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ABSTRACT 

The thesis presents an efficient self-adjoint approach to the S-parameter 

sensitivity analysis based on full-wave electromagnetic (EM) time-domain simulations 

with two commonly used numerical techniques: the finite-difference time-domain 

(FDTD) method and the transmission-line matrix (TLM) method. Without any additional 

simulations, we extract the response gradient with respect to all the design variables 

making use of the full-wave solution already generated by the system analysis. It allows 

the computation of the S-parameter derivatives as an independent post-process with 

negligible overhead. The sole requirement is the ability of the solver to export the field 

solution at user-defined points. Most in-house and commercial solvers have this ability, 

which makes our approach readily applicable to practical design problems. 

In the TLM-based self-adjoint techniques, we propose an algorithm to convert the 

electrical and magnetic field solutions into TLM voltages. The TLM-based discrete 

adjoint variable method (A VM) is originally developed to use incident and reflected 

voltages as the state variables. Our conversion algorithm makes the TLM-AVM method 

applicable to all time-domain commercial solvers, FDTD simulators included, with 

comparable accuracy and less memory overhead. Our approach is illustrated through 

waveguide examples using a TLM-based commercial simulator. 
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iv ABSTRACT 

Currently, our TLM-based self-adjoint approach is limited to loss-free 

homogeneous problems. However, our FDTD-based self-adjoint approach is valid for 

lossy inhomogeneous cases as well. The FDTD-based self-adjoint technique needs only 

the £-field values as the state variables. In order to make it also applicable to a TLM­

based solver, whose mesh grid is displaced from the FDTD grid, we interpolate the £­

field solution from the TLM mesh to that on the FDTD mesh. Our FDTD-based approach 

is validated through the response derivatives computation with respect to both shape and 

constitutive parameters in waveguide and antenna structures. The response derivatives 

can be used not only to guide a gradient-based optimizer, but also to provide a sufficient 

good initial guess for the solution of nonlinear inverse problems. 

Suggestions for further research are provided. 



ACKNOWLEDGMENTS 

I wish to express my appreciation to Dr. Natalia Nikolova for her supervision and 

guidance during the course of the studies. I have greatly benefited from her expert advice, 

her knowledge and ideas. Her patience, encouragement and understanding during the 

years of study will always be remembered. 

I am also grateful to Dr. Mohamed Bakr for his support and ideas at the important 

moments in the course of the research. His insight and encouragement during the research 

development are sincerely appreciated. 

I would like to thank my colleagues Y an Li, Ahmed Sayed Mohamed, Payam 

Abolghasem, Peter Basl, Dongying Li and Jiang Zhu from the Computational 

Electromagnetics Laboratory for the helpful discussion during the research. 

I would like also to thank the Department of Electrical and Computer 

Engineering, McMaster University, for a Research Assistantship, Teaching Assistantship 

and Scholarship. 

Finally, I thank with all my heart my parents, Huafu Li and Guixiang Luo, for all 

their love, understanding and support. 

v 



CONTENTS 

ABSTRACT ..................................................................................................... iii 

ACKN"OWLEDGMENTS ................................................................................................ v 

LIST OF FIGURES ..................................................................................................... tx 

LIST OF TABLES ................................................................................................. xviii 

Chapter 1 INTRODUCTION ...................................................................................... I 

References .................................................................................................... 5 

Chapter 2 COMPUTATION OF S-PARAMETERS FROM TIME-DOMAIN 

FIELD SOLUTIONS ................................................................................. 9 

2.1 Introduction .................................................................................................. 9 

2.2 Scattering Parameters ................................................................................. I 0 

2.3 De-embedding Techniques ........................................................................ 11 

2.4 FDTD Basics .............................................................................................. l3 

2.5 TLM Basics ................................................................................................ l6 

2.6 Validation Exarnples .................................................................................. l8 

2.6.1 Inductive Metallic Obstacle ......................................................... 19 

2.6.2 Single-resonator Filter .................................................................. 25 

2.7 Summary .................................................................................................... 32 

Vl 



CONTENTS vn 

2.8 References .................................................................................................. 33 

Chapter 3 TLM-BASED SELF-ADJOINT SENSITIVITY ANALYSIS ............ .35 

3.1 Introduction ................................................................................................ 35 

3.2 Adjoint Variable Method for Time-domain TLM Method ........................ 36 

3.3 TLM-based Adjoint Variable Method for S-parameters ........................... .38 

3.4 TLM-based Self-adjoint Sensitivity Theory ............................................. .41 

3.5 Conversion from Field Quantities to Incident Impulses ........................... .43 

3.6 Validation Examples .................................................................................. 44 

3.7 

3.8 

Chapter 4 

4.1 

4.2 

4.3 

4.4 

4.5 

4.6 

3 .6.1 Inductive Metallic Obstacle ........................................................ .45 

3.6.2 Single-resonator Filter ................................................................. .48 

3 .6.3 H-plane Filter ............................................................................... 52 

3.6.4 Single-section Waveguide Impedance Transformer .................... 57 

Summary .................................................................................................... 68 

References .................................................................................................. 69 

FDTD-BASED SELF-ADJOINT SENSITIVITY ANALYSIS ............ 71 

Introduction ................................................................................................ 71 

Adjoint Variable Method for the FDTD Method ....................................... 72 

FDTD-based Self-adjoint Sensitivity Theory ............................................ 77 

Conversion from TLM mesh to FDTD Mesh ............................................ 82 

De-embedding Technique for AVM .......................................................... 83 

Validation Examples .................................................................................. 84 



vm CONTENTS 

4.6.1 Single-resonator Filter .................................................................. 86 

4.6.2 Single-section Waveguide Impedance Transformer .................... 89 

4.6.3 Dielectric-resonator Filter .......................................................... 1 00 

4.6.4 Dielectric-resonator Antenna ..................................................... 111 

4.7 Summary .................................................................................................. 116 

4.8 References ................................................................................................ 117 

Chapter 5 TIME DOMAIN SENSITIVITY ANALYSIS OF LOSSY 

INHOMOGENEOUS STRUCTURES ................................................ 119 

5.1 Introduction .............................................................................................. 119 

5.2 FDTD-based AVM Theory with Material Parameters ............................ 121 

5.3 Validation Examples ................................................................................ 123 

5.3.1 Normally Incident TEM Plane Wave in a Lossy Layered Medium . 

.................................................................................................... 123 

5.3.2 Object in the 2D Lossy Layered Medium .................................. 127 

5.4 Summary .................................................................................................. l31 

5.5 References ................................................................................................ 131 

Chapter 6 CONCLUSIONS .................................................................................... 133 

COMPLETE REFERENCE LIST ............................................................................... 137 



LIST OF FIGURES 

Figure 2.1. 

Figure 2.2. 

Illustration of the source, observation and de-embedding planes in the 

waveguide ports of a 2-port structure when the de-embedding of the S­

parameter is with respect to the outermost discontinuities of the structure. 

··················································································································· 12 

Allocation of the electric and magnetic field components on the Y ee cell. 

··················································································································· 14 

Figure 2.3. 2D TLM shunt node .................................................................................. 17 

Figure 2.4. The inductive metallic obstacle example .................................................. 20 

Figure 2.5. Top view of the inductive metallic obstacle structure in MEFiSTo ......... 20 

Figure 2.6. Magnitude of S11 of the inductive metallic obstacle ................................ 22 

Figure 2.7. Phase of Sn of the inductive metallic obstacle ........................................ 23 

Figure 2.8. Magnitude of S21 of the inductive metallic obstacle ................................ 23 

Figure 2.9. Phase of S21 of the inductive metallic obstacle ........................................ 24 

Figure 2.1 0. Derivatives of I S11 I with respect to Win the inductive metallic obstacle 

example ..................................................................................................... 25 

Figure 2.11. Derivatives of I S21 I with respect to Win the inductive metallic obstacle 

example ..................................................................................................... 25 

ix 



x LIST OF FIGURES 

Figure 2.12. The single-resonator filter ......................................................................... 26 

Figure 2.13. Top view ofthe single-resonator filter structure in MEFiSTo ................. 26 

Figure 2.14. Johns boundaries of the single-resonator filter ......................................... 28 

Figure 2.15. Magnitude of S11 of the single-resonator filter ......................................... 29 

Figure 2.16. Phase of S11 of the single-resonator filter ................................................. 30 

Figure 2.17. Magnitude of S21 of the single-resonator filter ........................................ 30 

Figure 2.18. Phase of S21 ofthe single-resonator filter ................................................ 31 

Figure 2.19. Derivatives of I sll I with respect to win the single-resonator filter 

example ..................................................................................................... 32 

Figure 2.20. Derivatives of I s21 I with respect to win the single-resonator filter 

example ..................................................................................................... 32 

Figure 3.1. TLM-based AVM probes at the obstacle boundaries (assume increasing 

W) in the metallic obstacle example ......................................................... 46 

Figure 3.2. Derivatives of I S11 I with respect to D in the inductive metallic obstacle 

example ..................................................................................................... 46 

Figure 3.3. Derivatives of I S21 I with respect to D in the inductive metallic obstacle 

example ..................................................................................................... 47 

Figure 3.4. Derivatives of I S11 I with respect to Win the inductive metallic obstacle 

example ..................................................................................................... 47 

Figure 3.5. Derivatives of I S21 I with respect to Win the inductive metallic obstacle 

example ..................................................................................................... 48 



LIST OF FIGURES Xl 

Figure 3.6. TLM-based A VM probes at the right septum (assume increasing D) in the 

single-resonator filter example ................................................................. 49 

Figure 3.7. TLM-based AVM probes at the right septum (assume increasing W) in the 

single-resonator filter example ................................................................. 49 

Figure 3.8. Derivatives of I s11 I with respect to D in the single-resonator filter 

example ..................................................................................................... 50 

Figure 3.9. Derivatives of I s21 I with respect to Din the single-resonator filter 

example ..................................................................................................... 50 

Figure 3.1 0. Derivatives of I S11 I with respect to Win the single-resonator filter 

example ..................................................................................................... 51 

Figure 3 .11. Derivatives of I S21 I with respect to Win the single-resonator filter 

example ..................................................................................................... 51 

Figure 3.12. The six-resonator H-plane filter and its nominal design ........................... 52 

Figure 3.13. S-parameters of the six-resonator H-plane filter ....................................... 54 

Figure 3.14. Derivatives of I S11 I with respect to 4 in the H-plane filter example ..... 55 

Figure 3.15. Derivatives of I S21 I with respect to 4 in the H-plane filter example ..... 55 

Figure 3 .16. Derivatives of I S11 I with respect to W4 in the H-plane filter example .... 56 

Figure 3.17. Derivatives of I s21 I with respect to w4 in the H-plane filter example .... 56 

Figure 3.18. The single-section waveguide impedance transformer ............................. 57 

Figure 3.19. S-parameters of the single-section waveguide impedance transformer .... 59 



xii LIST OF FIGURES 

Figure 3.20. Derivatives of I S11 I respect to Lin the waveguide impedance transformer 

example ..................................................................................................... 61 

Figure 3.21. Derivatives of I S21 I respect to Lin the waveguide impedance transformer 

example ..................................................................................................... 62 

Figure 3.22. Convergence analysis of the derivatives of ISul with respect to Lin the 

waveguide impedance transformer example ............................................. 63 

Figure 3.23. Convergence analysis of the derivatives of IS21 1 with respect to Lin the 

waveguide impedance transformer example ............................................. 63 

Figure 3.24. Convergence analysis of the derivatives of IS11 1 with respect to Win the 

waveguide impedance transformer example ............................................. 64 

Figure 3.25. Convergence analysis of the derivatives of I S21 1 with respect to Win the 

waveguide impedance transformer example ............................................. 64 

Figure 3.26. Derivatives of IS11 1 with respect to L in the waveguide impedance 

transformer example (parameter sweep of L) . .......................................... 65 

Figure 3.27. Derivatives of IS21 1 with respect to L in the waveguide impedance 

transformer example (parameter sweep of L ) ........................................... 66 

Figure 3.28. Derivatives of IS11 1 with respect to Win the waveguide impedance 

transformer example (parameter sweep of W) . ......................................... 66 

Figure 3.29. Derivatives of I S21 1 with respect to Win the waveguide impedance 

transformer example (parameter sweep of W) . ......................................... 67 



LIST OF FIGURES xiii 

Figure 3.30. Convergence analysis ofthe error with respect to Win the waveguide 

impedance transformer example ............................................................... 68 

Figure 4.1. H-plane view of the 2D TLM and FDTD mesh ........................................ 83 

Figure 4.2. FDTD-based A VM probes (marked with circles) at the right septum 

Figure 4.3. 

Figure 4.4. 

Figure 4.5. 

Figure 4.6. 

Figure 4.7. 

Figure 4.8. 

Figure 4.9. 

(assume increasing D) in the single-resonator filter example ................... 86 

FDTD-based AVM probes (marked with circles) at the right septum 

(assume increasing W) in the single-resonator filter example .................. 87 

Derivatives of !Sui with respect to D in the single-resonator filter 

example ..................................................................................................... 87 

Derivatives of IS21I with respect to D in the single-resonator filter 

example ..................................................................................................... 88 

Derivatives of !Sui with respect to Win the single-resonator filter 

example ..................................................................................................... 88 

Derivatives of IS21 1 with respect to Win the single-resonator filter 

example ..................................................................................................... 89 

FDTD-based AVM probes (marked with circles) at the matching section 

boundaries (assume increasing L) in the waveguide impedance transformer 

example ..................................................................................................... 90 

Derivatives of !Sui with respect to L in the waveguide impedance 

transformer example ................................................................................. 91 



xiv LIST OF FIGURES 

Figure 4.10. Derivatives of IS21 1 with respect to Lin the waveguide impedance 

transformer example ................................................................................. 91 

Figure 4.11. Convergence analysis of the derivatives of I S11 1 with respect to L in the 

waveguide impedance transformer example ............................................. 93 

Figure 4.12. Convergence analysis of the derivatives of IS21 1 with respect to Lin the 

waveguide impedance transformer example ............................................. 93 

Figure 4.13. Convergence analysis ofthe derivatives of !Sui with respect to Win the 

waveguide impedance transformer example ............................................. 94 

Figure 4.14. Convergence analysis of the derivatives of I S21 1 with respect to Win the 

waveguide impedance transformer example ............................................. 94 

Figure 4.15. Convergence analysis of the error with respect to Win the waveguide 

impedance transformer example ............................................................... 95 

Figure 4.16. Derivatives of IS11 1 with respect to Lin the waveguide impedance 

transformer example (parameter sweep of L) . .......................................... 96 

Figure 4.17. Derivatives of IS21I with respect to Lin the waveguide impedance 

transformer example (parameter sweep of L) . .......................................... 97 

Figure 4.18. Derivatives of IS11 1 with respect to Win the waveguide impedance 

transformer example (parameter sweep of W) . ......................................... 97 

Figure 4.19. Derivatives of IS21 1 with respect to Win the waveguide impedance 

transformer example (parameter sweep of W) . ......................................... 98 



LIST OF FIGURES XV 

Figure 4.20. H-plane view of the dielectric-resonator filter ........................................ 100 

Figure 4.21. S-parameters of the dielectric-resonator filter ......................................... 102 

Figure 4.22. FDTD-based AVM probes (marked with circles) at the post boundaries 

(left post assume increasing w, right post assume decreasing w) in the 

dielectric-resonator filter example .......................................................... 102 

Figure 4.23. Derivatives of IS,,I with respect tow in the dielectric-resonator filter 

example ................................................................................................... 1 03 

Figure 4.24. Derivatives of IS2 ,1 with respect to win the dielectric-resonator filter 

example ................................................................................................... 1 04 

Figure 4.25. Derivatives of IS,,I with respect to s in the dielectric-resonator filter 

example ................................................................................................... 104 

Figure 4.26. Derivatives of IS2 ,1 with respect to s in the dielectric-resonator filter 

example ................................................................................................... 105 

Figure 4.27. Derivatives of IS,,I with respect to w in the dielectric-resonator filter 

example (parameter sweep ofw) ............................................................ 106 

Figure 4.28. Derivatives of IS2 ,1 with respect to win the dielectric-resonator filter 

example (parameter sweep ofw) ............................................................ 107 

Figure 4.29. Derivatives of IS11 1 with respect to sin the dielectric-resonator filter 

example (parameter sweep of s ) ............................................................. 1 07 



XVI LIST OF FIGURES 

Figure 4.30. Derivatives of IS21 1 with respect to sin the dielectric-resonator filter 

example (parameter sweep of s) . ............................................................ 108 

Figure 4.31. Derivatives of IS11 1 with respect tow in the dielectric-resonator filter 

example (parameter sweep of s ) ............................................................. 108 

Figure 4.32. Derivatives of IS21 1 with respect tow in the dielectric-resonator filter 

example (parameter sweep of s) . ............................................................ 109 

Figure 4.33. Derivatives of IS11 1 with respect to sin the dielectric-resonator filter 

example (parameter sweep ofw) ............................................................ 109 

Figure 4.34. Derivatives of IS21 1 with respect to sin the dielectric-resonator filter 

example (parameter sweep ofw) ............................................................ 110 

Figure 4.35. The dielectric-resonator antenna and its nominal design ........................ 112 

Figure 4.36. The return loss of the dielectric-resonator antenna ................................. 112 

Figure 4.37. The derivative I S11 I with respect to c of the dielectric-resonator antenna . 

Figure 5.1. 

Figure 5.2. 

Figure 5.3. 

Figure 5.4. 

................................................................................................................. 115 

The structure of the 1D lossy-medium example ..................................... 123 

Derivative of I S11 l with respect to the conductivity 0' 2 of the central layer 

in the 1D lossy medium example ............................................................ 125 

Derivative of IS21 I with respect to the length L of the central layer in the 

1D lossy medium example ...................................................................... 126 

Top view of the structure in the 2D example .......................................... 127 



LIST OF FIGURES xvii 

Figure 5.5. Derivatives of I FP,.ll I, k = 1, 2, 3, with respect to a-3 of the central object 

for a sweep of a-3 at 0.9 GHz ................................................................. 129 

Figure 5.6. Derivatives of I F1111 I with respect to the width W of the central object for 

a sweep of W at 2.6 GHz ......................................................................... 130 



LIST OF TABLES 

Table 2.1. 

Table 2.2. 

Table 3.1. 

Table 3.2. 

Table 4.1. 

Table 4.2. 

Table 4.3. 

Table 4.4. 

Table 5.1. 

Table 5.2. 

Setup of the inductive metallic obstacle simulation ............................... 21 

Setup of the single-resonator filter simulation ........................................ 27 

Setup of the H-plane filter simulation ..................................................... 53 

Setup of the single-section waveguide impedance transformer simulation 

. ................................................................................................................ 58 

CPU time for the dielectric-resonator filter example .............................. 99 

Setup of the dielectric-resonator filter simulation ................................ 101 

CPU time for the dielectric-resonator filter example ............................ Ill 

Setup ofthe dielectric-resonator antenna. simulation ........................... 113 

Setup ofthe lD lossy-medium example simulation ............................. 124 

Setup of the 2D lossy layered medium example simulation ................. 128 

XV111 



Chapter 1 

INTRODUCTION 

The design sensitivity analysis of dynamic distributed systems [1],[2] has become 

increasingly important since the advent of a variety of numerical techniques for transient 

solutions. These techniques enable the software for broadband analysis and design. 

However, they are time-intensive to an extent, which often makes the design cycle 

prohibitively slow. To address this problem, many researchers work on the acceleration 

of the analysis methods. In contrast, we focus on the extraction of additional information 

from the field solution, namely, the response derivatives (sensitivities) with respect to the 

design shape and material parameters. The sensitivities, together with the responses, 

double our knowledge of the system behaviour in the design parameter space. They offer 

a measure of the system tolerances, and, when properly used, reduce the number of 

simulation calls from the optimizer. They can also be used to provide a sufficiently good 

initial guess for the solution to inverse microwave imaging problems arising in 

biomedical diagnostics and non-destructive testing. 

Recently, significant progress in the sensitivity analysis of transient 

electromagnetic (EM) systems has been made. An exact adjoint-variable expression was 
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2 Chapter 1 INTRODUCTION 

proposed for high-frequency problems [3]-[6]. Examples included 2D waveguide 

structures analyzed with unstructured-grid finite-element time-domain (FE-TD) [4] and 

finite-difference time-domain discrete surface integral (FDTD-DSI) [3], [5] techniques. 

The response of interest was the transmitted or reflected energy through a port. The major 

drawback of the exact approach is the requirement for analytical system matrix 

derivatives, which confines its applicability to unstructured-grid solvers. On the other 

hand, the widely used time-domain solvers are based on structured grids, e.g., the FDTD 

[7] and the transmission-line matrix (TLM) [8], [9] methods. 

An alternative was proposed by Bakr eta!. [10] and Nikolova et al. [11] for TLM 

and FDTD analyses, respectively. Discrete sensitivity expressions are derived based on 

the time-domain (TD) TLM method in [10] and theE-field vector wave equation in [11], 

respectively. They do not need analytical system matrix derivatives and allow sensitivity 

computations in a discrete design parameter space, i.e., on structured grids. Very good 

accuracy was demonstrated for functions of the energy type. 

In all adjoint-sensitivity approaches, [3] (FDTD-DSI based), [10] (TD-TLM 

based) and [11] (Yee-FDTD based), an adjoint simulation is required for the derivatives 

of the energy response. The computational load of the adjoint simulation is equivalent to 

that of the usual EM simulation and constitutes the major part of the overhead of the 

sensitivity calculation. Another complication arises from the excitation of the adjoint 

simulation- its distribution in space-time is response-dependent. As a result, it is difficult 

to set up in a commercial solver. This limits the applicability to in-house codes. 
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In miCrowave design, the S-parameters are essential. Bakr et al. have 

demonstrated their sensitivity analysis with in-house TLM solvers, where the solution is 

in terms of incident voltages [12]. Furthermore, in [13] they showed that self-adjoint 

TLM formulation is possible for the case of loss-free homogeneous structures, where no 

adjoint simulations are necessary. 

In this thesis, we propose a general self-adjoint approach to S-parameter 

sensitivity computation, which is based on either TLM [10] or FDTD [11] discretization 

schemes. It is general in the sense that in both schemes we use the £-field solution. This 

solution is available with any time-domain commercial EM solver, such as MEFiSTo-3D 

Pro [14] or XFDTD [15]. Adjoint simulations are not needed. The only requirement is the 

ability of the simulator to export the field solution at user-defined points. Our algorithm 

is implemented in MATLAB [16]. The FDTD-based self-adjoint approach is valid for 

lossy inhomogeneous structures, while the TLM-based approach is so far limited to a 

homogeneous medium. 

The author's contributions include: 

1) The implementation of the TLM-based self-adjoint sensitivity analysis with 

commercial simulators where the £-field is the state variable. 

2) The development of the FDTD-based self-adjoint sensitivity analysis for S­

parameters and its implementation with a TLM-based simulator. 

3) The implementation of the FDTD-based self-adjoint approach m lossy 

dielectric inhomogeneous structures. 

Some of this work has been submitted or accepted for publication [17]-[19]. 
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Chapter 2 introduces the S-parameter calculation and the de-embedding technique 

in the time-domain. We also review briefly the TLM and FDTD methods, which are used 

as discretization schemes in our self-adjoint sensitivity analysis. 

Chapter 3 discusses the TLM-based self-adjoint approach [15]. We begin with a 

summary of the TLM-based discrete adjoint-variable method (AVM) [10] and its 

application to S-parameter sensitivity computation [12]. Next, we outline the self-adjoint 

approach [13], i.e., how to derive the S-parameter adjoint-field solutions from the original 

problem solutions and how to use them in the discrete sensitivity formula. Then, we 

describe in detail the algorithm which converts the £-field and H-field quantities to TLM 

voltages. Finally, we illustrate our approach by 2D waveguide examples developed with 

the TLM-based commercial solver MEFiSTo-3D Pro [14]. 

Chapter 4 focuses on the FDTD-based self-adjoint approach to the computation of 

the S-parameter derivatives with respect to shape parameters [18]. We introduce the 

FDTD-AVM theory [11] first. Then we develop the self-adjoint approach for the FDTD­

based discretization scheme. The conversion method from the TLM mesh to the FDTD 

mesh is addressed. It allows for the use of the TLM-based solutions with the FDTD­

A VM. The approach is validated by the same hollow waveguide structures considered in 

Chapter 3, as well as loss-free dielectric waveguide and antenna structures. We discuss 

the CPU time and storage requirements in the examples. 

Chapter 5 investigates the FDTD-based self-adjoint approach in lossy 

inhomogeneous structures [ 19]. The response derivatives are obtained with respect to 



Chapter 1 INTRODUCTION 5 

both the shape and constitutive parameters. The approach is verified through 1D and 2D 

examples where the inhomogeneous medium features high permittivities and losses. 

The thesis concludes in Chapter 6 with a summary and suggestions for further 

research. 
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Chapter 2 

COMPUTATION OF S-PARAMETERS 
FROM TIME-DOMAIN FIELD 
SOLUTIONS 

2.1 Introduction 

Most EM solvers are able to compute the S-parameters for a given structure. In 

this chapter, we first define the S-parameters in a K-port waveguide structure and the 

related de-embedding technique. Second, we briefly outline the basics of the FDTD and 

TLM methods. Third, we describe the detailed procedures to set up a correct solution in 

the TLM-based commercial solver MEFiSTo-3D Pro [1]. Waveguide examples are given. 

Their S-parameters generated by the solver are presented and compared with two other 

reference sets of data. They contain the S-parameters computed in MA TLAB [2] with the 

field responses of MEFiSTo and the S-parameters produced directly by the frequency­

domain solver HFSS [3]. Their finite-difference derivatives with different mesh sizes are 

also presented to ensure convergence and good accuracy. We later use these derivatives 

as a reference for our self-adjoint sensitivity computations. We conclude with a summary. 

9 
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2.2 Scattering Parameters 

The scattering parameters, or S-parameters, are the complex reflection and 

transmission coefficients dependent on the incident and reflected waves. They describe 

the behaviour of a device in the microwave frequency range. The S-parameters offer a 

complete description of the device performance in the microwave frequency range. They 

can also be converted to other parameters such as hybrid (H) or admittance (Y) 

parameters. 

In a K-port structure, if the qth port is excited, the S pq parameter for the mode v 

at the frequency m0 is 

s<v,aJo) -
pq -

z< v ,aJo) ft< v ,aJo) 
q • ~pq,____ 

z<v,wo) fl:<v,wo) 
p q 

(2.1) 

(2.2) 

Tmax 

F-(v,wo)- f JJEin ( ' ' t) (v)( ' ')dx' d ' -jl1Joldt q - q_l xq,yq, ·eq_l Xq,Yq q yq·e . (2.3) 
0 Aq 

Here, Eq is the field solution when port q is excited, x~ and y~ ( ~ = p,q) are the local 

coordinates at the ~ th port plane, m0 is the frequency at which the S-parameters are 

computed, ztwo) is the wave impedance of the ~ th port. The superscripts in and ou 

denote an incoming and an outgoing wave, respectively. The subscript l_ denotes the 

field, which is transverse to the direction of propagation. The modal vector of the ~ th 
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port e~v) gives the normalized distribution of the field across the port. In particular, the 

modal vector of the dominant TE zio mode in a rectangular waveguide port is [ 4] 

e(TEwl(x', y') = Y Hi sin (: x' J (2.4) 

where a and b denote the width and height of the port, respectively. 

Differentiating (2.1) with respect to the design parameter Pn, we obtain 

(2.5) 

Here z<v.OXJ) z<v.OXJ) and j(V,OXJ) do not depend on p 
' p ' q ' q n. 

The sensitivities of the real and imaginary parts of the S pq parameter 

8Re(Spq)/8pn and 8Im(Spq)/8pn can be derived according to (2.5). Then, the 

sensitivities ofthe magnitude and phase of S pq can be calculated as 

(2.6) 

o(AngleSpq) 1 ( olmSpq oReSpq J. 
----'--'---=-- ReS -ImS 

op /s 12 pq op pq opn 
n pq n 

(2.7) 

2.3 De-embedding Techniques 

The extracted S-parameters have a phase difference with respect to the reference 

plane because a port has to be located away from a discontinuity to guarantee an accurate 
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solution [5]. In Figure 2.1, the de-embedding plane, i.e. the reference plane, can be 

anywhere along the waveguide. The phase de-embedding modifications to (2.5) in 

different cases are as follows. 

qth port 

boundary~...--+----+------!'..._ 

~------~---+-~pili port 

~-----+----~~boundary 

Source Observation De-embedding 

plane q plane q plane q 

De-embedding Observation Source 

plane p plane p plane p 

Figure 2.1. Illustration of the source, observation and de-embedding planes in the 

waveguide ports of a 2-port structure when the de-embedding of the S­

parameter is with respect to the outermost discontinuities of the structure. 

Case 1: De-embedding plane coincides with the source plane: 

(2.8) 

The superscript obs denotes the solution recorded at the observation plane. D P and D q 

are the distances between the source planes and the observation planes at the pth and qth 

port, respectively. rp and rq (rq=aq+j/3,;, ;;=p,q) are the complex propagation 

constants of the pth and qth ports, respectively. In lossless cases, r,; = j /3,; . In free space, 

/3,; (fm) = ~( 27r fm I Co )
2 

- ( 7r I a,; r for the TEIO mode in the ;; th port. 

Case 2: De-embedding plane coincides with the observation plane: 
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Case 3: De-embedding plane coincides with the discontinuity plane: 

(2.10) 

LP and Lq are the distances between the observation plane and the discontinuity plane at 

the pth and qth port, respectively. The de-embedding factor for the general case when the 

de-embedding plane is placed anywhere along the waveguide can be derived similarly. 

2.4 FDTD Basics 

The FDTD method is a numerical method for the solution of Maxwell's equations 

directly in the time domain over a properly discretized problem (the FDTD space). In 

1966, K. S. Y ee presented a numerical algorithm for the time domain solution of 

Maxwell's equations [6] and Taflove et al. gave it the name FDTD method [7]. The 

FDTD method can be applied to problems containing complex high frequency (HF) 

structures that may be difficult to solve using analytical methods. The transient responses 

are obtained from the field solution in space and in time. Fourier transform is applied to 

the transient data in order to obtain the frequency responses over a wide spectrum. The 

FDTD method can be applied to any inhomogeneous, lossy, anisotropic, time varying and 

dispersive media. That is why the FDTD method has been widely used for solving 

electromagnetic problems. 
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An EM problem in a linear medium can be described by the vector wave equation 

for theE-field 

- 1 a2E aE aJ 
'Vxp 'V x E+e--+u-=--

at2 at at 
(2.11) 

where e , fl and u are the medium permittivity, permeability and conductivity, 

respectively For a unique solution, zero boundary conditions and initial conditions are 

specified. 

In Y ee' s FDTD grid, the positions of the electric components are half a spatial 

step away from the respective magnetic components. The allocation of the field 

components at theY ee cell is shown in Figure 2.2. 

E_ 
(i ,j- l ,k) 

E y 
(i-l ,j ,k- 1) 

Ey 
(i,j,k) 

(i- l ,j ,k) 

Ex 
(i ,j ,k) 

Figure 2.2. Allocation of the electric and magnetic field components on the Y ee cell. 
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In order to ensure the numerical stability of the leap-frog algorithm for a general 

3-D FDTD grid, Courant's stability criterion must be satisfied [8]. Equivalently, a 

numerical constant q is introduced, which must satisfy: 

(2.12) 

where M isthediscretetimestepand M=min(LU-,L\y,&).Here, LU-,L\y and & are 

the discretization steps along the x, y and z axes, respectively. c is the minimum velocity 

of propagation in any of the media in the problem. 

In addition to the time-step constraint, the selection of the size of the Y ee cell is 

also considered. In order to obtain sufficient spatial resolution of the computational 

domain, the cell size should be small enough corresponding to the highest frequency of 

interest: 

L\h < Amin :=::: Amin • 

18-!3 32 
(2.13) 

Also, for structures containing fine geometrical details, L\h must be chosen sufficiently 

small to represent them accurately and to allow for accurate representation of possible 

field singularities. 

If LVz and M are chosen in accordance with the conditions in (2.12) and (2.13), 

the FDTD method will generate accurate and reliable responses. They are also the 

criterion that we set up our simulation in the commercial solvers. 
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2.5 TLM Basics 

The transmission-line modelling (TLM), otherwise known as the transmission-

line-matrix method, is a time-domain numerical technique for solving field problems 

using circuit equivalents. It is based on the equivalence between Maxwell's equations and 

the equations for voltages and currents on a mesh of continuous two-wire transmission 

lines. The main feature of this method is the simplicity of formulation and programming 

for a wide range of application [8]. 

The TLM method carries out a sequence of scattering and connection steps. The 

scattering relation of the jth node at the kth time step is given by 

R . 
V. k = SlV. k 

], ], 
(2.14) 

where ~.k is the vector of incident impulses at thejth node, ~~k is the vector of reflected 

impulses at thejth node, and Sj is the scattering matrix ofthejth node. 

We assume that the computational domain is discretized into a total of N nodes 

with the node size 11/ . We denote the total number of TLM links associated with the N 

nodes by NL . One TLM step is given by 

k 

Vk+l =CSVk+V/+ LG(k-k')Vk~ (2.15) 
k':O 

Where Vk E 9{NL and Vk R E 9{NL are the VeCtOrS Of incident and reflected impulseS, 

respectively, for all nodes at the kth time step. The matrix S E 9{NLxN, is the scattering 

matrix for all nodes and is assumed time-invariant. C E 9{NLxNL is the connection matrix 

describing how reflected impulses connect to neighboring nodes or non-dispersive 
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boundaries. The vector Vk s E ~NL is the excitation vector at the kth time step. The last 

term in (2.15) represents the contribution of the Johns matrix boundary The matrix 

G(k) E ~NL xNL is the kth time layer of the three dimensional Johns matrix. Here, we 

assume that the medium is reciprocal and thus the matrix G(k) is symmetric 'Ilk The 

simulation carries out N
1 

steps where I: = N / '1t is the total simulation time. 

f.../ 
y(j) 

(i, j+1) 
f.../ 1 

(i,j + ) ~ 
2 

c· 1 ") 1 
(i- 7,.. ,j) (i , j)l + 2 , ; 

IX ( -Hy) 
-$-----1 .. 

z(k) 
x(i) 

(i 1,)) VR 
2 

VR 
4 (i +1,)) 

1 
(i, j- 2) 

(i, j-1) 2_~4 

Figure 2.3 2D TLM shunt node. 

In the 2D TLM shunt node, as m Figure 2.3, we have the following 

correspondences at any time and grid point: 

v =E I =H I =-H 2C=& L= II = =' y x ' x y ' ' r 
(2.16) 

where & and JL are the permittivity and permeability of the medium. The intrinsic 

impedance can be expressed as 

(2.17) 
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The nodes with an integer index are the actual nodes in the mesh where the E and H field 

quantities can be derived. Each node has 4 links which means 4 incident or reflected 

impulses. The incident impulses can be derived from the reflected impulses with the 

scattering and connection matrices [8]. In 3D problems, the symmetrical condensed node 

(SCN) is commonly used. All field components are co-located and computed at the center 

ofthe SCN. 

2.6 Validation Examples 

We describe the computation of the S-parameters from the field solution of 

MEFiSTo-3D Pro. In MEFiSTo, the setup includes the following steps: set up the 

structure, define the excitation and boundary conditions, set up the mesh and the 

simulation control. 

We give two 2D waveguide examples to explain the procedure. We set "2D 

mode" editor and "GSCN (Generalized Symmetrical Condensed Node) mesh for H­

plane" in MEFiSTo-3D Pro for the simulation. After we set the cell size !:lh and define 

the mesh, the discrete time step l1t is determined automatically by the software, so that 

q = !:lh/ c!:lt = 2. The results for the S-parameters are validated by HFSS. 

The finite-difference (FD) approximation is a common way to calculate the 

derivatives. It is also used as a reference for our self-adjoint sensitivity results in the 

following chapters. For the S-parameters, the central finite-difference (CFD) 

approximation is given by 
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8S(p,m) S(p + !1p, m)- S(p- !1p, m) 
~~~~--~--=---~~ 

8p CFD 
2!1p 

The forward finite-difference (FFD) approximation is defined as 

8S(p,m) 

8p 
FFD 

S(p + !1p, m)- S(p, m) 
~~~~--~--=-~ 

!1p 

The backward finite-difference (BFD) approximation is defined as 

8S(p,m) S(p, m)- S(p- !1p, m) 
~~~~--~--~~ 

8p 
BFD 

!1p 

(2.18) 

(2.19) 

(2.20) 

where S may be any complex S-parameter, or its magnitude, or its phase; m is the 

frequency; p is the design parameter. The smaller the perturbation !1p is, the more 

accurate and close to each other the 3 derivatives are. FFD and BFD have first-order 

accuracy while CFD is second-order. If the curves of the 3 approaches do not agree well, 

the cell size of the mesh in the time-domain simulation, which is also the step of the 

perturbation, might be too large. 

2.6.1 Inductive Metallic Obstacle 

The structure of the inductive metallic obstacle in a parallel-plate waveguide is 

gtven in Figure 2.4. The designable parameters are the dimensions of the obstacle 

( D W r . The dominant mode propagating along the waveguide is a TEM wave. The 

top view of the structure in the edit window of MEFiSTo is shown in Figure 2.5. The 

setup of the MEFiSTo simulation of the inductive metallic obstacle example is 

summarized in Table 2.1. In practice, the sources are located next to the input ports. The 
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observation points are located 2 cells away from their respective ports. Otherwise, de-

embedding techniques in section 2.3 must be implemented. 

Magnetic Wall 

-D 

w!D a 

Magnetic Wall 

Figure 2.4. The inductive metallic obstacle example. 

Magnetic Wall ( L=400mm) 

OJ 
i+- Source 

ON D N § CD Utw OJCD 
g.o 0 0 0 

~~ 
§;o 

In put Output C. CD 

Obstacle Dl::::!! 

II ~ -<!CD 
en~ probe (W=12mmD=6mm) probe n. 
00 cr 
3 :::l :::l 

2- Magnetic Wall 

Magnetic Wall 

N I-- Source N 
OJCD OJ!!l 
0 0 Reference Structure 0 0 

§ ::0 §~ 
C.Cll Reference c.::!! 
Dl::::!! Dl (1) 

-<!Cll 
probe -<n. n. 

5" 5" 
:::l :::l 

Magnetic Wall 

Figure 2.5. Top view of the inductive metallic obstacle structure in MEFiSTo. 
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Table 2.1. Setup of the inductive metallic obstacle simulation 

Cell size M lmm 
Constant 

Time step M 1.6678205 psec 

Width of port a 60 mm (60.1h) 

Length of the waveguide Lw 400 mm (400M) 

Computational Length of the obstacle D 6M 

domain Width of the obstacle W 12M 

Computational domain in space 400 Llh X 60 Llh 

Total time steps 20,000/J..t 

Boundary condition 
TEM wave absorbing 

boundary 

Port 
Modal distribution Constant 

Cut-off frequency of the port OGHz 

Gaussian modulated 
Waveform 

sinusoidal wave 

Excitation 1-3 GHz, central 
Spectrum 

frequency at 2 GHz 

Port distribution Constant 

Probes Distance from the respective port 2 Llh 
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With the correct configuration in MEFiSTo-3D, we can run the simulation to get 

the S-parameters and the E-field in separate response windows. To verify the S-

parameters, which we obtain directly from MEFiSTo, we utilize two references. The first 

reference is from another EM solver, HFSS, which is a 3D simulator in the frequency 

domain. Our second reference uses MATLAB to compute the S-parameters with (2.1) 

from theE-field response of MEFiSTo at the ports. We use the label "Matlab" referring 

to it in the figures. Figure 2.6 - Figure 2.9 show the comparison of the magnitude and 

phase of the S-parameters from these 3 methods for the inductive metallic obstacle. 

0.95 

--~----~---- ----;=----,:r::-========:::::=:;-

I I 

o Matlab 
MEFiSTo 
HFSS 

0.9 -------- ---- ~-- ------+-----------+------
1 

I 

I 

I 

0 .85 - - - - - - - - - - - I- - - - - -

I 

0.75 -----------L-----------L-----------~-
1 I I 

I I 

I I 

I I 

0.7 -----------~--------- -~-----------~-------

1 

I 0.65 L__ ____ _l__ ___ ________i_ _____ ____[_ ____ _ 

1 1.5 2 2.5 3 
frequency (GHz) 

Figure 2.6. Magnitude of S11 of the inductive metallic obstacle. 



Chapter 2 COMPUTATION OF S-PARAMETERS FROM TIME-DOMAIN FIELD SOLUTIONS 23 

200 

150 

100 
Q) 
!!? 

50 Ol 
Q) 

~ 
.--.. 

0 
r£L 
(j) 
(/) -50 «< 
..c 
a.. 

-100 

-150 

-200 
1 

~--------

---------

-

··· o- Matlab 

I 
~-----------t-----------T---

1.5 2 
frequency (GHz) 

1 

2.5 3 

Figure 2.7. Phase of S11 of the inductive metallic obstacle. 
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Figure 2.8. Magnitude of S21 of the inductive metallic obstacle. 
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o Matlab 

----t----------·~-
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I 
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Figure 2.9. Phase of S21 of the inductive metallic obstacle. 

From the comparison, we can see that the S-parameters derived from the 3 methods are 

close, which means that the result derived from MEFiSTo is acceptable. 

The finite-difference derivatives of I s,, I and I s21 I in the inductive metallic 

obstacle example simulated with MEFiSTo with the cell size of 2 mm and 1 mm are 

shown in Figure 2.10 and Figure 2.11, respectively. 

The "CFD", "FFD" and "BFD" results are close for the cell size of 2 mm, and 

even closer for the cell size of 1 mm. It means that the selection of mesh size and other 

set up parameters in Table 2.1, like the total simulation time, are acceptable. 
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2.6.2 Single-resonator Filter 

The structure of the single-resonator filter is given in Figure 2.12. The designable 

parameters are the length of the resonator D and the width of the septum W ( D W r 
The dominant mode is a TE10 mode. 

);C... 
II g. 

Ol::J 
0 -3 (JJ 

2-~ 

c... 
o i+- Source 
::::T 
::J 
(JJ-

~ 

a=60 mm 
D = 28 mm 
W=l3 mm 
o= lmm 

Figure 2.12. The single-resonator filter 

Reference 
probe Reference Structure 

~ Structure for Generating 
~- Johns Matrix 

Figure 2.13 Top view of the single-resonator filter structure in MEFiSTo. 
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The top view of the structure in the edit window of MEFiSTo is shown in Figure 

2.13. The setup of the MEFiSTo simulation of the inductive metallic obstacle example is 

summarized in Table 2.2 

Table 2.2. Setup of the single-resonator filter simulation 

Cell size M lmm 
Constant 

Time step l1t 1.6678205 psec 

Width of port a 60mm (60!lh) 

Length of the waveguide Lw 400 mm (400M) 

Computational Length of the resonator D 28M 

domain Width of the septum W 12M 

Computational domain in space 400/:!,.h x60!lh 

Total time steps 20,000/:!,.t 

Boundary condition Johns wall 

Port Modal distribution Half-sine 

Cut-off frequency of the port 2.5 GHz 

Gaussian modulated 
Waveform 

sinusoidal wave 

Excitation 3-5 GHz, central 
Spectrum 

frequency at 4 GHz 

Port distribution Half-sine 

Probes Distance from the respective port 20 !lh 
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For the single-resonator filter example, we should setup the properties of their 

Johns wall boundaries as in Figure 2.14. The notation JM1L means left Johns matrix in 

structure 1, and JM2R means right Johns matrix in structure 2. For the right-hand port of 

the third structure denoted by "Self-Generating" JM3R, we should use "self-

generating" in the property window and "Johns data" in the Johns Matrix 

window for the generation of the Johns matrix. For all other boundaries, JM1L, JM1R, 

JM2L, JM2R and JM3L, we should use "reference to another Johns 

matrix" in the property window and "response" in the Johns Matrix window with 

JM3R as the reference. 

f __ ..................... .. 

JM1L 
Rdfer to JM3R 

[ 

I l ........................ I ............... . ·········································· 

··------·-····---~-~--······-·-~·····-~-·····················-···~···-1 

JM1R 
Refer to JMyR 

;:::---~-~----~~~~--- ---~-,----,~-- ----------~~~--~-----~----

i: 

J~2L 
R~fer to JM3R 

JM3L 
Refer to JM3R 

Reference Structure 

Structure for Generating 
Johns Matrix 

JMkR 
Refer to JM$R 

-~~---~···· 

; 

JM~R 
Self-Generatipg 

' 

Figure 2.14. Johns boundaries of the single-resonator filter. 
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We compare the magnitude and phase of the S-pararneters of the single-resonator 

filter generated by the 3 methods: computed in MATLAB from the £-field response of 

MEFiSTo, directly derived from MEFiSTo and directly from HFSS. The comparison is 

shown in Figure 2.15 - Figure 2.18. "Matlab", "MEFiSTo" and "HFSS" denote the 3 

methods, respectively. 

From the comparison, we can see that the S-pararneters derived from the 3 

methods are close, which means that the result derived from MEFiSTo is acceptable. If 

we use the result of HFSS as a reference, we can conclude that the result computed by 

MATLAB using the field response ofMEFiSTo is a little more accurate than the directly 

derived one, see the resonant frequency in Figure 2.15. We decide to use the MATLAB 

computed one for our future work. 
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5 

As for the phase, there will be great phase delays, if the distances between the 

observation points and the phase reference planes are long. They can be adjusted by the 

de-embedding technique described in subsection 2.3. 

The finite-difference derivatives of I SII I and I s21 I in the single-resonator filter 

example with the cell size of 2 mm and 1 mm are shown in Figure 2.19 and Figure 2.20, 

respectively. Similar conclusion can be drawn as in the last example: the mesh cell size is 

fine enough and the total simulation time is long enough. 
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2.7 Summary 

The S-parameters derived from MEFiSTo are acceptable compared to the 

reference results from the MATLAB calculation and from HFSS. All the results are in 

agreement. This validates our set up for the simulations in MEFiSTo. If we regard the S­

parameters of HFSS as the reference, the result calculated using the field response of 

MEFiSTo and our MATLAB code is a little more accurate than the one directly given by 

the solver. 

From the plots of the FD sensitivity of the S-parameters, the cell size of the mesh 

is fine enough for the given examples. These derivative curves then can be used as 

reference sensitivities for verifying our sensitivity analysis with the adjoint variable 

methods (A VM). 
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Chapter 3 

TLM-BASED SELF -ADJOINT 
SENSITIVITY ANALYSIS 

3.1 Introduction 

We present a self-adjoint approach to S-parameter sensitivity computation with 

time-domain electromagnetic (EM) simulators based on the transmission-line matrix 

(TLM) discretization scheme. The method is applicable with any EM simulator, which 

can export either the electric field or the incident TLM voltages at user defined points. 

Our technique converts the electric and magnetic field solution into TLM voltages if the 

latter are not available. The S-parameter derivatives are computed as an independent 

post-process whose computational requirements are negligible compared to the full-wave 

system analysis. Adjoint simulations are not needed if the problem is homogeneous. Our 

approach is illustrated through waveguide problems solved with a commercial TLM 

solver. 

We start by giving a concise summary of the general adjoint variable method 

(A VM) approach for TLM. The self-adjoint A VM algorithm for estimating the S-

35 
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parameter sensitivities at multi-frequency points is described afterwards. The method to 

convert field quantities to TLM incident impulses is then given in detail. The validation 

of the algorithm is carried out through 2D waveguide examples. Our self-adjoint S-

parameter sensitivities are computed with respect to shape design parameters and are 

compared with finite-difference approximations. Good match is obtained between the 

two sets of data. The results are additionally verified with HFSS [1]. We discuss the CPU 

time and storage requirements and delineate the advantages and the limitations of the 

technique. We conclude with a summary. 

3.2 Adjoint Variable Method for Time-domain TLM 
Method 

The A VM offers an efficient way to perform sensitivity analysis, which uses only 

two simulations, of the original and the adjoint problems, to obtain the derivatives with 

respect to all designable parameters regardless of their number [2]. 

The A VM approach for the time-domain Transmission Line Modeling (TLM) is 

used to derive complex frequency-dependent S-parameter sensitivities commonly used in 

microwave design. For a structure with NP ports, the technique requires additional NP 

adjoint simulations to obtain the derivatives of the S-parameters with respect to all design 

parameters. A wideband excitation is utilized for all the adjoint simulations. Discrete 

Fourier Transform (DFT) is then employed to estimate the S-parameter sensitivities over 

the desired range of frequencies. 
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The A VM efficiently estimates the gradient of a response function with respect to 

the designable parameters p E mn at a given set of values p 0
• The real objective function 

is of the form 

1's 

F = f!f/(p, V)dt (3.1) 
0 

where Vis the vector of continuous functions of time corresponding to the discrete set of 

incident impulses Vk , k = 1, ... , N1 • Here, N1 is the number of time steps in the 

simulation. 

One forward-running TLM step is given by 

k 

vk+l =CS~ +V/ + IG(k-k')Vk~ (3.2) 
k'=O 

where Vk and ~ R are the vectors of incident and reflected impulses, respectively. Sis 

the scattering matrix, and C is the connection matrix. The vector Vk s is the original 

excitation vector. The matrix G(k) is the kth time layer of the three dimensional Johns 

matrix. 1', = N/1t is the total simulation time. 

The sensitivities of the objective function F with respect to all designable 

parameters can be obtained by simulating the backward-running adjoint system 

(3.3) 

where the adjoint excitation is 

(3.4) 
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The adjoint simulation (3.3) provides the adjoint state-variable vector A. at all 

time steps. With the solution of (3.2) and (3.3), the sensitivity of F with respect to the 

nth parameter can be expressed by [2] 

(3.5) 

where Mn is the forward finite difference of the matrix A= ( CS- I) I !lt due to a 

perturbation 11pn in the nth parameter. The set S: contains the indices of the links at the 

Pn- related perturbation points [2]. The matrix Mn contains only few nonzero elements. 

It follows that we need to store only the vector lj,k, where at the jth node Mn is 

nonzero. Thus lj,k contains only a small subset of the components of lk. The general 

expression for the mth component of the vector 1J. k is given by 
} , 

1 ( ) m =-- aVR + V.R 1J j,k /1 /1{ m,k+l fJ l,k+l 
.Pn 

(3.6) 

where l is the index of the link connecting to the mth link. The parameters a and fJ are 

0, -1 or 1, depending on the change of the connection of the mth link [2]. 

3.3 TLM-based Adjoint Variable Method for S­
parameters 

From the definition of the S-parameters in section 2.2, the Spq derivative is 

determined by the derivative of the response Fpq : 
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(3.7) 

Below, we focus on the sensitivity of the pth port output spectrum a.Fpq I apn. The 

sensitivities of the real and imaginary parts of the output spectrum at a frequency fm is 

given by [3] 

aReF (/.) N, 
pq m R: -M" ip,R (/. )rl a L... j,k m j,k 

'Pn k=O 

aimP (!,) N, 
pq m R:-/1t"ip,I(J:)1Jq a L... j,k m j,k 

'Pn k=O 

(3.8) 

where IJ;,k is computed from (3.6) with the solution ofthe original impulse ofthejth link 

at the kth time step when the original excitation is applied at the qth port. iJ,·/ and lJ,f 

are the real and imaginary parts of J.J,k , which is the predicted spectrum of the adjoint 

impulse of the jth link at the kth time step when the adjoint excitation is applied at the pth 

port. We derive its expression as follows. 

The excitation applied to the jth node of the qth port at the kth time step is given 

by 

~SJ = ~~~~ 2 Eq (j)h0 (k!1t), q = 1, 2, ... , NP (3.9) 

where Eq (j) is the transversal mode distribution at the jth node of the qth port, and 

h0 ( k!1t) is the time sequence of the excitation of the original problem. The vector a 
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relates the incident impulses of the observed field component by E = arv, where 

a= [ 0.5 0.5 0.5 0.5r in the 2D case. 

The sensitivities of the scattering parameter Spq over the desired range of 

frequencies can be obtained by exciting the pth port of the same structure with the 

wideband adjoint excitation [3] 

(3.10) 

where r = n/1 r = T, - t is the time variable of the backward-running adjoint simulation. 

ha ( n/1 r) is the time waveform of the excitation of the adjoint problem. E P (j) is the 

transversal mode distribution at the jth node of the pth port. 

For a structure where the dominant modes of the pth and qth port are the same 

EP (j) = Eq (j), we can derive a simple transformation from the original solution to the 

adjoint solution as follows. 

For the frequency fm, the corresponding complex spectral component of the 

excitation h(r) is approximated by 

N, 

H(fm) ~I h(n!1r)exp[-2n"j(m-1)(n-1)/ N
1

] (3.11) 
n=i 

where fm = (m -1)11/, !1f = 1 /(N
1
1'1t). The corresponding complex spectral component of 

the adjoint impulse A-J.k is approximated by 

N, 

iJ(fm) ~ IA-J.k(n!1r)exp[ -27r j(m-1)(n-1)/ N1 ] (3.12) 
n=i 
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where n = N
1 

- k, ~ r = M , M is the discrete time step. 

Because of the assumed linearity of the medium, the predicted spectra of the 

adjoint impulses 1J~cR and 1J'f due to the adjoint excitation in (3.10) at 1m can be 

expressed as 

J. f.;' ( kLit) ~ Lit& I Ia II' ~~~ i ;: ;
1

1 cos [ 21f f. ( -k )Lit+ Li J (f.)- Lii (f. ) J 
- (3.13) 

J. J{ ( kLit) ~ Lit& llall' It~ i ~ ?tl cos [ 21f f. ( -k )Lit+ Li: (f. ) - Lii (f.)-" I 2 J 

where &- is the area of a port surface element; &- = M2 in the 2D case. The vector a is 

the same as in (3.9). The result for 1J~cR and 1J{ is substituted in (3.8) to calculate the 

sensitivities of the output spectrum at 1m. Finally, we use (3.7) to compute the 

sensitivities of the S-parameters at the desired set of frequency points. 

3.4 TLM-based Self-adjoint Sensitivity Theory 

With a commercial TLM solver, we can not always perform backward-running 

simulation as required by the TLM-AVM approach above. Moreover, for a number of 

responses, the adjoint simulations can be avoided. This case is addressed by the self-

adjoint approach, which obtains the adjoint impulses in [3] from the forward-running 

simulations of the original problem. 

For lossless, homogenous and isotropic structures, the TLM S-parameter analysis 

is a self-adjoint problem. An isomorphism is established between the adjoint problem and 
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the corresponding transformed original problem. The adjoint TLM impulses needed at 

every time step are determined from the original TLM impulses. The additional NP 

adjoint simulations are thus eliminated [4]. 

For a lossless and homogenous problem, the dielectric properties are the same in 

all nodes. In this case, the nodal scattering matrix satisfies 

sr =S=S-1
• (3.14) 

Using (3.14) and with the symmetry of the Johns matrix at each time step, equation (3.3) 

can be rewritten as 

N 

).k_1 = SC).k + s! G(k'- k )lk.- V/·'\ l(I::) = 0. (3.15) 
k'=k 

Using the transformation 

R . 
V.k=SlV.k 

J' ), 
(3.16) 

the original simulation (3 .2) can be expressed in terms of the reflected impulses as 

k 

vk~l = SCV/ +S_LG(k-k')v:, + vks,R, V0R = o. (3.17) 
k'=O 

Comparing (3 .15) and (3 .17), if we assume that the original and the adjoint simulations 

are excited with the same temporal and spatial distribution, h0 (t) = hJr) and 

E P (j) = Eq (j), we have a relationship between the adjoint and original impulses as 

(3.18) 

It follows that the adjoint impulses ).N -k obtained from (3 .15) by exciting the pth port 
I 

can be deduced from the values of the original impulses vt obtained from the forward-
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running simulation (3.17) when the same pth port is excited. The additional NP adjoint 

simulations can be eliminated. 

3.5 Conversion from Field Quantities to Incident 
Impulses 

Another difficulty for the A VM-TLM algorithm in the framework of commercial 

software is that normally the software provides only the responses of the field quantities 

of each node while we need incident impulses at certain links to get the sensitivities, see 

(3.8). MEFiSTo-3D Pro [5] does provide the incident impulses, which simplifies our 

work; however, to get the reflected impulses for the proposed AVM algorithm; we need 

more probes than the conversion algorithm we adopt now. In this section, we explain the 

method to derive the incident or reflected impulses needed in the A VM algorithm from 

the field quantities, which makes our algorithm efficient as well as generally applicable to 

a variety of time-domain simulators. 

We illustrate the conversion method using the 2D TLM shunt node, as in Figure 

2.3 in section 2.5 [6]. The 2D mode in the commercial solver MEFiSTo-3D is discretized 

in the same way. To get the impulses at a certain link, we need the E and H field 

components at that node and theE field components at its adjacent nodes. 

For instance, to get the reflected voltage at the 2nd link of the central node at the 

nth time step F2R(i,j), we need the E= field components at the points (i,j) and 
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(i,j + 1), and the HY field component at (i,j). The algorithm in discrete form is 

expressed as follows: 

n E; {i + 1 I 2, j) = - n-i E; {i + 1 I 2, j) + n Ez (i, j) + n Ez {i + 1, j) 

n E; {i + 112, j) =-n-i E; {i + 112, j) + n Ez (i, j)-n Ez {i + 1, j) 

n~R (i,j) = [nE; (i + 11 2,j) +n E; (i + 112,j)] I 2 

n~R(i,j)= n~R(i,j)+ nH/i,j)·ZL 

(3.19) 

where Z L = ~2J1 I & is the intrinsic impedance of the 2D TLM mesh linl(. In (3 .19), the 

first two equations are updated iteratively to get the intermediate variables E; and E;. 

Then we can compute the reflected voltage at the 4th link ~R. Using HY and V/, we 

finally obtain ~R, which is needed in (3.8) and (3.12). The reflected impulses at other 

links can be derived similarly. The incident impulses can be derived from the reflected 

impulses with the scattering and connection matrices. 

3.6 Validation Examples 

The examples focus on the sensitivity calculations with respect to the shape 

parameters in 2-D waveguide (in the dominant TE10 mode) problems. We set "2D mode" 

editor and "GSCN (Generalized Symmetrical Condensed Node) mesh for H-plane" in 

MEFiSTo-3D Pro for the simulation. After we set the cell size f..h and define the mesh, 

the discrete time step f..t is determined automatically by the software, so that 

q = f..h/ cf..t = 2 . The sources are located next to the port boundaries. The observation 

points are located 2 cells away from the respective port boundaries. 
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These examples have been analyzed with the self-adjoint TLM-A VM algorithm 

and an in-house TLM solver [3]; however, this time we use the commercial solver 

MEFiSTo and its field solution instead of the incident voltages. 

In all plots, the derivative curves obtained with our time-domain self-adjoint 

sensitivity analysis approach are marked as TLM-SASA, while the curves obtained 

through parameter perturbations and finite differencing of the S-parameters are marked as 

BFD, CFD and FFD for the backward, central, and forward finite differences, 

respectively. Response finite differences are used with both commercial solvers, 

MEFiSTo-3D Pro and HFSS, in order to acquire reference sensitivity curves and compare 

them with the TLM-SASA results. 

3.6.1 Inductive Metallic Obstacle 

The structure of the inductive metallic obstacle in a parallel-plate waveguide is 

given in Figure 2.4. The setup of the MEFiSTo simulation is shown in Table 2.1. The 

designable parameters are the dimensions of the obstacle [ D wf . The probes whose 

field solution should be recorded for A VM calculation are around the perturbation 

boundaries. The probe fields we need to record and the TLM impulses, which we 

calculate with the conversion method in section 3.5, are illustrated in Figure 3.1, where 

we assume an increase of the width W The case of increasing the length D is similar. 

The sensitivities of IS11 1 and IS21 1 with respect to D and Ware presented in Figure 

3.2, Figure 3.3, Figure 3.4 and Figure 3.5, respectively. 
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Figure 3.1. TLM-based AVM probes at the obstacle boundaries (assume increasing 

Tf') in the metallic obstacle example. 
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Figure 3.3. 
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Figure 3.5. 
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3.6.2 Single-resonator Filter 

The structure of the single-resonator filter is shown in Figure 2.12. The setup of 

the MEFiSTo simulation is shown in Table 2.2. The designable parameters are the length 

of the resonator D and the width of the septum W: [D wr. The probe field and the 

TLM impulses needed are illustrated in Figure 3.6 and Figure 3.7, when we assume 

increasing length of the resonator D and its septum width W, respectively. 
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Figure 3.6. TLM-based AVM probes at the right septum (assume increasing D) in the 

single-resonator filter example. 
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Figure 3.7. TLM-based AVM probes at the right septum (assume increasing W) in the 

single-resonator filter example. 

The sensitivities of jS11 j and jS2,j with respect to D and Ware presented in Figure 

3.8, Figure 3.9, Figure 3.10 and Figure 3.11, respectively. 
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Figure 3.8. 
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Figure 3.1 0. 

Figure 3 .11. 
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3.6.3 H-plane Filter 

The six-resonator H-plane filter and its nominal design are shown in Figure 3.12. 

The designable parameters are the widths of the septa and the lengths of the resonators 

[ w; ~ ~ Wt L1 L2 ~] • The S-parameters of the nominal design computed 

from the field solution ofMEFiSTo and those computed by HFSS are compared in Figure 

3.13. The setup of the MEFiSTo simulation is summarized in Table 3.1. The AVM 

probes needed are similar to those in the single-resonator filter example, as in Figure 3.6 

and Figure 3.7. 

With a single MEFiSTo-3D simulation, we obtain the S-parameters and their 

derivatives with respect to all 7 design parameters, while to obtain the same results with 

central finite differences, we need 14 more simulations. 

a 17.4244 
b 15.7988 
J 0.62230 
Wt 4.3561 
w2 5.6007 
w3 6.223 
w4 6.223 
Lt 16.1798 
L2 16.1798 
L3 16.8021 
all dimensions in mm / 

/ 

x:V 

Figure 3 .12. The six -resonator H-plane filter and its nominal design. 
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Table 3.1. Setup of the H-plane filter simulation 

Cell size M 0.6223 mm 
Constant 

Time step l1t 1.0378847 psec 

Width of port 2 a 34.8488 mm (56 !!.h) 

Length of the waveguide Lw 435.561 mm (700M) 

Length of the resonators [ -4 L2 ~] (26M 26M 27M] 
Computational 

domain Width of the septa 
(7M 9M 10M 10M] 

[~ Wz w; Wt] 

Computational domain in space 700M x56M 

Total time steps 20,00011t 

Boundary condition Johns wall 

Port Modal distribution Half-sine 

Cut-off frequency of the port 4.3 GHz 

Gaussian modulated 
Waveform 

sinusoidal wave 

Excitation 5-l 0 GHz, central 
Spectrum 

frequency at 7.5 GHz 

Port distribution Half-sine 

Probes Distance from the respective port 20M 
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Figure 3.13. S-parameters of the six -resonator H-plane filter. 

The derivatives of ISul and IS2 ,1 of the H-plane filter at 7 GHz with respect to L1 

for a parameter sweep of L, are presented in Figure 3.14 and Figure 3.15, respectively. 

The derivatives of ISul and IS21 1 with respect to the septum width ~ for a parameter 

sweep of ~ are presented in Figure 3.16 and Figure 3.17, respectively. All other 

parameters are at the nominal values as in Figure 3.12. 
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Figure 3.16. 

Figure 3.17. 
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3.6.4 Single-section Waveguide Impedance Transformer 

The single-section waveguide impedance transformer [7] is shown in Figure 3.18. 

The designable parameters are the dimensions of the matching section [W L f . The S-

parameters of the nominal design computed from the field solution of MEFiSTo and by 

HFSS are compared in Figure 3.19. The setup ofthe MEFiSTo simulation is summarized 

in Table 3.2. The AVM probes needed are similar to those in the metallic obstacle 

example, as in Figure 3 .1. 

610M 

Figure 3.18. The single-section waveguide impedance transformer. 
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Table 3.2. Setup of the single-section waveguide impedance transformer simulation 

Cell size 11h 1.26 mm 
Constant 

Time step 11t 2.1014538 psec 

Width of port 1 a1 30.24 mm (2411h) 

Width of port 2 a2 50.4 mm ( 40 11h) 

Length of the waveguide Lw 768.6 mm (61011h) 
Computational 

domain Lengths of the matching section L 1011h 

Half width of the matching section W 1411h 

Computational domain in space 700 f1h X 56/1h 

Total time steps 20,00011t 

Boundary condition Johns wall 
Port 

Modal distribution Half-sine 

Cut-off frequency of the port 1 4.957 GHz 

Cut-off frequency of the port 2 2.974 GHz 

Gaussian modulated 
Waveform 

Excitation sinusoidal wave 

Spectrum 
6-8 GHz, central 

frequency at 7 GHz 

Port distribution Half-sine 

Probes Distance from the respective port 211h 
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Figure 3.19. S-parameters ofthe single-section waveguide impedance transformer. 

The S-parameter curves in Figure 3.19 show that the nominal design is optimal at 

about f =6.48 GHz. The two ports of the impedance transformer have different wave 

impedances. Thus, the computation of S21 and S12 as well as the computation of their 

derivatives require their values at each frequency of interest. z'[E10 and zJE10 are 

computed analytically: 

(3.20) 

Here, z,TEw , t:r1 and a, are the characteristic impedance, the relative dielectric constant 

and the width of port 1, respectively, while z~Ew , t:r2 and a2 are the corresponding 



60 Chapter 3 TLM-BASED SELF-ADJOINT SENSITIVITY ANALYSIS 

characteristics of port 2; tJJ is the angular frequency and c0 is the velocity of light in 

vacuum. 

We aim to test our technique with the S-parameter sensitivity with respect to W 

and L at the optimal solution. We expect maximum power transfer at the optimal solution 

for W, L and f, where S11 of the transformer is minimum. Then we vary Wand L around 

their optimal values atfto get the sensitivity ofthe S-parameters. 

To derive the optimal solution of the transformer, we approximate the midsection 

as a transmission line with a characteristic impedance Zc and length L. It is connected 

directly to the input and output waveguides with characteristic impedances zin and zout, 

respectively. According to the theoretical calculation, to obtain maximum power transfer, 

(3.21) 

We calculate the discrete optimal solution as [w L tY 

[l4L1h l3L1h 6.36 GHzY. 

However, the physical model of the transformer is more complicated than the 

direct connection of transmission lines. The connection to the midsection should be 

modeled as a 2-port network as well. We use the optimal solution ofHFSS as a reference. 

We sweep the parameters [w L tY for the smallest S11 • The discrete optimal 

solution is found to be [w L tY = [l4L1h lOL\h 6.48 GHzY. 

We first compute the sensitivity at the optimal W and L with a frequency sweep 

around the optimal! The derivatives of IS11 1 and IS21 1 with respect to the section length L 
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are shown in Figure 3.20 and Figure 3.21. The results are compared with the HFSS finite-

difference sensitivities. 
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Figure 3 .20. Derivatives of I S11 I with respect to L in the waveguide impedance 

transformer example. 

In Figure 3 .20, the FFD and BFD curves clearly show the inferior accuracy of the 

first-order finite-difference approximations. For a given cell size, our results are less 

likely to suffer from an insufficiently refined grid. This is due to their second-order 

accuracy comparable to that of the CFD approximation. 



62 Chapter 3 TLM-BASED SELF-ADJOINT SENSITIVITY ANALYSIS 

5 - - - - - - - - - - - I - - - - - - - - - - - -~---- - - --- --- - - - ----- - - ---
I I 
I I 

I 

I 

4 - - - - - - - - - - ~--;-, ~--~-~------.-~-~~-"""--------------~ 
I 

3 - - - - -- - - - - - ~ - -- - - - - - - - - -~- - - - - - -
I 

I 

I 
. --t - - - - - - - - - - - -I- ----------~-----------~ 

I I I 
I 
I 
I 

I 
I 

I 

6.5 

I I 
- - - - -" - -I- - - - - - - - - - - - +-- - - - - - -- - - - -1 

I I ,..1 I 
7 

frequency (GHz) 
7.5 8 

Figure 3.21. Derivatives of I S21 I with respect to L m the waveguide impedance 

transformer example. 

Then, we perform convergence analysis to illustrate the superior accuracy of the 

sensitivities computed with our approach as compared to those obtained by response-

level finite differences. The derivatives of JS11 J and JS2 ,J with respect to the section length 

Land W with convergent mesh sizes are shown in Figure 3.22, Figure 3.23, Figure 3.24 

and Figure 3.25, respectively. 
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As the mesh is refined twice and then four-fold, the TLM-SASA curve changes 

little and consistently shows zero derivatives at our estimated optimal frequency f= 6.48 

GHz. The CFD curves converge toward the TLM-SASA curves as the mesh is refined. 

When the cell size becomes too small, all finite-difference curves start to exhibit 

fluctuations, which is an indication that further reduction of the cell size will make the 

finite-difference estimates unreliable. 

Finally, we perform a parameter sweep and compare the derivates of the TLM-

SASA technique and the MEFiSTo/HFSS finite-difference approximation. We vary L 

around its optimal value at the optimal Wand f. The sensitivities of !S11 j and !S21 1 are 

shown in Figure 3.26 and Figure 3.27, respectively. We then sweep W. The sensitivities 

of !S11 ! and !S21 1 are shown in Figure 3.28 and Figure 3.29, respectively. 
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Figure 3.26. Derivatives of !S11 j with respect to L m the waveguide impedance 

transformer example (parameter sweep of L). 
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transformer example (parameter sweep of W). 
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Figure 3.29. Derivatives of jS21 j with respect to W in the waveguide impedance 

transformer example (parameter sweep of W). 

In the lossless case, for a 2-port structure, we have js1l +jS2l = 1, so we define 

an error function to estimate the accuracy of the S-parameter sensitivities of different 

techniques: 

(3.22) 

Here, Pn is the design parameter. We can compute the error from the sensitivity results 

we obtained above. We show the error of the S-parameter derivatives with respect to Win 

the waveguide impedance transformer example with a convergence analysis in Figure 

3.30. 
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Figure 3.30. Convergence analysis of the error inS-parameter derivatives with respect 

to Win the waveguide impedance transformer example. 

3.7 Summary 

We developed an efficient method for S-parameter sensitivity analysis with 

commercial time-domain EM solvers based on a TLM self-adjoint sensitivity expression. 

The method converts the field quantities into reflected TLM voltages to make the 

expression applicable to commercial solvers providing field solution only. With 

commercial solvers, our current application is limited to loss-free homogenous structures. 

Our approach is illustrated through the computation of the S-parameter 

sensitivities in the desired frequency band with respect to the shape parameters of 

waveguide discontinuities. Our results exhibit superior accuracy and efficiency than those 
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of the finite differences. The S-matrix and its derivatives with respect to all design 

parameters are obtained through a single system analysis. The overhead of the sensitivity 

computation is negligible compared to the computational intensity of the time-domain 

full-wave simulation. The memory requirements of the sensitivity analysis are mostly due 

to the field waveforms recorded at the perturbation points. The number of these probes 

can be reduced by one-third when we use conversion from field quantities instead of the 

incident voltages directly. 
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Chapter 4 

FDTD-BASED SELF-ADJOINT 
SENSITIVITY ANALYSIS 

4.1 Introduction 

We present a self-adjoint approach to S-parameter sensitivity computation with 

time-domain electromagnetic (EM) simulators based on the finite-difference time-domain 

method (FDTD) discretization scheme. The method is applicable with any EM simulator, 

which can export the £-field at user defined points. The S-parameter derivatives are 

computed as an independent post-process whose computational requirements are 

negligible compared to the full-wave system analysis. Adjoint simulations are not needed 

even if the problem is lossy and inhomogeneous. 

This algorithm is applicable to all time-domain commercial solvers, where the 

field solution is available, while the TLM-based adjoint variable method (A VM) 

approach needs to convert the field solution to incident voltages. Meanwhile, the FDTD­

AVM algorithm is valid for lossy inhomogeneous structures, while the self-adjoint TLM­

based AVM approach is limited to the loss-free homogeneous case. To apply it in the 

71 
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framework of a TLM-based commercial solver (e.g. MEFiSTo-3D pro [1]), we propose a 

method to convert the field solution at the TLM mesh nodes into a field solution at the 

Y ee-cell FDTD nodes, because the two discretization grids are displaced in space by half 

a cell along each axis. 

We start by giving a concise summary of the £-field vector wave equation and the 

general FDTD-A VM approach. The self-adjoint FDTD-based A VM algorithm for 

evaluating the S-parameter sensitivities is illustrated after that. Then the method to 

convert field solutions from the TLM mesh to FDTD-mesh field solutions is given. The 

de-embedding technique for the A VM is explained in detail. The validation of the 

algorithm is carried out through waveguide and antenna examples. Our self-adjoint S-

parameter sensitivities are computed with respect to shape design parameters over a 

desired frequency band or over a parameter sweep at a certain frequency point. The A VM 

results are compared with finite-difference approximations. Good agreement is obtained 

between the two sets of data. The results are additionally verified with HFSS [2]. We 

discuss the CPU time and storage requirements and delineate the advantages and the 

limitations of the technique. We conclude with a summary. 

4.2 Adjoint Variable Method for the FDTD Method 

An EM problem in a linear medium can be described by the vector wave equation 

for the E-field 

-1 82E 8E 8J 
Vxp VxE+e--+a-::::--

8t2 at at 
(4.1) 
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where e, f.l and u are the medium permittivity, permeability and conductivity, 

respectively. For a unique solution, zero boundary conditions and initial conditions are 

specified. 

Applying central finite differences to (4.1), we obtain 

(4.2) 

where 

(4.3) 

is the excitation term, and 

a = t: ( M )z f3 = 11hz s = a"Jlol1hz 
r eM ' Jlo M ' 2M 

(4.4) 

are numerical constants. Here, c is the speed oflight in vacuum, Jlo is the permeability of 

vacuum, t: r is the relative permittivity, M is the discretization step in time, and 11h is 

the smallest cell size, 11h=min(11x,l1y,Llz). The difference operators in time are as 

follows: 

D,J(t0 ) = J(to + M I 2)- J(t0 -M I 2) (4.5) 

D,2E(t0 ) = E(t0 + M)-E(t0 -M) (4.6) 

DuE( to) = E(to + M) + E(to -M)- 2 · E(to). (4.7) 

The difference between the first-order operators ( 4.5) and ( 4.6) is due to the specifics of 

the FDTD scheme where theE-field and the current density are sampled at points, which 

are mutually displaced by one-half time step. The finite-difference double curl operator 
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2 2 produces three vector components; e.g., in rectangular coordinates, its x-component in 

a magnetically homogeneous medium is 

where 

The second-order operators in space use central differences, e.g., 

DyyE x(xo,yo,zo) =E x(xo,Yo+L'>y,zo) + E x(xo,yo-L'>y,zo)-2· E x(xo,yo,zo) 

D yxE y(xo,Yo,zo) =[ E y(xo+t.x12,yo+L'>yl2,zo)- E y(xo-L'>xl2,yo+L'>yl2,zo)] 

- [ E y ( xo+L'>x I 2,yo-L'>y I 2,zo) - E Y ( xo-L'>x I 2,yo-L'>y I 2,zo)] · 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

They and z components of 2 2E can be obtained from (22E)x in (4.8) using the cyclic 

substitution x~ y~ z~ x. 

The EM response in the time-domain sensitivity analysis is a functional of the 

field solution [3]: 

T, 

F(E,p) = T fffJ(E,p)dQ dt. (4.12) 
o n 

Here, Q is the computational volume and T max is the simulation time. We refer to the 

integrand f(E,p) as the local response. It depends on p implicitly through the field 

solution E. 

The response sensitivity is defined by the gradient row-vector 

(4.13) 
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where p = [p1 · • • PN Y is the vector of design parameters. 

A discrete adjoint-sensitivity formula based on (4.1) was developed in [3]: 

(4.14) 

(4.15) 

In (4.14), aeF I 8pn is the explicit derivative, E is the solution of (4.2) in the nominal 

state, and (E) n is the solution of the adjoint problem in the nth perturbed state. The 

nominal state is described by ( 4.2) when the designable parameters are at their nominal 

values. In the nth perturbed state, Pn, nE{1, ... ,N}, is changed and all other parameters 

are kept at their nominal values. 

The sensitivity expression ( 4.14) in a discrete form is 

(4.16) 

where t = n/J.t , Tmax = N max !::.t , S: is the set of points where ~nR(E~n1 )) is non-zero for 

the nth perturbation. ~nR(E~n1 )) is given in (4.15). The derivative is not dependent on Pn 

explicitly if the port is not affected by the changes of Pn. 

For cases where the system coefficients have analytical derivatives, the adjoint-

sensitivity formula in ( 4.14 )-( 4.15)becomes [ 4] 

(4.17) 
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(4.18) 

Here E is the solution of the unperturbed adjoint problem. 

If a design variable represents the constitutive parameters of an object, the 

equation coefficients are simple analytical functions of & r and a . The implementation of 

the adjoint-variable method is relatively straightforward for the EM system ( 4.1 ). In 

regions where the constitutive parameters change, 

(4.19) 

as per (4.4). Outside of the perturbed regions, the derivatives of a and s in (4.14) are 

zero, and so are the expressions in ( 4.19). 

The derivatives of the system coefficients of ( 4.2) with respect to shape 

parameters cannot be derived analytically. In this case, we resort to finding their 

differences (4.15) in the nominal (unperturbed) state and the nth perturbed state. The 

shape parameters belong to a discrete space and thus their change is always a multiple of 

the cell size. We assume the smallest change of one cell size, e.g., !).pn = !).h on a uniform 

grid. With the change of Pn, the coefficients of (4.2) experience a stepwise change at a 

few grid points surrounding the changing object. We refer to these points as perturbation 

grid points. Only at these points, the term in (4.15) has non-zero values. 

To achieve computational advantage of the adjoint-variable approach, we perform 

only one adjoint simulation for theN perturbed states, where the adjoint solution around 
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the nth perturbation (E)n is approximated by a simple shift in space of the unperturbed 

problem solution E in the direction of the assumed perturbation [3]. 

The adjoint problem, whose solution E we seek, is a quasi-EM problem governed 

by the vector wave equation 

(4.20) 

complemented by the same boundary conditions as in the original problem ( 4.1 ), and by 

zero terminal conditions. Here, r is the inverse-time variable, r=T max -t. The adjoint 

current density is defined by [3] 

fJ A (A 8f A 8f A 8f ) 
DtJ (xo,yo,zo,to) = x-+y--+z-

8E 8E 8E x Y z (xo,yo,zo,to) 

( 4.21) 

where fJ has already been defined in ( 4.4) and f is the local response of the integral in 

(4.12). In order to solve (4.20) in r -time, the time sequence of J obtained from (4.21) 

has to be applied backwards. 

4.3 FDTD-based Self-adjoint Sensitivity Theory 

Comparing the original and adjoint systems ( 4.1) and ( 4.20), if the adjoint and 

A 

original excitation current density J P and J P at the pth port have identical distributions 

across the ports and in their respective times but with a minus sign, i.e., 

(4.22) 

then the respective equivalence between the original and adjoint solutions is 
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(4.23) 

It follows that the adjoint solution E P ( x~, y~, r) obtained from ( 4.20) by exciting the pth 

port can be deduced from the values ofthe original solution Ep(x~,y~,t) obtained from 

the forward-running simulation ( 4.1) when the pth port is excited. Thus, the adjoint 

simulations can be eliminated. The details are explained below. 

The Spq is defined in Chapter 2 (2.1 ). The derivative of Spq with respect to the 

parameter Pn is 

(4.24) 

Typically, the port waveguides are not subjected to design changes. This makes Z P, Zq 

and Fq independent of Pn· Thus, the Spq derivative is determined by the derivative of the 

The adjoint current density is given by (4.21), for which we need to identify 

f(E,p). The comparison of (2.2) and (4.12) shows that the local response function for 

(4.25) 

at the pth port, and is zero elsewhere. Here, Llz P is the longitudinal cell size at the pth 

port. It takes care of the dimensionality of the integrand in the surface integration (2.2) as 

compared to that of the volume integral in (4.12). Also, it is clear that in the case of the S-

parameters,fhas no explicit dependence onpn, i.e., aespq I Bpn = 0, n = 1, ... ,N. 
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According to ( 4.21 ), the derivative of the response ( 4.25) with respect to the field 

at the pth port gives the adjoint current density, which excites the adjoint problem at the 

pth port: 

(4.26) 

The difference time operator can be replaced with its analytical counterpart: 

f3·D1 B f3At·81 8t. When the integration in time is performed, the result for the real and 

the imaginary parts of J pq can be written as 

(4.27) 

(4.28) 

where 

(4.29) 

The adjoint excitation is taken with a minus in order to obtain the adjoint field with the 

correct sign. The real part of the adjoint solution (E pq )R, due to ( -J pq) R , is used in the 

computation of the derivative of ReS pq , and the imaginary part (E pq) I , due to ( -J pq) I, 

is used for the derivative of ImSpq. (Epq)R and (Epq)I are needed only at the 

perturbation grid points [3]. 

A 

As illustrated in (4.22)-(4.23), when the adjoint problem is excited by -J pq and 

runs backwards in time, it is equivalent to the original problem as far as the adjoint 

A 

electric field E pq is concerned. The field solutions of the two problems are identical (in 
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their respective times) if their excitations, -J pq(x~,y~,r) and Jp(x~,y~,t), have 

identical distributions across the port and in time. From (4.27)-(4.28), it is clear that the 

adjoint current distribution across the port is the same as the original port distribution 

since the latter is set as 

(4.30) 

for S-parameter analysis. Here, J P is a scaling factor, e.g., J P =~a PbP /2 for the 

dominant TEzJo mode if the magnitude of J P is set to 1. e pl_ is the transverse modal 

vector defined in (2.4). g(t) is the excitation waveform. 

Also, ( 4.27)-( 4.28) show that the adjoint excitations and fields are harmonic. It is 

then possible, in a linear medium, to obtain an adjoint field solution from an original field 

by properly manipulating its spectral component at w0 • We emphasize that for the 

sensitivity of the Spq parameter, the original excitation is at port q, while the adjoint one is 

at port p, see ( 4.25)-( 4.26). However, in full scattering matrix characterization, the field 

solution with the port p excitation is available as well. Thus, we seek the proper relation 

between (E pq) R and (E pq) 1 on one hand and the w0 spectral component of the original 

(p-port) field solution E P on the other. 

The time waveform of the original excitation is g(t). To make the adjoint 

simulation in r -time identical to the original one in forward t-time, we excite the former 

by the reversed pulse g(t) = g(Tmax - t). This is equivalent to g( r) = g(t). The w0 

spectral component ofthe forward pulse g(t), 
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Tmax 

Q= J g(t)·e-jOJotdt=Gm ·ejrpg (4.31) 
0 

is related to that of the reversed pulse g(Tmax -t)=g(t) as 

Tmax 

Q= J g(Tmax -t)-e-jmotdt=Q* ·e-jmoTmax =Gm ·e- j(OJoTmax+fPg). (4.32) 
0 

Here, Q* is the conjugate of Q , and Gm is the magnitude of Q as per ( 4.31 ). Thus, the 

co0 spectral component of g(t) is 

(4.33) 

Due to the equivalence between the original and the backward-running adjoint 

problem, the so obtained adjoint field is related to the original one as Epq(P,Tmax -t) = 

E P (P, t) at a point P, and its COo spectral component is 

(4.34) 

Here, (; denotes the vector component; I E~(P) I and fPet; p(P) are the magnitude and the 

phase of the COo spectral component of the original Et;p waveform at P. 

We now compare the desired adjoint excitation waveforms in (4.29) with the COo 

component of the adjoint pulse (4.33). Their magnitudes and phase angles relate as 

(4.35) 

(4.36) 

Angle{gfl} = Angle{gOJo} + rpg +moT max. (4.37) 
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A A 

The desired adjoint fields (Epq)R and (Epq)J can be obtained from the m0 component of 

the adjoint field (4.34) by: 1) scaling the magnitude by the factor in (4.35), and 2) adding 

the difference in the angles in ( 4.36) and ( 4.3 7) to their respective phases. The result is 

(4.38) 

(4.39) 

Here, the scaling factor J P is added in the denominator to account for the actual strength 

of the source, see ( 4.30). In ( 4.38)-( 4.39), Gm and (/Jg are obtained through the Fourier 

transform {FT) of the original excitation pulse g(t) as per ( 4.31 ), while I E~(P) I and 

CfJet; p(P) are obtained through the FT of the E-field recorded at a perturbation grid point P 

during the original simulation, in which port p is excited. 

In conclusion, we do not need to perform any adjoint simulations in order to 

compute the derivatives of the whole scattering matrix with respect to all design 

parameters. The necessary information is already contained in the EM field solution of 

the original problem. Our algorithm, which exploits the self-adjoint nature of the linear 

problem, uses this information in the most efficient manner. 

4.4 Conversion from TLM mesh to FDTD Mesh 

Our finite-difference sensitivity technique assumes that the £-field components 

are computed at the edges of the staggered FDTD-Y ee grid. In the TLM method, 
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however, all field components are co-located and computed at the center of the node. As 

a result, the vertical electric field component computed by the 2D TLM is displaced by 

half a cell size with respect to the location where our technique needs it. This is 

illustrated in Figure 4.1. The solid lines depict the 2D TLM grid, and the dash lines show 

the 2D FDTD grid. The solid circles are the points where the TLM solver computes the 

vertical £-field; the squares are the points where the FDTD AVM algorithm needs the 

vertical £-field. We obtain the desired £-field at an FDTD node by taking the average of 

the E-field waveforms recorded at the four TLM neighboring points. When the TLM 

mesh is fine enough, the average gives the FDTD result accurately. 

y{j)r k 
z(khl) 

Figure 4.1. 

TLM grid 

FDTD grid 

Q TLMnode 

• FDTDnode 

H-plane view of the 2D TLM and FDTD mesh. 

4.5 De-embedding Technique for A VM 

According to the self-adjoint theory, the adjoint source and the respective 

observation points should be located at the same place. However, to extract S-parameters 
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accurately, we usually choose the observation plane to be away from the boundary, the 

excitation and the discontinuities, as in Figure 2.1. To take into account this displacement 

in computing aP;$s japn, the adjoint field ~~~ at a perturbation point P must be 

augmented by 

:Emo (P) = :Emo (P) . erPDP 
- pq aug - pq recorded • 

(4.40) 

That is equivalent to moving the adjoint source from the observation plane to the 

excitation plane of port p. Here, we assume that the observation plane is further into the 

port waveguide compared to the excitation plane. This can be realized also by keeping 

the adjoint field ~~~ unchanged and modifying the source spectrum qwo by 

Gwo - GllJo . e-ypDp _ aug - _ recorded • (4.41) 

Then the adjoint solution in (4.38) and (4.39) with de-embedding becomes 

(4.42) 

(4.43) 

4.6 Validation Examples 

The examples focus on the sensitivity calculations with respect to the shape 

parameters in 2D waveguide (in the dominant TE10 mode) and antenna problems. We set 

"GSCN (Generalized Symmetrical Condensed Node) mesh for H-plane" in MEFiSTo-3D 

Pro for the simulation. After we set the cell size l!!.h and define the mesh, the discrete 
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time step M is determined automatically by the software, so that q = 11h/ eM = 2 . The 

sources are located next to the port boundaries. 

The first two examples have been analyzed with the self-adjoint TLM-based 

AVM algorithm with the incident-voltage solution of our in-house solver [5] as well as 

with the field solution of MEFiSTo [6]-[7]. Here, we use the self-adjoint FDTD-AVM 

algorithm with the averaged field solution. 

The TLM solver does not support the current-density excitation in ( 4.1 ); however, 

theE-field source can be used with a vertical component excitation. With this source, the 

sensitivity results have to be multiplied by a constant factor (independent of the grid 

parameters) to account for the difference in the powers injected by the current and theE­

field sources. This factor is determined empirically by comparing the A VM and the CFD 

derivatives with respect to one of the parameters. In 2D loss-free problems, the factor is 

150; in 3D loss-free problems, the factor is 1502
• 

In all plots, the derivative curves obtained with our time-domain self-adjoint 

sensitivity analysis approach are marked with FDTD-SASA, while the curves obtained 

through parameter perturbations and finite differencing of the S-parameters are marked 

with BFD, CFD and FFD for the backward, central, and forward finite differences, 

respectively. Response finite differences are used with both commercial solvers, 

MEFiSTo-3D Pro and HFSS, in order to acquire reference sensitivity curves and compare 

them with the FDTD-SASA results. 
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4.6.1 Single-resonator Filter 

The structure of the single-resonator filter is shown in Figure 2.12. The setup of 

the MEFiSTo simulation is shown in Table 2.2. The probe fields needed in the FDTD-

based SASA algorithm are illustrated in Figure 4.2 and Figure 4.3, where we assume an 

increase ofthe length ofthe resonator D and its septum width W, respectively 

The sensitivities of IS11 1 and IS2 11 with respect to Dare presented in Figure 4.4 

and Figure 4.5, respectively The sensitivities of IS11 1 and IS2 1 1 with respect to Ware 

presented in Figure 4.6 and Figure 4.7, respectively 

I 
I --,--
1 
I 

I 
I 

__ .J __ 

Figure 4.2. 
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Q TLM E-field 
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-t-i-++-1-HI-i-
1 [1>( recorded FDTD field mapped to (E)n 

Electrical wall 

FDTD-based A VM probes (marked with circles) at the right septum 

(assume increasing D) in the single-resonator filter example. 
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Figure 4.3 
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Figure 4.4. 
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Figure 4.5. 

Figure 4.6. 
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Figure 4.7. Derivatives of IS21 1 with respect to W in the single-resonator filter 

example. 

4.6.2 Single-section Waveguide Impedance Transformer 

The single-section waveguide impedance transformer is shown in Figure 3.18. 

The S-parameters with the nominal design are plotted in Figure 3.19. The setup of the 

MEFiSTo simulation is shown in Table 3.2. The A VM probes needed in the FDTD-based 

SASA algorithm are illustrated in Figure 4.8, when we assume an increase of L. 

4.6.2.1 Frequency Sweep Sensitivity Analysis 

We test our technique with the S-parameter sensitivity with respect to Wand L at 

the optimal solution. We use the optimal solution of the commercial software HFSS 

[W0 L0r = [14L'lh lOL'lh r at fo = 6.48 GHz as the nominal design. 
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Figure 4.8. 
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~ 
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X recorded FDTD field mapped to (E)L 

- Electrical wall 

FDTD-based A VM probes (marked with circles) at the matching section 

boundaries (assume increasing L) in the waveguide impedance transformer 

example. 

We first compute the sensitivity at the optimal W0 and L0 with a frequency sweep 

around the optimal frequency / 0 The derivatives of IS11 1 and IS2 11 with respect to the 

length L are shown in Figure 4.9 and Figure 4.1 0. The results are compared with the 

HFSS finite-difference derivatives. From Figure 4.9, we see that the FFD and BFD 

curves show inferior accuracy of the first-order finite-difference approximations. For a 

given cell size, our results are less likely to suffer from an insufficiently refined grid. This 

is due to their second-order accuracy comparable to that of the CFD approximation. 

However, the adjoint sensitivity result of IS2 11 with respect to Lin Figure 4.10 is worse 

than that of IS11 1 in Figure 4.9 We explore the case further by convergence analysis in 

the next section. 
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Figure 4.1 0. Derivatives of jS21 1 with respect to L m the waveguide impedance 

transformer example. 
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4.6.2.2 Convergence Analysis 

We perform convergence analysis to illustrate the superior accuracy of the 

sensitivities computed with our approach as compared to those obtained by response­

level finite differences. 

The derivatives of ISul and IS21 1 with respect to the section length Land width W 

with converging mesh sizes are shown in Figure 4.11, Figure 4.12, Figure 4.13 and 

Figure 4.14, respectively. As the mesh is refined twice and then four-fold, the TLM­

SASA curve changes little and consistently shows zero derivatives at our estimated 

optimal frequency f 0 = 6.48 GHz. The CFD curves converge toward the FDTD-SASA 

curves as the mesh is refined. 

From Figure 4.12 and Figure 4.14, we find the IS21 1 sensitivity results are worse 

than that of I Sui, as also seen in Figure 4.1 0. As the mesh is refined, the FDTD-SASA 

curves converge toward the CFD curves. It seems that the accuracy of FDTD-SASA is 

worse than the accuracy of finite-difference methods in these cases. Note that the 

derivative of IS21 1 is much smaller that the derivatives of ISul· It appears that the 

accuracy of our A VM algorithm deteriorates when the absolute values of the derivatives 

are small, i.e., the objective function is insensitive with respect to the parameter 

perturbation. It consistently overestimates the derivative. The FDTD-SASA curve has the 

same frequency dependence as the finite-difference curves but seems to add a spurious 

value to the true derivative value. 
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Figure 4.11. Convergence analysis of the derivatives of jS11 j with respect to L in the 

waveguide impedance transformer example. 
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Figure 4.14. Convergence analysis of the derivatives of IS21 1 with respect to Win the 

waveguide impedance transformer example. 
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In the lossless case, we use the error function (3.23) to estimate the accuracy of 

the S-parameter sensitivities of different techniques. We can compute the error from the 

sensitivity results we obtained above. We show the error of the S-parameter derivatives 

with respect to W with a convergence analysis in Figure 4.15. We see that the overall 

error of the FDTD-SASA is much smaller than that of the CFD results and it is 

practically independent of frequency. It also seems that most of the FDTD-SASA error is 

due to the derivative of jS21 j (see Figure 4.14) rather than the derivative of jS11 j (see 

Figure 4.13). 
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Figure 4.15. Convergence analysis of the error with respect to Win the waveguide 

impedance transformer example. 
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4.6.2.3 Parameter Sweep Sensitivity Analysis 

Finally, we perform a parameter sweep and compare the derivates of the FDTD-

SASA technique and the MEFiSTo/HFSS finite-difference approximations. We sweep L 

and W around their optimal values for f = fo. The sensitivities of IS11 1 and IS2 ,1 are 

shown in Figure 4.16, Figure 4.17, Figure 4.18 and Figure 4.19. 
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Figure 4.16. Derivatives of IS11 1 with respect to L in the waveguide impedance 

transformer example (parameter sweep of L). 
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Figure 4.17. Derivatives of IS2 ,1 with respect to L m the waveguide impedance 

transformer example (parameter sweep of L). 
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Figure 4.18. Derivatives of IS" I with respect to W in the waveguide impedance 

transformer example (parameter sweep of W). 
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Figure 4.19. Derivatives of IS21 I with respect to W in the waveguide impedance 

transformer example (parameter sweep of W). 

4.6.2.4 Computational Overhead 

The CPU time for calculating the sensitivity per one parameter is shown in Table 

4.1. The processor of the computer is Pentium 4 at 3 GHz clock frequency. The post-

process is conducted in MATLAB [8]. In the MEFiSTo simulations, we request the least 

number of discrete Fourier Transform (FT) points for the field waveforms of the probes, 

so that the simulations are not delayed by the extra processing. As seen from Table 4.1, 

the simulation time in MEFiSTo does not depend much on the number of A VM probes. 

However, if we request multiple-point discrete FT, the simulation time in MEFiSTo 

grows significantly as the probe number increases. 
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Table 4.1. CPU time for the waveguide impedance transformer example 

Obtain sensitivity Obtain sensitivity 
Without probes 

with respect to W with respect to L 

A VM Probe number 36 24 0 

Simulation time in 
160.969 159.250 158.171 

MEFiSTo (seconds) 

CPU time per adjoint 

sensitivity calculation 0.7812 0.5937 

(seconds) 

The memory requirements of the sensitivity analysis are mostly due to the field 

waveforms recorded at the perturbation points. The number of these points is roughly 

equal to the number of cells surrounding a perturbation surface or line. MEFiSTo exports 

the field components through text files after the simulation is completed. 

The CPU time of the post-process for obtaining the adjoint sensitivities is much 

less than the simulation time of the full-wave EM analysis. The FFD or BFD 

approximations require N additional EM system analyses (each involving K simulations 

for the K ports), while our approach can provide the same information at a fraction of the 

time required by one EM simulation. In conclusion, our approach to S-parameter 

sensitivity analysis is far more computationally efficient than the finite-difference 

approximations. 
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4.6.3 Dielectric-resonator Filter 

This filter [9] consists of three identical ceramic blocks located asymmetrically at 

one of the waveguide walls. An H-plane view is shown in Figure 4.20. The vertical extent 

of the ceramic posts is the same as the waveguide height. Thus, the 2D TMx analysis is 

feasible for the modes, which do not vary with x. We extract the S-parameters and their 

sensitivities for the dominant TE~OI) mode. The shape parameters of interest are the 

posts' width w, length r, and inter-post separation s The nominal shape parameters 

p T = [r w s] are given in the inset of Figure 4.20. 

The S-parameters computed from the field solutions of MEFiSTo and HFSS are 

compared in Figure 4.21 for the nominal design. The setup of the MEFiSTo simulation is 

summarized in Table 4.2. The probes needed for the derivative with respect to the shape 

parameter w with forward and backward perturbations are shown in Figure 4.22. The 

location of the probes needed for the perturbation of sis similar to Figure 4.2. 

__,_] _a ____ GJ_s_r_· __ w_JGJ_.e_;_~ __ s_l;J_e_,._·· ·--~z t~Y~f; 
ly s=17.4mm 

Figure 4.20. H-plane view of the dielectric-resonator filter 
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Table 4.2. Setup of the dielectric-resonator filter simulation 

Cell size M 0.58mm 
Constant 

Time step l1t 0.96733588 psec 

Width of port a 34.8 mm (60/lh) 

Length of the waveguide Lw 232 mm ( 400 llh) 

Width of the post w 5.22mm (9M) 

Length of the post r 2.32 mm (4/lh) 

Computational domain Distance between the posts s 17.4 mm (30 llh) 

Dielectric permittivity of the ceramic 
38.5 

blocks £r 

Computational domain in space 400 /lh X 60 /lh 

Total time steps 40,00011t 

Boundary condition Johns wall 
Port 

Modal distribution Half-sine 

Cut-off frequency of the port 4.31 GHz 

Gaussian modulated 
Waveform 

sinusoidal wave 

Excitation 6.38-7.38 GHz, 

Spectrum central frequency at 

6.88 GHz 

Port distribution Half-sine 

Probes Distance from the respective port 20 llh 



102 

I 
--J--

1 
I 

N 
(/) 

o6 

(/)~ 

0.9 I 

0.8 -

0.7 1-

0.6 1-

0.5 I_ 

0.4 1-

0.3 I -

0.2 

0.1 -

Figure 4.21 

Chapter 4 FDTD-BASED SELF-ADJOINT SENSITIVITY ANALYSIS 

I 
- ~-

6.4 

-- IS
11 

MEFiSTo , 

1- L ······· IS11 1 HFSS ~ 

r 
iS

21
1 MEFiSTo 

T 

L 

··········'········ iS
21 

HFSS 
L_ ______ ~ ____ _J~ 

_I_ 

6.6 6.8 7 7.2 7.4 
frequency (GHz) 

S-pararneters of the dielectric-resonator filter 

I 
I 

- TLMgrid 

-- -- FDTD grid 

Q TLM E-field 

•1 FDTD original field E 

- -:- [jJ >:: needed FDTD adjoint field (E)w 
I 
I 

- _I_ 
I 
I 

X recorded FDTD field mapped to (E)w 

- Electrical wall 

• Dielectric material 

Figure 4.22. FDTD-based AVM probes (marked with circles) at the post boundaries 

(left post assume increasing w, right post assume decreasing w) in the 

dielectric-resonator filter example. 



Chapter 4 FDTD-BASED SELF-ADJOINT SENSITIVITY ANALYSIS 103 

4.6.3.1 Frequency Sweep Sensitivity Analysis 

We first compute the sensitivity with respect to the parameters with a frequency 

sweep. The derivatives of !Sui and IS2 ,1 with respect to the width of the post w are shown 

in Figure 4.23 and Figure 4.24. The derivatives of !Sui and IS21 1 with respect to the 

distance between the posts s are shown in Figure 4.25 and Figure 4.26. The results are 

compared with the MEFiSTo finite differences. All other parameters are kept at their 

nominal values. 
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Figure 4.23. Derivatives of IS" I with respect to w in the dielectric-resonator filter 

example. 
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Figure 4.26. Derivatives of jS21 j with respect to s m the dielectric-resonator filter 

example. 

In Figure 4.25, the adjoint sensitivity curves obtained by assuming forward 

perturbation of the parameter (increasing the value of the parameter) and backward 

perturbation of the parameter (decreasing the value of the parameter) are marked as 

FDTD-SASA Forward and FDTD-SASA Backward, respectively. We can see that with 

both backward and forward assumed perturbations, the A VM algorithm gives almost the 

same results. The differences are less than 10-7 times the derivatives themselves. 

In general, we find that with a high dielectric constant material the SASA results 

are still in agreement with the finite differences, although not as well as in the case of 

metallic objects in homogeneous dielectrics. We also find that when the S-parameters 

change very little, i.e. they are insensitive, the accuracy of the A VM result deteriorates, 

as indicated in Figure 4.26. 
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4.6.3.2 Parameter Sweep Sensitivity Analysis 

We perform a parameter sweep and compare the derivates of the FDTD-SASA 

technique and the MEFiSTo/HFSS finite-difference approximation. We vary w and s 

around the nominal design. The sensitivities of IS11 1 and IS21 1 with respect to w for a 

sweep of w are shown in Figure 4.27 and Figure 4.28, respectively. The sensitivities of 

IS11 1 and IS21 1 with respect to s for a sweep of s are shown in Figure 4.29 and Figure 4.30, 

respectively. The sensitivities of IS11 1 and IS21I with respect to w for a sweep of s are 

shown in Figure 4.31 and Figure 4.32, respectively. The sensitivities of IS11 1 and IS21 1 

with respect to s for a sweep of ware shown in Figure 4.33 and Figure 4.34, respectively. 
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Figure 4.27. Derivatives of IS11 1 with respect to w in the dielectric-resonator filter 

example (parameter sweep ofw). 
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Figure 4.28. Derivatives of IS2 ,1 with respect to w in the dielectric-resonator filter 

example (parameter sweep ofw). 
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Figure 4.29. Derivatives of IS" I with respect to s m the dielectric-resonator filter 

example (parameter sweep of s ). 
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Figure 4.30. Derivatives of IS21 1 with respect to s m the dielectric-resonator filter 

example (parameter sweep of s). 
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Figure 4.31. Derivatives of I Snl with respect to w m the dielectric-resonator filter 

example (parameter sweep of s). 
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Figure 4.32. 

Figure 4.33. 
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Figure 4.34. Derivatives of IS2 ,1 with respect to s m the dielectric-resonator filter 

example (parameter sweep of w). 

4.6.3.3 Computational Overhead 

The CPU time required to calculate the derivative with respect to one parameter is 

shown in Table 4.3. The setup is the same as in the waveguide impedance transformer 

example. From this table, we reach our conclusion that our approach to S-parameter 

sensitivity analysis is far more computationally efficient than the finite-difference 

approximations. 
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Table 4.3. CPU time for the dielectric-resonator filter example 

Obtain sensitivity Obtain sensitivity Without 

with respect to s with respect to w probes 

Probe number 120 54 0 

Simulation time in MEFiSTo 
213.391 187.281 168.703 

(seconds) 

Simulation time in MEFiSTo 
173.344 169.453 166.360 

(seconds)) 

CPU time per adjoint S11 
2.6875 1.1875 

sensitivity calculation (seconds) 

CPU time per adjoint S21 
1.0486 0.5000 

sensitivity calculation (seconds) 

4.6.4 Dielectric-resonator Antenna 

The dielectric-resonator antenna [9] is shown in Figure 4.35. It is coupled to the 

feeding microstrip line through an aperture in the ground plane. The microstrip is etched 

on the opposite side of the ground plane. The rectangular dielectric resonator has its 

bottom face centered onto the aperture. 

This structure represents a demanding computational task. It is simulated in the 

3D mode of MEFiSTo. The symmetry of the antenna is exploited and only half of it is 

simulated. The computed return loss of the antenna is shown in Figure 4.36. The shape 

parameters of interest are the length a, width b and height c of the dielectric resonator, the 

length of the open-end stub Is , as well as the width wa and the length of the coupling 
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aperture la, i.e., pT = [a b c ls wa la] The setup of the MEFiSTo simulation of 

the dielectric-resonator antenna is summarized in Table 4.4. 

a= 24.96 mm 
b= 24.96 mm 
c=13.26 mm 
la =18.72 mm 
Wa =2.08 mm 
l5 =1716mm 
Ws = 2.08 mm 
h=0.78mm 
&r] =9.8 
&r2 = 2.8 

Figure 4.35. The dielectric-resonator antenna and its nominal design. 

2.5 3 3.5 
frequency (GHz) 

4 4.5 

Figure 4.36. The return loss of the dielectric-resonator antenna. 

5 
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Table 4.4. Setup of the dielectric-resonator antenna. simulation 

Cell size M 0.26mm 
Constant 

Time step M 0.43363 psec 

Length of the resonator a 24.96 mm (96 M) 

Width of the resonator b 24.96 mm (96 M) 

Height of the resonator c 13.26 mm (5111h) 

Dielectric permittivity of the resonator &r1 9.8 

Length of the open-end stub Is 17.16 mm ( 66 M) 

Computational 
Width of the open-end stub ws 2.08 mm (811h) 

domain 

Dielectric permittivity of the substrate &rz 2.8 

Width of the coupling aperture wa 2.08 mm (8M) 

Length of the coupling aperture Ia 18.72 mm (7211h) 

Computational domain in space 264M X 14411h X 111M 

Total time steps 30,000/lt 

Boundary condition 
TEM wave absorbing 

Port boundary 

Modal distribution Constant 

Waveform Gaussian wave 

Excitation Spectrum HPBW20GHz 

Port distribution Constant 

Probes Distance from the respective port 24 11h 
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4.6.4.1 Sensitivity Analysis 

The derivative of the return loss with respect to the antenna height c is plotted in 

Figure 4.37. The agreement between the finite-difference curves and our results is good. 

We note that the finite-difference curves are computed with a perturbation of oc = 4~h 

to remove the fluctuations. For the SASA calculation the assumed perturbation is 

oc = ~h as before. 

Due to the limitation of memory, we can not place more than about 150 probes in 

the MEFiSTo simulation; otherwise, the system fails. To obtain derivatives with respect 

to c, we need A VM probes all over the upper face of the resonator. If we place probes at 

each node of the current mesh, where the probe mesh size is ~hP = ~h = 0.26 mm, then 

we will need (al~hP+l)x(b/2/~hP+l)x3 = (97x25x3) = 7275 probes for each£­

field component when symmetry is exploited. Obviously, this cannot be implemented 

with MEFiSTo on this computer. So, we have to increase the probe mesh size to 

~hP = l2~h. Then, the probe number needed becomes (a I ~hP + l)x (b/21 ~hP + l)x 3 = 

(9x 5 x 3) = 135, which is acceptable for a single £-field component. We need to perform 

3 times the same simulation to record Ex, EY and Ez. 

To improve the accuracy of the adjoint sensitivity results, we need more A VM 

probes. With the limitation of the probe number, we can only do more simulations with 

the probes placed in between the probes of the previous simulations. We perform 

additional 3 sets of simulations, with all the probes displaced in space one-half probe 

mesh size ~hP 12 along each axis on the upper face of the resonator. Then, we interpolate 



Chapter4 FDTD-BASED SELF-ADJOINT SENSITIVITY ANALYSIS 115 

all 4 sets of the probe fields. This is equivalent to having twice finer probe mesh size. 

This final result is the one plotted in Figure 4.37. 
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Figure 4.37. The derivative I Su I with respect to c of the dielectric-resonator antenna. 

4.6.4.2 Computational Overhead 

In this example, the advantages of the self-adjoint sensitivity analysis are the most 

obvious. The simulation of the dielectric-resonator antenna requires about 12 hours. In 

the same time, the computation of its response derivative a I Su I I oc shown in Figure 

4.37 requires only about 4 minutes per frequency point despite the large number of 

probes necessary to cover the whole area of the top face of the dielectric resonator. In any 
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case, the EM simulation is significantly more demanding in terms of memory and CPU 

time in comparison with the derivative computation. 

4.7 Summary 

We developed an efficient method for S-parameter sensitivity analysis based on a 

FDTD self-adjoint sensitivity expression with a TLM-based commercial time-domain 

EM solvers. The method converts the field solution from the TLM mesh to the FDTD 

mesh. It can be used to derive S-parameter sensitivities in both air and dielectric 

inhomogeneous structures. 

Our approach is illustrated through the S-parameter sensitivities with respect to the 

shape parameters of antenna and waveguide discontinuities for either a frequency sweep 

or a parameter sweep. Our results and the convergence analysis show superior accuracy 

and efficiency of our approach than those of the finite-difference approximation. The S­

matrix and its derivatives with respect to all design parameters are obtained through a 

single system analysis. The overhead of the sensitivity computation is negligible 

compared to the computational intensity of the time-domain full-wave simulation. The 

memory requirements of the sensitivity analysis are mostly due to the field waveforms 

recorded at the perturbation points. 
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Chapter 5 

TIME DOMAIN SENSITIVITY 
ANALYSIS OF LOSSY 
INHOMOGENEOUS STRUCTURES 

5.1 Introduction 

We present an efficient adjoint-based approach to response derivative 

computations with respect to shape and constitutive parameters using time domain 

electromagnetic (EM) solutions in lossy dielectric inhomogeneous structures. This self­

adjoint approach yields the derivatives without additional adjoint system analysis. The 

only requirement is access to the field solution at the perturbation grid points. The 

approach is verified in lD and 2D examples using the time domain EM solver MEFiSTo-

3D Pro [1]. 

The sensitivity analysis of microwave problems involving lossy media becomes 

increasingly important due to applications in design and inverse problems arising in non­

destructive testing and biomedical imaging. The obtained response derivatives (response 

119 
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Jacobian) can be used to guide a gradient-based optimizer as well as to provide a 

sufficiently good initial guess for the solution of the nonlinear inverse problem. 

The efficiency of the approach used to obtain the response Jacobian is crucial in 

microwave inverse problems. It is rarely possible to use response-level derivative 

estimations such as finite differences when the number of optimizable parameters is large 

and the forward analysis uses full-wave simulations. In Chapter 4, we proposed an 

efficient time-domain self-adjoint analysis approach [2] for the computation of the 

sensitivities of the S-parameters. Regardless of the number of the optimizable parameters, 

and from only one system simulation, we obtain the S-parameters and all their 

derivatives. Beside its efficiency, the approach also features second-order accuracy. We 

confirmed our approach with metallic and lossless dielectric structures in [2]. Here, we 

extend our approach to lossy dielectric structures. Beside the S-parameters, we use a 

slightly different normalized response function, which is self-adjoint and is suitable for 

inverse imaging problems. 

The significance of the sensitivity analysis of dielectric lossy inhomogeneous 

structures is due to the fact that most materials in the microwave inverse problems have 

significant losses. Breast tumor and subsurface detection, oil pocket location are some 

examples. Another factor, which makes this study important, is the difficulty of the 

inhomogeneous structure analysis. It is well known that an inhomogeneous medium with 

high loss (above 0.1 S/m) and large permittivity variations poses a challenge in numerical 

simulations [3]. This is due to the rapid field changes in time and in space, especially at 

interfaces. To achieve acceptable accuracy, the mesh has to be set more than twice finer 
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than the minimum limit recommended for loss-free problems. In this case, the efficiency 

of our approach is even more important. 

We start with a brief introduction to the time-domain self-adjoint sensitivity 

analysis. We discuss its specifics for the case of derivatives with respect to the local 

constitutive parameters. The approach is illustrated and verified through 1 D and 2D 

examples, where the inhomogeneous medium features high permittivities ( &r 2:::12) and 

losses (a- 2::: 0.5 ). We conclude with a summary and our future developments. 

5.2 FDTD-based 
Parameters 

AVM Theory with Material 

The general FDTD-based A VM sensitivity expression is shown in Chapter 4 

(4.14) and (4.15). In the case when the design parameter is a local permittivity or 

conductivity, we can obtain the analytical derivatives of the system coefficients from 

(4.4): 

da ( !J.h )
2 

dcr = eM 
(5.1) 

Therefore, the terms !J.na I !J.pn and !J.ns I /vJn in ( 4.15) are substituted with the analytical 

expressions (5.1). Also, with analytical derivatives ofthe system coefficients, the adjoint 

solution must correspond to the unperturbed structure, i.e., (:E)n is replaced simply by E . 

There is no need for the solution mapping [4], which is necessary when dealing with 

shape parameters. 
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We notice that the sensitivity computation with respect to the constitutive 

parameters is more reliable, compared to the shape parameters. This is because it 

eliminates the inaccuracy in the system matrix derivative and depends only on the 

accuracy of the field solution. 

The self-adjoint S-parameter sensitivity approach with respect to material 

parameters is similar to the case of shape parameters. However, in the case when the 

excitation is a point source in an open problem, the S-parameters may not be suitable 

response functions for the lack of port waveguides. Instead, we use a normalized 

response function. It is defined as 

(5.2) 

Here, EPQ is the field solution at point P when point Q is excited; GQ is the excitation 

- -
waveform at point Q, and E PQ and GQ are their respective Fourier transforms (FT). 

Similarly to (3.7), the derivative of FPQ with respect to the nth parameter is computed as 

8FPQ -2:---. 8EpQ 

8pn GQ 8pn 
(5.3) 

The derivative of E PQ is computed as that of Fpq in the case of the Spq parameter. The 

adjoint fields are derived in the same manner. 
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5.3 Validation Examples 

We validate our approach with 1 D and 2D lossy inhomogeneous examples. We 

compute the sensitivities of the S-parameters and a normalized response function with 

respect to both shape and constitutive parameters. 

In all figures, we use TD-SASA as a notation for the results obtained by our self-

adjoint sensitivity analysis, while FFD, CFD and BFD denote the forward, central and 

backward finite-difference estimates. 

5.3.1 Normally Incident TEM Plane Wave in a Lossy Layered Medium 

The structure and its dimensions are shown in Figure 5.1 Both the host medium 

and the inhomogeneity (shown in shade) are lossy The field analysis is carried out in the 

time domain with MEFiSTo-3D Pro. The simulation setup is summarized in Table 5.1 

The TLM solution is set on a uniform generalized symmetrical condensed node (GSCN) 

grid with !!.h l(cM) = 2 It has a uniform field distribution across the port conforming to a 

TEM plane wave. 

D = 200~h 

.-.::: 
<l 
('.! 

II 1
- -

~ ·- t--------1- - -

Magnetic 

_;walls 

L =13~h 

Figure 51 The structure of the 1D lossy-medium example. 
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Table 5.1. Setup of the 1 D lossy-medium example simulation 

Cell size 1'1h 1mm 
Constant 

Time step 1'1t 1.6678205 psec 

Width of port a 2 mm (21'1h) 

Length of the waveguide Lw 200 mm (200 1'1h) 

Width of the central layer 2 mm (21'1h) 

Length of the central layer 13 mm (131'1h) 

Conductivity of the host o-1 0.5 

Computational domain Dielectric permittivity of the host &r1 15 

Conductivity of the central layer o-2 4 

Dielectric permittivity of the central 
40 

layer &r2 

Computational domain in space 200 /1h X 2/1h 

Total time steps 30,000M 

Boundary condition 
TEM wave absorbing 

Port boundary 

Modal distribution Constant 

Excitation Cut-off :frequency of the port OGHz 

Gaussian modulated 
Waveform 

sinusoidal wave 

Spectrum 
0-6 GHz, central 

frequency at 3 GHz 
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Port distribution Constant 

Probes Distance from the respective port 20 tJz 

The design parameters are pT = [&r 2 CY2 L], which are the constitutive and shape 

parameters of the central layer. Figure 5.2 shows the derivative of IS11 1 with respect to the 

conductivity CY2 of the middle layer. Figure 5.3 shows the derivative of IS21 1 with respect 

to its length L. Both analyses are performed over a frequency sweep from 0.3 GHz to 2.5 

GHz. They show good agreement with the CFD results. 

Figure 5.2. 
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Derivative of IS11 I with respect to the conductivity CY2 of the central layer 

in the 1 D lossy medium example. 
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Figure 5.3. Derivative of IS21 1 with respect to the length L of the central layer in the 

lD lossy medium example. 

Since the locations of the field points on the TLM grid do not coincide with those 

on the FDTD Y ee grid, we perform averaging [2] to obtain the field at the points required 

by the FDTD-based self-adjoint method. The difference in the excitation schemes of the 

TLM and FDTD methods leads to a constant factor of 10, which must be used to multiply 

to the final sensitivity value with TD-SASA formula in order to match the CFD result. In 

lossless problems in Chapter 4 this factor is 150.This factor is determined empirically by 

comparing the TD-SASA and the CFD derivatives with respect to one of the parameters. 

The derivatives with respect to any other parameter can be obtained with this same factor 

since it depends only on the constitutive parameters of the medium at the location of the 

source. 
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5.3.2 Object in a 2D Lossy Layered Medium 

Figure 5.4 shows the top view and the dimensions of the nominal 2D structure. It 

consists of two different lossy mediums and an object placed in the middle layer It is 

analyzed with MEFiSTo in a 2D TMz mode. The simulation setup is shown in Table 5.2. 

S1 = 64Ah 

X 

Absorbing boundary 

Figure 5.4. Top view of the structure in the 2D example. 
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Table 5.2. Setup of the 2D lossy layered medium example simulation 

Cell size 11h lmm 
Constant 

Time step 11t 1.6678205 psec 

Width of the central object 16 mm (l611h) 

Length of the central object 8 mm (811h) 

Conductivity of the central object a 3 4 

Computational domain Dielectric permittivity of the central 
40 

object er3 

Computational domain in space 128/1h X 84/1h 

Total time steps 8,000 l1t 

Zero reflection 
Boundary condition 

absorbing boundary Port 

Modal distribution Constant 

Cut-off frequency of the port OGHz 

Gaussian modulated 
Waveform 

sinusoidal wave 
Excitation 

Spectrum 
0-6 GHz, central 

frequency at 3 GHz 

Port distribution Constant 

Probes Distance from the respective port 20 11h 
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The design parameters include the shape parameters Wand L and the constitutive 

parameters cr3 and a-3 of the object. We use the normalized response function FPQ in 

(5.3). In Figure 5.4, P 1 is the excitation point while P2 and P3 are the observation points. 

They are placed at the interfaces of the layers. In this example, we obtain the sensitivities 

of jFPQI with respect to a-3 and W over parameter sweeps at a certain frequency. The 

derivative curves are plotted in Figure 5.5 and Figure 5.6, respectively. 

Figure 5.5. 
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We notice that the agreement between the TD-SASA and CFD derivative 

estimates with respect to a 3 in Figure 5.5 is good, while for the derivatives with respect 

to Win Figure 5.6 it is worse. The reason for the difference may be that more field points 

are involved in the computation of the derivatives with respect to a 3 than those with 

respect to W. In fact, our results at other frequency points are generally much worse than 

those in Figure 5.5 and Figure 5.6. Compared with our results in the lossless structures 

[2], we believe that the significant losses affect negatively the sensitivity results. In order 

to determine which results are more accurate, the TD-SASA or the finite-difference 

derivative estimates, we have to perform convergence analysis. 
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5.4 Summary 

We presented a self-adjoint sensitivity analysis method for the computation of the 

response derivatives with respect to constitutive and shape parameters in lossy 

inhomogeneous structures. The method is based on the FDTD discretization scheme; 

however, the field solution is obtained with the TLM-based commercial simulator 

MEFiSTo-3D Pro. The approach is intended for applications to the solution of inverse 

microwave imaging problems arising in biomedical diagnostics and non-destructive 

testing. 

Our method can provide the response J acobians needed in the inverse 

optimization at a computational cost, which is just a fraction of what is required by the 

response-level finite differences. In the lD case, it also provides accuracy comparable to 

that of the central finite-difference approach. In the 2D case, the agreement is not 

satisfactory in general. Further investigations are needed to solve these problems by 

carrying out convergence analyses or comparisons with examples, which have analytical 

solutions. 
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Chapter 6 

CONCLUSIONS 

In this thesis, the theory and implementation of the self-adjoint sensitivity analysis 

(SASA) of the S-parameters with time-domain commercial EM solvers are presented. 

The self-adjoint approach enables the calculation of the S-parameter derivatives with 

respect to all the shape and material parameters efficiently and accurately. The 

computation is done as an independent post-process with negligible overhead, which 

means that we can obtain the sensitivity information in addition to the field solution and 

network parameters with a single simulation at the nominal design. 

Our self-adjoint sensitivity analysis theory is based on the adjoint variable method 

(A VM). The development of the discrete form of the A VM and the self-adjoint approach 

make the implementation of the A VM possible with time-domain commercial EM 

solvers, which can not in general run backward adjoint simulations. Thus, our approach is 

readily applicable to practical gradient-based design problems. 

The SASA theory can be formulated based on two widely used time-domain 

analysis methods: the FDTD method and the TLM. Our implementation uses the TLM­

based commercial solver MEFiSTo-3D Pro. In Chapter 2, the field solution given by 

133 
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MEFiSTo is validated by HFSS, and an independentS-parameter calculation based on the 

MEFiSTo field solution. In Chapters 3 and 4, we present the SASA approach based on 

the FDTD and TLM analyses, respectively. We convert the field solution ofMEFiSTo to 

apply each of the two SASA theories. For the TLM-based SASA, the E and H field 

solution is converted to the TLM incident and reflected impulses. In the FDTD-based 

SASA, the E field solution in the TLM mesh is converted into a FDTD mesh solution. 

The TLM-based and FDTD-based SASA algorithms can be applied with any time­

domain solver, no matter what numerical method they use. 

The TLM-based SASA algorithm is limited to the loss-free homogeneous case, 

while the FDTD-based SASA is valid also for lossy inhomogeneous structures. In 

Chapter 5, we demonstrate the self-adjoint sensitivities with respect to both shape and 

material parameters for structures with high permittivity variations and high losses. 

From the validation examples, we can conclude that the accuracy of the SASA is 

comparable to the second-order central finite-difference derivative estimates, except 

when the S-parameter is insensitive, i.e., the derivative is too small. The efficiency of our 

SASA algorithm is quite obvious in the cases where the number of design parameters is 

large or the computational load of the simulation (e.g. 3D problems) is heavy. 

From the experience and knowledge gained in the above work, the following 

topics for further research are suggested: 

1) The SASA approach can be integrated into commercial EM solvers, which will 

add new capability for the efficient sensitivity analysis for practical design 

problems, in addition to the accurate system response analysis. More work should 
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be done for its commercialization. For example, how to find the positions of the 

user-defined points to be recorded automatically for different structures, and how 

to expedite the interface between the EM solvers and the Jacobian calculation 

post-process. 

2) The accuracy of the SASA algorithm in highly lossy media should be improved 

and validated. Further study of the adjoint sensitivity analysis in lossy 

inhomogeneous structures can be carried out for inverse problems, such as 

microwave imaging and non-destructive testing. 

3) The TLM-based SASA theory can be extended to the lossy inhomogeneous 

problems analyzed with commercial solvers. The development and application of 

the SASA theory for the printed structures in the 3D case are also challenging 

topics. 
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