* : with ail and ai2 denoted by 
-ai2 ail 

Now, taking conjugate of zi+1(2), Eq. (4.37) can be rewritten as 

( 4.35a) 

( 4.35b) 

( 4.36) 

( 4.37) 

(4.38a) 

(4.38b) 

( 4.39) 
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which we obtain 

(z;(1)zi+l(1) + zi(2)z;+1(2))/(lzi(1W + lzi(2W) 

( z; (2)zi+l (1) - zi(1 )z;+l (2)) / (lzi(1 W + lzi (2) 12 ) 

( 4.40a) 

( 4.40b) 

i.e., the values of ail and ai2 can be obtained from the received signals. We left

multiply the definition of an in Eq. (4.38a) by SpiSqi, i.e., 

1 ( * * ) 2 SpiSqi Sp(i+l)Spi + Sq(i+l)Sqi 

1 ( * * ) 2 SqiSp(i+l)SpiSpi + SpiSq(i+l)SqiSqi 

~ ( sqiBp(i+l) Is pi 12 + SpiSq(i+l) I Sqil2
) 

1 
= 2 ( SqiSp(i+l) + SpiSq(i+l)) (4.41) 

where ispil2 = 1 and lsqil2 = 1 come from the property of PSK symbol. Combining 

Eq. (4.41) and Eq. (4.38b), we have 

1 
2 ( SqiSp(i+l) + SpiSq(i+l)) 

1 2 ( SpiSq(i+l) - SqiSp(i+l)) 

After some mathematical manipulation, the above equations become 

SpiSq(i+l) 

( 4.42a) 

( 4.42b) 

( 4.43a) 

(4.43b) 
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Now, the key question here is: For the given values of ai1 and ai2 in Eqs. (4.40), 

do the quadratic equations ( 4.43) have a unique set of solutions for the transmitted 

symbol variables Spn and Sqn, n = i, i + 1? The following theorem provides us with 

the answer. 

4.2.1 Closed-Form Solution 

Theorem 1 [57, 58] Let Spn E sp and Sqn E Sq for n = i, i + 1 be symbols to 

be transmitted in the time frames i and i + 1 respectively, p and q being co-prime 

positive integers. Let zi = [zi(1),zi(2)]T and zi+l = [zi+l(1),zi+1(2)JT be two distinct 

received signal vectors from the Alamouti STBC channel within the two consecutive 

time frames (four time slots). ai1 and ai2 are determined by Eqs. (4.40). The four 

transmitted symbols are uniquely determined as follows: 

1. ail= 0. We have 

Spi ( 
21r ( k1 ( ) 1 klP'"(q)-ll ) ) exp jp q 1 - p"'(q) + p I q ( 4.44a) 

Sqi ( 
21r ( 1 k2p"'(q)-ll ) ) exp jq k 2p"'(q)-l - q I q ( 4.44b) 

Sp(i+l) ( 
21r(k2( ) rk2pcp(q)-l1 )) exp jp q 1 - p"'(q) + p q ( 4.44c) 

Sq(i+l) ( 
21r ( 1 k1p"'(q)-ll ) ) exp jq k1pcp(q)-l - q I q (4.44d) 

where cp(·) denotes the Euler function {39}, and integers k1 , k2 are 

arg(ai2)pq 
k1 E [O,pq) 

k2 E [O,pq) 
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6 ~- [ 6 ~ 2. ail i= 0. Let ail= laille111 ,Bil E -rr,rr), ai2 -lai2le1
i
2 ,ei2 E [-rr,rr) and 

a :@: arccos laill· Then, we have 

Spi eK (k ( ) rkp·C·HD) exp jp q 1 - pr.p(q) + p q ( 4.45a) 

Sqi 
( 2K ( rkp•(q)-!1)) exp jq kpr.p(q)-l - q q ( 4.45b) 

Sp(i+l) exp .(j 2rrfp/P) Spi (4.45c) 

Sq(i+l) = exp (j2rrfqjq) Sqi (4.45d) 

Here, integers fp and fq are uniquely determined as follows: 

(a) For a :S Bi1 < 2rr- a, we have 

p 211" ' 

{ 

£ = (8;1 +a)p £ - (8il-a)q if ejp(8;I+a) = 1 and ejq(Oil-a) = 1 
q- 211" ' 

e - (8;1-a)p 
p- 211" ' 

e = (Oil+a)q if ejp(Oi!-a) = 1 and ejq(Oil+a) = 1 
q 211" ' 

{b) For -a :SOil <a, we have 

(c) For -2rr +a :S Bi1 < -a, we have 

if ejp(Oil+a) = 1 and ejq(On-a) = 1 

if eJ p(OH-a) = 1 and eJ q(On +a) = 1 
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In addition, integer k is uniquely determined by 

with l = 0, -1. 

(11;2-llil+Jj)pq 
271" 

(11;2-llil-1} )pq 
271" 

mod pq, if £p = (lli1+~; 211r)p 

mod p q, if £p = (ll; 1 -~;2l7r)p 

Furthermore, the channel coefficients h1 and h2 in h can be uniquely determined by 

1 H h =- s. z, 2 • . ( 4.46) 

• 
The proof of Theorem 1 is given in Appendix A. We like to make the following remarks 

on this theorem: 

1. Theorem 1 not only tells us that the channel coefficients can be uniquely iden

tified by transmitting two distinct symbol pairs selected from two co-prime 

PSK constellations in four time slots, but also provides simple and closed-form 

solutions to both the channel coefficients and the transmitted symbols. 

2. In the noise-free case, two different received signal vectors are the smallest 

number of data required to uniquely identify the Alamouti STBC channel and 

transmitted symbols. In other words, if only one received signal vector is given, 

then, from Eq. ( 4.35a) we cannot uniquely determine the transmitted symbols 

{ spi, sqi} or the channel coefficients h1 and h2 • 

3. To carry out our new signalling scheme as described in Section 4.1, p and q must 

be co-prime integer. Otherwise, ambiguity will occur. This can be demonstrated 

by considering a 4-PSK constellation S4 and a 6-PSK constellation S6 for which 

gcd( 4, 6) = 2. For the two consecutive frames, let the matrix of the selected 
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symbols to be transmitted be S as given in Eq. (3.30) where { Sil, S(i+l)l E S4} 

and { si2, s(i+l)Z E SG}. We can easily see that the received signal vector in the 

four time slots z = [zi(1) zi(2) Zi+I(1) Zi+I(2)jT can be written as 

( 4.47) 

where S = S diag( -1, - 1) and ii = diag( -1, - 1) h. Thus, using the received 

vector z to detect the symbols and estimate the channel coefficients results in 

two possible sets of solutions: {S, h} or, {S, h}, i.e., there is sign ambiguity 

in this case. 

4.2.2 Simulation Results 

To verify the validity of Theorem 1, we consider using the Q-PSK (p = 4) and T

PSK (q = 3) constellations in construction of the Alamouti code and transmit two 

time frames according to our scheme, i.e., we form the matrix S of the symbols to 

be transmitted as given in Eq. (3.30) where { sil, S(i+l)l E S4 } and { si2 , S(i+l)Z E 

S3 } where S4 and S 3 are respectively the set of symbols in a Q-PSK and a T-PSK 

constellation and tried to detect these four transmitted symbols according to the 

formulas given in Theorem 1. We tested the following cases: 

a) The four transmitted symbols are all different. 

b) We fix the two constellations such that they have one common symbol, i.e., in 

our transmission si1 = S(i+l)Z = 1, and two other different symbols for each 

constellation are also transmitted. 

c) The two transmitted Q-PSK symbols are different, but the same T-PSK symbols 

are transmitted over the two consecutive frames. 
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Figure 4.6: Identification of the transmitted symbols in noise-free case 
0 Transmitted QPSK symbol, * Identified QPSK symbol, 
0 Transmitted TPSK symbol, + Identified TPSK symbol. 

d) The two transmitted TPSK symbols are different, but the two same Q-PSK 

symbols are transmitted over the two consecutive frames. 

Each of the above tests was repeated 1000 times with different symbols selected within 

the freedom of each case. Without exception, the symbols were correctly identified 

in every test. Fig. 4.6 shows a typical result of each of the cases tested. 

4.3 Blind Unique Channel Identification in Com-

plex Gaussian Noise Case 

Let us now consider the use of our signalling scheme in the Alamouti STBC channel 

contaminated with white complex Gaussian noise. We assume that the two symbols 

sP and Sq sent over the two transmitter antennas are independent and equally likely 



M.A.Sc. Thesis- L. Zhou -McMaster- Electrical & Computer Engineering 37 

chosen from the respective p-PSK and q-PSK constellations, p and q being co-prime 

positive integers. In this case, for each frame, the received signal vector in the two 

time slots can be expressed as 

[
z(1)] = [ Sp Sql [h1

] + [~(1)] 
z(2) -s~ s; h2 ~(2) 

( 4.48) 

where [~(1),~(2)]T is circularly-symmetric complex Gaussian noise vector with zero

mean and variance a 212 . The following theorem states that, for this case, the channel 

coefficients can be uniquely identified. 

4.3.1 Closed-Form Solution 

Theorem 2 [57,58] Let two positive integers p and q be co-prime and E[zP(l)] and 

E[zq(l)] for l = 1, 2 be available at the receiver. Then, we have 

{ 

h~ = E[zP(2)] 

h~ = E[zq(1)] 

From this, the channel coefficients h1 and h2 can be uniquely determined by 

where 

p q 

( 4.49) 

(4.50) 
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with integers rne! ne' ke for e = 1' 2 given by 

( -ke)Pcp(q)-1 - q r ( -ke):cp(q)-11 

ke ( ) r( -ke)pcp(q)-11 - (1 - p'P q ) - p 
q q 

arg (( -1)qE[zq(2)l)p- arg (E[zP(1)])q 

27f 
arg (E[zq(1)J)p- arg (E[zP(2)])q 

2w 

( 4.51a) 

(4.51b) 

(4.51c) 

( 4.51d) 

• 
The proof of Theorem 2 is given in Appendix B. Thus, even in complex Gaussian 

noise, provided that the pth- and qth-order statistics on the received signals are 

available, our signalling scheme can yield a unique closed-form solution to the channel 

coefficients. 

4.3.2 Simulation Results 

To test the validity of Theorem 2, computer simulations have been carried out in which 

the channel coefficients are estimated using Eq. (4.50) of Theorem 2. In order to ob

tain the pth- and qth- order statistics on the received signals, we transmit N frames of 

symbols during one observation block while the channel coefficients are invariant. The 

signal-to-noise ratio (SNR) here is defined as the average transmitted symbol energy 

to noise ratio, i.e., Es/ N0 . At each SNR, the normalized mean square error (MSE) of 

the channel estimate averaged over K = 200 trials ( €~ =-}( ~~=1 llhk- hkll 2 /llhkll 2
) 

is evaluated. At each trial the channel is randomly generated following an i.i.d. C1r

cular Gaussian distribution. 

Example 1: The purpose of this example is to show the average normalized MSE of 

the channel versus the frame number in one observation block. We consider using the 
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Figure 4. 7: Channel normalized MSE vs. frame number in complex Gaussian noise. 

Q-PSK (p = 4) and T-PSK ( q = 3) constellations in construction of the Alamouti code 

and thus, Q-PSK and T-PSK symbols are independently and equally likely selected, 

i.e., Spi E s4 and Sqi E s3 for the ith transmission frame. The results are shown 

in Figure 4. 7. It can be observed that the average normalized MSE monotonically 

decreases as the frame number increases at different SNR values. 

Example 2: here, we are interested in the average normalized MSE of the channel 

versus the value of SNR. We depict three average normalized MSE curves in Fig

ure 4.8, each of which is obtained by transmitting a different frame number in one 

block, i.e., N = 104
, 105 or 106

. This figure tells us that the average normalized MSE 

monotonically decreases as the SNR increases in all three cases. The more frames 

are used for the estimation, the greater is the accuracy. The difference in SNR re

quirement for the same estimation accuracy can be quite considerable for the cases 

of N = 105 and N = 106 . 

The simulations above verify our theoretical results in Theorem 2. When the 

channel is sufficiently stationary to allow the pth- and qth-order statistics on the 
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Figure 4.8: Channel normalized MSE vs. SNR in complex Gaussian noise. 

received signals to be obtained accurately at the receiver, the proposed technique 

will provide us with unique estimates of the channel coefficients. However, a large 

number of data frames has to be transmitted to achieve a reasonable accuracy in 

the estimation of the Alamouti STBC channel using Theorem 2. In practice, the 

channel coefficients of a wireless communication system often change randomly from 

one observation block to the next. Thus, only a limited number of samples may 

be available during one observation block and may not be sufficient for estimating 

accurately the higher order statistics on the received signal. In this case, it is well 

known [27] that the optimal solution is the joint estimation of the channel coefficients 

and the signals based on maximum likelihood (ML) criterion. In next chapter, we 

will discuss blind ML channel estimation and symbol detection method in details. 



Chapter 5 

Blind ML Channel Estimation and 

Symbol Detection 

When only finite samples are available at the receiver, the channel coefficients and 

input signals are both unknown parameters to be estimated. By taking advantage of 

the orthogonality of the Alamouti code, we will formulate the process of ML detection 

for the transmitted symbols using the signalling scheme proposed in Section 4.1. We 

also propose to use either the semi-definite relaxation method or the sphere decoding 

method to efficiently implement blind ML channel estimation and symbol detection 

for our designed constellation. 

5.1 Formulation of Blind ML Detection 

The following formulation of blind ML detection is similar to that given in [36]. 

However, it is developed independently here. 

Now, suppose we have received L frames, i.e., 2£ observable time slots, of signal 

vectors {zi}, i = 1, 2, · · · , L, where zi = [zi(1) zi(2)]T. We make the following two 

assumptions: 

41 
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1. The channel coefficients h1 and h2 are invariant during L time frames. 

2. During 2L observable time slots, L consecutive Alamouti coding matrices, 

. = [ Spi Sqi] s, ' 
* * -sqi spi 

i = 1,· ·· ,L (5.52) 

are transmitted, where spi and sqi are independent and equally likely chosen 

from the respective p-PSK and q-PSK constellations with p and q being co

prime positive integers. 

Therefore, the received signals during L time frames can be stacked in a compact 

matrix form as 

z=Sh+{ (5.53) 

where z = [zf zr ... ziV with Zi = [zi(1) Zi(2)jT, s = [Sf sr srv, 

h = [h1 h2]T and { = [{f {I · · · {If with {i = [{i(1) {i(2)jT. Given the received 

signal vector z, the blind ML detection is to maximize the log-likelihood function 

with respect to the transmitted coding matrices and the channel vector, i.e., 

{S,h} = argmax lnp(zjS, h) 
S,h 

(5.54) 

where p(zjS, h) is the density function of the received signal vector conditioned on 

both the transmitted coding matrix S and the channel vector h. Since the noise 

vector { is zero-mean complex white Gaussian, Problem (5.54) can be reformulated 

to a nonlinear least squares (LS) optimization [13], i.e., 

{S, h} = argmin liz- Shll~ 
S,h 

(5.55) 
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Since the received signal vector z is respectively linear in S and h from Eq. (5.53), 

we can write the joint optimization problem (5.55) as a sequential optimization, 

(5.56) 

For the inner minimization, we differentiate the objective with respect to hand using 

the orthogonality of the Alamouti code, i.e., SfSi = 212 Vi, we obtain 

(5.57) 

which, when substituted into Eq. (5.56), yields 

(5.58) 

Since the term zH z is fixed, the above optimization problem is equivalent to 

(5.59) 

We note that SH z = I:~= I Sf zi with 

(5.60) 

Hence, SH z can be represented by 

[::] (5.61) 
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where 

L L 

1t1 - L zi(2)sqi + L zi(1)s;i 
i=l i=l 

[z1(1), .. · , z£(1), -zl(2), .. · , -z£(2)] s (5.62a) 
L L 

u2 L zi(2)spi + L zi(1)s~i 
i=l i=l 

(5.62b) 

with s = [s;1, • · • , s;L, sq1, · • • , sqLr· Substituting Eq. (5.61) and Eqs. (5.62) into 

Eq. (5.59), the objective function can be further reduced to 

[u;, u;] [ ::] ~ lud' + lu;l' 

sHzjzHs (5.63) 

where 

[ ]

T 
z _ z;(1), · · · z£(1), -z;(2), · · · -z£(2) 

z1(2), · · · Z£(2), z1(1), · · · Z£(1) 

Therefore, Eq. (5.59) can be rewritten as a homogenous quadratic optimization prob

lem such that 

(5.64) 

where the feasible set A = Sp X sp X ... X Sp X Sq X Sq X .•. X Sq = Sf: X Sf is a 2£ 

L L 
dimensional alphabet set. Once we obtain the solution §, the estimate of code matrix 

S follows. By substituting S and z into Eq. (5.57), we thus have the estimated value 
• A 1 A H 

of the channel, 1.e., h = 2£8 z. 
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5.2 Algorithms to Solve this Problem 

Due to the finite alphabet property of PSK symbol, in a general case, directly solv

ing optimization problem (5.64) is a nondeterministic polynomial-time (NP) hard 

problem [40], i.e., the optimal solution must be found by a global search method 

requiring O(pLqL) multiplications. In this section, we employ the semi-definite relax

ation (SDR) randomization method [37,41,42] and sphere decoding method [?,43] to 

efficiently solve the blind ML channel estimation and symbol detection problem. 

5.2.1 Quasi ML Detection by Semi-Definite Relaxation (41] 

The SDR-ML approach is an efficient algorithm closely approximating the blind ML 

detection with moderate worst-case computational cost. Generally, the SDR method 

consists of three steps: 

1. Relax the feasible set of the original problem in a way such that the relaxed 

problem can be more efficiently solved; 

2. Solve the relaxed problem; 

3. Convert the solution of the relaxed problem to an approximate solution of the 

original problem. 

Now, the maximization problem in Eq. (5.64) can be rewritten as 

s = arg max { sH As } 
sEA 

(5.65) 
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where A = zzH E <C2LxZL. Since SH As = tr(ssH A) = tr(:EA) with :E = ssH, the 

problem (5.65) can be further rewritten as 

max 

s.t. 

tr(:EA) 

sEA 

[:E]ii=1, i=1,··· ,2L 

(5.66a) 

(5.66b) 

(5.66c) 

where Eq. (5.66c) comes from the property of PSK symbol, i.e., sis: = 1 for all i 

and is a linear constraint. However, the constraint of Eq. (5.66b) implies that :Eisa 

positive semi-definite (PSD) matrix of rank one. If we omit this rank-one constraint 

and relax Eq. (5.66b) to merely a PSD constraint, then we have 

max tr(:EA) 

s.t. 

[:E]· · = 1 i = 1 · · · 2L 
'l.'l. ' ' ' 

(5.67a) 

(5.67b) 

(5.67c) 

which is a convex SDP problem and its globally optimal solution can be efficiently 

found using the interior-point method [46]. To solve this complex-valued SDP prob

lem, we need to convert it to an equivalent real-valued problem which can be verified 

to have the following expression, 

max 

s.t. 

tr(:E A) 

:E = ~ [:ER 
2 :EJ 

:ER = :E~ E JR2Lx2L, :EI = _ :Ef E IR2Lx2L 

:E ~ O, :E E JR4Lx4L 

[:ER]· · = 1 i = 1 · · · 2L 
'l.1. ' ' ' 

(5.68a) 

(5.68b) 

(5.68c) 

(5.68d) 

(5.68e) 
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with 

where :ER and :Er are the respective real and imaginary parts of :E, AR and A 1 

are the respective real and imaginary parts of A. Following Theorem 2 in [42], 

the problem (5.68) has a simpler formulation to be solved without considering the 

structural constraints (5.68b) and (5.68c), i.e., 

max 

s.t. 

tr(:E A) 

[:E]ii + [:E]i+2L,i+2L = 1, i = 1, · · · , 2£ 

(5.69a) 

(5.69b) 

(5.69c) 

which is again a convex optimization efficiently solvable by interior point methods. 
A A 

Once we obtain the solution, denoted by :E, then partition :E into 

where :Eil E ~2Lx2L for all i, l. Therefore, the complex-valued SDR solution of 

Problem (5.67) is represented by 

(5.70) 
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Table 5.1: SDR-ML Randomization Estimator 

Give the number of randomizations, denoted by Mrand, and 

A= z/zH, A= [AR -AI] 
AI AR 

Stepl. Solve the real-valued semidefinite program 

:E = arg max13EJR4Lx4L tr(:E A) 

Step2. Partition the solution 'E = [~11 ~12 ], and let 
:E21 :E22 

t = (tn + t22) + j (t21 - t12) 
Step3. (Randomization) Factorize t = \JH\J. 

for k = 1, 2, · · · , Mrand 

Randomly generate a. complex vector uk E C2L which is uniformly 
distributed on an 2£-dimensional unit sphere. 
Compute s(uk) = Quant(VHuk)· 

end; 
Choose the approximate solutions= s(uL), where 
l = a.rg maxk=l, ... ,M,.,md §H (uk)As(uk)· 

Step4. Thus, s is treated as a solution to symbol detection. 

From this optimum solution, an approximate solution to the original problem 

of Eq. (5.65) can be obtained using the Goemans-Williamson randomization tech

nique [47, 48]. This randomization method has been found to achieve good approxi

mation accuracy with a modest number of random search [41 J. To apply this random

ization process to our designed constellations, we perform Cholesky decomposition of 

t resulting in t = \JH\J with V = [vb · · · , v2L] being an upper triangular matrix. 

Then, we proceed the following steps: 

1. Randomly generate a complex vector uk E C2L which is uniformly distributed 

on an 2L-dimensional unit sphere. 

2. For k = 1, · · · , Mrand, where Mrand denotes the number of random search, 
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compute s(uk) = Quant(VHuk), where Quant(t): the function q = Quant(t) 

sets q to the element of A that is closest (in terms of Euclidean distance) to 

t. In other words, the entries in first half part of vector \TH uk are quantized 

to symbols in p-PSK constellation, and the entries in second half part of vector 

\fHuk are quantized to symbols in q-PSK constellation. 

3. Choose the SDR approximate solution to be s = s(u1), where 

l = arg maxk=l,-·· ,Mrun<l §H (uk)As(uk)· 

Finally, vector s is treated as an approximate solution to the original optimization 

problem in Eq. (5.65). The pseudocode of this modified SDR-ML detector for our 

designed constellations is described in Table 5.1. 

5.2.2 Blind ML Detection by Sphere Decoding 

In this section, we consider the application of sphere decoding algorithm to our blind 

ML channel estimation and detection problem (5.64). 

The sphere decoding algotithm [49, 54], which can optimally solve Boolean 

quadratic-programming (BQP) problem, has been recently used for coherent MIMO 

ML detection [43,50,51]. The basic idea of sphere decoding is a point search method, 

i.e., find the optimal lattice point that lies inside a sphere of given radius R centered 

at the received point, as shown in Fig. 5.9. In other words, only the lattice points 

within the square distance R2 from the received point are considered in the metric 

minimization [49]. Among the several sphere decoder implementations [43, 44,49-51], 

we choose a fast closest point search algorithm proposed in [43-45] based on the 

Schnorr-Euchner (SE) search strategy [52]. 

First, we notice that matrix zzH in Eq. (5.64) is not full rank. In fact, its rank 

is only two. Hence, we cannot directly use sphere decoding algorithm but have to 

reformulate the problem of Eq. (5.64). To do that, let matrix Z be an orthogonal 
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Figure 5.9: Geometrical representation of sphere decoding. 

complementary matrix for the column-orthogonal matrix Z, and we have 

(5.71) 

where II Z ll2 denotes the norm of matrix Z. With the unit-norm property of PSK 

symbol, the problem (5.64) has the following reformulation 

which can be further expressed as 

s = arg min { sH P s} 
sEA 

(5.72) 

(5.73) 

where P = 'l/zH + 12L >- 0 and full rank. Thus, the Cholesky factorization can be 

applied to this positive definite matrix P, where P = GH G with G being an upper 

triangular matrix. Furthermore, the problem above becomes 

s = argmin {I!Gsjj~} 
sEA 

(5.74) 

Now, we are able to employ sphere decoding algorithm to this minimization problem. 

Sphere decoding only examines those candidate vectors s that all elements of s lie 
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inside a sphere of radius R [43], i.e., 

(5.75) 

Since matrix G has upper triangular matrix structure, the condition (5.75) can be 

checked element-wise. That being said, after we have found preliminary decisions 81 

for the last 2£- i components s1, i + 1 :S l :S 2£, we obtain a condition for the ith 

component si, 1 :S i < 2£. To make this more clear, let 9ik denote the (i, k)-th entry 

of G with 1 :S i, k :S 2£ and dist;+l denote the squared distance for the last 2£- i 

components, i.e., 

2L 2L 2 

dist;+l = L L 9tkSk 
l=i+l k=l 

(5.76) 

Then, the squared distance, dist;, corresponding to the last 2£ - i + 1 components 

for the candidate symbols si, must satisfy the following distance constraint, 

(5. 77) 

where sum( i) denotes the linear combination of last 2£- i components for i-th search 

layer, i.e., 

2L 

sum( i) = L 9iksk 
k=i+l 

(5.78) 

If some si is found to satisfy Eq. (5.77), the search will move up to the (i -l)th layer. 

Keep doing this search process until i = 1 is reached and thus, a valid vector s is 
found in the sphere. Then, the search radius R is updated by 

(5.79) 
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and the search is repeated with this updated search radius R. Otherwise, if Eq. (5. 77) 

cannot be satisfied for some index i, then, i is incremented and another candidate 

si+1 is tested. If no possible s in this search process for some updated radius R can 

be found, the search is terminated. 

In order to clearly understand the principle of sphere decoding originally for PAM 

constellation and properly modify to our designed PSK constellation, we like to recall 

the following key points in this algorithm [37, 43, 49, 52]. 

1. Initial search radius. Since theSE search strategy [43,52] is usually employed in 

fast sphere decoding algorithms, initial radius R is always unbounded and set 

a.t a. reasonably large value so that a.t least one lattice point lies in the sphere. 

In practice, the choice of initial radius can be adjusted, i.e., if no point is found 

inside the sphere of radius R, the operation can be repeated with a. greater 

radius. 

2. The Viterbo-Boutros (VB) radius contraction [49]. This strategy attempts to 

accelerate the closest point search in lattice by iteratively contracting the search 

radius, which consists of three steps: 

(a.) Given G and initial radius R0 , set the search radius R = Ro; 

(b) Find a. lattice point s E A inside the sphere to satisfy IIGsjj2 < R, then, 

saves= sand update R = IIGsll2; 

(c) Repeat Step (b), otherwise, stop searching. 

3. The Schnorr-Euchner (SE) search strategy [43,52]. This strategy takes advan

tages of the Ba.ba.i nearest plane algorithm [53] and the Pobst strategy [54-56] 

to improve the previous closest point algorithms by ordering the candidate 

symbols for a. lattice point search in terms of nondecreasing distance from the 

transmitted symbol vector. 
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Table 5.2: Best Symbol Search that Minimizes Eq. (5.77) 

fl. [mi,stepi,ni] = Bestsymbol(sum(i),9ii,M) // M is chosen to be p or q 
1. L.c = angle (-sum( i) / gii) // phase ( -7!' < L.c :S 7l') 
2. x = ~(L.c) //phase index(-~< x :S ~, x E JR) 
3. mi = round(x) //integer phase index (mi E Z) 
4. ni = 1 // initialize the number of examined candidates 
5. stepi = sign(x- mi) // initialize the step size for si 

angle(x) denotes the phase angle of x, where angle(·) E ( -7!', 7r]. 
round(x) denotes the quantized integer closest to x E JR. 
sign(x) is 1 if x > 0, and -1 if x :S 0. 

Table 5.3: Next Symbol Selection using SE Search 

1. mi = mi + stepi //zig-zag through the remaining symbols 
2. stepi = -stepi - sign(stepi) //update step size 
3. ni = ni + 1 //update the number of examined 

candidates for si 

Therefore, the key issue in the application of the sphere decoding principle to 

our blind ML channel estimation and detection problem is how to generalize the SE 

search strategy originally for PAM constellation to our designed PSK constellations. 

This generalization can be done by two stages: (a) Select the best candidate PSK 

symbol for si in the ith layer such that the distance disti starts with the smallest 

value, i.e., find the phase index mi that minimizes disti in Eq. (5.77). (b) Otherwise, 

the search moves down to the ( i + 1 )th layer and then, zigzag through the remaining 

phase indices such that disti+l increases monotonically. Owing to this nondecreasing 

property, the closest point search in lattice can be safely terminated as long as the 

distance exceeds the current sphere radius R. 
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Table 5.4: Pseudocode for Blind ML Sphere Decoder 

SphereDecoder (G, p, q, 2£, Ro) 

Input: symbol size 2£, 2£ x 2£ upper triangular matrix G, p-PSK constellation, q-PSK constellation 

initial radius Ro 

Output: the estimated symbol vector s 
1 R = Ro, dist2L = I92L,2LI 

2 82£ = 1, ffi2L = 0 

3 step2L = -1 

4 n2L = 1 

5 i = 2£-1 

6 sum(i) = 9(2L-1)2L 

7 [m;,step;,n;] = Bestsymbol(sum(i),g;;,q) 

8 <loop> 

9 M =p or q 

10 if i < 2£ { 

11 d . t2 I _;hm· + ( ·)12 d. t2 IS i = 9iit:' M ' SUm 2 + IS i+l 

12 if dist; < R and n; :::; M { 

13 5; = eiif rn; 

14 if i # 1 { 

15 i = i- 1 

16 sum(i) = L:f~i+ 1 9il · 8l 

17 M =p or q 

18 [m;,step;,n;] = Bestsymbol(sum(i),g;;,M) 

19 } else 

20 { s = 5 

21 R = dist1 

22 i = i + 1 

23 M =p or q 

24 [m;,step;,n;] = Nextsymbol(m;,step;,n;) 

25 

26 } else 

27 { do { 

28 

29 

30 

31 

32 

33 

if i == 2£ return s and exit 

i=i+l 

M=porq 

} while n; == M 

[m;,step;,n;] = Nextsymbol(m;,step;,n;) 

34 goto < loop > 

// initialize sphere radius and distance 

// initialize 82£ and phase index 

I I initialize step size of phase index 

// initialize counter for examined candidates for S2£ 

I/ start with (2£- l)th layer 

//linear combination of last 2£- i components, see Eq. (5.78) 

//best candidate symbol and phase index for S2£_ 1 

/I judge p-PSK or q-PSK constellation by index i 

//update squared distance 1 :::; i < 2£, see Eq. (5.77) 

/I check sphere radius and constellation size 

//save the candidate symbol for s; 

// not reached 1st component 81 

//move up 

// linear combination of last 2£- i components, see Eq. (5.78) 

// judge p-PSK or q-PSK constellation by index i 

/I best candidate symbol and phase index for s; 

// reach the first component 

// best lattice point so far 

// update sphere radius 

II move down 

II judge p-PSK or q-PSK constellation by index i 

/I next candidate symbol examined for s; 

// outside sphere and search terminated 

I/ move down 

//judge p-PSK or q-PSK constellation by index i 

// while all candidate symbols examined 

// next candidate symbol examined for 8; 
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To make this sphere decoding algorithm easier to understand and operate, we 

provide a detailed pseudocode in Table 5.2, 5.3 and 5.4 for our blind ML sphere 

decoder, which properly modifies the algorithms given in [?, 43]. 

5.3 Simulation Results 

In this section, we provide several simulation examples to examine the performance 

of our new blind ML detection method for the Alamouti STBC channel. In all the 

tests, the transmitted signals are selected at random alternately from a Q-PSK (p = 

4) and a T-PSK (q = 3) constellation as required by our signalling scheme. Different 

blocks of symbols consisting of different numbers of frames are transmitted for the 

tests. Here, we consider 10, 15 and 20 frames in one transmission block respectively, 

i.e., L = 10, 15 and 20 in Eq. (5.52). The SNR here is defined as the average trans

mitted symbol energy to noise ratio (Es/N0 ), and gradually increased from OdB to 

20dB. At the receiver, we jointly estimate the channel coefficients and the transmit

ted symbols using the SDR-ML detector and sphere decoder, where the number of 

randomization of the SDR-ML detector is 40, i.e., Mrand = 40. In implementation, 

we carry out 50 trials, in each of which the channel is randomly generated following 

an i.i.d. circular Gaussian distribution. At each SNR, the average normalized MSE 

( E"~ = 5
1
0 2:::~?:, 1 llhk- hkll2 /llhkll 2

) between the true channel coefficients and their es

timates is calculated and the average symbol error rate (SER) is also computed. 

Example 1: The purpose of this example is to evaluate the average normalized 

MSE of the estimated channel vector over which the signals are transmitted. In 

Figure 5.10, the solid curves with square, circular and diamond marks show the 

average normalized MSE of our blind SDR-ML detector. The dash-dot curves with 

plus, asterisk and "x" marks show the average normalized MSE of our blind sphere 

decoder. Also, the dash curves with triangle marks show the corresponding average 
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-e- SDR-ML QPSK & TPSK 10 frames 
-e- SDR-ML QPSK & TPSK 15 frames 
-+- SDR-ML QPSK & TPSK 20 frames 
+ · Sphere QPSK & TPSK 10 frames 
· "* · Sphere QPSK & TPSK 15 frames 
· -><· • Sphere QPSK & TPSK 20 frames 
-<!- Sphere QPSK 15 frames 
-v- Sphere QPSK 20 frames 

10-
4

~========~===========c~--------i---------~ 
0 5 10 

SNR [dB] 
15 20 

Figure 5.10: Channel normalized MSE vs. SNR using blind ML detection methods 

normalized MSE of the channel estimates using blind sphere decoder which uses only 

one Q-PSK constellation. 

From the solid and dash-dot curves, it can be observed that as the SNR increases, 

the average normalized MSE of the estimated channel coefficients quickly decreases, 

the longer is the transmission block, the smaller is the estimation error. On the 

contrary, as shown in the dash curves, no matter how long the transmission block 

is, the channel coefficients cannot be estimated with any degree of accuracy. This 

poor performance is due to the rotational ambiguity associated with the single signal 

constellation. Our signalling scheme employing two signal constellations eliminates 

such rotational ambiguity and thus offers substantially superior normalized MSE per

formance without using any pilot symbols. 

Example 2: In this example, we are interested in the average SER performance 

of our signalling scheme equipped with the blind SDR-ML detector and the blind 
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-e- SDR-ML QPSK & TPSK 10 frames 
-e- SDR-ML QPSK & TPSK 15 frames 
-+-- SDR-ML QPSK & TPSK 20 frames 
-+- Sphere QPSK & TPSK 10 frames 

-•-- Sphere QPSK & TPSK 15 frames 
- -«-- Sphere QPSK & TPSK 20 frames 
- coherent detection 
---<l- Sphere QPSK 15 frames 
-'<7- Sphere QPSK 20 frames 

10~~========~========~==~----i_---~~ 
0 5 10 

SNR [dB] 
15 20 

Figure 5.11: Average SER vs. SNR using blind ML detection methods 

sphere decoder. For comparison purpose, the average SER performance of classical 

blind sphere decoder (which uses only one Q-PSK constellation) and the coherent 

ML detection (which necessitates perfect channel knowledge at the receiver) are also 

plotted. In Figure 5.11, the solid curves with square, circle, diamond marks represent 

the average SER of our blind SDR-ML detector. The dash-dot curves with plus, 

asterisk, "x" marks represent the average SER of our blind sphere decoder. Also, 

the dash curves with triangle marks are the average SER of classical blind sphere 

decoder, and the solid curve shows the average SER of coherent ML detector. 

From Fig. 5.11, it can be observed that when the block data consists of 20 frames, 

at an average SER of at the w-4 , the difference in SNR requirement between our 

signalling scheme and that the coherent detection method is only 1.5 dB. At lower 

SER, the difference is even smaller. On the contrary, the dash curves show that the 

rotational ambiguity in classical signal transmission results in very poor average SER 
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performance due to the exploitation of only a single Q-PSK constellation. 

In summary, the two simulation examples above verify our theoretic analysis. 

When only finite received signals are provided, the blind ML detection methods em

ploying our signalling scheme can eliminate the rotational ambiguity and thus, achieve 

substantially better performances of channel estimation and symbol detection without 

the aid of pilot symbols. 



Chapter 6 

Conclusion and Future Work 

6.1 Conclusion 

In this thesis, we proposed a novel blind channel identification technique for Alamouti 

STBC channel by properly designing and transmitting signals. Using our signalling 

scheme, we proved that in the noise-free case, only two distinct pairs of symbols 

(two consecutive frames) are needed to uniquely determine the channel coefficients 

and decode the symbols, while in the case of complex Gaussian noise, if the pth

order and qth-order statistics (p and q being co-prime integers) of the received signals 

are available or can be estimated accurately, we are still able to uniquely determine 

the channel coefficients. In both cases, simple closed-form solutions were derived by 

exploiting specific properties of the Alamouti code and linear Diophantine equation 

theory. 

However, when only a limited number of received data are available, under Gaus

sian noise environment, we suggest the use of the semi-definite relaxation randomiza

tion method and the sphere decoding method to implement blind ML detection so 

that the joint estimation of the channel and the transmitted symbols can be efficiently 

facilitated. Simulation results show that our blind ML estimation methods provide 

59 
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superior the average normalized mean square error in channel estimation compared 

to the method using only one constellation and that the average symbol error rate is 

close to that of the coherent detector, particularly when the SNR is high. 

As an extension of our signalling scheme to other channels, we applied a specific 

space-time coding technique to multi-input single-output system with an even num

ber of transmitter antennas. We demonstrated that this system has an equivalent 

representation which consists of multiple Alamouti STBC subchannels. Hence, our 

blind channel estimation technique is also useful to the estimation of this particular 

space-time coded MISO communication system. 

6.2 Future Work 

There are many possibilities for future work in this area. 

1. In this thesis, our signalling scheme is proposed for the estimation of single user 

Alamouti STBC channel. In the future, we may consider to apply it to multiple 

user scenario. 

2. Here, we discuss the estimation of Alamouti STBC channel under flat fading en

vironment. If Orthogonal Frequency Division Multiplexing (OFDM) technique 

is employed, further possibility may include extending the channel estimation 

from fiat fading channel to frequency selective Alamouti STBC channel. 

3. The idea of our signalling scheme may also be applicable to MIMO system 

with the generalized OSTBC, i.e., estimating the channel through a properly 

designed signalling scheme. 

4. In addition, the idea of joint channel estimation and symbol detection opens 

up many research possibilities. In implementation of our blind ML estimation 
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methods, the SDR-ML detector and the sphere decoder are both found to be 

very slow in operation when the frame number in one observation block is 

beyond 20. To improve the performance of our blind ML estimation methods, 

there may exist other optimization algorithms which can efficiently handle the 

maximum likelihood estimation problem with large data size. 



Appendix A 

Proof of Theorem 1 

To prove Theorem 1, we need the following lemmas and definitions. 

Lemma 1 [39] If gcd(p, q) = 1, the following Diophantine equation 

pm+qn=k (A. I) 

has integer solutions with respect to variables m and n. If ( m 0 , n0 ) is a specific solution 

to Eq. (A.l), then, the set of all solutions can be characterized by 

m = m 0 + qt, n = n0 - pt (A.2) 

where t is any integer. • 
Proof: From pm + qn = k and pm0 + qn0 = k, we have p(m- m0 ) + q(n- n0 ) = 0. 

Since gcd(p, q) = 1, we deduce that p divides n - n0 . Let n = n0 - pt, so that 

m = m0 +qt. The required result follows from substituting these into Eq. (A.1). 0 

Definition 1 [39] Let m be a natural number. If a - b is a multiple of m, then we 

say that a and b are congruent mod m, and we write a= b (mod m). • 
62 
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The congruence has the following fundamental properties [39]: 

1. a= a (mod m) (reflexive); 

2. If a= b (mod m), then b =a (mod m) (symmetric); 

3. If a= b,b = c (mod m), then a= c (mod m) (transitive). • 
The above three properties show that congruence is an equivalence relation. The 

set of integers can be partitioned into equivalence classes so that integers in each 

class are congruent among themselves, and two integers from different classes are not 

congruent. We call these equivalence classes residue classes. 

Definition 2 [39] We denote by cp(m) the number of residue classes (mod m) co

prime with m. This function cp(m) is called Euler's function, and it may also be 

described as the number of all positive integers not exceeding m and prime with m . 

• 
The Euler function has the following properties [39]: 

1. Multiplicative property, i.e., If gcd(m, m') = 1, then, cp(mm') = cp(m)cp(m'). 

2. For any integers m, if the standard factorization is given by 

m = Pi1 
• • • p~·, P1 < P2 < · · · < Ps 

where Pl? P2, · · · , Ps are prime number, then, we have 

3. For any integer m, we have 

1 
cp(m) =mIT (1--) 

pjm p 

(A.3) 

(A.4) 

(A.5) 
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where pjm defines m is divisible by p, and p runs over the distinct prime divisors 

of m. • 

Definition 3 [39] If we select one member of each residue class co-prime with m: 

al' ... 'acp(m) 

then we call this set of integers a reduced residue system. • 
Lemma 2 [39] Let a 1 , a2 , ... , acp(m) be a reduced residue system, and suppose that 

gcd(k, m) = 1. Then ka1 , ka2 , ..• , kacp(m) is also a reduced residue system. • 

Proof: Clearly we have gcd(kai, m) = 1, so that each kai represents a residue 

class co-prime with m. If kai = kaj (mod m), then, since gcd(k, m) = 1, we have 

ai = aj (mod m). Therefore, the members kai represent distinct residue classes. 0 

Lemma 3 [39] (Euler) If gcd(k, m) = 1, then, kcp(m) = 1 (mod m). • 

Proof: From Lemma 2, we have: 

cp(m) cp(m) 

IT (kav) = IT av (mod m) 
v=l v=l 

Since gcd(m, ai) = 1, it follows that kcp(m) = 1 (mod m). 0 

In order to prove Theorem 1, we also need the following lemmas. 

Lemma 4 [58] Let two positive integers p and q be co-prime. Then, for any given 

integer k, there exists a unique pair of integers m and n such that 

k = pm + qn, for 0 :S m < q (A.6) 
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Furthermore, m and n can be explicitly determined by 

m 

n 

I k <p(q}-11 
kp<p(q}-1 - q I p q 

k r kp'P(q)-11 q (1- p<p(q}) +pI q 

(A.7a) 

(A.7b) 

• 
Proof: Since gcd(p, q) = 1, by Lemma 1, there exists a pair of integers m and n 

satisfying Eq. (A.6). To prove the uniqueness of the solutions, suppose there exist 

two different pairs of m, n and m', n' with 0 :S m, m' < q such that 

k 

k 

pm+qn 

pm' +qn' 

(A.8a) 

(A.8b) 

From these two equations, we have (m- m')p = (n'- n)q. Since gcd(p, q) = 1, q 

divides m- m'. Combing this with condition 0 :S m, m' < q results in m = m' 

and thus, n = n'. Therefore, the solution is unique. In the following, we prove that 

Eqs. (A.7a) and (A.7b) are true based on the Euclid algorithm (see Appendix C). 

From Eq. (A.6), we have 

k :=pm (mod q) (A.9) 

Since gcd(p, q) = 1, p'P(q)-1 is also co-prime to q. Multiplying both sides of Eq. (A.9) 

by p'P(q)-1 yields 

p'P(q)-1k = p'P(q}-1pm (mod q) 

= p'P(q)m (mod q) (A.10) 
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By Lemma 3, we have p'P(q) = 1 (mod q). Substituting this into Eq. (A.10) leads to 

m = kp'P(q)- 1 (mod q) 

kp<p(q)-1 - q I kp<p:q)-11 

where 0::; m < q. Substituting Eq. (A.ll) into Eq. (A.6) yields 

k fkp'P(q)-11 
n = q (1- p'~'(q)) + p I q 

(A.11) 

(A.12) 

0 

Lemma 5 [58] Let two positive integers p and q be co-prime, Sp and Sq denote two 

symbols chosen from p-PSK and q-PSK constellations, respectively, i.e., Sp E SP and 

Sq E Sq. Suppose 

(A.13) 

then, Sp and Sq can be uniquely determined by 

( 
27r (k fkp'P(q)-

11)) sp = exp jp q (1- p'P(q)) +pI q (A.14a) 

Sq = exp (}; ( kp'~'(q)-1 - q ~ kp'~':q)-
1

1)) (A.14b) 

where 0::; ( kp'P(q)- 1 - q rkp"'~)-ll) < q. • 
Proof: From Lemma 4, for any given k, there exists a pair of sp and sq satisfying 

Eqs. (A.14) and (A.6). Therefore, we have 

( 
.27rk) 

exp Jpq = ( 
.21r(mp + nq)) 

exp J 
pq 

( 
.21rm) ( .27rn) exp J-q- exp Jp 
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That is, such a. pair of sp and sq is a. solution to Eq. (A.49). In the following, we will 

prove the uniqueness of the solutions. To do that, suppose there exists a. different 

pair of symbols s~ E Sp and s~ E Sq satisfying Eq. (A.49). Hence, SpSq = s~s~. Let 

sP = exp (};n) , 0 :S n < p and sq = exp (/:m) , 0 :S m < q 

s~ = exp (/:n') , 0 :::; n' < p and s~ = exp (l1rqm') , 0 :::; m' < q 

Then, we have 

This is equivalent to 

(n- n')q = (m'- m)p (mod pq) 

(A.15a.) 

(A.l5b) 

(A.l6) 

(A.l7) 

Therefore, m'- m = 0 (mod q) and n- n' = 0 (mod p). Since 0 :::; m, m' < q and 

0:::; n,n' < p, we have m = m' and n = n'. 0 

Lemma 6 [58] Let spn ESP and Sqn E Sq for n = i, i + 1 be four symbols respectively 

chosen from p-PSK and q-PSK constellations, p and q being co-prime positive inte

gers. Define ail = H Sp(i+l)S~ + Sq(i+l)s;i) and ai2 = H SpiSq(i+l) - SqiSp(i+l)). Then, 

we have 

(A.l8) 

• 
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Proof: From the definition of ai1 and ai2, we have 

(A.19a) 

(A.19b) 

Adding both sides of the two equations above yields jaid2 + jai2l2 = 1. 0 

Lemma 7 [58] Let Spn E sp and Sqn E Sq for n = i, i + 1 be four symbols respectively 

chosen from p-PSK and q-PSK constellations, p and q being co-prime positive inte

gers. Also, let ail = H Sp(i+l)s;ri + Sq(i+l)S~i) and ai2 = H SpiSq(i+l)- SqiSp(i+l)), where 

ail ~ jaideJ 8
H, Oil E [-1!", 7r) with o: ~arccos jail! and ai2 ~ jai2jeJB;2 , Oi2 E [-1!", 7r). 

Then, the solutions of the following equation 

I 1

2 
a·2 • = 1 

ail - exp(jw) 

with respect to variable w with 0 ::; w < 21!" can be expressed by 

Furthermore, for such w, we have 

ail - exp (jw) 

where l = 0, -1. 

w = eil + a - 2l1T" 

w = eil - a - 2l1T" 

(A.20) 

(A.21) 

(A.22) 

• 
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Proof Eq. (A.20) is equivalent to 

lai2l2 jail - exp(jw)j
2 

= a{i ail - a{i exp(jw) - ail exp(- jw) + 1 

laill2 -laill{ exp[j(w- eii)] + exp[-j(w- eil)]} + 1 

laid2 - 2laid cos(Bil- w) + 1 

where 0 :S: w < 21r. Using Eq. (A.18) in Lemma 6 results in 

which can be further simplified as 

cos(Bil- w) = laill =cos a 

Therefore, we get 

If w = eil +a- 2l7r, then, we have 

37r 
-7r - 2l7r < e.l +a- 2l7r < - - 2l7r - • 2 

(A.23) 

(A.24) 

(A.25) 

(A.26) 

(A.27) 

since Oil E [-1r,1r) and a E [0,1rj2}. Hence, for 0 :S: w < 21r, the possible values for l 

are 0 and -1. Similarly, when w =Oil- a- 2l7r, the possible values for l are also 0 

and -1. 
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In addition, using Eq. (A.26), we have 

ail - exp (jw) 

= 

exp(jOil)(laill- exp(±ja)) 

exp(jOil) (I ail I -cos( a) =f j sin(a)) 
±j ai2 

exp(jOil)Jl -jai1l2 

where we have used jai11 = cosa. By Lemma 6, sina 

(A.28) 

a E [0, ~]. From the definition of ail = jai1jeJ0
il and ai2 = jai2jeJ0

i 2 , Eq. (A.28) can 

be further reduced to 

ail - exp (jw) 
w = oil + a - 2l1f 

w = oil - a - 2l1f 

{ 
j exp (j(Oi2- Oil)), w =Oil+ a- 2l7r 

-jexp (j(Oi2- Oil)), w =Oil- a- 2l7r 

~ { exp (j(Oi2- Oil+~)), 
exp (j(Oi2- Oil-~)), 

w = oil + a - 2l1f 

w =oil- a- 2l1f 

where l = 0, -1. This completes the proof of Lemma 7. 

We are now in a position to prove Theorem 1 [58]. 

Proof of Theorem 1: First, we rewrite Eqs. (4.43) as 

SpiSq(i+l) 

D 

(A.29a) 

(A.29b) 
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Particularly when ai1 = 0, the above equations are reduced to 

(A.30a) 

(A.30b) 

Using Lemma 5, from Eq. (A.30a), we can uniquely determine Spi and Sq(i+l} a.s 

( 
21r (k1 ( ) rk~pcp(q)- 1

1 ) ) exp jp q 1 - pcp(q) + p q (A.31a) 

Sq(i+l) ( 
21r ( 1 k1Pcp(q}-l1 ) ) exp jq k1pcp(q}-1 - q I q (A.31b) 

where k1 satisfies exp (j 2;;1
) = ai2 , k1 E [O,pq). Similarly, we can also uniquely 

determine Sqi and Sp(i+l} from Eq. (A.30b) as 

Sp(i+I) exp (j~ ( ~ (I - p•(o)) + p r ~·:oH 1 ) ) (A.32a) 

'" ~ exp (/; ( k,p•(o)-! - q r k,p•:o)-!1 ) ) (A.32b) 

where k2 satisfies exp (j 2;;2
) = -ai2, k2 E [O,pq). This proves Statement 1. 

In the following we will prove Statement 2. Since spi, Sp(i+l) ESP and Sqi, Sq(i+I} E 

Sq, the products s_;;.;sp(i+I) and s;isq(i+l} are still in Sv and Sq, respectively. Let 

s;,;sp(i+l} = exp (j21rfpjp), 0:::; .eP < p 

s;isq(i+l) = exp(j21rfqjq), 0:::; fq < q 

(A.33a) 

(A.33b) 
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From Eqs. (A.33), we have 

Sp(i+l) = exp (j2n£p/P) Spi, 0:::; £P < p 

Sq(i+l) = exp (j2nfq/q) sqi, 0:::; fq < q 

(A.34a) 

(A.34b) 

Substituting Eqs. (A.34a) and (A.34b) into Eqs. (A.29b) and (A.29a) results in 

SpiSqi (ail - exp (j 2n£p/P)) 

SpiSqi (ail - exp (j 2n£qjq)) 

(A.35a) 

(A.35b) 

Now, we can claim ai1 i= exp (j 2:e,,) and ail i= exp (j 2:e"). Otherwise, if ai1 = 

exp (j 2:er) for 0 :::; £P < p, then, ai2 in Eq. (A.35b) must be equal to zero. As a 

result, Eq. (A.29a) becomes 

(A.36) 

Since spi i= 0, from Eq. (A.36), we get 

(A.37) 

Let Sqi = exp (j 2n£qi/q) and Sq(i+l) = exp (j 2n£q(i+I)/q). Then, Eq. (A.37) is ex

pressed as 

(
.2n£qi) (.2n£P) (.2n£q(i+l)) exp J-- exp J-- = exp J , 

q p q 
(A.38) 

which is equivalent to 

pfqi + q£P = pfq(i+l) (mod pq), 0:::; £P < p (A.39) 
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Therefore, we have 

(A.40) 

Since p and q are co-prime, the above equation holds only if £P = 0 (modp). Combing 

this with 0 ~ £P < p yields £p = 0 and as a result, ai1 = 1 and ai2 = 0. With these 

ai1, ai2 and Eqs. (A.29), we get Sqi = Sq(i+l) and Spi = Sp(i+l) and we further have 

zi = zi+ll since zi = Sih and zi+1 = Si+1h in Eqs. (4.35), which contradicts with the 

assumption in Theorem 1 that zi and Zi+I are two distinct received signal vectors. 

Therefore, ai1 =f. exp (j 21r£p/P) and Eq. (A.35a) can be rewritten as 

( 
. 27rlp) ' 

ai1 - exp J P 

(A.41) 

Similarly, we can prove ail =f. exp (j27rf!q/q) and thus, Eq. (A.35b) can be rewritten 

as 

(A.42) 

Combining Eqs. (A.41) and (A.42) results in 

( 
27r£ ) ( .27r£ ) exp j---;/" + exp J ~ = 2 ail (A.43) 

for 0 ~ £P < p and 0 ~ l!q < q. In addition, since the product spisqi still belongs to 
' 

PSK constellation in Lemma 5, from Eqs. (A.41) and (A.42), we can get 

( 
. 27rl.,) 

ail- exp J-p"" 

2 

= 
-ai2 

( 
· 27rln) 

ail - exp J-;(" 

2 

=1 (A.44) 
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where 0 :::; ep < p and 0 :::; eq < q. For notation simplicity, let Wp ~ 2nfpjp and 

wq ~ 2nfqjq. By Lemma 7, we have 

Wp = {)il ±a- 2l17f 1 0:::; Wp < 27f 

Wq = ()il ±a-2l2n, 0 ::; Wq < 2n 

where l1 = 0,-1 and h = 0, -1. 

(A.45a) 

(A.45b) 

Now, we consider the following cases for all possible values of wP, Wq for l1 and l2 . 

Case 1: wP = ()il + a - 2ltn and wq = ()il + a - 2l2n. In this case, we have 

wp = wq + 2(l2 -li)n. This is equivalent to 

(A.46) 

Therefore, we have fqp = O(mod q) and fpq = O(mod p). Since gcd(p,q) = 1, 

eP = O(mod q) and fq = O(mod p). Combining with 0 ::; eP < p and 0 ::; fq < q yields 

eP = 0 and fq = 0. Substituting these into Eq. (A.43) results in ai1 = 1 and as a 

result, by Lemma 6, ai2 = 0. Thus, from Eqs. (A.29), we further get 

Spi = Sp(i+1) 1 Sqi = Sq(i+l) (A.47) 

which contradicts with our assumption in Theorem 1. Therefore, Case 1 cannot 

happen. 

Case 2: Wp = Bi1 - a - 2lt7r and Wq = ()i1 - a- 2l2n. Similar to Case 1, Case 2 

cannot happen either. 

Therefore, in order to prove Statement 2 of Theorem 1, we only need to consider 

the following cases according to all the possible conditions of Bi1 and a so that the 

corresponding ep and eq can be uniquely determined 
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Case 3: ejp(Oil+a) = 1, ejq(O;l-a) = 1, Wp =oil+ a- 2l(71" and Wq =oil- a- 2l27r. In 

this case, we will discuss all the following possible values of l1 and l2 . 

a. If 0 ~Oil+ a< 21r and 0 ~Oil- a< 21r, i.e., a~ Oi1 < 27r- a, then l1 = 0 a.nd 

l2 = 0. Otherwise, either l1 = -1 or l2 = -1. This results in 21r ~ wp < 47r or 

21r ~ wq < 47r, which contradicts with the angle constraints given in Eqs. (A.45). 

Therefore we have£ = ~ = (0; 1+a)p £ = '=!!L'l. = (0;1-a)q. 
' p 211" 211" ' q 211" 211" 

b. If -a ~ Bi1 < a, then l1 = 0 and l2 = -1. Otherwise, either l1 = -1 or 

l2 = 0. This yields 27r ~ wP < 47r or wq < 0, which also contradicts with the 

angle constraints given in Eqs. (A.45). Therefore we have £ = ~ = (0; 1 +a)p 
' p 211" 211" ' 

c. If -27r +a~ ()i1 <-a, then, h = -1 and l2 = -1. Otherwise, either l1 = 0 or 

l2 = 0. This leads to Wp < 0 or Wq < 0, which also contradicts with the angle 

constraints given in .Eqs. (A.45). Therefore we have£ = ~ = (0;1 +n+
2

1r)p and 
' p 211" 211" 

Case 4: ejp(Oil-a) = 1, ejq(Oil+a) = 1, Wp =oil- a- 2ll7r and Wq = oil+ a- 2l27r. 

Similar to Case 3, we will discuss all the following possible values of h and l2 . 

a. If a ~ Oi1 < 21r - a, then, l1 = 0 and l2 = 0. Otherwise, either l1 = -1 

or l2 = -1. This results in 27r ~ Wp < 47r or 27r ~ Wq < 47r, which also 

contradicts with the angle constraints given in Eqs. ( A.45). Therefore, we have 

£ = ~ = (On-a)p £ = '=!!L'l. = (On+a)q 
p 211" 211" ' q 211" 211" • 

b. If -a ~ Oi1 < a, then, l1 = -1 and l2 = 0. Otherwise, either l1 = 0 or l2 = -1. 

This yields wp < 0 or 21r ~ wq < 47r, which also contradicts with the angle 

constraints given in Eqs. (A 45) Therefore we have £ = ~ = (Oi1-n+
2

1r)p 
• • ' p 211" 211" ' 
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c. If -21r +a::; Bi1 < -a, then, l1 = -1 and l2 = -1. Otherwise, either l 1 = 0 

or l2 = 0. This yields wp < 0 or wq < 0, which also contradicts with the angle 

constraints given in Eqs. (A.45). Therefore, we have £p = '='f!- = (O;r-;:2tr)p, 

£ = '=!!.L!l = (O;r +o+2tr)q 
q 2tr 2tr . 

Therefore, from the above four cases we can uniquely determine £p and Cq as 

£P = wpp/27r and Cq = wq qj21f. Now, by Lemma 7 we can get 

(A.48) 

where l = 0, -1. Furthermore, from Eq. (A.41) we have 

SpiSqi = ai2 (. ) = exp (j2
7rk) , 0::; k < pq 

ail- exp ]Wp pq 
(A.49) 

Combining Eqs. (A.48) and (A.49), we can uniquely determine k as 

(A.50) 

where l = 0, -1. Therefore, by Lemma 5 we can uniquely determine the symbols spi 

and Sqi, i.e., Eqs. (4.45a) and (4.45b), and furthermore, with a pair of the unique £P 

and eq, we can uniquely determine the symbol Sp(i+l) and Sq(i+l) from Eqs. (A.34); 

i.e., Eqs. (4.45c) and (4.45d). This completes the proof of Theorem 1. 

0 



Appendix B 

Proof of Theorem 2 

To prove Theorem 2, we first establish the following lemmas. 

Lemma 8 [58] If a random variable, denoted by x, is complex circular Gaussian 

with zero-mean and variance 2a-2 then 

for any k E zt (B.l) 

where E[·] is the expectation operator and zt denotes the positive integer set. • 

Proof: Let XR and x1 respectively denote the real and image part of x, i.e., 

x = XR + j x1, with XR "' N(O, a-2
) and x1 "' N(O, a-2

). We write the binomial 

expansion of the kth power of x as 

(B.2) 

77 
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Taking expectation of both sides of Eq. (B.2), since xR and xr are independent with 

each other, we have 

E[t, G)r.u'-'x;-'] 
t, G)j'-'E[xkJ E[xl-'J (B.3) 

Since XR ,..._, N(O, 0"2 ) and x1 ,..._, N(O, 0"2), it can be verified that E[ xk] = E[ x~] = 0 if 

l is odd integer. For this reason, the proof can be carried out in two cases: 

1. When k is odd integer, one of l and k - l must be odd and thus, we have 

E[ xk] = 0 or E[ x~-1 ] = 0, for l = 0, · · · , k 

Therefor, Eq. (B.3) can be further deduced to 

(B.4) 

for k is odd integer. 

2. When k is even integer, Eq. (B.3) can be rewritten as 

(B.5) 

k/2-1 
~ Cn~ 1)/-2n-1E[x~n+l]E[x~-2n-l] (B.6) 

k/2 

+ ~ C~)/-2nE[x~n] E[x~-2n] (B.7) 

where the term (B.6) IS zero since E[ x~n+l] = 0 for l 2n + 1, n 
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0, · · · , k/2 - 1. The following task is to prove the term (B.7) is zero for 

l = 2n, n = 0, · · · , k/2. Since we assumed xR ,....., N(O, 0"2
), its probability 

density function is expressed by 

(B.S) 

Therefore, from the definition of expectation, we get 

(B.9) 

Since the first term in bracket is zero, Eq. (B.9) can be further derived 

100 ( 2 ) 0" XR 2n 1 
""-- exp --

2 
(2n- 1)xR- dxR 

V 211" -oo 20" 
1 !00 ( 2 ) 2 2(n-1) XR 

<T (2n- 1) . ""-- xR exp --2 dxR 
O"y 211" -oo 20" 

<T2 (2n- 1)E[x~n-1 )] 

<T4 (2n- 1)(2n- 3)E[ x~n-2)] 

(B.lO) 

where E[x~] = 1 and (2n-1)!! = (2n-1)(2n-3) · · ·1. Therefore, the term (B.7) 
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has the following derivation: 

k/2 

~ (2:)/-2nE[ Xkn] E[ X~-2n] 

k/2 ( k) ~ 
2
n ( -1)~-n(2n- 1)!! a 2

n (k- 2n- 1)!! ak-
2

n 

k/2 k' 
ak L) -1)~-n ( )'(k ·_ )I (2n- 1)!! (k- 2n- 1)!! 2n. 2n. 

n=O 

k k/2 Ln k! 
a ~(- 1 ) 2 

(2n)!!(k- 2n)!! 

k/2 k' 
ak L) -1)~-n . 

n=O 2n n! 2~-n (~ - n)! ' 
(B.ll) 

where (2n)!! = 2n n! and (k- 2n)!! = 2~-n (~- n)!. Let k = 2l, by the property 

of (2l)! = (2l)!! (2l- 1)!!, the right side of Eq. (B.ll) becomes 

a 21 ~( _ 1)!-n (2l)!!(2l- 1)!! 
~ 21n!(l- n)! 
n=O 

a2l [~( -1)!-n l! l (2l- 1)!! 
~ n!(l- n)! 
n=O 

= a" [~ (~) 1 n ( -1)'-•] (2l- 1)!! 

= a 21 (1- 1)1(2l- 1)!! 

0 (B.12) 

Since both terms (B.6) and (B.7) are zero and as a result, Eq. (B.5) is zero for 

even integer k, i.e., E[ xk] = 0, for even k. 

Therefore, from these two proofs, we have E[ xk] = 0 for any positive integer k. 

0 
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Lemma 9 [58] Let two positive integers p and q be co-prime and a and (3 be two 

complex numbers. Then, there exists a complex number x satisfying 

(B.13a) 

(B.13b) 

if and only if a and (3 meet the following conditions: 

(B.14a) 

arg((J)p - arg( a )q = 0 mod 2n (B.14b) 

Furthermore, under the above two conditions, x is uniquely determined by 

(B.15) 

where e = arg(,6~+2m7r = arg(o1+
2

n7r for 0:::; m < q and 0:::; n < p, with such integers m 

and n uniquely determined by 

m 

n 

Here k = arg(,B)p~arg(o)q. 

r ( k) cp(q)-ll 
( -k)pcp(q)-1- q I - ~ 

k () r(-k)pcp(q)-ll - ( 1 - pep q ) - p 
q q 

(B.l6a) 

(B.16b) 

• 
Proof: Let x = lxlei8 , a = laleiarg(o) and (3 = lf31&arg(,6). Then, Eqs. (B.13a) 

and (B.l3b) have a unique solution if and only if Condition (B.14a) and the following 
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conditions are satisfied, 

arg(a) + 2mr 

arg(,B) + 2m7f 

(B.l7a) 

(B.17b) 

where 0:::; B,arg(a),arg(,B) < 21r, 0:::; m < q and 0:::; n < p. Notice that Eqs. (B.17) 

have a unique solution with respect to variables m and n iff the following Diophantine 

equation has a unique solution, 

arg(,B)p- arg(a)q 

2
7f = qn - pm, for 0 :::; m < q and 0 :::; n < p (B.18) 

Using Lemma 4, Eq. (B.18) has a unique solution iff arg(f3)p;:rg(a)q is an integer. 

Following the proof of Lemma 4, we can have the unique solution of Eqs. (B.l6) as 

required. 0 

Proof of Theorem 2: First, we prove that Eqs. (4.49) are true. From the channel 

model of Eq. ( 4.48), we raise the first received signal to its pth power, i.e., 

zP(l) = [sph1+sqh2+~(l)r 

t, (~) ( Sphl + Sqh2) k e-k(l) (B.19) 

where (f) denotes the binomial coefficient. Taking the expectation of both sides of 

Eq. (B.l9) over random variables sp, Sq and ~(1), we have 

E[z'{l)[ ~ t, (i)E[(s,h1 + s,h2)'e'-'(t)] 

~ ~ (i)E[(s,h1 + s,h,)']E[('-'(1)] +E[{s1,h1 + s,h2 )'] (B.20) 



M.A.Sc. Thesis- L. Zhou -McMaster- Electrical & Computer Engineering 83 

Since the noise ~(1) is complex white Gaussian and independent with the transmitted 

symbols sP and sq, using Lemma 8 results in E[~1 (1)] = 0 for l = 1, · · · ,p, the 

summation term in Eq. (B.20) is thus zero. Taking binomial expansion to the second 

term in Eq. (B.20) yields 

t, (~)E[(sphd(sqh2 )p-L] 

h~ Efs;J + ~ (~) E [ ( s,h .)' ( s,h2)'-'] + hj E [ S::l 

~ (~)E [(s,h,)'(s,h2)'-'] + hj (B.2!) 

p-1 ( ) ~ ~ hi h~-1E[ s~ ]E[ s~- 1 ] + hi (B.22) 

hi (B.23) 

where E[s~] = 1, and E[s~] = 0 since gcd(p, q) = 1. The derivation from (B.21) to 

(B.22) is under the assumption that sP and Sq are independently selected from SP 

and Sq, respectively. Since E[ s~] = 0 for l = 1, · · · , p - 1, the summation term in 

Eq. (B.22) is zero, and Eq. (B.23) is thus derived. Therefore, combining Eq. (B.20) 

and Eq. (B.23), we have 

(B.24) 

By the same token, we have 

(B.25) 

Now using Lemma 9, we can prove the statement for h1 in Theorem 2. Similarly, we 

can prove the statement for h2 in Theorem 2. 0 



Appendix C 

.Euclid Algorithm 

The Euclid Algorithm is designed to compute the greatest common divisor for two 

integers a and b (not zero) from the following situations: 

1. If a is divisible by b, namely bia, then gcd(a, b) = b. This is indeed so because 

no number (b, in particular) may have a divisor greater than the number itself 

(for non-negative integers). 

2. If a = bt + r, for integers t and r, then gcd(a, b) = gcd(b, r). Indeed, every 

common divisor of a and b also divides r. Thus gcd(a, b) divides r. But, of 

course, gcd(a, b)lb. Therefore, gcd(a, b) is a common divisor of b and r and 

hence gcd(a, b) = gcd(b, r). The reverse is also true because every divisor of b 

and r also divides a. 

For example, let a = 294, b = 66. 

294 = 66 * 4 + 30 

66 = 30 * 2 + 6 

30 = 6 * 5 

Therefore, gcd(294, 66) = 6. 

84 

gcd(294,66) = gcd(66,30) 

gcd(66,30) = gcd(30,6) 

gcd(30, 6) = 6 
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For any pair a and b, the algorithm is bound to terminate since every new step 

generates a similar problem (that of finding gcd) for a pair of smaller integers. We 

have the following corollary: 

Corollary 1 For every pair of whole numbers a and b, there exist two integers x and 

y such that ax+ by= gcd(a, b). • 

For example: 294 * ( -2) + 66 * 9 = 6. 

Note that any linear combination ax + by is divisible by any common factor of 

a and b. In particular, any common factor of a and b also divides gcd(a, b). In a 

"reverse" application, any linear combination ax + by is divisible by gcd( a, b). 

One of the uses of the Euclidean algorithm is to solve the Diophantine equation 

ax+by =c. This is solvable (for x andy) whenever gcd(a, b) divides c. If we keep track 

of the quotients in the Euclidean algorithm while finding gcd(a, b), we can reverse the 

steps to find x and y. For p and q being co-prime integers, i.e., gcd(p, q) = 1, we can 

reverse the steps to find m and n to satisfy the Diophantine equation mp + nq = k 

for any given integer k since gcd(p, q) divides any integer. 
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