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Abstract 

As the fundamental basic building blocks of photonic circuits, optical waveguide 

structures play important roles in modem telecommunication and sensing systems. 

Various structures ranging from the dielectric waveguide utilizing the total internal 

reflection (TIR) to the more advanced structures based on the surface plasmon polaritions 

(SPPs) are widely investigated and studied in industrial and research areas. With the fast 

development of fabrication technologies, more and more complicated structures are 

predicated to emerge as the requirement of highly integrated photonic circuits. Modeling 

and simulation methods, as efficient as well as excellent cost performance tools 

comparing to costly facilities and time-consuming fabrication procedures, are demanded 

to explore and design the devices and circuits before their finalization. 

This thesis reports a series of techniques to model two dimensional waveguide 

structures, including the conventional planar and surface plasmon polariton waveguides. 

This thesis contains both the methods and their applications to model and investigate the 

mode and propagation characteristics including the guided waves and the radiative waves. 

The methods include mode solvers based on fmite difference method (FDM) and 

complex mode matching method (CMMM), furnished with perfect matching layer (PML) 

for both guided and radiation modes. Based on the developed techniques, solutions of 

design of Bragg gratings with deep corrugations are presented; also various surface 

plasmon polariton (SPPS) grating structures are investigated. 
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Chapter 1 

Introduction 

1.1 Background 

McMaster -Electrical and Computer Engineering 

In response to the needs of miniaturization and fast increased functionality in future 

integrated photonic chips, high contrast index waveguide structures are highly desired 

because the confinement of the traditional dielectric waveguides based on total internal 

reflection {TIR) is largely determined by the index contrast between waveguide core and 

cladding [1]. 

One the other hand, surface plasmon-polaritons (SPP) attracted much interests due 

to their unique properties characterized by large electromagnetic fields confined within a 

sub-wavelength region [2]. It has recently been shown a thin metal film surrounded by 

dielectric mediums can support two bound TM modes in which the symmetric mode has a 

very small attenuation constant, therefore the symmetric mode is often referred to as long 

range surface plasmon polaritons (LR-SPPs) mode and can be utilized to constitute low 

loss photonic components [3]. 

Periodic structures with index corrugations along optical waveguides are widely 

used in optical fiber and integrated optic devices and circuits [4-6]. Contra-propagating 

waves are coupled by the grating structures and the interference between the forward and 

the backward (guided or radiative) waves leads to a variety of spectral and spatial patterns. 

The unique spectral and spatial characteristics of the Bragg gratings have been 

utilized in a wide range of applications such as wavelength filtering [7], input-output 
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coupling[&], optical feedback [9], sensing [10-12], etc. The long range surface plasmon 

polaritons Bragg grating has been investigated both theoretically and experimentally as a 

promising replacement of traditional dielectric gratings which are widely used in 

distributed feedback (DFB) and distributed Bragg reflector (DBR) lasers [2, 13-18]. 

1.2 Motivation 

Different from the gratings based on the conventional weakly optical waveguides, the 

index contrast of the SPP structures or silicon on insulator waveguide is large and hence 

the vector nature of the fields is prominent. Especially only a limited number of methods 

were reported for modeling and simulation of SPP gratings so far, among which the 

finite-difference time-domain {FDTD) method is rigorous, yet extremely demanding on 

computation time and memory [19]. Other more efficient methods are the integral 

equations based on Green's functions and the mode matching method based on the guided 

surface mode[13, 20]. The mode-matching method based on single surface mode is 

intuitive and efficient, but lacks in accuracy, especially when the depth of the grating 

increases. 

In this work, we employ a rigorous mode-matching method based on complex 

modes derived from a computation model facilitated by a perfectly matched layer (PML) 

terminated with zero boundary condition [21]. The complex modes including both the 

guided modes and the radiative leaky modes are computed by a highly accurate higher­

order fmite-difference solver [22]. 
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1.3 Thesis organization 

The arrangement ofthis thesis is as follows: In Chapter 2, the modal governing equations 

and fmite difference solutions are presented. Chapter 3 describes the complex mode 

matching method. Simulation and analysis of deep gratings in dielectric waveguides with 

high index contrast are introduced in Chapter 4. Chapter 5 shows the analyses of the 

various SPPs gratings, and the conclusion of this thesis is drawn on Chapter 6. 
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Chapter 2 

Mode Equations and Finite-Difference Solutions 
for Straight 2D Waveguides 

2.1 Mode Equations for Straight 2D Waveguides 

2.1.1 Governing equations for 2D waveguides 

In a source-free, non-magnetic medium, the time-harmonic Maxwell's equations in their 

complex forms are written as 

VxE=-jWJloH (2.1) 

(2.2) 

(2.3) 

V ·(JloH) = 0. (2.4) 

Where e0 and Jlo are the permittivity the permeability of the free space, er is the 

relative permittivity of the medium; A time harmonic factor ej{J)f is assumed and 

suppressed. The wave number ko and refractive index n are defmed as 

k - 2li o-­
A. 

n = .Ji:.. 

(2.5) 

(2.6) 

By taking the curl of the (2.1) or (2.2) and substituting into the (2.2) or (2.1), we 

can eliminate one of the electric ( magnetic) fields to obtain the well known full vector 

wave equations: 
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(2.7) 

(2.8) 

For the 2D waveguide structures, the vector equations can be decoupled to two 

different sets of equations: Transverse electric modes (TE) which do not contain the 

longitudinal electric field component, and transverse magnetic modes (TM) which do not 

contain the longitudinal magnetic field component. The vector wave equations for the 

transverse field of a two-dimensional structure are expressed in terms of the transverse 

electric fields 

(2.9) 

for the TE polarization and the transverse magnetic fields 

(2.10) 

for the TM polarization. The propagation and transverse directions are supposed to be z 

and x; P is the propagation constant. The other field components of TE mode are 

expressed as 

- p (2.11) Hx ----Ey, 
OJflo 

and 

1 aEy 
(2.12) H =j--. 

z OJf.Lo ax 

For the TM mode, the other field components are written as 

5 
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(2.13) 

and 

(2.14) 

2.1.2 Normalization, orthogonality and field confinement factor 

Once all guided and complex modes of waveguide have been obtained, the transverse 

fields of waveguide can be expressed approximately as the linear superposition of 

eigenmodes: 

N 

E- { )- "{ + -JPnz -_iftnz)- { ) 
1 x,y,z - L. ane +ane- etn x,y , (2.15) 

n=l 

N 
H

1 
(x,y,z) = L (a~e -JPn= -a;eJPn=)~(x,y), (2.16) 

n=l 

For general (reciprocal) media, both guided and complex modes obey the same 

orthogonality in the same waveguide, 

fJ ( etm X huz + etn X hmz) · zdA = 0 

for Pm ;t;±f3n-

Especially for lossless media, the orthogonality can be expressed as, 

Jf(etmxhuz* +etn'"x~~un)·zdA=O 

for Pm * ±Pn-

(2.17) 

(2.18) 

We may normalize the field by setting the total guided power to unity, for general 

medium, 
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(2.19) 

For lossless media, it can be simplified as, 

(2.20) 

It is noted that for general media, 

(2.21) 

Nn may not be equal to unity and may even be complex. 

The confmement factor which described the ratio of the guided power in the 

guided area over the entire guided power, namely, 

ff ~(Exn*)·zds 
r= Core 

Jf 9t(ExH*)·zds · 
(2.22) 

Whole 

For the TE and TM modes in the 2D straight waveguides, we have 

JJIEylz ·dx 
r _ _,C=or=e----,--

TE- ff 1Eyl2. dx 
(2.23) 

Whole 

(2.24) 

2.2 Finite Difference Scheme 

One of the key issues in the field of guided-wave optics is the mode calculation. Vectorial 

mode analysis is greatly preferred due to its capability of handling polarization 
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dependence and coupling. Over the past several decades, a large number of analysis 

methods have been developed such as the imaginary distance beam propagation method 

[23], the finite-element method [24] , the method of lines [25 , 26] and the finite difference 

method [22, 27-29]. Among these CAD tools, the finite difference method is one of the 

most well known numerical methods due to its simplicity and straightforward 

methodology(30]. 

2.2.1 First order finite difference scheme 

The FDM based on graded index approximation was brought out firstly by Stern[27, 28], 

in which the discontinuity of the dielectric medium was matched by averaging the 

permittivity over meshes. Considering the sampled field ¢i and the nearby field ¢i+I 

illustrated in Fig. 1. 

Fig. 1. Schematic of interfaces between sampled points 

Using the Taylor series expansion, the second derivative of ¢i is expressed as 

(2.25) 

The TE modal equation (2.9) under this FDM scheme is discretized as 

(2.26) 

and the TM modal equation under this FDM scheme is discretized as 

8 
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(2.27) 

where 

2 1( 2 2) 
ni+0.5 = 2 n; + ni+I 

2 1( 2 2) n.os=-n.+n.I 1- . 2 I 1-

(2.28) 

Combining all sampled points together the discretized modal equations become 

the eigenvalue problems, 

(2.29) 

Where A is a sparse matrix. The eigenvalue problem can be solved efficiently with 

Arnoldi iteration method [31 J. 

It's noted that the truncation error ofthis scheme is 0 ( h0
) where h is the mesh 

size. Furthermore, the accuracy can not by increased by using fme mesh scheme. By 

using the Taylor series expansion and from the matching conditions between the 

discontinuous interfaces, Vassallo provided an improved FDM scheme which has 

0 ( h2
) truncation error when the interface is in the middle between the sampled points 

[29]. Later on, this work is developed by Chiou et al with the combination of the 

Generalized Douglas (GD) scheme [22]. The truncation error in this scheme is o( h4
) in 

the uniform discretization cases irrespective of the location of the interfaces. For the 

completeness ofthis thesis, we give a brief derivation ofthis scheme. 

9 
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2.2.2 ffigh order finite difference scheme 

We consider the magnetic field f/J; at an arbitrary sampled point, the nearby fields are 

denoted as ¢;+I, ¢;_1, respectively as shown in Fig. 1. Using the Taylor series expansion 

and matching the boundary conditions, rA±I can be expressed in terms of ¢; and its 

derivatives as 

(2.30) 

, • (3) (4) ,(s) (h6) ¢i+I = fo¢; + Ji¢; + hrA + 13¢; + /4¢; + fsor; + 0 · (2.31) 

The General Douglas operators are derived by omitting the high order terms, 

(2.32) 

(2.33) 

By combining(2.30),(2.31), we have 

JirA-1 +(foe! -eofi)f/J; -elf/);+! =¢;" (he! -e3jj )¢;<3 
+(f4el -e4jj)¢;(

4
) +(fsei -esfiM(s) +O(h4). (2.34) 

~-~ ~-~ 

The above expression is approximated with 

(2.35) 

Substituting (2.35)into the Helmholtz equation leads to 

(2.36) 

Eq. (2.36) can be denoted as 

10 
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(2.37) 

This eigenvalue problem can be solved efficiently with Arnoldi iteration method. The 

coefficients e; and J; are given in the Appendix A. 

2.3 Numerical Boundary Conditions 

2 .. 3.1 Zero boundary conditions 

A potential problem with the fmite difference method is that it requires the structure to be 

enclosed in a metal box, in order to truncate the computation window. If the computation 

window is large enough, the electrical field for TE guided wave or the magnetic field for 

TM guided wave can be seen decayed to zero. However, the parasite reflections may 

happen for radiative wave since they will be reflect back at the boundary thereby affect 

the simulation results. Further, if the computation window is not large enough and the 

guided wave may not decay to zero, even the fundamental modes will be disturbed. 

Therefore, the advanced boundary conditions are desired to fulfill the potential of the 

numerical method. 

2.3.2 Perfect matching layers (PML) 

Assume the computation region enclosing the studied structures is terminated at the edges 

by the null boundary conditions. We can place the perfectly matched layer (PML) 

adjacent to the boundary to minimize the reflections from the boundary [32, 33]. 

11 
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J PMLreginn 

Fig. 2. Schematic of the computation window 

By this computation model, the entire mode spectrum will be discretized into two 

categories: guided modes and complex modes [34]. Both possess the normal mode 

characteristics such as the orthogonality and normalization. The PML region is helpful to 

reduce the parasitic reflection, therefore the closed waveguide structure can be considered 

as an open one. In this work, we employ the complex coordinate stretching PML scheme 

[35]. In the real medium, the mesh is real and unaffected; in the PML region, the 

stretching factor is given by 

(2.38) 

The parameters ax in the imaginary part controls the absorption of the 

propagating waves in the PML region, the real part Kx can help to attenuate the 

evanescent waves. Practically, the parameter ax usually takes the following form 

- ( p )m a-O"max -- ' 
IPML 

m = 1, 2, 3, ... (2.39) 

where lpML is the PML thickness and p is the distance from the origin point of the PML. 

The relationship between lT max and the reflection coefficient R at the interface between 

the real and PML region is given by 

12 
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(2.40) 

where c is the light speed in free space. Combining the equations above, the stretching 

factor sxis 

(2.41) 

2.4 Validation of the Mode Solvers 

2.4.1 TE modes in Multi-mode slab waveguide 

We take the multi mode dielectric slab waveguide structure (Fig. 3) as an example, the 

parameters used in simulation are as follows: n8 =3.2, ncore =3.5, nc =1.0, the wavelength 

is 500nm, and the section lengths are all 0.5 urn. 

"• 

X 

Fig. 3. Schematic of multi- mode slab structure. 

Using the 4th order FDM with the zero boundary condition facilitated by PML, it 

is found that this structure can support 3 TE modes. For comparison, we also use smooth 

transition method to calculate the guide mode of this structure [36]. The results of 

effective index calculated by FD4 and smooth transition method are shown in 

Table 1 and the field patterns are shown in Fig. 4. The results clearly show the 

accuracy of the high order FDM. The parameters used in calculation are: mesh size is 

13 
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5nm, computation window is 1.5~m, reflection coefficient is 0.1 and the thickness of 

PML is 50nm. 

Table 1. Effective index of guided modes (TE) 

Mode No. 
FD4 

Analytical 
()) 
::I 
~ 0.5 
1J 

TEo 
3.47343258465 
3.47343259501 

TE mode 

Q) 0 
~ /" 
-~ -0.5 / I .. Re I 
~ / ---rm 
0 -1~----~~~~~·~------~ 
z 0 0.5 1.5 

()) 
::I 

~ 
1J 
Q) 
u:: 
1J 0 
()) 

.!:::! 

(a) 
d (urn) 

TEmode 

~ 
~ 

~ 0 -1L-----~----~------~ 
z . 0 0.5 1.5 

d (urn) 
(c) 

TE1 TEz 

3.39376054353201 3.26398099338036 
3.39376059456825 3.26399240834809 

TEmode 

0.5 1.5 

(b) 
d (urn) 

Fig. 4. Guided mode profiles of dielectric multi- modes slab waveguide. 

Due to the presence of PML, the complex modes are split into two types, one is 

PML mode whose energy focused in PML region and another one is quasi-leaky mode 

which grows towards cladding and decaying in the PML region (Fig. 5). 
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TE mode 
~ 1..-----~--c=====~--~ 
~ 
"C 0.5 
G) 
u: 
~ 0 

~ -0.5 
0 z -1L-----~------~----~ 

0 0.5 1.5 

(a) 
d (urn) 

McMaster- Electrical and Computer Engineering 

(I) 
::I TE mode 
~ 1~----~------------~ 

"C 
Cii u: 
~ 0 1--~~~--~-----------~,~, 

i ~~: I 
0 -1~====~----~~----~ 
z 0 0.5 1.5 

(b) d (um) 

Fig. 5. Mode profiles of complex modes. (a) Quasi-leaky mode, (b) PML mode. 

2.4.2 TE modes in Single-mode slab waveguide 

The single-mode condition for symmetric slab waveguide of step-index is given by, 

~ > 2.Jin.JA. (2.42) 
2d 

where L1 = n1 - 1'0. is the relative refractive index difference, n = n1 + 1'0. is the average 
n 2 

between the core and the cladding and 2d is the full width of the waveguide. We can 

design the single mode symmetric slab waveguide according to this criterion. The 

designed structure is the shown in Fig. 3, the core width is 1 OOnm, 

n8 =1.0, nc1 =1.0, nc =3.5. The electric field patterns of TEo and one of the quasi-leaky 

mode s are shown in Fig. 6; the effective indexes are listed in Table 2. 

Table 2 .. Effective index of the single mode slab waveguide (TE) 

Mode TEO 
Effective Index 2.52269110177425 
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Fig. 6. Electric field distributions of TEo mode and a quasi-leaky mode 

2.4.3 TM modes in Multi-mode slab waveguide 

The multi mode dielectric slab waveguide structure (TM) is shown in Fig. 3, the 

parameters used in simulation are as follows: n8 =3.2, ncore=3.5, nc=l.O, wavelength is 

500nm, the section length are all 0.5 urn. The effective indexes calculated by FD4 and by 

analytical method are shown in Table 3, the field distributions of guided modes are shown 

in Fig. 7. 

Table 3. Effective index of the multi- modes slab waveguide(TM) 

Mode No. TMo TMt ™2 
FD4 3.47038303976 3.38216642802250 3.24323871540516 

Analytical 3.47038304155 3.3 8216646140793 3.24328640147197 
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TMmode 

Fig. 7. Mode profiles ofTM guided modes (a) TM0, (b) TMr, (c) TM2• 

2.4.4 TM modes in Single-mode slab waveguide 

The designed structure is the same with Fig. 3, the core width is 50nm, 

ns =1.0, nc =1.0, ncore =3.5. 
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Fig. 8. Field distribution ofTMO mode (a) and a quasi-leaky TM mode (b). 

The magnetic field patterns of TM0 and a quasi-leaky mode are shown in Fig. 8. 

The effective indexes are list in Table 4. 

Table 4. Effective index of the single mode slab waveguide (TM} 

Mode TMo 
Effective Index 1.10311363663869 
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Chapter 3 

Complex Mode Matching Method for Periodic 
Waveguide Structures 

3.1 Introduction 

There have been extensive literatures on the subject of theoretical modeling and analysis 

of optical waveguide Bragg gratings in which the coupled-mode theory (CMT) and/or the 

coupled-wave approach (CWA) are most popular [9, 37, 38]. The CMT and/or CWA are 

physically intuitive, mathematically simple, and highly accurate especially for shallow 

gratings with relatively weak index corrugations. For Bragg gratings with strong index 

corrugations, more rigorous approach such as the mode-matching methods (MMM)[21 ], 

the bi-directional beam propagation method (Bi-BPM) [39, 40], and the fmite-difference 

time-domain (FDTD) method [19], can all be used with different levels of complexities 

and accuracy. Among all the methods mentioned above, MMM is considered as an 

efficient and rigorous method in dealing with periodical structures among all the 

approaches. In MMM approach, the waveguide grating is considered as two periodical 

alternative sections, section A and section B. In each section the total propagating field is 

expressed as the eigenmodes superposition. Using the continuity conditions of tangential 

components of electric and magnetic field at the boundaries, as well as orthogonality 

relations, the different sections then can be linked by a scattering matrix. The total 

reflection and transmission is calculated by cascading the scattering matrix instead of 

transfer matrix method to enhance the numerical stability [41]. Also, we can apply the 
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Floquet theorem in the mode-matching method on the assumption of perfect periodicity 

so that the eigenmodes or Floquet-Bloch waves of the grating structures can be obtained 

[42, 43]. 

3.2 Transfer Matrix Formulations 

For a single waveguide discontinuity (Fig. 9), the governing mode equation for different 

waveguide sections is a lD Helmholtz equation, 

(3.1) 

A B 

Fig. 9. A single discontinuity 

The mode spectrum including guided and complex modes used in the modal 

expansion are calculated by fourth order finite difference method together with complex 

coordinate stretching formulation of PMLs. 

Assume totally N modes in waveguide A and M modes in waveguide B, once all 

guided and complex modes of waveguide have been obtained, the transverse fields of 

waveguide A and waveguide B can be expressed approximately as the linear 

superposition of eigenmodes: 

- N A . A 

E A( )- "C + - ;fln= + - Jfln=) -A ( ) 
1 x,y,z - LJ ane ane e1n x,y , (3 .2) 

n=l 

N 
if

1
A (x,y,z) = L (a;e- j fl: z -a~ejf3,1z )h~ (x, y), (3.3) 

n=l 
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(3.4) 

M 

Hf(x,y,z) = L (b~e-JP~z -b~eiP~z)h/:n(x,y). (3.5) 
m=l 

Where t denotes the transverse components, P~~J is the propagation constant of the nth 

(nth) mode in waveguide A (B); e:{!~, h;(~~ are the nth ( m th) transverse electric field 

and magnetic fields vectors of the A (B) waveguide, respectively; and a:, a~, b~, b~ are 

the amplitudes of forward and backward waves of the n1h nth mode in waveguide A and 

m1h mode in waveguide B, respectively. 

Applying the continuity conditions of tangential components of electrical 

magnetic field at the interfaces between neighbouring sections, we have, 

N M 

:Lea: +a~)e~(x,y) = L (b~ +b~)e!(x,y), (3.6) 
n=l m=l 

N M 

:Lea: -a~)~(x,y) = L (b~ -b~)h//,(x,y). (3.7) 
n=l m=l 

Cross product (3.6) with .h/1, cross product (3.7) with e,:, respectively, then integrate 

over the waveguide cross-section, we can obtain 

N M 
"( + -) -A "i,B "(b+ b-) -B h-B L...J an +an <etn•"tk > = L...J m + m <etm, tk >, (3.8) 
n=l m=l 

N M 
"( + -) -B "i,A "(b+ b-) -B h-B) L...J an -an < etk, "tn > = L...J m - m < etk • tm • (3.9) 
n=l m=l 

The inner product of the field vectors is defined as, 
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<e,h>=.! ffcexh)·zds. 
2s 

With the help of orthogonality relations between the modes, i.e. 

we get the amplitudes of waveguide B in terms of amplitudes waveguide A, 

(3.10) 

(3.11) 

(3.12) 

The overlapping integral in ID case may be further simplified. Taking TE mode as an 

example, we have 

(3.14) 

(3.15) 

(3.16) 

We can put them in the matrix form, 

(3.17) 

21 



M.A.Sc: Jianwei Mu McMaster- Electrical and Computer Engineering 

3.3 Scattering Matrix Formulations 

As the Bragg grating contains a large number of periods, it's well known that the 

scattering matrix performing more stable comparing to the transfer matrix. Now we 

consider multiple waveguide discontinuities shown in Fig. 10. 

Fig. 10: Multiple waveguide discontinuities. 

The values of the forward and backward waves at the left sides of the 1st. 2rct, ... , 

nth, and ( n+ 1 )th discontinuities are represented by At, A; , A; , A; ... A;, A;, A;+1 , A~1 , 

respectively. The S matrix formulation is 

where 

[~~~] = [~·n+I 
A1 I,n+I 

~+1,1][ At] 
~+1,1 ~~I ' 

li,n+I = ~,n+1 (I- ~.1~,n+1)-1 Ji,n 

~+1,1 = Tn,n+1 (I- ~.1~,n+1f1 ~.1~+1,n + ~1,n 
R1,n+l = ~.1 (1- ~.n+1~,1)-1 ~,n+11i,n + R1,n 

Tn+I,I = ~,t(l- ~.n+l~,I)-ITn+l,n 

3.4 Periodic Doubling Algorithms 

(3.18) 

(3.19) 

If the structure contains symmetric cells, then we can choose the cascading and doubling 

method to save the computation effort. The main idea is to find the equivalent larger 
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scattering cells instead of layer by layer cascading. Given three arbitrary discontinuities 

denoted by n, m ,k, respectively. The scattering matrix between them is given by, 

[A;!;] [Tnm R,n][~] 
A;; = ~m Tmn ~ ' 

[~]=[t ~:J[~l 
Thus the scattering matrix between k and n can be obtained, 

where 

Tn,k =Tmk(I -~R"uJ-lTnm 

Rk,n =Tmk(l- R,n~)-1 ~Tkm +Rkm 

~,k =Tmn(l-~~)-1R,kTnm+~ 

Tk,n = Tmn(I-~~)-ITkm 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

Taking the advantage of symmetric, we can firstly calculate one cell, then using 

the results to calculate a double period and so on. For arbitrary N periods, N can be 

decomposed to N = 211J + 2n2 + · · · + 2nm or N = 211J + 2n2 +···+211m + 1 depends on whether 

N is even or odd. Only max ( n1,. • ·, nm) iterations needed since other value is obtained 

during calculating max ( n1, • • ·, nm) . 

3.5 Floquet Theorem 

For periodical structures, Floquet-Bloch approach takes the advantage over the others in 

band analysis, as the Floquet mode play the same role in a periodical structure as the 
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guided modes in a waveguide, so that it can disclose more insightful physical phenomena. 

Our analysis model is using Bloch-Floquet mode approach within the framework of 

MMM[42, 43], where FB modes is defined as the eigenmodes of the transfer matrix. 

Through this way, the Floquet mode is a combination of the forward waves and backward 

waves. 

From the formulations derived in Chapter 4.2, the scattering matrix for a single 

period of periodical structure is given as 

One can derive the transfer matrix from the scattering matrix, 

The relations linking the scattering matrix and transfer matrix are 

lit =Su -s.zS22 -•sz• 
liz = S1zS22 -• 

.12t = -S22 -I Szl 

T22 =S22 -I 

(3.24) 

(3.25) 

(3.26) 

Using scattering matrix to obtain the transfer matrix can avoid the numerical 

instability when cascading the propagation matrix. 

By applying the Floquet theorem, the transfer matrices of one grating period is 

related to each other by 
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[A~+lJ = exp(-jKA)[A~J· 
Ak+l Ak 

(3.27) 

Combining eq.(3.25) with eq. (3.27) will lead to the eigen-equations for the Floquet-

Bloch modes as follows: 

(3.28) 

Note that we deliberately drop the sub-script k for the k -th period as the same equation 

applies to any of the grating sections. Eqs. (3.28) can be solved by a standard matrix 

eigen-value solver and the eigenvalues K, and its corresponding eigen vector A1 ~ ( ~: J 

can be readily obtained. 

The transverse electric fields of the transverse electric field for the TE modes for 

each K 1 (I= l...N) are expressible as 

(3.29) 

H1(x,z)= I{a~e-jPkz -a&e+jPkz}hk(x) (3.30) 
k=l 

wherea~,a/k are the k-th components of/-th column eigenvector A(/) andek(x), 

hk ( x) are the k -th local mode. The equivalent effective index of the Floquet mode is 

defmed by 

(3.31) 
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Chapter 4 

Analysis of Deep Bragg Gratings with High Index 
Contrast Corrugations 

4.1 Introduction 

One of the key concepts in design and analysis of grating structures is the Bragg 

condition at which the constructive interference between the forward and the backward 

propagating waves occurs. For the 1st-order gratings consisting of two sub-sections of 

lengths Aa andAb , respectively, for the unit cells (as shown in Figure 1), the Bragg 

conditions are expressed as 

(4.1) 

or 

A = AB 
m ' (4.2) 

4Nm 

where N m ( m =a , b ) are the effective indices of the fundamental local modes in the 

grating sections. It is a widely held belief that the Bragg wavelength corresponds to the 

peak of the reflection spectrum based on the fact that all the reflected waves are added in-

phase due to constructive interference of the reflected waves from each of the grating 

interfaces. The conventional Bragg condition is, however, valid only for the gratings of 

weak index corrugations in which the dominant Floquet wave components of the 

fundamental guided modes are considered in the analysis. As the grating becomes 

26 



MA.Sc: Jianwei Mu McMaster- Electrical and Computer Engineering 

stronger, the high-order space harmonic waves and/or the radiative waveguide modes 

start to play increasingly more important roles. Physically, the interaction between the 

electromagnetic waves and the periodic grating structures gives rise to coupling between 

the space harmonics of the guided and radiation modes. Consequently, portion of energy 

is stored in the vicinity of the grating interfaces. The reactive stored energy is responsible 

for the blue shift of the peak wavelength from the conventional Bragg wavelength. It is 

pointed out by J. Ctyroky that the shift towards the wavelength shorter than the 

conventional Bragg wavelength is expected as higher-order waveguide modes with 

smaller effective indices are involved [42, 43]. To illustrate this effect, a general Bragg 

grating as shown in Fig. 11 is taken as an example. The parameters used are ns=l.52, 

nc =1.0 and ng =1.53, the designed central wavelength is 650nm in accordance to the 

conventional Bragg condition (eq.(4.1)). The lengths of the grating sections are: Aa= 

0.106456 ~m and Ab =0.1 06553 ~m, respectively. The thickness of the guiding layer is 

2.4um. The etching depth equals to 0.5 urn, and the number of periods is 1793. 

Fig. 11. A typical Bragg grating structure consisting of two-element unit cells. 

The reflection spectrum of the fundamental TE mode is analyzed by the complex 

mode matching method (MMM) and BiBPM and illustrated in Fig. 13. It is noted that we 

have assumed a computational model in which the computation region enclosing the 
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grating structures is terminated at the edges by the null boundary conditions. Further, we 

place the perfectly matched layer (PML) adjacent to the boundary to minimize the 

reflections from the boundary (Fig. 12.). 

: : 

Fig. 12. Schematic of the computation window. 

Parameters used in MMM are summarized as follows: the computational window 

size is 8.4 !J.m including a perfectly matched layer (PML) of 1 !J.m thickness on each side, 

the reflection coefficient is 0.001. Although the waveguide is single mode, we have 

employed total of 40 modes including the quasi-leaky and PML modes in the mode 

expansion. For the sake of comparison, we also show the reflection spectrum calculated 

by using only the guided modes, which exhibits its peak wavelength in accordance with 

the conventional Bragg wavelength. For the rigorous analysis, the central wavelength of 

the peak reflectivity is shifted to 649.8nm from the designed wavelength of650nm. 
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Fig. 13. Reflection spectrum of the fundamental TE mode of the deeply etched grating 

structure in Fig. 11. The parameters are ns =1.52, ng =1.53, nc=l, Aa = 0.106456 1Jm 

and Ab =0.1 06553 1Jm, and etching depth fe =0.51Jm. The central wavelength 650.0nm 

designed according to the conventional Bragg condition corresponds to the prediction 

based on only the fundamental modes (dashed line), whereas the actual central 

wavelength is shifted to 649.8nm as calculated by the rigorous mode-matching method 

(solid line with star) and high order BiBPM (solid line with diamond). 

It is however not clear how we may design the grating structures, e.g., the grating 

period, to obtain the desired peak wavelength when the index corrugations of the gratings 

are strong. This question will be discussed and answered in this Chapter. 
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4.2 Floquet Mode in Bragg Gratings 

We are using Floquet-Bloch approach described in previous chapter as analysis model. 

To investigate the band structure of the Bragg grating, we choose the structure shown in 

Fig. 11 as an example. Two different etching depths 0.5um and 1.0um are considered; the 

other parameters are the same as those used in Fig. 13. 

Fig. 14 and Fig. 15 display the band dispersion relations for TE polarization, i.e., 

the real and imaginary parts of the normalized propagation constant of the fundamental 

Floquet-Bloch mode as functions of wavelength. It is demonstrated that the center of the 

stop-band corresponds to the peak wavelength of the reflection spectrum as expected and 

shifts to shorter wavelength from the conventional Bragg wavelength. 

Normanzed propagation constant (KAht) 
1.5r---,---'/-.---..--.---.------;::===tJ 

......... Jm 

'b ..... 
'gi 
E 
-0.5 

-Re 

0.9998 

0.9996 

Fig. 14.Normalized propagation constant of the fundamental Floquet-Bloch mode with 

respect to wavelength, etching depth=0.51Jm, other parameters are the same as Fig. 13. 

Solid: real part; dotted: imaginary part. 
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Normalized propagation constant (KAI7t) 
3~--~~----~----~--~~--~1 

l'"'"''~l 
••'''"····· .. 0.9998 

0.9996 

...... 
o~~:-:7-::c-----=-:-'::-:::----~---"""'~~~-::--:-'D • .s994 

648.7 648.8 648.9 649 649.1 649.2 
Wavelength (nm) 

Fig. 15.Normalized propagation constant of the fundamental Floquet-Bloch mode with 

respect to wavelength, etching depth=liJill, other parameters are the same as Fig. 13. 

Solid: real part; dotted: imaginary part. 

4.3 Iterative Method 

The above analysis has clearly demonstrated that the peak of wavelength of the strongly 

corrugated gratings is consistent with the center of the stop-band for the fundamental 

Floquet-Bloch mode and shifted from the conventional Bragg wavelength based on the 

fundamental local modes of the waveguide. Yet, it is still not clear how to design the 

grating period for a given index corrugation so that we can realize the reflection peak or 

the center of the stop-band at a given wavelength. In this section, we will show that we 

can apply a simple iterative method starting from the conventional Bragg condition as 

follows. 
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The central wavelength can be approximated by the equivalent effective index of 

the fundamental Floquet mode with the relation, 

A.= 2A · Re( Neq), (4.3) 

where A, is the central wavelength, and N eq is the equivalent effective index of the 

fundamental Floquet mode corresponding to the central wavelength, and A is the period 

length. Taking the derivative of A for both sides, 

(4.4) 

S. N i1Re(Neq) A iJA.. I . . fu . N th th mce eq > · , -;- IS a ways a positive nctlon. ow assume at e 
()A uA 

central wavelength we designed for isAo. We first design the grating parameters, namely, 

AI (For the sake of simplicity, take the example of Aa shown in Fig. 11, the same 

approach can be used to calculateAb ), according the conventional Bragg conditions eq. 

(4.1). Consequently, we obtain a different central wavelengthA.A corresponding to the 

originally designed grating period is AI . Now we can introduce the period shift 

t5A defined as, 

(4.5) 

Therefore the newly corrected period isA2 =AI+ t5A. Due to the period change, the 

central wavelength will experience a shift depending on the sign of t5A. Using Taylor 

expansion and omitting the high order items, 
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(4.6) 

where AB is the shifted central wavelength with the corrected period A2 .After some 

straightforward derivations, we obtain 

(4.7) 

Taking absolute value on both sides, 

(4.8) 

S. aA.. · · · · fu · d 1 A b . 1 mce a A IS a positiVe tunmg nctiOn an ,11, A > 1 , 0 VIOUS y 

(4.9) 

Finally we obtain the relation 

(4.10) 

After several iterations, b'A..will vanish and the central wavelength will converge at/!o. 

In order to illustrate the effectiveness of the iteration method, we examine the 

following examples. The first example is a Bragg grating for TE polarization shown in 

Fig. 11. The etching depth is 0.5 !Jm; all the other parameters remain the same as those 

used in Fig. 13. To calculate the reflection spectrum of the fundamental TE mode, we 
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utilize the complex mode matching method, which has been validated with comparison 

with the bi-directional beam-propagation method as shown in Fig. 13. 

0.3 

0.25 
c :5 0.2 

Jg 0.15 
CD 
~ 0.1 

--&- 1 iteration 
----4---- 2 iterations 

0.05 

o~~~~t>!' 

649.4 649.6 649.8 650 650.2 650.4 
Wavelength (nm) 

Fig. 16. Reflection spectra of the fundamental TE mode during the design. Star: original 

design; circle: after 1 iteration; diamond: after 2 iterations. 

Fig. 16 demonstrates the reflection spectra ofthe fundamental TE mode during the 

design process. The curve marked with star is the spectrum using the original designed 

parameters which is under fundamental local mode calculation(At= 0.106456 j.Jm and 

A2 =0.1 06553 j.Jm); the curve marked with circle represents the reflection spectrum after 

1st iteration; and the curve marked with diamond is the reflection spectrum after 2nd 

iteration. It's noticed the shift is quite large using under fundamental mode estimation. 

However, the central wavelength converges to the designed central wavelength very fast 

using iterative method. 

To illustrate the effectiveness and flexibility of the method described above for the 

TM polarization with high index contrast. We have used our approach to design a one-

dimensional (1D) photonic crystal slab (PCS). This structure consists of alternating layers 
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of two different symmetric slab waveguide segments with high index contrast m 

transverse direction, as shown in Fig. 17. 

h 

Fig. 17. Schematic diagram of 1D photonic crystal slab waveguide (PCSW). 

The two different waveguide segments have common cladding index nc = 1.45 , and 

different core indexes nog = 3.4 and nlg = 2.518 , respectively. The widths of the two 

segments are calculated under fundamental local mode calculation (do = 0.17392 J..Lm, 

d1 = 0.22972 J..Lm). The core thickness is h = 0.25 J..Lm and the number of periods is 32. 

The designed central wavelength is 1550nm. 
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Fig. 18 .Reflection spectra of the fundamental TM mode during the design for lD 

photonic crystal slab waveguide (PCSW). Star: original design; circle: after !iteration; 

diamond: after 2 iterations; square: after 3 iterations. 

The results in Fig. 18 demonstrate that even the original central wavelength shifts 

a lot from the designed wavelength ( LlA. =40nm), after three iterations, the central 

wavelength will converge at 1550nm (do= 0.1809 Jtm, dt = 0.2389 Jtm). 
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Chapter 5 

Simulation and Analysis of Bragg Gratings in 
Surface Plasmonic Polariton Waveguides 

5.1 Introduction 

Surface plasmon-polaritons (SPP) attracted much interest due to their unique properties 

characterized by large electromagnetic fields confined within a sub-wavelength region [2, 

13-20]. It has recently been shown a thin metal film surrounded by dielectric medium can 

support two bound 1M modes in which the symmetric mode has a very small attenuation 

constant, therefore the symmetric mode is often referred to as a long range surface 

plasmon-polariton (LR-SPP) and can be used to constitute low loss photonic components 

[3]. LRSPP Bragg grating has been investigated both theoretically and experimentally as 

a promising replacement of traditional dielectric gratings which are widely used in 

distributed feedback (DFB) and distributed Bragg reflector (DBR) lasers. 

5.2 Mode Characteristics of SPP Waveguide 

5.2.1 Mode characteristics of SPP waveguides of single interface 

Fig. 19 displays the guided, quasi-leaky and PML mode ofthe single interface SPP 

waveguide with Au as the metal, and air or BCB polymer (n=1.545) as the dielectric. It's 

shown the guided mode decreases exponentially in the direction perpendicular to the 
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interface; the quasi-leaky modes grow towards the surrounded mediums while the PML 

modes oscillate in the PML region. 
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Fig. 19. Mode characteristics of SPP waveguides of single interface 

5.2.2 Mode characteristics of SPP waveguides of double interface 

Fig. 20 displays the guided, quasi-leaky and PML mode ofthe two-interface SPP 

4 

4 

waveguide with Au as the metal, and air or BCB polymer (n=1.545) as the dielectric. It's 

shown the structure supports two guided mode. One is symmetric mode, another is anti-

symmetric mode. The symmetric mode has smaller imaginary part, therefore can 

propagate much longer than the anti-symmetric mode, therefore it is also called long 
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range surface plasmon polaritions (LRSPPs). The quasi-leaky modes grow towards the 

surrounded mediums while the PML modes oscillate in the PML region. 
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Fig. 20. Mode characteristics of SPP waveguides of single interface 

5.2.3 Mode characteristics of SPP waveguides of MDM structures 

Planar SPP waveguides may be classified into two categories according to the materials 

structure, dielectric-metal-dielectric (DMD) type and metal-dielectric-metal (MDM) type. 

The DMD structures can propagation much longer than MDM structure, whereas MDM 

structures have much better confinement performances. Fig. 21 displays the guided, 

quasi-leaky and PML mode ofthe MDM SPP waveguide with air or Si02 as the core, and 
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air or BCB polymer (n=1.545) as the metal. It's shown the field ofthe guided mode is 

squeezed in the core region. 
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Fig. 21.Mode characteristics ofSPP waveguides ofMDM structure 

5 

5.3 Reflection, transmission and loss of a single junction 

6 

The studied structure consists of an Au film surrounded by polymer materials (BCB), the 

geometry is illustrated in Fig. 22. Reflection, transmission and loss are calculated at the 

optical frequency 1550 nm. The refractive index of Au and BCB used in calculation are 

(nAu =0.559-9.8li ,nBCB =1.543). 
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Fig. 22. Schematic of a single SPP junction 

The configuration ofthe discontinuity considered consists oftwo sections (section 

A and section B), and on each section ofthe discontinuity there are two types of modes. 

One is symmetric mode (S-mode), another is called anti-symmetric mode (A-mode). 

We analyze reflection, transmission coefficient of the S-mode and A- mode SPP 

at the wavelength of 1550 nm for different discontinuities using finite difference mode 

matching method. The numerical results are shown in Fig. 23 and Fig. 24, respectively. 

For the sake of accuracy, 40 modes were used in finite difference mode matching method. 
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Fig. 23. Reflection, transmission of symmetric mode as a function of height at a 

discontinuity consists of a 15 nm Au strip surrounded by polymer. (a) transmission 

between S-mode in section A and S-mode in section B, (b) reflection between S-mode in 

section A and S-mode in section A,( c) transmission between S-mode in section A and A­

mode in section B. 
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Fig. 24. Reflection, transmission of anti-symmetric mode as a function of height at a 

discontinuity consists of a 15 nm Au strip surrounded by polymer. (a) transmission 

between S-mode in section A and S-mode in section B, (b) reflection between S-mode in 

section A and S-mode in section A,( c) transmission between S-mode in section A and A-

mode in section B. 

The simulation results show that the power reflectivity of increases while 

transmission decreases with the thickness in both cases. It's noted the reflection of anti-

symmetric mode is much larger than symmetric mode. It's also found that although the 

transmission of A-S mode and S-A mode increasing with height, it's still very small 

comparing toS-S mode transmission or A-A mode. 

5.4 Reflection, transmission and loss of asymmetric SPP 

waveguide grating 

The SPP grating structure can be constructed by corrugations along the metallic film 

surface as shown in Fig. 25. In order to make a difference with the ridge waveguide 

gratings discussed later, we named this kind of gratings as asymmetric grating since it 

only has corrugations on the single interface. The metal used in this grating is a gold film 
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with thickness D. The surrounded medium is polymer materials (BCB, n=1 .545). 

Reflection, transmission and loss are calculated at the optical frequency 1550 nm. The 

refractive index of Au and BCB are considered invariant in a narrow range (1552-1558 

nm), the parameters used in calculation are (nAu=0.559-9.8.Ji, n8c8=1.543). 

Fig. 25. Schematic of SPP grating structure consisting of a metal slab with a corrugated 

top surface, dielectric substrate, and polymer. 
tg 

As the first example, we consider a thick metal structure (D-too) for which only 

the top metal-dielectric interface is critical. Only one guided surface mode exists along 

the interface between dielectric and metal, therefore the Bragg period is fixed and not 

varying as a function of grating height. In this work, the duty cycle used is 50%, and the 

grating period at Bragg wavelength of 1550nm is calculated to be A=596 nm. 

Assume a SPP mode is propagating along the metal from the left-hand side and 

incident on the grating at z=O. Part of the waves is reflected and part transmitted. Also, 

there will be absorption and radiation loss suffered by the wave going through the grating 

region. In our simulation, we have assumed total of 100 periods and the grating height 

H=10 nm. Fig. 26 shows the reflection, transmission and loss spectra with 1, 40, and 60 

modes, respectively. It is noted that the single surface mode approximation over-estimates 

the loss and is subject to errors in prediction of the reflection and transmission spectra. 

The simulation results converge as the number of modes exceeds 60. The overall 

loss predicted by the simulation based on multi-modes is significantly lower than that of 
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single mode approximation, indicating that there is considerable re-capture of the 

radiation wave by successive junctions in the Bragg gratings. 
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Fig. 26. Reflection, transmission and loss of a single interface SPP grating with 10 nm 

ridges, 100 periods. Star-1 mode, circle-40 modes, diamond: 60 modes. 

We investigated the effects of grating height on the reflection, transmission and 

loss spectra. Fig. 27 shows the spectra for H=10, 20, 60 nm, respectively. The peak 

reflectivity increase as a function of H, whereas the minimum transmission and loss 

decrease with height, this we may explain by the fact that more power being reflected 

back and smaller penetration of the field into the grating region. 
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Fig. 27. Reflection, transmission and loss of a single interface grating consist of Au and 

polymer for different heights. Star-1 0 nm, circle-20 nm, plus- 60 nm. 
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As the thickness of the grating D is limited, for instance, for a thin metallic strip 

(tg equals to 35nm) which both interfaces are critical, there are two modes among which 

symmetric is known as the long range surface plasmon polaritons mode (LRSPPs). We 

investigated the reflection, transmission and loss as a function of varied height for 

symmetric mode (Fig. 28). It's noted the LRSPP grating is a weak grating has narrower 

bandwidth comparing to bulk grating, and the peak reflectivity increase as a function of h. 

0~ 15:l0 1540 15!il 1fm 1570 15lll 
'llliNeleflllh (rm) 

Fig. 28. Reflection (a), transmission (b), and loss (c) of the SPPs gratings with respect to 

different h, 100 periods. Star: h= 1 Onm; circle: h= 15nm; diamond: h=20nm. 

5.5 Reflection, transmission and loss of ridge SPP waveguide 
gratings 

The SPPS grating also can be constructed by the corrugations in both surfaces (Fig. 29), 

the LRSPPS Bragg gratings have been studied both theoretically and experimentally in 

[17]. The thickness of the core width is 15 nm; section length is 230nm and 270 nm, 

respectively. We investigated the reflection, transmission and loss as a function ofh, 

simulation results are shown in Fig. 30. 
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Fig. 29. Schematic of SPP ridge gratings 
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Fig. 30. Reflection and transmission spectrum for LRSPP gratings composed of a 15nm 

gold film with an array of gold ridges with 500 nm spacing and 230nm width, 160 ridges 

(a) h= 10 nm, (b) h =20 nm. 

It's shown that that reflection peak and the bandwidth increases with the ridge 

height, and the numerical results are in good agreement with the experimental results. 

5.6 Reflection, transmission and loss of alternate slab SPP 
waveguide grating 

The most common ways to construct a dielectric-metal-dielectric grating is by changing 

the width or height of the metallic films (as discussed in the previous sections). Although 

it is straightforward and easy for fabrication, however, the absorption loss is increased 

due to the width variation, and it is noted that the grating construct in this way is a weak 

grating. Here we propose a new grating by alternating the surround dielectric mediums. 
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The metal film can be made very thin, and the coupling strength can be adjusted by the 

contrast of the difference of the dielectric mediums (Fig. 31 ). 

Fig. 31. Schematic of alternate slab SPP waveguide grating 

We designed a DMD gratings composed of a gold film surrounded by alternate 

dielectric slabs, nct 1=1.46, nd2=1.44. Fig. 32 demonstrates reflection, transmission and loss 

for different core width. It is shown that this structure behaves nice filtering 

characteristics and the loss is comparably small. It is noted the peak reflection increased 

with decreased core width, this may be explained by the fact that the guided field is more 

bounded along the interface with thinner core, therefore the field difference of the two 

sections is enlarged as well. 
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Fig. 32. Reflection and transmission spectrum a function of core thickness for DMD 

gratings composed of a gold film surrounded by alternate dielectric slabs, nct1=1.46, 

nct2=1.44.t=l0, 20, 30nm respectively. 

5.7 Reflection, transmission and loss of MDM SPP waveguide 
gratings 

Although DMD structures have Jess loss, it has been shown that these structures exhibit 

bad confinement performance. On the other hand, MDM structures take the advantage of 

squeezing the light in a sub-wavelength scale while suffering large absorption Joss. In 

some case when the Joss can be compensated by the gain medium and confinement factor 

is the main concern, the MDM grating is an appropriate solution. 

Fig. 33. Schematic of metal-dielectric-metal SPPs waveguide gratings 

We design a MDM grating by periodically changing the dielectric core width (Fig. 

33). The core material used is Si02 (n=l.44), and the surrounded metal is Au. The 

working wavelength is 1.55 urn. Fig. 34 shows the reflection and transmission spectrum 

as a function of core width for MDM gratings. The number of periods is 50, h=2.5nm. It 

is shown the peak reflection is inverse proportion to the core width. 

We also investigate the effects of core materials on the grating performance, as 

shown in Fig. 35. The parameters used are: h=2.5nm, core width=60nm, 50 periods. It's 

shown the peak reflection is in proportion to the refractive index ofthe core materials. 
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0.015r--~----;:===::;---l 

c 
-~ 0.01 
-~ 6~. 

"' ' c . Ill 0.005 .. · .. i 
~ 

1.0 
1.44 

.... 0 1.55 
+ 3.5 

0~~~~~~~~ 
1.5 1.55 1.6 1.65 

A. (um) 

1.5 1.55 1.6 1.65 
A. (um) 

0.4,------~-------, 

r:::: 0.3 
0 

t5 
Gl 0.2 
~ 
0::: 0.1 

1.5 

·----o 

1.55 1.6 1.65 
A. (um) 

Fig. 35. Reflection and transmission spectrum as a function of core materials for MDM 

gratings, d=60nm,h=2.5nm. 50 periods. 

49 



M.A.Sc: Jianwei Mu McMaster - Electrical and Computer Engineering 

Furthermore, we investigate the effects of the width difference, as shown in Fig. 

36. The parameters used are: 50 periods, core width=60nm, core materials is Si02. It's 

shown the peak reflection is proportional to the width difference as expected. 

0.01 r----~--~----;====:::;-J 

c: 
0 

0.008 

-~ 0.006 
-~ 
~ 0.004 

1- ··::~. 
1.5 

0.9 

1.55 
A. (urn) 

2.5nm 
' 5nm 

···· o7.5nm 

.¥!~.: 
1.6 1.65 

2.5nm 
5nm 

OL_--~~~==~~--~ 
1.5 1.55 1 .6 1.65 

'A(um) 

Fig. 36. Reflection and transmission spectrum as a function ofh for MDM gratings 

composed of a gold film with Si02 as core materials, d=60nm, 50 periods. 
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Chapter 6 

Conclusions 

This thesis introduces a series of techniques to model high index contrast and SPP 

gratings. 

Waveguide Bragg grating structures with strong index corrugations and SPPs 

Waveguide gratings are analyzed by the complex mode-matching method facilitated by a 

combination of perfectly matched layer (PML) and zero boundary conditions, both 

surface and leaky modes of the waveguides are obtained by a fourth-order [mite­

difference scheme and used in the scattering matrix formulation of the mode matching 

method. 

For Waveguide Bragg grating structures with strong index corrugations, as the 

index corrugation increases, the peak wavelength of the reflection spectrum is shifted 

towards shorter wavelength from the conventional Bragg condition due to the energy 

storage effect. It is shown that the peak wavelength corresponds to the center of the stop­

band of the Floquet-Bloch mode and can be readily calculated by a simple iterative 

scheme from the conventional Bragg wavelength. 

For surface plasmon polariton (SPP) grating structures, reflection, transmission 

and loss of the various Bragg gratings are simulated and their dependence on key 

waveguide and grating parameters are investigated. 
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Appendix 

Where 

and 
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