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Abstract 

This thesis presents a novel hybrid methodology using Recurrent Neural Network 

and Dynamic Time Warping to solve the mode estimation problem of a radar 

warning receiver (RWR). The RWR is an electronic support (ES) system with the 

primary objective to estimate the threat posed by an unfriendly (hostile) radar in an 

electronic warfare (EW) environment. One such radar is the multi-function radar 

(MFR), which employs complex signal architecture to perform multiple tasks. As 

the threat posed by the radar directly depends on its current mode of operation, 

it is vital to estimate and track the mode of the radar. The proposed method uses 

a recurrent neural network (echo state network and recurrent multi-layer percep­

tron) trained in a supervised manner, with the dynamic time warping algorithm 

as the post processor to estimate the mode of operation. A grid filter in Bayesian 

framework is then applied to the dynamic time warp estimate to provide an accu­

rate posterior estimate of the operational mode of the MFR. This novel approach 

is tested on an EW scenario via simulation by employing a hypothetical MFR. 

Based on the simulation results, we conclude that the hybrid echo state network 

is more suitable than its recurrent multi-layer perceptron counterpart for the mode 

estimation problem of a RWR. 
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Chapter 1 

Introduction 

In this chapter, we present a brief overview of the field of electronic warfare (EW) 

and its various divisions. We state and motivate the problem addressed in this 

thesis and also discuss the organization of the thesis. 

1.1 Electronic Warfare 

EW [1], in general, may be defined as a military action involving the use of elec­

tromagnetic energy to limit the hostile use of the electromagnetic spectrum by the 

enemy while retaining one's own friendly use of the electromagnetic spectrum. 

The control over the electromagnetic spectrum is crucial and may prove to be the 

decisive factor in the outcome of a battle. Although the field of EW is dynamically 

changing due to continually changing threats, it can be broadly classified into the 

following major categories: 

• Electronic Support Measure (ESM) - refers to any passive military ac­

tion aimed at real-time threat estimation. The primary actions of an ESM 

1 



CHAPTER 1. INTRODUCTION 2 

(e.g., RWR) include interception, identification, and analysis of hostile ra­

diations that may serve as information for tactical decision-making. 

• Electronic Counter Measure (ECM)- refers to any military action aimed 

at denying information that the enemy may obtain by effective use of the 

electromagnetic spectrum. ECM techniques may be subdivided into two 

sub-groups namely, 

- Passive ECM -includes the use of chaff, radar reflectors, stealth, etc. 

- Active ECM - sub-classed into soft-kill including jamming, decep-

tion, etc., and hard-kill including anti-radiation missiles, directed en­

ergy weapons, etc. 

• Electronic Counter-Counter Measure (ECCM) -refers to actions taken 

to protect equipment and personnel, thereby reducing the impact of en­

emy ECM. The principles of ECCM may include techniques such as the 

frequency-hopping spread spectrum, which are generally embodied in the 

design of the equipment itself. 

1.2 Multi-Function Radar (MFR) 

The word radar is an acronym for radio detection and ranging. Radars are sensing 

equipments with a primary objective to detect the presence of a target and measure 

its range. They operate by transmitting electromagnetic energy into space and 

detecting the echo reflections from the target. Apart from detecting the target, 

information regarding its velocity, distance, etc., can also be extracted from the 

received echoes. These functions of radars along with their ability to perform them 
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in extreme weather conditions make them indispensable to military applications. 

Over the years, several advancements in radar technology have resulted in radars 

evolving into more complex, sophisticated and powerful equipments. One such 

radar is the MFR, which poses a serious threat to the field of EW. 

The MFR is capable of performing multiple functions such as search, acqui­

sition, track, range resolution and track maintenance in a virtually simultaneous 

manner, hence its name. Complex signal architecture along with time-division 

multiplexing are employed to perform these multiple functions using an electroni­

cally controlled phased array antenna. A phased-array antenna contains a number 

of individual antenna elements, each connected to a phase shifter that is electron­

ically controlled. The beam formation is accomplished by the principle of super­

position of electromagnetic waves of different phases. As these phase shifters are 

controlled individually, beam steering can be done rapidly and efficiently. 

Recent developments in technologies such as solid-state electronics, multiple­

input multiple-output antennas, micro-controllers, software-defined radio have not 

only made the MFR a sophisticated military equipment but also facilitated the 

wide spread use of MFR in a variety of military applications. 

1.3 Signal Intelligence (SIGINT) 

Accurate and timely intelligence [ 1] on electromagnetic radiations from hostile 

sources is of vital importance to ensure efficient operation of each of the major 

divisions of EW. ESM is the division that is most dependent on the availability of 

prior intelligence. The analysis of data gathered from electromagnetic radiations 

may be classified into the following categories: 
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• Communication Intelligence (CO MINT)- refers to intelligence obtained 

from the analysis of potentially hostile communication data. 

• Electronic Intelligence (ELINT)- refers to the intelligence obtained from 

the analysis of any non-communicative electromagnetic radiation such as 

radar emissions. This is the most important source of information for the 

ESM. 

• Radiation Intelligence (RINT) - refers to intelligence obtained from the 

analysis of unintended emissions from weapon systems. This form of intel­

ligence may not be used frequently. 

1.3.1 Electronic Intelligence (ELINT) 

As mentioned earlier, ELINT [1] is the intelligence derived from non communica­

tive sources. Radars are the main devices of interest for ELINT sensors. The elec­

tromagnetic radiations emitted by the radar are intercepted [5] by ELINT sensing 

devices. Analysis [4] of these signals provide vital information on the radar char­

acteristics such as pulse per interval (PPI), pulse width, etc., which facilitate its 

identification and performance capabilities without being seen. This information 

coupled with information obtained from other non-electronic sources serve as the 

database for the ELINT library. The ELINT library is updated continually with 

the arrival of new information. In recent times, due to the large size of data and the 

need for ease of manipulation in real-time, storage of these sources of information 

has become an issue of concern. The design of an optimal structure for an ELINT 

library can be very challenging; however, techniques such as syntactic modeling, 
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relational database modeling, etc., are available in the literature to tackle this is­

sue. The use of ELINT library is very important and necessary for the efficient 

operation of ESM systems as it is prior information available about hostile radars. 

In a nutshell, ELINT can be thought of as the remote sensing of radar systems. 

1.4 Radar Warning Receiver (RWR) 

The RWR is a real-time electronic support system that is used for self protection. 

The primary function of RWR is threat estimation that may subsequently initiate 

tactical decision making. The RWR accomplishes its task through interception 

and analysis of hostile radiation from the enemy radar. As the RWR is a passive 

equipment, its interception and collection of radiations may not be detected by the 

enemy. 

1.4.1 Signal Flow in a RWR 

The signal processing in a typical RWR is shown in Figure 1.1. The RWR may 

achieve its objective by performing the following three important tasks: 

• Pulse Train De-interleaving - The process of de-interleaving refers to 

isolating pulse trains associated with a particular radar from a set of over­

lapping pulse trains received from the radar within the RWR range of inter­

ception. This is the first step to threat recognition in a RWR, as it is difficult 

to identify the individual radars without the pulses being de-interleaved. A 

significant way to de-interleaving pulse trains is by exploiting their time of 

arrival (TOA). 
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• Emitter Identification - The de-interleaved pulse trains are then used to 

identify the particular radar emitter that radiated them. This is done by ex­

tracting features that are radar-specific such as pulse-repetition frequency 

(PPF), pulse width, amplitude, etc., from the pulses. These extracted fea­

tures are then compared with the data stored in the ELINT library. Any 

matches found will identify the radar that radiated that particular pulse train. 

• Modeffhreat Estimation - Once the particular radar is identified, the 

threat posed by the radar needs to be estimated as the threat directly depends 

on the radar's mode of operation. In the case of radars with hierarchical 

signal structure, the mode of operation can be estimated from the words 

extracted from the pulse trains. 

1.5 Problem Statement 

The problem addressed in this thesis is rooted in the concept of radar-target inter­

action. This is an important aspect of EW. It involves all the three main divisions 

of EW described earlier. There are two different perspectives to this concept. 

From the radar's perspective it needs to search, detect, and track the target of 

interest. It needs to identify the critical parameters of the target such as its velocity, 

direction, etc. Besides these functions, the radar has to perform efficiently in the 

presence of any ECM initiated by the target. Therefore from the radar's view the 

target represents an uncooperative system that requires to be modeled. 

From the target's perspective, say a military aircraft, it has to identify the oper­

ational mode of the radar, as the operational mode represents the function that the 

radar performs with respect to the target of interest. In this view, the radar itself 
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Figure 1.1: Data processing in ESM System 
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becomes the target that needs to be tracked. Since the threat level directly de­

pends on the operational mode, its knowledge is crucial for the target to estimate 

the threat posed by the radar. This is the topic of research addressed in this thesis. 

The motivation stems from the fact that, by estimating the operational mode, the 

threat can be estimated. This knowledge of threat posed by the radar, helps the 

target to initiate measures such as ECM or engage in evasive maneuvers to protect 

itself from the radar. This is the task of the RWR. 

In order to accomplish this task, the RWR needs to perform the following two 

functions: 

1. Identify the observed radar. 

2. Estimate its operational mode. 

In this thesis, we assume the observed radar is identified [15], hence we focus 

on estimating the operational mode in an efficient and timely manner. In this 

investigation, a recurrent neural network (RNN) trained in a supervised manner, 

with dynamic time warping (DTW) algorithm as the post processor is employed to 

obtain the minimum distance estimates of the operational modes. These estimates 

are smoothed by the application of a grid filter to obtain the posterior estimate of 

the radar's current operational mode. 

1.6 Organization 

This thesis is organized as follows. Chapter 2 describes the essential elements 

to the proposed solution, which include a detailed version of the MFR layered 

signal architecture and the theory of DTW. Chapter 3 describes the two RNNs 
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employed in the proposed solution, namely, the recurrent multi-layer perceptron 

(RMLP) and the echo state network (ESN). This chapter is dedicated to the de­

scription of their architecture and training philosophies. Chapter 4 describes in 

brief two methodologies that are known in the literature as solutions to the stated 

problem. This chapter also states some of their limitations. Chapter 5 describes 

the grid filter that is an important component of the proposed solution in a detailed 

fashion. Chapter 6 describes the proposed solution with the problem formulation, 

methodology, simulation and results. Chapter 7 concludes the thesis with a sum­

mary of major contributions and improvements from the proposed methodology 

over previous methodologies. 



Chapter 2 

Essential Elements in the Mode 

Estimation of MFR 

This chapter introduces some of the essential concepts involved in the mode es­

timation of MFR. It describes the layered signal architecture of MFR, which is 

proposed to keep the radar signal processing complexity manageable, the idea of 

radar mode evolution, and a brief overview on the theory of DTW. 

2.1 Hierarchial Signal Structure 

As mentioned in Chapter 1, the advancements in electronics and software have 

made the MFR a sophisticated military equipment. The pulse structure of MFR 

has become more complex as a result of software controlled radar pulse genera­

tion. This complex pulse structure along with the capability to perform multiple 

tasks makes mode estimation of MFR difficult at the pulse level. Therefore, to 

overcome this difficulty and to keep the signal processing complexity manageable 

10 
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a hierarchial signal structure [6] is proposed as shown in Figure 2.1. Estimation 

of the operational mode is obtained through word level processing which is sub­

sequent to the pulse level processing. 

A word is composed of a specific group of pulses. It is divided into five sec­

tions (A-E), of which pulses are transmitted only in section B and section D. 

Section B is known as the pulse doppler sequence. The pulse doppler sequence is 

unique for each word. It has a set of pulses with a characteristic pulse per interval 

(PPI) for each word which makes them unique. Section D is known as the syn-

chronization burst sequence that is common to all the words and sections A,C,E 

are known as dead time zones as no pulses are transmitted in these intervals. The 

MFR has a total of nine different words (Wl - W9) with similar pulse envelope. 

A phrase is made up of a particular combination of four words. Each phrase 

represents a mode of operation of MFR but not in a unique way. Therefore, a 

particular phrase may represent more than one mode. In the same way several dif­

ferent phrases may represent a single mode of operation. For example the phrase 

[W6 W6 W6 W6] may represent two modes of operation such as acquisition and 

track maintenance. Therefore, the mapping between a mode and a phrase is many­

to-many which makes the task of mode estimation for the MFR more complicated. 

Table 2.1 shows the different operational modes and their corresponding phrase 

combinations. 

A clause is made up of combination of phrases. The number of phrases in 

a clause represents the number of operations performed by the MFR simultane­

ously in a time-multiplexed manner. The clauses are concatenated sequentially 

one after the other, same as in words and phrases. In that respect the last word 

of (n)lh clause is followed by the first word of (n + l)1h clause. However, when 
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l word J 

[ phrase J 

l clause J 

Figure 2.1: Layered signal architecture 

the clauses are represented as stacks in a two-dimensional table, the phrases cor-

responding to each of the multiplexed tasks can be analyzed by reading the table 

from top to bottom along the phrase boundary. The boundaries of the phrases are 

represented by dotted vertical lines. Figure 2.2 shows the MFR performing five 

modes simultaneously in a time-multiplexed manner with respect to five targets. 

Since there are efficient algorithms for the extraction of words from the re­

ceived pulse trains [7], we will focus on mode estimation at the word level, which 

is less complex and less error prone than the pulse level. 
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Functional State Phrase Content Functional State Phrase Content 
Four-Word search [W1WzW4Ws] TM [W1W7W7W7] 

[WzW4WsW1] (Track- [WzW7W7W7] 
[W4WsW1 Wz] Maintenance) [W3W7W7W7] 

[WsW7W7W7] 

Acquisition [W3W3W3W3] 
[W4W4W4W4] 
[WsWsWsWs] 

NAT [W1W6W6W6] 
(Non-Adaptive [WzW6W6W6] 
Track)/TM [W3W6W6W6] 

Range Resolution [W7W6W6W6] 
[WsW6W6W6] Acq.,NAT or TM [W6W6W6W6] 
[W9W6W6W6] 

Table 2.1: Typical phrase combinations of MFR corresponding to operational 
modes. There are a total of nine different words. 

CLAUSE 

Phrase -2 Phrase -3 Phrase- 4 Phrase-S 

Figure 2.2: Output sequence of the MFR 
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Figure 2.3: Mode evolution of an MFR in a typical first order Markov chain. 

2.2 Mode Evolution of MFR 

The knowledge of mode evolution is an a priori information for the mode esti­

mation of the MFR. The mode evolution of MFR may be described by a Markov 

chain with known transition probabilities. A Markov chain is a sequence of events 

that follows the Markov property by which the state of a system at the (n) 1h time 

instance depends only on its state at the ( n- 1 )lh time instance. It can be formerly 

described by the following equation in which x, ,Xz, ... ,Xn are random variables. 

Pr(Xn+! = xiXn = Xn, ... ,X, = XJ ,Xo = xo) = Pr(Xn+! = xiXn = Xn) (2.1) 

The modes of operation of MFR are finite and since they follow the Markov 

property in their evolution, the mode evolution process may be called as a Markov 

chain with a finite state space. It is represented in Figure 2.3. The states represent 

the modes of operation and the transition probability distribution is represented by 
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a matrix with elements given by 

Pr(Xn+I = iiXn = j) (2.2) 

Therefore, the mode evolution of an MFR is a finite state Markov chain with 

known transition probabilities that are invariant in time. 

2.3 Dynamic Time Warping (DTW) 

DTW is a sequence alignment (template matching) technique widely used in speech 

recognition, robotics, pattern recognition, etc. [8]. It is a well known post-processing 

tool for neural networks. It is used to measure the similarity between two given 

sequences. In DTW, the similarity is estimated as a measure of global distance be­

tween the two given sequences. As similarity is inversely proportional to distance, 

minimizing the distance signifies maximizing the similarity between the two se­

quences. An optimal alignment path is constructed between the two sequences to 

measure the global distance between them. 

2.3.1 Construction of an Optimal Path 

Consider r( i), i = 1 , 2, ... , N and t (j), j = 1, 2, ... , M as the feature vectors rep­

resenting the reference and test sequences, respectively. These two vectors need 

not be of same length. Now the task is to estimate the similarity between the two 

sequences by measuring the global distance between them. Therefore, to accom­

plish this, a two-dimensional grid structure is constructed with the elements of the 



CHAPTER 2. ESSENTIAL ELEMENTS IN THE MODE ESTIMATION OF 
MFR 16 

5 

4.5 

4 

3.5 

g 3 

!!l 
~ 2.5 

~ 2 

1.5 

2 3 4 5 6 
Reference Sequence 

Figure 2.4: Warp path between the test and reference sequence from initial node 
to the final node. 

reference sequence as the horizontal axis and those of the test sequence as the ver­

tical axis. The dimension of the grid would be (M x N) in this case. Each element 

(i,j) in the grid is referred to as a node. Associated with each node (i,j) is a cost 

function. The function d ( i, j), represents the distance between the corresponding 

elements of the test and reference sequences, is the cost function associated with 

each node. 

Now having constructed the grid, there are several choices of paths through 

the grid from the initial node (io,jo) to the final node (iN,jM)· Each path has a 

global cost D associated with it, defined as 

K-1 

D = L d(ik, A) (2.3) 
k=O 

Here K refers to the total number of nodes in that particular path. The path which 

minimizes this cost is the optimal path. This optimal path may be obtained by the 
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principle of dynamic programming (DP). Figure 2.4 shows the warp path between 

the test and reference sequence. 

2.3.2 Dynamic Programming (DP) 

The principle of dynamic programming was first introduced by Bellman [8]. It 

states that an optimal path between the initial and final node is the concatenation 

of the optimal paths for each of the intermediate nodes that lie between the initial 

and final nodes. If (ir. jr) is an intermediate node between the initial node (io, jo) 

and final node (iN, jM) and if the optimal path has to pass through it, then by 

Bellman's DP the optimal path is given by 

( . . ) opt (. . ) (. . ) opt (. . ) (. . ) opt (. . ) lQ,]O --t lN,]M = lO,]O --t lr,]r E9 lr,]r --t lN,]M (2.4) 

where ~ refers to the optimal path from one node to another and E9 refers to the 

concatenation of these optimal paths. This principle of DP may be applied to find 

the optimal path through the grid resulting in minimizing the cost function given 

by (2.3). Therefore, the optimal path which minimizes (2.3) is given by 

where d(iN, jMiiN-1, jM-1) refers to the cost associated with transition from node 

(iN-1 ,jM-1) to node (iN,jM) which is added on to the minimum cost incurred up 

to node (iN-1, jM-1) . Step (2.5) is repeated right from the initial node to the final 

node. Thus by DP the overall cost is minimized if each of the transitional cost 

between the initial node to the final node is minimized. However this is done with 

some constraints which determine the direction and scope of node transition. 
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i-l,j l,J 

/1 
i-1,j-1 i,j-1 

Figure 2.5: Local constraint indicating the allowable node transitions. 

Constraints- The optimal transition from one node to another is defined by 

a set of constraints. They are described as follows: 

1. End Point Constraint- defines the start and end points of the path. In the 

case described above, by the end point constraint the start point is the initial 

node (io,jo) and the end point is the final node (iN,jM)· 

2. Local Constraint - defines the possible transitions that are allowed to 

reach a particular node. It is based on the principle of monotonicity as 

shown in Figure 2.5. For example, a transition to a node (iN, jM) is possible 

only from either one of UN-I, jM). (iN- I ,jM-t), (iN,jM-1) nodes. In other 

words, there are a set of predecessors for each node in the grid. These 

predecessors are located only to the left or south of the node of transition 

interest. 

3. Global Constraint- defines a boundary for the nodes that are to be searched 

for an optimal path. The nodes that fall outside the boundary are not in­

cluded in the search. In other words, this constraint specifies a region of 

search within the end points defined by the end point constraint. 



Chapter 3 

Recurrent Neural Networks (RNNs) 

In this chapter, we introduce the concept of recurrent neural networks. We de­

scribe in detail two different architectures of RNNs, their training philosophies 

and algorithms. The two architectures described are the recurrent multi-layer per­

ceptron (RMLP) and the echo state network (ESN). 

3.1 Introduction 

RNNs are a type of artificial neural networks which are characterized by the use of 

feedback. Feedback [ 1 0] is said to exist in a system if the system output influences 

the system input in part, by forming a closed loop transmission path from the out­

put to the input of the system. RNNs are inspired by the biological neural network 

which is recurrent in nature. Due to the presence of feedback RNNs can perform 

input-output mapping of a system and hence are dynamically driven networks ca­

pable of mimicking dynamic systems with arbitrary precision. RNNs are widely 

used in areas such as controls, speech recognition, robotics, telecommunication, 

etc., for tasks that include prediction, pattern classification, system identification, 

19 
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filtering etc. Though there are different architectures and training algorithms for 

RNNs, in this thesis we will focus on two types of RNNs architectures, namely, 

the RMLP trained with the extended Kalman filter and the ESN. 

3.2 Recurrent Multi-Layer Perceptron (RMLP) 

The RMLP [10] [19] is one type of RNN architecture. The RMLP has layers of 

neurons between the input and output layers. These layers are called hidden lay­

ers. The RMLP must have at least one hidden layer of recurrent neurons. Figure 

3.1 illustrates a RMLP with two hidden layers and an output layer. The dynamic 

behavior of the RMLP is described by a system of coupled equations [10] as fol­

lows. 

XJ(n+1) <j>J(XJ(n),u(n)) 

xu(n+1) = <pu(xu(n),xi(n+1)) 

Xo(n+ 1) <i>o (x0 (n),xu(n+ 1)) 

(3.1) 

(3.2) 

(3.3) 

where <j>J(-), <pu(-) and <p0 (-) are the activation functions of the first hidden layer, 

second hidden layer, and output layer, respectively. 

There are many training algorithms such as back propagation through time 

(BPTT), real time recurrent learning (RTRL), extended Kalman filter (EKF), etc., 

to train the RMLP. Each of these algorithms has its own merits. However, in this 

thesis we will focus on training the RMLP with the EKF algorithm as it is believed 

to give the best results [ 12]. 
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Figure 3.1: Structure of a Recurrent Multi-Layer Perceptron. 

3.2.1 Training the RMLP with Extended Kalman Filter (EKF) 

The EKF is a state estimation technique for non-linear systems. The technique is 

similar to the classical Kalman filter [22] but with an extension that uses lineariza­

tion to handle non-linear systems. Once linearized, the classical Kalman filter that 

provides optimal estimates for linear systems is applied for state estimation. The 

application of the EKF to train the RMLP is motivated by the fact that it can be 

used to estimate the weights of the network [21]. Therefore, the weights of the 

network takes the notion of states in an EKF. 

Consider a RMLP with W synaptic weights and P output units. Then the state 

space model of the network may be given as [21] [10] 

w(n+ 1) 

d(n) 

w(n) 

c(w(n),u(n), v(n)) +v(n) 

(3.4) 

(3.5) 

Equation (3.4) is known as the process equation and equation (3.5) is known as 

the measurement equation. In the process equation, w(n) is the weight vector that 

refers to the state and is assumed to be noiseless. Also it is assumed that the 
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network is in an optimum condition with a weight transition matrix being equal to 

the identity matrix. In the measurement equation, u(n) and v(n) refers to the input 

vector and recurrent node vector, respectively. v(n) denotes the measurement 

noise vector which is a zero mean, white noise process with a co-variance defined 

by 

R(n) = E[v(n)vT (n)J (3.6) 

c(.) in (3.5) denotes the entire non-linearity right from the input layer to the output 

layer of the RMLP. Therefore, from (3.4) and (3.5) it can be seen that the non-

linearity is associated only with (3.5) hence it is necessary to linearize it before 

applying the Kalman filter. The linearized version of (3.5) is given by 

d(n) = C(n)w(n) +v(n) (3.7) 

where C(n) is the measurement matrix of the linearized form of equation (3.5). 

The matrix consists of partial derivatives of p outputs of the whole network with 

respect to the W weights of the networks as shown below. 

~ I Pw; 
2 ~ w 

C(n) = 
Pw; I 

?w; 
2 ~ w (3.8) 

~ I ~ 2 ~ w 

The partial derivatives are with respect to the estimated weights w(n) computed 

by the EKF. These partial derivatives may be computed by using the BPTT [16], 

or the RTRL. One of these two algorithms has to be used to linearize (3.5) to 

(3. 7). However, in this thesis we will use the truncated version of BPTT algorithm 
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as illustrated in [19] to compute the C(n) matrix since it is efficient as well as 

computationally affordable. The computation cost for RTRL is O(N4 ). This is 

much higher than that of truncated BPTT, which is 0( dN2 ), where N is the number 

of recurrent units and d is the truncation depth. Besides computational cost it has 

been reported in the literature that best results in training RMLP may be obtained 

by using the EKF to estimate the weights of the network with truncated BPTT for 

linearization which involves the computation of C( n) [ 12], [ 19]. Therefore with 

the computation of C(n) equation (3.5) may be recast in the form of (3.7). Now 

the classical Kalman filter may be applied to estimate the weights of the RMLP. 

Before deriving the Kalman filter equations, we mention two variations in the 

application of EKF, namely, 

1. Global EKF 

2. Decoupled EKF 

In the case of global EKF, the entire linearized measurement matrix C( n) is used as 

a whole in the derivation of the Kalman filter. This is computationally expensive 

but more accurate. On the other hand, in the case of decoupled EKF the network 

synaptic weights may be partitioned into, say, g groups with the i1h group contain­

ing }i neurons. Then the partial derivatives of the C(n) measurement matrix have 

to be rearranged according to the weights corresponding to each of the individual 

neurons in the network in a way that they are grouped as a single block within 

C( n). C( n) would then be a concatenation of the partial derivatives corresponding 

to each group i, where i = 1, 2, ... , g. 

C(n) [C1 (n), · · · ,C8 (n)J (3.9) 
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This decoupled nature of EFK was first introduced in [ 18]. It is computation­

ally more efficient than the global EKF with slight compromise in accuracy. The 

derivation for the decoupled version of EKF is given as follows [10], [18]. 

r(n) = [,t,c;(n)K;(n,n-I)C{(n)+R(n)]-J (3.10) 

Gi(n) Ki(n,n -1)CT (n)r(n) (3.11) 

a(n) d(n) -J(nln-1) (3.12) 

w(n+1ln) wi(nln- 1) + Gi(n)a(n) (3.13) 

Ki(n+ 1,n) = Ki(n,n -1)- Gi(n)q(n)K(n,n- 1) (3.14) 

where r(n) is the conversion factor that relates the estimation error e(n) to the 

innovations a(n) by [10] 

e(n) = R(n)r(n)a(n) (3.15) 

Gi(n) is the Kalman gain that determines the correction used to update the weight 

estimate for group i of neurons. a(n) is the innovation, which is defined by 

the difference between the desired response d ( n) and the actual network output 

J(nln-1). wi(nln-1) is the estimate of the weight wi(n) for group i of neurons 

and Ki ( n, n- 1) is the error covariance matrix for group i of neurons. 

3.2.2 Effect of Artificial Process Noise 

The non-linear dynamical system described by (3.4) and (3.5) can lead to some 

numerical difficulties during estimation. It suffers from what is called as the di­

vergence phenomenon in which the update matrix Ki ( n + 1, n) may not be non­

negative definite for every iteration of the algorithm due to numerical inaccuracies. 
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This has to be avoided as Ki ( n + 1, n) represents a covariance matrix which has 

to be non-negative definite. This problem can be circumvented by incorporating 

artificial process noise in the process (3.4) as follows 

w;(n+ 1) = wi(n) + ro;(n) (3.16) 

where ro;(n) is the process noise which is assumed to be a zero mean white Gaus­

sian noise of diagonal co-variance matrix Qi(n). With the incorporation of roi(n), 

(3.14) can be recast into 

Ki(n+ 1,n) = Ki(n,n-1)- Gi(n)C;(n)Ki(n,n-1) +Qi(n) (3.17) 

Therefore by (3.17), K;(n+ 1 ,n) will remain non-negative definite as long as Qi(n) 

is large enough. Apart from overcoming the divergence phenomenon, by the ad­

dition of process noise there is less likelihood for the algorithm to be trapped in 

local minimum, which therefore results in improved speed of convergence and 

accuracy in the solution [ 18]. Hence, because of these benefits we incorporate 

artificial process noise in the training of RMLP with EKF algorithm. 

3.2.3 Back-Propagation Through Time (BPTT) 

The BPTT is a gradient decent algorithm to train a RNN. It is an extension of 

the well known back-propagation algorithm which is used to train feed-forward 

neural networks. As the back-propagation algorithm cannot be employed directly 

to RNN, it is used with an extension and is called back-propagation through time. 

The extension here lies in unfolding the RNN in time into a feed-forward net­

work. Once this is accomplished, the traditional back-propagation algorithm is 
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employed to compute the weight adjustments. The unfolding of the RNN is done 

in time. Some interesting properties relating a RNN with its unfolded counter­

part are described in [10]. Once the RNN is unfolded in time into a feed-forward 

network the back-propagation algorithm is used to compute the sensitivity of the 

network, which is the partial derivatives of the cost function (~) with respect to 

the synaptic weights of the network. The cost function is defined by 

ni 

~totat(no,n!) = 1/2 [, [, e](n) (3.18) 
n=nojEJ4 

where .9l is the set of indices pertaining to those neurons in the network for which 

the desired response is specified. no is the start time and n1 is the end time. e](n) 

is the error signal at the output of j neuron with respect to some desired response. 

However, in minimizing this cost function, the network has to remember informa-

tion right up to the start time no for every iteration. This is computationally too 

expensive and is not feasible in real time. Therefore, to overcome this limitation 

a truncation depth h is used in which any information older than h time steps will 

be ignored. This version is called as the truncated BPTT [20]. The cost function 

to be minimized for the truncated BPTT is defined as 

~(n) (1/2) [, eJ(n) (3.19) 
}EJ4 
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By the traditional back-propagation algorithm, the sensitivity of the network is 

given by 

a~(l) 
-11-

awji 
n 

11 E OJ(l)xi(l- 1) 
l=n-h+l 

(3.20) 

(3.21) 

The above equation holds for all j E ..9l and (n- h) < l :::; n. The learning-rate 

parameter is represented by 11· The input applied to the i1h synapsis of neuron j at 

time (!- 1) is given by Xi (l- 1) and o 1 ( l) is the local gradient defined by 

(3.22) 

In the case of l = n the local gradient o 1 ( l) is given by 

(3.23) 

where <p' (.) is the derivative of the activation function u 1 ( l) applied to the neuron 

j. In case of (n- h < l < n) the local gradient oj(l) is given by 

cp' (u 1(1)) E wk1(l)ok(l + 1) (3.24) 
kE}l 

Equations (3.23), (3.24) are repeated from time n right back to time n- h, and 

with the computation of back propagation at time n- h + 1 the adjustment weights 

are computed according to (3.21). Thus it can be seen from (3.23) and (3.24) that 

the error signals is used only in (3.23) which is the computation at time n. This 

indicates that the past records of the desired responses have not been stored which 
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makes the truncated BPTT computationally feasible in real time. 

3.3 Echo State Network (ESN) 

The echo state network is an RNN recently introduced in [11, 13, 14]. As men­

tioned earlier all RNNs are characterized by the use of feedback, inspired by the 

biological neural network which is recurrent in nature. RNNs have dynamic mem­

ory and are used for black-box modeling of non-linear systems. The ESN differs 

from other RNNs in two ways: 

1. Architecture- The ESN consists of a large number of recurrent units usu­

ally in the order of hundreds (1 00-1 000). These recurrent units form a reser­

voir. But, in case of conventional RNN such as the RMLP, recurrent units 

are represented in the form of hidden layers and are not large in number. 

2. Learning Algorithm - The ESN learning algorithm is supervised in na­

ture. In the case of ESN, during training only the output synaptic con­

nections are modified, whereas in other RNN learning methods the entire 

synaptic connections are altered. The training of ESN is done by linear 

regression. 

Figure 3.2 shows an ESN with a single input unit, N internal units and a single 

output unit. These N internal units are recurrent in nature and thus form the reser­

voir of dynamics. The activations of the internal and output units are represented 

as x(n) and y(n), respectively. The input is represented by u(n). The updating of 



CHAPTER 3. RECURRENT NEURAL NETWORKS (RNNS) 29 

0 

Reservoir 

Figure 3.2: Structure of an ESN with a single input and a single output. 

the activations of the reservoir and the output unit are given as 

x(n + 1) 

y(n + 1) 

f(Wx(n) + winu(n + 1) + v(n + 1)) 

rut (wout (x(n + 1))) 

(3.25) 

(3.26) 

where W is the internal weight matrix of dimension N x N, win is the input weight 

matrix and wout is the output weight matrix which has to be computed. These out­

put weights are the only synaptic connections that are adapted during the training 

process once the network is chosen. The weights corresponding to the synaptic 

connections of the input and the reservoir remain unaltered during the training 

process. u( n + 1) represents the input vector, f denotes the transfer function of 

individual elements, and v( n + 1) is the optional noise vector. 
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3.3.1 Concept of Echo States 

A network is an ESN if its dynamic reservoir has echo states. Echo states consti­

tute a property that the network exhibits before it is trained. In fact, the echo state 

property is related to the properties of the reservoir matrix W. Therefore, a trained 

network is an ESN if its untrained version exhibits the echo state property. In this 

section, we paraphrase the discussion provided in [12, 14] on the properties and 

characterization of echo states. A formal definition of echo states as stated in [14] 

is given below. 

Definition If an untrained network with weights win, W is driven by teacher input 

u(n) from a compact interval U and has network states x(n) from a compact setA, 

then the network has echo states if the network state x(n) is uniquely determined 

by any left-infinite input u(n- 1), u(n) where n = -2, -1,0. 

In an intuitive sense, the echo-state property states that if a network is run 

for a very long time from negative infinity (i.e. left-infinite property) then the 

current network states can be uniquely determined by the input history. As men­

tioned earlier the property of echo states depends on the algebraic properties of 

the weight matrix W of the dynamic reservoir. As there is no necessary and suffi­

cient algebraic conditions [12] to show that the network has echo states given the 

weight matrix (W, win), we resort to a heuristic approach to obtain an echo-state 

network. Before describing the heuristics we discuss in proposition (3.3.1) the 

sufficient condition for the non-existence of echo states. 

Proposition 3.3.1 Consider an untrained network (W, win) with the state update 

according to (3.25) and tanh as the transfer function. This network does not have 

echo states with respect to the input interval U if the spectral radius of the dynamic 



CHAPTER 3. RECURRENT NEURAL NETWORKS (RNNS) 31 

reservoir weight matrix W is greater that unity, that is, if l"-maxl > 1. In this, 1"-maxl 
is the largest absolute value of an eigenvector ofW. 

Though there is no sufficient algebraic condition for finding echo-state networks, 

in practice it is believed that a network exhibits echo states if Preposition 3.3.1 is 

not satisfied. In not satisfying Preposition 3.3.1 the spectral radius 1"-maxl. which 

is the largest absolute value of eigenvector of W, is less than unity. Therefore this 

heuristic approach [12] as stated in Conjecture 1 is used to design an echo-state 

network. 

Conjecture 1 Let 8 and E be two small numbers. Then for a dynamic reservoir 

of size N a random matrix Wo is created by sampling the weights from a uniform 

distribution between [ -1,1]. Then the matrix Wo is normalized to W1 by dividing 

Wo by its spectral radius. Scaling W1 to W = (1 - 8)W1 where (1 - 8) is the 

spectral radius of W; hence, the network (Win, W) is an echo state network with 

probability I -E. 

It can be understood from Preposition 3.3.1 and Conjecture 1 that the key to 

achieving echo states is by having the spectral radius of the dynamic reservoir less 

than unity. It should also be noted that the echo-state property only depends on 

the properties of the dynamic reservoir weight matrix W and has nothing to do 

with the input weight matrix win. Therefore, the input weight matrix win can be 

freely chosen without affecting the echo-state property. 

3.3.2 Training an Echo-State Network 

Having described the property of echo states along with the heuristic conditions 

for an ESN, we present the idea behind training an ESN. First, we discuss the 

training principle of an ESN followed by the algorithm employed to train it. A 
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detailed discussion on these topics is presented in [14], [12]. 

3.3.2.1 Principle 

The main difference between an ESN and other RNN structures is that in the case 

of ESN only the output synaptic weights are modified during training whereas in 

other RNN structures the entire synaptic weights are modified. Therefore the key 

aspect of the ESN training lies in the computation of the output weights wout. The 

principle employed in the computation of output weights is linear regression. The 

training principle is explained as follows. 

Consider an ESN, which is to be driven by a set of inputs training data of length 

nmax represented by u( n). Then, since the ESN satisfies the echo-state properties 

as described in the previous section, after some initial transient period the internal 

network states x;(n) of the dynamic reservoir may be represented as 

x;(n) ~ e;( ... ,u(n),u(n+ 1)) (3.27) 

where e; represents the echo function of the ith unit. The network weight matrix is 

assumed to be heterogeneous; therefore, the echo functions will differ from each 

other. Let the desired output be denoted by d ( n). Then, the network output is 

given by 

(3.28) 

where wjut represents the ith output connection which needs to be computed. The 

rut is a tanh function which is invertible. Hence, (3.28) may be rewritten as 

N 
uout)-ly(n) = E wfutx;(n) 

i=l 

(3.29) 
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The echo functions as in (3.27) are substituted for Xi(n) in (3.29) which gives 

N 
(fout)-Iy(n) = L wjutei( ... ,u(n),u(n+ 1)) 

i=I 
(3.30) 

Now the output weights wout which constitute the key ingredient in the training of 

an ESN are computed by minimizing the training error in the mean square error 

(MSE) sense. The training error is given by 

Substituting (3.30) in (3.31), the error is obtained as 

N 

trrain(n) = (!out)-! d(n)- [. wjut ei(. .. , u(n), u(n + 1)) 
i=I 

Therefore, the MSE, which is to be minimized to obtain wout, is given as 

1 nmax 

MSErrain = (n _ n . ) L c?rain(n) 
max mm i=nmin 

Now, (3.33) can be written as 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

where nmin refers to the length of the initial transient that is dismissed and not 

used in the computation of the output weight. Since the minimization of (3.33) 

is a linear regression task, the training of the ESN which mainly involves the 

computation of the output weight wout matrix is by linear regression. If rut = 1 
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as in the case of linear units then (3.34) may be written as 

( )

2 1 nmax N 

MSEtrain = (n -n . ) L d(n)- L wju
1
xi(n) 

max mm i=nmin i= I 
(3.35) 

3.3.2.2 Algorithm 

The training algorithm for an ESN may be described in four stages: 

1. Procure an ESN 

2. Network state updating 

3. Computation of output weights 

4. Testing 

The first three stages constitute the training phase, and the last stage is the testing 

phase. 

Procure an ESN - An ESN is one which satisfies the echo-state properties 

described earlier. Therefore, to accomplish this we follow the heuristic approach 

as discussed in Preposition 3.3.1 and Conjecture 1. The following heuristics guar­

antees an ESN. 

• The network weight matrix Wo, is a sparse matrix generated randomly from 

a uniform distribution [ -1, I]. It is then normalized to W1 with the absolute 

value of its spectral radius. 

• The Network weight matrix W which has the echo state property is then 

obtained as W = aW1 where a < 1 is the spectral radius of W. 
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• The input weights win are randomly generated. Now the untrained network 

win, W is an ESN. 

• The size of the weight matrix W is always between T /10 and T /2, depend­

ing on the complexity of the task. T is the length of the training data. 

• The parameter a is of crucial importance for the successful training of an 

ESN. Since the spectral radius of the reservoir weight matrix is connected 

to the intrinsic timescale of the dynamics of the reservoir state, a diligent 

choice of a would improve the probability of successful training. Typical 

range of a lies between (0.78 - 0.98). 

Network State Updating - Once the ESN is setup, it can be trained by 

presenting the input training sequence u(n). The state update is done as follows: 

• The initial network state is set to zero, x(O) = 0. Then the network is trained 

by presenting the input training data u(n) and the network state update is 

performed by 

x(n+ I)= f(Wx(n) + winu(n+ 1) +v(n+ 1)) (3.36) 

• For each time n, after an initial transient, the network states x(n) are col­

lected as a row in a state collecting matrix M and the sigmoid-inverted de­

sired output tanh- 1d(n) is collected as a row in a output collecting matrix 

T. 

Computation of Output Weights - This is the most important part of the 

training algorithm since in the case of ESN only the output weights are adapted. 

In the previous section, it was shown that the computation of wout is a linear 
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regression task. This can be achieved by multiplying the pseudo-inverse of M 

which stores the collected network states with T which stores the collected desired 

output: 

(3.37) 

Thus the output weight wout is obtained as the transpose of (woury. 

Testing- The network is trained once the computation of wout is done. The 

computed wout is then written in the output weights and the network (W, win, wout) 

is ready to be tested. The trained network is tested by presenting a novel input se­

quence u(n) and employing (3.25) and (3.26) as the update equations. 



Chapter 4 

Known Techniques for Mode 

Estimation 

In this chapter, we briefly describe two stochastic modeling techniques which are 

known in the literature as solutions to the mode estimation problem of MFR. The 

first technique is based on syntactic modeling, which employs stochastic gram­

mar. Here a hidden Markov model (HMM) filter is used to estimate the mode of 

operation of the MFR. Some limitations of this technique were overcome by the 

second method, the multi-model stochastic approach which is based on observ­

able operator model (OOM). This approach exploits the principle of maximum 

likelihood to estimate the mode of operation of MFR. This technique also has 

some limitations of its own, which leads to the development of a more efficient 

model which is described in Chapter 6. The two stochastic modeling techniques, 

namely, syntactic modeling and OOM-based modeling are described briefly in the 

following sections. 

37 
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4.1 Syntactic Modeling 

The syntactic modeling technique [6] is based on formal language processing us­

ing grammars for modeling. Grammar is a well-known modeling tool in formal 

language processing. They help in efficient application of formal language. There 

are two types of grammar, namely, deterministic grammar and stochastic gram­

mar. In MFR modeling, the radar is assumed to communicate in a formal lan­

guage, and stochastic grammar is used to model the same. 

4.1.1 Formal Language 

A formal language L may be defined as follows. 

Definition If A is a set of alphabets of some finite length defined by A =a, b, e, ... 

then the language L defined over A is the set of finite length strings formed by 

concatenating the alphabets of A. 

Two kinds of sets can be formed by concatenating the alphabets in A 

a, b, e, ab, be, ea, aa, bb ... 

E, a, b, e, ab, be, ea, aa, bb ... 

(4.1) 

(4.2) 

where A+ refers to positive closure of A and A* refers to kleene closure of A as it 

contains E. E is an empty string which contains no alphabets. Formal language by 

itself has limited application. A better way to employ formal language is by the 

use of grammar. 
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A - Alphabet/Set of terminal symbols A={a,b} 
o -Variables/Set of non-terminal symbols o = {So,S!} 
Y - Production rules So-+ aSJ/b 

S1-+ bSo 
So - Starting non terminal symbol So 

Table 4.2: Example for deterministic grammar 

4.1.2 Grammar 

Grammar may be regarded as a set of rules which may define the use of formal 

language. There are two types of grammar: deterministic grammar and stochastic 

grammar. Stochastic grammar is an extension of deterministic grammar as it in-

corporates a probability distribution which represents the uncertainty contained in 

the application. 

Definition Deterministic grammar G is a four-tuple 

G= (A,o,Y,So) (4.3) 

where A is the set of a alphabets. o is the set of non terminal symbols of the 

grammar. Y is the finite set of grammatical production rules (syntactic rules). So 

is the starting non-terminal symbol. 

A simple example of deterministic grammar is given below with notations 

defined in Table 4.2. Based on this grammar the following sequence is generated. 

So=? ab 

So =? aS 1 =? abSo =? abab 

So=? aS1 =? abSo =? abaS1 =? ababSo =? ababab 

So=? aS1 =? abSo =? abaS1 =? ababSo =? ababaS1 ... 
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The above described production rule is known as regular grammar. By ex­

ploiting the properties of production rules four classes of grammar are defined 

in a hierarchial fashion in [30]. These four classes of grammar listed below are 

known in the literature as Chomsky hierarchy of transformational grammar. 

1. Regular Grammar 

2. Context-Free Grammar 

3. Context-Sensitive Grammar 

4. Unrestricted Grammar 

The syntactic modeling ofMRF is rooted in the transformation of context-free 

grammar. Here, the production rule is defined in the form of S ---+ j), in which the 

left hand side of the production rule must contain only one non-terminal symbol 

whereas the right hand side can be any string. Many practical applications con­

tain some amounts of uncertainty. The uncertainty element may be represented in 

the form of probabilistic distribution. To illustrate uncertainty, we take the radar 

signal as an example. Radar signals are typically observed in the noisy environ­

ment which may cause sparseness in observation. This leads to an extension of 

deterministic grammar, which is known as stochastic grammar. 

Definition Stochastic grammar Gs is a five tuple 

Gs = (A,cS,Y,Ps,So) (4.4) 

where Ps is the probability distribution over the set of production rules Y. Rest 

of the notations have the same meanings as defined earlier. A more detained 

description of grammar and its various forms may be found in [24]. 
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4.1.3 Finite State Automata (FSA) 

Definition A FSA is a five-tuple 

A (Q,I,B,So,F) (4.5) 

where Q is the set of states of the FSA. I is the set of input symbols of the FSA. 8 

is the transition function of the FSA. So is the initial state of FSA. F is the set of 

final (accepting) states of the FSA (F c Q). 

It is shown that FSA is equivalent to regular languages, regular grammars and 

regular expressions [6]. Chomsky has shown that finite state language can be 

generated from CFG if the non-self embedding property is satisfied. 

4.1.4 Hidden Markov Model (HMM) 

In the syntactic modeling approach mode estimation of MFR is solved by employ­

ing a HMM filter. A HMM estimates the underlying state of a model with the help 

of noisy observations. 

Definition A HMM is a three-tuple defined by 

{A,B,<Oo} (4.6) 

where A is the Markov matrix/state transition matrix. B is the emission probability 

matrix. roo is the initial state probability vector. 

The transition and emission probabilities are generated by the syntactic con­

cepts described in the previous section with probabilities as defined in stochastic 
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grammar. Finally, a HHM filter is used to estimate the mode of the radar in a 

recursive manner. For a detailed description of HMM and the mode estimation 

methodology using HMM readers may refer to [6], [23] respectively. 

4.1.5 Limitations 

The following are the known limitations of this model as described in [3]. 

• The modeling of MFR is based on the context-free grammar, which needs 

to satisfy the non-self embedding property in order to generate FSA. There­

fore, there is no guarantee that all radar grammars would pass this test. 

• If a realistic radar is considered, the number of states in the word level 

HMM is quite large. Consequently, it becomes more expensive in terms of 

computational time and memory resource. 

• Clustering of the HMM states needs to be performed to estimate the mode 

of the radar at any given time. This may lead to lack of accuracy in the radar 

mode estimate 

• HMM filtering algorithm is valid for a stationary process. However, an 

input for the HMM filter is collected from the radar environment which is 

non-stationary. 

• Finally, from the results presented in [6], there exists frequent mode jumps 

in the HMM estimate, which leads to unreliability and lack of accuracy. 

Some of these limitations were overcome by the OOM model described in the 

following section. 
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4.2 Observable Operator Model (OOM) based Mod­

eling 

OOM is a stochastic modeling tool developed in [25]. It is comparable to the 

well-known HMM with respect to modeling dynamic systems and stochastic time 

series. One application example of OOM is to learn the underlying probability 

distribution of an unknown system based on its training data. In this section, 

we describe in brief the essence of the OOM and the multi-model approach for 

mode estimation of MFR. For a detailed description of OOM, readers may refer 

to [25] [26]. 

Definition An m-dimensional OOM is a three tuple, A= (9\m, ( 'ta)aEE, Wo), where 

roo E 9\m and 'ta : 9\m ---. 9\m are linear maps represented by matrices, satisfying 

1. 1 Wo = I, where 1 = (I , ... , I) E 9\m 

2. 11 = LaEE 'ta has column sum equal to 1, where I: is the alphabet. 

where m is the dimension of the vector space spanned by the prediction function 

and 9\m is the domain of the operators. 'ta is the operator indexed over the output 

symbol "a" of the stochastic process. roo is the initial state vector and 1roo refers 

to the component sum of WQ. 

4.2.1 Why Observable Operators 

Consider a system with state space I: consisting of two states (A,B). Then the tran­

sition from one state to another is known as the trajectory of the system. This is de­

fined by the application of a single operator T. Therefore, the trajectory would be 
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a concatenation of states .... ,A,B,A,A, .... visited by the system. In OOM theory, 

this trajectory is viewed in a complimentary fashion. The states are represented as 

operators ( TA, TB). Suppose one of these two operators has to be chosen stochasti­

cally, then the trajectory refers to the transition from one operator to another. The 

trajectory is formed by concatenating the operators TA (T8(TA (TA) ... ) ) .... since the 

observable themselves are the operators the model is named as the observable 

operator model [26]. 

4.2.2 Multi-Model Approach 

In this section, we briefly describe the algorithm employed to estimate the oper­

ational mode of MFR. This multi-model approach [3] makes use of pre-trained 

OOMs. The radar is assumed to operate within a finite number of modes which 

are known. Then for each mode of operation an OOM is built. The number of 

OOMs built is proportional to the number of modes of the radar. These OOMs 

may be called as mode specific OOMs. Each mode specific OOM is trained with 

word sequences corresponding to that particular mode of operation. The training 

is done by the OOM learning principle of Efficiency Sharping. This principle of 

training OOMs is believed to overcome some known limitations of the expectation 

maximization algorithm which is used to train HMMs [27]. 

The mode estimation of MFR is done by computing the likelihood of the in­

coming words with each of the mode specific OOM model. This is done in a 

frame-by-frame manner. The likelihood function (n1(k)) for a frame at time (k) 
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is given as 

P( wordsimodel) 

P(z(k) IMj(k)) 

(4.7) 

(4.8) 

(4.9) 

where nj(k) represents the likelihood function for a particular frame at time k. 

z(k) refers to the frame of words at time k. Mj refers to the finite number of 

modes of MFR with j = 1, ... , r. 't and roo refer to the operator and initial state 

vector of the OOM model associated with mode j respectively. Finally, the mode 

at time k is obtained by maximizing the likelihood function Q.j(k). Therefore, the 

maximum likelihood estimate given by 

M(k) = argmaxnj(k) 
MJ 

(4.10) 

The maximum likelihood estimate makes frequent jumps from one mode to an­

other because of the absence of prior information. This makes the maximum like­

lihood estimate unreliable. This is overcome by the use of a grid filter, described 

in the next Chapter. The grid filter incorporates prior knowledge about the radar 

in the form of transition probabilities. The likelihood estimates of OOM are fed 

to the grid filter along with the mode transitional probabilities . The output of the 

grid filter is maximized at each time k to obtain the filtered estimate. The filtered 

estimate is known as the maximum a posteriori estimate which is free of mode 

jumps. A more elaborate version of this approach may be found in [3]. 
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4.2.3 Limitations 

Though the multi-model OOM approach is said to have overcome some of the 

limitations [3] of the syntactic modeling technique, it has some limitations of its 

own. Following are the limitations associated with this multi-model approach. 

• The OOM modeling is a multi-model approach, which involves building 

individual OOM models for each mode of operation. The task of building a 

model for each mode of operation could be impractical especially when the 

number of operational modes is high. 

• The words from the word extractor module are usually corrupted due to 

the unfavorable effects of the environment. The word corruption tolerance 

supported by the multi-model OOM approach is much less than 10%. This 

places a high demand on the performance of the word extractor module. 

Therefore, a model with improved word corruption tolerance is needed. 

• The OOM multi-model approach fails to detect the mode of operation when 

the radar dwell time for that particular mode is less than eight phrases [3]. 

• The latency associated with the MAP estimate is large. 

The above limitations of the multi-model approach lead to the design of a 

more reliable and robust technique for the mode estimation of MFR. This novel 

estimation technique, described in Chapter 6, overcomes the above mentioned 

limitations in an efficient manner. 



Chapter 5 

Introduction to Grid Filters 

This chapter offers a brief description of grid filters. The grid filter is a recursive 

state estimation technique to estimate the state of dynamic systems. Systems in 

which the state changes over time are called dynamic systems. The grid filter is 

a Bayesian filter. A recursive Bayesian filter computes the posterior pdf of the 

state of the system in a recursive fashion by incorporating prior knowledge of the 

system. In the following sections, we introduce the concept of Bayesian tracking 

and the algorithm of grid filter. 

5.1 Bayesian Approach for State Estimation 

In order to analyze and make inference about a dynamic system, two models are 

required namely, 

1. The system model which describes the evolution of the state with time. 

2. The measurement model which relates the noisy measurement to the state. 

47 
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These two models in general may be available in probabilistic form. This prob­

abilistic state space model and the requirement for the updating of information 

on receipt of new measurement are ideally suited for the Bayesian approach [ 17]. 

The main concept of the Bayesian approach lies in the construction of the posterior 

probability density function (pdf) of the state with all the available information, 

including the measurements received up to the current time instant. Since the pdf 

is constructed with all the available statistical information, it is possible to obtain 

the optimal estimate of the state from the pdf. For these reasons, such a pdf may 

be said to be a complete solution to the state estimation problem of a dynamic 

system. 

The state of the dynamic system has to be estimated at each time instant. This 

calls for a recursive type of filtering approach. In the case of recursive filtering, 

the data are processed in a sequential manner when they are received, so there is 

no need to store the past history of data. This is realized in two steps, namely, the 

prediction step and the update step. The prediction step is used to predict the state 

of the system forward from one measurement time to another by employing the 

system model. Since the state is usually subject to some random noise the predic­

tion may not be accurate, hence an update step is used to modify the predicted pdf. 

This update step uses the latest measurement and is achieved by Bayes' theorem, 

hence the name "Bayesian" approach. 

5.2 Bayesian Tracking 

Having described the concept of the Bayesian approach for a dynamic state es­

timation problem, we will now see how the prediction and update equations are 
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developed [ 17]. In order to describe a dynamic system, consider the following 

two models. 

1. The system model describing the evolution of the state sequence { XkJ k E N} 

of a system, is given by 

(5.1) 

where fk : 9\nx x 9\nv -----t 9\nx is a non-linear function of Xk-1 and vk-1· 

{ Vk-1, k E N} is an independent and identically distributed (i.i.d) process 

noise sequence. nx & nv are dimensions of state and process noise vectors, 

respectively. 

2. The measurement model, from which the state of the system is to be esti­

mated recursively, is given by. 

Zk (5.2) 

where hk : 9\nx x 9\nn -----t 9\ny is possibly a non-linear function. { nkl k E 

N} is an i.i.d measurement noise sequence. ny & nn are dimensions of 

measurement and measurement noise vectors respectively. 

The objective of the filter is to estimate the state xk of the system, given all 

the available information (measurement) Zk = {zili = 1, ... ,k}. From a Bayesian 

perspective, this requires the calculation of the posterior density function p(xkiZk)· 

It is assumed that the initial state pdf p(xolzo) = p(xo) is given. Then p(xkiZk) can 

be sequentially obtained in two stages: the predict stage and the update stage. 
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The predict stage uses the system model to predict the state of the system at 

one time step ahead using past measurements. Assuming that the required pdf 

p(xk-IiZk-I) at time (k- 1) is available, prediction is given by the Chapman­

Kolmogorov equation as follows: 

where p(xkiXk-d refers to the state transition of the system. 

The update stage uses the current measurement Zk to modify the state predic­

tion at time p(xkiZk-J), and this is carried out via Bayes' rule: 

p(zkixk)p(xkiZk-I) 

P(YkiZk) 

where P(YkiZk) = J p(zkixk)p(xkiZk-I)dxk is the normalization constant. 

(5.4) 

The current state estimate p(xkizk) is used as the past estimate in the prediction 

equation (5.3) for the next time instant (k + 1 ), forming a recursive propagation. 

This recursive propagation of the posterior probability density function is actually 

a conceptual solution and cannot be determined analytically. The analytical so­

lution does exist but with certain restrictions. One such solution to this Bayesian 

recursive filtering is the grid filter, which is described in the next section. 

5.3 Grid Filter Algorithm 

The grid filter provides optimum solution to the Bayesian recursive equations (5.3) 

and (5.4) if the following two conditions hold: 

• State space model is discrete 
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• Number of states in the state space is finite 

Suppose the state space at time k- 1 consists of discrete states xL 1, i = 1, ... , r. 
For each state x;, let the conditional probability of the state given measurements 

up to time step (k- 1 ), be denoted by 

CJi k-llk-1 Pr(.xk-1 = xL Ilzk-1) 

Then the posterior pdf of the state at time k- 1 is given by 

r 

EroLIIk-I8(.xk-I-.xLI) 
i=! 

(5.5) 

(5.6) 

where 8(.) is the Dirac delta. Substitution of (5.6) in (5.3) and (5.4) yields the 

prediction and update equation at time step (k), respectively, as follows: 

where 

r 

p(xkiZk-!) L ro~lk-!8(xk- xk) 
i=! 

r 

p(xkiZk) E ro~lko(xk - xD 
i=! 

r 

L roL Ilk- I P(xkl.xi-1) 
j=! 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

The above equations assume that p(.xkl.x{_1) and p(zklxk) are known but they 

do not constrain the particular form of these discrete densities. This solution of 

grid filter is optimal only if the above mentioned assumptions hold. 



Chapter 6 

RNN-DTW hybrid for Mode 

Estimation of MFR 

In this chapter, we formulate the mode-estimation problem and describe our novel 

methodology to track the operational mode of MFR. This methodology, the RNN­

DTW hybrid, employs a RNN trained in a supervised manner with the DTW algo­

rithm as the post processor [28] to estimate the operational mode. The approach is 

tested for an EW scenario via simulation by employing a hypothetical MFR. The 

simulation is performed with two types of RNN for comparison, namely the ESN 

and the RMLP which were described in Chapter 3. 

6.1 Problem Formulation 

For the RWR to estimate the operational mode, it must first classify the observed 

radar. In the context of this work, we assume the radar is already classified based 

on the characteristics of the received signal [15]. Therefore, having classified the 

52 
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Figure 6.1: Mode Evolution of MFR in a typical first order Markov chain. 

radar, the job of the RWR is to estimate its operational mode given the noisy 

observations and some prior knowledge about the MFR. 

Let Mn be the discrete variable, which denotes the mode of the radar at time 

(n). The mode Mn is said to be in effect from time (n -1)+ right up to time 

( n). This kind of mode transition is said to be "left continuous" since the mode 

of operation at time (n) takes effect right from time (n -1)+. Such systems are 

known as linear transition systems. 

The operational modes of MFR are assumed to be finite M;, i = 1, 2, ... , r in 

number. Therefore if Mn is the mode at time (n), then 

(6.1) 

The mode transition of MFR follows a typical first-order Markov process as shown 

in Figure 6.1. That is, the mode at time (n) depends only on the mode at time 

(n- 1 ). The mode transition probabilities Tij are assumed to be known and are 

invariant in time as it is a homogenous Markov chain: 

(6.2) 
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6.2 Methodology 

The operational mode of MFR is estimated sequentially in two stages in the fol­

lowing order: 

1. Minimum Distance Estimate 

2. Maximum a-Posteriori Estimate 

The computation of the minimum distance estimate is the most crucial part 

of the algorithm. A RNN-DTW hybrid is used for this purpose. The maximum a 

posteriori estimate, which is the second stage of the algorithm, is used to refine the 

minimum distance estimate. A grid filter is applied for this step. The following 

subsection describes the two stages in detail. 

6.2.1 Minimum Distance Estimate 

The pulses received from the radar are de-interleaved and given to a word extractor 

module. The words from the word extractor are fed to a trained RNN in a sliding 

window fashion. The words from the word extractor may usually contain erro­

neous words as a result of various corruption effects. A RNN is setup and trained 

to learn the underlying word generation mechanism of the MFR. The training is 

carried out in a supervised manner with the known sequence of words available 

for each mode of operation. In the simulation, we have tested the algorithm for 

two types ofRNN: the ESN and the RMLP trained with the EKF algorithm. These 

two networks and their respective training principles were described in Chapter 3. 

The output of RNN needs to be processed to obtain the modes. The DTW 

is used as a post processor. The stream of words from the RNN are fed into 



CHAPTER 6. RNN-DTW HYBRID FOR MODE ESTIMATION OF MFR 55 

a windowing module. Here the word sequences are split into non-overlapping 

windows of fixed length. The choice of the window size is a design parameter. 

Mode estimation is carried out in a sequential window fashion with one window 

at a time. This offers the following advantages: 

• Mode estimation by a sequential window fashion helps detect the radar 

mode transition in a precise manner. 

• Sequential window processing helps keep the error growth under control in 

the case of a mismatched mode estimate at any given time. 

Each window from the windowing module is considered as a test sequence 

Tn (at time n) and is compared with a finite set of reference sequences Ri, i = 

1, 2, ... , r pertaining to each mode. Each reference sequence is a feature vee-

tor describing a particular operational mode. It is the result of concatenation of 

phrases which correspond to that particular mode of operation. The test sequence 

and reference sequences can be of varying lengths. The choice of their length 

is a design parameter. However, it is worthy to note that smaller size sequences 

increase the probability of timely mode estimation and timely detection of mode 

transition. 

The comparison criterion is the distance. The DTW technique described in 

Chapter 2 estimates the distance of each reference sequence from the test se-

quence: 

. [Ef=I WJ] Di(Tn,Ri) = mm K i (6.3) 

where w1 refers to the optimal warp path from the initial node to the final node of 

the grid constructed between the test sequence and each of the reference sequence 

as described in Chapter 2. This optimal warping minimizes the global distance 
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between the two sequences. Therefore, the minimum distance estimate (M':/0 ), 

which is the mode at time (n), is obtained as 

(6.4) 

6.2.2 Maximum a-Posteriori Estimate 

It can be seen from the simulation results that the minimum distance estimate 

makes occasional mode jumps. This is due to the lack of prior knowledge of the 

radar. A logical method to overcome this occasional mode jump is by incorporat­

ing prior knowledge about the radar into the mode estimation algorithm. This is 

achieved by applying a grid filter, described in the previous chapter, to the com­

puted minimum distance estimates. The grid filter, which actually smooths the 

minimum distance estimate, exploits the known transitional probabilities (TiJ) of 

the radar, which is a prior knowledge. The solution of the grid filter is optimal 

under the assumption that the state space is discrete and finite [ 17]. The choice 

of grid filter is motivated by the fact that in our problem the operational mode 

represents the state of the filter and thus satisfies the assumption. The governing 

equations of the grid filter modeled in the mode estimation frame-work are given 

as 

(6.5) 

(6.6) 
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where 'FiJ is the known mode transition probability, which is used as the prior 

knowledge of the radar. ro~_ 11n_ 1 is the initial mode probability for each mode 

of operation. ro~ln- 1 is obtained from the first step of the grid filter, which is 

(6.5). Di(Tn,Ri) is the minimum distance estimate obtained from the first step 

of the mode estimation algorithm. Its inversion in the normalized form gives the 

probabilistic version of the MMD estimate. 

The grid filter provides the posterior estimate of the radar's operational mode. 

Therefore, the current mode Mn of the radar is obtained as a maximum a-posteriori 

estimate by maximizing the posterior mode probability and is given by 

(6.7) 

Figure 6.2 illustrates the entire mode estimation methodology. As mentioned ear­

lier, this novel approach is tested via simulation for two different RNN networks. 

The simulation and results are presented in the next section. 

6.3 Simulation 

In this section, we explain the computer simulations conducted to test our method­

ology in the following hypothetical EW scenario. Imagine a MFR stationed on 

the ground. There are five modes of operation, namely, search, acquisition, non-

adaptive track, range resolution and track maintenance that the MFR can perform. 

Now assume an aircraft fitted with a RWR is approaching the MFR air space. As 

the aircraft enters the radar detection territory, the radar will begin to engage the 

aircraft and evolve from one mode to another in a Markovian process as described 

earlier in Chapter 2. Now it is the job of the RWR to estimate and track the mode 
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Figure 6.2: Pictorial representation of the entire mode estimation operation. 
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evolution of the MFR as this information is vital for the aircraft to estimate the 

threat posed by the radar. 

A hypothetical radar was setup, which depicts the above mentioned scenario. 

For each mode of operation a corresponding phrase from Table 2.1 is assigned. 

The phrase selection is done randomly by generating random numbers from a 

uniform distribution of (0 to 1). These phrases are then concatenated to form a 

sequence of words. This word sequence is then corrupted randomly by introduc­

ing mismatched words. This is done to acknowledge the undesirable effects of 

corruption in the environment and the word extractor module. The sequence of 

words is fed as input to the pre-trained RNN. Mode estimation is then carried out 

as described in the previous section. Two thirds of the word sequence are used as 

the training data and the rest as the test data. The experiment was carried out sepa­

rately with ESN and RMLP. It is worthy to note while using ESN there are several 

heuristics [14] to consider as it is not the case with RMLP. However, recent re­

search has shown that it is not difficult to overcome the heuristics associated with 

ESN [29]. 

In this experiment, the dimension of the reservoir was 450 units for the ESN, 

and in the case of RMLP two hidden layers were used with ten recurrent units 

in the first hidden layer and ten non-recurrent units in the second layer. For each 

RNN, the simulation was carried out with corruption levels of approximately 10%, 

13%, 15% and 18%. The performance results were first obtained for instantaneous 

trials of each corruption levels since it represents the actual mode estimation sce­

nario for the RWR. Furthermore ensemble averaging of the mode estimate over a 

large number of trial was also performed for each of the corruption levels to show 

the robustness of the approach. As there is a delay (latency) associated with the 
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posterior estimate, the delay rate is an important performance criterion. There­

fore, the confidence limits of delay rate are also obtained for a large number of 

instantaneous trials. The performance of the two approaches were found to be 

comparable and encouraging. The results observed from the simulation graphs 

are discussed below. 

6.3.1 Results 

The results obtained via simulation are compared here. The following results 

compare the algorithm in terms of reliability, accuracy, delay (latency) and com­

putational time between the ESN and RMLP. 

• The minimum distance estimate has some mode jumps in both neural net­

work methods. The grid filter estimate is more reliable as it circumvents 

these mode jumps but at the cost of a delay in detecting the mode transition. 

• Both RNN approaches show higher degree of accuracy in the ensemble av­

erage estimate, with the mode jump of minimum distance estimate and the 

delay rate of the maximum a-posteriori estimate being greatly reduced. 

• The delay rate for 10% word corruption level averaged over a large number 

of instantaneous trials is 8.85% in the case of the grid filter based ESN/DTW 

hybrid and 7.03% in the case of grid filter based RMLP/DTW hybrid as 

shown in Table 6.3. The table shows the mean delay with 95% confidence 

limits. It can be seen that there is not much difference in the delay rate 

between the two methods. 

• The word corruption tolerance supported by the RNN-DTW hybrid algo­

rithm is 18%. Previous mode estimation techniques discussed in Chapter 
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Neural Net mean (J.l) mean confi-
Model dence interval 

ESN/DTW 8.84 8.36-9.24 
Hybrid 

RMLP/DTW 7.03 6.65- 7.35 
Hybrid 

Table 6.3: Delay rate for 10% word corruption averaged over large number of 
instantaneous trials 

4 support word corruption tolerance of less than 10%. This significant in­

crease in the tolerance limit induces leverage in the accuracy of the word 

extractor module. 

• The minimum radar dwell time that can be estimated is 5 phrases in the 

case of the RNN approach, whereas it is 8 phrases in the case of the OOM 

approach discussed in Chapter 4. 

• The computational time for training and testing in ESN/DTW hybrid is ap­

proximately 28s for the posterior estimate as compared to 145s in RMLP/DTW 

hybrid, on a 1.73 GHz Intel Pentium processor using MATLAB 7.1. This 

illustrates the practicality of employing ESN for this application. 

The Table 6.4 shows the delay rate with 95% confidence limits for each of the 

corruption levels. The performance graphs for each of the corruption levels are 

shown below. 
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Neural Net Corruption mean (J.l) mean confi-
Model Level dence interval 

ESN/DTW 10% 8.84 8.36-9.24 
Hybrid 
RMLP/DTW 10% 7.03 6.65- 7.35 
Hybrid 

ESN/DTW 12% 12.04 11.44- 12.64 
Hybrid 

RMLP/DTW 12% 12.81 12.17- 13.45 
Hybrid 

ESN/DTW 15% 13.88 13.19- 14.57 
Hybrid 

RMLP/DTW 15% 18.30 17.38- 19.22 
Hybrid 

ESN/DTW 15% 14.21 13.5- 14.92 
Hybrid 

RMLP/DTW 18% 17.14 16.28- 18.27 
Hybrid 

Table 6.4: Delay rate for each of the word corruption levels averaged over large 
number of instantaneous trials 
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level Vs True Mode Evolution 
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Figure 6.7: ESN based Instantaneous MD & MAP Estimates for 12% corruption 
level Vs True Mode Evolution 
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Figure 6.8: ESN based Ensemble Average MD & MAP Estimates for 12% cor­
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Figure 6.9: RMLP based Instantaneous MD & MAP Estimates for 12% corruption 
level Vs True Mode Evolution 
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Figure 6. 10: RMLP based Ensemble Average MD & MAP Estimates for 12% 
corruption level Vs True Mode Evolution 
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Figure 6.11 : ESN based Instantaneous MD & MAP Estimates for 15 % corruption 
level V s True Mode Evolution 
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Figure 6.12: ESN based Ensemble Average MD & MAP Estimates for 15% cor­
ruption level Vs True Mode Evolution 
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Figure 6.13: RMLP based Instantaneous MD & MAP Estimates for 15% corrup­
tion level Vs True Mode Evolution 
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Figure 6.14: RMLP based Ensemble Average MD & MAP Estimates for 15% 
corruption level Vs True Mode Evolution 
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Figure 6.15: ESN based Instantaneous MD & MAP Estimates for 18% corruption 
level Vs True Mode Evolution 
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Figure 6.16: ESN based Ensemble Average MD & MAP Estimates for 18% cor­
ruption level Vs True Mode Evolution 
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Figure 6.17: RMLP based Instantaneous MD & MAP Estimates for 18% corrup­
tion level Vs True Mode Evolution 
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Figure 6. 18: RMLP based Ensemble Average MD & MAP Estimates for 18% 
corruption level Vs True Mode Evolution 



Chapter 7 

Discussion 

The mode-estimation problem of MFR has been studied in detail in this thesis. 

This chapter presents conclusions by summarizing the most important contribu­

tions and results of the investigation. 

7.1 Major Contributions 

In this section, we aim to summarize the important contributions of this research 

effort. 

• RNN for Modeling- RNNs are a type of artificial neural networks that 

are characterized by the use of feedback. They are dynamically driven net­

works capable of mimicking dynamic systems with arbitrary precision. The 

presence of feedback helps the RNN to learn more efficiently than other 

learning models. The use of RNN for mode estimation has offered specific 

benefits over previous modeling techniques in terms of accuracy, latency, 

dwell time detection and word corruption tolerance. Supervised training of 

71 
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the ESN and training of the RMLP by the EKF algorithm, which is also 

supervised, are efficient in capturing the word generation mechanism of the 

radar. This subsequently helps in estimating the operational mode of MFR 

accurately. 

• Single Model Approach - A single model approach is proposed to track 

the operational mode of MFR. The mode estimation of MFR is achieved by 

building a single RNN model to learn the underlying word generation mech­

anism of the MFR through supervised training. A single model approach 

overcomes the burden of building individual models for each operational 

mode of MFR, which would prove to be a cumbersome task if the num­

ber of operational modes is large. Thus a single model approach is more 

practical to solve the MFR problem. 

• Word Level Estimation - Since the MFR employs complex pulse struc­

ture with the capability to perform multiple tasks, mode estimation becomes 

very difficult at the pulse level. To overcome this difficulty and to keep the 

signal processing complexity manageable, a hierarchial signal structure is 

proposed, in which individual words extracted from the MFR pulses are 

used for mode estimation. Mode estimation carried out in the word level, 

which is subsequent to the pulse level, is less computationally intensive and 

erroneous than pulse level processing. 

• Improved Performance- The RNN-DTW hybrid presented in this inves­

tigation has demonstrated improved performance over previous approaches 

in the mode estimation of MFR. The significant performance improvements 

include higher degree of reliability and accuracy, reduced latency rates, 
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improved dwell time detection and most importantly higher word corrup­

tion tolerance. The word corruption tolerance has been increased to 18% 

in RNN-DTW hybrid from below 10% supported by previous techniques. 

Computer simulations show that the RNN-DTW hybrid has not only over­

come the limitations associated with the previous techniques, but has also 

achieved it with comparable computational intensity. 

7.2 Conclusion 

This thesis presents a novel method, the RNN-DTW hybrid to estimate and track 

the mode of operation of MFR accurately. Since the electromagnetic emissions 

of the radar are very complex, a hierarchial signal architecture is proposed to 

keep the signal processing complexity manageable. The mode estimation is then 

performed at a higher level of the hierarchial signal architecture, known as the 

word level. 

The proposed methodology was tested for two RNNs, namely, the ESN and 

RMLP. The RNNs are trained in a supervised manner to capture the underlying 

word generation mechanism of the MFR. DTW is used as the post processor for 

both RNN models. Minimum distance is the decision criterion used to estimate 

the mode of operation. The phenomenon of occasional mode jumps of the min­

imum distance estimate is mitigated by updating the probability of each opera­

tional mode in a recursive fashion. This is achieved by using the knowledge of 

the distance estimates and the prior mode transition probabilities in a grid filter 

framework. Finally, the jump free estimate of the current operational mode is ob­

tained in the MAP sense by maximizing the mode probability at that particular 
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time instant. 

Computer simulations conducted for both instantaneous and Monte Carlo tri­

als show that the RNN approach performs better than the previous mode esti­

mation techniques with increased corruption tolerance, reduced latency rates, im­

proved dwell time detection and comparable run times. Among the two RNNs, the 

results show that the performance of grid based ESN/DTW hybrid is much similar 

to its RMLP counterpart in all the above mentioned performance criterion. How­

ever, in terms of computation time the performance of the former is only about 

one fifth of the latter. Since computation time may be an important parameter in 

the threat analysis of MFR, it is considered to be the deciding factor between the 

two RNN models. Therefore, we conclude that grid based ESN/DTW hybrid is a 

suitable candidate for tracking the operational mode of the MFR, both in terms of 

performance and computational complexity. 
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