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Abstract 

The rapid increasing bandwidth requirement of communication systems demands 

powerful numerical simulation tools for optics fiber. The computational efficient, 

memory saving and stable are of the most important characteristics for any simulation 

tools used for long-haul and broadband optics fiber. An optimized split-step digital 

filtering method is developed in this paper. The concept of Fourier integral and Fourier 

series are used in extracting a FIR filter which is used to fit the original transfer function. 

A further optimization process which employs windowing technique to improve 

computation efficiency had also been done. Compared with split-step frequency method, 

our method improves the computation efficiency. Only simple shifts and multiplications 

are needed in our method. This optimized digital filtering method differs from the former 

digital filtering method in a sense that the filter length of the FIR filter we extracted is 

reduced to a very small number. The computation time can be saved as much as 96% 

than before. This method can also be used to solve coupled nonlinear Schrodinger 

equation which governs polarization mode dispersion effect in fibers. A new simulation 

scheme for PMD is proposed to save computation time. The propagation results shows 

good accordance to those already published results. 
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Chapter 1 

Introduction 

1.1 Simulation of Optics Communication Systems 

With the growth of internet and data traffic, there is an increasing demand on the 

bandwidth of communication systems. The wavelength-division multiplexing (WDM) 

system is introduced as WDM systems multiplexes channels in different wavelength in a 

single optic fiber. But with the accumulation effects of chromatic dispersion and fiber 

nonlinearity, limitations will appear in the propagation of input signals. In order to 

simulate the communication systems as accurate as possible, investigations on these 

limitations are necessary. The optic fiber is a very important part of communication 

systems. And for the fact that the main limitations in optics communication system, such 

as chromatic dispersion, nonlinear effect and polarization mode dispersion, are brought in 

by optic fiber [3][5]. The simulation of signal propagation in optic fiber becomes 

important in the present communication system simulation. 

The governing equation that describes the pulse propagation in optics fiber is nonlinear 

Schrodinger equation (NSE). The NSE is a nonlinear partial differential equation that 

does not have analytical solution, except under some specific conditions where inverse 

scattering method can be used. Solving the NSE numerically is crucial for simulating the 

pulse propagation in fiber. 
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The split-step method is widely used in solving the NSE that describes the pulse 

propagation in optics fiber. The advantage of the split-step method is efficiency and 

stability, as well as its conceptual clarity. Traditionally, the split-step is implemented in 

frequency domain. With the use of fast Fourier transformation (FFT), the computation 

speed of split-step frequency domain method is improved. The operational flip-flop for 

this method on a frame is 0( N log N) , where N is the sampling points of input signal in a 

frame. There are also some efforts to improve the efficiency and accuracy of the split­

step method [4][10][15]. The most recent progress is published in [20]. 

There is a drawback with all the above methods, that is, the input sampling data must be 

processed simultaneously. In order to deal with ultra-short pulse [20] and multi-channel 

WDM systems, a very small sampling interval must be chosen. Hence, the input sampling 

points of a frame N will be very large. Hence, the computation time will be even large. 

When the input signal expands to the edges of computation window, an oscillation effect 

will appear at two edges of signal, which is called the aliasing effect. In order to eliminate 

the aliasing effect, a further anti-aliasing step must be employed to solve the NSE 

accurately, that is, selects a larger time domain window which gives sufficient frequency 

resolution. All those process requires increased computation time. The computation 

efficiency is hence reduced. 

A split-step time domain method using digital filtering technique is developed in [1].A 

FIR filter is extracted with the error over the entire frequency domain been controlled. 

2 



Master Thesis - Kan He McMaster -Electrical and Computer Engineering 

The split-step time domain computational structure is also given, with only simple shifts 

and multiplications are included in this calculation [1]. The computation cost of this 

method is hence reduced due to the shortened length of the extracted digital filter. 

1.2 Polarization Mode Dispersion 

The PMD effect is caused by the fiber birefringence that makes the difference of 

propagation speed between fiber polarization modes, which randomly spreads the optical 

pulse as both the fiber birefringence and orientation angles are random. The PMD effect 

is accumulated in the process of pulse propagation and limits the data transmission rate of 

communication systems. The longer the propagation distance is, the stronger the PMD 

effect may be observed at the receiver. 

With the long-haul fiber is widely used in the present transmission systems, the 

simulation of polarization mode dispersion (PMD) effect became more and more 

important. By solving the coupled nonlinear Schrodinger equation (CNSE) that governs 

the PMD in optics fiber, the PMD effect can be simulated. Both the split-step frequency 

method and digital filtering method can be used to solve the CNSE. The same situation as 

the NSE case, try to increase the computation efficiency will be a major concern for the 

simulation ofPMD. 

1.3 Motivation of this work 

3 
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The computation cost of former digital filtering method is very large, for the fact that the 

filter length of the extracted filter is fixed to a maximized number that guarantee the 

accuracy in the bandwidth. The larger filter length increases the computation cost of this 

simulation. In order to make this digital filtering method more effective, we need to fmd 

a better way to extract the FIR filter, to make the filter length reduced to a smaller 

number without much sacrifice in accuracy. In order to further improve the computation 

efficiency of this digital filtering method in the simulation of PMD, we also want to fmd 

a better computation scheme that can take advantage of the extracted digital filters. 

In our paper, an optimized digital filtering method is proposed with the concept of 

Fourier series. In order to reduce the oscillation effect (Gibbs phenomenon) that is caused 

by reducing the truncation number of the filter length, the windowing method is further 

applied. The comparison of results shows this optimized digital filtering method has 

better computation efficiency than the former method. A new simulation scheme for the 

PMD effect is also proposed. The simulation results show good agreement between our 

proposed scheme and conventional split-step frequency method using FFT. 

1.4 Thesis Organization 

This thesis is organized as follows. The basic propagation equations including nonlinear 

Schrodinger equation and coupled nonlinear Schrodinger equation are presented in 

chapter 2. In chapter 3, the conventional computation model for split-step digital filtering 

method is showed. Then, the optimized split-step digital filtering method is proposed in 
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chapter 4. Both models for NSE and CNSE are included in the above two chapters. In 

chapter 5, some implementation details are described. And in chapter 6, the simulation 

results are showed with comparison between digital filtering method and frequency 

domain method. A good agreement can be observed for both NSE and CNSE. The last 

chapter of the thesis is conclusion. 

5 
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Chapter2 

Numerical Model 

2.1 Nonlinear Schrodinger Equation 

It's the wave equation that describes the optical field propagation in the optic fiber. From 

wave equation, we can derive the nonlinear Schrodinger equation (NSE) which governs 

the slow-varying envelope of the optical field. The NSE is given as the following: 

Where A denotes the slow-varying envelop of the optical field, P1 is the wave 

propagation constant, P2 and P3 is the second and third order dispersion coefficients, 

respectively. a is the fiber loss and y is fiber nonlinear parameter. i is the imaginary 

unit. Here, we neglect the dispersions higher than third order. 

We can further exclude the time spent on propagation at the group velocity v g from the 

real time, by use a new reference time T = t - P1 z , where P1 = __!__ • Hence the third term 
vg 

in (1) with P1 can be excluded. 

6 
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In order to rescale the envelope to count the fiber loss explicitly, we can 

a 
--z 

setA(z,T) = A(z,T)e 2 • The nonlinear Schrodinger equation hence becomes [1]: 

2.2 Coupled Nonlinear Schrodinger Equation 

(2) 

When fiber birefringence becomes a major concern, we need a set of equations which 

counts for the polarization effect of propagation in optic fiber [5]. The coupled nonlinear 

Schrodinger equation (CNSE) can be employed to describe this polarization effect. The 

CNSE can be showed as following [2][22]: 

a - a - - a - fl a2 - f1 a3 - ,-,2- i (-t -) --U+-U-ibl.U+b'"i-U+i-2 -U--3 -U-iyU U+y- U aU a U=O (3) 
az 2 aT 2 aT2 6 aT3 3 2 2 

In the above equations, U denotes the complex envelope of two polarizations of the 

[Ut] -t [-* -• J [cosB sinB ] optical field in fiber _ and U is U, U 2 • "£ is the matrix . and a 2 U2 smB -cosB 

[
0 -i] is the matrix i 

0 
. 
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As we showed for the NSE, Tis the new reference timeT =t-P1z, which facile us to 

view the signal propagating in a limited duration time window. b is the birefringence 

strength which is defmed as b = __!!____ , A heat is beating length of the fiber. b 1 is given as 
. Abeat 

b 1 = DPMD 1 , where DPMD is the polarization mode dispersion coefficient, and Lcorr is 

2(2Lcorr)2 

the fiber correlation length. () is the orientation angle. Here, optic fiber is viewed as 

linked segments, in which the length is small enough that the fiber birefringence can be 

seen as constant among each sub-segment [2]. In each sub-segment, the fiber 

birefringence is pre-determined, which means the coupling between two polarizations 

occurs only between these segments, not within these segments. 

And as in the equation (1 ), /32 and /33 are the second and third order dispersion 

coefficients, respectively. a is the fiber loss and r is fiber nonlinear parameter. i is the 

imaginary unit. Here, we neglect the dispersions higher than third order. 

The equation (3) describes the PMD effect in the optic fiber. As we showed on the 

equation (1), we can further modify equations (3) to explicitly count the loss by setting: 

a 
--z 

U = Ue 2 • Hence, the equations (3) become: 

~u -ib'i.U +b 1'i.j_U +i~ _!_u- A ..!_u -ire-az IUI2 u +r!__e-az (uta: u)a: u =0 (4) 
& oT 28T2 68T3 3 2 2 
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On the left side of the above equation ( 4 ), the second term and the third term is the 

contribution of the fiber birefringence on the input signal. The fourth and fifth terms 

count the second and third order dispersions. And the sixth term is the fiber nonlinear 

effect. The last term on the left side of the above equations counts the coupling effect 

between the two polarization modes in fiber. The power exchange of the two polarization 

modes are linked via this term. In mathematical view, the coupling effect of the two 

polarization modes can be expressed through a transfer matrix. 

9 
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Chapter3 

Conventional Solution Scheme 

3.1 Split-Step Frequency Domain Method 

The basic idea of spilt-step method [4] is to separate the linear and the nonlinear 

operators and solve them alternatively to get the solution of the nonlinear Schrodinger 

equation. The equation (2) can be written as: 

BA =(D+N)A 
az (5) 

where D is the linear operator and N is the nonlinear operator. The linear operator D 

counts the dispersion effect which includes second order and third order dispersion. The 

nonlinear operator N counts the nonlinear effects in the fiber. They can be expressed as: 

(6) 

(7) 

The above two operators effect alternatively over a propagation distance ~ , which 

means the linear and nonlinear take effects separately and alternatively. So the 

calculation takes place in two steps. In the first step, only the linear dispersion effects, 

10 
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while N=O. Then, in the second step, only the nonlinear part effects, which means D=O. 

Hence, the process can be expressed as following: 

A(z+M,m) =HnF[A(z,T)] (8) 

(9) 

In the above equations, F[ ] represents Fourier transformation which transfers the signal 

from time domain to frequency domain. F-1
[ ] represents inverse Fourier transformation. 

In equation (8), H D is the fiber transfer function in frequency domain: 

(10) 

The split-step frequency method is accomplished from the equations (8), (9). The 

consequence can be showed as following: 

Step 1: This method first converts the input signal from time domain to frequency domain 

using FFT in position z. 

11 
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Step 2: Only considering the linear dispersion, and then multiply the input signal with the 

fiber transfer function H D in frequency domain, to let the signal propagating a distance 

11z to the position z + 11z with only the linear dispersion presents. 

Step 3: Using inverse Fourier transformation to convert the propagated signal from 

frequency domain to time domain in the position z + 11z . Then implement equation (9) to 

get the nonlinear effect applied on the propagated signal in the position z + 11z in time 

domain. 

Following the above steps, the input signal can be propagated in the optic fiber through 

solving nonlinear Schrodinger equation in a distance 11z , with both linear dispersion and 

nonlinear effect applied. By repeat this process, any given propagation distance can be 

achieved. 

3.2 Split-Step Frequency Domain Method for CNSE 

The split-step frequency method on coupled nonlinear Schrodinger equation is similar to 

the method applied on nonlinear Schrodinger equation [2] [6]. But we have to use this 

method to solve a different equation (4), instead ofNSE. 

First, we still need to separate the linear and nonlinear part of the equations (4) as 

following: 

12 
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a 
-U=(D+N)U az (11) 

where D is the linear operator counts for the linear dispersion. N = [ ~] is the nonlinear 

operators for the two different polarizations in the fiber, respectively. These terms can be 

expressed as: 

(12) 

(13) 

Just like the process applied on NSE, the linear dispersion operator D and nonlinear 

operator N takes effect alternatively over a small propagation distance llz . It means we 

treat the linear dispersion and nonlinear effect separately. The split-step frequency 

method on CNSE is carried out in two steps: linear step and nonlinear step. 

For the linear step, we only consider the linear step, and then the equations (4) can be 

expressed as: 

~U =ib"f.U -b'"f.j__U +DU az aT (14) 

13 
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Apply Fourier transformation on the above equation to transfer both sides to frequency 

domain, we can get: 

_E_U=ib"LU -imb'"LU +DU 
az 

(15) 

where D = i /32 m2 
- i p3 m3 

, which is the linear dispersion operator in frequency domain. 
2 6 

U is the polarizations envelope in frequency domain. 

The solution to equation (15) can be expressed as [2]: 

U(z+&,m) =exp(D&)MU(z,m) (16) 

In the above equation (22), the 2x2 matrix M(z,m) counts for the fiber birefringence 

effect. We mentioned before we can view the propagation distance llz is composed of a 

number of sub-segments o z , within which the fiber birefringence can be seen as constant. 

The fiber birefringence only takes effect between these sub-segments. Hence the transfer 

matrix M(m) is constant within each sub-segments oz, but varies randomly between 

these sub-segments as the fiber birefringence is a random effect in optic fiber. In each 

sub-segments oz, the transfer matrix can be expressed as: 

14 
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(17) 

where: 

m/1 = mi2* = cos[(b -b 1 m)oz]+i cos(B1)sin[(b -b 1 m)oz] (18) 

m/2 = mi1 = isin(B)sin[(b -h 1 m)oz] (19) 

The total transfer matrix M(m) that counts all the sub-segments can be expressed as: 

N 

M(m) = IJ mim) (20) 
}=1 

where N is the total number of sub-segments. 

In the equations (18) and (19), b is the fiber birefringence strength. B1 is the orientation 

angle. The value of B1 is constant in each sub-segments, but different between sub-

segments. 

There are two models to capture the randomness of the fiber birefringence. The first 

model is to set the birefringence orientation varies randomly from each sub-segments, 

with birefringence strength is fixed. While the second model is to set both the fiber 

15 
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birefringence orientation and strength varies randomly between each sub-segments. And 

it's been shown that both of these two models lead to an identical result [8]. In this paper, 

the first model is chosen because it's easier to treat and hence lower the computation 

complexity. 

For the nonlinear step, the CNSE only with nonlinear term can be expressed as: 

~U=NU 
Bz 

From the above equations, we can get: 

U(z + Az, T) = exp(AzN)U(z + Az,T) 

(21) 

(22) 

In the above equations, N is shown in equations (13). U is the envelope which 

experienced linear effect but did not experience nonlinear effect yet. And U is the 

envelope which also counts the nonlinear effect. 

The split-step frequency method for the simulation of coupled nonlinear Schrodinger 

equation can be implemented through solving the equations (16) and (22) alternatively, to 

let the input signal propagate any given distance. 

16 
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Chapter4 

Time Domain Solution Scheme 

4.1 Split-Step Digital Filtering Method 

In order to avoid the transformation between time domain and frequency domain, we 

need to solve the NSE only in time domain. Here we bring in a nouveau method using the 

digital filtering concept to solve the NSE in time domain, while requires less computation 

cost than other methods. 

We first build a polynomial function which can be viewed as a FIR filter in frequency 

domain [9]: 

M 

HF(m) = L hk eikA{J) 

k=-M 

(23) 

In the above equation, !1 is the sampling interval in time domain. hk with k=-M to M is 

the filter coefficients that will be determined later. 2M+ 1 is the total number of the filter 

coefficients, which we also call it filter length. The computation cost is depending on the 

number of2M+1, which we will discuss later. 

17 
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The FIR filter H F (OJ) should be approximates to the frequency domain fiber transfer 

function H D (OJ) in the bandwidth as much as possible, and the portion outside the 

bandwidth we are interested in is not important in our case, so we can make it a periodic 

function. The reason will be discussed later. 

The expression of Hv(OJ) is showed in equation (10). It is obvious that the filter length 

2M+ 1 have to be infinite, in order to make H F (OJ) fitted to H v (OJ) as much as possible. 

But it is impossible to make the filter length infinite in the implementation. Hence we 

have to make the number of2M+1 as large as possible to make the error between HF(OJ) 

and Hv(OJ) smaller [9]. But with the increasing of filter length, the computation cost will 

increase too, which is not desirable in the simulation [10]. So try to decrease the number 

of filter length 2M+ 1, while keep the error between original fiber transfer function 

Hv(OJ) and our fitted FIR filter HF(OJ) as small as possible, become the m~or concern 

in split-step digital filtering method. 

Here we propose a nouveau scheme which use the concept of Fourier transformation, 

combined with windowing technique, to approximate the fitted function H F (OJ) to 

original function H D (OJ) . Considering the polynomial function format of 

M 

HF(OJ) = L hk eikllOJ, we find it has a similar expression as the Fourier series [11] ifM is 
k=-M 

18 
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infinite. From the definition of Fourier transformation, we can derive the equation that 

will calculate the filter coefficients hk [9]: 

(24) 

In the above equation, mB is the effective bandwidth which is determined by the 

spectrum of the input signal [9] [12]. From the equations (23) and (24), we can see that 

this process is similar to the process ofF ourier transformation. The only difference is k in 

equation (23) should be from infinite minimum to infinite maximum for Fourier 

transformation. But in our case, k only has a limited number. The limit number of k is the 

source of fitting error introduced between H F ( m) and H n ( m) . 

The reason why we place H n ( m) in equation (24) is that we need to approximate H F (OJ) 

to Hn(m). Even though the original transfer function Hn(m) is infmite [5], we are only 

interesting in the original transfer function in the effective bandwidth mB . The fitted 

transfer function is then produced as periodic function, which takes mB as its period and 

has identical amplitude and phase to within each period. Namely, HF(m) equals to 

Hn(m) in the effective bandwidth (-mBI2,mB/2), and this shape repeats in other 

periods: ... , (-3mB I 2 , -mB I 2 ), ( mB I 2, 3mB I 2 ), ... of H F ( m) . 

19 
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In our case, there is no difference of amplitude between H F (OJ) and H D (OJ) throughout 

the frequency domain, i.e., JHF(OJ)J =JHn(OJ)J =1. But the phase of HF(OJ) and Hn(OJ) 

will be different outside the effective bandwidth ( -OJ8 I 2, OJ8 I 2 ), the phase of H D (OJ) 

will extent with frequency domain as what it is, while the phase of H F (OJ) will repeat 

what it is like within the effective bandwidth. 

The amplitude and phase of the original function and fitted function is shown in Fig. 1 as 

below: 

., 
• '\ .. -5 

\ • \ .. ,, 
10 I ,: ... 
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-·-Periodic 
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-4000 -2000 
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Fig. I The amplitude and phase of original function and fitted FIR filter. 
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In the figure 1, we see that the response of fitted function is a periodic function, just as 

we discussed before. The portion of agreement with original function within the 

bandwidth m8 is guaranteed. 

We can then replacing Hv(m) by HF(m) in equation (8): 

M 

A(z+ &,m) = L hkeikl!.m A(z,m) 
k=-M 

Transforming the above equation back to time domain [13], we get: 

M 

A(z+&,T)= L hkA(z,T-k/1) 
k=-M 

(25) 

(26) 

The above equation (26) together with equation (9) which counts the nonlinear effect in 

optic fiber, form the split-step time domain digital filtering method. Only simple 

multiplications and shift summations are involved. Hence eliminate the process of 

transformation between time domain and frequency domain. 

We assume that the input signal sampling points is N and the filter length is 2M+ 1. The 

operational flip-flop of our method for each propagation step is proportional 

to 0((2M + 1)N) , while the operational flip-flop of split-step frequency method is 

21 
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O(NlogN) [1 ]. We can see that as long as 2M+ 1 < log N , our method will be more 

computational efficient than the split-step frequency method. And in the present 

communication systems, the input sampling points N of a frame can be very large as we 

discussed before. So the optimized digital filtering method requires less computation time 

than split-step frequency method when 2M+ 1 < logN. 

In the former digital filtering method for the split-step time domain method [1], the linear 

least-square method is employed to approximates H F ( m) to H D ( m) . The advantage of 

this linear least-square method is guaranteed accuracy in the entire bandwidth m8 • But 

the filter length of the formal digital filtering method is maximize and fixed in order to 

keep the error within the entire bandwidth minimized. The computation time is hence 

becoming extremely large. 

In the later implementation part, we will show that our method needs much less filter 

length than the former split-step digital filtering method. With the increasing of sampling 

points of input signal, this advantage will largely improve the computation efficiency of 

the former split-step method. 

4.2 Split-Step Digital Filtering Method for CNSE 

The digital filtering method can also be implemented on coupled nonlinear Schrodinger 

equation which counts the PMD effect. Here, we propose a nouveau computation scheme 

to save the computation cost without loss the randomness of fiber birefringence. 

22 
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The key idea of this new scheme is to extract the fitted FIR filter coefficients for a large 

number of transfer matrices m( OJ) at the very beginning and just need to do once. The 

birefringence orientation angle will vary randomly between each sub-segment. So we 

first assume a large number of orientation angles, and then use these angles to construct 

the elements of transfer matrices m( OJ) that cover each sub-segment o z . The next step is 

to extract the digital filters corresponding to these transfer matrices. Firstly, the input 

signal will be propagating through a number of sub-segments filters to cover a 

propagation step ~ . Then the input signal will be propagated through the dispersion 

filter that is extracted in the last section. The last step will be performing the nonlinear 

effect on the input signal. By following the above routine, the randomness of fiber 

birefringence is guaranteed. The fitted FIR filters are only needed to be extracted once in 

the very beginning. The computation cost is hence saved. The detailed computation 

scheme is showed as following: 

At first, we assume four FIR filters 

M L h?2
) eik/;.{1) , let them fitted to the four elements of sub-segments transfer matrix m( OJ) : 

k=-M 

(27) 
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(28) 

(29) 

(30) 

where ~nt 1 ,m12 ,m2t>m22 are the elements of the 2x 2 transfer matrix m(m) in (17), which 

is random due to the randomness of birefringence orientation angle. Please note that the 

above process is just for one sub-segment filter, we need to extract many filters at the 

very beginning to form a filters pool for the future use. 

Secondly, we randomly select a number that is assigned to a pre-extracted digital filter 

from filters pool for each sub-segment § z and use the selected filter as the representative 

of this sub-segment. Then following the above process, and we let the input signal 

propagates through a series of randomly selected filters that corresponds to the transfer 

matrices of sub-segments, and reach a distance of step size l1z : 

(31) 

h£1), h?) ...... represent the selected filters corresponding to each sub-segments § z, which 

is composed of four elements h(ll) h<12
) h<21

) and h<22
) k•k•k k. 
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The next step is to undergo the dispersion effect, that is, pass through the dispersion filter 

hkD) as in (24): 

(32) 

The FIR filters coefficients can be extracted: 

(33) 

(34) 

(35) 

(36) 

(37) 

At last, the nonlinear effect will be counted to accomplish one propagation step: 

=Dz -Oz 

U = exp(D zN)U (38) 
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The expression of N is showed in equation (13). The equations (31) and (32), together 

with nonlinear effect equations (38), form the split-step digital filtering method for 

coupled nonl.inear Schrodinger equation. To cover the random effect of PMD, for each 

simulation we calculate the result for ten times and compute the average as its output. 

Comparing with the straightforward scheme that is used to simulate the PMD effect, our 

proposed scheme requires less computation cost. The reason is the transfer matrices for 

every sub-segments are selected randomly from a large series of pre-extracted digital 

filters, and hence do not need to be computed at every step as in the conventional method. 

The pre-extracted process which requires large computation time only needs to be 

computed once and can be used in the following simulation. And the digital filter 

corresponding to the transfer matrix of every sub-segment is selected :from a large 

number of pre-extracted filters by a Random Number Generator (RNG). Because of the 

above reasons, the randomness of fiber birefringence is guaranteed and the computation 

time is saved. 

A comparison of these three schemes is plotted as following: 
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Random Number Generator 

Fig. 2 Split-step FFT simulation scheme for one propagation step llz 

Random Number Generator 

Fig. 3 Straightforward split-step time-domain simulation scheme for one propagation step llz 
Note: Assume llz is composed ofN sub-segments t5z 

Extracting M digital filters to form a filters pool 

Random Number Generator 

Fig. 4 Proposed split-step time-domain simulation scheme for one propagation step llz 
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In the above figures, H oz is the frequency domain transfer function and h6z is the 

corresponding extracted digital filter. The orientation angles of H 6z are randomly 

selected by RNG from a large number of angles. One propagation step ~is composed 

ofN sub-segments oz. M is the number of pre-extracted digital filters. 

Assume the number of propagation steps is K and the unit extraction time spent on each 

digital filter is T. For the straightforward split-step time domain scheme (figure 3), the 

total extraction time is N*K*T. The total extraction time of our proposed split-step time 

domain scheme (figure 4) is M*T. For long distance propagation, it is obviously N*K*T 

>> M*T. We assume the number of sub-segments N is 500, the number of pre-extracted 

digital filters M is 200, and the propagation step K is 20. For this case, the total extraction 

time for straightforward scheme is N*K*T=IOOOO*T, the total extraction time for 

proposed scheme is 200*T. Our proposed scheme can be 50 times faster than the 

straightforward scheme. With the propagation distance increases, our proposed scheme 

will be more efficient than straightforward scheme. 

Because the propagation steps may be much larger than the number of sub-segments N, 

the birefringence orientation angles may repeat in the whole propagation. In order to 

avoid the repeated process of extracting filters coefficients, the proposed scheme (figure 

4) did the extraction process in the very beginning. And the results can be used in every 

sub-segment propagation step o z to avoid the repeated extraction of same filters 

coefficients. Compared with the straightforward scheme (figure 3) which need to do the 
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extracting process in every sub-segment propagation step 8 z that may repeat extracting 

the same filters coefficients, the proposed scheme is obviously more computational 

efficient. 

4.3 Comparison of Efficiency 
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Fig. 5 Normalized filter length (Ll), normalized well-fitted bandwidth (D), propagation steps per 

unit length (0 ) at unit well-fitted bandwidth and normalized total computation time ( •) as 

functions of filter length in logarithm scale 

In figure 5, we can see that with the increasing of filter length, the well-fitted bandwidth 

increases. This process can either enlarge the allowed propagation step size, or reduce 

propagation steps per unit length. At one extreme case, the filter takes the longest length, 

and the corresponding well-fitted bandwidth is maximized, hence the required 

propagation steps per unit length are minimized [1]. At the other extreme case, the 
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extracted filter takes the smallest filter length, and the corresponding well-fitted 

bandwidth is minimized, hence the required propagation steps per unit length are 

maximized [10]. Because the total computation time is proportional to the product of the 

filtering time on each steP (i.e., 0[(2M +1)2
]) and the number of propagation steps 

required per unit length (i.e., 0[1 I llz] ), we may not get an optimized result at either 

extreme cases. However, we find an optimized filter length in between at which the total 

computation time is minimized. The reason is that the computation time on each step 

scales quadratically as a function of the filter length. When the filter length moves 

beyond a critical value, the well-fitted bandwidth doesn't increase as fast as a square 

function of the filter length, which makes the required propagation steps per unit length 

drop slower than a square function, hence the product still increases as the filter length 

increases. However, below this critical length, the well-fitted bandwidth drop drastically 

as the filter length decreases, which lead to a huge increase on the required propagation 

steps per unit length, hence the product appears to increase as the filter length decreases. 

An optimized FIR filter length is therefore observed corresponding to the turning point of 

the product which gives the shortest computation time. At the optimized filter length 

(2M+ 1 = 65 ), as much as 96% of the computation time can be saved when compared 

with the extreme case (2M+ 1 = 513 ). 
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ChapterS 

Implementation Details 

When implementing the split-step digital filtering method on NSE and CNSE, some 

optimization steps should be taken to improve the accuracy of this method. 

5.1 Half-Step Optimization Scheme 

First of all, we adopt a optimized the split-step algorithm [5][15] to get a more accurate 

result. The nonlinear effect is calculated in the midpoint of the step size Az , then 

calculating the following half step size of linear dispersion part. Derived from equations 

(26) and (9), this optimized algorithm for NSE can be expressed as following: 

M 

A112 (z+Azi2,T)= L hkA(z,T-kt,.) (39) 
k=-M 

Av2 ( z + Az I 2, T) = Av2 ( z + Az I 2, T) exp(iAzye -az 1Av2 ( z + Az I 2, T)j
2
) (40) 

M -
A(z+Az,T)= L hkA1!2(z+Azi2,T-kt,.) (41) 

k=-M 

Correspondingly, the fiber transfer function exp(i(p2 m2
- p3 m3)Az] will be modified 

2 6 

according to half step size as exp[i( p2 OJ
2 

- p3 m3)Az] . The coefficients of FIR filter 
4 12 

should also be extracted according to modified fiber transfer function. 
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5.2 Selection of Step Size 

Secondly, the split-step digital filtering method introduce an error, which is caused by the 

limitation on fitted phase range of fitted transfer function fj.{ F (OJ) and original transfer 

function fj.{ n (OJ) . From the discussion before, we know that the fitting is actually carried 

out by replace the original signal by a summation of some harmonic signals [9]. Hence 

only a limited number of harmonic terms cannot make the fitted transfer function fully 

covers the original transfer function. 

For a limited number of terms of fitted function fj.{ F (OJ) , only a limited range of phase in 

frequency domain can be guaranteed for an given error [1][12]. This limitation in phase 

range imposes limitation on step size llz . Assume the range of phase guaranteed for a 

given error is Qe , the phase range of fitted function fj.{ F (OJ) have to be smaller than 

original function 'H n(OJ). By ignoring the third order dispersion, we have the following 

relation: 

(42) 

In the above equation, OJ is the frequency domain window width (double sides). Hence 

OJ = l , where 11 is the sampling rate in time domain. We get: 
11 
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(43) 

Considering the third order dispersion, we have the following relation from the above 

derivations: 

(44) 

Equations (43) and (44) are the constraint on the step size selection from the view of 

second and third order dispersion, respectively. 

Comparing the equations (43) and (44) with the constraint on step size selection from 

split-step frequency method [5]: 

y;z 
Lm = IPzl (45) 

1:3 
LD3 = IP31 (46) 

LNL = 
1 

(47) ye-azp 
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In the above equations, Lv2 , Lm and LNL are the second order dispersion length, third 

order dispersion length and nonlinear length, respectively. To is the input pulse width. P 

is the peak power of the input pulse. 

We can see from above that 6z v2 < Lv2 and !).z v3 < LD3 as .1 0 To . So in digital filtering 

method, we just need to choose the smallest value among & v2 , !).z D3 and LNL as our step 

size&. 

5.3 Windowing Functions 

Lastly, for further reduce the filter length of the fitted FIR filter, we introduce the 

windowing method on this fitted filter IH F(m) [9][12][13]. 

When the filter length is reduced, the Gibbs phenomenon will appear on the response of 

the filter [12]. Gibbs phenomenon is the oscillation effect appears on the filter response. 

The closer to the jump discontinuity, the bigger oscillation effect will be observed. The 

Gibbs phenomenon has large influence on our simulation result. The oscillation effect on 

the amplitude and phase of the fitted filter 'H F ( m) will mess up the pulse propagation 

result. 

In order to eliminate the Gibbs phenomenon, we put windows on the extracted digital 

filter. The concept of windowing is a set of weighted numbers added on time domain 
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coefficients hk . These weighted numbers will reduce the oscillation effect on the filter 

response in frequency domain [12]. 

Because the Gibbs phenomenon has bigger oscillation effects near the jump discontinuity 

of the filter response. We hence would like to extract our fitted filter from a function's 

amplitude with both two edges the generally fall down shape, like band-pass filter 

response. The reason why we do this step is the fall down shape in both edges will 

effectively reduce the bigger oscillation effect near the jump discontinuity of the fitted 

filter. In our case, the original function's amplitude is like all-pass filter response in 

frequency domain. So we also add a frequency domain window on the original function 

to make its response a band-pass filter response shape, and then extract the fitted function 

from this windowed original function. Hence the equations (23) and (24) would become: 

M 

HF(())) = L [win_t]hk eikAw (48) 
k=-M 

1 ~ . 
hk =- Uo [win _f]Hv(w)e-zkAwd()) 

(j)B 2 
(49) 

In the above equations, [win_ t] and [win_ f] represent for windowing functions added 

in time domain and frequency domain, respectively. 

For the case in CNSE: 
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M H;11)(w) = _L [win_t]h;11
) e;Mw (50) 

k=-M 

M H;12)(w) = _L [win_t]h~12) e;Mw (51) 
k=-M 

M 

H;zr)(w) = _L [win_t]h~21) eikt.w (52) 
k=-M 

M 

H;zz) (OJ) = _L [win_ t]h;22) eikt.w (53) 
k=-M 

And, 

1 ~ . 
hcrn = - r2 [win f]M exp(D !!.z )e -Ikt.w d OJ 

k l_l!lg - 11 
(l)B 2 

(54) 

(55) 

(56) 

(57) 

In our simulation, the Tukey window is adopted to both windowing processes [16]. The 

response of Tukey window is like a band-pass filter response shape, with adjustable pass 

band width, which is the most desirable characteristic for the use in our simulation. It 
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means we can simply adjust the window's coefficient to adjust the pass band width, and 

hence be able to find a best result for our simulation. 

The Tukey window applied in this simulation has an adjustable coefficient. This Tukey 

coefficient can be used to form the width of pass band of the Tukey window's response 

[16]. This coefficient is ranged from 0 to 1. When it equals to 0, the response would be an 

all-pass shape, namely, a rectangular window. With the increasing of this coefficient, the 

pass band width will shrink and the response of the Tukey window will become a band­

pass shape. When this Tukey coefficient is increased to 1, the pass band width will be 

minimized. Then the Tukey window would become a Hamming window [12]. As we 

mentioned before, we use this feature to reduce the Gibbs phenomenon that has bigger 

oscillation effect near the jump continuity points. In our simulation, we scanned all the 

possible combination of these two Tukey coefficients to fmd the minimum cumulative 

error in a given effective bandwidth. 
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Fig. 6 Comparison on the amplitude and phase (shown as the inlet) between original fiber transfer 
function and extracted FIR filter response with filter length 2M+ 1 = 43 under different window 

functions, where mw is defined as the bandwidth at unit step size within which z2 ~ 1 o-6 

Figure 6 shows the effectiveness of different windowing methods applied on the 

extracted FIR filter. The rectangular window gives the largest bandwidth, but has least 

effect on removing the Gibbs phenomenon. So the oscillation effect can be observed 

within the bandwidth. The Hamming window has the best effect on removing the Gibbs 

phenomenon, but provides the least bandwidth. The most proper window function used in 

our method is the Tukey window. It provides the best compromising between enlarging 

bandwidth and removing Gibbs phenomenon. 
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Chapter6 

Simulation Results 

6.1 Simulation Results on NSE 

In our simulation, the following parameters (0.652 SMF) are used to guarantee the 

reality and accuracy of the results. The center wavelength is placed around the 1550nm 

(C band). The second order dispersion coefficient P2 = -21.6 ps2 I km, and the third order 

dispersion coefficient fi3 = 0.117 ps3 I km . The nonlinear coefficient is r = 2.4W-1 I km . 

Here, we ignore the fiber loss a = 0 . The FWHM width of input pulse is 14.7 ps and the 

signal sampling interval A = 1.5625 ps . The step size & is selected as 5km. By doing an 

optimization process mentioned before, we choose the filter length (2M+ 1) as 65. 

A Gaussian pulse is used as input signal to test this split-step digital filtering method. The 

input signal was propagated through two different distances (20km and 60km), by both 

the split-step frequency method and split-step digital filtering method. Because the 

frequency method uses the fast Fourier transformation (FFT) technique, we mark it as 

FFT in these figures. The digital filtering method employs FIR filter, so it is marked as 

FIR in all these figures. 
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Fig. 7 A Gaussian pulse propagates through 20km and 60km. Both the frequency method and 
digital filtering method is used. 

In the figure 7, the frequency method using FFT is treated as the benchmark for our 

digital filtering method. From those figures, we see that the results by split-step digital 

filtering method match the results by split-step frequency method exactly. The pulse is 

broadened as the propagation distance grows longer. It is an obvious phenomenon caused 

by fiber dispersion. These results perfectly match various already published results 

[1][5][14][15][17]. 
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Fig. 8 Error comparison between FIR method and analytical solution and error between FFT 
method and analytical solution 

In figure 8, the cumulative error between FIR method and analytical solution and error 

between FFT method and analytical solution is plotted. Here, we only consider the 

second order dispersion. We set the step size of 1km and the fitted bandwidth as lOOOG 

rad/s. From the above figure, we can observe that with the reducing of filter length, the 

error of FIR method is increasing. In the case of the filter length of 512, these are very 

small error between FIR and FFT methods, which is the similar case in [1]. 

To further test this optimized digital filtering method, a fiber system with strong third 

order dispersion is presented with zero second order dispersion. The system parameters 
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are showed as following: fi2 = 0 ps2 I km , and the third order dispersion coefficient 

fi3 = ±0.117 ps3 I km (tested separately). The nonlinear coefficient is r = 2.4W-1 I km . The 

FWHM width of input pulse is 3.675ps and the signal sampling interval 

.£1 = 0.3 90625 ps . The step size is set to l:lz = 70km , and a propagation distance 21 OOkm 

is adopted. 

Figure 8 and Figure 9 show the pulse propagation with both the positive and negative 

third order dispersion coefficients, they have good accordance with the published results 

[1][5]: 
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Fig. 9 A Gaussian pulse propagated with only negative third order dispersion. 
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Fig. 11 A Gaussian pulse propagated with only positive third order dispersion of 0.0585 ps3 I km 
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Fig. 12 A Gaussian pulse propagated with only positive third order dispersion of 

0.02925ps3 I km 
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Fig. 13 A Gaussian pulse propagated with only positive third order dispersion of 

0.014625 ps3 I km 
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Fig. 14 A Gaussian pulse propagated with only positive third order dispersion of 0. 0117 ps3 I km 

6.2 Simulation Results on CNSE 

This optimized digital filtering method is also implemented on the PMD simulation. We 

select the fiber PMD parameters in [2] with: fiber correlation length Lcorr =lOOm , 

beating length A beat = 50m , and PMD coefficient DPMD = 3 ps l(km)112 
• The number of 

sub-segments in one step size is 500 and the FWHM width of input pulse is 28.6ps. 

Following the relation b = __!!_ and b' = DPMD 
112 

[2], we have b = 0.0628m-1 and 
Abeat 2(2Lcorr) 

b' = O.l061ps /(km* m)112
, respectively. 
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The propagation distances of lOkm, 12km, 16km, 20km and 22km are selected to show 

the accuracy of our method. The input power is divided into 50:50 for two polarizations, 

namely, Pl and P2 in our simulation. The output signal is hence composed of the outputs 

of these two polarizations: 
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Fig. 15 Pulse propagation results of (a) two polarizations and (b) total pulse shape (P1 +P2), after 

10km. 
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Fig. 16 Pulse propagation results of(a) two polarizations and (b) total pulse shape (P1 +P2), after 
12km. 
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Fig. I7 Pulse propagation results of (a) two polarizations and (b) total pulse shape (PI +P2), after 
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Fig. 19 Pulse propagation results of(a) two polarizations and (b) total pulse shape (Pl+P2), after 
22km. 

In the above figures, the PMD effect is not obvious. We hence select stronger fiber 

birefringence strength to observe a more obvious PMD effect. 

The fiber PMD coefficient is set to be 237.95ps I km112 which is extremely strong in 

order to show the stronger PMD effect. And the width of input width is still 28.6ps in this 

case [18]. The propagation distances of 400m and 1.18km are selected. The simulation 

results are showed as below: 
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Fig. 20 Pulse propagation results of(a) two polarizations and (b) total pulse shape (Pl+P2), after 

400m with stronger PMD. 
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Fig. 21 Pulse propagation results of(a) two polarizations and (b) total pulse shape (Pl+P2), after 

1.18km with stronger PMD. 
Note: In order to get more accuracy, we select a wider computation window in this simulation. 

All the above PMD results show good agreement between digital filtering method and 

split-step frequency method using FFT. 

6.3 Simulation Results on WDM system 

In this section, we will show the simulation of 8 channel WDM system using both split-

step frequency method and optimized digital filtering method. The system parameters are 

showed as following: 

Operating wavelength [ nm] 1547.6, 1548.4, 1549.2, 1550, 

1550.8, 1551.6, 1552.4, 1553.2 

Reference wavelength [ nm] 1550 

Channel numbers 8 

Channel spacing [GHz] 100 
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Bit rate [Gbps] 2.5 

Pulse shape NRZ rectangular pulse with width 400 ps 

Sampling interval [ps] 0.78125 

Bit sequence 32 bits PRBS 

Table 1 Parameters of 8 channel WDM system 

The fiber parameters used are the same as the one used in our former simulation, that is, 

G. 652 SMF. The eye diagrams of central channel (1550nm), short edge channel 

(1547.6nm) and red edge channel (1553.2nm) are plotted as following figures: 

1.2 1.2 

-150 -160 -50 0 
Tuoo fils) 

(a) (b) 
Fig. 22 The eye diagram of central channel (1550nm) after propagating 20km using both (a) split­

step frequency method and (b) digital filtering method 
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-1!il! -100 -50 0 50 100 150 ~ 
Tllne[ps] 

(a) (b) 
Fig. 23 The eye diagram of short edge channel (1547.6nm) after propagating 20km using both (a) 

split-step frequency method and (b) digital filtering method 

1.4..--~-~~-~~-~~----. 

-150 -100 -50 0 50 1M 150 200 
Tl!1l&[psj 

(a) (b) 
Fig. 24 The eye diagram of red edge channel (1553.2 nm) after propagating 20km using both (a) 

split-step frequency method and (b) digital filtering method 

The next figure shows the eye diagram of central channel (1550nm) when propagating 

40km: 
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(a) (b) 
Fig. 25 The eye diagram of central channel (1550nm) after propagating 40km using both (a) split­

step frequency method and (b) digital filtering method 

We further adopt a system with bit rate of 5 Gbps, and the rectangular pulse width 200 ps. 

The eye diagram of central channel (1550nm) after propagation 20km is showed as 

following: 

Eye Diagram 
1.4.--~--~--~---, 

-50 0 
Tim&[ps] 

100 

Eye Diagram 
1.4,.----~--~--~---, 

0 
nm .. [ps] 

51) 100 

(a) (b) 
Fig. 26 The eye diagram of central channel ( 1550nm) after propagating 20km using both (a) split­

step frequency method and (b) digital filtering method with bit rate of 5 Gbps 

All the above eye diagrams show good agreement between digital filtering method and 

split-step frequency method using FFT. 
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7.1 Conclusion 

Chapter7 

Conclusion 

An optimized split-step digital filtering method is proposed in this paper. The generally 

accepted split-step frequency method using FFT is taken as the benchmark. The results 

from both algorithms have good agreement for both the nonlinear Schrodinger equation 

and coupled nonlinear Schrodinger equation. The computation efficiency is also 

improved as we showed before. As a similar algorithm, this optimized digital filtering 

method can replace the widely used frequency domain method solver in the simulation of 

pulse propagation in optics fiber. The computation speed is increased compared with 

other split-step frequency domain methods when 2M+ 1 < log N and former digital 

filtering method. A nouveau computation scheme is also proposed for the simulation of 

PMD effect in optic fiber. This implementation provides this digital filtering method 

more advantage for the simulation of various phenomenons in optics fiber. 

7.2 Future Work 

This optimized digital filtering method can be used to solve Schrodinger equation used in 

other various wave propagation simulations. In the simulation of optic device, beam 

propagation method (BPM) is widely used. Our proposed computation scheme can also 

be used to implement on the BPM and probably improves computation efficiency. 

54 



Master Thesis - Kan He McMaster- Electrical and Computer Engineering 

Reference 

[1] X. Li, X. Chen and M. Qasmi, "A broad-band digital filtering approach for time­

domain simulation of pulse propagation in optical fiber," Journal of Lightwave 

Technology, vol. 23, no. 2, pp. 864-875, Feb. 2005. 

[2] D. Marcuse, C. R. Menyuk, and P. K. A. Wai, "Application of the Manakov-PMD 

equation to studies of signal propagation in optical fibers with randomly varying 

birefringence," Journal of Lightwave Technology, vol. 15, no. 9, pp.1735-1746, Sept 

1997. 

[3] C. R. Menyuk, and B. S. Marks, "Interaction of polarization mode dispersion and 

nonlinearity in optical fiber transmission systems," Journal of Lightwave Technology, vol. 

24, no. 7, pp. 2806-2826, July 2006. 

[4] R. H. Hardin, and F. D. Tappert, "Applications of the split step Fourier method to the 

numerical solution of nonlinear and variable coefficient wave equation," SIAM rev. 

Chronicle, vol. 15, p. 423, 1973. 

[5] G. P. Agrawal, Nonlinear Fiber Optics. New York: Academic, 2001. 

55 



Master Thesis - Kan He McMaster- Electrical and Computer Engineering 

[6] P. K. A. Wai, W. L. Kath, C. R. Menyuk, and J. W. Zhang, "Nonlinear polarization­

mode dispersion in optical fibers with randomly varying birefringence," J. Opt. Soc. Am. 

B, vol. 14, no. 11, pp. 2967-2979, Nov. 1997. 

[7] A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, "Statistical characterization 

of fiber random birefringence," Optics Letters, vol. 25, no. 18, pp.1322-1324, Sept. 2000. 

[8] P. K. A. Wai, and C. R. Menyuk, "Polarization mode dispersion, decorrelation, and 

diffusion in optical fibers with randomly varying birefringence," Journal of Lightwave 

Technology, vol. 14, no. 2, pp. 148-157, Feb. 1996. 

[9] S. Mitra, Digital Signal Processing, A Computer-Based Approach. McGraw-Hill, 

2006. 

[10] A. Carena, V. Curri, R. Gaudino, P. Poggiolini, and S. Benedetto, "A time-domain 

optical transmission system simulation package accounting for nonlinear and 

polarization-related effects in fiber," Journal on Selected Areas in Communications, vol. 

15, no. 4, pp.751-765, May 1997. 

[11] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical 

Recipes. Cambridge, U.K.: Cambridge Univ. Press, 2001. 

56 



Master Thesis - Kan He McMaster- Electrical and Computer Engineering 

[12] R. W. Hamming, Digital Filters, 3'd Edition. Englewood Cliffs, NJ: Prentice-Hall, 

1998. 

[13] S. Sm1th, Digital Signal Processing, A Practical Guide for Engineers and Scientists. 

Newnes, Elsevier Science, 2003. 

[14] M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communication 

Systems. Norwell, MA: Kluwer Academic, 2000. 

[15] 0. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, "Optimization of the 

split-step Fourier method in modeling optical fiber communication systems," J. Lightw. 

Technol., vol. 21, no. 1, pp. 61-68, Jan. 2003. 

[16] Harris, F. J. "On the use of windows for harmonic analysis with the discrete Fourier 

transform." Proceedings of the IEEE. vol. 66, pp. 66-67. Jan. 1978. 

[17] G. P. Agrawal, Fiber-Optic Communication Systems. John Wiley & Sons, Inc, 2002. 

[18] T. Ning, Z. Tan, Y. Liu, and S. Jian, "24.3-ps Gaussian pulse transmission over 

ultrahigh-PMD fiber," Optics Express, vol. 11, Issue 19, pp. 2364-2369, Sept. 2003. 

57 



Master Thesis - Kan He McMaster- Electrical and Computer Engineering 

[19] M. Akbulut, L. Xu, A. M. Weiner, and P. J. Miller, "Wideband all order PMD 

compensation via pulse shaping," OFC Conference Technical Digest, vol.6, pp. 3, March 

2005. 

[20] T. Kremp, and W. Freude, "Fast split-step wavelet collocation method for WDM 

system parameter optimization," Journal of Lightwave Technology, vol. 23, no. 3, pp. 

1491-1502, March 2005. 

[21] A. Lowery, 0. Lenzmann, I. Koltchanov, R. Moosburger, R. Freund, A. Richter, S. 

Georgi, D. Breuer, and H. Hamster, "Multiple signal representation simulation of 

photonic devices, systems, and networks," IEEE J. Select. Topics Quantum Electron., vol. 

6,no.2,pp.282-296,Mar.2000. 

[22] C. R. Menyuk, "Application of multiple-length-scale methods to the study of optical 

fiber transmission," Journal ofEngineering Mathematics, 36: pp. 113-136, 1999. 

58 




