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ABSTRACT 

The estimation of physiological parameters that characterize electrical signal propagation 

in the heart is an important component of the inverse problem in electrocardiography. 

Recent studies show that some patterns in cardiac electrical signals (e.g. spiral waves) are 

associated with the re-entrance phenomenon seen in cardiac arrhythmia. Therefore, 

further research in this field will lead to improved detection and diagnosis of cardiac 

diseases and conditions. 

Electrical activity in the heart is initiated at the SA node and an electrical impulse 

propagates to the atria causing their mechanical contraction. Subsequent contraction of 

the ventricles (systole) followed by relaxation (diastole) completes the heart cycle. 

Evidence of electrical activity in cardiac cells is shown by a potential difference across 

the cell membrane that changes when ·ionic currents flow through the membrane's 

channels. This electrical activation of the heart can be modeled using a diffusion model in 

which the physiological parameters (e.g., conductivity) govern the resulting spatia­

temporal process. 

In this thesis we derive an inverse model for the electrical activation of the heart using 

the Fitzhugh-N agumo diffusion equations which account for the dynamics of spiral waves 

in excitable media such as, in our case, cardiac cells. The electric potential is expressed 

through activator and inhibitor variables and we simulate the measurements of the 

electromagnetic field are on the torso surface. A signal processing model is derived 
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where the physiological parameters are deterministic or stochastic, and the resulting 

physiological measurements are a function of space, time, and the parameters. 

We estimate these unknown parameters using an optimization algorithm that minimizes 

the cost function of the model. For our estimation we use Least Squares and we derive the 

Maximum Likelihood Estimator. We measure the performance using mean square error, 

and we compute the Cramer-Rao Lower Bound, which shows the minimum variance 

attainable. 

In our simulations we use a finite element mesh of a human torso to describe a realistic 

geometry to generate the potentials on the surface. Our results indicate that estimating the 

physiological parameters of a diffusion equation from the measurements taken outside the 

torso are feasible. This further suggests that ECG/MCG signals can be used to provide 

detailed information about the physiological properties of the electrical impulse generated 

in the heart and aid in diagnosis of various pathological conditions including arrhythmia. 
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NOMENCLATURE 

ECG Electrocardiogram 

MCG - Magnetocardiogram 

SQUID - Super Conducting Quantum Inference Devices 

V - Electric Potential 

B Magentic Potential 

E - Electric Field 

J - Current Density 

Q Charge 

Na Sodium 

K - Potassium 

D - Diffusion Coefficient 

rjJ - Concentration of Ions 

V - Gradient 

\7 2 - Laplacian 

Po - Peremeability of Vaccum 

u Conductivity 

N - Normal Distributioin 

E - Expected Value 

F Faradays Constant 
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1 INTRODUCTION 

In electrocardiography the goal is to describe the electrochemical activity of each cell in 

the heart through the acquisition and interpretation of electric potentials on the torso 

surface. As a non-invasive and practical diagnostic tool, the main objective is to gain a 

better understanding of the electrical activity in the heart. From an academic standpoint 

the gathering of information about the heart provides insight into regional and localized 

areas within the heart's chambers and will increase the accuracy of future cardiac models. 

From a clinical aspect, creating a clear image of the heart's activation process plays a key 

role in the early detection and treatment of cardiac diseases [Jeremic, 2000]. 

Modeling the cardiac activation at the microscopic level is a subject of extensive research 

and is commonly described as the 'forward' problem. There exist numerous models that 

describe membrane potentials such as the Hodgkin and Huxley, Fitzhugh-Nagumo, and 

Aliev and Panfilov models [Gulrajani, 1998(1)]. In all such models the activation 

wavefront is simulated using parameters for which we have a priori knowledge. 

Conversely, the inverse problem in electrocardiography is the estimation of physiological 

parameters that characterize electrical signal propagation in the heart from surface 

measurements. In the clinical environment the main purpose of solving this problem is to 

reduce the amount of information and to quantify parameters; thus providing detailed 

information about the electrical impulse generated in the heart, and aiding in the 

diagnostics of various pathological conditions. 
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1.1 THE INVERSE PROBLEM IN ELECTROCARDIOGRAPHY 

The inverse problem of electrocardiography is actually one that is made difficult by two 

characteristics. The first characteristic is that it does not have a unique solution - that is 

the relationship between the true cardiac source and remote observations are non-unique 

such that the same set of measurements could result from more than one source 

configuration [MacLeod, 1998]. The second problematic characteristic is that it is an ill­

posed problem because of attenuation and smoothing of the electromagnetic fields in the 

medium between the source and observations. As explained in Macleod, 1998, 

recovering the sources from the resulting remote measurements requires amplification 

and 'unsmoothing'. Then if this is applied to measurements that contain unavoidable 

model error, the result can be large or discontinuous error in the solution. One way of 

improving the ill-posed problem is to use a set of constraints on the solution which will 

restrict the admissible class of solutions, so that a continuous inverse exists. These 

constraints can be related implicitly through the definition of the cardiac source when 

devising the problem [Jeremic, 2003]. 

The electrical activation in the heart can be modeled using a diffusion model in which the 

physiological parameters govern the resulting spatio-temporal process. In our study, we 

derive an inverse model for the electrical activation of the heart using the Fitzhugh­

Nagumo reaction-diffusion equations which account for propagation of the action 

potential in excitable media such as, in our case, cardiac cells. 
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1.2BACKGROUNDSUMMARY 

In this section we present a brief overview of cardiac physiology. The human heart is a 

muscular organ that is responsible for pumping blood through the arteries and veins by 

repeated rhythmic contractions. The heart is composed of cardiac muscle that has the 

ability to self-excite and stimulate contraction. Adjacent cells are connected by junctions 

called intercalated discs which play a vital role as they allow the muscle to contract 

rapidly as a unit [Martini, 1999]. These gap junctions allow ions and small molecules to 

move from one cell to another, which creates an electrical connection between the two 

muscle cells. Therefore, an action potential can travel across an intercalated disc, moving 

quickly from one cardiac muscle cell to another [Martini, 1999]. 

The heart is encased in a protective double-walled sac called the pericardium, which then 

consists of an inner layer called the epicardium. The epicardium can then be described as 

the outer layer of the heart itself, while the myocardium and endocardium form the 

middle and innermost layers, respectively. The myocardium is the thickest layer, and the 

endocardium has a smooth surface to allow blood to flow easily through the heart's 

chambers. [Barrill, 2004] 

The heart consists of four chambers, two atria and two ventricles, which along with the 

anatomy in this section are depicted in Figure 1-1. Blood from the body is returned to the 

heart via the superior and inferior vena cava. It enters the right atrium, which when it 

contracts allows the blood to flow through the tricuspid valve and into the right ventricle. 

The contraction of the right ventricle pumps the blood to the lungs through the pulmonary 

valve and pulmonary artery. Oxygenated blood returns to the left atrium of the heart via 
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Master's Thesis- Rund Abou-Marie McMaster- Electrical Engineering 

the pulmonary veins and when this atrium contracts, blood travels through the mitral 

valve and into the left ventricle. Then the contraction of the left ventricle pumps the blood 

through the aortic valve and into the aorta which distributes the blood to the rest of the 

body. Thus during each contraction or 'systole', blood is pumped into the lungs and to the 

body from the right and left ventricles, respectively. The heart then refills during 

relaxation, or 'diastole' [Gulrajani, 1998(1)]. 

Each contraction of the heart is preceded and triggered by the electrical activation of the 

myocardial cells. The electrical activity of the heart starts within the 'pacemaker' cells 

that are collectively known as the sino-atrial node. As mentioned earlier, these pacemaker 

cells are spontaneously active, generating an action potential at regular intervals that in 

turn triggers the normal heartbeat [Gulrajani, 1998(1)]. We detail the electrical 

conduction system of the heart later in this thesis. 

1.3 OUTLINE OF EXISTING LITERATURE 

The underlying processes that control the cardiac activation can be described on a 

molecular level by the movement of ions. Several electrodynamic models that relate the 

membrane potential to variations in ionic current have been described in literature. In 

1952, Hodgkin and Huxley proposed the first quantitative model of wave propagation in 

squid nerve, which had a great impact on modeling various nonlinear phenomena in 

biology. Then, as explained in Panfilov, 1996, the first physiological model of cardiac 

tissue was developed in [Noble, 1962]. Further studies in this field resulted in the 
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development of realistic ionic models that accurately reproduce most of the basic 

properties of cardiac tissue, including the depolarization and repolarization of the 

membrane. 

In [Fitzhugh, 1955] the Hodgkin and Huxley model is reduced to a two-dimensional 

differential equations system. In [Abboud, 1993] a model of the heart is constructed 

where a full cardiac cycle is simulated, imitating the physiological activation wavefront 

propagation. The authors show that the reaction-diffusion model defined by the Fitzhugh­

Nagumo model can be used to exhibit properties such as oscillations and variable 

excitability in cardiac cells. Further in [Moreau-Villeger, 2004] a study using the Aliev 

and Panfilov model is described by the authors as an extension ofFitzhugh-Nagurno, and 

is used to estimate the electrical activity in canine hearts. It is evident that the simulation 

of cardiac activity using a reaction-diffusion model to describe the action potential has 

garnered considerable attention in the last decade. Complimentary to this, the field of 

inverse electrocardiography was summarized comprehensively for example, in reviews by 

[Rudy, 1988]. More recent publications by [Horacek, 1995] and [Gulrajani, 1998] have 

focused on formulating the inverse problem in ways that increase accuracy of results and 

remove obstacles to clinical application. 
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1.4 RESERCH OBJECTIVES 

In this section we outline our research objectives in using a realistic torso mesh along 

with our derived inverse model for the electrical activation of the heart using the 

Fitzhugh-N agurno reaction-diffusion equations. 

1. Investigate the feasibility of using our derived algorithm for estimating parameters 

of the diffusion model using ECG and MCG arrays. 

2. Determine and interpret whether the combination of ECG/MCG sensors versus 

ECG sensors alone contributes any additional, clinically relevant, information to 

our inverse problem. 

3. Outline preliminary framework for future work 
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1.5 RESEARCH APPROACH 

In our study we try to develop our numerical model in two main steps: First the 

computation of a transfer vector that establishes a relationship between the cardiac 

potentials and those on the torso surface. Then second, the solving of an optimization 

problem by using the aforementioned transfer vector. We outline our research approach in 

the following steps: 

1. Develop a computational model which includes the use of a finite element 

method tool, along with a realistic mesh of the human torso to simulate the 

measurement of the electromagnetic field on the surface. 

2. Derive a signal processing model whereby the physiological parameters and the 

resulting physiological measurements are a function of space, time, and the 

(possibly random) generated parameters. We do this for two cases; first with 

deterministic (and potentially unknown) heart parameters, and second the case 

where the parameters are assumed random. 

3. Develop parametric statistical models for corresponding measurements from 

ECG I MCG sensor arrays in the presence of modeling noise 

4. Solve the optimization problem using Nonlinear Least Squares to estimate 

unknown parameters, and compare with derived Maximum Likelihood Estimator 

5. Compute the Cramer-Rao Lower Bound on the variance of the estimators to 

examine and analyze the performance. 
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1.6 THESIS LAYOUT 

This thesis is comprised of six chapters. In Chapter 2 we introduce the reader to 

electrophysiology concepts that directly relate to this study. We then present the physical 

model including the governing diffusion equations. Chapter 3 discusses the mathematical 

model, where we introduce our software tools and present the analytical form for our 

forward spatia-temporal model. In Chapter 4 we describe the statistical model, including 

the development of our measurement model and estimation algorithms. Then in Chapter 5 

we demonstrate the applicability of our research using numerical examples for least­

squares and maximum likelihood estimation. In this chapter, we also present our 

performance analysis. We use mean square error and Cramer Rao lower bound 

computations to evaluate our results. Our study is concluded in Chapter 6 where we also 

discuss future directions for this research. 
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2 PHYSICAL MODEL 

2.1 ELECTRICAL ACTIVITY IN THE HEART 

Electrical activity in the heart can be analyzed at the microscopic, mesoscopic and 

macroscopic levels. The flow of currents that control the cardiac activation can be 

described at the microscopic level as the exchange of ions between different cells. The 

mesoscopic level includes intracellular interactions in different regions, while the 

macroscopic scale describes the heart's behavior as an organ. 

2.1.1 Cell Membrane 

The cell membrane is described as a dielectric layer of phospholipids with a conducting 

electrolytic solution both inside and outside the cell [Guevara, 1991]. The membrane 

carries a potential across the inner and outer surfaces, and in Figure 2-1 we see that it can 

be modeled by a basic resistor-capacitor circuit, where em represents the membrane 

capacity [Durrer, 1970]. The dependence of the voltage across the membrane on the 

charge Q is expressed as, 

v =2_ 
m e 

m 

(1) 

where we assume em is constant over time. The change of the voltage with respect to 

time is then expressed, 
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(2) 

where Ic denotes ionic currents that flow across the cell membrane at time t. The 

negative sign follows convention in representing the flow of positive ions out of the cell 

[Sasche, 2004]. 

The membrane of every cardiac cell is characterized by its selective permeability to ions. 

If the membrane is predominantly permeable to one specific ion, it will have an 

equilibrium voltage at which there is a balance of concentration. This voltage is defined 

by the N ernst Equation, 

E = RT ln Co 
r zF C; 

(3) 

where T is the temperature, z is the charge on the specific ion, R is the gas constant, and F 

is Faraday's constant. G and C; represent the concentrations of the ions outside and 

inside the cell, respectively. 

2.1.2 Hodgkin and Huxley Model 

The Hodgkin-Huxley Model is a set of non-linear ordinary differential equations that 

approximates the electrical characteristics of excitable cells such as neurons and cardiac 

muscle fibres. In [Hodgkin, 1951] a model that represents different types of ionic currents 

passing through the membrane is given by, 

(4) 
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where, 

I is the total membrane current density 
Ii is the total ionic current density consisting of different ionic components 

vm is the transmembrane voltage (intracellular potential-extracellular potential) 

em is the membrane capacity 

In Figure 2-1 we also see that the current in the membrane can be divided further to 

express the ionic current density as a sum of that carried by sodium (Na) , potassium (K) 

and other (mainly chloride) ions (L). This can be expressed, 

(5) 

A cell membrane's permeability to certain ions has a significant impact on the 

propagation of the action potential in the heart. In [Hodgkin, 1952] the authors showed 

that the ionic permeability of the membrane can be expressed using ionic conductance, 

and that the individual currents can be expressed as, 

INa =gNa(Vm -ENa) 

I K = g K (vm - E K ) 

IL = gL(Vm -EJ 

(6) 

where g denotes the conductance and we use subscripts to denote the respective ion. The 

model equation is then summarized in the following expression, 

(7) 

where the variables n, m , and h are so called gating variables that are dependent on the 

membrane potential. In developing this system of equations from their research, Hodgkin 
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and Huxley in fact provided a model that forms the basis for virtually all models of 

excitable membrane behavior [Bray, 2002]. 

2.1.3 Fitzhugh-Nagumo Model 

The Fitzhugh-Nagumo model is a generic model that represents the reduced Hodgkin and 

Huxley model of the cell membrane. The model can be used to illustrate a cardiac cell's 

excitability, and its threshold phenomena, and in certain conditions the presence of 

oscillatory wave activity. Nagumo then applied it to an electrical device, and the final 

model is expressed as [Fitzhugh, 1955], 

au = u(u- a )(1- u )- v +I 
at 
av - = e(u-rv) at 

(8) 

where u represents the 'fast variable' or potential, v represents the 'slow variable' which 

is a sodium gating variable or the recovery of potential, and I is the input current. The 

rest of the variables, denoted by a , y and e, are parameters that describe the resting state 

and dynamics of the system. The constant a represents a threshold for excitation of the 

membrane, e accounts for the excitability and represents the coupling between the slow 

and fast phases, and y is a shunting variable that describes the cell membrane, mainly the 

recovery growth of the potential. In our study we use this system to describe signal 

propagation, which we will discuss in later sections. If I = 0, the system is in a stable 

resting state, however if the value ofl increases, for example to 0.4, it exhibits oscillatory 

activity [Varghese, 1995]. It can be easily seen that Fitzhugh's equations are much 
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simpler than those of Hodgkin and Huxley, and because of this it has been used widely to 

reproduce qualitative characteristics of electrical impulses along nerve and cardiac fibres. 

These characteristics include the existence of an excitation threshold and recovery period 

so both depolarization and repolarization can be modeled [Bray, 2002]. 

2.1.4 The Action Potential 

The flow of ionic currents gives rise to change in the action potential in the heart, which 

in essence represents the activation wavefront. Subsequent mechanical contraction of the 

heart completes the cardiac cycle, as will be explained later in this chapter. 

In a cardiac cell at resting potential there is an unequal intracellular and extracellular ionic 

composition, which results in a potential of approximately -70m V across the membrane. 

[Durrer, 1970]. The concentrations of sodium and chloride ions are high outside the cell 

relative to their intracellular, while the concentration of potassium is high inside the cell 

relative to its extracellular concentration. In fact, intracellular negativity results from the 

membrane's high permeability to potassium at rest that causes intracellular potassium to 

diffuse out of the cell. An action potential results when the membrane is depolarized, or 

in other words, the potential is raised by 15-20mv and there is a sudden increase in 

membrane permeability to sodium ions and decrease in potassium permeability. [Sachse, 

2004]. Sodium channels open resulting in a large influx of sodium ions and the 

membrane potential increases to approximately 30mV, after which the gates are closed 

and repolarization begins. The four phases of a cardiac potential waveform is depicted in 

Figure 2-2. Phase 0 is the activation or depolarization phase described above. In Phase 1, 

the sodium channels are closed (i.e. the sodium permeability decreases), and a rapid yet 
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slight repolarization stage is seen. Phase 2 is considered the plateau phase, during which 

there is a steady depolarized transmembrane potential. During this stage, although the 

inward flow of ions is equal to the outward flow, the decreasing membrane potential 

again changes the membrane permeability so that repolarization starts, which we see in 

Phase 3. At this stage membrane potential decreases towards its original value, until it 

reaches the resting membrane potential in Phase 4, during which it will remain steady 

until the next action potential [Plonsey, 1982]. 

2.1.5 Excitable Media 

Cardiac cells are classified as excitable media, meaning they are spatially distributed 

systems characterized by their ability to propagate signals without any damping. In the 

heart for example, traveling waves generate contractions to pump blood in a well ordered 

manner [Bub, 2000]. These kinds of systems have three main characteristics. First, they 

are seen as a group of elements that have diffusive type coupling to each other. This 

means that each element can send information to its neighbor; in cardiac muscle, this is 

done through the movement of ionic currents INa and IK to neighboring cells. In 

addition, each cell of the excitable media must have a well defined resting state that is not 

sensitive to small perturbations. Then, if an impulse with strength greater than a specific 

threshold is met the cell can exit this defined state and return to it at a later time which is 

called the refractory point [Bub, 2000]. 

As the wave of activity propagates across cell membranes, diffusive coupling is initiated 

when an impulse over the threshold causes the cell to exit its resting state, which in turn 

causes the neighboring channels to be excited above threshold. Therefore, the current in 
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one cell results in a change in the potential of a neighboring cell. Since the ionic currents 

across the membrane depend on voltage, a nonlinear relationship between the membrane 

voltage and current is established [Guevara, 1991]. 

2.2 REACTION-DIFFUSION SYSTEMS 

At the macroscopic level, the heart can be modeled such that the actual motion of ions is 

done through diffusion. In reaction-diffusion systems non-linear partial differential 

equations (PDEs) are used to describe excitation and propagation across excitable media. 

Modeling wave propagation in two dimensions is possible when equations are coupled to 

each other by diffusion, and it can essentially be described by Fick's law of diffusion. 

The change in the concentration of ions ¢ causes a change in the current density, 

resulting in a transmembrane voltage drop. The change in current density with respect to 

time is related to a diffusion coefficient denoted by D as follows, 

B¢ =V·(D(¢,r)V¢(r,t)) at (9) 

where D depends on the coordinate and/or concentration. We illustrate an example of a 

reaction-diffusion system in the following [Sachse, 2004], 

i =1, .... ,n (10) 

where n is the dimension, or number of variables in the equation system. In (1 0) u1 is a 

state variable that represents cellular states; some examples include the transmembrane 

voltage, ionic concentrations, or ionic channel conductivity. A change in state variables is 

initiated by J; which is seen as an excitation term, and in such active systems, once the 
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activator variable is initiated, it will continue to propagate. In (1 0) V' · (DV'ui) represents 

a diffusion term, where D denotes a diffusion variable. Note that to simplify the notation 

the dependence on space and/or concentration is assumed implicitly. This diffusion term 

describes random motion of ions from areas of higher concentration to those of lower 

concentration, and as such can be viewed as averaged Brownian motion of particles. 

The Fitzhugh-Nagumo equations seen in Section 2.1.3 are one of the common 

implementations of reaction-diffusion systems in simulating the propagation of waves in 

heart tissue, 

au= D\7 2u + u(u- a X1-u)-v at 
av - = e(u -rv) at 

(11) 

where the \7 2u represents the spatial derivative. Note that in (11) we assume that the 

diffusion coefficient D is constant and that the medium is isotropic, however the 

expression can be extended to reflect a nonhomogeneous case or anisotropy in the 

medium which can be found in [Rogers, 1994]. Similar to (8), the state variables in (11) 

are u and v which represent the activator and the inhibitor respectively. 

The cardiac cell can be seen as a current or electrical potential source because action 

currents flow into surrounding extracellular medium. Therefore the electrical impulse in 

the heart can be seen as a source of electromagnetic fields which we can measure on the 

torso surface. We want to be able to use these measurements in an inverse approach to 

image the electrical activity in the human body to the lowest level that we can feasibly 

observe. 
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2.3 CONDUCTION SYSTEM IN THE HEART 

Electrical activity in the heart is initiated at the sino-atrial (SA) node, an impulse 

generating pacemaker located in the right atrium at the junction of the superior vena cava 

[Durrer, 1970]. A simplified depiction of the heart's conduction system is shown in 

Figure 2-3. 

The tissue in the SA region is highly specialized such that they slowly depolarize, as 

opposed to remaining at rest, until a threshold is reached. Subsequently, self-excitation 

takes place, therefore initiating a heart beat through excitation of neighbors [Durrer, 

1970]. The pulse propagates rapidly triggering a synchronous atrial contraction and the 

activity is conducted to the ventricles through the atrio-ventricular (A V) node, another 

area of specialized tissue, however with slow propagation velocity. The electrical wave is 

transmitted so slowly that this node, located just above the ventricles, can be considered 

as a delay line between the excitations in the two parts of the heart. When the impulse 

reaches the ventricles, it travels at a high velocity, approximately 2 m/s, through the 

bundles of His and a network of Purkinje fibres that subsequently convey it to sites within 

the left and right ventricles and septum [Holden, 1998]. Subsequent contraction of the 

ventricles (systole) followed by relaxation (diastole) completes the heart cycle [Guevara, 

1991]. These waves of electrical activity spread throughout the heart muscle, causing 

rhythmic contractions. The waves of excitation in the heart travel at a velocity of 

approximately 0.5 m s-1 with amplitude defined by the action potential. We can therefore 

deduce that one wave can cover the entire area of the heart easily. In Figure 2-4 we 

illustrate action potentials recorded in different regions of the heart. Note that the 
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waveforms are displaced in time, reflecting the temporal sequence of propagation 

[Nerbonne, 2000]. If for any reason (i.e. medical condition) the heart rhythm is broken, 

the loss of synchronization can cause the atria and ventricles to contract at different times, 

thereby interrupting the pumping functions of the heart. Further, the action potential may 

be reduced and re-entrant propagation, in which the same wave of activity repeatedly 

passes through the same tissue, can occur [Holden, 1998]. The repeated excitation ofthe 

same heart tissue can interrupt the synchronous contractions that pump blood around the 

body. 

2.4 ELECTROMAGNETIC FIELDS OUTSIDE A VOLUME CONDUCTOR 

Electric currents in the body give rise to measurable electric and magnetic fields that can 

be measured using ECG/MCG sensors outside the torso. We are able to measure the 

electromagnetic fields outside arbitrary volume conductors including the torso, and we 

present expressions that relate these fields to the internal current sources discussed in 

Section 2.1. Derivations and proofs are presented in Appendix A. 

2.4.1 Electric Potential within Volume Conductor 

In electrophysiology it is understood that a conducting medium extends continuously, and 

if it is three dimensional it is called a volume conductor. As we noted in Section 2.2 we 

assume isotropic diffusion parameters. For the cases of anisotropy, the activation 

wavefront in the heart would take strange shapes which will affect the surface 

measurements to an unknown extent. We leave further investigation for future work. 
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First we examine a homogenous and isotropic volume conductor. In regions that contain 

no bioelectric sources current density J is linearly related to E , the electric field 

intensity. We assume that the capacitative component of tissue impedance is negligible 

for small frequencies [Geselowitz, 1967]. Therefore in a region with no bioelectric 

sources and with conductivity a, the current density is expressed, 

J=aE (12) 

We also assume that electromagnetic wave effects can be neglected; that is while signals 

propagate the currents at any instant depend only on the sources at that instant, and are 

independent of any previous history. The electric field at each instant is therefore 

computed from the gradient of V, the electric scalar potential [Geselowitz, 1967], 

E=-VV (13) 

The current at any instant can be represented by a distribution of impressed current 

density J;, which arises when a conversion of energy from chemical to electric form 

occurs as part of the bioelectric activity of muscle cells [Malmivuo, 1995]. Therefore 

combining the active regions and those with no bioelectric sources, (12) is modified into 

(14) 

Since we deemed tissue capacitance as negligible, as sources vary the charges on any 

boundary interfaces redistribute themselves in a short time in response to any source 

change [Malmivuo, 1995]. Therefore using (13), 

Y'·J=O 

Y'·J; =V'·aVV=oV2V 
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Under these assumptions and conditions, a solution to the PDE in (15) is presented in 

[Geselowitz, 1967]. Let R = r- r' define the distance between the observation point r 

and r', a point in the source region. Then the potential V due to a bioelectric source J; 

that is within an infinite homogenous volume conductor is computed using the following 

expression, 

(16) 

where a denotes the conductivity. For an inhomogeneous volume conductor with a 

volume source, instead of the assumed uniform medium, additional terms are needed to 

account for the different conductivities. In Figure 2-5 we assume the ellipses represent a 

cross-section model of the human torso, which we call volume G and is divided into M 

number of homogenous regions separated by boundaries S P , p = 1, · · ·, M . Similar to the 

previous section, each region is isotropic with J; = uE and is denoted G P• p = 1,···,M. 

At each boundary, the electrical potential and the normal component of the current 

density are continuous resulting in, [Geselowitz, 1967], 

V'(s p) = v"(s p) 
a~ VV'(S p )·n p= u;vv"(S p )·n P 

(17) 

where the prime and double prime notation represents each side of the boundary, and the 

normal direction is from single prime to double prime. Further in [Geselowitz, 1967], 

Green's theorem used such that the electric potential anywhere within the inhomogeneous 

volume conductor is given by, 
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4m,-v = 1J1 ·VG)dv+ ~ L, v(O'; -Q'~Jv(~}ds, -}4~}ds, (18) 
p 

where So denotes the boundary at the torso surface. 

2.4.2 Magnetic Field on the Surface 

The magnetic field outside a volume conductor is related to the internal current sources 

such that the current density J; gives rise to a magnetic field B given by [Geselowitz, 

1970], 

(19) 

where flo denotes permeability. Substituting (19) into (14) and with vector analysis, we 

obtain the following expression for the magnetic field outside an inhomogeneous volume 

conductor, 

(20) 

In both (18) and (20) the second term on the right hand side represents the effect of 

inhomogeneities and external boundaries on the electric and magnetic fields. For 

derivations, please see Appendix A. 
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Figure 2 - 5: Inhomogeneous Model of the Torso 
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3 MATHEMATICAL MODEL 

3.1 FINITE ELEMENT METHOD 

The Finite Element Method (FEM) is a numerical technique that is commonly used in 

biomedical modeling because of its ability to solve PDEs over complex domains. [Jin, 

2002]. Although it was originally developed for use with structural analysis in mechanical 

and civil engineering, over the last two decades it has become an important and extremely 

useful tool for solving electromagnetic problems. The method involves discretizing the 

domain into smaller parts, and the quality of this discretization is one aspect that is 

important for the effectiveness of any applications. This numerical technique for solving 

boundary value problems has many variations; however we present only a brief 

introductory summary. 

Every boundary value problem can have a corresponding functional F , a variational 

expression whose minimum corresponds to the governing differential equation under the 

given boundary conditions. The following example shows the functional F(rp) that 

corresponds to the diffusion equation we discussed in Chapter 2, 

(21) 

!(a )
2 1 

a F(rp) = 0.5 _!!!_ ax+ J_!f!_ rp ax 
0 ax 0 at 

(22) 
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where D denotes the diffusion coefficient and cp represents the unknown potential. Trial 

functions are defined as functions for which the functional assumes a certain value, which 

we denote using F(ift) [Jin, 2002]. Note that both cp and the trial functions are dependent 

on x and t however we deliberately omit them to reduce notation. 

The concept of dividing the computational domain into elements is called 'meshing'. The 

number of elements determines many characteristics of the mesh, and will influence 

several factors of the solution, including accuracy and computational cost. In 2D 

problems, triangles are commonly used, while in 3D problems they are usually tetrahedral 

or cubes. If we use a tetrahedral, each element has four nodes, one at every vertex. 

Correspondingly, every vertex has a local node index, meaning a label that is local to the 

element. In addition, every element also has a global index, which is a label that identifies 

the element among others in the entire domain. To help identify the mesh, an array with 

the local and global indices is usually kept. We show an example in Figure 3-1, where the 

mesh consists of M number of elements, and i = 1,2,3,4 represents the label for each 

local node. The 'meshing' of the domain can be done using any of the meshing tools that 

exist. 

Using the aforementioned discretization the problem's domain is divided into 

subdomains. For an arbitrary element there is an unknown value for the trial function rpe, 

which is expressed as an interpolation of the unknown nodal values, 

4 

rpe = L Nie cpt (23) 
i=l 
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where we use superscript e to denote the trial function for the eth element. Note that we 

omit the dependence on x and t again to reduce notational complexity. Further, 'fPt is the 

value of -;pe at the lh node of the eth element, and N: is the interpolating function. The 

functional F is then written in terms of the elemental subfunctionals, 

M 

F(rp) = L pe (rpe) (24) 
e=l 

Then an approximate solution can be computed by using defined boundary conditions and 

minimizing (24) given by [Jin, 2002], 

min(F(rp) = oF(rp) = 0 
ar;;: 

(25) 

In bioengineering applications most modeling is that of 3D objects, for which a 

corresponding mesh of tetrahedral shaped elements is the most common and we use it in 

this research study. 

3.2 COMSOL MULTIPHYSICS SOFfW ARE 

Comsol Multiphysics (FEMLAB) is a finite element analysis and solver software package 

that is useful for various physics and engineering applications. The term multiphysics 

refers to coupled systems of PDEs, where information from one system is provided to the 

other thereby influencing its behaviour. For example as we saw in Chapter 2, in the 

generation of the action potential the movement of ions through the channels affects the 

membranes of neighbouring cells. Another example is electric and magnetic fields, which 
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were seen in (21) as a coupled system. The software is interactive, allowing the user to 

create a new model by drawing the geometry, and if needed, to enter a custom PDE. The 

user can also use specialized physics applications models that include predefined 

templates and user interfaces already set up with equations and variables for specific 

areas. Finally, it is also possible to load and modify an existing model in Comsol's 

Model Gallery. With respect to FE analysis, it is possible to create a model, and then 

manually create a mesh with specific parameters, for example, the size of the elements, or 

its general coarseness. In Figure 3-2 we illustrate an example of a fine tetrahedral mesh 

generated for an ellipse in Comsol. Comsol also offers an extensive interface to Matlab, a 

software that acts mainly as a numerical computing environment. The advantage of this 

interface is that every Comsol model has a FEM structure that can be exported to Matlab. 

The user is then free to incorporate any numerical techniques that exist in Matlab 's 

functionality. 

Our goal in this study is to develop an estimation model for the electrical properties of the 

signals generated in the heart. In this work, we use Comsol along with a model of the 

human torso and heart to simulate the electrical propagation, and then we use Matlab to 

modify and develop the estimation algorithm. 

-29-



Master's Thesis- Rund Abou-Marie McMaster- Electrical Engineering 

3.3 COMSOL MODEL 

3.3.1 Electrical Signals of the Heart 

The model named Electrical Signals ofthe Heart is part ofComsol's Model Gallery, and 

was provided to the software company by [Fillipi, 2005]. It presents the geometry of the 

heart as a prolate spheroid with two chambers, implemented in the general PDE mode. 

For the heart, we use the physics described here but we apply them to a more realistic 

mesh, described in the next section. We use this model, along with a realistic geometry of 

the torso to conduct our simulations. In this model from Comsol, the PDEs correspond to 

the Fitzhugh-Nagumo model as discussed in Chapter 2. However, this can be extended to 

an arbitrary set of equations. The equations used for the diffusion of the electrical activity 

are, 

au1 =DV2u+(a-u1)(u1 -l)u1 +(-u2 ) 
at 

au2 = e(fJul - ru2 - o) 
at 

(26) 

where u1 represents the activator, which initiates the excitation, while u2 represents the 

gate variable, that acts as an inhibitor during the resting period of the heart cycle. The 

constants, a and e represent the threshold for excitation and excitability, respectively. 

The rest state and dynamics of the system are represented by fJ, y and o. In these 

equations, the diffusion coefficient in (11) is assumed to have the value 1. However in our 

approach we treat D as an unknown parameter that can be estimated, along with the rest 

of the constants described above. The initial condition that is already defined involves 

-30-



Master's Thesis- Rund Abou-Marie McMaster - Electrical Engineering 

the top two quadrants of the model. First, u1 has an initial potential distribution so that 

one quadrant of the heart is at a constant elevated potential V0 , while the rest remains 

zero. As for the inhibitor variable u2 , the adjacent quadrant has another elevated valuev0 , 

wherev0 < V0 • The initial conditions are expressed by the following, 

u1(0,x,y,z)= V0 ((x+d)> O)·((z+d)> 0) 

U2 (O,x,y,z) = v0 ((- X+ d)> 0)· ((z +d)> 0) 
(27) 

where d is a small displacement of 1 o-s that is used to shift the potential of the main 

axes, making the model more physically realistic [Fillipi, 2005]. In Figure 3-3 we show 

the model of the heart in Comsol at initial condition. As a stand alone model, the 

boundary conditions are insulating assuming that no current is flowing into or out of the 

heart. We will compute the electromagnetic field which is in principle the signal that is 

measured by ECG/MCG sensor array, and as such we are interested in the value of the 

potential on the surface. Therefore when the heart model is inserted into the torso we use 

boundary conditions that reflect the continuity of the electric potential across the human 

body. 

3.3.2 Torso Model 

To model the human body using a realistic geometry we use a finite element mesh of the 

torso and heart, generously given by Dr. MacLeod, Department of Bioengineering, 

University of Utah. The coarse mesh is created using data from MRI scans, which defined 

the boundaries. We import the mesh into the Comsol software, under the quasistatics 

electric currents mode. 
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We choose the quasistatics for electromagnetic fields application mode because of our 

assumption in Chapter 2 that the propagation currents at any instant depend only on the 

sources at that instant. This means the process happens infinitely slowly compared to the 

propagation of the electromagnetic wave. For this model, we assume the torso is isotropic 

and homogenous and that the initial condition for the electric potential V , which is the 

dependent variable, is zero. 

The imported data defines a coarse mesh, and we take the following steps to create a 

more refined one. We highlight our steps in Figures 3-4,5-8. We first try to allocate each 

element of the torso to defined subdomains, shown in Figure 3-4. However, this yields a 

mesh with coarse discretization and poor shape of elements which can introduce incorrect 

results, numerical errors, and greatly affect the execution time of the FEM computation. 

We instead choose a different method, where we start with defining and then refining the 

cardiac and torso surfaces first, shown in Figures 3-5, 3-6. Next, we create the torso shell 

and we join the entire composition, shown in Figure 3-7 and 3-8, respectively. In this 

way, we refine a new Comsol geometry for the torso model. 

3.3.3 Forward Spatio-Temporal Model 

To simulate the collection of electric potentials and magnetic field on the torso surface, 

we join both geometries. However, Comsol's prolate spheroid geometry is rather 

mismatched with the realistic torso mesh, and therefore, we use a realistic mesh of the 

heart geometry while keeping the physical model identical to that in Section 3.3.1. In an 

attempt to be anatomically correct, we place the heart in the mid left chest area of the 

body and we couple the two in the software; we show the entire geometry in Figure 3-9. 
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In Comsol, the advantage of the multiphysics feature is obvious as we implement both 

application modes discussed earlier; the general PDE mode for the heart, and the 

quasi statics for the torso. The initial conditions of the whole model are those of the heart 

component in the PDE mode, but slightly modified so that a small sphere is at an elevated 

potential rather than an entire quadrant as described earlier. Also, the electric potential 

that represents the dependent variable in the torso is initially zero. The boundary 

conditions determine the propagation of the signal from the source inside the heart, to the 

torso surface. To solve for the electromagnetic field, we enforce the continuity condition 

at the boundary between the heart and torso and we enforce the insulating condition at the 

torso surface. Then, running the simulation will represent the collection of the 

electromagnetic fields can be expressed by the following, 

y(r, t) = a(r, t,9k) (28) 

where 9 is a vector that represents electrical properties of the activation at the SA node 

and properties of the heart. It is easily seen that (28) is a function of space and time, and 

we show the resulting models for the electrical potential, electric field, and magnetic field 

in Figures 3-10, 3-11, and 3-12, respectively. Then we export the Comsol model to 

Matlab, to be modified and to implement the measurement and estimation model. 
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Electrical Signals of The Heart at Initial Condition 

Figure 3 - 3: Comsol Electrical Signals of the Heart Model 
*[Fillippi, 2005] 

Method One 

Step 1: Element 

Figure 3 - 4: Method One -Refining Mesh 
*[Attalla, 2006], [MacLeod, 2006] 
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Method Two 

Step 1: Define surfaces 

Figure 3 - 5: Method Two - Refining Mesh 
*[Attalla, 2006], [MacLeod, 2006] 

Step 2: Refine surfaces 

-

Figure 3 - 6: Step 2 - Refining Mesh 
*[Attalla, 2006], [MacLeod, 2006] 
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Step 3: Creating the torso shell 

Figure 3 - 7: Step 3 -Refining Mesh 
*[Attalla, 2006], [MacLeod, 2006] 

Step 4: Join heart, torso, and the outer region 

+ 

Figure 3 - 8: Step 4 - Refining Mesh 
*[Attalla, 2006], [MacLeod, 2006] 
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Figure 3 - 9: Comsol Torso with Heart Mesh 
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Figure 3- 10: Electric Potential Propagating Through the Heart 
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Electric Field (V /m) on Torso Surface 

Figure 3- 11: Electric Field on Torso Surface 

Magnetic Field (T) on Torso Surface 

Figure 3- 12: Magnetic Field on the Torso Surface 
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4 STATISTICAL MODELS 

4.1 SENSOR ARRAYS 

In electrocardiography ECG sensor arrays can be used to record the electrical activity of 

the heart on the torso surface. An ECG system usually consists of 32, 64, or 128 

electrodes which are placed on the torso surface and use electro-chemical transducers to 

measure the electrical potential between various locations. This measurement technique is 

commonly used as part of a non-invasive and inexpensive diagnostic test for conditions 

such as arrhythmias and disorders in the activation sequence [Macfarlane, 1989]. 

Similar to electrocardiography, magnetocardiography currently extracts clinically relevant 

information from biosignals generated in the heart [Koch, 2001] . In a magnetocardiogram 

(MCG), the magnetic field is passively recorded as part of a completely noninvasive 

procedure without any contact to the body. Common MCG systems consist of 32 or 64 

channels and a SQUID type magnetometer that measures small fields over the torso 

[ltozaki, 2003]. A typical MCG records information that is complementary to that given 

by an ECG, including the depolarization and repolarization of the action potential over 

time [Steinberg, 2005]. However, one major principle of MCG is that it is sensitive to 

tangential currents in the heart, whereas an ECG measures radial currents [Baule, 1970]. 

This is a significant difference because in a normal heart the main direction of the 

activation is radial , and therefore an MCG may show any illness-induced deviations from 

the normal direction of propagation with better accuracy than an ECG [Benjamin, 2005]. 
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It is anticipated that future research will allow the MCG to contribute additional 

information and pave new diagnostic paths in a profoundly valuable way in clinical 

cardiology. For example, in fetal cardiology, during the last period of pregnancy the 

strong distortion of electrical signals within layers of tissue rules out surface ECG 

electrodes. However, fetal heart signals still create magnetic fields that can be measured 

with MCG. Nevertheless, at this point in time, various factors make ECG the more 

common technique [Koch, 2001]. One major reason is that biosignals in terms of 

magnitude are weaker than typical noise levels generated by power lines, or other emitters 

of electromagnetic interference. Hence MCG systems require powerful noise suppression 

techniques. One way is to place the system in a magnetically shielded room, which incurs 

heavy costs [Koch, 2001]. In this study we simulate measurements of both systems for 

the estimation of heart parameters. 

In simulating ECG and MCG measurements we use 32 and 64 sensors, and to simplify 

the model uniform grids are used but they can be extended to non-uniform configurations. 

Their spatial distribution is asymmetrical about the heart's location and Figures 4-1, 4-2, 

and 4-3 illustrate the location of the sensors relative to the torso. 
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4.2 MEASUREMENT MODEL 

Let ri be the location of the lh sensor and t J,k be the/h sampling time during the kth cycle 

for period length T. Then the electromagnetic field obtained at the ith sensor can be given 

by, 

y(ri 't },k) = a(ri 't },k 'ok )+ e(ri 't },k 1 
(29) 

for i = 1, · · ·, m , j = 1, ... , n, k = 1, ... , c 

where, 

k-1 

t j,k = t j + L ~ , t j = jf..Ts, 
/=1 

where m is the number of sensors, n is the number of sample points within a heart cycle, 

and f..~ is the sampling time. Let Ye (ri, t J,k) represent the electric potential measurement 

and let y h (ri, t J.k) be a 3 x 1 vector that represents the magnetic field measurement. Then 

in (29) the independent data measurements collected every heart cycle can be given by, 

(30) 

where we define our 4 x 1 measurement vector as, 

y(ri,t j,k )= ~ek,t j,k y ,y b(ri, t j.k y r (31) 

Also, a(ri' t j.k 'ok) = [a(ri 't j.k '01 y' ... ' a(ri 't j.k 'oc y r is a source-to-sensor array transfer 

vector for c number of heart cycles, which can be computed at a particular location and 

time using Geselowitz's equation, 
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B(r,t)~ ( :; )1J'(r,t)x vG}tv+( :; )~ ,J{o-; -a;) V(r,t )vG)x dS, 
p 

where R = r - r 1 is the distance between the observation point r and r 1 
, a point in the 

source region. We use Ok to represent a (potentially) unknown vector of heart electrical 

parameters such as excitability or conductivity, which are the coefficients of the diffusion 

model as explained in Chapter 2. These parameters affect the current which in tum affects 

the impressed current density Ji and shapes the electrical potential and magnetic field. 

Therefore, although there is no explicit analytical expression, V and B are uniquely 

determined. In (29) we use e(ri, t j,k ) to denote the error residuals which are due to 

measurement and modeling noises. 

Note that the subscript k is used to denote that the electrical parameters can potentially 

change from cycle to cycle. A parameter that changes throughout the cycle is labeled as 

'short-scaled time varying' while a 'long-scale time varying' parameter only changes at 

the beginning of every cycle. A parameter that is constant throughout the activation 

process is time invariant and will remain named as such. Let 0 = [81; • • ·, er Y denote a 

vector of deterministic time invariant (DTI) heart parameters. Then (29) can be re-written 

such that the k superscript on the parameter is dropped, as follows, 

(32) 

with the exception that in the stochastic case the parameter values at different times in the 

heart cycle may be random with probability distribution function (PDF) Ok ~ N~ •, 0'
2

• ), 

for unknown mean and variance. In the remainder of the thesis we will consider two 
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cases; one is the deterministic case in which the parameters are completely unknown. The 

second, often referred to as the stochastic case, assumes that certain prior knowledge of 

the electrical parameters is available. Note that in biomedical engineering this prior 

knowledge can often be obtained using either in-vitro studies or by the results of the 

previous estimation procedures on previous patients. Therefore, a relatively good guess 

for the distribution of the parameters may be available. In parameter estimation the PDF 

of the data measurements can be vital to estimation algorithms. In the next section, we 

will discuss the corresponding statistical models of the measurement data vector. 

4.3 PARAMETRIC MODEL 

In this section we discuss parameter estimation for the following noise models: 

i. Homogeneous Spatially Uncorrelated 

u. Non-Homogenous Spatially Uncorrelated 

iii. Spatially Correlated 

We develop the expressions for the PDF,J, of y(r~> t j.k) for each model. 

4.3.1 DTI Parameters- Homogeneous Spatially Uncorrelated Noise 

We assume Gaussian noise that is uncorrelated in space and time, from cycle to cycle, 

and with constant variance from sensor to sensor. For a deterministic time invariant 

parameter, recall (32), for e(ri, t j,k )~ N(O, a 2 
), and covariance R expressed, 
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(33) 

where E denotes the expectation operator, Pe is the zero mean of the noise vector, and 

where 8 is the Kronecker delta defined as , 

o( . - '')=ji, j= j' o(k-k')={I, k=k' 
J J 0 '-::t: •I ' 0 k-::t:k' , J J , 

(34) 

Since, 

(35) 

where f.Jy is the mean of the measurement vector , the distribution of y(r;, t j.k), is 

therefore, 

y(r;, t j.k )~N(a(r;, t j.k ,a1R) (36) 

4.3.2 DTI Parameters- Non-Homogenous Spatially Uncorrelated Noise 

We assume Gaussian noise that is uncorrelated in space, time, and from one cycle to 

another. However the variance changes from one sensor to another and it is further 

assumed that it does not change from cycle to cycle. The mean p Y = a(r;, t j.k, 9) remains 

unchanged from Section 4.3 .1.1 and the covariance Q is written to reflect this, 

(37) 

for maximum m number of sensors. Therefore, 
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y(ri, t j.k )- N(a(ri, t j,k ,o1 Q) (38) 

4.3.3 DTI Parameters- Spatially Correlated Noise 

We assume Gaussian noise that is uncorrelated in time, and from one heart cycle to 

another. However, there exists spatial correlation. This model can also be switched so that 

there is temporal correlation and in that case, the same expressions that follow would 

apply. To reflect the spatial covariance in the noise, (37) is rewritten to solve for the new 

covariance, 

M = cov(y(ri, t j,k ~y(ri', t /,k' ))= Li_ro(j- j')o(k- k') (39) 

where LH' denotes the spatial correlation matrix. Finally, in this case, 

y(ri, t j.k )- N(a(ri, t j.k ,o1M) (40) 

It is easily seen that the variance of y(ri, t j,k) thus far is the variance of the noise and we 

conclude that it is independent of the type of parameter. Therefore, for the rest of this 

chapter, expressions (33), (37), and (39) will be used as the definitions of the variance for 

the three noise models listed in Section 4.2. 

4.3.4 DTV Parameters 

The parameters are time varying and therefore, the mean J.ly will change from one heart 

cycle to another. Therefore, the distribution of the measurement vector is rewritten to 

reflect that the mean is now a function of the heart cycle. For the three noise models 

respectively, 
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y(r;, t J,k )- N{a(r;, t j,k ,ek 1R) 

y(r;, t J,k )- N{a(r;, t j,k ,ek 1Q) 

y(r;, t J,k )- N{a(r;, t j,k ,ek 1M) 

McMaster - Electrical Engineering 

(41) 

(42) 

(43) 

where R,Q, and M are the expressions for the covariance of y(r;, t J,k) as we defined in 

Sections 4.3.1, 4.3.2,and 4.3.3, respectively. 

4.3.5 STO Parameters 

We assume that the heart parameters in (28) are normal random variables that are 'long­

scale' time varying as defined in Section 4.1 where ek- N{P *, cr2
') for unknown p* and 

cr2
'. In this case, the assumption that the measurement vector y(r;, t J,k) is Gaussian no 

longer holds because the distribution of the transfer vector a(r; 't j,k 'ek) is unknown due to 

the non-linear function of the stochastic parameters. Assuming that a(r;, t i,k, ek) and 

e(r;, t J,k) are independent random variables, the PDF of y(r;, t J.k), as derived in 

Appendix B, is written, 

fr (y) = fz (y(r;, t J,k )- e(r;, t J,k ))® fe (e(r;, t J.k )) (44) 

where z = a(r;, t J,k, ek) and ® represents the convolution operator. Further, the mean of 

y(r;. t J,k) is defined, [Papoulis, 2000], 

(45) 
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Then, by definition of the expected value, 

00 

uY = fa(r1,t1.k,ok)fo(O)dB (46) 
-oo 

As claimed in the introduction of this chapter, the statistical properties of the heart 

parameters are important, which for example can be seen in ( 46) as the PDF of these 

variables directly influences the mean of the measurement vector. 

The covariance is derived, 

cov(y(r1, t J,k} y(r1., t J',k' )) = E ((y(r1 , t J,k)- u Y Xy(rr, t J',k')- u i Y) 

= E(a(r1, t J,k ,Ok ). a(rr, t J',k.,ok r )+ E (a(r1 , t J,k ,ok )· e(r1 , t J,k ))+ 

E (a(rl', t f,k', Ok )· e(ri', t /.k' Y )+ E (e(r1, t J,k ). e(rr, t f,k' Y )- (uY ·vir) 

(47) 

The independence of a(rr, t J',k', Ok) and e(rr, t J',k') allows the cancellation of the middle 

terms because the expected value of the noise is zero. This yields, 

(48) 

E(e(rl, t J,k ). ek., t J',k' Y )- (uY ·vir) 

-48-



Master's Thesis- Rund Abou-Marie McMaster - Electrical Engineering 

where vy' is the expected value of y(rr, t /.k') and E(ei,j,k (t )· e;',/.k' (t Y) is the variance of 

the noise. Therefore the PDF of y(r;.tj.k) is defined by (44), with mean vY. The 

covariance corresponds to ( 48) where the variance is defined for each noise model as in 

Section 4.3 respectively, 

cov{y(r; 't j,k ), y(ri' 't j',k' )) = E(a(r;' t j,k 'ek )· a(r;'' t j',k' 'ek y )+ R- (vy . vy' T) ( 49) 

cov{y(r;. t j,k 1y(rr, t /,k' )) = E(a(r;.t j,k,ek )· a(r;.,t /,k'•ek Y )+ Q- (vY · vY.r) (50) 

cov{y(r;, t j,k 1y(r;., t j',k' )) = E(a(r;,t j,k,ek )· a(ri" t j',k'•ek r )+ M -(vy. vy'T) (51) 

4.4 PARAMETER ESTIMATION 

To investigate the feasibility of using ECG/MCG measurements to estimate the heart 

parameters it is possible to use numerous estimation techniques and algorithms. They all 

have advantages and disadvantages including accuracy, efficiency and computational 

cost. We choose the non-linear least squares (LS) and the maximum likelihood estimation 

(MLE) methods. In LS there are no requirements for the assumptions of noise making it 

ideal to be used as a benchmark for comparison with MLE. Further, the MLE is 

asymptotically efficient, meaning it reaches optimal performance as the number of 

samples tends to infinity. 
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4.4.1 Least Squares 

The main idea behind LS estimation is to fit an analytical model to the measurement 

vector by minimizing the distance between them. Recall that the simulation 

6k, a vector that represents the unknown heart parameters. 

Let Yk, t J,k) = a(ri, t J,k, 6k) represent the analytical model for the propagation of 

electrical signals in the heart, as seen in Section 3.3.3. The LS estimate is that ()k which 

will minimize the sum of the squares of the residual R , 

(52) 

Note that LS does not take into account the noise distribution. To solve (52), we take the 

partial derivative with respect to the parameter we wish to estimate and equate it to zero. 

(53) 

-2 :t (yk, t j,k )- a(ri, t j,k, 9 LS k )). _E_(a(ri' t j,k ,9 LS k ))= Q 
k=l f)()r 

(54) 

To solve (54) an estimation algorithm is used with an initial guess for 9 LS k and an 

optimization routine which continues until the minimum value for the residual is 

achieved. The 2-norm squared difference is computed at each step; therefore it is easy to 

understand that the speed and accuracy of the algorithm greatly depends on how close the 

initial estimate is to the true value of the parameter. Various search algorithms exist for 
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optimization; however the Nelder-Mead method, [Avriel, 2003], which is discussed in 

Chapter 6, is used in this study. 

4.4.2 Maximum Likelihood Estimation 

The maximum likelihood estimation (MLE) method finds the parameter that provides the 

best fit with the assumed PDF of the measurement vector. In this section, to simplify the 

notation we let, 

[y(ri, t j,l y ,y(ri, t j,k y , ... ,y(ri, t j,c y r = [y!T ,y kT ,. • .,y cT r (55) 

so that the spatial-temporal dependence is assumed implicitly, and the subscript on the 

measurement vector denotes the kth heart cycle. Similar notation is also used for the 

transfer and noise vectors. In MLE the estimate Ok ML is that which most likely caused the 

observed measurement to occur, or more specifically with which the PDF is maximized. 

4.4.3 MLE for Deterministic Parameters 

In Sections 4.3.1 and 4.3.2 the distribution of the measurement vector y k was derived for 

both types of deterministic parameters with all three noise models. In each case the PDF 

was Gaussian with mean f.ly, and some specified covariance ~ that matched the variance 

of the noise. The likelihood function that describes the joint probability of the 

measurement is expressed, 

I~, ;li' )~IT;., ( 2JCdet{I:)~ ex{-~ {y, -p,)' I:-' (y, -p, l)) 
= 2Jrdet(L )i exp(- _!_I (y k - f.ly Y L-1 (y k - f.ly )l 

2 k;J ) 
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where minimizing the exponent will thereby maximize (56) yielding an estimate for fV 

that most likely caused the observed measurement with that probability distribution. 

Therefore, 

=arg~in(-_!_ f{yk -pYYiML-
1
(yk -pY)l 

9 2 k=l ) 

(57) 

Again, theoretically, to solve (57) we take the derivative with respect to the parameter we 

want to estimate, and set it equal to zero. Similar to LS, we use an estimation algorithm to 

find 0k ML . The COVariance matriX t ML , for an initial gueSS 0k ML iS expressed, 

(58) 

where y k = a k + e k and it y = E (y k). Then, t ML is used to solve (57) and find the 

estimate. 

If the noise ek-N(O,o- 2
), then covariance i:.ML=o-2 and (57) becomes a LS expression, 

and Ok ML = Ok LS. That is, the best possible estimate is that of the least-squares because in 

this situation the smallest possible variance is achieved. However, if the noise does not 

conform to those assumptions, the MLE regression procedure must be carried out with an 

initial gueSS for 0k ML. The preViOUS Statement justifies USing 0 LS aS the initial gueSS, and 

the algorithm becomes a form of weighted least-squares. 
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4.4.4 MLE for Stochastic Parameters 

As discussed in Section 4.3.3 the PDF of the measurement vector is not easily derived 

when the parameters are stochastic. The likelihood function is in fact the PDF expressed, 

00 

t(yk;ok)= Jtz(Yk -ek)fe(ek)de (59) 
-00 

where z = ak, Ok ~ N{!t• ,u2
' ), for unknown mean and variance. 

The MLE is then, 

(60) 

for 0 0 , the parameter vector that corresponds to the PDF of y k • 

4.4.5 Estimating Time of Activation 

Noting that we return to the previous notation, we recall (29) assuming that the electrical 

activation process in the heart starts at time r within the heart cycle. The model is then 

described, 

(61) 

We estimate the time at which activation starts by using a sequential method described as 

follows. For a particular heart cycle k, we assume we can simulate 

y(ri 't j,k) = a(ri '(t- r. )j,k 'ok) so that r* is defined sequentially every time as, 
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(62) 

Then, if at each iteration the cost between the two measurement vectors is computed, 

cost 1 = lly(ri, t 1.k )- y(ri, t J,k ~~: (63) 

for j = 1, ... , n , then the minimal cost 1 will occur when r • = r . 
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Figure 4- 1: Thirty-two Sensors on Torso Surface 
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Figure 4 - 2: Sixty-four Sensors on Torso Surface 
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Figure 4- 3: One Hundred Twenty-eight Sensors on Torso Surface 
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5 NUMERICAL EXAMPLES 

We use numerical examples to demonstrate the performance of our proposed estimators. 

Note that we are using simulated measurements on the torso surface to validate that the 

parameters can be estimated and that the inverse model is applicable, and can be used in a 

realistic clinical environment. In this chapter we first detail our numerical examples, 

where we present the parameters of the diffusion model, and the noise models, that we 

used for our estimation. We also discuss how we will measure the performance of our 

results. Then we present our numerical results, where we discuss the implementation of 

our estimation algorithms in Matlab and we evaluate their performance using the 

aforementioned measures. To simplify the notation we use the same form as in Section 

4.4.2 where the spatial-temporal dependence is implied. 

In implementing the diffusion model we set the torso conductivity to 

5,uS/m[Malmivuo, 1995], e=O.Ol, a=O.l, fJ=0.5, r=l, and c5=0 as done in 

Comsol's Model Gallery. We assume the heart cycle is 750ms in length and choose the 

diffusivity D so that the activation wavefront traverses the whole heart in 250ms 

according to this approximation [Cengel, 2003], 

(64) 

-57-



Master's Thesis- Rund Abou-Marie McMaster - Electrical Engineering 

where d is the distance traveled in em, and r denotes time in seconds. We sample 

measurements at 1 00 Hz for 4 heart cycles. In Figures 5-1 and 5-2 we show the electric 

potential and magnetic field measured at the ECG/MCG arrays on the torso surface 

during one heart cycle. 

We import the measurement vector from Comsol and we use Matlab for the numerical 

estimation algorithms. In Figure 5-3 we show an example of our Matlab code, where the 

user is prompted for the number of sensors, the dimensions of the torso in em, the number 

of heart cycles, and the signal-to-noise ratio (SNR) ratio. Let a; and a; represent the 

powers of the noise for the measurement vectors y ek and y bk such that, 

1 n c 2 

a; =-IIIIYek -rekll 
mnc j=l =I 

1 n c 2 

ai =-IIIIYbk -rbkll 
mnc j=l =I 

where recall y k represents the analytical model which we mentioned in Chapter 4 and the 

subscripts e and b denote the electric potential and magnetic field respectively. Then the 

SNR in dB is defined as, 

(65) 

where we assume a 2 = a; + a; is the power of the noise. 
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In simulating the modeling noise we choose two cases for which to run the estimation; 

white Gaussian noise (WON), and spatially correlated noise (CN). First, WON is 

achieved using a random number generator in Matlab where the variables have a normal 

distribution. The second, CN, is computed from the white noise using low pass filtering in 

the frequency domain. We apply a fast Fourier transform which yields the coefficients of 

the white noise. We then modify the magnitude of these coefficients so that the spectral 

density is no longer flat which introduces correlation in the time domain. Therefore, by 

transforming the Fourier coefficients back a spatially correlated matrix is obtained. 

Because we want to compare estimation results between the two noise distributions, when 

we design our filter we ensure that the correlated noise has the same power as the input 

WON. A control variable is used which computes the input power and modifies the 

spectral density such that output power closely matches that of the input. 

In all examples, unless otherwise stated, we assume a uniform 32 sensor array is used for 

ECG/MCG measurements. In our numerical study we choose two heart parameters, the 

diffusivity D , and excitability e, to show the applicability of estimation algorithms. 

5.1 PERFORMANCE MEASURE 

To measure the performance of our estimator, we compute the mean square error (MSE) 

where the amount by which an estimator (}k differs from its true value is given by, 

(66) 
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where the MSE is averaged over all heart cycles. The magnitude of the MSE(ak) will 

allow us to evaluate the performance of our estimation. 

We also compute the MSE for the measurement vector, which can be termed 'curve 

fitting' because we wish to determine whether the analytical model fits the measured data. 

This will allow us to determine how much modeling error is present when we simulate 

surface measurements in comparison with the analytical model. The error between the 

model y k and the surface measurements is given by, 

MSE(yk )=jj(y k -yk Yf (67) 

Then we compute the Cramer Rao Bound (CRB) which puts a lower bound on the 

variance of our unbiased estimator Ok and is given by, 

(68) 

for p = 1,2, ... ' r and where we assume ok = [elk; ... ' e: r is a known vector of 

deterministic parameters and T(Ok) denotes the r x r Fisher Information Matrix (FIM) 

given by, 

Tf 0 k ) = _ E ( a In fr (y k ; 0 k ) a In fr (y k ; 0 k )J 
~ pq ae ae 

p q 

(69) 

for p = 1,2, ... , r, q = 1,2, ... , r and where f(y k; Ok) is the PDF of the observation vector 

given the parameter. We compute the derivative in (69) at the true value of Ok to obtain a 
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measure of the amount of information content carried by y k about the unknown 

parameter. 

As derived in [Kay, 1993] for y k ~ N(Jt(Ok 1 :r.(ok )) the FIM is given by, 

(70) 

a~(ok )t a[Jt(ok )12 a~(ok )1m 
aep aep aep 

~ 
a~(ok )11 a[Jt(ok )12 a~(ok )1m 

where = aep aep aep (71) 
aep 

a[Jl(ok )11 a[Jt{ok )12 a~(ok )1m 
aep aep aep 

where tr denotes the trace operator, :r. denotes the covariance matrix, and m, n denote 

the number of sensors and time samples, respectively. We compute the FIM such that the 

modeling noise is White Gaussian with :r. = a 21 which using (70) reduces to [Kay, 1993], 

Trok] =[~]r-1 1 [~] r pq ae a 2 ae 
p q 

(72) 

where a(ok) is of the same form as (71). Note that in (71) we use the subscript k to 

denote the cycle and therefore we can compute the CRB of the estimator for each kth 

heart cycle. We then compute the CRB for spatially correlated noise, where the 

covariance matrix is of the same format as (38). 
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For scalar Ok the FIM is given by, 

(73) 

where a(ek) is of the same form as (71) but for a scalar parameter. 

Now we discuss the analytical approach to evaluating the CRB for stochastic parameters 

however we leave the numerical computation as future work. As we showed in Section 

4.3.4 the PDF of the measurement vector can be expressed as the convolution in (40). 

Recall that fr (y k; Bk) represents the PDF of y k for parameter Ok - N(p* ,"£ *). Then 

(69) is re-written, 

(74) 

where the partial derivative is now conditional on the PDF of the parameter, f 8 (ek ), and 

we can evaluate it using, 

81nfy(yk;ek)= 1 xag(yk;ek)xato(ek) 
aep g(yk;ek) aep aep (75) 

To compute the CRB substitute (74) in (73) to yield the FIM. 
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5.2 NUMERICAL RESULTS 

In this section we choose to first display the estimation results using ECG measurements 

only, and then ECG/MCG. We perform the estimation for 32, 64, and 128 sensors, 

although any number can be entered into the program. We plot results for two different 

noise models; white Gaussian noise (WGN) and spatially correlated noise (CN). 

5.2.1 LS Estimation 

In Matlab we use the fminsearch command which minimizes the least-squares cost 

function by using the Nelder-Mead simplex search method [Lagarias, 1998]. In Figure 5-

4 we illustrate a sample call to fminsearch which then returns the least squares estimate. 

Note that we supply an initial guess for the estimate which can have a significant effect 

on the output. 

We first assume the excitability and diffusivity parameters are DTI and in Figures 5-5, 5-

6 we show MSE(o) for both WGN and CN using ECG measurements from 32 and 64 

sensors, respectively. Then we repeat the estimation using ECG/MCG measurements 

which we show in Figures 5-7, 5-8. 

To implement deterministic 'short-scale' time varying parameters we use two slow 

changing cosines such that, 

(76) 

where w is in radians, and where a is the parameter we wish to estimate. The estimation 

results for ECG and ECG/MCG are shown in Figures 5-9,10-12. 
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Then we run the estimation again but this time with stochastic parameters that are 'long­

scale' time varying and have Gaussian distribution with unknown mean and variance. We 

show our MSE(a) plots in Figures 5-13,14-16. 

5.2.2 MLE Estimation 

As we explained in Chapter 4 for WGN the MLE method is equivalent to the LS and 

therefore we only implement the MLE for spatially correlated noise. For DTI and DTV 

parameters we implement them in the same way as described in the previous section. We 

then compute the MLE by using the ftninsearch command again to minimize the 

exponent of the PDF as shown in (55). We display the MSE(a) estimation results for DTI 

and DTV parameters in Figures 5-17,18-20 respectively, where in each plot we include 

the results for 32 and 64 sensors. 

We leave the computation of MLE for stochastic parameters as future work, where the 

PDF of the measurement vector must first be computed. As an example we try to 

illustrate the PDF for one Gaussian parameter by running a Monte-Carlo simulation and 

plotting a histogram of ECG measurements. We ran the simulation using Matlab, and in 

Figure 5-21 we show the histogram for the excitability parameter. 

5.2.3 Curve Fitting and Estimation of Activation Time 

We show MSE(y) as a function of SNR(dB) for ECG and ECG/MCG measurements 

where the plots include results for both WGN and CN. Although it is uncommon to 

perform the MCG measurement by itself, for completeness we show the MSE(y) for 
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ECG, MCG, and ECG/MCG for 32 sensors in Figure 5-22. The rest of the plots follow in 

Figures 5-23, 24. 

We demonstrate the applicability of our technique to estimate the time of activation using 

ECG and ECG/MCG in Figure 5-25. We use DTI parameters and we compute MSE(o) as 

a function for SNR for WGN. 

5.3 PERFORMANCE ANALYSIS 

We evaluate the performance of the estimation algorithms by making some observations 

regarding the plots in Section 5.2. 

5.3.1 LS Estimation 

As we expected we observe that for LS estimation there is no significant difference in 

MSE(o) between WGN and spatially CN of the same power. We expected this result 

because LS does not take into account the noise distribution. In comparing ECG versus 

ECG/MCG sensor arrays, we notice that the inclusion of the magnetic field yields a 

higher error. In fact, we notice this trend throughout our results, and we discuss it in the 

CRB section later in this chapter. 

As for difference in the number of sensors, we notice specifically that for DTI and STO 

parameters 64 sensors yield slightly larger mean square errors while the results are similar 

between 32 and 64 sensors for DTV parameters. 

-65-



Master's Thesis - Rund Abou-Marie McMaster - Electrical Engineering 

We compared MSE(e) for the different type of parameters. We see that when using ECG 

sensor array; STO parameters have the largest mean square error, while DTI and DTV are 

similar. When using ECG/MCG arrays the MSE(e) is largest for DTI parameters, then 

smaller for DTV, and least for STO parameters. 

5.3.2MLE 

In our estimation results we do not see conclusive results when comparing MSE(e) plots 

of 32 versus 64 sensors. We also saw a similar result with LS estimation, and we suspect 

it is related to the uniform grid of sensors and that the power of the signal may decay as 

the distance from the heart increases. 

However we do notice again that ECG/MCG sensor array measurements have larger 

MSE(o ). Unlike LS, we do not see a significant difference in estimation error between 

DTI and DTV parameters. 

We expected that MLE will give us the best fit for the assumed PDF of our measurement 

vector, and we verified this in our plot as we see that MSE(e) is significantly smaller in 

comparison to LS estimation error. 

5.3.3 Curve Fitting and Estimating Time of Activation 

When comparing MSE(y) for the two noise distributions we see that there is a significant 

difference which we expected. We know that WGN and correlated noise will affect our 

surface measurements differently and therefore the error in curve fitting will be different. 

We also observe that in both cases of sensor arrays, MSE(y) is higher for 64 sensors. 
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Our proposed method for estimating the activation time yielded somewhat large MSE 

errors, which suggests that our algorithm which minimizes the cost sequentially is not a 

good method. 

5.3.4 CRB 

We now discuss the CRB, which we computed for both ECG and ECG/MCG 

measurements. In Figure 5-26 we show the CRB(o) versus the two parameters, for a 32 

ECG sensor array with WGN modeling noise where SNR = 5dB. 

We then compute CRB(o) as a function of SNR and plot it along with the MSE(o) from 

LS and MLE for DTI parameters. 

As expected, we have further evidence in Figure 5-27 that the CRB gives the lowest 

variance attainable, followed by MLE estimation and then LS. 

We run the same computation for ECG/MCG and we display the results in Figures 5-28, 

29. We notice that the CRB for ECG measurements is lower than for ECG/MCG 

measurements, which suggests that using the magnetic field measurements might not 

provide significant improvement in our ability to estimate the parameters. In fact, we saw 

similar results in estimating the parameters using both LS and MLE. This is an 

unexpected result because we do not introduce any additional parameters that might affect 

the FIM. However we suspect that in introducing an additional dimensionality in the 

measurement vector with MCG, this may have resulted in higher nonlinearity in the 
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model, and thus a higher CRB. In reality, MCG may provide useful especially, for 

example, when torso conductivity is not known. 

We run the CRB computation again, but this time for 64 sensors for both ECG, and 

ECG/MCG which we show in Figures 5-30,31-33. As expected the variance decreases as 

the number of sensors increase, which verifies for us that with more information the FIM 

increases and should yield better estimation results. 

We show our results for the CRB computation for spatially correlated noise in Figures 5-

34, 35-37. In comparison with WGN, we see that the CRB is higher for the correlated 

noise, which we expected since there are additional covariance matrix parameters. Again 

we notice that CRB for ECG/MCG is higher than for ECG, which we commented on 

earlier. 

To further illustrate the CRB results in a 2D plot, we choose 1 value from each of the 

previously presented 3D figures and plot it versus the type of sensor array. Therefore in 

Figure 5-38 we see for example, that for 1 set of parameters, the CRB value for 32 ECG 

sensor array is higher than 64 ECG sensor array, thus summarizing the observations we 

made earlier. This figure also presents a comparison between WGN and CN. 
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_I Command Window 

File Edit Debug Desktop Window Help 

To get ~carted, ~elect MATLAB Help or Demo~ from the Help menu. 

Plea~e Enter The Number of Sen~or~ : 32 

Plea~e Enter the SNR (dB): 15 

Plea~e Enter the di~tance of the front tor~o ~urface from 0 (negative) : 

Plea~e Enter the di~tance of the back tor~o ~urface from 0 ~ 10 

Plea~e Enter the Left Boundary of Sensor Region: 20 

Please Enter the Right Boundary of Sensor Region (negative) : 

Please Enter the Top Boundary of Sen~or Region : 10 

Please Enter the Bottom Boundary of Sensor Region (negative ) : 

Please Input the number of time sample points per heart cycle: 

Figure 5 - 3: User Input Prompt for Estimation 

mcnts c1nd Settings\dboumdr\My Documcnts\torso\NLS.m• 

I Tools Debuo Desktop Window Help 

' • "' r.- €; 1M! f . €) ~ stack: 

filename2=cell3tr([ 'tc=l' ; ' tc=2' ; 'tc=3' ; 'tc=4' ]); 
TC=char(filename2(tc) ) ; 

string2=strcat (directory,TC ) ; 
save (string2, 'tc' , 'Cl' , 'C2' , 'RR' , 'snr' , 'XX' , ' YY' , ' B' ); 

< ~e have our measurement vector from uh1ch ue wish to est1mate the 
parameters. ~e use fminsearch for two reasons; f1rst to call our 

% objective function, estimation_fminsearch with our i ntial gue33 
a3 the argument and 5econd, to m1nim1ze the C03t funct1on. The 
ouput c 13 our Lea3t Square3 E3t~te . 

-20 

-10 
75 

-10 

option3 optimset ( 'Display' , ' iter' , 'TolFun' ,le-25, ' TolX ' , l e-25, 'MaxFunEvals' ,lOOO ) 
c = fmin5earch (8 cycle3_estimation_fminsearch_sensors, [0 . 45 0.005] ,options); 

e3timationl (r,tc)=c ( l ) ; 
estimation2 (r,tc)=c (2) ; 

%3ave workspace aga1n 
filenamel•5nr; 
directory=strcat ( '/home/aboumar/tor5o_model/data input/e3tim/NLS_CORREL_DTI/64/' ,mat 

Figure 5 - 4: LS in Matlab, fminsearch Function Call 
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Figure 5 - 5: LS Estimation from 32 ECG Sensors for DTI Parameters 
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Figure 5 - 6: LS Estimation from 64 ECG Sensors for DTI Parameters 
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MSE vs SNR for DTI Parameters 
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Figure 5 - 8: LS Estimation from 64 ECG/MCG Sensors for DTI Parameters 
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Figure 5 - 9: LS Estimation from 32 ECG Sensors for DTV Parameters 
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Figure 5- 10: LS Estimation from 64 ECG Sensors for DTV Parameters 
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MSE vs SNR for DTV Parameters 
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Figure 5-11: LS Estimation from 32 ECG/MCG Sensors for DTV Parameters 
Note that we use 8* to denote 9 
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Figure 5-12: LS Estimation from 64 ECG/MCG Sensors for DTV Parameters 
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MSE vs. SNR for STO Parameters 
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Figure 5- 13: LS Estimation from 32 ECG Sensors for STO Parameters 
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Figure 5-14: LS Estimation from 64 ECG Sensors for STO Parameters 
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Figure 5 - 15: LS Estimation from 32 ECG/MCG Sensors for STO Parameters 
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Figure 5 - 16: LS Estimation from 64 ECG/MCG Sensors for STO Parameters 
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MSE vs SNR for DTI Parameters 
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Figure 5- 17: MLE from ECG Sensors for DTI Parameters 
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Figure 5 - 18: MLE from ECG/MCG Sensors for DTI Parameters 
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Figure 5-19: MLE from ECG Sensors for DTV Parameters 
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Figure 5-20: MLE from ECG/MCG Sensors for DTV Parameters 
Note that we use 8* to denote 9 
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Histrogram of EGG Measurements at Five Different Sensors 
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Figure 5- 21: Histogram Example for PDF of ECG Measurement Vector. Sensor location relative to 
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Figure 5- 22: Curve Fitting Comparison from 32 sensors for ECG/MCG 
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MSE vs SNR for Estimating Activation Time 
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Figure 5- 26: CRB for SNR=5dB from 32 ECG Sensors with White Gaussian Noise 
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Comparison of Estimation Methods from 32 ECG Sensors 
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Figure 5 - 28: CRB for SNR=5dB from 32 ECG/MCG Sensors with White Gaussian Noise 
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Comparison of Estimation Methods from 32 ECG/MCG Sensors 
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Figure 5 - 29: MSE for LS, MLE and CRB {9) from 32 ECG/MCG Sensors 

CRB for Two Parameters from 64 ECG Sensors 

0.9 

e, 

Figure 5-30: CRB for SNR=SdB from 64 ECG Sensors with White Gaussian Noise 
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Comparison of Estimation Methods from 64 ECG Sensors 
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Figure 5-31: MSE for LS, MLE and CRB {9) from 64 ECG Sensors 
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Figure 5- 32: CRB for SNR=SdB from 64 ECG/MCG Sensors with White Gaussian Noise 
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Comparison of Estimation from 64 ECG/MCG Sensors 
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Figure 5-33: MSE for LS, MLE and CRB (a )from 64 ECG/MCG Sensors 
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Figure 5- 34: CRB for SNR=5dB from 32 ECG Sensors with Spatially Correlated Noise 
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Figure 5- 35: CRB for SNR=5d.B from 32 ECG/MCG Sensors with Spatially Correlated Noise 
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Figure 5-36: CRB for SNR=5dB from 64 ECG Sensors with Spatially Correlated Noise 
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CRB for Two Parameters from 64 ECG/MCG Sensors 
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Figure 5- 37: CRB for SNR=5dB from 64 ECG/MCG Sensors with Spatially Correlated Noise 
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Figure 5 - 38: Comparison of CRB for ECG versus ECG/MCG Sensor Arrays 
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6 CONCLUSION 

We proposed a numerical model for the estimation of the physiological parameters of the 

electrical activation of the heart. We used a diffusion model to describe the wave 

propagation and our computational model included necessary software tools to simulate 

ECG/MCG sensor arrays on the torso surface. We demonstrated how the coefficients, 

which represent diffusion parameters, can be estimated using a non-linear optimization 

algorithm that minimized the error between the predicted model and the measured data 

vectors. Our numerical examples included deterministic and stochastic parameters, along 

with two different model noise distributions. We then analyzed the performance of our 

model by computing the mean square error for each example, and by computing the CRB 

to show the lower bound on the variance of the estimator. We showed that estimating the 

parameters that describe the electrical propagation from ECG/MCG sensors on the human 

torso surface is feasible. However, the extent to which an improvement is gained by 

using MCG sensors was not determined as the estimation results were inconclusive. 

Future possibilities for this work include the computation of the MLE estimator and CRB 

when the parameters are stochastic, which we mentioned earlier. Also in terms of the 

sensor array, certain locations might be less or more sensitive to modeling noise, and 

different configurations for the sensors as well as increasing the number of channels, are 

some options for extending this work. From a physiological aspect, cardiac activation 
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can be affected by changes in heart parameters, for example the loss of cardiac 

conductivities. This model can also easily be modified to estimate any particular 

parameter. Another potential application of this estimation model is to be able to locate 

the region of activation accurately and therefore produce a clearer picture of the electrical 

activation process. In our work we assumed a constant diffusion coefficient in a 

homogenous medium which can be extended so that an inhomogeneous reaction-diffusion 

model is used. Further, the proposed algorithm may be developed to account for arbitrary 

spatial variation in the diffusivity tensor. The case of an anisotropic medium is also of 

interest because the extent to which surface measurements are affected by the resulting 

change in the activation wavefront is still unknown. Further investigation into whether 

magnetocardiography can provide us with additional clinically valuable information using 

the diffusion model is needed. 
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APPENDIX A 

We derive the Geselowitz expressions for the electromagnetic field outside volume 

conductors as we presented in Chapter 2. To ensure the completeness of the derivations 

some assumptions are restated here. All derivations are referenced from [Geselowitz, 

1967]. 

In regions that contain no bioelectric sources current density J is linearly related to E , 

the electric field intensity. We assume that the capacitative component of tissue 

impedance is negligible for small frequencies. Therefore in a region with no bioelectric 

sources and with conductivity a, the current density is expressed, 

J=aE (77) 

We also assume that electromagnetic wave effects can be neglected; the electric field at 

each instant is therefore computed from the gradient of V , the electric scalar potential, 

E=-VV (78) 

Therefore combining the active regions and those with no bioelectric sources, (77) is 

modified into 

(79) 

Since we deemed tissue capacitance as negligible, using (78), 

V·J=O 

Y'·Ji =Y'·aY'V=aV2V 
(80) 
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We assume a volume G that is divided into M number of homogenous regions separated 

by boundariesS P, p = 1,. .. ,M. Each region is isotropic with Ji = aE and is denoted Gp, 

p = 1, · · ·, M . At each boundary, the electrical potential and the normal component of the 

current density are continuous resulting in, 

v'(sp)= v"(sp) 
a~ VV'(S P )·n P= a;vv"(S P )·n P 

(81) 

where the prime and double prime notation represents each side of the boundary, and the 

normal direction is from single prime to double prime. Using Greene's theorem, 

(82) 

where R = r- r' defines the distance between the observation point r and r', a point in 

the source region. Then (82) is re-written, 

L J[(a'VV'- a"VV")_!_- (a'V- a"V")v(_!_)] ·dS P = L J_!_ V · oVVdv +4;raV 
PS R R VR 

p 

(83) 

Using the equations from the assumptions made (83) is then transformed as follows, 
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4~ra V =-J! V' · Ji dv- I f v(a'- a")v(!) ·dS P (84) 
R P s R 

p 

The first integral on the right is transformed, 

(85) 

We assume J i vanishes on the boundaries S and therefore at the boundary of the region 

containing the sources, 

(86) 

Therefore the equation presented in Chapter 2 is derived as, 

Similar derivations for the magnetic field outside a volume conductor are presented in 

[ Geselowitz, 1970]. 
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APPENDIX B 

We derive the PDF of the measurement vector when the parameters are stochastic. As 

shown in Chapter 4, the measurement vector which represents the measurement of the 

electromagnetic fields at the sensors is given by, 

v(ri, t j.k )= a(ri, t j,k ,ok )+e(ri, t j,k 1 
(88) 

for i = l, .. ·,m, j = l, ... ,n, k = 1, ... ,c 

We assume z = a(r;, t j.k, Ok) and that by definition the PDF is represented as follows, 

( ) 
8Fr (y(ri, t j.k )) 

fr Y = ----"-­at (89) 

where Fr (y(r;, t J,k )) = P{Y ~ y} = P{a(r;, t J,k, 6k )+ e(r;, t J,k) ~ y} is the cumulative 

distribution function given by, 

e=ao z=y-e 

Fy (yk, t j,k ))= J Jiz,e (z,e)dzde (90) 
e=--<X:I z=-cx> 

where fz)z, e) is the joint PDF. Note that in (78) and (79) the spatio-temporal 

dependence is implied and reduced notation is used. 

Using Leibniz's rule, 

Therefore, 
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co 

fr (y) = jfz.e(Y -e,e}ie (92) 
e=-oo 

Due to independence fz.e(Y- e,e) = fz (y -e)* fe(e) and the PDF is then given by, 

fr (y) = fz (y(r,, t J,k )- e(r,, t J,k ))® fe (e(r;, t J,k )) (93) 

where z = a(r1, t J,k, Ok) and ® represents the convolution operator. 
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